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Abstract
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Traditional adaptive control algorithms are not robust to dynamic uncer-
tainties. The robust adaptive control algorithms developed previously to deal
with dynamic uncertainties do not facilitate quantitative design to predefined
robustness specifications. Their design procedures require time-consuming trial-
and-error. We proposed a new robust adaptive control algorithm with a sys-
tematic and quantitative design procedure. The adaptive controller consists of
an H* suboptimal control law and a robust parameter estimator. Stability and
robustness analysis is based on a general frozen time analysis framework. Global
boundedness of the adaptive control system in the presense of parametric un-
certainty, unmodeled dynamics, and bounded noises is proved. This condition is
based on the shifted H* norm of the frozen time system and is used as the un-
derlying theoretical foundation of the H* robust adaptive controller. Numerical

examples showing the effectiveness of the H* adaptive scheme are provided.
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Chapter 1

Introduction

Traditional adaptive control schemes are designed to be robust to the uncertain-
ties in the parameters of the plant assuming we have fairly good knowledge about
the structure of the plant. However, they are notorious for being non-robust to
unmodeled dynamics or dynamic uncertainties. Many schemes have been pro-
posed to enhance robustness of adaptive controllers to unmodeled dynamics and
bounded disturbances [1, 2, 3, 4]. However, these schemes all have a common
problem in real applications. It is that they cannot quantify the stability ro-
bustness levels of the closed-loop systems. In particular, if a stability robustness
requirement is given in terms of the size of the unmodeled dynamics, there is
no systematic procedure to design an adaptive control system to satisfy this re-
quirement using existing robust adaptive schemes. Robustness levels of adaptive
control systems design using these schemes can only be evaluated through ex-
tensive simulations, so the designer has to go through a tedious trial-and-error
process. The development of a systematic design procedure which facilitates
quantitative robustness analysis is an important problem in adaptive control.
A typical adaptive controller is composed of two parts: a parameter estimator

and a control law. Most robust adaptive control schemes employ special param-



eter estimators to achieve robustness, but they still use the non-robust control
laws used in the conventional non-robust adaptive controllers. Model reference
control (MRC) [1, 2, 4], linear quadratic gaussian (LQG) control, and pole place-
ment control (PPC) are the most common control laws used in these algorithms.
The capability of the control law part has not been exploited to improve ro-
bustness of adaptive control systems. It is interesting to find out whether using
some kind of robust control law can further improve the robustness properties
of adaptive controllers.

Based on the above observations of the drawbacks of traditional adaptive

(and robust adaptive) control schemes, we started this research with two goals:
1. Develop a quantitative and systematic robust adaptive control design method.

2. Investigate the usefulness of H* control laws when applied to adaptive

control.

It turns out that these two goals are related. Using robust control laws enables us
to do quantitative analysis of robustness properties for adaptive control systems,
which cannot be done easliy with non-robust control laws.

We set up the design problem as follows. Suppose we are given the structure
of the nominal linear time-invariant plant model along with a set of possible
parameters, the size of unmodeled dynamics, and the bound on the magnitude
of the disturbances. We want to design an adaptive controller such that all
signals in the control loop remain bounded for any bounded input regardless of
the uncertainty in the parameters of the nominal plant and the presense of the
non-parametric uncertainty.

The systems considered in this research are single-input-single-output (SISO)



linear time-invariant (LTT) systems with coprime factor uncertainty descriptions.
The coprime factor uncertainty model can represent a larger class of systems than
the additive or multiplicative uncertainty models do. In particular, it allows the
nominal system and the true system to have different numbers of unstable poles
and zeros, while the multiplicative or the additive uncertainty models do not.

We developed a new sufficient condition to guarantee that every signal in
the adaptive control system is bounded. This sufficient condition is expressed in
terms of the shifted H* norm of the estimated nominal plant model.

We developed a new robust adaptive control design scheme which has a sys-
tematic and quantitative design procedure using the boundedness condition we
derived. The proposed adaptive control scheme is based on the frozen time ap-
proach, i.e. the plant parameters are estimated by the parameter estimator, then
the controller parameters are computed by the control law as if the estimated
plant parameters are the true plant parameters at each sample time.

The control law used in the proposed adaptive control scheme is the H*®
robust control law for the coprime factor uncertainty. This H* control law can
be computed easily by solving two algebraic Riccati Equations. The simplicity of
the computation of the control law is important to adaptive controllers because
the control law is updated in real-time. The other reason we choose this control
law is its continuity property. Lipschitz continuity of the control law with respect
to the plant parameters is important for adaptive control algorithms based on
the frozen time approach because if the controller parameters are not Lipschitz
continuous with respect to the plant parameters, then the overall adaptive system
may vary arbitrarily fast even when the plant parameters vary slowly, and the

frozen time analysis cannot be applied. The H® robust control law for the



coprime factor uncertainty model used in our algorithm is Lipschitz continuous
with respect to the plant [5, 6, 7, 8, 9, 10].

There were some other results that applied H*® control laws in adaptive
controllers [11, 12, 13, 14, 15, 16, 9, 17, 18, 8, 10, 19], but none of them has
completed theretic analysis of boundedness of the adaptive systems. For exam-
ple, [11, 12, 13, 19] did not consider the effects of unmodeled dynamics, so they
are indeed ideal-case results. [16, 9, 18, 8, 10] ignored the interaction between
control laws and parameter estimators when unmodeled dynamics exist, which is
very critical to stability of adaptive control systems. [17] relied on the persistent
excitation conditions to achieve boundedness. None of these results facilitated
systematic and quantitative design procedures as ours.

The parameter estimator used in the proposed adaptive controller was devel-
oped by Lamaire [20]. It was also used in [21, 22]. This estimator is the discrete
time version of a continuous time estimator introduced in [23]. It uses a recur-
sive least squares-type identification algorithm with dead-zone and projection
modifications. The projection modification of the estimator is used to constrain
the parameter estimate within a feasible set to ensure the solvability of the con-
trol law. The dead zone is used to turn off the updating when the prediction
error can not be distinguished from the errors due to the external disturbance
and non-parametric uncertainty. Hence the parameter estimate is updated only
when the prediction error is really due to a large parametric error. The dead
zone is normalized by the prediction error to guarantee the time varying adapta-
tion gain is bounded no matter how large the prediction error is. This estimator
provides important properties required for proving global boundedness of the

adaptive loop.



Many simulations have been performed to validate the properties of the pro-
posed adpative control scheme. The results confirmed robustness of the control
scheme. The design parameters of the adaptive controller were chosen based on
concise rules once the specifications on the size of uncertainties was given. No
trial-and-error procedures are needed.

In order to further improve the performance of the proposed adaptive con-
trol scheme, we proposed a modified scheme which allows frequency-dependent
weighting functions to be included in the coprime factor uncertainty model of
the plant. These weighting functions, when chosen properly, can give more free-
dom on the control design. Hence it is easier to achieve both good robustness
and better performance simultaneously. Global boundedness of the weighted
scheme was also proved. Same examples used in the non-weighted scheme were
re-designed using the weighted scheme. Significant performance improvement
was observed.

The result of this dissertation is unique as no one has done global bound-
edness analysis on H* adaptive controllers and no one has been able to design
an H> adaptive controller to meet predefined specifications on the parametric
uncertainty, unmodeled dynamics, and bounded disturbances. The main contri-

butions of this research are:

e A systematic and quantitative design procedure for adaptive control sys-
tems is proposed. This can not be done with most previous adaptive control

algorithms.

e The H® robust control laws is incorporated in the adaptive controller with
a rigorous theoretic support. The complexity of the control law is the same

as that of the adaptive LQG controller.



e This adaptive controller can achieve global boundedness and stability ro-
bustness in the presence of parametric uncertainties, bounded external

disturbances and unmodeled dynamics.

The rest of this dissertation is divided into seven chapters. Chapter 2 re-
views the development of the stability results for adaptive control systems and
some relevant recent results. Chapter 3 introduces the notations and analysis
tools used in this dissertation. Chapter 4 formulates the problem that we try to
solve. The parameter estimator used in the proposed adaptive control scheme is
also introduced in this chapter. Chapter 5 reviews some sufficient conditions for
global boundedness of the signals in an adaptive control system. The adaptive
I' controller developed by Voulgaris et al. [21, 22] using these boundedness con-
ditions is reviewed, and its disadvantages are explained. Chapter 6 is the main
theoretical result of this research. We derive a new boundedness condition based
on the shifted H*® norms of frozen time systems. The algorithm of the adap-
tive H* controller is presented. Chapter 7 presents some numerical examples to
demonstrate the adaptive H* control design. Chapter 8 introduces an extension
of the adaptive H* control scheme which includes frequency-dependent weight-
ing functions in the uncertainty model. Chapter 9 concludes this dissertation.
The MATLAB scripts used to simulating the examples in Chapter 7 are listed

in Appendix A.



Chapter 2

Background

This chapter reviews the development of stability and robustness results for

adaptive control systems and literature related to this research.

2.1 Stability and Robustness Results

This section reviews the development of stability and robustness results in adap-
tive control developed in the last three decades.

Most early adaptive control designs were heuristic and focused on the per-
formance issue, that is how to adjust the controller parameters to minimize a
performance index, without rigorous consideration of stability. In 1966 Parks [24]
demonstrated that gradient-based adaptive systems, such as the MIT rule-based
adaptive control, could be unstable, and he showed that an adaptive control
design based on the Lyapunov method could make a class of systems globally
stable. Researchers then concentrated on the stability issues.

It is well known that adaptive control systems are nonlinear even when the
controlled plants are linear, so it is more difficult to analyze stability of adap-
tive systems than linear systems. Stability problems of nonlinear systems are

usually divided into local stability problems and global stability problems. Lo-



cal stability problems consider stability about a particular trajectory, which is
determined by the external input signal and the initial conditions. Hence, an
adaptive control system designed to achieve local stability for a particular input
signal may not be stable for other input signals or initial conditions. Global sta-
bility problems consider stability of adaptive control systems for a whole family
of input signals, e.g. L*®-signals, and any bounded initial conditions.

In 1979 and 1980 several groups [25, 26, 27, 28] established so-called “ideal-
case” global stability results for model reference adaptive control systems almost
simultaneously. Their main result says that every signal in the adaptive loop
will remain bounded and the output error between the plant output and the
reference model output will go to zero if the external reference signal is bounded

and the following ideal assumptions hold:

1. The time delay of the plant is known (for the discrete-time case).

2. Upper bounds on the degrees of the numerator and the denominator are

known.
3. The plant is minimum-phase.
4. The sign of the high frequency gain is known.
5. There are no external disturbances

Assumptions 2 and 5 are not realistic because physical systems are usually more
complicated than the mathematical models used in the control design and phys-
ical systems often suffer from some kind of disturbances or noises. Many people

soon discovered that these ideal-case results had serious robustness problems.



Egardt [25] showed that even small bounded disturbances could cause instabil-
ity in adaptive control systems. Rohrs et al. [29, 30] also demonstrated by
simulations that mild violations of the ideal assumptions could lead to instabil-
ity. Since then the robustness problem has been a focus of research in adaptive
control.

We now explain the stability and robustness problem of adaptive control
system using a general framework.

Given a SISO LTI plant

Moy(t) = Nou(t) (2.1)
where
No(z™!) = bzl 4 bz 24 4 bpz™
My(z™Y) = 14+az7 4+ +az™
We let
ep é [—a'ly" ')_anabla”',bm]T
$) = [yt—1),-,yt—n)ult—1), -, ult—m)]T,

then we have

The error equation of a typical discrete time adaptive control system can be

described as follows:

e(t) H(z"){¢7 (1)0(t — 1)} (2.2)
Bt +1) = 6(t) - ed(t) H (=) {dT )0t + 1)}. (2.3)



where 0(t) = 6, — O(t) is the error between the true parameter 6, and the
parameter estimate 8(t), ¢(t) is the regressor vector, e(t) is the prediction error,
¢ is the adaptation gain, and H(s) is a stable linear system depending on the
algorithm (see [1] for detailed definitions). The {-} in (2.2) indicates that H(z™!)
operates on the signal ¢ (£)0(t — 1) to produce e(t) and similarly in (2.3) H(z7?)
operates on the signal ¢7(t)d(t + 1). Notice that (2.3) is a non-causal form of
the parameter updating law, which is not directly implementable. Sometimes
the non-causal form is more convenient for analysis than the causal form. We
will show that it can be converted into a causal form which is implementable.
We now show that the non-causal form (2.5) can be converted into a causal

form by some algebraic manipulations. For simplicity, we choose H(z7!) = 1.

Then the adaptive system can be described as follows:

e(t) ¢T(1)0(t — 1) = y(t) — ¢7 (1)0(t — 1) (2.4)
Bt +1) = 8(t) — ep(t)(@T (R +1)). (2.5)

This is the so-called normalized least mean squares (LMS) algorithm [1].

(I +ep(t)g7 (£))6( + 1) = 6(2), (2.6)
= 0t+1) = (I +ed(t)dT ()" 0(2), (2.7)

Recall the Matrix Inversion Lemma:

Let A, C, and C~! + DA™ B be nonsingular matrices. Then
(A+BCD) ' =A"'-A"'B(C™'+ DA™ 'B)'DA™".
Applying the Matrix Inversion lemma, to (2.5) with

A=1, B=¢(t), C=¢ D=¢"(t),

10



we can get

B(t+1) = [I - ¢(t)(e" + " (D)) "o ()10 (2), (2.8)

¢)"(t) |5
eranwnl Ok (2.9)

= 0t+1)=|I—¢
Equation (2.9) is in the causal form.

The averaging theory, which was previously used in Ljung’s ODE approach
[31], was a very popular and powerful tool in studying local stability of systems
like (2.9) in the 1980’s. One example use [1] of averaging in adaptive control
described here. Consider the non-causal form of the error equation (2.5) again.
Assume H is a general LTI system with H(z) = d + ¢(2I — A)~'b and that
A is Hurwitz (i.e. all the eigenvalues of A lie in the open unit disk of the

complex plane). Then the adaptive system (2.3) has the following state space

representation:

O(t+1) = 0(t) — ed(t)(dp™ ()0t + 1) + T z(t)) (2.10)
o(t+1) = Az(t) + b7 (1)t +1) (2.11)

e(t) = Cux(t) +doT (t)4(t +1) (2.12)

Under certain conditions there exists a Lyapunov transformation L(k,e€) that
transforms the system (2.10-2.11) into a new system with decoupled slow-fast

dynamics as below [1]:

Ot+1) = (I—eg(k,e)p(t)vT(k,e))8(t) +eg(k,e)p(t)cTz(t) (2.13)

2(t+1) = (A+eglk,e)(L{k+1,¢) — bod™ (t))p(t)cT)2(t) (2.14)

where g(k,¢) = 1/(1 + edyT (t)é(t)), and vT(k,€) = dp* (t) + T L(k,€). Notice

that the Lyapunov transformation will preserve the stability properties, and

11



for sufficiently small € the fast z-subsystem is exponentially stable because A is
Hurwitz (H(s) is stable). Hence for sufficiently small € the adaptive system (2.10-
2.11) has the same stability properties as the slow system (2.13). To consider
Lyapunov stability of the slow 8-subsystem (2.13) we can drop the forcing term

and just analyze the unforced part:
Bt +1) = (I — eg(k, ()0 (k, €))B(2 (2.15)

It is a fact that for sufficiently small e we have g(k,€) &~ 1 and v (k,€) ~ oI (t) =
doT (t) + cT Ly(t), where Lo(t) = S5 A7~1b¢T (), so the stability properties
of the slow subsystem (2.13) can be determined by the stability properties of the
simplified system

0t +1) = (I — egp(t)vD)0(2) (2.16)

The intuition is that ¢(¢) in (2.16) usually varies much faster than 6(t) when ¢
is very small, so the trajectory of the solution 8(t) of the system (2.16) can be
well-approximated by the trajectory of the solution of the averaged system of
(2.16).

Let R(t) = ¢(t)vT (t),then (2.16) can be written as
0t +1) = (I — eR(t))6(t). (2.17)

Define the sample averages as

8 1 k;i—1
kit

over the interval 0 < K, < K; < Ky < oo. The averaging theory says if there

exists a constant positive definite matrix P = PT > 0 satisfying

PR, +R/P>1, Vi

12



then there exists an €* > 0 such that the system (2.17) is exponentially stable
for all € € (0,¢*). When ¢ is periodic, we have R; = R, Vi, so very simple and
useful stability and instability criteria can be obtained.

Astrom [32], Kokotovic et al. [33, 34], Fu et al. [35], and Kosut et al. [36]
used the averaging theory to analyze adaptive control systems in the presence
of unmodeled dynamics, to explain the instability mechanisms, to determine the
boundary between the stable and unstable regions, and to estimate the conver-
gence of the adaptation. A thorough discussion of the application of averaging
in adaptive control can be found in [1, 4].

Other useful tools for analyzing local stability of adaptive control systems are
linearization [37}, total stability [1], Lyapunov theory, persistence of excitation,
time scale separation, small gain theorem [38], integral manifold [1], passivity,
and positivity ([1, 39, 4, 40, 41]).

When high frequency disturbances or unmodeled dynamics exist, the esti-
mator will constantly be pushing the parameter estimate to match the high
frequency dynamics. Hence the parameter estimate may drift. Parameter drift
is the main cause of instability when the ideal-case adaptive controller is applied
to a non-ideal system. Notice an unbounded parameter estimate will almost
surely cause instability of the adaptive control system in the presence of high
frequency unmodeled dynamics. This is because, as the coeflicients of the esti-
mated transfer function model grow larger, the adaptive control law will ” think”
the plant has a large bandwidth. Thus a high gain controller is applied. When
the relative degree of the actual transfer function is greater than two, the phase
shift will be greater than 180°, and the closed-loop system will become unstable

when the loop gain is too high. Therefore, eliminating the parameter drift is the

13



first step to achieving robustness of adaptive control systems.

Once the instability mechanism was understood, researchers started look-
ing for adaptation laws which would be robust to bounded disturbances and
unmodeled dynamics. We review some of the most popular ways to improve ro-
bustness of adaptive controllers next. We separate them into two different cases,
one for external bounded disturbances, and one for internal disturbances due to

unmodeled dynamics. For simplicity, we consider the simple case of H(271) = 1.

Robustness to bounded disturbances Suppose a bounded external distur-

bance d; is injected into a SISO linear time-invariant system as follows

Moyy(t) = Nou(t) + d1(t) (2.19)
where
No(z™) = bz t4byz 24 4+ byz™
My(z"Y) = 14+az b+ +az™
We let
0, = [—a1, ) =Gn, by, -+, D] T
$(t) = [yt—1),- y(k—n)ult-1), -, ulk —m)]",

then the error equation of the adaptive system becomes
y(t) = ¢7 ()0, + da(2).

There are four popular techniques to achieve robustness to bounded distur-

bances:

14



1. Persistent excitation: The regressor ¢(t) is said to be persistently exciting

(PE) if there exist positive constants T, o, 8 such that for all T
T-1
0<al <Y ()" (t) < BI < oo. (2.20)
t=0

When ¢ is PE, the equilibrium of (2.9) is a point and 8(¢) will converge
exponentially to the equilibrium. When ¢ is not PE, the equilibrium is a
manifold instead of a point. The parameter estimate 6 might drift to infin-
ity along this manifold. Narendra and Annaswamy [37] showed that if the
degree of persistent excitation is sufficiently large compared to the magni-
tude of the disturbances, then all the signals in the loop will be bounded.
This approach is not very practical because it requires the reference sig-
nals to have the PE property, but in many applications the set point is
not persistently exciting and it is usually undesirable to inject additional

perturbations to the plant.

2. Projection: Egardt [25], Kreisselmeier and Narendra [42] showed that
global boundedness of all signals in the closed-loop system in the pres-
ence of bounded disturbances can be achieved by projecting the parameter

estimates onto a compact convex set containing the true parameter vector.

3. Dead-zone: Egardt [25], Peterson and Narendra [43], and Samson [44] used

dead-zone modifications, which have a form like the following:

8(t)
1+ ed™(t)o(t)

0(t+1) = 0(t) — ef(e(t)) (2.21)

where
e(t) — Dy ife(t) > Dy
fle®) =1 0 if le(t)] < Dy - (2.22)
C(t) + Dy if e(t) <-—-D

15



This kind of parameter estimator stops the adaptation when the estimation
error is smaller than the disturbances, to assure boundedness of all signals

in the closed-loop system.

4. Leakage: This technique is also known as o-modification [45, 46]. It is
mostly used in continuous-time adaptive systems. For example, the gradi-

ent algorithm for the ideal case is

6(t) = —ed(t)e(t). (2.23)

The idea of o-modification is to add a leakage term —aé(t) to get a new

parameter updating law,
6(t) = —ed(t)e(t) — ob(2), (2.24)
for which the Lyapunov function

V() = 0T (1), (2.25)

has a negative definite derivative when the parameter estimate error is out-
side a compact region containing the origin. Hence the parameter estimate

will remain bounded.

The latter two approaches eliminated the pure integration action of the original
adaptation law (see (2.9)) to prevent the parameter drift caused by bounded

disturbances.

Robustness to unmodeled dynamics Suppose a SISO linear time-invariant

system is modeled as follows

(Mo + AM)y(t) = (No + AN)u(t) (2.26)
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where

N()(Z—l)

M()(Z—l)

biz i bz 24 A by ™

l4+aiz7 +- +azz™

and Ay, and Ay are high frequency unmodeled dynamics. We let

01) = [_ah Tty ”anabla te 1bm]T
¢(t) = [y(t - 1)7 e ,y(k - n’)au(t - 1)’ T au(k - m)]T’
and dq(t) = —Any(t) + Anu(t), then the error equation of the adaptive system
becomes

y(t) = ¢" ()6, + da(t)
where dy(t) is the term contributed by the disturbance.
When unmodeled dynamics exist, the error equation of the adaptive system
becomes

e(t) = ¢T(1)0(t) + da(t). (2.27)

The robustness problem for unmodeled dynamics is more difficult because the
internal disturbance dy(t) could be unbounded even when the unmodeled dy-
namics is stable. Hence the techniques requiring the assumption of bounded
disturbances cannot be directly applied to this case. Praly [47] proposed the
idea to divide both sides of the error equation (2.27) by a normalizing signal

n(t) with the property that

dy(t)
| S M <o (2.28)
- o) $TWHD)  duld)
n® = n@ " ak) (2.29)
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to get a normalized error equation with a bounded disturbance term:
en(t) = &7 (1)0(t) + dan(2), (2.30)

n{t)’

where e,(t) = & ¢ Pn(t) = %, and dy,(t) = %%2 Now da,(t) is a bounded
disturbance signal, so we can use the modification techniques used in the bounded
disturbance case, e.g. parameter projection [47, 48], dead zone [3], and leakage
[49], with the normalized signals e, (t), ¢,(t), and d2,(t) to achieve global bound-
edness for the normalized signals. To show the non-normalized signals are also
bounded we need to show the normalizing signal n(t) is bounded. This is usually
done by using the Gronwall-Bellman lemma.

Persistent excitation of the regressor signals provides the same robustness
effect to unmodeled dynamics as it does to the bounded disturbances. It was
showed in [50, 51, 52, 36, 1] that if the regressor ¢ is persistently exciting, then
the closed-loop adaptive control system is exponentially stable, hence it is robust
to sufficiently small unmodeled dynamics.

It was shown recently that parameter projection alone is enough to guarantee
global boundedness of all signals in the closed-loop system in the presence of

bounded disturbances and small unmodeled uncertainties [53].

2.2 Adaptive Control Schemes Using Robust Control
Laws

Most of the above results were derived for model reference adaptive controllers

(MRAC). In fact, only MRAC have been studied extensively. However, the

model reference controller lacks robustness because it attempts to make the

closed-loop system match the model at high frequencies, where the modeling
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error is large. It is interesting to investigate whether other control laws can
improve robustness or not. Some attempts to use linear robust control laws in
adaptive controllers have been made recently [54, 11, 12, 13, 55, 56, 14, 15, 16,
57,21, 9, 17, 18, 8, 10, 58, 19, 59, 22, 60]. This section reviews some adaptive
control schemes that used robust control laws or ideas developed in the linear
robust control theory.

Ueng et al. [56] used a coprime factor uncertainty model
P(z7h) = (Mo + Au) ™ (No + Aw), (2.31)

which is an uncertainty model first used in the linear robust control literature, to
describe the multi-input multi-output (MIMO) plant to be controlled. They used
the LQG control law and a gradient-type parameter estimator with dead-zone
and projection modifications.

Grimble et al. [11, 12, 13, 19] proposed a self-tuning regulator (in the stochas-
tic setting) using an H* control law that minimizes a cost function of the fol-
lowing form

J = [Tyy(z™ oo (2.32)

where ¥(t) = P(z7V)e(t) + F.(z7Yu(t), P, and F, are weighting transfer func-
tions for e and u, respectively, and W, is the power spectral density matrix for
1. The computation of this control law for this cost function is simpler than that
of the H* control law for the conventional mixed sensitivity cost function, but
the physical meaning of the new cost function is not as intuitive as the mixed
sensitivity. They used the regular least squares type (non-robustified) parameter
estimator and did not study the effects of unmodeled dynamics on stability of

the adaptive system.
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Dahleh and Dahleh [55] used the /! optimal controller law and a parameter
estimator similar to that in [56] to get an adaptive control design which is robust
to bounded disturbances. Voulgaris et al. [21, 22] extended the results of [55] to
accommodate unmodeled dynamics. The I! optimal controller, in general, is not
Lipschitz continuous with respect to the plant parameters, so the slowly varying
assumption for the stability condition may be violated.

Krause et al. [57] assumed that a robust control law attaining a certain
level of robustness is available and then studied robust stability and asymp-
totic performance of the closed-loop systems. They developed a continuous time
gradient-type parameter estimator with a dead-zone which turns off the adapta-
tion when the shifted L?-norm of the prediction error is smaller than a certain
threshold. However, they did not provide a specific construction of the control
law, and it is not clear how to compute the performance measure they defined.

Wang and Zames [14] used an H* suboptimal control law for the sensitivity
minimization problem in an adaptive control scheme. They did not specify the
parameter estimator or consider stability of the adaptive loop.

Wang designed time varying (non-adaptive) controllers to achieve {*°- [9] and
I2-stability [8, 10] for slowly varying systems in the presence of the gap metric
uncertainty [5]. This is not an adaptive control problem, but it is related to
this research because the gap metric uncertainty is similar to the coprime factor
uncertainty used in this research, and the AAK (V. M. Adamjan, D.Z. Arov,
M.G. Krein [61]) construction of the suboptimal controller used in [9, 8, 10] is
also equivalent to the state space construction of the suboptimal controller [62]
used in this research.

Owen and Zames [18] extended the optimal robust disturbance attenuation
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problem in linear robust control (two-disk problem) to the case that identification
data are added as time goes on to enhance the performance and the signal space
is 2. However, they assume the adaptive system has reached convergence, so
they did not consider the interaction between the control law and the parameter
estimator.

Jacobson and Tadmor [17] combined an H* frozen time complete information
controller with a robust identification scheme. They required the regressor to
be persistently exciting, hence not in 2, but they assumed the signal space is [2
during the proof of stability and performance results, so their assumptions are
not consistent.

Lall and Glover [59] use a receding horizon H* control law in an adaptive
controller. They studied the performance of the adaptive system assuming the
system is stable. They did not give any method for actually determining the
model.

H® control designs for linear systems with known nominal models have been
studied extensively, but using H* control laws in adaptive control systems is
still an on-going research topic [63, 14, 18, 17]. There are at least two diffi-
culties when applying H* control laws to adaptive control. First, linear H*
control considers signals with bounded energy, i.e. {2 signals, but most adaptive
control problems involve signals with bounded magnitude, i.e. [* signals. For
example, a key ingredient for convergence of parameter estimators is persistently
exciting signals, which are in [*® but not in /2. Secondly, for LTI operators on
I?(—00, 00) Parseval’s theorem provides an isometry between the kernel (impulse
response) and (Laplace) transformation representations, so we can estimate the

12(—00, 00) time-domain behavior from the frequency-domain properties. How-

21



ever similar relations do not exist in the situation of a general LTV operator
on [*°(—00, 00), so we can not directly incorporate H* control laws in adaptive
controllers without a rigorous theoretic support.

Zames and Wang [14, 16] established fundamental relations between the
norms of frozen time systems and of global LTV systems. They showed that
an asymptotic isometry exists between a special frequency domain norm and the
I! norm for slowly varying systems in the sense that the supremum of the shifted
H® norms of all frozen time (LTT) systems is getting closer to the I! norm of the
overall linear time varying system as the variation rate is getting smaller. Their
results inspired this research, and their theory is used as the machinery to prove

the effectiveness of the proposed robust adaptation control scheme.

2.3 Quantitative and Systematic Adaptive Control De-
sign

Most robust adaptive control results reviewed in section 2 are qualitative. There

is no way to estimate the robustness level of an adaptive control system, and

there are no systematic design procedures to achieve global robustness for a

given plant structure and some uncertainty specifications. For example, a typical

robust stability result for adaptive control system is the following: (Theorem 4.1

of [49])
Theorem 1 [49] Consider the SISO plant
Y8) _ G(s) = Go(s)[1 + phra(s)] + (o) (2.33)

with the controller specified in the paper [49]. There exists a p* such that for

each 1 € [0, pu*] all the signals in the loop are bounded for any initial condition
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and bounded input signal.

This kind of result is not very useful for the synthesis of robust adaptive con-
trollers because it does not provide a way to calculate the p* or a procedure to
design the adaptive controller given a bound on px.

How to get a systematic design procedure which facilitates global quantitative
robustness and performance analysis is an important problem in the synthesis
of robust adaptive controllers. This section reviews some recent results which
try to solve this problem. Some recent papers proposed interesting results in
quantifying the stability robustness level and the performance robustness level
of the adaptive controllers. These results allow us to get systematic design
procedures for robust adaptive controllers. This section reviews some of these
quantitative robustness results.

Dahleh and Dahleh [55] derived a boundedness condition in terms of the !
norm of time varying sensitivity functions in the case of bounded disturbances.
They proposed a procedure to design an adaptive controller that satisfies the
boundedness condition via frozen time optimal {* control. Voulgaris et al[21, 22]
extended the result of [55] to accommodate unmodeled dynamics. There are two

disadvantages to their design procedures:

1. The ! optimal controller in general is not Lipschitz continuous with respect
to the plant parameter, so the slowly varying assumption for the stability

condition may be violated.

2. The ! norm and the [' optimal controller are more difficult to calculate

than the H? or H™ controllers.
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Krause et al [57] used the supremum of the ratio between the L2-norms of the
output and input signals, which is an extension of the H* robust performance
in the non-adaptive robust control literature, as the performance measure. They
characterize the control law which can achieve robust performance, but they
did not provide a specific control law that satisfies this characterization. The
performance measure they defined is very difficult, if not impossible, to compute.

A. Datta and S. P. Bhattacharyya [54] developed a direct model reference
robust adaptive control scheme which faciltates quantitative analysis of the ro-
bustness of the closed-loop system. They used the results from the area of robust
parametric stability to derive a procedure for verifying a condition which guar-
antee the boundedness of all signals in the closed-loop system. This procedure
involves calculating the worst case shifted H* norms over certain one parame-
ter families. Their controller structure and boundedeness condition are different

those proposed in this dissertation.
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Chapter 3

Preliminaries

3.1 Global-local Double Algebra

This section introduces the Global-Local Double Algebras defined by Zames and
Wang [16]. This theory is used later to prove the boundedness condition of the
adaptive control system. The importance of this theory is that it relates the I*
kernel norm to the frequency domain H* norm. Therefore it allows us to apply
an H® control law, which is usually defined in the I? signal space, to adaptive
control problems which involves the {* signal space.

Let R, C, Z denote the real, complex numbers, and integers. Let R™ and
R™™™ denote n-tuples and n x n matrices over R. C"* and C"*" are defined

similarly with C replacing R. Let [2[a,b], 1 < p < 00, 0 > 1, denote the space of

sequences u(t), t = a, a+1,...,b either of vectors in C” or matrices in C™*" for
which
1
A [Zgzaﬂu(t”at)”] ? <00 forl <p< oo
lulle, , = (3.1)
SUPg<t<b |U(t)10t < o0 forp=o00

The dimension n will usually be suppressed. When ¢ = 1, o will also be sup-
pressed. When ||u||,p[ ’ exists for a = —oo and b = oo, it will be written as

u € 2. Let H*® denote the space of rational transfer functions which are ana-
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lytic and essentially bounded on the region |z| > 1. For K € H*® the norm on

H®> is defined as
A
| K || e = sup |K(2)]
221

where | K (z)| denotes the largest singular value of K (z). For o > 1, define the o-
shifted H* space, denoted by H, to be the space of rational transfer functions
which are analytic and essentially bounded on the region |z| > 1/0. H? is the
subspace of H? whose elements have decay rates no less than o. For K € HY

the norm on HZ° is called the o-shifted H* norm and is defined as

A
1Kl = sup |K(2)]

lz|>1/0
Let B be the space of bounded linear causal operators from {*°(—o00, 00) to
[ (—00, 00) which can be represented as convolution sums, i.e., for any K € B

there is a kernel (impulse response) k(t,+) € I'(—00, 00) such that

(Ku)(t) = zt: k(t,T)u(r), t€ Z, uel® (3.2)

T=—00

and k(t,7) = 0 whenever ¢t < 7. The operator norm on B is defined as follows:

| K|ls = sup [|k(Z, -)[ln < o0 (3.3)
teZ
where
A o0
k(e = D [k, 7). (3.4)

It is easy to show that B is a normed space. Furthermore, each element in B is
characterized by an [' kernel, and the I! space is a complete space, so B is also
a complete space. Hence B is a Banach space.

Let B, be the extended space of B, i.e. B, contains sequences whose trun-
cations lie in B. The introduction of B, allows us to deal with some unstable

linear time-varying operators.
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Given an operator K in B, the local system or frozen-time system corre-
sponding to K at time « is the time-invariant operator, denoted by K,, with
the same domain as K satisfying

0
(Ko u)(t) = D> kloya—(t—1)) u(r), te Z. (3.5)
r=—00
The system corresponding to the operator K € B is called the global system.

The definition of a local system here is chosen for the following reason. For
a given input {u(t) : t € Z} the output at time o produced by the local system
frozen at time « is the same as the output at time o produced by the global
system, i.e.

(Kau)(t) = (Ku)(t), if t = . (3.6)

Other definitions might be more appropriate in other cases. For example, as
Zames and Wang [16] pointed out, if the global system varies fast but its averaged
operator varies slowly, then it is more appropriate to define a local system based
on the averaged system corresponding to the global system.

Let ﬁ‘a be the transfer function of the frozen-time system F,, the frozen
time system corresponding to F', in H*. Call E, the local transfer function
corresponding to the global operator F' at time a. F will denote the sequence
{F,}, € 2.

Define two products on B,:

Definition 1 For any F and K in B, define the global product - to be the usual

composition product, i.e.

FKut) = Y f(t,i)[i k(i,f)u(f)], (3.7)

3=—00 T=—00
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where f and k are the kernels of F' and K, respectively. The local product FF® K

of F' and K is the unique operator satisfying
(FQ K)o = FyK,, Va € Z, (3.8)

where Fy, K, is the frozen-time (or local) system of F, K at time «, respectively,

i.e.

(FKault) = 3 flaya—(t—1)) _2_; Ha,a—(i—u@)|. (39

1=—00

The symbol for the global product will often be suppressed, i.e. F- K = F K.

Definition 2 A local-global double algebra is any subspace in B, which is equipped

with global and local products and is an algebra with respect to each.

B, itself is a double algebra. Another new operator is the product difference
binary operator /\:

FVKA2FK-FQK.

Given o > 1, two kinds of norms are defined on a double algebra.
t

A -7
IKlly = sup Y [k(t, 7)ol (3.10)
~ A ~ ~
po(K) = SgplthHHgo=sgp||Kt(0(-))|lHoo (3.11)

where o(-) means o times the argument, K, is the transfer function of the frozen-
time system K, the frozen time system corresponding to K, in H*°, and K means
the sequence {K;},t € Z.

Given ¢ > 1 the following linear spaces are defined:

£ £ {KeB: ||Kllw < oo}
£, & {K € B: ||Kl||(45) < 00 for some g¢ > 0}
£, £ {K € B: pg(K) < oo for some gy > o}
£, £ {KeB: p,(K)< oo}
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\J /

Figure 3.1: The relations between the subspaces

é’_(, and &, are useful in dealing with operators initially specified in the frequency

domain. These spaces have the following relations:

e For K € &,, K,isin H % for all 7. Every stable causal operator in &, has

local transfer functions in HZ°, but the reverse is not true.

e £ is identical to _éio.. An operator in £, has both frequency domain and
time domain specifications.
e Foro>1,&E,C& Cc&, CB.

° 501 C :9—01 C 5(72, if o1 > oy.

The relations between these subspaces are illustrated in Fig. 3.1.

Two inverses are defined for an operator K in a double algebra :

Definition 3 The global inverse K~ of K is an operator satisfying K=! - K =
K - K~' = I. The local inverse K© of K is an operator satisfying K® @ K =
K® K®=1.

If K € B,, then K~! (and K®) exists in B, if and only if k(t,t) (the diagonal

element of the Hankel matrix of K) is invertible for all time ¢. Conditions for
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local invertibility in B, are identical to the global case. Therefore, if K© € B,,
then K~' € B,, too. In the normed double algebra B this is not true. If K€ ¢ B,
it is not necessary that K~' € B. An additional condition is needed to carry
local invertibility over to global invertability in B. The following theorem gives

a condition for local invertibility to imply global invertibility and the relation

between these two inverses.
Theorem 2 [16] Let K € B with a local inverse K° € B.

1. If |[K®VK||g < 1, then the global inverse K~! € B, and

K—l

(K°K)'K® = (I + K°VK)'K®

1K s < IK®|ls(1 - | KOVEK|5)™

2. If |KVK®||p < 1, then the global inverse K~! € B, and

K' = K9(KK®)'=K®(I+KVK®)™
1K= < IIE®s(1 - [KVE®||p)™
Proof
See [16]. O
Note that the condition on ||K'VK®||p is related to the slowness of the variation

of the kernel in the time domain, or of the transfer function in the frequency

domain. Define two measures of the variation rates of linear time-varying oper-

ators.
Definition 4 Given o > 1 define the time-domain variation rate as:

7AN
doy(K) = |[KT — TK||(0),
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where T 1is the shift operator satisfying (Tw)(t) = u(t — 1), t € Z. K cis said to

commute approzimately with the shift if dg)(K) < ||K||(¢)-

Definition 5 Given o > 1 define the frequency-domain variation rate as:

Y

85 (K) = sup | Kii1 — Kil| ree-
teZ

K has slowly varying local transfer functions, or K is slowly varying if 0,(K) <

A

po (K).
A time-domain frozen-time stability condition is given as follows:

Theorem 3 [16] Let G, K € £,,0 > 1, and either G has no memory or K is
shift-invariant, then the existence of (I+GQ®K)® € &, implies (I+G K)™! € B,

provided that
d(GRK) < (elno) [{+GK)P°Q[(1—a) I —aG® K]H(‘ol)
for some a € R.

Proof

See [16]. O
The time-domain variation rate needed in order to apply Theorem 3 involves the
I' kernel norm of an inverse, so it is in general difficult to compute or measure.
Therefore, Zames and Wang turned to a frequency-domain approach. The idea
is that if the global system K varies slowly, the transfer function of its local
system will vary slowly, too. The relation between these two variation rates is

expressed explicitly in the following lemma:

Lemma 1 For o9 > o > 1, d,(K) < Uﬂao/gd,(f(), where Kyy/e = (1 —

(090/) )72,
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Proof

See [16]. O
In the time-invariant [2(—oo0,00) case Parseval’s theorem provides an isome-
try between the time domain and the frequency domain representations, so
the [?(—o00,00) time-domain behavior can be estimated from the frequency-
domain properties. However this cannot be done in the situation of time-varying
[°°(—00, 00) with the time-domain norm .||,y and the frequency-domain norm
Hao(.)-

Zames and Wang defined an operator norm ||.||4(), called the auxilary op-
erator norm, which is equivalent to the B norm and show the existence of an
approximate isometry between the auxiliary operator norm and the frequency-
domain p, norm for slowly varying systems. They first define the auxilary signal

norm || - [la(e) on 1°(—00, 00) by

ulla) =
-1 t —(t=7) |2 1/2
K1 sup,cz (ZT:_OO lu(T)o | ) , 0<00

”Ule, g =00

1
2

where s, = (1 —072)~2 and Il is the truncation operator which maps f(7) to

a function g(¢) with

flr) ifr <t
g(t) =
0 otherwise

Don’t confuse the truncation operator Il with the frozen time system cor-
responding to a general operator II. The factor ' is introduced to make
l|lu|la(sy = 1 when u(r) = 1 for all 7.

The induced operator norm of || - ||4(s) is called the auxiliary operator norm:

1K ao) = sup{[| Kullao) : u € 1°°(=00,00), [[ulago) < 1}
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This auxiliary norm is equivalent to || - ||z and || K||s(c0) = sup; [|k(2, -)||2, where
K € B and k is the kernel of K.

An important property of this auxiliary norm is
Ma(f() —a< “K”a(tr) < HU(K) + B (3.12)

for some non-negative o, (. It can be shown that 8 — 0 as Bg(f( ) = 0, and

a—0as 0,(K)— 0and o — 1.

Define a seminorm called the recent past seminorm:
| K |laosty = Ky ot sup{|| Ty Kullz : u € 1°°(—00,00), ||ulle@y < 1.}

|| - la(osty is called the recent past seminorm because the definition of the signal
norm |[-||;z gives larger weightings to more recent values of the signal. Note that
1K lago) = supy [ Klatast)-

With this machinery in hand a frequency domain frozen-time stability con-

dition is given in the following theorem.

Theorem 4 [16] Let G, K € E,. Assume G is time-varying with e (G) =1, and
K is time-invariant. The global closed loop operator (I + G K)™! is [*®-bounded

if the local closed loop operator (I +G ® K)™! is [®-bounded and

A c—1
) < B+ Gl B (512
When G has no memory, the variation bound becomes
0(C) <« — -1 (3.14)
Yito (K) (1 + Y410 (K))
Proof
See [16]. O
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This is a significant step in the frozen-time analysis since the frequency-domain
type variation bound allows us to consider a larger class of problems, for example,
the robust adaptive control problem which considers the presence of unmodeled
dynamics. Furthermore, currently available H* optimization techniques can be
applied to slowly varying systems. The inequality (3.14) only contains frequency-
domain norms, so it is easier to check, but (3.13) still involves the auxiliary
operator norm ||G|l,s) which is usually not very tractable. If G € &, then, by
by using the following fact [16]:

9 (@)

o—1

1Gllage) < po(G) + , (3.15)

Replace (3.13) with the following slightly more conservative pure frequency-
domain inequality:
oc—1

TholR) + 722 (Vo () + 228y

o—1

— o (3.17)
1o (B) + 22 ()1 + 249

since 1, (G) = 1 by assumption. (3.17) is even easier to check than (3.13).

0,(G)

IN

(3.16)

The following theorem links the recent past seminorm of global operators

with the shifted H* norms of local operators are stated below.

Theorem 5 [16] Suppose K € &, and K has slowly varying local transfer func-

tions, which means
95 (K) = sup | Kpp1 — Killme < p1o(K).
teZ
Then the following relation holds:
1K ey — 1Kl < 6808,(K), (3.18)

where k) = (o — 1)7*
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Proof
See [16]. O

3.2 Robust Stabilization for Systems with Coprime Fac-

tor Uncertainties

This section introduces the design of discrete-time linear H*® controllers for
systems described by coprime factor uncertainty models. This design will be
extended for the adaptive H* controllers in section 6.3.

Consider a SISO LTI plant P(z7!) for which the input/output relation de-

scribed by a coprime factor uncertainty model of the following form:
(Mo + An)y(t) = (No + An)u(t) + di(?) (3.19)

where My and Ny are Hurwitz polynomials in z~!, the backward-shift operator

or unit delay operator, of the following form

No(z™') = bz bz 2o+ bz ™

My(z™") = 14+aiz7 4+ +a,z7™"

and d; is a noise term. Assume d; € [ here. Notice that in the adaptive
robust stabilization problem we will introduce later d; will be assume to be in
[* instead of I? because [ signals are more natural to adaptive control problems.
For example, persitent exciting signals are in [*, but not in [2.

Define the nominal plant Py(27!) to be Py(z7') = My ' Ny. Assume the pa-

Ay
rameters of the nominal system P, are known exactly and <1/y.

Ay
Heo
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Figure 3.2: The block diagram of the coprime factor robust stabilization problem

The goal is to find a controller K such that the closed-loop system as shown
in Figure 3.2 is internally stable. By the small gain theorem we can show that

this problem is equivalent to finding a controller such that

K(1+ PK) ‘Mg
<. (3.20)
(1+P0K)_1M0_1 .
This control problem can be rewritten as a standard control design problem as

in Figure 3.3 with the transfer matrix of the generalized plant G being

0 I
G = M;? P, . (3.21)
M;t Py

For robust stabilization problem, we can let 7 = 0 because it does not affect the
stability properties of this linear control system. Let w = Ayu — Apy + d; and

z = [u y]T. Let T, be the sensitivity function from w to z. Note that

. K(1+ PK)'M;!
(14 PyK) 1Myt
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Figure 3.3: The coprime factor robust stabilization problem drawn as the stan-

dard form

Therefore, the problem (3.20) will be equivalent to finding a controller K such
that || T,y ||ge < 7. One efficient algorithm to solve this H* control problem is
developed by Doyle et al. [64]. In order to use this method, we need to find a
state-space realization for the generalized plant G.

In theory we can find the transfer matrix

0 I
G = M P, (3.22)
M;? P,

first, then construct a state-space realization of this transfer matrix. We usually
start with a non-minimal state-space realization, and then reduce its order to
get a minimal realization. However, in practice this approach often has numer-
ical problems. For example, MATLAB’s robust control toolbox often gave us a
wrong answer when we tried to do this computation. The numerical problems

are probably due to the computation involving high order transfer functions.
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Such computations are very sensitive to numerical errors. In order to avoid the
numerical problem, we should convert the transfer functions M, and N, into
state-space forms as early as possible during the computation.

We now introduce a numerically robust procedure to construct the state space
realization for G. First notice that if the transfer function of P, is given first, we

can construct a coprime factorization for Fy as follows. Suppose P, has a state-

A|B
space realization and L is a matrix such that A+ LC is stable (i.e.

C|D
max |A;(A + LC)| < 1). Then we can get a coprime factorization Py = My Ny

with the state-space realizations

A+LC | B+ LD
N() -
o D
A+LC | L
MO ==
o I

Then the state-space realization of the generalized plant G is

A | -L B
0 0 I
G = (3.23)
C I D
C I D

However, in our problem the transfer functions Ny and M, are given first. We
cannot choose an arbitrary state-space realization for Py = My 'N, and an L,

because if we do that, then

A+LC}B—|—LD
o | 5

Ny, =
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and

may not correspond to the same Ny and M as in (3.19). Note that the problem
defined in (3.19) is strongly dependent on the choice of the coprime factorization.
Different coprime factorizations will lead to different solutions.

For a general coprime factorization, it may not be easy to find the right L.

However, for the particular parametric structure of My and Ny as (3.19) we can

find A, B,C, D, L by the following procedure:

Step 1. Given two stable coprime transfer function My and N:

N()(Z—l) = blz_l + b22_2 + -+ bnz_”

My(z™") = 14+az '+ +az ™

Step 2. Compute the observability canonical form state-space realizations of M,

and N()Z
Ay | By
Ny =
| Cw | Dy
AM BM
M, =
i CM DM

The choice of the observability canonical form and the parametric model

structure (3.24) make Dy always 0, and D), always 1.

Step 3.
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B = By

C = Cy

D =0

L = By.
For example, given Py(z) = z_—20_5 We can rewrite it as Py(271) = %f,
so we can let Ny(z) = % and My = Z—TOE’ The observability canonical forms

of Ny and M, are

0|2
No = |——
0
0| -0.5
My = |—
1| 1

If we choose X =1+ 0.5z and Y = 0.12527%, then XMy + Y Ny = 1, so M,

and Ny are coprime. From the formula of step 3 above we have

A = 05
B = 2

c =1

D =0

L = -05.

Remark 1 In the literature of linear robust control for coprime factor uncer-
tainties, the normalized coprime factorization is the most popular factorization

for the following reasons:

e The normalized coprime factorization of an LTI system is unique
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e The normalized coprime factor uncertainty model has a strong relation

with the gap metric uncertainty model

e The procedure to compute the optimal robust controller for the normalized
coprime factor uncertainty is very easy compared to the y-iteration used

in other types of H* robust stabilization problems.

However, in the adaptive control problem studied in this research, we cannot
use the normalized factorization because we need to parameterize the nominal
plant as coprime factors of the FIR (finite impulse response) forms in order to
formulate the parameter estimation law. The normalized coprime factors are in
general not FIR transfer functions, so we cannot use them in our problem.
Note that the particular parameterization of the coprime factors we used also
guarantees the uniqueness of the factorization. We will only need a suboptimal
controller instead of an optimal controller, so the computation complexity is not a
problem. Therfore, the advantages of using the normalized coprime factorization

are not significant to our problem.

3.3 Discrete-Time H® control

The formula to compute the discrete-time H* controller directly is much less
studied than that of the continuous-time H* controller, and the direct com-
putation of the discrete time H® controller is still more involved than those
for the continuous-time H* controller. Fortunately, the following lemma pro-
vides us a way to compute the discrete-time H* controller using the bilinear

transformation and the formula of the continuous-time H controller.
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Lemma 2 [65] The bilinear transformation preserves the H® norm. Given a
discrete-time system P;(z71) in the H*® space of all stable discrete-time transfer
functions with || Pr(27")|| e = sup,epoax | PL(€7)| and a bilinear transformation

¥ defined by

z+1
s=——7 (3.24)

Let Py(s) = V[Pi(271)]. Then P(s) is in the H*™ space of all stable continuous-
time transfer functions with ||Pa(s)||ge = Supyeg |P2(jw)|. Furthermore, we

have

sup |Pi(e’)] = sup |Py(jw)). (3.25)
we€[0,27] wER

Therefore, we can use a bilinear tranformation to transform the generalized plant
G(z7!) to the s-domain system, G(s). Then we can use the standard formula for
solving the continuous-time H® controller to compute the central H> controller
K(s) and then use the inverse bilinear transform to tranform K (s) back to the

z-domain controller K(z71).

42



Chapter 4

Adaptive Robust Stabilization Problem

A robust stabilization problem is usually defined as finding a controller which
is able to stabilize no only the nominal plant but also a set of possible plants
containing the nominal plant. There are many significant results about the
synthesis of fixed robust stabilizing controllers with respect to various kinds of
uncertainty set specifications assuming the nominal plant is given. For example
H® controllers can be designed to stabilize a plant with additive, multiplicative,
or coprime factor unstructured uncertainties robustly, and u-synthesis can be
used to design a controller which robustly stabilizes a plant with structured
uncertainty.

In practice it is not trivial to obtain the exact knowledge of the nominal
plant. The model of the nominal plant is usually derived from a simplified
analytic model or identified by some open-loop experiments. Many systems are
too complicated to be expressed analytically, and many systems are not allowed
to perform open-loop system identification. In these cases, we cannot get the
exact knowledge of the nominal plant. An adaptive robust stabilizatiopn problem
is defined as finding an adaptive controller which is able to stabilize a plant with

unknown parameters and unmodeled dynamics.
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4.1 Problem Formulation

This section formulates the adaptive robust stabilization problem studied in this

dissertation.
We consider a SISO LTI plant P(27!) described by a coprime factor uncer-

tainty model of the following form:
(Mo + Anr)y(t) = (No + An)u(t) + da(?) (4.1)

where My and N,y are Hurwitz polynomials in 271, the backward-shift operator

or unit delay operator, of the following form
No(z™Y) = bzl 4boz™ 24+ bz
My(z™") = 14+a2z7 4+ 4a,27"
Define the nominal plant Py(27!) to be:
Py(z7Y) = My ' Ny. (4.2)

Let
i T
61): [_ala"'a—an,bla"'abn] . (43)

Assume

Al. The true parameter 8, corresponds to a coprime transfer function P(6,) =
Mg ' Ny, and 6, lies in a known compact convex set denoted by ©,. Fur-
thermore, assume every element ¢ of ©, corresponds to a coprime transfer

function P(8).

A2. Assume A,; and Ay are stable, LTI, and possibly infinite-dimensional with
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Figure 4.1: The block diagram of the adaptive control system

A3. Assume d; € Iy and |d;(t)| < D;.

Consider the adaptive control system shown in Figure 4.1. The design objective
is to find an adaptive controller for the plant described in (4.1) so that all signals
in the closed-loop system are bounded whenever the command reference r(t) is

bounded and assumptions A1-A3 hold.

Remark 2 Assumption Al is not very conservative. It could allow a large set

of possible plants in ©,. For example, given a set of continuous-time systems of

the following form:

P(s) = sl (4.4)

82+ 2(wns + w?

where n € [-2,2], ¢ € [-0.9,0.9], w, € [0.1,10]. This parameter set covers sys-
tems of dramatically different dynamic behaviors. For each P(s) corresponding

some particular n, ¢, and w,, we use the zero-order-hold discretization to get a
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discrete-time system of the following form:

blz‘l + ng-2

Pz = )
(z7) 14+ a127 + ay272

(4.5)

The set of possible parameters for P(z71) is {(a1, a2, b1, b2) | a; €[—4.335, —0.770],
ay € [0.177,5.629], by €[0.035, 0.248], b, € [—0.262, —0.037]}. No pole/zero can-
cellation occurs for P(z71) corresponding to any element in this parameter set
and this set is obviously compact and convex, so this set satisifies assumption
Al.

In some cases the set ©, may be quite small. For example, if the nominal
plant has poles and zeros that are very close, then a small perturbation in the
parameters could result in pole/zero cancellation. Hence ©, needs to be small
in order to guarantee that assumption Al holds.

On the other hand, assumption Al is always satisfied for a sufficiently small
convex set O, in the neighborhood of 8, because M, and Ny are assumed to be
coprime and sufficiently small perturbations will not destroy coprimeness.

Some robust adaptation literature do not assume the knowledge of ©,, but
require (dominantly) persistently exciting signals instead. This assumption is
in fact one way to achieve assumption Al that we used here. The reason is
that persistently exciting inputs can drive the parameter estimate to a small
neighborhood of the true parameter where assumption Al holds. We prefer
to assume the knowledge of ©, because the persistent excitation condition for
systems with unknown parameters and non-parametric uncertainty is difficult to

check in general.

Remark 3 We restrict Ny and Mj to be in the FIR (in z71) form because of

two reasons:
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1. this is the most convenient way to parameterize the plant in terms of

parameter estimation.

2. FIR polynomials in 27! are stable transfer functions in 2, so (4.1) is a stable
factor representation of the system Py(z7!), no matter whether Py(z~1) is

stable or unstable.

Remark 4 We require the leading coefficients of M, and Ny to be 1 and 0,
respectively. With these constraints the Ny and My corresponding to any given

Py(271) are unique.

4.2 Robust Parameter Estimator

The focus of this research is on the control law part of the adaptive controller, so
instead of inventing a new parameter estimation scheme a good robust parameter
estimation law developed by Lamaire [20] is used. It was in turn derived from a
continuous-time parameter estimator introduced by Middleton et al [23]. This
estimator was also used by Voulgaris et al [21, 22].

We can rewrite the input/output relation of this plant (Eq. (4.1)) as follows:

Moy(t) = Nou(t) + Anu(t) — Apy(t) + di(t)
= y(t) = (1 — Mo)y(t) + Nou(t) + Anu(t) — Apy(t) + di(t)

= y(t) = ¢(t = 1)70, + da(t) + di (1)

where

(1>

da(t)

ot —1)

Anu(t) — Auy(t),

[y(t - 1)s o ',y(t - 'I’I,),U(t - 1)’ v "u(t - n)]T
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The parameter estimator cannot distinguish d; and dy from the measured in-

put/output data, so we will often combine d; and d, together as a total pertur-

bation denoted as 7:

Y

N(t) = di(t) + da(t),

Therefore
y(t) = ¢(¢)" 6 + (). (4.6)
(4.6) is a standard linear regression form plus an error term. Define
é(t) = [~a1(t), -+, —@n(t), b1 (), - -, En(t)]T

to be the estimate of 6, at time ¢. Let

(t) = ¢ (t — 1)8(t — 1)

A

be the estimate of y(t) based on the data up to time ¢ — 1. Let 8(t) = 6, — 4(¢).

Let

T
AN u(t)
da(t) = ,
—Ap Z/(t)
and
A
Ml < D,
Ay
B
Define

Dy(t) = Ds max {|u(r)|, |y(7)]},

0<r<t
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then

|d2(T)| S Dg(t), VO S T S t,

i.e. Dy is a bounding function for |dy|.
The estimation law for § is a least squares algorithm modified with a dead

zone and projection [66]:

B(t) = Proj {é(t— 1)+ H;’(gt)_P gT‘P%g‘?_(g)* ¢8_ 1)e(t)} (4.7)

_ v(t)P(t —2)p(t — 1)p(t — YTP(t — 2
P(t-1) = plt—2) - ML= DOU NS ITPID) (g

P(~1) = P(-1)T > 0, (4.9)

where

af (B(Da(t) + D), e(t))

v(t) = , 4.10
(t) @] (4.10)
a € (0,1), B=4/1/(1 - a), (4.11)
and f is a dead-zone function defined as
lyl = || if [yl > |z
f(xay) = . (412)

0 otherwise
Proj is a projection operator into the set ©, to ensure the computability of
the control law. If the algorithm leads to a 0 outside ©,, we just project g
on to the surface of © before continuing. The specific choice of the projection
operator is not very important as long as that the projected estimate, denoted by
0'(t) = Projd(t), is closer to the true parameter 6, than is  for 8, € ©,, so the
nonincreasing property of the Lyapunov function, V(t) = 8(t)TP(t — 1)716(z),
used in the proof of the convergence properties of the parameter estimator will

be maintained. Hence the convergence results will be retained precisely as in the

case without projection.
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One very popular choice is the orthogonal projection operator. When O is a

2n-dimension retangle, for example,

Dlpen < b1 < b1,

<b,<b

Mmin Nmaz

a’nmtn < Qn < a"n«ma:z:
we can use a simpler projection scheme as follows:

If bAZ < bimin? then set I;z =b

Tmin®

Ifb; > b then set b; =b

Tmaz? tmaz "

If g; < Qipin s then set @; = Qi

If a@; > ai,,,,, then set d; = a;,,,.-

This is the scheme we used in the examples of Chapter 7.

The prediction error e is caused by both parametric error and non-parametric
error. The purpose of the dead zone is to turn off the updating when the predic-
tion error e cannot be distinguished from the error introduced by the external
disturbance and non-parametric uncertainty (when |e| < B(D2(t) + D1)), hence
the parameter estimate is updated only when the prediction error e is really
due to a large parametric error. Furthermore, the dead zone is normalized by
e to guarantee the time-varying adaptation gain v(t) is bounded no matter how
large e is. When this estimation procedure is used in an adaptive controller, this

adaptation law has the following properties:
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Lemma 3 [66]

. fABDa(t) + Dy),le®)))
L Mg +é(t—-1)TP{t—-2)p(t—1) 0 (4.13)
2. lim 10(t) = 6@ - 1)[l2=0 (4.14)
3. P(t)>0, 6[P(t)] <&[P(-1)] < o0, V¢ (4.15)
Proof
See [66]. O

The proof of the above lemma relies on the fact that D, is the bounding fucntion
of d,. Properties (4.13-4.15) are derived without any assumption on stability of
the controlled system, so (4.13-4.15) hold no matter whether ¢ and e are bounded
or not, and no matter whether the estimator is operated in an open loop or
a closed-loop manner. This fact makes them useful in deriving boundedness

conditions for the adaptive control system in chapter 5.
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Chapter 5

Boundedness Condition

This chapter discussed some sufficient conditions that guarantee the signals in
the adaptive loop to be bounded. We will also discuss an adaptive control scheme

using the [' control loaw proposed by Voulgaris et al [21, 22].

5.1 Boundedness Conditions

The interaction between the estimation law and the control law is the main
difficulty in the boundedness or stability proof of an adaptive control system.
One can prove the convergence of the parameter estimate (not necessarily to the
true parameter) if we assume the signals in the loop are bounded, but the as-
sumption of parameter convergence is often required when proving boundedness.
This dilemma must be broken in order to prove boundedness or stability of the
adaptive control system.

Goodwin, Ramadge, and Caines [28] proved global boundedness of an ideal
case adaptive control system by using control law-independent properties of the
estimator, such as (4.13-4.15), and a sufficient condition on the properties of
signals in the adaptive loop. Voulgaris et al. [21, 22] generalized the bounded-

ness condition of Goodwin et al. to the case when external disturbances and
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unmodeled dynamics are present. This condition is stated below.

Lemma 4 [21, 22] Consider the adaptive control system in Fig 4.1 with the
plant described by (4.1) and the parameter estimator described by (4.7-4.8). The
signals e, u, and y in the adaptive control loop are bounded providing the following

conditions hold:

. fA(B(Dy(t) + Dy),e(t))
Am 7 +o(t—1D)TPEt—2)p(t—1) 0 (5-1)

2. Jdey > 0,¢0 > 0,17 > 0 such that ¥Vt > Ty,
I96)1 < s+ e max le(r)]. (52)
3. 3k1 > 0,0 < ky <1/ and Tp > 0 such that Vt > T,

Dy(t) < k1 + ko max |e(7)|. (5.3)

To<71<t

Proof!

Case I: Suppose {e(t)} is a bounded sequence. Hypothesis 2 of the lemma (5.2)
implies ¢ is also bounded. By the definition of ¢, u and y are also bounded.

Case 2: Suppose {e(t)} is an unbounded sequence. From the properties of the
parameter estimators (lemma 3) the solution for the difference equation (4.7-4.8)
exist all time t. Hence, e and ¢ cannot have finite escape time. Without loss of

generality, we may assume there exists a subsequence {e(t,)} such that

lim |e(t,)| = oo, |e(t)] < |e(ty)], YVt < t,, and |e(¢;)] > 0.

tn—>00

1This lemma is due to [21], but I give my own proof here
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Hence

max Je(r)| = e(t)].

Along the subsequence {e(t,)} we have
l F2(B(Da(tn) + D1), e(tn)) ‘

1+ ¢T(t, — 1)P(t, — Do(t, — 1)
f2(ﬂ(D2(tn) + D)), e(tn))
1+ pllé(tn — DII3

efinition o (le(tn)| = B(Ds(tn) + D1))*
(by defniton of £, (412)) 2 P 56, ~ D

(le(tn)| — B(Da(tn) + D1))?
(by (5.2)) 2 S Her + el @) (5.6)

. (1_ﬂDz(t @Dll)"‘

(by (4.15)) =

for some § > ((5.4)

(5.5)

le(tn)|le(tn)

2= T 5. (5.7)
e +7 (i + )
From the hypothesis of the lemma (5.3):
Ds(tn) < by + ko max [e(7)], ¥ tn, (5.8)

and from the nondecreasing assumption on the subsequence {e(t,)}, we have

Ds(t,) < ky + kale(ty)] (5.9)
D2(tn) kl
= < + ko. 5.10
et = Tettl (>:10)
By assumption
tii_r)noo le(ts)] = o0, (5.11)
S0
. D2(tn) 1
1 <k <= 5.12
o Je(tn)| — 2 " B (5:12)
. D,
—— .1
o e 19
. 1
.14
2T e (514
. 1
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Therefore

. ABDs@) + Di)leta)l) o (L= Bks)?
1 > . :
BT 3 —)TPG-2e(—-1) = 53 (516)
From the third hypothesis of the lemma we have ky < 1/8, so
(1— Bky)’
3 > 0. (5.17)

This is a contradiction to the first hypothesis. Therefore, the sequence {e(t)}

must be bounded, and u, y and e are bounded by the same argument as case 1. O

Lemma, 4 is a sufficient condition on the signals of the adaptive loop. It is not
explicitly related to the control law, so it is only useful for analysis, but not for
design. It gives no clue about how to design an adaptive controller that satisfies
the above condition. For design problems we need a sufficient condition on the
control law. Voulgaris et al [21, 22] derived a sufficient condition based on the
B norm of time-varying sensitivity functions. We will introduce their sufficient
condition next.

Define the estimated model with

Nz = b))z + b))+ + ba(t) 2™ (5.18)
My(z™Y) = 1+4b()z 4 -+ an(t)2™ (5.19)

Then the error equation can be written as follows

e(t) = y(t) -t —1)70(t - 1)

= [(1— Mo(z™"))y(t) + No(z™"u(t) + n(t)] (5.20)
—[(1 = Mz () + Nz u(®))] (5.21)
= My(z)y(®) — Ni(z Hu(?). (5.22)
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The last equality is because
Moy(t) = Nou(t) + n(t). (5.23)

The error equation (5.22) can be thought as a fictitious time-varying system
driven by a noise signal e(t) which is due to the estimation error § = 0, — 9,

internal disturbance dy (caused by the unmodeled dynamics), and the external

disturbance d, i.e.
e(t) = ¢t — 1)TO(t — 1) + dy(t) + da(t). (5.24)
Let S*¢ be the map from e(t) to u(t) and S¥¢ be the map from e(t) to y(t). i.e.
u=S"e, y=S5%e. (5.25)

The following lemma gives a boundedness condition in terms of linear time-
varying sensitivity operators S“¢ and S¥¢. Define a global sensitivity operator S

as

Sue

S = (5.26)

Sve
Lemma 5 [21, 22] Consider the adaptive control system in Fig 4.1 with the
plant described by (4.1) and the parameter estimator described by (4.7-4.8). If the
control law u(t) = Ky(z7")[y(7)] can stabilize the fictitious system M, (z~")y(r)—
Ny(zYu(r) = e(r) and satisfies

1
I1SIl5 < % (5.27)

where (3 is the design parameter in the parameter estimator (4.7-4.8), then e, u,

and y of the original adaptive control system will be bounded.
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Proof?
The proof will be done by verifying (5.1-5.3) of lemma 4. First note that (5.1)
is a property of the estimation law (4.7-4.8), so it is always fulfilled as long as
the estimation law (4.7-4.8) is used. Hence we only need to show that (5.2) and
(5.3) are satisfied with the control law.

If a time-varying control law u(t) = K;[y(t)] is designed such that the system
My(1) — Nau(7) = e(r) is [®-stable, i.e. maps I® to I, then (5.2) is satisfied
because @(t) is a vector of delayed u(t) and y(t). Furthermore, if the control law

is designed such that

5 . (5.28)
Y .
Sye ;BDS
B
then

Sue
Di() = sl < | | el (5.2

ST ye

B
Thus (5.3) will be satisfied, Hence boundedness of the adaptive control system

is proved by lemma 4. O

(5.27) is formulated as a mixed sensitivity problem often seen in linear robust

control problems, but the operator involved is time-varying.

Remark 5 Many papers on indirect adaptive control treat the system e(t) =
M,y(t) — Nyu(t) as a linear time-varying system without explanation. However,
the time-varying polynomials M;(z~!) and N,(27!) are in fact functions of the
parameter estimate é(t), so the overall adaptive system is a nonlinear time-

varying system. Formally there are two ways to explain why it can be treated

2This lemma is due to [21], but I give my own proof here
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as a linear time-varying system. For local stability analysis, the adaptive system
can be linearized around a tuned system. For global stability problems assume

the difference equation describing the adaptive control system is

s(t+1) = Fz)zt) + Gz)r() (5.30)

A~

dt+1) = U(a(t)z(). (5.31)

With a careful choice of adaptation laws we can guarantee that §(¢) is bounded
for all time ¢ no matter whether the state z(¢) is bounded or not. Assume that,
given an initial condition z(0) and the external input r(¢), the solution z(¢) and

6(t) of the difference equation (5.30-5.31) exists for ¢ € [0,00). Let 2(0) = z(0).

Define a linear time-varying system

z(t+1) = F(z(t))z(t) + G(z(t))r(t) (5.32)

Ot +1) = U(x(t))z(t). (5.33)

It is easy to see that the nonlinear time-varying system (5.30-5.31) and the linear
time-varying system (5.32-5.33) have the same solution, i.e. z(t) = 2(t), V¢ > 0.
Let Fi(t) = F(z(t)), G1(t) = G(z(t)), and ¥y(t) = ¥(z(¢)), then the linear time-

varying system (5.32-5.33) can be rewritten as
2t+1) = Fi(t)z(t) + G1(t)r(2) (5.34)
0(t+1) = Ty(t)z(t). (5.35)
The nonlinear time-varying system (5.30-5.31) is stable if the linear time-varying
system (5.34-5.35) is stable, so we can analyze stability of the adaptive system

(5.30-5.31) by analyzing stability of its corresponding linear time-varying system
(5.34-5.35).
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Remark 6 We can see the advantage and necessity of using a robust control
law in adaptive control design from lemma 5. Robust control laws can achieve a

specified bound on the norms of the sensitivity functions, while classical control

laws, such as MRC, PPC, LQG cannot.

5.2 Frozen Time /! Adaptive Control Design

In the adaptive control system M, and N, are estimated as time goes on, SO
we don’t know the complete trajectories of M(t) and N(t) a priori. Hence
a linear time-invariant controller satisfying (5.27) cannot be designed directly.

A~

One solution is to design an LTI controller C(6(t)) for the the estimated model
(a frozen time system) for each time t.

Notice that if we fix the polynomials M, and Nt, the fictitious system

~

Mz y(r) = Nt(z_l)u(T) +e(r), T€Z (5.36)

is the frozen time system of the overall time-varying adaptive system at time t.
Define S7° and S¥¢ to be the sensitivity operators from e to y and from e to u,
respectively, for the frozen time system (5.36) at time ¢, i.e.

y(r) = S¥%(r) (5.37)

u(r) = Si%(r), 7€ 2Z. (5.38)
Define a local sensitivity operator S' by

z St
St = L teZ}. (5.39)
Sye

In other word, S is the linear time-varying operator constructed by cascadin
g g
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every frozen time (LTI) sensitivity

Spe
(5.40)
Sye
in time. It is important to remember that the global sensitivity operator
Sue
S = (5.41)
Sve

is the sensitivity operator of the real time-varying adaptive system . S' is just

an operator introduced to solve the frozen time control problem
IS¢l < €2, V2 (5.42)

for some positive number ¢; and some norm.

Note that S and S' are both linear time-invariant operators. When the
variation of the system is sufficiently slow, S can be approximated arbitrarily
closely by S' in a sense that will be defined precisely later. Hence, if we can design
a controller to bound the norm of S¢, then the controller will also bound the norm
of S, i.e. we want to design an adaptive controller satisfying ||S||p < ﬁlﬁs by
designing frozen time controllers satisfying [|S!||x < 71 for each time ¢ for some
positive number 7, and for some norm.

Dahleh and Dahleh [55] and Voulgaris et al [21, 22] used {* optimal control to
design frozen time controllers satisfying ||S}|n < 3%7—3 — €1, for each time ¢t where
€; is a small positive number. They showed that frozen time stability implies
stability and that ||S||p is arbitrarily close to sup, ||Si[|;: if the adaptation gain
is sufficiently small. (For the particular adaptation law (4.7-4.8), the estimated
model approaches a linear time-invariant system, so the frozen-time stability
applies automatically) The detailed algorithm of the frozen time ' adaptive

controller can be found in Voulgaris et al [21, 22].
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5.3 Disadvantages of the {! Adaptive Control

The frozen time I' adaptive control of [21, 22] has some disadvantages. First, the
I' optimal controller in general is not Lipschitz continuous with respect to the
parameters of the plant except in some rather restrictive cases. As we explained
in Chapter 1, if the controller parameter is not Lipschitz continuous with respect
to the plant parameter, then the overall adaptive system may vary arbitrarily fast
even when the plant parameter varies slowly, and the frozen time analysis cannot
be applied. An example showing the discountunity of the I* optimal control law
from [60] is given below. Suppose P is a linear time-invariant plant with its frozen
time systems described by the sequence { P} where P,(271) = D,(271) "IN, (271),
D(z71) =1, Vi,

2271 41, t=0,1
Ni(z ™) =19 227 + (1+t), 2<t<T=1+1 (5.43)
2271+ (14+4T), t>T
For this P we have |N; — N.|| < 7|t — 7|, V t,7, so P is slowly varying when v

is small. Consider an one-block problem for the frozen time system at time % :

inf SYen = inf 1+ P, ) 5.44
o statliing 15 W = o dnf I+ PQile (5.44)

Computing the ! optimal control law from [60] yields
Sge=1, S¥=1,---,8%,=1,5/=0,8%,,=0,--

for any v > 0 no matter how small, so the {! optimal control law is discontinuous.
Secondly, the algorithm to compute the ' optimal controller is not very
efficient. The current technique to compute the I* optimal controller is by trans-

forming the original problem into a semi-infinite linear programming problem
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using duality. The solution of the latter is then computed to the desired acuracy
by truncating the constraints or the variables (Dahleh 1992). When high accu-
racy is required, it might take a long time to solve the optimization problem.
Therefore, it is not very suitable for application requiring real time computation,
such as adaptive control.

On the contrary, the H* robust control we used in the proposed adaptive
control scheme is Lipschitz continuous with respect to the parameters of the
plant, and can be solved more efficiently in real time. Therefore, it is more
suitable for adaptive control than the {* control law.

The other problem that might cause difficulty in implementing the {! adaptive
controller is that the order of the I! controller is not fixed, while the structure
of adaptive controllers are usually required to be fixed. For some systems the
orders of the optimal /! controllers are very high. One solution for this problem
is to choose the highest order among the feasible set as the order of the adaptive

controller, but this will have a big overhead to the on-line computation.
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Chapter 6

Frozen Time H* Robust Adaptive Control

This chapter introduces a new boundedness condition and the frozen time H®
adaptive control design scheme. Based on this new conditions, an H* adaptive
controller design scheme will be developed in section 6.3. The reasons we choose

the H* control law as the control law design rule in our adaptive control scheme

are:

e The central H* suboptimal controller is Lipschitz continuous with respect

to the plant [67, 7).

e The H* control theory for LTI systems with known nominal models is fully
developed. There are many efficient algorithms and computer packages
for the H*™ control design. In our case the solution for the central H™
suboptimal controllers can be computed by solving two Algebraic Riccati

Equations (ARE). This is particularly important when the control law is

computed on-line.
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6.1 A New Boundedness Condition

A new boundedness condition in terms of the shifted H* norms of the frozen
time systems of S*¢ and S¥¢ will be derived in this section.

We want to design an adaptive controller satisfying ||S||p < 37173— by designing
frozen time controllers satisfying ||Si||gee < 71 for each time ¢ for some positive
number ;. To do so we need to link the B norm of a linear time-varying operator
with the shifted H* norms of its frozen time operators, and find a bound on the
time domain B norm of S in terms of the frequency domain shifted H* norm
of Si.

Before we start the derivation of the theorem, we need the following lemma

which links the B norm with the auxiliary operator norms quantitatively.

Lemma 6 Forany K € B

11Kl < 1Kl < el Kl (6.1)
Proof
We will use the fact that the auxiliary norms || - ||4(s) of I*° signals are equivalent
to each other and to the [* norm, i.e. ||ul|s(0,) < constant - ||ullq(r,) < constant-
ullagor), 1 < o1 < 02, and ||ulla@) < |Jullie < Kolltlla@), 1 < 0. Define three
sets,

Up = {uel® [Juflae) <1}

Uz = {uel®| |ulle <1}

Us = {uel®| follullae <1}
It is easy to see that U; C Uy C Us. For any K € B, we have

1Kz = sup [[ull su ol Ktlla(o)
uclUs Ilu”loo u€Us ”u”loo
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Figure 6.1: Relations between the shifted H* norm, the i, norm, the auxiliary

norm, the recent past seminorm, and the B norm.
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K a\o 1 K a\o
s sup WUl _ 1 K
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1
= —||K a(o)-
Ko

[
In general the B norm of a linear time-varying operator is much more difficult
to compute then the H* or the shifted H* norms of its frozen time operators,

which are linear time-invariant. In particular, in adaptive control problems, the
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overall time-varying system is not known a priori, so it is impossible to evalute
its B norm. However, we have knowledge about the frozen time system starting
from the initial time to the current time instants, so we can evaluate their shifted
H*®° norms. The following theorem relates the B norm of a linear time-varying
operator to the shifted H* norms of its frozen time operators. It allows us to

approximate the B norm by the shifted H* norm.

Theorem 6

15115 < ko sup (ISl + of=05(S"). (6.2)
Proof
We will prove the theorem using the following steps. First we find a bound of
1S/ ae,y in terms of u,(S') and the frequency-domain variation rate 8,(S') of
S'. Then we relate this bound to ||S||s(s). We then relate this bound to ||S||.
Finally, we can get a bound for ||S||p in terms of ||S||ge and 8,(S*). Fig. 6.1
illustrates the steps we are going to develop. Detailed derivation of these bounds

are explained in the next few paragraphs.

Stepl. Find a bound of ||S||4( in terms of p,(S*) and 9,(S").

By Theorem 5 (which is proposition 3.4 of [16]) we have

I1Slatey < 1o(S') + K505 (S") (6.3)
where £ = (o — 1)~ and 8,(5") £ sup;cz IS, — S| mee-
Step 2. Find a bound on ||S]|4() in terms of x,(S*) and 8,(S").

Note that ||S||s(s) = sup; ||S||a(e,t)- Take the supremum on the left hand side of

(6.3) over time ¢ to get

1S1lae) £ Ko (S') + KG9, (S"). (6-4)
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Note that (6.4) is independent of any particular time t.

Step 3. Find a bound on ||S||5 in terms of y,(S') and 9,(S%).

We can relate ||S||p and the auxiliary norm ||S||4() using Lemma 6:
15115 < KollSlae)- (6.5)
Then combine (6.4) and (6.5) to get
I1Sllg < Kotts(SY) + mgmf,"")a,,(sl). (6.6)

The proof is concluded by using the definition of u,(S") :
bo(8") = sup 15!

to (6.6). 0

Theorem 6 is the key for the design of the frozen time H* adaptive controller.
The following corollary is a new boundedness condition in terms of the easy-
to-compute shifted H* norm, instead of the B norm, for the H* adaptive

controller:

Corollary 1 The plant described by (4.1) satisfying assumptions (A1-A8) can be
stabilized globally by an adaptive controller composed by the parameter estimation

law (4.7-4.8) and an H*™ control law satisfying

1
T >0 3 ||Spe < ——, Vt>T. (6.7)
3

KeBD
Proof
It was shown in [67, 7, 68] that the central suboptimal solutions of the H®

control problem
1

!
HStHH3° < Ka,BDg,
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is unique and varies smoothly with respect to the plant because the solution of
the associated Riccati equation varies smoothly with the plant, i.e. the solution
St for the H* control problem is Lipschitz continuous with respect to ]\pr and
N,. The second property (4.14) of the adaptation law guarantees the variation
rate of the estimated model (Mt and Nt) will go to zero. Therefore the variation

rate 9,(S') goes to zero as time ¢t — co. Stability of the closed-loop system is

then proved by using Theorem 6 and Lemma, 5. 0O

6.2 State-Space Realization of the Shifted Systems

Notice that the o shifted system of P(z) is Pi(z) = P(oz) because
|1P(2)llae = ||P(02)]| oo (6.8)

If P has a state-space realization

Ap | B
- | == (6.9)
Cp | Dp
then the o-shifted system P,(z) = P(oz) has a state-space realization
O'Ap Bp
P, = . (6.10)
O’Cp Dp
Conversely, if a shifted system K,(z) = K(z/0) has a state-space realization
Ak | B W
K, = |—1 | (6.11)
Ck | Dk

then the non-shifted system K has a state-space realization

Ag/o | B
K, = k/o | Br | (6.12)
CK/O' DK
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Therefore, to solve the shifted H* norm problem, just shift the generalized
plant G to G, find the central controller K, for the the H* robust stabilization

problem for G, then shift K, back to K.

6.3 Adaptive H* Controller

Theorem 1 allows us to transform the robust adaptive control design problem

into a sequence of frozen time robust stabilization problems:

1

SH| oo < .
[|S; | e < % Ds

(6.13)

where k, = (1 — 072)"1/2, Besides the shift o, the above frozen time robust
stabilization problem are essentially the same as the linear robust stabilization
problem for the coprime factor uncertainty discussed in section 3.2, so we can
use the procedures introduced in section 3.2 and 6.2 to solve (6.13) for every
time ¢ succesively.

The overall algorithm for the H* robust adaptive controller can be summa-

rized as follows:
1. Given the design specifications: ©,, D, D3 and n (see assumptions Al-3).
2. Choose design parameters « and o.

3. Use the parameter estimation law (4.7-4.8) to get an estimated model M,

and Nt.
4. Construct the observability canonical forms state-space realizations

. Ay | B
N, = |21 (6.14)
On | Dy
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and

W, = Am | By

Cum | Du

5. Find A, B, C, D, L corresponding to Nt, and M:

(6.15)

(6.16)

A = Ay—-LCy
B = By
C = Cy
D =0
6. Form the generalized plant
A ~L B
Ag | Bg 0 0 I
Ce | Dg C I D
C I D
Agc | B cAg | B
7. Shift G = |— 1 "% | to @y = |—o1 ¢
CG DG UCG DG
8. Find K, = | | Bre b that || Toull < 7 where 7 =
. Fin - = suc a ww||He < ¥ Where v = .
CKU DK(, Kg D3
AK ‘ BK AKU/U l BK,,
9. Shift K, back to K = =
Ck ’ Dk Ck,[o ’ Dk,

10. Apply the control u(t) = —Ky(¢t — 1), to get y(¢).

11. Repeat step 3-10 for time ¢ + 1.
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6.4 Selection of The Design Parameters

We discuss how to select the design parameters o (or, equivalently, 8) and o in
this section. Recall that a (o € (0,1)) is the adaptation gain of the parameter

estimator and § is defined as

8= . (6.17)

The dead zone mechanism of the parameter estimator is defined as

af (B(Da(t) + D), e(t))
le(?)] ’

v(t)

where f is defined as

lyl = |z if |y| > |=|

flz,y) = (6.18)

0 otherwise

Also note that o € (0,1) hence 3 > 1. When « is close to 0, then 3 is close to
1, and the adaptation will be slow, but the parameter updating mechanism will
be turned on more frequently (as soon as |e| is slightly bigger than D; + D).
Conversely, when « is close to 1, then 3 is much bigger than 1, and the adaptation
will be faster, but the parameter updating mechanism will be turned on less
frequently (only when |e| is f-times bigger than D; + D). In most cases, it is
desirable to have a bigger § so the adaptation can be faster.

Recall that x, := (1 — 072)"Y2, 6 > 1, s0 k, > 1. When o is close to 1, &,
is much greater than 1. When ¢ is much greater than 1, k, will be close to 1.

Also note that

1P(2)|| aee = [|1P(02)|| oo

Hence the bigger o is, the smaller the o-shifted H* space is. It is usually better

to use a smaller g to reduce the conservatism.
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However, we cannot choose 3 arbitrarily large or o arbitrarily close to 1. The

main limitation on § and o come from the condition (6.7):

1
K/aﬂD?) .

[ PEES (6.19)

For a given plant, the minimal sensitivity that can be achieved is limited. There-
fore, if the product x,8Ds is too large, then the H* sensitivity problem (6.7)
may not be solvable for every time ¢. Given the set of possible parameters, ©,, we
can perform a worst case analysis to find the maximum of the achievable perfor-
mance, denoted as Yy, over Op, i.e. Ymin = SUPgeo, [in fstabitizing x||S*(0)]| He)-
Given the size of unmodeled dynamics, D3, we have the constraint on the product

of k,f3:

> Ymin
1
Ymin D 3 '

K;O'/BD3

= KB <

Therefore, 8 and o need to be chosen such that the above inequality holds. If we
want to use bigger § to speed up the adaptation (bigger £ corresponds to bigger
o), then we need a bigger o in order to get a smaller k,. A bigger o will limit
the allowable size of the set ©, because the o-shifted H* space will be smaller.
Therefore, there is a trade-off between the adaptation speed and the size of the
feasible set.

On the other hand we can write the inequality above as

1

Dy < ———.
s 'YminK'a/B

Once the set ©, and o are determined, we can find vy, and ,. Along with f
we can determine the maximal size of unmodeled dynamics that the adaptive

control system can tolerate. Notice that § and x, are always greater than 1,
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and the v achievable by any H*® controller for coprime factor uncertainty must

be greater than 1. Therefore, D3 must be less than 1.

6.5 H™ Robust Adaptive Control v.s. I' Robust Adap-

tive Control

In this section we will present an example for which the [' optimal controller is
not continuous with respect to the plant while the H* suboptimal controller is
continuous with respect to the plant, which implies the theorem that satisfies the
I' robust adaptive control will fail for this example while the theoretical bases

for the H* robust adaptive control we proposed in this dissertation still applies.

Given
_ 492%(3z+2)?
W) = (=131 - 3077
and
P(z) = (z — 2igz - 3)

Consider the weighted sensitivity S = W (1 + PC)~'. D. G. Meyer [69] showed

that for any « between —1/6 and 0, the FIR transfer function:
S*(z) = a — baz™t + (1 + 6a)z~2

is I! optimal, i.e.

_ .
§" = arg stabirllilzlirvlzg C HS”ll

The corresponding ! optimal controller C* can be found as

W(z) — S*(2)

¢ = s

For this P and W there are infinitely many /' optimal controllers.
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M. Dahleh and M. A. Dahleh [55] showed that for any §, if P(z) is perturbed

to
(z—=2+6)(z-3)

22 ’

then the [! optimal weighted sensitivity S* will become unique and has a degree

of 1. In particular, if § = 0.002, i.e.

(z — 1.9982)(z — 3)

22 ’

P(z) =

then

S* = —0.16567 + 0.8303627*.

No matter which [! optimal controller for

(z = 2)(z—3)

P(z) = 5

z

we choose, a small change in the plant could cause a large deviation in the
optimal ! controller. Therefore, the ' robust adaptive controller cannot be

used when

is in the set of possible nominal plants, ©,.

Now we consider the H* suboptimal controller such that
1Sz = IW(1+PC) e < 1.

If we consider the central suboptimal controller, then the solution is always
unique. Using the discrete-time H* controller solver of MATLAB’s Robust

Control Toolbox we can get the H* central suboptimal controller for

P(z) = (z—2)(z—3)

z2
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is Ki(2) = (—1.4924+ 0.3178627*+ 1.1786272— 0.55861273+ 0.0066662z*—
5.3919 x 10782754+ 5.8624 x 10_9z_6) (1- 8.26882 1+ 9.340422+ 4.580423—
9.94392*+ 3.68527°— 0.39997275)!, and the H* central suboptimal controller

for
(z —1.998)(z — 3)

2’2

P(z) =

is Ko(z) = (—1.4896+ 0.31726271+ 1.1764z7%2— 0.55758273+ 0.0066542~*—
1.3563 X 107727°— 1.4712 x 1078275) (1— 8.249527 1+ 9.312727%4 4.571427 3~
9.91732%+ 3.674727°— 0.39884276)"L,

This shows that a small change in the plant causes a small change in the
H® central suboptimal controller, i.e. the H* central suboptimal controller is
continuous with respect to the plant, so the H* robust adaptive controller can

handle the case when

is in the set of possible nominal plants, ©,.
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Chapter 7

Numerical Examples

We present some simulation results for the frozen time H* robust adaptive con-
trol algorithm introduced in the previous chapter. These examples demonstrate
that the proposed adaptive control scheme is able to stabilize stable and unsta-
ble, low-order and high-order systems with parameteric errors and unmodeled
dynamics. The systematic and quantitative design procedure allows us to choose
the design parameters without trial-and-error routines which are usually required
by other adaptive control schemes.

The MATLAB scripts for Example 1 and 3 are listed in Appendix A. Other
examples can be simulated by changing the values of some variables in the scripts.
MATLAB’s p-Analysis and Synthesis Toolbox, Control System Toolbox, and

Simulink are required in order to run these scripts.

7.1 Example 1: System with a First Order Nominal

Plant
Given a discrete-time system:

(1—0.8271 +0.016272 — 0.014273)y(t) (7.1)
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0.06¢
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Figure 7.1: Response for example 1 where P(z7!) = (0.727! + 0.018272 +
0.01227%) (1 — 0.82~1 +0.016272 — 0.014273)"L, dy () =0.01 5in(0.2¢) and §(0) =
(0.5,0.5)".
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= (0.7z7" + 0.018272 + 0.0122*)u(t) + dy (¢)

with a sampling period of 0.1 secs. Suppose d;(t) = 0.01sin(0.2t). The true plant

model is in the form
(Mo + Aum)y(t) = (No + An)ul(t) + di(2)

with the nominal parameters (which are unknown to the designer) be (a1, b,) =
(—0.8, 0.7), the coprime factors of the nominal plant be My(z7!) =1 — 0.8271

and Ny(271) = 0.727! and the uncertainty terms be Ay = 0.016272 — 0.014273

A
and Ay = 0.018272 4 0.012273. It is easy to check that N < 0.03.

Ay 5
Assume the only infomation the designer has is:

1. the structure of the nominal model is of the following form:

_ bzt
Po(Z 1) = ﬁ-l—a,—l;f (72)

2. the set of possible parameters of the nominal model is

61) = {(_alabl)l -1 S ay S —01, —0.1 S bl S 1} (73)

3. the size of the unmodeled dynamics expressed in terms of the B-norm is:

Ay
< D3 = 0.03. (7.4)
A |

4. the magnitude of the noise d; is less than or equal to D; = 0.01, i.e.

|di(t)] < Dy = 0.01, V.

We want to design an adaptive controller to stabilize this system based on the

above information.
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Assumptions Al-A3 of section 4.1 are true for this example. In fact, for
the first order structure we chose for the nominal plant (7.2), ©, can be ar-
bitrarily large without any occurence of pole/zero cancellation. We chose o
to be 1.1 first. Then we performed worst case analysis on ©, to find Yy, =
SUPgeo, [Infstabitizing K ||S||Heo] = 10.0781. The k, corresponding to o = 1.1 is
2.4004. We need to choose 3 to satisfy

1
ﬂD3K'a <

min
We pick # = 1.0541 which is corresponding to « = 0.1. Figure 7.1 shows the
step response of the closed-loop control system using the frozen time H™ robust

adaptive controller with the plant (7.1) with the initial parameters
ay = —0.5,by = 0.5.

The response plots of most examples in the following sections are arranged
in the following format (unless we specify otherwise explicitly). The left-upper
subplot is the time history of 8, the estimate of the plant parameters. The upper-
right subplot is the output of the plant y(¢). The lower left subplot shows the
trajectories of two variables, the prediction error e(t) and B(Ds(t) + D;). These
two variables are used in the dead-zone mechanism of the parameter estimator.
When |e(t)| is less than §(Dq(t) + D) the adaptation is stopped by setting
the adaptation gain v(¢) to be zero. The lower-right subplot is the history of
the adaptive gain v(t). The x-axis of every subplot represent the number of
steps which is corresponding to the real time equal to ¢ times the sample period
(t=1,2,3,--).

We would like to emphysize that g does not necessarily converge to 6, the

nominal parameters, because of the lack of persistent exciting inputs. The MAT-

79



theta outputy

1 N 4
0.8
—-ai 2
0.6 ) b1 J m
0
0.4} |
0.2 ;' -2
0 ' : -4 -
0 50 100 150 200 0 50 100 150 200
lel vs beta(D2+D1) adaptive gain
3 - y 0.1 "
25 ’ 0.08
2 1
0.06
1.5
0.04
1
0.5H 0.02¢
A A A h
0 L' A A, I VN 0 .
0 50 100 150 200 0 50 100 150 200

Figure 7.2: Another simulation for example 1 with different initial parameters,

8(0) = (1, 0.1)7, from those for Figure 7.1.

LAB script for simulating this example is listed in Appendix A.

To demonstrate that this adaptive control system is insensitive to the choice
of initial parameters, which is important for global stability, a simulation with
the same plant but different initial parameters was performed. The initial pa-
rameters were chosen as

a; = —1,b1 =0.1.

The results are shown in Figure 7.2. Comparing Figure 7.1 and Figure 7.2, we

can see a poor guess of the initial parameters only affects the transient response.
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Figure 7.3: Response for example 2 for which the plant P(z7!) = (0.727! +
0.018272 +0.012273) (1 — 1.227' + 0.016272 — 0.01427%)~! is unstable.

The steady state performance of the two cases is almost the same.

7.2 Example 2: Unstable System

The next example demonstrates that the proposed adaptive control law can

also stabilize unstable systems. Given a discrete-time system

(1—-1.227140.01627% — 0.01423)y(¢) (7.5)

= (0.7271 +0.01827% + 0.01227)u(t) + d(2)
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with a sampling period of 0.1 secs. Suppose d;(¢) = 0.01sin(0.2¢). The maximal
radius of the poles of the true plant is 1.1882, so the true plant is unstable.

Assume the only information the designer has is:

1. the structure of the nominal model is of the following form:

blz‘l

Py(z7) = ———. :
() = s (7.6
2. the set of possible parameters of the nominal model is
@p = {(—al,b1)| -2 S ay S —0.1, 0.1 S bl S 1} (77)

3. the size of the unmodeled dynamics expressed in terms of the B-norm is:

Ay
< D3 =0.015. (7.8)

Ay
B

4. the magnitude of the noise d; is less than or equal to D, = 0.01, i.e.

|di(t)| < Dy = 0.01, V.

The worst case analsys gave Y, = 20.0716. We chose o = 0.1, so 8 = 1.0541.
We chose o = 1.1, so k, = 2.4004. We have verified that assumptions A1-A4 are

satisfied, and the design parameters satisfy the inequality

,BDgKla <

'min
Figure 7.3 shows the step response of the closed-loop control system using the
frozen time H robust adaptive controller with the plant (7.5).

The response in Figure 7.3 is stable although it is more oscillitory than that

of example 7.1. This is because of the unstable characteristics of the plant.
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Figure 7.4: Response of example 3 for which the plant P(27!) = (0.527! +
0.227240.018327% —0.012227%) (1-0.8271 +0.4272 — 0.024427% — 0.0152z~%4) !
and d;(t) =0.01sin(0.2t).

7.3 Example 3: System with a Second Order Nominal

Plant

The next example demonstrates the case when the nominal ppant has a sec-
ond order structure. Given a forth order discrete-time system with the following

input/output relation:

(1—0.827" 4 0.427% — 0.0244273 — 0.015227*)y(2) (7.9)
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= (0.527" +0.227% +0.0183273 — 0.012227*)u(t) + dy (¢)

where d;(t) = 0.01sin(0.2t) is a noise.

Assume the only infomation the designer has is:

1. the structure of the nominal model is of the following form:

blz‘l + b2z‘2
Py(z7) = . 71
o(27) 1+a127t + agz—2? (7.10)
2. the set of possible parameters of the nominal model is
Oy = {(~a1,—az,b,b)|-08<a; <02, (7.11)

0§a2§1, Olsblsl, 01§b2§1}

3. the size of the unmodeled dynamics expressed in terms of the B-norm is:

Ay
< Dy = 0.05. (7.12)

Apm
B

4. the magnitude of the noise d; is less than or equal to D; = 0.01, i.e.

|di(t)| < Dy = 0.1, V4.
Assume the nominal parameters of the nominal plant are
a) = '—08, ag = 04, b1 = 05, b2 = 02,

then we have

Ay = —0.024427% — 0.0152274

and

Ay = +0.0183273 — 0.012227%.
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Assumptions A1-A3 of section 4.1 are true for this example. We chose o to
be 1.1 first. Then we performed worst case analysis on O, to find Y, =
SUPgco, [Infstavitizing K ||S]|ne] = 5.7298. The k, corresponding to o = 1.1 is

2.4004. We need to choose 3 to satisfy

1

min

,6D3l€g <

We pick § = 1.4 which is corresponding to o = 0.4898.

Figure 7.4 shows the step response of the closed control system using the
frozen time H* robust adaptive controller with the plant (7.9). The MATLAB
script for simulating this example is listed in Appendix A.

The steady sinusoidal variation of the response in the out y(¢) (with a period
of about 3 secs) is caused by the sinusoidal disturbance, not instability of the
closed-loop system. This can be confirmed by a simulation of the noise-free case

shown in Figure 7.5.

7.4 Example 4: Adaptive v.s. Fixed H* Controller

This example demonstrates the advantage of the H* adaptive controller over the
fixed linear H* controller. Using the same plant as the previous example a linear
fixed H* controller treating the initial parameters of the adaptive controller as
the nominal parameters was designed to tolerate the same size of unmodeled
dynamics. The output of the resulting closed-loop system is shown in Figure
7.6.

The response using the fixed controller is much more oscillatory than the
result of the adaptive case. This is because the initial parameters are far from

the real nominal parameters. The fixed robust controller cannot tolerate the total
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Figure 7.5: Response of example 3 for which the plant P(z7!) = (0.527! +
0.2272+0.0183273 — 0.012227%) (1-0.8271+0.4272—0.0244273% — 0.0152z7%)"!

and no disturbances.
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output y for fixed H-infinity control
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Figure 7.6: Response of example 4 using the fixed H* controller. The response
is very oscillatory because the fixed robust controller cannot handle the total

uncertainties due to the parametric errors and the unmodeled dynamics.

uncertainties due to parametric errors and unmodeled dynamics, while the H*®
adaptive controller can reduce the parametric uncertainties on-the-fly. We do not
imply that the adaptive H* controller is superior to the fixed H* controller in
every aspect. An experienced control designer may be able to design a fixed H*®
controller with similar performance as the adaptive H* controller using extensive
analysis of the system model and detailed off-line system identification. However,
it is always desirable to have a control design method which can be used without
many years of experience and less requirement on the knowledge of the plant
yet still can achieve a good performance. The adaptive H* control algorithm
proposed in this dissertation can fulfill this goal. It requires less experience to

achieve a control design of moderate performance and very good robustness.
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7.5 Discussion

From these examples we can observe shortcomings of the H> adaptive control
design. The transient responses of some cases are not very good, and the steady
state gains of some cases are not close to one. There are two reasons for these
problems. Fisrt, we do not require persistent excitation of the reference signals,
so we cannot guarantee the parameter estimate will converge to the true nominal
parameters. The residual parametric errors plus unmodeled dynamics limit the
achievable performance. This phenomenon can be seen in the upper-left subplots
of Figure 7.1, 7.2, 7.3, and 7.4.

Secondly, the DC gain or the low frequency gain of the asymptotic H®
controller is inadequate. This problem is inherent in the usage of the non-
weighted mixed sensitivity formulation (see Lemma 5). Most control systems
are designed to be insensitive to low-frequency disturbances, and robust to high-
frequency unmodeled dynamics. From Bode’s sensitivity theorem, we know that
good performance cannot be achieved if the disturbances and the unmodeled
dynamics span the same frequency band. We will propose an extension of the H>
adaptive controller which can deal with frequency-weighted unmodeled dynamics

in the next chapter.
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Chapter 8

Extension of the H* adaptive control design

In this chapter we propose a solution to improve the performance of the H®
adaptive controller. The basic idea is to extend the formulation of the robust
adaptive control problem to include frequency-dependent weighting functions
in the coprime factor uncertainty model so the boundedness condition can be
expressed as a weighted mixed sensitivity problem. Hence, a robust adaptive
controller with better performance can be obtained by a suitable choice of the
weighting functions. The details of this extension are discussed in the next

section.

8.1 Weighted H* Adaptive Robust Control
We modify the model of the plant as follows:

(Mo + AW )y(t) = (No + AnWa)u(t) + di(t) (8.1)
where M, and N, are Hurwitz polynomials of the following form

No(z™h) = bz boz 24+ b2 ™

My(z™") = 14az7t+--+az ™
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Wi and Wy are transfer functions in H®. They are the weighting functions
used to model the frequency dependency of the unmodeled dynamics. The same

assumptions (A1-A3) as in the original problem are needed. Define

0y 1"

[—a’lﬁ"')“a’n)bh'”,bn

b

-
~~
o~
|
—
~—
Il

yt—-1), -, yt—n),ult—1), -, ult —n)|7,

dt) £ AyWiu(t) — AyWay(?),

=)
(V]
~—~
S 3
S’

Il

Ds ax {(Wivu(r)l, Wary(r)]}

then y(t) = ¢(t — 1)76, + da(t) + dy(t). The differences between the new formu-
lation and the original one are in the definitions of dy and D, and the inclusion
of the weighting transfer functions Wy and W, in the plant model (8.1).

We use the same parameter estimator (4.7-4.8) as before. Note that D,
is still a bounding function for d, as in the original problem formulation so
the parameter estimator will still have the desired properties (4.13-4.15) and
Lemma 4 still holds.

Following a similar derivation as before, we can get a new boundedness con-

dition:

Lemma 7 Consider the adaptive control system with the plant described by (8.1)
and the parameter estimator described by (4.7-4.8). If the control law u(r) =
Ki(z7Y)[y(r)] can stabilize the fictitious system M,(z~")y(r) — Ny(z Vu(r) =

e(T) and satisfies

WN Sue 1
< —

) 8.2
WMSye BDS ( )
B

where [ is the design parameter in the parameter estimator (4.7-4.8), then e, u,

and y of the original adaptive control system will be bounded.
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Proof
The proof will be done by verifying (5.1-5.3) of lemma 4. First note that (5.1)
is a property of the estimation law (4.7-4.8), so it is always fulfilled as long as
the estimation law (4.7-4.8) is used. Hence we only need to show that (5.2) and
(5.3) are satisfied with the control law.

If a time-varying control law u(t) = Ky[y(¢)] is designed such that the system
Myy(t) — Neu(r) = e(r) is [®-stable, i.e. maps [® to [, then (5.2) is satisfied
because ¢(t) is a vector of delayed u(t) and y(¢). Furthermore, if the control law

is designed such that

WNsue 1
< == (83)
WMSye /BDB
B
then
WNSU.e
Dy(t) = oax {[Wwu(r)l, [Waey(r)]} < et).  (84)
- WMSye

Thus (5.3) will be satisfied, Hence boundedness of the adaptive control system
is proved by lemma 4. O
From the relation of the B norm and the shifted H*® norm we derived in section
6.1, we can get a msimilar algorithm for a new frozen time H* robust adaptive
controller corresponding to (8.2).

We now give a heuristic discussion of the selection of the weighting functions
Wy and Wy,. Since the controller is computed from the frozen time system,
we can consider the linear time-invariant case. Suppose P and K are linear

time-invariant plant and controller, respectively. It is easy to show that

e VVNI(]M_1
WaS™ = = + PK
I/VM]W_1
ye .. _ME
WS 1+ PK
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If WM™ is large at low frequencies and small at high frequencies (i.e. a
low pass transfer function), the sensitivity S = 1—+—1P7i' will be small at low
frequencies, which results in better steady state performance.

On the other hand we need Wy M~ to be small at low frequencies and large
at high frequencies (i.e. a high pass transfer function), in order to maintain good
robustness with respect to unmodeled dynamics.

Therefore, the inclusion of the weighting functions Wy and W), gives us
more freedom in the control design, and proper selections of Wy and W, leads

to more useful controllers.

8.2 Re-design the Examples

In order to confirm the idea we proposed in the previous section, we re-designed
some examples in Chapter 7. The simulations results are very encouraging.

We first re-designed the controller for example 7.1. We choose Wy (z71)
as the discretized system (using bilinear transfermation) of a continuous-time
weighting Wiy (s) = 0.50—.55%1— and Wy,(z71) as the discretized system (using
bilinear transfermation) of a continuous time weighting Wy, (s) = Og’—i_"'l—l The
response of the re-designed system (shown in Figure 8.1) has much less overshoot
than that of Figure 7.1. The MATLAB script for this simulation is listed in
Appendix A.

We then re-deigned the system of example 7.2, which has an unstable plant.

Wi (271) is chosen as the discretized system of Wy (s) = 0.50—-35% and Wy (27 1)is

_ 0.5s+1
= 28T~

designed system (shown in Figure 8.1) has significantly better improvement on

chosen as the discretized system of Wy,(s) . The response of the re-

the transient response over that of Figure 7.3.
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Figure 8.1: Response of the re-designed system for example 7.1 using the
weighted uncertainty model. The response is significantly better than that of

Figure 7.1.
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Figure 8.2: Response of the re-designed system for example 7.2 using the
weighted uncertainty model. The response (shown in Figure 8.2) is significantly

better than that of Figure 7.3. The plant in this example is an unstable system.
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Figure 8.3: Response of the re-designed system for example 7.3 using the
weighted uncertainty model. Both the transient response and the steady state

gain are much better than that of Figure 7.4.

We also re-deign the system of example 7.3, for which the true plant is forth
order and the nominal plant is second order. Wy (27!) is chosen as the discretized
system of Wy (s) = 0.50—%% and Wy,(271)is chosen as the discretized system
of Wy(s) = 05—5'3}_—4—1—1 The response of the re-designed system is shown in Figure
8.3. Both the transient response and the steady state gain are also greatly im-
proved over that of Figure 7.4. The steady sinusoidal variation of the response

in the out y(¢) (with a period of about 3 secs) is caused by the sinusoidal dis-
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Figure 8.4: Response of the re-designed system for example 7.3 using the

weighted uncertainty model with no disturbances.

turbance, not instability of the closed-loop system. This can be confirmed by a
simulation of noise-free case shown in Figure 8.4.

In all of the above cases, transient responses are improved to a large extent,
but the steady state loop gains are still not big enough in most cases, so the
output still is not close to unity when the command input is a unit step. This
does not imply that this method can not improve the steady state performance.
We think the main difficulty lies in the choice of the weighting functions. Cur-

rently, we choose the weighting functions based the rules learned from linear
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robust control theory. As the adaptive control system is nonlinear, these rules
may not be suitable. Further study on how to select the weighting functions is

an important task for future research.
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Chapter 9

Conclusions

A novel robust adaptive control design scheme was developed. This scheme
integrates an H* robust control law and a robust parameter estimator. Stability
properties of the proposed adaptive control scheme have been derived. Several
numerical examples are provided to demonstrate the effectiveness of this new
adaptive control scheme.

Unlike the heuristic and qualitative design procedures of previous robust
adaptive control schemes, the design procedure proposed here is systematic and
quantitative. Given the set of possible parameters of the nominal plant, the size
of the unmodeled dynamics, and the size of the noise, this scheme can be used
to design an H* adaptive controller which can guarantee that every signal in
the adaptive system be bounded when the external input is bounded.

A new boundedness condition in terms of the shifted H* norm was derived
using frozen time analysis. We developed an H* adaptive robust control algo-
rithm for systems with unweighted coprime factor uncertainty models first. This
scheme was further modifed to deal with weighted coprime factor uncertainties.
Robustness of the proposed adaptive control schemes was then proved by the

boundedness condition we derived. Examples showed that both the unweighted
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and the weighted schemes have very good robustness, but the weighted scheme
has the potential to achieve better performance than the unweighted scheme

does.
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Appendix A

MATLAB scripts

A.1 Script for example 7.1

% H-infinity robust adaptive control algorithm

% require control system toolbox and mu-toolbox

%» D3:1-infinity gain (i.e 1-1 norm) of the uncertainty
% D1:bound on the external disturbance d(t)

%(NumOd ,,Den0d) :discrete Time nominal model
%(Numid,Denld) :discrete time true model

%The leading coefficient of DenOd has to be 1

%The leading coefficient of NumOd has to be zero

clear
ts=0.1; %ts is the sampling time
T=200; %T is total step to be simulated

D1=0.01; %D1 is the size of the bounded disturbance
D3=0.1; %D3 is the size of the coprime factor uncertainty

P=100%[1 0;0 1];%P is the corvarience matrix
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maxuy=0, /maxuy is used for generating the normalized signal
alpha=0.1;

beta=sqrt(1/(1-alpha));

sigma=1.1; % shifted amount

kappal=1/sqrt(1-sigma~(-2));

gamma=1/ (kappal#*(beta+0.1)*D3);

NumOd=[0 0.7];Den0d=[1 -0.8];

% Generate purterbation with the 1-1 norm equal to DS

% first pick arbitrary impulse response for the numerator and
% denominator purterbation, then normalized them such the

% 1-1 norm equal to D3

deln={0 0 0.9 0.6];DeltaN=D3*deln/norm(deln,1);

deld=[{0 0 0.8 -0.7];DeltaD=D3*deld/norm(deld,1);

%True system
Numid=[NumOd O 0]}+Deltal;

Denid=[Den0d O 0]+DeltaD;

variation=[1;1];

N=length(Den0d) ;
thnominal=[-Den0d(2:N) NumOd(2:N)]’;
thmin=thnominal-variation;

thmax=thnominal+variation;
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thbar=[0;0];
phi=zeros(2,T);
th=[0.5*%ones(1,T); 0.5%ones(1,T)];
e=zeros(1,T);
y=zeros(1,T);
u=zeros(1,T);% control signal; initialzed to be zero
v=alpha*ones(1,T); %
% command reference signal
r=[ones(1,T/4) zeros(1,T/4) ones(1,T/4) zeros(1,T/4)];
wd=2;
d=D1*sin(0:wd*ts:wd*(T-1)*ts); % wd=10 <--> 10rad/sec if T=1000

xc=zeros (length(Num0d)-1,T);

for t=4:1:T,

num=[0 th(2,t-1)];den=[1 -th(1,t-1)];

[atmp,btmp, ctmp,dtmp]l=tf2ss (num, [1 zeros(1l,length(den)-1)]) ;%N
AN=atmp’ ;BN=ctmp’ ; CN=btmp’ ; DN=dtmp;

[atmp,btmp, ctmp,dtmp]l=tf2ss(den, [1 zeros(l,length(den)-1)]1);%M
AM=atmp’ ;BM=ctmp’ ; CM=btmp’ ; DM=dtmp;

L=BM; A=AM-L*CM;B=BN;C=CN;D=0;

hgeneralized plant

Ag=Axsigma;Bg=[-L B];Cg=[[zeros(1,length(den)-1)];C;Cl*sigma;
Dg=[[0;1] [1;D];1 DI;

G=pck(Ag,Bg,Cg,Dg) ;
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(K,Tzw,gfin,ax,ay,hamx,hamy] = ...
dhfsyn(G,1,1,gamma,gamma,0.1, ...
0.1,inf,-1,2,1e-10,1e-6);

[Ac,Bc,Cc,Dc]l=unpck(K) ;

% convert the controller from z/sigma back to z

% controller derived by dhfsyn has a negative DC gain,

% so we reverse the sign of Cc and Dc to make it

% confirm to our convention

Ac=Ac/sigma; Cc=-Cc/sigma; Dc=-Dc;

h or =D+ - >controller --->system ------ >

A + - I

A I I

h | e e |

xc(:,t-1)=Ac*xc(:,t-2)+Bc*x (~y (t-2)+r(t-2)) ;

u(t-1)=Cc*xc(:,t-2)+Dcx (~y (t-2)+r(t-2));

%y () =-Den0d (2) *y (t-1) +Num0d (2) *u (t-1) +d (t-1) ;

y(t)=-Den1d(2)*y(t-1)-Den1d(3) *y (t-2)-Denld (4) *y (t-3)+. ..
Num1d (2) *u (t-1) +Num1d (3) *u (t-2) +Num1d (4) *u (t-3) +d (t) ;

phi(:,t-1)=[y(t-1);u(t-1)1;

yh=phi(:,t-1)’*th(:,t-1);

e(t)=y(t)-yh;

m=max (abs (u(t-1)) ,abs(y(t-1)));

if maxuy<m,

maxuy=m;
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end;
D2 (t)=D3*maxuy;
if beta*(D2(t)+D1)<abs(e(t)),
v(t)=alpha*(abs(e(t))-beta*x(D2(t)+D1))/abs(e(t));
else,
v(t)=0;
end;
P=P-v(t)*P*phi(:,t-1)*phi(:,t-1)’*P/...
(1+phi(:,t-1) ’*P*phi(:,t-1));
thbar=th(:,t-1)+v(t)*P*phi(:,t-1)*e(t)/...
(1+phi(:,t-1) **P*phi(:,t-1));
if thbar(1)<thmin(1), thbar(1)=thmin(1); end;
if thbar(1)>thmax(1), thbar(1)=thmax(1); end;
if thbar(2)<thmin(2), thbar(2)=thmin(2); end;
if thbar(2)>thmax(2), thbar(2)=thmax(2); end;
th(:,t)=thbar;
disp([t]);

end

subplot (221) ;plot(th’);title(’theta’);

subplot (222) ;plot(y’);title(’output y’)

subplot (223);
plot(1:T,abs(e’),’y’,1:T,betax(D2+Di*ones(size(D2))),’r’);
title(’|el vs beta(D2+D1)’)

subplot (224) ;plot(v’);title(’adaptive gain’)
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A.2 Script for example 7.3

%sRobust H-infinity adaptive control algorithm

h

%#D3:1-infinity gain (i.e 1-1 norm) of the uncertainty
%#D1:bound on the external disturbance d(t)
%(Num0Od,Den0d) :discrete Time nominal model
%(Numld,Den1d) :discrete time true model

%#The leading coefficient of DenOd has to be 1

%#The leading coefficient of NumOd has to be zero

clear

ts=0.1; Yts is the sampling time

T=200; %T is total step to be simulated

D1=0.01; %D1 is the size of the bounded disturbance

D3=0.1; ¥D3 is the size of the coprime factor uncertainty
maxuy=0; %maxuy is used for generating the normalized signal
alpha=0.1;

beta=sqrt(1/(1-alpha));

sigma=1.1; % shifted amount

kappal=1/sqrt(1-sigma~(-2));

gamma=1/ (kappal*(beta+0.1)*D3);
NumOd=[0 0.5 0.2];Den0d={1 -0.8 0.4];

%Generate purterbation with the 1-1 norm equal to D3

%#first pick arbitrary impulse response for the numerator and
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hdenominator purterbation, then normalized them such the
% 1-1 norm equal to D3

deln={0 0 0 0.6 -0.4];

deld=[0 0 0 -0.8 -0.5];
P=100*eye (2% (length(Num0d)-1)) ;%P is the corvarience matrix
linorm_N=sum(abs(deln)) ;1l1inorm_D=sum(abs (deld));
linorm_ND=sqrt(linorm_N"2+linorm_D"2);
DeltaN=D3*deln/linorm_ND;

DeltaD=D3*deld/l1lnorm_ND;

%True system

Numid=[NumOd O O]+Deltal;

Denid=[Den0d 0 0]+DeltaD;

variation=[1;1;1;1];
N=length(Den0d) ;
thnominal=[-Den0d(2:N) Num0d(2:N)]’;
thmin=thnominal-variation;

thmax=thnominal+variation;

thbar=zeros(4,1);
phi=zeros(4,T);
th=0.5*[ones(4,T)];
e=zeros(1,T);
y=zeros(1,T);

u=zeros(1,T);% control signal; initialzed to be zero
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v=alpha*ones(1,T); %

r=[ones(1,T/4) zeros(1,T/4) ones(1,T/4) zeros(1,T/4)];

wd=2;

d=D1*sin(0:wd*ts:wd*(T-1)*ts); % wd=10 <--> 10rad/sec if T=1000

xc=zeros (length (Num0d)-1,T) ;

for t=4:1:T,
num=[0 th(3,t-1) th(4,t-1)];den=[1 -th(1,t-1) -th(2,t-1)];
(atmp,btmp, ctmp,dtmp]=tf2ss (num, [1 zeros(l,length(den)-1)]) ;%N
AN=atmp’ ;BN=ctmp’ ; CN=btmp’ ; DN=dtmp;
[atmp,btmp, ctmp,dtmp]=tf2ss(den, [1 zeros(1,length(den)-1)]) ;%M
AM=atmp’ ;BM=ctmp’ ; CM=btmp’ ; DM=dtmp;
L=BM; A=AM-L*CM;B=BN;C=CN;D=0;
% generalized plant
Ag=Axsigma;Bg=[-L B];Cg=[[zeros(1,length(den)-1)];C;Cl*sigma;
Dg=[[0;1] [1;D];1 DJ;
G=pck(Ag,Bg,Cg,Dg);
[K,Tzw,gfin,ax,ay,hamx ,hamy] = ...
dhfsyn(G,1,1,gamma,gamma,0.1, ...
0.1,inf,-1,2,1e-10,1e-6);
[Ac,Bc,Cc,Dcl=unpck (X) ;
hconvert the controller from z/sigma back to z
hcontroller derived by dhfsyn has a negative DC gain,
%so we reverse the sign of Cc and Dc to make

%it confirm to our convention
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Ac=Ac/sigma; Cc=-Cc/sigma; Dc=-Dc;

h o =D+ ————- >controller --->system ------ >
h + - |

T | I

t S l
xc(:,t-1)=Ac*xc(:,t-2)+Bcx (-y (t-2) +r(t-2));

u(t-1)=Cc*xc(:,t-2)+Dcx (-y (t-2) +r(t-2));

y (t)=-Den1d (2)*y (t-1)-Den1d(3) *xy (t-2)-Denid (4) *y (t-3)+. ..
Numid (2) *u(t-1)+Num1d(3) *u(t-2) +Numid (4) *u(t-3)+d(t) ;
phi(:,t-1)=[y(t-1);y(t-2);ut-1);u(t-2)1;
yh=phi(:,t-1)’*th(:,t-1);
e(t)=y(t)-yh;
m=max (abs (u(t-1)) ,abs(y(t-1)));
if maxuy<m,
maxuy=m;
end;
D2(t)=D3*maxuy;
if beta*(D2(t)+D1)<abs(e(t)),
v(t)=alpha*(abs(e(t))-beta*x(D2(t)+D1))/abs(e(t));
else,
v(t)=0;
end;

P=P-v(t)*P*phi(:,t-1)*phi(:,t-1)’*P/...
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(1+phi(:,t-1) **Pxphi(:,t-1));
thbar=th(:,t-1)+v(t)*P*phi(:,t~1)*e(t)/...
(1+phi(:,t-1) ’*P*phi(:,t-1));
if thbar(1)<thmin(1), thbar(1)=thmin(1); end;
if thbar(1)>thmax(1), thbar(1)=thmax(1l); end;
if thbar(2)<thmin(2), thbar(2)=thmin(2); end;
if thbar(2)>thmax(2), thbar(2)=thmax(2); end;
th(:,t)=thbar;
disp([t]);

end

subplot (221) ;plot(th’);title(’theta’);

subplot (222} ;plot(y’);title(’output y’)

subplot(223);
plot(1:T,abs(e’),’y’,1:T,betax(D2+D1*ones(size(D2))),’r’);
title(’le|l vs beta(D2+D1)’)

subplot (224) ;plot(v’);title(’adaptive gain’)

A.3 Script for Examples in Section 8.2

The procedure to construct the state space realization of the generalized plant
G introduced in Section 3.2 can not be applied to the case of the weighted
uncertainty model. We uses Simulink to construct the generalization plant G
and then uses the dlinmod command to extract the state space model of G. It
is very efficient and numerically robust.

The MATLAB m-file to re-design example 7.1 using the weighted uncertainty
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model is listed first, followed by the Simulink block diagram of the generalized

plant.

%» H-infinity robust adaptive control algorithm
% assume the plant is represented by a weighted

% non-normalized coprime factorization

%#D3:1-infinity gain (i.e 1-1 norm) of the uncertainty
%D1:bound on the external disturbance d(t)

%(Num0Od ,Den0d) :discrete Time nominal model
%(Numid,Denid) :discrete time true model

%#The leading coefficient of DenOd has to be 1

%#The leading coefficient of NumOd has to be zero

clear

ts=0.1; %ts is the sampling time

KWN=0.5;NumWN=[1 1] ;DenWN=[1/2 1];
[NumWNd ,DenWNd]l=c2dm (KWN*NumWN,DenWN,ts, tustin’);
KWM=1;NumWM=[1/2 1] ;DenWM=[1/1 1];

[NumWMd , DenWMd] =c2dm (KWM*NumWM, DenWM, ts, >tustin’) ;

T=200; %T is total step to be simulated
D1=0.01; %D1 is the size of the bounded disturbance
D3=0.2; %#D3 is the size of the coprime factor uncertainty

P=100%[1 0;0 1];%P is the corvarience matrix
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maxuy=0; Jmaxuy is used for generating the normalized signal
alpha=0.1;

beta=sqrt(1/(1-alpha));

sigma=1.1; 7 shifted amount

kappal=1/sqrt(1-sigma~(-2));

gamma=1/ (kappal#*(beta+0.1)*D3);

NumOd=[0 0.7];Den0Od=[1 -0.8];

%Generate purterbation with the 1-1 norm equal to D3

Wfirst pick arbitrary impulse response for the numerator and
%denominator purterbation, then normalized them such the

% 1-1 norm equal to D3

deln=[0 0 0.9 0.6];DeltaN=D3*deln/norm(deln,1);

deld=[0 0 0.8 -0.7];DeltaD=D3*deld/norm(deld,1);

%#True system
Numild=[NumOd O 0]+DeltaN;

Denid=[Den0d 0 0]+DeltaD;

variation=[1;1];

N=length(Den0d) ;
thnominal=[-Den0d(2:N) Num0d(2:N)]’;
thmin=thnominal-variation;

thmax=thnominal+variation;
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thbar=[0;0];

phi=zeros(2,T);

th=[0.5*%ones(1,T); 0.5*%ones(1,T)];

e=zeros(1,T);

y=zeros(1,T);

u=zeros(1,T);% control signal; initialzed to be zero
yw=zeros(1,T) ;uw=zeros(1,T);

v=alpha*ones(1,T); %

% command reference signal

r=[ones(1,T/4) zeros(1,T/4) ones(1,T/4) zeros(1,T/4)];
wd=2;

d=D1*sin(0:wd*ts:wd*(T-1)*ts); % wd=10 <--> 10rad/sec if T=1000
%d=D1*(rand([1 T])-0.5%ones(1,T));

xc=zeros(4,T);

for t=4:1:T,
num=[0 th(2,t-1)];den=[1 -th(1,t-1)1;
[atmp,btmp,ctmp,dtmp]l=tf2ss (num, [1 zeros(1l,length(den)-1)]1) ;%N
AN=atmp’ ;BN=ctmp’ ; CN=btmp’ ; DN=dtmp;
[atmp,btmp,ctmp,dtmp]=tf2ss(den, [1 zeros(l,length(den)-1)1) ;%M
AM=atmp’ ;BM=ctmp’ ;CM=btmp’ ; DM=dtmp;
L=BM; A=AM-L*CM;B=BN;C=CN;D=0;
%generalized plant
%Ag=Axsigma;Bg=[-L B];Cg=[[zeros(1l,length(den)-1)];C;C]l*sigma;

%Dg=[[0;1] [1;D];1 DI;

112



[Ag,Bg,Cg,Dgl=dlinmod (’awlg’);

G=pck (Agxsigma,Bg,Cgxsigma,Dg) ;

(K,Tzw,gfin,ax,ay,hamx,hamy] = ...
dhfsyn(G,1,1,gamma,gamma,0.1, ...
0.1,inf,-1,2,1e~10,1e-6);

[Ac,Bc,Cc,Dcl=unpck (K) ;

% convert the controller from z/sigma back to z

% controller derived by dhfsyn has a negative DC gain,

% so we reverse the sign of Cc and Dc to make it

% confirm to our convention

Ac=Ac/sigma; Cc=-Cc/sigma; Dc=-Dc;

A + - |

[ | I

h e I

xc(:,t-1)=Ac*xc(:,t-2)+Bc*x (~y (t-2)+r(t-2));

u(t-1)=Cc*xc(:,t-2)+Dcx (-y (t-2)+r(t-2));

%y (£)=-Den0d (2) *y (t-1) +Num0d (2) *u(t-1) +d(t-1) ;

y(t)=-Den1d (2) *y (t-1)-Den1d (3) *y (t-2)-Den1d (4) *xy (t-3)+. ..
Num1d (2) *u (t-1) +Num1d (3) *u (t-2) +Numid (4) *u(t-3)+d (t) ;

phi(:,t-1)=[y(t-1);ult-1)]1;

yh=phi(:,t-1)’*th(:,t-1);

e(t)=y(t)-yh;

uw (t-1)=-DenWNd (2) *uw (t-2) + (NumWNd (1) *u (t-1) +NumWNd (2) *u(t-2) ) ;
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yw (t-1) =-DenWMd (2) *yw (t-2) + (NumWMd (1) *y (t-1) +NumWMd (2) *y (£-2) ) ;
m=max (abs (uw(t-1)) ,abs (yw(t-1)));
if maxuy<m,
maxuy=m;
end;
D2(t)=D3*maxuy;
hdisp([abs(betax(D2(t)+D1)) abs(e(t))])
if beta*(D2(t)+D1)<abs(e(t)),
v(t)=alpha*(abs(e(t))-beta*(D2(t)+D1))/abs(e(t));
else,
v(£)=0;
end;
P=P-v(t)*P*phi(:,t-1)*phi(:,t-1)’*P/...
(1+phi(:,t-1) > *Pxphi(:,t-1));
thbar=th(:,t-1)+v(t)*P*phi(:,t-1)*e(t)/...
(1+phi(:,t-1) **P*phi(:,t-1));
if thbar(1)<thmin(1), thbar(1)=thmin(1); end;
if thbar(1)>thmax(1), thbar(1l)=thmax(1); end;
if thbar(2)<thmin(2), thbar(2)=thmin(2); end;
if thbar(2)>thmax(2), thbar(2)=thmax(2); end;
th(:,t)=thbar;
%disp([t th(:,t)’ u(t-1) y(t-1) yhl);
disp([t]);

end
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subplot(221) ;plot(th’);title(’theta’);

subplot (222) ;plot(y’);title(’output y’)

subplot (223);
plot(1:T,abs(e’),’y’,1:T,beta*x(D2+D1*ones(size(D2))),’r’);
title(’le| vs beta(D2+D1)’)

subplot (224) ;plot(v’);title(’adaptive gain’)
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