Technical Report TR-1415 February 1985

CLEANROOM Software Development:
An Empirical Evaluation

Richard W. Selby, Jr.
Victor R. Basili
F. Terry Baker

Department of Computer Science
University of Maryland
College Park

KEYWORDS: software development methodology, off-line software review,
software measurement, methodology evaluation, software management,
empirical study

Research supported in part by the AFOSR Contract AFOSR-F 49620~-80-C-001
to the University of Maryland. Computer support provided in part by the
Computer Science Center at the University of Maryland.

ABSTRACT

The Cleanroom software development approach Is Intended to produce highly rell-
able software by Integrating formal methods for specification and design, complete off-
line development, and statistically based testing. In an emplrical study, 15 three-person
teams developed versions of the same software system (800 — 2300 source lines); ten
teams applled Cleanroom, while five applled a more traditlonal approach. Thls analysls
characterizes the effect of Cleanroom on the dellvered product, the software develop-
ment process, and the developers. The major results of this study are 1) most develop-
ers were able to apply the technlques of Cleanroom effectlvely; 2) the Cleanroom teams’
products met system requirements more completely and had a higher percentage of suc-
cessful test cases; 3) the source code developed using Cleanroom had more comments
and less dense complexity; 4) the use of Cleanroom successfully- modified -aspects of
development style; and 5) most Cleanroom developers indicated they would use the

approach agaln.

Table of Conuenus-__

1 INTrOdUCTION iiiiiiiiiiraccecnccenceeeeeresresrarsnsessssenes ssasscsasssresssrsesaren csesisecnscrsnansesrsene vissenn
2 Cleanroom Software Development cereresesesevcrarasnes cevsseenrcans etesesstacrtasctrsassesorsenas
2.1 Investigation GOAals ..ccceeeerenneees eersacrsersarsecatnanenarns seseuse cererecasansonnsas sevsecrtesesosnsans
-3 Empirical Study Using Clealroom ...c.ceeeeeeeen crerrserecresnavenans resssceseresasonen
3.1 Case Study DesSCriDUION .ciccicrcceceecnereencensecancaseesees vessrens cressisssessesns cecesansesncnnns
3.2 Operational TesStINZ Of PrOJECES iccriceressercereccersecenscesesrossnscsssscssssseososssonss
4 Data Analysls and Interpretation cesncrsones cesseresscressnsansasanncaes crennes vecesee cresseasenne
4.1 Characterization of the Effect on the Product Developed ..ccceececeeecevceoceeseces
4.1.1 Operational System Properties ..cceececeees ceseanane vosssscvenes eeeserasecscensecenses
4.1.2 Statlc System Properties cessescassrnanse seeetrsesssrsoresestsnasessossanse
4.1.3 Contributlon of Programmer Background cesenesnerasasorcacas errsaconecnes
4.1.4 Summary of the Effect on the Product Developedee..... creeseerasasenasans

4.2 Characterization of the Effect on the Development Process ceresecscensans cneno
4.2.1 Summary of the Effect on the Development Processcee.. ceacesessasstnace
4.3 Characterization of the Effect on the Developers ...cceeeeeeeeeenss ceassaarcsss cesoanenan
4.3.1 Summary of the Effect on the Developers eeresesentetsstarateesnnasassnsnsene
4.4 Dlistinctlon Among TeamsS .eeceeeeeererereseennes certserscasarens reeaerscrtsntrstetastresesnsesnacnaee
5 CONCIUSIONS iriiiiieieesescacnsencnrerersenssnsassecassnne teesercererarartrsensasnasnsasaans ceeestaseresnsencanasace
8 ACKNOWIEAZEMENL .iiveicerrereanarererececeencnsescoonnnes ceeseeteetrosusanseesintnttectetsratarasnsrasanattaacn
7 ADDPENAIX AL ciiiiriiecerireecesesntncecassensnnconses ceeesessentensntestctirrananes tescesscannas vevosescecascrassas
8 REfEreNCeS .icieciicieiceceornreaccoracsornssnracenns cestcrinsnstrenane seesssessenersrtesesresnancan vevssosensesasesnas

~1 v W O

O © 0

1. Introduction

The need for disclpline In the software development process and for high quality
software motlvates the Cleanroom software development approach. In addition to
Improving the control durlng development, this approach Is Intended to dellver a pro-
duct that meets several quallty aspects: a system that conforms with the requirements, a
sysiém with high operatlonal rellabllity, and source code that Is easily readable and

modlfiable.

Sectlon II describes the Cleanroom abproach and a framework of goals for charac-
terizing 1ts ‘eﬁ‘ect. Sectlon III presents an emplrical study using the approach. Sectlon
IV glves the results of the analysls comparing prolects developed using Cleanroom with

those of a éontrol group. The overall concluslons appear in Section V.

2. Cleanroom Software Development

The Federal Systems Divislon of IBM [Dyer 82, Dyer & Mllls 82] presents the
Cleanroom software development method as a technlcal and organlzational approach to
developing software with certifiable rellabliity. The ldea Is to deny the entry of defects
durlng the development of software, hence the term ‘‘Cleanroom.” The focus of the
method 1s Imposing discipline on the development process by Integrating formal methods
for specificatlon and design, complebe off-lilne development, and statlstically based test-
Ing. These components are Intended to contribute to a software product that has a high

probabllity of zero defects and consequently a high measure of operational rellablility.

The mathematlcally-based design methodology of Cleanroom Includes the use of

structured speclficatlons and state machlne models [Ferrentino & Mllls 77]. A systems

1

englneer Introduces the structured specifications to restate the system requlrements pre-
clsely and organlze the complex problems Into manageable parts [Parnas 72]. The
speclfications determline the ‘“‘system architecture’ of the interconnectlons and grouplngs
of capabliltles to which state machine design practices can be applled. System lmple-
mentation and test data formulatlon can then proceed from the structured specifications

independently.

The right-the-first-time programming methods used In Cleanroom are the ldeas of
functlonally based programmling In [Mills 72b, Linger, Mills & Witt 79]. The testing
process Is completely separated from the development process by not allowing the
developers to test and debug thelr programs. The developers focus on the technlques of
code lnspectlons [Fagan 76|, group walkthroughs [Myers 78], and formal verification
[Hoare 89, Linger, Mlills & WItt 79, Shankar 82, Dyer 83] to assert the correctness of
thelr Implementation. These constructive technlques apply throughout all phases of
development, and condense the actlvitles of defect detectlon and Isolatlon Into one
operation. This dlsclpline Is imposed with the Intentlon that correctness ls “*designed”
Into the software, not ‘‘tested” In. The notlon that ‘“Well, the software should always

be tested to ind the faults’ Is elimlnated.

In the statlstically based testing straté",y of Cleanroom, Independent testers slmu-
late the operatlonal envlronment of the system with random testing. This testing pro-
cess Includes deflnlng the frequency distribution of Inputs to the system, the frequency
dlstributlion of different system states, and the expanding hlerarchy of developed system
capabllitles. Test cases then are chosen randomly and presented to the serles of product

releases, whlle concentrating on functions most recently dellvered and malntalning the

overall composlte dlstributlon of Inputs. The Independent testers then record observed
fallures and determline an objectlve measure of product reliabllity. It Is belleved that
the prior knowledge that a system will be evaluated by random testing will affect system

rellabllity by enforclng a new discipline Into the system developers.

2.1. Investigation Goals

Some Intrigulng aspects of the Cleanroom approach Include 1) development without
testing and debugging of programs, 2) Independent program testing for quallty
assurance (rather than to find faults or to prove ‘‘correctness’ [Howden 78]), and 3)
certificatlon of system rellabllity before product dellvery. In order to understand the
effects of using Cleanroom, the followlng three goals are proposed: 1) characterize the
effect of Cleanroom on the dellvered product, 2) characterize the effect of Cleanroom on
the software development process, and 3) characterlze the effect of Cleé.nroom on the
developers. An applicatlon of the goal/question/metric paradigm [Baslll & Selby 84,
Baslll & Welss 84] leads to the framework of goals and questions for this study appear-
Ing In Figure 1. The empirical study executed to pursue these goals 1s described 1n the

following section.

Flgure 1. Framework of goals and questlons for Cleanroom development approach
analysis.

I. Characterize the effect of Cleanroom on the dellvered product.
A. For Intermedlate and novice programmers bullding a small system, what were
the operatlonal propertles of the product?
1. Did the product meet the system requirements?
2. How dld the operatlonal testing results compare with those of a control
group?
B. What were the statlc properties of the product?
1. Were the slize propertles of the product any different from what would be
observed In a tradltional development?
2. Were the readablilty properties of the product any dlifferent?
- 3. Was the control complexlty any different?
4. Was the data usage any different?
5. Was the Implementation language used any differently?
C. What contribution did programmer background have on the filnal product quall-
ty?
II. Characterize the effect of Cleanroom on the software development process.
A. For Intermediate and novice programmers buildlng a small system, what tech-
* nlques were used to prepare the developlng system for testlng submissions?
B. What role did the computer play in development?
C. Dld they meet thelr dellvery schedule?
II. Characterize the effect of Cleanroom on the developers.
A. When Intermedlate and novice programmers bullt a small system, did the
developers mlss the satlsfaction of executing thelr own programs?
1. Did the mlssing of program executlon have any relatlonshlp to programmer
background or to aspects of the dellvered product?
B. How was the deslgn and codlng style of the developers affected by not being able
to test and debug?
C. Would they use Cleanroom agaln?

3. Empirical Study Using Cleanroom

This sectlon descrlbes an emplrical study comparlng team projects developed using

Cleanroom with those using a more conventional approach.

3.1. Case Study Description

Subjects for the emplrical study came from the ‘‘Software Design and Develop-
wient’” course taught by F. T. Baker and V. R. Basill at the Unlversity of Maryland In
the Falls of 1982 and 1983. The Inltlal segment of the course was devoted to the
presentatlon of several software development methodologles, Including top-down design,
modular speclfication and design, PDL, chlef programmer teams, program correctness,
code readlng, walkthroughs, and functional and structural testing strategles. For the
latter part of the course, the Indlviduals were divided into three-person chlef program-
mer teams for a group project [Baker 72, Mllls 72a, Baker 81]. We attempted to divide
the teams equally accordlng to professional experience, academlc performance, and
| Implementation language experience. The subjects had an average of 1.8 years profes-
slonal experience and were computer sclence majors wlith Junlor, senlor, or graduate

standing. Flgure 2 displays the distribution of the subjects’ professional experlence.

Flgure 2. Sublects’ professional experlence In vears.

X
X X

X XX X

X XXXX X

X XXXXX X X X

X XXXXX X XX XX XX XX XX X X
+ t f -+ { -+ , —
0 1 2 3 4 5 6 7

A requirements document for an electronle message system (read, send, malllng
llsts, authorlzed capabllitles, etc.) was distributed to each of the teams. The project was

to be completed In slx weeks and was expected to be about 1200 llnes of Simpl-T source

[4)

[Basill & Turner 76]. ! The development machlne was a Unlvac 1100/82- running EXEC

VIII, with 1200 baud !nteractive and remote access avallable.

The ten teams In the Fall 1982 course applled the Cleanroom software development
approach, whlle the flve teams In the Fall 1983 course served as a control group (non-
Cleanroom). All other aspects of the developments were th= same. The two groups of
teams were not statistically different In terms of professionzl experlence, academlic per-
formance, or Implementation language experlence. If there were any blas between the
two times the course was taught, It would be In favor of the 1983 (non-Cleanroom)
group because the modular design portlon of the course was presented earller. It was
also the second time F. T. Baker had taught the course. Nocie that the teams In the
non-Cleanroom group applled a development approach similar to the *‘dlscipiined team"”

approach examlined In an earller study [Baslll & Relter 81],"

The first document every team In elther group turned 1n contalned a system
speclfication, composite design dlagram, and Implementation plan. The latter element
was a serles of mllestones describlng when the various functions within the system
would be avallable. At these various dates (minimum one week apart, maximum two),
teams from both groups would then submlt thelr systems for testing. An Independent
party would then apply statlstically based testlng to each of these dellveries and report

to the team members both the successful and unsuccessful test cases. The latter would

! Simpl-T Is a structured language that supports several string and file handling
primitives, In additlon to the usual control flow constructs avallable, for example, In
Pascal. If Pascal or FORTRAN had been chosen, It would have been very likely that
some indlviduals would have had extensive experlence with the language, and this would
have blased the comparison. Also, restricting access to a compller that produced execut-
able code would have been very difficult. '

be Included In the next test session for verlficatlon. Recall that the Cleanroom teams
could nc;t execute thelr programs — they had editing and syntax-checking capabllities -
only. Tﬁey had to rely on the techniques of code readlng, structured walkthroughs, and
Inspectlons to prepare thelr programs before submisslon. On the other hand, the non-
Cleanroom teams had full access to compllation and executlon facllltles to test thelr sys-

tems prior to independent testing.

All team projects were evaluated on the use of the development technlques
presented In class, the Independent testing results, and a final oral Interview. In addl-
tlon to these sources, Information on the team projects was collected from a background
questlonnalre, a postdevelopment attitude survey, statle source code analysls, and
operating system statlstics. The followlng section briefly describes the operationally

based testlng process applled to all projects by the independent tester.

3.2. Operational Testing of Projects

The testlng approach used in Cleanroom Is to slmulate the developing system'’s
environment by randomly selecting test data from an “‘operatlonal proflle,” a frequency
distributlon of Inputs to the system [Thayer, Lipow & Nelson 78, Duran & Ntafos 81].
The projects from both groups were tested Interactively at the millestones chosen by
each team by an Independent party (l.e., .R. W. Selby). A distributlon of Inputs to the
system was obtalned by ldentlfylng the logical functlons ln the system and asslgnlng
each a frequency. Thls frequency asslgnment was accomplished by polling eleven well-
seasoned users of the Unlversity of Maryland Vax 11/780 malllng system. Then test

data were generated randomly from thils proflle and presented to the system. Recording

of fallure severity and tlmes between fallure took place during the testing process. The
operational statlstics referred to later were calculated from fifty user-sesslon test cases
run on the final system release of each team. For a complete explaﬁatlon of the opera-
tlonally based testlng process applled to the projects, Includlng test data selectlon, test-

Ing procedure, and fallure observation, see [Selby 84].

4. Data Analysis and Interpretation

The analysls and Interpretation of the data collected from the study appear In the
following sectlons, organlzed by the goal areas outlined earller. In order to address the
varlous questlons posed under each of the goals, some raw data usually will be presented
and thern mte_rpreted. Flgure 3 presents the number of source llnes, executable state-

ments, and procedures and functions to give a rough view of the systems developed.

Flgure 3. System statlstlcs.
Team Cleanroom - Source Executable Procedures &
Lines Statments Functions
A yes 1681 813 53
B yes 1628 717 42
C yes 1118 573 42
D yes 1048 477 30
E yes 1087 624 32
F yes 1213 440 35
G yes 1196 581 31
H yes 1876 550 51
I - yes , 1305 808 23
J yes 1052 858 24
a no 824 410 : 26
b no 1429 633 18
¢ no , 2264 999 48
d no 1629 626 67
e no 1310 459 43

4.1. Characterization of the Effect on the Product Developed -

This sectlon characterizes the differences between the products dellvered by both of
the development groups. Initlally we examine some operatlonal propertles of the pro-

ducts, followed by a comparison of some of thelr static properties.

4.1.1. Operational System Properties

In order to contrast the operatlonal propertles of the systems dellvered by the two
groups, both completeness of Implementation and operational testlng results were exam-
lned. A measure of !mplementation completeness was calculated by partitloning the
required system Into sixteen loglcal functions (e.g., send mall to an Indlvidual, read a
plece of mall, respond, add yourself to a malling list, ...). Each functlon In an lmple-
mentation was then asslgned a value of two If It completely met Its requirements, a
value of one If It partlally met them, or zero If It was Inoperable. The total for each
system was calculated; a maximum score of 32 was posslble. Flgure '4 dlsplays thls sub-
Jectlve measure of requlrement conformance for the systems. Note that In all figures
presented, the ten teams using Cleanroom are In upper case and the five teams using a
more conventlonal approach are In lower case. A first observation Is that six of the ten
Cleanroom teams bullt very close to the entire system. Whlle not all of the Cleanroom
teams performed equally well, a majority of them applled the approach effectively
enough to develop nearly the whole product. More importantly, the Cleanroom teams

met the requirements of the system more completely than dld the non-Cleanroom teams.

Flgure 4. Requirement conformance of the systems.
J D
I FE A B GCH
de b ¢ a
-+ + + { —t -+ ' ' ~+
0 16 32
22 % 58 % 81 9% 100 %
Mann-Whitney 2 signif. = .088

To compare testing results among the systems developed In the two groups, fifty
random user-session test cases were executed on the final release of each system to slmu-
late 1ts operational environment. If the flnal release of a system performed to expecta-
tlons on a test case, the outcome was called a ‘‘success:” If not, the outcome was a
“fallure.” If the outcome was a ‘‘fallure’ but the same fallﬁre was obs.erved on an earller
test case run on the flnal release, the outcome was termed a “‘duplicate fallure.” Flgure
5 shows the percentage of successful test cases when dupllicate fallures are not included.

The figure displays that Cleanroom projects had a hlgher percentage of successful test
cases at system dellvery. ® When duplicate fallures are Included, however, the better

performance of the Cleanroom systems Is not nearly as signlficant (MW = .134). 4 This

Is caused by the Cleanroom projects having a relatively higher proportion of dupllicate

2 The slgnlficance levels for the Mann-Whitney statlstics reported are the probablll-
ty of Type I error In an one-talled test.

3 Although not consldered here, varlous software rellabtilty models have been pro-
posed to forecast system rellabllity based on fallure data [Musa 75, Currit 83, Goel 83].

* To be more succinet, MW wlll sometimes be used to abbreviate the slgnlflcance
level of the Mann-Whltney statistlc.

10

fallures, even though they did better overall. This demonstrates that while reviewing
the code, the Cleanroom developers focused less than the other groups on certaln parts
of the system. The more uniform review of the whole System makes the performance of
the system less sensltive to Its operatlonal proflle. Note that operational environments

of systems are usually difficult to define a priorl and are subject to change.

Flgure 5. Percentage of successful test cases during operational testing (without
duplicate fallures).

D J H
E I FA BGC
c
d e b a
58.0 100
Mann-Whitney signif. = .055

In both of the product quallty measures of Implementatlon completeness and opera-

tlonal testlng results, there was quite a varlation In performance.’ A wide varlation may
have been expected with an unfamillar development technique, but the developers using
a more tradltlonal approach had a wider range of performance than did those using
Cleanroom in both of the measures (even with twice as many Cleanroom teams). All of
the above dlfferences are magnified by recalllng that the non-Cleanroom teams dld not

develop thelr systems In one monolithle step, they (also) had the beneflt of perlodic

S An alternate perspective Includes only the more successful projects from each
group In the comparison of operatlonal product quality. When the best 609 from each
approach are examlned (l.e., removing teams 'd," 'e,’ 'A, 'E, 'F,” and °'T'), the Mann-
Whltney significance level for comparing implementation completeness becomes .045 and
the slgnlificance level for comparing successful test cases (without duplicate fallures) be-
comes .034. Thus, comparing the best teams from each approach Increases the evidence
In favor of Cleanroom In both of these product quallty measures.

11

operatlonal testlng by Independent testers. Since both groups of teams had Independent
testing of all thelr dellverles, the early testlng of dellverles must havé revealed most

faults overlooked by the Cleanroom developers.

These comparisons suggest that the non-Cleanroom developers focused on la *‘per-
spectlve of the tester,” sometimes leaving out classes of functlons and causing a less
completely lmplemented product and more (especlally unlque) fallures. Off-line review
technlques, however, are more general and thelr use contributed to more cémplene
requirement conformance and fewer fallures !n the Cleanrqom products. In addltlon to
examlnlng the operational properties of the product, various statlc properties were com-

pared.

4.1.2. Static System Properties

The first questlon In this goal area concerns the size of the final systems. Flgure 3
showed the number of source lines, executable statements, and procedures and functions
for the varlous systems. The projects from the two groups were not statistically
different (MW > .10) In any of these three slze attributes. Another question In thls goal
area concerns the readablllty of the dellvered source code. Two aspects of readlng and
modifylng code are the number of comments present and the density of the ‘‘complex-
Ity.” In an attempt to capture the complexity denslty, syntactic complexity [Basill &
Hutchens 83] was calculated and normalized by the number of executable statements.
In addlitlon to control complexity, the syntactlc complexlty metric considers nesting
depth and prime program decomposlition [Linger, Mills & Witt 79]. The developers

using Cleanroom wrote code that was more highly commented (MW = .089) and had a

lower complexlty density (MW = .079) than dld those using the tradltloné,l approach.
A calculatlon of elther software sclence effort [Halstead 77], cyclomatic complexity
[McCabe 78], or syntactic complexity without any slze normallzatlon, however, produced
no significant differences (MW > .10). This seems as expected because all the systems

were bullt to meet the same requirements.

Comparing the 'dar.a. usage In the systems, Cleanroom developers used a greater
number of global data ltems (MW = .071). Also, Cleanroom projects possessed a hlgher
percentage of assignment statements (MW = .056). These last two observations could
be a manlfestation of teachlng the Cleanroom subjects modular design later In the

course (see Case Study Description), or possibly an Indication of using the approach.

Some Interesting observatlons surface when the operational quality meaSures of the
Cleanroom products are correlated with the usage of the Implementation language.
Both percentage of successful test cases (without dupllicate fallures) and Implementation
completeness correlated with percentage of procedure calls (Spearman R = .85, slgnif.
== .044, and R == .57, signlf. = .08, respectlvely) and with percentage of If statements
(R = .82, slgnlf; == .058, and R = .55, slgnlf. = .10, respectively). However, both of
these two product quallty measures correlated negatlvely with percentage of case state-
ments (R = -.886, slgnlf. = .001, and R = -.69, signlf. = .027, respectlvely) and with
percentage of whlle statements (R = -.85, slgnlf. = .044, and R = —.49, slgnlf. = .15,

respectively). There were also some negatlve correlatlons between the product quallty

measures and the average software sclence effort per subroutlne (R = -.52, signif. =
.12, and R = -.74, slgnlf. = .013, respectively) and the average number of occurrences
of a varlable (R = -.54, signif. = .11, and R = -.56, signlf. = .09, respectively).

13

Consldering the products from all teams, both percentage of successful test cases
(without duplicate fallures) and implementation completeness had some éorrelatlon with
percentage of If statements (R = '.48, slgnlf. = .07, and R = .45, signif. == .09, respec-
tlvely) and some negatlve correlatlon with percentage of case statements (R == -.48, sig-
nif. = .07, and R = —-.42, signif. = .12, respectively). Nelther of the operational pro-
duct quallty measures correlated with percentage of assignment statements when elther
all products or Just Cleanroom products were conslidered. These observations suggest
that the more successful Cleanroom developers simplified thelr use of the Implementa-
tlon language; l.e., they used more procedure calls and if statements, used fewer case
and whlle statements, had a lower frequency of varlable reuse, and wrote subroutines

requiring less software sclence effort to comprehend.

4.1.3. Contribution of Programmer Background

When examining the contribution of the Cleanroom programmers’ background to
the quallty of thelr flnal products, general programming language experience correlated
with percentage of successful operational tests (without dupllcate fallures: Spearman R
= .66, signlf. = .04; with duplicates: R = .70, signlf. == ,03) and with Implementation
completepess (R = .55; signlf. = .10). NQ relatlonshlp appears between either opera-
tlonal testing results or !mplementatlon completeness and elther professional® orv testing
experience. These background/quallty relatlons seem conslstent with other studles

[Curtls 83].

6 In fact, there are very slight negative correlatlions between years of professional ex-
perience and both percentage of successful tests (without duplicate fallures: R = -.46,
signlf. = .18) and !mplementation completeness (R = - .47, slgnlf. = .17).

14

4.1.4. Summary of the Effect on the Product Developed

In summary, Cleanrcom developers dellvered a product that 1) met system requlire-
ments more completely, 2) had a higher percentage of successful test céses, 3) had more
comments and less dense complexity, and 4) used more global data ltems and a higher
percentage of asslgnment statements. The more successful Cleanroom developers 1)
used more procedure calls and If statements, 2) used fewer case and while statefnents, 3)
reused varlables less frequently, 4) developed subroutines requirlng less (software sci-

ence) effort to comprehend, and 5) had more general programming language experience.

4.2. Characterization of the Effect on the Development Process

In a postdevelopment attitude survey, the developers were asked how effectlvely
they felt they applled off-line review technlques In testing thelr projects (see Flgure 8).
This was an attempt to capture some of the Informatlon necessary to answer the first
question under thls goal (question IL.A). In order to make comparisons at the team
level, the responses from the members of a team are composed Into an average for the
team. The responses to the questlon appear on a team basls In a hlstogram In the
second part of the figure. Of the Cleanrcom developers, teams ‘A, D, E, 'Fy and T
were the least confident !n thelr use of the off-llne review technlques and these teams
also performed the worst ln terms of operatlonal testing results; four of these five teams
performed the worst In terms of lmplementatlon completeness. Off-llne review
effectiveness correlated with percentage of successful operatlonal tests (without dupllicate
fallures) for the Cleanroom teams (Spearman R = .74; signlf. = .014) and for all the

teams (R == .76; slgnlf. = .001); 1t correlated with lmplementation completeness for all

15

the teams (R = .38; signlf. = .023). Nelther proiessional nor testlng experience corre-

lated with off-llne review effectlveness when elther all teams or just Cleanroom teams

were constdered.

16

Fligure 8. Breakdown of responses to the attitude survey question, “Did you feel
that you and your team members effectively used off-line review technlques in

testing your project?'’. (Responses are from Cleanroom teams.) ”

14 - Yes, they were effective for testlng all parts of the program

5.5 — We used them but felt that they were only appropriate for certaln parts of the
program

8.5 — We used them occaslonally, but they were not really 2 major contributing factor
to the development

0 — Dld not really use them at all

feellng of effectlve use of
off-llne review techniques: both groups
(team ‘e’ does not appear because of lack of response)

J

H

E I G

D F A C B

d c a b
+- ; ~+ t t = t + -
d!d not use . effectlve for
all parts

Mann-Whltney signif. = .065

The histogram In Figure 8 shows that the Cleanroom developers felt they appllied
the off-llne review techniques more effectlvely than did the non-Cleanroom teams. The
non-Cleanroom developers were asked to glve a relatlve breakdown of the amount of
time spent applylng testing and verification technlques. Thelr aggregate response was
39% off-llne review, 529% functional testlng, and 9% structural testlng. From thils
breakdown, we observe that the non-Cleanroom teams primarlly relled on functlonal

testlng to prepare thelr systems for Independent testing. Slince the Cleanroom teams

7 There are half-responses because an Indlvidual checked both the second and third
cholces. The responses total to 28, not 30, because two separate teams lost a member
late In the project. (See Distlnctlon Among Teams).

17

were unable to rely on testing methods, they may have (felt they had) applied the off-

line review technlques more effectively.

Since the role of the computer Is more controilled when using Cleanroom, one would
expect a difference In omn-llne activity between the two groups. Flgure 7 displays the
amount of connect tlme that each of the teams cumulatively used. A comparison of the
cpu-time used by the teams was less statistically significant (MW = .110). Nelther of
these measures of on-llne activity related to how effectlvely a team felt they had used
the off-llne technlques when elther all teams or just Cleanroom teams were considered.
Although non-Cleanroom team 'd’ did a lot of on-llne testing and non-Cleanroom team
‘e’ did little, both teams performed poorly In the measures of operatlonal product qual-
1ty discussed earller. The operating system of the development machlne captured these

system usage statistics. Note that the tlme the Independent party spent testing lIs

Included. ® These observatlons exhlblt that Cleanroom developers spent less time on-line
and used fewer computer resources. These results emplrically support the reduced role

of the computer in Cleanroom development.

Flgure 7. Connect tlme In hours durlng project development. °

—— -
—

Mann-Whitney signlf. = .089

8 When the time the Independent tester spent Is not Included, the slgnificance levels
for the non-parametric statlstlics do not change.

18

Schedule slippage contlnues to be a problem In software development. It would be
Interesting to see whether the Cleanroom teams demonstrated any more disclpline by
malntalning thelr orlglnal schedules. All of the teams from both groups planned four
releases of thelr evolving system, except for team 'G' which planned five. Recall that at
each dellvery an Independent party would operationally test the functions currently
avallable lﬁ the system, according to the team's Implementation plan. In Flgure 8, we
observe that all the teams using Cleanroom kept to thelr original schedules by making
all planned dellverles; only two non-Cleanroom teams made all thelr scheduled

dellverles.

l Flgure 8. Number of system releases.

J
I
H
F
E
D
C
B
A G
e c
d a b
-+ + s -+ : -+ +
0 1 2 3 4 5 8

Mann-Whitney slgnif. = .008

® Non-Cleanrocom team ‘e’ entered a substantlal portlon of Its system on a remote
machlne, only using the Univac computer malnly for compllation and executlon. (See
Distinctlon Among Teams.)

19

4.2.1. Summary of the Effect on the Development Process

Summarizing the effect on the development process, Cleanroom developers 1) felt
they applled off-line review technlques more effectlvely, while non-Cleanroom teams
focused on functlonal testing; 2) spent less time on-llne and used fewer computer

resources; and 3) made all thelr scheduled deltveries.

4.3. Characterization of the Effect on the Developers

The first question posed In thls goal area !s whether the indlviduals using Clean-
room missed the satlsfaction of executlng thelr own programs. Flgure 9 presents the
responses to a questlon Included In the postdevelopment attltude survey on thls lssue.
As mlght be expected, almost all the Indlviduals missed some aspect of program execu-
tlon. As might not be expected, however, thils mlssing of program executlon had no
relation to elther the product quallty measures mentioned earller or the teams’ profes-
slonal or testlng experlence. Also, mlsélng program eXecution dld not increase rwlt,h

respect to program size (see Flgure 10).

the satisfactlion of e*cecur,lnv your own programs?’’.

Flgure 9. Breakdown of responses to the attltude survey questlon, “'Did you mlss

13 Yes, I missed the satlsractlon of program executlon.
11 — I somewhat missed the satisfaction of program execution.
4 — No, I did not miss the satlsfaction of program execution.

‘ Flgure 10. Relatlonshlp of program size vs. missing program executlon.

10.0 4+— } - - -+
| |
| I
Yes ~ | E !
l |
+ -+
| DIC g
l I |
| l
Missed | G B |
Program + +
Executlion | |
| |
Some - | |
I I
+ F A +
| |
I H |
| l
l l
4.0 + e -t um —+
921.0 2001.0
No (3.0) Source Llnes
Spearman correlations: —.85 (signif. = .002) with source lines; —.70 (signlf. == .03) wlith
number separately compllable modules; —.57 (signif. = .09) with number pro-
cedures and functlions.

Flgure 11 dlsplays the replles of the developers when they were asked how thelr

deslgn and codlng style was affected by not belng able to test and debug.

At first it

would seem surprising that more people did not modlfy thelr development style when

21

applylng the technlques of Cleanroom. Several persons mentioned, however, that they
already utlllzed some of the ldeas In Cleanroom. Keeping a simple design supports rea-
dabllity of the product and facllitates the processes of modificatlon and verification.
Although some of the objJective product measures presented earller showed differénces In
development style, these subjectlve ones are Interesting and lend !nsight Into aétual pro-

grammer behavlor.

Flgure 11.
Breakdown of responses to the attitude survey questlon, ‘‘How was your design

and codlng stvle affected bg not belng able to test and debu_vg?".

2 - Yes, my style was substantlally revised.
15 — I modifled some of my tendenclies.
11 - It did not affect my style at all.

Frequently mentloned responses include
— kept design simple, attempted nothing fancy
-~ kept readability of code 1n mind -
- already was a user of off-llne review technlques
— very careful scrutiny of code for potentlal mistakes
— prepared for a larger range of Inputs

One Indlcator of the lmpression that somethlng new leaves on people Is whether
they would do It agaln. Flgure 12 presents the responses of the lndividuals when they
were asked whether they would choose to use Cleanroom as elther a software develop-
ment manager Oor as a programmer. Even though these responses were gathered
(Immedlately) after course completion, subjects desiring to ‘‘please the Instructor’” may
have responded favorably to this type of question regardless of thelr true feelings. Prac-
tically everyone Indicated a wlllingness to apply the approach agaln. It !s interesting to
note that a greater number of persons In a managerlal role would choose to always use

1t. Of the persons that ranked the reuse of Cleanroom falrly low In each category, four

of the flve were the same peobple. Of the six people that ranked reuse low, four were
from less successful projects (one from team 'A’, one from team 'E* and two from team
'T'), but the other two came from reasonably successful developments (one from team 'C
and one from team 'J’). The particular individuals on teams ‘B, ', and T rated the

reuse falrly low in both categories.

Figure 12.
Breakdown of responses to the attitude survey question, “*“Would you usé

Cleanroom a ain?’’. (One person did not respond to thls question.)

As a software development manager?
& — Yes, at all times
14 — Yes, but only for certaln projects
5 — Not at all

As a programmer?
4 — Yes, for all projects
18 —7Yes, but not all the tlme
5 — Only If Thad to
0 — 1 would leave If I had to

4.3.1. Summary of the Effect on the Developers
In summary of the effect on the developers, most Cleanroom developers 1) modified
in part thelr development style, 2) missed program execution, and 3) indlicated they

would use the approach agaln.

4.4. Dist?nction Among Teams

In spite of efforts to balance the teams according to various tactors (see Case Study
Desecription), a few differencés among the teams were apparent. Two separate Clean-~
room teams, 'H’ and 'I,” each lost a member late in the project. Thus at project comple-

~

tlon, there were elght three-person and two two-person Cleanroom teams. Recall that

23

team "H' performed quite well according to requirement conformance and testing results,
while team ‘T’ dld poorly. Also, the second group of subjects dld not divide evenly Into
three-person teams. Since one of those Individuals had extenslve professlonal experience,
non-Cleanroom team ‘e’ consisted of that one highly experlenced person. Thus at pro-
Ject completlon, there were four three-person and one one-person non-Cleanroom teams.
Although team ‘e’ wrote over 1300 source lines, thls highly experienced person did not
do as well as the Qﬁher teams In some respects. This Is conslistent with another smidy In
which teams a.pplyuig a "dlsciplined methodology”” in development outperformed Indivi-
duals [Basill & Relter 81]; Appendlx A contalns the significance levels for the above
results when team 'e,” when teams 'H’ and 'I,’ and when teams 'e,"” '"H,” and ‘T’ are
removed from the anal&sls. Removing teams 'H' and ‘I’ has little effect on the
significance levels, ~while the removal of team ‘e’ causes a decrease In all of the
significance levels except for executable statements, software sclence effort, cyclomatlc

complexity, syntactic complexity, connect-time, and cpu-time.

5. Conclusions

This paper describes ‘‘Cleanroom" software development — an approach Intended to
produce hlghly rellable software by Integrating formal methods for specification and
deslgn, complete off-llne developmenn, and statlstlcally based testing. The goal struc- -
ture, experlment'a.l approach, data analysls, and concluslons are presented for a
‘repllcated-project study examlining the Cleanroom approach. Thls Is the first Investiga-
t;lor_x known to the authors that applled Cleanroom and characterlzed Its effect relative

to a more traditlonal development approach.

24

The data analysis presented and the testimony provided by the developers suggest
that the major results of thls study are 1) most developers were able to apply the tech-
niques of Cleanroom effectively; 2) the Cleanroom teams’ products met system requlre-
ments more completely and had a higher percent.a.ge of successful test cases; 3) the
source code developed using Cleanroom had more comments and less dense complex!ity;
4) the use of Cleanroom successfully modified aspects of development style; and 5) most

Cleanroom developers indicated they would use the approach agaln.

It seems that the ldeas In Cleanroom help attaln the goals of producing high quallty
software and lncreasing the discipline in the software development process. The com-
plete separation of development from testing appears Lo cause 2 modification In the
developers’ behavior, resulting in inereased process control and ln more effectlve use of
formal methods for software speclfication, design, off-line review, and verification. It
seems that system modlﬂcanlon and malntenance would be more easlly done on a pro-
duct developed in the Cleanroom method, because of the product’s thoroughly concelved
design and higher readabllity. Thus, achleving high requlrement conformance and high
operatlional rellability coupled with low malntenance costs would help reduce overall

costs, satlsfy the user community, and support a long product lifetime.

This emplrical study s Intended to advance the understandlhg of the relatlonshlp
between Introducing discipllne Into the development process (as In Cleanrcom) and
several aspects of product quallty: conformance with requlrements, high operational rell-
ability, and easily modifiable source code. The results glven were calculated from a set
of teams applying Cleanrcom development on a relatively small project — the dlrect

extrapolation of the findlngs to other projects and development environments 1s not

25

Implled. Valuable Inslghts, however, have been galned from the analysis.

6. Acknowledgement

The authors are grateful to D. H. Hutchens and R. W. Relter for the use of thelr

analysls program !n this study.

7. Appendix A.

Flgure 13 presents the measure averages and the significance levels for the above

comparisons when team 'e,” when teams 'H' and I, and when teams ’‘e,’ 'H,” and 'T" are

removed. The significance levels for the Mann-Whitney statlstics reported are the pro-

babllity of Type I error In an one-talled test.

Figure 13. Summary of measure averages and significance levels.

Measure Average Mann-Whitney significance levels
Cleanroom | Non-Cleanroom All Without Without Without
Teams Teams Teams Team e Teams H.I | Teams ¢ H.I

Source lines 1320.0 1491.2 .196 .240 .183 .198
Executable stmts 604.1 625.4 .500 .286 442 .367
#Procedures &

functions 36.5 40.0 .357 .500 330 .500
%Implementation

completeness 82.5 60.0 .088 97 .093 .196
Z%Successful tests (w/o

duplicate failures) 92.5 80.8 .055 .128 053 116
%%Successful tests (w/

duplicate failures) 78.7 59.2 .134 .285 151 .304
#Comments 194.9 122 .089 .102 .190 .198
Syntactic complexity/

executable stmts 1.5 1.6 079 179 .082 .175
Software Science E 6728.6e3 7355.4e3 451 .240 442 .248
Cyclomatic complexity 196.8 212.2 .250 .198 255 .248
Syntactic complexity 917.5 1017.0 .500 .286 .500 .305
#Global data items 37.6 24.2 .071 .129 053 117
% Assignment stmts 34.2 26.6 .056 .129 .040 .087
Off-line effectiveness 3.2 2.5 .065 .065 .098 .098
Connect-time (hr.) 41.0 71.3 .089 .012 121 .021
Cpu-time (min.) 71.7 136.1 110 .017 072 .009
#Deliveries 4.1 2.6 .006 .015 .010 022

26

8. References .

(Baker 72)
F. T. Baker, Chlef Programmer Team Management of Production Program-
ming, IBM Systems J. 11, 1, pp. 131-149, 1972.

[Baker 81]
F. T. Baker, Chlef Programmer Teams, pp. 249-254 In Tutorial on Struc-
tured Programming: Integrated Practices, ed. V. R. Basill and F. T. Baker,
IEEE, 1981.

(Baslll & Turner 78]
V. R. Baslll and A. J. Turner, SIMPL-T: A Structured Programming
Language, Paladin House Publishers, Geneva, 1L, 1978.

[Baslll & Relter 81]
V. R. Baslll and R. W. Relter, A Controlled Experiment Quantitatively
Comparing Software Development Approaches, IEEE Trans. Software Engr.
SE-7, May 1981.

[Basllt & Hutchens 83]
V. R. Baslil and D. H. Hutchens, An Emplrical Study of a Syntactic Metrie
Famlly, Trans. Software Engr. SE-9, 8, pp. 6684-872, Nov. 1983.

[Basill & Selby 84]
V. R. Baslll and R. W. Seiby, Jr., Data Collection and Analysis In Software
Research and Management, Proceedings of the American Statistical Associa-
tion and Biometric Society Joint Statistical Meetings, Philadelphla, PA, Au-
gust 13-18, 1984. -

[Baslll & Welss 84] :
V. R. Bastll and D. M. Welss, A Methodology for Collecting Valld Software
Englneerlng Data*, Trans. Software Engr. SE-10, 6, pp. 728-738, Nov. 1984,

[Currit 83] .
P. A. Currit, Cleanroom Certification Model, Proc. Eight Ann. Software
Engr. Workshop, NASA/GSFC, Greenbelt, MD, Nov. 1983.

[Curtls 83]
B. Curtls, Cognitlve Sclence of Programming, Sizth Minnowbrook Workshop
on Software Performance Evaluation, Blue Mountain Lake, NY, July 18-22,
1983.

[Duran & Ntafos 81] '
J. W. Duran and S. Ntafos, A Report on-Random Testing*, Proc. Fifth Int.
Conf. Software Engr., San Dlego, CA, pp. 179-183, March 9-12, 1981.

[Dyer & Mllls 82]
M. Dyer and H. D. Mllis, Developing Electronlc Systems with Certifiable Re-
llablllsy, Proc. NATO Conf., Summer, 1982.

[Dyer 82]
M. Dyer, Cleanroom Software Development Method, IBM Federal Systems
Diviston, Bethesda, MD, October 14, 1082.

[Dyer 83]
M. Dyer, Software Valldation In the Cleanroom Development Method, IBM-
FSD Tech. Rep. 86.0003, August 19, 1983.

[Fagan 78]

M. E. Fagan, Design and Code Inspections to Reduce Errors In Program De-
velopment, IBM Sys. J. 15, 3, pp. 182-211, 1978.

[Ferrentino & Mllls 77] :
A. B. Ferrentlno and H. D. Mills, State Machines and Thelr Semantles o
Software Englneering, Proc. IEEE COMPSA C, 1977.

[Goel 83]
A. L. Goel, A Guldebook for Software Rellabllity Assessment, Dept. Industri-

al Engr. and Operations Research, Syracuse Unlv., New York, Tech. Rep.
83-11, Aprll 1983. - -

[Halstead 77]
M. H. Halstead, Elements of Software Science, North Holland, New York,

1977.

[Hoare 89| :]
C. A. R. Hoare, An Axlomatic Basls for Computer Programming, Communi-
cations of the ACM .12, 10, pp. 5768-383, Oct. 1969.

[Howden 78}

W. E. Howden, Rellablllty of the Path Analysis Testing Strategy, [EEE
Trans. Software Engr. SE-2, 3, Sept. 1978.

[Linger, Mllls & Witt 79]
R. C. Linger, H. D. Mllls, and B. I. Witt, Structured Programming: Theory
and Practice, Addison-Wesley, Reading, MA, 1979.

[McCabe 78])
T. J. McCabe, A Complex!ity Measure, [EEE Trans. Software Engr. SE-2, 4,

PDp. 308-320, Dec. 1978.

(Mills 72a]
H. D. Mllls, Chlef Programmer Teams: Principles and Procedures, IBM
Corp., Galthersburg, MD, Rep. FSC 71-68012, 1972.

[Mills 72b]
H. D. Mllls, Mathematical Foundatlons for Structural Programming, IBM
Report FSL 72-8021, 1972.

[Musa 73]
J. D. Musa, A Theory of Software Rellablllty and Its Application, [EEE
Trans. Software Engr. SE-1, 3, pp. 312-327, 1975.

[Myers 78]
G. J. Myers, Software Reliability: Principles & Practices, John Wiley & Sons,
New York, 1978.

[Parnas 72] .
D. L. Parnas, On the Crlteria to be Used In Decomposing Systems Into
Modules, Communications of the ACM 15, 12, pDp. 1053-1058, 1972.

[Selby 84]
R. W. Selby, Jr., A Quantitative Approach for Evaluatlng Software Techno-
logles; Dept. Com. Scl., Unlv. Maryland, College Park, Ph. D. Dissertation,
1984,

[Shankar 82] :
K. S. Shankar, A Functlonal Approach to Module Verlflcation, JEEE Trans.
Software Engr. SE-8, 2, March 1982.

[Thayer, Lipow & Nelson 78]

R. A. Thayer, M. Lipow, and E. C. Nelson, Software Reliability, No-rth-
Holland, Amsterdam, 1978.

29

