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The Drosophila insulin receptor (DInR) regulates a diverse array of biological 

processes, including growth, axon guidance, and sugar homeostasis. Growth 

regulation by DInR is mediated by the adaptor protein Chico, the Drosophila 

homolog of vertebrate Insulin-Receptor-Substrate (IRS) proteins. In contrast, DInR 

regulation of photoreceptor axon guidance in the developing visual system is 

mediated by the SH2/SH3 domain adaptor protein Dreadlocks (Dock). In vitro studies 

by others suggested that different parts of DInR interact with different adaptor 

proteins: five NPXY motifs, one situated in the juxtamembrane region and four in the 

signaling C-terminal tail (C-tail), were important for interaction with Chico. Yeast 

two-hybrid assays suggested that a different region in the DInR C-tail interacts with 

Dock. To test whether these sites are required for growth or axon guidance in the 

animal, in vivo add-back type experiments were conducted. A panel of DInR 



  

proteins, in which the putative Chico and Dock interaction sites had been mutated 

individually or in combination, were tested for their ability to rescue viability, 

growth, and axon guidance defects of dinr mutant flies. Sites important for viability 

were identified. In addition, mutation of all five NPXY motifs drastically decreased 

growth in both male and female adult flies, but did not affect photoreceptor axon 

guidance, showing that different binding sites on DInR control growth and axon 

guidance. Unexpectedly, mutation of both putative Dock binding sites, either 

individually or in combination, did not lead to defects in photoreceptor axon 

guidance. Finally, none of the seven putative ligands for DInR, the Drosophila 

insulin-like peptides (dilps), was required for directing photoreceptor axon guidance, 

although we found that dilp1, -2, -3, -4, and/or -5 are required for controlling whole 

animal allometry. Importantly, we showed that the developmental delay exhibited by 

dinr mutants is not a factor underlying their photoreceptor axon guidance defects. 

Together, these studies confirmed the role of Chico-interacting regions of DInR in 

regulation of growth in vivo. They demonstrated that DInR is necessary to control 

axon guidance in vivo and showed that this role is not simply a function of 

developmental timing. However, they leave open the mechanisms activating DInR in 

regulating axon targeting.  
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Chapter 1: Introduction 

 

1.1  Insulin receptor structure and signaling in mammals and Drosophila 

The mammalian insulin receptor (IR) is a receptor tyrosine kinase composed 

of two extracellular α subunits (135 kDa each) and two transmembrane β subunits 

(95 kDa each). This tetramer is a constitutively disulfide-linked glycoprotein. The β 

subunits possess tyrosine kinase activity that is repressed by the α subunits. Ligand-

binding to the α subunits leads to a conformational change that relieves the repression 

of β subunit tyrosine kinase activity. The β subunits then autophosphorylate, causing 

another conformational change, which produces an additional increase in kinase 

activity (reviewed in Kohanski, 2002; Saltiel and Kahn, 2001). Tyrosine residues of 

several docking proteins, such as the four Insulin-Receptor Substrate (IRS) proteins, 

are phosphorylated by the activated insulin receptor. The phosphorylated tyrosines on 

IRS serve as binding sites for SH2 domain-containing proteins. Thus, the docking 

proteins can recruit SH2 domain-containing adaptor proteins and enzymes, such as 

the phosphatidylinositol 3-kinase (PI3K) regulatory subunit p85. The overall effect of 

insulin receptor activation is the launching of multiple downstream signaling 

pathways that control diverse processes such as cell growth, cell proliferation, 

glucose homeostasis, fertility, and aging (reviewed in Dickson, 2003; Saltiel and 

Kahn, 2001; White, 2006)(Figure 1). 

 The Drosophila insulin receptor (dinr) gene was isolated by screening a 

Drosophila genomic library with a human insulin receptor fragment containing 

sequences encoding the insulin binding and kinase domains (Petruzzelli et al., 1986). 
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Figure 1. Multiple signaling pathways lie downstream of the 

mammalian insulin receptor. The mammalian IR uses different 

downstream pathways to control cellular processes such as growth and 

glucose uptake. Many of the downstream pathways overlap with each 

other. Pathway diagram reproduced courtesy of Cell Signaling 

Technology, Inc. (www.cellsignal.com). 
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DInR autophosphorylated in cell culture in response to porcine insulin (Fernandez-

Almonacid and Rosen, 1987). Unlike the mammalian insulin receptor, which binds 

insulin with high affinity and IGF1 and IGF2 with low affinity (reviewed in 

Kohanski, 2002), DInR was activated only by insulin (Fernandez-Almonacid and 

Rosen, 1987). Structurally, DInR is considerably similar to human IR (26.3% overall 

identity, as calculated using the MatGAT program (Campanella et al., 2003)), 

particularly in the kinase domain, which is 65% identical (Fernandez et al., 1995). 

However, the DInR β subunit contains a 60 kDa C-terminal extension (C-tail), not 

present in the mammalian insulin receptor, that harbors potential SH2 domain binding 

sites proposed to confer IRS1-like function (Fernandez et al., 1995; Ruan et al., 1995; 

reviewed in Yamaguchi et al., 1995). Our lab found that Dock, the Drosophila 

homolog of mammalian Nck, binds directly to the C-tail of DInR (Song et al., 

2003)(Figure 2 and 3), while mammalian Nck is recruited to IR via an interaction 

with IRS1 rather than IR itself (Lee et al., 1993)(Figure 1). Drosophila Chico, a 

homolog of mammalian IRS1-4, is thought to act downstream of DInR to regulate 

growth through the PI3K-Akt/PKB signaling pathway (Bohni et al., 1999; reviewed 

in Dickson, 2003)(Figure 2). Since there is only one IRS homolog in Drosophila, 

compared to the four main IRS family members in mammals, and only one Nck 

homolog in Drosophila, compared to the two Nck homologs in humans, it appears 

that downstream IR signaling is less complex in Drosophila. Thus, untangling the 

signaling mechanisms used by the insulin receptor to control its different downstream 

functions would be expected to be more tractable using the Drosophila model system. 
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Figure 2. Model for DInR control of growth and photoreceptor 

axon guidance. We and others proposed that DInR regulates diverse 

biological functions via interaction with different adaptor proteins that 

initiate different downstream pathways. Presumably upon binding its 

ligand(s) (blue circle), DInR (orange tetramer) autophosphorylates and 

recruits adaptor proteins. Chico connects DInR to the PI3K-Akt 

signaling pathway for growth control, whereas Dock connects DInR to 

the Pak signaling pathway for photoreceptor axon guidance control. 

Figure was modified from Dickson, 2003. 
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Figure 3. A yeast two-hybrid screen for proteins that interact with 

the intracellular domain of DInR identified Dock. DInR and Dock 

interacted in a yeast two-hybrid screen. This interaction depended on 

the C-tail of DInR since deletion of the C-tail (ΔCT) abolished  

binding with Dock. DInR and Dock binding also depends on the 

autophosphorylation of DInR since a kinase-dead mutant DInR protein 

(K1385A) failed to bind Dock. The last four bars in the graph are 

negative controls. The insets show Western blots of extracts from 

from Song et al., 2003 
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yeast expressing the DInR intracellular domain (WT) or the kinase-

dead DInR (K-A). The left inset was stained with an anti-DInR 

antibody, showing that both wild type and kinase-dead receptors were 

expressed in yeast. The right inset was stained with a phosphotyrosine 

antibody, confirming the lack of autophosphorylation by kinase-dead 

DInR in the yeast system. Figure from Song et al., 2003. 
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1.2  Insulin and the Drosophila insulin-like peptides 

 Mammalian preproinsulin is composed of four domains: the signal peptide, 

the B-chain, the C-chain, and the A-chain, which are transcribed in this order. 

Cleavage of the signal peptide from preproinsulin inside the lumen of the rough 

endoplasmic reticulum yields proinsulin. Proinsulin is then converted within 

acidifying secretory granules into C-peptide and insulin, which consists of the          

B-chain and the A-chain joined together by disulfide bonds. Three enzymes are       

responsible for this conversion: prohormone convertase 1/3 (PC1/3), prohormone 

convertase 2 (PC2), and carboxypeptidase H/E. Each of these enzymes has multiple 

substrates besides insulin (Bailyes et al., 1992; Bennett et al., 1992; reviewed in 

Leiter, 1997; Shoelson and Halban, 1994; Steiner, 1998). The Drosophila homolog of 

PC2, amontillado, has been identified (Siekhaus and Fuller, 1999). 

 In the 1970s, documentation of the presence of insulin-like substances in 

invertebrates such as Drosophila began appearing in the literature (reviewed in 

LeRoith et al., 1981). Even more surprisingly, insulin-like material was also found in 

unicellular organisms, such as Tetrahymena pyriformis, a ciliated protozoan, and 

Neurospora crassa, a fungus, thus indicating the evolutionarily ancient origins of the 

molecule. Le Roith et al. (1981) identified insulin-like material in extracts from 

Drosophila heads and bodies using both an insulin bioassay and an insulin 

radioimmunoassay. The insulin radioimmunoassay used was considered to be a 

stringent test of a substance’s structural similarity to insulin, since the A-chain and 

the B-chain must be joined by disulfide bridges in order to yield a positive result in 

the assay (reviewed in Le Roith et al., 1981).  
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The completion of the Drosophila melanogaster genome sequence in 2000 

(Adams et al., 2000) facilitated the search for insulin-like genes in this organism. 

Seven Drosophila insulin-like peptides (dilps) were identified in the Drosophila 

genome by computational searches conducted by Brogiolo et al. (2001). The dilp1, -2, 

-3, -4, and -5 genes are located in a cluster on the third chromosome. The dilp6 and 

dilp7 genes are present at different loci on the X chromosome. The criteria used for 

the initial computational search was the conserved spacing of the four cysteine 

residues found in the human insulin A-chain. This led to the identification of dilp2. 

The predicted Drosophila A-chain of dilp2 was then used to identify the six other 

dilps. There are two major reasons why the dilps are thought to encode insulin 

molecules, not insulin-like growth factors (IGFs). First, the predicted mature DILP 

peptides share a higher percentage of amino acid identity with mature human insulin 

than with mature IGF1 or IGF2. For example, the predicted mature DILP2 peptide 

shares an amino acid identity of 35% with mature human insulin, 26% with mature 

human IGF1, and 28% with mature human IGF2. Second, although the IGFs also 

contain four cysteine residues in their A-chains, they lack the proteolytic cleavage 

sites between the A-, B-, and C-chains, which are present in human insulin and in the 

predicted structures of DILP1, -2, -3, -4, -5, and -7. The predicted structure of DILP6 

lacks the proteolytic cleavage site between the B-chain and C-chain, suggesting it 

may be more IGF-like (Brogiolo et al., 2001).  

Human insulin is best known for its role in glucose homeostasis and for its  

absence in patients suffering from type 1 diabetes (reviewed in Gale, 2001; Pessin 

and Saltiel, 2000). The islets of Langerhans in the pancreas contain β-cells that 
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produce insulin (reviewed in Ramiya et al., 2000). Clusters of cells in the Drosophila 

brain called the median neurosecretory cells (m-NSCs) or insulin-producing cells 

(IPCs) express dilp1, -2, -3, and -5 mRNA (Brogiolo et al., 2001; Rulifson et al., 

2002). The m-NSCs are thought to be analogous to the vertebrate β-cells because 

increased levels of carbohydrates in the larval hemolymph were observed when the 

m-NSCs were ablated (Rulifson et al., 2002), and because expression of some dilps, 

dilp3 and dilp5, in these cells was nutrient-responsive (Ikeya et al., 2002).  

In situ hybridizations showed that the seven dilp genes are expressed in 

various patterns, sometimes overlapping, in embryos and larvae (Brogiolo et al., 

2001). Some, as mentioned above, are expressed in brain IPCs, while others are 

expressed in the embryonic mesoderm (dilp4 at high levels earlier in development; 

dilp2 at low levels later in development), embryonic anterior midgut rudiment (dilp4), 

embryonic midgut (dilp2 at high levels; dilp7 at moderate levels), larval salivary 

glands (dilp2), larval midgut (dilp4), larval gut (dilp5 at moderate levels; dilp6 at low 

levels), and ten specific cells in the larval ventral nerve cord (dilp7)(Brogiolo et al., 

2001). 

Despite these RNA expression profiles, the tissue targets and sites of action of 

each DILP protein may be different than the sites of RNA expression, since these 

peptides are expected to be secreted. To our knowledge, the localization of peptides 

in vivo has only been examined thus far for DILP2, DILP3, DILP4, and DILP5,  

using peptide-specific antibodies. In larvae, DILP2 and DILP5 are found in the cell 

bodies and axonal projections of the brain IPCs, and their axonal termini on the aorta 

and corpora cardiaca (Geminard et al., 2009; Rulifson et al., 2002). Another place 
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where DILP2 has been observed in larvae is in the surface glial cells in the thoracic 

ventral nerve cord (Chell and Brand, 2010). In adults, DILP2, DILP3, and DILP5 

have been observed in the brain IPCs (Gronke et al., 2010). DILP4 has been observed 

in a widespread pattern in neurons of the adult brain (Gronke et al., 2010). 

 

1.3  Roles of insulin signaling in viability, growth, and physiology 

DInR has been shown to be required for viability (Fernandez et al., 1995), 

growth (Chen et al., 1996; Fernandez et al., 1995), female fertility (Chen et al., 1996), 

and normal lifespan (Tatar et al., 2001). DInR also controls developmental timing, 

since certain viable heteroallelic combinations of dinr alleles gave rise to animals that 

were severely developmentally delayed (Chen et al., 1996). The dilps that control the 

functions stated above for DInR have recently been identified. Viability relies on 

dilp2, -3, -5, and -6, since loss of these dilps together caused complete lethality 

(Gronke et al., 2010). Larval growth appears to be mainly controlled by dilp2, -3, and 

-5 (Gronke et al., 2010), whereas pupal growth is controlled by dilp6 (Slaidina et al., 

2009). Both female fertility and developmental timing seem to depend on dilp2, -3,    

-5, and -6 (Gronke et al., 2010). The loss of dilp2 led to an increased lifespan; thus it 

is required for normal lifespan (Gronke et al., 2010). 

 Insulin signaling has been shown to regulate sugar levels in Drosophila. In 

many insects, trehalose, a disaccharide made up of two glucose molecules, is the main 

circulating sugar in the hemolymph (reviewed in Rulifson et al., 2002); hemolymph is 

the insect equivalent to blood. Rulifson et al. (2002) saw an increase in combined 

trehalose and glucose levels in larval hemolymph when they ablated the insulin-
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producing cells (IPCs) in the brain by expressing Reaper, a cell death-promoting 

factor, under the control of the dilp2 promoter. These results were consistent with 

dilp1, -2, -3, and/or -5, the dilps that are expressed in the IPCs, as being involved in 

regulating sugar levels in larval hemolymph; however, the results were not conclusive 

because the IPCs likely produce other candidate hormones for sugar homeostasis 

besides the dilps. Our group showed that combined trehalose and glucose levels in 

larval and adult male hemolymph are abnormally elevated in a mutant lacking dilp1,  

-2, -3, -4, and -5 (Zhang et al., 2009). Broughton et al. (2008) knocked down dilp2 

levels using dilp2 RNAi driven by a portion of the dilp2 promoter, but saw no effect 

on the levels of trehalose and glucose in the hemolymph of fasting larvae and adults. 

This result does not necessarily rule out the involvement of dilp2 in controlling 

hemolymph sugar levels since dilp2 might be acting redundantly with another dilp. 

Thus, taken together with the results of Zhang et al. (2009), it is still not known 

whether all or a subset of the dilp1, -2, -3, -4, and -5 genes are required for regulating 

hemolymph sugar levels.  

For adults in which dilp2 RNAi was driven by part of the dilp2 promoter, 

Broughton et al. (2008) did observe an increase in the levels of whole body trehalose, 

which is thought to reflect trehalose that has been stored. More recently, single and 

combination null mutants of the dilp genes were generated (Gronke et al., 2010). 

Adult dilp2 mutant flies showed an increase in stored trehalose levels (Gronke et al., 

2010), thus confirming the dilp2 RNAi results obtained by Broughton et al. (2008). 

Adult dilp3 and dilp5 single mutants had normal stored trehalose levels (Gronke et 

al., 2010); these mutants in particular were tested because it was previously observed 
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that the knockdown of dilp2 by RNAi led to a compensatory increase in dilp3 and 

dilp5 mRNA levels (Broughton et al, 2008). Other dilp mutants were not tested for 

trehalose storage (Gronke et al., 2010). Another component of the insulin signaling 

pathway, the insulin receptor, has also been implicated in controlling trehalose 

storage. Belgacem and Martin (2006) observed abnormally high adult whole body 

trehalose levels in the dinr mutant heterozygotes and transheterozygotes that they 

examined.  

Since DInR is pleiotropic, the interplay between the various functions of this 

receptor is an interesting problem. Evidence suggests that the use of one receptor for 

different downstream functions may be a mechanism for synchronizing some of these 

functions. Using a mutant clone approach, Bateman and McNeill (2004) showed that 

DInR acts through PI3K and Tor to control the timing of differentiation of neurons in 

the eye and leg imaginal discs. Since DInR is also involved in controlling growth, it 

can thus couple the pace of differentiation to that of growth, in order to achieve 

proper tissue patterning. In contrast, other evidence indicates that DInR can control 

some of its functions in an uncoupled manner. For example, the control of 

photoreceptor axon guidance by DInR occurs through the downstream Dock signaling 

pathway, and appears to be independent of the control of growth by DInR through the 

downstream Chico signaling pathway, since chico mutants did not exhibit the 

photoreceptor axon guidance defects seen in dinr mutants (Song et al., 2003). 

 

1.4  Downstream of insulin signaling: adaptor proteins 

 Adaptor proteins act as linkers between different parts of signaling pathways,  
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such as activated cell-surface receptors and downstream effector proteins (reviewed 

in Pawson, 2007). The structural composition of adaptor proteins reflects their 

narrowly defined role; adaptor proteins are solely made up of interaction domains and 

motifs. 

 Docking proteins are adaptor proteins that contain docking sites for other 

adaptor proteins; they serve as a means of signal amplification for receptors 

(reviewed in Pawson and Scott, 1997). Docking proteins usually consist of 1) an N-

terminal membrane-targeting element, which can be a pleckstrin homology (PH) 

domain or a myristylation site, 2) a phosphotyrosine binding (PTB) domain that 

interacts with the receptor’s NPXY autophosphorylation site, and 3) a series of 

tyrosine phosphorylation sites that become phosphorylated by the activated receptor 

and that then allow recruitment of effector proteins through their SH2 domains 

(reviewed in Brummer et al., 2010; Lemmon and Schlessinger, 2010; Pawson and 

Scott, 1997). 

 The insulin receptor substrate (IRS) family contains primarily four members, 

IRS1-4, which act as docking proteins for the insulin and IGF1 receptors (reviewed in 

Pawson and Scott, 1997 and Lemmon and Schlessinger, 2010). IRS5 and IRS6 are 

also sometimes considered to be part of the IRS family, but they are more distantly 

related to IRS1-4, their C-termini are truncated in comparison, and their 

phosphorylation in response to insulin is weaker (Brummer et al., 2010). IRS1, the 

prototypical and most well-characterized member of the IRS family, contains over 

twenty potential tyrosine phosphorylation sites; nine of these sites are located within 

YXXM motifs that are the preferred binding sites for SH2 domains of the PI3K p85 
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subunit (Brummer et al., 2010). The activation of PI3K is the best-studied pathway 

downstream of IRS1. Chico is the Drosophila homolog of the mammalian IRS 

proteins (Bohni et al., 1999). It is not known whether Chico regulates circulating 

sugar levels in Drosophila, although the IRS proteins are known to regulate glucose 

levels in mammals. Chico will be discussed in more detail in Chapter 6. 

 The Nck family of adaptor proteins contains two members in humans and 

mice (reviewed in Buday et al., 2002; Fawcett et al., 2007). Nck is composed 

exclusively of one SH2 domain and three SH3 domains. Nck often links to effector 

molecules that are involved in regulating the actin cytoskeleton (reviewed in Li et al., 

2001). It was recently found in mice that Nck is involved in axon guidance and in 

organizing neuronal circuits that are used for limb movement (Fawcett et al., 2007). 

The Drosophila homolog of Nck is Dreadlocks (Dock)(Garrity et al., 1996), which 

will be discussed further in Chapter 6. 

 SH2B proteins are adaptor proteins that contain a PH domain, an SH2 domain, 

multiple tyrosine and serine/threonine phosphorylation sites, an N-terminal proline- 

rich region, and a C-terminal c-Cbl recognition motif (reviewed in Slack et al., 2010). 

Mammals have 3 SH2B family members, which have roles in glucose homeostasis, 

energy metabolism, reproduction, and hematopoesis. There is only one SH2B 

homolog, called Lnk, in Drosophila melanogaster. Lnk was shown to act in parallel 

with Chico to control cell growth and proliferation in Drosophila (Werz et al., 2009). 

Lnk was also shown to act downstream of DInR and upstream of PI3K during growth 

control by genetic epistasis experiments (Werz et al., 2009). It is not known whether 

Lnk binds directly to DInR. If it does, it would be interesting to determine whether 
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the SH2 domain of Lnk could potentially mediate direct interaction with DInR 

through one of the ten tyrosine phosphorylation sites in the C-tail of DInR. Lnk has 

also been implicated in the control of lifespan, oxidation resistance, and starvation 

resistance (Slack et al., 2010). 

 

1.5  Photoreceptor axon guidance in Drosophila 

1.5.1  General mechanisms 

Many axons must traverse large distances that can sometimes be greater than a 

thousand times the length of a neuronal cell body (reviewed in Tessier-Lavigne and 

Goodman, 1996). A special structure at the leading edge of an axon is the growth 

cone. The growth cone is responsible for sensing and responding to guidance cues in 

the surrounding environment (reviewed in Huber et al., 2003). There are four basic 

ways by which extracellular cues can influence growth cone behavior: 1) contact 

attraction, 2) contact repulsion, 3) chemoattraction, and 4) chemorepulsion. Contact 

attraction and repulsion are mediated by extracellular matrix and cell surface 

molecules that do not diffuse. Chemoattraction and chemorepulsion are mediated by 

diffusible factors, some of which may form gradients (reviewed in Tessier-Lavigne 

and Goodman, 1996). The ultimate effect of extracellular cues is a change in the 

cytoskeleton of axonal growth cones. This can lead to the advancement or retraction 

of the growth cones (reviewed in Huber et al., 2003). 

 

1.5.2  The Drosophila visual system 

Each adult compound eye of Drosophila melanogaster contains
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approximately 750 ommatidia. Each ommatidium in turn is composed of eight 

different photoreceptors (R cells) that are referred to as R1 to R8 (reviewed in Tayler 

and Garrity, 2003). The differentiation of photoreceptor neurons and the assembly of 

ommatidia occur in the epithelium of the eye imaginal discs of larvae and pupae. 

Photoreceptor differentiation and ommatidial assembly occur in a row-by-row 

fashion, starting from the posterior of each eye imaginal disc during the third-instar 

larval stage and finishing at the anterior of each eye imaginal disc during the early 

pupal stage (reviewed in Kunes et al., 1993)(Figure 4).   

As a row of differentiated photoreceptors forms, the photoreceptors of that 

row send their axons through the ipsilateral optic stalk and then into the ipsilateral 

optic lobe in a roughly synchronized manner (reviewed in Kunes et al., 1993). The 

axons of R1-6 neurons are targeted to the lamina, which is the most superficial optic 

ganglion in the brain (reviewed in Tayler and Garrity, 2003)(Figure 4). Glial cells, not 

lamina neurons, are required for R1-6 targeting (Poeck et al., 2001). The R7 and R8 

axons are targeted to different layers of the medulla, which is an optic ganglion 

underlying the lamina (reviewed in Tayler and Garrity, 2003)(Figure 4). Correct 

targeting is important because each class of photoreceptors carries different visual 

information; R1-6 cells detect green or blue light, R7 cells detect UV light, and R8 

cells detect blue light (reviewed in Mast et al., 2006). 

The layer-specific targeting of axons is just one aspect of the specificity of 

photoreceptor axon targeting. Another is topographic map formation in both the 

medulla and the lamina. The medullar topographic map is easily seen in wild type 

eye-brain complexes (Figure 4). Growth cones terminate in a regular staggered 
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Figure 4. Topographic map of the developing adult visual system.  

Photoreceptor (R-cell) axon targeting from the developing eye 

imaginal disc to the brain was revealed by immunostaining with       

the monoclonal antibody 24B10, which stains differentiated 

photoreceptors and their axons. During development of the adult visual 

system, which starts to occur during the third-instar larval stage, rows 

of photoreceptors differentiate starting from the posterior of the eye 

disc and ending at the anterior. This specimen has approximately 

eleven rows of differentiated photoreceptors. The yellow arrowhead 

indicates where the newest row of differentiated photoreceptors was 
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added. The differentiated photoreceptors send their axons through the 

optic stalk to the optic lobe of the brain. Axons from photoreceptors 

R1-6 terminate in the lamina layer of the optic lobe, forming a smooth-

appearing pattern, whereas axons from R7 and R8 cells terminate in 

the medulla layer, forming a staggered pattern with their growth cones. 

The Bolwig’s organ is part of the larval visual system.  
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pattern in the medulla. Visual input does not play a role in establishing the  

topographic maps since synapses between photoreceptor axons and their targets will 

form later in development. Each synaptic unit in a topographic map will relay 

information about a single point in visual space. Thus, it is important that the relative 

positions of the photoreceptor neuron cell bodies in the eye are maintained by their 

axons at targets in the optic lobe (reviewed in Clandinin and Zipursky, 2002; Lee et 

al., 2001; Prokop and Meinertzhagen, 2006). 

 Much has been learned about the cellular and molecular mechanisms that are 

involved in guiding Drosophila photoreceptor axons to their targets. One key 

molecule involved in axon guidance is Dreadlocks (Dock), which is an SH2/SH3 

adaptor protein with 43% overall identity to the human Nck protein. Dock was 

identified in a screen for mutants with photoreceptor axon guidance defects (Garrity 

et al., 1996). Dock can be recruited by different upstream signaling molecules in 

different areas of the nervous system. For example, DInR recruits Dock in adult 

photoreceptor axons (Song et al., 2003). In contrast, Dscam is thought to recruit Dock 

in the Bolwig’s nerve, which is a component of the larval visual system (Schmucker 

et al., 2000). Also, at the embryonic central nervous system midline, the Robo 

receptor recruits Dock (Fan et al., 2003). Dock is upstream of at least two signaling 

pathways in photoreceptor axons. One of the pathways contains  p21-activated kinase 

(Pak), while the other contains Misshapen (Msn), the Drosophila homolog of Nck 

interacting kinase (NIK). Pak and Msn are both Ste20-like serine/threonine kinases, 

but they belong to different families (Hing et al., 1999; reviewed in Rao, 2005; Ruan 

et al., 1999; Su et al., 2000).   
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1.5.3  A role for DInR in photoreceptor axon guidance  

 A novel role for DInR, in regulating photoreceptor axon guidance through the 

Dock-Pak signaling pathway, was discovered by Song et al. (2003). A yeast two-

hybrid screen was conducted using the intracellular domain of DInR as bait in order 

to identify potential signaling molecules immediately downstream of DInR. Dock 

was one of the molecules that showed an interaction with DInR (Figure 3). This 

interaction was dependent on DInR kinase activity (Figure 3). Deletion of the DInR     

C-tail abolished the interaction between DInR and Dock, showing that the C-tail is 

necessary for the interaction (Figure 3). However, it is not known whether the C-tail 

is sufficient for DInR and Dock binding. The SH2 and SH3 domains of Dock were  

shown to be required for interaction with DInR, using yeast two-hybrid assays.      

Co-immunoprecipitation experiments, using lysates from wild type adult flies,  

confirmed that DInR and Dock interact in vivo in a stable complex. In addition, both 

Dock (Garrity et al., 1996; Hing et al., 1999) and DInR protein (Song et al., 2003) 

localize to photoreceptor axons and growth cones. The FLP/FRT system for mosaic 

analysis (Golic, 1991; Xu and Rubin, 1993), with an eye-specific driver for FLP 

(eyFLP)(Newsome et al., 2000), was used to test the role of DInR in axon guidance in 

vivo. DInR was indeed required in photoreceptors for proper axon guidance to take 

place during the third-instar larval stage, as the dinr mutant eye mosaics displayed 

abnormal gaps and clumps in their photoreceptor axon targeting pattern and also 

showed a failure of growth cones in the medulla to expand (Song et al., 2003). dinr 

mutant transheterozygotes were also observed to have abnormal gaps and clumping in 

their axonal projection pattern. Furthermore, DInR is required in photoreceptors for 
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the targeting of R7 and R8 growth cones to the correct layers in the adult optic lobe. 

Genetic interaction experiments showed that DInR acts through Dock, not Chico, to 

guide photoreceptor axons. Consistent with this finding was the lack of photoreceptor 

axon guidance defects in chico mutants (Song et al., 2003).   

 Recently, it was found in mammalian cell culture that insulin signaling 

regulates normal axon cone morphology and organization of the actin cytoskeleton in 

developing photoreceptors (Rajala et al., 2009). It would be worthwhile to determine 

whether insulin signaling controls photoreceptor axon development in mammals 

through similar downstream signaling mechanisms as in the invertebrate Drosophila 

melanogaster. 

 

1.6  Other roles for insulin signaling in the development and function of the 

nervous system 

 Although the mammalian brain was once considered an “insulin-insensitive” 

organ, recent evidence indicates otherwise (reviewed in Chiu and Cline, 2010). In 

mammals, insulin signaling has been shown in neuronal cell culture experiments to 

regulate dendritic spine density and neurite outgrowth. Insulin signaling has also been 

implicated in neuronal survival, synaptic plasticity, learning and memory, and 

neurological disorders. IGF signaling is known to be involved in various processes in 

neuronal development, such as growth cone expansion, axon outgrowth, and neuronal 

polarity (reviewed in Scolnick et al, 2008). IGF signaling was recently shown to be 

involved in axon guidance and sensory map formation in the developing olfactory 

system of mice (Scolnick et al., 2008). 
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 Evidence indicating roles for insulin signaling in the nervous system of flies, 

other than in photoreceptor axon guidance (discussed in the previous section), has 

also accumulated. In dinr mutant embryos, various defects were observed in the 

developing central and peripheral nervous systems (Fernandez et al., 1995). 

Insulin signaling is involved in the nutrition-dependent exit from quiescence 

of neural stem cells (called neuroblasts in Drosophila) in the thoracic ventral nerve 

cord (Chell and Brand, 2010). Dietary amino acids are sensed by the fat body (Britton 

and Edgar, 1998), which then induces dilp2 and dilp6 expression in the surface glia 

that neighbor the neuroblasts (Chell and Brand, 2010); in a paracrine fashion, dilp2 

and dilp6 then activate the DInR-PI3K-Akt pathway in the neuroblasts to cause cell 

growth and proliferation. 

Although DInR expression has been found at the neuromuscular junctions of 

Drosophila larvae (Gorczyca et al., 1993), it is not clear whether insulin signaling 

plays a role there in regulating synaptic development or physiology. Since the 

absence of zygotic Dock in embryos has been shown to delay synapse formation by 

the RP3 motoneuron (Desai et al., 1999), it would be interesting to test whether DInR 

interacts with Dock in this process too. 

Murillo-Maldonado et al. (2011) found evidence suggesting that insulin 

signaling is required for normal neuronal communication involving two different 

neurotransmitters. Electroretinograms, a method of measuring retinal physiology, 

were recorded for various insulin pathway mutants. It was found that some of the 

mutants had defects in retinal function, which relies on histamine, the 

neurotransmitter in fly photoreceptors. In addition, cholinesterase activity in fly head 
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extracts from some of the insulin pathway mutants was abnormally low, thus 

indicating that the metabolism of acetylcholine, which is the major excitatory 

neurotransmitter in fly brains, was impaired. 
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Chapter 2: Materials and Methods 

 

2.1  Molecular biology and generation of transgenic flies 

To test rescue of dinr-associated mutant phenotypes, dinr cDNAs which were 

full-length or partial, or which carried specific mutations, were inserted into the 

expression vector pUAST-Myc, which includes a 102 bp region encoding a 3X Myc 

tag, to generate in-frame C-terminal fusions. To generate UAS-dinr(JM-NPFF)-myc3, 

the tyrosine in the juxtamembrane NPFY motif of UAS-dinr-myc3 was changed to a 

phenylalanine. Site directed mutagenesis to change the TAT codon for tyrosine to the 

TTT codon for phenylalanine was carried out with standard methods using a dinr 

cDNA in a pSP vector (pSP-dinr-myc3) and Vent polymerase (NEB), and was 

verified by sequencing. A ~7 kb fragment spanning the entire dinr-myc3 coding 

region, and thus containing the mutated juxtamembrane NPFF site, was released from 

the pSP-dinr-myc3 plasmid with NotI and EcoRI; the fragment was then inserted into 

the NotI and EcoRI sites of UAS-dinr(Y,7,8,9,10F)-myc3, replacing the entire 

dinr(7,8,9,10F)-myc3 coding region. 

UAS-dinr(5NPXF)-myc3 was made by excising a ~4 kb fragment containing 

the 4 mutated NPXF sites in the C-tail from UAS-dinr(Y7,8,9,10F)-myc3 using AflII 

and inserting it into the AflII site of pUAST-dinr(JM-NPFF)-myc3 to replace the AflII 

fragment. Orientation of the insert was verified by sequencing. 

The UAS-dinr(JM-NPFF)-myc3 and UAS-dinr(5NPXF)-myc3 constructs were 

injected into w1118 embryos by Rainbow Transgenic Flies, Inc. (California) in order to 

generate transgenic flies by P-element-mediated transformation. Twelve independent 
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transformant lines were obtained from Rainbow Transgenic Flies, Inc. for            

UAS-dinr(JM-NPFF)-myc3, whereas nine independent lines were obtained for     

UAS-dinr(5NPXF)-myc3. I used standard methods to balance the insertions over CyO 

(for insertions on the second chromosome) or TM3Sb (for insertions on the third 

chromosome). For the dinr mutant rescue experiments, only insertions on the second 

chromosome were ideal for use. Four UAS-dinr(JM-NPFF)-myc3 lines were found to 

have insertions on the second chromosome. Only one UAS-dinr(5NPXF)-myc3 line 

was found to have an insertion on the second chromosome.        

 

2.2  Fly stocks and genetics 
 
 The following genetic crossing schemes were followed to generate stocks for 

the rescue experiments performed in Chapter 6. UAS-dinr transgenes are indicated as 

“UAS-X” in this description. Sp/CyO;Dr/TM3Sb,armGFP virgin females were 

crossed to a single male carrying a UAS-X transgene on the second chromosome. To 

double balance, male or virgin female CyO, Dr progeny flies were crossed to male or 

virgin female (as the case required) CyO, Sb progeny flies. The resulting progeny that 

carried both Dr and Sb were crossed to each other to generate UAS-X/(UAS-X or 

CyO);Dr/TM3Sb,armGFP stocks that were maintained. Males from this stock were 

then crossed to Sp/CyO;dinrex15/TM3Sb,armGFP virgin females. Non-Sp, CyO,    

non-Dr progeny were self-crossed to yield UAS-X/(UAS-X or CyO);dinrex15/ 

TM3Sb,armGFP stocks to be used for adult assays. To generate the stocks to be used 

for larval assays, Bl/CyO,GFP;TM3Sb/TM6BTb,GFP virgin females were crossed to 

UAS-X/(UAS-X or CyO);dinrex15/TM3Sb,armGFP males. Non-Bl, non-Sb, Hu (an 
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adult marker on the TM6BTb,GFP balancer) progeny were self-crossed to generate                             

UAS-X/(UAS-X or CyO,GFP);dinrex15/TM6BTb,GFP stocks. 

For the lethality rescue analysis, arm-GAL4/arm-GAL4; FRT82Bdinr273/ 

TM3Sb,armGFP virgin females were crossed to UAS-X/(UAS-X or CyO); dinrex15/ 

TM3Sb,armGFP males. Parental flies were removed as necessary to prevent 

overcrowding of progeny. Adult progeny of each genotype that had eclosed were 

scored for their bristle phenotype: either Sb or non-Sb. In the case that the UAS-X 

construct to be tested was homozygous lethal and had to be used in crosses with a 

CyO balancer, only non-CyO eclosed adult progeny were scored for their bristle 

phenotype.  

For the growth defect rescue analysis, arm-GAL4/arm-GAL4;FRT82Bdinr273/ 

TM3Sb,armGFP virgin females were crossed to UAS-X/(UAS-X or CyO);dinrex15/ 

TM3Sb,armGFP males. Parental flies were removed as necessary to prevent 

overcrowding of progeny. Eclosed non-Sb adult male or female progeny were 

collected separately by gender in fresh food vials and were individually weighed in an 

ATI Cahn C-33 microbalance approximately 3 to 18 days after eclosion.  

For the R-cell axon guidance rescue analysis, arm-GAL4/arm-GAL4; 

FRT82Bdinr273/TM6BTb,GFP virgin females were crossed to UAS-X/UAS-X; 

dinrex15/TM6BTb,GFP males. Parental flies were removed as necessary to prevent 

overcrowding of progeny. Non-Tubby (Tb) progeny at the wandering third-instar 

larval or white prepupal stages were dissected, fixed, and stained with MAb24B10 to 

visualize R-cell axon guidance patterning. 
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 Ilp21 and Ilp41 null mutants (Gronke et al., 2010) were obtained from 

Bloomington Drosophila Stock Center at Indiana University (stock numbers were 

30881 and 30883 respectively). Df[dilp] flies were generated in our lab by H. Zhang 

(Zhang et al., 2009). UAS-dilp lines for all seven dilps were obtained from the lab of 

E. Hafen. 

  

2.3  Photoreceptor axon guidance analysis 

 Eye-brain complexes were dissected from third-instar larvae or white 

prepupae in phosphate-buffered saline (PBS). A protocol obtained from C.H. Lee was 

used for the staining of eye-brain complexes with monoclonal antibody 24B10 

(MAb24B10). MAb24B10 specifically stains the cell bodies and axonal membranes 

of differentiated photoreceptors in Drosophila melanogaster and was originally 

generated by Fujita et al. (1982). This antibody was subsequently found to recognize 

the glycoprotein Chaoptin, which resides on the plasma membranes of photoreceptors 

(Van Vactor et al., 1988). MAb24B10 used in our experiments was purchased from 

the Developmental Studies Hybridoma Bank at The University of Iowa. The general 

steps followed were: eye-brain complexes were fixed in 2% paraformaldehyde in a 

lysine-phosphate buffer containing 0.25% sodium m-periodate, washed in 0.5% 

Triton-X-100 in PBS (PBT), blocked in 10% normal goat serum (NGS) in PBT, 

incubated in 1:200 MAb24B10 in 10% NGS in PBT at 4°C overnight or longer, 

washed in PBT, incubated in 1:200 HRP-conjugated goat anti-mouse antibody in 10% 

NGS in PBT at room temperature for at least two hours, washed in PBT, incubated in 

DAB, washed in PBS, and cleared and mounted in 70% glycerol in PBS. Mounting of 
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the eye-brain complexes involved squashing each with a coverslip in order to obtain 

flat specimens for imaging with differential interference contrast (DIC) microscopy, 

using a Leica DMRB microscope. The squashing sometimes led to unfortunate 

damage to the samples, ranging from artifactual tissue distortion and rips, that 

nevertheless still allowed the samples to be analyzed, to total destruction of the 

samples that rendered them unanalyzable.  

 In an attempt to improve the ease of obtaining analyzable specimens, confocal 

imaging of eye-brain complexes expressing a red fluorescent protein (RFP) marker in 

the R-cell axons, under the control of the GMR promoter, was used for the analysis of 

some Df[dilp1-5] mutants. These specimens thus did not have to be stained, and since 

they could be imaged by confocal microscopy, they did not have to be squashed with 

coverslips.  Confocal imaging was conducted using a Zeiss 510 META laser-scanning 

microscope, with the kind permission and assistance of C.H. Lee and C.Y. Ting at the 

National Institutes of Health. Deconvolution of the images using Huygens 

professional software (Scientific Volume Imaging) and image rendering using Imaris 

software (Bitplane Inc.) were generously done by C.Y. Ting. 

 

2.4  Allometry analysis 

Wings were dissected in 70% ethanol and mounted in 4:5 lactic acid:ethanol.  

Genital arch posterior lobes were dissected in 70% ethanol, dehydrated in a series of 

90% ethanol and 100% ethanol, and mounted in euparol. These slides were placed at 

~55°C to allow the euparol to harden. Wings were photographed using a 5× objective, 

while genital arch posterior lobes were photographed using a 40× objective. The areas 
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of the wings and genital arch posterior lobes were measured after outlining specific 

parts of each using the “Polygon selections” tool in ImageJ. (Note: the above was 

published with slight alterations in Zhang et al. (2009), but was originally written by 

C. Li) 

 

2.5  Multiple sequence alignment 

 Insulin receptor sequences for 12 Drosophila species which have had their 

whole genomes sequenced were obtained from Flybase (release r1.2 for D. virilis; 

r1.3 for D. ananassae, D. erecta, D. grimshawi, D. mojavensis, D. persimilis,           

D. sechellia, D. simulans, D. willistoni, D. yakuba; r2.3 for D. pseudoobscura; and 

r5.16 for D. melanogaster). The sequence used for the human insulin receptor was 

that of the long preproprotein isoform (NCBI reference sequence: NP_000199.2). All 

of these sequences were aligned together using ClustalW2 at the EMBL-EBI web 

server; the multiple sequence alignment was then edited using Jalview and Adobe 

Illustrator.  

 

2.6  Expression level analysis 

arm-GAL4/arm-GAL4;FRT82Bdinr273/TM6BTb,GFP virgin females were 

crossed to males that were homozygous for the following tested Myc-tagged 

transgenes and lines: UAS-dinr, UAS-dinr(5NPXF), UAS-dinr(JM-NPFF) line #1, 

UAS-dinr(JM-NPFF) line #2, UAS-dinr(Y7,8,9,10F), and UAS-dinr(LESL,Y2F). For 

all the tested transgenes and lines, the males also carried the dinrex15 allele and the 

TM6BTb,GFP balancer, except for UAS-dinr(JM-NPFF) line #2, for which the males 
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carried the TM3Sb,armGFP balancer instead, because a stock carrying the 

TM6BTb,GFP balancer had not been made. Embryos were collected from the crosses, 

dechorionated in a 1:2 dilution of bleach, and fixed for 15 minutes, with agitation, in 

a 4% paraformaldehyde in PBS solution that was mixed 1:1 with heptane. The 

aqueous (lower) phase containing the paraformaldehyde was removed. Methanol was 

added to the tube and the tube was shaken and vortexed in order to devitellinize the 

embryos. The heptane (upper) layer was removed along with embryos floating at the 

interface because they had not devitellinized. The remaining embryos that had 

devitellinized and had sunk down to the bottom of the methanol (lower) layer were 

then rinsed two to three times with fresh methanol, and stored in a fresh aliquot of 

methanol at -20°C. 

The following steps for anti-Myc staining and staining level analysis were 

modified from a protocol developed by J. Hou in the Pick lab. Stored embryos were 

rehydrated in 0.05% Tween 20 in phosphate-buffered saline (PBST) for 30 minutes, 

blocked in 5% normal goat serum (NGS) for 30 minutes at room temperature, 

incubated in 1:1500 preabsorbed anti-Myc antibody (Santa Cruz Biotechnology, Inc. 

c-Myc (A-14) rabbit polyclonal IgG) overnight at 4°C, rinsed once with PBST, 

washed twice for 30 minutes each in PBST, incubated in 1:600 Texas Red-X goat 

anti-rabbit IgG (Invitrogen) for approximately 2.5 hours at room temperature, rinsed 

once in PBST, washed twice for 30 minutes each in PBST, washed overnight in 

PBST, rinsed once in PBS, and cleared in 70% glycerol in PBS overnight at 4°C. 

Fluorescence was detected using the Texas Red filter on a Leica DMRB microscope. 

Side views of embryos at stages 7 to 11, approximately, were photographed. Adobe 
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Photoshop was used to quantitate protein expression levels of each overexpressed 

Myc-tagged DInR construct, as revealed by anti-Myc staining. The same general 

ventral area of each embryo was selected using the elliptical marquee tool, which was 

set to a fixed size of 25 pixels width by 25 pixels height, and the mean value for the 

red channel on the histogram palette (a measure of the average intensity) was 

recorded and averaged for each DInR transgene.   
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Chapter 3: Investigating the roles of dilps in photoreceptor (R-cell) 

axon guidance 

 

3.1  Introduction 

DInR localized in photoreceptors is required for photoreceptor axon guidance 

(Song et al., 2003). Since DInR is a receptor tyrosine kinase, it is expected to need an 

extracellular ligand for activation of all of its downstream signaling functions. In 

order to more completely understand the mechanism by which insulin receptors direct 

axon guidance, it is necessary to define the interactions of the insulin receptors and 

their upstream ligands during this process. However, the ligand(s) that directs the 

photoreceptor axon guidance function of DInR is unknown.   

 There are several criteria that, if fulfilled, would provide either definitive or 

supporting evidence that a candidate molecule is an endogenous ligand for DInR 

during DInR-mediated photoreceptor axon guidance. These criteria are: 

 1) loss-of-function mutants of the candidate ligand would exhibit similar 

defects in photoreceptor axon guidance as have been described for dinr mutants, 

 2) the candidate ligand would be present at the right time and place within or 

adjacent to the third-instar larval optic lobe, the target site for the R-cell axons, 

 3) the candidate ligand could bind to and modulate DInR function by 

activating (or repressing, if the ligand is inhibitory) DInR autophosphorylation,  

4) if DInR is dependent on a strict concentration range, or gradient perhaps, of 

its ligand during photoreceptor axon guidance, then altered levels of the candidate 

ligand within or adjacent to the third-instar larval optic lobe might lead to defective 
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axon guidance. Altered levels of the candidate ligand can be achieved experimentally 

by overexpression. However, failure to see a phenotype caused by overexpression 

would not necessarily mean that the overexpressed molecule is not a ligand since it is 

possible that overexpression might not perturb the protein gradient, depending on the 

gradient-forming mechanism. 

 5) the candidate ligand would be similar, sequence-wise and/or structurally, to 

mammalian insulin, since the potential ligand binding domains of DInR and the 

human insulin receptor share considerable sequence identity (Fernandez et al., 1995).   

 Based on the available evidence at the beginning of my studies, the most 

likely candidate ligands for DInR during DInR-mediated photoreceptor axon 

guidance were the seven Drosophila insulin-like peptides (dilps), which share 

sequence similarity with human insulin (Brogiolo et al., 2001). The dilps thus fulfill 

criterion #5 listed above. Also, criterion #3 is fulfilled for some of the DILPs because 

Rulifson et al. (2002 and unpublished work) showed using cell culture that some of 

the DILP proteins can activate DInR autophosphorylation.   

Gain-of-function (GOF) approaches to the study of genes can provide 

evidence that complements loss-of-function (LOF) studies. In some cases, GOF 

approaches can even yield insights where LOF approaches fail. Examples of such 

cases are: 1) the LOF phenotype is not readily assayable, 2) genetic redundancy 

prevents or partially obscures the manifestation of a LOF phenotype, 3) if a gene is 

pleiotropic, then a defect in one process (e.g. cell proliferation) may prevent or 

complicate the analysis of a possible defect in another process (reviewed in Miklos 

and Rubin, 1996). The last two examples might apply for the study of dilp function in 
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photoreceptor axon guidance, since there are multiple candidate ligands for DInR, a 

receptor known to have multiple functions. 

 The GAL4 system is commonly used in Drosophila research to overexpress 

candidate genes in a temporally and spatially-specific manner. Crosses are done to 

generate flies that carry both of the following transgenes: 1) a transgene that allows 

the yeast transcriptional activator GAL4 to be expressed under the control of a 

specific Drosophila enhancer sequence, 2) a transgene that contains both an upstream 

activation sequence (UAS), which consists of GAL4 binding sites, and the gene of 

interest. The flies will therefore overexpress the gene of interest in the pattern dictated 

by the specific enhancer sequence (Brand and Perrimon, 1993). Some GOF studies of 

dilps have already been done by others. Each of the seven dilp genes has been 

reported to cause overgrowth when overexpressed (Ikeya et al., 2002). These results 

were obtained using the ubiquitous driver arm-GAL4 to drive expression of UAS 

transgenes for each dilp. Interestingly, when Act5C-GAL4, another ubiquitous driver 

that is thought to drive stronger expression than arm-GAL4, was used to overexpress 

dilp2, lethality resulted during the embryonic stage (Brogiolo et al., 2001).   

Loss-of-function (LOF) studies provide the most definitive genetic evidence 

that a gene is involved in a particular process. However, only suggestive evidence is 

provided for a gene not being involved in a process because genetic redundancy 

might prevent the appearance of a LOF phenotype. Since it was hypothesized that one 

or several of the seven dilps are involved in photoreceptor axon guidance by acting as 

ligands for DInR, the seven dilps were removed individually or in combination by 

different approaches. The removal of individual dilp genes would allow the 
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determination of whether one specific dilp gene is required for photoreceptor axon 

guidance. The removal of multiple dilp genes would allow the determination of 

whether several dilp genes are involved redundantly in photoreceptor axon guidance.    

 

3.2  Results: gain-of-function studies 

In order to determine whether ubiquitous overexpression of any of the dilps 

leads to a GOF phenotype, MAb24B10-stained eye-brain complexes from third-instar 

larvae containing either a da-GAL4 transgene, which drives strong ubiquitous 

expression, or an arm-GAL4 transgene, which drives moderate ubiquitous expression, 

and one UAS-dilp“x” transgene (one fly line for each of the seven dilps was obtained 

from E. Hafen) were examined for defects in photoreceptor axon guidance. Controls 

contained the da-GAL4 transgene only or the arm-GAL4 transgene only. 

Photoreceptor axon guidance in these controls (Figure 5A,C) resembled that of WT  

(Figure 10B). Thus, the presence of the da-GAL4 transgene itself or the arm-GAL4 

transgene itself did not cause axon guidance defects. Third-instar larvae in which   

da-GAL4 drove the UAS-dilp2 transgene (daGAL4>UAS-dilp2) were not viable, so 

the R-cell axon guidance phenotype was not assessed. The effect of overexpression of 

dilp7 was not studied. Ubiquitous overexpression of dilp1, dilp3, dilp5, or dilp6 did 

not cause any obvious photoreceptor axon guidance phenotypes (Figure 5E-H), 

although occasionally, overexpression of dilp1 gave a phenotype somewhat 

resembling the phenotype from overexpression of dilp4 (described below).  

The ubiquitous overexpression of dilp4 led to a mild photoreceptor axon 

phenotype. When overexpressed by the strong da-GAL4 driver, growth cones in the 

medulla appeared unusually distinct (Figure 5B; yellow arrowhead) and there seemed 
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Figure 5. Ubiquitous overexpression of dilp4 led to a gain-of-

function phenotype. Third-instar larval eye-brain complexes were 

stained with MAb24B10. (A) da-GAL4, by itself, served as the 

negative control for specimens shown in panels (B) and (E-H).          

(B) dilp4 was ubiquitously overexpressed by the strong da-GAL4 

driver (da-GAL4>UAS-dilp4). (C) arm-GAL4, by itself, served as the 

negative control for the specimen in panel (D). (D) dilp4 was     

ubiquitously overexpressed by the moderate arm-GAL4 driver.         

(E) da-GAL4>UAS-dilp1. (F) da-GAL4>UAS-dilp5. (G) da-GAL4> 

UAS-dilp6. (H) da-GAL4>UAS-dilp3. The yellow arrowhead in B 

points to an example of a growth cone in the medulla that appears to 

be unusually pronounced in appearance. 
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to be an increased distance between the growth cones (Figure 5B) as compared to the 

control (Figure 5A). Quantitation of the distance between the growth cones was not 

done because the squashing of the specimens for DIC imaging meant that quantitation 

would be inaccurate if different specimens were flattened more than others. However, 

the growth cone characteristics were recognizable in blind experiments. In a sense, 

the gain-of-function growth cone phenotype is the opposite of the dinr loss-of-

function phenotype which consists of clumped axons and unexpanded growth cones 

(Song et al., 2003). When dilp4 was ubiquitously overexpressed by the moderate 

arm-GAL4 driver, a similar but weaker phenotype was observed (Figure 5D) that was 

distinguishable from the control (Figure 5C). However, the mild overexpression 

phenotypes seen for dilp4 were not seen for every specimen.   

 

3.3  Results: loss-of-function studies 

Since the overexpression of dilp4 led to a subtle phenotype, photoreceptor 

axon guidance was examined in animals in which dilp4 was knocked down by RNAi.  

Two different UAS-dilp4 RNAi lines made by H. Zhang using the pWIZ RNAi vector 

(Lee and Carthew, 2003) were expressed ubiquitously using the da-GAL4 driver. 

Photoreceptor axon guidance appeared essentially normal (Figure 6A,B). The 

reduction of dilp1, -2, -3, and -5 levels together was achieved by ablating cells that 

express these dilps by using dilp2-GAL4 to drive the expression of the proapoptotic 

gene reaper. This did not appear to have an effect on photoreceptor axon guidance 

(Figure 7B). Various genetic deficiencies that uncover dilp genes were also 
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Figure 6. RNAi against dilp4 did not affect photoreceptor axon 

guidance. Eye-brain complexes from prepupae were stained with 

MAb24B10. (A) da-GAL4>UAS-dilp4 RNAi line #1. (B) da-GAL4> 

UAS-dilp4 RNAi line #2. 
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Figure 7. Reduction of dilp1, -2, -3, and -5 levels did not perturb 

photoreceptor axon guidance. Eye-brain complexes from third-instar 

larvae were stained with MAb24B10. (A) Negative control eye-brain 

complex from a larva carrying the dilp2-GAL4 driver only.               

(B) Eye-brain complex from a larva in which the dilp1, -2, -3,          

and -5-expressing cells were ablated by expressing the propapoptotic 

gene reaper using the dilp2-GAL4 driver.  
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generated, using a FLP-FRT-based method (Parks et al., 2004), by H. Zhang. 

Df[dilp1-5] uncovers dilp1, -2, -3, -4, -5, and four flanking genes on the third 

chromosome, due to the locations of the FRT sites used to generate the deficiency 

(Zhang et al., 2009). To determine whether dilps 1-5 regulate photoreceptor axon 

guidance, eye-brain complexes from Df[dilp1-5] third-instar larvae, which are 

smaller than wild type controls (Zhang et al., 2009) and thus more challenging to 

dissect, were examined by staining with MAb24B10 and imaging with DIC optics, or 

by expressing RFP in the photoreceptor axons and imaging with confocal 

microscopy. A total of seven Df[dilp1-5] specimens were analyzed. The sole 

analyzable Df[dilp1-5] specimen that was stained with MAb24B10 (Figure 8B) 

appeared normal when compared to the w1118 control (Figure 8A). In order to obtain 

more analyzable specimens for Df[dilp1-5], a stock was made in which these mutants 

express the RFP marker in photoreceptor axons under the control of the GMR 

promoter. Another six specimens were examined by this method; one specimen is 

shown in Figure 8H. Part of the larval visual system, the Bolwig’s organ, appeared to 

express RFP at very high levels, but photoreceptor axon guidance in the developing 

adult visual system appeared normal. 

Df[dilp6], made by H. Zhang, uncovers dilp6 and four flanking genes on the 

X chromosome (Zhang et al., 2009). No axon guidance defects were seen in the 

Df[dilp6] samples (Figure 8C; n=7). Df[dilp7], also made by H. Zhang, uncovers 

dilp7 and two flanking genes on the X chromosome (Zhang et al., 2009). Although 

axon guidance did not appear completely normal in the Df[dilp7] samples (Figure 
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Figure 8. Loss of individual or combinations of dilp genes            

did not severely disrupt R-cell axon guidance. MAb24B10-stained          

eye-brain complexes from (A) w1118 control, (B) Df[dilp1-5],           

(C) Df[dilp6], (D) Df[dilp7], (E) Df[dilp6],Df[dilp7]/Y,  (F) dilp21, 

and (G) dilp41 third-instar larvae were imaged with DIC optics.        

(H) shows an eye-brain complex from a Df[dilp1-5] animal expressing 

RFP in photoreceptor axons under the control of the GMR promoter; 

confocal microscopy was used for imaging. Photos may have been 

cropped to different magnifications. 
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8D; n=3), because the growth cones in the medulla seemed to be closer together than 

normal, it did not resemble the disrupted phenotype of dinr mutants. 

  To determine whether dilp6 and dilp7 act redundantly to regulate 

photoreceptor axon guidance, eye-brain complexes from Df[dilp6],Df[dilp7]/Y         

(Y represents the Y chromosome; dilp6 and dilp7 are on the X chromosome) 

hemizygous third-instar larvae were examined. Only one analyzable 

Df[dilp6],Df[dilp7]/Y sample was obtained (Figure 8E). Axon guidance appeared 

essentially normal in this specimen, although there is a gap present in the lamina 

which may or may not be an artifact of the mounting procedure. More specimens 

would have to be examined in order to conclude that photoreceptor axon guidance is 

relatively normal in the Df[dilp6],Df[dilp7]/Y mutant. 

 Various single and combination mutants of the dilp genes generated by 

homologous recombination (Gronke et al., 2010) recently became available. The 

dilp41 mutant was obtained and examined since the overexpression of dilp4 had 

yielded a mild overexpression phenotype. Photoreceptor axon guidance appeared 

essentially normal (Figure 8G). The photoreceptor axon guidance in the dilp21 mutant 

also appeared essentially normal (Figure 8F). 

 

3.4  Discussion 

The ligand that directs the photoreceptor axon guidance function of the 

Drosophila insulin receptor is still unknown. My efforts to identify this ligand 

involved conducting gain-of-function and loss-of-function genetic experiments to test 

the most likely candidates, the dilp genes. The surprising finding from these 
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experiments was that none of the seven dilps, in the combinations examined, seem to 

be required for R-cell axon guidance. Although a subtle phenotype, involving growth 

cones that seemed to be unusually distinct and spaced further apart in the medulla, 

was seen when dilp4 was overexpressed, the dilp4 null mutant appeared to have 

normal photoreceptor axon guidance. Df[dilp1-5], Df[dilp6], Df[dilp7], and 

Df[dilp6],Df[dilp7]/Y mutants also lacked the severe photoreceptor axon guidance 

defects seen in dinr mutant transheterozygotes. A mutant for the ligand(s) of DInR 

would be expected to give a phenotype of similar severity to dinr mutants. However, 

it is still possible that genetic redundancy underlies the lack of a strong phenotype 

seen in the mutants examined so far, since only dilp1-5, and dilp6-7 were removed in 

combination. If this were to be further pursued, I would suggest that a triple 

dilp1;dilp4;dilp7 mutant be examined, as these were the three genes that showed 

some suggestion of function in the assays I have done. Interestingly, Gronke et al. 

(2010) recently generated and examined different combinations of dilp mutants and 

found evidence suggesting that dilp1, dilp4, and dilp7 are not involved in regulating 

developmental timing. Furthermore, since I have obtained evidence indicating that 

photoreceptor axon guidance is not affected by developmental delay (Chapter 5 of 

this thesis), this supports the appealing hypothesis that developmental timing and 

photoreceptor axon guidance are controlled by different dilps. Further evidence 

obtained by Gronke et al. (2010) supporting the involvement of DILP4 in 

photoreceptor axon guidance was the observation of DILP4 antibody staining in 

neurons throughout the brain. To our knowledge, no one has tested whether DILP1 or 

DILP7 protein is present in the brain.  
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A second possibility is that none of the seven dilps regulate R-cell axon 

guidance; instead another molecule might be the actual ligand. A third formal 

possibility is that no ligand is actually required for DInR to direct photoreceptor axon 

guidance, so that the mere presence of DInR is permissive for normal axon guidance 

to occur. However, this possibility is unlikely since Song et al. (2003) showed that 

autophosphorylation of DInR is required for DInR and Dock binding, and it is known 

that autophosphorylation of DInR depends upon ligand-binding (Saltiel and Kahn, 

2001). To further confirm the requirement for ligand-binding by DInR in 

photoreceptor axon guidance regulation, the extracellular ligand-binding region of 

DInR could be removed and the resulting construct could be tested to see whether it 

can rescue the photoreceptor axon guidance defects of dinr mutants.  

To test the possibility that another molecule might act as the DInR ligand 

during photoreceptor axon guidance, one could try using a biochemical approach to 

purify the ligand from third-instar larval extracts. The ability of various fractions to 

activate DInR autophosphorylation could be used as an assay during the purification 

process. Once the candidate ligands have been isolated, mass spectrometry would be 

used to identify what they are. If the molecules are proteins, then genetic mutants 

deficient for these molecules could be generated and examined for photoreceptor 

axon guidance defects.  Alternatively, a genetic screen could be carried out to identify 

genes encoding putative ligands.  
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Chapter 4: Involvement of dilps in allometry 

 
Note: this work was published in Zhang et al. (2009) as Figure 3. 
 
 

4.1  Introduction 

 Allometry is a term that refers to the scaling of the size of different body parts 

relative to each other or to the entire body size (reviewed in Shingleton et al., 2007). 

Shingleton et al. (2005) implicated insulin signaling in the regulation of allometry in 

Drosophila. In the dinr transheterozygotes that they studied, the wings and maxillary 

palps scaled down in proportion to overall body size, but the genital arch posterior 

lobes did not. They saw similar results with chico mutant clones. Thus, they 

interpreted their results to mean that particular organs, such as the genitals, are less 

affected by changes in insulin signaling. 

 H. Zhang used a FLP-FRT-based method (Parks et al., 2004) to generate a 

mutant, Df[dilp1-5], that uncovers dilp1, -2, -3, -4, -5, and four flanking genes on the 

third chromosome (Zhang et al. 2009). In order to determine whether dilps 1-5 are 

involved in controlling allometry, I dissected wings and genital arch posterior lobes 

from parental controls and Df[dilp1-5] homozygotes and measured the area of each. 

 

4.2  Results 

The wings of the Df[dilp1-5] homozygotes were approximately 29% smaller 

than those of the parental controls (Figure 9). In contrast, the genital arch posterior 

lobes of the Df[dilp1-5] homozygotes were only approximately 15% smaller than 

those of the parental controls. These numbers are consistent with those published by
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Figure 9. dilp1, -2, -3, -4, and/or -5 are required for allometry in 

Drosophila. (A) Mean areas of wings from parental controls (line 

d02657, which was used to generate Df[dilp1-5]) and Df[dilp1-5] 

homozygotes. Df[dilp1-5] wings are approximately 29% smaller than 

control wings. (B) Mean areas of genital arch posterior lobes from 

parental controls and Df[dilp1-5] homozygotes. Df[dilp1-5] genital 

arch posterior lobes are only approximately 15% smaller than those of 

controls. (C) A representative parental control wing. (D) A 

representative Df[dilp1-5] wing. (E) A representative parental control 

genital arch posterior lobe. (F) A representative Df[dilp1-5] genital 

arch posterior lobe. Error bars represent standard errors. 
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Shingleton et al. (2005) and indicate that the size of the male genitals are not as 

affected by the loss of dilps 1-5 as the wings.  

 

4.3  Discussion 

This experiment shows that dilp1, -2, -3, -4, and/or -5 are involved in the 

establishment of allometry, and thus might be the ligand(s) to activate DInR and 

recruit the Chico downstream signaling pathway in this process. It is possible, 

however, that only a subset of the 5 dilps tested in combination are actually involved 

in allometry control. Thus, future experiments could examine allometry in single dilp 

mutants and in mutants containing smaller combinations of dilp mutations. Also, 

genetic interaction or epistasis experiments could be done to confirm that the 

implicated dilp(s) does act through DInR and Chico to control allometry. 
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Chapter 5: Developmental delay does not underlie the axon guidance 

defects in dinr mutants 

 

5.1  Introduction 

The Drosophila insulin receptor (DInR) is essential for proper photoreceptor 

axon guidance (Song et al., 2003). For instance, photoreceptor axons in dinr353/273 

transheterozygotes are disorganized, showing clumps and gaps in their targeting 

pattern. However, the pleiotropic functions of DInR, such as in cell growth (Chen et 

al., 1996), complicate the study of the role of DInR in specific tissues or cell types. 

Although two lines of evidence using different approaches – that is, dinr mutant 

mosaic analysis and transheterozygote analysis – indicated that DInR is involved in 

regulating photoreceptor axon guidance (Song et al., 2003), each approach has 

advantages and disadvantages regarding interpretation of the results that were       

generated for the dinr mutants. A problem with mosaic analysis is that the size of the 

photoreceptor cells in dinr mutant eye clones is smaller than normal. The axons of 

these small mutant cells innervate a target composed of normal sized cells. Therefore, 

the axon guidance defects in the mosaic animals may be a secondary effect of a 

mismatch in sizes of the mutant photoreceptor axons and the target cells. This 

problem is avoided when dinr mutant transheterozygotes are analyzed. Since the 

whole animal is mutant in the transheterozygotes, all cells are presumed to be equally 

reduced in size. However, dinr mutant transheterozygote analysis presents its own 

challenges. Since dinr mutant transheterozygotes are developmentally delayed, the 
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photoreceptor axon guidance defect may be a secondary result of the developmental 

delay. 

In order to determine whether developmental delay contributes to the 

photoreceptor axon guidance defects in the dinr mutant transheterozygotes, third-

instar larvae at different stages of development and prepupae were stained with 

MAb24B10 (Fujita et al., 1982) to visualize differentiated photoreceptors and their 

axons. An approximation of the developmental stage of each third-instar larva was 

obtained by estimating the number of rows of differentiated photoreceptors in the eye 

disc. Specimens were placed in three classes: 1) approximately 5-10 rows, 2) more 

than approximately 10 rows, and 3) prepupae.   

If the photoreceptor axon guidance phenotypes of the “early stage” (i.e. in the 

~5-10 rows class) WT and control eye-brain complexes resembled the phenotype of 

the “late stage” (i.e. in the >~10 rows class or prepupae) dinr mutant 

transheterozygotes, with axonal clumping and gaps in the axonal targeting pattern, 

then this would indicate that developmental delay does indeed contribute to the axon 

guidance defects of dinr mutant transheterozygotes. The potential impact of 

developmental delay would thus have to be taken into account in future experiments.  

However, if the “early stage” WT and control eye-brain complexes did not resemble 

the phenotype of the “late stage” dinr mutant transheterozygotes, then this would 

show that developmental delay does not impact proper axon guidance.  

 

5.2  Results 

Developmental time courses of photoreceptor axon guidance were analyzed in 
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eye-brain complexes isolated from OreR, w1118, and ry506 third-instar larvae and 

prepupae. OreR was chosen for the analysis because it is a wild type strain, ry506 

because the dinrex15 null allele was generated in a ry background (Song et al., 2003), 

and w1118 because it is the background for the UAS-dilp transgenic flies used for the 

dilp overexpression studies (Brogiolo et al., 2001; Ikeya et al., 2002). The eye-brain 

complexes were stained with MAb24B10 (Fujita et al., 1982) to visualize the 

differentiated photoreceptors and their axons. In order to provide an approximation of 

the developmental stages of the eye-brain complexes from third-instar larvae, the 

numbers of rows of differentiated photoreceptors in the eye discs were estimated.  

Based on this number, specimens were placed in these classes for analysis: ~5-10 

rows and more than ~10 rows. For the w1118 and ry506 genotypes, eye-brain complexes 

from prepupae were also analyzed.   

As expected, OreR eye-brain complexes at a later stage of development, with 

>~10 rows of differentiated photoreceptors, showed targeting of axons to the lamina 

that resulted in a relatively thin, continuous layer of axon terminals (arrow in Figure 

10B) and targeting of other axons to the medulla that resulted in a wide pattern of 

staggered growth cones (bracket in Figure 10B)(n=3). Notably, OreR complexes at an 

earlier stage of development, with ~5-10 rows, also showed similar patterns of axonal 

targeting to the lamina and the medulla (Figure 10A; n=6).   

Eye-brain complexes from ry506 and w1118 animals also displayed ordered 

targeting of axons to the lamina and medulla, regardless of whether the complexes 
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Figure 10. Developmental time course of R-cell axon guidance      

in OreR third-instar larvae. The complex in (A) is at the               

~5-10 rows stage, containing approximately 6 rows of differentiated 

photoreceptors. The complex in (B) is at the >~10 rows stage, 

containing approximately 12 rows. The arrow in (B) points to axons 

terminating in the lamina to form a thin, continuous layer. The bracket 

in (B) indicates axons terminating in the medulla to form a staggered 

array of growth cones. The complexes were stained with MAb24B10 

and were imaged using a 40× objective and DIC optics. The scale bar 

represents approximately 50 µm. 
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were at the ~5-10 rows stage (ry506, n=17, Figure 11A; w1118, n=10, Figure 12A), at 

the >~10 rows stage (ry506, n=14, Figure 11B; w1118, n=28, Figure 12B), or from 

prepupae (ry506, n=1, Figure 11C; w1118, n=3, Figure 12C). Occasionally, there were 

small clumps seen in ry506 eye-brain complexes (2/17 at the ~5-10 rows stage, see 

arrow in Figure 11D; 1/14 at the >~10 rows stage). Expanded growth cones in the 

medulla were present during all stages (an example is shown with an arrow in Figure 

11E). In some complexes that were analyzed, gaps in the lamina were present which 

may or may not have been artifacts of the mounting procedure (arrow in Figure 11B). 

Overall, the ordered targeting pattern of photoreceptor axons to the lamina and 

medulla at early stages of axon guidance in the wild type (OreR) and control (w1118 

and ry506) larvae does not resemble the disorganized targeting pattern of axons at later 

stages of axon guidance in the dinr mutant transheterozygotes (Song et al., 2003).  

These results indicate that the axon guidance phenotype exhibited by the dinr mutant 

transheterozygotes is not merely due to axon guidance proceeding at a slower pace 

than usual.   

Perhaps also of interest are the expanded medullar growth cones that were 

observed in early-stage control eye-brain complexes. It is difficult to say with 

certainty whether there are inappropriately unexpanded growth cones actually present 

in dinr mutant transheterozygotes since the disorganized axonal targeting can obscure 

the gradient of young to old growth cones normally present in the medulla (Ting and 

Lee, 2007). Furthermore, in dinr mutant transheterozygotes, it is hard to determine 

whether the growth cones of axons in the clumps are expanded or unexpanded.  

Although abnormally unexpanded growth cones have been observed in dinr mutant 
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Figure 11. Developmental time course of R-cell axon guidance in 

ry506 animals.  The complexes in (A), (D), and (E) are at the ~5-10 

rows stage, (B) is at the >~10 rows stage, and (C) is from a prepupa. 

The approximate numbers of rows of differentiated photoreceptors for 

the complexes from third-instar larvae were: (A) 8, (B) 13, (D) 8, and 

(E) 6. The arrow in (B) points to a gap in the lamina. Occasionally, 
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there were abnormal clumps present in the ry506 complexes (arrow in 

D). Expanded growth cones were present at all stages, even at the     

~5-10 rows stage. The arrow in (E) points to an expanded growth cone 

in a complex at the ~5-10 rows stage seen at higher magnification. The 

complexes were stained with MAb24B10 and were imaged using a 

40× objective and DIC optics for (A-D) and a 100× oil immersion 

objective and bright field optics for (E). The scale bar for (A-D) 

indicates approximately 50 µm. The scale bar for (E) represents 

approximately 10 µm.   
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Figure 12. Developmental time course of R-cell axon guidance in 

w1118 animals. The complex in (A) is at the ~5-10 rows stage, 

containing approximately 7 rows of differentiated photoreceptors. The 

complex in (B) is at the >~10 rows stage, containing approximately 15 

rows. The complex in (C) is from a prepupa. The complexes were 

stained with MAb24B10 and were imaged using a 40× objective and 

DIC optics.  
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clones (Song et al., 2003), the developmental time course of axon guidance in control 

animals presented here does not directly apply to the analysis of dinr mutant clones; 

the appropriate controls for the dinr clonal analysis were WT clones, which were 

indeed generated and analyzed by Song et al. (2003). 

 

5.3  Summary 

These results indicate that developmental delay is not a significant factor 

underlying the R-cell axon guidance defects seen in dinr mutant transheterozygotes 

(Song et al., 2003) since the R-cell axon guidance phenotype of “early stage” control 

eye-brain complexes did not resemble that of “late stage” dinr mutant 

transheterozygotes which are developmentally delayed.  Thus it appears that DInR 

controls photoreceptor axon guidance through a mechanism(s) that is insulated from 

the whole organism effects of DInR in developmental timing (shown here) and in 

growth (i.e. chico growth mutants lack photoreceptor axon guidance defects (Song et 

al., 2009)). 
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Chapter 6:  Functional dissection of the signaling domains of the 

Drosophila insulin receptor 

 

6.1  Introduction 

The implication of DInR in axon guidance added a novel role for a receptor 

already known to be involved in regulating diverse developmental and physiological 

processes such as viability (Fernandez et al., 1995), growth (Chen et al., 1996; 

Fernandez et al., 1995), and sugar homeostasis (Belgacem and Martin, 2006). This 

raised the question of how one receptor can control such diverse functions. One 

strategy is that different downstream pathways are used by DInR to control its 

different functions. DInR is thought to control growth by interacting with the Chico 

adaptor protein, which is the Drosophila homolog of the mammalian IRS proteins 

(Bohni et al., 1999). Chico recruits the PI3K-Akt pathway in order to control growth. 

Adult chico mutant homozygotes are much smaller than wild type flies and chico 

mutant heterozygotes. Conversely, DInR controls photoreceptor axon guidance by 

interacting with the Dock adaptor protein, which is the Drosophila homolog of 

mammalian Nck and which recruits the Pak signaling pathway (Hing et al., 1999). In 

mammals, Nck is recruited by IRS1 to the insulin receptor (Lee et al., 1993; reviewed 

in Pawson and Scott, 1997). 

Adaptor proteins are composed solely of interaction domains (reviewed in 

Howard et al., 2003). Examination of the domains that are present in an adaptor 

protein can provide clues about which motifs an adaptor protein may bind to. Chico 

has a phosphotyrosine binding (PTB) domain (Poltilove et al., 2000); PTB domains 
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are known to bind to NPXpY motifs, when the tyrosine is phosphorylated (Pawson 

and Scott, 1997). Dock has three SH3 domains and one SH2 domain (Garrity et al., 

1996). Both the SH3 domains and SH2 domain of Dock were shown by yeast two-

hybrid to be required for maximal binding between DInR and Dock (Song et al., 

2003). Rao and Zipursky (1998) tested constructs with different point mutations in 

the SH2 and SH3 domains of Dock and found that mutations in the second SH3 

domain alone, or in the first and third SH3 domains and the SH2 domain together, 

failed to rescue the photoreceptor axon guidance defects of dock null mutants. It was 

also found that Dock binds to its downstream effector Pak through the second SH3 

domain (Hing et al., 1999). Taken together with the results of Song et al. (2003), this 

suggests that the first and third SH3 domains and the SH2 domain might be the 

domains that bind the upstream receptor DInR to mediate photoreceptor axon 

guidance. It is known that SH3 domains bind to PXXP motifs, whereas SH2 domains 

bind to pYXXhy motifs (Pawson and Scott, 1997). 

The C-tail of DInR has multiple potential binding motifs. Thus, while many of 

the protein-protein interactions of mammalian IR require intermediary adaptor 

proteins, DInR may bind directly. The clearest example of direct signaling through 

the C-tail came from Song et al. (2003) who showed that Dock directly interacts with 

the C-tail of DInR in yeast two-hybrid assays. The C-tail contains ten tyrosines, four 

of which are located within NPXpY motifs (Figure 13A). In addition, it contains three 

PXXP motifs (Figure 13A). Poltilove et al. (2000) showed that the four NPXpY 

motifs are important for binding between Chico and DInR in vitro. They tested a 

deletion of all four NPXpY motifs, but not individual motifs or smaller combinations 
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Figure 13. Conservation of selected known and potential 

interaction sites in the insulin receptor across 12 sequenced 

Drosophila species and in humans. A ClustalW multiple sequence 

alignment was generated and amino acid residues were colored using 

the Zappo scheme, in which different colors are used for amino acids 

with different chemical and physical properties. The coloring scheme 

is as follows: light pink = aliphatic/hydrophobic; light orange = 

aromatic; red = positive; green = negative; blue = hydrophilic; fuschia 

= proline or glycine; yellow = cysteine. Fragments of the multiple 

sequence alignment are shown. (A) Map of the C-tail and the region 

upstream that was inadvertently deleted in all ΔA contructs, which 

were made before my involvement in this project. The blue rectangle 

outlines the region deleted in the ΔAB construct. (B) The inadvertently 

deleted region contains two tyrosines that are conserved in all 12 of the 
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sequenced Drosophila species, but not in human IR. The region also 

contains a PXXP motif that seems weakly conserved among the 

Drosophila species and is not present in human IR. (C) Y1 in the DInR 

C-tail is conserved among all, except D. ananassae, of the sequenced 

Drosophila species. (D) The PXXP motif in region A is conserved in 4 

Drosophila species. (E) Y2 is conserved in all 12 Drosophila species. 

(F) The NPXY motif containing Y8 (also called C3) is completely 

conserved in all 12 Drosophila species. The NPXY motif containing 

Y10 (C5) is almost completely conserved, with only some changes in 

the variable X position. The NPXY motifs containing Y7 (C2) and    

Y9 (C4) are less well-conserved. (G) The NPXY motif in the 

juxtamembrane domain of DInR is completely conserved among the 

12 Drosophila species; the juxtamembrane NPXY motif in human IR, 

which is an NPEY, is shifted 2 amino acid residues towards the         

N-terminus in this multiple sequence alignment. (H) The lysine in the 

kinase domain of DInR that was deleted in the kinase-dead construct is 

conserved among all 12 sequenced Drosophila species and in human 

IR. Red boxes outline the residues being discussed. 
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of these motifs, so it remains a possibility that a subset of the four NPXpY motifs in 

the C-tail are actually responsible for the in vitro binding between Chico and DInR. 

Poltilove et al. (2000) also showed that the juxtamembrane NPXpY motif was 

required for the efficient phosphorylation of Chico by DInR in vitro. 

A previous postdoctoral fellow in the lab, D. Guo, used the yeast two-hybrid 

technique to test different potential binding sites in the C-tail of DInR for interaction 

with Dock.  In order to test multiple binding sites at a time, he deleted large regions 

of the C-tail (Figure 13A). Region A contains Y1 and a PXXP motif (PESP); 

unfortunately, it was subsequently found that upstream sites were inadvertently 

included in region A (Figure 13A). When J. Song had deleted the C-tail to show by 

yeast two-hybrid that it was required for binding between DInR and Dock (Song et 

al., 2003), the deletion began at the PstI site (Figure 13A), whereas in D. Guo’s yeast 

two-hybrid constructs, the deletion began upstream of the PstI site at the ClaI site 

(Figure 13A). Thus, an additional two tyrosines and a PXXP motif were inadvertently 

included in region A. These two tyrosines are conserved in all 12 sequenced 

Drosophila species, but not in the human IR receptor (Figure 13B), suggesting that 

they might be functionally important in Drosophila. The PXXP motif appears to be 

weakly conserved among the 12 sequenced Drosophila species and is absent in the 

human IR (Figure 13B).  

Region B contains Y2, 3, and 4. Region C contains Y5 to 10; Y7, 8, 9, and 10 

are located in NPXpY motifs. Region D contains the PTNP and PPPP motifs.      

Figure 13 shows the conservation of some of these potential binding sites in the 12 

sequenced Drosophila species and in the human IR. In yeast two-hybrid assays,  
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deletion of regions A and B together abolished binding between DInR and Dock 

(Figure 14). Neither region A alone nor region B alone were sufficient for interaction 

between DInR and Dock. The deletion of regions C and D did not decrease binding. 

Individual potential binding sites were also tested by D. Guo by site directed 

mutagenesis to change specific tyrosine residues to phenylalanine. The mutation of 

Y1 (in region A) did not affect binding (Figure 14). At the time (before it was found 

that upstream sites were inadvertently included in region A), this indirectly implicated 

the PESP motif as being responsible for the requirement of region A for binding since 

it was the only other motif in region A (Figure 14). When Y2 (in region B) was 

changed to phenylalanine, there was a drastic reduction in binding. When the other 

two potential binding sites in region B, Y3 and Y4, were mutated in combination, 

there was no effect on binding. Thus, it was concluded that the PESP and Y2 sites of 

DInR were the putative Dock binding sites. However, the recent realization that 

upstream sites were included in region A raises doubt about the PESP requirement for 

binding (see above).  

 

6.2  Experimental design 

 The in vitro studies by Poltilove et al. (2000) and D. Guo (summarized above) 

showed which motifs were important for interaction between DInR and Chico, or 

between DInR and Dock, respectively. However, these in vitro studies are only 

suggestive, as protein-protein interactions in vivo may be influenced by the cellular 

environments in which the proteins are endogenously expressed. They further cannot 

provide evidence that the motifs are required for specific functions of DInR in growth  
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Figure 14. Identification of sites on DInR that are required for 

binding to Dock. (A) Various deletion constructs of DInR were tested 

by yeast two-hybrid for their ability to bind Dock. Deletion of regions 

C and D together did not decrease binding to Dock (AB/Dock), as 

compared to the control (DinR/Dock). Deletion of region A in addition 

to regions C and D abolished binding to Dock (B/Dock). Deletion of 

region B in addition to regions C and D also abolished interaction with 

Dock (A/Dock). (B) Individual potential binding sites on DInR were 

mutated in order to test their requirement for Dock binding. Mutation 

of the first tyrosine in region B of DInR severely decreased binding to 

Dock (B1/Dock). This experiment was designed and performed by    

D. Guo. 
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control through Chico or axon guidance through Dock. Although in vitro explant or 

cell culture experiments could provide such evidence, we reasoned that in vivo 

experiments, which are feasible using the many genetic techniques and assays that 

have been developed for the Drosophila melanogaster model system, would provide 

the most convincing evidence since the natural developmental and physiological 

milieu would be present. 

 For our experimental approach, we used the GAL4/UAS system developed by 

Brand and Perrimon (1993). This system allows targeted gene expression in the 

tissues and developmental stage(s) of the experimenters’ choosing. In essence, the 

expression of the yeast GAL4 transcription factor is directed by a Drosophila 

regulatory element. GAL4 will bind to its upstream activating sequence (UAS) and 

drive expression of the desired gene product, the sequence of which has been placed 

downstream of the UAS. For our experiments, we used the arm-GAL4 driver (Sanson 

et al., 1996), which drives expression ubiquitously during multiple stages of 

development, and have placed dinr constructs with various deletions or point 

mutations downstream of the UAS (Materials and Methods). A full-length dinr 

contruct was used as the positive control.  UAS-lacZ was used as the negative control. 

 The experimental design was to add back the mutant DInR being tested to the 

dinr mutant background. For my experiments, I used the dinrex15/273 mutant 

background. The dinrex15/273 transheterozygotes carry one copy of the dinrex15 null 

allele and one copy of the dinr273 weak hypomorphic allele. Although using the 

dinrex15/ex15 mutant background would have been a “cleaner” background to use, I was 
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unable to rescue the adult lethality of this mutant using several control dinr constructs 

that I tested.   

D. Guo cloned dinr, made a full-length Myc-tagged UAS-dinr construct, and 

subcloned the following Myc-tagged mutant dinr constructs: UAS-dinr(KA),        

UAS-dinr(Y1F), UAS-dinr(Y2F), UAS-dinr(Y1F,Y2F), UAS-dinr(PESP→LESL), 

UAS-dinr(LESL,Y2F), UAS-dinr(Y7F), UAS-dinr(Y8F), UAS-dinr(Y9F), UAS-

dinr(Y10F), UAS-dinr(Y7,8,9,10F), UAS-dinr(ΔAB), UAS-dinr(ΔABC), and UAS-

dinr(ΔCD). When I became involved in this project, my first task was to subclone 

these three Myc-tagged mutant dinr constructs: UAS-dinr(ΔC-tail), UAS-dinr(JM-

NPFF), and UAS-dinr(5NPXF). As I was in the process of subcloning the UAS-

dinr(ΔC-tail) construct, it became apparent that the sequence defined as being part of 

“region A” included a region upstream of the start of the C-tail. Thus, all the 

constructs where region A was deleted, including my ΔC-tail construct, which I 

finished subcloning but did not test in the rescue experiments, were missing potential 

binding sites upstream of the C-tail. 

 The main predictions of the rescue experiments were that transgenes carrying 

mutations in Chico binding and/or interaction sites (since the juxtamembrane NPFY 

motif was shown by Poltilove et al. (2000) to be required for the efficient 

phosphorylation of Chico by DInR) would 1) fail to rescue growth defects, but         

2) allow rescue of axon guidance defects. In contrast, transgenes carrying mutations 

in Dock binding sites would 3) allow rescue of growth defects, and 4) fail to rescue 

axon guidance defects. 
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 The genetic crossing scheme to generate the stocks to be used for the rescue 

experiments is described in the Materials and Methods section. Some flies generated 

during the crossing scheme were sickly and I was unable to generate the final stocks 

for the respective transgenic constructs. Also, some final stocks were very difficult to 

maintain and died out completely and unexpectedly. 

 The cross for the experiments to test rescue of the lethality and growth defect 

of dinrex15/273 transheterozygotes was as follows (UAS-X represents the dinr control or 

mutant transgene being tested):  

 
armGAL4 ;   FRT82Bdinr273    virgin ♀   ×           UAS-X         . ;           dinrex15         ♂  
armGAL4   TM3Sb,armGFP                           UAS-X (or CyO)     TM3Sb,armGFP  
 

The possible genotypes and phenotypes from this cross are as follows.  Note 

that flies carrying 2 copies of the TM3Sb,armGFP balancer are lethal.  

 

1) ; armGAL4 ; FRT82Bdinr273                    non-Sb phenotype 
        UAS-X            dinrex15 
 
2) ; armGAL4 ; FRT82Bdinr273                      Sb phenotype because of the presence of  
        UAS-X       TM3,armGFP                     the third chromosome balancer  
 
3) ; armGAL4 ;        dinrex15     .                   Sb phenotype because of the presence of 
        UAS-X       TM3,armGFP                     the third chromosome balancer 
 

 

If each of the above genotypes were fully viable, then each would comprise 

33% of the total progeny population. Adult flies of the genotype FRT82Bdinr273/ 

dinrex15 are usually adult lethal; if this lethality was fully rescued by the UAS-X 

transgene being tested, then 33% of the total progeny would be non-Sb. 
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For each UAS-X transgene tested, the ability to rescue adult lethality was 

determined. If adult lethality was rescued, then the rescue of growth defects in adults 

was possible to assess. 

 The cross for the experiments to test for rescue of the photoreceptor axon 

guidance defects of dinrex15/273 transheterozygotes was similar to the above, except 

that the 3rd-chromosome balancer used was TM6BTb,GFP, which is marked with Tb 

and GFP to allow for selection of larvae. FRT82Bdinr273/dinrex15 larvae would be 

non-Tb and GFP-negative.  

 
 
6.3  Results 
 
6.3.1  Binding sites important for viability  
 
 As expected, the negative control, UAS-lacZ, completely failed to rescue the 

adult lethality of the dinrex15/273 transheterozygotes, yielding 0% adults that were non-

Sb (Table 1). Similarly, UAS-dinr(KA), which is a kinase-dead version of dinr, failed 

to rescue, demonstrating that DInR kinase activity is necessary for in vivo function.  

Also as expected, the wild type UAS-dinr transgene completely rescued adult 

lethality, yielding 37% adults that were non-Sb (Table 1). Mutations that completely 

failed to rescue lethality, and thus indicate that the mutated sites are important for 

viability, were: Y1F, ΔAB (two lines tested), and ΔABC. Since Y1 is situated in 

region A, the absence of Y1 in the transgenes containing ΔAB and ΔABC likely 

accounts for their failure to rescue lethality. Mutations that partially rescued lethality, 

and thus indicate that the mutated sites are less important for viability, were: Y9F, 

Y7,8,9,10F (each of the mutated tyrosines are in the NPXY motifs of the C-tail), 



 

 74

 

 
 Table 1. Ability of UAS-dinr proteins to rescue the adult lethality of dinrex15/273  

  mutant transheterozygotes. 
 

Rescue construct % that were non-Sb 
(viable dinrex15/273 
adults) 

% that were Sb 
(viable dinrex15/+ 
or dinr273/+ adults) 

Total # of 
flies scored 

UAS-lacZ 0 100 237
UAS-dinr 37 63 785
UAS-dinr(KA) 0 100 34
UAS-dinr(Y1F) 0 100 245
UAS-dinr(Y2F) 8 92 153
UAS-dinr(Y1F,Y2F) (11) (89) (9)
UAS-dinr(LESL) 42 58 177
UAS-dinr(LESL,Y2F) 11 89 254
UAS-dinr(ΔAB) #1 0 100 130
UAS-dinr(ΔAB) #2 0 100 112
UAS-dinr(ΔABC) 0 100 74
UAS-dinr(JM-NPFF) #1 32 68 73
UAS-dinr(JM-NPFF) #2 21 79 140
UAS-dinr(Y9) 16 84 145
UAS-dinr(Y7,8,9,10F) 11 89 235
UAS-dinr(ΔCD) 27 73 271
UAS-dinr(5NPXF) 21 79 246
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LESL and Y2F together (both putative Dock binding sites), 5NPXF (the mutated 

tyrosines were in the juxtamembrane NPXY motif and the four NPXY motifs in the 

C-tail), ΔCD (which lacks the 4 NPXY motifs in addition to two other tyrosines and 

two PXXP sites), and JM-NPFF (in which the tyrosine in the juxtamembrane NPXY 

motif was mutated). Partial rescue of lethality was seen for one of the two JM-NPFF 

lines, line #2. In contrast, line #1 fully rescued lethality. This discrepancy that was 

seen between the two lines may be because the transgenes containing the constructs 

inserted in different regions of the genome and thus might be expressed at different 

levels despite using the same GAL4 driver to drive their expression levels. However, 

expression levels of the two JM-NPFF lines were assayed and found to be similar 

(Figure 16). The LESL mutation (of one of the putative Dock binding sites, the PESP 

site) rescued lethality to a greater extent than the expected theoretical percentage. Not 

enough flies could be assessed for the UAS-dinr(Y1F,Y2F) rescue construct        

(Table 1). However, since the results indicated that the construct containing the Y1F 

mutation completely failed to rescue lethality, the Y1F,Y2F double mutant construct 

would not have been expected to be informative anyway. Strangely though, one out 

of the nine progeny was viable. 

   

6.3.2  Binding sites important for growth control 

 Compared to the control UAS-dinr rescue construct, the mean mass of adult 

males was not appreciably decreased by the mutation or deletion of the following 

sites in the mutant UAS-dinr rescue constructs: PESP in region A; Y2; PESP and Y2 

together; JM-NPFY (line #1); Y9; Y10; Y7,8,9,10; and region CD (Figure 15A). 
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Figure 15. Candidate binding sites in the DInR C-tail are required 

for whole animal growth control.  Mean mass (mg) of male (A) and 

female (B) adult dinrex15/273 flies expressing different UAS-dinr 

constructs. Error bars represent standard error. Sample numbers for 
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each rescue construct tested in males were: dinr control, 85; 

dinr(LESL), 10; dinr(Y2F), 5; dinr(LESL,Y2F), 4; dinr(JM-NPFF) #1, 

11; dinr(JM-NPFF) #2, 22; dinr(Y9F), 10; dinr(Y10F), 5; 

dinr(Y7,8,9,10F), 2; dinr(ΔCD), 27; dinr(5NPXF), 24; dinr control 

expressed in dinr mutant heterozygote siblings (labeled “dinr Sb”), 4.  

Sample numbers for each rescue construct tested in females were: dinr 

control, 32; dinr(ΔCD), 8; dinr(5NPXF), 9; dinr(5NPXF) expressed in 

dinr mutant heterozygote siblings (labeled “5NPXF Sb”), 3.  
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Figure 16. Analysis of expression levels of selected UAS-dinr 

control and mutant transgenes. The Myc-tagged dinr transgenes 

were expressed ubiquitously using the arm-GAL4 driver. Embryos 

expressing the transgenes were stained with an anti-Myc antibody and 

a fluorescently labeled secondary antibody. Mean levels of 

fluorescence intensity in photographed embryos were measured in 

Adobe Photoshop. Error bars indicate standard errors. 
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Unlike line #1 for the UAS-dinr(JM-NPFF) construct, line #2 of the same construct 

led to a sizable decrease in mean male mass (Figure 15A). As was seen for the rescue 

of lethality, line #2 gave weaker rescue of growth defects than line #1.  

There was a 50% decrease in the mean mass of adult males rescued by the 

UAS-dinr(5NPXF) construct compared to those rescued by the control UAS-dinr 

construct (Figure 15A). This decrease is very similar to the 55% decrease in body 

weight seen in chico mutant males (Bohni et al., 1999). Thus, it seems likely that the 

5 NPXY sites are responsible for most, if not all, of the control of growth by DInR 

that is mediated by Chico.  

 In females, there was a 52% decrease in the mean mass of adult females 

rescued by the UAS-dinr(5NPXF) construct compared to those rescued by the control 

UAS-dinr construct (Figure 15B). This was noticeably less than the 65% decrease in 

body weight measured in chico mutant females (Bohni et al., 1999). Interestingly, 

although the UAS-dinr(ΔCD) construct, which lacks the 4 NPXY sites in the C-tail in 

addition to 2 tyrosines and 2 PXXP sites, rescued the mean mass of adult males to the 

same level as the control UAS-dinr construct, this did not occur for adult females; 

instead, there was a 23% decrease in mean mass in females rescued by the UAS-

dinr(ΔCD) construct (Figure 15B). Thus, it is possible that another interaction site(s) 

in regions C and D, other than the 4 NPXY sites, may also be responsible for growth 

control through Chico in females. Since DInR is also involved in controlling female 

fertility (reviewed in Garofalo, 2002), an interplay between fertility and growth may 

be at work. 
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 Since it could be argued that the growth decrease in adult flies rescued by 

UAS-dinr(5NPXF) could be due to low expression of the transgene, the expression 

level of the transgene was measured and was found, in fact, to be comparable to the 

expression level of the control UAS-dinr transgene (Figure 16). Furthermore, the 

UAS-dinr(Y7,8,9,10F) transgene, which completely rescued growth, had a much 

lower expression level than the control UAS-dinr transgene (Figure 16). 

 

6.3.3  Binding sites tested for involvement in R-cell axon guidance control 

 Although J. Song generated the dinrex15 null allele (Song et al, 2003), he did 

not test whether it was viable in a heteroallelic combination with a weaker dinr allele.  

I tried raising dinrex15/273 transheterozygotes and found that they were viable at least to 

the third-instar larval stage – although they were severely developmentally delayed 

and smaller than WT – and so it was possible to assess photoreceptor axon guidance 

in these mutants. There was a gross disorganization of the photoreceptor axon 

targeting in both the lamina and medulla (Figure 17C,D). Clumps of axons were 

present above and in the lamina, and in the medulla. In general, the phenotypes in the 

dinrex15/273 eye-brain complexes (Figure 17C,D) seem to be more severe than those of 

dinr353/273 (Song et al., 2003). This is consistent with dinrex15 being a stronger loss-of-

function allele than dinr353. Since dinrex15/273 transheterozygotes are the dinr mutants 

with the strongest known photoreceptor axon guidance phenotype, these 

transheterozygotes were chosen as the genetic background to be used for the 

photoreceptor axon guidance rescue experiments. 
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Figure 17. dinrex15/273 transheterozygote photoreceptor axon 

guidance phenotype. Third-instar larval eye-brain complexes were 

stained with MAb24B10 in order to visualize differentiated 

photoreceptors and their axons. Imaging was done with DIC optics and 

a 40× objective. (A, B) Control eye-brain complexes of the genotype 

w1118. The specimen shown in (B) is at a later stage of development 

than that shown in (A). The rip in the medulla in (B) resulted during 

sample preparation. (C, D) dinrex15/273 transheterozygote eye-brain 

complexes.  
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For all of the rescue constructs tested: the control UAS-dinr construct,      

UAS-dinr(LESL), in which one of the putative Dock binding sites was mutated,    

UAS-dinr(Y2F), in which the second putative Dock binding site was mutated,      

UAS-dinr(LESL,Y2F), in which both putative Dock binding sites were mutated, and 

UAS-dinr(5NPXF), which was hypothesized to only affect growth and not axon 

guidance, photoreceptor axon guidance appeared relatively normal (Figure 18A-E). 

 

6.4  Discussion 

The experiments described here were conducted in order to understand better 

how a highly pleiotropic gene, dinr, is involved in a highly precise developmental 

process, namely photoreceptor axon guidance, and other processes such as viability 

and growth. The mutation of the PESP site in region B did not decrease viability. The 

mutation of Y1 led to complete lethality, whereas the mutation of Y9 alone, 

Y7,8,9,10 (which are each in NPXY motifs) together, Y7,8,9,10 and the 

juxtamembrane NPXY motif together, and the juxtamembrane NPXY motif only 

(which was seen for only one of the two lines) led to partial lethality. Since all of the 

potential binding sites for downstream signaling proteins were not tested for their 

requirement for viability, it is possible that other required sites exist.   

The mutation of the 5NPXY sites led to a severe decrease in the mean mass of 

adult males and likely accounts for most, if not all, of the Chico-mediated control of 

growth by DInR. Although the mutation of the 5NPXY sites also severely decreased 

the mean mass of adult females, this decrease does not completely account for the 

decrease in body weight seen in chico mutant females. Since the deletion of regions C  
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Figure 18. Photoreceptor axon guidance was not disrupted when 

putative Dock binding sites were mutated individually or in 

combination.  Third-instar larval eye-brain complexes were stained 

with MAb24B10 and imaged with DIC optics and a 40× objective. 

Shown is the rescue of the axon guidance defects of the dinrex15/273 

background with the following constructs: (A) UAS-dinr control;      

(B) UAS-dinr(LESL); (C) UAS-dinr(Y2F); (D) UAS-dinr(LESL,Y2F); 

(E) UAS-dinr(5NPXF). 
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and D together led to a noticeable decrease in mean mass, there might be another 

binding site(s) in these regions that is also important for growth control in females. 

Mutating the two putative Dock binding sites individually (Figure 18B,C) or 

in combination (Figure 18D) did not disrupt R-cell axon guidance . It is possible that 

another site(s) exists that must  be mutated along with the two putative Dock binding 

sites in order to affect axon guidance. These sites could be the two tyrosines or the 

PXXP motif upstream of the C-tail that were inadvertently deleted in the ΔA 

constructs, since the deletion of this upstream region and region A together abolished 

binding between DInR and Dock in D. Guo’s yeast two-hybrid experiments (Figure 

14). The PESP motif that was thought to account for region A’s requirement in 

binding is only conserved in 4 of the 12 sequenced Drosophila species (Figure 13D), 

while the Y2 motif that likely accounts for region B’s requirement in binding is 

conserved in all 12 of the Drosophila species (Figure 13E). The two tyrosines that 

were inadvertently deleted are conserved in all 12 of the Drosophila species (Figure 

13B), so they likely explain region A’s requirement for binding; the PXXP motif that 

was also inadvertently deleted is only weakly conserved (Figure 13B). An alternative 

possibility is that the other two tyrosines in region B, Y3 and Y4, might act 

redundantly with Y2 and/or the PESP motif in region A in order to control 

photoreceptor axon guidance. An experiment that would indicate whether 

autophosphorylated tyrosines on DInR are actually required for photoreceptor axon 

guidance control would be to test whether the UAS-dinr(KA) construct, which lacks 

kinase activity, can rescue the photoreceptor axon guidance defects of dinr mutant 

transheterozygotes. If there is failure to rescue, this would suggest that another 
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tyrosine residue, in addition to Y2, must be autophosphorylated for proper 

photoreceptor axon guidance to occur. However, if there is rescue, then this would 

suggest that no tyrosines are required, and also that more than one PXXP site, since 

mutation of only the PESP site had no effect on photoreceptor axon guidance, act 

redundantly in photoreceptor axon guidance.     

None of the constructs containing ΔA in combination with another deletion   

(a fly line containing a construct with ΔA alone had not been generated) rescued 

viability in the in vivo rescue experiment. This can be explained by the absence in 

these constructs of Y1, which was shown to be required for viability. However, the 

sites upstream of the C-tail that were inadvertantly removed in these constructs might 

also be required for viability. Furthermore, it is possible that the same potential 

binding motifs that are required for viability are also required later in development for 

proper R-cell axon guidance. In order to test this, one would need to provide a rescue 

construct containing the unmutated binding motif, that is hypothesized to be required 

for viability and R-cell axon guidance, during earlier development in order to allow 

viability to the stage when R-cell axon guidance occurs, at which time, one would 

need to switch to providing a rescue construct containing the mutated binding site to 

see whether there are disruptive effects on R-cell axon guidance. A single system to 

drive the expression of two different transgenic constructs during different 

developmental stages of a single organism is not yet available for the Drosophila 

model system. However, one could try using the temperature-sensitive GAL80 

system, in which the GAL80 molecule is a repressor of GAL4 at permissive 

temperatures (reviewed in McGuire et al., 2004), to control the expression of one of 
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the constructs (e.g. the unmutated construct) and use the hormone-inducible Gene-

Switch system (reviewed in McGuire et al., 2004) to control the expression of the 

other construct (e.g. the mutated construct). An alternative approach would be to 

mutate the binding motif directly by homologous recombination (reviewed in Rong, 

2002), a technique that has recently become more widely used for Drosophila studies. 

Then one could rescue viability during earlier development by providing the full-

length, unmutated DInR rescue construct either by using 1) a GAL4 driver that drives 

expression only during earlier development, or 2) by using a GAL4 driver that drives 

expression during all stages of development and by using temperature-sensitive 

GAL80 to repress the expression of the unmutated DInR rescue construct precisely at 

the time when one wants to test the binding motif mutation. 

Although the binding sites on DInR that control photoreceptor axon guidance 

were not identified in this study, we did discover that mutation of the five NPXY sites 

greatly decreased growth, but had no effect on photoreceptor axon guidance. Thus, 

these results indicate that the sites responsible for growth control are different than 

the sites responsible for photoreceptor axon guidance control. 
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Chapter 7: Conclusions and Future Perspectives 

 

7.1  Identifying the ligand(s) for DInR in directing photoreceptor axon guidance 

 The discovery that DInR is required for proper photoreceptor axon guidance 

(Song et al., 2003) led to the obvious question of: what ligand activates DInR in order 

to control this process? The candidate ligands were the seven putative ligands for 

DInR, dilps 1-7 (Brogiolo et al., 2001). This hypothesis was tested through gain-of-

function and loss-of-function experiments. An unexpected finding of these 

experiments was that none of the seven dilps seem to be necessary for photoreceptor 

axon guidance. Mutants lacking dilps 1-5 in combination, or dilp6 and dilp7 

individually, showed normal overall photoreceptor axon guidance. Mutation of a 

ligand(s) that acts through DInR in order to control photoreceptor axon guidance 

would be expected to lead to the same severely disrupted axon guidance phenotype as 

was seen in dinr mutant transheterozygotes.  

It remains a possibility that the dilps may actually be involved, but that the 

correct combination of dilps was not examined; the largest combination of dilp 

mutations examined was for dilps 1-5. As discussed in Chapter 3, it would be worth 

testing a mutant lacking dilp1, -4, and -7 to determine whether these genes regulate 

photoreceptor axon guidance in a redundant manner. Another possibility is that 

another molecule actually serves as the ligand. In such a case, biochemical 

approaches or genetic screens could lead to the identification of the ligand.  
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7.2  Allometry depends on dilp1, -2, -3, -4, and/or -5 

 Allometry was disrupted in the Df[dilp1-5] mutant, thus implicating dilp1,      

-2, -3, -4, and/or -5 in the control of allometry. Examining smaller combinations of 

these dilps would allow the specific dilp(s) that controls allometry to be identified. 

Once the specific dilp(s) is identified, genetic interaction or epistasis experiments 

could be carried out in order to confirm that the dilp(s) controls allometry through the 

DInR and Chico signaling pathway. Furthermore, the five NPXY sites on DInR, 

which were shown to be required for growth control by DInR (Chapter 6 of this 

thesis) could be tested for their requirement in controlling allometry, which is a 

special case of growth control since different body parts grow differently relative to 

each other or relative to the entire body of the animal (reviewed in Shingelton et al., 

2007). 

 

7.3  Developmental delay is not a factor underlying photoreceptor axon guidance 

defects 

 Wild type and control eye-brain complexes at an early stage of development 

displayed photoreceptor axon targeting that was ordered and that did not resemble the 

disrupted phenotype of the dinr mutant transheterozygotes at a later stage of 

development. Thus, the future study of dinr mutant transheterozygotes does not have 

to take developmental delay into account as a factor underlying these mutants’ 

photoreceptor axon guidance defects. 
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7.4 Functional dissection of the signaling domains of the Drosophila insulin 

receptor 

 The panel of dinr control and mutant rescue constructs made primarily by     

D. Guo, and to which I contributed two constructs, allowed the identification of 

binding sites on DInR important for viability and growth control. Most strikingly for 

the viability rescue experiments, mutation of Y1, the first tyrosine residue in the      

C-tail, led to a complete failure to rescue the adult lethality of dinrex15/273 

transheterozygotes (Table 1). This suggests that the DInR Y1 site binds to an 

unidentified adaptor protein or other downstream signaling component. The 

unidentifed protein is probably not Chico nor Dock because chico mutants and dock 

mutants can sometimes survive until adulthood; chico mutants are semi-lethal and 

dock mutants are mostly pupal-lethal (Bohni et al., 1999; Garrity et al., 1996). 

Furthermore, when the DInR Y1 site was mutated, there was no effect on the mutated 

DInR protein’s binding to Dock in a yeast two-hybrid assay (D. Guo, 

unpublished)(Figure 14), suggesting that the Y1 site is not required for Dock binding 

to DInR. A number of candidate DInR downstream signaling components other than 

Dock were identified by J. Song in his yeast two-hybrid screen for proteins that bind 

the intracellular domain of DInR (J. Song, unpublished). These candidate proteins 

could be tested by yeast two-hybrid for their ability to bind the DInR protein 

containing the Y1 site mutation; any proteins that showed a significant reduction in 

binding could then be tested by in vivo experiments for their requirement for 

viability. In this way, the downstream signaling pathway responsible for the 

requirement of DInR for viability could be identified. 
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 In the photoreceptor axon guidance rescue experiments, mutation of both 

putative Dock binding sites, the PESP site and Y2, individually or in combination, did 

not severely affect photoreceptor axon guidance (Figure 18B-D). Other sites on DInR 

may be required for controlling photoreceptor axon guidance, possibly by acting 

redundantly with the PESP site and/or Y2. 

In the growth rescue experiments, the five NPXY sites of DInR were shown to 

be required for the control of adult male and female growth by DInR (Figure 15). In 

order to confirm that growth control by the five NPXY sites is mediated through 

interaction with Chico, genetic interaction or epistasis experiments could be 

performed. Since the five NPXY sites were found to be dispensable for the control of 

photoreceptor axon guidance (Figure 18E), this leads us to conclude that DInR 

controls growth and photoreceptor axon guidance through different interaction sites. 

This is an important finding since it points to a strategy used by a pleiotropic cell 

surface receptor to control at least two of its different functions.  

 The panel of rescue constructs may be used to identify binding sites on DInR 

important for other developmental and physiological processes known to be 

controlled by DInR, by its upstream dilp ligands, or downstream signaling molecules. 

These processes include: sugar homeostasis (Belgacem and Martin, 2006), allometry 

(Shingleton et al., 2005), exit of neural stem cells from quiescence (Chell and Brand, 

2010), and female fertility (Chen et al., 1996). It would be interesting to see how 

much or how little overlap there is in DInR binding site requirements for these 

various processes. 
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