
ABSTRACT

Title of Dissertation: ON THE DIFFICULTY
OF BREAKING SUBSTITUTION CIPHERS:

Philip Wertheimer
Doctor of Philosophy, 2021

Dissertation Directed by: Professor Dmitry Dolgopyat
Department of Mathematics

We analyze different methods of attacking substitution ciphers using m-gram frequency

analysis. For m = 1 this amounts to studying symbol counts in random strings, and for m ≥ 2

we use the Markov Chain Monte Carlo method introduced by Diaconis [5]. Our study includes

both numerical simulations of the English language and theoretical analysis of random alphabets,

which are probabilistic constructions for studying the distribution of m-grams in random strings.

We present several results in the direction of explaining why the 2-gram method performs the

best in breaking the substitution ciphers.

ON THE DIFFICULTY
OF BREAKING SUBSTITUTION CIPHERS

by

Philip Wertheimer

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2021

Advisory Committee:
Professor Dmitry Dolgopyat, Chair/Advisor
Professor Maria Cameron
Professor Robert Gasarch
Professor Leonid Koralov
Professor Lawrence Washington

© Copyright by
Philip Wertheimer

2021

Acknowledgments

I am sincerely thankful for all the people who have helped make this thesis possible.

I’d like to thank my advisor, Professor Dmitry Dolgopyat for being an incredible mentor

throughout my graduate experience. He was flexible enough to allow me to choose my area of

study, and knowledgeable enough to apply his expertise in probability theory and large deviations

to a problem in cryptography. His patience and guidance, particularly during the last few years

of my graduate tenure, will never be forgotten.

I would also like to thank my other committee members. In particular, Professor Maria

Cameron who was extremely helpful in helping me build and troubleshoot the algorithm code,

and who was always willing to meet and provide feedback on my work.

I also owe thanks to the staff of the Mathematics department for helping ease the burden

of much of the administrative part of graduate life. Cristina Garcia was particularly helpful in

keeping me on track to graduate, whether it was with registration, submitting paperwork, or

assisting with choosing my Dean’s Representative.

Last but not least, my friends and family, many of whom were able to attend my defense

virtually. Your love and support helped me get to the finish line, and I am so glad to be able to

celebrate with all of you!

ii

Table of Contents

Acknowledgements ii

Table of Contents iii

List of Tables v

Chapter 1: Introduction 1
1.1 Cryptographic Background . 1
1.2 A Brief Summary of Main Results . 2
1.3 Markov Chain Monte Carlo . 4
1.4 Decrypting Substitution Ciphers with MCMC 5
1.5 Scoring Functions . 8
1.6 Empirical Analysis . 12

1.6.1 The Dictionary Method . 16

Chapter 2: The Best Scoring Permutation for English 18

Chapter 3: The Random Model 25
3.1 The Encounter Process . 26

3.1.1 The Probability of No Encounters . 27
3.1.2 Expected Minimum Distance . 28
3.1.3 Limiting Distribution of Number of Encounters 29
3.1.4 Limiting Distribution of The Encounter Process 35
3.1.5 Extended encounter process . 41
3.1.6 Symbol Frequencies in Random Alphabets 42
3.1.7 The Probability of Incorrect Orders . 44
3.1.8 The Best Scoring Permutation . 57

Chapter 4: The Random Model with Digram Scoring Function 63
4.1 Generating the frequencies . 63
4.2 The Best Scoring Permutation . 64
4.3 Gibbs Measure . 70

Chapter 5: Conclusion 76

Appendix A: Code 77
A.0.1 Metropolis Algorithm . 77

iii

Bibliography 83

iv

List of Tables

1.1 Correctness of Frequency Strings for Random Strings from War & Peace 14
1.2 Performance of MCMC Algorithm using Digram Scoring Function 16
1.3 Performance of MCMC Algorithm using Digram Scoring Function with Dictionary

Method . 17

2.1 Relative Frequency of English Letters . 19

v

Chapter 1: Introduction

1.1 Cryptographic Background

The substitution cipher is one of the most basic forms of encryption, achieved by applying

a permutation to the letters of an alphabet. For English this amounts to a permutation in S26
1

which may have the following effect:

a 7→ k

b 7→ y

...

z 7→ e

Denoting the alphabet by ℵ, the encryption key is the map σ : ℵ → ℵ used to scramble

the letters. The decryption key is the inverse map σ−1. The fact that the key space SN has N !

elements makes a brute force attack computationally infeasible. For example, the number of

permutations of the English alphabet is |S26| = 26! > 1027. However, the structure of the English

language can be exploited to find the correct key quite easily; because of this, these cryptosystems

1There are 26 letters in the English alphabet. If we consider the alphabet with spaces, punctuation, or special
characters, then the space of permutations will be larger.

1

are insecure and should be avoided in practice.

The standard approach 2 to breaking substitution ciphers uses frequency analysis: one

compares the frequencies of symbols occurring in the ciphertext (encrypted text) with the empirical

frequencies of English letters (or whichever language is being used). For instance, if the symbol

“k” appears most in the ciphertext, one would guess that the plaintext (unencrypted) symbol

corresponding to “k” is “e”, the letter that occurs most frequently in the English language.

This method can be enhanced by considering frequencies of digrams, or two letter strings.

For instance, the letters “s” and “r” are both relatively common in English, but the digram “sr”

is relatively uncommon. In general, one can consider m-grams - strings of m letters - to take

advantage of the structure and patterns in English, or whichever language is being used.

An interesting implementation of this strategy was first introduced by Marc Coram and Phil

Beineke in the Stanford statistical consulting service [5], and later studied more systematically by

Connor [3]. As outlined by Diaconis [5], digram frequency analysis can be used as the basis for a

Markov Chain Monte Carlo technique to decrypt substitution ciphers. The method is empirically

effective, but in general the algorithm’s success is dependent on the length of the text sample, and

the question of how much text is needed is unresolved.

1.2 A Brief Summary of Main Results

Our analysis of decrypting substitution ciphers using m-gram frequencies can be broken

into the following three questions:

1. Is it possible to decode the text given arbitrarily long text and infinite computing time?

2For a discussion of attacks on substitution ciphers and other basic ciphers, see [17]

2

2. How much text is needed for reliable decoding?

3. For which m is the algorithm most effective?

Intuitively, the answer to question 1 should be yes: as the length of text grows, one expects

the distribution of m-gram frequencies to approach the ”true” distribution3. Proposition 1.5.1

gives a rigorous ”yes” to question 1 by proving that asymptotically, distinct symbols can be

distinguished by the algorithm and that distinguishing different pairs of symbols occurs independently.

Questions 2 and 3 are more difficult. In order to gain some insight on these questions, we

introduce the concept of a random alphabet. This construction provides methods for generating

alphabets with random letter frequencies, and for producing random strings from these alphabets.

Section 3 analyzes random alphabets for m = 1; Section 4 does the same for m = 2. With this

construction, our main results give evidence that the algorithm is much more effective for m = 2

than m = 1, which is supported by the experiments in Section ??. The experiments perform

MCMC on varying lengths of text sampled from the novel War & Peace by Leo Tolstoy, and

record performance using metrics such as the number of decoded symbols, and whether or not

the algorithm visited the plaintext.

Before proceeding to the random model, we define the notion of a scoring function and

Section 2 proves that the highest scoring permutation for English is the transposition (xj). Intuitively,

this says that of all the permutations that can be applied to an English text, the result of applying

the transposition (xj) is a string that can most easily be deciphered using frequency analysis.

Section 3 contains a series of results that show that asymptotically, the highest scoring non-

identity permutation is a transposition τ ∗ and that the score of τ ∗ is 1/N5 close to that of the
3Of course there is no ”true” distribution of m-gram frequencies for a language. In practice, one takes a large

corpus of text (for example, millions of web pages found by scraping the internet) and uses the distribution found
therein.

3

identity. Intuitively, this means that for m = 1, the high-scoring non-identity permutations are

very hard to distinguish from the identity, thus it is harder for the algorithm to find the identity

(global max).

Section 4 explores the random model for m = 2. Theorem 4.1 proves that for m = 2,

transpositions are on the order of 1/N far from the identity, which implies that decoding is much

more reliable in this case. This provides a partial answer to question 3: that the algorithm for

m = 2 is more effective than for m = 1.

Our last main result is Theorem 4.3, which address question 2 and proves that if the length

of text is at least on the order of N lnN , then the identity has non-vanishing Gibbs measure. This

gives strong evidence that the algorithm will reliably reach the identity (or at least, a permutation

that is very close to it).

1.3 Markov Chain Monte Carlo

Monte Carlo methods utilize repeated random sampling to obtain numerical results. In

other words, they use randomness to calculate deterministic quantities. This often requires

sampling from complicated, high-dimensional distributions, which presents an issue for implementation.

Markov Chain Monte Carlo (MCMC) provides a way to handle this issue.

Given a state space X , let π be a probability distribution on X from which we wish to

sample (often referred to as the target distribution). In practice, efficient computation of π is not

possible e.g. π is high-dimensional. MCMC proceeds by defining a sequence (Xi) such that

lim
n→∞

P(Xn ∈ A) =

∫
A

π(x) dx (1.1)

4

In other words, for large n, the value Xn is an approximate sample from π. The MCMC

method we will use is the Metropolis-Hastings algorithm, first introduced in 1953 by Metropolis

et al. [11] then generalized by Hastings in 1970 [9]. The Metropolis algorithm creates a Markov

Chain (Xi) whose stationary distribution is π, and therefore which satisfies equation (1.1). Here

is the method [10]:

1. Start with a symmetric transition matrix Ψ4 i.e. Ψ(x, y) = Ψ(y, x) ∀x, y ∈ X

2. When at state x ∈ X , a candidate move is generated from the distribution Ψ(x, ·)

3. Suppose the proposed state is y ∈ X . Then with probability α(x, y) the move is accepted

and the chain moves to y; equivalently, the move is “censored” with probability 1−α(x, y),

in which case the chain remains at x for another step

It is easily shown that for α = min{π(y)
π(x)

, 1}, the distribution π is stationary for the chain.

Observe that in order to apply this method, we need only be able to compute ratios π(y)/π(x).

This extremely useful feature of the algorithm allows us to bypass computation of π, which

may involve an unwieldy normalization constant. Moreover, if there exists an easily computable

function f which is proportional to π, then we may use f in place of π in the algorithm. For

example, f could be an un-normalized version of π. We will herein refer to such an f as a

likelihood function or a scoring function.

1.4 Decrypting Substitution Ciphers with MCMC

Denote the plaintext by M and the ciphertext by C. Note that if M and C contain n

characters, then M,C ∈ ℵn. For a given C, the decryption method introduced by Diaconis [5]
4Section 1.4 explains our choice of Ψ

5

uses the Metropolis-Hastings algorithm to find a permutation σ ∈ SN for which it is likely that

M = σ(C). Here, the state space is X = SN and our target distribution π gives the probability

π(σ) that σ−1 was used to encrypt M . Note that π depends on M and n, but we will omit these

from the notation since we will not work with π directly.

Our scoring function will be denoted Hm(σ) and is given by multiplying the empirical

frequencies of all m-grams appearing in σ(C).

The algorithm works by performing a modified random walk on S26 (for English; or SN

for an alphabet with N symbols). Denote by S2
26 (S2

N , respectively) the set of transpositions:

permutations for which only two elements are swapped. Note that |S2
N | =

(
N
2

)
. The random

walk proceeds by proposing a uniformly chosen transposition from S2
26 to apply to the current

state. This can be summarized with the transition matrix Ψ given by

Ψ(σ1, σ2) =


1(
26
2

) ∃τ ∈ S2
26 s.t. σ1 = τσ2

0 otherwise

The steps of the random walk may only differ by a transposition to ensure that the walk does

not roam the state space too wildly. As explained above, if the proposed transposition produces a

permutation τσ whose score is higher, we accept the transposition and the chain proceeds to τσ.

If not, we flip a biased coin to decide whether to accept the move; the bias is given by the ratio

H(τσ)/H(σ). This ensures that the algorithm doesn’t get stuck at local maxima of H . Therefore

6

the Markov Chain used by the algorithm has transition matrix P defined by:

P (σ1, σ2) =



1(
N
2

) ·min

{
H(σ2)

H(σ1)
, 1

}
, ∃τ ∈ S2

26 s.t. σ2 = τσ1

1−
∑
σ 6=σ1

Ψ(σ1, σ) ·min

{
H(σ)

H(σ1)
, 1

}
, σ1 = σ2

0, otherwise

We now verify that this Markov Chain satisfies the necessary conditions of the Metropolis-

Hastings algorithm. First, note that Ψ is clearly symmetric because

∀σ1, σ2 ∈ SN ,∀τ ∈ S2
N , σ1 = τσ2 ⇔ σ2 = τσ1

Therefore if ∃τ ∈ S2
N with σ1 = τσ2, we have

Ψ(σ1, σ2) = Ψ(σ2, σ1) =
1(
N
2

)
and if σ1, σ2 do not differ by a transposition, we have

Ψ(σ1, σ2) = Ψ(σ2, σ1) = 0

Next, in order to ensure that (1.1) holds, we need to verify that the Markov chain is

irreducible (∀x, y ∈ X, ∃t s.t. P t(x, y) > 0) and aperiodic (every state x ∈ X satisfies gcd

{t > 0 : P(Xt = x : X0 = x) > 0} = 1)5. Irreducibility follows immediately from the fact that

5The greatest common divisor (gcd) of a set of integers is the largest positive integer that divides each of the
integers.

7

any permutation can be written as a product of transpositions6. Thus ∀σ1, σ2 ∈ SN , there exists

τ1, . . . , τk such that

σ2 = (σ2σ
−1
1)σ1 = (τ1 · · · τk)σ1

Therefore it is possible to transition to σ2 from σ1 in k steps. Finally, the chain is clearly aperiodic

because

P (σ, σ) > 0 ∀σ ∈ SN

1.5 Scoring Functions

For an alphabet ℵ = {α1, . . . , αN}, let Pm denote the probability measure on ℵm induced

by empirical m-gram frequencies. For example, P1(α1) gives the empirical frequency of the

symbol α1 and P2(α1α2) gives the empirical frequency of the digram α1α2. Note that the

measures Pm depend on the alphabet ℵ and, by definition, must be manually computed. One

popular method to compute the distributions Pm is by using a web crawler to scour billions of

pages on the internet, and count the frequencies of each symbol. More generally, one can perform

a similar analysis on any large (and hopefully, representative of the underlying language) corpus

of text. For this paper, we take Pm from Wikipedia; see Section 2 for the exact distribution for

the English language.

Given an n-symbol string s = s1 · · · sn, define the m-gram scoring function

Hm(s) =
n−m+1∑
i=1

lnPm(si, . . . , si+(m−1))

6This is a well known fact about permutation groups. See, for example, Dummit & Foote [6]

8

for n ∈ Z+. The 1-gram scoring function H1 is based purely on symbol frequencies; Diaconis

used the digram scoring function H2
7.

Our first result shows that this is the “correct” scoring function in the following sense: a

random string generated one symbol via repeated sampling from P1 will tend to have a higher

score than a string generated by any other process.

Proposition 1.5.1. Let m,N ∈ Z+ and let ℵ = {α1, . . . , αN} be an alphabet with N symbols.

Suppose s = s1 · · · sn is generated by sampling from P1 with replacement n times. Then for any

σ ∈ SN ,

lim
n→∞

P(Hm(s) > Hm(σ(s))) = 1

where σ(s) is the result of applying σ to s symbol-wise i.e. σ(s) = σ(s1) · · ·σ(sn).

Proof. We first prove the result for H1. Write

H1(s) =
N∑
i=1

Ni lnP1(αi)

where Ni is the count of the symbol αi in the string s. The Law of Large Numbers implies that

as n→∞

Ni/n
d→ P1(αi) (1.2)

7The original scoring function used by Coram & Beineke is a product of frequencies; we’ve computed this
function on the logarithmic scale for easier calculation and to avoid rounding errors.

9

Therefore

lim
n→∞

P(H1(s) > H1(σ(s))) = lim
n→∞

P

(
N∑
i=1

Ni lnP1(αi) >
N∑
i=1

Ni lnP1(σ(αi))

)
= 1

where the last equality uses (1.2) and the fact that by Gibbs Inequality8

N∑
i=1

P1(αi) lnP1(αi) >
N∑
i=1

P1(αi) lnP1(σ(αi)).

For m > 1, let IN = {1, . . . , N} and let ImN = IN × · · · × IN︸ ︷︷ ︸
m times

. Write

Hm(s) =
∑

~i=(i1,...,im)∈ImN

N~i lnPm(~i)

where N~i is the count of the m-gram αi1 · · ·αim in the string s. Note that many of the Nm terms

in the sum will have N~i = 0 since s has length n and so contains only n− (m− 1) m-grams.

The Law of Large Numbers implies that as n→∞

N~i
n−m+ 1

d→ Pm(~i) (1.3)

Therefore the same argument as above yields

8The Gibbs Inequality[7] says that if P = {p1, . . . , pn} is a probability distribution, then for any other probability
distribution Q = {q1, . . . , qn}, the following holds:

−
n∑

i=1

pi log pi ≤ −
n∑

i=1

pi log qi

10

lim
n→∞

P(Hm(s) > Hm(σ(s))) = lim
n→∞

P

∑
~i∈ImN

N~i lnPm(~i) >
∑
~i∈ImN

N~i lnPm(σ(~i))



= P

∑
~i∈ImN

Pm(~i) lnPm(~i) >
∑
~i∈ImN

Pm(~i) lnPm(σ(~i))

 = 1.

Although the states of the MCMC random walk are permutations, the functions Hm assign

a score to a string. However, each state σ ∈ SN corresponds to a string - namely σ(s), where s is

the plaintext.

In our analysis, we want to consider the score of a permutation without an underlying

string. The intuition for doing this is that some permutations of the alphabet typically lead to an

easier decryption, and we would like to think of these permuatations as having a high score. For

example, one would guess that the permutation (xj) which only transposes two symbols “x” and

“j” would lead to extremely decipherable text, because these symbols are very rare in English.

In other words, applying (xj) to an English string will likely produce a string that one can easily

decipher. In fact, we will prove in Section 2 that the transposition (xj) is indeed the “easiest to

decipher”.

To make this notion more precise, define the (string-agnostic) scoring function

H̃m(s) =
∑
~i∈ImN

Pm(~i) lnPm(~i) (1.4)

The Law of Large Numbers motivates this definition as in the proof of Proposition (1.5.1).

11

One may notice that H̃m is in fact equal to the negative entropy of the distribution Pm. In sections

3 and 4, we use H̃m to compare the theoretical effectiveness of MCMC decryption for m = 1 vs.

m = 2.

1.6 Empirical Analysis

For m = 1, the maximal value of H1 is achieved by the permutation which orders the

ciphertext symbols with the ordering as in English. Therefore, Monte Carlo is not needed; to

decrypt, one needs only count the frequencies of each symbol occurring in the ciphertext and

compare this to the frequencies of English letters. The following string gives the empirical

ordering of the letters of the English alphabet along with the space symbol [19]:

“ etaonihsrdlumcwfgypbvkxjzq” (1.5)

Thus, the space symbol occurs more frequently than any letter, and the most common letters

are (in order) “e”, “t”, “a”, etc. We will refer to such strings as frequency strings. So, for example,

if the frequency string of a given ciphertext is

“gtkeazuqhspvicm dflnywrobx”

then H1 is maximized by σ∗ ∈ S27 defined by

g 7→ [space symbol]

12

t 7→ e

. . .

x 7→ q

Note that we included the space symbol in the alphabet so our state space is now S27.

Because the space symbol occurs most frequently, it is the easiest to decipher. Therefore its

inclusion in the alphabet does not generally affect the success of the algorithm; we include it as a

matter of preference and to be consistent with Diaconis [5].

Now, because we can always find a maximal permutation (under the measure induced

by H1) by counting frequencies, the success of the method is completely determined by the

frequency string of the plaintext. In particular, if a given plaintext M has the frequency string

given in (1.5), then (σ∗)−1(C) = M for any ciphertext C which was obtained using a substitution

cipher on M . In general, the number of coincidences between the two frequency strings gives the

number of correctly decoded symbols.

In practice, if all except, say, 4 or 5 symbols are correctly decoded, a human can likely look

at the resulting text and decipher it. But if there are many incorrectly decoded symbols, there is

little to no hope of recovering the plaintext M . Thus, the success of decryption when m = 1 is

completely tied to the frequency string of the plaintext.

Python code9 was written to obtain data about frequency strings. For various values of L,

we took random samples of text of length L10 from the (famously long) novel War & Peace by

Leo Tolstoy[16] and computed their frequency strings. We then counted the number of matches

9See Appendix A
10For context, the typical length of an English word is 4.7 [12], and a printed novel typically contains 300 words

per page. Therefore, one page corresponds to roughly 1,400 characters.

13

with (1.5) and divided by 27 to get a proportion κ, which we may view as the correctness of the

string. For each L, this was performed 1000 times to obtain average values κavg. Multiplying this

proportion by 27 gives the number of symbols that will be correctly decoded.

Table 1.1: Correctness of Frequency Strings for Random Strings from War & Peace
L κavg 27 · κavg

100 0.16 4
1,000 0.31 8

10,000 0.47 13
100,000 0.66 18

1,000,00011 0.82 22

As expected, the correctness grows with L. However, even for large L, we are only able

to correctly decode 22 of 27 symbols. For smaller L, decryption is near hopeless. It is clear that

this method is unreliable.

One weakness of frequency strings is that they are very linked to the author and text source.

For example, the protagonist of War & Peace is named Rostov, so the text contains a large number

of the symbol “v” relative to most English text. This observation leads to a potential method of

establishing authorship of a text source, a topic which we will not explore further in this text. The

interested reader may consult, for instance, Chen et. al [2]. We remark, however, that the full text

of War & Peace does have frequency string equal to that in (1.5).

The performance above is consistent with the theoretical analysis in Section 3, which will

indicate that L need be on the order of 10,000,000 to consistently produce values of κ near 1.0.

We next examine the case m = 2. Python code was written to implement the Metropolis

algorithm outlined in the previous section. We took portions of text from War & Peace [16] of

varying lengths L, sanitized them by removing all non-alphabetic characters (except the space

11The number of characters in War and Peace, after sanitized by removing all non-alphabetic characters except
the space symbol, is 3,068,166. Therefore samples of this size account for nearly 1/3 of the entire novel.

14

symbol), applied a random substitution cipher to the plaintext, and ran the algorithm. We also

varied the number of steps the algorithm could take. The table below is based off the maximally

scoring permutation σ∗ visited by the algorithm during the allotted steps. Note: this was used

instead of the value of the state where it ended since the chain could easily visit a maximizing state

but then leave. In practice, one could have the program remember the top 5 or 10 permutations,

then have a human look them over.

The following table summarizes the results of the experiments. The columns are defined as

follows:

• L: length of random string to sample

• Step Limit: the number of iterations of MCMC to run in each experiment

• Unique Letters: the average number of unique English letters appearing in the random

string, over the 1,000 experiments

• Decoded Letters: the average number of letters correctly decoded by σ∗, over the 1,000

experiments

• Decoded Symbols: the average number of symbols (out of L) correctly decoded by σ∗,

over the 1,000 experiments. Note that we would expect (and do see) this to be higher than

”Decoded Letters” because the algorithm will likely correctly decode symbols that appear

more frequently

• Plaintext Visited: the number of experiments (out of 1,000) during which the plaintext was

visited

15

• Plaintext Best: the number of experiments (out of 1,000) during which the identity map

was the highest scoring state

Table 1.2: Performance of MCMC Algorithm using Digram Scoring Function

L
Step
Limit

Unique
Letters

Decoded
Letters

Decoded
Symbols

Plaintext
Visited

Plaintext
Best

100 2,000 20.6 5.7 44.0 1 0
100 10,000 20.7 6.7 49.0 0 0
500 2,000 24.2 16.7 398 21 20
500 10,000 24.2 18.1 418.0 52 43
500 30,000 24.2 18.5 426 47 41

1,000 2,000 25.1 21.0 897 111 106
1,000 10,000 25.1 21.5 914 135 121
1,000 30,000 25.1 21.6 915 138 122
5,000 2,000 26.8 25.8 4869 694 687
5,000 10,000 26.8 26.3 4950 834 820
5,000 30,000 26.8 26.1 4923 807 782

10,000 2,000 27 26.5 9880 851 850
10,000 10,000 27 26.8 9928 959 959

Clearly, the MCMC algorithm greatly outperforms the naive m = 1 method. Furthermore,

significantly less text is needed for high rates of success. Both Connor [3] and Chen & Rosenthal

[1] found that with a ciphertext length of 2,000 characters, the algorithm had a greater than 99%

success rate after approximately 10,000 iterations. We obtained similar results with our code, and

will show that these results are consistent with the theory for random alphabets.

1.6.1 The Dictionary Method

Because the MCMC process is tied to the underlying language of the text, it is reasonable

to wonder if we can use knowledge about the language to improve the algorithm further. We

modified the above algorithm to impose penalties (rewards) for states that contained a lower

(higher) number of correct 2 and 3 letter words - the ”Dictionary Method”.

16

To perform this, we compute a multiplier at each step of the random walk. This multiplier

is computed as

MULTIPLIER = 1 + (β) ∗ [nincorrectwords(curr)− nincorrectwords(proposed)]

where β is a factor that determines the severity of the reward.12

We then multiply the acceptance probability α by the multiplier. Because the random

walk will likely start in a state where the corresponding text is complete gibberish, we allow

the algorithm to run for a while before using the method. For Step Limit of 2, 000, we started

imposing the method after 1, 000 steps; for Step Limits of 10, 000 and 30, 000 we started after

5, 000 steps.

This method greatly improved the algorithm, as shown in the following table.

Table 1.3: Performance of MCMC Algorithm using Digram Scoring Function with Dictionary
Method

L
Step
Limit

Unique
Letters

Decoded
Letters

Decoded
Symbols

Plaintext
Visited

Plaintext
Best

100 2,000 20.6 6.1 48.1 1 0
100 10,000 20.7 7.2 52.3 2 0
500 2,000 24.2 20.7 502 134 22
500 10,000 24.2 23.1 523 171 40
500 30,000 24.2 18.5 426 175 42

1,000 2,000 25.1 22.8 897 205 108
1,000 10,000 25.1 22.9 956 421 115
1,000 30,000 25.1 23.1 971 460 112
5,000 2,000 26.8 25.8 4869 694 659
5,000 10,000 26.8 26.5 8950 904 810
5,000 30,000 26.8 26.6 9023 912 775

10,000 2,000 27 26.7 9970 972 867
10,000 10,000 27 26.9 9998 1000 940

12Determining an appropriate value of β was a manual process; we experimented with β = B ∗ 0.01 for B =
1, . . . , 10. For low values of β, the severity was too low and the performance of the algorithm was very similar to that
of Table 2. For higher values of β, too much influence was given to the dictionary words, which caused performance
to degrade. Ultimately we settled on the value β = 0.05, which is what was used to generate the results in Table 3.

17

Chapter 2: The Best Scoring Permutation for English

The main results of the thesis pertain to random alphabets where asymptotic expansions

in N (the number of letters) could be employed. The analysis of English (or any other specific

language) is more difficult. In the present section we present one rigorous result for English.

Namely we show that the highest scoring non-identity permutation is the transposition (xj). The

proof relies on both analytic estimates, some of which will be used extensively elsewhere in our

work (see, in particular, inequality (2.2)) as well as a brute force analysis of a small number

of cases. In the case of random alphabets the brute force analysis is replaced by probabilistic

estimates (large deviations). It is possible that some other results proven in this work for random

alphabets could be extended to English, however, a number of cases which needs to be considered

by hand is much larger, so optimized computer code may be required.

To obtain results for English, we used symbol frequencies provided by Wikipedia [19]. We

list these frequencies below for reference:

For σ ∈ SN we seek to bound the difference H̃(id)− H̃(σ). Proposition 1.5.1 states that

H̃(id) ≥ H̃(σ) ∀σ ∈ SN

so that the difference is positive. Note that a high value of the difference indicates that σ has a

low score, since its score is far from that of the identity, which is maximal.

18

Table 2.1: Relative Frequency of English Letters
a .08167 j .00153 s .06327
b .01492 k .00772 t .09056
c .02782 l .04025 u .02758
d .04253 m .02406 v .00978
e .12702 n .06749 w .02360
f .02228 o .07507 x .00150
g .02015 p .01929 y .01974
h .06094 q .00095 z .00074
i .06966 r .05987

Let Ni denote the count of symbol i. By the Law of Large Numbers,

Ni

n
→ P1(αi)

Writing pi = P1(αi), we may express the difference as

H̃1(id)− H̃1(σ) = −
N∑
i=1

pi ln
pσ(i)

pi
= −

N∑
i=1

pi ln

(
1−

pi − pσ(i)

pi

)
(2.1)

We break the sum into three components, based on the value of

ai :=
pi − pσ(i)

pi
= 1−

pσ(i)

pi

Define the following sets:

I1 = {i : ai ∈ (−1, 0)} =

{
i : 1 <

pσ(i)

pi
< 2

}

I2 = {i : ai ∈ (0, 1)} =

{
i : 0 <

pσ(i)

pi
< 1

}

19

I3 = {i : ai < −1} =

{
i :
pσ(i)

pi
> 2

}

We will refer to the terms in Ij as being of Type j. Observe that the Type 1 and Type 2

terms are those for which the Maclaurin series of ln (1− x) converges as

−
∑
i∈I1

pi ln

(
1−

pi − pσ(i)

pi

)
= −

∑
i∈I2

pi ln

(
1−

pi − pσ(i)

pi

)
=
∑
i

pi

∞∑
n=1

ani
n

For the Type 1 sum, we use the following Lemma:

Lemma 2.0.1. For x ∈ (0, 1),

x− ln (1 + x)

x2
> 1− ln 2

Proof. Denoting the left hand side by f(x), we have f ′(x) < 0 for all x, so that f is decreasing

everywhere. This means for x < 1, f(x) > f(1) = 1− ln 2.

For the Type 1 terms, −ai ∈ (0, 1) so we obtain the bound

−
∑
i∈I1

pi ln

(
1−

pi − pσ(i)

pi

)
= −

∑
i∈I1

pi ln

(
1 +

pσ(i) − pi
pi

)

>
∑
i∈I1

pi

[
(1− ln 2)

(
pσ(i) − pi

pi

)2

−
pσ(i) − pi

pi

]

=
∑
i∈I1

(1− ln 2)
(pi − pσ(i))

2

pi
+ (pi − pσ(i))

20

For the Type 2 sum, all terms in the Maclaurin series are positive, so we have the lower bound

−
∑
i∈I2

pi ln

(
1−

pi − pσ(i)

pi

)
>
∑
i∈I2

pi

[
ai +

a2
i

2

]

=
∑
i∈I2

(pi − pσi) +
(pi − pσ(i))

2

2pi

>
∑
i∈I2

(pi − pσi) + (1− ln 2)
(pi − pσ(i))

2

pi

We rewrite the Type 3 sum as

−
∑
i∈I3

pi ln

(
1 +

pσ(i) − pi
pi

)

For x > 1, observe that the function f(x) = x− ln (1 + x) satisfies

f ′(x) = 1− 1

1 + x
> 0

so that for x > 1 we have

f(x) > f(1) = 1− ln 2

Applying this fact with

x =
pσ(i) − pi

pi
> 1

21

yields

−
∑
i∈I3

pi ln

(
1 +

pσ(i) − pi
pi

)
>
∑
i∈I3

pi

(
2− ln 2 +

pi − pσ(i)

pi

)

=
∑
i∈I3

(2− ln 2)pi − pσ(i)

=
∑
i∈I3

(1− ln 2)pi

Combining the above results, we obtain

H̃1(id)− H̃1(σ) > (1− ln 2)

[∑
I1∪I2

(pi − pσ(i))
2

pi
+
∑
I3

pi

]
(2.2)

With this bound, we can prove the following Theorem.

Theorem 2.0.2. For the English language,

H̃1(xj) = max
σ∈S26\{id}

H̃1(σ)

In other words, the highest scoring permutation for H̃1 is the transposition σ = (xj).

Proof. We start by computing H̃1(τ) for each transposition τ ∈ S26, and immediately find that the

(approximate) value of 5.9 · 10−7 corresponding to (xj) is minimal. Now, suppose that H̃1(σ) <

H̃1(xj). From the above bounds, we have

H̃1(σ) > (1− ln 2)(|I1 ∪ I2|δmin + |I3|pmin) (2.3)

22

where

δmin = min
i,j=1,...,26

(pi − pj)2

pi

and

pmin = min
i
pi

A quick computation produces

(1− ln 2)δmin > 1.8 · 10−7

and

(1− ln 2)pmin = (1− ln 2)pz ≈ 2 · 10−4

Therefore, σ cannot contain any Type 3 terms. If σ contains L terms, we may then rewrite (2.3)

as

H̃1(σ) > 1.8 · 10−7 · L

Because H̃1(σ) = 5.9 · 10−7, this immediately implies that L < 4. Our first computation

was to verify that H̃1(xj) is minimal for σ with L = 2, so it remains to check for L = 3 i.e.

for 3-cycles. This could be done easily enough using brute force, or one can use the following

simple argument. In order to have H̃1(σ) < H̃1(xj) = 5.94 · 10−7, at least one δ term in H̃1(σ)

must satisfy

(1− ln 2)δ <
H̃1(σ)

3
< 2 · 10−7

Since δjx is the only δ satisfying this bound, we must have σ = (x j β) or σ = (j x β) for some

letter β. Now, the other two terms are either {δjβ, δβx} or {δxβ, δβj} and their terms must sum to

23

less than H̃1(xj) − δjx ≈ 3.96 · 10−7, which means one must be less than 2 · 10−7. Since δjx is

the only such δ and it is already used, this is impossible.

24

Chapter 3: The Random Model

A higher “correctness” in the ordering of symbol frequencies that occurs in the ciphertext

should lead to a higher probability of decryption. In an extreme case, if the original message

was written in such a way that the symbol with the highest “natural” frequency occurs the most,

followed by the second, etc., then a simple frequency count will decrypt the message. In general

it is intuitively clear that more correct orderings will lead to a higher probability of decryption.

We examine this phenomenon by sampling from random alphabets and analyzing how large

a sample is needed until we would expect the symbols in the sample to occur in their natural

ordering with high probability. If the natural frequencies of symbols are very close, we would

expect that a longer sample string is needed to differentiate the symbols in the correct order.

The main result of this section is Corollary 3.1.15 which states that the probability that a

substitution cipher applied to a string of length n sampled from a random alphabet with N letters

will be correctly decoded using the single frequency method has a non trivial limit if n scales as

N5. In other words, a huge amount of text is needed for correct decoding.

In order to prove our main result we obtain some auxiliary results of independent interest.

To randomly generate the N frequencies, let ξ1, . . . , ξN be i.i.d., each uniform on [0, 1]. We refer

to the event {|ξi − ξj| < ε} as an ε−encounter. When ε is clear from context we simply refer

to an “encounter”. The random variable E will denote the number of encounters. Note that E

25

depends on N and ε, but we omit these from the notation since N, ε will usually be clear from

context.

For fixed values of N , the distribution of E is quite complicated, but asymptotics are

attainable. Namely, in this section we shall see that for an appropriate choice of ε, E converges

in distribution to a Poisson random variable.

3.1 The Encounter Process

A point process on a locally compact topological space S is a random variable whose value

is a locally finite point configuration in S. Let F be a σ-field on S. Given a σ-finite measure ν

on F , a Poisson Process N is characterized by the following two properties (here N(A) is the

random variable denoting the number of points lying in the set A)[13]:

1. For each F ∈ F with ν(F) <∞, P{N(F) = k} = ν(F)k

k!
e−ν(F)

2. N(F1), . . . , N(Fm) are independent for eachm ∈ N and pairwise disjoint setsF1, . . . , Fm ∈

F with ν(Fj) <∞, j = 1, . . . ,m

In the case S is a subset of Rd for some d and ν has a density ρwith respect to the Lebesgue

measure we call ρ the intensity of the Poisson process.

Let ξ1, . . . , ξN be i.i.d. with ξ1 ∼ U [0, 1]. Define a point process DN whose points are the(
N
2

)
distances |ξi − ξj| for 1 ≤ i < j ≤ N . In other words, DN is a point process whose points

are the distances between the ξi. Note that the distances also take values in [0, 1].

26

3.1.1 The Probability of No Encounters

It will be useful to obtain the probability of no encounters occurring. In this case, each of

the N uniformly distributed i.i.d.’s is at least ε away from all others. To compute this probability,

assume ξ1 ≤ . . . ≤ ξN . Multiplying by N ! to account for the possible orderings of the ξi gives

P (E = 0) = N !

1−(N−1)ε∫
0

1−(N−2)ε∫
x1+ε

· · ·
1−ε∫

xN−2+ε

1∫
xN−1+ε

dxNdxN−1 . . . dx2dx1 (3.1)

The innermost N − 1 integrals are all of the same form. We will use induction to write a

closed-form solution for these integrals.

Lemma 3.1.1. For k ∈ {0, 1, . . . , N},

1−kε∫
xN−k−1+ε

(1− kε− xN−k)k

k!
dxN−k =

(1− (k + 1)ε− xN−k−1)k+1

(k + 1)!

Proof. For k = 0, the integral clearly evaluates to 1− ε− xN−1. For k > 0, use the substitution

y = 1− kε− xN−k to obtain

1−kε∫
xN−k−1+ε

(1− kε− xN−k)k

k!
dxN−k =

0∫
1−(k+1)ε−xN−k−1

−yk

k!
dy =

(1− (k + 1)ε− xN−k−1)k+1

(k + 1)!

Lemma 3.1.2. The probability of no encounters is

P (E = 0) = (1− (N − 1)ε)N

27

Proof. Using (3.1) and applying Lemma 3.1.1 N − 1 times we get

P (E = 0) = N !

1−(N−1)ε∫
0

(1− (N − 1)ε− x1)N−1

(N − 1)!
dx1

With the substitution y = 1− (N − 1)ε− x1 we obtain

P (E = 0) = N !

1−(N−1)ε∫
0

(1− (N − 1)ε− x1)N−1

(N − 1)!
dx1 = N !

0∫
1−(N−1)ε

−yN−1

(N − 1)!
dy

= N ! · −1

(N − 1)!
· y

N

N

∣∣∣∣0
1−(N−1)ε

= (1− (N − 1)ε)N

3.1.2 Expected Minimum Distance

Since

P (E = 0) = P (min
i 6=j
|ξi − ξj| > ε),

we can use Lemma 3.1.2 to compute the expected value of the random variable

∆ = min
i 6=j
|ξi − ξj|

∆ is a continuous, non-negative random variable whose maximum value is 1/(N − 1)

(corresponding to the case where all ξi are evenly spaced). Therefore, for all N ,

E[∆] =

1/(N−1)∫
0

P (∆ > ε) dε =

1/(N−1)∫
0

(1−(N−1)ε)N dε =
−(1− (N − 1)ε)N+1

(N + 1)(N − 1)

∣∣∣∣1/(N−1)

0

=
1

N2 − 1

Thus, we expect the minimum distance mini 6=j |ξi − ξj| to be roughly 1/N2. It is therefore

28

reasonable to take

ε = C/N2 (3.2)

for some C ∈ R+. In this case, Lemma 3.1.2 gives

lim
N→∞

P (E = 0) = lim
N→∞

(
1− C(N − 1)

N2

)N
= e−C (3.3)

Going forward, we may write εN to emphasize that ε depends on N .

3.1.3 Limiting Distribution of Number of Encounters

In this section we suppose that ε is given by (3.2). We now compute

lim
N→∞

P (E = k)

for k > 0. Let us first fix some notation.

• Let Ek denote the event {E = k} i.e. there are precisely k encounters

• Let T denote the event that there is at least one variable involved in multiple encounters i.e.

there exists ξj with |ξj − ξi1| < ε, |ξj − ξi2| < ε, j 6= i1 6= i2 6= j

• Let Ak = Ek ∩ T c

We have

Ak ⊂ Ek = (Ek ∩ T c) ∪ (Ek ∩ T) = Ak ∪ (Ek ∩ T)

29

and since the union is disjoint,

P (Ak) ≤ P (Ek) = P (Ak) + P (Ek ∩ T) ≤ P (Ak) + P (T) (3.4)

We will compute limN→∞ P (Ek) by showing that P (T)→ 0, then computing limN→∞ P (Ak)

and applying the Squeeze Theorem.

Lemma 3.1.3. P (T)→ 0

Proof. Define Tijk = {|ξi − ξj| < ε, |ξj − ξk| < ε}. That is, Tijk is the event that ξj is involved

in two encounters (with ξi and ξk). Observe that T ⊆
⋃
i,j,k

Tijk. The event Tijk can be realized as

fixing ξj then generating ξi and ξk, each lying inside (ξj − ε, ξj + ε). Thus P(Tijk) ≤ (2ε)2. Since

there are
(
N
3

)
< N3 such events Tijk, we have

P(T) ≤ P(
⋃
i,j,k

Tijk) ≤
∑
i,j,k

P(Tijk) < N3(2ε)2 =
4C2N3

N4
→ 0

We will now prove that Ak has a Poisson limiting distribution i.e.

lim
N→∞

P (Ak) =
Cke−C

k!

By reindexing the ξi, we may realize the eventAk in the following manner: first sample ξ1, . . . , ξN−2k

so that there are no encounters among any of the (N − 2k) points. Then place each of the k pairs

involved in encounters; since each pair must only be involved in one encounter, both of its points

must be ε−far from all previous points. It will be useful to establish some terminology.

30

In the following, d denotes the usual Euclidean distance.

Definition 3.1.4. Call a pair (ξ′, ξ′′) good with respect to a finite set Σ if

1. d(ξ′,Σ) ≥ ε

2. d(ξ′′,Σ) ≥ ε

3. |ξ′ − ξ′′| < ε

Thus a pair is good with respect to Σ iff adding it to Σ creates exactly one new encounter -

specifically, between its two elements.

Denote by Σk the configuration of the first k points in our set.

Let Gj denote the event in which (ξN−2k+2j−1, ξN−2k+2j) is a good pair with respect to

Σ2N−2k+2j and let FN−2k denote the event in which there are no encounters among any of the

ξ1, . . . , ξN−2k. Then by the discussion above Definition 3.1.4, we have

P (Ak) = C · P

(
FN−2k ∩

(
k⋂
j=1

Gj

))
= C · P

(
k⋂
j=1

Gj

∣∣∣∣ FN−2k

)
· P (FN−2k) (3.5)

where C is a combinatorial factor which we will determine later. From Definition 3.1.4, Gj

can be written as the intersection of three events; denote the third of these by Bj . Then

P (Gj) ≤ P (Bj) ≤ 2ε

The events {Bj}kj=1 are pairwise independent, and each is independent of FN−2k. Therefore

P

(
k⋂
j=1

Gj

∣∣∣∣ FN−2k

)
= P

(
k⋂
j=1

Bj

∣∣∣∣ FN−2k

)
= P

(
k⋂
j=1

Bj

)
=

k∏
j=1

P (Bj) ≤ (2ε)k (3.6)

31

To get a lower bound, define

Cj =
{
d
(
ξN−2k+2j−1,

[
ΣN−2k+2j

⋃
{0, 1}

])
≥ 2ε

}

Note that if Bj and Cj happen then the first two conditions of Definition 3.1.4 are satisfied for

(ξN−2k+2j−1, ξN−2k+2j) and ΣN−2k+2j . Therefore

P (Gj|ΣN−2k+2j) ≥ P (Cj∩Bj|ΣN−2k+2j) = P (Bj|CjΣN−2k+2j)·P (Cj|ΣN−2k+2j) = 2ε·P (CjΣN−2k+2j)

The last equality holds because ξi ∼ U [0, L] and ξN−2k+2j−1 is ε−far from the boundary {0, 1}.

To compute P (Cj), denote by Sδ the δ−neighborhood of a set S i.e.

Sδ =
⋃
s∈S

(s− δ, s+ δ)

Since Cj is the event in which ξN−2k+2j−1 misses all prior points (consisting of the N − 2k

isolated points and the previous j − 1 pairs) by at least 2ε, and is at least ε from the boundary,

P (Cj|ΣN−2k+2j) = 1− µ
([

ΣN−2k+2j

⋃
{0, 1}

]ε)
(3.7)

Note that for any finite set Σ

µ(Σε) ≤ 2εCardinality(Σ) (3.8)

By (3.7) and (3.8),

32

1− 2ε(N + 2) ≤ P (Cj|Σ2N−2j+2j) ≤ 1 (3.9)

and since ε = CL/N2, the Squeeze Theorem implies

lim
N→∞

P (Cj|Σ2N−2k+2j) = 1

uniformly over configurations ΣN−2k+2j . We thus have our desired lower bound for the

probability of good pairs

P

(
k⋂
j=1

Gj|FN−2k

)
=

k∏
j=1

P (Gj|FN−2k) ≥
k∏
j=1

[2εP (Cj|FN−2k, C1, · · ·Cj−1)]

Since

P (Cj|FN−2k, C1, · · ·Cj−1) =
E(P (Cj|FN−2k, C1, · · ·Cj−1)1FN−2k∩C1...Cj−1

)

P (FN−2k ∩ C1 ∩ · · ·Cj−1)

(3.9) implies that

P (Cj|FN−2k, C1, . . . Cj−1) ≥ (1− 2ε(N + 2))

and so

P

(
k⋂
j=1

Gj|FN−2k

)
≥ (2ε(1− 2ε(N + 2)))k (3.10)

The last thing to consider is the combinatorial factor C. We do not distinguish between the

33

orders of encounters and which nodes are involved in each; therefore the combinatorial factor is

equal to the number of ways of choosing the k pairs:

C =
1

k!

 N

2, 2, . . . , 2, N − 2k

 =
1

k!
· N !

2k(N − 2k)!
(3.11)

Now we can prove the main result.

Theorem 3.1.5.

lim
N→∞

P (Ek) =
Cke−C

k!

Thus the limiting distribution of the number of encounters E is Poisson with parameter C =

εN2/L.

Proof. Lemma 3.1.3 and (3.4) immediately imply

lim
N→∞

P (Ek) = lim
N→∞

P (Ak)

By (3.5),

lim
N→∞

P (Ak) = lim
N→∞

C · P

(
k⋂
j=1

Gj

∣∣∣∣ FN−2k

)
· P (FN−2k).

From (3.11) and the fact that lim
N→∞

εN(N − 2k)2 = lim
N→∞

εNN
2 = C ,

lim
n→∞

C
N2k

=
1

k! · 2k
(3.12)

Next, Lemma 3.1.2 gives

34

lim
N→∞

P (FN−2k) = lim
N→∞

e−CN = eC , (3.13)

where CN = (N − 2k)2εN . Combining (3.6) and (3.10) gives

(1− 2ε(N + 2))k(2ε)k ≤ P

(
k⋂
j=1

Gj

∣∣∣∣ FN−2k

)
≤ (2ε)k (3.14)

Finally, combining (3.12), (3.13) and (3.14) we obtain

lim
N→∞

P (Ak) = lim
N→∞

(2ε)kN2k

2k · k!
· e−C =

Cke−C

k!

3.1.4 Limiting Distribution of The Encounter Process

As before ε > 0 will be fixed. We also fix a large number M . For an interval I = (a, b),

define an I-encounter (or an encounter “in” I) to be the event {a < |ξi − ξj| < b}. Let

I1 = (a1, b1), . . . Im = (am, bm)

be disjoint intervals contained in [0,Mε]. Set I0 = [0,M]\
⋃m
j=1 Ij . Given positive numbers

k1, . . . , km we now compute the limiting probability that there are exactly kj encounters in εIj =

(εaj, εbj) for j = 1, . . . ,m and no other encounters in [0, εM]. Let k̄ =
m∑
i=1

ki.

Using the same logic as in the previous section, by reindexing the ξi, we may realize this

by first sampling ξ1, . . . , ξN−2k̄ so that {ξi}N−2k̄
i=1 is an εM−isolated set. Then for j = 1, . . . ,m

35

place each of the kj pairs involved in Ij−encounters in such a way that no other encounters are

created. To account for the varying encounter distances, we will need to expand on our previous

notation.

Definition 3.1.6. Call (ξ′, ξ′′) a good pair with respect to a finite set Σ and an interval I if

1. d(ξ′,Σ) ≥ εM

2. d(ξ′′,Σ) ≥ εM

3.
|ξ′ − ξ′′|

ε
∈ I

Thus a pair is good iff adding it to Σ creates exactly one εI-encounter and does not create any

other εM−encounters.

LetFN−2k denote the event in which there are no εM -encounters among any of the ξ1, . . . , ξN−2k̄

and let Gj denote the event that (ξN−2k̄+2j−1, ξn−2k̄+2j) is a good pair with respect to ΣN−2k̄+2j

and Ii(j) where i(j) is defined by the condition

i−1∑
s=1

ks < j ≤
i∑

s=1

ks

Then we have

P (Ak) = C · P

(
k̄⋂
i=1

Gj|FN−2k̄

)
· P (FN−2k̄) (3.15)

where C is a combinatorial factor which we will determine later. From Definition 3.1.6, Gj

can be written as the intersection of three events; denote the third of these by Bj . Then

P (Gj) ≤ P (Bj) ≤ 2ε(bi(j) − ai(j))

36

The events {Bj} are pairwise independent, and each is independent of Fn−2k̄. Therefore

P

(
k̄⋂
j=1

Gj|Fn−2k̄

)
≤

k̄∏
j=1

P (Bj|Fn−2k̄) =
k̄∏
j=1

P (Bj) ≤
m∏
i=1

[2ε(bi − ai)]ki (3.16)

To get a lower bound, define

Cj =
{
d
(
ξN−2k̄+2j−1,

[
ΣN−2k̄+2j

⋃
{0, 1}

])
≥ 2εM

}

Then

P (Gj) ≥ P (Cj∩Bj|FN−2k̄) = P (Bj|Cj, FN−2k̄)P (Cj|FN−2k̄) = [2ε(bi(j)−ai(j))]·P (Cj|FN−2k̄)

The last equality holds because ξs ∼ U [0, 1] and on Cj , ξN−2k̄+2j is εbi−far from the

boundary {0, 1}. Therefore

P (Cj|ΣN−2k̄+2j) = 1− µ
([

ΣN−2k̄+2j

⋃
{0, 1}

]2εM
)
≥ 1− 2εNM (3.17)

Since ε = C/N2, the Squeeze Theorem implies

lim
N→∞

P (Cj|ΣN−2k̄+2j) = 1 (3.18)

Next,

P

(
k̄⋂
j=1

Cj|FN−2k̄

)
=

ki∏
j=1

P (Cj|FN−2k̄C1 · · ·Cj−1).

37

And since

P (Cj|FN−2k̄C1 · · ·Cj−1) =
E(P (Cj|FN−2k̄, C1 · · ·Cj−1)1FN−2k̄∩C1···Cj−1

)

P (FN−2k̄ ∩ C1 · · ·Cj−1)
,

(3.9) implies that

P (Cj|FN−2k̄C1 · · ·Cj−1) ≥ (1− 2εM(N + 2))

and so

P (C1 · · ·Ck̄|FN−2k̄) ≥ (1− 2εM(N + 2))k̄

Next

P (G1 · · ·Gk̄|FN−2k̄) = P (C1 · · ·Ck̄|FN−2k̄) · P (B1 · · ·Bk̄|FN−2k̄C1 · · ·Ck̄)

Since

P (Bj|C1 · · ·Ck̄B1 · · ·Bj−1FN−2k̄) = P (Bj|Cj) = 2ε(bi(j) − ai(j))

we obtain

P (G1 · · ·Gk̄|FN−2k̄) ≥ (1− 2M(N + 2)ε)k̄
m∏
i=1

(2ε(bi − ai))kj (3.19)

The last thing to consider is the combinatorial factor C. We must first choose the 2kj points

to be involved in the Ij encounters (j = 1, · · · ,m). This can be done in

38

 N

2k1, 2k2, . . . , 2km

 =
N !

(N − 2k̄)!(2k1)! · · · (2km)!

ways. Next, we must choose the pairs of points to be involved in the encounters. For each

j, this gives us a factor of

1

kj!

 2kj

2, 2, . . . , 2

 =
(2kj)!

2kj(kj)!

ways. Therefore

C =
N !

(N − 2k̄)!(2k1)! · · · (2km)!
·
m∏
j=1

(2kj)!

2kj(kj)!
=

N !

(N − 2k̄)! · 2k̄ · (k1)! · · · (km)!
(3.20)

We are now ready to prove the main result about the Encounter Process. Set k0 = 0.

Theorem 3.1.7. Let E(Ij) denote the number of encounters in Ij . Then

lim
N→∞

P (E(Ij) = kj ∀j = 0, . . . ,m) =
m∏
j=0

(C|Ij|)kj
(kj)!

e−C|Ij |

In other words, if εN = C/N2 then the Encounter Process converges weakly to a Poisson Process

with parameter

C = εNN
2

Proof. By (3.15),

lim
N→∞

P (Ak) = lim
n→∞

C · P

(
k̄⋂
j=1

Gj|FN−2k̄

)
· P (FN−2k̄)

39

It follows from (3.20) and Lemma 3.1.2 that

lim
N→∞

C
N2k̄

=
1

((k1)! · · · (km)!) · 2k̄
(3.21)

and

lim
N→∞

P (FN−2k) = lim
N→∞

e−CNM = e−CM , (3.22)

where CN = εN(N − 2k̄)2. Combining (3.16) and (3.19) gives

(1− 2εM(N + 2))k̄
m∏
i=1

[2ε(bi − ai)]ki ≤ P

(
k̄⋂
j=1

Gj|FN−2k̄

)
≤

m∏
i=1

[2ε(bi − ai)]ki

Hence

lim
N→∞

P

(
k̄⋂
j=1

Gj|FN−2k̄

)
εk̄N

=
m∏
i=1

[2(bi − ai)]ki (3.23)

Finally, combining (3.21), (3.22) and (3.23) gives

lim
N→∞

P (E(Ij) = kj ∀j = 1, . . . ,m) = lim
N→∞

(N2k̄εk̄N)
1

2k̄ · (k1)! · · · (km)!
·
m∏
i=1

[2ε(bi − ai)]kiεCM

=
C k̄

(k1)! · · · (km)!
·
m∏
i=1

(bi − ai)ki · e−CM

Recalling that k0 = 0 we obtain

40

lim
N→∞

P (E(Ij) = kj ∀j = 1, . . . ,m) =
C k̄

(k1)! · · · (km)!
·
m∏
i=1

(bi − ai)ki · e−CM

= e−C|I0|
m∏
j=1

(C(bj − aj))kj
(kj)!

e−C(bj−aj)

=
m∏
j=0

(C|Ij|)kj
(kj)!

e−C|Ij |

3.1.5 Extended encounter process

Here we put ε = 1/N2, thus C = 1. Fix a large L and let {Ii} a partition of [0, L], Jj be a

partition of [0, 1].

Theorem 3.1.8. Let E(Ii, Jj) denote the number of encounters in Ii such that the corresponding

frequencies are in Jj . Then

lim
N→∞

P (E(Ii, Jj) = kij ∀i, j) =
∏
i,j

(C|Ij|Jj|)kij
(kij)!

e−C|Ii||Jj |

Proof. Let Nj be the number of frequencies in Jj. LetA be the event of interest, that is the event

that E(Ii, Jj) = kij for each j, and B be the event that

Nj ∈
[
|Jj|N −N2/3, |Jj|N +N2/3

]
∀j ∈ 1, . . .m.

41

Due to Chernoff bounds, P(B)→ 1 as N →∞. Thus it remains to show that

P(A|B)→
∏
ij

(C|Ii|Jj|)kij
(kij)!

e−C|Ij ||Jj | as N →∞.

To this end it suffices to show that for each n1, . . . nm satisfying nj ∈
[
|Jj|N −N2/3, |Jj|N +N2/3

]
we have

P(E(Ii, Jj) = kij ∀i, j|Nj = nj)→
∏
i,j

(C|Ij|Jj|)kij
(kij)!

e−C|Ii||Jj | as N →∞. (3.24)

Note that conditioned on N1 = n1, . . . Nm = nm the numbers of encounters in J1, . . . , Jm are

independent. Therefore (3.24) follows from Theorem 3.1.7 applied to each interval Ij separately.

3.1.6 Symbol Frequencies in Random Alphabets

With the results of §3.1, we can turn to our primary objective of analyzing frequencies

of symbols drawn from random alphabets. We will describe the procedure for generating the

frequencies, then apply our results about the Encounter Process to draw conclusions about the

likelihood of symbol orderings.

Consider an alphabet of N symbols which we can think of as the integers 1, . . . , N . Let

ξ1, . . . , ξN be i.i.d ∼ U [0, 1] and set the frequency of the i-th symbol to be

fi = ξi/

N∑
i=1

ξi

42

Since E[
∑N

i=1 ξi] = N/2 we expect fi to be roughly 2ξi/N .

We assume that the consecutive letters are chosen independently so that the j-th letter is

chosen with frequency fj .

We consider sampling finite strings from this alphabet; we denote a string of n symbols by

s1 · · · sn ∈ {1, . . . , N}n. Let Fi(n) denote the count of symbol i in a string of length n. We are

interested in the differences Fi(n)− Fj(n) for i 6= j. Denoting this variable by Xn
ij , we have

Xn
ij = Fi(n)− Fj(n) =

n∑
r=1

Y r
ij

where

Y s
ij =



1 sr = i

−1 sr = j

0 else

Fixing i and j, the Y s
ij are i.i.d. with µij = E[Yij] = fi − fj and E[Y 2

ij] = fi + fj so that

σ2
ij = (fi + fj)− (fi − fj)2 <∞

We can therefore apply the Central Limit Theorem to conclude that

Xn
ij ≈

n∑
s=1

Yij(s)
d−→ N (nµ, nσ2),

that is

Xn
ij − n(fi − fj)√

nσij
⇒ N (0, 1) (3.25)

43

provided that n is large (compared toN). In the next section we describe the precise scaling

at which the probability of the correct decoding changes.

3.1.7 The Probability of Incorrect Orders

If fi > fj then we would expect to see more of character i than character j if we sample a

sufficiently long random string. Define a “mistake” or incorrect order to be an event of the form

{fi > fj} ∩ {Fj > Fi}. The following theorem gives a bound on the probability of an incorrect

ordering.

Theorem 3.1.9. Suppose that fi − fj > L/N3. Then

P(Fj(n) > Fi(n)) ≤ e−3L2n/π2N5

Proof. Since

P(Fj(n) > Fi(n)) = P(Xn
ji > 0), (3.26)

we can apply Markov’s inequality to conclude that for all s > 0,

P(Xn
ji > 0) = P(esX

n
ji > 1) ≤ E[esX

n
ji] (3.27)

Since Xn
ji =

∑n
m=1 Y

m
ji , where the Y m

ji are i.i.d, we have

E[esX
n
ji] = E[es

∑n
m=1 Y

m
ji] = E

[
n∏

m=1

esY
m
ji

]
=

n∏
m=1

E[esY
m
ji] (3.28)

44

Assuming s < 1, using the Taylor expansion of es we obtain

E[esY
m
ji] = 1− fi − fj + esfj + e−sfi

= (1− fi − fj) + s(fj − fi) + fj

∞∑
n=2

sn/n! + fi

∞∑
n=2

(−s)n/n!

< 1− sL/N3 + (fj + fi)
∞∑
n=1

s2n

(2n)!
+ (fj − fi)

∞∑
n=1

s2n+1

(2n+ 1)!

< 1− sL/N3 +
2

N

∞∑
n=1

s2

n2

= 1− sL/N3 + 2(πs)2/6N

For s = 3L/2π2N2, this gives

1− sL/N3 + 2π2s2/6N = 1− 3L2/π2KN5

It now follows that

E[esX
n
ji] < 1− sL/N3 + 2Kπ2s2/6N = (1− 3L2/π2N5)n < e−3L2n/π2N5

The above Theorem indicates that string lengths should be taken on the order of N5 in

order to make the probability of a mistake negligible. We will make this more precise using

the Encounter process DN . The idea is as follows: consider (inhomogenously) thinning the

Encounter Process so that a point - which represents a symbol pair - is retained if the pair

is decoded incorrectly. Then the number of incorrectly decoded symbol pairs is precisely the

45

number of points in the thinned process. Our goal is to compute the probability that the number

of points in this limiting thinned process is 0.

Then, using our knowledge of the distribution of the Encounter process, we can give

results about the probability of incorrect decodings by analyzing the thinned process. Rather

than considering the Encounter Process on [0, 1] directly, it will be convenient to consider an

equivalent process on [0, 1]× [0, 1] defined as follows: a point |ξi − ξj| of the Encounter Process

is represented (ξj, ξi − ξj).

Theorem 3.1.10. Fix τ = n/N5. Consider two symbols ξNi , ξ
N
j corresponding to a point from

the Encounter Process. More precisely, assume that ξNi > ξNj and let uN = ξNj and `N = ξi− ξj .

Assume also that `N ≤ L
N2 , that ξNj > N−0.1 and that

lim
N→∞

1

N

∑
j

ξNj =
1

2
, lim

N→∞
uN = u, lim

N→∞
`NN

2 = `

Then the probability pN(u, `, τ) of incorrectly decoding the order of the symbols i and j converges

lim
N→∞

pN(u, `, τ) = H(u, `, τ)

where

1. H is a decreasing function of τ

2. lim
τ→∞

H(u, `, τ) = 0

and the convergence is uniform provided that (u, `) and u−1 vary over a compact set.

The explicit formula for H will be given at the end of the proof. See (3.32).

46

Proof. As above, let fi =
ξi∑N
k=1 ξk

. Define the following random parameters:

δij = ξi − ξj, TN =
N∑
k=1

ξk, ∆ij = fi − fj = δij/TN , Lij = N3∆ij, Uij = ξj

We want to compute limn→∞ P(X
n(N)
ji > 0). Recall that Xn

ji =
∑n

r=1 Y
r
ji where the Y r

ji are

i.i.d. (so we’ll drop the superscript), with mean fj − fi . Define

Wji = Yji − (fj − fi) = Yji + ∆ij

so that Wji has mean 0. Then for Sn = 1
n

∑n
i=1Wji, the Berry-Esseen Theorem [14] states that

there is a constant C < 1 such that for all x, n,

∣∣∣∣P(Sn√nσ
≤ x

)
− P(Z ≤ x)

∣∣∣∣ ≤ Cρ

σ3
√
n

(3.29)

Here Z ∼ N (0, 1), ρ = E[|Wji|3] = (1− 2fj)∆
3
ij + 3(fi + fj + 1)∆2

ij + (fi + fj) and

σ2 = E[W 2
ji] = E[(Yji + ∆ij)

2]

= E[Y 2
ji] + 2∆ijE[Yji] + ∆2

ij

= fi + fj + 3∆2
ij

Keeping in mind that fi, fj, and σ all depend on N , it follows that for all n,

∣∣∣∣P(Sn√nσ
>

√
n∆ij

σN

)
− P

(
Z >

√
n∆ij

σN

)∣∣∣∣ < ρ

2σ3
N

√
n

(3.30)

47

Since

Sn =
1

n

n∑
i=1

Wji =
1

n

n∑
i=1

(Yji + ∆ij) =
Xn
ji + n∆ij

n
,

we have

P
(
Sn
√
n

σN
>

√
n∆ij

σN

)
= P

((
Xn
ji + n∆ij

n

) √
n

σN
>

√
n∆ij

σN

)
= P(Xn

ji > 0)

Denote the right-hand side of (3.30) by εn,N . Then we may write

P(Xn
ji > 0) = P

(
Z >

√
n∆ij

σn

)
± εn,N (3.31)

Now,

σN =
√
fi + fj + 3∆2

ij =

√
ξi + ξj
TN

+ 3∆2
ij =

√
2Uij + ∆ij

TN
+ 3∆2

ij

Therefore

√
n∆ij

σN
=

√
τN5∆ij√

2Uij+∆ij

TN
+ 3∆2

ij

=

√
τLij√

(2Uij + ∆ij)/(TN/N) + 3N∆2
ij

N→∞→
√
τ`√
u

Convergence follows because by assumptions of the theorem

∆ij → 0, Uij → u, Lij =
N2δij
TN/N

→ 2`,
TN
N
→ 1

2

We next show that limn→∞ εn(N),N = 0. Write εn,N = a(n,N)/b(n,N), where

a(n,N) = (1− 2fj)∆
3
ij + 3(fi + fj + 1)∆2

ij + (fi + fj)

48

and

b(n,N) = 2(fi + fj) + 3∆2
ij)

3/2 ·
√
n.

By assumptions of the theorem, for large N , fNk =
ξk
TN

<
4

N
, whence lim

N→∞
fNk = 0. Therefore

lim
n→∞

a(n,N) < lim
n→∞

[∆3
ij + 9∆2

ij + (fi + fj)] = 0

On the other hand, b(n,N) ≥ c

N

√
τN5/2 so that lim

N→∞
b(n,N) =∞.

Therefore lim
n→∞

εn,N = lim
n→∞

a(n,N)

b(n,N)
= 0. Now (3.31) implies the statement of the theorem

with

H(u, `, τ) = lim
N→∞

P(Xn
ji > 0) = P

(
Z >

√
τ`√
u

)
=

∫ ∞
√
τ`√
u

e−s
2/2 ds. (3.32)

This function clearly satisfies the desired properties.

Next we would like to generalize this result to the case of finitely many (mutually disjoint)

pairs of symbols.

Theorem 3.1.11. Fix τ = n/N5. Consider k distinct pairs of symbols (ξ1, ξ2), . . . , (ξ2k−1, ξ2k)

from the Encounter Process. For each i, assume ξ2i−1 > ξ2i. As before let ui,N = ξn2i be the

symbol with lower frequency in each pair, and let `i,N = ξ2i−1 − ξ2i be the difference. Suppose

that

lim
N→∞

1

N

∑
j

ξNj =
1

2
, lim

N→∞
ui,N = ui, lim

N→∞
`i,NN

2 = `i

Divide {1, . . . , k} = C ∪ J. Then the probability pk(~u, ~̀,C) of correctly decoding the orders of

49

all symbols in C and incorrectly decoding the orders of all symbols in J converges

lim
N→∞

pk(~u, ~̀,C) = Hk(~u, ~̀, τ,C)

where

Hk(~u, ~̀, τ,C) =

[∏
i∈C

(1−H(ui, `i, τ))

][∏
i∈J

H(ui, `i, τ)

]

The convergence is uniform when ~u, ~̀ vary over a compact set such that mini ui > N−0.1.

In other words, the order of a pair labeled (`, u) for the Extended Encounter Process is

decoded correctly with probability 1−H(u, `, τ) and the decoding of different pairs is asymptotically

independent.

Proof. For i = 1, . . . , k, let Xn
i denote the random variable F2i(n) − F2i−1(n) i.e. Xn

i is the

difference in observed frequencies between the less and more probable symbols in pair i for a

string of length n. Thus Xn
i > 0 represents an incorrect decoding of symbol pair i. Define the

random vector ~Xn
k = (Xn

1 , . . . , X
n
k). Then the correct decoding of all symbols in C corresponds

precisely to the event that ~Xn
k lies inside the hyper-quadrant of Rk defined by

Q := {Xi > 0 iff i ∈ C}

Let ~e1, . . . ~ek be the standard basis of Rk i.e. ~em is the vector of all zeros except for a 1 in the

50

m-th position. Then define

Yt =



~em st = i2m−1

−~em st = i2m

0 else

Observe that ~Xn
k =

∑n
t=1 Yt. Indeed, we may think of the index t as corresponding to

a letter in the random string, and Yt denoting which symbol pair was affected by this letter, by

recording a +1 (−1) in the m− th component for the lower (higher) frequency symbol in pair m.

Therefore the sum of the Yt represents a sort of “scorecard” for keeping track of the occurrences

amongst the various pairs of symbols, which is precisely ~Xn
k .

Let µk denote the mean of Yt and note that

µk = E[Yt] = (f2 − f1, f4 − f3, . . . , f2k − f2k−1)

Define Wt = Yt − E[Yt] so that Wt has mean 0, and let W =
∑n

t=1 Wt, W̃ = W/N2. Then

the multidimensional Berry-Esseen Theorem [14] states that there exists a constant C such that

∀U ⊂ Rk convex, ∣∣∣P(W̃ ∈ U)− P(Z ∈ U)
∣∣∣ < Ck1/4γ

where Z ∼ N (0,Σ), Σ is the covariance of W̃ , and

γ =
1

N6

n∑
t=1

E[||Σ−1/2Wt||32]

51

Since Xk = N2W̃ + nµk, denoting Qk = Q− nµk
N2

we get

P(W̃ ∈ Qk) = P
(
N2W̃ ∈ N2

(
Q− nµk

N2

))
= P(N2W̃ + nµk ∈ Q) = P(~Xn

k ∈ Q)

where the second equality uses that N2Q = Q.

Since Qk is open and convex, we can apply the Berry-Esseen Theorem to get that

P(~Xn
k ∈ Q) = P(Z ∈ Qk)± Ck1/4γ (3.33)

Observe that Wt1 and Wt2 are independent for t1 6= t2, since the symbols appearing in

position t1 and t2 are drawn independently. Recall that Wt (and hence, each Wt(j)) has mean 0.

Denote the mean of Yt(j) by µj = f2j−1 − f2j . Then

Var(Wt(j)) = E[Wt(j)
2] = E[(Yt(j)−µj)2] = E[Yt(j)

2]−2µjE[Yt(j)]+µ
2
j = f2j+f2j−1−µ2

j = 2f2j+µj−µ2
j .

Hence

Var(W (j)) = nVar(W1(j)) = n
[
2f2j + µj − µ2

j

]
.

Next

Cov(Wt(i),Wt(j)) = Cov(Yt(i), Yt(j)) = E(Yt(i)Yt(j))− E(Yt(i))E(Yt(j))

= −E(Yt(i))E(Yt(j)) = −[f2i−1 − f2i][f2j−1 − f2j]

52

Using the assumption of the theorem we obtain

lim
N→∞

Var(W (j)/N2) = lim
N→∞

2nf2j

N4
= lim

N→∞

2τN5ξ2j

TNN4
= lim

N→∞

2τξ2j

(TN/N)
= 4ujτ

Likewise for large N

Cov

(
W (i)

N2
,
W (j)

N2

)
∼ nCov(W (i),W (j))

N4
= −τN

5[f2i−1 − f2i][f2j−1 − f2j]

N4
∼ `i`j

(TN/N)2N3
∼ 4`i`j

N3

Hence lim
N→∞

ΣN = 4τdiag(u1, . . . , uk).

Since the set of invertible matrices is open, ||Σ−1
N || ≤ C for large N . Therefore

γ ≤ C

N6

n∑
t=1

||Wt||32 ≤
cn

N6

and so lim
N→∞

γN = 0. Next

lim
N→∞

nµk(j)

N2
= − lim

N→∞

τN5`j,NN
−2

TNN2
= − τ`j

lim
N→∞

(TN/N)
= −2τ`j

Combining the above estimates we conclude that lim
N→∞

P(~Xn
k ∈ Q) = P(Z ∈ Q) where Z

is the normal vector with zero mean and covariance matrix 4τdiag(u1, . . . , uk) and Q = Q − µ

where µ is the vector with components −2τ(`1, . . . , `k).

Since the covariance matrix of Z is diagonal, its components are independent, whence

P(Z ∈ Q) =
k∏
j=1

P
(
Zj ?

√
τ`j√
uj

)

53

where ? means ≥ if j ∈ J and ? means ≤ if j ∈ C. This completes the proof.

We next compute the distribution of the thinned point process, which we call the Retained

Process. This process is obtained by applying thinning to an Extended Encounter Process of

§3.1.5, where a point (corresponding to the distance between a pair of symbol frequencies) is

retained iff its corresponding pair of symbols is decoded incorrectly for the text of length n =

τN5.

Theorem 3.1.12. For an Encounter Process, the associated retained process approaches asN →

∞ a Poisson process on [0,∞]× [0, 1] with measure ν which has density H(u, `, τ) with respect

to the Lebesgue measure.

The proof of Theorem 3.1.12 will rely on the following fact1.

Proposition 3.1.13. Consider a Poisson process on a space S with measure µ. Suppose that

each point ξ in our process is retained with probability p(s) independently of the other points.

Then the set of retained points forms a Poisson process with measure ν which has density p with

respect to µ.

Proof. of Theorem 3.1.12. Fix a large number L and a small number δ. By Theorem 3.1.8 the

number of points in [0, L] × [δ, 1] asymptotically forms a Poisson process with intensity 1. By

Theorem 3.1.11 a point (`, u) is retained with probability H(u, `, τ) independently of the other

points. Hence by Proposition 3.1.13 the restriction of the retained process on [0, L]× [δ, 1] is the

Poisson process with the measure described in the statement of the theorem. It remains to show

that for each ε we can choose δ and L so that the probability to have a retained point such that

1Proposition 3.1.13 embodies what is often referred to as the “thinning” property of Poisson processes. For a
proof of this Proposition and related discussion see [4].

54

either ` > L or u < δ is smaller than ε. LetRL be the number of retained points with ` > L. By

Markov’s inequality it suffices to show that E(RL) can be made as small as we wish by taking L

large. Let Em,L be the number of points in the encounter process with ` ∈ [Lm,L(m + 1)] and

Rm,L be the number of the retained points in the same interval.

Lemma 3.1.14. E(Em,L) ≤ L.

Proof. Write Em,L =
∑
i 6=j

Eij , where

Eij =


1, N2(ξi − ξj) ∈ [Lm,L(m+ 1)]

0, else

In other words, Eij indicates whether the encounter between ξi and ξj contributes to Em,L.

Then we have

E[Em,L] =

(
N

2

)
· E[E1,2] =

(
N

2

)
· P
(
N2(ξ1 − ξ2) ∈ [Lm,L(m+ 1)]

)

ξ1 − ξ2 has a triangular distribution with CDF F (x) = 2x− x2. Therefore

P(ξ1 − ξ2 ∈ [Lm/N2, L(m+ 1)/N2]) = F

(
L(m+ 1)

N2

)
− F

(
Lm

N2

)
=

2L

N2
− 2L2m− L2

N4
.

Thus E[Em,L] =

(
N

2

)
·
[

2L

N2
− 2L2m− L2

N4

]
≤ L.

55

By Theorem 3.1.9 and Lemma 3.1.14,

E(Rm,L) ≤ E(Em,L)e−3(mL)2τ/π2 ≤ Le−3(mL)2τ/π2

.

Thus

E(RL) =
∞∑
m=1

E(Rm,L) ≤ L

∞∑
m=1

e−3(mL)2τ/π2 ≤ L
∞∑
m=1

e−3mLτ/π2

=
Le−3Lτ/π2

1− e−3Lτ/π2

Since the last expression tends to 0 as L→∞ we can take L so large that E(RL) ≤ ε/2. Hence

by Markov inequality P(RL ≥ 1) ≤ ε/2.

Next by Theorem 3.1.8 the probability that the number of points in the encounter process

with u < δ is non-zero converges as N → ∞ to 1− e−δ which can be made smaller that ε/2 by

taking δ small enough.

Combing the above estimates proves the theorem.

Note that the total number of points in the Extended Encounter process is infinite since

Lesbegue[0,∞]×[0, 1] =∞ the total number of points for the Retained process is finite. Namely

denote

Λ(τ) = ν([0,∞]× [0, 1]) =

∫ 1

0

∫ ∞
0

H(u, `, τ) d` du =
1√
2π

∫ 1

0

∫ ∞
0

∫ ∞
`
√
τ/
√
u

e−s
2/2 ds d` du.

Then the total number of points in the retained process has Poisson distribution with parameter

Λ(τ). Since the retained process contains pairs whose order is not decoded correctly, the whole

cipher is correctly decoded iff R = 0. We thus obtain

56

Corollary 3.1.15. In the random frequency model the probability that the naive guess leads to

the correct order for the text with n(N) = τN5 symbols converges as N →∞ to e−Λ(τ).

3.1.8 The Best Scoring Permutation

We will prove that with high probability, the best scoring permutation in the random model

is a transposition. To that end, fix τ ∗ to be the highest scoring transposition. In this subsection

we shall show that with probability close to 1, τ ∗ is the permutation whose score is closest to that

of the identity. That is,

H̃1(id)− H̃1(τ ∗) = min
σ∈SN
{H̃1(id)− H̃1(σ)} (3.34)

For convenience define D1(σ) = H̃1(id)− H̃1(σ). Recall from (2.1) that

D1(σ) =
∑
i

pi ln
pi
pσ(i)

and also

I1 =

{
i : 0 <

pσ(i)

pi
< 1

}
, I2 =

{
i : 1 <

pσ(i)

pi
< 2

}
, I3 =

{
i :
pσ(i)

pi
> 2

}

Every transposition contains a Type 1 term and either a Type 2 or Type 3 term. By (2.2),

we have for any σ

D1(σ) > (1− ln 2)

[∑
I1∪I2

(pi − pσ(i))
2

pi
+
∑
I3

pi

]
(3.35)

Our strategy is to first obtain an estimate forD1(τ ∗), and then prove that with high probability

57

this estimate is minimal among all D1(σ).

Lemma 3.1.16. ∀ε > 0,∃K such that

P
(
D1(τ ∗) ≤ K

N5

)
> 1− ε

Proof. Recall that S =
∑N

j=1 ξj . S has an Irwin-Hall distribution2 and has mean N/2 and

variance N/12. Applying Chevyshev’s inequality then gives

P
(
S <

N

10

)
= P(S − E[S] < −0.4N) ≤ V ar(S)

(0.4N)2
=

1

1.92N
(3.36)

Next we show that if κ is large then with high probability there exists a pair ξ1, ξ2 such that

ξ1 > 0.1 and |ξ1 − ξ2| < κ/N2. Indeed if such a pair exists and S ≥ 0.1N then letting σ be the

transposition of symbols corresponding to ξ1 and ξ2 and supposing that ξ2 > ξ1 we get

D(σ) =
ξ2 − ξ1

S
ln

(
1 +

ξ2 − ξ1

ξ1

)
≤ (ξ2 − ξ1)2

Sξ1

≤ 100κ2

N5

where in the first inequality we used that ln(1 + t) < t for t > 0. Thus we get the claim with

K = 100κ2. It remains to show that the pair described above exists with probability close to 1.

Let

E = {There are no pairs ξ1, ξ2 : (ξ1 − ξ2) <
κ

N2
; ξ1, ξ2 > 0.1}

2The Irwin-Hall distribution describes the sum of uniformly distributed random variables. See [8]

58

Let M be the number of points from {ξ1, . . . , ξN} such that ξj > 0.1. Then

P(E) = P(E|M ≥ N/2) · P(M ≥ N/2) + P(E|M < N/2) · P(M < N/2)

≤ P(E|M ≥ N/2) + P(M < N/2)

Note that M has a binomial distribution with parameters (N, 0.9). Accordingly E[M] = 0.9N ,

V ar(M) = 0.09N . Hence by Chebyshev’s inequality,

P(M < N/2) = P(M − E[M] < 0.4N) ≤ V ar(M)

0.16N2
=

9

16N
→ 0 as N →∞ (3.37)

On the other hand P(E|M ≥ N/2) · P(M ≥ N/2) ≤ P(AN), where AN is the event that

among the first N/2 points in [0.1, 1] there are no κ/N2 encounters. Denote L = N/2. Rescaling

the interval [0.1, 1] to the unit size we see that P(AN) = P(BL) where BL is the event that among

L points on [0, 1] there are no 5κ
18L2 encounters. Applying Theorem 3.1.5 we conclude that

lim
N→∞

P(AN) = lim
L→∞

P(BL) = e−5κ/18 (3.38)

Fix ε > 0. Then we could choose κ such that e−5κ/18 < ε
10

, so (3.38) tells us that for large

N , P(AN) < ε
5
. Combining this with (3.36) and (3.37) gives the result.

Now we must show that with high probability, D1(σ) is much larger than 1/N5 for all

other permutations moving more than 2 symbols. We begin by showing that the highest scoring

permutation cannot be a product of disjoint cycles, and therefore is itself a cycle.

59

Lemma 3.1.17. Let σ1, σ2 be disjoint cycles. Then

D1(σ1σ2) > D1(σ1)

Equivalently, H̃1(σ1) > H̃1(σ1σ2)

Proof. Let DKL(P ||Q) denote the relative entropy from Q to P 3. We have

D1(σ1) =
∑
i

pi ln
pi

pσ1(i)

= −
∑
i

pi ln
pσ1(i)

pi
= DKL(P ||σ1(P))

and

D1(σ1σ2) =
∑
i

pi ln
pi

pσ1σ2(i)

= −
∑
i

pi ln
pσ1σ2(i)

pi

Since σ1 and σ2 are disjoint, the last sum can be broken up as

−
∑

i:σ1(i) 6=i

ln
pσ1(i)

pi
−

∑
i:σ2(i) 6=i

ln
pσ2(i)

pi
= DKL(P ||σ1(P)) +DKL(P ||σ2(P)) ≥ DKL(P ||σ1(P))

since relative entropy is non-negative.

It remains to prove that for all cycles σ of length≥ 3, D1(σ)� N−5 (with high probability).

Lemma 3.1.18. For all cycles σ of length ≥ 3, we have that for sufficiently large N

P(D1(σ) > 1/N4.5) > 1− 3

(1− ln 2)
√
N

3DKL represents Kullback–Leibler divergence, commonly referred to as relative entropy, and is a measure of
how one probability distribution is different from a second, reference probability distribution. See [15].

60

Proof. Let α = (1 − ln 2)−1 and S =
N∑
i=1

ξi. If D1(σ) <
1

N5
and σ contains any Type 3 terms,

then (3.35) immediately implies that

min
i∈I3

pi <
α

N5

By definition of the frequencies pi, we have

P
(

min
i∈I3

pi <
α

N4.5

)
< P

(
∃i, pi <

α

N4.5

)
= P

(
∃i, ξi

S
<

α

N4.5

)
= P

(
∃i, ξi <

αS

N4.5

)

≤ P
(

min
i
ξi <

α

N3.5

)
≤ NP

(
ξ1 <

α

N3.5

)
<

1

N2.5

Therefore, with probability greater than 1 − N−2.5, any transposition σ with score below

N−4.5 only contains Type 1 and Type 2 terms. From (3.35), the contribution to D1(σ) for each of

these terms is at least

(1− ln 2)
(pi − pσ(i))

2

pi

If there are K such terms (i.e. σ is a K-cycle), then there must exist i with

α
(pi − pσ(i))

2

pi
<

1

N4.5
and α

(pσ(i) − pσ2(i))
2

pσ(i)

<
1

N4.5

For this term, we must have

(ξi − ξσ(i))
2 <

ξiS

αN4.5
<

1

αN3.5

since ξ1 and S < N . Taking roots, this implies ξi − ξσ(i) <
1√

αN7/4
. By Lemma 3.1.3, the

probability that a single point is involved in two encounters of distance ε = α−1/2N−7/4 is less

61

than

N3ε2 =
1

α
√
N

(3.39)

Therefore, denoting by T the event that σ contains a Type 3 term, we have

P(D1(σ) < 1/N4.5) = P(D1(σ) < 1/N4.5 | T) · P(T) + P(D1(σ) < 1/N4.5 | T c) · (1− P(T))

< P(T) + P(D1(σ) < 1/N4.5 | T c)

<
1

N2.5
+

2

α
√
N
<

3

α
√
N

We now can prove our main result.

Theorem 3.1.19. For the random model with N symbols, let AN be the event that the highest

scoring permutation is a transposition. Then limN→∞ P(AN) = 1.

Proof. Let τ ∗ denote the highest scoring permutation and let σ∗ be the highest scoring transposition

changing at least three symbols. Fix ε and choose K so large that P(D1(τ ∗) ≥ K/N5) < ε for all

sufficiently large N . Then AN is equivalent to the event that D1(τ ∗) < D1(σ∗). Hence Lemmas

3.1.16 and 3.1.18 give

P(AcN) ≤ P
(
D1(τ ∗) >

K

N5

)
+ P

(
D1(σ∗) <

K

N4.5

)
≤ ε+

3

α
√
N

It follows that lim infN→∞ P(AN) ≥ 1− ε. Since ε is arbitrary the result follows.

62

Chapter 4: The Random Model with Digram Scoring Function

4.1 Generating the frequencies

To determine m-gram frequencies in English, for example, one would analyze a large

corpus of text (e.g. a collection of large novels, or by using a web crawler and analyzing

millions of web pages) and estimate the frequencies from it. Since a random alphabet does not

correspond to any real language, we will determine the symbol frequencies theoretically rather

than empirically. To do so, first generate N probability vectors, each with N components. That

is, for i = 1, . . . , N , generate {pij}Nj=1 so that
∑

j pij = 1. This can be done by sampling i.i.d.

random variables {ξij}Nj=1, each uniform on [0, 1] and setting

pij =
ξij∑
j ξij

We view theN×N stochastic matrix Π = (pij) as the transition matrix for a Markov chain

whose realization can be thought of as randomly generating a string one symbol at a time, where

subsequent symbols are chosen based on digram probabilities relative to the previous symbol.

In other words, from state i (which corresponds to symbol si), the next state (symbol) is chosen

from the distribution (pij)
N
j=1. It is then natural to define the individual symbol frequencies (πi)

to be the eigenvector of Π. In other words, the symbol frequencies correspond to the stationary

63

distribution of the Markov chain.

In this setting, the symbol si corresponds to the Markov chain visiting state i and the digram

sisj corresponds to the chain consecutively visiting states i and j. Alternatively, the digram

represents a transition from state i to state j.

Remark: It may seem odd that we first generate digram frequencies and then derive

individual symbol frequencies from them, and not vice versa. However, this approach is natural

if one considers that digram frequencies contain structure of the underlying language being used

and are not based on individual letter frequencies per se. For this reason, given {pi}Ni=1, there is

no obvious logical way to define {pij}Ni,j=1. For instance, one seemingly natural option would be

to define pij = pipj , but in English this would correspond to asserting that “QR” has a greater

frequency than “QU” simply because the frequency of “R” is greater than that of “U”.

The main results of this Section are Theorem 4.2.1, which says that the gap in score between

the identity and the best scoring non-trivial permutation is of order 1/N , and Theorem 4.3.1

which indicates that for texts of length of order N lnN the Gibbs measure assigns sizable weight

to a correct decoding, making it plausible that this text can be decoded using the Gibbs sampler

algorithm.

4.2 The Best Scoring Permutation

In Lemma 3.1.16, we showed that the probability of the event

min
τ∈S2

N

|H̃1(τ)− H̃1(id)| ≤ K

N5

64

can be made arbitrarily close to 1, by taking K large. Because the score of such τ is very close to

the (optimal) score of the identity, this proves that in the single frequency (i.e. 1−gram) model

of Section 3, it is very hard to distinguish these transpositions as sub-optimal. This provides

evidence to the fact that the single frequency model is weak.

In this section, we prove an analogous result for the digram model, showing that with high

probability, transpositions τ satisfy, for some C > 0,

|H̃2(τ)− H̃2(id)| ≥ C

N

This provides additional evidence that the digram model outperforms the individual frequency

model.

Theorem 4.2.1. With high probability, there exists C > 0 such that for each transposition τ

|H̃2(τ)− H̃2(id)| ≥ C

N
.

The proof of Theorem 4.2.1 will rely on two lemmas. In what follows, let Si =
∑
`

ξi`.

Lemma 4.2.2. P
(
∃i :

Si
N

/∈ [0.49, 0.51]

)
≤ e−C1N for some C1 > 0

Proof. Large Deviation bound (Chernoff bound)

Lemma 4.2.3. There is a constant b > 0 such that for all i, P
(
πi ≤

1

100N

)
≤ e−bN

Proof. Being the stationary distribution of the Markov Chain, π is an eigenvector of the transition

matrix (digram frequency matrix) P . In particular,

πP 2 = π.

65

Writing this equation term-wise gives

πi =
∑
j,k

πjpjkpki =
∑
j,k

pijξjkξki
SjSk

Note that the random variables {ξikξkj}k are independent. Therefore, applying a Chernoff

bound1 gives

P

(∑
k

ξikξkj <
N

100

)
< min

t>0
etN/100

N∏
k=1

E[e−tξikξkj]

= min
t>0

etN/100
(
E[e−tξikξkj]

)N
= min

t>0

(
et/100 · E[e−tξikξkj]

)N

Write φ(t) = et/100 · E[e−tξikξkj]. Note that φ(0) = 1, and that

φ′(t) = et/100 · d
dt
E[e−tξikξkj] +

et/100

100
· E[e−tξikξkj]

= et/100 · E[
d

dt
e−tξikξkj] +

et/100

100
· E[e−tξikξkj]

= et/100 · E[−ξikξkje−tξikξkj] +
et/100

100
· E[e−tξikξkj]

so that

φ′(0) = E[−ξikξkj] +
1

100
=

1

100
− 1

4
< 0

Since φ(0) = 1 and φ′(0) < 1, there exists t0 > 0 with φ(t0) < 1. Write φ(t0) = e− lnφ(t0) = e−b,
1The Chernoff Bound for a random variable X is attained by applying Markov’s Inequality (a.k.a Chebyshev’s

Inequality)[14] to etX . Explicitly, we have for all t > 0,

P(X ≥ a) ≤ E[etX]

eta

66

where b > 0. Then

P

(∑
k

ξikξkj <
N

100

)
< e−bN

For the likely case that
∑
k

ξikξkj > N/100, we have

∑
k

ξikξkj

SkSi
>

1

100N

since Si, Sk < N . Therefore in this case

πi =
∑
j,k

πjpjkpki =
∑
j,k

πj
ξjkξki
SkSj

=
∑
i

πi

(∑
k

ξjkξki
SkSj

)
>
∑
i

πi

(
1

100N

)
=

1

100N

Putting this all together gives

P
(
πi ≤

1

100N

)
= P

(
πi ≤

1

100N

∣∣∣∣∑
k

ξikξkj <
N

100

)
· P

(∑
k

ξikξkj <
N

100

)

+ P

(
πi ≤

1

100N

∣∣∣∣∑
k

ξikξkj >
N

100

)
· P

(∑
k

ξikξkj >
N

100

)

< e−bN

We may now prove Theorem 4.2.1.

Proof. of Theorem 4.2.1. Let Nij denote the count of the digram sisj . By the Law of Large

67

Numbers, and the fact that π is the stationary distribution of the Markov Chain, we have

Nij

n
→ pij := πipij.

Then for any transposition τ = (ij),

|H̃2(id)− H̃2(τ)| =
N∑
k=1

πipik ln
πipik
πjpjk

+ πjpjk ln
πjpjk
πipik

+ πkpki ln
πkpki
πkpkj

+ πkpkj ln
πkpkj
πkpki

= −
N∑
k=1

wk ln
xk
wk
−

N∑
k=1

xk ln
wk
xk
−

N∑
k=1

yk ln
zk
yk
−

N∑
k=1

zk ln
yk
zk

Where for convenience we have defined

wk = πipik, xk = πjpjk, yk = πkpki, zk = πkpkj.

Note that each sum has the same form as the sum in Section 2.1. Thus we may apply (2.2) to get:

−
N∑
k=1

wk ln
xk
wk

> (1− ln 2)

[∑
I1∪I2

(wk − xk)2

wk
+
∑
I3

wk

]

−
N∑
k=1

xk ln
wk
xk

> (1− ln 2)

[∑
I1∪I2

(xk − wk)2

xk
+
∑
I3

xk

]

−
N∑
k=1

yk ln
zk
yk

> (1− ln 2)

[∑
I1∪I2

(yk − zk)2

yk
+
∑
I3

yk

]

−
N∑
k=1

zk ln
yk
zk
> (1− ln 2)

[∑
I1∪I2

(zk − yk)2

zk
+
∑
I3

zk

]
(4.1)

68

Note that there is a slight abuse of notation here as the sets I1, I2, I3 are not the same in each sum;

however our strategy is to consider these sums independently. Observe that all 8 sums contained

in brackets are positive. Therefore it suffices to prove the lower bound for (4.1).

We have

(zk − yk)2

zk
=

(πkpkj − πkpki)2

πkpkj
= πk ·

(pkj − pki)2

pkj
=
πk
Sk

(ξkj − ξki)2

ξkj

By Lemma 4.2.2, and Lemma 4.2.3,

πk
Sk

>
1

51N2

with probability greater than (1−e−C1N)(1−e−bN). Therefore it suffices to obtain a lower bound

for ∑
I1∪I2

(ξki − ξkj)2

ξki
>
∑
I1∪I2

(ξki − ξkj)2

Call the index k good if k ∈ I1 ∪ I2 and |ξki − ξkj| > 0.1. Then

P(k is good) = P
(
|ξki − ξkj| > 0.1

∣∣∣∣ ξkiξkj ∈ (0, 1)

)
· P
(
ξki
ξkj
∈ (0, 1)

)
(4.2)

+ P
(
|ξki − ξkj| > 0.1

∣∣∣∣ ξkiξkj ∈ (1, 2)

)
· P
(
ξki
ξkj
∈ (1, 2)

)
(4.3)

(4.4)

We can compute the exact value of this probability by viewing the situation geometrically.

Because ξki, ξkj ∼ U [0, 1], the set of all ξki, ξkj that contribute to the probability (4.2) corresponds

to the region bounded by the lines y = 0, x = 1, and y = x − 0.1. This region is a triangle with

69

area 1
2
(0.9)(0.9) = 81

200
.

Similarly, the set of all ξki, ξkj that contribute to the probability (4.3) corresponds to the

region bounded by the lines y = 2x, y = 1, and y = x + 0.1. This region is also a triangle and

has area 1
2
(0.4)(0.4) = 18

100
.

Therefore the probability that an index is good is precisely 117
200

> 0.5. Because indices are

good independently of other indices being good, a Chernoff bound gives

P
(

#{k : k is good} > N

2

)
> (1− e−C2N)

for some C2 > 0. Putting this all together gives, with probability greater than (1 − e−C1N)(1 −

e−C2N)(1− e−bN),

−
N∑
k=1

zk ln
yk
zk
>
N

2
(1− ln 2)

1

51N2

4.3 Gibbs Measure

We now answer the final original question regarding the Gibbs measure of the permutation

corresponding to the decryption key. As above, let ξij ∼ U [0, 1] and Si =
N∑
j=1

ξij with pij =
ξij
Si

.

Furthermore, define the random variables:

• γij = πipij (which we can think of as the “digram frequency” in the random model)

• rij =
γij

γσ(i)σ(j)

Let SN denote the permutation group on N elements, and Sk ⊂ SN be the permutations

moving exactly k elements.

70

The Gibbs measure on SN is defined by

P(σ) =
eβH̃2(σ)

zβ

where H̃2(σ) =
∑
i,j

rij ln rσ(i)σ(j).

Note that β usually represents the inverse temperature of the system2, but here it represents

the length of the string.

Define a related energy function by

H(σ) = H̃2(σ)− H̃2(id)

and denote its induced Gibbs measure by Pβ . Thus

Pβ =
eβH(σ)

z∗β

Note that z∗β = zβ ∗ e−βH̃2(id), and that Pβ(id) = 1/z∗β .

Theorem 4.3.1. There exist C1, C2 such that ∀β ≥ C1N lnN ,

lim
N→∞

(P(Pβ(id) ≥ C2) = 1

The theorem states that if string length is taken to be on the order of N lnN , then the

Gibbs measure of the identity is bounded below by some constant. Namely, it is non-trivial and

2For a full explanation of the Ising model, see [10]

71

non-vanishing, and thus we’d expect a random walk using Metropolis-Hastings and this Gibbs

measure to eventually visit the identity, or a permutation quite close to it.

Definition 4.3.2. We say thatH is c-monotone if ∀k,∀σ ∈ Sk,H(σ) ≤ −ck
N

.

Lemma 4.3.3. ∀C1 > 1,∃C2 > 1, C3 ∈ (0, 1) such that if H is C1−monotone then ∀β ≥

C2N lnN we have Pβ(id) ≥ C3.

Proof. Recall that Pβ(id) = 1/z∗β . By hypothesis we have

z∗β =
∑
σ∈SN

eβH(σ) =
N∑
k=0

∑
σ∈Sk

eβH(σ) ≤
N∑
k=0

|Sk|e−C1C2k lnN

Since |Sk| ≤
(
N
k

)
· k! ≤ Nk = ek lnN , we have

z∗β ≤
N∑
k=0

elnN [−C1C2+1]k =
N∑
k=0

N (1−C1C2)k =
1−N (1−C1C2)(N+1)

1−N (1−C1C2)

Choosing C2 large enough, we can force the geometric sum to lie in (1, 1 + ε) for any ε > 0.

Recall that

−H(σ) ≥ [1− ln 2]

 ∑
(i,j)∈I1∪I2

(γij − γσ(i)σ(j))
2

γij
+
∑

(i,j)∈I3

γij


where

I1 = {rij ∈ [1, 2]}

I2 = {rij < 1}

72

I3 = {rij > 2}

In view of Lemma 4.3.3, Theorem 4.3.1 follows from

Proposition 4.3.4. If C1 is sufficiently small then

PN
(

Random alphabet satisfiesH(σ) ≥ −C1k

N
∀σ ∈ Sk

)
→ 1

as N →∞

Let σ ∈ SN . Define the following sets

Γ+
i =

{
j :

ξij
ξσ(i)σ(j)

≥ 3

}

Γ−i =

{
j :

ξij
ξσ(i)σ(j)

≤ 1

3

}

Definition 4.3.5. We say that i is C5-good with respect to σ if σ(i) 6= i and

∑
j∈Γ+

i

ξij ≥ C5N

∑
j∈Γ−i

ξσ(i)σ(j) ≥ C5N

Definition 4.3.6. We say that a random alphabet is C5-typical if

1. ∀i, πi > 0.01/N

2. ∀i, Si ∈ [0.49N, 0.51N]

3. ∀σ ∈ Sk, at least
[
k

100

]
+ 1 indices i are C5-good w.r.t. σ.

73

Proposition 4.3.4 then follows from the following two Lemmas.

Lemma 4.3.7. If an alphabet is C5-typical then ∀k,∀σ ∈ Sk,H(σ) ≤ −C1k

N
for some C1

(depending on C5).

Lemma 4.3.8. If C5 is small enough then

PN(Random alphabet is C5 − typical)→ 1

as N →∞.

Proof of Lemma 4.3.7: Let i be a C5-good index. We will estimate the contribution of the

terms starting with i. There are two cases to consider.

1. πi ≤ πσ(i). Then for all j ∈ Γ−i we have (ij) ∈ I2. To see this, observe that

rij ≤
ξij

ξσ(i)σ(j)

·
∑N

j=1 ξσ(i)σ(j)∑N
j=1 ξij

≤ 1

3
·
∑N

j=1 ξσ(i)σ(j)∑N
j=1 ξij

≤ 1

3
· 0.51N

0.49N
< 1

Moreover γij − γσ(i)σ(j) ≥
γσ(i)σ(j)

2
, whence

∑
j∈Γ−i

(γij − γσ(i)σ(j))
2

γij
≥
∑
j∈Γ−i

γ2
σ(i)σ(j)

4γij
≥
∑
j∈Γ−i

γσ(i)σ(j)

2
≥ C5Nπi

2Si
≥ C5

102N

2. πi ≥ πσ(j). Then for all j ∈ Γ+
i we have (ij) ∈ I3 and

∑
j∈Γ+

i

γij ≥
1

100NSi

∑
j∈Γ+

i

ξij ≥
C5

102N

74

Summing the estimates of both cases over all good i we obtain the result.

Proof of Lemma 4.3.8: Property 1 of typical alphabets holds with high probability by

Lemma 4.2.3 and property 2 holds with high probability due to Lemma 4.2.2. We need to

show that property 3 is unlikely to fail. Let σ ∈ SN . We say that a set I is representative if

∀i ∈ I, σ(i) 6= i. Note that ∀σ ∈ Sk, there exists a representative set of size
[
k

2

]
as shown by the

greedy algorithm.

Choose a representative set of size m = [k/2]. We note that ∀i ∈ I,P(i is not good) ≤

e−C6N due to a large deviation bound. If I is representative, the events that i1, i2, . . . , im are good

are independent since the ξ’s involved are independent. Let r =

[
k

100

]
+ 1. Then

P(at least r indices are bad for σ) ≤ mre−C6Nr

and

P(∃σ ∈ Sk) ≤ Nkmre−C6Nr ≤ Nk+re−C6Nr = e((k+r) lnN−C6N)

Summing over k we obtain the result.

75

Chapter 5: Conclusion

We have presented a theoretical framework for constructing random alphabets and sampling

strings from them. In doing so, we defined the Encounter Process, a point process whose limiting

distribution is proved to be Poisson. We used this process and large deviations theory to provide

strong evidence - which is supported by simulations - that using the digram scoring function H2

significantly outperforms the single frequency scoring function H1 in MCMC decryption. We

also proved that for reliable decryption using m = 1, one needs a massive amount of sample text

(on the order of N5, where N is the size of the alphabet).

A natural continuation of this work is to consider scoring functions for m ≥ 3, which

provide challenges both from a computational standpoint (computation of Hm incurs precision

and rounding errors due to very small values of Pm), and a theoretical standpoint (bounds such

as (2.2) become much more complicated with more terms).

Furthermore, although introduced in the context of MCMC decryption, the Encounter

Process is interesting in its own right, and could lead to further research in other applications.

76

Appendix A: Code

All code was written and executed using Python 3.9 on a 2018 Macbook Pro with 16 GB

of 2400 MHz DDR4 memory and a 2.6 GHz 6-Core Intel Core i7 processor. The repository is

available on Github at https://github.com/pwerth/python-metropolis-crypto.

A.0.1 Metropolis Algorithm

By far the most computationally expensive (and time consuming) step of our Metropolis-

Hastings algorithm occurs when we must decide whether or not to accept a proposed transition -

in particular, it is the computation of the acceptance threshold α. Recall that α is defined as

α =
π(τσ)

π(σ)

77

https://github.com/pwerth/python-metropolis-crypto.

where π is the target distribution of the MCMC, σ is the current state, and τσ is the proposed

state (so τ is a transposition). Denoting the plaintext s = s1 · · · sn, we have

α =
π(τσ)

π(σ)

=
n−1∏
k=1

P2(τσ(sk), τσ(sk+1))

P2(σ(sk), σ(sk+1))
(A.1)

=
∏
x,y∈ℵ

P2(x, y)Nτσ(x,y)

P2(x, y)Nσ(x,y)
(A.2)

where we define Nσ(x, y) as the number of times the digram xy appears in σ(s). Equivalently,

it is the number of times the digram σ−1(x)σ−1(y) appears in the plaintext. Note that because a

string of length n contains n − 1 digrams, computation of the product (A.1) requires 2(n − 1)

multiplications. However, many of these are unnecessary because, since only two symbols are

being swapped, most terms will remain the same in both the numerator and denominator, and

hence will cancel each other out. Taking advantage of this fact will greatly improve the efficiency

of the algorithm.

If τ = (ij) transposes the symbols i and j, we can rewrite the acceptance threshold α as

∏
x∈ℵ

P2(x, i)Nτσ(x,i) · P2(x, j)Nτσ(x,j) · P2(i, x)Nτσ(i,x) · P2(j, x)Nτσ(j,x)

P2(x, i)Nσ(x,i) · P2(x, j)Nσ(x,j) · P2(i, x)Nσ(i,x) · P2(j, x)Nσ(j,x)
(A.3)

Because of the large number of terms, many being quite small, we instead computed the

logarithm of the product. For the code, this mitigated rounding error, but it conveniently also had

benefits for some of the theoretical results (e.g. by allowing us to use inequalities and identities

78

involving logarithms). Thus, instead of computing α, we compute

log(α) = log(π(τσ))− log(π(σ))

=
∑
x∈ℵ

[Nτσ(x, i) log(P2(x, i)) +Nτσ(x, j) log(P2(x, j)) +

Nτσ(i, x) log(P2(i, x)) +Nτσ(j, x) log(P2(j, x))]

−
∑
x∈ℵ

[Nσ(x, i) log(P2(x, i)) +Nσ(x, j) log(P2(x, j)) +

Nσ(i, x) log(P2(i, x)) +Nσ(j, x) log(P2(j, x))]

=
∑
x∈ℵ

[(Nτσ(x, i)−Nσ(x, i)) logP2(x, i) + (Nτσ(x, j)−Nσ(x, j)) logP2(x, j) +

(Nτσ(i, x)−Nσ(i, x)) logP2(i, x) + (Nτσ(j, x)−Nσ(j, x)) logP2(j, x)] (A.4)

Note that this sum contains 4N terms. Since the values of P2 are precomputed and stored

in memory, lookup occurs in constant time. Therefore if we can do the same for Nσ, then we

can compute α using (on the order of) 4N steps. This is not only better than 2(n − 1) because

4N << 2(n−1) in practice, but also because it does not scale with n. Therefore, asymptotically,

we can run the algorithm just as quickly on longer portions of text than on short ones. For our

simulations, N = 27 (26 English letters and the space symbol) but n may be as large as 100, 000

(see Tables 2 and 3).

Another benefit of this approach is that the program does not need to apply any permutations

to the original string; it just needs to keep track of the counts of each digram. This leads us to the

following:

Definition A.0.1. Let ℵ be an alphabet containing N symbols. Given a string s ∈ ℵn and a

79

permutation σ ∈ SN , the character transition matrix (or more simply, transition matrix) of the

string σ(s) is the N ×N matrix Tσ(s) whose (i, j)-th entry is Nσ(i, j).

In other words, Tσ(s)(i, j) records the number of times the digram ij appears in the string

σ(s). Note: we will abbreviate Tσ(s) to Tσ when the underlying string is clear from context.

Remark. Suppose that Eng represented the collection of all English text that was ever

written. In this case, Tid(Eng) = TEng gives the empirical frequencies of English language

digrams. In particular, we would hope to have TEng(i, j) = P2(i, j). Of course, it is impossible

to obtain such a string Eng, so we may think of the matrix (P2(i, j)) as an approximation to the

theoretical TEng.

For two n × n matrices A,B, let A : B denote the sum of all entries in the element-wise

product of A and B. That is,

A : B =
n∑
i=1

n∑
j=1

A(i, j) ·B(i, j)

With this notation, we may now express (A.4) as

logα = log(π(τσ))− log(π(σ)) = (Tτσ − Tσ) : (logP2) (A.5)

where logP2 is the matrix whose (i, j)-th entry is logP2(i, j).

Note that because most symbols are unaffected by the transposition τ , the vast majority

of entries in Tτσ − Tσ will be zero. In particular, if τ = (ij) then only the rows and columns

containing i or j may be non-zero.

80

Let N ∈ N. We denote by Rij the matrix obtained from the identity matrix IN×N by

swapping rows i and j. Note that for any N×N matrix M , left multiplication by Rij swaps rows

i and j of M , while right multiplication by Rij swaps the columns i and j of M . The following

proposition shows us how to compute Tτσ from Tσ.

Proposition A.0.2. Let τ = (ij) be a transposition of the i-th and j-th symbols of the alphabet,

and let σ ∈ SN . Then the transition matrix of the permutation τσ is

Tτσ = RijTσRij

In other words, Tτσ is obtained from Tσ by first swapping the rows corresponding to symbols i

and j, and then swapping the columns corresponding to these symbols.1

Proof. When going from Tσ to Tτσ we must consider how to express the digram counts Nτσ

in terms of Nσ. This can be derived by considering the relationship between Tσ, Tτσ and the

underlying string s.

There are 9 cases to consider for a digram d = s1s2. In the following table, x and y

denote any character that is neither i nor j, and (TσRij)(d) denotes the entry of the matrix TσRij

corresponding to Nd.

1There is a slight abuse of notation in the statement of Proposition 5.2. In the initial description of Rij , i, j are
integer indices corresponding to matrix rows/columns, whereas in the description τ = (ij) they are symbols in the
English alphabet. What is technically meant by Rij is the matrix that swaps the rows or columns corresponding to
symbols i and j.

81

Digram type (RijTσ)(d) (RijTσRij)(d)

ix jx jx

jx ix ix

xi xi xj

xj xj xi

ii ji jj

ij jj ji

ji ii ij

jj ij ii

xy xy xy

Observe that the digram types in third column of the table are indeed the results of applying τ =

(ij) to the digram types in the first column. Thus, because each cell of the matrix Tσ corresponds

to a digram with one of the above forms, this proves that Tτσ has the desired form.

With the above Proposition, our final form of (A.5) is

α = log(π(τσ))− log(π(σ)) = (RijTσRij − Tσ) : logP2

Matrix operations are quite fast on a computer, and our program was written to take full advantage

of this by using Python’s Numpy package.

82

Bibliography

[1] Jian Chen and Jeffrey S. Rosenthal. “Decrypting Classical Cipher Text Using Markov Chain
Monte Carlo”. In: Statistics and Computing 22.1 (2012), pp. 397–413.

[2] Zhili Chen et al. More than Word Frequencies: Authorship Attribution via Natural
Frequency Zoned Word Distribution Analysis. url: https://arxiv.org/pdf/1208.3001.pdf.

[3] Stephen Connor. “Simulation and Solving Substitution Codes”. In: Master’s Thesis,
Department of Statistics, University of Warwick 46.1 (2003), pp. 179–205.

[4] Daryl J Daley and D. Vere-Jones. An Introduction to the Theory of Point Processes.
Springer, 2003, p. 24. isbn: 9780387213378.

[5] Persi Diaconis. “The Markov Chain Monte Carlo Revolution”. In: Bulletin of the American
Mathematical Society 46.1 (2009), pp. 179–205.

[6] David S. Dummit and Richard M. Foote. Abstract Algebra. John Wiley & Sons, 2004. isbn:
0471433349.

[7] Charles M. Goldie and Richard G.E. Pinch. Communication Theory. London Mathematical
Society Student Texts. Cambridge University Press, 1991. isbn: 0521404568.

[8] Philip Hall. “The Distribution of Means for Samples of Size N Drawn from a Population in
which the Variate Takes Values Between 0 and 1, All Such Values Being Equally Probable”.
In: Biometrika 19 (1927), pp. 240–245.

[9] W.K. Hastings. “Monte Carlo Sampling Methods Using Markov Chains and Their
Applications”. In: Biometrika 57.1 (1970), pp. 97–109.

83

[10] David A. Levin, Yuval Peres, and Elizabeth L. Wilmer. Markov Chains and Mixing Times.
American Mathematical Soc., 2008. isbn: 0821847392.

[11] Nicholas Metropolis et al. “Equation of State Calculations by Fast Computing Machines”.
In: The Journal of Chemical Physics 21.1 (1953), pp. 1087–1092.

[12] Peter Norvig. English Letter Frequency Counts: Mayzner Revisited. url: http : / / norvig .
com/mayzner.html.

[13] R.-D. Reiss. A Course on Point Processes. Springer-Verlag, 1993. isbn: 0387979247.

[14] Albert N. Shiryaev. Probability. Graduate Texts in Mathematics. Springer-Verlag, 1980, p.
342. isbn: 9780387945491.

[15] Joy A. Thomas Thomas M. Cover. Elements of Information Theory. John Wiley Sons, Inc,
2005, pp. 12–29. isbn: 9780471241959.

[16] Leo Tolstoy. War and Peace. The Russian Messenger, 1869. isbn: 0140447938.

[17] Wade Trappe and Larry Washington. Introduction to Cryptography with Coding Theory.
Pearson, 2005. isbn: 0131862391.

[18] G.P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, CA, 2001), Chap. 3.

[19] Wikipedia. Letter Frequency. https://en.m.wikipedia.org/wiki/Letter_
frequency.

84

https://en.m.wikipedia.org/wiki/Letter_frequency
https://en.m.wikipedia.org/wiki/Letter_frequency

	Acknowledgements
	Table of Contents
	List of Tables
	Introduction
	Cryptographic Background
	A Brief Summary of Main Results
	Markov Chain Monte Carlo
	Decrypting Substitution Ciphers with MCMC
	Scoring Functions
	Empirical Analysis
	The Dictionary Method

	The Best Scoring Permutation for English
	The Random Model
	The Encounter Process
	The Probability of No Encounters
	Expected Minimum Distance
	Limiting Distribution of Number of Encounters
	Limiting Distribution of The Encounter Process
	Extended encounter process
	Symbol Frequencies in Random Alphabets
	The Probability of Incorrect Orders
	The Best Scoring Permutation

	The Random Model with Digram Scoring Function
	Generating the frequencies
	The Best Scoring Permutation
	Gibbs Measure

	Conclusion
	Code
	Metropolis Algorithm

	Bibliography

