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Chapter 1 

Introduction and Background 

1.1  Introduction 
 
Machining is an industrial process where material is removed to form a desired shape on 

a workpiece. Traditional machining includes cutting operations such as turning, boring, 

drilling, and milling as well as abrading operations such as grinding, polishing, and 

buffing. There are non-traditional machining operations that include chemical machining, 

abrasive-jet machining, laser cutting, plasma cutting, and water-jet cutting. With 

advances of modern machining, the manufacturing of large, sculptured parts through 

material removal is faster and more economical than the production of a large number of 

simple parts (Halley, Helvey, Smith, and Winfough, 1999). The focus of this thesis will 

be on traditional machining methods, especially, that of milling. 

1.2 Background 
 
Milling is a process in which a rotating cutting tool uses the teeth or flutes on its edges to 

remove material on a workpiece. 

 
 

Figure 1.1: Milling diagram - section view. 
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Figure 1.2: a) down-milling process and b) up-milling process. 

 
As depicted in Figure 1.1, the workpiece is fed at a feed rate f into the tool of radius R, 

which spins at a high angular speed Ω. During the pass of each tooth, a little chip of 

material is removed from the workpiece. Material removal can be achieved through an 

up-milling process or a down-milling process. 

 
During down-milling, the feed rate f is directed along the same direction as the rotation of 

the tool; in up-milling, the feed rate f is directed along the opposite direction to the 

rotation of the tool. The chip formation in down-milling is opposite to that seen in up-

milling.  

 

Figure 1.3: Milling tool diagram. 
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Under most conditions, the amount of material removed per tooth pass depends mostly on 

the feed rate and the axial depth of cut (ADOC), as shown in Figure 1.2. The rate of 

immersion is defined as 

RDOCrate of immersion = 
2R

    (1.1) 

where RDOC is the radial depth of cut. 

 

In this thesis, the focus is on low immersion milling, which is assumed to occur when the 

RDOC is much less than the radius of the tool R. Another way to express the rate of 

immersion is through 

2

rate of immersion  
N
πρ⎛ ⎞≈ ⎜ ⎟

⎝ ⎠
    (1.2) 

where N is the number of teeth on the tool and ρ is defined as the ratio of time spent 

cutting to the total spindle period τ ; it is noted that this assumption only holds valid for 

static cutting conditions, zero helix angle on the cutting tool, circular tool paths, and  

small angles of engagement (Davies, Pratt, and Dutterer, 2002). Therefore, by making ρ a 

small parameter, the rate of immersion also becomes small. Low immersion milling 

applies to modern cutting operations including the milling of hard-to-machine materials, 

contoured surfaces, and finishing operations on flexible components (Davies et al., 

2002). In general, low immersion also occurs during high speed milling when the spindle 

speed Ω is greater than 10 krpm. 
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1.3  Chatter and Regenerative Effects 
 
During the milling process, the cutting forces on the tool cause relative vibrations that are 

either stable or unstable. Stable vibrations from the cutting forces can be said to provide a 

net positive damping to the system that allow the vibrations to decay while unstable 

vibrations from the cutting forces can be said to provide a net negative damping to the 

system and therefore introduce energy to the system that cannot be dissipated (Tobias, 

1965). The associated loss of dynamic stability is called chatter. Primary sources of 

chatter include the following: (1) regenerative instabilities that result from the 

undercutting of a previously cut surface and (2) driven oscillations that arise from the 

intermittent engagement between the workpiece and the tool (e.g., Davies and 

Balachandran, 2000).  

 
The first case occurs most commonly during full immersion milling operations where at 

least one flute of the tool is engaged with the workpiece at all times. The stability 

analysis for this case can be treated like that of a turning problem, where the tool and 

workpiece system is modeled as a linear oscillator and the cutting force acting on the 

system is dependent on the previous and present positions of the tool. 

 

Figure 1.4: Regenerative effects of turning. 
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In Figure 1.4, the cutting force of the tool is determined from the difference of the time-

delayed tool position x(t-τ) with the current tool position x(t) plus the feed 0 ( )h t , which is 

equal to the feed rate 0f  multiplied by the total spindle period ( )tτ . This kind of 

regenerative system was first studied by Arnold (1946), who used a lathe with a stiff 

workpiece and flexible tool. The onset of chatter vibrations depends on parameters such 

as the feed rate, the RDOC, the axial depth of cut, and the spindle speed. Tlusty and 

Polacek (1963) and Tobias (1965) later showed that the chip thickness variation along 

with the dynamic cutting force and its regenerative effects are important mechanisms that 

lead to chatter.  

1.4 Loss of Contact Effects 
 
The second primary source for chatter is significant during low immersion operations 

where the cutting becomes highly interrupted. When this occurs, some of the cutting 

edges are not in contact with the workpiece for the majority of the time; this is also 

known as the loss of contact effect (e.g., Balachandran, 2001).  

 

 

Figure 1.5: Loss of contact effects. 
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Therefore, the actual cutting or contact of a tooth with the workpiece occurs during short 

time intervals; that is ρ << 1. Through this small parameter assumption, the cutting force 

duration shrinks towards zero making the non-cutting period close to the total spindle 

period.  

1.5 Cutting Forces 
 
The cutting force is mostly dependent on the following properties: i) cutter geometry, ii) 

workpiece geometry, iii) cutting conditions, iv) workpiece material properties, and v) 

relative displacement between the workpiece and the tool. While Davies et al. (2002) 

examine a single degree-of-freedom (DOF) linear cutting force model, Szalai, Stepan,  

and Hogan (2004) modify this linear model by changing the cutting force into a nonlinear 

cutting force function that follows the 3/4 rule (Tlusty 2000). Zhao (2000) and Long 

(2006) model the cutting tool as an integrated set of thin disk elements while using linear 

dynamic uncut chip thickness variations.  

1.6 Research Objectives 
 
The motivation for this study includes increasing productivity and lowering the cost of 

material removal while achieving a high quality surface finish and keeping the tool wear 

low. Vibrations during the milling process play a major role in influencing the quality of 

the surface finish, the wear of the tool, and the material removal rate. While active 

damping can reduce and stabilize these vibrations, extensive modification of the system 

is required, which can be costly. In addition, there are limitations to the extent to which 

the damping levels can be increased. Therefore, a better approach is to look at the 
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operating parameters of the milling system. By observing cutting speeds and axial depth 

of cuts, ideal operating parameters can be identified for productive milling operations. 

Through a thorough examination of the dynamics on milling processes, the parameters 

for establishing stable chatter free operations can be determined and graphed to create a 

stability chart. 

 

By using a stability chart like the one shown in Figure 1.6, a milling operator can find the 

ideal spindle speed and axial depth of cut to machine efficiently while producing parts 

with a high quality surface finish. Knowledge of the dynamics and stability behavior of 

milling processes is sought to improve the accuracy of stability prediction, and therefore, 

enhance milling performance. 

 

 

Figure 1.6: Sample stability chart for milling. 
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From the earlier discussion, the cutting forces during low immersion milling can be 

reasonably modeled with loss of contact assumptions. The non-cutting and cutting 

periods can be mapped through dynamic equations that incorporate regenerative effects. 

By conducting analytical and numerical stability analysis with these maps, bifurcation 

parameters can be identified. The results of this analysis are presented graphically 

through stability charts. The accuracy of these results is examined through comparison 

with existing experimental results. 

 
This thesis effort has been carried out with the following objectives: 

i) Develop single and two degree-of-freedom system equations of motion for low 

immersion milling with linear and 3/4 rule cutting force models 

ii) Construct maps based on cutting and non-cutting periods, and conduct stability 

analysis predictions by using the developed maps 

iii) Use delay differential equation numerical techniques to verify the analytical 

stability predictions 

iv)  Use the UMCP numerical stability prediction program developed by Zhao (2000) 

and Long (2006), and modify the linear dynamic uncut chip thickness variation in 

the program’s cutting force model to incorporate the 3/4 rule 

v) Compare the predictions obtained through analytical and numerical means with 

that of existing experimental data 

 

1.7 Thesis Organization 
 
This thesis is organized as follows. In the second chapter, the single degree-of-freedom 

system equations of motion with linear and 3/4 rule cutting forces are summarized from 
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Davies et al. (2002) and Szalai et al. (2004). These equations of motion and the cutting 

force models are then expanded to a two degree-of-freedom model. Development of 

maps from the single degree-of-freedom and the two degree-of-freedom models follow. 

In the third chapter, analytical stability prediction equations are obtained for the single 

degree-of-freedom maps and the derivations of the analytical stability prediction 

equations for the two degree-of-freedom system maps are detailed. In chapter four, the 

delay differential equation numerical verification of the analytical predictions is 

presented. Summaries detailing the UMCP numerical stability prediction program and its 

modification to include the 3/4 rule cutting force model are also included. In the fifth 

chapter, stability charts obtained by using the analytical models are compared with the 

predictions obtained from numerical simulations as well as data taken from existing 

experimental results found in the literature (Davies et al., 2002 and Stepan, Szalai, Mann, 

Bayly, Insperger, Gradisek, and Govekar, 2005). Concluding remarks and suggestions for 

future work are presented in the last chapter. Appendices are included to provide details 

of calculations as well as the codes used for the numerical simulations. References are 

listed at the end of the thesis. 
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Chapter 2 

Milling Models 

2.1 Single DOF System Equation of Motion 
 
The following figure depicts a one degree-of-freedom milling configuration. 

 
Figure 2.1: Schematic of a single DOF milling configuration. 

 
The governing equations of this system are 
 
 
   ( )( ) ( ) ( ) ( ) , ( )x x x x x x xm q t c q t k q t g t F t tτ+ + =&& &     (2.1) 

 
where 
 

=)(tg 0, is the free oscillation period 1τ , −
+<≤ 1jj ttt  

=)(tg 1, is the cutting period 2τ , 11 +
−
+ <≤ jj ttt   
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and τ , the total spindle time period, equals 21 ττ + . Therefore, at the start of 1τ , from time 

jt , to the end of 1τ , at the time just prior to 1jt−
+ , the tool is not in contact with the 

workpiece; the equation of motion in (2.1) does not depend on the cutting force 

( ), ( )xF t tτ  and becomes a linear, homogenous differential equation. Then at the start of 

2τ , from the time 1jt−
+ , to the end of 2τ , at the time just prior to 1jt + , the tool contacts the 

workpiece and thus, the equation of motion in (2.1) depends on the cutting force 

( ), ( )xF t tτ . At the time 1jt + , a new spindle period begins. In both states of 1τ  and 2τ , the 

equation of motion of the tool includes displacement ( )xq t , constant stiffness kx, and 

constant damping cx. The tool rotates with a constant angular speed Ω and has N number 

of teeth. The constant feed rate f of the workpiece runs opposite to the major mode of 

motion ( )xq t . According to previous research as mentioned in Long (2006), a circular 

tooth path is assumed, which therefore creates the constant time delay 2 / Nτ π= Ω . 

Through the definition of ρ , 2τ ρτ= . The linear cutting force is given by  

( ) [ ]0, ( ) ( ) ( ) hx t x xF t t K w q t q tτ τ= − − +    (2.2) 

while the 3/4 rule cutting force is given by 

   ( ) [ ]3/4
0, ( ) ( ) ( ) hx x xF t t Kw q t q tτ τ= − − +    (2.3) 

where K t is the workpiece material constant, K  is the modified workpiece material 

constant and is related to K t  by 

1/4
0htK K= ,     (2.4) 

w is the axial depth of cut or constant chip width, and 0h  is the feed, which is defined as  
 

0h fτ= . Note that both 0h  and τ  are dependent on t. 
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2.2  Two DOF System Equations of Motion 
 
The following figure depicts a two degree-of-freedom milling configuration. 

 

  
Figure 2.2: Schematic of a two DOF milling configuration. 

 
The governing equations of this system are 
 

   
( )
( )

( ) ( ) ( ) ( ) , ( )

( ) ( ) ( ) ( ) , ( )
x x x x x x x

u u u u u u u

m q t c q t k q t g t F t t

m q t c q t k q t g t F t t

τ

τ

+ + =

+ + =

&& &

&& &
   (2.5) 

   
where 

=)(tg 0, the free oscillation period 1τ , −
+<≤ 1jj ttt  

  =)(tg 1, the cutting period 2τ , 11 +
−
+ <≤ jj ttt  

and τ , the total time period, equals 21 ττ + . As in the one degree-of-freedom case, at the 

start of 1τ , from time jt , to the end of 1τ , at the time just prior to 1jt−
+ , the tool is not in 

contact with the workpiece, so the equations of motion in (2.5) do not depend on the 
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cutting forces ( ), ( )xF t tτ  and ( ), ( )uF t tτ ; the system becomes a set of linear, 

homogenous differential equations. Then at the start of 2τ , from the time 1jt−
+ , to the end 

of 2τ , at the time just prior to 1jt + , the tool contacts the workpiece and the equations of 

motion in (2.5) depend on the cutting forces ( ), ( )xF t tτ  and ( ), ( )uF t tτ . At the time 1jt + , 

a new spindle period begins. As in the single degree-of-freedom case, the equation of 

motion for the tool includes displacement ( )xq t , constant stiffness kx, and constant 

damping cx. The equation of motion for the workpiece includes displacement ( )uq t , 

constant stiffness ku, and constant damping cu. The constant feed rate f of the workpiece 

runs along the major mode of motion on the workpiece ( )uq t . The linear cutting force is 

given by 

( ) [ ]0, ( ) ( ) ( ) ( ) ( ) hx t x x u uF t t K w q t q t q t q tτ τ τ= − − + − − +     (2.6) 

while the 3/4 rule cutting force is given by 

( ) [ ]3/4
0, ( ) ( ) ( ) ( ) ( ) hx x x u uF t t Kw q t q t q t q tτ τ τ= − − + − − +   (2.7) 

 

Applying Newton's Third Law, the cutting force ( ))(, ttFx τ  acting on the tool is equal and 

opposite to the cutting force ( ))(, ttFu τ  acting on the workpiece. Thus, the equations of 

motion become  

( )
( )

( ) ( ) ( ) ( ) , ( )

( ) ( ) ( ) ( ) , ( )
x x x x x x x

u u u u u u x

m q t c q t k q t g t F t t

m q t c q t k q t g t F t t

τ

τ

+ + =

+ + =

&& &

&& &
     (2.8) 

 

 



 14

2.3  Single DOF System Map 
 
The key to determining stability is to find the appropriate maps and their solutions for the 

interrupted cutting process. For ease of notation, one manipulates the equation of motion 

from (2.1) into 

( )2 ( )( ) 2 ( ) ( ) , ( )x x x x x x x
x

g tq t q t q t F t t
m

ζ ω ω τ+ + =&& &    (2.9) 

where xxx mk /=ω is the natural frequency for the tool and / 2x x x xc k mζ = is the 

constant damping ratio for the tool. The free vibration non-cutting phase ( 0)( =tg ) that 

maps the state ( ))(),( jxjx tqtq &  to the state ( ))(),( 11
−
+

−
+ jxjx tqtq &  is derived to be 

1

1

( )( )
A

( )( )
x jx j

x jx j

q tq t
q tq t

−
+

−
+

⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎣ ⎦⎣ ⎦ &&
     (2.10) 

where the state-transition matrix A is 

2

1cos( ) sin( ) sin( )
A exp( )

sin( ) cos( ) sin( )

x x
xd xd xd

xd xd
x x

x x x
xd xd xd

xd xd

ζ ωω τ ω τ ω τ
ω ω

ζ ω τ
ω ζ ωω τ ω τ ω τ
ω ω

⎡ ⎤+⎢ ⎥
⎢ ⎥= −
⎢ ⎥

− −⎢ ⎥
⎣ ⎦

   (2.11) 

and 21xd x xω ω ζ= − is defined to be the damped natural frequency for free oscillations 

of the tool. Note that it has been assumed that ττ ≈1 , as explained next. 

 

In instances where the time period of cutting is very short; that is, 2 0τ → , 1τ  can be 

approximated by τ  (e.g. Szalai et al., 2004).  For the cutting period 02 →τ , the spring 

and damping forces can be neglected (e.g. Davies et al., 2002) and the position of the tool 

can be assumed to experience a negligible change during cutting, which leaves 
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1 0( ) ( ) ( ) ht
x x j x j

x

K wq t q t q t
m

−
+⎡ ⎤≈ − +⎣ ⎦&&  ,  11 +

−
+ <≤ jj ttt    (2.12)  

for the linear cutting force model and  

3/4

1 0( ) ( ) ( ) hx x j x j
x

Kwq t q t q t
m

−
+⎡ ⎤≈ − +⎣ ⎦&&  , 11 +

−
+ <≤ jj ttt    (2.13) 

for the 3/4 rule cutting force model. 

 

Integrating the above equation over the period ],[ 11 +
−
+ jj tt , one finds 

1 1 2 1 0( ) ( ) ( ) ( ) ht
x j x j x j x j

x

K wq t q t q t q t
m

τ− −
+ + +⎡ ⎤= + − +⎣ ⎦& &    (2.14)  

for the linear cutting force model and  

3/4

1 1 2 1 0( ) ( ) ( ) ( ) hx j x j x j x j
x

Kwq t q t q t q t
m

τ− −
+ + +⎡ ⎤= + − +⎣ ⎦& &    (2.15) 

for the 3/4 rule cutting force model. 

 

Combining equations (2.10) and (2.14) together for the linear cutting force model, and 

equations (2.10) and (2.15) together for the 3/4 rule cutting force model, and assuming 

that the position of the oscillating tool remains constant during the interaction with the 

workpiece so that 1 1( ) ( )x j x jq t q t−
+ +≈ , one arrives at 

1

2 11 12 01

0( ) ( )
A

[(1 A ) ( ) A ( ) h ]( ) ( )
x j x j

t
x j x jx j x j

x

q t q t
K w q t q tq t q t
m

τ
+

+

⎡ ⎤
⎡ ⎤ ⎡ ⎤ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − +⎣ ⎦ ⎣ ⎦ ⎢ ⎥⎣ ⎦

&& &
  (2.16)  
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and 

1
3/4

2 11 12 01

0( ) ( )
A

[(1 A ) ( ) A ( ) h ]( ) ( )
x j x j

x j x jx j x j
x

q t q t
Kw q t q tq t q t
m

τ
+

+

⎡ ⎤
⎡ ⎤ ⎡ ⎤ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − +⎣ ⎦ ⎣ ⎦ ⎢ ⎥⎣ ⎦

&& &
    (2.17)  

for the linear and 3/4 rule cutting forces, respectively, where Aij  corresponds to the 

elements of A in (2.11).  

 
 
By using fixed point and stability techniques such as those found in Nayfeh and  
 
Balachandran (1995), the maps in (2.16) and (2.17) are found to have the fixed points 
 

[ ]
122 0

11

Ah
1 A1 det(A) tr(A)

e t

e x

x K w
v m

τ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥−+ − ⎣ ⎦⎣ ⎦

   (2.18) 

and 

[ ]
3/4

122 0

11

Ah
1 A1 det(A) tr(A)

e

e x

x Kw
v m

τ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥−+ − ⎣ ⎦⎣ ⎦

     (2.19) 

 
The linearized Jacobian matrix for (2.16) and (2.17) is 
 
 

11 12

21 11 22 12

A A
B = 

ˆ ˆA (1 A ) A Ax xw w
⎡ ⎤
⎢ ⎥+ − −⎣ ⎦

   (2.20) 

 
where the dimensionless chip width for the linear cutting force model is 
 

2ˆ t
x

x

K ww
m

τ
=      (2.21) 

and the dimensionless chip width for the 3/4 cutting force model is 

2
1/4

0

3ˆ
4 hx

x

Kww
m

τ
=      (2.22) 
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Linearizing around the fixed points, the generalized local dynamics is described by 
 
 

1

1

( ) ( )
+ B

( ) ( )
x j x je

x j x je

q t q tx
q t q tv

+

+

⎡ ⎤ ⎡ ⎤⎡ ⎤
=⎢ ⎥ ⎢ ⎥⎢ ⎥

⎣ ⎦⎣ ⎦ ⎣ ⎦& &
    (2.23)  

 
where xe, ve, and ˆ xw  are based on their respective cutting force models. 
 

2.4  Two DOF System Map 
 
As in the case of the single degree-of-freedom map, one simplifies the notation in the 

equations of motion (2.8) to yield  

( )

( )

2

2

( )( ) 2 ( ) ( ) , ( )

( )( ) 2 ( ) ( ) , ( )

x x x x x x x
x

u u u u u u x
u

g tq t q t q t F t t
m
g tq t q t q t F t t
m

ζ ω ω τ

ζ ω ω τ

+ + =

+ + =

&& &

&& &

    (2.24) 

where, as in the single degree-of-freedom case, xxx mk /=ω is the natural frequency for 

the tool and / 2x x x xc k mζ =  is the constant damping ratio for the tool. uuu mk /=ω  is 

the natural frequency for the workpiece and / 2u u u uc k mζ = is the constant damping 

ratio for the workpiece. With equation (2.24), the non-cutting phase ( 0)( =tg ) that maps 

the state ( ))(),(),(),( jujujxjx tqtqtqtq &&  to the state ( ))(),(),(),( 1111
−
+

−
+

−
+

−
+ jujujxjx tqtqtqtq &&  is 

derived as  

 

1

1

1

1

( )( )
( )( )

C
( )( )
( )( )

x jx j

u ju j

x jx j

u ju j

q tq t
q tq t
q tq t
q tq t

−
+

−
+

−
+

−
+

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

&&

&&

     (2.25) 
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where the state-transition matrix C is  

2

2

ˆ ˆ ˆ[c s ] 0 s 0

ˆ ˆ ˆ0 [c s ] 0 s

ˆ ˆ ˆs 0 [c s ] 0

ˆ ˆ ˆ0 s 0 [c s ]

x x
x x

u u
u u

x x x x

u u u u

x x
x x x

xd xd

u u
u u u

ud ud

x x x
x x x

xd xd

u u u
u u u

ud ud

ee

ee

e e

e e

ζ ω τ
ζ ω τ

ζ ω τ
ζ ω τ

ζ ω τ ζ ω τ

ζ ω τ ζ ω τ

ζ ω
ω ω

ζ ω
ω ω

ω ζ ω
ω ω

ω ζ ω
ω ω

−
−

−
−

− −

− −

⎡ ⎤
+⎢ ⎥

⎢ ⎥
⎢ ⎥

+⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− −
⎢ ⎥
⎢ ⎥
⎢ ⎥− −⎢ ⎥⎣ ⎦

 (2.26) 

and ˆ cos( )x xdc ω τ= , ˆ sin( )x xds ω τ= , ˆ cos( )u udc ω τ= , and ˆ sin( )u uds ω τ= .  

Ĉ  is obtained from the state-transition matrix A of the tool in equation (2.11) 

11 1311 12

31 3321 22

C CA A
Ĉ A

C CA A
⎡ ⎤⎡ ⎤

= = = ⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦

   

and C
∗

 is the state-transition matrix of the workpiece 

22 24

42 44

C C
C

C C

∗ ⎡ ⎤
= ⎢ ⎥

⎣ ⎦
      (2.27) 

where again, 21xd x xω ω ζ= − is the damped natural frequency for the freely oscillating 

tool and 21ud u uω ω ζ= −  is introduced as the damped natural frequency for the freely 

oscillating workpiece.  

 

As in the single degree-of-freedom case, with 02 →τ , the spring and damping forces can 

be neglected and the position of the tool can be assumed to experience negligible change 

during the cutting, which leads to 
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1 1 0

1 1 0

( ) ( ) ( ) ( ) ( ) h

( ) ( ) ( ) ( ) ( ) h

t
x x j x j u j u j

x

t
u x j x j u j u j

u

K wq t q t q t q t q t
m
K wq t q t q t q t q t
m

− −
+ +

− −
+ +

⎡ ⎤≈ − + − +⎣ ⎦

⎡ ⎤≈ − + − +⎣ ⎦

&&

&&

,   11 +
−
+ <≤ jj ttt  (2.28) 

for the linear cutting force model and  

3/4

1 1 0

3/4

1 1 0

( ) ( ) ( ) ( ) ( ) h

( ) ( ) ( ) ( ) ( ) h

x x j x j u j u j
x

u x j x j u j u j
u

Kwq t q t q t q t q t
m
Kwq t q t q t q t q t
m

− −
+ +

− −
+ +

⎡ ⎤≈ − + − +⎣ ⎦

⎡ ⎤≈ − + − +⎣ ⎦

&&

&&

,   11 +
−
+ <≤ jj ttt       (2.29) 

for the 3/4 rule cutting force model. 

 

Integrating the above equation over the interval ],[ 11 +
−
+ jj tt one finds 

1 1 2 1 1 0

1 1 2 1 1 0

( ) ( ) ( ) ( ) ( ) ( ) h

( ) ( ) ( ) ( ) ( ) ( ) h

t
x j x j x j x j u j u j

x

t
u j u j x j x j u j u j

u

K wq t q t q t q t q t q t
m
K wq t q t q t q t q t q t
m

τ

τ

− − −
+ + + +

− − −
+ + + +

⎡ ⎤= + − + − +⎣ ⎦

⎡ ⎤= + − + − +⎣ ⎦

& &

& &

  (2.30) 

for the linear cutting force model and  

3/4

1 1 2 1 1 0

3/4

1 1 2 1 1 0

( ) ( ) ( ) ( ) ( ) ( ) h

( ) ( ) ( ) ( ) ( ) ( ) h

x j x j x j x j u j u j
x

u j u j x j x j u j u j
u

Kwq t q t q t q t q t q t
m
Kwq t q t q t q t q t q t
m

τ

τ

− − −
+ + + +

− − −
+ + + +

⎡ ⎤= + − + − +⎣ ⎦

⎡ ⎤= + − + − +⎣ ⎦

& &

& &

     (2.31)  

for the 3/4 rule cutting force model. 
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For the linear cutting force model, combining equations (2.25) and (2.30) together yields 

1

1

1

1

2 11 13 22 24 0

2 11 13 22

( ) ( )
( ) ( )

C
( ) ( )
( ) ( )

0
0

[(1 C ) ( ) C ( ) (1 C ) ( ) C ( ) h ] 

[(1 C ) ( ) C ( ) (1 C ) (

x j x j

u j u j

x j x j

u j u j

t
x j x j u j u j

x

t
x j x j u j

u

q t q t
q t q t
q t q t
q t q t

K w q t q t q t q t
m
K w q t q t q t
m

τ

τ

+

+

+

+

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

− − + − − ++

− − + −

& &

& &

& &

& 24 0) C ( ) h ]u jq t

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

− +⎢ ⎥
⎣ ⎦

&

 (2.32) 

while combining equations (2.25) and (2.31) together for the 3/4 rule cutting force model 

yields 

1

1

1

1

3/4
2 11 13 22 24 0

2 11 13 22

( ) ( )
( ) ( )

C
( ) ( )
( ) ( )

0
0

[(1 C ) ( ) C ( ) (1 C ) ( ) C ( ) h ] 

[(1 C ) ( ) C ( ) (1 C ) (

x j x j

u j u j

x j x j

u j u j

x j x j u j u j
x

x j x j u
u

q t q t
q t q t
q t q t
q t q t

Kw q t q t q t q t
m
Kw q t q t q t
m

τ

τ

+

+

+

+

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

− − + − − ++

− − + −

& &

& &

& &

& 3/4
24 0) C ( ) h ]j u jq t

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

− +⎢ ⎥
⎣ ⎦

&

    (2.33) 

where Cij corresponds to the elements of C in equation (2.26). The fixed points of 

equation (2.32) are 

  132 0

11

Ch
ˆ ˆ 1 C1 det(C) tr(C)

e t

e x

x K w
v m

τ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥−⎡ ⎤+ − ⎣ ⎦⎣ ⎦ ⎣ ⎦

 

242 0

22

Ch
1 C1 det(C) tr(C)

e t

e
u

u K w
w m

τ
∗ ∗

⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥−⎡ ⎤ ⎣ ⎦⎣ ⎦ + −⎢ ⎥⎣ ⎦

   (2.34) 
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while the fixed points of equation of the system (2.33) are  

  
3/4

132 0

11

Ch
ˆ ˆ 1 C1 det(C) tr(C)

e

e x

x Kw
v m

τ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥−⎡ ⎤+ − ⎣ ⎦⎣ ⎦ ⎣ ⎦

 

3/4
242 0

22

Ch
1 C1 det(C) tr(C)

e

e
u

u Kw
w m

τ
∗ ∗

⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥−⎡ ⎤ ⎣ ⎦⎣ ⎦ + −⎢ ⎥⎣ ⎦

   (2.35) 

The linearized Jacobian matrix of equations (2.32) and (2.33) can be formed as 

11 13

22 24

31 11 22 33 13 24

11 42 22 13 44 24

C 0 C 0
0 C 0 C

D=
ˆ ˆ ˆ ˆC w (1 C ) w (1 C ) C w C w C

ˆ ˆ ˆ ˆw (1 C ) C w (1 C ) w C w C
x x x x

u u u uC

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥+ − − − −
⎢ ⎥− + − − −⎣ ⎦

   (2.36) 

where the dimensionless chip widths for the linear cutting force are  

  2ˆ t
x

x

K ww
m

τ
=  

2ˆ t
u

u

K ww
m

τ
=      (2.37) 

and the dimensionless chip widths for the 3/4 rule cutting force are  

     2
1/4

0

3ˆ
4 hx

x

Kww
m

τ
=  

    2
1/4

0

3ˆ
4 hu

u

Kww
m

τ
=      (2.38) 

An important parameter that will appear during the stability analysis is 

ˆ /x um m m=      (2.39) 

which equates 

ˆ ˆ ˆu xw mw=      (2.40)  

for both cases. 
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From (2.20), 

11 12 11 13

21 11 22 12 31 11 33 13

A A C C
D̂ = B = 

ˆ ˆ ˆ ˆA (1 A ) A A C (1 C ) C Cx x x xw w w w
⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥+ − − + − −⎣ ⎦ ⎣ ⎦
 

and 

22 24

42 22 44 24

C C
D  = 

ˆ ˆC (1 C ) C Cu uw w

∗ ⎡ ⎤
⎢ ⎥+ − −⎣ ⎦

   (2.41) 

 

With the linearization around the fixed points, the generalized local dynamics for the two 

degree-of-freedom system is described by 

1

1

1

1

( ) ( )
( ) ( )

+ D
( ) ( )
( ) ( )

x j x je

u j u je

x j x je

u j u je

q t q tx
q t q tu
q t q tv
q t q tw

+

+

+

+

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥=
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

&

& &

      (2.42)  

where xe, ue, ve, we, ˆ xw , and ˆuw  are based on the respective cutting force models. 
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Chapter 3 

Analytical Stability Predictions 

3.1 Introduction  
 

The stability of the one or two degree-of-freedom system is determined by the respective 

system's Jacobian matrix given by B (2.20) or D (2.36). If the eigenvalues lie outside the 

unit circle of the complex plane meaning that the magnitude of each eigenvalue is greater 

than one, the amplitude of a perturbation about the system's fixed point will grow without 

bound on further iterations of the system map; in this scenario, the system is unstable. 

Conversely, if the eigenvalues lie within the unit circle of the complex plane, all 

subsequent perturbations about the fixed point of the system map will decay to zero; in 

this scenario, the system is stable, (e.g., Nayfeh and Balachandran, 1995). To determine 

the stability of the system, one must look at the conditions when one or more eigenvalues 

leave the unit circle. 

 

 

Figure 3.1: Bifurcation types - (a) cyclic fold bifurcation, (b) flip bifurcation, and          
(c) Neimark-Sacker bifurcation. 



 24

According to stability analysis (e.g. Nayfeh and Balachandran, 1995), there are three 

conditions under which the system can become unstable: 

i) a real-valued eigenvalue traveling left to right through +1, which is a necessary 

condition for a cyclic fold bifurcation ( )see Figure 3.1 (a)  

ii) a real-valued eigenvalue traveling right to left through -1, which is a necessary 

condition for a flip or period doubling bifurcation ( )see Figure 3.1 (b)  

iii) a pair of complex-conjugate eigenvalues leaving the unit circle through the 

complex boundary of this circle, which is a necessary condition for a Neimark- 

Sacker or secondary Hopf bifurcation ( )see Figure 3.1 (c)  

For both the one and two degree-of-freedom systems, all three possibilities are examined. 

3.2 Characteristic Equation for the Single DOF System  
 
The eigenvalues λ  of the single degree-of-freedom map (2.23) are calculated from the 

characteristic equation of the Jacobian matrix B given by (2.20), leading to  

2 tr(B) +det(B)=0λ λ−         (3.1)  

where tr(B) is the trace of B and det(B) is the determinant of B. Following some 

algebraic manipulations, one can obtain 

12

12

ˆtr(B) = tr(A) A
ˆdet(B) = det(A) A

x

x

w
w

−
−

    (3.2) 

Without further analysis, immediate conclusions can be drawn by using (3.2); for values 

of parameters in which 12A 0= , the characteristic equation reduces to that of a simple, 

damped harmonic oscillating tool described by matrix A (2.11); thus, the system is stable 
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(Davies et al., 2002). Since this is a limited special case, the other cases are now  

examined.  

3.3 Case 1: λ  = +1 for the Single DOF System 
 
Setting 1λ =  in the characteristic equation (3.1) produces 

1 tr(A) + det(A) 0− =      (3.3) 

This equation is independent of the axial depth of cut or chip width and therefore cannot 

be a route to instability, when the chip width is used as a bifurcation control parameter.  

3.4 Case 2: λ  = -1 for the Single DOF System 
 

Setting 1λ = −  in the characteristic equation (3.1), the critical dimensionless chip width, 

which is the chosen control parameter, is determined as  

12

cosh( ) cos( )det(A) + tr(A) + 1ˆ
2A sin( )

f x x xd
xcr xd

xd

w ζ ω τ ω τω
ω τ

⎛ ⎞+
= = ⎜ ⎟

⎝ ⎠
  (3.4) 

A map experiencing a flip bifurcation at its critical point results in the creation or 

destruction of two branches of period-two points (e.g. Nayfeh and Balachandran, 1995). 

An iteration of a map initiated at either of the period-two points flips back and forth 

between those points if 20x  and 30x  are period-two critical bifurcation points of map 

M(x); that is,  

20 30 30 20( )  and M( )M x x x x= =    (3.5) 

Thus, the stability lobes formed from ˆ f
xcrw  in (3.4) correspond to flip bifurcation points. 
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3.5 Case 3: λλ  = 1 for the Single DOF System 
 
Setting λλ  = 1, where λ  is the complex conjugate of λ , one arrives at the general form 

ie φλ =  and ie φλ −=  for Case 3, where φ is an angle that needs to be solved. For Case 3, 

the general form of the characteristic equation is derived to be 

2 (2cos ) 1 0λ φ λ− + =      (3.6) 

Equating like radicals, the radicals of 1λ  from (3.1) and (3.6) are used to solve for  

1 tr(B)cos
2

φ −=      (3.7) 

By using the radicals of 0λ  from equations (3.1) and (3.6), the following condition for 

Neimark-Sacker bifurcations is obtained: 

det (B) = 1      (3.8) 

Applying this condition, the critical dimensionless chip width for this case is determined 

as 

12

sinh( )det(A)  1ˆ 2
A sin( )

ns x x
xcr xd

xd

w ω ζ τω
ω τ

−
= = −    (3.9) 

Branches of stable periodic solutions at a critical point that exist prior to the Neimark-  

Sacker bifurcation split as a pair of unstable branches after the bifurcation (e.g. Nayfeh 

and Balachandran, 1995). The stability lobes formed through ˆ ns
xcrw  in (3.9) predict the 

occurrence of Neimark-Sacker bifurcations along its boundary. As Davies et al. (2002) 

point out, the Neimark-Sacker bifurcation produces unstable, self-excited vibrations with 

frequencies that are not proportional to corresponding spindle rotation frequencies. This 

type of bifurcation also appears in continuous turning and gives rise to chatter frequency.  
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3.6 Characteristic Equation for the Two DOF System  
 
The eigenvalues λ  of the two degree-of-freedom map (2.42) are calculated from the 

characteristic equation of the Jacobian matrix D in equation (2.36), leading to  

 
4 3 2 2

13 24

2
13 24

ˆ ˆ ˆ ˆ tr(D)  [det(D) + det( D) + tr(D)tr( D) C C ]

ˆ ˆ ˆ ˆ [tr(D)det( D) + tr( D)det(D) 2 C C ] det(D) = 0

x

x

mw

mw

λ λ λ

λ

∗ ∗

∗ ∗

− + −

− − +
  (3.10) 

 
In this regard, useful algebraic relationships include the following:  
 
 

13 24

13

24

2
13 24 13 24

1

ˆ ˆ ˆtr(D) = tr(C)  C   C
ˆˆ ˆdet(D) = det(C)  C

ˆ ˆdet( D) = det(C)  C

ˆ ˆˆ ˆ ˆ ˆ ˆ ˆtr(D)tr( D) = tr(C)tr(C)  tr(C)C   tr(C)C C C

ˆˆtr(D)det( D) = tr(C)det(C)  det(C)C

x x

x

x

x x x

w mw

w

mw

w mw mw

∗ ∗

∗ ∗ ∗

∗ ∗ ∗

− −

−

−

− − +

− 2
3 24 13 24

2
13 24 13 24

13 24

ˆˆ ˆ ˆ ˆ ˆ tr(C)C C C

ˆ ˆˆ ˆ ˆ ˆ ˆ ˆtr( D)det(D) = tr(C)det(C)  tr(C)C   det(C)C C C

ˆˆ ˆ ˆdet(D) = det(C)  det(C)C   det(C)C

x x x

x x x

x x

w mw mw

w mw mw

w mw

∗ ∗ ∗

∗

− +

− − +

− −

  (3.11) 

 
 
As in the one degree-of-freedom case, one can immediately conclude by using (3.11) that 

for values of parameters in which 13 24C C 0= = , the characteristic equation reduces to 

that of a simple, damped harmonic oscillating tool and workpiece described by matrix C 

(2.26); thus, the system is stable. Again, since this is a limited special case, the other 

cases are examined for the two degree-of-freedom system. 
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3.7 Case 1: λ  = +1 for the Two DOF System 
 
Setting 1λ =  for the characteristic equation in (3.10) and by using the relationships 

defined in (3.11) leads to 

ˆ ˆ ˆ ˆ1 tr(C) + det(C) + det(C) + tr(C)tr(C) tr(C)det(C) tr(C)det(C) + det(C) 0
∗ ∗ ∗ ∗

− − − =    (3.12) 

Like in the one degree-of-freedom case, this equation is independent to the axial depth of 

cut or chip width, and therefore this scenario cannot be a route to instability.  

3.8 Case 2: λ  = -1 for the Two DOF System 
 

Setting 1λ = −  for the characteristic equation (3.10) and using the relationships defined 

in (3.11), the critical dimensionless flip bifurcation chip width becomes  

13 24

ˆ

ˆ ˆ ˆ ˆ1 1 tr(C) +det(C) + tr(C)tr(C) + tr(C)det(C) + tr(C)det(C) + det(C) + det(C) 
2 ˆ ˆ ˆ[1 + tr(C) + det(C)]C  + [1 + tr(C) + det(C)] C

f
xcrw

m

∗ ∗ ∗ ∗

∗ ∗

=
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 where ˆ cos( )x xdc ω τ= , ˆ sin( )x xds ω τ= , ˆ cos( )u udc ω τ= , and ˆ sin( )u uds ω τ= . As in the one 

degree-of-freedom case, the stability lobes formed from ˆ f
xcrw  in (3.13) correspond to the 

flip bifurcation points. 
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3.9 Case 3: λλ  = 1 for the Two DOF System 
 
Just like in the one degree-of-freedom system analysis, one can use 1

ie φλ =  and 1
ie φλ −=  

as the general form for the Neimark-Sacker bifurcation case. In order for the map in 

(2.42) to experience a Neimark-Sacker bifurcation, not only do two complex conjugate 

eigenvalues have to leave the unit circle away from the real axis such that 1 1λ λ  = 1, but 

the other two eigenvalues must be complex conjugates within the unit circle. The general 

solution of the second pair of eigenvalues is assumed to be 2 a biλ = +  and 2 a biλ = −  

where a and b are real values. By using all four general forms of the eigenvalues, the 

characteristic equation in (3.10) becomes 

4 3 2 2 2

2 2 2 2

2( cos ) ( 4 cos 1)
2[( ) cos ] 0

a a b a
a b a a b

λ φ λ φ λ

φ λ

− + + + + +

− + + + + =
  (3.14) 

Equating the radicals of 0λ  from (3.10) and (3.14), the following condition for Neimark-

Sacker bifurcations is obtained 

 2 2det(D) a b= +     (3.15) 

Even when equating the rest of the radicals from (3.10) and (3.14), unlike the one degree-

of-freedom case, there is no explicit form for the critical dimensionless Neimark-Sacker 

bifurcation chip width. Therefore, numerical means need to be used to predict the 

occurrence of Neimark-Sacker bifurcations along the stability lobe boundaries. A 

computational code for these solutions can be found in Section B.2 of Appendix B. 

3.10     Analytical Stability Lobe Predictions 
 
In order to compare the stability lobe boundaries with that of the numerical and 

experimental data, the dimensionless chip widths for both the linear cutting force model 
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and 3/4 rule cutting force model must be converted into chip widths that have 

dimensions. By using equations (2.21) and (2.22) from the one degree-of-freedom map, 

recalling from equation (2.4) that 1/4
0htK K=  for the 3/4 rule cutting force model, and 

remembering that 2τ  = ρτ , where 2 / Nτ π= Ω , the following generalized stability 

prediction equations are derived in terms of their corresponding dimensionless chip 

widths for the linear cutting force model 

ˆ
2

x
cr xcr

t

N mw w
Kπ ρ

Ω
=     (3.16) 

and for the 3/4 rule cutting force model 

4 ˆ
3 2

x
cr xcr

t

N mw w
Kπ ρ

Ω
=     (3.17) 

By using equations (2.37), (2.38), (2.39), and (2.40) for the two degree-of-freedom maps, 

one arrives at the exact same generalized stability prediction equations of (3.16) and 

(3.17). It is noted that through linearization, the linear cutting force model and the 3/4 

rule cutting force model differ only by a factor of  4/3. 
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Chapter 4 

Numerical Stability Predictions 
 

The conditions detailed in Chapter 3 are necessary for bifurcations to occur, and  

additional analysis is needed to verify the occurrence of a bifurcation. In Szalai et al. 

(2004), asymptotic analysis is used to determine the criticality of each bifurcation for the 

single degree-of-freedom system. In this section, the analytical stability predictions are 

numerically verified by time integration of the delay differential equations. 

4.1  Numerical Verification of the Analytical Predictions 
 
To numerically solve the equations of motion given by (2.1) for the single degree-of-

freedom case and (2.5) for the two degree-of-freedom case, the respective equations of 

motion are placed in state space form with their corresponding cutting force models. 

First, one defines  

 

1

2

3

4

( )( )
( )( )
( )( )
( )( )

x

u

x

u

q tq t
q tq t
q tq t
q tq t

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ =
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦

&

&

     (4.1) 

 
 
The single degree-of-freedom linear cutting force model is then derived to be 
 
 

1 2

2 1 2 1 1

( ) ( )

( ) ( ) ( ) ( ) [ ( ) ( ) ]x x t

x x x

q t q t
k c K wq t q t q t g t q t q t f
m m m

τ τ

=

= − − + − − +

&

&
    (4.2) 
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and the single degree-of-freedom 3/4 rule cutting force model is derived to be 

1 2
1/4

3/4
2 1 2 1 1

( ) ( )

( )( ) ( ) ( ) ( ) [ ( ) ( ) ]x x t

x x x

q t q t

k c K w fq t q t q t g t q t q t f
m m m

τ τ τ

=

= − − + − − +

&

&
   (4.3) 

while the two degree-of-freedom linear cutting force model is derived to be  

1 3

2 4

3 1 3 1 2 1 2

4 2 4 1 2 1 2

( ) ( )
( ) ( )

( ) ( ) ( ) ( ) [ ( ) ( ) ( ) ( ) ]

( ) ( ) ( ) ( ) [ ( ) ( ) ( ) ( ) ]

x x t

x x x

u u t

u u u

q t q t
q t q t

k c K wq t q t q t g t q t q t q t q t f
m m m
k c K wq t q t q t g t q t q t q t q t f
m m m

τ τ τ

τ τ τ

=
=

= − − + − + − − − +

= − − + − + − − − +

&

&

&

&

  (4.4)  

and the two degree-of-freedom 3/4 rule cutting force model is derived to be 
 

1 3

2 4
1/4

3/4
3 1 3 1 2 1 2

1/4
3/4

4 2 4 1 2 1 2

( ) ( )
( ) ( )

( )( ) ( ) ( ) ( ) [ ( ) ( ) ( ) ( ) ]

( )( ) ( ) ( ) ( ) [ ( ) ( ) ( ) ( ) ]

x x t

x x x

u u t

u u u

q t q t
q t q t

k c K w fq t q t q t g t q t q t q t q t f
m m m

k c K w fq t q t q t g t q t q t q t q t f
m m m

τ τ τ τ

τ τ τ τ

=
=

= − − + − + − − − +

= − − + − + − − − +

&

&

&

&

   (4.5) 

 
Recalling that the cutting force is only active (g(t) = 1) during the cutting period 2τ  and 

that 2τ ρτ= , the non-cutting period 1τ  can be found as (1 )ρ τ− . With the cutting and 

non-cutting periods defined, each state of each equation of motion is solved, respectively, 

by using a user defined axial depth of cut and spindle speed, and is then summed up to 

equal the total spindle period τ. Matlab's dde23 solver is used to resolve each linear, 

homogeneous equation during 1τ  as well as each non-linear, non-homogeneous delay 

differential equation during 2τ . The solutions are then summed up to form the complete 

solution for τ. Initial conditions are carried from the solution at the end of the current 
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spindle period and entered into the next period for calculation. This process is iterated for 

a user designated number of spindle cycles.  The solution generated across the chosen 

number of cycles is displayed in graphical form in terms of a response history and a 

phase portrait diagram.  In Figure 4.1, an example of the response of a single degree-of-

freedom system is shown for stable cutting conditions. 

 
Figure 4.1: Response and phase portrait diagrams for stable cutting conditions. 

 
In Figure 4.2, an example of the response of the same system is shown at the stability 

boundary. 

 
Figure 4.2: Response and phase portrait diagrams at stability boundary. 
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In Figure 4.3, an example of the system response is shown for unstable cutting 
 
conditions. 

 
Figure 4.3: Response and phase portrait diagrams for unstable cutting conditions. 

 
The Matlab code used to find the numerical solutions of equations (4.2) to (4.5) can be  
 
found in Appendix C.  

4.2  UMCP Numerical Stability Prediction Program 
 
The following figure depicts a four degree-of-freedom milling configuration.  
 

 
Figure 4.4: Schematic of a four DOF milling configuration. 
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The governing equations of this system are given by  

( )
( )
( )

( )

( ) ( ) ( ) ; ( , , )

( ) ( ) ( ) ; ( , , )

( ) ( ) ( ) ; ( , , )

( ) ( ) ( ) ; ( , , )

x x x x x x x

y y y y y y y

u u u u u u u
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m q t c q t k q t F t t i z

m q t c q t k q t F t t i z

m q t c q t k q t F t t i z

m q t c q t k q t F t t i z

τ

τ

τ

τ

+ + =

+ + =

+ + =

+ + =

&& &

&& &

&& &

&& &

    (4.6) 

The equations of motion for the tool include, respectively, the horizontal and vertical 

displacements ( )xq t  and ( )yq t , the constant stiffnesses kx and ky, and the constant 

damping terms cx and cy. The equations of motion for the workpiece include, 

respectively, the horizontal and vertical displacements ( )uq t  and ( )vq t , the constant 

stiffnesses ku and kv, and the constant damping terms cu and cv. The constant feed rate f of 

the workpiece is directed along the major horizontal mode of motion on the workpiece 

( )uq t . 

 
Based on previous work carried out by Zhao (2000) and Long (2006), the cutter is 

modeled as a stack of infinitesimal disk elements. A summary of the derivation of the 

cutting forces is provided here. The detailed derivation of the cutting forces can be found 

in Chapter 2 of Long (2006). 

 
Figure 4.5: Cylindrical end mill with infinitesimal disk elements. 
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In Figure 4.5, each disk element is located at an axial distance z along the tool from the 

bottom of the end mill up to the axial depth of cut. The helix angle is η. For the ith tooth, 

the infinitesimal cutting-force components on the disk element are represented by i
rFΔ  

for the radial direction, i
tFΔ  for the tangential direction, and i

zFΔ  for the axial direction. 

The cutting forces along each component of the infinitesimal disk element are found from 

the dynamic uncut chip thickness for the ith flute of the cutter at time t and height z as 

 
( , , z) ( , , z)sin ( , , z) ( , , z) cos ( , , z) svh t i A t i t i B t i t i hθ θ= + +   (4.7) 

 
where the static uncut chip thickness is 

21sin ( cos )
2svh f f

R
τ θ τ θ= +    (4.8) 

The relative displacements are found to be 

( , , ) ( ) ( ( , , )) ( ) ( ( , , ))
( , , ) ( ) ( ( , , )) ( ) ( ( , , ))

x x u u

y y v v

A t i z q t q t t i z q t q t t i z
B t i z q t q t t i z q t q t t i z

τ τ
τ τ

= − − + − −
= − − + − −

   (4.9) 

The cutting forces are then found to be 

1 0 0
0 cos sin ( , , )

cos
0 sin cos (cos cos )

i
r t
i

t n t
i

z t n n n

F k
zF k k h t i z

F k k
η η

η
η η μ φ φ

⎡ ⎤Δ ⎡ ⎤ ⎡ ⎤
Δ⎢ ⎥ ⎢ ⎥ ⎢ ⎥Δ =⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥ ⎢ ⎥Δ − −⎣ ⎦ ⎣ ⎦⎣ ⎦

    (4.10) 

 

Transforming the cutting forces into cartesian coordinates, integrating the infinitesimal 

cutting force components from 1z ( , )t i  to 2z ( , )t i  at the cutting zone, which is defined to 

be ' '( , , )s ei t zθ θ θ< < , and ignoring forces along the z direction, the cutting forces are 

found as 
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where 
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kk
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η

η μ φ φ

=
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and tk  is the specific cutting energy, nφ  is the normal rake angle, nk  is a proportionality 

constant, and μ  is the friction coefficient. From Newton's Third Law of Motion, the 

forces acting on the workpiece are determined as 

( )
( )

( )
( )

; ( , , ); ( , , )
; ( , , ); ( , , )

xu

yv

F t t i zF t t i z
F t t i zF t t i z

ττ
ττ
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⎣ ⎦ ⎣ ⎦
    (4.15) 

When the tool is outside of the cutting zone, there is loss of contact, which makes the 

cutting force components equal to zero. The determination of the cutting and non-cutting 

zones can be found in Chapter 3 of Zhao (2000). The derived state space equations from 

(4.6), by using the cutting forces described in (4.11), can be found in Chapter 2 of Long 

(2006). Stability analysis carried out by using the semi-discretization method is detailed 

in Chapter 3 of Long (2006). A copy of the UMCP numerical stability prediction 

program is given in Section D.1 of Appendix D. 
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4.3  Modified UMCP Numerical Stability Prediction Program for the 3/4 Rule 
 
The dynamic uncut chip thickness given by equation (4.7) is based on a linear cutting 

force model. Applying the 3/4 rule to this expression yields 

3/4 3/4( , , z) [ ( , , z)sin ( , , z) ( , , z)cos ( , , z) ]svh t i A t i t i B t i t i hθ θ= + +     (4.16) 

To incorporate this change into the UMCP numerical stability prediction program, the 

Taylor expansion is taken; that is, 

3/4 3/4

2 3
3/4

1/4 5/4 9/4

( , , ) [ ( , , )]

3 ( , , ) 3 [ ( , , )] 5 [ ( , , )]                ...
4 32 128

sv

sv
sv sv sv

h t i z h h t i z

h t i z h t i z h t i zh
h h h

= + Δ

Δ Δ Δ
≈ + − + −

 (4.17) 

where 

( , , ) ( , , ) sin ( , , ) ( , , ) cos ( , , )h t i z A t i z t i z B t i z t i zθ θΔ = +    (4.18) 

svh  is previously defined in (4.8) and ( , , )A t i z  along with ( , , )B t i z  are previously defined 

in (4.9). 

The linearized form of equation (4.17) becomes 

3/4 3/4
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Making use of equations (4.19) and (4.11), the cutting forces are found to be  
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   (4.20) 

A copy of the modified UMCP numerical stability prediction program is given in Section 

D.2 of Appendix D. 
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Chapter 5 

Results and Discussion 
 

5.1  Single DOF System Results and Discussion 

For the analytical results obtained for the single degree-of-freedom system with the linear 

cutting force, one uses equations (3.4) and (3.16) to arrive at the flip bifurcation 

predictions, while equations (3.9) and (3.16) are used to obtain the Neimark-Sacker 

bifurcation predictions. The analytical results obtained for the 3/4 rule cutting force 

model make use of equations (3.4) and (3.17) to arrive at the flip bifurcation predictions, 

while equations (3.9) and (3.17) are used to arrive at the Neimark-Sacker bifurcation 

predictions. As previously stated, negative and infinite axial depth of cut terms do not 

make physical sense and they are therefore not included in the results. The analytical 

results are compared with the results of the delay differential equation (DDE) numerical 

simulations detailed in Section 4.1.  

 
 
From Davies et al. (2002), the following input parameters are used for making the single  
 
degree-of-freedom model predictions. 
 
 

Properties Parameters Units 
mx 0.0431 kg 
ζx 0.0167 - 
kx 1.40E+06 N/m 
Kt 5.00E+08 N/m2 
N 2 - 
f 0.000102 m/tooth
R 0.00635 m 

 
Table 5.1: Input parameters from Davies et al. (2002) for analytical predictions. 
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Figure 5.1: Analytical prediction and delay differential equation numerical prediction 

comparisons with experimental data for 5% immersion. 

 
By using equation (1.2), the immersion rate is determined from ρ = 0.14 to be 

approximately 5%. Experimental data from Figure 7 (b) of Davies et al. (2002) is also 

included for comparison. For the next four graphs, the spindle speeds range from 12 to 20 

krpm.  

 
 
As expected, the delay differential equation numerical predictions shown in Figure 5.1 

follow the trend of the analytical predictions. The 3/4 rule cutting force model predicts 

slightly higher regions of stability when compared with the results obtained with the 

linear cutting force model. The peak in the stability lobe predicted around 13.5 krpm, by 

using analytical means, compares reasonably well to the peak at 13 krpm seen in the 

experimental data; the predictions at 18 krpm, however, do not correspond well to the 
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experimental results that show a peak at 19 krpm. Outside of these regions of higher 

stability, the analytical results and the numerical results obtained by integrating the delay 

differential equations compare well with the experimental predictions. 

 
The following parameters were used to run the UMCP numerical stability prediction 

program as well as the modified program for 3/4 rule cutting. 

Properties Parameters Units  PropertiesParameters Units 
mx 0.0431 kg  mu 1.00E+05 kg 
ζx 0.0167 -  ζu 1 - 
kx 1.40E+06 N/m  ku 1.00E+15 N/m 
my 1.00E+05 kg  mv 1.00E+05 kg 
ζy 1 -  ζv 1 - 
ky 1.00E+15 N/m  kv 1.00E+15 N/m 

 
Properties Parameters Units 

Kt 5.00E+08 N/m2 
Kn 0.3 - 
R 0.00635 m 
N 2 - 
f 0.000102 m/tooth 

helix angle 0 degrees
rake angle 15 degrees

friction 0.2 - 
 

Table 5.2: Input parameters from Davies et al. (2002) for numerical calculations. 
 

In Figure 5.2, the 5% immersion analytical predictions are shown along with the 

predictions made from the UMCP numerical stability programs for both linear and 3/4 

rule cutting force models; these predictions are compared with the 5% immersion 

experimental data. As shown in Figure 5.1, the analytical results are reasonably accurate 

in predicting the peak seen in the experimental results at 13 krpm. The UMCP programs, 

however, are too generous in their stability predictions from 12 to 18.5 krpm. It is only  
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Figure 5.2: Analytical prediction and UMCP numerical stability program prediction 
comparisons with experimental data for 5% immersion. 

 
around 19 krpm, where the UMCP program with the linear cutting force model compares 

reasonably well to the experimental data. The predictions made from the modified 3/4  

rule UMCP numerical stability prediction program, results in generous operating regions 

for stability that mostly go beyond the scale of the figure. This is most likely due to the 

linearization of the cutting force model from the Taylor series expansion. Factors such as 

rake angle and friction that are included in the UMCP numerical program are not 

accounted for in the analytical predictions and therefore, may be the cause of certain 

discrepancies.  
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Figure 5.3: Analytical prediction and UMCP numerical stability program prediction 
comparisons with experimental data for 29% immersion. 

 
In Figure 5.3, a higher immersion rate of 29% is now used for ρ = 0.35 to see if the 

stability predictions break down due to the loss of contact and low immersion 

assumptions made in the analytical model.  

 
From the experimental results, the high immersion rate in Figure 5.3 causes the local 

peaks seen at 13 krpm and 19 krpm to reduce in size, compared with Figure 5.2, thereby 

reducing the region of stability. The UMCP numerical stability prediction program 

shrinks the region of stability as well so that the predictions for the linear cutting force 

compare well with the experimental data from 14 krpm to 18 krpm. However, like the 

analytical predictions, the UMCP numerical predictions do not compare well with 

experimental data, especially around the regions of 13 krpm and 19 krpm. As in the 
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previous case, the modified UMCP program with the 3/4 rule cutting force does not fare 

well in predicting results with the assumed parameters. 

 
The UMCP numerical stability prediction program distinguishes between down-milling 

and up-milling processes. During the up-milling process, the flip and Neimark-Sacker 

bifurcation boundaries are different from those obtained during the down-milling process. 

The analytical predictions do not distinguish between these processes and they favor the 

numerical predictions made for the down-milling process as shown in Figures 5.2 and 

5.3. This agreement may be due to an assumption in the analytical equations that places 

the cutting period at the start or the end of the spindle period.  
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Figure 5.4 - Up-Milling Case: Comparison of the UMCP numerical stability prediction 
program with the analytical prediction results for 29% immersion. 
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Figure 5.5: Analytical prediction and UMCP numerical stability program prediction 

comparisons for 5% immersion around the tool natural frequency of 54.4 krpm. 

 
 
The natural frequency of the tool at 54.4 krpm (or 907 Hz) is included in Figure 5.5, 

along with stability lobes in its vicinity. As shown in this figure, the natural frequency of 

the tool lies directly in a high region of stability predicted by the analytical results while 

the UMCP program with the linear cutting force model predicts a high region to the left 

of the natural frequency. The stability lobes predicted by using both methods must be 

discounted in this region as the natural frequency of the tool dictates a region of 

instability around 54.4 krpm. Fortunately, milling operations are rarely carried out at such 

high spindle speeds, thereby reducing the possibility of operating around the natural 

frequency of the tool. 
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By using the work reported by Stepan et al. (2005), a new set of input parameters are 

used to compare the single degree-of-freedom analytical results in a lower range of 

spindle speeds. 

Properties Parameters Units 
mx 2.586 kg 
ζx 0.0038 - 
kx 2.20E+06 N/m 
Kt 1.89E+09 N/m2 
N 1 - 
h0 0.0001016 m 
R 0.009525 m 

 
Table 5.3: Input parameters from Stepan et al. (2005) for analytical predictions. 

 
 

Properties Parameters Units  Properties Parameters Units 
mx 2.586 kg  mu 1.00E+05 kg 
ζx 0.0038 -  ζu 1 - 
kx 2.20E+06 N/m  ku 1.00E+15 N/m 
my 1.00E+05 kg  mv 1.00E+05 kg 
ζy 1 -  ζv 1 - 
ky 1.00E+15 N/m  kv 1.00E+15 N/m 

 
Properties Parameters Units 

Kt 1.89E+09 N/m2 
Kn 0.3 - 
R 0.009525 m 
N 1 - 
h0 0.0001016 m 

helix angle 0 degrees 
rake angle 15 degrees 

friction 0.2 - 
 

Table 5.4: Input parameters from Stepan et al. (2005) for numerical calculations. 
 
 
The spindle speeds in the next two figures range from 2.9 to 3.7 krpm. ρ  is set at 0.1082, 

which is approximated to be 3% immersion. The analytical and numerical stability 

predictions fare quite well when compared with the experimental data. In the 2.9 to 3.2 

krpm range, the results favor the analytical 3/4 rule cutting force model predictions as  
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Figure 5.6: Analytical prediction and UMCP numerical stability program prediction 
comparisons with experimental data for 3% immersion. 

 
well as the UMCP stability program predictions with the linear cutting force model. 

However, in the 3.3 to 3.48 krpm range, the results favor the predictions made by the 

modified UMCP program with the 3/4 rule cutting force model. The accuracy of the  

predictions from the numerical programs breaks down in the 3.5 to 3.55 krpm range 

where the results favor the predictions from analytical methods. In the 3.62 to 3.7 krpm 

range, though, the results again favor the predictions from the modified 3/4 rule UMCP 

program. 

 
Figure 5.7 reaffirms the fact that the analytical model does not differentiate between up-

milling and down-milling cases. Figure 5.8 shows that regions of high stability around 
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the natural frequency of the tool at 8.81 krpm (or 147 Hz) are predicted by both the 

analytical and numerical methods. 
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Figure 5.7 - Up-Milling Case: Comparison of the UMCP numerical stability prediction 
program with the analytical prediction results for 3% immersion. 
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Figure 5.8: Analytical prediction and UMCP numerical stability prediction comparisons 

for 5% immersion around the tool natural frequency of 8.81 krpm. 
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5.2 Two DOF System Results and Discussion 
 
The analytical results obtained for the two degree-of-freedom system with the linear 

cutting force make use of equations (3.13) and (3.16) to arrive at the flip bifurcation 

predictions. To obtain the Neimark-Sacker bifurcation predictions for the linear cutting 

force model, solutions based on the analysis of Section 3.4 are used in conjunction with 

equation (3.16). The analytical 3/4 rule cutting force results make use of equations (3.13) 

and (3.17) to arrive at the flip bifurcation predictions, while for the Neimark-Sacker 

bifurcation case, the solutions obtained from equation (3.17) is used to arrive at the 

stability predictions. As before, negative and infinite axial depth of cut terms do not make 

physical sense and they are not shown in the results. The analytical results are also 

compared with the results obtained by numerically integrating the delay differential 

equations. 

Properties Parameters Units 
mx 0.02 kg 
ζx 0.01 - 
kx 8.00E+05 N/m 
mu 0.1 kg 
ζu 0.01 - 
ku 1.00E+06 N/m 
Kt 6.00E+08 N/m2 
N 2 - 
f 0.00051 m/tooth 
R 0.00635 m 

helix angle 30 degrees
 

Table 5.5: Input parameters for two DOF system analytical predictions. 
 
After an extensive search, no existing experimental results were found for a two degree-

of-freedom milling model that uses a single degree of freedom for the tool and a single 

degree of freedom for the workpiece. Therefore, the input parameters in Table 5.5 have 

been chosen to compare the two degree-of-freedom results. ρ  is chosen to equal 0.1.  
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Figure 5.9 - Two DOF System: Analytical prediction and delay differential equation 
numerical prediction comparisons for ρ  = 0.1. 

In Figures 5.9 to 5.12, the spindle speeds range from 13 to 22 krpm. The predictions  are 

first compared with the delay differential equation numerical results. As in the case of the 

single degree-of-freedom system results, the delay differential equation numerical 

predictions follow the trend of the analytical predictions. The 3/4 rule cutting force model 

predicts slightly higher regions of stability compared to the predictions from the linear 

cutting force model. Local peaks around 14.5 krpm and 20 krpm are seen in both the 

analytical and delay differential equation numerical results. 

 
The analytical results are next compared with the numerical results obtained from the 

UMCP stability prediction program. In this case, the assumption given by equation (1.2) 

is invalid due to the 30° helix angle. Estimates of 5% and 10% immersions are used for 

comparison with the analytical predictions. 
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Properties Parameters Units  Properties Parameters Units 
mx 0.02 kg  mu 0.1 kg 
ζx 0.01 -  ζu 0.01 - 
kx 8.00E+05 N/m  ku 1.00E+06 N/m 
my 1.00E+05 kg  mv 1.00E+05 kg 
ζy 1 -  ζv 1 - 
ky 1.00E+15 N/m  kv 1.00E+15 N/m 

 
Properties Parameters Units 

Kt 6.00E+08 N/m2 
Kn 0.3 - 
R 0.00635 m 
N 2 - 
f 0.00051 m/tooth 

helix angle 30 degrees 
rake angle 15 degrees 

friction 0.2 - 
 

Table 5.6: Input parameters for two DOF system numerical calculations. 
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Figure 5.10 - Two DOF System: Analytical prediction for ρ  = 0.1 and UMCP numerical 
stability program prediction for 5% immersion comparisons. 
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Figure 5.11 - Two DOF System: Analytical prediction for ρ  = 0.1 and UMCP numerical 
stability program prediction for 10% immersion comparisons. 

 
Comparing Figure 5.10 to 5.11, the 10% immersion results from the UMCP numerical 

stability prediction program agree more favorably with the analytical data. The local peak 

around 15 krpm appears in both the analytical and numerical predictions. However, the 

region of stability around this peak is wider for the numerical predictions. The local peak 

predicted at around 20 krpm for the analytical predictions does not appear in the 

numerical predictions. Nevertheless, there is agreement in the predictions for a change 

from a Neimark-Sacker bifurcation to a flip bifurcation at around 20 krpm. However, the 

change from a flip bifurcation back to a Neimark-Sacker bifurcation at around 20.5 krpm 

is only observed in the UMCP model predictions. These inconsistencies may be due to 

factors such as helix angle, rake angle, and friction properties that are included in the 



 53

UMCP model; these are not accounted for in the analytical models. As in the single 

degree-of-freedom cases, the predictions from the modified UMCP numerical stability 

prediction program for the 3/4 rule cutting force model show regions of stability that are 

much higher than the analytical and UMCP numerical linear cutting force model results. 

As discussed previously, the linearization assumption of the 3/4 rule cutting force model 

may play a role in these generous predictions. 

 
As in the case of the single degree-of-freedom system, Figure 5.12 confirms that the 

analytical model does not differentiate between up-milling and down-milling in the two 

degree-of-freedom system case. As in the single degree-of-freedom case, there is an 

assumption in the map development that places the cutting period at either the start or the  

end of the spindle period. 
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Figure 5.12 - Two DOF Up-Milling Case: Comparison of the UMCP numerical stability 
prediction program for ρ  = 0.1 with the analytical prediction results for 10% immersion. 
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As in the case of the single degree-of-freedom system results, Figures 5.13 and 5.14 

confirm that the analytical and numerical predictions generate high regions of stability 

around the natural frequencies of the tool and the workpiece at 60.4 krpm (or 1007 Hz) 

and at 30.2 krpm (or 503 Hz), respectively. The stability lobes predicted around these 

natural frequencies must be ignored. 
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Figure 5.13 - Two DOF System: Analytical prediction for ρ  = 0.1 and UMCP numerical 
stability program prediction for 10% immersion comparisons around the tool natural 

frequency of 60.4 krpm. 
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Figure 5.14 - Two DOF System: Analytical prediction for ρ  = 0.1 and UMCP numerical 

stability prediction for 10% immersion comparisons around the workpiece natural 
frequency of 30.2 krpm. 
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Chapter 6 

Conclusion 
 

6.1  Concluding Remarks 
 
In this thesis, maps derived from single degree-of-freedom models by using both linear 

and 3/4 rule cutting force models have been expanded to a model with two degrees of 

freedom. Due to loss of contact effects, the cutting period is minimized while the free 

vibration, non-cutting period is maximized during an entire spindle cycle period. Two 

numerical schemes are introduced to compare the predictions from the analytical models. 

The first is based on a direct numerical integration of the governing delay differential 

equations. The second is based on a UMCP numerical stability prediction program that 

uses a semi-discretization method to determine the stability boundaries. Linear and 3/4 

rule cutting force models are incorporated in both numerical schemes.  Analytical 

predictions  and numerical results are then compared with existing experimental results. 

The following conclusions are made based on these comparisons: 

 
i)  The stability charts obtained analytically by using the linearized cutting force 

model and the 3/4 rule cutting force model differ by a factor of 4/3. This is due to 

the linearization of the 3/4 rule cutting force model during the formation of the 

single and two degree-of-freedom system maps. 

ii) The analytical predictions compare well, in most instances, with the numerical 

and experimental results at the stability boundaries. In areas, where the 

comparisons break down, additional milling properties such as helix angle, rake 
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angle, and friction may play an effect pointing to the limitations of the analytical 

predictions. 

iii) With certain parameters, the modified UMCP numerical stability prediction 

program for the 3/4 rule cutting force model produces generous stability 

boundaries when compared with the linear cutting force model used in the 

existing UMCP numerical stability prediction program. This is due to the 

linearization of the variable chip thickness terms in the Taylor series expansion. 

iv) The analytical predictions do not differentiate between up-milling and down-

milling processes and tend to favor the results obtained for the down-milling 

numerical predictions. The analytical models are based on an assumption where 

the cutting period is placed at either the start or the end of the entire spindle 

period.  

v) Both the analytical and numerical predictions generate regions of high stability 

around the natural frequencies of the system, which does not appear to be correct 

given that loss of contact effects occur during a low immersion process. 

 

6.2  Suggestions for Future Work 
 
 
The following suggestions are made for future work: 
 
 

i) Incorporate properties such as helix angle, rake angle, and friction into the 

analytical map models 

ii) Modify the UMCP numerical stability prediction program to include nonlinear 

variable chip thickness terms for the 3/4 rule cutting force model 
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iii) Explore the dynamics with feed rate variability 

iv) Explore the dynamics with damping that vary with spindle speeds 

v) Conduct careful low immersion experiments to study effects of different 

parameters as well as the suitability of using different reduced-order models 
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Appendix A 

Map Derivations 
 

In this appendix, detailed steps used to derive the single degree-of-freedom and two 

degree-of-freedom  system maps are provided. The final forms of the single and two 

degree-of-freedom maps can be found, respectively, in Sections 2.3 and 2.4 of Chapter 2. 

A.1  Derivation of the Single DOF System Map 
 
 
Recalling the single degree-of-freedom equation of motion found in equation (2.9), 

( )2 ( )( ) 2 ( ) ( ) , ( )x x x x x x x
x

g tq t q t q t F t t
m

ζ ω ω τ+ + =&& &  

the equation of motion during the non-cutting period −
+<≤ 1jj ttt  is found to be 

2( ) 2 ( ) ( ) 0x x x x x xq t q t q tζ ω ω+ + =&& &  

This linear, homogenous differential equation can be solved to obtain 

2 2
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x x x x xq t c e t c e tζ ω ζ ωω ζ ω ζ− −= − + −  

where 1c  and 2c  are constants of integration. The first derivative of this solution yields 
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The starting time of the non-cutting period jt  can be chosen for any initial conditions. 
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2c  then equals  

2 2 2

( ) ( )(0) (0)
1 1

x j x x x jx x x x

x x x x

q t q tq qc
ζ ωζ ω
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++
= =

− −

&&
 

To describe the state at the end of the non-cutting period for 1( )x jq t−
+  and 1( )x jq t−

+& , the 

time t is allowed to travel for one period 1τ . Due to loss of contact effects 2 0τ → , and 

hence, 1τ τ→ . By substituting the constants of integration and by using the initial 

conditions established for ( )x jq t  and ( )x jq t& , the equations mapping the end of the non-

cutting period to its beginning are derived to be 
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Simplifying these equations produces the single degree-of-freedom non-cutting phase 

map (2.10) 

1
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where the state-transition matrix A (2.11) is 
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and 21xd x xω ω ζ= − is defined to be the damped natural frequency of the tool free 

oscillations. 

 

Inserting the lower expression from equation (2.10) 

1 21 22( ) A ( ) A ( )x j x j x jq t q t q t−
+ = +& &  

into equation (2.14), 
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the following equation for the linear cutting force can be obtained: 
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Assuming that the position of the oscillating tool remains constant during the interaction 

with the workpiece so that 1 1( ) ( )x j x jq t q t−
+ +≈ , 

1 11 12( ) A ( ) A ( )x j x j x jq t q t q t+ = + &  

from the upper expression in equation (2.10). Combining the previous two equations 

together, one arrives at equation (2.16) for the linear cutting force model. 
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By using equations (2.10) and (2.15), the same process can be carried out for the 3/4 rule 

cutting force model to obtain equation (2.17). 

1
3/4

2 11 12 01

0( ) ( )
A

[(1 A ) ( ) A ( ) h ]( ) ( )
x j x j

x j x jx j x j
x

q t q t
Kw q t q tq t q t
m

τ
+

+

⎡ ⎤
⎡ ⎤ ⎡ ⎤ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − +⎣ ⎦ ⎣ ⎦ ⎢ ⎥⎣ ⎦

&& &
 



 62

To derive the fixed points for the single degree-of-freedom system by using the linear 

cutting force model, one sets 

1

1

( ) ( )

( ) ( )
e x j x j

e x j x j

x q t q t

v q t q t
+

+

= =

= =& &
 

By substituting ex  and ev  into equation (2.16), 

11 12

2 11 12 021 22

0
A A

[(1 A ) A h ]A A
e e

t
e ee e

x

x x
K w x vv v
m

τ

⎡ ⎤
⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥− − +⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎢ ⎥⎣ ⎦

 

and solving explicitly for ex  and ev , the fixed points using the linear cutting force are 

found to be 

2 0 12

2 0 11

h A
[1 det(A) tr(A)]

h (1-A )
[1 det(A) tr(A)]

t
e

x

t
e

x

K wx
m

K wv
m

τ

τ

=
+ −

=
+ −

 

To solve for the fixed points for the 3/4 rule cutting force model, the Taylor series is 

expanded for 

3/4 3/4
0( ) [h h ( )]x j x jh t t= + Δ  

where 

11 12h ( ) (1 A ) ( ) A ( )x j x j x jt q t q tΔ = − − &  

Taking only linear terms from the Taylor series expansion 

3/4 3/4
0 1/4

0

11 123/4
0 1/4

0

h ( )3h ( ) h
4 h

(1 A ) ( ) A ( )3             h
4 h

x j
x j

x j x j

t
t

q t q t

Δ
≈ +

− −
≈ +

&
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the linearized form of equation (2.17) now becomes 

1
11 123/4

1 2 0 1/4
0

0
( ) ( )

(1 A ) ( ) A ( )A 3( ) ( ) [h ]
4 h

x j x j
x j x j

x j x j
x

q t q t
q t q tKwq t q t

m
τ

+

+

⎡ ⎤
⎡ ⎤ ⎡ ⎤ ⎢ ⎥− −= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎣ ⎦ ⎢ ⎥⎣ ⎦

&
& &

 

By substituting ex  and ev  into this linearized form  

3/4 11 12
2 0 1/4

0

0
A (1 A ) A3[h ]

4 h

e e
e e

e e
x

x x
x vKw

v v
m

τ

⎡ ⎤
⎡ ⎤ ⎡ ⎤ ⎢ ⎥= + − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎣ ⎦ ⎢ ⎥⎣ ⎦

 

and solving explicitly for ex  and ev , the fixed points for the model with the 3/4 rule 

cutting force are found to be 

3/4
2 0 12

3/4
2 0 11

h A
[1 det(A) tr(A)]

h (1 A )
[1 det(A) tr(A)]

e
x

e
x

Kwx
m

Kwv
m

τ

τ

=
+ −

−
=

+ −

 

To solve for the Jacobian matrix of the linear cutting force model, equation (2.16) is 

rearranged to form 

1 1DOF
LCF 0

21

0( )
E h( )

x j
t

x j
x

q t
K wq t

m
τ

+

+

⎡ ⎤
⎡ ⎤ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦
&

 

where matrix 1DOF
LCFE  is determined to be 

11 12
1DOF
LCF 2 2

21 11 22 12

A ( ) A ( )
E

[A (1 A )] ( ) [A A ] ( )

x j x j

t t
x j x j

x x

q t q t
K w K wq t q t

m m
τ τ

⎡ ⎤
⎢ ⎥= ⎢ ⎥+ − −
⎢ ⎥⎣ ⎦

&

&
 

Constructing the Jacobian from 1DOF
LCFE  leads to 

11 12

21 11 22 12

A A
B = 

ˆ ˆA (1 A ) A Ax xw w
⎡ ⎤
⎢ ⎥+ − −⎣ ⎦
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where the dimensionless chip width for the linear cutting force model is  
 

2ˆ t
x

x

K ww
m

τ
=  

 
To determine the Jacobian matrix for the 3/4 rule cutting force model, the linearized form 

of equation (2.17) is rearranged to become 

1 1DOF 3/4
3/4CF 0

1 2

0
( )

E h( )
x j

x j
x

q t
Kwq t

m
τ

+

+

⎡ ⎤
⎡ ⎤ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎢ ⎥⎣ ⎦
&

 

where matrix 1DOF
3/4CFE  is determined to be 

11 12
1DOF
3/4CF 2 2

21 11 22 121/4 1/4
0 0

A ( ) A ( )
E 3 3[A (1 A )] ( ) [A A ] ( )

4 h 4 h

x j x j

x j x j
x x

q t q t
Kw Kwq t q t

m m
τ τ

⎡ ⎤
⎢ ⎥= ⎢ ⎥+ − −
⎢ ⎥⎣ ⎦

&

&
 

Finding the Jacobian from 1DOF
3/4CFE  leads to 

11 12

21 11 22 12

A A
B = 

ˆ ˆA (1 A ) A Ax xw w
⎡ ⎤
⎢ ⎥+ − −⎣ ⎦

 

where the dimensionless chip width for the 3/4 cutting force model is 2
1/4

0

3ˆ
4 hx

x

Kww
m

τ
=  

Linearizing around the fixed points, the generalized local dynamics is described by 
 
 

1

1

( ) ( )
+ B

( ) ( )
x j x je

x j x je

q t q tx
q t q tv

+

+

⎡ ⎤ ⎡ ⎤⎡ ⎤
=⎢ ⎥ ⎢ ⎥⎢ ⎥

⎣ ⎦⎣ ⎦ ⎣ ⎦& &
 

 
where xe, ve, and ˆ xw  are based on their respective cutting force models. 
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A.2  Derivation of the Two DOF System Map 
 
Recalling the two degree-of-freedom equation of motion found in equation (2.24), is 

given by 

( )

( )

2

2

( )( ) 2 ( ) ( ) , ( )

( )( ) 2 ( ) ( ) , ( )

x x x x x x x
x

u u u u u u x
u

g tq t q t q t F t t
m
g tq t q t q t F t t
m

ζ ω ω τ

ζ ω ω τ

+ + =

+ + =

&& &

&& &

 

the equation of motion during the non-cutting period −
+<≤ 1jj ttt  is found to be 

 
2

2

( ) 2 ( ) ( ) 0

( ) 2 ( ) ( ) 0
x x x x x x

u u u u u u

q t q t q t

q t q t q t

ζ ω ω

ζ ω ω

+ + =

+ + =

&& &

&& &
 

 
These linear, homogenous differential equations can be solved to be 

 
2 2

1 2

2 2
3 4

( ) cos( 1 ) sin( 1 )

( ) cos( 1 ) sin( 1 )

x x x x

u u u u

t t
x x x x x

t t
u u u u u

q t c e t c e t

q t c e t c e t

ζ ω ζ ω

ζ ω ζ ω

ω ζ ω ζ

ω ζ ω ζ

− −

− −

= − + −

= − + −
 

 
where 1c , 2c , 3c , and 4c  are constants of integration. The first derivatives of these 

solutions yield 

 
2 2 2

1 1

2 2 2
2 2

2 2 2
3 3

( ) cos( 1 ) 1 sin( 1 )

           sin( 1 ) 1 cos( 1 )

( ) cos( 1 ) 1 sin( 1 )

    

x x x x

x x x x

u u u u

t t
x x x x x x x x x

t t
x x x x x x x x

t t
u u u u u u u u u

q t c e t c e t

c e t c e t

q t c e t c e t

ζ ω ζ ω

ζ ω ζ ω

ζ ω ζ ω

ζ ω ω ζ ω ζ ω ζ

ζ ω ω ζ ω ζ ω ζ

ζ ω ω ζ ω ζ ω ζ

− −

− −

− −

= − − − − −

− − + − −

= − − − − −

&

&

2 2 2
4 4       sin( 1 ) 1 cos( 1 )u u u ut t

u u u u u u u uc e t c e tζ ω ζ ωζ ω ω ζ ω ζ ω ζ− −− − + − −
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The starting time of the non-cutting period jt  can be chosen for any initial conditions, 

say, 

 
1

3

2
1 2

2
3 4

( ) (0)

( ) (0)

( ) (0) 1

( ) (0) 1

x j x

u j u

x j x x x x x

u j u u u u u

q t q c

q t q c

q t q c c

q t q c c

ζ ω ω ζ

ζ ω ω ζ

= =

= =

= = − + −

= = − + −

& &

& &

 

 
2c  and 4c  then respectively equal  

 

2 2 2

4 2 2

( ) ( )(0) (0)
1 1

( ) ( )(0) (0)
1 1

x j x x x jx x x x

x x x x

u j u u u ju u u u

u u u u

q t q tq qc

q t q tq qc

ζ ωζ ω

ω ζ ω ζ
ζ ωζ ω

ω ζ ω ζ

++
= =

− −

++
= =

− −

&&

&&
 

 
To describe the state at the end of the non-cutting period for 1( )x jq t−

+  and 1( )x jq t−
+& , the 

time t is allowed to travel for one period 1τ . Due to loss of contact effects 2 0τ → , and 

hence, 1τ τ→ . 

 

By substituting the constants of integration and by using the initial conditions established 

for ( )x jq t , ( )u jq t , ( )x jq t& , and ( )u jq t& , the equations mapping the end of the non-cutting 

period to its beginning are derived to be 
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2 2
1 2

2

2

2 2
1 2

( ) [ cos( 1 ) sin( 1 )] ( )
1

               [ sin( 1 )] ( )
1

( ) [ cos( 1 ) sin( 1 )] ( )
1

        

x x
x x

x x

u u
u u

x x
x j x x x x x j

x x

x x x j

x x

u u
u j u u u u u j

u u

eq t e q t

e q t

eq t e q t

ζ ω τ
ζ ω τ

ζ ω τ

ζ ω τ
ζ ω τ

ζ ωω ζ τ ω ζ τ
ω ζ

ω ζ τ
ω ζ

ζ ωω ζ τ ω ζ τ
ω ζ

−
−−

+

−

−
−−

+

= − + −
−

+ −
−

= − + −
−

&

2

2

2 2
2 2 2

1 2

2 2

2

       [ sin( 1 )] ( )
1

( ) [ 1 sin( 1 ) sin( 1 )] ( )
1

               [ cos( 1 ) sin( 1 )] (
1

u u

x x
x x

x x
x x

u u u j

u u

x x
x j x x x x x x x j

x x

x x
x x x x x

x x

e q t

eq t e q t

ee q t

ζ ω τ

ζ ω τ
ζ ω τ

ζ ω τ
ζ ω τ

ω ζ τ
ω ζ

ζ ωω ζ ω ζ τ ω ζ τ
ω ζ

ζ ωω ζ τ ω ζ τ
ω ζ

−

−
−−

+

−
−

+ −
−

= − − − − −
−

+ − − −
−

&

&

&

2 2
2 2 2

1 2

2 2

2

)

( ) [ 1 sin( 1 ) sin( 1 )] ( )
1

               [ cos( 1 ) sin( 1 )] ( )
1

u u
u u

u u
u u

j

u u
u j u u u u u u u j

u u

u u
u u u u u j

u u

eq t e q t

ee q t

ζ ω τ
ζ ω τ

ζ ω τ
ζ ω τ

ζ ωω ζ ω ζ τ ω ζ τ
ω ζ

ζ ωω ζ τ ω ζ τ
ω ζ

−
−−

+

−
−

= − − − − −
−

+ − − −
−

&

&
 

 

Simplifying these equations produces the two degree-of-freedom non-cutting phase map 

given by equation (2.25); that is, 

 

1

1

1

1

( )( )
( )( )

C
( )( )
( )( )

x jx j

u ju j

x jx j

u ju j

q tq t
q tq t
q tq t
q tq t

−
+

−
+

−
+

−
+

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

&&

&&

 

 

where the state-transition matrix C is 
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2

2

ˆ ˆ ˆ[c s ] 0 s 0

ˆ ˆ ˆ0 [c s ] 0 s

ˆ ˆ ˆs 0 [c s ] 0

ˆ ˆ ˆ0 s 0 [c s ]

x x
x x

u u
u u

x x x x

u u u u

x x
x x x

xd xd

u u
u u u

ud ud

x x x
x x x

xd xd

u u u
u u u

ud ud

ee

ee

e e

e e

ζ ω τ
ζ ω τ

ζ ω τ
ζ ω τ

ζ ω τ ζ ω τ

ζ ω τ ζ ω τ

ζ ω
ω ω

ζ ω
ω ω

ω ζ ω
ω ω

ω ζ ω
ω ω

−
−

−
−

− −

− −

⎡ ⎤
+⎢ ⎥

⎢ ⎥
⎢ ⎥

+⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− −
⎢ ⎥
⎢ ⎥
⎢ ⎥− −⎢ ⎥⎣ ⎦

 

and 21xd x xω ω ζ= −  is the damped natural frequency of the tool, 21ud u uω ω ζ= −  is 

the damped natural frequency of the workpiece, and ˆ cos( )x xdc ω τ= , ˆ sin( )x xds ω τ= , 

ˆ cos( )u udc ω τ= , and ˆ sin( )u uds ω τ= .  

 

Inserting the third and fourth expressions from equation (2.25); that is, 

1 31 33

1 42 44

( ) C ( ) C ( )

( ) C ( ) C ( )
x j x j x j

u j u j u j

q t q t q t

q t q t q t

−
+

−
+

= +

= +

& &

& &
 

into equation (2.30), the result is 

1 1 2 1 1 0

1 1 2 1 1 0

( ) ( ) ( ) ( ) ( ) ( ) h

( ) ( ) ( ) ( ) ( ) ( ) h

t
x j x j x j x j u j u j

x

t
u j u j x j x j u j u j

u

K wq t q t q t q t q t q t
m
K wq t q t q t q t q t q t
m

τ

τ

− − −
+ + + +

− − −
+ + + +

⎡ ⎤= + − + − +⎣ ⎦

⎡ ⎤= + − + − +⎣ ⎦

& &

& &

 

The following equations for the linear cutting force can be obtained: 

1 31 33

2 11 13 22 24 0

1 42 44

2 11 13

( ) C ( ) C ( )

               [ ( ) C ( ) C ( ) ( ) C ( ) C ( ) h ]

( ) C ( ) ( )

               [ ( ) C ( ) C ( ) (

x j x j x j

t
x j x j x j u j u j u j

x

u j u j u j

t
x j x j x j u j

u

q t q t q t

K w q t q t q t q t q t q t
m

q t q t C q t

K w q t q t q t q t
m

τ

τ

+

+

= +

+ − − + − − +

= +

+ − − +

& &

& &

& &

& 22 24 0) C ( ) C ( ) h ]u j u jq t q t− − +&
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Assuming that the position of the oscillating tool and workpiece remain constant during 

interaction so that 1 1( ) ( )x j x jq t q t−
+ +≈  and 1 1( ) ( )u j u jq t q t−

+ +≈ , one has 

1 11 13

1 22 24

( ) C ( ) C ( )

( ) C ( ) C ( )
x j x j x j

u j u j u j

q t q t q t

q t q t q t
+

+

= +

= +

&

&
 

from the first and second expressions in equation (2.25). 

Combining the previous two pairs of equations together, one arrives at equation (2.32) for 

the linear cutting force model. 

1

1

1

1

2 11 13 22 24 0

2 11 13 22

( ) ( )
( ) ( )

C
( ) ( )
( ) ( )

0
0

[(1 C ) ( ) C ( ) (1 C ) ( ) C ( ) h ] 

[(1 C ) ( ) C ( ) (1 C ) (

x j x j

u j u j

x j x j

u j u j

t
x j x j u j u j

x

t
x j x j u j

u

q t q t
q t q t
q t q t
q t q t

K w q t q t q t q t
m
K w q t q t q t
m

τ

τ

+

+

+

+

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

− − + − − ++

− − + −

& &

& &

& &

& 24 0) C ( ) h ]u jq t

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

− +⎢ ⎥
⎣ ⎦

&

 

By using equations (2.25) and (2.31), the same process can be used for the 3/4 rule 

cutting force model to obtain equation (2.33). 

1

1

1

1

3/4
2 11 13 22 24 0

2 11 13 22

( ) ( )
( ) ( )

C
( ) ( )
( ) ( )

0
0

[(1 C ) ( ) C ( ) (1 C ) ( ) C ( ) h ] 

[(1 C ) ( ) C ( ) (1 C ) (

x j x j

u j u j

x j x j

u j u j

x j x j u j u j
x

x j x j u
u

q t q t
q t q t
q t q t
q t q t

Kw q t q t q t q t
m
Kw q t q t q t
m

τ

τ

+

+

+

+

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

− − + − − ++

− − + −

& &

& &

& &

& 3/4
24 0) C ( ) h ]j u jq t

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

− +⎢ ⎥
⎣ ⎦

&
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To derive the fixed points for the two degree-of-freedom system with the linear cutting 

force model, one sets 

1

1

1

1

( ) ( )

( ) ( )

( ) ( )

( ) ( )

e x j x j

e u j u j

e x j x j

e u j u j

x q t q t

u q t q t

v q t q t

w q t q t

+

+

+

+

= =

= =

= =

= =

& &

& &

 

By substituting ex , eu , ev , and ew  into equation (2.33), 

11 13

22 24

31 33

42 44

2 11 13 22 24 0

2 11 13 22 24 0

C 0 C 0
0 C 0 C

C 0 C 0
0 C 0 C

0
0

[(1 C ) C (1 C ) C h ]           

[(1 C ) C (1 C ) C h ]

e e

e e

e e

e e

t
e e e e

x

t
e e e e

u

x x
u u
v v
w w

K w x v u w
m
K w x v u w
m

τ

τ

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥=
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥

⎣ ⎦⎣ ⎦ ⎣ ⎦
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

− − + − − ++ ⎢ ⎥
⎢
⎢

− − + − − +⎢
⎣ ⎦

⎥
⎥
⎥

 

and solving explicitly for ex , eu , ev , and ew , the fixed points for the linear cutting force 

are found to be 

 

2 0 13

2 0 24

2 0 11

2 0 22

h C
ˆ ˆ[1 det(C) tr(C)]
h C

[1 det(C) tr(C)]
h (1 C )

ˆ ˆ[1 det(C) tr(C)]
h (1 C )

[1 det(C) tr(C)]

t
e

x

t
e

u

t
e

x

t
e

u

K wx
m

K wu
m

K wv
m

K ww
m

τ

τ

τ

τ

∗ ∗

∗ ∗

=
+ −

=
+ −

−
=

+ −
−

=
+ −
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where Ĉ  is obtained from the state-transition matrix A of the tool in equation (2.11) 

 
11 1311 12

31 3321 22

C CA A
Ĉ A

C CA A
⎡ ⎤⎡ ⎤

= = = ⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦

   

and C
∗

 is the state-transition matrix of the workpiece 

 
22 24

42 44

C C
C

C C

∗ ⎡ ⎤
= ⎢ ⎥

⎣ ⎦
 

 
To solve for the fixed points for the 3/4 rule cutting force model, the Taylor series is 

expanded for 

 
3/4 3/4

0( ) [h h ( )]xu j xu jh t t= + Δ  

 
where 

 
11 13 22 24h ( ) (1 C ) ( ) C ( ) (1 C ) ( ) C ( )xu j x j x j u j u jt q t q t q t q tΔ = − − + − −& &  

 
Taking only linear terms from the Taylor series expansion 

 
3/4 3/4

0 1/4
0

11 13 22 243/4
0 1/4

0

h ( )3h ( ) h
4 h

(1 C ) ( ) C ( ) (1 C ) ( ) C ( )3              h
4 h

xu j
xu j

x j x j u j u j

t
t

q t q t q t q t

Δ
≈ +

− − + − −
≈ +

& &
 

 
the linearized form of equation (2.33) now becomes 
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1

1

1

1

11 13 22 243/4
2 0 1/4

0

3/4
2 0

( ) ( )
( ) ( )

C
( ) ( )
( ) ( )

0
0

(1 C ) ( ) C ( ) (1 C ) ( ) C ( )3[h ]                   
4 h

(13[h
4

x j x j

u j u j

x j x j

u j u j

x j x j u j u j

x

u

q t q t
q t q t
q t q t
q t q t

q t q t q t q tKw
m

Kw
m

τ

τ

+

+

+

+

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

− − + − −
++

−
+

& &

& &

& &

11 13 22 24
1/4

0

C ) ( ) C ( ) (1 C ) ( ) C ( )
]

h
x j x j u j u jq t q t q t q t

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− + − −
⎢ ⎥
⎢ ⎥⎣ ⎦

& &

 

By substituting ex , eu , ev , and ew  into this linearized form 
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and solving explicitly for ex  and ev , the fixed points for the 3/4 rule cutting force are 

found to be 
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To solve for the Jacobian matrix of the linear cutting force model, equation (2.32) is 

rearranged to form 
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where matrix 2DOF
LCFE  is determined to be 
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Forming the Jacobian from 2DOF
LCFE  leads to 
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where the dimensionless chip widths for the linear cutting force are  
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To solve for the Jacobian matrix for the system with the 3/4 rule cutting force, the 

linearized form of equation (2.33) is rearranged to obtain 
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Constructing the Jacobian from 2DOF
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where the dimensionless chip widths for the 3/4 rule cutting force are given by 
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Linearizing around the fixed points, the generalized local dynamics is described by 
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where xe, ue, ve, we, ˆ xw , and ˆuw  are based on respective cutting force models. 
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Appendix B 

MATLAB Programs for Stability Computations 
 

In this appendix, MATLAB programs used to carry out stability computations (flip and 

Neimark-Sacker bifurcations) are provided. These programs are used to generate the 

analytical predictions shown in Figures 5.9 to 5.14. 

 

B.1  Two DOF System: Flip Bifurcation Computations 
 
 
% Parameter Inputs 
rpmmin=13000;                                 % Min Spindle Speed (rpm) 
rpmmax=22000;                                 % Max Spindle Speed (rpm) 
s=5;                                          % # of steps 
 
% Corrects Inputs for Matrix Calculations 
rpm=rpmmin:s:rpmmax; 
one=linspace(1,1,((rpmmax-rpmmin)/s)+1); 
 
% Parameter Inputs (continued) 
                       
% tool: 
m_x=linspace(0.02,0.02,((rpmmax-rpmmin)/s)+1);     % mass (kg) 
zeta_x=linspace(0.01,0.01,((rpmmax-rpmmin)/s)+1);  % damping ratio 
k_x=linspace(8e5,8e5,((rpmmax-rpmmin)/s)+1);       % stiffness (N/m) 
 
% workpiece: 
m_u=linspace(0.1,0.1,((rpmmax-rpmmin)/s)+1);       % mass (kg) 
zeta_u=linspace(0.01,0.01,((rpmmax-rpmmin)/s)+1);  % damping ratio 
k_u=linspace(1e6,1e6,((rpmmax-rpmmin)/s)+1);       % stiffness (N/m) 
Kt=linspace(600e6,600e6,((rpmmax-rpmmin)/s)+1);    % mat const (N/m^2) 
rho=linspace(0.1,0.1,((rpmmax-rpmmin)/s)+1);       % cut pd to total pd 
N=2;                                               % # teeth on tool 
 
% Unit Definitions/Conversions 
omega=rpm./60; 
t=1./(N.*omega); 
w_x=sqrt(k_x./m_x); 
w_xd=w_x.*sqrt(1-zeta_x.^2); 
w_u=sqrt(k_u./m_u); 
w_ud=w_u.*sqrt(1-zeta_u.^2); 
mh=m_x./m_u; 
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% State Transition Matrix Terms for the Non-Cutting Period 
A11=exp(zeta_x.*w_x.*t).*(cos(w_xd.*t)+zeta_x.*w_x./w_xd.*... 
    sin(w_xd.*t)); 
A13=exp(-zeta_x.*w_x.*t)./w_xd.*sin(w_xd.*t); 
A22=exp(-zeta_u.*w_u.*t).*(cos(w_ud.*t)+zeta_u.*w_u./w_ud.*... 
    sin(w_ud.*t)); 
A24=exp(-zeta_u.*w_u.*t)./w_ud.*sin(w_ud.*t); 
A31=-exp(-zeta_x.*w_x.*t).*w_x.^2./w_xd.*sin(w_xd.*t); 
A33=exp(-zeta_x.*w_x.*t).*(cos(w_xd.*t)-zeta_x.*w_x./w_xd.*... 
    sin(w_xd.*t)); 
A42=-exp(-zeta_u.*w_u.*t).*w_u.^2./w_ud.*sin(w_ud.*t); 
A44=exp(-zeta_u.*w_u.*t).*(cos(w_ud.*t)-zeta_u.*w_u./w_ud.*... 
    sin(w_ud.*t)); 
 
% ADOC calculations 
wh_crf=1/2.*(1+A44.*A11.*A33+A11.*A22.*A44+A22.*A11.*A33-... 
    A44.*A13.*A31-A22.*A13.*A31-A11.*A24.*A42+A11+A22+A33+A44+... 
    A22.*A33.*A44+A11.*A22.*A33.*A44-A11.*A42.*A24.*A33-... 
    A31.*A22.*A13.*A44+A31.*A42.*A13.*A24-A42.*A24.*A33+... 
    A33.*A44+A22.*A44-A24.*A42+A11.*A33-... 
    A13.*A31+A11.*A22+A11.*A44+A33.*A22)./... 
    (A13+A13.*A22+A13.*A44+A22.*A13.*A44-A42.*A13.*A24+mh.*A24+... 
    mh.*A24.*A11+mh.*A24.*A33+mh.*A24.*A11.*A33-mh.*A24.*A13.*A31); 
w_crf=wh_crf.*m_x./(Kt.*rho.*t); 
 
% Stability Prediction Plot for the 2 DOF Linear Cutting Force Model 
plot(rpm,w_crf,'b-'); 
axis([1.3e4 2.2e4 0 .008]); 
xlabel('Spindle Speed (rpm)'); 
ylabel('ADOC (m)'); 
title('2 DOF Linear Cutting Force - Flip Bifurcations'); 
 
 

B.2  Two DOF System: Neimark Sacker Bifurcation Computations 
 
% Parameter Inputs 
m_x=0.02;                       % tool mass (kg) 
zeta_x=0.01;                    % tool damping ratio 
k_x=8e5;                        % tool stiffness (N/m) 
m_u=0.01;                       % workpiece mass (kg) 
zeta_u=0.01;                    % workpiece damping ratio 
k_u=1e6;                        % workpiece stiffness (N/m) 
Kt=6e8;                         % workpiece material constant (N/m^2) 
rho=0.1;                        % cutting pd to total spindle pd 
N=2;                            % # of teeth on the tool 
rpm=16000;                      % Spindle Speed (rpm) 
 
% Eigenvalue Guess: a + bi 
a=0.8408; 
b=0.11469; 
 
% Unit Definitions/Conversions 
omega=rpm/60; 
t=1/(N*omega); 
w_x=sqrt(k_x/m_x); 
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w_xd=w_x*sqrt(1-zeta_x^2); 
w_u=sqrt(k_u./m_u); 
w_ud=w_u*sqrt(1-zeta_u^2); 
mh=m_x/m_u; 
 
% State Transition Matrix Terms for the Non-Cutting Period 
A11=exp(-zeta_x*w_x*t)*(cos(w_xd*t)+zeta_x*w_x/w_xd*sin(w_xd*t)); 
A13=exp(-zeta_x*w_x*t)/w_xd*sin(w_xd*t); 
A22=exp(-zeta_u*w_u*t)*(cos(w_ud*t)+zeta_u*w_u/w_ud*sin(w_ud*t)); 
A24=exp(-zeta_u*w_u*t)/w_ud*sin(w_ud*t); 
A31=-exp(-zeta_x*w_x*t)*w_x^2/w_xd*sin(w_xd*t); 
A33=exp(-zeta_x*w_x*t)*(cos(w_xd*t)-zeta_x*w_x/w_xd*sin(w_xd*t)); 
A42=-exp(-zeta_u*w_u*t)*w_u^2/w_ud*sin(w_ud*t); 
A44=exp(-zeta_u*w_u*t)*(cos(w_ud*t)-zeta_u*w_u/w_ud*sin(w_ud*t)); 
 
% ADOC calculations 
wh_crns=(A11*A22*A33*A44+A13*A24*A31*A42-A11*A24*A33*A42-... 
    A13*A22*A31*A44-a^2-b^2)/(A13*A22*A44-A13*A24*A42+... 
    mh*A11*A24*A33-mh*A13*A24*A31); 
w_crns=wh_crns*m_x/(Kt*rho*t); 
w=w_crns; 
wh=w*rho*Kt*t/m_x; 
 
% State Transition Matrix for the Cutting Period 
B=[A11 0 A13 0; 0 A22 0 A24;... 
    A31+wh*(1-A11) wh*(1-A22) A33-wh*A13 -wh*A24;... 
    mh*wh*(1-A11) A42+mh*wh*(1-A22) -mh*wh*A13 A44-mh*wh*A24]; 
 
% Solve for the Eigenvalues of Matrix B 
e=eig(B); 
c=e(1,:); 
d=e(2,:); 
 
% Checks for the Magnitude of the Eigenvalue Guess 
magab=sqrt(a^2+b^2); 
 
% Checks for Product of Magnitudes of other Eigenvalue Pair to = 1 
check=c*d; 
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Appendix C 

MATLAB Programs for DDE Numerical Computations 
 
 
In this appendix, MATLAB programs used to carry out integration of the delay 

differential equations are provided. These programs are used to generate the delay 

differential equation numerical predictions shown in Figures 5.1 and 5.9. 

 

C.1  Single DOF System: DDE Numerical Computations 
 
 
Main Program 
 
 
global g 
close all; clf; clc; 
 
% Parameter Inputs 
m=0.0431;                     % tool mass (kg) 
zeta=0.016691;                % tool damping ratio 
k=1.4e+6;                     % tool stiffness (N/m) 
kt=500e+6;                    % workpiece material constant (N/m^2) 
rho=0.14;                     % cutting pd to total spindle pd 
feed=0.000102;                % feed (m/tooth) 
N=2;                          % number of teeth on the tool 
w=.00203;                     % ADOC (m) 
omega_rpm=13500;              % spindle speed (rpm) 
q0=[0.0006;0.001];            % initial conditions (m) 
T=200;                        % # of total spindle periods divided by 2 
 
% Unit Definitions/Conversions 
c=zeta*2.0*sqrt(m*k); 
omega=2*pi*omega_rpm/60; 
f=omega/(2*pi)*N*feed; 
 
% Time Delays 
tau=2*pi/(N*omega); 
tau1=rho*tau; 
tau2=(1-rho)*tau; 
 
% Initial Settings 
ti=0; 
tf=0; 
q_0=zeros(2,2*T);                  
q_0(:,1)=q0; 
q=q0(1); 
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q_dot=q0(2); 
t=0; 
 
for i=1:2*T; 
         
    if (mod(i,2)==1)            % Cutting Period 
         
        g=1; 
        tf=ti+tau2; 
         
    else                        % Non-cutting Period 
         
        g=0; 
        tf=ti+tau1; 
         
    end 
     
    tlength=[ti;tf]; 
     
    % Option 1 - Call the 1 DOF Linear Cutting Force equation 
    sol=dde23(@LinearCF1DOFf,... 
        [tau],q_0(:,i),tlength,[],m,k,kt,w,c,f,rho,tau); 
     
    % Option 2 - Call the 1 DOF 3/4 Cutting Force equation 
    %sol=dde23(@ThreeQuarterCF1DOFf,... 
    %    [tau],q_0(:,i),tlength,[],m,k,kt,w,c,f,rho,tau); 
     
    q_0(:,i+1)=sol.y(:,length(sol.y)); 
    ti=tf; 
    q=cat(1,q,sol.y(1,2:length(sol.y(1,:)))'); 
    q_dot=cat(1,q_dot,sol.yp(1,2:length(sol.yp(1,:)))'); 
    t=cat(1,t,sol.x(1,2:length(sol.x))'); 
 
end 
 
% Response Plot 
figure(1); 
subplot(2,1,1); 
plot(t,real(q)); 
xlabel('t (s)'); 
ylabel('q_x(t) (m)'); 
hold on; 
 
% Phase Portrait Plot 
subplot(2,1,2); 
plot(real(q),real(q_dot)); 
xlabel('q_x(t) (m)'); 
ylabel('q_x''(t) (m/s)'); 
 
 
Linear Cutting Force Function 
 
 
function v=LinearCF1DOFf(t,y,Z,m,k,kt,w,c,f,rho,tau) 
global g 
ylag1 = Z(:,1); 
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v = zeros(2,1); 
 
% Linear Cutting Force Model 1 DOF State Space Equations 
v=[y(2); -k/m*y(1)-c/m*y(2)+g*kt*w/m*(ylag1(1)-y(1)+f*tau)]; 
 
 
3/4 Rule Cutting Force Function 
 
 
function v=ThreeQuarterCF1DOFf(t,y,Z,m,k,kt,w,c,f,rho,tau) 
global g 
ylag1 = Z(:,1); 
v = zeros(2,1); 
 
% 3/4 Cutting Force Model 1 DOF State Space Equations 
v=[y(2); -k/m*y(1)-c/m*y(2)+g*kt*(f*tau)^(1/4)*w/m*(ylag1(1)-... 
    y(1)+f*tau)^(3/4)]; 
 
 

C.2  Two DOF System: DDE Numerical Computations 
 
 
Main Program 
 
 
global g 
close all; clf; clc; 
 
% Parameter Inputs 
mx=0.02;                        % tool mass (kg) 
zetax=0.01;                     % tool damping ratio 
kx=8e+5;                        % tool stiffness (N/m) 
mu=0.1;                         % workpiece mass (kg) 
zetau=0.01;                     % workpiece damping ratio 
ku=1.0e+6;                      % workpiece stiffness (N/m) 
kt=600e+6;                      % workpiece material constant (N/m^2) 
rho=0.2;                        % cutting pd to total spindle pd 
feed=5.1e-4;                    % feed (m/tooth) 
N=2;                            % number of teeth on the tool 
w=.00023;                       % ADOC (m) 
omega_rpm=17000;                % spindle speed (rpm) 
q0=[0.0006;0.0006;0.001;0.001]; % initial conditions (m) 
T=300;                          % # of total spindle pds divided by 2 
 
% Unit Definitions/Conversions 
cx=zetax*2.0*sqrt(mx*kx); 
cu=zetau*2.0*sqrt(mu*ku); 
omega=2*pi*omega_rpm/60; 
f=omega/(2*pi)*N*feed; 
 
 
 
 



 82

% Time Delays 
tau=2*pi/(N*omega); 
tau1=tau*rho; 
tau2=tau*(1-rho); 
 
% Initial Settings 
ti=0; 
tf=0; 
q_0=zeros(4,2*T); 
q_0(:,1)=q0; 
qx=q0(1); 
qu=q0(2); 
qx_dot=q0(3); 
qu_dot=q0(4); 
t=0; 
 
for i=1:2*T; 
        
    if (mod(i,2)==1)            % Cutting Period 
         
        g=1; 
        tf=ti+tau2; 
          
    else                        % Non-cutting Period 
         
        g=0;  
        tf=ti+tau1; 
         
    end 
     
    tlength=[ti;tf]; 
     
    % Option 1 - Call the 2 DOF Linear Cutting Force equation  
    %sol = dde23(@LinearCF2DOFf,[tau],... 
    %    q_0(:,i),tlength,[],mx,kx,mu,ku,kt,w,cx,cu,f,rho,tau); 
     
    % Option 2 = Call the 2 DOF Linear Cutting Force equation 
    sol = dde23(@ThreeQuarterCF2DOFf,... 
        [tau],q_0(:,i),tlength,[],mx,kx,mu,ku,kt,w,cx,cu,f,rho,tau); 
     
    q_0(:,i+1)=sol.y(:,length(sol.y)); 
    ti=tf; 
    qx=cat(1,qx,sol.y(1,2:length(sol.y(1,:)))'); 
    qu=cat(1,qu,sol.y(1,2:length(sol.y(2,:)))'); 
    qx_dot=cat(1,qx_dot,sol.yp(1,2:length(sol.yp(1,:)))'); 
    qu_dot=cat(1,qu_dot,sol.yp(1,2:length(sol.yp(2,:)))'); 
    t=cat(1,t,sol.x(1,2:length(sol.x))');  
 
end 
 
% Response Plot for q_x 
figure(1); 
subplot(2,2,1); 
plot(t,real(qx)); 
xlabel('time t'); 
ylabel('q_x(t)'); 
hold on; 
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% Response Plot for q_u 
subplot(2,2,2); 
plot(t,real(qu)); 
xlabel('time t'); 
ylabel('q_u(t)'); 
 
% Phase Portrait Plot for q_x 
subplot(2,2,3); 
plot(real(qx),real(qx_dot)); 
xlabel('q_x(t)'); 
ylabel('q_x''(t)'); 
 
% Phase Portrait Plot for q_u 
subplot(2,2,4); 
plot(real(qu),real(qu_dot)); 
xlabel('q_u(t)'); 
ylabel('q_u''(t)'); 
 
 
Linear Cutting Force Function 
 
 
function v=LinearCF2DOFf(t,y,Z,mx,kx,mu,ku,kt,w,cx,cu,f,rho,tau) 
global g 
ylag1 = Z(:,1); 
v = zeros(4,1); 
 
% Linear Cutting Force Model 2 DOF State Space Equations 
v=[y(3);... 
    y(4);... 
    -kx/mx*y(1)-cx/mx*y(3)+g*kt*w/mx*(ylag1(1)+ylag1(2)-y(1)-... 
    y(2)+f*tau);... 
    -ku/mu*y(2)-cu/mu*y(4)+g*kt*w/mu*(ylag1(1)+ylag1(2)-y(1)-... 
    y(2)+f*tau)]; 
 
 
3/4 Rule Cutting Force Function 
 
 
function v=ThreeQuarterCF2DOFf(t,y,Z,mx,kx,mu,ku,kt,w,cx,cu,f,rho,tau) 
global g 
ylag1 = Z(:,1); 
v = zeros(4,1); 
 
% 3/4 Cutting Force Model 2 DOF State Space Equations 
v=[y(3);... 
    y(4);... 
    -kx/mx*y(1)-cx/mx*y(3)+g*kt*(f*tau)^(1/4)*w/mx*(ylag1(1)+... 
    ylag1(2)-y(1)-y(2)+f*tau)^(3/4);... 
    -ku/mu*y(2)-cu/mu*y(4)+g*kt*(f*tau)^(1/4)*w/mu*(ylag1(1)+... 
    ylag1(2)-y(1)-y(2)+f*tau)^(3/4)]; 
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Appendix D 

UMCP Numerical Stability Prediction Programs 
 
 
In this appendix, the original UMCP numerical stability prediction program and the 

modified UMCP numerical stability prediction program, used to carry out stability 

computations (flip and Neimark-Sacker bifurcations) are provided.  These programs are 

used to generate UMCP stability program predictions for linear and 3/4 rule cutting 

forces shown in Figures 5.2 to 5.8 and Figures 5.10 to 5.14. 

 

D.1  Matlab Programs for Linear Cutting Force Model 
 
 
Main Program <linear_millingmain.m> 
 
 
% MAIN PROGRAM TO GET THE STABILITY LOBE BY SEMI-DISCRETIZATION METHOD 
% IN THIS CASE, WE WILL CONSIDER THE EFFECT OF FEED RATE ON TIME DELAY 
 
function main 
% num_tooth   - Number of teeth on the cutter 
% r           - Radius of cutter (m) 
% phi_n       - Normal rake angle (degree) 
% omega       - Spindle Speed (rpm) 
% feed        - Feed rate along x direction (m/s) 
% feedcut     - Feed per tooth along x direction (m/tooth) 
% rdoc        - Radial depth of cut (m) 
% adoc        - Axial depth of cut (m) 
% kt          - Tangential cutting coef from orthogonal cutting (N/m^2) 
% kn          - Cutting coefficient proportional constant 
% cp          - Viscous damping in the cutting process (N*s/m^2) 
% friction    - Coulomb friction coefficient 
% eta         - Helix angle of cylindrical end mill (degrees) 
% mx          - Modal mass in x direction (kg) 
% kx          - Modal stiffness in x direction (N/m) 
% cx          - Viscous damping in x direction (N*s/m) 
% theta_enter - Cutter entering angle (degree) 
% theta_exit  - Cutter exit angle (degree) 
% z1          - Dynamic integration lower limit (m) 
% z2          - Dynamic integration upper limit (m) 
% step        - Integration time step (s) 
 
global mx xix kx my xiy ky mu ku xiu mv kv xiv feed; 
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global kt kn friction cp r eta phi_n num_tooth feedcut; 
global omega1 omega2 delta_omega theta_enter theta_exit; 
global adocL adocH delta_adoc int_time; 
 
PI=3.14159; 
 
% THE NUMBER OF STEPS FOR EVERY PERIOD 
N=40; 
 
% CALLS THE INPUT FUNCTION TO INPUT THE SYSTEM PARAMETERS 
input_stepan; 
 
% CHANGES THE DIMENSIONLESS DAMPING INTO cx, cy, cu, AND cv  
cx=xix*2.0*sqrt(mx*kx); 
cy=xiy*2.0*sqrt(my*ky); 
cu=xiu*2.0*sqrt(mu*ku); 
cv=xiv*2.0*sqrt(mv*kv); 
 
% FORMS THE MASS, DAMPING AND STIFFNESS MATRICES 
mm=[mx,my,mu,mv]; 
MC=diag(mm,0); 
MC=inv(MC); 
cc=[cx,cy,cu,cv]; 
CC=diag(cc,0); 
kk=[kx,ky,ku,kv]; 
KC=diag(kk,0); 
 
% CREATES TWO MATRICES FOR STATE SPACE EQUATIONS 
AA=zeros(8,8); 
BB=zeros(8,8); 
kbar=zeros(4,4); 
cbar=zeros(4,4); 
zerobar=zeros(4,1); 
 
s=zeros(2,2); 
q=zeros(2,2); 
 
 
% UNIT CONVERSIONS - CHANGES THE ANGLES FROM DEGREES TO RADIANS 
eta=eta*PI/180.0; 
omega1=2*PI*omega1/60.0; 
omega2=2*PI*omega2/60.0; 
delta_omega=2*PI*delta_omega/60.0; 
theta_enter=theta_enter*PI/180.0; 
theta_exit=theta_exit*PI/180.0; 
 
% CALLS K1 AND K2   
k1 = kn/cos(eta); 
k2 = 1.0 + friction*(cos(phi_n)-kn*sin(phi_n))*tan(eta); 
 
% DEFINES THE RANK OF THE MAPPING MATRICS 
rankn=(N+1)*8; 
 
% STABILITY PREDICTION USING PARAMETERS OF SPINDLE SPEED AND ADOC 
BI=zeros(rankn,rankn); 
jj=1; 
ii=0; 
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for omega=omega1:delta_omega:omega2 
   step=2*PI/omega/(N+0.5)/num_tooth; 
   tn=2*PI/omega/num_tooth; 
   excite_harmonics=(-omega:omega:6*omega)/2/PI; 
   feed=omega/(2*PI)*num_tooth*feedcut; 
    
   % CUTTING ENTRANCE OR EXIT ANGLE VARIATIONS DUE TO THE FEED 
   delta_theta = asin(2*PI*feed/(2*omega*r*num_tooth)); 
    
   % TWO TIME DELAYS 
   % FOR A SINGLE TIME DELAY, SET xdelay=ydelay AND xresidue=yresidue 
   xdelay = floor(2*PI/(omega*num_tooth*step)); 
   ydelay = floor(4*PI*r/(num_tooth*step*(2*r*omega+feed))); 
   xresidue = 2*PI/(omega*num_tooth*step)-xdelay+0.5; 
   yresidue = 4*PI*r/(num_tooth*step*(2*r*omega+feed))-ydelay+0.5; 
   adoc1=adocL; 
   adoc2=adocH; 
   adoc=adocH/2.0; 
    
   while (adoc-adoc1)>1e-6 & (adoc2-adoc)>1e-6 
      PHI=eye(rankn,rankn); 
       
      for t=0:step:tn-step 
         BI=[zeros(8,rankn);eye(rankn-8),zeros(rankn-8,8)]; 
          
% CALLS THE LINEAR CUTTING FORCE SUBROUTINE TO GET THE S AND Q MATRICES  
         
[s,q]=cutzone1(t,theta_enter,theta_exit,delta_theta,adoc,r,omega,... 
    eta,num_tooth,step,k1,k2,kt,cp); 
         kbar=[s,s;s,s]; 
         cbar=[q,q;q,q]; 
         kbar1=kbar(:,1); 
         cbar1=cbar(:,1); 
         kbar2=kbar(:,2); 
         cbar2=cbar(:,2); 
          
         % X DIRECTION DELAY COEFFICIENT MATRICES 
         kbar11=[kbar1,zerobar,kbar1,zerobar]; 
         cbar11=[cbar1,zerobar,cbar1,zerobar]; 
          
         % Y DIRECTION DELAY COEFFICIENT MATRICES 
         kbar22=[zerobar,kbar2,zerobar,kbar2]; 
         cbar22=[zerobar,cbar2,zerobar,cbar2]; 
       
         % THE STATE SPACE EQUATION MATRIX  
         AA=[zeros(4,4),eye(4,4);-MC*(KC-kbar),-MC*(CC-cbar)]; 
         INVA=inv(AA); 
          
         % THE EFFECTIVE COEFFICIENTS OF DELAY 
         BB1=[zeros(4,8);-MC*kbar11,-MC*cbar11]; 
         BB2=[zeros(4,8);-MC*kbar22,-MC*cbar22]; 
         mi0=expm(AA*step); 
         mi1=(1-xresidue)*(mi0-eye(8,8))*INVA*BB1; 
         mi2=xresidue*(mi0-eye(8,8))*INVA*BB1; 
         mi3=(1-yresidue)*(mi0-eye(8,8))*INVA*BB2; 
         mi4=yresidue*(mi0-eye(8,8))*INVA*BB2; 
         BI(1:8,1:8)=BI(1:8,1:8)+mi0; 
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         BI(1:8,8*xdelay-7:8*xdelay)=BI(1:8,8*xdelay-7:8*xdelay)+mi1; 
         BI(1:8,8*xdelay+1:8*xdelay+8)=BI(1:8,8*xdelay+... 
             1:8*xdelay+8)+mi2; 
         BI(1:8,8*ydelay-7:8*ydelay)=BI(1:8,8*ydelay-7:8*ydelay)+mi3; 
         BI(1:8,8*ydelay+1:8*ydelay+8)=BI(1:8,8*ydelay+... 
             1:8*ydelay+8)+mi4; 
         PHI=BI*PHI; 
          
      end 
         E=eig(PHI); 
         max_eig=max(abs(E)); 
          
      if max_eig>1 
         adoc2=adoc; 
         adoc=(adoc1+adoc)/2; 
          
      else 
          adoc1=adoc; 
          adoc=(adoc2+adoc)/2; 
           
      end 
 
   end 
   [y,i]=sort(abs(E)); 
 
   if abs(E(i(rankn))+1)<1e-2 
       ii=1+ii; 
       E(i(rankn)) 
       period2(ii)=adoc 
       omega2(ii)=omega*60/2/pi 
        
   end 
 
   Floquetmult=E(i(rankn)) 
   chatter_freq1=-imag(log(Floquetmult))/tn/2/PI+excite_harmonics; 
   chatter_freq2=imag(log(Floquetmult))/tn/2/PI+excite_harmonics; 
   l_c_f=length(chatter_freq1); 
   chatter_freq(1+2*(jj-1)*l_c_f:2*(jj-1)*l_c_f+l_c_f)=chatter_freq1; 
   chatter_freq(2*(jj-1)*l_c_f+l_c_f+1:2*jj*l_c_f)=chatter_freq2; 
   s_spindle(1+2*(jj-1)*l_c_f:2*jj*l_c_f)=omega*60/2/PI*... 
       ones(1,2*l_c_f); 
   adoc 
   omega*60/2/PI 
   omeg(jj)=omega*60/2/PI; 
   ado(jj)=adoc; 
   jj=jj+1; 
 
end 
 
save f0_s_d4r25.dat omeg ado -ascii -double; 
save f0_s_d4r25_cf.dat s_spindle chatter_freq -ascii -double;  
save f0_s_d4r25p2.dat omega2 period2 -ascii -double; 
 
% PLOTS THE STABILITY LOBE PREDICTIONS 
load f0_s_d4r25.dat; 
figure(1) 
plot(f0_s_d4r25(2,:),1000*f0_s_d4r25(1,:)); 
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xlabel('Spindle Speed (krpm)'); 
ylabel('ADOC (mm)'); 
 
% PLOTS THE BIFURCATIONS CORRESPONDING TO THE STABILITY LOBE 
PREDICTIONS 
load f0_s_d4r25_cf.dat; 
figure(2) 
plot(f0_s_d4r25_cf(2,:),f0_s_d4r25_cf(1,:)/1000,'.'); 
xlabel('Spindle Speed (krpm)'); 
ylabel('Chatter Frequency (Hz)'); 
 
 
Subroutine Program <cutzone1.m> 
 
 
% DEFINES THE CUTTING ZONE 
% FORMS THE STIFFNESS AND DAMPING MATRICES DUE TO THE CUTTING FORCE 
 
function [s,q]=cutzone1(tn,theta_enter,theta_exit,delta_theta,adoc,... 
    r,omega,eta,num_tooth,step,k1,k2,kt,cp) 
              
   PI=3.14159; 
   tn_1=tn-step; 
   s=zeros(2,2); 
   q=zeros(2,2); 
   normal1=zeros(num_tooth,1); 
   normal2=zeros(num_tooth,1); 
 
   for i = 1:num_tooth 
      normal1(i) = -2*PI*(i-1)/num_tooth + theta_enter; 
      normal2(i) = normal1(i) - 2*PI; 
       
   end 
   theta_en=theta_enter; 
   theta_ex=theta_exit; 
    
 % COMPENSATION OF delta_theta FOR UP AND DOWN MILLING 
    if theta_en == 0.0 
        theta_en = theta_en - delta_theta; 
    end 
    if theta_ex == PI 
        theta_ex = theta_ex + delta_theta; 
    end 
    if theta_en >= theta_ex 
        theta_en = -PI; 
        theta_ex = -PI; 
    end 
    for i = 1:num_tooth 
         
      % FOR CYLINDRICAL END MILLS WITH NON-ZERO HELIX ANGLES 
       
      if(eta ~= 0.0) 
           
          theta_en1 = theta_en; 
          theta_ex1 = theta_ex; 
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          % NORMALIZATION OF THE CUTTING ZONE ANGLES 
          if (theta_en1-normal1(i))*(theta_en1-normal2(i)) > 0.0 
              while (theta_en1-normal2(i)) > 2*PI 
                  theta_en1 = theta_en1 - 2*PI; 
              end 
          end 
          if (theta_en1-normal1(i))*(theta_en1-normal2(i)) > 0.0 
              while (theta_en1-normal1(i)) < (-2*PI) 
                  theta_en1 = theta_en1 + 2*PI; 
              end 
          end 
          if (theta_en1-normal1(i))*(theta_en1-normal2(i)) == 0.0 
              theta_en1 = normal1(i); 
          end 
          if (theta_ex1-normal1(i))*(theta_ex1-normal2(i)) > 0.0 
              while (theta_ex1-normal2(i)) > 2*PI 
                  theta_ex1 = theta_ex1 - 2*PI; 
              end 
          end 
          if (theta_ex1-normal1(i))*(theta_ex1-normal2(i)) > 0.0 
              while (theta_ex1-normal1(i)) < (-2*PI) 
                  theta_ex1 = theta_ex1 + 2*PI; 
              end 
          end 
          if (theta_ex1-normal1(i))*(theta_ex1-normal2(i)) == 0.0 
              theta_ex1 = normal1(i); 
          end 
           
          % ROTATES THE CUTTING ZONE IN THE OPPOSITE DIRECTION 
          theta_en1 = theta_en1 - omega*tn; 
          theta_ex1 = theta_ex1 - omega*tn; 
          if theta_en1 <= normal2(i) 
              theta_en1 = theta_en1 + 2*PI; 
          end 
          if (theta_ex1 <= normal2(i)) 
              theta_ex1 = theta_ex1 + 2*PI; 
          end 
           
          % z_en AND z_ex VALUES ARE ALWAYS POSITIVE 
          z_en = (-(i-1)*2*PI/num_tooth+theta_enter-theta_en1)*r/... 
              tan(eta); 
          z_ex = (-(i-1)*2*PI/num_tooth+theta_enter-theta_ex1)*r/... 
              tan(eta); 
 
          % NON-CUTTING POSITIONS 
          if ((z_ex>=adoc)&(z_en>z_ex))|((z_en<=0.0)&(z_ex>adoc))|... 
              (z_en==z_ex) 
              z1 = 0.0; 
              z2 = 0.0; 
                     
          % CUTTING POSITIONS 
          else 
              if (z_en<adoc)&(z_en>0.0)&((z_ex<=0.0)|(z_ex>adoc)) 
                  z1 = 0.0; 
                  z2 = z_en; 
              elseif (z_en>=adoc)&((z_ex<=0.0)|(z_ex>adoc)) 
                  z1 = 0.0; 
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                  z2 = adoc; 
              elseif (z_en<adoc)&(z_ex<adoc)&(z_ex<z_en)&(z_ex>0.0) 
                  z1 = z_ex; 
                  z2 = z_en; 
              elseif (z_en>=adoc)&(z_ex<adoc)&(z_ex>0.0) 
                  z1 = z_ex; 
                  z2 = adoc; 
              else 
          % YOU SHOULD NOT ENTER HERE IF ALL SCENARIOS INCLUDED 
                  %puts("There is a bug for helical tooth cutter!\n"); 
                  z1 = 0.0; 
                  z2 = 0.0; 
              end 
          end 
           
          % NON-CUTTING OR CUTTING COEFFICIENTS 
          s_s = (z2-z1)/2.0+r*sin(tan(eta)*(z1-z2)/r)*... 
              cos(2*omega*tn-(i-1)*4*PI/num_tooth-tan(eta)*(z1+z2)/... 
              r+2*theta_enter)/(2*tan(eta)); 
          cc = (z2-z1)/2.0-r*sin(tan(eta)*(z1-z2)/r)*... 
              cos(2*omega*tn-(i-1)*4*PI/num_tooth-tan(eta)*(z1+z2)/... 
              r+2*theta_enter)/(2*tan(eta)); 
          sc = r*sin(tan(eta)*(z2-z1)/r)*sin(2*omega*tn-(i-1)*4*PI/... 
              num_tooth-tan(eta)*(z1+z2)/r+2*theta_enter)/(2*tan(eta)); 
           
      % FOR FLAT END MILLS WITH ZERO HELIX ANGLE  
       
      elseif(eta==0) 
          theta_t = omega*tn - (i-1)*2*PI/num_tooth + theta_enter; 
          theta_angle= theta_t; 
           
          % NORMALIZATION OF THE CUTTING ZONE ANGLES 
          if ((theta_t-theta_enter)*(theta_t-theta_enter-2*PI) > 0.0) 
              while ((theta_t-theta_enter) > 2*PI) 
                  theta_t = theta_t - 2*PI; 
              end 
          end 
          if ((theta_t-theta_enter)*(theta_t-theta_enter-2*PI) > 0.0) 
              while ((theta_t-theta_enter-2*PI) < (-2*PI)) 
                  theta_t = theta_t + 2*PI; 
              end 
          end 
          if ((theta_t-theta_enter)*(theta_t-theta_enter-2*PI) == 0.0) 
              theta_t = theta_enter; 
          end 
           
          % NON-CUTTING POSITIONS AND COEFFICIENTS 
          if (((theta_t-theta_en)*(theta_t-theta_ex)>0.0)|... 
              ((theta_en==-PI)&(theta_ex==-PI))) 
               
              s_s=0.0; 
              cc=0.0; 
              sc=0.0; 
           
          % CUTTING POSITIONS AND COEFFICIENTS 
          elseif (((theta_t-theta_en)*(theta_t-theta_ex)<=0.0)&... 
                  (theta_en~=-PI)&(theta_ex~=-PI)) 
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              s_s = adoc*sin(theta_t)*sin(theta_t); 
              cc = adoc*cos(theta_t)*cos(theta_t); 
              sc = 0.5*adoc*sin(2*theta_t); 
          end 
      end 
       
      bs1= -k1*kt*s_s-k2*kt*sc-omega*cp*(k2*cc+k1*sc); 
      bq1= -k1*cp*s_s-k2*cp*sc; 
      bs2= -k2*kt*cc-k1*kt*sc+omega*cp*(k1*s_s+k2*sc); 
      bq2= -k2*cp*cc-k1*cp*sc; 
      bs3= k2*kt*s_s-k1*kt*sc+omega*cp*(k2*sc-k1*cc); 
      bq3= k2*cp*s_s-k1*cp*sc; 
      bs4= k2*kt*sc-k1*kt*cc+omega*cp*(k1*sc-k2*s_s); 
      bq4= k2*cp*sc-k1*cp*cc; 
      s(1:1,1:1) = s(1:1,1:1) + bs1; 
      s(1:1,2:2) = s(1:1,2:2) + bs2; 
      s(2:2,1:1) = s(2:2,1:1) + bs3; 
      s(2:2,2:2) = s(2:2,2:2) + bs4; 
      q(1:1,1:1) = q(1:1,1:1) + bq1; 
      q(1:1,2:2) = q(1:1,2:2) + bq2; 
      q(2:2,1:1) = q(2:2,1:1) + bq3; 
      q(2:2,2:2) = q(2:2,2:2) + bq4; 
       
    end 
 
 
Input Program <input_stepan.m> for Figure 5.6 
 
 
% FUNCTION INPUT NAME 
function input_stepan 
 
global mx xix kx my xiy ky mu ku xiu mv kv xiv feed; 
global kt kn friction cp r eta phi_n num_tooth feedcut; 
global omega1 omega2 delta_omega theta_enter theta_exit; 
global adocL adocH delta_adoc int_time; 
 
% PARAMETER INPUTS 
 
% MASS (kg); DAMPING; STIFFNESS (N/m) - X DIRECTION 
mx=2.586; 
xix=0.0038; 
kx=2.2e+6; 
 
% MASS (kg); DAMPING; STIFFNESS (N/m) - Y DIRECTION 
my=1.0e+5; 
xiy=1.0; 
ky=1.0e+15; 
% MASS (kg); DAMPING; STIFFNESS (N/m) - U DIRECTION 
mu=1.0e+5; 
xiu=1.0; 
ku=1.0e+15; 
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% MASS (kg); DAMPING; STIFFNESS (N/m) - V DIRECTION 
mv=1.0e+5; 
xiv=1.0; 
kv=1.0e+15; 
% WORKPIECE MATERIAL 
material='aluminum'; 
% WORKPIECE MATERIAL CONSTANTS 
kt=1.89e+9; % (N/m^2) 
kn=0.364; 
% CUTTING FRICTION AND DAMPING 
friction=0.20; 
cp=0.0; 
% CUTTING RADIUS OF TOOL (m) 
r=9.53e-3; 
% HELIX ANGLE OF TOOL (degrees) 
eta=0.0; 
% NORMAL RAKE ANGLE OF TOOL (degrees) 
phi_n=12.0; 
% NUMBER OF TEETH ON TOOL 
num_tooth=1; 
% FEEDRATE (m/tooth) 
feedcut=0.0001016; 
% MIN AND MAX SPINDLE SPEEDS (rpm)  
omega1=2900.0; 
omega2=3700.0; 
% STEP CHANGE BETWEEN SPINDLE SPEED CALCULATIONS 
delta_omega=10.0; 
% CUTTING ENTRY AND EXIT ANGLES (degrees) 
theta_enter=0; 
theta_exit=19.57; 
% MIN AND MAX ADOC (m) 
adocL=50.0e-6; 
adocH=8.0e-3; 
% CHANGE IN ADOC 
delta_adoc=0.0; 
 
 

D.2  Matlab Programs for 3/4 Cutting Force Model 
 
 
Main Program <threequarter_millingmain.m> 
 
 
% MAIN PROGRAM TO GET THE STABILITY LOBE BY SEMI-DISCRETIZATION METHOD 
% IN THIS CASE, WE WILL CONSIDER THE EFFECT OF FEED RATE ON TIME DELAY 
 
function main 
% num_tooth   - Number of teeth on the cutter 
% r           - Radius of cutter (m) 
% phi_n       - Normal rake angle (degree) 
% omega       - Spindle Speed (rpm) 
% feed        - Feed rate along x direction (m/s) 
% feedcut     - Feed per tooth along x direction (m/tooth) 
% rdoc        - Radial depth of cut (m) 
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% adoc        - Axial depth of cut (m) 
% kt          - Tangential cutting coef from orthogonal cutting (N/m^2) 
% kn          - Cutting coefficient proportional constant 
% cp          - Viscous damping in the cutting process (N*s/m^2) 
% friction    - Coulomb friction coefficient 
% eta         - Helix angle of cylindrical end mill (degree) 
% mx          - Modal mass in x direction (Kg) 
% kx          - Modal stiffness in x direction (N/m) 
% cx          - Viscous damping in x direction (N*s/m) 
% theta_enter - Cutter entering angle (degree) 
% theta_exit  - Cutter exit angle (degree) 
% z1          - Dynamic integration lower limit (m) 
% z2          - Dynamic integration upper limit (m) 
% step        - Integration time step (s) 
 
global mx xix kx my xiy ky mu ku xiu mv kv xiv feed; 
global kt kn friction cp r eta phi_n num_tooth feedcut; 
global omega1 omega2 delta_omega theta_enter theta_exit; 
global adocL adocH delta_adoc int_time; 
global xdelay ydelay feed; 
 
PI=3.14159; 
 
% THE NUMBER OF STEPS FOR EVERY PERIOD 
N=40; 
 
% CALLS THE INPUT FUNCTION TO INPUT THE SYSTEM PARAMETERS 
input_stepan; 
 
% CHANGES THE DIMENSIONLESS DAMPING INTO cx, cy, cu, AND cv  
cx=xix*2.0*sqrt(mx*kx); 
cy=xiy*2.0*sqrt(my*ky); 
cu=xiu*2.0*sqrt(mu*ku); 
cv=xiv*2.0*sqrt(mv*kv); 
 
% FORMS THE MASS, DAMPING AND STIFFNESS MATRICES 
mm=[mx,my,mu,mv]; 
MC=diag(mm,0); 
MC=inv(MC); 
cc=[cx,cy,cu,cv]; 
CC=diag(cc,0); 
kk=[kx,ky,ku,kv]; 
KC=diag(kk,0); 
 
% CREATES TWO MATRICES FOR STATE SPACE EQUATIONS 
AA=zeros(8,8); 
BB=zeros(8,8); 
kbar=zeros(4,4); 
cbar=zeros(4,4); 
zerobar=zeros(4,1); 
 
s=zeros(2,2); 
q=zeros(2,2); 
 
% UNIT CONVERSIONS - CHANGES THE ANGLES FROM DEGREES TO RADIANS 
eta=eta*PI/180.0; 
omega1=2*PI*omega1/60.0; 
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omega2=2*PI*omega2/60.0; 
delta_omega=2*PI*delta_omega/60.0; 
theta_enter=theta_enter*PI/180.0; 
theta_exit=theta_exit*PI/180.0; 
 
% CALLS K1 AND K2   
k1 = kn/cos(eta); 
k2 = 1.0 + friction*(cos(phi_n)-kn*sin(phi_n))*tan(eta); 
 
% DEFINES THE RANK OF THE MAPPING MATRICS 
rankn=(N+1)*8; 
 
% STABILITY PREDICTION USING PARAMETERS OF SPINDLE SPEED AND ADOC 
BI=zeros(rankn,rankn); 
jj=1; 
ii=0; 
for omega=omega1:delta_omega:omega2 
   step=2*PI/omega/(N+0.5)/num_tooth; 
   tn=2*PI/omega/num_tooth; 
   excite_harmonics=(-omega:omega:6*omega)/2/PI; 
   feed=omega/(2*PI)*num_tooth*feedcut; 
    
   % CUTTING ENTRANCE OR EXIT ANGLE VARIATIONS DUE TO THE FEED 
   delta_theta = asin(2*PI*feed/(2*omega*r*num_tooth)); 
    
   % TWO TIME DELAYS 
   % FOR A SINGLE TIME DELAY, SET xdelay=ydelay AND xresidue=yresidue 
   xdelay = floor(2*PI/(omega*num_tooth*step)); 
   ydelay = xdelay; 
   xresidue = 2*PI/(omega*num_tooth*step)-xdelay+0.5; 
   yresidue = xresidue; 
   adoc1=adocL; 
   adoc2=adocH; 
   adoc=adocH/2.0; 
    
   while (adoc-adoc1)>1e-6 & (adoc2-adoc)>1e-6 
      PHI=eye(rankn,rankn); 
       
      for t=0:step:tn-step 
         BI=[zeros(8,rankn);eye(rankn-8),zeros(rankn-8,8)]; 
           
% CALLS 3/4 RULE CUTTING FORCE SUBROUTINE TO GET THE S AND Q MATRICES 
         
[s,q]=cutzone2(t,theta_enter,theta_exit,delta_theta,adoc,r,omega,... 
    eta,num_tooth,step,k1,k2,kt,cp,xdelay,ydelay,feed); 
         kbar=[s,s;s,s]; 
         cbar=[q,q;q,q]; 
         kbar1=kbar(:,1); 
         cbar1=cbar(:,1); 
         kbar2=kbar(:,2); 
         cbar2=cbar(:,2); 
          
         % X DIRECTION DELAY COEFFICIENT MATRICES 
         kbar11=[kbar1,zerobar,kbar1,zerobar]; 
         cbar11=[cbar1,zerobar,cbar1,zerobar]; 
          
         % Y DIRECTION DELAY COEFFICIENT MATRICES 
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         kbar22=[zerobar,kbar2,zerobar,kbar2]; 
         cbar22=[zerobar,cbar2,zerobar,cbar2]; 
       
         % THE STATE SPACE EQUATION MATRIX 
         AA=[zeros(4,4),eye(4,4);-MC*(KC-kbar),-MC*(CC-cbar)]; 
         INVA=inv(AA); 
          
         % THE EFFECTIVE COEFFICIENTS OF DELAY 
         BB1=[zeros(4,8);-MC*kbar11,-MC*cbar11]; 
         BB2=[zeros(4,8);-MC*kbar22,-MC*cbar22]; 
         mi0=expm(AA*step); 
         mi1=(1-xresidue)*(mi0-eye(8,8))*INVA*BB1; 
         mi2=xresidue*(mi0-eye(8,8))*INVA*BB1; 
         mi3=(1-yresidue)*(mi0-eye(8,8))*INVA*BB2; 
         mi4=yresidue*(mi0-eye(8,8))*INVA*BB2; 
         BI(1:8,1:8)=BI(1:8,1:8)+mi0; 
         BI(1:8,8*xdelay-7:8*xdelay)=BI(1:8,8*xdelay-7:8*xdelay)+mi1; 
         BI(1:8,8*xdelay+1:8*xdelay+8)=BI(1:8,8*xdelay+... 
             1:8*xdelay+8)+mi2; 
         BI(1:8,8*ydelay-7:8*ydelay)=BI(1:8,8*ydelay-7:8*ydelay)+mi3; 
         BI(1:8,8*ydelay+1:8*ydelay+8)=BI(1:8,8*ydelay+... 
             1:8*ydelay+8)+mi4; 
         PHI=BI*PHI; 
          
      end 
         E=eig(PHI); 
         max_eig=max(abs(E)); 
       
      if max_eig>1 
         adoc2=adoc; 
         adoc=(adoc1+adoc)/2; 
      else 
         adoc1=adoc; 
         adoc=(adoc2+adoc)/2; 
      end 
       
   end 
   [y,i]=sort(abs(E)); 
    
   if abs(E(i(rankn))+1)<1e-2 
       ii=1+ii; 
       E(i(rankn)) 
       period2(ii)=adoc 
       omega2(ii)=omega*60/2/pi 
        
   end 
 
   Floquetmult=E(i(rankn)) 
   chatter_freq1=-imag(log(Floquetmult))/tn/2/PI+excite_harmonics; 
   chatter_freq2=imag(log(Floquetmult))/tn/2/PI+excite_harmonics; 
   l_c_f=length(chatter_freq1); 
   chatter_freq(1+2*(jj-1)*l_c_f:2*(jj-1)*l_c_f+l_c_f)=chatter_freq1; 
   chatter_freq(2*(jj-1)*l_c_f+l_c_f+1:2*jj*l_c_f)=chatter_freq2; 
   s_spindle(1+2*(jj-1)*l_c_f:2*jj*l_c_f)=... 
       omega*60/2/PI*ones(1,2*l_c_f); 
   adoc 
   omega*60/2/PI 
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   omeg(jj)=omega*60/2/PI; 
   ado(jj)=adoc; 
   jj=jj+1; 
    
end 
 
save f0_s_d4r25.dat omeg ado -ascii -double; 
save f0_s_d4r25_cf.dat s_spindle chatter_freq -ascii -double;  
save f0_s_d4r25p2.dat omega2 period2 -ascii -double; 
 
% PLOTS THE STABILITY LOBE PREDICTIONS 
load f0_s_d4r25.dat; 
figure(1) 
plot(f0_s_d4r25(2,:),1000*f0_s_d4r25(1,:)); 
xlabel('Spindle Speed (krpm)'); 
ylabel('ADOC (mm)'); 
 
% PLOTS THE BIFURCATIONS CORRESPONDING TO THE STABILITY LOBE 
PREDICTIONS 
load f0_s_d4r25_cf.dat; 
figure(2) 
plot(f0_s_d4r25_cf(2,:),f0_s_d4r25_cf(1,:)/1000,'.'); 
xlabel('Spindle Speed (krpm)'); 
ylabel('Chatter Frequency (Hz)'); 
 
 
Subroutine Program <cutzone2.m> 
 
 
% DEFINES THE CUTTING ZONE 
% FORMS THE STIFFNESS AND DAMPING MATRICES DUE TO THE CUTTING FORCE 
 
function [s,q]=cutzone2(tn,theta_enter,theta_exit,delta_theta,adoc,... 
    r,omega,eta,num_tooth,step,k1,k2,kt,cp,xdelay,ydelay,feed) 
 
   PI=3.14159; 
   tn_1=tn-step; 
   s=zeros(2,2); 
   q=zeros(2,2); 
   normal1=zeros(num_tooth,1); 
   normal2=zeros(num_tooth,1); 
 
   for i = 1:num_tooth 
      normal1(i) = -2*PI*(i-1)/num_tooth + theta_enter; 
      normal2(i) = normal1(i) - 2*PI; 
   end 
   theta_en=theta_enter; 
   theta_ex=theta_exit; 
   
 % COMPENSATION OF delta_theta FOR UP AND DOWN MILLING 
    if theta_en == 0.0 
        theta_en = theta_en - delta_theta; 
    end 
    if theta_ex == PI 
        theta_ex = theta_ex + delta_theta; 
    end 
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    if theta_en >= theta_ex 
        theta_en = -PI; 
        theta_ex = -PI; 
    end 
    for i = 1:num_tooth 
         
      % FOR CYLINDRICAL END MILLS WITH NON-ZERO HELIX ANGLES 
       
      if(eta ~= 0.0) 
          theta_en1 = theta_en; 
          theta_ex1 = theta_ex; 
           
          % NORMALIZATION OF THE CUTTING ZONE ANGLES 
          if (theta_en1-normal1(i))*(theta_en1-normal2(i)) > 0.0 
              while (theta_en1-normal2(i)) > 2*PI 
                  theta_en1 = theta_en1 - 2*PI; 
              end 
          end 
          if (theta_en1-normal1(i))*(theta_en1-normal2(i)) > 0.0 
              while (theta_en1-normal1(i)) < (-2*PI) 
                  theta_en1 = theta_en1 + 2*PI; 
              end 
          end 
          if (theta_en1-normal1(i))*(theta_en1-normal2(i)) == 0.0 
              theta_en1 = normal1(i); 
          end 
          if (theta_ex1-normal1(i))*(theta_ex1-normal2(i)) > 0.0 
              while (theta_ex1-normal2(i)) > 2*PI 
                  theta_ex1 = theta_ex1 - 2*PI; 
              end 
          end 
          if (theta_ex1-normal1(i))*(theta_ex1-normal2(i)) > 0.0 
              while (theta_ex1-normal1(i)) < (-2*PI) 
                  theta_ex1 = theta_ex1 + 2*PI; 
              end 
          end 
          if (theta_ex1-normal1(i))*(theta_ex1-normal2(i)) == 0.0 
              theta_ex1 = normal1(i); 
          end 
           
          % ROTATES THE CUTTING ZONE IN THE OPPOSITE DIRECTION 
          theta_en1 = theta_en1 - omega*tn; 
          theta_ex1 = theta_ex1 - omega*tn; 
          if theta_en1 <= normal2(i) 
              theta_en1 = theta_en1 + 2*PI; 
          end 
          if (theta_ex1 <= normal2(i)) 
              theta_ex1 = theta_ex1 + 2*PI; 
          end 
           
          % z_en AND z_ex VALUES ARE ALWAYS POSITIVE 
          z_en = (-(i-1)*2*PI/num_tooth+theta_enter-theta_en1)*r/... 
              tan(eta); 
          z_ex = (-(i-1)*2*PI/num_tooth+theta_enter-theta_ex1)*r/... 
              tan(eta); 
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          % NON-CUTTING POSITIONS 
          if ((z_ex>=adoc)&(z_en>z_ex))|((z_en<=0.0)&(z_ex>adoc))|... 
              (z_en==z_ex) 
              z1 = 0.0; 
              z2 = 0.0; 
               
          % CUTTING POSITIONS 
          else 
              if (z_en<adoc)&(z_en>0.0)&((z_ex<=0.0)|(z_ex>adoc)) 
                  z1 = 0.0; 
                  z2 = z_en; 
              elseif (z_en>=adoc)&((z_ex<=0.0)|(z_ex>adoc)) 
                  z1 = 0.0; 
                  z2 = adoc; 
              elseif (z_en<adoc)&(z_ex<adoc)&(z_ex<z_en)&(z_ex>0.0) 
                  z1 = z_ex; 
                  z2 = z_en; 
              elseif (z_en>=adoc)&(z_ex<adoc)&(z_ex>0.0) 
                  z1 = z_ex; 
                  z2 = adoc; 
              else 
   
        % YOU SHOULD NOT ENTER HERE IF ALL SCENARIOS INCLUDED 
                  %puts("There is a bug for helical tooth cutter!\n"); 
                  z1 = 0.0; 
                  z2 = 0.0; 
              end 
          end 
 
          % NON-CUTTING OR CUTTING COEFFICIENTS  
          s_s = (z2-z1)/2.0+r*sin(tan(eta)*(z1-z2)/r)*... 
              cos(2*omega*tn-(i-1)*4*PI/num_tooth-tan(eta)*(z1+z2)/... 
              r+2*theta_enter)/(2*tan(eta)); 
          cc = (z2-z1)/2.0-r*sin(tan(eta)*(z1-z2)/r)*... 
              cos(2*omega*tn-(i-1)*4*PI/num_tooth-tan(eta)*(z1+z2)/... 
              r+2*theta_enter)/(2*tan(eta)); 
     sc = r*sin(tan(eta)*(z2-z1)/r)*sin(2*omega*tn-(i-1)*4*PI/... 
              num_tooth-tan(eta)*(z1+z2)/r+2*theta_enter)/(2*tan(eta)); 
           
      % FOR FLAT END MILLS WITH ZERO HELIX ANGLE 
               
      elseif(eta==0) 
          theta_t = omega*tn - (i-1)*2*PI/num_tooth + theta_enter; 
          theta_angle= theta_t; 
 
          % NORMALIZATION OF THE CUTTING ZONE ANGLES 
          if ((theta_t-theta_enter)*(theta_t-theta_enter-2*PI) > 0.0) 
              while ((theta_t-theta_enter) > 2*PI) 
                  theta_t = theta_t - 2*PI; 
              end 
          end 
          if ((theta_t-theta_enter)*(theta_t-theta_enter-2*PI) > 0.0) 
              while ((theta_t-theta_enter-2*PI) < (-2*PI)) 
                  theta_t = theta_t + 2*PI; 
              end 
          end 
          if ((theta_t-theta_enter)*(theta_t-theta_enter-2*PI) == 0.0) 
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              theta_t = theta_enter; 
          end 
           
          % NON-CUTTING POSITIONS AND COEFFICIENTS 
          if (((theta_t-theta_en)*(theta_t-theta_ex)>0.0)|... 
                  ((theta_en==-PI)&(theta_ex==-PI))) 
               
              s_s=0.0; 
              cc=0.0; 
              sc=0.0; 
               
          % CUTTING POSITIONS AND COEFFICIENTS 
          elseif (((theta_t-theta_en)*(theta_t-theta_ex)<=0.0)&... 
                  (theta_en~=-PI)&(theta_ex~=-PI)) 
               
                  s_s = adoc*sin(theta_t)*sin(theta_t); 
                  cc = adoc*cos(theta_t)*cos(theta_t); 
                  sc = 0.5*adoc*sin(2*theta_t); 
          end 
      end 
 
% MODIFIED FOR THE LINEARIZED 3/4 RULE CUTTING FORCE MODEL 
 
if(eta ~= 0.0) 
      bs1= (-k1*kt*s_s-k2*kt*sc)*3/4*(xdelay*feed*sin(tan(eta)*... 
          (z1-z2)/r)+1/(2*r)*(xdelay*feed*... 
          cos(2*omega*tn-(i-1)*4*PI/num_tooth-tan(eta)*... 
          (z1+z2)/r+2*theta_enter))^2)^(-1/4)-omega*cp*(k2*cc+k1*sc); 
      bs2= (-k1*kt*sc-k2*kt*cc)*3/4*(ydelay*feed*... 
          sin(tan(eta)*(z1-z2)/r)+1/(2*r)*(ydelay*feed*... 
          cos(2*omega*tn-(i-1)*4*PI/num_tooth-tan(eta)*... 
          (z1+z2)/r+2*theta_enter))^2)^(-1/4)+omega*cp*(k1*s_s+k2*sc); 
      bs3= (-k1*kt*sc+k2*kt*s_s)*3/4*(xdelay*feed*... 
          sin(tan(eta)*(z1-z2)/r)+1/(2*r)*(xdelay*feed*... 
          cos(2*omega*tn-(i-1)*4*PI/num_tooth-tan(eta)*... 
          (z1+z2)/r+2*theta_enter))^2)^(-1/4)+omega*cp*(k2*sc-k1*cc); 
      bs4= (-k1*kt*cc+k2*kt*sc)*3/4*(ydelay*feed*... 
           sin(tan(eta)*(z1-z2)/r)+1/(2*r)*(ydelay*feed*... 
           cos(2*omega*tn-(i-1)*4*PI/num_tooth-tan(eta)*... 
          (z1+z2)/r+2*theta_enter))^2)^(-1/4)+omega*cp*(k1*sc-k2*s_s); 
 
elseif(eta == 0.0) 
      bs1= (-k1*kt*s_s-k2*kt*sc)*3/4*(xdelay*feed*... 
          sin(theta_t)+1/(2*r)*(xdelay*feed*... 
          cos(theta_t))^2)^(-1/4)-omega*cp*(k2*cc+k1*sc); 
      bs2= (-k1*kt*sc-k2*kt*cc)*3/4*(ydelay*feed*... 
          sin(theta_t)+1/(2*r)*... 
          (ydelay*feed*cos(theta_t))^2)^(-1/4)+omega*cp*(k1*s_s+k2*sc); 
      bs3= (-k1*kt*sc+k2*kt*s_s)*3/4*(xdelay*feed*... 
          sin(theta_t)+1/(2*r)*(xdelay*feed*... 
          cos(theta_t))^2)^(-1/4)+omega*cp*(k2*sc-k1*cc); 
      bs4= (-k1*kt*cc+k2*kt*sc)*3/4*(ydelay*feed*... 
          sin(theta_t)+1/(2*r)*(ydelay*feed*... 
          cos(theta_t))^2)^(-1/4)+omega*cp*(k1*sc-k2*s_s); 
       
end 
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      bq1= -k1*cp*s_s-k2*cp*sc; 
      bq2= -k2*cp*cc-k1*cp*sc; 
      bq3= k2*cp*s_s-k1*cp*sc; 
      bq4= k2*cp*sc-k1*cp*cc; 
      s(1:1,1:1) = s(1:1,1:1) + bs1; 
      s(1:1,2:2) = s(1:1,2:2) + bs2; 
      s(2:2,1:1) = s(2:2,1:1) + bs3; 
      s(2:2,2:2) = s(2:2,2:2) + bs4; 
      q(1:1,1:1) = q(1:1,1:1) + bq1; 
      q(1:1,2:2) = q(1:1,2:2) + bq2; 
      q(2:2,1:1) = q(2:2,1:1) + bq3; 
      q(2:2,2:2) = q(2:2,2:2) + bq4; 
       
    end 
 
 
Input Program <input_stepan.m> for Figure 5.6 
 
 
% FUNCTION INPUT NAME 
function input_stepan 
 
global mx xix kx my xiy ky mu ku xiu mv kv xiv feed; 
global kt kn friction cp r eta phi_n num_tooth feedcut; 
global omega1 omega2 delta_omega theta_enter theta_exit; 
global adocL adocH delta_adoc int_time; 
 
% PARAMETER INPUTS 
 
% MASS (kg); DAMPING; STIFFNESS (N/m) - X DIRECTION 
mx=2.586; 
xix=0.0038; 
kx=2.2e+6; 
% MASS (kg); DAMPING; STIFFNESS (N/m) - Y DIRECTION 
my=1.0e+5; 
xiy=1.0; 
ky=1.0e+15; 
% MASS (kg); DAMPING; STIFFNESS (N/m) - U DIRECTION 
mu=1.0e+5; 
xiu=1.0; 
ku=1.0e+15; 
% MASS (kg); DAMPING; STIFFNESS (N/m) - V DIRECTION 
mv=1.0e+5; 
xiv=1.0; 
kv=1.0e+15; 
% WORKPIECE MATERIAL 
material='aluminum'; 
% WORKPIECE MATERIAL CONSTANTS 
kt=1.89e+9; % (N/m^2) 
kn=0.364; 
% CUTTING FRICTION AND DAMPING 
friction=0.20; 
cp=0.0; 
% CUTTING RADIUS OF TOOL (m) 
r=9.53e-3; 
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% HELIX ANGLE OF TOOL (degrees) 
eta=0.0; 
% NORMAL RAKE ANGLE OF TOOL (degrees) 
phi_n=12.0; 
% NUMBER OF TEETH ON TOOL 
num_tooth=1; 
% FEEDRATE (m/tooth) 
feedcut=0.0001016; 
% MIN AND MAX SPINDLE SPEEDS (rpm)  
omega1=2900.0; 
omega2=3700.0; 
% STEP CHANGE BETWEEN SPINDLE SPEED CALCULATIONS 
delta_omega=10.0; 
% CUTTING ENTRY AND EXIT ANGLES (degrees) 
theta_enter=0; 
theta_exit=19.57; 
% MIN AND MAX ADOC (m) 
adocL=50.0e-6; 
adocH=8.0e-3; 
% CHANGE IN ADOC 
delta_adoc=0.0; 
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