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Recent years have seen a surge interest in realizing Majorana zero modes in

condensed matter systems. Majorana zero modes are zero-energy quasiparticle ex-

citations which are their own anti-particles. The topologically degenerate Hilbert

space and non-Abelian statistics associated with Majorana zero modes renders them

useful for realizing topological quantum computation. These Majorana zero modes

can be found at the boundary of a topological superconductor. While preliminary

evidence for Majorana zero modes in form of zero-bias conductance peaks have

already been observed, confirmatory signatures of Majorana zero modes are still

lacking.

In this thesis, we theoretically investigate the robustness of several signatures

of Majorana zero modes, thereby suggesting improvement and directions that can

be pursued for an unambiguous identification of the Majorana zero modes. We

begin by studying analytically the differential conductance of the normal-metal–

topological superconductor junction across the topological transition within the

Blonder-Tinkham-Klapwijk formalism. We show that despite being quantized in

the topological regime, the zero-bias conductance only develops as a peak in the

conductance spectra for sufficiently small junction transparencies, or for small and



large spin-orbit coupling strength. We proceed to investigate the signatures of Ma-

jorana zero modes in superconductor–normal-metal–superconductor junctions and

show that the conductance quantization in this junction is not robust against in-

creasing junction transparency. Finally, we propose a dynamical scheme to study

the short-lived topological phases in ultracold systems by first preparing the sys-

tems in its long-lived non-topological phases and then driving it into the topological

phases and back. We find that the excitations’ momentum distributions exhibit

Stückelberg oscillations and Kibble-Zurek scaling characteristic of the topological

quantum phase transition, thus provides a bulk probe for the topological phase.
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Chapter 1

Introduction

In 1937, Ettore Majorana showed that the complex Dirac equation admits real

solutions which describe a charge-neutral fermion being its own antiparticle [1]. This

particle was later dubbed as the Majorana fermion, and its discovery has since influ-

enced many areas of physics ranging from nuclear and particle physics to condensed

matter physics. In the context of high energy physics, the proposition that neutrinos

may be Majorana fermions has remained to date unsettled. In condensed matter

physics, Majorana fermions can exist as quasiparticle excitations in superconduc-

tors. Since this quasiparticle excitation occurs as a zero-energy midgap excitation

and is bound to defects [2], it is commonly referred to as the “Majorana zero mode”

(MZM) or “Majorana bound state”. This MZM can be found at the boundary of

one-dimensional (1D) topological superconductors [3] or vortices in two-dimensional

(2D) topological superconductor [4, 5].

The earliest proposals to realize MZMs in superconductors can be traced back

to nearly two decades ago [3, 4, 5, 6, 7, 8, 9]. A necessary ingredient in these pro-

posals is the exotic p-wave pairing potential. The progress in experiments using

these systems, however, is hampered by the stringent experimental requirements.

The recent proposals to realize the topological superconductor by combining the

1



conventional s-wave superconductor, magnetic interaction and spin-orbit coupling

(SOC) [10, 11, 12, 13, 14, 15] has opened a new chapter in the development of

the field. The most promising of these proposals involves proximity-inducing su-

perconductivity in a spin-orbit-coupled semiconducting nanowire in the presence

of a magnetic field [13, 14, 15]. By simply increasing the magnetic field strength

above a critical value, the system can be tuned to the topological regime where

the MZMs appear at the end of the nanowire. The simplicity of this setup has

motivated several experimental groups to study such a topological superconduc-

tor [16, 17, 18, 19, 20, 21, 22, 23, 24]. The excitement in this subject has also

resulted in a number of review and popular articles [25, 26, 27, 28, 29, 30, 31].

One of the key signatures of the MZM is the quantized value 2e2/h of the differ-

ential conductance for tunneling into the nanowire at zero-bias voltage. This quan-

tized conductance is due to perfect Andreev reflection facilitated by the MZM [32,

33, 34, 35, 36]. For a sufficiently high tunnel barrier, the conductance spectra will

develop a zero-bias peak with this value. While recent experimental results clearly

indicate the appearance of a zero-bias tunneling conductance peak upon tuning the

system into the topological regime, the observed zero-bias conductance value is far

below the quantized value.

In this thesis, we investigate in detail several signatures of MZMs in 1D topo-

logical superconductors, thereby suggesting improvement and directions that can

be pursued for an unambiguous identification of the MZMs. In the introductory

chapter, we start by giving an overview of MZMs. We then proceed to review

two models of 1D topological superconductor which host the MZMs: (i) a spin-

2



less p-wave superconductor and (ii) a spin-split spin-orbit-coupled superconducting

wire (SOCSW). Finally, we discuss several signatures of topological superconductor,

namely, the zero-bias conductance of normal-metal–superconductor (NS) junctions,

the gap-bias conductance of superconductor–normal-metal–superconductor (SNS)

junctions and the zero-momentum gap-closing in the energy spectrum as the system

is driven through the topological quantum phase transition (TQPT).

1.1 Overview of Majorana Zero Modes

In solid state systems, electrons and holes are the particle and antiparticle

analogues in the high energy context. Since MZMs are their own antiparticles, it

must then be equal superpositions of electrons and holes. Since the quasiparticle

excitations in superconductors are superpositions of electrons and holes, this sug-

gests that MZMs can exist as the mid-gap excitations in a superconductor with

zero energy and charge. This fact follows from the particle-hole symmetry of the

superconductor quasiparticle creation and annihilation operators, i.e.,

γ(E) = γ†(−E), (1.1)

which implies that at the Fermi energy (E = 0 which is in the middle of the su-

perconductor gap), γ = γ† where γ, γ† are creation and annihilation operators at

zero energy (Majorana operators). The Majorana operators satisfy the following

anticommutation relation

{γn, γm} = 2δnm. (1.2)

3



In addition, they also commute with the Hamiltonian:

[H, γn] = 0. (1.3)

This relation implies that the presence of MZMs leads to ground state degeneracies,

i.e., the states |GS〉 and γn |GS〉 are both the ground states. In general, a system with

2N MZMS γ1, γ2, . . . , γ2N has 2N degenerate ground states. This can be understood

by first expressing the fermion operators cn in terms of the Majorana operators, i.e.,

cn =
1

2
(γ2n−1 + iγ2n) , for n = 1, · · · , N. (1.4)

The operators cn satisfy the usual fermionic anticommutation relation:

{
cm, c

†
n

}
= δmn, (1.5)

{cm, cn} = 0. (1.6)

Since there are N number operators c†ncn = 1
2

(1 + iγ2n−1γ2n), where each of them

can either assume a value of 0 and 1, this means that the ground state of the system

is 2N -fold degenerate.

These unpaired MZMs are topologically protected as they are localized states

with an energy gap separating them from the excited states. This implies that

any continuous deformation of the Hamiltonian that does not close the energy gap

will not destroy the MZMs. The topological protection render the MZMs with

4



the capability for a fault-tolerant topological quantum computation, a quantum

computational scheme which is robust against local noise [37].

1.2 Topological Superconductors

In this section, we study the systems which support the MZMs. We will call

such systems as topological systems with MZM being the topological state. As dis-

cussed previously, MZM can exist as a zero-energy mode in superconductors. To

realize these unpaired MZMs, spin degeneracy needs to be lifted in the supercon-

ductor. This necessitates either the use of exotic p-wave pairing potential or the

combination of magnetic field and SOC for s-wave pairing potential. We will begin

by studying the simplest model of topological superconductor, namely the spinless

p-wave superconductor. Afterwards, we will proceed to discuss a more physically

realistic model, namely a semiconducting nanowire placed in proximity to an s-wave

superconductor in the presence of magnetic field.

1.2.1 1D Spinless p-wave Superconductor

In 2000, Alexei Kitaev proposed a simple model of topological superconductor,

namely a 1D spinless p-wave superconductor [3]. The lattice Hamiltonian for this

model is given by

H = −µp
N∑

n=1

c†ncn −
N−1∑

n=1

(
tc†ncn+1 + ∆pe

iφcncn+1 + h.c.
)
, (1.7)

5



where c†n, cn are the electron creation and annihilation operators at site n, respec-

tively, µp is the p-wave superconductor chemical potential, t ≥ 0 is the nearest-

neighbor hopping, ∆pe
iφ is the p-wave pairing between adjacent sites, and h.c. de-

notes the Hermitian conjugation.

Let us now rewrite the above Hamiltonian by expressing the fermion creation

and annihilation operators in terms of the Majorana operators, i.e.,

cn =
e−iφ/2

2
(γ2n + iγ2n−1) , (1.8)

where γ2n−1 and γ2n are the Majorana operators at the nth site. In this basis, the

Hamiltonian becomes

H = −µp
2

N∑

n=1

(1 + iγ2nγ2n−1)− i

2

N−1∑

n=1

[(∆p + t) γ2nγ2n+1 + (∆p − t) γ2n−1γ2n+2] .

(1.9)

The appearance of the MZMs in this Hamiltonian can be easily identified by

working in two special limits. The first limit is when µp = 0 and t = ∆p 6= 0 where

the Hamiltonian becomes

H = −it
N−1∑

n=1

γ2nγ2n+1. (1.10)

In this limit, the Majorana modes pair up between adjacent lattice sites except the

Majorana modes at the end [see Fig. 1.1(a)]. By rewriting the Hamiltonian in terms

6



γ1 γ2 γ2Nγ2N−1

Figure 1.1: Schematic diagram of the Kitaev Model using Majorana representation

[Eq. (1.7)] for different parameter regimes: (a) µp = 0, t = ∆p 6= 0 (b) µp 6= 0,

t = ∆p = 0. The fermion at each site cn is represented using two Majorana operators

γ2n−1,2n (green disk).

of the fermion operator c̃n = 1
2
(γ2n+1 + iγ2n), we have

H = t
N−1∑

n=1

(
c̃†nc̃n −

1

2

)
. (1.11)

We can see from the above Hamiltonian that there is no energy needed to add the

non-local fermion f = 1
2
(γ1 + iγ2N) into the system. This means that the system

supports two zero-energy Majorana modes where the ground state of the system is

two-fold degenerate, i.e., |GS〉 and f †|GS〉 are both the ground state of the system.

Even though in the above, we only deal with a specific value of parameters,

the MZMs in this model persists as long as the bulk gap is finite. To understand

this, let us rewrite the Hamiltonian [Eq. (1.7)] in the Bogoliubov-de Gennes (BdG)

form as

H =
1

2
C†HBdGC, (1.12)

where C = (c1, · · · , cN , c†1, · · · , c†N)T is a column vector which contains the electron

annihilation and creation operators at all sites. The BdG Hamiltonian HBdG is a

2N × 2N matrix and can be written more compactly using the Pauli matrices τ in
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particle-hole space and position basis vector |n〉 as

HBdG = −
∑

n

µpτz|n〉〈n| −
∑

n

[(tτz − i∆pτy)|n〉〈n+ 1|+ h.c.]. (1.13)

The BdG Hamiltonian operates on the basis states |n〉|τ〉 where τ = ±1 denotes

the electron and hole states, respectively. Note that in the above, we take the

superconducting phase φ = 0, which we are going to do for the remaining of this

thesis. In this BdG form, we can see that the Hamiltonian respects the particle-hole

symmetry, i.e., PHBdGP−1 where the particle-hole operator is P = τxK with K

being the complex conjugation operator.

Since the energy spectrum is particle-hole symmetric, moving the MZMs indi-

vidually from zero energy is not allowed. For a chain which is sufficiently long that

the coupling between the MZMs is small, the only way to split the MZMs into two

non-degenerate state at finite energy is to close the bulk gap. The bulk spectrum is

given by

Ebulk (k) =
√

(2t cos k + µp)
2 + ∆2

p sin2 k, −π < k ≤ π, (1.14)

with the bulk gap closing at µp = ±2t. Thus, in the parameter regime where

|µp| < 2t, the system is topological with MZMs at the end.

In the second limit where µp 6= 0 and t = ∆p = 0 , the Hamiltonian [Eq. (1.2.1)]

becomes H = −µp
∑N

n=1 c
†
ncn, where the Majoranas pair up at the same lattice

site [see Fig. 1.1(b)]. In this limit, the system is topologically trivial with all the

excitations having an energy of ±|µp|. The spectrum is gapped with no zero energy

8



state. So, the system is in the nontopological phase for |µp| > 2t.

Since electrons carry a spin degree of freedom, the spinless p-wave pairing

potential does not exist intrinsically in natural systems. However, it can be effec-

tively realized in spinful systems by lifting the Kramer’s degeneracy of the elec-

trons. This idea has led to numerous proposals for realizing the topological su-

perconductor in various hybrid structures with conventional s-wave superconduc-

tors [10, 11, 12, 13, 14, 15, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47]. The most promising

way of realizing the topological superconductor is by proximity-inducing supercon-

ductivity in a semiconducting nanowire in a magnetic field [11, 13, 14, 15]. In the

following subsection, we are going to discuss about this setup in more detail.

1.2.2 Spin-Orbit-Coupled Superconducting Wire

In 2010, Lutchyn et al. [13] and Oreg et al. [14] made a proposal to realize

a 1D topological superconductor by proximitizing a semiconducting nanowire with

an s-wave superconductor in the presence of a magnetic field [see Fig. 1.2]. In the

continuum limit, the Hamiltonian of this system can be written as

HSOCSW =

∫
dxΨ†

(
−~2∂2

x

2m
− µ0 − iασy∂x + VZσz

)
Ψ +

∫
dx (∆0ψ↑ψ↓ + h.c.) ,

(1.15)

where Ψ = ( ψ↑ ψ↓ )T is the vector of annihilation operators in spin space, m is

the effective mass of electrons, µ0 is the chemical potential of the nanowire, α is the

SOC strength, VZ = gµBB is the strength of spin splitting due to a magnetic field

B which is applied perpendicular to the SOC, ∆0 is the proximity-induced s-wave

9



s-wave
superconductor 

semiconductor 
nanowire 

Figure 1.2: Schematic illustration of the SOCSW. A spin-orbit-coupled semiconduct-

ing nanowire is placed in proximity to an s-wave superconductor with a magnetic

field applied parallel to the wire.

pairing potential, and h.c. denotes Hermitian conjugation.

The physics of this Hamiltonian can be understood by first looking at the

energy spectrum of a spin-orbit-coupled Hamiltonian (i.e., Eq. (1.15) with ∆0 =

VZ = 0). The spin-orbit coupling term shifts the parabolic spectrum of the up

and down spin along the positive and negative momentum direction, respectively,

as depicted in Fig. 1.3(a). Applying a Zeeman field perpendicular to the SOC

direction opens a gap in the spectrum at zero momentum [Fig. 1.3(b,c)]. Placing

the chemical potential inside the gap makes the system effectively spinless. If a

superconducting term is now induced in the wire, then the system will become a

topological superconductor. This corresponds to the topological criterion [13, 14]:

|VZ | >
√
µ2

0 + |∆0|2. (1.16)

In the limit of strong Zeeman field (VZ � mα2/~2,∆0), the quasiparticle

excitation spectrum of the SOCSW is split into two spin bands [see Fig. 1.3(c)].

10
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Figure 1.3: Energy spectrum of the SOCSW with different Zeeman field strength

VZ : (a) no Zeeman field, (b) small Zeeman field, and (c) large Zeeman field. Figure

is adapted from Ref. [29].

In the normal state (∆0 = 0) the spectrum is approximately given by ε±(k) ≈

~2k2
2m
± |VZ |. Projecting the Hamiltonian [Eq. (1.15)] with µ0 = 0 into the lower

occupied band gives the effective Hamiltonian [12, 13, 15]

Heff =

∫
dx

[
ψ†−

(
−~2∂2

x

2m
− |VZ |

)
ψ− +

α

2 |VZ |
(∆0ψ−∂xψ− + h.c.)

]
, (1.17)

where ψ−(ψ†−) is the annihilation (creation) field operator for the lower band. This

Hamiltonian is the continuum limit of the Kitaev chain Hamiltonian for the topo-

logical regime [Eq. (1.7)] with the identifications µp = |VZ | and ∆p = α∆0/(2|VZ |).

1.3 Signatures of Topological Superconductivity

The simplest and most commonly employed method for detecting the MZM

is tunneling spectroscopy. In the following, we give an overview of the conductance

spectroscopy of NS [Sec. 1.3.1] and SNS junctions [Sec. 1.3.2] involving topological

superconductors. Besides the tunneling spectroscopy, detecting the closing and re-

opening of the bulk gap as the system goes through the TQPT will also provide a

11



strong support for the appearance of the MZM in the system. We will review the

TQPT in Sec. 1.4.

1.3.1 Zero-Bias Conductance of Normal Metal–Superconductor Junc-

tions

1.3.1.1 Theory

To understand the conductance in an NS junction, let us first learn about how

the charge in the normal metal is carried across to the superconductor. An electron

incident from the normal metal to the superconductor can be either normal reflected

as an electron, Andreev reflected as a hole, or transmitted into the superconductor

[see Fig. 1.4]. However, for an incoming electron with energy E less than the su-

perconducting gap ∆, the electron can be either normal reflected as an electron or

Andreev reflected as a hole [see Fig. 1.4]. For a normal reflection process, there is

no net charge transferred across the junction. However, for the Andreev reflection

process, an electron is reflected as a hole, which creates a Cooper pair in the super-

conductor. This results in a net charge of 2e transferred across the junction. The

Andreev reflection process can be viewed as a transmission process where the normal

lead is separated into the electron and hole lead connected to the left and right side

of the superconducting lead (as shown in Fig. 1.5). The differential conductance

G(V ) = dI/dV is then given by

G(V ) = 2G0|reh(V )|2, (1.18)
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Figure 1.4: Schematic illustration of the scattering processes in an NS junction: (a)

normal reflection, (b) Andreev reflection, and (c) quasiparticle transmission.

e 

e lead 

h 

2e 

h lead 

SC lead 

Figure 1.5: Andreev reflection process viewed as a transmisson from an “electron”

lead to a “hole” lead.

where G0 = e2/h is the conductance quantum and reh is the probability amplitude

of the Andreev reflection process. The factor of 2 is due to the fact there is a net

charge of 2e transferred by each Andreev reflection process.

The presence of MZMs necessarily changes the conductance value near zero

energy, as it can mediate the Andreev reflection processes at zero energy. To see

how the MZM changes the conductance value, we first note that the incoming (Jin)

and outgoing (Jout) current amplitude is related through the reflection matrix r by

Jout = r(V )Jin. (1.19)
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The reflection matrix r is given by

r (V ) =




ree reh

rhe rhh


 (1.20)

where ree and rhe are the normal and Andreev reflection amplitudes of an incoming

electron, and rhh and reh are the normal and Andreev reflection amplitudes of an

incoming hole. Since the electron and hole current amplitudes are related by particle-

hole symmetry, i.e., Je = PJh, this symmetry imposes the following relation on the

reflection matrix

τxr
∗(−V )τx = r(V ), (1.21)

and at zero energy we have

τxr
∗
0τx = r0, (1.22)

where r0 ≡ r(V = 0). Taking the determinant of Eq. (1.22), we have

det r0 = det (τxr
∗
0τx) = det r∗0 = (det r0)∗, (1.23)

which implies that det r0 = ±1 or

Q ≡ |ree|2 − |reh|2 = ±1. (1.24)

The quantity Q which is known as the topological invariant quantity has a value of

−1 and +1 for a topological and nontopological phase, respectively [3, 48]. Since
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the electrons or holes cannot be transmitted into the superconductor at zero energy,

the reflection matrix must be unitary, i.e., r†r = 1 which implies that

|ree|2 + |reh|2 = |rhe|2 + |rhh|2 = 1. (1.25)

Solving Eqs. (1.24) and (1.25), we have perfect normal reflections (|ree| = 1) for a

nontopological phase and perfect Andreev reflections (|reh| = 1) for a topological

phase at zero energy. So, the zero-bias conductance value is 2e2/h in the presence

of an MZM. We note that this quantized 2e2/h zero-bias conductance value is a

robust signature of an MZM which is independent of the details of the junction,

e.g., the strength of the potential barrier at the junction interface [33, 34, 35, 36].

This follows from the fact that the above derivation follows only from the unitarity

and particle-hole symmetric properties of the reflection matrix. This quantized

conductance, however, is not robust against finite temperature [32, 35, 49, 50, 51].

1.3.1.2 Experiment

There has a been a number of experimental attempts to realize MZMs using the

nanowire proposal [16, 17, 18, 19, 20, 21, 22, 23, 24]. The pioneering experimental

work [16] was done by Kouwenhoven’s group at Delft in 2012. In what follows, we

will review this pioneering experimental work.

In the Delft experiment [see Fig. 1.6(a)], an InSb nanowire is deposited on the

surface of a NbTiN superconductor. A normal (gold) electrode, placed in contact

with the end of the nanowire, is used as the probe to measure the current. A tunnel
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barrier between the normal lead and nanowire is created by depleting the electron

density using a gate at the interface. A magnetic field is applied parallel to the

surface of the superconducting surface.

Fig. 1.6(b) shows the differential conductance profile as the magnetic field is

varied. We can see the appearance of zero-bias conductance peaks (ZBCPs) as the

magnetic field is raised above a certain critical value. This provides a suggestive

evidence for the appearance of MZMs in the system. Another piece of evidence for

the Majorana physics is provided in Fig. 1.6(c,d), where the differential conductance

is measured as the magnetic field direction is varied. Fig. 1.6(c) shows the differential

conductance for the case when the magnetic field is applied along the surface of

the substrate. When the magnetic field is applied parallel to the SOC direction,

which corresponds to angle = π
2
, 3π

2
[see Fig. 1.6(c)], there is no ZBCP. The ZBCP

becomes the most pronounced for angles = 0 and π, which corresponds to magnetic

fields perpendicular to the SOC direction. For the case when the magnetic field is

perpendicular to the substrate, the ZBCP is present for all angles.

Another feature of the conductance profile that is worth mentioning here is

the “soft gap” feature, which refers to the finite conductances for voltages inside

the superconducting gap [see Fig. 1.6(b)]. In Fig. 1.6(b), the superconducting gap

is indicated by the green arrows. Since the topological protection of the MZMs is

governed by the superconducting gap, it is essential to have a “hard gap”, i.e., no

subgap states in the conductance profile. Recent experiments [22, 23] have managed

to obtain a harder gap in the conductance profile by having a better interfacial

contact between the nanowire and superconductor.
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(a) (b)

(c)

(d)

Figure 1.6: The Delft experiment on the semiconductor-superconductor heterostruc-

ture. (a) The scanning electron microscope image of the setup. A semiconducting

InSb nanowire is placed in contact with normal (N) and superconducting (S) elec-

trodes. A gate (colored green) is used to create a tunnel barrier in between the N

and S electrodes. The wire’s chemical potential is adjusted by varying the voltages

of the gates numbered 1-4. (b) Differential conductance (dI/dV ) versus bias volt-

age (V ) for different magnetic fields strength ranging from 0 to 490 mT (in steps of

10 mT). The traces are offset for clarity, except the lowest trace (at zero magnetic

field). (c) dI/dV versus V and the angle of the magnetic field, where Angle=0, π

corresponds to magnetic fields perpendicular to the SOC direction, and Angle=π
2
, 3π

2

corresponds to magnetic fields parallel to the SOC direction. (d) dI/dV versus V

and the angle of the magnetic field, where the magnetic field is always perpendicular

to the SOC direction. Figure is adapted from Ref. [16].
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The ZBCPs measured in all of the nanowire experiments, however, are only

about 0.1e2/h, which are significantly less than the canonical quantized value of

2e2/h. This deviation can be attributed partly to the thermal broadening in the

normal-metal lead, which reduces the zero-bias conductance value and broadens its

peak. To mitigate the effect of thermal broadening, one can use a superconducting

lead instead of a normal lead in probing the MZM tunneling conductance. In a

superconducting lead, the quasiparticle excitation is exponentially suppressed by

the superconducting gap, i.e., exp(−∆lead/T ), which in turn suppresses the thermal

broadening effect. In the following, we will look at the signature of MZMs in the

conductance spectrum of an SNS junction.

1.3.2 Gap-Bias Conductance in SNS Junctions

1.3.2.1 Theory

In this subsection, we will investigate the signature of MZM in an SNS junc-

tion [See Fig. 1.7(a)]. For a conventional SNS junction without any subgap states,

the conductance in the weak-tunneling limit (small junction transparency) devel-

ops two peaks at eV = ±2∆lead as shown in Fig. 1.7(b). These peaks arise due

to direct tunneling of electrons from the occupied band of one superconductor to

the empty band of the other superconductor [see Fig. 1.7(c)]. For SNS junctions

with a zero energy state, e.g., MZM, there are two tunneling conductance peaks

in the differential conductance (dI/dV ) due to single Andreev reflections from the

MZM [see Fig. 1.7(d)]. These peaks occur at the gap-bias voltages eV = ±∆lead
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[see Fig. 1.7(b)], i.e., when the gap singularity of the probe lead aligns with the

zero-energy state. In the case where the probe lead has a Bardeen-Cooper-Schrieffer

(BCS) singularity and the zero-energy mode is an MZM, Peng et al. [52] found that

the gap-bias conductance is quantized at

GM = (4− π)
2e2

h
. (1.26)

Following Ref. [53], below we will give the derivation for the MZM quantized

conductance value given in Eq. (1.26). To this end, let us first note that the current

due to single Andreev reflection is given by

I =
1

2
2e

∫
dE

2π~
|Ahe|2[nF (E − eV )− nF (E + eV )], (1.27)

where the charge 2e accounts for the fact that each Andreev reflection gives rise to a

Cooper pair, |Ahe| is the probability of Andreev reflection, and the term ∓eV in the

Fermi function nF (E∓ eV ) accounts for the fact that the electron and hole energies

are shifted by eV relative to the Fermi energy. Since in the weak-tunneling limit,

the probability of Andreev reflection is [54]

|Ahe| =
ΓeΓh

E2 + 1
4
(Γe + Γh)2

, (1.28)
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the current is then given by

I = e

∫
dE

2π~
ΓeΓh

E2 + 1
4
(Γe + Γh)2

[nF (E − eV )− nF (E + eV )]. (1.29)

where the electron and hole tunneling rate Γe and Γh are proportional to the den-

sity of states in the lead. For a superconducting lead, Γe/h = Γ̃e/hρ(E ∓ eV ) where

Γ̃e = Γ̃h = Γ for superconducting lead with a BCS singularity (i.e.
∑

σ=↑,↓ |uσ|2 =

∑
σ=↑,↓ |vσ|2 with u and v being the electron and hole component of the BdG super-

conducting wavefunction at the gap edge). The BCS density of states normalized

by the normal-state density is given by ρ(E) = Θ(|E| −∆lead)|E|/
√
E2 −∆2

lead.

For the voltages near the superconducting gap eV ' ∆lead, nF (E − eV ) −

nF (E+eV ) ' 1 up to small corrections of the order of exp(−∆lead)/T which reflects

the temperature insensitivity of the current measured using a superconducting lead.

The current for these voltages is then given by

I = e

∫ eV−∆lead

−(eV−∆lead)

dE

2π~
Γ2ρ(E − eV )ρ(E + eV )

E2 + 1
4
Γ2[ρ(E − eV ) + ρ(E + eV )]2

. (1.30)

For small temperatures, the current is zero for eV < ∆lead. At the gap-bias voltage

η = eV −∆lead ' 0, the zero-energy bound state is aligned with the BCS singularity.

For |E| < η, we have

ρ(E ± eV ) '
√

∆lead/2(η ± E)� 1, (1.31)
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Figure 1.7: (a) Schematic illustration of a voltage-biased superconductor–normal-

metal–superconductor (SNS) junction. (b) Tunneling peaks of a conventional and

topological SNS junction. (c) Direct tunneling of electrons from the occupied band

to the empty band. (d) Single Andreev reflection from MZM.
.
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and the current becomes

I =
4e

h

∫ η

−η

dE√
η2 − E2

ω3
t

E2 + ω3
t

(
1√
η−E + 1√

η+E

)2 , (1.32)

where the effective tunneling coupling ωt = 1
2
(∆leadΓ2)1/3. Rescaling the integrand

in Eq. (1.32), we have

I =
4e

h

∫ 1

−1

dx√
1− x2

1

x2
(
η
ωt

)3

+
(

1√
1−x + 1√

1+x

)2 (1.33)

for η > 0, with the limiting value

dI

dV
=





0, for e|V | −∆lead < 0

2e2

h
(4− π), for e|V | −∆lead = 0

−2e2

h

ω3
t

(e|V |−∆lead)3
× const, for e|V | −∆lead � ωt.

(1.34)

So, the conductance develops a step jump from 0 to (4− π)2e2

h
at e|V | = ∆lead.

1.3.2.2 Experiment

Besides the nanowire setup, chains of ferromagnetic atoms deposited on the

surface of conventional s-wave superconductors [see Fig. 1.8] can also be utilized to

realize the Kitaev chain and thereby realizing the MZMs [47, 46, 45, 44]. The first

conductance measurement by Yazdani’s group using a normal Scanning Tunneling

Microscope (STM) tip on chains of Fe atoms on top of the Pb superconducting
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Figure 1.8: (a) Schematic illustration of chains of ferromagnetic Fe atoms deposited

on a superconducting Pb surface. The conductance of the system is measured using

an STM tip.

substrate showed the ZBCP localized at the end of the Fe atomic chain [55]. Recent

experiment by the same group using a superconducting STM tip [see Fig. 1.9] shows

gap-bias conductance peaks at the end of the Fe atomic chain [56]. These two

measurements are suggestive indications of the existence of MZMs in this system,

although the peak values measured are less than the canonical quantized values.

1.4 Gap Closing and Topological Quantum Phase Transi-

tion

Two phases are topologically equivalent if the Hamiltonians of the system can

be continuously tranformed into one another. The TQPT is a quantum phase tran-

sition between two topologically inequivalent phases which is accompanied by a bulk

gap closing. For a 1D superconducting Hamiltonian as discussed in this thesis, a

TQPT is always accompanied by a zero-momentum gap closing. Therefore, de-
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Figure 1.9: (a) Differential conductance measured along the Fe chain where the

white dashed line denotes the chain end. Note the appearance of a conductance

peak at the chain end at e|V | = ∆lead. (b) The conductance measured at the bare

Pb surface (black) and at the end (red) and middle (purple) of the Fe atomic chain.

tecting the zero-momentum gap closing would provide a probe for the TQPT. In

Chapter 4, we will discuss a dynamical scheme to detect the TQPT in ultracold

atomic systems.

1.5 Outline of the Thesis

In this thesis, we investigate in detail several signatures of topological su-

perconductivity. In Chapter 2, we study the transport properties of 1D NS junc-

tions with topological superconductors across their topological transitions. Working

within the Blonder-Tinkham-Klapwijk (BTK) formalism generalized for topological

NS junctions, we analytically calculate the differential conductance for tunneling

into two models of a topological superconductor: a spinless p-wave superconduc-

tor and a spin-orbit-coupled s-wave superconducting wire in a Zeeman field. It is
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gratifying that our analytical model not only captures the MZM zero-bias conduc-

tance quantization and experimental soft-gap feature, but also yields an interesting

prediction that despite being quantized in the topological regime, the zero-bias con-

ductance only develops as a peak in the conductance spectra for sufficiently small

junction transparencies, or for small and large spin-orbit coupling strength. The

work in this chapter has led to the publication of Ref. [36].

In Chapter 3, we study the transport of various voltage-biased 1D SNS junc-

tions with arbitrary junction transparency where the superconductor can be either

nontopological or topological. We provide a comprehensive analysis of the zero-

temperature dc current I and differential conductance dI/dV of the SNS junctions

with or without the MZMs. We verify that in the tunneling limit (small junction

transparencies), where only single Andreev reflections contribute to the current, the

conductance for voltages below the s-wave superconducting lead gap ∆s is zero,

and there are two symmetric conductance peaks appearing at eV = ±∆s with the

quantized value (4 − π)2e2/h due to resonant Andreev reflection from the MZM.

However, when the junction transparency is not small, there is a finite conduc-

tance for e|V | < ∆s arising from multiple Andreev reflections. The conductance

at eV = ±∆s in this case is no longer quantized. We further show that the MZM

conductance peak probed using a superconducting lead without a BCS singularity

has a non-universal value which decreases with decreasing junction transparency.

In general, the conductance is particle-hole asymmetric except for sufficiently small

transparencies. Moreover, we show that, for certain values of parameters, the tun-

neling conductance from a zero-energy conventional Andreev bound state (ABS)
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can be made to mimic the conductance from a true Majorana mode. The work in

this chapter has led to the publication of Refs. [57, 58].

In Chapter 4, we demonstrate that dynamical probes provide direct means

of detecting the TQPT between conventional and topological phases. We propose

a quench protocol which is particularly suited to study the short-lived topological

phases in the ultracold atomic settings. Our protocol mitigates the heating effects

due to spontaneous emission from off-resonantly excited atoms by preparing the

systems in its long-lived non-topological phases and driving them into the topological

phases and back. We apply this strategy to study the TQPT into a Majorana-

carrying topological phase predicted in 1D spin-orbit-coupled Fermi gases (SOCFGs)

with attractive interactions. The resulting spin-resolved momentum distribution,

computed by self-consistently solving the time-dependent BdG equations, exhibits

Kibble-Zurek (KZ) scaling and Stückelberg oscillations characteristic of the TQPT.

We discuss parameter regimes where the TQPT is experimentally accessible. The

work in this chapter has led to the publication of Ref. [59].

In Chapter 5 we present our conclusions and discuss the implication of our

work for future experiments.
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Chapter 2

Conductance Spectroscopy of Normal

Metal–Topological Superconductor Junctions

A key signature of the MZMs is the quantized value 2e2/h of the zero-bias

differential conductance for the normal metal–topological superconductor junction.

This quantized conductance, associated with perfect Andreev reflection, indicates

the presence of a single localized MZM at the end of the topological superconduc-

tor [32, 33, 34, 35]. For a sufficiently high tunnel barrier, the conductance spectra

have a zero-bias peak at 2e2/h. While experimental results clearly show the devel-

opment of such a peak upon tuning the system, at a finite magnetic field, into the

predicted topological regime, the value of the ZBCP is much less than the expected

quantized value [16, 18, 19, 20, 21, 22, 23, 24].

The difficulty in interpreting the tunneling experiments has prompted nu-

merous theoretical studies on the conductance of the nanowire-superconductor het-

erostructure, using both numerical [49, 60, 61, 62] and analytical techniques [63, 64].

Although the latter works consider highly idealized models of the system, they are

nevertheless valuable as they give clear insight into the parametric dependence of

the transport physics as well as its dependence on various physical properties of the

experimental setup, which can then be applied to understand the more complicated
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numerical studies. An important question concerns the change in the conductance

as the system is tuned from the topologically trivial to the nontrivial regimes (e.g.,

by tuning the applied magnetic field in semiconductor-superconductor hybrid struc-

tures). Remarkably, this aspect of the physics has attracted relatively little attention

using these analytic methods [64].

In this chapter we examine the conductance spectra of 1D NS junctions involv-

ing topological superconductors across their topological transition. We utilize the

BTK formalism [65], which is commonly employed to study junctions with unconven-

tional superconductors [66], to obtain analytic results for the tunneling conductance

of two models of a topological superconductor junction: a junction between a spin-

less normal metal and a p-wave superconductor, and a junction between a spinful

normal metal and a spin-orbit-coupled s-wave superconductor in a magnetic field.

We note that the spinless p-wave superconductor can be regarded as an effective

low-energy theory for the semiconductor nanowire, but this is inadequate for un-

derstanding the conductance spectroscopy of the device. Our analysis is analytical,

and in particular we give explicit expressions for the zero-bias tunneling conduc-

tance at zero temperature, which clearly shows an abrupt change at the topological

transition. Specifically, we find that in the topological regime, the zero-temperature

zero-bias conductance is quantized at a value of 2e2/h independent of the barrier

strength Z, but the detailed structure (e.g., the width and the shape) of the quan-

tized ZBCP is controlled by the barrier transparency and the magnitude of spin-orbit

coupling. Our BTK theory for the topological NS junction also shows that a finite

barrier transparency could lead to the experimentally observed soft gap which is
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ubiquitous in semiconductor nanowire tunneling experiments [16, 19, 20, 21]. This

chapter is based on Ref. [36] and the figures in this chapter are adapted from the

same reference.

2.1 Normal Metal–Spinless p-wave Superconductor Junc-

tion

We begin by considering a 1D junction between a spinless normal metal (NM)

and a spinless p-wave superconductor (pSC), which are located at x ≤ 0 and x ≥ 0,

respectively [see Fig. 2.1]. Similar to the BTK model, here we model the potential

barrier at the interface by a δ-function barrier of strength Z. The parameter Z

controls the barrier transparency at the NS interface, and is the key parameter in

the theory quantifying the tunneling conductance properties at the junction where a

low (high) value of Z corresponds to a barrier with high (low) transparency at the NS

interface. A microscopic evaluation of Z is typically difficult since the microscopic

details of the junction are generally unknown, and so Z is treated as a free fitting

parameter. The Hamiltonian in each region is written

Hj(x) =
1

2

∫
dxΨ†j(x)Hj(x)Ψj(x), (2.1)

where Ψj(x) = (ψ†j(x), ψj(x))T are Nambu spinors and ψ†j(x) (ψj(x)) is the creation

(annihilation) field operator in region j = N (NM) and p (pSC). Assuming that the

effective mass of the electron m is uniform throughout the system, the Bogoliubov-de
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SC NM 

Figure 2.1: Schematic illustration of an NS junction with a delta-function barrier of

strength Z.

Gennes (BdG) Hamiltonians are

HN(x) =

(
−~2∂2

x

2m
− µN

)
τz, (2.2a)

Hp(x) =

(
−~2∂2

x

2m
− µp

)
τz − i∆p∂xτx, (2.2b)

where µN (µp) is the chemical potential of the NM (pSC), ∆p ≥ 0 is the p-wave

pairing potential, and τx,y,z are the Pauli matrices acting in the particle-hole space.

For notational simplicity, in the rest of this chapter we will work with units

such that ~, µN , and 2m are all equal to unity. The energy spectra of the NM and

pSC can be obtained by diagonalizing the BdG Hamiltonian in Eq. (2.2) and they

are given by

εN,±(k) = ±(k2 − 1) (2.3a)

εp,±(k) = ±
√

(k2 − µp)2 + (∆pk)2. (2.3b)

The energy spectra of the pSC are plotted for different values of µp in Fig. 2.2.

Note that the spectrum becomes gapless at µp = 0 which marks the topological

transition [4] between BCS-like weak pairing phase (µp > 0) and the BEC-like

strong pairing phase (µp < 0) . In the former case, the positive energy spectrum
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Figure 2.2: Typical energy spectra of the spinless pSC illustrating the nontopological

(µp = −0.01), transition (µp = 0) and topological regimes (µp = 0.01). For all curves

we set ∆p = 0.05.

only develops the characteristic “double-well” BCS structure for µp > ∆2
p/2, with

minimum value E1 = ∆p

√
µp −∆2

p/4 at k = ±
√
µp −∆2

p/2, and a local maximum

value E2 = µp at k = 0.

We consider the scattering of an electron incoming from the NM into the pSC

with energy E. The incident electron can be normal reflected as an electron, Andreev

reflected as a hole, or transmitted into the pSC [see Fig. 2.3]. The scattering wave

function is Φ(x) = ΦN(x)Θ(−x) + Φp(x)Θ(x), where Θ(x) is the Heaviside step

function and

ΦN(x) =




1

a


 eix +



b

0


 e−ix , (2.4a)

Φp(x) = c



γ−

1


 eik−x + d



γ+

1


 eik+x, (2.4b)
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a 

c d 
k+k- 

kF-kF

Figure 2.3: Schematic diagram of the scattering processes in an NS junction. The

green circles denote electron and the purple circles denote holes. An incoming

electron from the normal metal side can undergo Andreev reflection with amplitude

a, normal reflection with amplitude b or transmission into the superconductors with

amplitude c and d.

where a and b are the Andreev and normal reflection amplitudes, respectively, c and

d are the quasiparticle transmission coefficients into the pSC, and

γ± =
E + k2

± − µp
∆pk±

. (2.5)

Note that we approximate the wave vector of the electrons and holes in the NM by

the Fermi momentum kF =
√

2mµN/~, valid for E � 1. The momenta k± of the

pSC wave function can be obtained by solving the following equation

E2 = (k2 − µp)2 + (∆pk)2 . (2.6)

Depending on the energy E of the incoming electron and the chemical potential

µp, the wave function in the pSC can either be evanescent with complex solutions

of Eq. (2.6), or a propagating state corresponding to a real solution of Eq. (2.6) with

positive group velocity. The solutions of Eq. (2.6) are grouped in Table 2.1.
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µp E k−, k+

µp ≤ ∆2
p/4

0 ≤ E ≤ E2 kI−, kI+
E ≥ E2 kI+, kR+

∆2
p/4 ≤ µp ≤ ∆2

p/2
0 ≤ E ≤ E1 kC−, kC+

E1 ≤ E ≤ E2 kI−, kI+
E ≥ E2 kI+, kR+

µp ≥ ∆2
p/2

0 ≤ E ≤ E1 kC−, kC+

E1 ≤ E ≤ E2 kR−, kR+

E ≥ E2 kI+, kR+

Table 2.1: Various solutions of Eq. (2.6) for different values of chemical potential

µp and energy E, where E1 = ∆p

√
µp −∆2

p/4 and E2 = |µp|. The momentum

of the propagating modes are denoted by kR±, while that of evanescent modes are
given by kI± and kC±. They are given by kR± = ±[(µp − ∆2

p/2) ±
√
E2 − E2

1 ]1/2,

kI± = i[(∆2
p/2− µp)±

√
E2 − E2

1 ]1/2 and kC± = ±[(µp −∆2
p/2)± i

√
E2

1 − E2]1/2.

The wave functions satisfy the continuity and current conservation equations:

Φp(x)|x=0+ = ΦN(x)|x=0− ,

JpΦp(x)|x=0+ − JNΦN(x)|x=0− = −2iZτzΦN(0) (2.7)

where the current operators are given by

JN = −2i∂xτz, (2.8a)

Jp = −2i∂xτz + ∆pτx. (2.8b)

Solving the boundary conditions, we obtain the Andreev (a(E)) and normal reflec-
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tion coefficients (b(E)) as

a(E) =
∆p(γ+ − γ−)− 2(k+ − k−)

DE
, and (2.9a)

b(E) =
(2− 2iZ − k+ − k− − Ω)(γ− − γ+) + ∆p

2
(k+ − k−)(γ+γ− + 1)

DE
, (2.9b)

where

Ω = 1 + (Z − ik−)(Z − ik+)− ∆2
p

4
, (2.10a)

DE = Ω(γ− − γ+)− ∆p

2
(k+ − k−)(γ+γ− + 1)− (k+ − k−)(γ− + γ+). (2.10b)

Within the BTK formalism [65] the zero-temperature differential conductance

is given by

Gp(E) = G0

(
1 + |a(E)|2 − |b(E)|2

)
, (2.11)

where G0 = e2/h is the conductance quantum. Although the general form of Gp(E)

is lengthy and unenlightening, relatively simple expressions can be found for the

physically interesting case of zero bias, i.e., E = 0, which is provided in Table

2.2 for the three different regimes of µp. In particular, the zero-bias conductance

displays a jump from Gp(0) = 0 in the trivial regime (µp < 0) to Gp(0) = 2 in

the topological regime (µp > 0). The quantized conductance is characteristic of

the topological state, and indicates perfect Andreev reflection [i.e., |a(0)|2 = 1, and

|b(0)|2 = 0] at an interface supporting a Majorana mode [33, 34]. It is robust against

the junction details, e.g., the barrier strength Z and p-wave pairing potential ∆p.
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At the transition point (µp = 0) we find Gp(0) ≤ G0, where the exact conductance

value is determined by Z and ∆p.

µp < 0 µp = 0 µp > 0

a(0) 0 − i∆p

(Z + ∆p/2)2 + 1 + ∆p

−i

b(0) −eiϕ − (Z + ∆p/2)2 + 1

(Z + ∆p/2)2 + 1 + ∆p

eiϕ 0

Gp(0)

G0

0 1− [(Z + ∆p/2)2 + 1]2 −∆2
p

[(Z + ∆p/2)2 + 1 + ∆p]2
2

Table 2.2: Explicit expressions for the zero-bias Andreev reflection coefficient a(0),
normal reflection coefficient b(0), and differential conductance Gp(0) for the spinless
NM-pSC junction. The results are grouped into the three different regimes of µp:
the nontopological phase (µp < 0), the topological phase transition point (µp = 0),
and the topological phase (µp > 0). The quantity ϕ is defined by sinϕ = 2(Z +√

∆2
p/4− µp)/[(Z +

√
∆2
p/4− µp)2 + 1].

The conductance as a function of the energy is plotted in Figs. 2.4 and 2.5. In

general, the tunneling conductance Gp(E) decreases with increasing barrier strength

Z, although in the topological regime the zero-bias conductance is robust against

Z. Furthermore, it is interesting to note that in the topological regime, the width

of the zero-bias peak decreases with Z but displays a nonmonotonic behavior with

∆p: the width first increases as ∆p increases, until a certain value of ∆p, after which

it decreases with increasing ∆p. For µp ≤ ∆2
p/2, a singularity appears in the Gp(E)

curve at the gap edge E2 = |µp|. On the other hand, as shown in Fig. 2.5(a), two

singularities are found in the conductance for µp > ∆2
p/2, corresponding to the gap

edge at E1 = ∆p

√
µp −∆2

p/4 and the Van Hove singularity at E2 = µp.
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Figure 2.4: Plots of the tunneling conductanceGp(E) with different pairing potential

∆p and chemical potential µp for the spinless NM-pSC junction. We show typical

results for the nontopological (µp < 0, left column), transition (µp = 0, middle

column), and topological (µp > 0, right column) regimes, and for barrier strength

Z = 0 (top row) and Z = 1 (bottom row). The pairing potential values ∆p are

expressed in units of µN/kF , while the chemical potential µp and energy E are given

in units of µN .
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Figure 2.5: Plots of the tunneling conductance Gp(E) with different barrier strength

Z and the pairing potential ∆p for the spinless NM-pSC junction in the topological

regime. The pairing potential values ∆p are expressed in units of µN/kF while the

chemical potential µp and energy E are given in units of µN . Note that the zero-bias

conductance is quantized at 2G0 independent of the the junction details.

2.2 Normal Metal–Spin-Orbit-Coupled Superconducting Nanowire

Junction

In this section we consider a 1D junction between a spinful normal metal (NM)

and a spin-split spin-orbit-coupled superconducting wire (SOCSW) , which occupy

the regions x ≤ 0 and x ≥ 0, respectively. Similar to Sec. 2.1, we model their

interface at x = 0 by a δ-potential barrier of strength Z. The Hamiltonian in each

region is written as

Hj(x) =
1

2

∫
dxΨ

†
j(x)HjΨj(x), (2.12)

where

Ψj(x) = (ψj↑(x), ψj↓(x), ψ†j↓(x),−ψ†j↑(x))T, (2.13)
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and ψ†jσ(x) [ψjσ(x)] is the creation (annihilation) field operator of an electron with

spin σ in region j = N (NM) or S (SOCSW). Using the same unit convention as in

the previous section, we write the BdG Hamiltonians of the NM and SOCSW as

HN =
(
−∂2

x − 1
)
τz, (2.14a)

HS = −∂2
xτz − iα∂xτzσz + VZσx + ∆0τx, (2.14b)

where σx,y,z (τx,y,z) are the Pauli matrices in spin (particle-hole) space, α is the

strength of SOC, VZ is the Zeeman field, and ∆0 ≥ 0 is the proximity-induced s-

wave pairing potential which is assumed to be real. We set the chemical potential of

the SOCSW to be zero, and take uniform electron masses throughout the system.

The positive branches of the BdG spectrum of the SOCSW are given by

E± =

(
k4 + α2k2 + ∆2

0 + V 2
Z ± 2

√
k4(α2k2 + V 2

Z ) + ∆2
0V

2
Z

)1/2

. (2.15)

As shown in Fig. 2.6, the energy spectrum is gapped except for VZ = ∆0. This value

of VZ marks the TQPT between the topologically trivial (VZ < ∆0) and nontrivial

phases (VZ > ∆0) [11, 12, 13, 14]. Although Eq. (2.15) can be analytically solved for

the momenta corresponding to a given energy E, the general expression is unwieldy.

In what follows, therefore, we will instead work in the limits of a strong Zeeman

field and strong SOC, where more compact results can be obtained.

38



-0.03

-0.06

0

0.03

0.06

-0.4 -0.2 0 0.2 0.4

-0.03

-0.06

0

0.03

0.06

-0.4 -0.2 0 0.2 0.4

E
n

er
g
y
, E

E
n

er
g
y
, E

momentum, k momentum, k

(a) (b)

(c) (d)

VZ = 0 VZ < ∆0

VZ = ∆0 VZ > ∆0

Figure 2.6: Energy spectrum of the SOCSW for different values of Zeeman poten-

tials: (a) VZ = 0 (nontopological), (b) VZ = 0.01 (nontopological), (c) VZ = 0.02

(transition), and (d) VZ = 0.03 (topological). In all plots, we set α = 0.3 and

∆0 = 0.02.

2.2.1 Strong Zeeman Splitting

In the limit of strong Zeeman splitting (VZ � α, ∆0), the quasiparticle excita-

tion spectrum of the SOCSW is split into two spin bands as shown in Fig. 2.7(a). In

the normal state (∆0 = 0) the spectrum is approximately given by ε±(k) ≈ k2±VZ .

The system is essentially a half-metal, with only one spin-polarized band [ε−(k)]

occupied. Projecting the full Hamiltonian into this band gives the effective Hamil-

tonian [12, 13, 15]

H ′S(k) =
∑

k

{
ε−(k)ψ†S−(k)ψS−(k) +

[
∆̃−(k)ψ†S−(k)ψ†S−(−k) + h.c.

]}
, (2.16)
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Figure 2.7: Energy spectrum of the SOCSW in the limits of (a) strong Zeeman field

and (b) strong SOC. For clarity, only the positive energy branches of the spectrum

are shown. In panel (b), the spectrum about the minima at k = 0 constitute

the “interior” branches, while the spectrum about the minima at k = ±α are the

“exterior” branches. Note the different effective gaps for these branches, and the

states contributing to the slowly varying left- and right-moving fields, Lσ(x) and

Rσ(x), respectively.

where ∆̃−(k) ≈ αk∆0/VZ is a p-wave pairing potential and ψS−(ψ†S−) is the an-

nihilation (creation) field operator for ε−(k) band. The projected Hamiltonian is

equivalent to the spinless pSC Hamiltonian Hp(k) [Eq. (2.2)], with µp = VZ and

∆p = α∆0/VZ . If the Zeeman field is applied on both sides of the junction such that

the NM is also fully spin polarized, then the low-energy sector is identical to the

spinless NM-pSC junction, and the results obtained in Sec. 2.1 for the differential

conductance directly apply.

2.2.2 Strong Spin-Orbit Coupling

In the case of strong SOC (α � VZ ,∆0), the BdG spectrum of the SOCSW

is shown in Fig. (2.7)(b). In particular, we note that both the + and − spectra

[Eq. (2.15)] have minima at k = 0 (the so-called interior branches), while the −

40



spectrum also has minima at k = ±α (the exterior branches). For small energies

E . ∆0, VZ , we can linearize the Hamiltonian about these minima by using the

ansatz for the field operators [67, 68]

ψS↑(x) ≈ R↑(x) + L↑(x)e−iαx, (2.17a)

ψS↓(x) ≈ L↓(x) +R↓(x)eiαx, (2.17b)

where Rσ(x) and Lσ(x) represent slowly-varying right- and left-moving fields, respec-

tively; see Fig. (2.7)(b). Inserting this ansatz into the Hamiltonian [Eq. (2.14b)] and

neglecting all “fast oscillating” terms (terms with phase factors e±iαx), we obtain

effective Hamiltonians for the states near the interior and exterior branches. They

are given by

H̃
(l)
S =

1

2

∫
dxΨ̃

(l)
S (x)†H̃(l)

S Ψ̃
(l)
S (x), (2.18)

where l = e, i denotes the exterior and interior branches, respectively, and the BdG

Hamiltonians are written as

H̃(e)
S = −iατzσz∂x + ∆0τx , (2.19a)

H̃(i)
S = −iατzσz∂x + VZσx + ∆0τx . (2.19b)
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The spinors for the interior and exterior branches are defined in terms of the slowly-

varying field as

Ψ̃
(e)
S (x) = (L↑(x), R↓(x), R†↓(x),−L†↑(x))T,

Ψ̃
(i)
S (x) = (R↑(x), L↓(x), L†↓(x),−R†↑(x))T. (2.20)

We consider an electron with energy E and spin σ injected into the SOCSW

from the NM. The wave function in the NM is given by

ΦNσ(x) =




δσ↑

δσ↓

0

0




eix +




bσ↑

bσ↓

0

0




e−ix +




0

0

aσ↓

aσ↑




eix , (2.21)

where δσσ′ is the Kronecker symbol. The coefficients aσσ′ and bσσ′ are the amplitudes

for Andreev and normal reflection, respectively. Note that due to the SOC in the

SOCSW, both spin-flip and spin-preserving reflection processes are allowed. The

wave function in the SOCSW is a superposition of solutions on the exterior and
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interior branches

ΦSσ(x) =

c
(i)
σ1




−u−

sgn(∆−)v−

− sgn(∆−)v−

u−




eik
(i)
− x + c

(i)
σ2




u+

v+

v+

u+




eik
(i)
+ x

+ c
(e)
σ1




v0

0

u0

0




ei(k
(e)
0 −α)x + c

(e)
σ2




0

u0

0

v0




ei(k
(e)
0 +α)x , (2.22)

where the first line on the right-hand side gives contributions from the interior

branches, while the second line originates from the exterior branches. Note that the

coefficients c
(i,e)
σ(1,2) are the transmission coefficients into the SOCSW. The elements

of the wave function are given by

u2
ν =





(
E +

√
E2 −∆2

ν

)
/2E, for E ≥ |∆ν |,

(
E + i

√
∆2
ν − E2

)
/2|∆ν |, for 0 ≤ E < |∆ν |,

(2.23)
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and

v2
ν + u2

ν =





1, for E ≥ |∆ν |,

E/|∆ν |, for 0 ≤ E < |∆ν |,
(2.24)

where ν = ±, 0, and ∆± = ∆0 ± VZ . The wave vectors appearing in Eq. (2.22)

are k
(i)
± =

√
E2 −∆2

±/α for the interior branches, and k
(e)
0 =

√
E2 −∆2

0/α for the

exterior branches.

The wave functions satisfy the continuity and current conservation boundary

conditions

ΦSσ(x)|x=0+ = ΦNσ(x)|x=0− , (2.25a)

JSΦSσ(x)|x=0+ − JNΦNσ(x)|x=0− = −2iZτzΦNσ(0), (2.25b)

where the current operators are given by

JN = −2i∂xτz, (2.26a)

JS = −2i∂xτz + ατzσz. (2.26b)

In the limit of strong SOC (α� VZ ,∆0), we ignore terms proportional to k
(i)
− ,

k
(i)
+ , k

(e)
0 � 1 in the current conservation equation. Solving the boundary equations,
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we obtain the Andreev (normal) reflection coefficients aσσ′ (bσσ′) as

a↑↑(E) = −αu0v0[u−v+ − sgn(∆−)u+v−][1 + (Z + iα
2
)2]

D(1)
E D

(2)
E

, (2.27)

a↑↓(E) = αu0

[
v+

D(1)
E

+ sgn(∆−)
v−

D(2)
E

]
, (2.28)

a↓↑(E) = αv0

(
u+

D(1)
E

+
u−

D(2)
E

)
, (2.29)

a↓↓(E) = −αu0v0 [u−v+ − sgn(∆−)u+v−]
[
1 + (Z − iα

2
)2
]

D(1)
E D

(2)
E

, (2.30)

b↑↑(E) = b↓↓(E)

= −

[
(i+ Z)2 +

(
α
2

)2
]

D(1)
E D

(2)
E

×
{

sgn(∆−)v2
0v−v+[Z2 + (

α

2
− 1)2] + u2

0u−u+[Z2 + (1 +
α

2
)2]

−u0v0[u−v+ + sgn(∆−)u+v−][1 + Z2 + (
α

2
)2]
}
, (2.31)

b↑↓(E) =
αu2

0[u−v+ − sgn(∆−)u+v−](1− iZ + α
2
)2

D(1)
E D

(2)
E

, (2.32)

b↓↑(E) =
αv2

0[u−v+ − sgn(∆−)u+v−](−1 + iZ + α
2
)2

D(1)
E D

(2)
E

, (2.33)

where

D(1)
E = u0u+[Z2 + (α/2 + 1)2]− v0v+[Z2 + (α/2− 1)2], (2.34a)

D(2)
E = u0u−[Z2 + (α/2 + 1)2]− sgn(∆−)v0v−[Z2 + (α/2− 1)2]. (2.34b)

The zero-temperature differential tunneling conductance GS(E) is calculated
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VZ < ∆0 VZ = ∆0 VZ > ∆0

a↑↑(0) 0
α[1 + (Z + iα/2)2]

D1D2

1 + (Z + iα/2)2

D1

a↑↓(0) −2iα

D1

− iα
D1

i

2
− iα

D1

a↓↑(0) −2iα

D1

−iα
(

1

D1

+
1

D2

)
− i

2
− iα

D1

a↓↓(0) 0
α[1 + (Z − iα/2)2]

D1D2

1 + (Z − iα/2)2

D1

b↑↑(0)
2[(i+ Z)2 + (α/2)2]

D1

2[(i+ Z)2 + (α/2)2][D2 − α/2]

D1D2

(i+ Z)2 + (α/2)2

D1

b↑↓(0) 0
−iα(1− iZ + α/2)2

D1D2

−i(1− iZ + α/2)2

D1

b↓↑(0) 0
iα(−1 + iZ + α/2)2

D1D2

i(−1 + iZ + α/2)2

D1

b↓↓(0)
2[(i+ Z)2 + (α/2)2]

D1

2[(i+ Z)2 + (α/2)2][D2 − α/2]

D1D2

(i+ Z)2 + (α/2)2

D1

GS(0)

G0

16α2

D2
1

2α

(
4

D1

− 1

D2

)
2

Table 2.3: Zero-bias values of the Andreev reflection coefficients aσσ′(0), normal
reflection coefficients bσσ′(0), and differential conductance GS(0) in the strong SOC
limit of the NM-SOCSW junction. The three columns give the values in the non-
topological (VZ < ∆0), transition (VZ = ∆0) and topological (VZ > ∆0) regimes.
The terms D1,2 are given by D1 = 2[1 + Z2 + (α/2)2] and D2 = Z2 + (1 + α/2)2.

from the BTK formula

GS(E) = G0

(
2 +

∑

σ,ξ=↑,↓

{
|aσξ(E)|2 − |bσξ(E)|2

}
)
. (2.35)

Although the general expression is complicated, compact forms for the reflection

coefficients and the conductance at zero bias are presented in Table 2.3. As for the

case the spinless NM-pSC junction studied in Sec. 2.1, the zero-bias conductance
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Figure 2.8: Plots of the tunneling conductance GS(E) of the NM-SOCSW junction

in the strong SOC limit with different SOC strength α and Zeeman field VZ . The

results are plotted for the nontopological (VZ < ∆0, left column), transition (VZ = 0,

middle column), and topological (VZ > ∆0, right column) regimes, and for barrier

strength Z = 0 (top row) and Z = 2 (bottom row). In all plots we set ∆0 = 0.001.

The values of ∆0 and VZ are given in units of µN , while the values of α are expressed

in units of µN/kF .

GS(0) is discontinuous across the topological phase transition. In the topological

regime (VZ > ∆0) the zero-bias conductance takes the quantized value GS(0) = 2G0.

This implies that the Andreev reflection coefficients in Eq. (2.35) exactly cancel

the normal reflection coefficients; moreover, from Table 2.3 it can be verified that
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Figure 2.9: Plots of the tunneling conductance GS(E) of the NM-SOCSW junction

in the topological regime for the strong SOC limit with different potential barrier

strength Z and spin-orbit coupling strength α. We set ∆0 = 0.001 and VZ = 1.5∆0.

The values of ∆0 and VZ are given in units of µN , while the values of α are expressed

in units of µN/kF . Note that in the topological regime, the zero-bias conductance

is quantized at 2G0 independent of the junction details.

∑
σ,ξ |aσξ(0)|2 =

∑
σ,ξ |bσξ(0)|2 = 1. This can be understood in terms of the existence

of a single Majorana mode at the interface which couples to one of the two channels in

the normal region [33, 69]. While there is perfect Andreev reflection in this channel,

in the other channel we have perfect normal reflection. In the nontopological regime,

on the other hand, GS(0) takes on nonuniversal values and is dependent upon Z and

α. In particular, the zero-bias conductance in the nontopological phase can strongly

exceed the quantized value in the topological state: for the gapped nontopological

state (VZ < ∆0) and at the topological transition point (VZ = ∆0), we find the

maximum values GS(0) = 4 and GS(0) = 3, respectively, which are realized for

Z = 0 and α = 2.
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We plot the calculated conductance as a function of energy in Figs. 2.8 and 2.9.

In the former we show examples of the conductance spectra in the nontopological,

transition, and topological regimes, while the latter explores more fully the variation

of the conductance spectra in the topological state away from zero bias. The con-

ductance spectra show a much more complicated structure than those in the spinless

NM-pSC junction, reflecting the presence of three distinct gaps (∆+, |∆−|, ∆0) in

the strong SOC limit of the SOCSW. Indeed, at the energy corresponding to each

gap we observe a nonanalyticity in the conductance spectrum. Although there is

considerable variation in the conductance spectrum as a function of energy, a num-

ber of trends can be discerned: increasing Z tends to suppress the conductance, the

energy variation of the conductance is nonmonotonic in general with cusplike struc-

tures at specific energies, and the energy variation of the conductance is stronger

near zero energy for larger values of Z. While the conductance at first tends to be

enhanced by increasing the SOC, the conductance eventually goes through a max-

imum before monotonically decreasing. Similarly, the SOC increases the width of

the zero-bias peak in the topological regime, but beyond a certain SOC strength it

decreases again. The basic finding is that, other than the universal quantized Majo-

rana peak at zero energy, the tunneling conductance shows interesting and nontrivial

dependence on Z and E in the topological phase. In particular, an interesting con-

clusion of our theory is that the zero-bias conductance could be quantized in the

topological phase for small values of Z without developing a peak in the tunneling

conductance at all.

Note that the above discussion holds true also for the case where the Zeeman

49



coupling in the normal lead or the chemical potential µS of the SOCSW are nonzero.

For the case where |∆−| < ∆0, the zero-bias peak formed in the topological regime is

within an energy range of |∆−|. Since the topological gap |∆−| = |VZ −
√

∆2
0 + µ2

S|

decreases with the absolute value of the chemical potential |µS|, the width of the

zero-bias peak decreases with |µS|.

2.3 Conclusion

Using the BTK formalism we have analytically studied the zero-temperature

tunneling conductance spectra of NS junctions involving topological superconduc-

tors. Finite temperature effects within this formalism simply lead to thermal broad-

ening of the zero-temperature conductance and can be included in the theory nu-

merically by introducing an integration over the Fermi function. As in the BTK

paper [65], the finite-voltage conductances are found to depend on the strength of

the barrier at the interface, which is parameterized by the dimensionless parame-

ter Z. Specifically, we have examined a spinless NM-pSC junction and a spinful

NM-SOCSW junction, paying particular attention to the change in the zero-bias

conductance across the topological phase transition. We explicitly demonstrate

that the zero-temperature zero-bias conductance is quantized at a value of 2e2/h in

the topological regime, in agreement with effective models of these systems based

on a single Majorana mode coupled to a normal channel. Despite this quantiza-

tion at zero voltage, the zero-bias conductance only develops a peak (or a local

maximum) as a function of voltage for barriers with sufficiently large Z parameter,
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or for small and large SOC strength. These parameters also control the width of

this peak. In the nontopological regime, on the other hand, the conductance takes

nonuniversal values depending upon the details of the system. In both cases the

conductance spectrum away from zero bias shows considerable variation with the

details of the junction. Our calculated BTK conductance also shows that the con-

ductance is finite inside the superconducting gap region because of the finite barrier

transparency, providing a possible mechanism for the observed “soft gap” feature in

the experimental studies [16, 18, 19, 20, 21]. This effect is qualitatively similar to

the “inverse proximity effect” at the NS interface arising from the finite barrier at

the interface as discussed in Ref. [70], although other possible physical mechanisms

for the soft gap behavior have also been proposed [71]. We mention finally that our

theory is for a single NS junction which effectively assumes the existence of only a

single Majorana mode at the NS interface (with the other Majorana being located

infinitely far away) and thus Majorana splitting [72, 73, 74, 75] due to the wave

function overlap between two Majorana modes is not germane to our theory.
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Chapter 3

Transport Spectroscopy of

Superconductor–Normal Metal–Superconductor

Junctions

In the previous chapter, we have shown that the quantized 2e2/h zero-temperature

zero-bias conductance of a normal-metal–topological superconductor junction is a

robust signature of the MZM. In the weak-tunneling limit (small junction trans-

parency), the zero-bias conductance develops as a peak in the conductance spectra.

While the ZBCP have been carefully shown in the experiment to correspond to

the topological regime, the observed zero-bias conductance is still far below the ex-

pected quantized value. This deviation can be attributed at least in part to thermal

broadening in the normal metal lead which in turn broadens the zero-bias peak

and reduces its maximum conductance value. To mitigate the effect of thermal

broadening, one can use a superconducting lead instead of a normal lead in probing

the MZM tunneling conductance. In a superconducting lead, the quasiparticle ex-

citation is exponentially suppressed by the superconducting gap ∼ exp(−∆lead/T )

which in turn suppresses the thermal broadening effect.

In this chapter, we study the transport of various voltage-biased 1D SNS
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junctions with arbitrary junction transparency where the superconductor can be

either nontopological or topological. In particular, we consider two models for the

topological superconductors: (i) a spinful p-wave superconductor and (ii) a spin-split

spin-orbit-coupled s-wave superconductor. We provide a comprehensive analysis

of the zero-temperature dc current I and differential conductance dI/dV of the

SNS junctions with or without the MZMs. The presence of the MZM necessarily

gives rise to two tunneling conductance peaks: each at the voltage eV = ±∆lead,

i.e., the voltage at which the lead superconducting gap edge aligns with the MZM.

For the case where the superconducting probe lead has a BCS singularity (where

∑
σ=↑,↓ |uσ|2 =

∑
σ=↑,↓ |vσ|2 at the gap edge with u and v being the electron and

hole component of the superconducting wavefunction at the gap edge), e.g. an

s-wave superconductor or a spin-orbit coupled superconducting nanowire with no

magnetic field, the tunneling conductance peaks appearing at eV = ±∆lead are

quantized at a value (4−π)2e2/h, independent of the junction transparency, due to

resonant Andreev reflection from the MZM. In the tunneling limit (small junction

transparencies) where only single Andreev reflections contribute to the current, the

conductance for voltages below the superconducting lead gap ∆lead is zero. However,

when the junction transparency is not small, there is a finite conductance for e|V | <

∆lead arising from multiple Andreev reflections (MAR). The conductance at eV =

±∆lead in this case is no longer quantized.

Moreover, we find that the MZM conductance peak probed using a supercon-

ductor lead without a BCS singularity has a non-universal value which decreases

with decreasing junction transparency. We further show that, for certain values
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of parameters, the tunneling conductance from a zero-energy Andreev bound state

(ABS) can resemble the conductance from a true Majorana mode. For non-zero

Andreev bound states, the conductance peak shifts away from the gap-bias voltage

eV = ±∆lead towards a larger voltage value by the ABS energy.

In this chapter, we study theoretically the dc current-voltage (I − V ) relation

and differential conductance (G = dI/dV ) spectra of 1D SNS junctions involving

two models of topological superconductors, i.e., the spinful p-wave superconduc-

tor (pSC) and the spin-orbit coupled s-wave superconducting wire (SOCSW). More

specifically, we consider various combinations of the junctions where the supercon-

ductors can be either in the topological or nontopological regime. This chapter is

based on Refs. [57, 58] and the figures in this chapter are adapted from the same

references.

3.1 Scattering Matrix Formalism

We begin by modeling the SNS junction by two semi-infinite superconducting

leads connected by a normal region with a delta-function barrier of strength Z [see

Fig. 3.1(a)]. The normal region is assumed to be infinitesimally short with large

chemical potential such that the propagating modes in this region have constant

group velocity independent of its energy. Quasiparticles can be injected from the

left or right superconducting lead which become electrons or holes (depending on

their energy) when they enter the normal region. Due to the voltage bias, these

electrons (holes) will then gain (lose) an energy of eV as it is accelerated from the
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left (right) to the right (left). As a result, after each Andreev reflection at the NS

interface, an incoming electron with an energy E will be reflected as a hole back into

the same region with an energy E + 2eV . The quasiparticle retroreflects repeatedly

inside the normal region until it gains enough energy to be transmitted into the

superconductors [Fig. 3.1(b)]. This mechanism is termed the multiple Andreev

reflections (MAR) [76, 77, 78].

1

e 

h 

e 

eV 

2Δ

(b)

(a) 

V 
J −NL

J +
NLJ in

L

J out
L J −NR

J +
NR

J in
R

J out
R

Zδ(x)

Figure 3.1: (a) Schematic diagram of a superconductor–normal metal–

superconductor (SNS) junction with a delta-function potential barrier of strength

Z. (b) Multiple Andreev reflections.

The scattering processes in the SNS junction can be split into three regions:

(i) left NS interface, (ii) tunnel barrier and (iii) right NS interface. It can be written

55



in terms of the scattering matrices as



J out
L,ν (En)

J +
NL,ν(En)


 = SL(En)



J in
L,ν(En)δn0δν,→

J −NL,ν(En)


 , (3.1a)



J −NL,ν(En)

J +
NR,ν(En)


 =

∑

n′

SN(En, En′)



J +
NL,ν(En′)

J −NR,ν(En′)


 , (3.1b)



J out
R,ν (En)

J −NR,ν(En)


 = SR(En)



J in
R,ν(En)δn0δν,←

J +
NR,ν(En)


 , (3.1c)

where En = E+neV is the energy of the propagating modes with n being an integer,

J ρ
`,ν = (je,↑,ρ`,ν , je,↓,ρ`,ν , jh,↑,ρ`,ν , jh,↓,ρ`,ν )T is the current amplitude vector for region ` = L (left

superconductor), NL (normal region to the left of the tunnel barrier), NR (normal

region to the right of the tunnel barrier) and R (right superconductor) with ρ = +/−

and ρ = in/out being the right/left-moving modes and incoming/outgoing modes

indices, respectively, and ν =� denoting whether the incoming quasiparticle is

from the left or right superconductor. We note that the scattering matrix formalism

presented above is completely general and can be utilized to study the transport

properties of any kind of SNS junctions. Moreover, it can be easily interfaced with

the numerical transport package Kwant [79] which can be used to calculate the

scattering matrices of the left (SL) and right (SR) NS interfaces [36, 65]. For details

on the numerical simulation, please refer to Appendix A.

The scattering matrix SN(En, E
′
n) in Eq. (3.1)(b) incorporates the scattering

processes at the tunnel barrier and the increase (decrease) of the electron (hole)
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energy by eV each time the electron (hole) passes from the left to the right. In

terms of the electron (SeN) and hole (ShN) component, it can be written as

SN(En, En′) = SeN(En, En′)⊗ σ0 ⊗ τ+ + ShN(En, En′)⊗ σ0 ⊗ τ−, (3.2)

where σ0 is the identity matrix in the spin subspace, τ± = τx ± iτy are the Pauli

matrices in the particle-hole subspace. The scattering matrices SeN and ShN are given

by

SeN(En, En′) =



rδn,n′ tδn,n′+1

tδn,n′−1 rδn,n′


 , (3.3a)

ShN(En, En′) =



r∗δn,n′ t∗δn,n′−1

t∗δn,n′+1 r∗δn,n′


 , (3.3b)

where r = −iZ/(1 + iZ) and t = 1/(1 + iZ) are the reflection and transmission co-

efficients, respectively, with the amplitudes depending on the delta-function barrier

strength Z. We change the junction transparency in the simulation by tuning Z.

Since sharp changes of parameters across the junction, such as the mismatch in the

Fermi level, spin-orbit coupling, p-wave pairing potential etc., also effectively create

barriers for the current, we use a parameter-independent quantity GN to character-

ize the junction transparency, where GN is the normalized conductance of the SNS

junction at high voltages (in the unit of G0 = e2/h) which is the conductance of the

corresponding normal-normal (NN) junction.

Solving the coupled linear equations [Eq. (3.1)], we obtain the current am-
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plitudes J ρ
`,ν . The total current can be calculated by adding up the contribution

from the left- and right-moving modes of the electrons and holes for the incoming

quasiparticles from the left and right superconductors, i.e.,

Iν(V ) =
2e

h

∫ 0

−∞
dETr

(∑

n

ρzτzJNL,ν(En)J†NL,ν(En)

)
, (3.4)

where

JNL,ν = (je,↑,+NL,ν , j
e,↓,+
NL,ν , j

h,↑,+
NL,ν , j

h,↓,+
NL,ν , j

e,↑,−
NL,ν , j

e,↓,−
NL,ν , j

h,↑,−
NL,ν , j

h,↓,−
NL,ν )T (3.5)

is the current amplitude vector in the normal region to the left of the barrier. As is

proven in Appendix B, the current is non-negative for positive V . The differential

conductance (G = dI/dV ) can be computed by directly differentiating the current

I with respect to the voltage V . In general, the differential conductance is particle-

hole asymmetric except for sufficiently small transparencies.

In this chapter, we apply the above scattering matrix formalism to calculate

the conductance for the junctions of (i) the spinful pSC, and (ii) the SOCSW.

We will explore different combination of the junctions where none, one or both of

the superconductors are topological and compute the zero-temperature dc current-

voltage relation and differential conductance for these junctions.

3.2 Subharmonic Gap Structure

In general, for SNS junctions with asymmetric gap (∆L 6= ∆R), where ∆L,R

are the superconducting gap of the left and right superconductors, when the junc-
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tion transparency is not small there will be nonanalyticities in the I-V curve or

conductance [76, 77, 78] at specific voltages, which is termed the “subharmonic gap

structure” (SGS). The sharp change in the conductance happens at voltages at which

there is a change in the number of Andreev reflections required to transfer charge

from the occupied to the empty band. For the incoming quasiparticles from the left

superconductor, the number of Andreev reflections changes when [see Fig. 3.2(a)

and (b)]

e|V | = ∆L

n
, n ≥ 1, (3.6)

and

e|V | = ∆L + ∆R

2n− 1
, 1 ≤ n ≤ ∆R

∆R −∆L

, (3.7)

and for the incoming quasiparticles from the right superconductor, this change hap-

pens at voltages [see Fig. 3.2(c) and (d)]

e|V | = ∆L + ∆R

2n− 1
, 1 ≤ n ≤ ∆R

∆R −∆L

, (3.8)

and

e|V | = ∆R

n
, 1 ≤ n ≤ ∆R

∆R −∆L

. (3.9)

Without loss of generality, in the above we assume ∆R > ∆L. The range of n

in Eqs. (3.6)-(3.9) gives the voltage range for “strong” SGS, where all Andreev

reflections happen inside the superconducting gap. The SGS that happens outside

this range of n is termed the “weak” SGS because the Andreev reflections that

happen outside the gap are generally small in amplitude.
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Figure 3.2: Various MAR paths contributing to the SGS. The MAR paths for a

right-moving incoming quasiparticles are given in (a) and (b) which correspond to

the voltages given in Eqs. (3.6) and (3.7). The MAR paths for a left-moving

incoming quasiparticles are given in (c) and (d) which correspond to the voltages

given in Eqs. (3.8) and (3.9).

Table 3.1: Voltages at which the subharmonic gap structure appears for an asym-
metric SNS junction.

SGS voltage e|V | Range of n
∆L/n n ≥ 1
(∆L + ∆R)/(2n− 1) n ≥ 1
∆R/n n ≥ 1

The SGS (including both “strong” and “weak”) happens at the voltages given

in Table 3.1 (Refs. [80, 81]) where for spectrum with multiple gaps, ∆L,R refer to

each value of the superconducting gaps in the left and right superconductors. In

general, the SGS is not apparent for near-perfect transparency junction and becomes

sharper in the intermediate range of transparencies. Decreasing the transparency

further into the tunneling limit will diminish the SGS at small voltages.
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3.3 Spinful p-wave Superconductor Junctions

In this section, we consider the junctions between an s-wave superconductor

(sSC) and a pSC and the junctions between two pSCs where the pSC can be in

the nontopological or topological regime. Using the BdG form, we can write the

Hamiltonian of the system as

Hj(x) =
1

2

∫
dxΨ†j(x)HjΨj(x), (3.10)

where Ψj(x) =
(
ψj↑(x), ψj↓(x), ψ†j↓(x),−ψ†j↓(x)

)T

are Nambu spinors with ψ†jσ(x)

and ψjσ(x) being the creation and annihilation operators of an electron of spin σ

for the superconductor of type j = s, p (s-wave or p-wave). The BdG Hamiltonian

of the sSC and pSC are given by

Hs =

(
−~2∂2

x

2m
− µs

)
τz + ∆sτx, (3.11a)

Hp =

(
−~2∂2

x

2m
− µp

)
τz + VZσz − i∆p∂xτxσx, (3.11b)

respectively. Here, m is the electron effective mass (which we set to be m = 0.015me

throughout where me is the bare electron mass), µs and µp are the chemical poten-

tials of the sSC and pSC, VZ is the Zeeman field, ∆s and ∆p are the sSC and pSC

pairing potentials, and τx,y,z (σx,y,z) are Pauli matrices acting in the particle-hole

(spin) subspace. The effective chemical potential in each spin channel of the pSC

(µp ± VZ) determines whether that channel is topological or not. The channel is

topological if the chemical potential is positive, otherwise it is non-topological [3, 4].
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The spinful pSC can have zero, one or two topological channels depending on the

values of VZ and µp, i.e.,

(a) |VZ | < |µp| and µp < 0, no topological channel,

(b) |VZ | > µp and µp > 0, one topological channel,

(c) |VZ | < µp and µp > 0, two topological channels.

Throughout this chapter, we denote the pSC in the three different regimes as

pi, where i = 0, 1, 2, refers to the number of the topological channels in the pSC.

Since the spinful pSC is essentially made up of two uncoupled spinless pSCs, the

spectrum of the spinful pSC then consists of the spectrum of two spinless pSCs [see

Sec. 2.1] with effective chemical potential µp ± VZ as shown in Fig. 3.3. In the

following we will denote the smallest gap in the spectrum of the pi-SC by ∆pi .

3.3.1 sNp0 junction

Let us begin by considering the s-wave superconductor–normal metal–p0 su-

perconductor (sNp0) junction. The p0-SC is a spinful p-wave superconductor with

no topological channel where it has negative chemical potential (µp < 0) and Zeeman

field |VZ | < |µp|. Its spectrum has a gap at k = 0 with a value |µp| ± |VZ | with the

smallest gap being ∆p0 = |µp| − |VZ | [3, 4, 36] as shown in Fig. 3.3. In general, the

current and conductance for the SNS junction involving p0-SC, e.g., the sNp0 junc-

tion discussed here, increase with the p0-SC pairing potential ∆p. Since the p0-SC

is essentially an insulator and the Andreev reflection amplitude in an Np0 junction

is small, the current for junctions involving p0-SC is generally small and the SGS is
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Figure 3.3: Energy spectrum of a spinful pSC for different parameter regimes: (a)

|VZ | < |µp| and µp < 0 (p0-SC with no topological channel), (b) |VZ | > µp and

µp > 0 (p1-SC with one topological channel), (c) |VZ | < µp and µp > 0 (p2-SC with

two topological channels).

strongly suppressed as can be seen in Fig. 3.4. At high voltages (|V | � ∆s,∆p0),

the conductance approaches the conductance GN of the corresponding NN junc-

tion (which we define as the junction transparency throughout this chapter). The

current and conductance decrease with decreasing junction transparency GN as

can be seen in Fig. 3.4. In the weak tunneling or small transparency limit where

MAR is suppressed, the current starts to flow only when the voltage is greater than

e|V | = ∆s + ∆p0 , i.e., the voltage where the superconducting gap edges of both sSC

and p0-SC line up.
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Figure 3.4: Plots of (a) dc current I and (b) normalized differential conductance

G/G0 versus bias voltage V for an sNp0 junction with various values of transparen-

cies GN . The parameters used for the sSC are µs = 20 K and ∆s = 0.01 K. The

parameters used for the p0-SC are µp = −0.01 K, VZ = 0 K, ∆p = 0.2 eVÅ, where

the smallest gap is ∆p0 = 0.01 K. The smallest gap in the junction is ∆min = 0.01

K.

3.3.2 sNp1 junction

The p1-SC has one topological channel with a pair of MZM: one at each end.

The energy spectrum of the p1-SC is given in Fig. 3.3(b). The plots of the current and

conductance for the sNp1 junction in the limit of large and small Zeeman field are

plotted against the bias voltage in Figs. 3.5 and 3.6, respectively. In the large Zeeman

limit [(|VZ | − µp) & µp], the p1-SC is essentially a spinless topological pSC [3, 4].
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Figure 3.5: Plots of (a) dc current I and (b) normalized differential conductance

G/G0 versus bias voltage V for an sNp1 junction with various values of trans-

parencies GN in the limit of large Zeeman field (VZ = 2µp). The red dashed line

[GM = (4−π)2e2/h] is the conductance value due to single Andreev reflections from

the MZM. The parameters used for the sSC are µs = 200 K and ∆s = 2.5 K. The

parameters used for the p1-SC are µp = 20 K, VZ = 40 K, ∆p = 0.0785 eVÅ, where

the smallest gap is ∆p1 = 4 K. The smallest gap in the junction is ∆min = 2.5 K.

In this limit, MAR are totally suppressed and only single Andreev reflections are

allowed for the sNp1 junction because the sSC allows only spin-singlet Andreev

reflections while the spinless pSC allows only spin-triplet Andreev reflections. This

results in a step jump in the conductance from zero to the quantized value GM =

(4−π)2e2/h at the threshold voltage e|V | = ∆s [52, 57, 82] as shown in Fig. 3.4(b).

The quantized value GM corresponds to the conductance due to single Andreev
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Figure 3.6: Plots of (a) dc current I and (b) normalized differential conductance

G/G0 versus bias voltage V for an sNp1 junction with various values of transparen-

cies GN in the limit of small Zeeman field (VZ = 1.1µp). The red dashed line

[GM = (4 − π)2e2/h] is the conductance value due to single Andreev reflections

from the MZM. The parameters used for the sSC are µs = 200 K and ∆s = 2.5 K.

The parameters used for the p1-SC are µp = 20 K, VZ = 22 K, ∆p = 0.0785 eVÅ,

where the gaps are 2 K and 3.4 K with the smallest gap for the p1-SC being ∆p1 = 2

K. The smallest gap in the junction is ∆min = 2 K.

reflections from the MZM which happen at the voltage when the BCS singularity

and MZM are aligned. In this large Zeeman limit, since MAR are suppressed the

quantized value GM is robust against the junction transparency. The conductance,

in general, decreases with decreasing junction transparency and for sufficiently small

transparency, the conductance can become negative for voltages near the threshold
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voltage e|V | = ∆s. Our results for the sNp1 junction in the large Zeeman limit,

calculated using the scattering matrix formalism, are similar to those of the s-wave

superconductor–normal metal–spinless p-wave superconductor junctions calculated

using the Green’s function formalism [82]. Recently, the conductance of the spinless

p-wave superconductor has been measured using the s-wave superconducting tip

in the STM experiment [56]. In the limit of small Zeeman field [(|VZ | − µp) �

µp] where the junction transparency is not small, MAR are allowed. As a result,

there is a finite current and conductance with SGS below the threshold voltage

e|V | = ∆s. However, the current and conductance near zero voltage are zero due

to the difference in the Andreev reflection spin-selectivity of the sSC and MZM,

i.e., the sSC allows spin-singlet Andreev reflections and the MZM favors spin-triplet

Andreev reflections [63, 69]. In this limit, due to MAR the conductance at the

voltage e|V | = ∆s is no longer robust against increasing junction transparency. The

current and conductance generally decrease with decreasing junction transparency.

For sufficiently small transparency where only single Andreev reflections are allowed,

G(e|V | = ∆s) = GM independent of the junction transparency .

3.3.3 sNp2 junction

The p2-SC has two topological channels with two MZMs at each end. The

energy spectrum for the p2-SC is shown in Fig. 3.3(c). The current and conduc-

tance plots for the sNp2 junction are depicted in Fig. 3.7. In the tunneling limit,

the conductance for the sNp2 junction develops a step jump from 0 to 2GM at
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Figure 3.7: Plots of (a) dc current I and (b) normalized differential conductance

G/G0 versus bias voltage V for an sNp2 junction with various values of transparen-

cies GN . The red dashed line [2GM = (4 − π)4e2/h] is the conductance value due

to single Andreev reflections from two MZMs. The parameters used for the sSC are

µs = 20 K and ∆s = 0.01 K. The parameters used for the p2-SC are µp = 20 K,

VZ = 0 K, ∆p = 2× 10−4 eVÅ, where the gap is ∆p2 = 6.3× 10−3 K. The smallest

gap in the junction is ∆min = ∆p2 = 6.3× 10−3 K.

the threshold voltage e|V | = ∆s due to single Andreev reflections from the Majo-

rana Kramers pair with each single Andreev reflection from the MZM contributing

a conductance of GM . For large or intermediate transparencies, due to MAR the

conductance at e|V | = ∆s is no longer quantized at 2GM and there is an SGS in the

current and conductance profile. In contrast to the sNp1 junction where the current

and conductance is zero near zero voltage, when the transparency is not small the

68



current and conductance for the sNp2 junction is non-zero near zero voltage. This is

because unlike the case of the sNp1 junction where there is only one MZM which fa-

cilitates the spin-triplet Andreev reflections in one spin channel, there are two MZMs

in sNp2 junctions facilitating Andreev reflections in two different spin channels. As

a result, the MAR are not suppressed near zero voltage. The SGS associated with

MAR develops at specific voltages as given in Table 3.1. Similar to the conventional

s-wave superconductor–normal–s-wave superconductor junction [76, 80, 81], in the

perfectly transparent limit (GN = 2), the current at small voltages for the sNp2

junction asymptotically approaches

I(V → 0) =
4e∆min

h
, (3.12)

which corresponds to the transfer of a charge of 2e across the junction where ∆min =

min(∆s,∆p2) is the smallest gap in the junction.

3.3.4 p2Np2 junction

For the p2Np2 junction, both superconductors have two topological channels

with two MZMs at each end. The plots of the current and conductance for this

junction are depicted in Fig. 3.8. In the perfectly transparent limit (GN = 2),

the current at small voltages asymptotically approaches I(V → 0) = 4e∆min/h,

where ∆min is the smallest gap in the junction. This asymptote value of the dc

current is the same as the value obtained for the conventional s-wave-normal-s-wave

superconductor junction [76, 80, 81]. As V → 0, the current in the p2Np2 junction
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Figure 3.8: Plots of (a) dc current I and (b) normalized differential conductance

G/G0 versus bias voltage V for a p2Np2 junction with various values of trans-

parencies GN . The parameters used for both p2-SCs are µp = 20 K, VZ = 0 K,

∆p = 2× 10−4 eVÅ, where the gap is ∆p2 = 6.3× 10−3 K. The smallest gap in the

junction is ∆min = 6.3× 10−3 K.

is transferred via a Majorana Kramers pair where each of the MZMs transfers a

charge of unit e giving a total charge of 2e, the same total amount of charge as that

carried by a Cooper pair. As a result, the current I(V → 0) is the same as that for

the conventional SNS junction [76, 81, 83]. For not-perfectly transparent junctions

(GN 6= 2), the dc current approaches zero as the voltage approaches zero.

The SGS associated with the MAR develops at specific voltages given in Ta-

ble 3.1 where for the p2Np2 junction with symmetric gaps, the voltage is |V | =
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∆p2/en (n = 1, 2, 3, · · · ) (see Fig. 3.8). The SGS is suppressed in the tunneling limit

and the current becomes non-zero only when the voltage is above the threshold

voltage |V | = ∆p2/e, i.e., when the quasiparticles have sufficient energy to undergo

single Andreev reflections from the MZM. This is contrary to the case of the junc-

tion between two-nontopological superconductors where the tunneling current can

flow only when the voltage is above |V | = 2∆/e, i.e., when the gap edge of the

unoccupied band lines up with that of the occupied band. Since the p2-SC does

not have a BCS singularity, the conductance at |V | = ∆p2/e in the tunneling limit

is not quantized at GM . Instead, it has a nonuniversal value which decreases with

decreasing junction transparency.

3.3.5 p2Np1 junction

For the p2Np1 junction in the perfectly transparent limit (GN = 1), the current

near zero voltage approaches I(V → 0) = 2e∆min/h, which is half of the current for

the p2Np2 or s-wave superconductor−normal metal−s-wave superconductor junc-

tion. The reason is that the p1-SC has only one MZM which can transfer a charge

in the unit of e in one spin channel. The SGS appears at voltages given in Table 3.1.

Since the p2Np1 junction considered here has asymmetric gap, the current and con-

ductance in the weak-tunneling limit develop jumps at the voltages |V | = ∆p1/e

and |V | = ∆p2/e which correspond to the conductances due to single Andreev re-

flections from the MZM in the p2-SC and p1-SC, respectively. The conductance

values at these jumps have non-universal values which decrease with the junction
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Figure 3.9: Plots of (a) dc current I and (b) normalized differential conductance

G/G0 versus bias voltage V for a p2Np1 junction with various values of transparen-

cies GN . The parameters used for the p1-SC are µp = 20 K, ∆p = 2 × 10−4 eVÅ,

and VZ = 40 K where the gap is ∆p1 = 0.011 K. The parameters for the p2-SC are

µp = 20 K, ∆p = 2 × 10−4 eVÅ, VZ = 0 K, where the gap is ∆p2 = 6.3 × 10−3 K.

The smallest gap in the junction is ∆min = 6.3× 10−3 K.

transparency.

3.3.6 p1Np1 junction

Fig. 3.10 displays the current and conductance plots for a p1Np1 junction.

Similar to the p2Np1 junction, for a perfectly transparent p1Np1 junction (GN = 1)

the current at small voltages asymptotically approaches I(V → 0) = 2e∆min/h.

This is due to the fact that a charge of e is transferred between the MZMs on both
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Figure 3.10: Plots of (a) dc current I and (b) normalized differential conductance

G/G0 versus bias voltage V for a p1Np1 junction with various values of transparen-

cies GN . The parameters used for both p1-SCs are µp = 20 K, ∆p = 2× 10−4 eVÅ,

and VZ = 40 K where the gap is ∆p1 = 0.011 K. The smallest gap in the junction is

∆min = ∆p1 = 0.011 K.

sides of the junction. For a symmetric p1Np1 as considered here, the SGS develops

at voltages |V | = ∆p1/ne. In the weak-tunneling limit, there is a step jump in the

conductance at |V | = ∆p1/e to a non-universal value which decreases as the junction

transparency decreases.
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Figure 3.11: Plots of (a) dc current I and (b) normalized differential conductance

G/G0 versus bias voltage V for a p0Np2 junction with various values of transparen-

cies GN . The parameters used for the p0-SC are µp = −0.01 K, VZ = 0 K, ∆p = 0.2

eVÅ, where the gap is ∆p0 = 0.01 K. The parameters used for the p2-SC are µp = 20

K, VZ = 0 K, ∆p = 2×10−4 eVÅ, where the gap is ∆p2 = 6.3×10−3 K. The smallest

gap in the junction is ∆min = 6.3× 10−3 K.

3.3.7 p0Np2 junction

The current and conductance plots for the p0Np2 junction are given in Fig. 3.11.

The MAR peaks for this junction are suppressed since p0 is essentially an insulator.

There is a conductance peak at |V | = ∆p0/e which corresponds to single Andreev

reflections from the MZMs. However, unlike the case of the sNp2 junction, the tun-

neling conductance at the threshold voltage |V | = ∆p0/e assumes a non-quantized
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value which decreases with decreasing junction transparency. We note that the

MZM tunneling conductance quantization GM = (4 − π)2e2/h holds only if the

superconducting probe has a BCS singularity (as derived in Sec. 1.3.2.1).

3.3.8 p0Np1 junction
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Figure 3.12: Plots of (a) dc current I and (b) normalized differential conductance

G/G0 versus bias voltage V for a p0Np1 junction with various values of transparen-

cies GN . The parameters used for the p0-SC are µp = −0.01 K, VZ = 0 K, ∆p = 0.2

eVÅ, where the gap is ∆p0 = 0.01 K. The parameters used for the p1-SC are µp = 20

K, VZ = 40 K, ∆p = 2 × 10−4 eVÅ, where the gap is ∆p1 = 0.011 K. The smallest

gap in the junction is ∆min = 0.01 K.

The current and conductance plots for the p0Np1 junction are given in Fig. 3.12.

The conductance for this junction looks similar to those of the p0Np2 junction. The
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MAR peaks for this junction are suppressed and in the tunneling limit, the conduc-

tance has a step jump at the threshold voltage e|V | = ∆p0 to a non-quantized value

which decreases with decreasing junction transparency.

3.3.9 p0Np0 junction
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Figure 3.13: Plots of (a) dc current I and (b) normalized differential conductance

G/G0 versus bias voltage V for a p0Np0 junction with various values of transparen-

cies GN . The parameters used for both p0-SCs are µp = −0.01 K, VZ = 0 K,

∆p = 0.2 eVÅ, where the gap is ∆p0 = 0.01 K. The smallest gap in the junction is

∆min = 0.01 K.

For the p0Np0 junction, the plots of the current and conductance versus the

bias voltage are displayed in Fig. 3.13. Since the p0Np0 junction is essentially a
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junction between two insulators, the current and conductance for this junction are

generally small and the MAR peaks are strongly suppressed. In the limit of small

transparencies, the current and conductance for a symmetric p0Np0 junction have a

jump to a non-zero value at e|V | = 2∆p0 , i.e., when the density-of-state singularity

of the occupied band of one p0-SC is aligned with the singularity of the empty band

of the other p0-SC.

3.4 Spin-Orbit-Coupled Superconducting Wire Junctions

The BdG Hamiltonian for the SOCSW is

HSOCSW =

(
−~2∂2

x

2m
− µ0

)
τz − iα∂xτzσy + VZσx + ∆0τx, (3.13)

where µ0 is the chemical potential of the nanowire, α is the strength of the SOC,

VZ is the Zeeman field, and ∆0 is the proximity-induced s-wave pairing potential.

The Hamiltonian above is written in the same basis as that in Eq. (3.10). The

SOCSW can be tuned from the nontopological to the topological regime by simply

changing the Zeeman field VZ or chemical potential µ0. The critical value VZ =

√
µ2

0 + ∆2
0 marks the TQPT between the topologically trivial (VZ <

√
µ2

0 + ∆2
0)

and topologically nontrivial phase (VZ >
√
µ2

0 + ∆2
0). In the topological regime,

there is one MZM at each end of the nanowire. The BdG spectrum of the SOCSW

is given in Fig. 3.14. In what follows, we are going to denote the minimum gap in

the SOCSW spectrum by ∆SOCSW. Now, let us look at the current and conductance

of several SNS junctions between two SOCSWs where the SOCSW can be either in
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the nontopological or topological regime.
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Figure 3.14: Energy spectrum of SOCSW for different parameter regimes: (a)

VZ = 0 (nontopological), (b) VZ <
√
µ2

0 + ∆2
0 (nontopological), (c) VZ =

√
µ2

0 + ∆2
0

(transition), (d) VZ >
√
µ2

0 + ∆2
0 (topological).

3.4.1 Nontopological–Nontopological SOCSW Junction

In this subsection, we consider the junction between two SOCSWs where both

of them are in the nontopological regime (i.e., VZ <
√
µ2

0 + ∆2
0). As shown in

Fig. 3.15, the current and conductance of this junction with no Zeeman field (VZ = 0)

is the same as that of an s-wave superconductor–normal metal–s-wave superconduc-

tor junction [76, 80, 81]. The SGS for the symmetric nontopological–nontopological

SOCSW junction occurs at voltages |V | = 2∆nontopo
SOCSW/ne where n = 1, 2, 3, · · · . For

a perfectly transparent junction (GN = 2), the current at small voltages approaches

the value

I(V → 0) =
4e∆min

h
. (3.14)
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In the limit of small transparency the current and conductance develop a step jump

at |V | = 2∆nontopo
SOCSW/e for junctions with symmetric gaps.

Fig. 3.16 shows the current and conductance for the nontopological–nontopological

SOCSW junction in the presence of Zeeman field. Increasing the Zeeman field

smooths out the SGS. In the limit of small transparencies, the conductance has a

smooth rise from zero instead of a step jump at the threshold voltage.
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Figure 3.15: Plots of (a) dc current I and (b) normalized differential conductance

G/G0 versus bias voltage V for a nontopological–nontopological SOCSW junction

with various values of transparencies GN and no Zeeman field. The parameters used

for both SOCSWs are µ0 = 0 K, VZ = 0 K, ∆0 = 0.01 K, α = 0.5 eVÅ, where the

gap is ∆nontopo
SOCSW = 0.01 K. The smallest gap in the junction is ∆min = 0.01 K.
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Figure 3.16: Plots of (a) dc current I and (b) normalized differential conductance

G/G0 versus bias voltage V for a nontopological–nontopological SOCSW junction

with various values of transparencies GN and finite Zeeman field. The parameters

used for both SOCSWs are µ0 = 0 K, VZ = 0.002 K, ∆0 = 0.01 K, α = 0.5 eVÅ,

where the gap is ∆nontopo
SOCSW = 0.008 K. The smallest gap in the junction is ∆min = 0.008

K.

3.4.2 Nontopological–Topological SOCSW junction

Here, we consider the junction between a nontopological and a topological

SOCSW. The current and conductance for this junction are given in Figs. 3.17-

3.19. Let us first consider the case of the junction with the nontopological SOCSW

having no Zeeman field where the energy spectrum for this nontopological SOCSW

has the minimum gap at the Fermi momentum with a BCS singularity [as shown
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Figure 3.17: Plots of (a) dc current I and (b) normalized differential conductance

G/G0 versus bias voltage V for a nontopological–topological SOCSW junction with

various values of transparencies GN . The red dashed line [GM = (4 − π)2e2/h]

is the conductance value due to single Andreev reflections from the MZM. The

nontopological SOCSW is not subjected to any Zeeman field and the topological su-

perconductor has a small Zeeman field. The parameters used for the nontopological

SOCSW are µ0 = 0 K, VZ = 0 K, ∆0 = 0.5 K, α = 0.5 eVÅ where ∆nontopo
SOCSW = 0.5

K. The parameters used for the topological SOCSW are µ0 = 0 K, VZ = 15.0 K,

∆0 = 10.0 K, α = 0.05 eVÅ, where the gap is ∆topo
SOCSW = 0.75 K. The smallest gap

in the junction is ∆min = 0.5 K.

in Fig. 3.14(a)]. For this case, the the conductance in the tunneling limit for this

junction develops a step jump from 0 to GM = (4− π)2e2/h at the gap-bias voltage

e|V | = ∆nontopo
SOCSW similar to the case of sNp1 junction (as shown in Figs. 3.17 and

3.18). This quantized value GM is due to single Andreev reflections from the MZM
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Figure 3.18: Plots of (a) dc current I and (b) normalized differential conductance

G/G0 versus bias voltage V for a nontopological–topological SOCSW junction with

various values of transparencies GN . The red dashed line [GM = (4 − π)2e2/h]

is the conductance value due to single Andreev reflections from the MZM. The

nontopological SOCSW is not subjected to any Zeeman field and the topological su-

perconductor has a large Zeeman field. The parameters used for the nontopological

SOCSW are µ0 = 0 K, VZ = 0 K, ∆0 = 0.5 K, α = 0.5 eVÅ where ∆nontopo
SOCSW = 0.5

K. The parameters used for the topological SOCSW are µ0 = 0 K, VZ = 60.0 K,

∆0 = 10.0 K, α = 0.05 eVÅ, where the gap is ∆topo
SOCSW = 0.42 K. The smallest gap

in the junction is ∆min = 0.42 K.

of an electron coming from the gap edge with BCS singularity. In the limit where

the Zeeman field in the topological SOCSW is small, for intermediate and large

transparencies, there are MAR peaks and the conductance below the voltage e|V | =

∆nontopo
SOCSW is nonzero except for small voltages (see Fig. 3.17). Near zero voltage, the
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Figure 3.19: Plots of (a) dc current I and (b) normalized differential conductance

G/G0 versus bias voltage V for a nontopological–topological SOCSW junction with

various values of transparencies GN . The nontopological SOCSW has a finite Zee-

man field and the topological superconductor has a small Zeeman field. The pa-

rameters used for the nontopological SOCSW are µ0 = 0 K, VZ = 0.2 K, ∆0 = 0.5

K, α = 0.5 eVÅ where ∆nontopo
SOCSW = 0.3 K. The parameters used for the topological

SOCSW are µ0 = 0 K, VZ = 15.0 K, ∆0 = 10.0 K, α = 0.05 eVÅ, where the gap

is ∆topo
SOCSW = 0.75 K. The smallest gap in the junction is ∆min = 0.3 K. Inset: The

zoom-in version of the conductance near eV = ∆nontopo
SOCSW.

current and conductance vanish due to the difference in the Andreev-reflection spin

selectivity of the SOCSW and the MZM. In the limit of large Zeeman field in the

topological SOCSW where MAR are suppressed and single Andreev reflections are

allowed, the conductance for this junction develops a step jump from 0 to GM =

(4 − π)2e2/h independent of the junction transparency. We note that this result

83



is similar to the case where the nontopological SOCSW is replaced by an s-wave

superconductor [57].

For the case where there is Zeeman field in the nontopological superconduc-

tor, the gap edge of the superconductor no longer has the BCS singularity. As a

result, the MZM tunneling conductance measured using this nontopological super-

conductor will not be quantized at GM for the gap-bias voltage e|V | = ∆nontopo
SOCSW.

Instead, the tunneling conductance assumes a non-universal value which decreases

with decreasing junction transparency as shown in Fig. 3.19.

3.4.3 Topological–Topological SOCSW junction

The current and conductance plots for a topological–topological SOCSW junc-

tion are shown in Fig. 3.20. Our results, calculated using the scattering matrix for-

malism, for this junction is the same as the results calculated using the Green’s func-

tion method [84]. Similar to the p1Np1 junction, in the limit of perfect transparency

(GN = 1), the current for a topological–topological SOCSW junction asymptotically

approaches

I(V → 0) = 2e∆min/h, (3.15)

which is half the value of the current in the conventional SNS junction. The SGS for

this junction happens at voltages |V | = ∆min/ne. In the weak tunneling limit, there

is a step jump in the conductance at |V | = ∆min/e. We note, however, that the

conductance at the voltage |V | = ∆min/e is not quantized at GM = (4− π)2e2/h.
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Figure 3.20: Plots of (a) dc current I and (b) normalized differential conductance

G/G0 versus bias voltage V for a topological–topological SOCSW junction with

various values of transparencies GN . The parameters used for both SOCSWs are

µ0 = 0 K, VZ = 15 K, ∆0 = 1.17 K, α = 0.05 eVÅ, where the gap is ∆topo
SOCSW = 0.01

K. The smallest gap in the junction is ∆min = 0.01 K.

3.5 Andreev Bound States

Let us compare the conductance of an MZM with that of an ABS. In partic-

ular, here we consider the ABS that may arise in the SOCSW model with a finite

topological region and a semi-infinite nontopological region as shown in the right

side of the SNS junction in Fig. 3.21(a). This model can happen naturally in an

SOCSW with varying chemical potential where the chemical potential varies from

the topological regime to the non-topological regime resulting in the domain walls
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Figure 3.21: (a) Schematic diagram of an sSC–SOCSW junction with a pair of ABS

(one at each end of the topological region). The chemical potential of the topological

and nontopological regions are |µtopo| <
√
V 2
Z −∆2

0 and |µnontopo| >
√
V 2
Z −∆2

0,

respectively. The parameters used for the sSC are µs = 50 K, and ∆s = 0.67 K.

The SOCSW parameters are µnontopo = 211.18 K, VZ = 15 K, ∆0 = 10 K, α = 0.05

eVÅ, and length of the topological region, Ltopo = 0.6 µm. We use a dissipation term

iΓτ0⊗σ0 in the BdG Hamiltonian of both the left and right superconductors with a

dissipation strength Γ = 0.05K to broaden the Van Hove singularity. (b) The energy

of the Andreev bound state closest to zero energy versus the chemical potential µtopo

in the topological region. The red, green and purple dots indicate the value of the

topological chemical potential used in (c),(d), and (e), respectively. Normalized

differential conductance G/G0 for the SOCSW for several chemical potential values

in the topological region: (c) µtopo = 0 K, (d) µtopo = 1.697 K, and (e) µtopo = 4.5 K.

Inset: the ABS conductance in the weak tunneling limit which is the conductance

for the smallest transparency in the main plot.
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between the topological and non-topological regions [85]. The ABSs can be found at

the end of the topological region. For simplicity, here we consider a step jump in the

chemical potential in going from the topologically nontrivial (|µ0| <
√
V 2
Z −∆2

0) to

the topologically trivial value (|µ0| >
√
V 2
Z −∆2

0) keeping all the other parameters

in these two regions to be the same. The ABS closest to zero energy in this model

has its energy oscillating with the chemical potential in the topological region as

shown in Fig. 3.21(b) where the zero-energy ABS can be found at specific values of

parameters [74].

Let us look at the conductance of this SOCSW model measured using an

s-wave superconducting lead. To calculate the conductance, we first introduce a

dissipation term −iΓτ0 ⊗ σ0 into the BdG Hamiltonian. The dissipation term is

used to broaden the van Hove singularity of the BdG spectrum so that we do not

need to use a very fine energy grid in the numerical calculation. This dissipation term

has been used in Refs. [86, 87] to calculate conductance in topological NS junctions,

though for different reasons. Our using a dissipation here could either be physically

motivated as in Ref. [87] or simply a technical artifice in handling the van Hove

singularity. Figs. 3.21(c)-(e) show the conductance of the SOCSW calculated for

several chemical potential values in the topological region with all other parameters

being the same. The conductance for the zero-energy ABS may resemble the MZM

tunneling conductance, i.e., it has a sharp rise at the voltage e|V | = ∆s to a peak

with a value near GM = (4−π)2e2/h (see the inset in Fig. 3.21(d) or Ref. [57]). For

non-zero energy ABS, the ABS tunneling conductance peak shifts away from the

threshold voltage e|V | = ∆s (where ∆s is the s-wave superconducting gap) towards
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a larger voltage value by the ABS energy normalized by the tunnel coupling between

the lead and the system [see Fig. 3.21(c) and (e)].

3.6 Conclusion

In this chapter, we have calculated the zero-temperature dc current and con-

ductance in various 1D voltage-biased SNS junctions involving topological and non-

topological superconductors, considering both ideal spinful p-wave and realistic spin-

orbit-coupled s-wave superconducting wires. For junctions with small transparen-

cies, the presence of an MZM gives rise to a jump in the current and conductance at

the gap-bias voltage e|V | = ∆lead where the superconducting gap edge is aligned with

the MZM. If the superconducting lead has a BCS singularity at the gap edge then

the tunneling conductance at the gap-bias voltage takes the value GM = (4−π)2e2/h

due to a single Andreev reflection from the MZM. However, this quantization no

longer holds if the superconducting lead gap edge does not have the BCS singu-

larity, e.g., p-wave superconductor or SOCSW with finite magnetic field. For SNS

junctions where both of the superconductors are topological (i.e., with one or two

MZMs at each end), there is SGS in the I-V curve or conductance profile due to

MAR. However, for nontopological–topological superconductor junctions where the

topological superconductor has only one MZM at each end, the SGS at small volt-

ages is suppressed due to the mismatch in Andreev reflection spin-selectivity of the

superconducting lead and the MZM.

In contrast to the conventional SNS junction where Cooper pairs are trans-
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ferred across the junction with a charge of 2e, for the topological SNS junction, the

charge is transferred via the MZM in the units of e. As a result, for a perfectly

transparent junction with an MZM at each end, the MZM contributes to a near

zero-voltage current I(V → 0) = 2e∆min/h where ∆min is the smallest gap in the

junction. We note that this MZM near-zero voltage current is by no means uni-

versal or quantized because of the generic presence of the gap ∆min which surely

varies from junction to junction. The same is also true for the case where there are

two MZMs on one side and one MZM on the other side. This near zero-voltage dc

current is half of the value for the conventional s-wave superconductor–normal–s-

wave superconductor junction. However, for the case where there are two MZMs on

both sides of the junction, the near zero-voltage current is I(V → 0) = 4e∆min/h

because each MZM can exchange a charge of e between each other. For the case

where there is a conventional s-wave superconductor on one side and one MZM

on the other side of the junction, the current is zero because of the difference in

the Andreev-reflection spin selectivity of the s-wave superconductor and MZM, i.e.,

the s-wave superconductor allows only opposite-spin Andreev reflections and MZM

favors equal-spin Andreev reflections. However, for the junction between a conven-

tional s-wave superconductor and a Majorana Kramers pair the near-zero current

for a perfect transparent junction is not zero but it is I(V → 0) = 4e∆min/h. This

is due to the fact that the MZM pair can facilitate Andreev reflections in both spin

channels.

We also calculated the conductance with an ABS in the SOCSW model arising

from a finite topological and a semi-infinite non-topological region. For this junction,
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the energy of the ABS closest to zero energy oscillates with the chemical potential

in the topological region. For the parameters where the ABS is at zero energy, the

tunneling conductance may resemble that of Majorana, i.e., it has a step jump to

a value GM at the gap-bias voltage e|V | = ∆lead. However, when the energy of

the ABS is non-zero, the conductance peak shifts away from the gap-bias voltage

towards a larger voltage value by the ABS energy.
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Chapter 4

Gap Closing and Topological Quantum Phase

Transition

Besides conductance spectroscopy, detecting the collapse and reopening of the

bulk gap as the Zeeman field is varied will also provide a strong signature for the

TQPT which marks the beginning of the topological phase. In this chapter, we

will propose a dynamical scheme to detect the TQPT which is particularly suited

for cold atomic systems. This chapter is based on Ref. [59] and the figures in this

chapter are adapted from the same reference.

We begin by reviewing the Raman scheme used to realize the SOC in ultra-

cold atomic settings. We then proceed to discuss our “dip-in dip-out” protocol to

detect the TQPT. In this protocol, the system is first prepared in its long-lived

conventional phases and then driven into the topological phases and back. We will

apply this scheme to the 1D spin-orbit-coupled Fermi gases (SOCFGs) with attrac-

tive interactions whose Hamiltonian is the same as that of SOCSW [see Eq. (3.13)].

Finally, we show that the Stuckelberg oscillation and Kibble-Zurek (KZ) scaling of

the excitation’s momentum distribution after the quench protocol can serve as a

robust signature of the TQPT.
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4.1 Raman-Induced Spin-Orbit Coupling

The SOC, which associates a particle's momentum to its spin, can be engi-

neered in ultracold atoms by using the two-photon Raman process [88, 89, 90, 91, 92].

This Raman scattering couples two internal states of an atom (which are denoted

here by pseudospin |↑〉 and |↓〉) to the motion of the atom via the absorption of a

photon from one laser beam and a stimulated reemission into another laser beam

[see Fig. 4.1]. For a counter-propagating laser beam where each photon carries a

momentum of kr = h/λr, this process imparts a momentum of 2~kr to the atom

when its state is changed from one pseudospin to the other and an opposite momen-

tum when the state is changed in the reverse way. In this way, this Raman process

effectively generates the SOC term, which is an essential ingredient for realizing the

topological phases.

Raman 

laser 

Raman 

laser 

Figure 4.1: Schematic diagram of Raman-induced spin-orbit coupling: a pair of

counter-propagating laser couples together two internal atomic states which are

here labeled by |↑〉 and |↓〉.

This scheme was first used by Spielman’s group to engineer the SOC in 87Rb

Bose-Einsten condensates [93]. It was subsequently implemented in the 6Li [94] and

40K [95] Fermi gases. This Raman scheme, however, suffers from the heating effect

due to off-resonant light scattering, i.e., the spontaneous emission. As a result, the
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topological phases realized using this scheme have short lifetimes.

4.2 Dip-in Dip-out Protocol

We propose a dynamical solution to the problem of studying the short-lived

topological phase by starting the system in its long-lived nontopological phase and

driving it into the topological phase and back. The rapid nature of this process

obviates heating; this is expected to make our proposal easily implementable in

experiments. The process involves crossing the TQPT between the phases, which

supports gapless excitations. Driving through the gapless phase transition produces

excitations in the gapped phase via the Landau-Zener (LZ) transitions [96, 97] with

a defect density that demonstrates KZ scaling [98, 99, 100, 101, 102, 103, 104,

105, 106, 107]. More interestingly, our dip-in-dip-out strategy, where the system is

driven through the phase transition and back, leads to the Stückelberg interference

phenomenon [108, 109] between the two LZ transitions, which in turn results in

oscillations of the momentum and energy distribution of the excitations with the

ramp rate. In many cases the unique ramp-rate dependence of the excitations’

momentum distributions can be measured via standard time-of-flight techniques.

This provides an experimentally viable test for the dynamical fingerprints of TQPT,

whose equilibrium properties would otherwise be hard to access.

While this general idea applies to many phase transitions in ultracold bosonic

and fermionic systems [105, 110, 111, 112], we focus on phase transitions whose

dynamical properties are well understood [112, 113, 114, 115, 116, 117, 118, 119, 120,
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121, 122, 123]. In particular, we apply this idea to the 1D topological superfluids

(TSFs) [113, 114, 115] in systems of ultracold atoms which host the Majorana modes.

4.3 Time-Dependent Bogoliubov-de Gennes Equation

We study 1D fermionic atoms with SOC and attractive s-wave interactions.

The SOC is generated by a pair of counterpropagating Raman lasers (see Fig. 4.1),

with recoil wave vector kr, energy Er = ~2k2
r/2m, and characteristic time scale

tr = ~/Er, giving the SOC strength α = ~2kr/m. These lasers couple two hy-

perfine atomic states representing the pseudospins σ =↑, ↓ (for example, |↑〉 ≡

|f = 9/2,mF = −7/2〉 and |↓〉 ≡ |f = 9/2,mF = −9/2〉 in 40K atoms [124]). The

transverse Zeeman potential strength VZ = ΩR/2, set by the Raman coupling

strength [93], is varied in time to drive the TQPT. Here we consider varying ΩR

linearly from 0 to ΩRf in a time tramp, and back in the same time: a piecewise

linear ramp protocol of duration 2tramp [see blue curve in Fig. 4.2(a)]. Because our

protocol starts with Raman lasers off (ΩR = 0), it is straightforward to experimen-

tally realize a long-lived conventional superfluid (SF) as the initial state [125]; as we

will see below, tramp is much less than the system’s lifetime (either limited by the

spontaneous emission of the Raman lasers or inelastic scattering from the Feshbach

resonances).

Written in the Nambu basis Ψk(t) = (ψk↑(t), ψk↓(t), ψ
†
−k↓(t),−ψ†−k↑(t))>, the

system’s Hamiltonian is H(t) = 1
2

∫
dkΨk(t)

†HBdG,k(t)Ψk(t), where ψkσ(ψ†kσ) denote

the annihilation (creation) operators for fermions with momentum k and spin σ.
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The BdG Hamiltonian is

HBdG,k(t) = ξk(t)τz + αkτzσz +
ΩR(t)

2
σx + ∆(t)τx, (4.1)

where σ and τ are vectors of Pauli operators acting on spin and particle-hole space,

respectively. Here, ξk(t) = ~2k2/2m − µ(t) combines the kinetic energy and the

chemical potential µ(t), which is determined self-consistently to keep the number of

atoms fixed.

The mean-field pairing potential

∆(t)eiϑ(t) = g1D

∫
〈ψk↑(t)ψ−k↓(t)〉dk (4.2)

is also self-consistently determined, where 〈. . . 〉 denotes averaging with respect

to the initial thermal distribution. The attractive effective 1D coupling constant

g1D < 0 can be controlled by Feshbach tuning the three-dimensional (3D) scat-

tering length [126, 127, 128]. In Eq. (4.1), we used the transformed basis where

ψkσ(t)→ ψkσ(t) exp[iϑ(t)/2], giving a real pairing potential: ∆(t) exp[iϑ(t)]→ ∆(t).

The instantaneous quasiparticle excitation spectrum of the BdG Hamiltonian

[see Fig. 3.14] consists of four bands, En,k = sgn(n)ε(−1)n,k, where n = ±1,±2 and

ε2±,k(t) =
ΩR(t)2

4
+ ∆(t)2 + ξk(t)

2 + α2k2 (4.3)

±2

√
ξk(t)2

[
α2k2 +

ΩR(t)2

4

]
+ ∆(t)2

ΩR(t)2

4
.
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Figure 4.2: (a) Time profiles of ΩR(t), α̃(t)kr, ∆(t), Ẽ0(t), and µ(t) for tramp =

1000tr. The dashed lines denote the times whose instantaneous band diagrams are

plotted in (b). The red dashed lines mark the critical times when TQPT happens,

and the shaded region corresponds to the topological regime. Plots are obtained

from numerically solving the td-BdGE [Eq. (4.12)] self-consistently [Eqs. (4.13a)

and (4.13b)] with initial parameters: ΩR(0) = 0, ∆(0) = 2Er and µ(0) = 0 for

SOC strength α = 2Er/kr and tramp = 1000tr. (b) Quasiparticle spectra at differ-

ent Zeeman potentials ΩR. From top to bottom, the energy bands are labeled by

E2,k, E1,k, E−1,k, and E−2,k. The parameters are as follows: (i) ΩR = 0, ∆ = 2Er,

µ = 0, (ii) ΩR = 1.56Er, ∆ = 1.93Er, µ = −0.02Er, (iii) ΩR = 2.8Er, ∆ = 1.4Er,

µ = −0.14Er, and (iv) ΩR = 3.12Er, ∆ = 0.91Er, µ = −0.3Er.

Since HBdG,k respects particle-hole symmetry, the spectrum is symmetric around

E = 0. As shown in Fig. 4.2(b), the instantaneous energy spectrum is gapped for
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k 6= 0; however, for k = 0 the gap closes when ε−,0(t) = ΩR(t)/2−
√

∆(t)2 + µ(t)2 =

0. Such a gap closing without change in the symmetry of the ground state (which

remains SF for all ΩR) signifies a TQPT between topological [ε−,0(t) > 0] and

conventional SF phases [ε−,0(t) < 0]. For ΩR = 0, the positive and negative bands

are doubly degenerate at k = 0; any nonzero ΩR lifts this degeneracy.

To study the dynamics around the TQPT, we propose to prepare conventional

SFs [ε−,0(t) < 0] at nonzero temperature T . We then drive the system through the

TQPT by changing ΩR according to our ramp protocol with ΩRf > 2
√

∆2
f + µ2

f

(where the subscript f denotes the quantities at time t = tramp) such that the ramp

crosses the TQPT (see Fig. 4.2).

4.3.1 Analytical Results

We first analytically study the dynamics, considering the simple case of slow

ramps at T = 0. In this limit, excitations occur near k = 0 and at the transition

times t = tc(1,2), given by the roots of ΩR(tc) = 2
√

∆(tc)2 + µ(tc)2, where the Fermi

gas changes from conventional to topological SF and vice versa. For ~2k2/2m� αk,

we approximate

HBdG,k(t) ≈ αkτzσz − µ(t)τz +
ΩR(t)

2
σx + ∆(t)τx. (4.4)

In this limit, excitations occur only between the E1,k and E−1,k bands [see Fig. 4.2(b)].

At k = 0, the eigenenergies are ±Ẽ0(t), where Ẽ0(t) = |
√

∆(t)2 + µ(t)2 − ΩR(t)/2|
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with eigenstates

φ̃+
0 (t) =




cos θ(t)
2

sin θ(t)
2



⊗ 1√

2




1

1



, (4.5a)

φ̃−0 (t) =




− sin θ(t)
2

cos θ(t)
2



⊗ 1√

2




1

−1



, (4.5b)

where φ̃±0 (t) corresponds to positive and negative bands [with pseudospin |±〉 ≡

(|↑〉 ± |↓〉)/
√

2] and cos θ(t) ≡ µ(t)/
√

∆(t)2 + µ(t)2. In the subspace of these eigen-

states, the effective low-energy Hamiltonian near k = 0 is

H̃BdG,k(t) = α̃(t)kηx + Ẽ0(t)ηz, (4.6)

where α̃(t) = α sin θ(t), ηx = φ̃+
0 (t)[φ̃−0 (t)]†+H.c., ηz = φ̃+

0 (t)[φ̃+
0 (t)]†− φ̃−0 (t)[φ̃−0 (t)]†,

and 2ηy = −i[ηz, ηx]. Equation (4.6) is a two-parameter driven Hamiltonian [129]

with instantaneous energy eigenvalues ±Ẽk(t), where Ẽk(t) =

√
Ẽ0(t)2 + α̃(t)2k2.

We analyze the dynamics of the TQPT using H̃BdG,k(t), where the single-

particle state of the system at time t is given by

φ̃k(t) = b+
k (t)




w+
k (t)

sgn(k)w−k (t)


+ b−k (t)



− sgn(k)w−k (t)

w+
k (t)


 , (4.7)

with the initial conditions b+
k (0) = 0 and b−k (0) = 1. These two-component vectors
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are expressed in the basis φ̃±0 with w±k (t) =

√
[1± Ẽ0(t)/Ẽk(t)]/2. The Schrödinger

equation for the system then leads to

i~∂tbk(t) = H̃BdG,k(t)bk(t), (4.8)

where bk(t) = (b+
k (t), b−k (t))>.

We make further analytical progress by ignoring the self-consistency condition

so that the system can be treated as a collection of two-level systems for each (k,−k)

pair and use the adiabatic-impulse approximation [109, 130, 131, 132, 133] that de-

scribes such periodic dynamics accurately for low frequency and/or large amplitude

drives. Within this approximation, excitations are produced only near the critical

gap-closing times tc(1,2) when the system enters the impulse regime; otherwise, the

dynamics occur adiabatically in each band and the system accumulates a dynamical

phase U(tf , ti) = exp[−iηz
∫ tf
ti
dtẼk(t)/~]. In the former regime, near the gap-closing

times tc(1,2), excitations are produced and the evolution operator is [109]

N =
√

1− pk[i sin(ϕS,k)− ηz cos(ϕS,k)]− iηy
√
pk, (4.9)

where pk = exp (−2πδk) is the probability of excitation formation in each pas-

sage through the critical point [96, 97] with δk = (αk)2/(2~|dẼ0(t)/dt|tc), and

ϕS,k = π/4 + δk(ln δk − 1) + arg Γ(1− iδk) is the Stokes phase originating from the

interference of the parts of the system wave function in the instantaneous ground

and excited states at t = tc(1,2) with arg Γ(1− iδk) being the argument of the gamma

99



function [134]. These results give the probability of defect formation

P ex
k = 4pk(1− pk) sin2 ΦSt,k (4.10)

at t = 2tramp, where ΦSt,k = ζ2k+ϕS,k is the Stückelberg phase and ζ2k =
∫ tc2
tc1

dtẼk(t)/~

is the dynamical phase factor accumulated during passage between the two crossings

of the gap-closing points [109, 132]. Since the excitations occur near k ∼ 0 where the

E±1,k band approximately corresponds to pseudospin |±〉 (along the x direction), P ex
k

is directly related to changes in the SRMD δnk± measured along the pseudospin x di-

rection. Furthermore, within these approximations, |dẼ0(t)/dt|tc(1,2) = ΩRf/(2tramp),

and it can be shown that P ex
k is a function of k

√
tramp only (see Appendix C for the

derivation). Thus, the integrated change of the SRMD δñ± =
∫
dkδnk± displays

KZ scaling ∼ √tramp of defect density for a system dynamically evolved through the

TQPT.

4.3.2 Numerical Results

We now show that these properties persist even when the self-consistency

conditions for ∆(t) and µ(t) are imposed, as well as at nonzero T (see Fig. 4.3).

We solve for the dynamics of the single-particle density matrix

ρabk (t) = 〈Ψ†ak (t)Ψb
k(t)〉 (4.11)

self-consistently and at finite initial temperature, where a, b denote the indices of
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elements in the Nambu basis. The density matrix obeys the equation of motion

[Eq. (4.1)]

i~∂tρk(t) = [HBdG,k(t), ρk(t)], (4.12)

subject to the self-consistency conditions (see Appendix D for the derivation)

∆(t) =
g1D

4

∫
dkTr(ρk(t)τx), (4.13a)

µ(t) =
g1D

4∆(t)

∫
dkTr (ρk(t)Λk(t)) , (4.13b)

where Λk(t) = (~2k2/2m+ αkσz) τx − ∆(t)τz. Our system begins in the thermal

state

ρk(t) =
∑

n
En,k(0)<0

fn,kχn,k(t)χ
†
n,k(t) + (1− fn,k)χ̃n,−k(t)χ̃†n,−k(t), (4.14)

where fn,k = [exp(En,k(0)/kBT ) + 1]−1 is the Fermi function of the initial Hamilto-

nian, and kB is Boltzmann’s constant. The wave function χn,k(t) with its particle-

hole conjugate χ̃n,k(t) = τyσyχ
∗
−n,−k(t) begins as eigenfunctions of the initial Hamil-

tonian and evolves according to i~∂tχn,k(t) = HBdG,k(t)χn,k(t). Figure 4.2(a) shows

the resulting time profiles of the pairing potential and chemical potential obtained

from solving the td-BdGE (see Appendix E for remarks on the numerical simula-

tion).
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We numerically solved the td-BdGE for the change in the SRMD

δnk± = Tr

(
[ρk(2tramp)− ρk(0)]

[(
1 + τz

2

)
⊗
(

1± σx
2

)])
. (4.15)

Figure 4.3 shows that δnk− still exhibits Stückelberg oscillations even with inclusion

of the self-consistency conditions and at T > 0. Furthermore, for tramp � ~/∆f ,

we still see δnk± ∼ k
√
tramp (see Appendix F for an explicit demonstration of the

scaling), and the integrated change in SRMD δñ± =
∫
dkδnk± therefore scales with

√
tramp, thus, showing the robustness of such interference phenomenon in the present

system. We verified that these features appear only if ΩRf > 2
√

∆2
f + µ2

f , where

the ramp takes the system through the TQPT; thus both the KZ scaling and the

presence of Stückelberg oscillations mark the TQPT. In our calculation, we ignored

the effect of phase fluctuation as this effect can be suppressed by coupling an array

of 1D SOCFGs [135, 136, 137, 138].

The parameters used for the plots in Fig. 4.3 are realistic for 1D SOCFG

experiments. For experiments with 40K, the Raman laser beams, coupling the |↑〉 ≡

|9/2,−7/2〉 and |↓〉 ≡ |9/2,−9/2〉 states, have laser wavelength λr = 768.86 nm,

giving the recoil energy Er = h× 8.445 kHz, and time tr = ~/Er ≈ 20 µs [124]. The

single-body decay time due to photons scattering from the Raman lasers is about 60

ms [124], and the lifetime owing to three-body recombination is about 200 ms [141].

We consider SOCFGs with Fermi energy EF = Er. The 1D Fermi gas criterion is

satisfied when EF < ~ω⊥; for the lateral trapping frequency ω⊥/2π = 5 × 104 Hz,

which corresponds to characteristic harmonic oscillator length d⊥ =
√

~/mω⊥ ≈
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Figure 4.3: Change in the SRMD δnk− for spin |−〉 = (|↑〉 − |↓〉) /
√

2 as a function

of tramp/tr and k/kr. For large tramp, the width of the oscillation envelopes scales

with 1/
√
tramp as shown by the red dashed line. δnk− is symmetric with respect

to k = 0; thus, for illustration purposes, we only plot δnk− for k ≥ 0. Note that

δnk+ = −δnk−. Inset: Integrated change in SRMD δñ− =
∫
dkδnk− as a function

of tramp/tr exhibiting oscillations, with the amplitude of the oscillations at large

tramp scaling like
√
tramp, as can be read off directly from the y axis. The plots are

obtained by numerically solving Eq. (4.12) self-consistently [Eqs. (4.13a) and (4.13b)]

with initial conditions µ(0) = 0, ∆(0) = 2Er, and ΩR(0) = 0 for a temperature

kBT = 0.1EF (which is below the critical temperature Tc = 0.19TF [139, 140]), SOC

strength α = 2Er/kr, and ΩRf = 3.12Er.

1345a0, where a0 is the Bohr radius; the parameters used in the calculation for

the plots in Fig. 4.3 correspond to linear density ñ ≈ 5 µm−1 and 1D interaction

strength g1D ≈ −0.73Erλr (or 3D scattering length a3D ≈ −2870a0 [128]). For these

values, Fig. 4.3 shows that the Stückelberg oscillations and KZ scaling behavior of
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the SRMD can be observed within the experimentally limiting single-body decay

time (≈ 3000tr) and thus is feasible experimentally.

4.4 Conclusion

In this chapter we study the dynamics of 1D SOCFGs quenched across the

TQPT from conventional to TSFs and back. Such a ramp allows us to mitigate

spontaneous emission effects from SOC that destabilize the TSF. We found that for

sufficiently slow ramps, the change in the SRMD has Stückelberg oscillations and

exhibits KZ scaling with the ramp time. Both the oscillations and scaling behaviors

can be measured experimentally from the time-of-flight measurement and thus can

be used to verify the gap closing of Bogoliubov quasiparticles spectrum at zero

momentum. Such a gap closure is a unique signature for the TQPT.

Our dip-in-dip-out protocol is quite general and can be gainfully used for ob-

serving features related to quantum phase transitions between long-lived and short-

lived phases of ultracold bosonic and fermionic atoms. In addition, it provides a

route to escaping the heating problem, which is one of the major obstacles in mea-

suring properties of such systems in or near their short-lived phases. Moreover, our

work also shows that such a protocol applied to ultracold atom systems, including

the one we analyzed in detail, may provide us with test beds for observation of

both KZ scaling [100, 101, 102, 103, 104, 105, 106, 107] and Stückelberg interference

phenomenon [142, 143, 144].
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Chapter 5

Conclusion

In recent years, there has been a great interest in realizing topological super-

conductors which host MZMs at the boundaries or defects. This is driven mainly by

the prospect of using MZMs as the building blocks for a fault-tolerant topological

quantum computer.

In Chapter 1, we gave an introduction of MZM and topological supercon-

ductors. In particular, we focused on two models of topological superconductors,

namely, the spinless p-wave superconductor and the spin-split spin-orbit-coupled su-

perconducting, which are the models studied in this thesis. We also reviewed several

signatures of the topological superconductors and the experimental progress done

in detecting the MZMs.

In Chapter 2, we generalized the BTK formalism to calculate analytically the

conductance in NS junctions involving topological superconductors. We provided a

comprehensive analysis of the conductance spectroscopy across the TQPT. We show

that in the topological regime, the topological NS junction necessarily gives rise to a

2e2/h zero-bias conductance at zero temperature. Another important finding of our

work is that when the junction transparency is not small, the zero-bias conductance

can be quantized without developing a peak in the spectra.
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In Chapter 3, we calculated the current and conductance of SNS junctions

involving topological superconductors using the scattering matrix formalism. We

explored various combinations of the SNS junctions where none, one or both of the

superconductors can be in the topological regime. We verified that the MZM con-

ductance, probed using an s-wave superconducting lead with a gap ∆s, is quantized

at (4−π)2e2/h at the gap-bias voltages eV = ±∆s in the tunneling limit (small junc-

tion transparencies). In this limit where only single Andreev reflections contribute

to the current, the conductance for voltages e|V | < ∆s is zero. However, when the

junction transparency is not small, there is a finite conductance for e|V | < ∆s aris-

ing from MAR. The conductance at eV = ±∆s in this case is no longer quantized.

Moreover, we found that unlike the case of s-wave superconducting probe lead with

a BCS singularity (where
∑

σ=↑,↓ |uσ|2 =
∑

σ=↑,↓ |vσ|2 at the gap edge with u and v

being the electron and hole component of the BdG superconducting wavefunction

at the gap edge), the MZM tunneling conductance measured using a superconduct-

ing lead without a BCS singularity has a non-universal value which decreases with

decreasing junction transparencies. We have also shown that for some parameter

values, the conductance of a zero-energy ABS may look very similar to that of a

Majorana, such that the two cases may not be distinguishable within experimental

resolution. This implies that, despite other benefits of using SNS junctions to probe

MZMs, conductance quantization may not be a robust and definitive experimental

signature. Finally, we showed that for finite-energy ABSs, the conductance peaks

shift away from the gap bias voltage eV = ±∆lead to a larger value set by the ABSs

energy.

106



In Chapter 4, we proposed a bulk probe to detect the topological phase. Specif-

ically, we demonstrated that dynamical probes can be used to detect the topological

quantum phase transition. The detection of such a phase transition would consti-

tute smoking-gun evidence of the unique bulk properties of the topological phase.

Such a bulk probe is more reliable than the local detection applied so far in the

solid state, which is susceptible to disorder effects. Our dip-in dip-out protocol,

where the system is prepared in its long-lived non-topological phase and driven

into the topological phase and back, mitigates the heating problem due to sponta-

neous emission. We showed that the excitations’ momentum distributions exhibit

Stückelberg oscillations and Kibble-Zurek scaling characteristic of the topological

phase transition.

In this thesis, we have investigated several signatures of Majorana zero modes.

We provide a comprehensive analysis of each signature by studying systems with and

without MZMs. Our work has important implications for the extensive current ex-

perimental efforts toward detecting topological superconductivity and MZMs. More-

over, our detailed analysis for each of the detection scheme should be a useful guide

for future experimental work in detecting the MZMs in the solid-state and ultracold

atom settings.
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Appendix A

Remarks on Numerical Calculation for The

Conductance in SNS Junctions

In this appendix we give a few remarks for the numerical calculation of the

conductance in the SNS junctions discussed in Chapter 3. The scattering matrices

at the left (SL) and right NS interfaces (SR) [Eq. (3.1)] can calculated numerically

from Kwant [79] by constructing the tight-binding models for the corresponding NS

junctions. Since the scattering matrices given by Kwant are calculated using the

current amplitudes with arbitrary phases at each energy, one can fix the phases by

setting the largest element of the current amplitudes for every energy to be real.

We note that Eqs. (3.1)(a) and (3.1)(c) are invariant under the transformation:

tinL,R(E)→ tinL,R(E)U †L,R(E),

J in
L,R(E)→ UL,R(E)J in

L,R(E), (A.1)

where tinL,R(E) is the transmission matrices at the left and right NS interfaces,

UL,R(E) are unitary matrices, and J in
L,R(E) are the input current amplitudes from

the left and right NS interfaces. By polar decomposition, there exists a unitary
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matrix UL,R(E) such that tinL,R(E) = t̃inL,R(E)U †L,R(E), where

t̃inL,R(E) =
√
tinL,R(E)[tinL,R(E)]† =

√
1− rL,R(E)r†L,R(E), (A.2)

with rL,R being the reflection matrices at the left and right NS interfaces. For

computational efficiency, we obtained only the reflection matrices rL,R from Kwant

and used Eq. (A.2) to calculate the transmission matrix.

For the numerical evaluation of Eq. (3.4), we used an energy cutoff Ec in the

summation over energy where Ec is chosen such that the calculation converges for

each voltage V . The introduction of the energy cutoff sets the following constraint

on the scattering matrix:

SeN(E,E + eV ) = ShN(−E,−(E + eV )) = −1, (A.3)

for all E > Ec. The above constraint is required for the unitarity of the scattering

matrices to hold.
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Appendix B

Proof for The Non-negativity of The Current in

SNS Junctions

In this appendix we give a proof for the non-negativity of the current in SNS

junctions. The current amplitude in the normal region is given by

j̃tot
`,ν (E) = j̃e`,ν(E) + j̃h`,ν(E), (B.1)

where

j̃τ`,ν(E) =
∑

σ=↑,↓
jτ,σ,+`,ν (E)− jτ,σ,−`,ν (E), (B.2)

is the electron/hole (τ = e/h) component of the current in the left (` = NL) or right

(` = NR) normal region. Since the electron (hole) energy increases (decreases) by

eV every time it passes from the left to the right, we have

j̃eNL,ν(E) = j̃eNR,ν(E + eV ), (B.3a)

j̃hNL,ν(E) = j̃hNR,ν(E − eV ). (B.3b)
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From Eqs. (B.1) and (B.3), we obtain the following recurrence relation

j̃eNL,ν(E) = j̃tot
NL,ν(E)− j̃tot

NR,ν(E − eV ) + j̃eNL,ν(E − 2eV ), (B.4)

which implies that

j̃eNL,ν(E) =
∞∑

n=0

j̃tot
NL,ν(E − 2neV )− j̃tot

NR,ν(E − (2n+ 1)eV ). (B.5)

The total electrical current is given by

Iν =
2e

h

∫
dE
∑

m

[
j̃eNL,ν(E + 2meV )− j̃hNL,ν(E + 2meV )

]
. (B.6)
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Multiplying the integrand of Eq. (B.6) by V , we have the power dissipated by the

SNS junction as

IνV =
2eV

h

∫
dE
∑

m

[
2j̃eNL,ν(E + 2meV )− j̃tot

NL,ν(E + 2meV )
]
,

=
2eV

h

∫
dE
∑

m

{
2
∑

n≥0

[
j̃tot
NL,ν(E + 2(m− n)eV )− j̃tot

NR,ν(E + (2(m− n)− 1)eV )
]

− j̃tot
NL,ν(E + 2meV )

}
,

=
2eV

h

∫
dE
∑

m

{
2
∑

m′≤m

[
j̃tot
NL,ν(E + 2m′eV )− j̃tot

NR,ν(E + (2m′ − 1)eV )
]

− j̃tot
NL,ν(E + 2meV )

}
,

=
2eV

h

∫
dE

{
2
∑

m′

(mmax −m′ + 1)
[
j̃tot
NL,ν(E + 2m′eV )− j̃tot

NR,ν(E + (2m′ − 1)eV )
]

−
∑

m

j̃tot
NL,ν(E + 2meV )

}
,

=
2eV

h

∫
dE
∑

m

[
(2m− 1)j̃tot

NR,ν(E + (2m− 1)eV )− 2mj̃tot
NL,ν(E + 2meV )

]
≥ 0.

(B.7)

So, for V ≥ 0, we have Iν ≥ 0. In lines 1 and 2, we have made use of Eqs. (B.1)

and (B.5), respectively. In lines 4 and 5 of Eq. (B.7), we have used the current

conservation equation:

∑

m

[
j̃tot
NL,ν(E + 2meV )− j̃tot

NR,ν(E + (2m− 1)eV )
]

= 0, (B.8)

and the fact that ±(E + neV )j̃tot
NL/NR,ν(E + neV ) ≥ 0 is the power dissipated by

current j̃tot
NL/NR,ν .
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Appendix C

Adiabatic-Impulse Approximation

In this appendix we derive the Kibble Zurek scaling of the excitations’ mo-

mentum distribution of the 1D SOCFGs subjected to the dip-in dip-out proto-

col described in Chapter 4. The equation of motion i~∂tbk(t) = H̃BdG,k(t)bk(t)

[Eq. (4.8)], where bk(t) = (b+
k (t), b−k (t))> [Eq. (4.7)] and H̃BdG,k(t) = α̃(t)kηx +

Ẽ0(t)ηz [Eq. (4.6)] with ηx and ηz being the Pauli matrices acting on the subspace

φ̃±0 (t) [Eq. (4.5)], can be expressed in form of two-decoupled second-order differential

equations as

{
−~2∂2

t − Ẽk(t)2 + i~
[
∓∂tẼ0(t)± Ẽ0(t)∂t −

∂tα̃(t)

α̃(t)

[
i~∂t ∓ Ẽ0(t)

]]}
b±k = 0.

(C.1)

Assuming no self-consistency, we can use the adiabatic-impulse approximation [109]

to write Eq. (C.1) as bk(t) = V bk(0) where the total evolution operator V is decom-

posed into adiabatic U and impulse N operators. The adiabatic (impulse) regime

corresponds to the time duration far away from (near) the critical gap-closing time
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tc(1,2). In matrix form we can write down U as

Uj =



e−iζjk 0

0 eiζjk


 , j = 1, 2, 3, (C.2)

where the dynamical phases are given by ζ1k =
∫ tc1

0
dtẼk(t)/~, ζ2k =

∫ tc2
tc1

dtẼk(t)/~,

and ζ3k =
∫ 2tramp

tc2
dtẼk(t)/~. The impulse operator N can be written as [109]

N =




√
1− pke−iϕ̃S,k −√pk
√
pk

√
1− pkeiϕ̃S,k


 , (C.3)

where pk = exp(2πδk) is the LZ transition probability [96, 97] at each critical time,

δk = (αk)2/(2~|dẼ0(t)/dt|tc), ϕ̃S,k = ϕS,k − π/2 and ϕS,k = π/4 + δk(ln δk − 1) +

arg Γ(1−iδk). The Stokes phase ϕS,k increases monotonously from 0 in the adiabatic

limit (δk → ∞) to π/4 in the diabatic or fast driving limit (δk → 0), as seen from

the asymptotic argument of the gamma function [134]

arg Γ(1− iδk) ≈





Cδk, δk � 1,

−π
4
− δk(ln δk − 1), δk � 1,

(C.4)

where C ≈ 0.58 is the Euler constant. At the end of the ramp protocol, the total

evolution operator becomes

V = U3NU2NU1 =



βk −γ∗k

γk β∗k


 , (C.5)
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with matrix elements

βk = (1− pk)e−iζ+k − pke−iζ−k ,

γk =
√

(1− pk)pkei(ϕ̃S,k+2ζ3k)
(
e−iζ+k + e−iζ−k

)
, (C.6)

where the phases are given by ζ+k = ζ1k + ζ2k + ζ3k + 2ϕ̃S,k and ζ−k = ζ1k− ζ2k + ζ3k.

The probability of defect formation at the end of the ramp protocol (at t = 2tramp)

is then given by

P ex
k = |γk|2 = 4pk(1− pk) sin2 ΦSt,k, (C.7)

where ΦSt,k = ζ2k + ϕS,k is the Stückelberg phase. Note that in the case of no-

self consistency, |dẼ0(t)/dt| = ΩRf/(2tramp), and consequently δk is a function of

k
√
tramp. Since pk and ϕS,k are functions of δk, P

ex
k is also a function of k

√
tramp. As

a result, the defect density displays Kibble-Zurek scaling ∼ √tramp.
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Appendix D

Self-Consistency Condition

In this appendix we derive the self-consistency condition for the chemical po-

tential in the td-BdGE used in Chapter 4. The self-consistent chemical potential

µ(t) [Eq. (4.13b)] is derived from the constraint on the particle density ñ, i.e.,

∫
dkTr

(
ρk(t)

(
1 + τz

2

))
= ñ. (D.1)

Taking the time derivative of Eq. (D.1), i.e., i~∂tρk(t) = [HBdG,k(t), ρk(t)], and using

the cyclic property of trace, we have

1

2

∫
dkTr([HBdG,k(t), ρk(t)]τz) = 0

1

2

∫
dkTr([τz,HBdG,k(t)]ρk(t)) = 0

∫
dkTr(τyρk(t)) = 0. (D.2)
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Differentiating Eq. (D.2) with respect to time and using the cyclic property of trace,

we then obtain

∫
dkTr(τy[HBdG,k(t), ρk(t)]) = 0

∫
dkTr([HBdG,k(t), τy]ρk(t)) = 0

∫
dkTr

(
(~2k2/2m− µ(t) + αkσz)τxρk(t)−∆(t)τzρk(t)

)
= 0. (D.3)

Noting that g1D

∫
dkTr(ρk(t)τx)/4 = ∆(t), we then have the self-consistent chemical

potential µ(t) as

µ(t) =
g1D

4∆(t)

∫
dkTr

(
(~2k2/2m+ αkσz)τxρk(t)−∆(t)τzρk(t)

)
. (D.4)

117



Appendix E

Remarks on The Numerical Simulation of The

Time-Dependent Bogoliubov-de Gennes Equation

In Sec. 4.3.2, the td-BdGE is given in terms of the single-particle density

matrix ρk(t). The td-BdGE can also be written in terms of the wave function

χn,k(t) = (un,k↑(t), un,k↓(t), vn,k↓(t),−vn,k↑(t))> as

i~∂tχn,k(t) = HBdG,k(t)χn,k(t), (E.1)

subject to the self-consistency conditions

∆(t) =
g1D

4

∑

n
En,k(0)<0

∫
dkI−n,k(t), (E.2a)

µ(t) =
g1D

4∆(t)

∑

n
En,k(0)<0

∫
dk

[
~2k2

2m
I−n,k(t) + αkI+

n,k(t)−∆(t)Qn,k(t)
]
, (E.2b)

where

I±n,k(t) = (2fn,k − 1){[v∗n,k↓(t)un,k↑(t)± un,k↓(t)v∗n,k↑(t)] + H.c.}, (E.3a)

Qn,k(t) = (2fn,k − 1)
∑

σ

(|un,kσ|2 − |vn,kσ|2), (E.3b)

118



with fn,k = [exp(En,k(0)/kBT ) + 1]−1 being the Fermi function of the initial Hamil-

tonian.

The self-consistent solution of the td-BdGE involves solving a large number of

coupled time-dependent differential equations (one for each k point). To reduce the

number of time-dependent variables, we first calculated the self-consistent ∆(t) and

µ(t) in the adiabatic regime by solving the time-independent BdG equation. The

td-BdGE was then solved self-consistently for a small range of states near k = 0

where excitations occur. Since the ±k eigenstates are related by Xn,−k = σxXn,k,

we accelerated the computation by focusing on k ≥ 0. Solving the td-BdGE self-

consistently with the Zeeman potential ΩR(t) varied according the piecewise linear

ramp protocol (see blue curve in Fig. 4.2(a)), we obtained α̃(t), ∆(t), Ẽ0(t), and

µ(t) as shown in Fig. 4.2(a).

119



Appendix F

Spin-Resolved Momentum Distribution

In the appendix we show explicitly the Kibble Zurek scaling of the spin-resolved

momentum distribution in Fig. 4.3. The change in spin-resolved momentum distri-

bution δnk− shows Stückelberg oscillations with the ramp time tramp and for large

tramp, δnk− scales with
√
tramp, as shown in Fig. 4.3 in Chapter 5. In Fig. F.1, we

demonstrate the scaling more explicitly by plotting δnk− as a function of scaled

momentum k/kr
√
tramp/tr.
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Figure F.1: Change in the SRMD δnk− for pseudospin |−〉 = (|↑〉 − |↓〉) /
√

2 as a

function of tramp/tr and k/kr
√
tramp/tr. Note that δnk− is a function of k

√
tramp

only for large tramp, as seen from its almost flat nature for small k/kr and the

width of its oscillation envelopes. The scaling of δnk− can be read off directly

from the x axis. δnk− is symmetric with respect to k = 0; thus, for illustration

purposes, we only plot δnk− for k ≥ 0. The plots are obtained by numerically solving

the td-BdGE self-consistently with initial conditions ΩR(0) = 0, ∆(0) = 2Er and

µ(0) = 0 for a temperature kBT = 0.1EF (which is below the critical temperature

Tc = 0.19TF [139, 140]), SOC strength α = 2Er/kr, and ΩRf = 3.12Er. Note that

δnk+ = −δnk− due to particle number conservation.
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