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Many desired micro aerial vehicle missions are significantly larger than the mis-

sion endurance of the vehicles. Due to extreme constraints on size, weight and power

available, small scale air vehicles are highly sensitive to atmospheric disturbance.

This work introduces a control-theoretic framework that models the magnitude of

the vehicle’s disturbance sensitivity and observability in conjunction with each other

under a gramian-based formulation. To implement atmospheric gust response mod-

ulatiom, a “gramian-aware” flight control law is designed using open loop plant

models across various scales and assuming perfect gust measurement. Time-domain

system identification was conducted using data collected from repeatable automated

flights in a motion capture arena in order to derive the plant model. Closed-loop

simulation results as well as experimental data modulating the plant using cruise

speed are presented to illustrate that the gramian-based control laws can be utilized

to facilitate atmospheric energy scavenging in gusting environments.
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Chapter 1: Introduction

1.1 Motivation

Small unmanned aerial systems and micro aerial vehicles (MAVs) have been

finding increasing application in a wide range of both civilian and military usage due

to their portability and advances in microtechnology. Various niche areas ranging

from precision agriculture [1] and wildlife research [2] to military reconnaissance

for urban combat and counterterrorist operations [3] have increasingly incorporated

these vehicles into their missions while simultaneously furthering the demand on the

physical capacities of the vehicles. At the operational level, the physical constraints

of size, weight and power remain the major contributing factor towards limiting

mission endurance and range. A recent survey of small quadrotor applications by

Mulgaonkar et al. [4] concluded that the battery is the most significant contributor

to the vehicle mass, and therefore the flight time of the vehicle is closely linked with

the mass and inertia of the vehicle.

Moreover, the mission endurance and vehicle stability of these systems can

both be strongly affected by atmospheric gusts [5]. The scale and duration of these

impactful gusts, as can be generated in narrow urban environments where such sys-

tems are desired for application, need not be noticeable even at a human level in
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order to affect performance due to the vehicle’s relatively small mass and inertia;

thereby causing it to use its own energy to actively combat or reject the gust effects.

Working within the physical constraints such as battery power and weight, innova-

tive control methods may have a role in bringing about this desired improvement in

endurance.

Previous work has investigated the effect of variables such as mass distribution

or cruise speed on traditional flight control [6]. The goal in these studies has been

flight stabilization and control, but at the small scale, gust rejection remains a major

challenge. Recent and current work has produced methods of sensing atmospheric

gusts [7] [8]. There is also potential for inertial sensing approaches that are able

to measure motion caused by gusts. While accurate sensing of directionality and

scale of these MAV-level impactful gust structures remains an active research area,

the scope of this thesis considers the gust characteristic as a known quantity and

investigates the impact of autonomous flight algorithms designed using an open loop

vehicle dynamics model.

A gramian-based formulation of a well-characterized system can be used to

understand a vehicle’s gust response characteristics. Since a gust response gramian

denotes the gust-sensitive and gust-resistant directions of a vehicle [9], a feedback

controller that operates with knowledge of these directions may be able to dynami-

cally actuate the vehicle and alter its gust response properties, thereby potentially

taking advantage of the energy stored in the surrounding field. In this way, the

controller may act to maximize the vehicle’s response to favorable gusts, and mini-

mize the same response to an unfavorable gust, resulting in an overall energy gain

2



or equivalently a minimized energy loss given environmental conditions.

1.2 Background Work

A basic explanation of the gramian framework utilized in this project follows

through a definition of the disturbance and observability gramians. Consider a

linearized time-invariant state-space model,

ẋ = Ax+Bu+Dg, (1.1)

y = Cx, (1.2)

where x contains all the states of the system, u has the control inputs to the system,

g is the atmospheric disturbances to the vehicle, A is the plant dynamics matrix, B

is the input-feedthrough matrix, C is the output matrix and D is the disturbance

feedthrough matrix. If the controllability matrix of (A,D) is full rank, then the

steady-state disturbance gramian Xc is the solution to the Lyapunov equation

AXc +XcA
∗ +DD∗ = 0. (1.3)

The steady state disturbance gramian gives a measure of the reachable space

for unit-norm disturbance input acting on t ∈ [−∞, 0] in the form of the disturbance

ellipsoid as defined by the eigenvectors and eigenvalues of X
1
2
c . In Fig. 1.1, µi and

νi are the eigenvalues and eigenvectors, respectively of X
1
2
c . Thus, the disturbance

ellipsoid in Fig. 1.1 illustrates which states are more or less sensitive to a disturbance

[10]. Note that since the input is considered to be unit-norm, the disturbance
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Figure 1.1: The disturbance gramian ellipsoid encodes the magnitudes and direc-

tionality of gust response sensitivity.

gramian in itself and its ellipsoid representation is insensitive to sign changes in

input.

If the observability matrix of (A,C) is full rank, the observability gramian Yo

maps a unit state input at t ∈ [0,∞] and is the Lyapunov solution of:

A∗Yo + YoA+ C∗C = 0. (1.4)

The observability gramian also has its own ellipsoid, defined by the eigenvec-

tors and eigenvalues of Y
1
2
o . This ellipsoid’s size and direction provides insight into

the strength and weakness of the observability of the respective states.

Gusts, described as an unsteady airflow consisting of mixing of discrete bursts

and continuous turbulence, have been recognized for their negative impact on air-

craft stability and performance from the beginning days of flight. A major part of

the extant gust characterization work has focussed in the domain of large manned

aircraft, with development of the Von Karman and Dryden models [11] for upper

atmosphere flight, and only some extension to near-ground effects as necessitated by

landing and takeoff considerations. For the applications considered for MAV’s and
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SUAV’s, it has been recognized that the level of gust characterization, at the appli-

cable low altitudes and slow flight speeds resulting in much higher proportion for

the spatial turbulence to incoming flight velocity vector, is still in its infancy [12].

While early characterization and mitigation strategies attempted to simply scale

down the high-altitude high-Reynolds number knowledge in linear fashion resulting

in poor agreement with flight data [13], more recent high frequency and tighter grid

resolution measurements at the MAV scale [14] [15] [16] have allowed for better

insight into the path forward and challenges for proper gust handling. A subset of

the Beaufort scale [17] of gust classification is provided below in Table 1.1, with

the understanding that the majority of MAV and SUAV applications of interest are

from Level 0 till Level 4.

Level Wind Speed (m/s) Description

0 <0.3 Calm

1 0.3-1.59 Light Air

2 1.6-3.4 Light Breeze

3 3.4-5.4 Gentle Breeze

4 5.5-7.9 Moderate Breeze

Table 1.1: Subset of the Beaufort scale of interest to MAV and SUAV applications.

A variety of control strategies have been suggested for handling gusts at the

MAV and SUAV scale. Accurate and advanced knowledge of ambient gust fields

is crucial for an autonomous system to effectively modulate its response in order

to maintain stability and prevent performance degradation [18] [19]. Advances in
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material fabrication including smart structures has allowed for considering in-flight

wing planform alterations (span, sweep, and chord), out-of-plane transformation

(twist, dihedral/gull, and span-wise bending), and airfoil adjustment (camber and

thickness) [20]. Dillsaver et. al. [21] varied structural stiffness parameters on a

highly flexible aircraft as part of their closed-loop control to study and mitigate

gust response. Biologically inspired strategies of passive wing-articulation have also

been explored to indicate that such a method can increase robustness to gusts [22],

while also developing saturation limits on said articulation beyond which a rigid

platform performs better. Vance et. al. [23] noted that flapping wing mechanisms

in honeybees in a coordinated movement involving both symmetric and asymmetric

maneuvers added to passive aerodynamic damping in the insects and aiding in their

gust mitigation performane. In another flapping wing mechanism study [24], the

maximum gust tolerance in terms of mean speed is compared across different con-

trollers and lateral gusts are found to be far more impactful than longitudinal gusts.

Reducing gust susceptibility was also the goal of a study by Singh et. al [25] where

different novel wing configurations ranging from hole in wings to elastically hinged

spoilers and variable dihedral angles were compared to each other in development

of a gust-resistant wing.

Previous work on gust responses of MAVs has identified disturbance gramians

and sought to attenuate gusts by juxtaposing the disturbance-sensitivity space with

the controllable space via the aforementioned eigenanalysis as well as overall mea-

sures of size such as the Frobenius norm and determinants of the ellipsoids [26] [27].

While this approach helps understand the maximum extent of tolerable gust distur-
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bances, there is no incorporation of directionality regarding whether the gust input

is in a direction deemed favorable from an energy standpoint of the vehicle or not.

From a gain selection perspective, previous work has applied empirical analysis ap-

proaches towards extracting atmospheric energy. Langelaan [28] [29] conducted a

numerical optimization over an ensemble of flights, each over a fixed gust field, to

identify the altitude-maximizing control gain. Patel et al. [30] compared an optimal

set of gains, derived from a genetic optimization run in a simulated Dryden model

environment. An analytic method of predicting the most efficient gains would pro-

vide a plant-model-centric insight into gust-capturing algorithms. The goal here

is to utilize the gramian framework to take advantage of the gusts when possible

by incorporating this knowledge of directionality and applying it over a range of

gramian-formulations for the vehicle as can be achieved by the controller.

Since the premise of this work builds upon the gramian framework, system

identification has played a vital role in the development of the theory as appropriate

models are necessary to compute meaningful gramians. The goal of system iden-

tification is to derive a mathematical representation of the vehicle to best explain

its unforced and forced dynamics [31]. An overview of the system identification

process is illustrated in Fig. 1.2 [32]. The first step of model postulation consists of

determining the kind of model to be used to define the dynamics. This depends on

a number of items ranging from a priori knowledge of the system to ultimately the

level of fidelity desired. Generally for conventional fixed-wing aircraft, this means

expressing the aerodynamic forces and moments in terms of linear expansions, poly-

nomials, or polynomial spline functions in the states and controls with time-invariant
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coefficients. Empirical databases such as DATCOM [33] or vortex-lattice methods

like Athena Vortex Lattice [34] may be used as a resource for an initial idea regard-

ing the linearized model structure of aircraft near a particular flight condition. Due

to the low Reynolds number regime of MAV’s and SUAV’s, only the larger end of

SUAV’s like the Apprentice [35] or UltraStick 25E [36] may yield accurate models

from such methods, but at smaller levels, the limitations to such an approach be-

come apparent [37]. Ultimately regardless of model size, experimental identification

via flight trial remains the most accurate method of deriving a system model.

As a result, the flight experiment necessitates appropriate design to generate

the input data for system identification. This includes selection of instrumentation

system, flight condition and aircraft configuration specifications, and control inputs

to facilitate the maneuvers in the aircraft and excite its various modes for identifi-

cation. The goal here is to identify the system with high accuracy and repeatability

as efficiently as possible. The optimal control input that maneuvers the aircraft in

such a manner so as to allow for identification is a well investigated topic [38] [39].

A number of options ranging from doublets to sinusoidal frequency sweeps and chirp

signals of varying amplitudes and frequencies can be considered based on the plat-

form and measurement constraints.

Then using the measured data from the experiments, a data compatibility

analysis is applied to verify accuracy. This step includes state estimation, estima-

tion of instrumentation errors and sensor biases, and a comparison of reconstructed

responses with measured responses. It becomes vital to address outliers and missing

data in this step as well. After identifying the input and output data, the model
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Figure 1.2: An overview of the system identification process.
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structure is determined according to three classes [40], Bayesian, Fisher or Least-

Squares. The objective of the parameter estimation is to find values of unknown

coefficients θ from noisy measurements z and known inputs u. Regardless of whether

a linear model of the form,

z = Hθ + v, (1.5)

or a non-linear form is used

z = h(θ) + v, (1.6)

the three model structures treat the parameters θ and v uniquely. For the Bayesian

model, θ is a vector of random variables with a probability density and v is a random

vector with a probability density. In the Fisher model, θ is no longer random and is

just a vector of unknown parameters while v is a random vector with a probability

density like in the Bayesian model. Finally in the Least Squares model, θ is a vector

of unknown parameters and v is a random vector of measurement noise. The Least

Squares model operates on the idea of minimizing a cost function that penalizes the

error sum squared. As a result this model tends to generate a lower variance but

possibly a higher bias due to overfitting a particular trial. For inputs vectorized in

time history as X and outputs Y related by

Y = Xθ (1.7)

the coefficients can be estimated in the least-squares model from

θ̂ = (XTX)−1XTY. (1.8)

Collinearity diagnostics can be taken on the data to gauge the quality of the esti-

mate from various statistical metrics like autocorrelation in the residuals, F-statistic,
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collinearity between input and output. Generally these are small enough if the de-

sign of experiment and model postulation and structure determination were not too

inaccurate. However, if sufficient collinearity exists, model term predictions can be

inaccurate. This step helps determine corrective action if necessary.

The final step in system identification is model validation. This step deter-

mines how good the model is. The parameters must have physically reasonable

values in terms of magnitudes and signs, there needs to be acceptable accuracy, and

fair prediction capability from using different data sets, preferably with different

control input profiles. Although this is the last step in model development, it may

trigger an iteration if the identified model has poor prediction capability.

1.3 Problem Formulation

Given that the gramians contain information regarding the strength and weak-

ness of reachability and observability from a prior knowledge of a given UAV plat-

form’s plant and input-feedthrough characteristics, this thesis develops a controller

algorithm that modulates the disturbance sensitivity based on the aforementioned

information and knowledge of whether the ambient gust field is favorable or not. For

the purposes of validation by simulation and flight trials, a vertical gust section will

be considered, and capacity for energy harvesting from said gust will be quantified

by the metric of net altitude gain. The effectiveness of such a “gramian-aware” con-

troller will be juxtaposed with a baseline controller, i.e. one that does not modulate

the plant at all. Modulating the plant in the gramian-aware manner can be imple-
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mented across several flight and vehicle-related factors, such as cruise speed, wing

area, closed-loop gain selection, center of gravity location, etc. This work consid-

ers the effect of modulating cruise speed and closed-loop gain selection, and draws

conclusions regarding this gramian-based approach towards energy harvesting.

1.4 Contributions

With the postulation of a “gust capture metric” discussed in detail in Chapter

2, this thesis develops a comprehensive method for using the information contained

within a vehicle’s gramians to build an atmospheric energy scavenging algorithm

which would have significant impact upon vehicle energy, particularly at the small

UAV and MAV level. Instead of attempting to attenuate gusts of both favorable

and unfavorable type, the information encoded in this gramian-based approach in-

corporates directionality into the otherwise directionally-blind gramian framework

in order to maximize energy gain in favorable gusts and attenuate the impact only

of unfavorable gusts by modulating the plant accordingly. While the results from

performing this modulation using cruise speed appear intuitive, the application us-

ing gain selection highlights the theoretical insight this approach develops towards

atmospheric energy harvesting.

1. A method of quantifying the directional gust response for control uses by

defining a gust capture metric.

2. An understanding of the variation of gust sensitivity information encoded

within gramians with plant model parameters.

12



3. A gust response control strategy using cruise speed.

4. A theoretical, simulated, and experimental investigation of a problem using

cruise speed variation.

5. A theoretical and simulated investigation of gain scheduling approaches to

gust response.

1.5 Outline of Thesis

In Chapter 2, a more in-depth look is taken into gramian theory. The impli-

cations behind the controllability and observability gramians and their utilization

across the field of controls and gust response work till date is noted. Then the “gust

capture metric” MG as a tool for development of the “gramian-aware” controller

which seeks to extract atmospheric energy from gusts is presented. There is also a

discussion about the Hankel operator in this chapter as it serves as the inspiration

towards MG.

In Chapter 3, a small UAV Night Vapor BNF is presented for analysis for a

gramian-aware control law that modulates cruise speed. First, the results of system

identification from flight are presented in order to arrive at the longitudinal linear-

time invariant model of the aircraft. Then, simulation results over an idealized gust

field consisting of equal and opposite magnitude step-input gusts are considered.

Following that experimental validation work is presented. First, a custom-built

gust generator apparatus is discussed, and then the results from flight trials are

given. The gramian-aware controller’s capacity to harness atmospheric energy in
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the form of altitude gain by modulating its cruise speed is discussed.

In Chapter 4, five different longitudinal linear-time invariant models of varying

sizes are considered for a gramian-aware control law that modulates closed-loop

gains. The models are then simulated over similar idealized gust fields consisting of

equal lengths of updrafts and downdrafts as in the previous chapter. The gramian-

aware modulates its closed loop gains according to updraft or downdraft whereas

the conventional controller flies over both sections with the same gains. Once again,

the gramian-aware controller’s capacity to harness atmospheric energy in the form

of altitude gain via gain selection is discussed.

In Chapter 5, conclusions are drawn from the overall effort outlined throughout

this thesis. Further expansions of the application of the theory developed here are

considered as well as the challenges likely to arise as a result and potential methods

of resolving them.
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Chapter 2: Gramian Analysis and Gust Capture Metric Derivation

2.1 Gramian Theory

A gramian matrix G = [gij] ∈Mk of the vectors v1, ...vk is defined by the inner

product space of the respective vectors as gij = 〈vj, vi〉 [41]. As a result, a gramian

matrix is always positive semi-definite. Further, if v1, ...vk are linearly independent

vectors, the gramian is non-singular and hence positive-definite. In application to

linear control theory, a controllability gramianXc exists for a controllable system [42]

since it defines the control input that drives the system from xi to xf in finite time

as seen in Fig. 2.1. Consider a general system dynamics model linearized about an

equilibrium point of the form,

ẋ(t) = A(t)x(t) +B(t)u(t), (2.1)

y(t) = C(t)x(t) +D(t)u(t), (2.2)

where x and y represent the states and outputs of the system respectively. A(t) is

the open-loop plant, B(t) is the control input feedthrough, C(t) is the observer on

the states and D(t) is the feedforward of the control input directly onto the output.

Further define a state transition matrix as one that defines the current state in terms
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of the initial state as a solution to a homogeneous application of Equation (2.1),

x(t) = Φ(t, ti)xi. (2.3)

Then the control input,

u(τ) = BT (τ)ΦT (tf , τ)X−1
c (ti, tf )[xf − Φ(tf , ti)xi], (2.4)

steers the system from xi to xf in finite time tf , where

Xc(ti, t) =

∫ t

ti

Φ(t, τ)B(τ)BT (τ)ΦT (t, τ)dτ. (2.5)

Xc is positive semi-definite from its definition, and if invertible or positive-definite,

then controllability of the system or the ability to drive the system to any final

state from the current state in finite time is guaranteed. Controllability gramians

have the same implications for non-linear system models as well but they require the

solution to a Hamilton-Jacobi partial differential equation and a nonlinear Lyapunov

equation or a nonlinear Sylvester equation [43]. Due to non-feasibility of solutions for

large-scale systems, non-linear analysis uses an empirical approach by systematically

averaging gramians over a set of linearized regions.

If the general linear system is further simplified to a linear time-invariant (LTI)

model, then [44]

Φ(t, τ) = eA(t−τ), (2.6)

with τ ∈ (ti, tf ) and Equation (2.5) simplifies to [45]

Xc(0, tf ) =

∫ tf

0

eAσBBT eA
T σdσ, (2.7)
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with ti = 0 and σ = tf − τ . In fact, by defining Xc(t) = Xc(t, ti), the following

differential equation results,

Ẋc(t) = A(t)Xc(t) +Xc(t)A
T (t) +B(t)BT (t), (2.8)

with the constraint Xc(t = ti) = 0. For an LTI system with all eigenvalues of A in

the left-half plane, this reduces to

lim
t→∞

Xc(t) = Xc,ss = constant, (2.9)

and Xc,ss is the Lyapunov solution of

AXc,ss +Xc,ssA
T = −BBT . (2.10)

The controllability gramian has its implications in terms of defining the input that

steers the system from initial to final point in finite time and thus towards control-

lability of the system at large. Dual to this, there is also the observability gramian

formulation which, if it exists, implies that the evolution of the states in past time

can be reconstructed from the current output and knowledge of the past input. As

a result, if the initial states can be reconstructed from

xi = Y −1
o (ti, tf )

∫ tf

ti

[
y(t)−D(t)u(t)−

∫ t

ti

C(t)Φ(t, τ)B(τ)u(τ)dτ
]
dt, (2.11)

or in other words if the observability gramian Yo(ti, tf ) is invertible, then the system

is observable. Now the observability gramian is also at least positive semi-definite

from definition,

Yo(ti, tf ) =

∫ tf

ti

ΦT (t, ti)C
T (t)C(t)Φ(t, ti)dt, (2.12)
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Figure 2.1: Evolution of final states and construction of initial states defined by

controllability and observability gramians respectively.

therefore invertibility implies that existence of a positive-definite observability gramian

signifies an observable system. Here also, there are nonlinear observability gramians

with similar challenges and empirical observability gramians used as a compromise

between the nonlinear and linear analyses. Considering an LTI formulation, this

simplifies to

Yo(0, tf ) =

∫ tf

0

eA
T σCTCeAσdσ, (2.13)

and the steady-state observability gramian becomes the solution to the following

Lyapunov formulation

ATYo,ss + Yo,ssA = −CTC. (2.14)

Besides a simple binary understanding on controllability or observability given

by the existence of positive-definite controllability and observability gramians, there

is also numerical insight to be attained from various metrics on these gramians.

Chapter 1 discussed how the ellipsoid representations of the gramians with their re-

spective eigenvectors and eigenvalues give insight into the strength and weakness of

controllability and observability of each state in the system [46] [47]. It is worthwhile
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to consider a scalar metric to draw qualitative understanding regarding controlla-

bility and observability from these gramians [48]. The maximum eigenvalue of X−1
c

is one such measure, with the larger this value corresponding to poorer controlla-

bility in the respective eigenvector direction. Another such measure is the trace of

the inverse Tr(X−1
c ) as it is related to the average value of the minimum control

energy [49]. Yet one more commonly used scalar metric has been the determinant of

the inverse Det(X−1
c ). Note that the determinant of the gramian, if positive-definite,

quantifies the square of the volume of the parallelotope formed by the vectors of the

gramian [50].

Previous research has utilized the insight from computed gramians in a va-

riety of manners. Beck et. al. [51] utilized the existence and rank of structured

controllability and observability gramians in uncertain dynamic models to treat re-

ductibility and to develop insight into output feedback stabilization for uncertain

systems via a separation argument to full information and full control problems.

L2 sensitivity minimization has also been considered from a gramian perspective

by incorporating them into the iterative procedure to minimize L2 sensitivity of a

nominal system [52]. In the practical domain, Marx et. al. [53] developed a manner

for ideal placement of sensors and actuators based on maximizing observability and

controllability of a system respectively. Shaker et. al. [54] furthered this analysis

of ideal sensor and actuator placement on open-loop unstable systems. Montagnier

et. al [55] developed the time-varying gain on their feedback controller for a linear

time-periodic system using the controllability gramian.

Since a control input u and a gust disturbance input g have the same type of
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impact on the state dynamics as seen in Equation (1.1), the notion of the control-

lability gramian and its implications towards how controllable the system is can be

translated in the gust input case as a disturbance gramian and easily the system is

perturbed. While the subjective meaning changes from considering g as opposed to

u as the input, the theory behind the controllability and disturbance gramians is

uniform and has been treated as such in previous research as well [56].

2.2 Gust Capture Metric and Gramian-Aware Control Law

Considering a longitudinal LTI model for a UAV including the gust-feedthrough

matrix D in the form of Equation (1.1) [57]

∆̇u

∆̇w

∆̇q

∆̇θ


=



Xu Xw 0 −g

Zu Zw u0 0

Mu Mw Mq 0

0 0 1 0





∆u

∆w

∆q

∆θ


+



Xthr Xele

Zthr Zele

Mthr Mele

0 0



δthr
δele

+



−Xu −Xw 0

−Zu −Zw −u0

−Mu −Mw −Mq

0 0 0




ug

wg

qg

 ,

(2.15)

where the states u,w, q, θ refer to forward velocity, vertical velocity, pitch rate

and pitch angle respectively, the control inputs are throttle and elevator, and the gust

inputs are forward, vertical and rotational about the pitch axis. In order to consider

a pure vertical gust, the second column of D is selected for the Lyapunov solution to

Equation (1.3) to give the disturbance gramian. Similarly, with appropriate selection

of

C =

[
0 1 0 0

]
, (2.16)

20



only the vertical velocity state is considered for the Lyapunov solution to Equation

(1.4) to give the observability gramian.

As discussed in Chapter 1, a steady-state disturbance gramian encodes the

overall disturbance sensitivity to a unit-norm input acting on the system, whereas

a steady-state observability gramian traces the observability of a unit-norm initial

state condition of the system. It is desirable to incorporate the information in both

these gramians into a combined metric.

A “gust capture metric” MG is defined as a measure for disturbance sensitivity

to a unit norm gust disturbance in the unit norm state as

MG = Y
1
2
o X

1
2
c . (2.17)

As a result of using the appropriately selected D and C matrices, this work

proposes the resultant MG from Equation (2.17) as a measure of sensitivity of the

∆w state alone to a purely vertical gust input.

Both Yo and Xc are positive-definite symmetric matrices while the plant ma-

trix A is stable. As a result, the combination of their ellipsoids via multiplication

also remains positive-definite with a positive volume. The formulation of the metric

is inspired by the Hankel operator ΓG [10] defined below which has a similar formula-

tion and provides a lower bound on the H∞ norm of a system. The latter is utilized

in robust control design, while the Hankel operator is used to define limitations in

performing model reduction on larger complex systems to a simpler (fewer states)
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system for control synthesis problems.

||ΓG||L2→L2 = [λmax(YoXc)]
1
2 (2.18)

From Fig. 1.1, it is understood that the controllability gramian gives insight into

the relative strength and weakness in controllability of the states, and similarly that

the observability gramian gives insight into the relative strength and weakness in

observability of the states of a system. However, there may indeed be a case as in

Fig. 2.2 where the ellipsoid representations of the controllability and observability

gramians are oppositely aligned. From an input-output perspective, the lesser ob-

servable states might still be impactful since they are the most controllable. As a

result, better insight can be obtained from a balanced realization where both the

Xc and Yo are transformed by a similarity transformation T such that

Ã = TAT−1, B̃ = TB, C̃ = CT−1, (2.19)

X̃c = TXcT
∗, Ỹo = (T ∗)−1YoT

−1. (2.20)

From a balanced realization, it becomes evident that

X̃c = Ỹo = Σ, (2.21)

with Σ > 0 diagonal, giving the insight that the less controllable states are also less

observable. Further,

ỸoX̃c = T−1YoXcT
∗, (2.22)

with the eigenvalues of ỸoX̃c and YoXc coinciding. As a result, the square roots

of the eigenvalues of YoXC are called the Hankel singular values ΓG of the system
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Figure 2.2: Oppositely aligned ellipsoid projections of controllability and observ-

ability gramians for a state-space system.

G and are denoted by σ1 ≥ σ2 ≥ ... ≥ σn. The Hankel singular values provide

upper and lower limits on the infinity norm of a realization of G (Ĝ) in the following

manner,

σ1 = ||ΓG|| ≤ ||G|| = ||Ĝ||∞, (2.23)

and

||Ĝ||∞ ≤ 2(σ1 + σ2 + ...σn). (2.24)

The understanding of such a formulation using the observability and distur-

bance gramians in conjunction is that for a causal system, such an operation takes

an input in the past and maps it to a future output. Therefore in the case that it is

desirable to treat altitude gain as an energy metric, and vertical gusts are considered

as the only disturbance inputs, the choice of C and D enable viewing the resultant

MG as a measure of perturb-ability in the vertical velocity state by a vertical gust.

In particular, the volumetric size or determinant of this MG is treated as numeri-

cally quantifying this notion. A gramian-aware control law would use a priori system
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knowledge to derive a derive a mapping of MG size as a function of one or several

variables within its reach. From this map, the control law would react according

to the following algorithm: a favorable gust (in this framework an updraft) would

result in the controller driving the system towards those conditions where MG size is

maximum. Similarly vice-versa, in an unfavorable gust (downdraft), the controller

would drive the system towards those conditions where MG size is minimum in this

a priori computed map. The idea is that such a gramian-aware controller, in com-

parison to a baseline controller that does not modulate the plant in response to a

gust in either direction, will gain more altitude or energy in updraft sections, and

lose less altitude in downdraft sections.
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Chapter 3: Disturbance Sensitivity Modulation Through Parameter

Sensitivity

3.1 Overview

From Equation (2.15), it is evident that cruise speed u0 is an explicit term in

the plant A matrix of the longitudinal LTI dynamics of a system. Moreover each of

the stability derivative terms are cruise speed dependent as noted from Equations

(3.1-3.3). It is evident that MG as discussed in Chapter 2 is also a function of u0 for

any aircraft. In this chapter the Night Vapor BNF shown in Fig. 3.1 is considered

for the modeling and experimental work.

Mass and size dimensions for the aircraft are included in Table 3.1. The

inertia term of interest Iyy was calculated from a component-wise breakdown of

the different parts of the aircraft that can be seen in Table 3.2. Each piece was

individually weighed and measured to generate a Solid Works mockup from the

component level. By setting the measured mass in the Mass Properties toolbox in

Solid Works, the individual Iyy of each component was estimated. Note that in

Table 3.2 and Fig. 3.2, the X and Z axes labels are not the body axes (which have in

fact been labelled in Fig. 3.1). Instead, the axes have their origin at the lowest and
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Figure 3.1: The Night Vapor BNF modeled and tested for this study.

most forward position on the aircraft to help determine the center of gravity location

of the entire aircraft. The use of these axes is solely limited to the derivation of the

aircraft CG and Iyy.

In the next section, the experimental system identification used to produce a

mapping of the systems MG size in terms of u0 is discussed. Next, the system plant is

modulated in Simulink using a gramian-aware controller.These results are compared

against a baseline controller without modulation of u0 in updrafts or downdrafts.

Finally the experimental validation is presented via discussion of the gust generator

rig and the results of the flight trials.
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Parameter Value

Mass m (kg) 0.0214

Wing Planform Area S (m2) 242.05× 10−4

Chord Length c̄ (m) 15× 10−2

Inertia Iyy (kg ∗m2) 1303.969× 10−7

Table 3.1: Mass and size properties of the NightVapor BNF.

Piece m(g) Local Iyy(g ∗ cm2) Xcg(cm) Zcg(cm) Total Iyy(g ∗ cm2)

Fuselage 3.2 231.98 12.5 0.35 366.56

Prop 3.9 14.24 -1.95 1.3 265.90

Battery 4.6 6.23 2 -0.25 93.77

Servos 5 2.71 7.75 0.25 21.98

Wings 3.9 41.58 6.7018 5.1375 100.91

Elevator 0.6 3.31 29 0 319.42

Rudder 0.2 2.15 31.46 6.02 135.43

Total 21.4 6.08 1.29 1303.97

Table 3.2: Iyy calculation by component breakdown of the Night Vapor.
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Figure 3.2: The Night Vapor BNF modeled in Solid Works by components for Iyy

calculation.

3.2 System Identification

System identification was conducted via flight test in order to estimate the

system’s longitudinal plant characteristics at various cruise speed trim conditions.

Using the following equations, the coefficients for the linearized longitudinal plant

as well as the input-sensitivity were found

∆̇u =
CXuQS

mu0

∆u+
CXwQS

mu0

∆w − gcos(θ0)∆θ +Xthr∆thr, (3.1)

∆̇w =
CZuQS

mu0

∆u+
CZwQS

mu0

∆w + u0∆q + Zthr∆thr + Zele∆ele, (3.2)

∆̇q =
CmuQSc̄

Iyyu0

∆u+
CmwQSc̄

Iyyu0

∆w +
CmqQSc̄

2

2Iyyu0

∆q +Mthr∆thr +Mele∆ele, (3.3)

where Q is the dynamic pressure taken as 1
2
ρu2

0, and the states (u,w, q, θ) refer

to forward velocity, vertical velocity, pitch rate and pitch angle respectively. As
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a result, the longitudinal plant A was constructed as a function of u0 from the

identified coefficients as

A =



CXuQS

mu0

CXwQS

mu0
0 −g

CZuQS

mu0

CZwQS

mu0
u0 0

CmuQSc̄
Iyyu0

CmwQSc̄
Iyyu0

CmqQSc̄
2

2Iyyu0
0

0 0 1 0


. (3.4)

The NightVapor BNF’s longitudinal plant was identified and validated across

different trials using a combination of elevator and throttle doublets and sinusoids

of varying frequencies and amplitudes. A waypoint tracking method was employed

to get the aircraft stabilized at a steady-state speed u0 ∈ [2, 3]m/s and straight-

and-level. Then it was turned off while undergoing the stimulation input profile,

and then turned back on to recover the aircraft. A brief discussion of the waypoint

tracking autopilot method follows. For control purposes, a Vicon camera arrange-

ment was used to observe the aircraft in real time via five markers placed upon its

wing surface. The Vicon datastream was sent to a LabView module to evaluate all

the current states such as position, translational and rotational velocities in abso-

lute and local frames, etc. Based on these states, a simple PID-control loop was

implemented within the same LabView program, which was then sent via a PCTx

cable to the NightVapor BNF’s transmitter as pulse-width-modulation (pwm) com-

mands to the throttle, elevator and rudder servos. The entire execution loop time

averaged between 45 and 60 milliseconds. The throttle command was regulated to a

set cruise speed uo value, with 0 pwm and 1000 pwm corresponding to motor-cutoff
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and full-throttle respectively. A series of waypoints were set up for the vehicle to

track within the Vicon-covered area as shown in Fig. 3.3. The desired flight path

angle Γdes to the upcoming waypoint, and current flight path angle Γ, were calcu-

lated from the current position and translational velocities. Then the elevator was

commanded to meet this requirement, with 0 pwm and 1000 pwm corresponding to

elevator trailing-edge up and down respectively by 20 degrees. Similarly, a desired

heading angle Ψdes to the upcoming waypoint, and current heading angle Ψ, were

calculated and the rudder was commanded to meet this requirement, with 0 pwm

and 1000 pwm corresponding to rudder trailing-edge right and left respectively by

30 degrees. Although the waypoint tracker was equipped to fly the Night Vapor

around the room in repeatable manner until the battery expired, for this system

identification effort, only one loop was run at a time using a fully charged battery

such that available thrust would not be a variable in the trial data. Also, the way-

point tracker was tuned such that it could utilize the raw datastream from the Vicon

software running at 300 Hz without any noise filtering on the position and velocity

signals. However, for this system identification effort, single-pole low-pass filters

were used to allow for proper data fitting, with time constant τ = 0.7 on the trans-

lational velocity signals, τ = 0.85 on the rotational velocity signals, and τ = 0.92

on the acceleration signals. Ideally the longitudinal stimulation input for the trials

would involve a chirp signal on the throttle or the elevator. However, due to the

overall straightaway length limitation and distance required to stabilize the tran-

sients from launch, the trials with sinusoidal inputs only implemented a particular

frequency on the control surface at a time. The range of frequencies swept overall
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Figure 3.3: System identification conducted using waypoint tracker to stabilize air-

craft a priori.

was ∈ [0.006, 0.06]rad/sec and the amplitude modulation ranged from ±300pwm at

the lower frequencies to ±100pwm at the higher.

Using the mass properties listed in Table 1 and taking g = 9.81m/s2 and ρ =

1.225kg/m3, the plant coefficients were estimated from Equations (3.1), (3.2) and

(3.3) using an ordinary least-squares method [58] from the time-domain data. These

coefficients have been listed in Table 3.3 along with their confidence intervals. The

ordinary least-squares method is the solution to an overfitted problem by minimizing

residual variance via appropriate selection of coefficients. Each of these coefficients
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is provided as a nominal value along with a band in a Gaussian distribution about

the nominal value, with the range up to 95% referred to as a confidence interval [59].

It was considered as a good fit on trial data if the width of this confidence interval

was within 20% of the identified nominal value.

The coefficients were cross-checked from trials consisting of different control

input profiles for repeatability. The identification trials and their repeatable coun-

terparts for the coefficients derived from Equations (3.1-3.3) have been provided in

Figures 3.4-3.6, respectively. Besides the check for repeatability and narrow con-

fidence intervals, the coefficients were also validated across different control input

profiles using autocorrelation analysis on the residuals. A number of different statis-

tical metrics provide insight into the quality of the validation fit for a parameter by

quantifying the whiteness of the residual autocorrelation. The Durbin-Watkinson

statistic [60] was computed for this purpose for all seven validation exercises pro-

vided in Figures 3.7-3.13,

dstat =

∑T
t=2(et − et−1)2∑T

t=1(et)2
, (3.5)

where T is the total number of measurements and each ei is a particular residual

between the measurement and the estimate using the identified coefficient. The

range for dstat ∈ (0, 4), with 2 indicating no autocorrelation in the residuals. Smaller

values of this mean that consecutive residuals are close to one another, or in other

words positive autocorrelation. In time-domain data, some positive autocorrelation

is to be expected. For the purpose of this validation exercise, dstat < 0.95 was taken

as a benchmark for poor validation on a coefficient [61].
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A related statistical measure is the autocorrelation itself, defined as

R̂vv =
1

T

T∑
t=2

etet−1. (3.6)

Here, R̂vv = 0 indicates no autocorrelation in the residuals and perfect randomness

to them. Again, since such a result is never exactly attainable, [62] even for an

adequate model structure, it is acceptable to have values near 0 as long as the

zero autocorrelation is within ±2 standard errors of the residual autocorrelation

estimate [63]. The standard error is defined as

s(θ̂) =

√∑T
t=1 e

2
t

T − np
, (3.7)

where np = n + 1 and n is the number of unknown parameters in the validation

exercise. These results are provided in the last two columns of Table 3.3. For

all seven coefficients identified, with the autocorrelation in the residuals appearing

near 0 in the sense that their standard errors are much larger, the residuals from

the validation trials can be considered as white and not indicative of a statistical

significance or model inadequacy.

Taking the coefficients listed in the first identified column in Table 3.3, the

plant matrix A was constructed across the range of flight speeds appropriate for the

NightVapor according to Equation (3.14). The migration of the open loop poles of

the system identified model as a function of forward speed are shown in Fig. 3.7.

As expected, the aircraft tends towards instability near the slower end of its speed

range, and higher stability and damping of transients at the faster end of its speed

range. Of more interest, is Fig. 3.15, illustrating the function of the disturbance
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Parm Val ID (1) Conf Int (1) Val ID (2) Conf Int (2) dstat R̂vv s(θ̂)

Eqn (3.1)

CXu −1.557 19.7% −2.1142 19.8% 2.04 −0.0075 0.1968

CXw 3.2337 18.2% 3.0746 11.6% 1.15 0.0046 0.1390

Eqn (3.2)

CZu −0.9241 15.9% −1.2684 27.6% 1.70 0.0082 0.2800

CZw −5.1705 6.4% −4.2455 17.8% 0.99 0.1249 0.5909

Eqn (3.3)

Cmu 0.0441 16.3% 0.0448 12.7% 1.55 0.0011 0.0740

Cmw −0.1079 3.2% −0.1577 70.8% 1.10 0.1226 0.5880

Cmq −0.5556 17.6% −0.4927 28.7% 1.35 0.0006 0.0954

Table 3.3: Longitudinal dynamics plant coefficients of the NightVapor BNF derived

from experimental system identification across multiple trials.
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Figure 3.4: Identification and repeatability trials for Equation (3.1) plant parameters
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Figure 3.5: Identification and repeatability trials for Equation (3.2) plant parameters
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Figure 3.6: Identification and repeatability trials for Equation (3.3) plant parameters
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Figure 3.7: Validation of identified CXu value from a different trial
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Figure 3.8: Validation of identified CXw value from a different trial
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Figure 3.9: Validation of identified CZu value from a different trial
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Figure 3.10: Validation of identified CZw value from a different trial
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Figure 3.11: Validation of identified Cmu value from a different trial
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Figure 3.12: Validation of identified Cmw value from a different trial
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Figure 3.13: Validation of identified Cmq value from a different trial
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Figure 3.14: Open loop pole movement of system identified A matrix as a function

of trim speed u0.

and observability gramian ellipsoid volumes as a function of trim speed u0 as well

as that of the resultant MG volume.

3.3 Cruise-speed Modulating Gramian-Aware Law Simulation

As mentioned in Chapter 2, the map in Fig. 3.15 is used to develop a gramian-

aware cruise-speed modulating control algorithm for the Night Vapor in the following

manner. In the absence of any gusts, the Night Vapor flies at an intermediate

speed of u0 = 2.6m/s. When it enters a region with a favorable gust (updraft) of

wg = −1m/s, it modulates itself to the speed that corresponds to the largest MG

size, which in this case will be u0 = 2.2m/s. When it leaves the updraft section, it

returns to its intermediate-MG-size corresponding speed of 2.5m/s as it was flying
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volume as a function of trim speed.
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Figure 3.16: Simulation of the NightVapor BNF over a gust field of equal and

opposite gust sections with gramian-aware and conventional control laws.

originally. Once the aircraft enters an unfavorable gust (downdraft) of wg = 1m/s,

it modulates itself to the speed that corresponds to the smallest MG size, which

is u0 = 3.0m/s. The results from such a simulation in idealized gust-sections of

equal lengths and opposite magnitudes is shown in Fig. 3.16. For comparison, the

baseline or conventional controller does not modulate its speed in either updraft or

downdraft, and flies through the entire length at constant u0 = 2.6m/s.

Both the MG map in Fig. 3.15 and the simulation result in Fig. 3.16 make intu-

itive sense in that obviously a faster flying Night Vapor would be less impacted by a

vertical gust than a slower flying Night Vapor. This intuitive behavior is being cap-

tured in this gramian-derived theoretical framework. As a result, a gramian-aware

controller that is built with directionality awareness will be capable of scavenging
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atmospheric energy in updrafts by modulating itself to the condition with higher

MG size, which in this chapter means a slower u0, and vice-versa. In practical terms,

the gramian-aware Night Vapor spent more time in the updraft and less time in the

downdraft, and hence resulted with a net altitude gain over the Night Vapor that

did not change its speed in either sections.

As a prelude to discussing the experimental results in the next section, some

of the logistical issues are noted here briefly. Ideally the results of Fig. 3.16 would

be validated using a similar strategy of an updraft and downdraft section. This

necessitates the testing to be conducted indoors such that more control is maintained

over the ambient gust field on the aircraft. Testing indoors causes limitations,

primarily with regard to available area for testing, as well as size and proportionally

related flight speed of the aircraft; one of the primary reasons why the Night Vapor

was chosen for this demonstration purpose. Due to space limitations of a total

straightaway length of about 9m, verification can be conducted only with an updraft

generator. Also in the simulation of Fig. 3.16, the aircraft enters the gust sections

at u0 = 2.6m/s and in the case of the gramian-aware flight it slows itself down to

u0 = 2.2m/s instantly over the gust section length. Again due to space limitation,

such an idealized speed change over a small gust section length of less than 2m

is not possible. Instead the aircraft would fly at steady-state at a particular u0

within its range prior to entering the gust section, and comparisons will be made

on the different altitude gains across trials as a function of the entry steady-state

u0. A profile similar to Fig. 3.17 is expected in simulation over just the idealized

updraft section with wg = −1m/s for 2m length. This type of a decreasing altitude
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Figure 3.17: Altitude gain of a simulation of the system identified model over the

speed range of the Vapor.

gain profile as a function of increasing cruise speed would equivalently validate the

gramian-aware controller’s effectiveness at atmospheric energy harvesting from an

updraft.

3.4 Gust Generator

Flight tests were done using an upward gust generator. The gust generator,

shown in Fig. 3.18 with dimensions, consisted of two B-Air 3550 CFM Air Mover’s

plugged in on opposite ends to a box with equally spaced holes along its top face.

The box was 1.78m (70”) long along the direction of flight (labeled as the X-axis),

and 2.43m (96”)wide (labeled as the Y-axis). The height of the box was 0.63m
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(25”). Circular holes of 0.0508m (2”) diameter were punched into the top face of

the box in an evenly spaced manner such that there were 8 holes along the X-axis

and 24 holes along the Y-axis in an evenly space and symmetric manner.

A velocity profile was measured by a uniaxial hotwire probe at two different

heights of 1.52m (60”) and 1.08m (42”) from the top of the box. The measure-

ments were taken in a spatial grid of every 0.3048m (12”) across the box in the

Y-direction and every 0.4572m (18”) in the X-direction. Symmetry was assumed

across the X-axis centerline of the box, resulting in a total of 33 measurements at

each of the two heights aforementioned. Gust data was taken at 1000 Hz sampling

rate for 20 seconds at each measurement location. An example measurement at

(X, Y,Height) = (0.9144, 1.2192, 2.15)m of the velocity versus time and the power

spectral density have been shown in Fig. 3.19. The smooth contour of the power

spectral density indicates that the turbulence generated in the gust generator was

random and not contained in one particular frequency. Mean velocity contours are

shown in Fig. 3.20, indicating an expected higher upward velocity over the center

of the box as the air from the two blowers meet and rise.

A turbulence intensity for each measurement was defined as the root-mean

square of the velocity fluctuation signal divided by the mean velocity [64]

Turb.Int. =

√
1
n

∑n
1 (wgi − wg,0)2

wg,0
. (3.8)

A turbulence intensity of 1% or less is generally considered low and turbulence

intensities greater than 10% are considered high [65]. The average turbulence in-

tensity across 33 measurement points at each altitude has been reported in Table
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3.4. In Table 3.4 the average turbulence intensity over the middle half of the box at

the two altitudes, i.e. from Y ∈ [0.6096, 1.8288]m has also been noted. The RMS

value on the signal has also been reported in a similar manner. Given that the mean

does vary across the two altitudes as well as within each altitude spatially, and the

fact that the turbulence intensity is normalized to the local mean while the RMS

is not, both the normalized turbulence intensity and the RMS can give qualitative

and quantitative insight into the flow characteristics in each of the regions.

Alt. Above Box (m) Turb. Int. Whole Turb. Int. Mid. RMS (m/s) Whole RMS Mid.

1.52 0.3323 0.2897 0.1742 0.1890

1.09 0.3632 0.3492 0.2253 0.2839

Table 3.4: Average turbulence intensities and root-mean-square of measured velocity

at the two altitudes considered above the gust generator box.

3.5 Flight Test Results and Discussion

Flight tests using the waypoint tracker discussed earlier were conducted over

the gust generator. The elevator control that tracked altitude was turned off for

the flight portion over the gust generator section itself, such that the altitude gain

from the gust could be evaluated without the bias of an elevator input attempting

to attenuate the gust impact. Rudder and throttle control were active through the

gust section in order to maintain flight over the center of the box and cruise speeds

respectively. In order to effectively compare altitude gains across flight speeds, the

controller was tuned to the effect that within the gust-generator region, the aircraft
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Figure 3.18: The gust-box generator used and corresponding dimensions in meters.
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would not gain or lose more than 0.1m of altitude while the gust was off. Such a

“control” flight has been presented in Fig. 3.22, where the flight maintains minimal

altitude change through the gust-section while the gust is off. An example flight

over the gust-generator while on is shown in Fig. 3.23, where the gust generator

starts at x = 0m and ends at x = 1.78m, as has been shown in Fig. 3.21. The

effective cruise speed is taken as the average u0 from the last four measurements

prior to entering the gust region, while the corresponding altitude gain is taken as

the difference in altitude between when the aircraft leaves the gust region from when

the aircraft entered the gust region.

Overall, there were 57 flights over the gust generator section that were deemed

appropriate for consideration given that a steady-state straight-and-level flight was

established prior to entry. Out of these 57 test points, a clear difference in trends

could be seen if the points were separated into a higher entry height band of greater

than 2.1m and a lower entry height band of less than the same. 31 test points lay

in the entry height band of 2.1-2.3m, and their plot along with a linear fit and R2

value of the fit have been presented in Fig. 3.24. The rest of the trials entered the

gust section in a range of heights from 1.7-2.1m and their altitude gain summary as

a function of cruise speed is shown in Fig. 3.25.

In lieu of Fig. 3.24, it is worthwhile to note that for gust-on trials that entered

the gust zone at heights below 2.1m (generally 1.7-2.1m), the altitude gain had

no such trends against entry speed as seen in Fig. 3.25, as evidenced by a much

poorer R2 value in the linear fit compared to that from Fig. 3.12. This can be

explained from looking at Table 3.4. First note from Fig. 3.26 that all 57 of the
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Figure 3.21: Flight trials to validate gramian-aware control conducted using way-

point tracker to stabilize aircraft a priori to gust generator.
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Figure 3.22: Example flight over gust generator with gust generator off used to tune

controller to maintain altitude through gust section while gust is off.
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Figure 3.23: Example flight over gust generator with trim speed u0 = 2.94m/s and

altitude gain of 0.685m.

52



1.8 2 2.2 2.4 2.6 2.8 3
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Entry Speed (m/s)

A
lt
it
u

d
e

 G
a

in
 (

m
)

 

 

Actual

Quadratic Fit with R
2
=0.37

Figure 3.24: Summary of altitude gain vs entry cruise speed from flight test over

the gust generator for entry altitudes above 2.1m and quadratic fit.
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Figure 3.25: Summary of altitude gain vs entry cruise speed from flight test over

the gust generator for entry altitudes below 2.1m and quadratic fit.
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flights considered between Fig. 3.24 and Fig. 3.25 across the entire entry altitude

range tended to fly over the middle half of the box, i.e. excluding the far-left and

far-right quarters of the gust-generator box. Although the difference in the average

turbulence intensity at the entry altitude above 2.15m taken across the whole gust

box is 0.3323 as opposed to 0.3632 at 1.72m; if considering the middle half of the box

Y ∈ [0.6096, 1.8288]m over which all the flights flew, note that turbulence intensity

at the higher altitude drops to 0.2897 while at the higher altitude it drops slightly

to 0.3492. This significant difference in turbulence intensity as one goes higher

in altitude above the gust-generator, particularly over the box’s middle, allows for

isolation of entry speed as the main factor in producing differences in altitude gains

over the gust section. A similar trend can be noted in the non-normalized RMS

value trends as well from Table 3.4. As a result, the experimental results of Fig. 3.24

validate the gramian-aware controller’s energy harvesting effectiveness since the gust

profile in the altitude band here is relatively less turbulent and more uniform.

3.6 Summary of Cruise Speed Modulation

In this chapter, the Night Vapor fixed-wing small UAV was considered as a

platform to test the hypothesis regarding the use of MG size to build a gramian-

aware controller modulating cruise speed to scavenge atmospheric energy from ver-

tical gusts. A system identification by experiment was utilized in order to build

the map for MG size as a function of u0. A comparison by simulation was done

where the gramian-aware Night Vapor would fly over updrafts at the u0 that corre-
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Figure 3.26: A look at trajectory profiles of gust-on flights across all entry altitudes

and speeds.

sponded to its highest MG size, and fly over downdrafts at the u0 that corresponded

to its lowest MG size, as opposed to a gramian-blind or conventionally controlled

Night Vapor which would maintain an intermediate u0 through all gust sections. In

simulation, the gramian-aware case gained significantly more altitude than the con-

ventional case as a whole. In experimental validation given the test area limitations,

this meant establishing a decreasing profile of altitude gain with increasing cruise

speed over the updraft gust generator. Such a profile was not seen across the whole

set of 57 data points but was seen over the higher entry height band. The gust

characterization effort indicates that at this higher height of 5 feet above the top of

the box and spatially over the middle half of the box, the aircraft trajectory is flying

much closer to the ideal gust conditions considered in simulation than at the lower

height of 3.5 feet above the box where the flow is much more turbulent. While im-
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proving performance in turbulent gusting environments is indeed desirable, in terms

of experimental validation, the data from the relatively less turbulent rising section

above the middle of the box at the higher entry altitude is of more interest. As a

result, the experimental results from the appropriate entry region indeed support

the gramian-aware control law’s premise for harvesting atmospheric energy better.

In Fig. 3.15, both the disturbance gramian and the observability gramians for

the Night Vapor have an inversely proportional relationship with increasing cruise

speed, and as a result the MG has a similar profile. In [35], the longitudinal plant

of the Apprentice UAV was modeled in DATCOM using four different airfoils. The

disturbance, observability gramian ellipsoid and MG volumes as a function of cruise

speed for the Apprentice’s speed range with NACA 66012 and NACA 2408 airfoils

have been provided in Fig. 3.27. Instead of the MG volume, if the disturbance

gramian ellipsoid volume is chosen as the metric for the gramian-based speed mod-

ulation, the NACA 66012 model’s disturbance-gramian-volume-based speed modu-

lation has a net altitude gain over the constant-speed model while the NACA 2408

model’s similar simulation has a net altitude loss over the constant-speed model as

seen in Fig. 3.28 and Fig. 3.29. In the aforementioned figures, “Conventional” refers

to the simulation that holds the speed constant over updrafts and downdrafts while

“Gramian-aware” refers to the simulation where the respective Apprentice model

modulates its speed according to the disturbance-gramian-ellipsoid-volume metric,

i.e. maximize the disturbance gramian ellipsoid volume to an updraft and minimize

it to a downdraft.

Defining a State Product Integrand SP as the absolute product of the four

56



34 36 38 40 42 44 46 48
8

8.2

8.4

8.6

8.8

9
x 10

−7Apprentice NACA 66012 Disturbance Ellipsoid Determinant

uo ft/sec

(f
t*

ra
d
)2

/(
s
e
c

3
)

34 36 38 40 42 44 46 48
0.06

0.065

0.07

0.075
Apprentice NACA 66012 W−Observer Ellipsoid Determinant

uo ft/sec

(f
t*

ra
d
)2

/(
s
e
c

3
)

34 36 38 40 42 44 46 48
5

5.5

6

6.5

7
x 10

−8Apprentice NACA 66012 Gust−Capture Metric Determinant

uo ft/sec

(f
t*

ra
d
)2

/(
s
e
c

3
)

34 36 38 40 42 44 46 48
6.2

6.4

6.6

6.8
x 10

−7 Apprentice NACA 2408 Disturbance Ellipsoid Determinant

uo ft/sec

(f
t*

ra
d
)2

/(
s
e
c

3
)

34 36 38 40 42 44 46 48
0.01

0.015

0.02

0.025

0.03
Apprentice NACA 2408 W−Observer Ellipsoid Determinant

uo ft/sec

(f
t*

ra
d
)2

/(
s
e
c

3
)

34 36 38 40 42 44 46 48
0.5

1

1.5

2

2.5
x 10

−8 Apprentice NACA 2408 Gust−Capture Metric Determinant

uo ft/sec

(f
t*

ra
d
)2

/(
s
e
c

3
)

Figure 3.27: Apprentice UAV disturbance, observability gramian ellipsoid and MG

volumes as a function of u0 for NACA 66012 and NACA 2408 airfoils.

states integrated over the simulation time over an updraft and downdraft for the

disturbance-gramian-ellipsoid-volume-based speed modulation of Fig. 3.28 and Fig. 3.29

SP =

∫ tf=50s

t0=0s

|∆u∆w∆q∆θ|dt, (3.9)

it is noted that the disturbance-gramian based modulation maximizes the SP for

both the NACA 66012 and NACA 2408 models as seen in Fig. 3.30 and Fig. 3.31.

As a result, the disturbance-gramian-ellipsoid volume based speed modulation max-

imizes the total change in all the 4 states in updrafts and minimizes the same in

downdrafts for both the airfoil models, as captured in the SP metric. This exercise

highlights the importance of involving the observability gramian as well in order to

incorporate the desired direction, i.e. the vertical velocity state ∆w along with the

vertical gust such that the vertical gust’s impact is maximized or minimized for up-
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Figure 3.28: Apprentice NACA 66012 simulation over updraft and downdraft sec-

tions with speed modulation based on disturbance-gramian volume relation with

u0.
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Figure 3.29: Apprentice NACA 2408 simulation over updraft and downdraft sections

with speed modulation based on disturbance-gramian volume relation with u0.
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Figure 3.30: Apprentice NACA 66012 simulation of Xc based speed modulation

maximizes SP in updrafts and minimizes it in downdrafts.

drafts or downdrafts in the ∆w direction in order to maximize altitude gain. Hence

the MG volume is taken as the basis for the gramian-based control since it incor-

porates both the overall disturb-ability in all states from a unit-norm vertical gust

as well as the strength of observability of the desired state into a combined metric

that quantifies the relative sensitivity in the ∆w direction to a unit norm vertical

gust. Simulating the Apprentice models according to the MG volume variation as

presented in Fig. 3.27, both the NACA 66012 and NACA 2408 models result in an

altitude gain in simulation over the updraft and downdraft gust sections as seen in

Fig. 3.32 and Fig. 3.33.
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Figure 3.31: Apprentice NACA 2408 simulation of Xc based speed modulation max-

imizes SP in updrafts and minimizes it in downdrafts.
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Figure 3.32: Apprentice NACA 66012 simulation over updraft and downdraft sec-

tions with speed modulation based on MG volume relation with u0.
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Figure 3.33: Apprentice NACA 2408 simulation over updraft and downdraft sections

with speed modulation based on MG volume relation with u0.
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Chapter 4: Disturbance Sensitivity Modulation Through Closed Loop

Flight Control

4.1 Overview

A closed loop static gain controller was parametrized as u = −Kx, where

traditional linear systems design techniques may be used to constructively design

K. For illustration, the linear quadratic regulator (LQR) method was chosen to give

a well-modeled design problem such that K can be posed as a function of weighting

matrices, which has a well-understood intuitive meaning, rather than empirically

considering various gains. In the LQR method [66], an optimal state feedback

gain is computed based on minimizing the control input u given a user-defined

penalization on deviations from the trim states in a positive-semi-definite Q matrix

and a similarly defined penalization on deviations from the trim control input in a

positive-definite R matrix. Note that the use of an LQR method is applied here as

an example, but the gust response analysis approach developed here is not limited

to a particular control design technique. Instead, it applies to general control design

approaches that result in linear, static gain feedback.

Over a domain of varying (Q,R), the steady-state disturbance gramians of the
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closed-loop system were calculated for a unit input vertical gust

(A−BK)Xc +Xc(A−BK)∗ +DD∗ = 0. (4.1)

Also over the same space of (Q,R), the steady-state observability gramians of the

closed-loop system were calculated for the vertical velocity state

(A−BK)∗Yo + Yo(A−BK) + C∗C = 0. (4.2)

The size of the proposed MG as a variation over the space of (Q,R) (and

resultant controller gain K’s) for each model was the basis for building a gramian-

optimized control law. The determinants of the varying MG’s as a function of

different closed-loop feedback controller gains is taken as having an implication on

the vehicle’s sensitivity in the vertical direction due to a vertical gust. A field with

uniform lengths of equal and opposite magnitude unit vertical gusts was considered

as the simulation environment, with gust lengths appropriately scaled for vehicle

size and cruise speeds. The conventional controller would fly over both “favorable”

and “unfavorable” gusts without changing its controller gains K, while the gramian-

optimized controller would change its gains to that which corresponded to the largest

MG determinant (hereby labeled MG) for a “favorable” gust (updraft) and vice versa

change its gains to that which corresponded to the smallest determinant (hereby

labeled MG)to an “unfavorable” gust (downdraft).

Models were selected covering a range of scales for the longitudinal gramian

analysis. The first two are of a small unmanned aircraft (Ultra Stick 25E) derived

from DATCOM methods and flight-test-derived system identification respectively by
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Figure 4.1: Ultra Stick 25E (top-left); Shrouded rotor MAV (top-right); Fruitfly

(bottom).

Dorobantu et al., labeled (a) and (b) respectively. The differences in the two Ultra-

Stick models, namely in the pitch damping Mq, make these models good candidates

for exploring the sensitivity of our gust modeling approach to model origin [36].

The third model, labeled (c), is a decoupled hover model derived by system iden-

tification of a fruit fly Drosophila by Faruque et al. [?]. Next, the same fruitfly’s

full 3DOF dynamics model is considered, labeled (d). Finally, the shrouded rotor

micro aerial vehicle derived via system identification by Hrishikeshavan et al. [68]

is considered, labeled (e). Figure 4.1 shows the models considered here. Table 1

has the models enumerated and shows the several orders of magnitude considered

in scale parameters.

Let the subscript notation refer to the system of interest. For example, A(a)
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System Model Mass m (kg) Chord c (m) Wingspan b (m) Iy (kg m2)

(a) Ultra-stick (DATCOM) 1.959 0.25 1.27 0.144

(b) Ultra-stick (Sys ID) 1.959 0.25 1.27 0.144

(c) Fruitfly (Hover) 1.02× 10−6 1.3× 10−3 2.12× 10−3 5.96× 10−10

(d) Fruitfly (Full 3DOF) 1.02× 10−6 1.3× 10−3 2.12× 10−3 5.96× 10−10

(e) Shrouded Rotor MAV 0.257 N/A 0.244 N/A

Table 4.1: Parameters for the five systems.

indicates the open-loop plant matrix A for system (a). For systems (a), (b), (d) and

(e), the x-axis is out the nose, y-axis out the right-wing and z-axis positive ventrally.

The longitudinal state vector is

x =

[
u w q θ

]T
, (4.3)

where u is surge, w is heave, q and θ are pitch rate and pitch angle respectively.

The control input in (a) and (b) is an elevator deflection. For system (c), the

control input is the flap amplitude Φ, while for system (d), the control inputs are

the flap amplitude Φ, stroke plane angle β and mean position of wing oscillation φ.

For system (e) the control inputs are the longitudinal cyclic and throttle. Control

inputs for (d) and (e) were scaled to degrees and seconds (pwm), respectively. The

gust vector g is

g =

[
ug wg qg

]T
, (4.4)

where ug, wg and qg represent surge, heave, and rotational gusts. The longitudinal
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gust-response matrix is taken as the negative of the plant dynamics matrix without

the direct impact on the pitch angle state [12], thus resulting in the fourth row of the

disturbance feedthrough matrix, D, being all zero. The vertical gust is considered

by using the second column of D.

For the LQR methods discussed previously, Q(a), Q(b), Q(d) and Q(e) were of

the form

Q(a,b,d,e) = diag

[
Qu, Qw, Qq, Qθ

]
, (4.5)

while Q(c)=Qw, where Qu, Qw, Qq and Qθ refer to the individual weighting com-

ponents for the respective states in the Q matrix. Similarly the R matrices for the

systems were of the form

R(a,b,c) = R11, (4.6)

R(d) = diag

[
R11, R22, R33

]
, (4.7)

and

R(e) = diag

[
R11, R22

]
, (4.8)

where R11, R22 and R33 refer to the individual weighting components for the respec-

tive control inputs in the system under consideration. The vertical velocity observer

for systems (a), (b), (d) and (e) was of the form

C(a) = C(b) = C(d) = C(e) =

[
0 f 0 0

]
(4.9)
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while for system (c), C(c) = f , where f =
|B()B

T
()
|∞

(mb2)2
with B() referring to the relevant

control input-output matrix and m and b taken from Table 1 as the mass and

wingspan of the systems. The domain of (Q,R) over which controller gains and

subsequent MG volumes were calculated are the following: Qu ∈ [1, 20], Qw, Qq and

Qθ ∈ [1, 10]; for systems (a), (b) and (c) R11 = 1; for (d) R11 = R22 = R33 = 1; for

(e) R11 = 1, R22 ∈ [1, 11].

4.2 Results and Discussion

The method identified a map for the MG’s determinant as a function of the

varying Q’s and R’s [67]. Within the set, the maximum determinant MG was

identified with its corresponding Q, the minimum determinant MG was identified

with its corresponding Q. An intermediate M̃G determinant was chosen as the

average of the largest and the smallest determinants in the set. If the search-space

did not contain a (Q,R) that yielded a determinant close to the average of the

largest and smallest determinants, then the second-highest or second-lowest MG

determinant was chosen as M̃G. The corresponding Q was identified as Q̃. The

conventional controller was simulated as a median set of gains corresponding to the

Q̃. The gramian-optimized controller was gain scheduled such that it picked the

gain from Q̃ when the vertical gust was zero, picked Q when the vertical gust was a

downdraft, and picked Q when presented with an updraft. As a result of such gain

scheduling, the presented method picks the gain that minimizes the impact of an

unfavorable gust on the system’s energy (altitude) and maximizes the impact of a
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Figure 4.2: The determinant of MG as a function of Qw for system (c).

favorable gust.

Consider the uniaxial hover dynamics of system (c). As seen in Fig. 4.2, over

the varying Qw’s, there is a variation in the determinants of the gust capture metric

MG.

From Fig. 4.2, there is a Qw that corresponds to the highest MG determinant

in the set, as well as the lowest. These are thus labeled as Q and Q, in this case

being 1 and 10 respectively. The LQR gain K corresponding to these Q’s are thus

referred to as K and K. For this case, K is -0.7564 and K is -2.8921. Finally, a Q̃ of

3 can be identified from the results in Fig. 4.2 as having the MG determinant closest

to the average of the maximum and minimum determinants and this corresponds to

a K̃ = −1.4722.

Figure 4.3 illustrates a simulation of the Drosophila in system (c) traveling

at a constant forward speed of 0.4 m/sec through a gust field. There is a uniform
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Figure 4.3: System (c) simulation indicates that gramian-gain switching allows al-

titude gain over conventional control.

downdraft section from 0.5 to 0.7 m, and then an equal and opposite updraft section

from 1.5 to 1.7 m. The conventional controller flies through the entire track with

constant gain K̃ = −1.4722. The gramian-optimized case flies with the same K̃

when the vertical gust is zero. It is programmed to modulate its gain toK = −2.8921

in the downdraft (unfavorable) section, returns to K̃ in the neutral gust section, and

regulates its gain to K = −0.7564 in the updraft (favorable) section. These results

indicate a net improvement of the gramian-optimized K-regulator in comparison to

the gramian-blind constant-K Drosophila model as the gramian-optimized case is

able to minimize its altitude loss in the downdraft and maximize its altitude gain in

the updraft. In totality, the gramian-optimized controller was able to harness more

energy in the form of altitude gained from the flight over the updraft and downdraft

sections in comparison to the gramian-blind fixed-gain controller.

Now consider the multivariate (Q,R) of systems (a), (b), (d) and (e). Over
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Figure 4.4: Bivariate projection of the Gust Capture Metric Determinant over Qu

and Qw for System (b) while Qq = Qθ = 1.

the ranges of Qu, Qw, Qq and Qθ’s as shown in Table 2, we get an array of (Q,R)

that correspond to maximum, minimum and a midpoint determinant of the gust

capture metric MG. The maximum, minimum and midpoint MG determinants and

their corresponding (Q,R) are noted in Table 2. A projection ellipsoid of the mul-

tidimensional MG mapping for system (b) is provided below, keeping Qq = 1 and

Qθ = 1 in Fig. 4.4.

Subjecting systems (a), (b), (d) and (e) to a similar gust field, the results can

be seen in Figures 4.5 through 4.8, each of which indicates the gramian-optimized

controller gains more energy in the form of altitude gain over the conventional con-

troller, as predicted theoretically. Since MG is formulated primarily from knowledge

of the system’s plant and gust sensitivity dynamics, the optimal gains for a feedback

loop in terms of atmospheric energy harvesting can be calculated off-board using

this gramian-based maximizing and minimizing approach.
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Parameter (a) (b) (d) (e)

Maximum

MG 4.3162×107 3.7173×108 4.8192×102 9.324×10−1

Qu 1 1 2 13

Qw 8 10 5 1

Qq 1 1 7 5

Qθ 1 1 5 8

R11 1 1 1 1

R22 N/A N/A 1 11

R33 N/A N/A 1 N/A

Minimum

MG 5.8109×104 1.6124×105 0 0

Q
u

20 20 1 13

Q
w

1 1 10 10

Q
q

10 10 1 1

Q
θ

10 10 3 1

R11 1 1 1 1

R22 N/A N/A 1 1

R33 N/A N/A 1 N/A

Table 4.2: Identified (Q,R) values that correspond to maximum and minimum MG

determinants.
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Parameter (a) (b) (d) (e)

Intermediate

M̃G 2.1610×107 1.8594×108 1.549×10−1 4.662×10−1

Q̃u 11 13 18 12

Q̃w 3 5 5 1

Q̃q 1 1 6 3

Q̃θ 2 3 8 9

R̃11 1 1 1 1

R̃22 N/A N/A 1 11

R̃33 N/A N/A 1 N/A

Table 4.3: Identified (Q,R) values that correspond to intermediate MG determi-

nants.
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Figure 4.5: Flight trajectory over gust field for system (a).
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Figure 4.6: Flight trajectory over gust field for system (b).
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Figure 4.7: Flight trajectory over gust field for system (d).
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Figure 4.8: Flight trajectory over gust field for system (e).

4.3 Conclusion

This chapter presents a method of understanding the effect that gains in a

linear static gain control approach have on the closed loop. This framework may be

applied to design gust-aware flight controllers to understand and predict the relative

sensitivities of flight control laws, and reduce our dependence on Monte-Carlo type

simulations to study gust response of flight controllers. The gust capture metric as

a basis for a gain scheduling control law to capture vertical gusts incorporates the

disturbance gramian arising from the input gust and the corresponding observability

gramian to maximize or minimize the disturbance in the applicable state. Using a

unit norm gust to generate a disturbance gramian and a unit norm state to generate

an observability gramian, the gust disturbance can be maximized or minimized in

the desired direction. Gramian-aware control laws which are built on a theoretical

formulation of closed loop gust response have potential for recovering atmospheric
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energy and may be a method of enabling increases in mission endurance through

feedback control. The formulation presented here, which accounts for the size of

gust response via the determinant of the gust capture metric, that is composed of a

disturbance and observability gramian, allows an a priori computation of the most

and least gust sensitive gains within a closed loop control framework and provides

a foundation for gust-scavenging flight control.
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Chapter 5: Concluding Remarks

This thesis developed and presented a theoretical framework to achieve at-

mospheric energy recovery from the development of a gramian-aware control law

that utilizes a a model of the vehicle dynamics. Energy recovery was quantified

as net altitude gain from flying the UAV platform over vertical gust sections. A

gust capture metric was defined accordingly and its volumetric size was presented

as a direct quantification of the vehicle’s sensitivity in the particular state to the

particular gust disturbance. Univariate mapping of the gust capture metric’s size

was presented as proof of concept by modulating a sample vehicle Night Vapor’s

cruise speed condition. The importance of considering the observability gramian in

conjunction with the disturbance gramian in a combined metric in the gust capture

metric was highlighted from considering the various Apprentice model simulations

as a function of cruise speed. The idea was then extended to the domain of ideal

gain selection towards atmospheric energy harvesting. Here the physical intuition

that was carried into the cruise speed example was lost. Once again initially the

formulation was presented in detail with a univariate example of the fruitfly’s hover

dynamics, and subsequently it was noted that the same criterion of using volumetric

size of the gust capture metric as a function of the scalar closed loop gain K was
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validating the theory. Then this search was expanded into the multivariate form

of gain-space across several different platforms. Again the simulations showed that

the flights with the gramian-aware gain modulation were capturing more altitude or

energy compared to a gramian-blind or constant-gain flight for the same platform.

It is in these final set of results where it becomes apparent that application of this

theory using the gust capture metric’s size incorporating a platform’s perturbability

and observability can be expanded across the board to reach any and all modulations

available to the controller of a UAV in flight.

Cruise speed and multivariate gain-space maps can easily be combined for an

overall multivariate search for gust capture metric size over a combination of all these

terms. Similarly, one may be able to add changing flight configuration via flaps or

slats or modulating wing span or changing vehicle center of gravity or the steady-

state angle of attack in rotorcraft to affect the gust capture metric size. All these

can be considered individually or in tandem and made into a multivariate search by

analogy to the multivariate gain-selection search examples. The application of the

theory may also be expanded in a different direction, i.e. in considering different

metrics as energy gain such as range extension. Appropriate selection of the observer

matrix C will become a vital part of such an endeavour as range maximization is

likely a joint function of more than one of the flight states, whereas altitude gain

could be restricted to observing just the ∆w state. Scaling the individual entries of

C appropriately with vehicle size and speed becomes part of the challenge in this

case. In the discussion on gain-selection in Chapter 4, C was scaled, albeit only

in the vertical direction, using the size of the B matrix and mass and wingspan
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of the vehicles. Similarly, expansions of this theory can be applied in the lateral

sense, and simplified LTI models need not be the only baseline application either

as nonlinear models and empirical gramians may be able to utilize the underlying

theory. The issue of reaction time for the controller in relation to variant gust

durations, magnitudes and turbulence may involve application of the developed

theory on the non-steady-state gramians.
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