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Abstract
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This thesis concerns the use of optical fiber in a multi-user communica-
tion network. Specifically, it considers the use of code-division multiple access
(CDMA) techniques that permit many users to share a single optical channel
through the assignment of unique “signature sequences”.

In most optical systems — where incoherent processing means that only signal
intensity is measured — there are no negative signal components, and the effect
on code design is profound. This was noted by Salehi and others in their design
of optical orthogonal codes (00C’s).

The results in this thesis extend previous work on OOC’s in several areas.
First, we consider codes for which the auto- and cross-correlation constraints
are not equal. We observe that the effects of the two constraints on system
performance are not identical, and so considering only codes for which they are
identical may lead to a sub-optimal code. Bounds on such OOC’s are derived
and techniques for constructing them are described.

0OO0OC’s with unequal auto- and cross-correlation constraints may be viewed
as constant-weight unequal error protection (UEP) codes; therefore we interpret

the bounds and constructions in that context and compare them with previous

work on UEP codes.



We develop bounds on the size of “variable weight” OOC’s and demonstrate
techniques for building them.

By considering the original CDMA system as an inner code and adding a
channel encoder for each user as an outer code, we demonstrate a concatenated
coding scheme that can improve system performance without increasing the
weight of the OOC sequences.

A new approach to CDMA on optical fiber networks employing pulse position
modulation (PPM) is developed. We propose assigning to each user in the net-
work two éignature sequences — a synchronization sequence and a data sequence.
We stipulate the required properties of such sequences, and we demonstrate that
in some cases more users can be accommodated with this approach than with

the assignment of single sequences that “do it all”.
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Chapter 1

Introduction

1.1 Background

A multiple access communication system is a communication system where a
number of users share a common transmission medium to transmit messages
~ to a number of destinations. One of the key issues that must be resolved in
moving from a single user communication system to a multi-user communica-
tion system is how we can efficiently divide the available transmission medium
among all users. Time division multiple access (TDMA) and frequency division
multiple access (FDMA) are two common multiplexing techniques. In TDMA
(FDMA), each user is allocated to a different time slot (frequency) for trans-
mission. TDMA and FDMA schemes are extremely effective when the traffic
is heavy. In terms of bursty or sporadic traffic, TDMA and FDMA, however,
are inefficient. This behavior is typical in local area networks (LANs) or data
communications. Illustrations of TDMA and FDMA schemes are in Figures 1.1

and 1.2.

The solutions which are widely used in LANs are random multiple access
techniques. One of random multiple access techniques which is used in the

popular Ethernet LAN is called carrier sense multiple access/collision detection
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Figure 1.1: A time division multiple access scheme.
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Figure 1.2: A frequency division multiple access scheme.



(CSMA/CD). The “collision” problem that occurs when several active users
send messages simultaneously is handled by CSMA /CD. Each active user first
listens to the medium to determine if a transmission is in progress before pro-
ceeding to transmit, so that it does not interfere with the ongoing transmission.
Furthermore, if two active users start to transmit almost simultaneously, they
will shortly detect a collision in process and both cease transmitting. After a
random delay, each user will retransmit his message. CSMA/CD can increase
throughput and decrease average delay significantly[1].

An alternative for random multiple access techniques is code division multi-
ple access (CDMA), which provides multiple access capability with a fixed delay
(the delay is proportional to the length of the signature codeword). This the-
sis investigates problems for CDMA on optical fiber networks. We begin with

reviewing some basic concepts of CDMA.

1.2 Review of CDMA

CDMA —also known as spread spectrum multiple access (SSMA )—was developed
from spread spectrum techniques established for antijam and multipath rejection
applications as well as accurate ranging and tracking[2]. CDMA techniques per-
mit many users to share a single transmission medium through the assignment
of unique “signature sequences.” This approach has a long history as applied to
communication channels, such as radio waves, coaxial cable, and satellite, where
the modulated signals can have both positive and negative components — e.g.
binary phase shift keying. However, in optical systems — where the incoherent
processing means that only signal intensity is measured — there are no negative

components. The lack of “negative components” in current optical transmission
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Figure 1.3: A FH CDMA scheme with FH sequences (4,7,2,5,1,6,5,8,3,7) and
(6,3,8,1,7,4,2,6,1,5).

technology dictates the use of the (0,1) notation, which is different from related
techniques where the (+1, —1) notation reflects the fact that binary phase shift
keying (BPSK) is explicitly or implicitly assumed[3][4].

Depending on the different spreading techniques, there are different forms
of CDMA, such as direct sequence (or pseudo-noise) CDMA, frequency-hopping
CDMA, time-hopping CDMA, and hybrid forms. Among these spreading tech-
niques, direct sequence (DS) and frequency-hopping (FH) are the most com-
monly used. The difference between DS CDMA and FH CDMA is that the
bandwidth is spread by direct modulation of a data-modulated carrier with a
wideband spreading code in DS CDMA; on the other hand, the spreading code
in FH CDMA does not directly modulate the data-modulated carrier but is in-
stead used to control the sequence of carrier frequencies. Thus the transmitted
signal appears as a data-modulated carrier which is hopping from one frequency
to the next[5]. Figure 1.3 illustrates two FH sequences in the time-frequency
plane. |

DS CDMA optical fiber systems take advantage of excess bandwidth in

single-mode fibers to map low information rate electronical or optical signals



into high rate optical a sequences to achieve random, asynchronous communica-
tion access, free of network control among the users[6]. The use of a DS CDMA
fiber-optic system is described in [6][7]. In an optical network we assume that
time is broken into discrete slots; within each slot each user can either transmit
an optical pulse (i.e. - a physical “1”) or not transmit an optical pulse (i.e. - a
physical “0”). If we assume incoherent processing - i.e., the phase of the signal
is not available — then multiple pulses transmitted simultaneously by different
users add. Specifically, if J users transmit a pulse during the same slot then
the receiver observes a pulse of intensity JE, where E is the intensity received
when a single user transmits a pulse.

Each user in the network is assigned a codeword containing w ones from
a CDMA code. The codeword assigned to a user is that user’s “signature se-
quence”, and when the user wishes to convey a logical “1” he transmits the
corresponding sequence of pulses and pauses; when the user wishes to convey a
logical “0” he transmits nothing for n slots. At the receiver each user computes
the correlation of the received sequence with that user’s signature sequence; be-
cause of the low auto- and cross-correlation properties the correlation typically
stays low until a logical “1” is indicated by a correlation of w. In this way each
user can recover his own logical sequence.

The block diagram in Figure 1.4 depicts a DS CDMA scheme.

The i** user’s binary signal s;(¢) at the output of 7** channel encoder is given
by

si(t) = bi(t)ci(t),

where b;(t) and ¢;(t) are the i** user’s binary modulated data signal and binary

modulated signature sequence, respectively.
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Figure 1.4: A DS CDMA scheme.

The i** user’s binary modulated data signal b;(t) is given by

bi(t) = S b Pr,(t — kTy),
k=0

where bfj) is the i** user’s k" data signal that takes on 0 or 1 (we use on-of keying
in optical fiber CDMA system.) and Pr,(t) is a rectangular pulse of duration Ty
which starts at ¢ = 0.

The it* user’s binary modulated signature sequence is given by
w .
ai(t) = S Pr (¢ - IT.),
=0

where cl(i) (0 or 1) is the I** bit of i** user’s signature sequence repeated cyclically
with period (= the length of the sequence) n = %, ie., c?i) = cg_}_l, and Pr, is a
rectangular pulse of duration T, which is start at ¢ = 0.

The encoding process is illustrated in Figure 1.5.

The decoding process is as follows. The received signal at the front end of

each decoder is given by

r(t) = Z;si(t - 7)) = Z:bi(t —mi)ai(t — 7)),
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Figure 1.5: An encooding process of a DS CDMA scheme.

where 7; is the time delay associated with the i** signal.
The i** user’s signature sequence generator in the decoder end will store a
replica of i*" user’s signature sequence in the encoder end. Hence, the output of

ith user correlation decoder Z; is equal to

Zi =4 + I,

where I; is the undesired signal comes from the other users.
The output Z; would then be compared to a threshold level at the comparator

for the data recovery.

1.3 Motivation and Outline of Thesis

In order to extract its signature sequence in the presence of other users’ signature
sequences for a desired user, a set of signature sequences need to satisfy the

following two properties:



o Auto-correlation property: Each sequence can easily be distinguished

from a shifted version of itself.

e Cross-correlation property: Each sequence can be easily distinguished
from every other sequence in the set.

An optical orthogonal code (OOC) is a collection of binary sequences with

good auto- and cross-correlation properties; they were defined by Salehi and

others as a means of obtaining code division multiple access on optical networks.

What follows is the definition of an OOC given by Salehi et. al. [8].

Definition: An (n,w, A4, A;) optical orthogonal code C is a collection of bi-

nary n-tuples, each of Hamming weight w, such that the following two properties

hold:

e (Auto-correlation) For any x = [zq,...,2,-1] € C and any integer 7,
0<7T<n,
n—1
Z TiTigr < Ao
t=0
o (Cross-correlation) For any x = [zo,...,2Zs-1] € C and any y = [yo,. ..,

Yn-1] € C such that x # y and any integer 7,

n—1
Z TtYhior < )‘c-
t=0

Note: OOC’s were defined in terms of periodic correlation; thus the addition

in the subscripts above — denoted “@” - is all modulo-n.

The two correlation constraints serve two purposes:

o The auto-correlation constraint guarantees that each signature sequence
is unlike cyclic shifts of itself. This property is used to enable the receiver
to obtain synchronization — that is, to find the beginning of its message

and subsequently locate the codeword boundaries.
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o The cross-correlation constraint guarantees that each signature sequence
is unlike cyclic shifts of the other signature sequences. This property en-
ables the receiver to estimate its message in the presence of interference
from other users. Thus, the cross-correlation constraint aids both syn-
chronization in the presence of multiple users and permits each receiver
to “track” its message after synchronization is achieved.

Therefore, the auto-correlation constraint contributes only to synchroniza-
tion, while the cross-correlation constraint affects both synchronization and op-
eration.

A reasonable “figure of merit” for a code is the number of interfering users
necessary to cause the code to fail. For instance, assume synchronization has
been achieved; then the only errors the i** user can make are 0 — 1 errors, and
they can only occur when enough other users interfere to make the correlation at
the i** receiver exceed w. Since each of those other users can contribute at most
Ac to the correlation, the performance “figure of merit” is w/X.. In a similar
vein, the synchronization “figure of merit” is (w — A;)/)\. for multiple-access
synchronization and w — A, for single-user synchronization.

Up to now all work on OOC’s have assumed that the constraint placed
on the auto-correlation and that placed on the cross-correlation are the same
[6][7][8][9]. In Chapter 2 we consider codes for which the two constraints are not
equal. Specifically, we develop bounds on the size of such OOC’s and demon-
strate construction techniques for building them. The results demonstrate that
a significant increase in the code size is possible by letting the auto-correlation
constraint exceed the cross-correlation constraint. These results suggest that for

a given performance requirement the optimal OOC may be one with unequal

constraints[10][11][12].



In terms of multi-performance requirements for CDMA optical networks, we
propose two approaches to achieve the requirements. The first approach is to
use variable weight OOCs in a CDMA optical network. Up to now all work on
OOC’s have assumed that the weight of each codeword is the same. In Chapter
3 we develop bounds on the size of OOC’s when this assumption is removed.
In addition, we demonstrate construction techniques for building such “variable
weight” OOC’s. The results demonstrate that it is possible to assign codewords
with different weights among the users. Since the weight of a user’s signature
sequence directly affects the user’s performance, this is useful for CDMA on
optical networks with different performance requirements among the users.

Another approach is to use a so-called concatenated coding scheme. To
obtain a given level of performance for CDMA on an optical system with a
given number of users, we often choose a bigger weight OOC. In Chapter 4 we
demonstrate a concatenated coding scheme that achieves a required performance
without increasing the weight of the OOC sequences. By considering the original
CDMA system as the inner code and adding a channel encoder for each user
as an outer code, we have demonstrated that concatenated coding scheme can
increase the information rate when compared with a “pure” CDMA system.
Furthermore, by using a different outer code for each user, we can meet the
performance requirements for users with different priorities.

The increasing use of optical communications has fostered a renewed interest
in pulse position modulation (PPM) [13][14]. In Chapter 5 we considers a new
approach to CDMA on optical fiber networks employing PPM. We propose
assigning to each user in the network two signature sequences — a synchronization
sequence that the user will use to establish frame synchronization and a data

sequence that will be used to convey information once frame synchronization is

10



established.

Previous work on CDMA for optical channels has assumed the assignment
of a single signature sequence to each user. In some designs — e.g., prime se-
quences — the auto-correlation of each signature sequences is high, creating possi-
ble problems with respect to synchronization[15]. In other designs — e.g., optical
orthogonal codes — the auto-correlation of sequences is kept low; however, this
property is useless once frame synchronization is maintained, and it limits the
number of signature sequences that can be constructed.

Our approach requires a set of synchronization sequences with good auto-
correlation properties as well as a set of data sequences with good cross-correla-
tion properties; in addition, good “global” correlation properties — e.g. con-
straints on the cross-correlation between data and synchronization sequences —
is necessary. We demonstrate how this can be attained using extended quadratic
congruence (QC) sequences [16] for synchronization and extended prime se-
quences as data sequences.

Finally, conclusions and further researches are presented in Chapter 6.

1.4 Other Applications

There are several other applications for (0,1) sequences with good correlation
properties other than in CDMA optical fiber system.

The definition of an OOC can be recast in terms of Hamming distance;
doing so makes clearer the parallels between OOC’s and constant weight error

correcting codes.

Notation: Given a binary n-tuple x = [zg, 21,-..,2n-1], let D'x (0 <7 <

n — 1) denote the binary n-tuple obtained by performing 7 right-cyclic shifts on

11



X — 1.6, D'X = [Tp—iy Tneitly -+ s Tue1s L0y T1y -« « g Tpmimi)-

Alternate Definition: An (n,w, ),, A;) optical orthogonal code C is a col-
lection of binary n-tuples, each of Hamming weight w, such that the following

two properties hold:

o (Auto-correlation) For any x = [zo,...,2Zn-1] € C we have d%, (x) >
2w — 2),, where d%; (x) 2 min{dy(x,D"x):7=1,2,...,n — 1}.

e (Cross-correlation) For any x = [z,...,2Z,_1] € C and any y = [yo,- ..,
Yn-1] € C, we have d5;,(x,y) = 2w — 2], where d;.(X,y) 2 min{dH(X,
Dy):7=0,1,...,n—1}.

Consider the partition of binary n-tuples into “clouds”, where every cloud
consists of cyclic shifts of the same n-tuple. Then constructing an OOC consists
of picking at most one n-tuple from every cloud under two constraints; the first
constraint specifies the minimum Hamming distance within a cloud, while the
second specifies the minimum Hamming distance between clouds.

An unequal error protection (UEP) code is a code that protects some posi-
tions in a message word against more errors than other ones. Then an OOC with
unequal auto- and cross-correlation constraints can be considered as a two-level
UEP code[17][18][19]. Suppose you have such an OOC with cardinality M. Now
consider the two-level UEP code consisting of all the n-tuples of the OOC and
all their cyclic shifts, the resulting code has nM codewords. Some information
bits of the UEP code pick a cloud and others pick codeword from cloud.

Throughout the thesis, OOC’s and PPM codes are defined in terms of pe-
riodic correlation. The increased interest in spread spectrum communication
has led a corresponding increased interest in codes with aperiodic correlation

constraints. Since periodic correlation is a more restricted constraint than ape-

12



riodic correlation, therefore, codes which satisfy periodic correlation constraints
will satisfy aperiodic correlation correlation constraints. Codes with aperiodic
correlation constraints can be obtained by shifting and truncating codes with
periodic correlation constraints[20]. Various bounds and constructions for codes
with aperiodic correlation constraints are given in [21][22][23].

In radar, sonar, Costas arrays, and FH CDMA codes, the auto- and cross-
correlation are treated in a two dimensional time-frequency array [24](25]. How-
ever, the design methods such as balanced incomplete block designs and finite
projective planes are used in both one and two dimensional cases. The idea to
consider the unequal auto- and cross-correlation constraints can be used in these
two dimensional arrays.

In 1964, Kautz and Singleton defined two classes of codes that permit many
users to share a common OR-channel[26]. The first class of codes is uniquely
decodable codes. A T-user code (C1,Csy, - -+, Cr) is said to be uniquely decodable
if all sums (“Or” operation) consisting of one codeword from each constituent
code are distinct. The other class of codes is disjunctive codes. Disjunctive
codes of order m can be used for identifying m out of T (m << T') users sharing
a multiple access OR-channel. The fact that asynchronous communication is
assumed reduces the size of the OOC’s since no cyclic shift of any codeword
can be used. If both block and bit synchronism are maintained in the system, a
disjunctive code guarantees unique identification of active users as long as the
number of active users does not exceed m out of T (m << T)[27][28]. We can
relate OOC’s to disjunctive codes by using all cyclic shifts of the codewords as
the codewords of disjunctive codes. Let N(m,T') denote the minimum possible
length of a disjunctive code of order m and size 7. Then an (n,w, )\, A) OOC

with ¢ codewords is an N(| %], nt) disjunctive code.
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Codes which are designed for CDMA on optical fiber networks can be used
for CDMA on radio or satellite network where binary phase shift keying (BPSK)
is explicitly or implicitly assumed. An (n,w,A;,A;) OOC is an (n,w,n — 4w +
4),,n — 4w + 4);) code with BPSK modulation technique.

There are other applications such as neuromorphic CDMA systems and co-

herent ultra-short light pulse CDMA systems. The details are in [29].
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Chapter 2

Optical Orthogonal Codes with
Unequal Auto- and
Cross-correlation Constraints

An optical orthogonal code (QOOC) is a collection of binary sequences with good
auto- and cross-correlation properties; they were defined by Salehi and others
as a means of obtaining code division multiple access on optical networks. Up
to now all work on OOC’s have assumed that the constraint placed on the auto-
correlation and that placed on the cross-correlation are the same. In this chapter
we consider codes for which the two constraints are not equal. Specifically,
we develop bounds on the size of such OOC’s and demonstrate construction
techniques for building them. The results demonstrate that a significant increase
in the code size is possible by letting the auto-correlation constraint exceed the
cross-correlation constraint. These results suggest that for a given performance
requirement the optimal QOC may be one with unequal constraints.

This chapter also views OOC’s with unequal auto- and cross-correlation con-
straints as constant-weight unequal error protection (UEP) codes with two levels
of protection. The bounds derived are interpreted from this viewpoint and are

compared with previous work on UEP codes.
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2.1 Introduction

This chapter concerns the use of optical fiber in a multi-user communication
network. Specifically, it considers the use of code-division multiple access tech-
niques that permit many users to share a single optical channel through the
assignment of unique “signature sequences”.

This approach has a long history as applied to communication channels where
the modulated signals can have both positive and negative components — e.g.
binary phase shift keying. However, in optical systems — where incoherent pro-
cessing means that only signal intensity is measured — there are no negative
components, and the effect on code design is profound. This was noted by
Salehi and others in their design of optical orthogonal codes (OOC’s) [6][7][8][9]-

The results in this chapter extend previous work on optical orthogonal codes
in that they consider codes for which the auto- and cross-correlation constraints
are equal. We demonstrate that the effects of the two constraints on system
performance are not identical, and so considering only codes for which they are
identical may lead to a sub-optimal code. Bounds on such OOC’s are derived
and techniques for constructing them are described.

Finally, OOC’s with unequal auto- and cross-correlation constraints may be
viewed as constant-weight unequal error protection (UEP) codes; therefore we
interpret the bounds and constructions in that context and compare them with

previous work on UEP codes.

2.2 Background and Motivation

In this section we briefly review previous work on optical orthogonal codes and

indicate why the problem considered in this chapter is important.
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2.2.1 Definitions and Past Work

What follows is the definition of an OOC given by Salehi et. al. [8].

Definition: An (n,w, A,, A;) optical orthogonal code C is a collection of bi-

nary n-tuples, each of Hamming weight w, such that the following two properties

hold:

o (Auto-correlation) For any x = [zq,...,Zn_1] € C and any integer 7,
0<71<n,
n—1
Z TiZipr S /\a-
t=0
o (Cross-correlation) For any x = [zg,...,Zn—1] € C and any y = [yo,...,

Yn-1] € C such that x # y and any integer 7,

n-1

Z TilYipr S /\c-

t=0

Note: O0OC’s were defined in terms of periodic correlation; thus the addition

in the subscripts above — denoted “@” - is all modulo-n.

The definition of an OOC can be recast in terms of Hamming distance;
doing so makes clearer the parallels between OOC’s and constant weight error

correcting codes.
Notation: Given a binary n-tuple x = [2g,21,...,2n_1], let Dix (0 < <
n — 1) denote the binary n-tuple obtained by performing ¢ right-cyclic shifts on

X.

Alternate Definition: An (n,w, A,, ;) optical orthogonal code C is a col-
lection of binary n-tuples, each of Hamming weight w, such that the following

two properties hold:
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¢ (Auto-correlation) For any x = [zg,...,2s-1] € C we have d%; (x) >

2w — 2),, where d2, (x) 2 min{dy(x,D"x):7=1,2,...,n — 1}.

o (Cross-correlation) For any x = [zo,...,2,-1] € C and any y = [yo,. ..,
Yn-1] € C, we have d¢; (x,y) > 2w — 2),, where d°; (x,y) 2 ﬁin{dy(x,
Dy):r=0,1,...,n—1}.

Consider the partition of binary n-tuples into “clouds”, where every cloud
consists of cyclic shifts of the same n-tuple. Then constructing an OOC consists
of picking at most one n-tuple from every cloud under two constraints; the first
constraint specifies the minimum Hamming distance within a cloud, while the
second specifies the minimum Hamming distance between clouds. Thus if the
two const.raints are equal - i.e., if A, = A, = A — then an OOC, taken together
with all of the cyclic shifts of each OOC codeword, represents a constant-weight
cyclic error correcting code with minimum distance 2w — 2.

The use of OOC’s for multiple access is described in [6][7]. In an optical
network we assume that time is broken into discrete slots; within each slot each
user can either transmit an optical pulse (i.e. - a physical “1”) or not transmit
an optical pulse (i.e. - a physical “0”). If we assume incoherent processing —
i.e., the phase of the signal is not available — then multiple pulses transmitted
simultaneously by different users add.

Each user in the network is assigned a codeword from an optical orthogonal
code. The codeword assigned to a user is that user’s “signature sequence”, and
when the user wishes to convey a logical “1” he transmits the corresponding
sequence of pulses and pauses; when the user wishes to convey a logical “0” he
transmits nothing for n slots. At the receiver each user computes the correlation
of the received sequence with that user’s signature sequence; because of the low

auto- and cross-correlation properties the correlation typically stays low until a
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logical “1” is indicated by a correlation of w. In this way each user can recover
his own logical sequence.

In [6)[7] Salehi introduced optical orthogonal codes and computed the error
probability assuming a channel where the only “noise” is interference from other
users. In [8] Chung, Salehi, and Wei described constructions of OOC’s for the
case A, = A, = 1 and derived bounds on the cardinality on an (n,w, A, A)
code. In [9] Chung and Kumar described a construction technique for the case

Ae = A; = 2 and derived new upper bounds on the cardinality of an optimal

OOC - again for the case A\, = A, = A.

2.2.2 Why Consider A\, # A, ?

The two correlation constraints serve two purposes.

e The auto-correlation constraint guarantees that each signature sequence
is unlike cyclic shifts of itself. This property is used to enable the receiver
to obtain synchronization — that is, to find the beginning of its message

and subsequently locate the codeword boundaries.

o The cross-correlation constraint guarantees that each signature sequence
is unlike cyclic shifts of the other signature sequences. This property is
used to enable the receiver to estimate its message in the presence of
interference from other users. Thus the cross-correlation constraint aids
both synchronization in the presence of multiple users and permits each
receiver to “track” its message after synchronization is achieved.

Thus the auto-correlation constraint contributes only to synchronization,
while the cross-correlation constraint affects both synchronization and operation.
A reasonable “figure of merit” for a code is the number of interfering users

necessary to cause the code to fail. For instance, assume synchronization has
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been achieved; then the only errors the i* receiver can make in estimating its
logical sequence are 0 — 1 errors, and they can only occur when enough other
users interfere to make the correlation at the i** receiver exceed w. Since each of
those other users can contribute at most A. to the correlation, the performance
“figure of merit” is w/A.. In a similar vein, the synchronization “figure of merit”
is (w — Ag)/ A for multiple-access synchronization and w — A, for single-user
synchronization.

Taking these as our performance criteria, we see why “asymmetric” OOC’s
- l.e., codes with A, # A. — might be preferable to “sy?nmetric” codes. If we
compare (for instance) an (n,w + m, A + m,A) OOC with either an (n,w, A, \)
code or an (n,w +m, A + m, A + m) code, we see the asymmetric code is more
robust.

So the performance of an (n,w + m, A+ m,A) OOC will be at least as good
as comparable “symmetric” OOC’s. However, we will see in this chapter that
the cardinality of the (n,w + m, A + m, A) code can actually exceed that of the
less powerful codes — thus more ﬁsers can be provided even better performance.

Clearly, this motivates the study of such OOC’s.

2.3 Some New Bounds on Optical Orthogonal
Codes

Define ®(n,w, A4, A;) to be the cardinality of an optimal optical orthogonal code

with the given parameters — i.e.,

®(n,w, Ay, Ac) = max{| C |: C is an (n,w, A, \c) OOC}.

In this section we derive some new bounds on ®(n,w, A,, A.). Before this can
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be done, however, we need to set up the notation and derive some preliminary

results.
Definition: Let x = [z, 2y, -, Zsn_1] be a binary n-tuple of weight w; assume
Tj, =xj = =cj,_, = 1. The adjacent relative delay vector associated with

x is denoted tx = [to,t1,- -, tw—1] and is defined by

i =

Jiv1 — Jiy, fore=0,1,--- w—2
n+ Jo — Juw-1, fori=w-—1.

More generally, the relative delay between two 1’s in a binary n-tuple is the

number {modulo n) of cyclic shifts required to “line up” the two 1’s; tx consists

of the relative delay between all adjacent 1’s in x.

Notation: Let x be a binary n-tuple of weight w and let tx = [to, 1, .., tw-1]
be its adjacent relative delay vector. Let Rx = [rx(,7)] denote the (w — 1) X w

array of integers whose (7, j)* element is given by

rx(1,5) = ) tiok-
k=0
(Note: The subscript addition above and in the definition of My, below is all

modulo w — denoted “@”.)

More Notation: For any x € {0,1}" and any integer A (1 < A < w — 1)
let My, be the set of integer A-tuples given by
ia—1

A 0 0 12
Mxx = D tivker D biwk, D tiwks oty 2. tiwkal):

ko=0 k1=ip+1 ka=t1+1 ky_1=tix—2+1
0<ip<ii< - <ir.1<w=-2,5=0,1,---,w—1},

where tx = [to, tla PN t:L'-—l]
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w-—1

\ ) vectors in My »; this is because there are (“’_1)

There are at most w( N

ways to pick the i,’s and w ways to pick the j’s. If every such selection yields a

different vector then |Mx »| = w(wgl); otherwise |Mx )| < w(wxl).
Example: Let x = [1001100010000]. Then

tx = [to,t1,t2,t3) = [3,1,4,5].

Furthermore,
to tl t2 t3
Ry = to+t t1 + to iy + i3 t3 + 1o
\totti+ts titta+is tatis+to tz+to+1t
3 1 4 5
= 4 5 9 8
8 10 12 9
and

Myo = {[to,ta], [t1, ta], [t2, 8], [t3, 2],
[to + t1, ta], [t1 + t2, t3], [t2 + 13, Lo], [t + to, ta],
[to, t1 + tz], [tl, ty + t3], [tg, ts3 + to], [t3, to + tl]}.
= {[3,1),[1,4],[4,35], [5,3],
[4,4],[5,5],19,3], 8, 1],

3,51, 1,9], [4,8], 5,41}

The significance of Ry and My to OOC’s is given in the following three

lemmas.

Lemma 2.1: Let x = [zg,21, +,Zn-1] be a binary n-tuple. Then the

inequality

n—1

Z TiTigr < A

=0
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holds for all 1 < 7 < n — 1 if and only if no component in Ry is repeated more
than A times.

Proof: The elements of Rx indicate the relative delay between every pair of 1’s

in x. Therefore, Ry contains A+ 1 repeated elements if and only there exist two

sequences {io,?1,...,2x} and {ig,],...,23} such that for all = 0,1,...,
Li; = (L'i; =1
and
ij - Z; =7 76 0.
. But this is true if and only if Z:‘;Ol T > A+ 1. QED.

Lemma 2.2: Let x = [z¢,21,...,2n-1] and ¥ = [yo,¥1,- - -, Yn—1] be binary

n-tuples. Then the inequality

n-1
Z TiYtor S A
=0

holds for all 0 < 7 < n — 1 if and only if My and My, are disjoint.

Proof: My is a collection of integer A-tuples. A vector m = [ag, ay, ..., ar_1]

is in My, if and only if there exists a sequence of A + 1 distinct integers — call

them iq,11,...,2) — such that
z;; =1 forj=0,1,...,A

and

ij+1——ij=aj fOI’jZO,l,...,)\—l.

Therefore, My N My = 0 if and only if it’s impossible to “line up” A + 1
binary 1’s in x with A + 1 binary 1’s in y with cyclic shifts — i.e., if and only if
ZIL:_OI TiUter S_ A QED
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Lemma 2.3: Let x = [zg,21,...,%n-1] be a binary n-tuple. Then the
inequality

n—1

Z TeTogr < A

t=0

holds for all 7 = 1,2+ ,n — 1 if and only if |[Mx | = w(wxl) - i.e., if and only

if the vectors defining My » are all distinct.

Proof: Similar to the proof of Lemma 2.2. The presence of a A-tuple in My »
corresponds to A + 1 non-zero components of x such that the relative delays
between the non-zero components are given by the A-tuple. If |Mx | < w(wz\'l)
then there are two different sets of A + 1 non-zero components with the same
relative delays between them; thus we can “line up” the A + 1 binary ones and
obtain an auto-correlation of at least A + 1. Conversely, if |Mx | = w(“’;l)

then every set of A + 1 non-zero components of x have a different relative delay

structure, so it’s impossible to obtain an auto-correlation of A+1 or more. QED.

2.3.1 An Upper Bound

In this section we will use the characterizations developed above to provide an
upper bound on ®(n,w, A, Ac).

First consider the case A\, = A. = X; the bound we derive is identical to
one in (8] derived from the Johnson bound for constant weight error correcting
codes; it is re-derived here to illustrate the approach that will be taken in the

proof of the new bounds.

Theorem 2.1: [Johnson Bound] The following inequality holds:

(n-—l)(n—2)...(n—)\)'

®(n,w, X, \) < ww—1)...(w— \)

Proof: Let C be an optimal (n,w,\,A) O0OC - i.e., |C] = ®(n,w,\, )). From
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Lemma 2.3 we know that for every x € C the set Mx ) consists of w(w;'l) distinct
integer A-tuples. Furthermore, from Lemma 2.2 we know that for x,y € C,
X # Yy, the sets My » and My , are disjoint. Therefore the union of Mx ) as x
varies over all x € C consists of ®(n,w, A, A) - w(wzl) distinct integer A-tuples.
However, by definition if [ag, a1, . .., ax—1] € Mx, then ag+a1+...4ay-1 <n—1.
But the number of ways to select A positive a;’s that sum to no more than n —1
is just the number of compositions of n with A 4+ 1 positive parts — and that is

equal to ("}'). We have thus shown that
A

<I)(n,w,)\,/\)-w(w;1) < (";1)

which was to be proven. QED.

Our next goal is to bound ®(n,w, A4, A.) for A, > A.. To do so we first need

a preliminary lemma.

Lemma 2.4: Let x € C, where C is an (n,w, A + m, A) optical orthogonal

code. (Assume m > 0 is an integer.) Then if w > 2X — 2,
w
A
> ——
| M| > m+ 1

If w <2) -2,

w
A
|Mxp| 2 ———.

A+ m
Proof: See Appendix A.

Theorem 2.2: Let m be a non-negative integer. Then if w > 2\ — 2,

(n=1n-2)...(n = A)(m+1)
ww—1)(w—-2)...(w—2A)

O(n,w, A +m,\) <
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Ifw<2)-2,

(n=D(n=2)...(n = A)(A+m)
ww-D(w—-2)...(w=2A)

O(n,w, A +m,A) <

Proof: Let C be an (n,w, A + m,A) OOC such that |C| = ®(n,w, A + m, ).
By Lemma 2.4, for any x € C and if w > 2X — 2, [Mx | > w(wgl)/(m +1).
Furthermore, by Lemma 2.2 My, and My are disjoint for x,y € C and x # y;
therefore |Mx )| summed up over all x € C cannot exceed the total number of

integer A-tuples that are “allowable” as elements of My ) — a number shown in

the proof of Theorem 2.1 to be (":\'1) So:

()
A - xeC

V

z IMX,AI

> P(n,w, A +m,A) min{|Mx,|:x €C}

()
L
> <I>(n,w,)\+m,/\)-—m—_-i_~1—

which was to be proven. The proof for w < 2A — 2 immediately follows the proof
above. QED.

Examining Theorem 2.2, we find (for instance) that the upper bound on
O(n,w, A, 1) is A times greater than the analogous bound on ®(n,w,1,1). It
should also be noted that a trivial upper bound on ®(n,w, A + m, ) is given
by any upper bound on ®(n,w,A + m,A + m). For “typical” OOC values —
l.e., n > w - an upper bound derived this way will be much looser than the
bound in Theorem 2.2. For instance, considering (n,w,2,1) OOC’s, the bound
in Theorem 2.2 is tighter than the Johnson bound for (n,w,2,2) codes provided
n—2>2w-2).
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2.3.2 Lower Bounds

In [8][30] a lower bound on ®(n,w, )\, \) was derived for odd prime n. Sub-
sequently, Victor Wei [31] derived an alternate lower bound — again for odd

prime n. In what follows we use the general approach of Wei [31] to bound

®(n,w, A, ;) for A, # A, and any n.

Theorem 2.3:
(o) -4
w
>
Q(n,w, Ag, Ae) > 5 ,
where
Ln/2)  Lws/n] 5 WS o\ fw— Nnfé— 1
A = Z Z A(N——w5/n)( )-I— Z ()( )
§=1 N=0 N c=[wé/n] N c—N~1
8n

() (2] i1 s < sy ™SS (221) ()

c=1
A(x)z{ 1, if z =0

0, otherwise,

s=n3 (,20)(0)

Proof: As in [8][30], the proof consists of demonstrating that A is an upper

and

bound on the number of binary n-tuples that violate the auto-correlation con-
straint and B is an upper bound on the number of binary n-tuples that violate
the cross-correlation constraint for a given binary n-tuple x. The result follows
from an application of the greedy algorithm. The validity of B as an upper
bound was demonstraﬁed in [8][30]. Thus the proof consists of demonstrating
that there are at most A binary n-tuples that violate the auto-correlation con-

straint. A proof of this is given in Appendix B.
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2.3.3 Asymptotic Bounds

In this section we examine how the cardinality of an optimal (n,w, A,, A.) optical
orthogonal code behaves for large blocklength. The goal is to see how quickly
the parameters w, A,, and A, should grow with blocklength n in an (n,w, A,, Ac)

00C.

Lemma 2.5: Let A, be a positive integer, and let p and ¢ be a non-negative

constants such that p > (A, 4+ ¢)/(Ac +1). Then
Tim ®(n, [an?], [n7], \.) =0,

for any positive real a and f.

Proof: From Theorem 2.2,

B(n, [an?], [Bn],Ae) < B (0= AJBnt H 1= A £ 1)

anP(an? — 1) ...(an? — X.)

_ hetema0et (g - (3, - 2)/ur)a ) TT L), e

Since by assumption A; + ¢ — p(A. + 1) < 0 we have the desired result. QED

Lemma 2.6: Let A\, and ). be positive integers, and let p be a constant such

that p < min{A./(2A, + 3),A./(2X; + 3)}. Then

lim ®(n, [an®], Aq, A:) = o0,

for any positive real a.
Proof: See Appendix C.

Considering the case A\, = A, = 1, Lemma 2.5 tell us that the weight should
grow no faster than \/n, and Lemma 2.6 suggests it should grow no faster than

nl/s.
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Lemma 2.7: Let p, ¢, and r be positive constants between zero and one such

that p < (1/2), then

nl-l-»r& ®(n, [an®], [Bnf], [yn"]) = oo,
for any positive real o, and ~.

Proof: See Appendix D.

2.4 O0OC’s as Constant-Weight Unequal Error
Protection Codes

In this section we briefly describe the connection between (n,w, A,, A.) optical
orthogonal codes and unequal error protection (UEP) code with two levels of
protection.

An unequal error protection code is an error control code with a “twist”;
the code is designed so that different digits in a message have varying levels of
reliability. This may be convenient in applications where the position of a digit
in a message determines its importance. The archetypical example of this is a
message containing a bank balance; if the balance is $1376.62 it’s much more
important that the “1” be uncorrupted than that the “2” be error-free.

An encoder for an (n, k) binary error control code is a mapping f : {0,1}F —
{0,1}". The message x € {0,1}" is represented by the codeword f(x) € {0,1}".
If min{d(f(x), f(y)):x,y € {0,1}},x # y} > 2t + 1 then we say the code is t-
error correcting. (Here, d(e;, ¢2) is the Hamming distance between the n-tuples

C1 and C2.)

Definition: Given an encoder f : {0,1}* — {0,1}", the separation vector

associated with the encoder is an integer k-tuple s = [so, 81, . . ., Sx—1] defined by
si = min{d(f(x), f(y)) : x,y € {0,1}* and z; # y:}.
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Note that the separation vector is associated with the encoder rather than the
code — i.e., the image of the encoder. It’s possible that a code may have multiple
separation vectors associated with it — corresponding to different encoders for
the same code.

Let f(-) be an encoder with separation vector s = [sq, $1,...,8k-1]. Sup-
pose a message k-tuple x is used to select a codeword f(x) € C which is then
transmitted over a noisy channel. It’s obvious that minimum-distance decod-
ing will correctly recover the it* bit of the message provided no more than
t; = |(si — 1)/2] errors occur during transmission. A code with an encoder
whose separation vector has the property that ¢; # t; for some ¢ # j is called an
unequal error protection (UEP) code.

There is a substantial body of literature on UEP codes. (See [17][18][19][32]
for references.) However, there has been no investigation of constant weight UEP

.codes.

Throughout this section, we assume A, > A, — the inter-clond Hamming
distance d¢;, is no less than the intra-cloud Hamming distance dZ;, for an
(n,w, Ag, Ac) O0C.

Then an (n,w, A, A:) OOC with A, > A. can be used to construct a constant
weight UEP code. Suppose you have such an OOC with cardinality M. Now
consider the error control code consisting of all the n-tuples of the OOC and
all their cyclic shifts. The resulting code has nM codewords, all of weight
w. Furthermore, such a code consists of M “clouds” of codewords, where two
codewords belong to the same cloud if and only if they’re cyclic shifts of one
another. The distance between any two codewords within the same cloud is

at least 2(w — A,); the distance between any two codewords from two different

clouds is at least 2(w — A;)

30



So, consider the following encoder. Take k; = |log, M| message bits and
use them to pick a cloud; then take k; = |log, n| message bits and use them to
pick an n-tuple from within the chosen cloud. Any two messages that differ in
the first k, bits will have codewords that differ in at least 2(w — \.) positions;
any two messages that differ in the last k; bits will have codewords that differ
in at least 2(w — A,) positions. Therefore we have described an encoder for a

(k1 + k2,n) code with separation vector

s=(2(w—Ac),...,2(w - Ac)y2(w = Aa), .., 2(w — Ag))
ky y

This observation means that our lower bound for OOC’s may be interpreted
as an existence result for constant-weight UEP codes with two levels of protec-

tion.

Notation: Let M(n,w, s, A;) denote the lower bound on ®(n,w, \,, A.)
derived in Theorem 2.3 - i.e., M(n,w, A;, ;) = ((”) — A)/B, where A and B

w

are given in Theorem 2.3.
Theorem 2.4: Let @ and 8 be positive, even integers. Then there exists a
weight-w (n, k1 + kq) error control code with separation vector

S:La’a"“’a’p’ﬂ"”’ﬂj’

v e

ks ky

where

k2 = |log; M(n,w,w — (8/2),0 — (a/2))] and & = |log,n).

It is interesting to compare the bound in Theorem 2.4 with existing bounds
for non-constant weight UEP codes. Bassalgyo et.al. [33] used Gilbert-Varsha-

mov style reasoning to derive the following result: There exists a UEP code
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with blocklength n and rate R = Ry + R; with a separation vector consisting of
ki = Rin entries of dy = 2t; + 1 and ky = Ryn entries of dy = 2ty + 1 (¢; < 1y)
provided the following inequality hold:
tilogon  3tglogy(1/Ri) +11 42

n

n

Ry>21-Ry -

If we let k; = |log, n|, this bound may be directly compared to the bound
in Theorem 2.4. Figure 2.1 shows two different lower bounds on the number of
information bits that can be protected against two errors while simultaneously
protecting k; = |log,(n)| information bits against single errors. One bound
is from Bassalgyo et.al and the other comes from Theorem 2.4 when we set
w = |n/2|. The lower bound in Theorem 2.4 is a clear improvement over the
bound in [33].

This may at first seem surprising; the bound from Theorem 2.4 is one on
constant-weight UEP codes, while the Bassalgyo bound has no such constraint.
However, there are similar results with regard to “regular” t-error correcting
codes. For instance, the traditional Gilbert-Varshamov bound for codes with
blocklength n = 8 and minimum distance four is given by [28/(1+ (2) + (g) ) =4.
By comparison, if we use a Gilbert-Varshamov-type technique to bound the
cardinality of the optimal weight-four code with blocklength n = 8 and minimum
distance four we obtain [(2)/(1 +4%)] = 5.

The phenomenon can be explained by the proof of the Gilbert-Varshamov
bound. The bound states that, when drawing codewords from a set X with
the property that every sphere of radius d — 1 contains V;_; elements, it is
always possible to find a code with minimum distance d and cardinality at least
|X|/Va-1. In going to a constant weight code we are taking a subset of X in
such a way that the ratio of the cardinality of the set to the sphere “volume”

increases.
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2.5 Constructions of OOC’s

2.5.1 An (n,w,2,1) OOC (Construction 1)

As indicated in Section 2.2, we now demonstrate a technique for constructing an
(n,w,2,1) OOC. The method is a variation on the techniques proposed by Wil-
son and Hanani[34][35] to construct (n,w,1,1) codes. We begin by considering

specific values of w (w = 5 and w = 6) and then generalize the technique.

2.5.1.1 Some Specific Examples

An (n,5,2,1) OOC: Let n be a prime number such that n = 12t + 1 for an
integer t. Let o be a primitive element of the field GF(n) such that o = & — 1
and o = 2, where ¢ and r are integers satisfying one of the following two
conditions:

e g=1 (mod3)andr=2 (mod 3);

¢ ¢g=2 (mod3)andr=1 (mod3).

Then we can construct an (n,5,2,1) OOC C with cardinality |C| = t as
follows. The i codeword x; contains a “1” in positions 0, o, o343, o83
and o®** and a “0” everywhere else. This holds for i = 0,1,...,t — 1. (Note:
We say that the code consists of the “blocks” {[0, a®, a®1+3i oS3 o%+3i] . § =

0,1,...,t—1})

To see that this construction yields an (n,5,2,1) code let Ry, denote the

array consisting of all the relative delays between pairs of 1’s in x¢. Keeping in

mind that 2!? = 1 and 2% = —1, simple algebra reveals that
1 a3t -1 a3t(a3t - 1) a6t(a3t — 1) oSt
B = O(3t 2a6t 2a9t 1 a9t(03t _ 1)
Xo ™ a6t 0{3t(o{3t - 1) agt 2 203t
o abt aft(a® —1) o (a® — 1) a3t — 1
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Every component of Ry is of the form B3 where 8 € {1,2,a% — 1} and
7 €{0,1,2,3}. Therefore as long as the base-a logarithms of 2 and a3 — 1 are

not equivalent to each other mod 3 and are not equivalent to zero mod 3,

B1 # Ba or j1 # ja = Bra®t £ Bra®t,

And so no element of Ry, is repeated more than twice; this implies the auto-
correlation constraint for xg is met. Furthermore, the matrix Ry, is obtained by
multiplying Rx, by ¥, so the auto-correlation cons@raint is met for all x;.

To check the cross-correlation constraint, we note as before that My is a
set whose “vectors” are just the 1-tuples from Ry. Therefore as long as the
components of Ry, and the components of Ry, form disjoint sets for i # j,
we will have proven the cross-correlation constraint is met. But (as mentioned
above) Ry, is obtained by multiplying Rx, by o®; thus the components of Ry,
are of the form Ba®(*+9); as long as 0 < ¢ < ¢t — 1 the components form disjoint

sets and so the cross-correlation constraint is met.

Example: Let n = 37 and ¢t = 3. Choose o = 2 as the primitive element of
GF(37) and so 2% — 1 = 30 = 2!* while 2 = 2! - i.e., ¢ = 14 and r = 1. Then
the code consists of the blocks {[0,1,6,31,36], (0,8, 11,26, 29], [0, 10, 14, 23, 27]}

and so the three codewords are

Xo = [1100001000000000000000000000000100001]
x; = [1000000010010000000000000010010000000]

X = [10000000001000100000000106001000000000].

An (n,6,2,1) OOC: Let n be a prime number such that n = 18t +1 for an

integer ¢. Let o be a primitive element of the field GF(n) such that a? = a5 — 1
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and o” = 2, where ¢ and r are integers satisfying one of the following two
conditions:
e g=1 (mod3)and r=2 (mod 3);
¢ ¢g=2 (mod3)andr=1 (mod 3).
Then we can construct a (n,6,2,1) OOC C with cardinality |C| = ¢ with the

blocks {[a, a3t+3i o83 oOt+3i 12643 QlSH8i) i = 0,1, ...t — 1}.

The proof that this construction yields an (n, 6,2,1) code is analogous to the

result for the w = 5 code and is omitted.

2.5.1.2 Generalizing the Examples

The techniques described in Section 2.5.1.1 are easily generalized to different

values of w; the details are given below.

An (n,w,2,1) OOC for Even w: Let w = 2m and choose n to be a prime
number such that n = w®t/2 + 1. Let a be a primitive element of GF(n) such
that {log,[a*™ — 1] : 1 < k < m} are all distinct modulo m. Then the code

- consisting of the blocks

{[Ozmi, CYm(i+t)’ am(i+2t), L ,am(i+(2m—1)t)] ci = 0,1,....t— 1}
is an (n,w,2,1) OOC.

An (n,w,2,1) OOC for Odd w: Let w = 2m + 1 and choose n to be a
prime number such that n = (w? — 1){/2 + 1. Let a be a primitive element of
GF(n) such that {log,[o*™t1)t —1]:1 < k < m} are all distinct modulo m + 1

and non-zero modulo m + 1. Then the code consisting of the blocks
{[0, a(m+l)i, Q’(m+1)(i+t), a(m+1)(i+2t), e, a(m+1)(i+(2m—1)t)] g = 0, 1,...,t— 1}

35



is an (n,w,2,1) O0C.

2.5.2 Construction of an (n,w,1,1) OOC

Bose used a balanced incomplete block design (BIBD) to design the first (n,w, 1,
1) OOC for w = 3,4, 5 in 1939[36]. Wilson generalized the results to arbitrary w
in 1972[34]. Hanani also used BIBD but with different parameters to construct
(n,6,1,1) OOC in 1961[35]. We have generalized Hanani’s result to any w =
4m +2 or 4m + 3 (m is an integer). All four constructions for (n,w,1,1) O0OC’s
are optimal, since the cardinality ¢ reaches the Johnson bound in Theorem 2.2.

First we restate the Wilson’s construction on an (n,w,1,1) OOC for com-
pleteness.

An (n,w,1,1) OOC for Odd w:[34] Let w = 2m + 1 and choose n to be
a prime number such that n = w(w — 1)t + 1. Let a be a primitive element of
GF(n) such that {log,[a®™* —1]:1 < k < m} are all distinct modulo m. Then

the code consisting of the blocks
A, , g
{[am ,amz+2mt’am1+4mt, L. ,amz+4m t] sl = O, 1’ . ,t _ 1}

is an (n,w,1,1) OOC.

An (n,w,1,1) OOC for Even w:[34] Let w = 2m and choose n to be a
prime number such that n = w(w — 1)t + 1. Let a be a primitive element of
GF(n) such that {log,[a®™* — 1] : 1 < k < m — 1} are all distinct modulo m

and non-zero modulo m. Then the code consisting of the blocks
{[O, ami’ ami+2mt’ CYmi+4mt, L ,ami+4m(m-—1)t] :1=0,1,...,¢t— 1}

is an (n,w,1,1) OOC.

The new construction is as follows.
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An (n,w,1,1) OOC for w = 4m + 2: Let w = 4m+2, and n = w(w—1)t+1,
n is prime, and if « is a primitive root of GF(n) such that o*®m+2)t+y _1 =
a'* for0 < k < m, oMV = ok for 1 < k < m, oFEtDI_] = ok,
for 1 <k <m, ay(ak(sm“)t —1)=a%,for 1 < k < m, yis an integer
between 1 and (8m + 2)t — 1 and if 29,81, ,0m, J1s° " s Jms T1y-* s Tm,

81, , 8y are all distinct modulo 4m + 1, then the blocks

(a(4m+1)i’ ay+(4'm+1)i7 a(8m+2)t+(4m+1)i, a(8m+2)t+y+(4m+l)i’ e

a(8m+2)2mt+(4m+l)i, a(8m+2)2mt+y+(4m+1)i)) q = 0’ 1, . ,t -1

are the codewords of (n,w,1,1) OOC.

An (n,w,1,1) OOC for w = 4m + 3: Let w = 4m+3, and n = w(w—1)t+1,
n is prime, and if « is a primitive root of GF(n) such that o*®m+6)tty 1 =
o'k for0 < k < m, o _q¥ = ok for 1 < k < m, oaF@EmHE_1 = o7k,
for 1 <k < m, a¥(a*®m+Ot _ 1) = o* for 1 < k < m, y is an integer
between 1 and (8m + 6)t — 1 and if ¥, 40,91, ,8m, J1s " s Jms T1s" " " P,
81,+++,8n are all distinct modulo 4m + 3 and non-zero modulo 4m + 3,

then the blocks

(O, a(4m+3)z’ ay+(4m+3)z’ a(8m+6)t+(4m+3)i, a(8m+6)t+y+(4m+3)i, e

a(8m+6)2mt+(4m+3)i, a(8m+6)2mt+y+(4m+3)i)) cg = 0,1,--+,¢t—1
are the codewords of (n,w,1,1) OOC.

There is one point we want to mention. Wilson’s construction appears more
general than our new construction in that the weights are arbitrary; however,
for some blocklengths » Wilson’s construction fails to construct a code but our

new construction succeeds. This can be seen in Table 2.3-2.5 when w = 6, 7.
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2.5.3 An (n,w,2,1) OOC (Construction 2)

As indicated in Section 2.5.1.2, we use the the same technique to construct an

(n,w,2,1) OOC from the construction in Section 2.5.2 for an (n,w,1,1) OOC.

An (n,w,2,1) OOC for w =4m: Let w = 4m, and n = w?/2+ 1, n is
prime, and if « is a primitive root of GF(n) such that o™ — 1 = o',
for 0 <k <m—1, " —q¥ =, for 1 <k <m, "™ —1 =", for
1 <k<m,a¥(a®™ —1) = a*, for 1 <k < m, yis an integer between
1 and 4mt — 1 and if 20,99,y Zme1y J1s° s Jms T1s" " " »Tms S1,° " * 5 S al€

all distinct modulo 4m, then the blocks

4mi 0!y+4mi Amit+4mi . dmit+y+4ma
3

(a , & y (X y T

a4m(2m—1)t+4mz, a4m(2m—-1)t+y+4mz)) i = 0,1,---,t—1

are the codewords of an (n,w,2,1) OOC.

An (n,w,2,1) OOC for w = 4m + 1: Let w = 4m+1, and n = (w?—1)t/2+
1, n is prime, and if « is a primitive root of GF(n) such that of(4m+2)t+y _
1l =a% for 0 <k <m—1, FUmt _ o = odk for 1 < k < m,
QFUm+t 1 = o' for 1 < k < m, o¥(abU™H2 _ 1) = o% for 1 < k <
m, y is an integer between 1 and (4m + 2)t — 1 and if y,40,%1,-*,im_1,
J1s s Jms T1s° " *5Tm, S1,° -, Sm are all distinct modulo 4m + 2 and non-

zero modulo 4m + 2, then the blocks

(0, a(4m+2)i7 ay+(4m+2)i, a(4m+2)t+(4m+2)i’ a(4m+2)t+y+(4m+2)i7 .

C¥(41m+2)(2m-—1)1t+(4m+2)i’ a(4m+2)(2m—1)t+y+(4m+2)z’)) cq o= O, 1’ - 1

are the codewords of an (n,w,2,1) OOC.
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The numbers of codewords in (n,w,2,1) OOC’s are listed in Table 2.1-2.2.
The numbers of codewords in (n,w,1,1) OOC’s are listed in Table 2.3-2.5.

Table 2.1-2.2 shows the cardinality of the codes constructed using the above
techniques for w = 3,4,5,6,8,9 and moderate blocklength. It should be noted
that in some cases the construction of an (n,w,2,1) code yields more codewords
than of be possible with an (n,w—1,1,1) OOC — even though the performance
of the (n,w,2,1) would be at least as good. For instance, the cardinalities of the
(n,6,2,1) codes in Table 2.1 exceed the upper bound on ®(n,5,1,1) derived in
Section 2.3.1. This means we could support more users using such “asymmetric”

codes and reinforces the idea that they’re worth examining.

n |w| t n {w)|t n jw| t n |wit
) 311 17 1441 2 13 (5|1 19 |61
13 (3] 3 73 1419 37153 111996 |11
20 131 7 89 (4 |11 || 61 | 5| 5 || 487 | 6 |27
37 1319 97 (4 {12 || 73 | 5| 6 || 829 | 6 | 46
53 | 3 (131193 |4 124} 97 | 5] 8 |83 |6 |49
61 | 315|233 |4 |29 || 1815 |15 * * | *
101 3125241 |4 |30 (193 |5 |16 * ¥ | *
1091 3 12711281 (4 (3524115 |20 * * | %k
149 {1 3 |37 (1401 | 4 |50 | 313 | 5 | 26 * * | *
157 | 3 | 39 * * | % ||337]5 |28 * * | *
173 | 3 | 43 * * | % || 349 | 5 | 29 * * | *
181 | 3 | 45 * * | % ||373 (5|31 * * | %
197 [ 3 |49 * | | % [[409 | D> |34 || * | * | =
* * | * * * | % || 42115 |35 * * | *
* * | % * * | % ([ 541 | 5 | 45 * * | ok
* * | % * * | % || D77 |5 |48 * * | *

Table 2.1: The cardinality of codes constructed according to the technique of
Section 2.5.1.2 for t < 50
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n |wl| t n |w| t n w | t n w| t
41 |4 | 5 || 13 |5 | 1 || 641 | 8|20 281 |9 | 7
73 1419 ] 37T 1531 929 |8 (29| 401 |9 |10
8 |4 |11} 61 | 5| 5 |[1217 |8 (38| 521 | 9|13
97 |4 |12 73 |5 | 6 |[ 1409 | 8 [44 || 601 | 9 | 15
11314114 97 | 5| 8 ||1601 | 8 |50 || 761 | 9 | 19
137141711095 | 9 * x | = || 881 | 9 |22
193 | 4 |24 ) 157 |5 | 13 * * | % {12017 9 |30
233 14 {29} 1815 |15 * * | x |[1361 {9 | 34
241 14 130} 193 |5 |16 * * | = || 1481 | 9 | 37
257 14 [ 3212295 |19 * x | % || 1601 | 9 | 40
281 {4 1351241 |5 |20 * * | x || 1721 | 9 | 43
313 14 139|277 |5 |23 * * | % {11801 | 9 |45
3371 4142313 |5 |26 * * | % * * | %
353 | 4 |44 (3375 |28 * * | % * x | %
401 | 4 |50 349 | 5 | 29 * * | % * * | %
* | x| x (3735 |31 * x| * * * | %
* [ L % || 397 |5 |33 * ¥ | % * * | %
x | x| x || 409 | 5 | 34 * x| ok * x| %
x | x| % || 421 | 5 |35 * * | * * * | %
* | k| ok |[ D41 | 5 | 45 * * | % * * 1 x
* [ x| % || BT7T {5 |48 * * | * * * | ok

Table 2.2: The cardinality of codes constructed according to the technique of
Section 2.5.3 for ¢ < 50
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2.5.4 An (n,w,1,2) O0OC

In general, an (n,w,1,2) OOC can be constructed from an (n,w,1,1) OOC by

looking at its reverse shifted adjacent relative delay vector.

It’s possible to construct (n,w,1,2) OOC’s by using any of the four designs
for (n,w,1,1) OOC’s in Section 2.5.2 and extending ¢ from ¢ — 1 to 2t — 1.
Therefore, there are 2t codewords for the (n,w,1,2) OOC compared with ¢
codewords for the (n,w,1,1) OOC.

Proof: We only prove the case for odd w in Wilson’s construction. The exten-
sion to the other three cases is straightforward.

If we extend 7 from ¢ — 1 to 2t — 1 in Wilson’s construction in Section 2.5.2,

then for an (n,w,1,2) OOC, the code consists of the blocks
{[am, qmitimt gmitdmt | gmitamit) =0 1,..., 20— 1),

Keeping in mind that %=1t = 1 and o*(*~V¥2 = _1, then we can view

the code as consisting of the blocks

{[o™, qmitamt gmitdmt | gmitamty g0 10— 1},
and
{[—a™, —qmit2mt _gmitimt —a”1i+4m2t] 10=0,1,...,t—1}.
So if we use an adjacent relative delay vector tx, = [to,l1,"",tw—1] associ-

ated with the codeword x; of the first group of an (n,w,1,2) OOC, Vi €
{0,1,...,t — 1}, then the adjacent relative delay vector ty, associated with the
codeword y; of the second group of an (n,w,1,2) OOC Vi € {0,1,...,t — 1} is

[tw—1,tw—2,""+,to]. This completes the proof.
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2.5.5 A Recursive Construction of an (n,w,2,1) OOC
(Construction 3)

Chen et. al proposed a new construction for an (n,w,1,1) OOC[37]. The idea
was from Colbourns’ construction for disjoint difference sets[38]. Here, we will
show that their construction can be generalized to recursively construct a large
blocklength (n,w,2,1) OOC using our two constructions for smaller blocklength
OOC’s presented in Sections 2.5.1 and 2.5.3, respectively. Throughout this

section, we use A; to denote a set {0,1,...,[—1}.

Construction A: Consider an (n,w,2,1) OOC with ¢ codewords. Then a
(vn,w,2,1) OOC with vt codewords can be constructed if v is a positive integer
and v and (w — 1)! are co-prime. This can be done as follows. Construct an
adjacent relative delay vector tx, = [to, 11, -+, ty-1] associated with the codeword
x; of an (n,w,2,1) O0C, Vi € A,. For each ty,, identify some j € A, such that
t; # tp Yk € A,\{j}. Right shift the vector tx, cyclicly until ¢; is in the last
coordinate of ty;. Denote by t'x, this cyclically shifted version tx,. From t',
write the associated block of the codeword as (0, di1, diz, - . ., dj(y-1)). Then the
new codewords can be denoted by the blocks (0, d;; + jn, d;z +2jn, ... s diw-1y +
(w—1)jn), Vi € A; and Vj € A,, where the addition is performed modulo vn.
In all there are vt codewords. Furthermore, if v > n then there are ¢ additional
codewords represented by the blocks (0, nd;, ndis, . . ., ndy-1)), Vi € A;. Hence

the total number of codewords is (v + 1)t.

The proof for Construction A is similar to Theorem 2.1 in [38] and is omitted

here.



2.6 Summary

In this chapter we derived new upper bounds on the number of users that can be
supported on an optical network employing code division multiple access with
0O0C signature sequences. Unlike previous work in this area, we considered the
possibility that the auto- and cross-correlation constraints might not be iden-
tical; indeed, the bounds derived suggest that it may sometimes be preferable
to use such “asymmetric” OOC’s. We then used the upper and lower bounds
to illustrate some asymptotic properties of the cardinality of an OOC. We also
draw the relationship between OOC’s and two-level UEP codes. Finally we
demonstrated three techniques for constructing (n,w,2,1) OOC’s that yield
more codewords than could be possible with the parameters (n,w —1,1,1) but
which perform at least as well. Moreover, we have constructed (n,w,1,2) O0C’s

which have twice as many codewords than (n,w,1,1) OOC’s.
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w0 —— lower bound from Theorem 2.4

- ————--- lower bound from Bassalygo’s paper 1

80 —

&0 |—

40 [—

k_2 (the number of bits)

30 —

20—

10—

40 80 80 100
n (the blocklength)

Figure 2.1: A comparison between the lower bound from Theorem 2.4 and the
lower bound from Bassalygo’s paper. '
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n |w| t n jw| t n |w| t n |wl|t
7 1311 13 {41 41 |5| 2 ||[181]6 ]| 6
13131273461 61153 |211]6]7
19 | 3] 3 (|97 |4 8 {241 |5 121241 |6 | 8
31 (3|5 ||109(4]9 {281 |5 |14(631|6]2]1
37 |36 ||181 |4 |15 421 |5 |21|691 |6 |23
43 13| 7 (12294 [19(|601]5 [30| * | *| %
61 | 3 (110|241 | 4 (201641 |5 |32 * | % | *
67 3 |11 |1277 |4 |23 6615 |33 I R
73 |3 |12 337 |4 1287015135 x | x| %
79 |3 |13 (4094 [ 34821 |5 |41 * | ok | %
97 [ 3 116 || 421 | 4 |35 || 881 |5 |44 | * | x| =
10313 |17 | 457 | 4 | 38 * | x| % * * | %
109 | 3 |18 (| 541 | 4 {45 || * | = | * | ok | %
1271 3 |21 * | x| % * | x| * x | x| %
139 | 3 | 23 * | % | % * | x| * | x| %
151 | 3 | 25 * * | % * * | * * |k
157 | 3 | 26 * * | * * * | % * * | ok
163 1 3 | 27 * * | % * * | * * * | *
181 | 3 130 (| = | * | = * | x| * | % | %
193 | 3 |32 ] = | = | * * | x| % * | % | %
199 | 3 | 33 * * | % * * | % * * | %
21113135 * * | * * | *% * % | %
2231 3 | 37 * | x| * * | x| x * | x| *
229 | 3 |38 || * | x| % * | x| % * | x| *
241 |1 3 | 40 * * | * * x | % * * | *
271 | 3 145 * * | * * * | % * * | x
277 | 3 | 46 * | ok | % * | x| * | ok | ok
283 | 3 | 47 * * | % * * | % * * | %

Table 2.3: The cardinality of codes constructed according to the technique of
Section 2.5.2 from Wilson’s construction for ¢ < 50
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n w | i n w | t n w | ¢
337 | 7| 8 ||1009 | 8 | 18 3911
421 | 7 110 * * | % || 1153 | 9 | 16
463 | 7 | 11 * * | = || 1873 |9 | 26
883 | 7121 * * |+ || 2017 | 9 | 28
1723 | 7 | 41 * * | * * | %

Table 2.4: The cardinality of codes constructed according to the technique of
Section 2.5.2 from Wilson’s construction for ¢t < 50
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n [wl|t n w | i n w | &
7 131 31 6|1 337 | 7| 8
13 (3] 2 151 16| 5 379 | 719
19 13| 3 181 | 6| 6 || 421 | 7 |10
31 | 3| 5 211 | 6 | 7 || 463 | 7 | 11
37 |31 6 241 | 6 | 8 || 547 | 7 | 13
43 |3 | 7| 271 6|9 | 631 |7 |15
61 (3 [10) 331 |6 |11 673 | 7 |16
67 | 3|11} 421 |6 |14 | 967 | 7 |23
T3 [ 3|12 541 | 6 | 18| 1009 | 7 | 24
79 |3 |13 571 | 6 |19 |[ 1051 | 7 | 25
97 {3 {16} 601 | 6 [ 20 || 1093 | 7 | 26
103 3 )17 631 | 6 |21 (1303 |7 |31
109 3 | 18| 661 | 6 {22 1429 | 7 | 34
12713 [ 21| 691 | 6 {23 | 147117 |35
139 [ 3 |23 ) 751 | 6 | 25| 1723 | 7 | 41
151 | 3 | 25| 811 | 6 | 27| 1933 | 7 | 46
15713 126 991 | 6 | 33| 2017 | 7 | 48
163 13 1271021 | 6 | 34 * S
18113 (301 1051|635 * O
193 |3 (32 || 117116 | 39 * ¥ | %
199 | 3 |33 1201 | 6 | 40 * * | %
211 | 3 {35 (| 1231 | 6 | 41 * * | %
223 13 [ 371291 | 6 {43 * * | %
229 | 3 |38 1321 | 6 | 44 * * | %
241 | 3 |40 || 1381 | 6 | 46 * * 1 %
271 | 3 |45} 1471 | 6 | 49 * * | %
277 | 3 | 46 * * | * * * | ok
283 | 3 | 47 * * * * | x

Table 2.5: The cardinality of codes constructed according to the technique of
Section 2.5.2 from the new construction for ¢t < 50
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Chapter 3

Variable Weight Optical
Orthogonal Codes for CDMA
Networks with Multiple
Performance Requirements

Up to now all work on optical orthogonal codes (OOC’s) has assumed that the
weight of each codeword is the same. In this chapter we develop bounds on the
size of OOC’s when this assumption is removed. In addition, we demonstrate
construction techniques for building such “variable weight” OOC’s. The results
demonstrate that it is possible to assign codewords with different weights among
the users. Changing the weight of a user’s signature sequence affects that user’s
performance; therefore this approach is useful for CDMA optical fiber networks

with multiple performance requirements among the users.

3.1 Background and Motivation

As the demand for personal communication services continues to rise, multiple
access techniques become ever more important. Code-division multiple access
(CDMA) is a kind of spread spectrum technology that enables many users to

share the same channel without interference by employing a unique signature
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sequence to distinguish different users’ transmission.

Optical orthogonal codes (OOC’s) were introduced by Salehi et. al as a means
of obtaining code division multiple access among asynchronous users on optical
fiber networks. An OOC is a collection of binary sequences with good auto- and
cross-correlation properties. Up to now all work on OOC’s[6][7][8][9][10][11][12]
have assumed that the weight of each codeword is the same. In this paper we
develop bounds on the size of OOC’s when this assumption is removed. In
addition, we demonstrate construction techniques for building such “variable
weight” OOC’s. The results demonstrate that it is possible to assign codewords
with different weights among the users.

Throughout this chapter, we use W, L, and @, to denote the sets {wq, w1, ...

swypt, {A, AL, ..., A}, and {q0,q1,..-,qp ]}, respectively.

a’ Mgy

Definition: An (n,W, L, ., @) variable weight optical orthogonal code C is a

collection of binary n-tuples such that the following two properties hold:

o (Weight Distribution) Every n-tuple in C has a Hamming weight con-
tained in the set W; furthermore, there are exactly ¢; - |C| codeword of
weight w; - i.e., ¢; indicates the fraction of codewords of weight w;.

e (Auto-correlation Property) For any x = [z¢, z1,.. ., ¥n_1] € C with Ham-
ming weight w; € A and any integer 7,0 < 7 < n,

n-—1 .
Z T1Tipr S /\Z.
t=0

o (Cross-correlation Property) For any x = [z, Z1,...,Z,-1] € C and any

Y = [¥0,¥1,---,Yn-1] € C such that x # y and any integer 7,
n—1
Z TiYtor S /\c-

t=0

Note: OOC’s were defined in terms of periodic correlation; thus the

49



addition in the subscripts above — denoted “@®” - is all modulo-n.

The definition of a variable weight OOC is a generalization of the definition
for OOC given in [6][7].

The use of OOC’s for multiple access is described in [6][7][8].

e The auto-correlation constraint guarantees that each signature sequence
is unlike cyclic shifts of itself. This property is used to enable the receiver

to obtain synchronization.

e The cross-correlation constraint guarantees that each signature sequence
is unlike cyclic shifts of the other signature sequences. This property is
used to enable the receiver to estimate its message in the presence of
interference from other users.

A reasonable “figure of merit” for a code is the number of interfering users
necessary to cause the code to fail. For instance, assume synchronization has
been achieved; then the only errors the :** user can make are 0 — 1 errors, and
they can only occur when enough other users interfere to make the correlation at
the 7th receiver exceed Wiy (wr(iy is the Hamming weight of i user’s codeword.).
Since each of those other users can contribute at most A, to the correlation, the
performance “figure of merit” is wy(;)/Ac. In a similar vein, the synchronization
“figure of merit” is (wx) — AT®)/A. (AT is the auto-correlation constraint
associated with wy(;).) for multiple-access synchronization and wy(;y — AT for
single-user synchronization.

From above, we can see that the weight of the codeword will affect the user’s
performance. Therefore, by assigning codewords with different weights we are

able to accommodate multiple performance requirements among the network’s

users.
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This chapter, which investigates variable weight OOC’s, consists of four
parts. First we derive new upper and lower bounds on the size of OOC’s with
different weights among the codewords. We then demonstrate techniques for
constructing such OOC’s. Two of the constructions reach the upper bound and

hence they are optimal. Finally, we generalize the analysis of the performance

for the constant weight OOC[39] to the variable weight OOC.

3.2 Some New Bounds on Optical Orthogonal
Codes

Define ®(n, W, L, A., Q) to be the cardinality of an optimal variable weight op-

tical orthogonal code with the given parameters — i.e.,
O(n, W, L, A, Q) 2 max{|C |: C is an (n, W, L, A, Q)) variable weight OOC}.

In order to derive the upper bounds on ®(n, W, L, ., Q) we need to use

Lemma 2.1-2.4 in Chapter 2. We rewrite them here for convenience.

Lemma 2.1: Let x = [zo,21,-,Zn-1] be a binary n-tuple. Then the
inequality
n—1
Z TiTigr < A
t=0

holds for all 1 < 7 < n —1 if and only if no component in Rx is repeated more

than A times.

Lemma 2.2: Let x = [zo,21,...,%,-1] and ¥ = [yo,¥1,.-.,Yn-1] be binary

n-tuples. Then the inequality
n—1
Z TeYipr < A

t=0

holds for all 0 <7 < n —1if and only if Mx ) and My ) are disjoint.
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Lemma 2.3: Let x = [zg,21,...,Zn-1] be a binary n-tuple. Then the
inequality

n—-1

Z TiTiqr < A

t=0
holds for all 7 = 1,2+++,n — 1 if and only if |[My| = w(*}") - i.e., if and only
if the vectors
iA—1

10 i1 12
{[ Z tjwko) Z tjwkla Z tjlﬂkg) Tty Z tjb)k)\_l] .

ko=0 k1=io+1 kp=1341 kEao1=ta_o+1
0<ip<ty <+, <ir-y Lw—2,7=0,1,---,w—1}

are all distinct.

Lemma 2.4: Let x € C, where C is an (n,w, A + m, A) optical orthogonal

code. (Assume m > 0 is an integer.) Then if w > 2\ — 2,

w(w — 1)
A
[Mx,y| > ————.

m+1

Now we will use the characterizations developed above to provide upper
bounds on ®(n, W, L, A.,Q) when A{ > A, for all X! € L).
The first bound is for the case \i = A\, = A. = A for all X € L. It is a

generalization of bound in [10].

Theorem 3.1: The following inequality holds:

S(n, W, {\,... A1, Q) < n= b =2 ("_A).

P
qu,(wz— ... (w; = A)
1=0
Proof: Let C be an optimal (n, W, {A,...,A},A,@) O0OC -i.e., |C| = ®(n, W,
{A ..., AL A, Q). From Lemma 2.3 we know that for every x € C with weight w;

the set Mx ) consists of w; (wi/\_l) distinct integer A-tuples. Furthermore, from
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Lemma 2.2 we know that for x,y € C, x # y, the sets My, and My ) are
disjoint. Therefore the union of My, as x varies over all x € C consists of
S0 @®(n, W, {A,..., A1, A, Q) - w; (“"/\_1) distinct integer A-tuples. However, by
definition if [ag, a1,...,ar-1] € Mx then ag+a; +...+ay_1 <n—1. But the
number of ways to select A positive a;’s that sum to no more than n — 1 is just
the number of compositions of n with A + 1 positive parts — and that is equal
to (”;1) We have thus shown that
> adn W0 4@ () < (M),

which was to be proven. QED.

For fixed A, wg, wy it is interesting to look at how the upper bound in Theorem
3.1 varies with ¢o, ¢:. For example if ¢o = 0,¢; = 1 we are looking at a constant
weight OOC with weight wq, and if go = 1/2,¢; = 1/2, we are looking at an OOC
with half the codewords with weight wo and half the codewords with weight w;.
In Figure 3.1, we can see the factors of o, ¢; as we vary the blocklength n when
wo = J,wy = 4.

Our next goal is to bound ®(n, W, L, A, Q) for A\ > A, (A} € L).

Theorem 3.2: Let m be a non-negative integer. Then if w; > 2A — 2 (for

all w; € W),

(n=1)(m=2).. (= N(m+1)

p

> giwi(w; — 1)(wi — 2) ... (w; — A)

=0

Proof: Let C be an (n, W, {A+m,...,A+m}, A, @) OOC such that |C| = &(n, W,

O(n, W, {x+m,.... A +m}, Q)<

{A+m,...; A+ m}, A Q). By Lemma 2.4, for any x € C with weight w;,

wi
A
|Mx,A| 2 - L -

m+ 1
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Furthermore, by Lemma 2.2, My » and My are disjoint for x,y € C and x # y;
therefore |My x| summed over all x € C cannot exceed the total number of

integer A-tuples that are “allowable” as elements of My ) — a number shown in

the proof of Theorem 3.1 to be (";1) Thus,

(n;l) > Y [Myp

xeC

P
2 Zqu)(n,W, {A’*‘m,...,A +m},A7Q> . min{|Mx’>\| X e C}

wi——l
P Wi by
> . . o

which was to be proven. QED.

Theorem 3.3: Let A\ > X (A} € L). Then if w; > 2)\ — 2 (for all w; € W),

(I)(n’W7L))‘,Q)S 7 (n-l)(n_2)(n—)‘) .

Z;qiwi(wi — 1) (w; —2)...(wi —A)/(E =X+ 1)

Proof: Proof completely analogous to that of Theorem 3.2.

Finally, we derive a new lower bound on the cardinality of an (n, W, L, A, Q)

variable weight OOC using Theorem 2.3 for an (n,w, A,, A.) OOC.

Theorem 3.4:
L n
£ln) -1
o, W, L, Ao, Q) 2 =0 :
where
ln/2]  [wib/n] §\  wTANL N fw — Nn /s — 1
F= Y ¥ [A(N—wié/n)( )+ > ( )( )
§=1 N=0 N e=[w;é/n] N c—N-1
|n
§\(n— Nn/é wi el e — 1\ [
1< o<
ez e (27
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1, if x = 0;
0, otherwise,

Az) = {
and

G=n 3 q,-<”_wf) (w)

i=0 j=Ac+1 w; —J J

Proof: The proof is analogous to Theorem 2.4 in Chapter 2 and is omitted.

3.3 Constructions of OOC’s

3.3.1 Constructions of an (n,{wy,w;},{1,1},1,Q) OOC
(Construction 1) |

We now demonstrate a technique for constructing an (n, {wo, w1}, {1,1},1, {to/
(to + t1),t1/(to + t1)}) OOC. Basically, we want to combine two optimal con-
structions — one for an (n,w,1,1) OOC and one for an (n,w+1,1,1) 00OC — to
construct an (n, {w+1,w},{1,1},1, {te/(to +t1),t1/(to + t1)}) OOC. Since the
cardinality of the resulting code reaches the upper bound in Theorem 3.1, it is
an optimal construction. We begin by considering specific values of w; (wo = 4

and w; = 3) and then generalizing the technique.

3.3.1.1 Some Specific Examples

An (n,{4,3},{1, 1},‘1, {1/2,1/2}) OOC: Let n be a prime number such that
n = 18t + 1 for an integer . Let o be a primitive element of the field GF(n)
such that o = a® — 1 and o = o¥(a® — 1), where y is any integer between 1
and 3t — 1, ¢ and r are integers satisfying one of the following two conditions:
e ¢g=1 (mod3)andr=2 (mod 3);
e ¢g=2 (mod3)andr=1 (mod 3).
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Then we can construct an (n, {4,3},{1,1},1,{1/2,1/2}) OOC C with cardi-
nality |C| = 2t (¢ codewords for (n,4,1,1) OOC and ¢ codewords for (n,3,1,1)
00C) as follows. The ™ weight-four codeword x; contains a “1” in positions
0, o®, a®*% and o'*** and a “0” everywhere else for an (n,4,1,1) O0C;
the ** weight-three codeword y; contains a “1” in positions a¥+3, Q¥+6i+3i
and a¥t1%+3i and a “0” everywhere else for an (n,3,1,1) OOC. This holds
for i = 0,1,...,t — 1. (Note: We say that the code consists of the “blocks”

{[0’ a3i, a6t+3z” a12t+3i] and {[ay+3i’ ay+6t+3i’ ay+12t+3i] cp = 07 1’ ot — 1})

To see that this construction yields an (n,{4,3},{1,1},1),{1/2,1/2}) code
let Ry, denote the array consisting of all the relative delays between pairs of
I’s in %o and Ry, for yo. Keeping in mind that 2'® =1 and 2® = —1, simple

algebra reveals that

1 a6t -1 a6t(a6t _ 1) O{Bt
Rxo — ast Ot?’t(aet . 1) . a15t a12t(a6t _ 1)
alzt a9t aQt(QGt 1) alst(a(st 1)

ay(aﬁt _ 1) a6t+y(a6t . 1) a12t+y(a6t . 1)
R)’o = ( )

QA —1) a®HV(af —1) alSHY(aft — 1)

Every component of Ry, and Ry, is of the form Ba3 where 8 € {1,a% —
1,a¥(a® — 1)} and j € {0,1,2,3,4,5}. Therefore as long as the base-a loga-
rithms of @® — 1 and a¥(a5 — 1) are not equivalent to each other mod 3 and

are not equivalent to zero mod 3,

Bi % B2 or ji # jo = Bi1a®! # Bra®t,

And so no element of Ry, and Ry, is repeated; this implies the auto-correlation
constraint is met.
To check the cross-correlation constraint, we note as before that My ; and

My 1 are sets whose “vectors” are just the 1-tuples from Ry and Ry. Therefore
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as long as the components of Ry,, Ry, and the components of Ry ,Ry; form
disjoint sets for ¢ # j, we will have proven that the cross-correlation constraint
is met. But to obtain Ry, and Ry, we just multiply Ry, and Ry, through by
a®; thus, the components of Ry, and Ry, are of the form 3a®U**). As long as
0 <17 <t-1, the components form disjoint sets and so the cross-correlation

constraint is met.

Example: Let n = 37 and ¢ = 2. Choose a = 2 as the primitive element of
GF(37) and so 26— 1 = 25 = 2!% whiley = 1 - i.e.,¢ = 10 and r = 11. Then the
code consists of the blocks {[0, 1,10, 26], [0, 6,8,23], (2, 15,20],[9,12,16]} and so

the four codewords are

Xo [1100000000100000000000000010000000000]
x; = [1000001010000000000000010000000000000]

yo = [0010000000000001000010000000000000000)

Yi [0000000001001000100000000000000000000].

A (n,{4,3},{1,1},1,{to/(to +t1),t1/(to+t1)}) OOC: Let n be a prime
number such that n = 12¢, + 6¢; + 1 for integer o and ¢; (Assume %o|t1). Let
a be a primitive element of the field GF(n) such that o = a*o+* — 1 and
o™i = a¥i(afot? — 1)(j = 0,--+,(t1/to) — 1), where y; are integers between 1
and 2tg +¢; — 1, and ¢ and r; are integers that are all distinct modulo 2 + 1/t

and non-zero modulo 2 + ¢ /t,.

Then we can construct an (n, {4,3},{1,1},1, {to/(to+11),%1/(to+%1)}) OOC
C with cardinality |C| = to+ ;1 (to codewords for an (n,4,1,1) OOC and ¢; code-
words for an (n,3,1,1) OOC) with the blocks {[0, a(?tt1/t)i qdto+2t+(2+t/t0)i,

a8t0+4t1+(2+t1/to)i] — 0, 1, R 1} and {[a(2+t1/t0)i+y1"a4to+2t1+(2+t1/f0)i+y]7
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oftotdtt 2+t /to)itui]  § = 0,1, ... o — 1,5 = 0,+-+, (t:1/to) — 1}.

The proof that this construction yields an (n,{4,3},{1,1},1, {to/(t0 + t1),
t1/(to + t1)}) code when the number of the codewords of weight three and four

are different is analogous to the result for the previous example and is omitted.

3.3.1.2 Generalizing the Examples

The techniques described in Section 3.3.1.1 are easily generalized to different

values of wy and wy; the details are given below.

An (n, {W + l,W}, {1, 1}, 1, {tg/(to + tl),tl/(to + tl)}) OOC for odd
w: Let w = 2m + 1 and choose n to be a prime number such that n = (w +
Dwtg + w(w — 1)t; + 1. If r denotes the greatest common divisor of ¢y and ¢4,

let o be a primitive element of GF(n) such that
o {log,[a®(altwtDtotlw=Dlk _ 1)1 <k <m,j=0,--,(t/r) ~ 1},
o {logyfa®(allettiotv=bult _ )] 11 <k <m,l=0,--,(to/r) — 1},
o {z:01=0,--,(to/r) -1}
are all distinct modulo ((m+1)to+mty)/r, where z; and z; are integers between
0 and (m + 1)to + mt; — 1. Then the code consisting of the blocks
{[0, a[(m+1)to+mt1]i/r+zl, a[(m+1)to+mt1]i/r+zl+(2m+2)to+2mt1, .
a[(m+1)t0+mt1]i/r+z,+(2m+2)2mt0+4m2t1] g = 0,...,r—1, ] = 0, (to/r) _ 1}
and the blocks

{[a[(m+1)to+mt1]i/r+x," a[(m+1)t0+mt1]i/'r+x,‘+(2m+2)to+2mt1 e

k]

a[(m+1)to+mt1]i/r+xj+(2m+2)2mto+4m2t1] cq = 0, - 1,] — 0, oo (tl/T') _ 1}
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form an (n, {w + 1,w}, {1,1},1, {to/(to + t1),t:/(to + t1)}) OOC.

Some of constructions in Section 3.3.1.2 are in Table 3.1. All the construc-
tions in Table 3.1 are optimal. For example consider a (163, {4,3},{1,1},1, {3
1) OOC, the cardinality is equal to the bound in Theorem 3.1.

code to | t1 | primitive o | zg | 24
(19’{4a3}a{1’1}a1a{%’%}) 1 1 2 2 -
(377 {4,3}a{1’1} {% %}) 2 2 2 1 _
(109,{4,3},{1,1},1,{% Hl6]6 6 2 | —
(127, {43} {LIL LN 7 | 7 3 2 [ =
(163>{4’3}3{1’1}a17{%7%}) 9 9 2 1 -
(1811{4,3},{171}71?{% %}) 10 | 10 2 1 -
(199, {4, 3}, {1,1},1,{% %}) 11|11 3 2| -
(73,{4,3},{1,1},1,{L,2})) [ 3 | 6 5 1|2
(193,{4,3},{1,1},1,{,2) [ 8 | 16 5 1 (3
(101,{6,5},{1,1},1, {%,%}) 212 2 3| -
(151’{6)5} {171}717{%’%}) 313 6 4| -
(701,{6,5}, {1,1},1,{5,3}) | 14 [ 14 2 1] -
(751, {6,5}, {1,1},1,{%,%}) 15115 3 2 | —
({65 (LU, LE [T[2] 7 T]6

Table 3.1: The cardinality of codes constructed according to the technique of
Section 3.3.1.2

3.3.2 Constructions of an (n,{wy,w1},{1,1},1,Q) OOC
(Construction 2)

In this section, we generalize the constructions in Section 2.5.2 for an (n,w, 1, 1)

0O0C to construct an (n, {w + 1,w}, {1,1},1, {to/(to + t1),t:/(to + t1)}) OOC

as in Section 3.3.1.

An (n,{W+l,W},{l,l},l,{to/(to+t1),t1/(t0+t1)}) OO0OC for w =

4m + 2 : Let w = 4m + 2 and choose n to be a prime number such that
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n = (w+ Lwto + w(w — 1)t; + 1. If r denotes the greatest common divisor of

to and 11, let & be a primitive element of GF(n) such that all of the following,

o {logy[a™ (alwHre bty )10 <k Smyj= 0,00, (t/r) — 1)
o {log,[a®i(alPletDior2(e-Dhblk _qu)] 1] <k <m,j=0,--,(ts/r) — 1}
o {log,[oi(alPwtDtet2(w=1ulk _ 1) 1 <k <m,j=0,---,(t;/r) — 1};
o {log, [a®ity(alwHDtot2w-1talk _ 1)1 ] <k <m,j=0,---,(t;/r) = 1};
o {log,[a*(aPtwtDtet2w-Ntlkty _ )] 0 < k< m,l=0,---,(to/r) — 1};
o {log [a*(af2twetttot2(w=1)tlk _ (4] 1 <k <m,[=0, -, (to/r) — 1};
o {log, [o*(oBlwttot2w—D0lk _1)]: 1 <k <m,l1=0,--,(to/r) —1};
o {log, [art¥(allwttiet2(w-1tlk _ 1)1 <k <m,l1=0,---,(to/r) — 1};
o {z:1=0,---,(to/r) =1}
o {z+y:1=0,---,(to/r) — 1},

are all distinct modulo ((w + 1)to + (w — 1)¢1)/r, where z; and z; are integers

between 0 and (w + 1)to + (w — 1)t; — 1 and y is an integer between 1 and
2(w + 1)to + 2(w — 1)t; — 1. Then the code consisting of the blocks

{[07 a[(w+1)t0+(u}-1)t1]i/r+zl, a[(w+1)to+(w—1)t1]i/r+zl+y7
a[(w+1)to+(w—l)t1]i/r+zl+2(w+l)t0+2(w—l)t1’ e

a[(w+1)t0+(w—l)t1]i/'r+zz+y+4(w+1)mto+4(w—1)mt1] .
t=0,1,...,r=1,1=0,---,(tc/r) — 1}
and the blocks

{[a[(w-l-l)to+(w—1)t1]i/7‘+a:j, a[(w+1)to+(w-—1)t1]i/r+a:j+y7

Cx[(w+1)1t0+(w-—1)7§1]z'/1'+av:j+2(w-}-1)to+2(u)-—1)t1, .

bl
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a[(w+1)t0+(w—1)t1]i/r+a:j+y+4(w+1)mt0+4(w—1)mt1] .
i=0a1a"'7r_17j =0,---,(t1/7') - 1}

form an (n, {w + 1,0}, {1,1},1, {to/(to + t1), t1/(to + t1)}) OOC.

3.3.3 Constructions of an (n,{wg,w;1},{2,2},1,Q) OOC
(Construction 1)

As indicated in Section 3.3.1, we use the the same technique to construct an
(n, {w + 1,w}, {2,2},1, {to/(to + t1),t1/(to + t1)}) OOC from the construction
in Section 2.5.1.2 for an (n,w,2,1) OOC.

An (n,{w+1,w},{2,2},1,{te/(to + t1),t1/(to + t1)}) OOC for even
w: Let w = 2m and choose n to be a prime number such that n = [(w + 1) —
1]/2to +w?/2¢; + 1. If r denotes the greatest common divisor of ¢o and t;, let «

be a primitive element of GF(n) such that

o {log,[ai(adlmtDotmiall )} <k <m,j=0,--,(ts/r) — 1},

. {loga[om(a[(m+1)to+mt1]k —1)]:1<k<m,l=0,---,(to/r) — 1},

{z1:1=0,--+,(to/r) — 1}

are all distinct modulo ((m+1)to+mt;)/r, where z; and 2; are integers between

0 and (m + 1)to + mt; — 1. Then the code consisting of the blocks

{[0’ a[(m+1)to+mt1]i/r+zl,a[(m+l)to+mt1]i/r+zl+(m+1)t0+mt1, .

ol Dtotmuli/rz+(mt1)(@m=1)io+m(2m=1)r] .
:=0,...,r—1,1=0,---,(to/r) — 1}
and the blocks

{[a[(m+1)t0+mt1]i/r+mJ a[(m+1)to+mt1]i/r+az1+(m+1)t0+mt1 L.
) ) ’
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a[(m+1)to+mt1]i/r+r]‘+(m+l)(2m—1)t0+'m(2m—1)t1] .
i=0,...,7—=1,7=0,---,(t1/r) = 1}

form an (n, {w+1,w}, {2,2},1,{to/(to + t1),t1/(to + t1)}) OOC.

Some of constructions in Section 3.3.3 are in Table 3.2.

code to | 11 | primitive a | z¢
(41,{5,4},{2,2},1,{7,1) | 2 [ 2 6 1
(61,{5,4},{2,2},1,{5,3D) [ 3 [ 3 2 I
(101,{5,4},{2,2},1,{3,3D) [ 5 | 5 2 1
(181, {5,4},{2,2}, 1, {3,3D [ 9 | 9 2 1
(281,{5,4},{2,2},1,{5,:D) [ 14 | 14 3 4

Table 3.2: The cardinality of codes constructed according to the technique of
Section 3.3.3

3.3.4 Constructions of an (n,{wo,w1},{2,2},1,Q) OOC
(Construction 2)

As indicated in Section 3.3.1, we use the the same technique to construct an

(n, {w+1,w},{2,2}, 1, {to/(to + t1),t1/(to + t1)}) OOC from the construction
in Section 2.5.3 for an (n,w,2,1) OOC. ‘

An (n,{w+1,w},{2,2},1, {to/(to+t1), t1/(to+t1)}) OOC for w = 4m:
Let w = 4m and choose n to be a prime number such that n = [(w+1)2—1]/2tc+
w?/2t; + 1. If r denotes the greatest common divisor of ¢y and ¢y, let « be a

primitive element of GF(n) such that all the following,

o {log,a%i(altviPotutlity _ )]0 <k <m 1,5 =0, (tsfr) = 1};
o {10ga[ acj(a[(w+2)to+wt1 ay)] 1< k < m7j — O, e (tl/r) — 1};

o {log,[o% (ol D0tenlt _ 1)1 <k <myj= 0, (t/r) — 1};
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o {log [a®it¥(altwtorwtle _ )] ) <k <m,j =0, (0)r) — 1)

o {log,[an(allvtDiotutility _ 1)1 0 <k <m—1,1=0,---,(to/r) - 1};
o {log,[e(alwDtotvhill _ )] 1 <k <m,0=0,---,(to/r) — 1};

o {log,[a(alletiorenilt )] 1 <k <m,1=0,--, (to/r) — 1};

o {log,[amt¥(alwDttutrlk _ )] 1 <k <m,1=0,--,(to/r) — 1};

o {z:1=0,---,(to/r) -1}

. {Zl‘i'y:l:()a""(to/r)_l}’

are all distinct modulo ((w + 2)to +wty)/r, where z; and z are integers between
0 and (w +2)t +wt; — 1 and y is an integer between 1 and (w + 2)ty + wt; — 1.

Then the code consisting of the blocks

{[0’a[(w+2)t0+wt1]i/r+zl,a[(w+2)to+wt1]i/r+zl+y,

a[(w+2)to+wt1]i/r+zl+(w+2)to+wt1 .
bl )

ol(wttotwii]i/r+z+y+(wt2)mio +wmt1] .

t=0,1,...,r=1,1=0,---,(tc/r) — 1}
and the blocks

{[a[(w+2)to+wt1]i/r+z]‘ a[(w+2)t0+wt1]i/7‘+xj+y
3 ’
O[[(w+2)t0-|-wt1]i/7'+:ztj+(w-{-2)t0+wt1 e

b

a[(w+2)to+wt1]i/r+1:j+y+(w+2)mto+'wmt1] .

t=0,1,...,r~—1,5=0,---,(t1/r) — 1}

form an (n, {w + 1,w}, {2,2},1, {to/(to + t1),t1/(to + t1)}) OOC.

63



3.3.5 Constructions of an (n, {wo,w¢},{2,1},1,Q) OOC

Instead of constructing an OOC with the same auto-correlation as in previous
constructions, we now demonstrate the technique to construct an (n, {2w,w},
{2,1}, 1, {to/(to + t1),t1/(to + t1)}) OOC, where (n, {2w,w}, {2,1},1, {to/(to +
t1),t1/(to +t1)}) OOC means two kinds of OOC’s: one, an (n,2w,2,1) O0C,
and the other, an (n,w,1,1) OOC.

3.3.5.1. Constructions of an (n, {2w,w},{2,1},1,Q) OOC for odd w

An (l’l, {2W,W}, {2, 1}, 1, {to/(to + tl), tl/(to + tl)}) OO0OC for odd w: Let
w = 2m + 1 and choose n to be a prime number such that n = 2w?ty + w(w —
1)t1+1. If r denotes the greatest common divisor of ¢ and ¢4, let o be a primitive

element of GF(n) such that

o {log,[a%i(alC®mtiotmule _ 1)) 1 <k <m,j=0,---,(t/r) -1},
o {log,[a(almiiotmilt - ] 1 <k <2m+1,1=0,-, (to/r) — 1}
are all distinct modulo ((2m+1)to+mt;)/r, where z; and z; are integers between

0 and (2m + 1){o + m¢; — 1. Then the code consisting of the blocks

{[a[(2m+1)to+mt1]i/r+z, a[(2m+1)t0+mt1]i/r+zl+(2m+1)to+mt1
? ) ?

a[(2m+1)t0+mt1]i/r+zl+(2m+1)(4m+1)to+m(4m+1)t1] :
i=0,...,r—1,0=0,--,(to)r) — 1}
and the blocks

{[a[(2m+l)to+mt1]i/r+xj’ a[(2m+1)to+mt1]i/7'+1:_,'+2(2m+1)t0+2mt1’ e
a[(2m+1)to+mt1]z'/r+z,-+(2m+1)(4m+1)t0+m(4m+1)t1] .

i=0,...,r—1,7=0,---,(t,/r) — 1}
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form an (n, {2w,w},{2,1},1, {to/(to + t1),t1/(to + t1)}) OOC.

Some of constructions in Section 3.3.5.1 are in Table 3.3.

code to | t1 | primitive a | zo
(97,{6,3}, {2, 1, 1, (3,51 _| 4 | 4 5 I
(241,{6,3},{2,1},1,{%,3}) | 10|10 7 1
(409,{6,3},{2,1},1,{3,3}) |17 |17 21 3
(457, {6,3},{2,1}, 1,{5 =h 119119 13 1
(211, {10,5},{2,1},1,{3,21) [ 3 | 3 2 1

Table 3.3: The cardinality of codes constructed according to the technique of
Section 3.3.5.1

3.3.5.2. Constructions of an (n,{2w + 1,w},{2,1},1,Q) OOC for odd

w

An (n,{2w + 1,w},{2,1},1, {to/(to + t1),t1/(to + t1)}) OOC for odd w:
Let w = 2m + 1 and choose n to be a prime number such that n = (2w® +
2w)to + w(w — 1)ty + 1. If r denotes the greatest common divisor of #o and t;,

let a be a primitive element of GF(n) such that

o {log,[a®(al®mDtetmhle 1)) 1 <k <m,j=0,---,(ts/r) =1}
o {loga[azl(a[(2m+2)t°+mt1]k _ 1)] 1<k<2m+1,1=0,---,(to/r) — 1},
o {z:1=0,...,(t/r—-1)}

are all distinct modulo ((2m+2)to+mt;)/r, where z; and z; are integers between

0 and (2m + 2)t, + mt; — 1. Then the code consisting of the blocks

{[O a[(2m+2)to+mt1]i/r+z, a[(2m+2)to+mt1]i/r+zl+(2m+2)to+mt1
? 2 K

a[(2m+2)t0+mt1]i/'r+zl+(2m+2)(4m+1)to+m(4m+1)t1] .
i=0,...,r=1,1=0,---,(to/r) — 1}
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and the blocks
{[a[(2m+2)t0+mt1]i/r+1‘j, a[(2m+2)t0+mt1]i/r+w1+2(2m+2)t0+2mt17 .

il

a[(2m+2)to+mt1]i/r-l—:tj+(2m+2)(4m+1)to+m(4m+l)t1] .
t=0,...,r—1,7=0,---,(t1/r) — 1}

form an (n, {2w + 1,w}, {2,1},1, {to/(to + t1),%1/(to + t1)}) OOC.

3.3.6 Constructions of an (n, {wy,w1},{2,2},1,Q) OOC

We demonstrate some constructions for different w;.

3.3.6.1. Constructions of an (n,{2w,w},{2,2},1,Q) OOC for even w

An (n,{2w,w},{2,2},1, {to/(to + 2t1),2t1/(to +2t1)}) OOC for even w:
Let w = 2m and choose n to be a prime number such that n = 2w?ty +w?t; + 1.

If r denotes the greatest common divisor of £g and ¢4, let & be a primitive element

of GF(n) such that
o {log, [a%(aPmietmtlt _ )] 1<k<m,j=0,--,(t/r) — 1},
o {log,[a*(almbetmtlt _ )] 1 <k <2m,l=0,---,(to/r) — 1}
are all distinct modulo (2mty + mty)/r, where z; and z; are integers between 0
and 2mto + mt; — 1. Then the code consisting of the blocks
{[al2mtotmtsli/ria qlomtotmurlifrtatimiotmty |

»

a[2mto+mt1]i/r+zz+2m(4m—1)to+m(4m-—1)t1] .= 0, e T — 1’ | = O, e (to/T) _ 1}

and the blocks
{[a[2mto+mt1]i/r+a:] al2mtotmti]ifrtz,+dmtotomty
’ Y

9

a[2mto+mt1]i/r+:cj+2m(4m—-2)t0+m(4m—2)t1] 5= 0, e T — 1,]- — 0, e (tl/r) _ 1}

66



and the blocks

{[a[tho+mt1]i/r+zj+2mt0+mt1 a[tho+mt1]i/r+a:j+6mto+3mt1 .
) ) ’

a[2mto+mt1]i/7'+:cJ+2m(4m—-l)to+m(4m-—1)tl]:i =0,...,r—1,7=0,---, (tl/r) _ 1}

form an (n, {2w,w}, {2,2}, 1, {to/(to + 2t1),2t1/(t0o + 2¢1)}) OOC.

Some of constructions in Section 3.3.6.1 are in Table 3.4.

code to | 2t1 | primitive o | zg
(2017,{8,4},{2,2},1,{5,2}) [ 42| 84 5 2
(2593,{8,4},{2,2},1,{%, 2}) | 54 | 108 7 i

Table 3.4: The cardinality of codes constructed according to the technique of
Section 3.3.6.1

3.3.6.2. Constructions of an (n,{2w + 1,w},{2,2},1,Q) OOC for even

w

An (n,{2w+1,w}, {2,2},1, {to/(to + 2t1), 2t1/(to + 2t1)}) OOC for even
w: Let w = 2m and choose n to be a prime number such that n = 2(w? +
w)to + w2ty + 1. If r denotes the greatest common divisor of ¢y and #;, let a be

a primitive element of GF(n) such that

o {log,[o® (al@mHiotmtl _ )] 1 <k <myj= 0,000, (0a/r) — 1,
o {loga[azl(a[(2m+1)to+mt1]k —D]:1<k<2m,1=0,---,(to)r) — 1},
o {z:1=0,---,(to/r) -1}

are all distinct modulo ({(2m+1)to+mt;)/r, where z; and z; are integers between

0 and (2m + 1)t + mt; — 1. Then the code consisting of the blocks

{[0 a[(2m+l)to+mt1]i/r+zl a[(2m+l)to+mt1]i/r+zl+(2m+1)to+mt1 .
3 ) b 9
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a[(2m+1)to+mt1]i/7'+zl+(2m+1)(4m—1)t0+m(4m_1)t1] :
i=0,...,r—=1,1=0,---,(t/r) -1}
and the blocks

{[a[(2m+1)to+mt1]i/r+mj a[(2m+1)to+mt1]i/'r+xj+(4m+2)t0+2mt1 ..
’ )

?

a[(2m+1)to+mt1]i/r+xj+(2m+1)(4m—-2)to+m(4m-2)t1] .
iz 0, =1,j =0, (ts)r) — 1}

and the blocks

{[a[(2m+l)to+mt1]i/r+xj+(2m+1)to+'mt1 a[(2m+1)t0+mt1]i/7‘+xj—f—(6m+3)t0+3mt1
? 7

a[(2m+1)to+'mt1]i/'r+:xj+(2m+1)(4m—1)to+m(4m—1)t1] .
t=0,...,r—1,7=0,---,(ts/r) — 1}

form an (n, {2w + 1,w}, {2,2}, 1, {to/(to + 2t1), 2t/ (to + 2¢;)}) OOC.

Some of constructions in Section 3.3.6.2 are in Table 3.5.

code to | 2¢1 | primitive « | zg
(B37{9,4L B2L L {LE) [ 6 |12 10 |1
(449,{9,4},{2,2},1,{% %}) 8 |16 3 10
(2521, (9,4}, (2,2}, 1,{5, 1)) [ 45| 90 | _ 17 |6

Table 3.5: The cardinality of codes constructed according to the technique of

Section 3.3.6.2

3.3.6.3. Constructions of an (n,{2w +1,w+1},{2,2},1,Q) OOC for

even w

An (n, {2W + 1,W + 1}, {2,2},1,{t0/(t0 + 2t1),2t1/(t0 -+ Qtl)}) 0O0C for

even w: Let w = 2m and choose n to be a prime number such that n
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2(w? 4+ w)to + (w? + 2w)t; + 1. If r denotes the greatest common divisor of %,
and 1, let « be a primitive element of GF(n) such that
o {log,[a"i (Dot miNul _ )] ] <k <m,j=0,---,(t/r) — 1},
o {z:1=0,---,(ts/r) =1},
o {logyfan (ol iortmal — 1)1 1 <k < 2m,1=0,-, (to/r) - 1,
o {z:1=0,---,(to/r) — 1}
are all distinct modulo ((2m + 1)t + (m + 1)t;)/r, where z; and z; are integers
between 0 and (2m +1)to+ (m +1)t; — 1. Then the code consisting of the blocks
([0, alm D) ali/rn a[(2m+1)to+(m+1)t11z‘/r+zl+£2m+1)to+<m+1>t1 .
a[(2m+1)to+(m+1)t1]i/T+zt+(2m+1)(4m—1)to+(m+1)(4m—1)t1] :
t=0,...,r=1,1=0,---,(to/r) — 1}

and the blocks

{[07 a[(2m+1)t0+(m+1)t1]i/r+x_,‘,a[(2m+1)to+(m+l)tl]i/r-}-xJ+(4m+2)t0+2(m+1)t1 .

v 3

a[(2m+1)to+(m+1)tl]i/r-f-:cj+(2m+1)(4m—2)t0+(m+1)(4m—2)t1] :
i=0,...,7‘—1,j =0,"',(t1/7') "'1}
and the blocks

{[O, a[(2m+l)to+(m+1)tl]i/r+:z:j+(2m+1)to+(m+1)t1’

a[(2m+1)to+(m+1)t1]i/r+.’L‘j+(6m+3)to+3(m+1)t]7 .

?

a[(2m+l)t0+(m+l)t1]i/r+zj+(2m+1)(4m—1)t0+(m+1)(4m—1)t1] :
i=0,...,r—1,7=0,--,(t;/r) — 1}

form an (TL, {2’!1) + 1, w + 1}, {2, 2}, 1, {to/(to + 2t1), Qtl/(to + 2t1)}) O0C.

Some of constructions in Section 3.3.6.3 are in Table 3.6.
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code to | 2t | primitive a | xg
(41,{5,3},{2,2},1,{3,3D) [ 2 [ 4 6 4
GL{5.3, 22,1, ) (316 2 |4
(101, (5.3}, (2,2).1,{L,2)) [ 5 [10] 2 |4
(L {3,3L (2. 2L L) [0 [18] 2 |4
(769,{9,5},{2,2},1,{%, 2} | 12| 24 11 2

Table 3.6: The cardinality of codes constructed according to the technique of
Section 3.3.6.3

3.3.7 Constructions of an (n,{wq,wy,w2},{2,2,2},1,Q)
0oocC

Instead of combining two kinds of OOC’s, what we show here is combining the
three kinds of OOC’s to construct-an (n, {wq, wi, w2},{2,2,2},1, {to/(to + 2t1 +
2t2), 2t1/(to + 2ty + 2t2), 2t5/(to + 2¢1 + 2t2)) OOC.

An (n,{2w+1,w+1,w},{2,2,2},1, {to/(to + 2t1 + 2t2), 2t1/(to + 2t1 +
2t2),2t2/(to + 2t1 + 2t3)) OOC for even w: Let w = 2m and choose n to
be a prime number such that n = 2(w? + w)tg + (w? + 2w)t; + wiy + 1. I r
denotes the greatest common divisor of ¢y, ¢; and ¢,, let « be a primitive element

of GF(n) such that all the following,

o {log,[a® (olCmHDRttrtNItmERE 1)1 <k <m,j=0,---, (t2/r) — 1)
o {log,[o® (adCmttot(mi)utmizlt _ 1)1 <k <m,j=0,---,(t)r) — 1};
e {z:1=0,---,(ts/r) -1}
o {log,[a”(Gmitiottmtintmislk _ 1) . 1 <k < 2m,1=0,--,(to/r) — 1};
o {z:1=0,---,(to/r) =1},

are all distinct modulo ((2m + 1)to + (m + 1)t1 + mts)/r, where s;, z;, and z
are integers between 0 and (2m + 1)tg 4+ (m + 1)t; + mtz — 1. Then the code
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consisting of the blocks
{[0’ a[(2m+1)to+(m+1)t1+mt2]i/r+zl,
a[(2m+1)to+(m+1)t1+mt2]i/’r+zl+(2m+1)to+(m+1)t1+mt2 .
b 9

a[(2’m+1)to+(m+1)t1+Mt2]i/7‘+21+(2m+1)(4m—1)to+(m+1)(4m—1)t1+m(4m—1)t2] :
t=0,...,r=1,1=0,---,(te/r) — 1}
and the blocks
{[o, al(@m+1)to+(m+1)t +mtz]i/r+rj,
a[(2m+1)to+(7n+1)t1+mtz]i/7+fj+(4m+2)to+2(m+1)t1+2mt2, e
a[(2m+1)to+(m+1)t1+mtz]i/r+%‘+(2m+1)(4m—2)to+(m+1)(4m—2)t1+m(4m—2)t2] .
t=0,...,r=1,7=0,---,(t1/r) — 1}
and the blocks
{[o, al@m+Dto+(m+1)ts+mto]i/r+a+(2m+1)to+(m+1)t1 +mts ,
al@mAD)to+(m+D)trtmizli/rbe;+(Bm+3)to+3(m+1)ta+8mtz
a[(2m+1)io+(m+l)i1+mt2]i/7‘+1‘j+(2m+1)(4m—1)to+(m+l)(4m—1)t1+m(4m—1)t2] :
t=0,...,7—1,7=0,---,(t,/r) — 1}
and the blocks
{[a[(2m+1)to+(m+1)t1+mt2]i/r+sJ',

a[(2m+l)to+(m+1)t1+mt2]i/'r+sJ'+(4m+2)to+2(m+1)t1+2mt2 .
k) ?

a[(2m+1)to+(m+1)t1+mt2]i/7'+sj+(2m+1)(4m—2)to+(m+l)(4m—2)t1+m(4m—2)tg] .
i= 0, r =15 =0, (tafr) = 1}
and the blocks

{ [a[(2m+l)t0+(m+1)t1 +mialifr+s;4+(2m+1)to+(m+1)t1+mts ,
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a[(2m+l)to+(m+1)t1+mt2]’i/r+sj'+(6m+3)t0+3(m+1)t1+3mt2 e
?

a[(2m+l)to+(m+1)t1+mt2]'i/'r+3j+(2m+1)(4m—-1)to+(m+1)(4m—1)t1+m(4m—l)tg] .
i=0,...,r—1,7=0,---,(t2/r) — 1}
form an (n,{2w + L,w + 1,w},{2,2,2},1, {to/(to + 2¢1 + 2t3),2t1/(t0 + 2t1 +

2t3),2t2/(to + 2t1 + 2t5)) OOC.

Some of constructions in Section 3.3.7 are in Table 3.7.

code to | 2ty | 2t2 | primitive « | s | @o
(313,{5,3,2},{2,2,2},1,{3,%,2}) [ 13 26 | 26 10 113
(337,{5,3,2},{2,2,2},1,{%,%,%}) 14 | 28 | 28 10 113
(409, {5,3,2},{2,2,2},1,{3,%,2}) [ 17| 34 [ 34 21 113

Table 3.7: The cardinality of codes constructed according to the technique of
Section 3.3.7

3.4 Performance Analysis

In [39], Azizoglu et. al analyzed the performance of an (n,w,1,1) OOC in a
CDMA network by considering the probability distribution of the interference
pattern. They showed the probability of error in the hard-limiting case when

the threshold is w is given by

(%) Dy, (3.)

? w

where M is the total number of users and ¢ = % is the probability that a pulse
belonging to a particular user overlaps with one of the pulses of the desired user.

Here, we will generalize equation (3.1) to obtain the performance analysis of

an (n,{A},{1,...,1},1,Q) variable weight OOC for the hard-limiting case.
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Claim: The probability of error for the hard-limiting case for user j with weight

wj 1s,

P, = 35 C0(P)ia- e T 0 - Ly

Wj =0 Wi
l#7
P
+H=D) = g) ™ I (= a)™), (3.2)
I=0
l#3

where M;(l € {0,1,...,p}) is the total number of users with weight w; and
q = 52(1 € {0,1,...,p}) is the probability that a pulse belonging to a user
with weight { overlaps with one of the pulses of the desired user with weight w;.
Proof: See Appendix E.

Figure 3.2 shows the error probability as a function of w (=threshold) for an

(n,{w+1,w}, {1,1},1,{1/2,1/2}) variable weight OOC with different values of
M, where My = M, = M/2.

3.5 Conclusions

In this chapter we derived new upper and lower bounds on the number of users
that can be supported on an optical network employing code division multiple
access with OOC signature sequences. Unlike previous work in this area, we con-
sidered the possibility that the weight of each codeword might not be identical.
We then demonstrated techniques for constructing (n, {w + 1,w}, {1,1},1,Q),
(n, {w+1, 0}, (2,2}, 1,Q) , (1, {20, 0}, 2,11, 1,Q), (n, {20+1, 0}, {2,1},1,Q),
(n, {2w,w},{2,2},1,Q), (n, {2v+1,w},{2,2},1,Q), (n, {2w+1,w+1},{2, 2},
1,Q), and (n,{2w + 1,w + 1,w},{2,2,2},1,Q) OOC’s. Furthermore, we have
analyzed the performance of these OOC’s. The results allow us to assign code-

words with different weights among the users. Changing the weight of a user’s
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signature sequence affects that user’s performance; therefore this approach is

useful for CDMA fiber optic networks with multiple performance requirements

among the users.
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Figure 3.1: The upper bound on the ®(n,{3,4},{1,1},1,{qo,q:}) variable
weight OOC with different go, ¢.
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Chapter 4

Concatenated Coding Scheme
for Code Division Multiple
Access on Optical Networks

In this chapter we consider a concatenated coding scheme consisting of a CDMA
inner code and a channel code—possibily different for each user—as an outer
code. We demonstrate how such a configuration offers novel tradeoffs when
compared with a single CDMA code — tradeoffs including performance/rate

and multiple performance requirements among the network’s users.

4.1 Background and Motivation

In taking advantage of the abundant bandwidth of the optical fiber, a fiber-
optical code division multiple access (CDMA) system maps the low-rate infor-
mation signals onto high-rate optical sequences to achieve random, asynchronous
communication access among users. The success of the CDMA systems depends
on the signature sequence of each user.

The performance of the system will depend on the maximum auto- and
~ cross-correlation, as well as the blocklength and weight of the OOC sequences
as mentioned in Chapter 2. In a noiseless CDMA system, all errors will come

from the interference of the other users; therefore one means of enhancing a
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user’s performance is to increase his codeword weight while maintaining the
same auto- and cross-correlation constraints. (This was investigated in Chapter
3.) However, if we use ®(n,w, A, A;) to denote the cardinality of an optimal
optical orthogonal code with given auto-correlation A, and cross-correlation A,
then it was shown in Chapter 2 that ®(n,w,A,,A.) < (""111)}(15ZI)’\°)($j;3°+1)

Therefore, when A\, = A, = 1, n > w(w — 1)®(n,w,1,1) + 1; i.e., blocklength

n will increase at least as fast as O(w?) with weight w. In this chapter, we
consider a concatenated coding scheme which can enhance the performance of
the system without increasing the weight (and thus the blocklength) of the
0OO0C. By considering the original CDMA system as the inner code and adding
a channel encoder for each user as an outer code, we will show this concatenated
coding scheme can increase the information rate, compared with the original
system. Furthermore, by using a different outer code for each user, we can meet

the performance requirements for users with different priorities as in Chapter 3.

4.2 Performance Analysis

Suppose we use a rate R = k/n error-correcting code as an outer code and an
(ng =w(w—1)t+1,w,1,1) OOC as an inner code. The rate R, of the resulting

system is given by
k k
‘RC = —_— 3
nny  nfw(w—1)t + 1]

where t is the number of users in the system. A special case of this is an
“uncoded” system — i.e., one in which no error control code is present, in which

case the overall rate is
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4.2.1 Uncoded System

The block diagram of a CDMA optical system is shown in Figure 4.1.
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user M > Mod Demo Dest.
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00C M obo

Figure 4.1: The uncoded CDMA optical system

In [39], Azizoglu et. al. analyzed of the performanée of an (n,w,1,1) O0C in
a CDMA network by considering the probability distribution of the interference
pattern. They showed the probability of error in a hard-limiting case when the
threshold is w is given by

a:%ien{ﬂ(—@Wﬂ (4.1)

? w

where M is the total number of users and ¢ = % is the probability that a pulse

belonging to a particular user overlaps with one of the pulses of the desired user.

We note that this same formula is appropriate for an (n,w,2,1) OOC. The
constraint on the auto-correlation A, is only useful for the synchronization pro-
cess. If we don’t count the error probability due to the synchronization process,
then the error probability of the system will be the same as (n,w,1,1) OOC. Let

t denote the number of codewords of the (n,w,2,1) OOC described in Chapter
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2, then the block length n is n = w?t/2+1 for an even w and n = (w?—1)t/2+1

for an odd w.

4.2.2 Coded System

The block diagram of a concatenated CDMA optical system is shown in Figure

4.2,
] | 1 |
] i | I
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1 i 1 I
i ] | I
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Figure 4.2: The coded CDMA optical system

4.2.2.1 (n, k) t-Error Correcting Block Code

If we use an (n, k) t-error correcting code as an outer code, then the performance
of the whole system can be derived as follows. Let P, be the error probability

for the received bit in the inner code. Then, P,, the probability of receiving an

80



n-bit codeword in error if we assume bound-distance decoding is given by
n n . .
P, = Z ()Pg(l - P )"
i=t+1 \?
The bit error probability of the system can be approximated by the post-
decoding bit error rate P, which assumes that all incorrect decoding events

produce ¢ + ¢ errors[40]. Then

4.2.2.2 (n,k) t-Asymmetric Error Correcting Code

Since we assume the only errors come from the interference of the other users,
all channel errors must be of the 0 — 1 variety. In other words, we only consider
a so called 0-type error. The more natural role for the outer code is therefore
an (n, k) t-asymmetric error correcting code. Let C be a binary block code of
length n. The asymmetric distance d4(x,y) between x = (z1,22,...,2,) € C

and y = (y1,¥2,---,Yn) € C is determined by

da(x,y) = max{N(x,y), N(y,x)},

where N(x,y) = [{t|z; = 1 and y; = 0}|. The relation between the Hamming

distance dy(x,y) and the asymmetric distance d4(x,y) is

2dA(x,Y) = dH(XaY) + |w(x) - 'LU()’)|,

where w(x) and w(y) are the weights of x and y. The asymmetric distance A

of a code C is defined by

A = min{da(x,y)|x,y €C;Xx # y}.
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It has been proven that a code C of asymmetric distance A can correct A — 1
or fewer asymmetric errors[41].

Thus, P, the probability of receiving n-bits codeword in errors, is

<mzil & (") - n
where A; = {x € C : wt(x) = j} is the set of codewords in C with weight equal
to j.

The bit error probability of the system can be approximated by the post-
decoding bit error rate P, which assumes that all incorrect decoding events
produce ¢ + ¢ errors[40]. Then

1 - n=g i
Example: An (2,1,1) asymmetric code
We encode information bit 0 to 00, and information bit 1 to 11. It is a one error

correcting asymmetric code. Thus,

P, =P, =P/2.

4.2.2.3 (n,k) Convolutional Code

Consider the use of convolutional codes with maximum likelihood decoding using
the Viterbi algorithm with hard decisions. We only consider the (2,1) convo-
lutional codes with constraint lengths 5 and 7[42]. Thus, for constraint length
5,

P, < 4D7 +12D% +20D° + 72D + 225D 4+ 500D% 4+ 1324D'3

+3680D' + 8967D'° + 22270D™,

82



and, for constraint length 7,

P, = 36D + 211D + 1404D™ + 11633 D¢ + 76628 D8 + 469991 D*°,
where D = 2,/ P.(1 — P.).

4.2.2.4 Different Priority

Instead of using (n, W, L, A., Q)) variable weight OOC to achieve the performance
requirements for users with different priorities as in Chapter 3, we may use
different outer codes for different users in the concatenated coding scheme and

keep the inner codes OOCs with the same weight.

4.3 Numerical Results

In Figure 4.3, we compare an uncoded system using an (n,4,1,1) OOC with
two coded systems. For the coded system, we use a (7,4) one-error and a
(21,12) two-error correcting BCH codes as outer codes and an (n,3,1,1) OOC
as an inner code. The performances of both coded systems are better than the
uncoded system; furthermore, the ratio of the rate of a coded system to the

uncoded system is
k o 126 +1 2k
n’ 6t+1 n

Since k/n > 1/2 for each outer code, the overall rate is better. Thus the coded
systems outperform the uncoded system in Figure 4.3.

In Figure 4.4, we use an (n,5,1,1) OOC for the uncoded system. For the
coded system, we use (23,12) and (15,5) three-error correcting codes as outer

codes and (n,3,1,1) OOC as an inner code. Once again the performances of
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Figure 4.3: Comparison between uncoded system and symmetric BCH coded
systems

both coded systems are better than the uncoded system, and the rate ratios are

§X20t+1N10k
n’ 6t+1  3n

> 1.

For both cases in Figure 4.4, the coded systems outperform the uncoded system.

In Figure 4.5, we use an (n,6,2,1) OOC for the uncoded system. For the
coded system, we use (21, 12) two-error and (23,12) three-error correcting BCH
codes as outer codes and (n,4,2,1) OOC as an inner code. Again the perfor-
mances of both coded systems are better than the uncoded system, and the rate

ratios are
E « 18t +1 N gli
n 8t+1 ~ 4n

> 1.
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Figure 4.4: Comparison between uncoded system and symmetric BCH coded
systems

Then the coded systems outperform the uncoded system in Figure 4.5.

In Figure 4.6, we use an (n,6,2,1) OOC for the uncoded system. For the
coded system, we use (2, 1) one-asymmetric error corecting code as an outer code
and (n,4,2,1) OOC as an inner code. The performance of the coded system is
better than the uncoded system, and the rate ratio is

ko 18t+1 9k

r— > 1.
nx8t+1 4n>

Then the coded system outperforms the uncoded system.
In Figure 4.7, we use (n,4,1,1) and (n,5,1, 1) OO0Cs for the uncoded sys-

tems. For the coded systems, we use (2,1)(N = 5) and (2,1)}(N = T) con-
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Figure 4.5: Comparison between uncoded system and symmetric BCH coded
systems

volutional codes as outer codes and (n,3,1,1) OOC as an inner code. The
performances of both coded systems are better than the uncoded system using

an (n,5,1,1) OOC, and the rate ratios are

k20641 10k

i ~o 1.
nxﬁt—}—l 3n>

Then the coded systems outperform the uncoded system. The performances
of both coded systems are better than the uncoded system using an (n,4,1,1)

0OO0C, and the rate ratios are
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Figure 4.6: Comparison between uncoded system and asymmetric coded system

Then the coded systems outperform the uncoded system.

4.4 Conclusion

In this chapter, we have presented a concatenated coding scheme which may
perform better than an uncoded CDMA optical system. Furthermore, we have
demonstrated the simplicity of adjusting the system to satisfy the users with
different priorities. The concatenated coding scheme is useful for many CDMA

optical systems.
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Chapter 5

Signature Pairs for
Synchronization and CDMA on

Optical Fiber Networks Using
Pulse Position Modulation

This chapter considers a new approach to code division multiple access (CDMA)
on fiber-optical networks employing pulse position modulation (PPM). We pro-
pose assigning to each user in the network two signature sequences — a synchro-
nization sequence that the user will use to establish frame synchronization and
a data sequence that will be used to convey information once frame synchro-
nization is established.

Previous work on CDMA for optical channels has assumed the assignment of
a single signature sequence to each user. In some designs - e.g., prime sequences
— the auto-correlation of each signature sequences is high, creating possible prob-
lems with respect to synchronization. In other designs — e.g., optical orthogonal
codes — the auto-correlation of sequences is kept low; however, this property is
useless once frame synchronization is maintained, and it limits the number of
signature sequences that can be constructed.

Qur approach requires a set of synchronization sequences with good auto-
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correlation properties as well as a set of data sequences with good cross-correla-
tion properties; in addition, good “global” correlation properties — e.g. con-
straints on the cross-correlation between data and synchronization sequences —
is necessary. We demonstrate how this can be attained using extended quadratic
congruence (QC) sequences for synchronization and extended prime sequences

as data sequences.

5.1 Background and Motivation

The increasing use of optical communications has fostered a renewed interest
in both pulse position modulation (PPM) and code division multiple access
(CDMA). This paper describes a new approach to designing and using binary
sequences for CDMA-PPM.

In a “typical” optical CDMA system[6][7], each user is assigned a distinct
n-bit “signature sequence” that the user transmits when a logical “1” is to be
conveyed; when a logical “0” is to be conveyed, an all-zero sequence is transmit-
ted. This set of signature sequences is designed to satisfy two constraints:

e Auto-correlation property: Each sequence can easily be distinguished
from a shifted version of itself. This property is used to enable the receiver
to obtain synchronization — that is, to find the beginning of its message
so that subsequent frame boundaries can be located.

e Cross-correlation property: Each sequence can be easily distinguished
from a shifted version of every other sequence in the set. This property
enables the receiver to estimate its message in the presence of interference
from other users. Thus, the cross-correlation constraint aids both syn-
chronization in the presence of multiple users and permits each receiver

to “track” its message after synchronization is achieved.
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Therefore, the auto-correlation constraint contributes only to synchroniza-
tion, while the cross-correlation constraint affects both synchronization and op-
eration. Furthermore, we observe that once synchronization is obtained — some-
thing that needs to be done relatively rarely — the auto-correlation property of
a sequence becomes useless.

This suggests that a “natural” way to implement a CDMA system is to assign
two different signature sequences to each user: one that the user will employ
when attempting to obtain synchronization (“synchronization sequence”), and
another that will be used when synchronization is already obtained and the
user wishes to convey a message (“data sequence”). The necessary correlation
properties can be described as follows:

(1) The set of synchronization sequences must have good auto-correlation

properties.

(2) The set of data sequences must have good cross-correlation properties.

(3) The cross-correlation between any synchronization sequence and any data
sequence must be low, to permit synchronization in the presence of mul-
tiple users.

(4) The cross-correlation between two different synchronization sequences
may be of secondary importance, since this plays a role only when two
different users are attempting to obtain synchronization simultaneously
— possibly a relatively rare occurrence.

(5) The auto-correlation properties of the data sequences are unimportant.

Our model of an optical network is the one found in [6][7]. We assume
that each user transmits a logical bit by transmitting a frame of n channel bits
(or chips); if a user wishes to send a logical “1” then that user’s n-bit signature

sequence is transmitted, while if a logical “0” is to be conveyed then a frame of n
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Figure 5.1: The system block diagram for two sequence scheme.

zeroes is sent. We assume that the optical signals are processed asynchronously,
which means that the receiver can only determine the intensity of the received
signals; this in turn means that the channel acts like a “sum channel”, with the
output intensity at any time being directly proportional to the number of users
transmitting a channel bit at that time.

In the case of CDMA with pulse position modulation, there is one additional
constraint. Each logical “1” is transmitted as a frame of n channel bits; we
assume that n = w - m, with each frame consisting of w sub-frames of m bits
each. Furthermore, we require that only one bit in each sub-frame can be a “1”;
this constraint describes PPM, in which information is conveyed by the position
of the pulse (i.e. — the “1”) within the sub-frame.

The whole system block diagram is shown in Figure 5.1.

The challenge, then, is to find a set of synchronization sequences and a set

of data sequences — each a set of binary n-tuples, where n = w - m - that
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have the necessary correlation constraints and have a single “1” in each m-
bit sub-block. This paper demonstrates that an extension of Shaar and Davies
“prime sequences” is a good candidate for the set of data sequences while Maric’s

extended quadratic codes make suitable synchronization sequences.

5.2 Some Upper Bounds

We begin by deriving the upper bound on the cardinality of the number of users
which can be supported in our system.

Denote by Z(n,wy,wq, AL, A2, A1 A2 A3) the maximum number of users we

can support if we assign each user an (n,ws, AL, A\}) synchronization sequence

a’’c

and an (n,ws, A2, \?) data sequence, and in addition we require that the cross-

correlation between any synchronization sequence and any data sequence be at

most A2 — i,

Z(n, w1, wa, s, A2, AL 02 03) = max{min(| X [,| YV |): X is an

a’’tar ey ey e

(n,w1, AL, AL) O0C, Y is an (n,ws, A2, A2) OOC, cross-correlation

a’ ¢

between any € X and y € ) is at most A2}

Let | &* | and | V* | be the OOC’s that are optimal — i.e., they’re the codes
that achieve the maximum above. From Theorem 2.3, we can bound | X* | and

| V* | as follows:

(n—=1)(n=2)...(n = AD(Al = Al +1)
wi(wy — 1)(wy —2)...(wy —AL) 7

| & |< (5.1)

and

(=D —=2)...(n = 2AH(A2 - )2 +1)
wa(wy — 1) (w2 — 2) ... (wy — A2)

PV |< (5.2)
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Furthermore, the requirement that the cross-correlation between any two

element of X and ) cannot exceed A2 yields the following inequality:

*wl(wl — 1) (w1 = 2)...(w; — A3)

R Al -3 +1
- w2(w2—1)(w2—2)...(w2—)\i’)
1Yl A2 N8+ 1
<(n=1n=-2)...(n=A2). (5.3)

When Al = A2 = A2 = ), the three inequalities degenerate into one inequality,

which is

1 \2 (mn—1(n=2)...(n=X)
Z(n, w1, w3, Ag, Agy A, A, A) < wiCor =11 =2). (w1 =A) | wp(wp=1)(wp=2) . (ws=1) (5.4)

AL-)+1 AZ-M+1

Note that this bound is not specific to PPM — i.e., we have not required that

each sub-frame contain exactly one “1”.

5.3 Sequence Design

In this section we begin by defining a code for pulse position modulation.

Definition: An (n,w, As, \.) PPM code C is a collection of binary n-tuples,

each of Hamming weight w where w|n, such that the following three properties

hold:

e (PPM Property) For any x = [zo, 1,...,2n-1] € C and any k =0,1,...,

w—1, the Hamming weight of the vector [xn,Zin ). .., Zn n_,]is one.

w

+3

o (Auto-correlation Property) For any x = [zq,Z1,...,%n-1] € C and any

integer 7,0 < 7 < n,
n—1

E T Topr < Ag-
=0
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e (Cross-correlation Property) For any x = (2o, 1,...,%s-1] € C and any

Y = [¥0,Y1,.-.,VUn_1] € C such that x # y and any integer 7,

n-—1
Z TiYtpr < )‘c-
t=0
Note: Following [6][7], we define PPM sequences in terms of periodic

correlation; thus the addition in the subscripts above — denoted “@®” - is

all modulo-n.

5.3.1 Construction of Prime Sequences

In [15] Shaar and Davies demonstrated a technique for constructing a (p?, p, p, 2)
PPM code for any prime number p; since it is our intention to use an extension
of the Shaar/Davies code as our set of data sequences, we briefly review their
construction.

The approach is to first construct a prime sequence S; = (S 0,8i,1,- .-, Sip-1)
consisting of p prime numbers and then use this sequence to place p 1’s inside
the p sub-blocks. Let F(p) = {0,1,...,7,...,p — 1}, denote the Galois Field
with p elements; then

85 =13 € F(p),

where “” denotes multiplication modulo p. Each prime sequence S; is then
mapped onto a binary code sequence C; = (cio, Ci1,-- -, Cijy - - -5 Ci(p2—1)) by the
rule

_J 1 ifj=sy +kp, for some k € {0,1,...,p— 1},
“ =Y 0 otherwise.

There are p binary prime sequences of length p? generated by this rule.
g y

An example p = 5 is shown in Table 5.1.
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1 8;08i18:28i38i4 Sequence Binary Code Sequence

0 00000 So Cp = 10000 10000 10000 10000 10000
1 01234 St C1 = 10000 01000 00100 00010 00001
2 02413 S Cy = 10000 00100 00001 01000 00010
3 03142 S3 C5 = 10000 00010 01000 00001 00100
4 04321 Sy C4 = 10000 00001 00010 00100 01000

Table 5.1: Prime sequences S; and binary code sequences C; for GF(5)

5.3.2 Counstruction of Extended Prime Sequences

We now propose a new “extended prime sequence” which reduces the peak of the
cross-correlation constraint to one, at the expense of increasing the blocklength
p?® of a prime sequence to p(2p — 1); thus, the extended prime (EP) sequence is
a (p(2p — 1),p,p,1) PPM sequence.

Starting with Galois field F(p), construct a prime sequence S; = (s; 0, 81, - - -
y Sip—1) as in Section 5.2.1. Each prime sequence S; is then mapped onto a binary

code sequence C; = (Cio, City - - - 5 Cijy - - + 5 Ci(p(2p—1))) Dy the rule

_J 1 ifj=su+k2p—1), for some k € {0,1,...,p—1},
% =310 otherwise.

So the extended prime sequences are obtained be padding p — 1 0’s to the end
of each sub-block in a prime sequence.

Example p = 5 is shown in Table 5.2.

1 Si0Si1Si28i38is  Sequence Binary Code Sequence

0 00000 So Co = 100000000 100000000 100000000 100000000 100000000
1 01234 S Cy = 100000000 010000000 001000000 000100000 000010000
2 02413 Sy ('3 = 100000000 001000000 000010000 010000000 000100000
3 03142 S3 '3 = 100000000 000100000 010000000 000010000 001000000
4 04321 Sy C'y = 100000000 000010000 000100000 001000000 010000000

Table 5.2: Extended prime sequences S; and binary code sequences C; for GF'(5)

96



Theorem 5.1: An extended prime sequence is a (p(2p — 1), p,p,1) PPM code.

Proof: For the proof we need a definition of a placement difference function[16]

and two lemmas.

Let
yi(k) = ik(mod p), k=0,1,...,p—1, (5.5)

be a placement operator. Then the :** extended prime sequence (0 <7 < p—1)
can be thought of as a two dimensional (2p—1) X p array with a “1” in the y;(k)
row of the k-th column. The associated sequence is obtained by “reading” the
array column by column.

The array associated with the sequence S, = [02413] from Table 5.2 is shown

in Figure 5.2.

Figure 5.2: The two dimensional interpretation for EP sequence S; for GF(5)

Definition: The placement difference function for two placement operators
vi, (k) and y,, (k) is denoted (y;, (k) A yi,(k)),» and is the vertical distance be-
tween the “1” in the k** column of array 7o and the “1” in the (k + ) column

of array 7 after it’s been shifted left = times and vertically z times, i.e.,

(i, (k) A yiy (B))ae = yis (R + 2) —yir (k) — 2 [z, ]z < p—1, (5.6)
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where z and z denote an integer horizontal and vertical shift, respectively. If
the value of the difference function is zero, there is a “hit”.

Lemma 5.1: Two placement operators from two different extended prime se-
quences have at most one hit for any horizontal-vertical shift pair, (z,z) —p+1 <
z,z<p-—1.

Proof: Substituting equation (5.5) into equation (5.6) for two different extended

prime sequences we see a hit occurs if and only if
[t1(k + z)](mod p) — [i2k](mod p) — z = 0. (5.7)
But a necessary condition for equation (5.7) to hold is
(3 — 1)k + i1 — 2z = 0 (mod p). (5.8)

For fixed iy, ¢3, z, and z, this is a first order equation in k over GF(p). Hence
the placement operators of two extended prime sequences from two different

extended prime sequences can have at most one hit for any two dimensional

shift.

Lemma 5.2: Two placement operators from the same extended prime sequence
have a maximum of p hits for any horizontal-vertical shift pair, (z,2) — p.+ 1<
z,z2<p—1.

Proof: This proof follows immediately from the proof of Lemma 5.1 by putting
21 = 2 in equation (5.8). Hence the placement operators of two extended prime
sequences from a same extended prime sequence can have at most p hits for any

two dimensional shift.

Now we are ready to prove Theorem 5.1. Each particular shift s of one binary
extended prime sequence with respect to the other, can be expressed through a

unique vertical and horizontal shift in the placement operator two dimensional
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array — 1.e.:
s=zX(2p-1)4+2 —p+1<z,z<p-1 (5.9)

Therefore, from Lemmas 5.1 and 5.2, we can complete the proof for Theorem

5.1. QED.

The next two sections review QC and EQC codes.

5.3.3 Constructions of QC Codes

Starting with Galois field F(p) = {0,1,...,7,...,p — 1}, s;; of a QC codeword

Si = (8i0y Sily+ - -, Sijs+ -+ » Si(p—1)) is constructed by
il
Sij =1 ']—(Z‘;—) € F(p),

where “.” denotes multiplication modulo p and ¢ € F(p)\{0}. Each QC code-
word S; is then mapped into a binary code sequence C; = (cio, Ci1y-- -5 Cijy - - - »

Ci(p2-1)) by the rule

[ 1 if j = sy + kp, for some k € {0,1,...,p— 1},
%=1 0 otherwise.

There are p — 1 binary QC sequences with length p* generated by this rule.

Example p = 5 is shown in Table 5.3.

1 8i08i18i28:38:4 Sequence Binary Code Sequence

1 01310 S1 C, = 10000 01000 00010 01000 10000
2 02120 S C, = 10000 00100 01000 00100 10000
3 03430 Ss C3 = 10000 00010 00001 00010 10000
4 04240 S4 'y = 10000 00001 00100 00001 10000

Table 5.3: QC codewords S; and binary code sequences C; for GF(5)

Let

k(k+1)
2

yi(k) =1 (mod p), k=0,1,...,p—1, (5.10)
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be a placement operator for QC code. The i** QC codeword (1 <4 < p—1) can
also be thought of as a two dimensional p x p array with a “1” in the y;(k) row
of the k-th column.

Mari¢ has shown a QC code is a (p?,p,2,4) PPM code[16].

5.3.4 Constructions of EQC Codes

Starting with Galois field GF(p), construct an EQC code S; = (s, Si1,-- -,
Sijy++ -5 Si(p=1)) a8 in Section 5.3.3. Now each EQC code S; is then mapped onto
a binary code sequence C; = (i, City - - - Cijy + - -, Ci(p(2p—1))) DY the rule

)1 ifj=sy +k(2p—1), for some k € {0,1,...,p— 1},
71 0 otherwise.

Once again the EQC sequences are obtained be padding p — 1 0’s to the end of
each sub-block in a prime sequence.

Example p = 5 is shown in Table 5.4.

1 Si0Si18i28i3Siy  Sequence Binary Code Sequence

1 01310 S Cy = 100000000 010000000 000100000 010000000 100000000
2 02120 Sy Cy = 100000000 001000000 010000000 001000000 100000000
3 03430 S5 '3 = 100000000 000100000 000010000 000100000 100000000
4 04240 Sy C4 = 100000000 000010000 0061000000 000010000 100000000

Table 5.4: EQC codewords S; and binary code sequences C; for GF(5)

Let

k(k +1)

yi(k) =1 5

(mod p), k=0,1,...,p—1, (5.11)

be a placement operator for an EQC code. Like the other codes, the i** EQC
codeword (1 <7 < p—1) can be thought of as a two dimensional (2p — 1) x p

array with a “1” in the y;(k) row of the k-th column.
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Mari¢ has shown an EQC code is a (p(2p — 1),p,1,2) PPM code[16].
In the next section, we are going to show the maximum cross-correlation
between an EP sequence and an EQC sequence is two; while for a prime sequence

and a QC sequence, it is four.

5.3.5 Cross-Correlation between Synchronization and
Data Signature Sequences

Theorem 5.2: The maximum cross-correlation between an EP sequence and

an EQC sequence is two.

Proof: Two placement operators — one from an EP sequence and one from an
EQC sequence — have at most two hits for any horizontal-vertical shift pair,
(z,z) =p+1 < 2,z < p — 1. This is because by substituting equations (5.5)
and (5.11) into equation (5.6) for two sequences from EP sequences and EQC

sequences we see a hit occurs if and only if

(k4 2)(k+z+1)
[i1 5

|(mod p) — [izk](mod p) — z = 0. (5.12)

But a necessary condition for equation (5.12) to hold is

k2 -1 . 2 .
(i1—+(i1w+z——i2)k+z—&+ﬂ‘x—

5 5 5 5 ) — 2z =0 (mod p). (5.13)

For fixed i1, 43, @, and z, this is a second order equation in k over GF(p).
Hence two placement operators for two sequences from EP sequences and EQC
sequences can have at most two hits for any two dimensional shift.

Each particular shift s of one binary extended prime sequence with respect to
one binary EQC code, can be expressed through a unique vertical and horizontal

shift in the placement operator two dimensional array as in equation (5.9), i.e.,

s=zx(2p—-1)4+2z —p+1<z,2<p-—1. (5.14)
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Therefore we can complete the proof for Theorem 5.2. QED.

The placement operator for a prime sequence is defined the same as in equa-

tion (5.5),
yi(k) = ik(mod p), k=0,1,...,p— 1. (5.15)

Then a ¢ prime sequence (0 < ¢ < p — 1) can be thought as two dimensional

p X p array with a “1” in the y;(k) row of the k-th column.

Theorem 5.3: The maximum cross-correlation between a prime sequence and

a QC sequence is four.

Proof: Two placement operators — one from a prime sequence and one from
a QC sequence — have at most two hits for any horizontal-vertical shift pair,
(z,2) —p+1 < 2,z < p— 1. This is because by substituting equations (5.15)
and (5.10) into equation (5.6) for two sequences from prime sequence and QC

code we have:

(k+2)k+2+1)
i1 9

|(mod p) — [i2k](mod p) — z = 0. (5.16)

But a necessary condition for equation (5.16) to hold is

. k2 . 7:1 . 2.1.’1,' 7:1.’17
21?+(Z1$+“2——22)k+—2“‘+‘5‘—2~0 (mod p). (5.17)

For fixed #1, i3, x, and z, this is a second order equation in k over GF(p).
Hence two placement operators for two sequences from prime sequences and QC
sequences can have at most two hits for any two dimensional shift.

Each particular shift s of one binary prime sequence with respect to one
binary QC codeword, can be expressed through two vertical and horizontal

shifts in the placement operator two dimensional array, i.e.,

s=zXp+z 0<z<p—-1, (5.18)
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and
s=(z+1)xp+2 —p+1<2<0. (5.19)

Furthermore, the inner product of the prime sequence/QC codeword pair will
be equal to the number of distinct “hits” encountered in the two corresponding
two-dimensional shifts — a number that is at worst four. Thus we complete the
proof for Theorem 5.3. QED.

In the next section we are going to derive some upper bounds on the cardi-

nalities of PPM code.

5.4 Some Upper Bounds for PPM Code

In Chapter 2 we derived upper bounds on the cardinalities of optical orthogonal
code by defining two kinds of sets with respect to the auto- and cross-correlation
properties then placing a constraint on the cross-correlation-associated set[11].
Here, we want to use the same technique to derive upper bounds for PPM codes.
Since there is one more constraint for the PPM modulation scheme compared
with on-oft keying, i.e., a single “1” per subframe, we are dealing with a more

complex problem than in Chapter 2.

Define ¢(n,w, A,, A;) as the cardinality of an optimal PPM code with the

given parameters — i.e.,
d(n,w, Ag, Ac) £ max{|C |: C is an (n,w, Ay, A;) PPM code}.

Throughout this section, we use ¢ to denote the subframe length. Obviously,
n = wq.
Definition: Let x be a binary n-tuple of weight w in a PPM code and let

tx = [to,?1,...,lw-1] be its adjacent relative delay vector.
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The PPM requirement places constraints on the delay vectors expressed as

follows.
1<, <2g—-1, fore=0,---,w~—1,

q+1St2+tzu1S3q—17 fori=0,-~-,w—1,

(w_2)q+1 Sti+tiwl+"'+tiww—2 qu—la forizO,--',w—l.
(Note: The subscript addition above is modulo w — denoted “&”.)

The first bound, for the case A, = 1, is identical to the bound in Theorem

2.2 for OOC.
Theorem 5.4: The following inequality holds:
(n—1)A
< —,
B w,\ 1) < Lo

Proof: Let C be an (n,w,\,1) PPM code such that |C| = ¢(h,w,/\,1). By
Lemma 2.4, for any x € C, |Mx,1| > w(w — 1)/). Furthermore, by Lemma 2.2
Mx, and My ; are disjoint for x,y € C and x # y. Therefore the union of My,
as x varies over all x € C consists of at least ¢(n,w, A\, A) - w(w — 1)/ distinct
integer one-tuple. However, by definition if [ag] € My then ap < n — 1. The
number of ways to select ao that is no more than n — 1 and satisfy the PPM

requirement is as follows. Recall that

ao=> tiw0<i<w—2,j=0,1,---,w—1.
k=0

Considering the constraints placed above on the delay vector [to,t1,. .., ty_1], it

means
a € {1,2,...,2¢—1}U{g+1,¢+2,...,3¢—1}U...
U{(w—2)g+1,(w—2)g+2,...,wg — 1}
€ {1,2,...,wqg—1}.
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Therefore the number of ways to choose ag is n — 1. So:

n—1 > Z IMx,ll
xeC
> ¢(nawa A, 1) ’ min{lMxyll X e C}
> QS(nawa)"l)'l—U&Ev/\_—ﬂi)

which was to be proven. QED.
The second bound is for the case A, = 2.
Theorem 5.5: If A > 2, then the following inequality holds:

{(n=1D(m—-2)—-3¢(¢-}A-1)

¢ln,w,A,2) < w(w - 1)(w —2)

Proof: Let C be an (n,w,\,2) PPM code such that |C| = ¢(n,w,A,2). By
Lemma 2.4, for any x € C, |Mx 2| > w(w — 1)(w —2)/2(X — 1). Furthermore, by
Lemma 2.2 Mx; and My, are disjoint for x,y € C and x # y. Therefore the
union of My, as x varies over all x € C consists of at least é(n,w, A, 2) - w(w —
1)(w—2)/2X distinct integer two-tuples. However, by definition if [ag, a1] € Mx 2
then ap + a; < n — 1. The number of ways to select [ag, a;] such that ag + ¢ is
no more than n — 1 and the PPM requirement is satisfied is as follows.
io i
lao,a1] = [ tiwkes D, tjwk]0<io<iz<w—2,j=0,1,---,w~—1
ko=0 ky =io+1
with respect to the constraints placed on the delay vector ¢;s, it means ag and

a, must satisfy the following four equations.

ap+a1 > q+1, (5.20)
n—ay>q+1, (5.21)
n—a >q+1, (5.22)
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n—ap—a; > 1. (5.23)

From equation (5.21) for fixed ag € {1,2,...,n — ¢ — 1} the number of ways

to choose a; is as follows.

ap=1, n—2¢ ways to choose a,
apo =2, n—2¢+1 ways to choose ay,
ap=¢q—1, n—qg—2 ways to choose ay,
ap=¢q, n-—q—1 ways to choose a;,
apg=¢+1, n—qg—2 ways to choose a;,
apg=n—q—1, ¢ ways to choose aj.

Therefore the number of ways to select ag and a; is

(R—2¢+n—qg-2)(¢—1)

5 +n—-—q-—1
L= =249n=2-1) _ (1= 1)(n=2)~34(g~ 1)
2 2 )
So:
(n_l)(n—z)_3q(q_1) > ZlMX2|

x€eC

#(n,w, A,2) - min{|Mx | : x € C}
w(w —1)(w — 2)

20— 1)

Y

v

$(n,w, A,2)
which was to be proven. QED.

From Theorem 5.4, we know the maximum number of users of a (p(2p —

1),p,1,1) PPM code is less than or equal to (p(2p — 1) — 1)/(p(p — 1)) (= 2).
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However, we can construct a (p(2p — 1), p,p,1) EP sequence with p codewords
and a (p(2p — 1),p,1,2) EQC code with p — 1 codewords. The number of users
which can be supported by the networks using our scheme, therefore, is at least
(p —1)/2 times than one sequence system. (Since the number of codewords for
synchronization signature sequences from an EQC code is p — 1, we arbitrarily
discard a codeword from an EP sequence.) This amount will be large when p is

large. This can be seen in Figure 5.3.

120 T 1 ] 1 1 | UL [ T 171 T

100 —

t (number of users)

0 20 40 60 80 100
p (the Hamming weight of code)

Figure 5.3: The comparison between EP sequence and the upper bound of

(p(2p —1),p,1,1) PPM code.
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If we relax the maximum cross-correlation between a synchronization se-
quence and a data sequence to four, then we use a QC code as synchronization
signature sequences and a prime sequence as data signature sequences. Com-
pared with systems that use EQC code and EP sequence, systems using QC
code and prime sequence can accommodate about /2 times more users than
the former. This is because for fixed blocklength n there are \/n sequences for a
prime code and \/7—1_/—2_ sequences for a extended prime code. This demonstrates
a tradeoff between the number of users which can be supported in a system and

the performance.

5.5 Discussion and Conclusion

In this chapter, we have proposed the use of two signature sequences for each
user: a synchronization signature sequence to find the boundary of the code-
word, and a data signature sequence to transmit data. Since a synchronization
signature sequence doesn’t carry any information, it is overhead—an acquisition
sequence. However, depending on the ability of a system to sustain the synchro-
nization between the transmitter and the receiver, one synchronization signature
sequence usually will be accompanied by many data signature sequences. Thus,
by adding an acquisition sequence, increase in the total length of sequences is
very small. But we can see that the number of users that can be accommodated
with this scheme is far many more than the scheme with one signature sequence
for each user. This suggests that it may indeed be preferable to assign two
signature sequences to each user rather than asking a single sequence to “do it
all”.

By mapping multibits of a user’s data into a shifted version of that user’s data
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signature sequence as Kwon proposed for an QOC CDMA system[43], the data
rate can increase sharply. By merely cyclic-shifting an EP sequence or a prime
sequence, as many as p(2p — 1) or p? code sequences (except So = (0,0,...,0))
could be generated respectively, which would result in a significant increase
in data rate to |log;p(2p — 1)] or |log.p*| respectively. However, since not
every cyclic-shifted version of a EP sequence or a prime sequence is a valid
sequence under PPM constraints, the number of valid cyclic-shifted version of a
EP sequence or a prime sequence is p. Then, the increase in data rate is |logap].
The p cyclic-shifted versions of a EP sequence or a prime sequence are derived as
follows. Each EP sequence or prime sequence S; is taken as a seed from which a
group of new code sequences can be generated. A valid cyclic-shifted version of a
sequence Sim = (Sim0, Sim1y -« - Simjy - - - , Sim(p-1)) 18 constructed by adding every
element s;; from S; by m, an element from GF(p), and then reducing modulo
p[44]. Each S, is then mapped onto a binary code sequence by the similar rules
in Section 5.3.1 for prime sequence or Section 5.3.2 for EP sequence.

Example p = 5 for prime sequences is shown in Table 5.5.
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1 8im0Sim18im2Sim3Sima  Sequence Binary Code Sequence

0 00000 Soo Coo = 10000 10000 10000 10000 10000
11111 So1 Co1 = 01000 01000 01000 01000 01000
22222 So2 Coz = 00100 00100 00100 00100 00100
33333 Sos Co3 = 00010 00010 00010 00010 00010
44444 So4 Cos4 = 00001 00001 00001 00001 00001
1 01234 S10 C10 = 10000 01000 00100 00010 00001
12340 S11 (11 = 01000 00100 00010 00001 10000
23401 Stz Ch2 = 00100 00010 00001 10000 01000
34012 S1s C13 = 00010 00001 10000 01000 00100
40123 S14 C14 = 00001 10000 01000 00100 00010
2 02413 Sa0 Ca = 10000 00100 00001 01000 00010
13024 S Ca1 = 01000 00010 10000 00100 00001
24130 S22 C52 = 00100 00001 01000 00010 10000
30241 Sas C,3 = 00010 10000 00100 00001 01000
41302 Sa4 Ch4 = 00001 01000 00010 10000 00100
3 03142 Sso C30 = 10000 00010 01000 00001 00100
14203 Sa1 C3; = 01000 00001 00100 10000 00010
20314 Saz C3, = 00100 10000 00010 01000 00001
31420 S33 Cs3 = 00010 01000 00001 00100 10000
42031 S34 Cs4 = 00001 00100 10000 00010 01000
4 04321 S0 C4s0 = 10000 00001 00010 00100 01000
10432 Sa1 Cs1 = 01000 10000 00001 00010 00100
21043 Saz C42 = 00100 01000 10000 00001 00010
32104 Sas C43 = 00010 00100 01000 10000 00001
43210 S4a Cs4 = 00001 00010 00100 01000 10000

Table 5.5: The cyclic-shifted versions of prime sequences S;, and binary code
sequences Cyp,, for GF(5)
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Chapter 6

Conclusions and Suggestions for
Future Research

This thesis concerned the design and implementation of CDMA for optical fiber
networks. A variety of issues concerning the design of (0, 1) sequences with good
correlation properties were investigated. In this chapter we review our findings

and draw conclusions.

6.1 Conclusions

We started by deriving new upper and lower bounds on the number of users that
can be supported on an optical network employing CDMA with OOC signature
sequences. Unlike previous work in this area, we considered the possibility that
the auto- and cross-correlation constraints might not be identical; indeed, it
may sometimes be preferable to use such “asymmetric” OOC’s to support more
users in the networks. Thus more users can be provided even better performance
by relaxing the auto-correlation constraint and increasing the weight of the
codewords at the same time. We demonstrated three techniques for constructing
(n,w,2,1) OOC’s that yield more codewords than could be possible with the

parameters (n,w — 1,1,1) but which perform at least as well. The recursive

construction technique used the codes which were constructed by the other two
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construction techniques to provide infinite families of codes. It provides more
options on the blocklength n for constructing OOC’s.

We also considered the possibility that the weights of the different codewords
might not be identical. We derived new upper and lower bounds on the cardi-
nalities of such “variable weight” OOC’s. We then demonstrated techniques for
constructing a variety of OOC’s with varying weights. Furthermore, we have
analyzed the performance of these variable weight OOC’s. The results allow
us to assign codewords with different weights among the users to achieve the
multiple performance requirements in the networks.

We have examined a concatenated coding scheme — using an error control
code together with a multiple-access code — which will sometimes perform better
than a “pure” CDMA optical fiber system. Using an error control code as an
outer code permits us to reduce codeword weights — and blocklength — without
giving up performance. Such a scheme also raises the possibility of offering
multiple levels of performance by varying the outer code.

We have proposed a new CDMA scheme for use with PPM modulation. We
have assigned two signature sequences to each user: a synchronization signature
sequence to find the boundary of the codeword; and a data signature sequence to
transmit data. The results have shown that the number of users this scheme can
accommodate is — for some constraints — far larger than can be accommodated
with one signature sequence for each user. Upper bounds on the cardinality of
PPM codes are also derived when A\, < 2. Furthermore, by mapping multiple
bits of a user’s data into a shifted version of the data signature sequence assigned

to that user the data rate can increase sharply.
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6.2 Suggestions for Future Research

There are several problems related to our work in the thesis can be extended:

Find general constructions for (n,w, A,,1) O0C’s.

Generalize the upper and lower bounds on OOC’s for codes with aperiodic

correlation constraints.

Find general sequence designs for systems which assign two signature se-

quences to each user.

Find general constructions for variable weight OOC’s.
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Appendix A

Lemma 2.4: Let x € C, where C is an (n,w, A + m, A) optical orthogonal code.

(Assume m > 0 is an integer.) Then if w > 2\ — 2,

w
A
|Mxp| 2 ———rr.

w22 -2,
w(w— 1)
A
|Mx | > ———.

Proof: Let
IT={i=(to,t1,..»0r-1,7): 0< o<1 <<t <w—-20<j7<w~—1}.

Define a function f:Z — Z* by
A 10 i i)\-—-l
f([t0, 21, ..y 0x21,0]) = [Z Liwkos Z Liwkyy " s Z tiwky_s ]
ko=0 ki=ig+1 ka_1=tr_o+1

where tx = [to, tl, e ,ta:-l]

Therefore My is exactly the image of f(-). From Lemma 2.3, we know that
f is one-to-one if and only if the inner product between x and any cyclic shift
of x is no more than A.

Define another function g : Z — Z such that g(i) is the sum of the compo-

nents of f(z) —i.e., if f(i) = [ao, a1,...,a)] then g(i) = ap+a; +... +ar_y.
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Now partition Z into sets consisting of either one or two elements; the sets
with two elements we call “pairs” and the sets with one element we call “singles”.
Two elements can be in the same pair only if f(-) maps them into the same

element of My ); thus if we let f~!(m) denote the inverse image of m € Mx \ —
ie., f71(m)={i¢: f(2) = m} - then
Number of pairs in the partition = > [|f7"(m)|/2]
meMx »
and
Number of singles in the partition = w(w:\— 1) -2 > U m)/2).
meMx, x

Each pair corresponds to two different sets of A + 1 non-zero components
that can be “lined up” via cyclic shifts. Suppose, for instance, that (z,2') form a
pair. By definition, this means that there exists an a = [ag, a1,...,ax-1] € Mx
such that f(i) = f(¢') = a. But this means there exists two different sets of A+ 1

integers — call them {{o,...,¢)} and {£,..., ¢4} - such that

Te

and

Ek— ;c=7'7£0

forall k=0,1,..., ).
So associated with this pair there are A + 1 “copies” of 7 in Rx — and A +1

copies of n — 7. Furthermore, there exist ji, %1, j2, 72 such that

11 t2
T = Z ti wk and n—r7T= Z ipwk-
k=0 k=0
Let

* T lf il 2 ’éz,
7% = X
n —7 otherwise.
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So associated with each pair is a number 7* that appears at least A +1 times
in Rx. As we look at the set of all pairs we thus generate a set of numbers;
suppose there are u of them and we label them 7, 79,...,7,. So associated with
each 71 is the pair that generates 7%; in fact there may be more than one pair
associated with a given ‘7, since more than one pair may generate the same

number.

Now for each k € {1,2,...,u} define V; as follows:
Vi ={2€Z:1isin asingle and g(z) = 7k, or ¢ is in a pair associated with 7;}.

Then V4, Vs, ..., V, form non-overlapping subsets of Z. Furthermore, if we let

P equal the number of pairs associated with 7, then

Vel < 2pe +(A+m)—pe(A+1)
= m—(pr—1)(A—=1)+1

< m+1,

We now explain the first inequality. Clearly, each pair contributes exactly two
elements to Vi. Furthermore, the number of elements due to singles can be no
more than (A+m) — pg(A+1). This is because each element from a single lying
in Vi will cause another occurrence of 74 in Rx; by the auto-correlation property
of Rx there can be no more than A + m occurrences of 7 in Rx and py(\ + 1)
of them will be “used up” by the presence of py pairs. Thus the first inequality
follows.

Let V =V UV,...UV,. Then [V| = Vil + Wl + ... + V| < u(m +1).
Furthermore, define

U ={ieV: g(i) =k},
for all k € {1,2,...,u}. If w > 2A — 2 then max{iy,i5} > A, and so |Uy| > 1.
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This in turn means that

] = Rhl+ ] + ...+ U] = w.

Since
s
“m+1
then
)Y
> YL
m-+ 1

Finally, if we define D =7 — V), then

w(“’; 1) — D+ V|

Dl + (m + 1)l

IN

< (m+ 1D+ (m+ 1|

I

(m+1)(ID] + [u])

IN

(m + 1)| Mx 5|

This completes the proof. The proof for w < 2 — 2 is analogous the proof
above. QED.
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Appendix B

We now prove that the number A in Theorem 2.3 is an upper bound on the
number of binary n-tuples of weight w with auto-correlation exceeding ).

Associate the w-set S = {s1,s,,...,8,} with the binary n-tuple containing
ones in positions s1,S2,...5, and zeroes everywhere else. We wish to (over)
count the number of w-sets associated with n-tuples that violate the auto-
correlation constraint.

Fix 6 to be a positive integer. Then a “chain” is a set of integers modulo
n {to,%1, -+ ,i,} where i; = ¢;_; + § for 1 < j < z; the length of this chain is
1+ . By convention, a cycle (i.e. — ¢g = ¢, + 6) is considered a chain of length
z 41 with an arbitrary starting point. A maximal chain is one not contained in
another chain.

Now suppose the w-set S = {s1, 82, -, S, } can be partitioned into ¢ maximal

chains whose lengths are 1 + 21,1 + z3,...;1 + z.. Then clearly

w-——c—l—zc:a:i.

Realize that the w-set S is specified exactly by:
1. The value é upon which the partitioning chains shall be based;
2. The number ¢ of maximal chains into which it can be partitioned;

3. The lengths of the maximal chains —i.e., 2y, 25, ..., 2

4. The chain “heads” - i.e., the starting point of each chain.

118



The auto-correlation of the n-tuple associated with S after § cyclic shifts is
w — c+ N, where N is the number of chains that are cycles. This is because a
cycle of length z; + 1 adds z; + 1 to the auto-correlation, whereas a non-cyclic
chain of length z; + 1 adds only x;. Our approach, therefore, will be to count
the number of w-sets with the property that w — ¢+ N > ),; in doing so we
will let § vary from 1 to |n/2]. (For § > n/2 we shall have already counted the
associated w-sets with 6’ =n — §.)

Once n,w, and § are fixed the only way a chain can be a cycle is if §|kn for
some integer k. Furthermore, if §|kn but 6 fn then there is some other value
&' such that ¢'|/6 and &'|n and the cycle associated with § is identical to a cycle
associated with ¢’. Therefore, in looking for cycles we need only look at values
of 6 that divide n; when § fn we will not find any cycles that have not already
been accounted for.

So how many cycles can there be ? Each cycle “uses up” n/§ of the w ones;
therefore there can be anywhere from zero to |wé/n| cycles — ie., 0 < N <
|wé/n].

So, suppose we’ve fixed n, w, §, and N. We’re now going to specify the chains.
How many ways are there to pick ¢ non-negative integers 1, x4, ..., z. such that
1+ z2+...+2.=w-—cand w—c+ N > A,. Note that ¢ must be at least
[wé/n]; this is because the smallest number of chains is caused by making each
chain as large as possible, and the largest chain is a cycle. Thus ¢ is smallest
when there are |wé/n] cycles and (possibly) one “leftover” non-cyclic chain for
a total of [wé/n] chains.

So now suppose we’ve fixed n,w,8, N, and c. Then there are (K,) ways to
pick the chains that are cycles. Furthermore once we’ve picked those N cycles

we've fixed exactly N of the z;’s to be equal to (n/§) —1; thus it remains to pick
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the remaining ¢~ N z;’s to add up to w —c— N((n/§)—1). For ¢ > N there are
(w:ivﬁ/_‘sl_l) ways to pick these ¢ — N z;’s. Note that the term A(N — wé/n) is
included to count the case where there are ¢ = N = wé/n chains and they are
all cycles. For the case ¢ = N we must have ¢ = N = wé/n, since all of the 1’s
are used up in chains, and in this case the question of picking the “remaining”
z;’s becomes vacuous.

The last terms in the first sum are used to count the number of ways to pick
the heads of the chains. We know that any cycle must begin in one of the first
6 positions; we know furthermore that the ¢ — N non-cyclic chains may begin
in any of the n — Nn/§ positions not taken up by cycles.

The second sum counts the number of w-sets violating the auto-correlation

constraint when § fn and so there can be no cycles. There are (lc"_l) ways to

-1
pick these ¢ z;’s to add up to w — ¢ and (70‘) ways to pick ¢ chain heads.
Therefore, A represents an upper bound on the number of binary n-tuples

that violate an auto-correlation constraint of A\,. QED.
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Appendix C

Lemma 2.6: Let A\, and )\, be positive integers, and let p be a constant such

that p < min{\,/(2X, + 3),A./(2A; + 3)}. Then
nan& O(n, lan®], A4, A;) = o0,

for any positive real a.

Proof: We will demonstrate that for n prime the lower bound in Theorem 2.3

grows unbounded with increasing n. For n prime the bound becomes
(2) -4
O(n,w, Mg, Ae) > 5
where

A= [n/2) w‘il (f—_ 11 ) (n)

202

Let w2 |an®]|. Then for n sufliciently large the following inequalities hold:

" Z ﬁ}' 1"' a2n2p ]a
w w! n—anf+1

and

A< T pparan-ag 020
~ w! 20, + 1)V’
1

B < nw—/\cw)\c+2

(w— e = DI+ 1)1
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Since p < Ao /(2X, + 3), A is a lower order term compared with n" [w!.

Combining the numerator and denominator,we have

Ao !
®(n, |an®], Ao, Ao) > ne(Ae + !

> s T (lower order terms)

A + 1)!
> n/\c—p(z,\c+3)(_cﬂ.:T2_ + (lower order terms).

Since p < min{A./(2Xa + 3), A./(2); + 3)}, then

nli»Ig) ®(n, lan?|, Az, A;) = oo.
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Appendix D

Lemma 2.7: Let p, ¢, and r be positive constants such that p < (1/2), then

Lim ®(n, [an?], |Bni], [yn"]) = oo,
for any positive real o, and 7.
Proof: As in Appendix C we will demonstrate that for n prime the lower
bound in Theorem 2.3 grows unbounded with increasing n. For n prime the

(L) -4

>
O(n,w, Az, Ac) 2 7

A= |n/2] w—ia:_l (7}3__11) (Z>’

c=1

r=n % (20)

For n sufficiently large — i.e., for n such that 0 < an? —1 < n - it can be

bound becomes

where

and

shown that the following inequality holds:

w 2..2p
(n)?_ﬁ—l— a’n L

w w! n—anfP+1
where w = [an?].

Furthermore, for n sufficiently large, it can be shown that

a?)\a+3

A < ﬂ7,lp(2ka+3)—/\a____________
= ! e + 1)1
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Using Stirling’s approximation to n!, which is
V2nr(nfe)” < n!

, then

a2)\a+3 a2)\a+3

2(X. +1)! < 9 /2()\& + Dr((Ag + 1)/e)rett
/e 2(A\a+1) N
- <\/Aa+1> 2¢/2(A, + D)7

< 1,

where A, = |fn?].
Since p < Ay/(2Xs 4 3), A is a low order term compared with n¥Jw!.
Finally, again for n sufficiently large the denominator can be bounded by

1
w— - DI+ 1)

- Combining the numerator and denominator,we have

B < nw—)\cw)\c+2

n*e(A, + 1)!

B(n, [an’], A, ) w2het3

+ (low order terms)

Ao+ 1!
> nz\c—p(2)\c+3)£a7;t131 + (low order terms).

Again using Stirling’s approximation to (A, + 1)!, then

A+ D Y20 + Dm((de + 1) )

a2>\¢+3 a2)\¢+3
de + 1V 200 + D
- o’e o

where A, = [yn"].

Therefore, as long as p < min{A,/(2As + 3), A./(2\. + 3)} for n sufficiently
large, which is 1/2, then

7}_1_{210 ®(n, lan®], [Bni], |yn"]) = .
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Appendix E

The probability of error for hard-limiting case for user j with weight w; given

M (= Mo+ My + ...+ M,) users s,

For

And for

1Mo M;-1
—Z Z ZP{theprobablhtyofl( lo+0L+...+1,)

10—0 ;=0 Ip=0
interfering users} * P,{the probability of error given such

[ interfering users}.  (E.1)

P, {the probability of I (= lo + l1 + ...+ {,) interfering users}
M; -1 0 oo (M _
= ( 0 )qj (1=g)"7 ]I ( lk")q,’:u — )" (E2)
i :

k=0
k#

P, {the probability of error given [ interfering users}

wil( 1y ( ) i)zo+...+1,ﬂ+..‘+z,,. (E.3)

1=0 w]

The detailed derivation of equation (E.3) is in [39]. Therefore, substituting

equations (F£.2) and (£.3) into equation (F.1), we get

1% ¥ Z( )...(Mflfl)...(Afp)qg°(1—qo)Mo-’o...

lo =0 l_] =0 lp—O J P

g7 (1= )™ gl (1 = g,) M
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wil(—l)i (“:1) (1- i)lo+...+lj+...+zp

1=0 w]

?

Sy g g S ()

_ %w;j(-l)" (%) f: ()t - Diea —Z))MM .

Mj-1 . ? - ’
2. (M]L 1) i1 = =" (1 = )"0 Y g1 = —)]

1 — —
lj:O J J lp:O w]

- 1 -
(1 - qp)M" o -2-(1 - qo)M° (1= qj)M’ o (1- qp)Mp *

wf(—l)" (“’.")

?

- S ()i L T - Sy
143
0= T (-0,
7

Where the second term is owing to [ = 0.
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