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In recent years, machine learning systems have been developed that demonstrate remark-

able performance on many tasks. However, naive metrics of performance, such as the accuracy

of a classifier on test samples drawn from the same distribution as the training set, can provide an

overly optimistic view of the suitability of a model for real-world deployment. In this dissertation,

we develop models that are robust, in addition to performing well on large-scale tasks.

One notion of robustness is adversarial robustness, which characterizes the performance of

models under adversarial attacks. Adversarial attacks are small, often imperceptible, distortions

to the inputs of machine learning systems which are crafted to substantially change the output

of the system. These attacks represent a real security threat, and are especially concerning when

machine learning systems are used in safety-critical applications.

To mitigate this threat, certifiably robust classification techniques have been developed. In a

certifiably robust classifier, for each input sample, in addition to a classification, the classifier also

produces a certificate, which is a guaranteed lower bound on the magnitude of any perturbation



required to change the classification. Existing methods for certifiable robustness have significant

limitations, which we address in Parts I and II of this dissertation:

1. Currently, randomized smoothing techniques are the only certification techniques that are

viable for large-scale image classification (i.e. ImageNet). However, randomized smooth-

ing techniques generally provide only high-probability, rather than exact, certificate results.

To address this, we develop deterministic randomized smoothing-based algorithms, which

produce exact certificates with finite computational costs. In particular, in Part I of this dis-

sertation, we present to our knowledge the first deterministic, ImageNet-scale certification

methods under the ℓ1, ℓp (for p < 1), and “ℓ0” metrics.

2. Certification results only apply to particular metrics of perturbation size. There is therefore

a need to develop new techniques to provide provable robustness against different types of

attacks. In Part II of this dissertation, we develop randomized smoothing-based algorithms

for several new types of adversarial perturbation, including Wasserstein adversarial attacks,

Patch adversarial attacks, and Data Poisoning attacks. The methods developed for Patch

and Poisoning attacks are also deterministic, allowing for efficient exact certification.

In Part III of this dissertation, we consider a different notion of robustness: test-time adaptability

to new objectives in reinforcement learning. This is formalized as goal-conditioned reinforcement

learning (GCRL), in which each episode is conditioned by a new “goal,” which determines the

episode’s reward function. In this work, we explore a connection between off-policy GCRL and

knowledge distillation, which leads us to apply Gradient-Based Attention Transfer, a knowledge

distillation technique, to the Q-function update. We show, empirically and theoretically, that this

can improve the performance of off-policy GCRL when the space of goals is high-dimensional.
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Chapter 1: Introduction

1.1 Motivation

Over the past decade, remarkable improvements have been made in the performance of

machine learning models on a variety of tasks. However, naive metrics of performance, such as

the raw accuracy of a classifier on test samples drawn from the same distribution as the training

set, fail to capture a complete picture of the real-world usability of a model. This dissertation is

centered on designing models which are robust, in addition to being performant on large-scale

tasks.

Several notions of “robustness” have been proposed in recent years. Adversarial robust-

ness is a broad and widely-studied field which characterizes the worst-case behavior of machine

learning systems under small input perturbations [7, 8, 9]. Researchers study the threat of adver-

sarial attacks, in which a malicious actor corrupts the input to a system in an imperceptible or

minimally-perceptible way, such that the behavior of the system is greatly impacted. (Concretely,

for example, an attacker may make a human-imperceptible change to an image, which causes an

image classifier to misclassify the image, when it would otherwise be classified correctly.) These

adversarial attacks take advantage of the fact that standard deep neural network architectures are

highly sensitive to small changes of their inputs [10]. These adversarial distortions can represent

a real security threat: they are especially concerning when machine learning systems are used in
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safety-critical applications, such as in medical applications or in self-driving vehicles (e.g., self-

driving systems could be disrupted by putting small stickers on traffic signs, to cause the sign to

be recognised incorrectly [11]).

While practical defenses against adversarial attacks have been proposed [3, 9, 12, 13, 14,

15, 16, 17], these can be rendered ineffective by improved adversarial attacks [18, 19, 20, 21]. In

order to overcome this, one area of active research is the design of certifiably-robust classifiers

where, for each input x, one can compute a magnitude ρ, such that all perturbed inputs x′ within

a radius ρ of x are guaranteed to be classified in the same way as x. Typically, ρ represents a

distance in an ℓp norm: ∥x−x′∥p ≤ ρ, for some p which depends on the technique used. A variety

of techniques have been proposed for certifiably robust classification [22, 23, 24, 25, 26, 27].

Certifiably-robust classifiers for non-ℓp threat models, such as geometric transformations [28]

and patch attacks [4, 29, 30, 31], have also been introduced.

Certification techniques based on randomized smoothing [1, 5, 32, 33, 34, 35, 36], are, at

the time of writing, the only robustness certification techniques that scale to tasks as complex

as ImageNet classification (See Li et al. [37] for a recent and comprehensive review and com-

parison of robustness certification methods.) In these smoothing methods, a “base” classifier is

used to classify a large set of randomly-perturbed versions (x + ϵ) of the input image x where ϵ

is drawn from a fixed distribution. The final classification is then taken as the plurality-vote of

these classifications on noisy versions of the input. If samples x and x′ are close, the distribu-

tions of (x + ϵ) and (x′ + ϵ) will substantially overlap, leading to provable robustness. Salman

et al. [33] and Levine et al. [38] show that these certificates can in some cases be understood

in terms of Lipschitz continuity, where the expectation of the output of the base classifier (or a

function thereof) over the smoothing distribution is shown to be Lipschitz. However, randomized
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smoothing techniques have some limitations:

• Smoothing techniques generally provide only high-probability, rather than exact, certifi-

cate results. This is a consequence of the fact that the final classification is made using

Monte-Carlo samples of ϵ from the noise distribution. Furthermore, larger amounts of

computational power are needed to produce higher-probability (i.e., less likely to be incor-

rect) certificates, potentially leading to environmental and sustainability concerns.

• Certification results only apply to particular metrics of perturbation size. (For example, ℓ1

or ℓ2 metrics.) There is therefore a need to develop new techniques to provide provable

robustness against different types of attacks.

Parts I and II of this dissertation are focused on partially addressing these limitations.

Apart from adversarial robustness, other notions of robust machine learning have also been

considered. This includes robustness to natural distributional shifts, where the “test” data (i.e.,

the data that the model is applied to at deployment) is drawn from a significantly different distri-

bution than the training data — due to natural circumstances, rather than a malicious adversary

[39, 40, 41]. A related concept, in reinforcement learning, is “zero-shot generalization”, where

the environment that a reinforcement learning agent is tested/deployed in is significantly differ-

ent from the environment(s) in which the agent was trained [42, 43, 44]. However, the defining

assumption of “zero-shot” generalization, which is that there are unknown changes between train-

ing and test time environments, can be made looser in many practical applications. In particular,

the field of goal-conditioned reinforcement learning (GCRL) models situations where only the

objectives that an agent needs to accomplish may vary at test time and furthermore where the new

desired objective is provided explicitly to the agent at test time [45, 46, 47, 48, 49]. This can be
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thought of as robustness to deployment-time changes in an RL system’s requirements. Concretely,

in a goal-conditioned RL environment, in each episode, there is an provided “goal” that specifies

the reward function during that episode but does not affect the environmental dynamics.

Various techniques have been proposed for GCRL, such as automatic curriculum generation

and goal relabeling [49, 50]. In Part III of this dissertation, we propose a novel method for GCRL

that is designed to improve performance in environments where the space of possible goals is

high-dimensional, in order to allow for greater scalability.

1.2 Contributions

1.2.1 Part I: Large-Scale, Deterministic Robustness Certificates for ℓp (p ≤ 1)

In Part 1, we develop a framework for ImageNet-scale, deterministic certification for ℓp

threat models with p ≤ 1, based on a modified form of “randomized smoothing.” Recall that for

p > 0, the ℓp distance is defined as:

∥x − y∥p ∶= (
d

∑
i=1
∣xi − yi∣

p)

1/p

, (1.1)

while the “ℓ0” metric is typically defined as

∥x − y∥0 ∶=
d

∑
i=1

1(xi≠yi), (1.2)
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where 1(⋅) denotes an indicator function; in other words, ∥x − y∥0 denotes the number of indices

i at which xi and yi differ.1

First, in Chapter 2, we develop a randomized smoothing certification technique for the ℓ0

threat model. Our technique, randomized ablation, works by ablating (i.e., removing) randomly-

selected features from the input sample x, rather than introducing random noise. This results in

large improvements over the previous state-of-the-art ℓ0 randomized smoothing technique [1] in

terms of the magnitude of the produced certificates. For example, on ImageNet images, we are

able to certify the median sample against corruptions of up to ρ = 16 pixels; while [1] can certify,

in median, against corruptions to only one pixel.

Next, in Chapter 3 we develop a deterministic randomized smoothing-based algorithm for

the ℓ1 metric, which produces exact, rather than high-probability, certificates with finite com-

putational costs. Our method is the first deterministic certification method for this metric that

scales to ImageNet, while significantly outperforming prior randomized methods. The proposed

method, Deterministic Smoothing with Splitting Noise (DSSN) uses a novel non-additive distri-

bution of smoothing noise. To develop DSSN, we first develop SSN, a randomized method which

involves generating each noisy smoothing sample by first randomly dividing the input space and

then returning a representation of the center of the subdivision occupied by the input sample x.

In contrast to the prior state-of-the-art for the ℓ1 metric, uniform additive smoothing [1, 51], the

SSN certification does not require the random noise components used to be independent. Thus,

smoothing can be done effectively in just one dimension and can therefore be efficiently deran-

domized for quantized data (e.g., images).

1Note that, unlike in the p < 0 case, the definition of the “ℓ0” distance does not require that the individual elements
xi be scalars. In particular, on image data, the “ℓ0” threat model can refer to the number of pixel positions at which
two images differ, where each pixel position contains multiple color channels [8]. In our experiments in Chapter 2,
we focus on image data, using the “pixel position” definition of the ℓ0 threat model.
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To the best of our knowledge, this is the first work to provide deterministic “randomized

smoothing” for a norm-based adversarial threat model while allowing for an arbitrary classifier

(i.e., a deep model) to be used as a base classifier and without requiring an exponential number

of smoothing samples. On CIFAR-10 and ImageNet datasets, we provide substantially larger ℓ1

robustness certificates compared to prior works, establishing a new state-of-the-art. The deter-

minism of our method also leads to significantly faster certificate computation.

Finally, in Chapter 4, we extend the method proposed in Chapter 3 to ℓp distances for

p ∈ (0,1). This represents the first certification method of any kind for these threat models, and

also provides deterministic certification at ImageNet scale. Our technique works by producing

a deterministically-smoothed classifier that is globally Lipschitz with respect to the ℓpp metric,

defined as:

∥x − y∥pp ∶=
d

∑
i=1
∣xi − yi∣

p, (1.3)

for any 0 < p < 1. However, our method is in fact even more general: we can construct classifiers

which are globally Lipschitz with respect to any metric defined as the sum of concave functions of

each feature. Empirically, we demonstrate that our proposed guarantees are highly non-vacuous

when certifying under ℓp (p < 1) threat models, compared to the trivial solution of using the tech-

nique from Chapter 3 directly and applying norm inequalities. Additionally, in Section 4.5, we

show that the proposed method can in fact be extended to the ℓ0 metric, providing deterministic

certificates comparable to those proposed in Chapter 2 – in fact, this extension can be considered

as a straightforward derandomization of the algorithm presented in Chapter 2.

Note that the experiments of these chapters focus specifically on image classification tasks;

however, the techniques developed can be applied more broadly. In particular, the results for the
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ℓ0 metric apply straightforwardly to any vectorized data, while the deterministic smoothing tech-

niques for ℓp p ∈ (0,1] distances apply to vectorized data that exist in bounded, quantized spaces.

This includes bitmapped images (where pixels have values in the set {0, 1
255 ,

2
255 , ...,

254
255 ,1}) but

also other domains, such as video data.

1.2.2 Part II: Scalable Robustness Certificates beyond ℓp Threat Models

In Part 2, we propose extensions to randomized smoothing which allow for certification

under non-ℓp threat models.

In Chapter 5, we develop a certifiably robust image classifier that is robust under distor-

tions in the Wasserstein metric (or ”earth-mover distance”), where local shifts in pixel intensity

between nearby pixels are considered smaller distortions than longer-range shifts. Note that

Wasserstein-bounded adversarial attacks had been previously proposed by [2]: our work repre-

sents the first provable defense of any kind under this threat model. We develop this certificate

by considering the space of possible “probability flows” between images, and representing this

space such that Wasserstein distance between images is upper-bounded by ℓ1 distance in this

flow-space. We can then apply existing randomized smoothing certificates for the ℓ1 metric.

In Chapter 6, we propose a certifiably robust defense against “patch” adversarial attacks

[52, 53, 54, 55]. In this threat model, which is specific to the image domain, the attacker is free to

make arbitrary changes within a single, bounded region of an image of limited size (i.e., within

a square patch). Note that although the attacker may only affect a single patch per image, the

patch location can be chosen by the attacker for each image. Patch attacks can be regarded as an

abstracted model of physical adversarial attacks [11, 52], where an attacker makes an adversarial
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pattern visible in a real-world environment (e.g., by attaching a small sticker to a road sign) in

order to disrupt computer vision systems.

Compared to the previous state of the art patch certification method proposed by Chiang

et al. (2020) [4], our method can be trained significantly faster, achieves high clean and certi-

fied robust accuracy on CIFAR-10, and provides certificates at ImageNet scale. For example, for

a 5 × 5 patch attack on CIFAR-10, our method achieves up to around 57.6% certified accuracy

(with a classifier with around 83.8% clean accuracy), compared to at most 30.3% certified ac-

curacy for the prior method (with a classifier with around 47.8% clean accuracy). Our results

therefore effectively established a new state-of-the-art of certifiable defense against patch attacks

on CIFAR-10 and ImageNet.

In Chapter 7, we propose certified defenses against adversarial poisoning attacks, which

distort training data of a classifier in order to corrupt the test-time behavior of a classifier. Specif-

ically, we propose two novel provable defenses: (i) Deep Partition Aggregation (DPA), a certified

defense against a general poisoning threat model, defined as the insertion or deletion of a bounded

number of samples to the training set — by implication, this threat model also includes arbitrary

distortions to a bounded number of training samples and/or labels; and (ii) Semi-Supervised DPA

(SS-DPA), a certified defense against label-flipping poisoning attacks. Note that our certificates

apply to an individual test sample: in DPA for example, for each given test sample x, we report

a magnitude ρ(x) representing the minimum number of training samples which must be inserted

or deleted in order to change the outputof the trained classifier given input x.

DPA is an ensemble method where base models are trained on partitions of the training set

determined by a hash function. DPA is related to both subset aggregation [56], a well-studied

ensemble method in classical machine learning, as well as to randomized smoothing. Our defense
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against label-flipping poison attacks, SS-DPA, uses a semi-supervised learning algorithm as its

base classifier model: each base classifier is trained using the entire unlabeled training set in

addition to the labels for a partition. SS-DPA significantly outperforms the prior state of the

art certified defense for label-flipping attacks [6] on both MNIST and CIFAR-10, while DPA

represented the first certified defence to be proposed against general poisoning attacks.

The certification techniques presented in Chapters 6 and 7 are both deterministic, and in

fact can be though of as specialised forms of the deterministic ℓ0 certificate introduced in Chapter

4, in Section 4.5.2 The Wasserstein smoothing technique proposed in Chapter 5 is a randomized

technique, providing only probabilistic certificates: although our approach is to relate the problem

of Wasserstein certification to certification in the ℓ1 metric, the details of our reduction rely on

the use of additive smoothing noise, which means that the deterministic approach proposed in

Chapter 3 cannot be applied. See Section D.4 for details.

As in Part I, the experiments in Part II are conducted on image data – the Wasserstein and

patch threat models considered in Chapters 5 and 6 respectively are in fact fairly specific to image

data. However, the poisoning threat models considered in Chapter 7 are broadly applicable to any

supervised classification task, and could be directly applied to other domains, such as text, video,

audio, or sensor measurement classification.

2Note that Chapters 6 and 7 were originally published before the work on deterministic ℓp (p < 1) and ℓ0 certificates
in Chapter 4 was conducted, but after Chapter 2, discussing randomized smoothing for ℓ0, was published. The
connection between the deterministic ℓ0 certificate and SS-DPA is discussed explicitly in Section 4.5, while the
patch defense in Chapter 6 is discussed in terms of the randomized ℓ0 (i.e., Chapter 2) defense in Sections 6.1-6.2.
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1.2.3 Part III: Test-time Adaptability as Robustness in Reinforcement Learning

Many applications of reinforcement learning can be formalized as goal-conditioned envi-

ronments, where, in each episode, there is a “goal” that affects the rewards obtained during that

episode but does not affect the dynamics. This ability to adapt to new objectives, specified only

at test time, represents a form of robustness against real-time changes in a system’s requirements

for operation.

In Chapter 8, we explore a connection between off-policy reinforcement learning in goal-

conditioned settings and knowledge distillation, the task of efficiently training a “student” neural

network to match the behavior of a “teacher” function. In particular: the current Q-value func-

tion and the target Q-value estimate are both functions of the goal, and one would like to train the

Q-value function to match its target for all goals. This therefore can be framed as a knowledge

distillation problem: one can view the target Q-value estimate as a (stochastic, difficult to com-

pute) teacher function, and we are trying to fit the Q-network to represent the same function of the

goal. We therefore apply Gradient-Based Attention Transfer [57], a knowledge distillation tech-

nique, to the Q-function update. We empirically show that this can improve the performance of

goal-conditioned off-policy reinforcement learning when the space of goals is high-dimensional.

We also show that this technique can be adapted to allow for efficient learning in the case of mul-

tiple simultaneous sparse goals, where the agent can attain a reward by achieving any one of a

large set of objectives, all specified at test time. Finally, to give theoretical support, we give exam-

ples of classes of environments where (under some assumptions) standard off-policy algorithms

require at least O(d2) replay buffer transitions to learn an optimal policy, while our technique

requires only O(d) transitions, where d is the dimensionality of the goal and state space.
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Part I

Improved, Large-Scale, Deterministic Robustness Certificates for ℓp (p ≤ 1) Distances
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Chapter 2: Robustness Certificates for Sparse Adversarial Attacks by

Randomized Ablation1

Figure 2.1: An illustration of our proposed certifiably robust classification scheme on MNIST. At
the top, the image to be classified is shown. For randomly ablated images, we retain only k out
of 784 total pixels (green pixels in these images are not used in classification). For each value of
k, we show four randomly ablated images along with their base classifier labels. For small values
of k, the smoothed classifier’s accuracy in the test set is low (∼ 32% for k = 5) while the accuracy
increases for moderate values of k (∼ 97% for k = 45). In each case, we compute the median
certified robustness for the smoothed classifier of the ℓ0 attack magnitude that classifications are
provably protected against. The median is over the MNIST test set. For example, for k = 45, we
guarantee the robustness of our proposed method against all ℓ0 adversarial attacks that perturb 8
or fewer pixels.

1A form of chapter has been published in AAAI 2020 [58].
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Most existing work in adversarial examples has used ℓp norms as distance metrics, focusing

in particular on ℓ∞ and ℓ2 norms [7, 9, 10, 59, 60]. The ℓ0 metric, which is simply the number

of pixels at which x′ differs from x, has also been the target of adversarial attacks. This metric

presents a distinct challenge, because d(x,x′) is non-differentiable. However, both gradient-

based (white-box) attacks [9, 61] and zeroth-order (black-box) attacks [3] have been proposed

under the ℓ0 attack model. The ℓ0 attack model is the focus of this chapter.

Several practical defenses against adversarial attacks under the ℓ0 attack model have been pro-

posed in the last couple of years. These methods include defensive distillation [13], as well as

attempts to recover x from x′ using compressed sensing [14] or generative models [3, 15]. How-

ever, as new defenses are proposed, new attacks are also developed for which these defenses are

vulnerable (e.g. [19]). Experimental demonstrations of a defense’s efficacy based on currently

existing attacks do not provide a general proof of security.

In this chapter, we develop a certifiably robust classification scheme for the ℓ0 metric (i.e.

sparse adversarial perturbations). To guarantee the robustness of the classification against sparse

adversarial attacks, we propose a novel smoothing method based on performing random ablations

on the input image, rather than adding random noise. In our proposed ℓ0 smoothing method, for

each sample generated from x, a majority of pixels are randomly dropped from the image before

the image is given to the base classifier. If a relatively small number ρ of pixels have been

adversarially corrupted (which is the case in sparse adversarial attacks), then it is highly likely

that none of these pixels are present in a given ablated sample. Then, for the majority of possible

random ablations, x and x′ will give the same ablated image. Therefore, the expected number

of “votes” for each class can only differ between x and x′ by a bounded amount. Using this, we

can prove that with high probability, the smoothed classifier will classify x robustly against any
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sparse adversarial attack which is allowed to perturbed certain number of input pixels, provided

that the ‘gap’ between the number of votes for the top class and the number of ‘votes’ for any

other class at x is sufficiently large. (See Figure 2.1)

Our ablation method produces significantly larger robustness guarantees compared to a more

direct extension of randomized smoothing to the ℓ0 metric provided in a concurrent work by [1]:

see the Discussion section for a comparison of the techniques.

We note that our proposed approach bears some similarities to [62], in that both works aim to

defend against ℓ0 adversarial attacks by randomly ablating pixels. However, several differences

exist: most notably, [62] presents a practical defense with no robustness certificate given. By

contrast, the main contribution of this work is a provable guarantee of robustness to adversarial

attack.

In summary, our contributions are as follows:

• We develop a novel defense technique against sparse adversarial attacks (threat models that

use the ℓ0 metric) based on randomized ablation.

• We characterize robustness guarantees for our proposed defense against arbitrary sparse

adversarial attacks.

• We show the effectiveness of the proposed technique on standard datasets: MNIST, CIFAR-

10, and ImageNet.

2.1 Preliminaries and Notation

We will use S to represent the set of possible pixel values in an image. For example, in

an 24-bit RGB color image, S = {0,1, ...,255}3, while in a binarized black-and-white image,
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S = {0,1}. We will use X = Sd to represent the set of possible images, where d is the number of

pixels in each image. Additionally, we will use SNULL to represent the set S ∪ {NULL}, where

NULL is a null symbol representing the absence of information about a pixel, andXNULL = SNULL
d

to represent the set of images where some elements in the images may be replaced by the null

symbol. Note that NULL is not the same as a zero-valued pixel, or black. For example, if

S = {0,1} and d = 5, then [0,1,1,0,1]T ∈ X , while [NULL,1,NULL,0,1]T ∈ XNULL.

Also, let [d] represent the set of indices {1, ..., d}, let H(d, k) ⊆ P([d]) represent all sets of k

unique indices in [d], and let U(d, k) represent the uniform distribution overH(d, k). (To sample

from U(d, k) is to sample k out of d indices uniformly without replacement. For example, an

element sampled from U(5,3) might be {2,4,5}.)

We define the operation ABLATE ∈ X × H(d, k) → XNULL, which takes an image and a set of

indices, and outputs the image, with all pixels except those in the set replaced with the null

symbol NULL. For example, ABLATE([0,1,1,0,1]T ,{2,4,5}) = [NULL,1,NULL,0,1]T

For images x,x′ ∈ X , let ∥x − x′∥0 denote the ℓ0 distance between x and x′, defined as the

number of pixels at which x and x′ differ. Note that we are following the convention used by

[8], where, for a color image, the number of channels in which the images differ at a given pixel

location does not matter: any difference at a pixel location (corresponding to an index in [d])

counts the same. This differs from [61], in which channels are counted separately. Also (in a

slight abuse of notation) let x⊖x′ denote the set of pixel indices at which x and x′ differ, so that

∥x−x′∥0 = ∣x⊖x′∣. Finally, for multiclass classification problems, let c be the number of classes.
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2.2 Certifiably Robust Classification Scheme

First, we note that in this section, we closely follow the notation of [63], using appropriate

analogs between the ℓ2 smoothing scheme of that work, and the proposed ℓ0 ablation scheme of

this work. In particular, let f ∈ XNULL → [c] denote a base classifier, which is trained to classify

images with some pixels ablated. Let g ∈ X → [c] represent a smoothed classifier, defined as:

g(x) = argmax
i
[ Pr
T ∼U(d,k)

(f(ABLATE(x,T )) = i)] (2.1)

where k is the retention constant; i.e., the number of pixels retained (not ablated) from x. In

other words, g(x) denotes the class most likely to be returned if we first randomly ablate all

but k pixels from x and then classify the resulting image with the base classifier f . To simplify

notation, we will let pi(x) denote the probability that, after ablation, f returns the class i:

pi(x) = Pr
T ∼U(d,k)

(f(ABLATE(x,T )) = i) . (2.2)

Thus, g(x) can be defined simply as argmaxi [pi(x)].

We first prove the following general theorem, which can be used to develop a variety of related

robustness certificates.

Theorem 2.1. For images x,x′, with ∥x −x′∥0 ≤ ρ, for all classes i ∈ [c]:

∣pi(x
′) − pi(x)∣ ≤∆ (2.3)
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where

∆ = 1 −
(
d−ρ
k
)

(
d
k
)
. (2.4)

See Figure 2.2 for a plot of how the constant ∆ scales with k and ρ. We present a short

proof of Theorem 2.1 here:

Proof. Recall that (with T ∼ U(d, k)):

pi(x) = Pr(f(ABLATE(x,T )) = i)

pi(x
′) = Pr(f(ABLATE(x′,T )) = i)

(2.5)

By the law of total probability:

pi(x) =

Pr([f(ABLATE(x,T )) = i] ∧ [T ∩ (x⊖x′) = ∅])+

Pr([f(ABLATE(x,T )) = i] ∧ [T ∩ (x⊖x′) ≠ ∅])

pi(x
′) =

Pr([f(ABLATE(x′,T )) = i] ∧ [T ∩ (x⊖x′) = ∅])+

Pr([f(ABLATE(x′,T )) = i] ∧ [T ∩ (x⊖x′) ≠ ∅])

(2.6)

Note that if T ∩ (x ⊖ x′) = ∅, then x and x′ are identical at all indices in T . Then in this case,

ABLATE(x,T )) = ABLATE(x′,T )), which implies:

Pr(f(ABLATE(x,T )) = i ∣ T ∩ (x⊖x′) = ∅) =

Pr(f(ABLATE(x′,T )) = i ∣ T ∩ (x⊖x′) = ∅)

(2.7)
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Figure 2.2: The bounding constant ∆ from Theorem 2.1, shown for MNIST-sized images
(d=784). The constant k is the number of pixels retained in each randomly ablated sample.

Multiplying both sides of (2.7) by Pr(T ∩ (x⊖x′) = ∅) gives:

Pr([f(ABLATE(x,T )) = i] ∧ [T ∩ (x⊖x′) = ∅]) =

Pr([f(ABLATE(x′,T )) = i] ∧ [T ∩ (x⊖x′) = ∅])

(2.8)

Substituting (2.8) into (2.6) and rearranging yields:

pi(x
′) = pi(x)−

Pr([f(ABLATE(x,T )) = i] ∧ [T ∩ (x⊖x′) ≠ ∅])+

Pr([f(ABLATE(x′,T )) = i] ∧ [T ∩ (x⊖x′) ≠ ∅])

(2.9)

Because probabilities are non-negative, this gives:

pi(x) −Pr([f(ABLATE(x,T )) = i] ∧ [T ∩ (x⊖x′) ≠ ∅])

≤ pi(x
′) ≤

pi(x) +Pr([f(ABLATE(x′,T )) = i] ∧ [T ∩ (x⊖x′) ≠ ∅])

(2.10)
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By the conjunction rule, this implies:

pi(x) −Pr(T ∩ (x⊖x′) ≠ ∅) ≤ pi(x
′) ≤ pi(x) +Pr(T ∩ (x⊖x′) ≠ ∅) (2.11)

Note that:

Pr(T ∩ (x⊖x′) ≠ ∅) = 1 −Pr(T ∩ (x⊖x′) = ∅) = 1 −
(
d−∣x⊖x′∣

k
)

(
d
k
)

(2.12)

Where the last equality follows because T is an uniform choice of k elements from d: there are

(
d
k
) total ways to make this selection, (d−∣x⊖x

′∣
k
) of which contain no elements from (x ⊖ x′).

Then:

Pr(T ∩ (x⊖x′) ≠ ∅) = 1 −
(
d−∣x⊖x′∣

k
)

(
d
k
)
= 1 −

(
d−∥x−x′∥0

k
)

(
d
k
)

≤ 1 −
(
d−ρ
k
)

(
d
k
)
=∆ (2.13)

Combining inequalities (2.13) and (2.11) gives the statement of Theorem 2.1.

2.2.1 Practical Robustness Certificates

Depending on the architecture of the base classifier, it may be infeasible to directly compute

pi(x), and therefore to compute g(x). However, we can instead generate a representative sample

from U(d, k), in order to bound pi(x) with high confidence. In particular, let pi(x) represent a

lower bound on pi(x), with (1 − α) confidence, and let pi(x) represent a similar upper bound.

We first develop a certificate analogous for the ℓ0 attack to the certificate presented in [63]:

Corollary 2.1. For images x,x′, with ∥x −x′∥0 ≤ ρ, if:

pi(x) −∆ > 0.5 (2.14)
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then, with probability at least 1 − α:

g(x′) = i (2.15)

Proof. With probability at least 1 − α:

.5 < pi(x) −∆ ≤ pi(x) −∆ ≤ pi(x
′) (2.16)

where the final inequality is from Theorem 2.1. Then g(x′) = i from the definition of g.

This bound applies directly to the true population value of g(x′), not necessarily to an

empirical estimate of g(x′). Following [63], we therefore use a separate sampling procedure

to estimate the value of the classifier g(.), which itself has a bounded failure rate independent

from the failure rate of the certificate, and which may abstain from classification if the top class

probabilities are too similar to distinguish based on the samples. Note that by using a large

number of samples, this estimation error can be made arbitrarily small. In fact, because Corollary

2.1 is directly analogous to the condition for ℓ2 robustness presented in [63], we borrow both the

empirical classification and the empirical certification procedures from that paper wholesale. We

refer the reader to that work for details: it is sufficient to say that with these procedures, we can

bound pi(x) with (1−α) confidence and also estimate g(x′) with (1−α) confidence. This is the

procedure we use in our experiments.

Alternatively, one can instead use a certificate analogous to the certificate presented in [64].

Corollary 2.2. For images x,x′, with ∥x −x′∥0 ≤ ρ, if:

pi(x) −∆ > argmax
k≠i

pk(x) +∆ (2.17)
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then, with probability at least 1 − α:

g(x′) = i. (2.18)

Proof. For each k ≠ i:

pk(x
′) ≤ pk(x) +∆ ≤ pk(x) +∆ ≤ argmax

k≠i
pk(x) +∆

< pi(x) −∆ ≤ pi(x) −∆ ≤ pi(x
′)

(2.19)

where the first and last inequalities are from Theorem 2.1.

In a multi-class setting, Corollary 2.2 might appear to give a tighter certificate bound. How-

ever, the upper and lower bounds on pj(x) must hold simultaneously for all j with a total failure

rate of (1 − α). This can lead to greater estimation error if the number of classes c is large.2

2.2.2 Architectural and training considerations

Similar to existing works on smoothing-based certified adversarial robustness, we train

our base classifier f on noisy images (i.e. ablated images), rather than training g directly. For

performance reasons, during training, we ablate the same pixels from all images in a minibatch.

We use the same retention constant k during training as at test time.

2.2.2.1 Encoding SNULL

We use standard CNN-based architectures for the classifier f(.). However, this presents

an architectural challenge: we need to be able to represent the absence of information at a pixel

2After the publication of this work, [65] derived a tighter empirical estimation specifically for the certificate derived
here.
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(the symbol NULL), as distinct from any color that can normally be encoded. Additionally, we

would like the encoding of NULL to be equally far from every possible encodable color, so that

the network is not biased towards treating it as one color moreso than another. To achieve these

goals, we encode images as follows: for greyscale images where pixels in S are floating point

values between zero and one (i.e. S = [0,1]), we encode s ∈ S as the tuple (s,1 − s), and then

encode NULL as (0,0). Practically, this means that we double the number of color channels from

one to two, with one channel representing the original image and the other channel representing

its inverse. Then, NULL is represented as zero on both channels: this is distinct from grey

(0.5,0.5), white (1,0), or black (0,1). Notably, the values over the channels add up to one for a

pixel representing any color, while it adds up to zero for a null pixel. For color images, we use the

same encoding technique increasing the number of channels from 3 to 6. The resulting channels

are then (red,green,blue,1− red,1−green,1−blue), while NULL is encoded as (0,0,0,0,0,0).3

2.3 Results

In this section, we provide experimental results of the proposed method on MNIST, CIFAR-

10, and ImageNet. When reporting results, we refer to the following quantities:

• The certified robustness of a particular image x is the maximum ρ for which we can certify

(with probability at least 1 − α) that the smoothed classifier g(x′) will return the correct

label where x′ is any adversarial perturbation of x such that ∥x − x′∥0 ≤ ρ. If the unper-

turbed classification g(x) is itself incorrect, we define the certified robustness as N/A (Not

Applicable).
3On CIFAR-10, we scaled colors between 0 and 1 when using this encoding. On ImageNet, we normalized each
channel to have mean 0 and standard deviation 1 before applying this encoding: in this case, the NULL symbol is
still distinct, although it is not equidistant from all other colors.
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• The certified accuracy at ρ on a dataset is the fraction of images in the dataset with certified

robustness of at least ρ. In other words, it is the guaranteed accuracy of the classifier g(.),

if all images are corrupted with any ℓ0 adversarial attack of measure up to ρ.

• The median certified robustness on a dataset is the median value of the certified robustness

across the dataset. Equivalently, it is the maximum ρ for which the certified accuracy at

ρ is at least 0.5. When computing this median, images which g(.) misclassifies when un-

perturbed (i.e., certified robustness is N/A) are counted as having −∞ certified robustness.

For example, if the robustness certificates of images in a dataset are {N/A,N/A,1,2,3}, the

median certified robustness is 1, not 2.

• The classification accuracy on a dataset is the fraction of images on which our empirical

estimation of g(.) returns the correct class label, and does not abstain.

• The empirical adversarial attack magnitude of a particular image x is the minimum ρ for

which an adversarial attack can find an adversarial example x′ such that ∥x−x′∥0 ≤ ρ, and

such that our empirical classification procedure misclassifies or abstains on x′.

• The median adversarial attack magnitude on a dataset is the median value of the empirical

adversarial attack magnitude across the dataset.

Unless otherwise stated, the uncertainty α is 0.05, and 10,000 randomly-ablated samples are used

to make each prediction. The empirical estimation procedure we use to generate certificates, from

[63], requires two sampling steps: the first to identify the majority class i, and the second to bound

pi(x). We use 1,000 and 10,000 samples, respectively, for these two steps.
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2.3.1 Results on MNIST

We first tested our robust classification scheme on MNIST, using a simple CNN model as

the base classifier (see appendix for architectural details.) Results are presented in Table 2.1. We

varied the number of retained pixels k in each sample: note that for small k, certified robustness

and accuracy both increase as k increases. However, after a certain threshold, here achieved at

k = 45, certified robustness starts to decrease with k, while classification accuracy continues to

increase. This can be understood by considering Figure 2.2: For larger k, the bounding constant

∆ grows considerably faster with the ℓ0 distance ρ. In other words, a larger fraction of ablated

samples must be classified correctly to achieve the same certified robustness. For small k, the

fraction of ablated samples classified correctly increases sufficiently quickly with k to counteract

this effect; however, after a certain point, it is no longer beneficial to increase k because a large

majority of samples are already classified correctly by the base classifier (For example, see Figure

2.1).

We also tested the empirical robustness of our classifier to an ℓ0 adversarial attack. Specifically,

we chose to use the black-box Pointwise attack proposed by [3]. We choose a black-box attack

because comparisons to other robust classifiers using gradient-based attacks (such as the ℓ0 attack

proposed by [8]) may be somewhat asymmetric since our smoothed classifier is non-differentiable

(because the base classifier’s output is discretized.) While [33] does propose a gradient-based

scheme for attacking ℓ2-smoothed classifiers which are similarly non-differentiable, adapting

such a scheme would be a non-trivial departure from the existing ℓ0 Carlini-Wagner attack, pre-

cluding a direct comparison to other robust classifiers. By contrast, a practical reason we choose

the Pointwise Attack is that the reference implementation of the attack is available as part of the
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Retained Classification accuracy Median certified
pixels k (Percent abstained) robustness

5 32.32% (5.65%) N/A
10 74.90% (5.08%) 0
15 86.09% (2.82%) 0
20 90.29% (1.81%) 3
25 93.05% (1.02%) 5
30 94.68% (0.77%) 7
35 95.40% (0.66%) 7
40 96.27% (0.52%) 8
45 96.72% (0.45%) 8
50 97.16% (0.32%) 7
55 97.41% (0.34%) 7
60 97.78% (0.18%) 7
65 98.05% (0.15%) 6
70 98.18% (0.20%) 6
75 98.28% (0.20%) 6
80 98.37% (0.12%) 5
85 98.57% (0.12%) 5
90 98.58% (0.16%) 5
95 98.73% (0.11%) 5

100 98.75% (0.16%) 4

Table 2.1: Robustness certificates on MNIST, using different numbers of retained pixels (k). The
maximum median certified robustness on the MNIST test set is achieved when using k = 40 or
k = 45 retained pixels: because k = 45 gives better classification accuracy, we use this model
(highlighted in bold) when evaluating against adversarial attacks.

Foolbox package [66], meaning that we can directly compare our results to that of [3], without

any concerns about implementation details. We note that [3] reports a median adversarial attack

magnitude of 9 pixels for an unprotected CNN model on MNIST, which is comparable to the

mean adversarial attack magnitude of 8.5 reported for the ℓ0 Carlini-Wagner attack. This sug-

gests that the attack is comparably effective. Results are presented in Table 2.2. Note that our

model appears to be significantly more robust to ℓ0 attack than any of the models tested by [3], at a

slight cost of classification accuracy (We would anticipate this trade-off, see [67].) Also note that

while there is a gap between the median certified lower bound for the magnitude of any attack, 8
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pixels, and the empirical upper bound given by an extant attack, 31 pixels, these quantities are at

least in the same order of magnitude, indicating that our certificate is a non-trivial guarantee. See

Figure 3 for examples of adversarial attacks on our classifier.

Model Classification accuracy Median adversarial attack magnitude

CNN 99.1% 9.0
Binarized CNN 98.5% 11.0

Nearest Neighbor 96.9% 10.0
ℓ∞-Robust [9] 98.8% 4.0

[3] 99.0% 16.5
Binarized [3] 99.0% 22.0

Our model (k = 45) 96.7% 31.0

Table 2.2: Median adversarial attack magnitude on MNIST using the Pointwise attack from [3],
taking the best attack on each image from 10 random restarts. Note that all values except for our
model are taken directly from [3]. For every evaluation performed by the black-box attack, 10,000
ablated samples were used to calculate class scores of our model: this was to ensure stability of
the evaluated scores. Additionally, causing our model to abstain from classifying was counted as
a successful attack, even if the correct class score was still marginally highest. Because the black-
box attack performs a large number of classifications, and each of these classifications required
10,000 evaluations of the base classifier, we used only a subset of the MNIST test set, consisting
of 275 images.

Figure 2.3: Adversarial examples to our classifier on MNIST. Note that because we consider
the classifier abstaining to be a successful attack, these adversarial examples are in fact on the
boundary between classes, rather than being entirely misclassified.

26



2.3.2 Results on CIFAR-10

Retained Classification accuracy Median certified
pixels k (Percent abstained) robustness

25 68.41% (1.76%) 6
50 74.21% (1.19%) 7
75 78.25% (0.93%) 7

100 80.91% (0.86%) 6
125 83.25% (0.60%) 5
150 85.22% (0.53%) 4

Table 2.3: Robustness certificates on CIFAR-10, using different numbers of retained pixels (k),
and using ResNet18 [68] as the base classifier. Note that without smoothing, the base implemen-
tation of an unprotected ResNet18 classifier which we used [69] has a classification accuracy of
93.02% on CIFAR-10.

Retained Base classifier Base classifier
pixels k training accuracy test accuracy

25 83.16% 57.72%
50 96.63% 68.29%
75 99.33% 74.08%

100 99.76% 77.88%
125 99.91% 80.48%
150 99.95% 83.16%

Table 2.4: Accuracy of the base classifier f in CIFAR-10 experiments, on training versus test
data, using ResNet18. Note that the base classifier significantly overfits to the training data.
(Training accuracies are averaged over the final epoch of training.)

We implemented our technique on CIFAR-10 using ResNet18 (with the number of input

channels increased to 6) as a base classifier; see Table 2.3 for our robustness certificates as a

function of k. The median certified robustness is somewhat smaller than for MNIST: however,

this is in line with the performance of empirical attacks. For example, the ℓ0 attack proposed

by [8] achieves a mean adversarial attack magnitude of 8.5 pixels on MNIST and 5.9 pixels on

CIFAR-10. This suggests that CIFAR-10 samples are more vulnerable to ℓ0 adversarial attacks
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Retained Base classifier Base classifier
pixels k training accuracy test accuracy

25 83.89% 57.58%
50 96.91% 69.45%
75 99.09% 75.22%

100 99.66% 79.54%
125 99.78% 81.83%
150 99.92% 84.43%

Table 2.5: Accuracy of the base classifier f in CIFAR-10 experiments, on training versus test
data, using ResNet50. Note that the base classifier significantly overfits to the training data:
however, for k > 25, this higher-capacity model overfits less than ResNet18.

compared to the MNIST ones. Intuitively, this is because CIFAR-10 images are both visually

complex and low-resolution, so that each pixel carries a large amount of information regarding the

classification label. Also note that the classification accuracy on unperturbed images is somewhat

reduced. For example, in a model using k = 150, the median certified robustness is 4 pixels, and

the classifier accuracy is 85.22%. The trade-off between accuracy and robustness is also more

pronounced. However, it is not unusual for practical ℓ0 defenses to achieve accuracy below 90%

on CIFAR-10 [15, 70]: our defense may therefore still prove to be usable.

One phenomenon which we encountered when applying our technique to CIFAR-10 was over-

fitting of the base classifier (see Table 2.4), which was unexpected because during the training,

the classifier is always exposed to new random ablations of the training data. However, the

network was still able to memorize the training data, despite never being exposed to the complete

images. While interpolation of even randomly labeled training data is a known phenomenon in

deep learning [71], we were surprised to see that over-fitting may happen on ablated images,

where a particular ablation is likely never repeated in training. In order to better understand this,

we use a model trained on a higher-capacity network architecture, ResNet50. The results for the

base classifier are given in Table 2.5. Surprisingly, increasing network capacity decreased the
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generalization gap slightly for k ≥ 50 (Note that because the improvement to the base classifier is

only marginal, and because ResNet50 is substantially more computationally intensive to use as

a base classifier to classify 10,000 ablated samples per image, we opted to compute certificates

using the ResNet18 model).

2.3.3 Results on ImageNet

We implemented our technique on ImageNet using ResNet50 (again with the number of

input channels increased to 6) as a base classifier; see Table 2.6 for our robustness certificates

as a function of k. For testing, we used a random subset of 400 images from the ILSVRC2012

validation set. Note that ImageNet classification is a 1,000-class problem: here we consider only

top-1 accuracy. Because these top-1 accuracies are only moderately above 50 percent, the cal-

culation of the median certified robustness is skewed by relatively large fraction of misclassified

points: on the points which are correctly classified, the certificates can be considerably larger.

For example, at k = 1000, if we consider only the 61% of images which are certified for the cor-

rect class, the median certificate is 33 pixels. Similarly, considering only images with certificates

other than ‘N/A’, the median certificates for k = 500 and k = 2000 are 63 pixels and 16 pixels,

respectively.

Retained Classification accuracy Median certified
pixels k (Percent abstained) robustness

500 52.75% (1.75%) 0
1000 61.00% (0.00%) 16
2000 62.50% (1.75%) 11

Table 2.6: Robustness certificates on ImageNet, using different numbers of retained pixels k,
and using ResNet50 [68] as the base classifier. For ImageNet, d = 224 × 224. Note that without
smoothing, the base implementation of an unprotected ResNet50 classifier can be trained on
ImageNet to a top-1 accuracy of 76.15% [72].
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2.4 Discussion

2.4.1 Comparison to Lee et al. 2019 [1]

In a concurrent work, [1] also present a randomized-smoothing based robustness certifica-

tion scheme for the ℓ0 metric. In this scheme, each pixel is retained with a fixed probability κ and

is otherwise assigned to a random value from the remaining possible pixel values in S . Note that

there is no NULL in this scheme. As a consequence, the base classifier lacks explicit informa-

tion about which pixels are retained from the original image, and which have been randomized.

The resulting scheme has considerably lower median certified robustness on the datasets tested

in both works4 (Table 2.7):

Median certified Median certified
Dataset robustness (pixels) robustness (pixels)

(Lee et al. 2019) [1] (our model)

MNIST 4 8
ImageNet 1 16

Table 2.7: Comparison of robustness certificates in [1] and in this work, using the optimal choices
of hyperparameters tested in each work. Numbers for [1] are derived from those reported in that
work. Note that for ImageNet, [1] considers each color channel as a separate pixel: therefore the
median image is robust to distortion in only one channel of one pixel. By contrast, our model
is robust to distortions in all channels in 16 pixels (or, in the limiting case, one channel in 16
pixels).

To illustrate quantitatively how our robust classifier obtains more information from each

ablated sample than is available in the randomly noised samples in [1], let us consider images of

ImageNet scale. Because [1] considers each color channel as a separate pixel when computing

4[1] uses a similar scheme to ours to derive an empirical bound on pi(x); however, that work uses 100 samples to
select i and 100,000 samples to bound it, and reports bounds with 99.9% confidence (α = .001). In order to provide
a fair comparison, we repeated our certifications on MNIST and ImageNet (for optimized values of k) using these
empirical certification parameters. This did not change the median robustness certificates.
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certificates, we will use S = {0, ...,255}, and d = 3 ∗ 224 ∗ 224. Using [1]’s certificate scheme, in

order to certify for one pixel of robustness with κ = 0.1 probability of pixel retention, we would

need to accurately classify noised images with probability pi(x) = .596. Meanwhile, using our

ablation scheme, in order to certify one pixel of robustness by correctly classifying same fraction

(pi(x) = .596) of ablated images, we can retain at most k = 14521 pixels. This is 9.6% of pixels,

slightly fewer than the expected number retained in [1]’s scheme.

However, we will now calculate the mutual information between each ablated/noised im-

age and the original image for each scheme: this is the expected number of bits of information

about the original image which are obtained from observing the ablated/noised image. For illus-

trative purposes, we will make the simplifying assumption that the dataset overall is uniformly

distributed (while this is obviously not true for image classification, it is a reasonable assumption

in other classification tasks.) In our scheme, we have simply

Iablate = log2 ∣S∣ ∗ k = 8 ∗ k = 116168 bits. (2.20)

Each of the k retained pixels provides 8 bits of information. However, in the noising scheme

from [1], we instead have:

ILee et al. = d(log2 ∣S∣ + κ log2 κ + (1 − κ) log2
1 − κ

∣S∣ − 1
) ≈ 50590.4 bits. (2.21)

Therefore, despite using slightly fewer pixels from the original image, over twice the amount

of information about the original image is available in our scheme when making each ablated

classification. (A derivation of Equation 2.21 is provided in the appendix.)
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2.4.2 Alternative encodings of SNULL

The multichannel encoding of SNULL described above, while theoretically well-motivated,

is not the only possible encoding scheme. In fact, for MNIST and CIFAR-10, we tested a some-

what simpler encoding for the NULL symbol: we simply used the mean pixel value on the train-

ing set, similarly to the practical defense proposed by [62]. We tested using the optimal values of

k from the Results section above (k = 45 for MNIST and k = 75 for CIFAR-10). This resulted in

only marginally decreased accuracy and certificate sizes (Table 2.8):

SNULL Classification acc. Median certified
encoding (Pct. abstained) robustness

MNIST

Multichannel 96.72% (0.45%) 8
Mean 96.27% (0.43%) 7

CIFAR-10

Multichannel 78.25% (0.93%) 7
Mean 77.71% (1.05%) 7

Table 2.8: Accuracy and robustness using different encoding schemes for SNULL.

To understand this, note that the mean pixel value (grey in both datasets) is not necessarily a

common value: it is still possible to distinguish which pixels are ablated (Figure 2.4).

Figure 2.4: (a) An image from MNIST. (b) The image with k = 85 pixels ablated, with a unique
NULL encoding. (c) The same image with NULL encoded as the mean pixel value (dark grey).
Note that both black and white pixels are still distinguishable. (d) If we replace ablated pixels
with random noise, the image is no longer easily distinguishable.
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Chapter 3: Improved, Deterministic Smoothing for ℓ1 Certified Robustness1

In this chapter, we propose a non-additive smoothing method for ℓ1-certifiable robustness

on quantized data that is deterministic.2 By “quantized” data, we mean data where each feature

value occurs on a discrete level. For example, standard image files (including standard computer

vision datasets, such as ImageNet and CIFAR-10) are quantized, with all pixel values belonging

to the set {0,1/255,2/255, ...,1}. We call our method Deterministic Smoothing with Splitting

Noise (DSSN). DSSN produces exact certificates, rather than high-probability ones. It also pro-

duces certificates in substantially less time than randomized smoothing because a large number

of noise samples are no longer required. In addition to these benefits, the certified radii generated

by DSSN are significantly larger than those of the prior state-of-the-art.

To develop DSSN, we first propose a randomized method, Smoothing with Splitting Noise

(SSN). Rather than simple additive noise, SSN uses “splitting” noise to generate a noisy input

x̃: first, we generate a noise vector s to split the input domain [0,1]d into subdivisions. Then,

the noisy input x̃ is just the center of whichever sub-division x belongs to. In contrast to prior

smoothing works, this noise model is non-additive.

In contrast to additive uniform noise where the noise components (ϵi’s in ϵ) are indepen-

1A form of chapter has been published in ICML 2021 [73].
2We note that previous works have proposed deterministic forms of randomized-smoothing certificates [6, 29, 74,
75, 76]. However, this work is, to our knowledge, the first to certify robustness for arbitrary base-classifiers in a
norm-based threat model, with a runtime that does not grow exponentially with dimension. See the Section 3.5 for
more details.
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dently distributed, in SSN, the splitting vector components (si’s in s) do not need to be inde-

pendently distributed. Thus, unlike the additive uniform smoothing where noise vectors must be

drawn from a d-dimensional probability distribution, in SSN, the splitting vectors can be drawn

from a one-dimensional distribution. In the quantized case, the splitting vector can be further

reduced to a choice between a small number of elements, leading to a derandomized version of

SSN (i.e. DSSN).

Below, we summarize our contributions:

• We propose a novel randomized smoothing method, SSN, for the ℓ1 adversarial threat

model (Theorem 3.2).

• We show that SSN effectively requires smoothing in one-dimension (instead of d), thus it

can be efficiently derandomized, yielding a deterministic certifiably robust classification

method called DSSN.

• On ImageNet and CIFAR-10, we empirically show that DSSN significantly outperforms

previous smoothing-based robustness certificates, effectively establishing a new state-of-

the-art.

3.1 Preliminaries and Notation

Let x, x′ represent two points in [0,1]d. We assume that our input space is bounded: this

assumption holds for many applications (e.g., pixel values for image classification). If the range

of values is not [0,1], all dimensions can simply be scaled. A “base” classifier function will be

denoted as f ∶ Rd → [0,1]. In the case of a multi-class problem, this may represent a single logit.
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Let δ ∶= x′ − x, with components δ1, ..., δd. A function p ∶ [0,1]d → [0,1] is said to be

c-Lipschitz with respect to the ℓ1 norm iff:

∣p(x) − p(x′)∣ ≤ c∥δ∥1, ∀x,x
′. (3.1)

Among the various techniques that have been proposed for certifiably robust classification

[22, 23, 24, 25, 26, 27] are those that rely on Lipschitz analysis: if a classifier’s logit functions can

be shown to be Lipschitz-continuous, this immediately implies a robustness certificate [77, 78]. In

particular, consider a classifier with logits {pA, pB, pC , ...}, all of which are c-Lipschitz. Suppose

for an input x, we have pA(x) > pB(x) ≥ pC(x) ≥ .... Also suppose the gap between the largest

and the second largest logits is d (i.e. pA(x) − pB(x) = d). The Lipschitzness implies that for all

x′ such that ∥x −x′∥ < d/(2c), pA(x′) will still be the largest logit: in this ball,

pA(x
′) > pA(x) −

d

2
≥ pothers(x) +

d

2
> pothers(x

′), (3.2)

where the first and third inequalities are due to Lipschitzness.

Let U(a, b) represent the uniform distribution on the range [a, b], and Ud(a, b) represent a

random d-vector, where each component is independently uniform on [a, b].

Let 1(condition) represent the indicator function, and 1 be the vector [1,1, ...]T . In a slight

abuse of notation, for z ∈ R, n ∈ R+, let z mod n ∶= z − n⌊ zn⌋ where ⌊⋅⌋ is the floor function; we

will also use ⌈⋅⌉ as the ceiling function. For example, 9.5 mod 2 = 1.5.
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We will also discuss quantized data. We will use q for the number of quantizations. Let

[a, b](q) ∶= {i/q ∣ ⌈aq⌉ ≤ i ≤ ⌊bq⌋} . (3.3)

In particular, [0,1](q) denotes the set {0,1/q,2/q, ..., (1 − q)/q,1}. Let x,x′ represent two points

in [0,1]d(q). A domain-quantized function p ∶ [0,1]d(q) → [0,1] is said to be c-Lipschitz with

respect to the ℓ1 norm iff:

∣p(x) − p(x′)∣ ≤ c∥δ∥1, ∀x,x
′ ∈ [0,1]d(q), (3.4)

where δ ∶= x′ − x. The uniform distribution on the set [a, b](q) is denoted U(q)(a, b).

3.2 Prior Work on Uniform Smoothing for ℓ1 Robustness

Lee et al. [1] proposed an ℓ1 robustness certificate using uniform random noise:

Theorem 3.1 (Lee et al. [1]). For any f ∶ Rd → [0,1] and parameter λ ∈ R+, define:

p(x) ∶= E
ϵ∼Ud(−λ,λ)

[f(x + ϵ)] . (3.5)

Then, p(.) is 1/(2λ)-Lipschitz with respect to the ℓ1 norm.

Yang et al. [5] later provided a theoretical justification for the uniform distribution being

optimal among additive noise distributions for certifying ℓ1 robustness3. Yang et al. [5] also

provided experimental results on CIFAR-10 and ImageNet which before our work were the state-

3More precisely, Yang et al. [5] suggested that distributions with d-cubic level sets are optimal for ℓ1 robustness.
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of-the-art ℓ1 robustness certificates.

Following Cohen et al. [32], Yang et al. [5] applied the smoothing method to a “hard” (in

Salman et al. [33]’s terminology) base classifier. That is, if the base classifier returns the class c

on input x + ϵ, then fc(x + ϵ) = 1, otherwise fc(x + ϵ) = 0. Also following Cohen et al. [32], in

order to apply the certificate in practice, Yang et al. [5] first takes N0 = 64 samples to estimate

the plurality class A, and then uses N = 100,000 samples to lower-bound pA(x) (the fraction of

noisy samples x̃ classified as A) with high probability. The other smoothed logit values (pB(x),

etc.) can then all be assumed to be ≤ 1 − pA(x). This approach has the benefit that each logit

does not require an independent statistical bound, and thus reduces the estimation error, but it

has the drawback that certificates are impossible if pA(x) ≤ 0.5, creating a gap between the clean

accuracy of the smoothed classifier and the certified accuracy near ρ = 0.

We note that the stated Theorem 3.1 is slightly more general than the originally stated

version by Lee et al. [1]: the original version assumed that only pA(x) is available, as in the

above estimation scheme, and therefore just gave the ℓ1 radius in which pA(x′) is guaranteed to

remain ≥ 0.5. For completeness, we provide a proof of the more general form (Theorem 3.1) in

the appendix.

In this work, we show that by using deterministic smoothing with non-additive noise, im-

proved certificates can be achieved, because we (i) avoid the statistical issues presented above (by

estimating all smoothed logits exactly), and (ii) improve the performance of the base classifier

itself.
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3.3 Our Proposed Method

In this paper, we describe a new method, Smoothing with Splitting Noise (SSN), for cer-

tifiable robustness against ℓ1 adversarial attacks. In this method, for each component xi of x,

we randomly split the interval [0,1] into sub-intervals. The noised value x̃i is the middle of the

sub-interval that contains xi. We will show that this method corresponds closely to the uniform

noise method, and so we continue to use the parameter λ. The precise correspondence will be-

come clear in Section 3.3.2.1: however, for now, λ can be interpreted as controlling (the inverse

of) the frequency with which the interval [0,1] is split into sub-intervals. We will show that this

method, unlike the additive uniform noise method, can be efficiently derandomized. For simplic-

ity, we will first consider the case corresponding to λ ≥ 0.5, in which at most two sub-intervals

are created, and present the general case later.

Theorem 3.2 (λ ≥ 0.5 Case). For any f ∶ Rd → [0,1], and λ ≥ 0.5 let s ∈ [0,2λ]d be a random

variable with a fixed distribution such that:

si ∼ U(0,2λ), ∀i. (3.6)

Note that the components s1, ..., sd are not required to be distributed independently from each

other. Then, define:

x̃i ∶=
min (si,1) + 1xi>si

2
, ∀i (3.7)

p(x) ∶= E
s
[f(x̃)] . (3.8)

38



1

0

1

0

1

0

2λ2λ2λ

1

0

2λ

(a) (b)

Figure 3.1: (a) Definition of x̃ in the λ ≥ 0.5 case. If si ∈ [0,1), then it “splits” the interval [0,1]:
x̃i is the center of whichever sub-interval xi occurs in. If si > 1, x̃i = 0.5, and no information
about the original pixel is kept. (b) An example of x̃ in the quantized λ ≥ 0.5 case. Here, q = 4
and 2λ = 5/4. We see that xi = 1/4 lies directly on a quantization level, while si = 7/8 lies
on a half-step between quantization levels. We choose si to lie on “half-steps” for the sake of
symmetry: the range of x̃i is symmetrical around 1/2.

Then p is 1/(2λ)-Lipschitz with respect to the ℓ1 norm.

To understand the distribution of x̃i, we can view si as “splitting” the interval [0,1] into

two sub-intervals, [0, si] and (si,1]. x̃i is then the middle of whichever sub-interval contains xi.

If si ≥ 1, then the interval [0,1] is not split, and x̃i assumes the value of the middle of the entire

interval ( = 1/2): see Figure 3.1-a.

Proof. Consider two arbitrary points x,x′ where δ ∶= x′−x. Note that max(xi, x′i)−min(xi, x′i) =

∣x′i −xi∣ = ∣δi∣. For a fixed vector s, additionally note that x̃i = x̃′i unless si falls between xi and x′i

(i.e., unless min(xi, x′i) ≤ si <max(xi, x′i)). Therefore:

Pr
s
[x̃i ≠ x̃

′
i] =
∣δi∣

2λ
. (3.9)

By union bound:

Pr
s
[x̃ ≠ x̃′] = Pr

s
[

d

⋃
i=1

x̃i ≠ x̃
′
i] ≤

d

∑
i=1

∣δi∣

2λ
=
∥δ∥1
2λ

(3.10)
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Then:

∣p(x) − p(x′)∣

= ∣E
s
[f(x̃)] − E

s
[f(x̃′)]∣

= ∣E
s
[f(x̃) − f(x̃′)]∣

=

RRRRRRRRRRR

Pr
s
[x̃ ≠ x̃′]E

s
[f(x̃) − f(x̃′)∣x̃ ≠ x̃′] +Pr

s
[x̃ = x̃′]E

s
[f(x̃) − f(x̃′)∣x̃ = x̃′]

RRRRRRRRRRR

(3.11)

Because Es [f(x̃) − f(x̃′)∣x̃ = x̃′] is zero, we have:

∣p(x) − p(x′)∣

= Pr
s
[x̃ ≠ x̃′] ∣E

s
[f(x̃) − f(x̃′)∣x̃ ≠ x̃′]∣

≤
∥δ∥1
2λ
⋅ 1

(3.12)

where in the final step, we used Equation 3.10, as well as the assumption that f(⋅) ∈ [0,1]. Thus,

by the definition of Lipschitz-continuity, p is 1/(2λ)-Lipschitz with respect to the ℓ1 norm.

It is important that we do not require that si’s be independent. (Note the union bound in

Equation 3.10: the inequality holds regardless of the joint distribution of the components of s, as

long as each si is uniform.) This allows us to develop a deterministic smoothing method below.
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3.3.1 Deterministic SSN (DSSN)

If SSN is applied to quantized data4 (e.g. images), we can use the fact that the noise

vector s in Theorem 3.2 is not required to have independently-distributed components to derive

an efficient derandomization of the algorithm. In order to accomplish this, we first develop a

quantized version of the SSN method, using input x ∈ [0,1]dq (i.e. x is a vector whose components

belong to {0,1/q, ...,1}). To do this, we simply choose each of our splitting values si to be on

one of the half-steps between possible quantized input values: s ∈ [0,2λ − 1/q]d(q) + 1/(2q). We

also require that 2λ is a multiple of 1/q (in experiments, when comparing to randomized methods

with continuous λ, we use λ′ = ⌊2λq⌋/2q.) See Figure 3.1-b.

Corollary 3.1 (λ ≥ 0.5 Case). For any f ∶ Rd → [0,1], and λ ≥ 0.5 (with 2λ a multiple of 1/q),

let s ∈ [0,2λ − 1/q]d(q) + 1/(2q) be a random variable with a fixed distribution such that:

si ∼ U(q) (0,2λ − 1/q) + 1/(2q), ∀i. (3.13)

Note that the components s1, ..., sd are not required to be distributed independently from each

other. Then, define:

x̃i ∶=
min(si,1) + 1xi>si

2
, ∀i (3.14)

p(x) ∶= E
s
[f(x̃)] . (3.15)

4Note that standard image files such as ImageNet and CIFAR-10 are quantized, with all pixel values belonging to
the set {0,1/255,2/255, ...255/255}. As Carlini and Wagner [8] notes, if a natural dataset is quantized, adversarial
examples to this dataset must also be quantized (in order to be recognized/saved as valid data at all). Therefore, our
assumption of quantized data is a rather loose constraint which applies to many domains considered in adversarial
machine learning.
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Then, p(.) is 1/(2λ)-Lipschitz with respect to the ℓ1 norm on the quantized domain x ∈ [0,1]d(q).

Proof. Consider two arbitrary quantized points x,x′ where δ = x′ − x. Again, note that

max(xi,x
′
i) −min(xi,x

′
i) = ∣x

′
i − xi∣ = ∣δi∣. (3.16)

For a fixed vector s, additionally note that x̃i = x̃′i unless si falls between xi and x′i (i.e., unless

min(xi,x′i) ≤ si <max(xi,x′i)). Note that δi must be a multiple of 1/q, and that there are exactly

q ⋅ ∣δi∣ discrete values that si can take such that the condition min(xi,x′i) ≤ si <max(xi,x′i) holds.

This is out of 2λq possible values over which si is uniformly distributed. Thus, we have:

Pr
s
[x̃i ≠ x̃′i] =

∣δi∣

2λ
(3.17)

The rest of the proof proceeds as in the continuous case (Theorem 3.2).

If we required that si’s be independent, an exact computation of p(x) would have required

evaluating (2λq)d possible values of s. This is not practical for large d. However, because we do

not have this independence requirement, we can avoid this exponential factor. To do this, we first

choose a single scalar splitting value sbase: each si is then simply a constant offset of sbase. We

proceed as follows:

First, before the classifier is ever used, we choose a single, fixed, arbitrary vector v ∈

[0,2λ−1/q]d(q). In practice, v is generated pseudorandomly when the classifier is trained, and the

seed is stored with the classifier so that the same v is used whenever the classifier is used. Then,
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at test time, we sample a scalar variable as:

sbase ∼ U(q)(0,2λ − 1/q) + 1/(2q). (3.18)

Then, we generate each si by simply adding the base variable sbase to vi:

∀i, si ∶= (sbase + vi) mod 2λ (3.19)

Note that the marginal distribution of each si is si ∼ U(q) (0,2λ − 1/q)+1/(2q), which is sufficient

for our provable robustness guarantee. In this scheme, the only source of randomness at test time

is the single random scalar sbase, which takes on one of 2λq values. We can therefore evaluate

the exact value of p(x) by simply evaluating f(x̃) a total of 2λq times, for each possible value

of sbase. Essentially, by removing the independence requirement, the splitting method allows

us to replace a d-dimensional noise distribution with a one-dimensional noise distribution. In

quantized domains, this allows us to efficiently derandomize the SSN method without requiring

exponential time. We call this resulting deterministic method DSSN.

One may wonder why we do not simply use s1 = s2 = s3... = sd. While this can work,

it leads to some undesirable properties when λ > 0.5. In particular, note that with probability

(2λ − 1), we would have all splitting values si > 1. This means that every element x̃i would be

0.5. In other words, with probability (2λ − 1)/(2λ), x̃ = 0.5 ⋅ 1. This restricts the expressivity of

the smoothed classifier:

p(x) =
2λ − 1

2λ
f(0.5 ⋅ 1) +

1

2λ
E
s<1
[f(x̃)] . (3.20)
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This is the sum of a constant, and a function bounded in [0,1/(2λ)]. Clearly, this is undesirable.

By contrast, if we use an offset vector v as described above, not every component will have

si > 1 simultaneously. This means that x̃ will continue to be sufficiently expressive over the

entire distribution of sbase.

3.3.2 Relationship to Uniform Additive Smoothing

In this section, we explain the relationship between SSN and uniform additive smoothing

[5] with two main objectives:

1. We show that, for each element xi, the marginal distributions of the noisy element x̃i of

SSN and the noisy element (xi + ϵi) of uniform additive smoothing are directly related

to one another. However we show that, for large λ, the distribution of uniform additive

smoothing (xi + ϵi) has an undesirable property which SSN avoids. This creates large

empirical improvements in certified robustness using SSN, demonstrating an additional

advantage to our method separate from derandomization.

2. We show that additive uniform noise does not produce correct certificates when using arbi-

trary joint distributions of ϵ. This means that it cannot be easily derandomized in the way

that SSN can.
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3.3.2.1 Relationship between Marginal Distributions of x̃i and (xi + ϵi)

To see the relationship between uniform additive smoothing and SSN, we break the marg-

inal distributions of each component of noised samples into cases (assuming λ ≥ 0.5):

xi + ϵi ∼

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U(xi − λ,1 − λ) w. prob. 1−xi

2λ

U(1 − λ,λ) w. prob. 2λ−1
2λ

U(λ,xi + λ) w. prob. xi

2λ

(3.21)

x̃i ∼

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U(xi,1)
2 w. prob. 1−xi

2λ

1
2 w. prob. 2λ−1

2λ

U(1,xi+1)
2 w. prob. xi

2λ

(3.22)

We can see that there is a clear correspondence (which also justifies our re-use of the

parameter λ.) In particular, we can convert the marginal distribution of uniform additive noise to

the marginal distribution of SSN by applying a simple mapping: x̃i ∼ g(xi + ϵi) where:

g(z) ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z+λ
2 if z < 1 − λ

1
2 if 1 − λ < z < λ

z−λ+1
2 if z > λ

(3.23)
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For λ = 0.5, this is a simple affine transformation:

x̃i ∼ 1/2(xi + ϵi) + 1/4 (3.24)

In other words, in the case of λ = 0.5, x̃i is also uniformly distributed. However, for λ > 0.5,

Equation 3.21 reveals an unusual and undesirable property of using uniform additive noise: re-

gardless of the value of xi, there is always a fixed probability 2λ−1
2λ that the smoothed value xi + ϵi

is uniform on the interval [1 − λ,λ]. Furthermore, this constant probability represents the only

case in which (xi + ϵi) can assume values in this interval. These values therefore carry no infor-

mation about xi and are all equivalent to each other. However, if λ is large, this range dominates

the total range of values of xi + ϵi which are observed (See Figure 3.2-b.)

By contrast, in SSN, while there is still a fixed 2λ−1
2λ probability that the smoothed com-

ponent x̃i assumes a “no information” value, this value is always fixed (x̃i = 1/2). Empirically,

this dramatically improves performance when λ is large. Intuitively, this is because when using

uniform additive smoothing, the base classifier must learn to ignore a very wide range of values

(all values in the interval [1−λ,λ]) while in SSN, the base classifier only needs to learn to ignore

a specific constant “no information” value 1/2. See Figure 3.2 for a visual comparison of the two

noise representations.5

3.3.2.2 Can Additive Uniform Noise Be Derandomized?

As shown above, in the λ = 0.5 case, SSN leads to marginal distributions which are simple

affine transformations of the marginal distributions of the uniform additive smoothing. One might

5Note that this use of a “no information” value bears some similarity to the “ablation” value in Chapter 2 [58].
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(a) (b)

 1.5

 -0.5

Figure 3.2: Range of noise values possible for each sample feature xi, under (a) SSN, for any
λ ≥ 0.5 and (b) uniform additive smoothing, λ = 1.5. Possible pairs of clean and noise values are
shown in grey (both light and dark). In uniform additive smoothing, note that all values of xi + ϵi
in the range [-0.5,1.5], shown in dark grey, can correspond to any value of xi. This means that
these values of xi + ϵi carry no information about xi whatsoever. By contrast, using SSN, only
the value x̃i = 1/2 has this property.

then wonder whether we can derandomize additive uniform noise in a way similar to DSSN. In

particular, one might wonder whether arbitrary joint distributions of ϵ can be used to generate

valid robustness certificates with uniform additive smoothing, in the same way that arbitrary joint

distributions of s can be used with SSN. It turns out that this is not the case. We provide a

counterexample (for λ = 0.5) below:

Proposition 3.1. There exists a base classifier f ∶ R2 → [0,1] and a joint probability distribution

D, such that ϵ1, ϵ2 ∼ D has marginals ϵ1 ∼ U(−0.5,0.5) and ϵ2 ∼ U(−0.5,0.5) where for

p(x) ∶= E
ϵ∼D
[f(x + ϵ)] , (3.25)

p(.) is not 1-Lipschitz with respect to the ℓ1 norm.

Proof. Consider the base classifier f(z) ∶= 1z1>0.4+z2 , and let ϵ be distributed as ϵ1 ∼ U(−0.5,0.5)

and ϵ2 = ϵ1. Consider the points x = [0.8,0.2]T and x′ = [0.6,0,4]T . Note that ∥δ∥1 = 0.4.
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(a) (b) (c)

Figure 3.3: Comparison of independent uniform additive noise, correlated uniform additive noise,
and correlated SSN, in R2 for λ = 0.5. In all figures, the blue and red points represent points x
and x′ and the black border represents the range [0,1]2. (a) Distributions of x + ϵ and x′ +
ϵ for independent uniform additive noise. The robustness guarantee relies on the significant
overlap of the shaded regions, representing the sampled distributions. Note that by Equation
3.24, these are also the distributions of for 2x̃ − 1/2 and 2x̃′ − 1/2 using SSN with s1 and s2
distributed independently. (b) Using correlated additive noise (ϵ1 = ϵ2) does not produce an
effective robustness certificate: the sampled distributions x+ϵ and x′+ϵ (blue and red lines) do not
overlap. (c) Using correlated splitting noise (s1 = s2) produces an effective robustness certificate,
because distributions of x̃ and x̃′ overlap significantly. Here, for consistency in scaling, we show
the distributions of 2x̃ − 1/2 and 2x̃′ − 1/2 (blue line and red line), with the overlap shown as
purple. Note that this is a one-dimensional smoothing distribution, and therefore can be efficiently
derandomized.

However,

p(x) = E
ϵ
[f(x + ϵ)] = E

ϵ1
[f(.8 + ϵ1, .2 + ϵ1)] = 1

p(x′) = E
ϵ
[f(x′ + ϵ)] = E

ϵ1
[f(.6 + ϵ1, .4 + ϵ1)] = 0

(3.26)

Thus, ∣p(x) − p(x′)∣ > ∥δ∥1.

1

0

1

0

1

0

Figure 3.4: Example of x̃i in the λ < 0.5 case. In this case, the interval [0,1] is split into sub-
intervals [0, si], (si, si + 2λ], and (si + 2λ,1]. x̃i is assigned to the middle of whichever of these
intervals xi falls into.

In the appendix, we provide intuition for this, by demonstrating that despite having similar
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marginal distributions, the joint distributions of x̃ and (x+ϵ)which can be generated by SSN and

additive uniform noise, respectively, are in fact quite different. An example is shown in Figure

3.3.

3.3.3 General Case, including λ < 0.5

In the case λ < 0.5, we split the [0,1] interval not only at si ∈ [0,2λ], but also at every

value si + 2λn, for n ∈ N. An example is shown in Figure 3.4. Note that this formulation covers

the λ ≥ 0.5 case as well (the splits for n ≥ 1 are simply not relevant).

Theorem 3.2 (General Case). For any f ∶ Rd → [0,1], and λ > 0 let s ∈ [0,2λ]d be a random

variable, with a fixed distribution such that:

si ∼ U(0,2λ), ∀i. (3.27)

Note that the components s1, ..., sd are not required to be distributed independently from each

other. Then, define:

x̃i ∶=
min(2λ⌈xi−si

2λ ⌉ + si,1)

2
+
max(2λ⌈xi−si

2λ − 1⌉ + si,0)

2
, ∀i (3.28)

p(x) ∶= E
s
[f(x̃)] . (3.29)

Then, p(.) is 1/(2λ)-Lipschitz with respect to the ℓ1 norm.

The proof for this case, as well as its derandomization, are provided in the appendix. As

with the λ ≥ 0.5 case, the derandomization allows for p(x) to be computed exactly using 2λq

evaluations of f .
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3.4 Experiments

We evaluated the performance of our method on CIFAR-10 and ImageNet datasets, match-

ing all experimental conditions from [5] as closely as possible (further details are given in the

appendix.) Certification performance data is given in Table 3.1 for CIFAR-10 and Figure 3.5 for

Imagenet. Note that instead of using the hyperparameter λ, we report experimental results in

terms of σ = λ/
√
3: this is to match [5], where this gives the standard deviation of the uniform

noise.

We find that DSSN significantly outperforms Yang et al. [5] on both datasets, particularly

when certifying for large perturbation radii. For example, at ρ = 4.0, DSSN provides a 36% certi-

fied accuracy on CIFAR-10, while uniform additive noise provides only 27% certified accuracy.

In addition to these numerical improvements, DSSN certificates are exact while randomized cer-

tificates hold only with high-probability. Following Yang et al. [5], all certificates reported here

for randomized methods hold with 99.9% probability: there is no such failure rate for DSSN.

Additionally, the certification runtime of DSSN is reduced compared to randomized meth-

ods. Although in contrast to [5], our certification time depends on the noise level, the fact that

Yang et al. [5] uses 100,000 smoothing samples makes our method much faster even at the largest

tested noise levels. For example, on CIFAR-10 at σ = 3.5, using a single NVIDIA 2080 Ti GPU,

we achieve an average runtime of 0.41 seconds per image, while Yang et al. [5]’s method requires

13.44 seconds per image.

Yang et al. [5] tests using both standard training on noisy samples as well as stability

training [35]: while our method dominates in both settings, we find that the stability training

leads to less of an improvement in our methods, and is in some cases detrimental. For example,
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in Table 3.1, the best certified accuracy is always higher under stability training for uniform

additive noise, while this is not the case for DSSN at ρ < 3.0. Exploring the cause of this may be

an interesting direction for future work.6

In Figure 3.6, we compare the uniform additive smoothing method to DSSN, as well the

randomized form of SSN with independent splitting noise. At mid-range noise levels, the primary

benefit of our method is due to derandomization; while at large noise levels, the differences in

noise representation discussed in Section 3.3.2.1 become more relevant. In the appendix, we

provide complete certification data at all tested noise levels, using both DSSN and SSN with

independent noise, as well as more runtime data. Additionally we further explore the effect of

the noise representation: given that Equation 3.23 shows a simple mapping between (the marginal

distributions of) SSN and uniform additive noise, we tested whether the gap in performance due

to noise representations can be eliminated by a “denoising layer”, as trained in [79]. We did not

find evidence of this: the gap persists even when using denoising.

3.5 Prior Works on Derandomized Smoothing

While this work is, to the best of our knowledge, the first to propose a derandomized

version of a randomized smoothing algorithm to certify for a norm-based threat model without

resricting the base classifier or requiring time exponential in the dimension d of the input, prior

deterministic “randomized smoothing” certificates have been proposed. These include:

• Certificates for non-norm (ℓ0-like) threat models. This includes certificates against patch

adversarial attacks such as [29] (Chapter 6 of this dissertation) and subsequent improve-
6On CIFAR-10, Yang et al. [5] also tests using semi-supervised and transfer learning approaches which incorporate
data from other datasets. We consider this beyond the scope of this work where we consider only the supervised
learning setting.
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ρ =0.5 ρ =1.0 ρ =1.5 ρ =2.0 ρ =2.5 ρ =3.0 ρ =3.5 ρ =4.0

Uniform 70.54% 58.43% 50.73% 43.16% 33.24% 25.98% 20.66% 17.12%
Additive Noise (83.97% (78.70% (73.05% (73.05% (69.56% (62.48% (53.38% (53.38%

@ σ=0.5) @ σ=1.0) @ σ=1.75) @ σ=1.75) @ σ=2.0) @ σ=2.5) @ σ=3.5) @ σ=3.5)

Uniform 71.09% 60.36% 52.86% 47.08% 42.26% 38.55% 33.76% 27.12%
Additive Noise (78.79% (74.27% (65.88% (63.32% (57.49% (57.49% (57.49% (57.49%

(+Stability Training) @ σ=0.5) @ σ=0.75) @ σ=1.5) @ σ=1.75) @ σ=2.5) @ σ=2.5) @ σ=2.5) @ σ=2.5)

DSSN - Our Method 72.25% 63.07% 56.21% 51.33% 46.76% 42.66% 38.26% 33.64%
(81.50% (77.85% (71.17% (67.98% (65.40% (65.40% (65.40% (65.40%
@ σ=0.75) @ σ=1.25) @ σ=2.25) @ σ=3.0) @ σ=3.5) @ σ=3.5) @ σ=3.5) @ σ=3.5)

DSSN - Our Method 71.23% 61.04% 54.21% 49.39% 45.45% 42.67% 39.46% 36.46%
(+Stability Training) (79.00% (71.29% (66.04% (64.26% (59.88% (57.16% (56.29% (54.96%

@ σ=0.5) @ σ=1.0) @ σ=1.5) @ σ=1.75) @ σ=2.5) @ σ=3.0) @ σ=3.25) @ σ=3.5)

Table 3.1: Summary of results for CIFAR-10. Matching Yang et al. [5], we test on 15 noise levels
(σ ∈ {0.15,0.25n for 1 ≤ n ≤ 14}). We report the best certified accuracy at a selection of radii ρ,
as well as the clean accuracy and noise level of the associated classifier. Our method dominates
at all radii, although stability training seems to be less useful for our method. Note that these
statistics are based on reproducing Yang et al. [5]’s results; they are all within ±1.5 percentage
points of Yang et al. [5]’s reported statistics.

Figure 3.5: Results on ImageNet. We report results at three noise levels, with and without sta-
bility training. Our method dominates in all settings: however, especially at large noise, stability
training seems to hurt our clean accuracy, rather than help it.
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Figure 3.6: Comparison on CIFAR-10 of additive smoothing [5] to DSSN, as well as SSN with
random, independent splitting noise, using the estimation scheme from [5]. At very small levels
of noise (σ = 0.15), there is little difference between the methods: in fact, with stability training,
additive smoothing slightly outperforms DSSN. At intermediate noise levels, additive noise and
independent SSN perform very similarly, but DSSN outperforms both. This suggests that, at
this level, the primary benefit of DSSN is to eliminate estimation error (Section 3.2). At high
noise levels, the largest gap is between additive noise and independent SSN, suggesting that
in this regime, most of the performance benefits of DSSN are due to improved base classifier
performance (Section 3.3.2.1).

ments on it such as [30]); as well as poisoning attacks under a label-flipping [6] or whole-

sample insertion/deletion [74] (Chapter 7 of this dissertation) threat-model. These threat

models are “ℓ0-like” because the attacker entirely corrupts some portion of the data, rather

than just distorting it. Our work in Chapters 6 and 7, both published before this chapter was

originally written, deal with this by ensuring that only a bounded fraction of base classifica-

tions can possibly be simultaneously exposed to any of the corrupted data. In the respective

cases of patch adversarial attacks and poisoning attacks, it is shown that this can be done

with a finite number of base classifications. Rosenfeld et al. [6]’s method, by contrast, is

based on the randomized ℓ0 certificate proposed by Lee et al. [1], and is discussed below.

• Certificates for restricted classes of base classifiers. This includes k-nearest neighbors

[75] (for ℓ2 poisoning attacks) and linear models [6] (for label-flipping poisoning attacks).
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In these cases, existing randomized certificates are evaluated exactly for a restricted set of

base classifier models. (Cohen et al. [32] and Lee et al. [1]’s methods, respectively.) It

is notable that these are both poisoning certificates: in the poisoning setting, where the

corrupted data is the training data, true randomized smoothing is less feasible, because it

requires training very large ensemble of classifiers to achieve desired statistical properties.

Weber et al. [75] also attempts this directly, however.

• Certificates requiring time exponential in dimension d. This includes, in particular, a

concurrent work, [76], which provides deterministic ℓ2 certificates. In order to be practical,

this method requires that the first several layers of the network be Lipschitz-bounded by

means other than smoothing. The “smoothing” is then applied only in a low-dimensional

space. The authors note that this method is unlikely to scale to ImageNet.
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Chapter 4: Provable Adversarial Robustness for Fractional ℓp Threat Models1

In this work, we extend the results of the previous chapter to cover ℓp “norms” for p < 1.

More precisely, we develop a deterministic smoothing method that guarantees Lipschitzness with

respect to the ℓpp metric for p ∈ (0,1), defined as:

ℓpp(x,y) =
d

∑
i=1
∣xi − yi∣

p (4.1)

This immediately provides ℓpp-metric certificates, which can be converted to ℓp certificates by

simply raising the radius to the power of 1/p. Our technique is in fact more general than this, and

can be applied to ensure the Lipschitz continuity of a function to a larger family of “elementwise-

concave metrics” defined as the sum of concave functions of coordinate differences.

While not as frequently encountered as other ℓp norms, ℓp “norms” for p ∈ (0,1) (which

are in fact quasi-norms, because they violate the triangle inequality) are used in several machine-

learning applications. Some known applications of ℓp, (p < 1) “norms” in machine learning

include clustering [81, 82], dimensionality reduction [83], and image retrieval [84]. While ℓp,

p ∈ (0,1) adversarial attacks have yet to emerge in practice, [85] have recently proposed an

algorithm for ℓp-constrained optimization with p < 1: the authors mention that this could be

used to generate adversarial examples. This suggests that developing defenses to such attacks

1A form of chapter has been published in AISTATS 2022 [80].
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is a valuable exercise. Fractional ℓp threat models can also be thought of as “soft” versions of

the widely-considered ℓ0 threat model, allowing the attacker, in addition to entirely changing

some pixels, to slightly impact additional pixels at a “discount”, without paying the full price

in perturbation budget for modifying them. This may be relevant, for example, in physical ℓ0

attacks. Furthermore, readers may find other uses for ensuring that a trained function is ℓpp-

Lipschitz for p < 1.

Our technique inherits some of the limitations of DSSN: notably that the deterministic vari-

ant applies exclusively to bounded, quantized input domains: that is, inputs where the value in

each dimension only assumes values in [0,1] which are multiples of 1/q, for some quantization

parameter q. However, this applies to many domains of practical interest in machine learning,

such as image classification, which typically uses q = 255. Because the image domain is perhaps

the most widely-studied domain of adversarial robustness, this restriction does not pose a signif-

icant limitation in practice. (Even in their randomized variants, both DSSN and this algorithm

assume bounded input domains: that is, inputs x ∈ [0,1]d.)

In Section 4.5, we also consider the p = 0 limit of our algorithm. In that case, we show

that our method simplifies to essentially a deterministic variant of the “randomized ablation” ℓ0

smoothing defense proposed in Chapter 2 [58]. In fact, this deterministic variant was implicitly

discussed in Chapter 7 [74] (published before this chapter was written), where a specialized form

of it is used to provably defend against poisoning attacks. Here, we apply it to evasion attacks

directly. While this simplified ℓ0 defense perhaps somewhat under-performs the randomized

variant, it provides deterministic certificate results at greatly reduced runtime.

In summary, in this work, we propose a novel, deterministic method for ensuring that a

trained function on bounded, quantized inputs is Lipschitz with respect to any ℓpp metric for p ∈
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(0,1). This has immediate applications to provable adversarial robustness: we use our method to

generate robustness certificates for fractional ℓp quasi-norms on CIFAR-10 and ImageNet.

4.1 Notation and Preliminaries

We first specify some notation. Let U(a, b) represent the uniform distribution on the range

[a, b], and let Beta(α,β) represent the beta distribution with parameters α,β. Let ⌊⋅⌋ and ⌈⋅⌉

represent the floor and ceiling functions. Let [d] be the set 1, ..., d. Let 1(condition) be the indicator

function. As in Chapter 3, we use ‘a(mod b)’ with real-valued a, b to indicate a − b⌊a/b⌋.

Next, we define the general set of metrics our technique applies to, of which ℓpp metrics are

an example.

Definition 4.1 (Elementwise-concave metric (ECM)). For any x,y, let δi ∶= ∣xi−yi∣. An element-

wise-concave metric (ECM) is a metric on [0,1]d in the form:

d(x,y) ∶=
d

∑
i=1

gi(δi), (4.2)

where g1, ..., gd ∈ [0,1] → [0,1] are increasing, concave functions with gi(0) = 0.

Note that the ℓpp metrics with p ≤ 1 are ECM’s, with ∀i, gi(z) = zp. Note also that any

distance function meeting the definition of an ECM is in fact a metric, unless some gi is the zero

function.

We also restate the main theorem from Chapter 3 [73], which this chapter extends upon:

Theorem 4.1 ([73]). For any f ∶ [0,1]d × [0,1]d → [0,1], and Λ > 0, let s ∈ [0,Λ]d be a random
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variable, with a fixed distribution such that:

si ∼ U(0,Λ), ∀i. (4.3)

Note that the components s1, ..., sd are not required to be distributed independently from each

other. Then, define:

xupper
i ∶=min(Λ⌈

xi − si
Λ
⌉ + si,1) , ∀i (4.4)

xlower
i ∶=max(Λ⌈

xi − si
Λ
⌉ + si −Λ,0) , ∀i (4.5)

p(x) ∶= E
s
[f(xlower,xupper)] . (4.6)

Then, p(.) is 1/Λ-Lipschitz with respect to the ℓ1 norm.

We provide a visual explanation of this theorem in Figure 4.1. The basic intuition is that the

[0,1] domain of each dimension is divided into “bins”, with dividers at each value si + nΛ,∀n ∈

N. Then, xlower
i and xupper

i are the lower- and upper-limits of the bin which xi is assigned to.

For two points x and y, let δi ∶= ∣xi − yi∣: the probability of a divider separating xi and yi is

min(δi/Λ,1). this means that the probability that (ylower,yupper) differs from (xlower,xupper) is at

most ∥x − y∥1/Λ. The Lipschitz property follows from this.

Note that we have modified the notation from the original statement of the theorem: in

particular, we use Λ instead of 2λ.2 Additionally, we pass both xlower and xupper to the base

classifier f , even though these are redundant when Λ is fixed: this is because we are about to

break this assumption. (We include a proof sketch in the modified notation in Appendix C.1.1.)
2Recall that in Chapter 3, we defined λ such that it corresponded directly to the noise level λ used in [51]: here, it
will be more notationally convenient to used the scaled quantity Λ ∶= 2λ
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Note also that this is a randomized algorithm; we will discuss the derandomization in Section

4.3, where we present the derandomization of our proposed method.

Pr((xi       ,xi        )≠(yi       ,yi        )) = min(δi/Λ,1) 

1

1
0

Λ

δi

upperlower upperlower

Pr((xi       ,xi         )≠(yi       ,yi         )) lower upper lower upper

a)

b)

Figure 4.1: A visual explanation of Theorem 4.1 from Chapter 3, with new notation. (a) Whether
xi and yi belong to the same bin depends on the value of the bin-divider offset si. However,
because this is uniformly distributed, the probability that they are mapped to different bins is
simply δi/Λ, if δi < Λ, and 1 otherwise. (b) Graph of the probability that xi and yi are assigned to
different bins, as a function of their difference δi.

4.2 Proposed Method

In this paper, we modify the algorithm described in Theorem 4.1 by allowing Λ itself to

vary randomly in each dimension, according to a fixed distribution Di:

Λi ∼ Di

si ∼ U(0,Λi)

(4.7)

The reason for doing this is that, by mixing the smoothing distributions for various Λ in each

dimension, the probability that xi and yi are assigned to different “bins” assumes a concave
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relationship to their difference δi, as illustrated in Figure 4.2. In fact, by doing this, we are

able to make the probability of splitting xi and yi to be any arbitrary smooth concave increasing

function of δi, allowing us to enforce Lipschitzness with respect to arbitrary ECMs, as shown in

the upcoming Theorem 4.2.

Note that, if we allow the support of Di to be (0,∞), there is some redundancy in the noise

model specified by Equation 4.7: in particular, whenever Λi > 1, there are at most two bins, with

the single divider si uniformly on the range [0,1] with probability 1/Λi and otherwise with the

entire range [0,1] falling into one bin. For simplicity, therefore, we can allow the support of Di

to be (0,1] ∪ {∞}, where Λi = ∞ signifies to consider the entire domain as one bin. Formally,

our noise process is defined as follows:

Definition 4.2 (Variable-Λ smoothing). For any f ∶ [0,1]d × [0,1]d → [0,1], and distribution

D = {D1, ...Dd}, such that each Di has support (0,1] ∪ {∞}, let:

Λi ∼ Di (4.8)

If Λi = ∞, then xupper
i ∶= 1, xlower

i ∶= 0, otherwise:

si ∼ U(0,Λi) (4.9)

xupper
i ∶=min(Λi⌈

xi − si
Λi

⌉ + si,1) (4.10)

xlower
i ∶=max(Λi⌈

xi − si
Λi

⌉ + si −Λi,0) (4.11)

(4.12)
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=
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Pr((xi       ,xi         )≠(yi       ,yi         )) lower

+

1

1
0

(Λi   = ∞) δi

with prob. 1/4

upper lower upper

Pr((xi       ,xi         )≠(yi       ,yi         )) lower upper lower upper

Pr((xi       ,xi         )≠(yi       ,yi         )) lower upper lower upper

Pr((xi       ,xi         )≠(yi       ,yi         )) lower upper lower upper

Pr((xi       ,xi         )≠(yi       ,yi         )) lower upper lower upper

Figure 4.2: A mixture of various values of Λ creates a concave relationship between the proba-
bility that xi and yi are distinguishable to the base classifier and the difference δi between their
values. This is because the slope of each of the curves in the mixture goes to zero at δi = Λi.
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The smoothed function is defined as:

pD,f(x) ∶= E
s
[f(xlower,xupper)] . (4.13)

Note that we make no assumptions about the joint distributions of Λ or of s.

We can now present our main theorem, describing how to ensure Lipschitzness with respect

to an ECM:

Theorem 4.2. Let d(⋅, ⋅) be an ECM defined by concave functions g1, ..., gd. LetD and f(⋅) be the

Λ-distribution and base function used for Variable-Λ smoothing, respectively. Let x,y ∈ [0,1]d

be two points. For each dimension i, let δi ∶= ∣xi − yi∣. Then:

(a) The probability that (xlower
i , xupper

i ) ≠ (ylower
i , yupper

i ) is given by Prsplit
i (δi), where:

Prsplit
i (z) ∶= PrDi

(Λi ≤ z) + zEDi
[
1(Λi∈(z,1])

Λi

] (4.14)

(b) If ∀i ∈ [d] and ∀z ∈ [0,1],

Prsplit
i (z) ≤ gi(z), (4.15)

then, the smoothed function pD,f(⋅) is 1-Lipschitz with respect to the metric d(⋅, ⋅).

(c) Suppose gi is continuous and twice-differentiable on the interval (0,1]. Let Di be con-

structed as follows:

• On the interval (0,1), Λi is distributed continuously, with pdf function:

pdfΛi
(z) = −zg′′i (z) (4.16)
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• Pr(Λi = 1) = g′i(1)

• Pr(Λi = ∞) = 1 − gi(1)

then,

Prsplit
i (z) = gi(z) ∀z ∈ [0,1]. (4.17)

If all Di are constructed this way, then the conclusion of part (b) above applies.

Here, Prsplit
i (δi) represents the probability that the base classifier is given the information

necessary to distinguish xi from yi; in order to ensure that the base classifier receives as much

information as possible, we would like to design Di to make Prsplit
i (z) as large as possible, for all

z ∈ [0,1]. However, if we want our smoothed classifier to have the desired Lipschitz property,

Prsplit
i (z) can be no larger than gi(z), as stated in part (b) of the theorem. Part (c) of the theorem

shows how to design Di such that Prsplit
i (z) takes exactly its maximum allowed value, gi(z),

everywhere.

We can apply part (c) of Theorem 4.2 to derive smoothing distributions for Lipschitzness

on fractional-p ℓpp metrics, simply by taking g⋅(z) =
zp

α :

Corollary 4.1. For all p ∈ (0,1], α ∈ [1,∞), if we perform Variable-Λ smoothing with all Λi’s

distributed identically (but not necessarily independently) as follows:

Λi ∼Beta(p,1), with prob.
1 − p

α

Λi =1, with prob.
p

α

Λi =∞, with prob. 1 −
1

α

(4.18)
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then, the resulting smoothed function will be 1/α-Lipschitz with respect to the ℓpp metric3.

We use the fact that 1-Lipschitzness with respect to d(⋅, ⋅)/α is equivalent to 1/α-Lipschitz-

ness with respect to d(⋅, ⋅). We can verify that taking p = 1, α = Λ recovers Theorem 4.1 for

Λ ≥ 1.

4.3 Quantization and Derandomization

While the previous section describes a randomized smoothing scheme for guaranteeing ℓpp-

Lipschitz behavior of a function, in this section, we would like to derandomize this algorithm to

ensure an exact, rather than high-probability, guarantee. For the fixed-Λ case, Chapter 3 derives

such a derandomization in a two-step argument. First, a quantized form of Theorem 4.1 is pro-

posed. To explain this, we reintroduce some notation from Chapter 3. Let q be the number of

quantizations (e.g., 255 for images). Let

[a, b](q) ∶= {i/q ∣ ⌈aq⌉ ≤ i ≤ ⌊bq⌋} . (4.19)

For example, [0,1](q) represents the set {0, 1q ,
2
q , ...,

q−1
q ,1}. Departing slightly from Chap-

ter 3, we define U(q)(a, b) as the uniform distribution on the set [a, b − 1
q ](q) +

1
2q . (e.g., U(q)(0,1)

is uniform on { 1
2q ,

3
2q , ...

2q−1
2q }: these are the midpoints between the quanizations in [0,1](q)).

Chapter 3 shows that Theorem 4.1 applies essentially unchanged in the quantized case: in

particular, if the domain of p(⋅) is restricted to [0,1](q), (and assuming that Λ is a multiple of 1/q)

3If we desire weaker Lipschitz guarantees, i.e., with α < 1, the assumptions of Theorem 4.2-c no longer hold. We
deal with this case in Appendix C.1.3.1, but it is not particularly relevant for our application: note that, as long as
the classifier’s accuracy remains high, then certificates scale with 1/α, so larger α is generally desirable. In our
experiments, we find that the classifier’s accuracy remains high even for α much greater than 1.
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then the theorem still applies when Equation 4.3 is replaced with:

si ∼ U(q)(0,Λ), ∀i. (4.20)

When this quantized form is used, there are only a discrete number of outcomes (= Λq) for each

si.

Building on this, the second step in the argument is to leverage the fact that Theorem

4.1 makes no assumption on the joint distribution of si’s to couple all of the elements of s.

In particular, si’s are set to have fixed offsets from one another (mod Λ). In other words, the

outcomes for each si are cyclic permutations of each other. This preserves the property that

each si is uniformly distributed, while also ensuring that there are now only Λq outcomes of

the smoothing process in total. Then expectation in Equation 4.13 can be evaluated exactly and

efficiently (See Figure 4.3-a.)

For our Variable-Λ method, we use a similar strategy for derandomization: We quantize

the smoothing process in a similar way, modifying Definition 4.2 by redefining the support of Di

as [1q ,1](q) ∪ {∞} and replacing Equation 4.10 with:

si ∼ U(q)(0,Λi). (4.21)

We also define a quanitized version of ECM’s as a metric on [0,1]d(q) where the domain of each gi

is restricted to [0,1](q). This yields a quantized version of Theorem 4.2 which we spell out fully

in Appendix C.1.4. The most significant difference occurs in part (c) where we use quantized

forms of derivatives:
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s1 s2 s3

0.1

0.3

0.5

0.7

0.9

0.1

0.3

0.5

0.7

0.9

0.1

0.3

0.5

0.7

0.9

5 total outcomes for s
(Λ = 1, q = 5)

(Λ1, s1)

0.6, 0.1

10 total outcomes for (Λ, s)
(Λ = 0.4 with prob. 0.2;
 Λ = 0.6 with prob. 0.6;
 Λ =  ∞  with prob. 0.2; q = 5)

(Λ2, s2) (Λ3, s3)

0.6, 0.3

0.6, 0.5

0.6, 0.1

0.6, 0.3

0.6, 0.5

0.4, 0.1

0.4, 0.3

 ∞, N/A

 ∞, N/A

0.6, 0.1

0.6, 0.3

0.6, 0.5

0.6, 0.1

0.6, 0.3

0.6, 0.5

0.4, 0.1

0.4, 0.3

 ∞, N/A

 ∞, N/A

0.6, 0.1

0.6, 0.3

0.6, 0.5

0.6, 0.1

0.6, 0.3

0.6, 0.5

0.4, 0.1

0.4, 0.3

 ∞, N/A

 ∞, N/A

a)     DSSN (Levine and Feizi, 2021)

b)     Proposed Derandomized Method

Figure 4.3: (a) “Fixed offset” method of sampling outcomes in DSSN (Chapter 3). In this case,
the fixed offset is that s1 = s2−0.6 = s3−0.2 (mod Λ) Note that in the sample of 5 outcomes, each
si is uniform on {0.1,0.3,0.5,0.7,0.9}, which is to say, si ∼ U(5)(0,1), as desired. (b) Fixed-
offset sampling applied to variable-Λ smoothing, for a given distribution of Λ. For each (Λi, si),
we list out each possible outcome, in some cases repeated in order to achieve the desired distribu-
tion over Λ. Outcomes are then cyclically permuted for each dimension i to define the coupling.
As in DSSN, the offsets for the cyclic permutations are arbitrary, but fixed throughout training
and testing. Specifically, the offsets are chosen pseudorandomly using a fixed seed. We use a seed
of 0 for experiments in the main text; other values are explored on CIFAR-10 in Appendix C.6.
Note that Theorem 4.3 does not require cyclic permutations: choosing arbitrary permutations for
each si would work. However, storing such arbitrary permutations for each dimension would
be highly memory-intensive. In Appendix C.7, we show (at small-scale: CIFAR-10) that using
arbitrary (pseudorandom) permutations as opposed to cyclic permutations confers no practical
benefit.
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Theorem 4.3 (c). If Di is constructed as follows:

• On the interval [1q ,
q−1
q ](q), Λi is distributed as:

Pr(Λi = z) = −qz[gi(z −
1

q
) + gi(z +

1

q
) − 2gi(z)] ∀z ∈ [

1

q
,
q − 1

q
](q) (4.22)

• Pr(Λi = 1) = q [gi(1) − gi(
q−1
q )]

• Pr(Λi = ∞) = 1 − gi(1)

then

Prsplit
i (z) = gi(z), ∀z ∈ [0,1]. (4.23)

Now that we have defined a quantized version of our smoothing method, we attempt the

coupling step (using the fact that Theorem 4.2 also makes no assumptions about joint distribu-

tions of s or Λ). However, this presents greater challenges than the ℓ1 case. In the ℓ1 case, all

outcomes for each si occur with equal probability 1/(Λq) so we can arbitrarily associate each out-

come for s1 with a unique outcome for s2, and so on (for example using the fixed offset method

described above). However, Equation 4.22 assigns real-number probabilities to each value of Λi.

This means that the outcomes (Λi, si) for each dimension occur with non-uniform probabilities,

making the coupling process more difficult.

One naive solution (at least in the case where gi’s are all the same function, for example

for ℓpp metrics) is to couple the Λi’s such that they are all equal to one another; in other words, the
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sampling process becomes:

Λ ∼ D⋅

si ∼ U(0,Λ) ∀i

(4.24)

We can then apply the fixed-offset coupling of s for each possible value of Λ, evaluating qΛ

outcomes for each value. We then exactly compute the final expectation p(⋅) as the weighted

average of f(⋅) over these outcomes, with the weights for each Λ being determined by Theorem

4.3-c. However, this naive “Global Λ” method underperforms in practice (see Figure 4.4) and

has significant theoretical drawbacks (e.g., notice that this method simply produces the average

of several ℓ1-Lipschitz functions). We explain this further in Appendix C.2.

What we do instead is to design D such that, for some constant integer B, all outcomes

for (Λi, si) each have probability in the form n/B, where n ∈ N. By repeating each outcome n

times, this allows us to generate a list of B total outcomes which occur with uniform probability.

We then couple these using cyclic permutations as in Chapter 3, so that we require a total of B

smoothing samples (See Figure 4.3-b.)

Note that the distribution D given by Equation 4.22 is not necessarily of this form. How-

ever, even though the distribution given by Equation 4.22 is in some sense “optimal” in that it

causes Prsplit
(z) to perfectly match g(z), thereby providing the most information to the base

classifier, it is only necessary for the Lipschitz guarantee that Prsplit
(z) is nowhere greater than

g(z). It turns out (as explained in full detail in Appendix C.3) that for a fixed budget B, finding a

distribution over Λ with all outcomes in the form n/B such that Prsplit
(z) approximates but never

exceeds a given g(z) can be formulated as a mixed integer linear program. Solving these MILP’s
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Figure 4.4: Using a global value for Λ as suggested in Equation 4.24 leads to suboptimal certified
robustness.

yields distributions for Λ that cause Prsplit
(z) to satisfyingly approximate g(z) (see Figure 4.5.)

We also show in the appendix that an arbitrarily close approximation can always be obtained with

B sufficiently large.

4.4 Results

Our results are presented in Table 4.1 and Figure 4.3.

In Table 4.1, we present certificates that our algorithm generates on CIFAR-10 for ℓ1/2 and

ℓ1/3 quasi-norms. As a baseline, we compare to DSSN (Chapter 3) certificates for ℓ1, using norm

inequalities to derive certificates for ℓp (p < 1). In particular we use the standard norm inequality:

ℓp(x,y) ≥ ℓ1(x,y), ∀p ∈ (0,1) (4.25)
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ℓ1/2

ρ 10 20 30 40 50 60 70 80

DSSN 42.69% 35.04% 28.89% 23.46% 18.81% 13.76% 8.38% 1.27%
(From ℓ1) (60.42% (60.42% (60.42% (60.42% (60.42% (60.42% (60.42% (60.42%

@ α=18) @ α=18) @ α=18) @ α=18) @ α=18) @ α=18) @ α=18) @ α=18)

DSSN 41.32% 35.56% 32.07% 28.70% 24.95% 20.79% 16.20% 6.98%
(From ℓ1) (55.38% (50.11% (50.11% (50.11% (50.11% (50.11% (50.11% (50.11%

(Stab. Training) @ α=12) @ α=18) @ α=18) @ α=18) @ α=18) @ α=18) @ α=18) @ α=18)

Variable-Λ 56.74% 49.80% 43.60% 37.97% 32.37% 25.83% 18.19% 5.02%
(73.22% (70.57% (70.57% (70.57% (70.57% (70.57% (70.57% (70.57%
@ α=15) @ α=18) @ α=18) @ α=18) @ α=18) @ α=18) @ α=18) @ α=18)

Variable-Λ 55.21% 48.72% 45.05% 42.26% 38.62% 34.42% 29.01% 16.28%
(Stab. Training) (69.87% (62.74% (60.44% (60.44% (60.44% (60.44% (60.44% (60.44%

@ α=9) @ α=15) @ α=18) @ α=18) @ α=18) @ α=18) @ α=18) @ α=18)

ℓ1/3

ρ 90 180 270 360 450 540 630 720

DSSN 34.98% 27.86% 22.69% 18.49% 14.32% 10.37% 5.99% 0.89%
(From ℓ1) (60.42% (60.42% (60.42% (60.42% (60.42% (60.42% (60.42% (60.42%

@ α=18) @ α=18) @ α=18) @ α=18) @ α=18) @ α=18) @ α=18) @ α=18)

DSSN 35.54% 31.30% 28.06% 24.75% 21.33% 18.27% 13.97% 6.07%
(From ℓ1) (50.11% (50.11% (50.11% (50.11% (50.11% (50.11% (50.11% (50.11%

(Stab. Training) @ α=18) @ α=18) @ α=18) @ α=18) @ α=18) @ α=18) @ α=18) @ α=18)

Variable-Λ 55.66% 49.04% 43.27% 38.21% 33.37% 27.17% 20.27% 6.87%
(74.57% (74.57% (74.57% (74.57% (74.57% (74.57% (74.57% (74.57%
@ α=18) @ α=18) @ α=18) @ α=18) @ α=18) @ α=18) @ α=18) @ α=18)

Variable-Λ 54.63% 49.88% 46.92% 44.11% 41.03% 37.56% 32.46% 20.84%
(Stab. Training) (70.21% (64.30% (64.30% (64.30% (64.30% (64.30% (64.30% (64.30%

@ α=12) @ α=18) @ α=18) @ α=18) @ α=18) @ α=18) @ α=18) @ α=18)

Table 4.1: Certified accuracy as a function of fractional ℓp distance ρ, for p = 1/2 and 1/3, on
CIFAR-10. We train using standard smoothed training [32] as well as with stability training [35].
As a baseline, we compare to certificates computed from the ℓ1 certificates given by DSSN. We
test with α = {1,3,6,9,12,15,18}where 1/α is the Lipschitz constant of the model (as mentioned
in Section 4.2, for DSSN, Λ = α), and report the highest certificate for each technique over all
of the models. In parentheses, we report the the clean accuracy and the α parameter for the
associated model. Complete results for all models are reported in Appendix C.8, as are base
classifier accuracies for each model. For p = 1/2, we also provide results for larger values of α
(up to α = 30) in Appendix C.9.
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g(z) = √z g(z) = √z
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z

g(z)

Figure 4.5: Approximations of g for p = 1
2 and p = 1

3 using a budget of B = 1000 smoothing
samples. In both cases, the true and approximated functions differ by at most 0.02.

Moreover, since our domain is [0,1], we have:

ℓp(x,y) = (∑
i=1

δpi )

1/p

≥ (
d

∑
i=1

δi)

1/p

= (ℓ1(x,y))
1/p, ∀p ∈ (0,1) (4.26)

This means that we can compute the baseline, ℓ1-based certificate as:

Cert.(ℓp) =max(Cert.(ℓ1),Cert.(ℓ1)1/p) (4.27)

Table 4.1 shows that our method outperforms this baseline significantly on CIFAR-10 at

a wide range of scales. For example, at an ℓ1/3 radius of 720, the proposed method has over 14

percentage points higher certified-robust accuracy, using a model that also has over 14 percentage

points higher clean accuracy.

In Figure 4.6, we present certificate results of our method on ImageNet-1000, showing that

our method scales to high-dimensional datasets, with one model able to certify many samples as

robust to an ℓ1/2 radius close to 80 while maintaining over 50% clean accuracy.
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Figure 4.6: Certified Accuracy for variable-Λ smoothing as a function of ℓ1/2 norm on ImageNet-
1000. We use a subset consisting of 500 samples from the validation set for evaluation. 1/α is the
ℓ
1/2
1/2 Lipschitz constant of the classifier logits. As a baseline, we compare to certificates computed

from the ℓ1 certificates given by DSSN. Base classifier accuracies are reported in Appendix C.10.

Our architecture and training settings were largely the same as used in Chapter 3, using

WideResNet-40 for CIFAR-10 and ResNet-50 for ImageNet. One additional challenge was the

presence of both xlower and xupper as inputs to the base classifier f(⋅). DSSN does not need

this, because when Λ is fixed, xlower and xupper can both be computed from their mean. In order

to use the extra information, we doubled the input channels to the first convolutions layer, and

represented the two images in different channels. We explore other representation techniques in

Appendix C.5. An explicit description of our certification procedure is given in Appendix C.4.

We use 1000α smoothing samples to approximate the metric functions g = zp

α , where 1/α

is the Lipschitz constant. Note that, unlike in randomized smoothing, this “sampling” does not

mean that our final certificates are non-deterministic or approximate: they are exact certificates

for the fractional ℓp-quasi-norm.
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4.5 Deterministic ℓ0 Certificates

Consider the following ECM, parameterized by α:

gi(z) ∶=

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 if z = 0

1
α otherwise

(4.28)

Note that the resulting metric d(x,y) is in fact ∥x−y∥0/α. However, because this is not a continu-

ous function, we cannot apply Theorem 4.2-c directly. However, if we still want Prsplit
i (z) = gi(z),

we have two options:

• Option 1: expand the support of Di to include Λi = 0, where, if Λi = 0, then xlower
i = xupper

i =

xi. We can then distribute Λi as:

Λi =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 with prob. 1
α

∞ otherwise

(4.29)

It is easy to verify that in this case, Prsplit
i (z) = gi(z). (In particular, if xi = yi, then

Pr((xlower
i , xupper

i ) ≠ (ylower
i , yupper

i )) = 0; otherwise Pr((xlower
i , xupper

i ) ≠ (ylower
i , yupper

i )) =

Pr(Λ = 0) = 1/α. See Figure 4.7.)

• Option 2: consider the quantized case. Then we can just apply Theorem 4.3-c directly,

yielding

Λi =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1/q with prob. 1
α

∞ otherwise

(4.30)
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1
0 δi

Pr((xi       ,xi         )≠(yi       ,yi         )) lower upper lower upper

Figure 4.7: Diagram of the ℓ0 gi(z) function.

Note that with Λ = 1/q, the original value of the pixel is always preserved, with xupper
i =

xi + 0.5/q, xlower
i = xi − 0.5/q.

In practice, we use Option 2 in our experiments, because we are using quantized im-

age datasets (and for code consistency). However, either option will yield classifiers that 1/α-

Lipschitz with respect to the ℓ0 metric, and in either case we can achieve efficient derandomiza-

tion. If α is an integer (as in our experiments), then we only need B = α smoothing samples:

each pixel is preserved (Λ = 0 or Λ = 1/q) in exactly one sample, and is ablated (Λ = ∞) in the

other α − 1 samples. The choice of which pixels to retain in which samples should be arbitrary,

but should remain fixed throughout training and testing. (This is a direct application of the “fixed

offset” method mentioned above).

In practice, this produces an algorithm which is very similar to the “randomized ablation”

randomized ℓ0 certificate proposed in Chapter 2: in both techniques, we are retaining some pixels

unchanged while completely removing information about other pixels. In fact, this deterministic

variant of “randomized ablation” was previously proposed to provide provable robustness against

poisoning attacks in [74] (Chapter 7 of this dissertation, originally published before this chapter):

in particular, the technique proposed for label-flipping poisoning attacks is basically identical,

with the features being training-data labels rather than pixels: the idea is to train α separate
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Figure 4.8: Sparse and ℓ0 certification results, on CIFAR-10 (top) and ImageNet (bottom). In the
left column, we compare to randomized ablation (Chapter 2), where certificates were reported
with 95% confidence. Results are directly from that chapter: note that training times, model
architectures, and parameters somewhat differ, in addition to the smoothing method.4 On Ima-
geNet, we use a subset of 500 images from the validation set; the results from Chapter 2 are
using a different random subset of 400 validation images, so this may cause some variance. The
parameter k is the number of pixels retained in each image in Randomized Ablation: because
ImageNet has 50176 pixels, the fraction of retained pixels is roughly 50000/k, which function-
ally corresponds to α in our model: it is the appropriate to compare k = 2000 with α = 25, etc.
For CIFAR-10, there are 1024 pixels, so a similar heuristic of α ≈ 1000/k can be used. In the
right column, we show certificates for ℓ0 attacks, where the attack budget represents the number
of individual pixel channels, rather than whole pixels, attacked. We did not test for this threat
model in Chapter 2.

models, each using a disjoint arbitrary subset of labels, and then take the consensus output at

test time. Chapter 7 notes that the certificate is looser than that of Chapter 2, due to the use of a

4This is because the experimental setup in this chapter closely follows that in Chapter 3, which itself closely follows
the setup of Yang et al. (2020) [51] to allow for direct comparisons: note that Yang et al. (2020) was published
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union bound, however there are added benefits of determinism and using only a small number of

smoothing samples (Chapter 2 uses 11,000 smoothing samples (1000 for prediction and 10,000

for bounding); in the case of Chapter 7, each “smoothing sample” requires training a classifier).

Note that, on image data, there are two somewhat different definitions of “ℓ0 adversarial

attack” which are often used: ℓ0 attacks in the space of features, where each feature is a single

color channel of a pixel value, and “sparse” attacks, where the attack magnitude signifies the

number of pixel positions modified, but potentially all channels may be affected. Our method can

be applied in both situations: to certify for “sparse” attacks, simply insure that Λi = Λj if features

i, j are channels of the same pixel: then Pr((xlower
i , xupper

i ) ≠ (ylower
i , yupper

i ) ∪ (xlower
j , xupper

j ) ≠

(ylower
j , yupper

j )) ≤ 1/α.

In Figure 4.8, we compare the certificates generated by this deterministic “sparse” certifi-

cate to the results of Chapter 2. While the reported certificates are somewhat worse, particularly

on ImageNet, note that these are exact, rather than probabilistic certificates, and furthermore that

the number of forward-passes required to certify is significantly reduced, leading to reduced cer-

tification times. For example, on ImageNet, the most computationally-intensive certification for

the deterministic method used 100 forward-passes, and averaged 0.13 seconds / image for certi-

fication using a single GPU. By contrast, each randomized certification from Chapter 2 averaged

16 seconds, using four GPUs (note that this is around four times less efficient than expected,

compared to the proposed derandomized method, based on the number of smoothing samples

alone: the other implementation differences seem to be also be at play, as well as differences in

the time required for noise sampling). We also provide certificates for feature-level ℓ0 attacks,

which we did not test in Chapter 2.

after Chapter 2 [58] was originally published.
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Part II

Scalable Robustness Certificates beyond ℓp Threat Models
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Chapter 5: Wasserstein Smoothing: Certified Robustness against Wasserstein

Adversarial Attacks1

Recently, non-additive threat models [2, 87, 88, 89] have been introduced which aim to

minimize the distance between x and x̃ according to metrics other than ℓp threat models. Among

these attacks is the attack introduced by [2] which considers the Wasserstein distance between x

and x̃, normalized such that the pixel intensities of the image can be treated as probability distri-

butions. Informally, the Wasserstein distance between probability distributions x and x̃ measures

the minimum cost to ‘transport’ probability mass in order to transform x into x̃, where the cost

scales with both the amount of mass transported and the distance over which it is transported

with respect to some underlying metric. The intuition behind this threat model is that shifting

pixel intensity a short distance across an image is less perceptible than moving the same amount

of pixel intensity a larger distance (See Figure 5.1 for an example of a Wasserstein adversarial

attack.)

A variety of practical approaches have been proposed to make classifiers robust against

adversarial attack, including adversarial training [9], defensive distillation [13], and obfuscated

gradients [90]. However, as new defenses are proposed, new attack methods are often developed

which defeat them [12, 18, 19]. While updated defenses are often then proposed [12], in general,

1A form of chapter has been published in AISTATS 2020 [86].
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Figure 5.1: An illustration of Wasserstein adversarial attack [2].

we cannot be confident that newer attacks will not in turn defeat these defenses.

To escape this cycle, approaches have been proposed to develop certifiably robust classifiers

[22, 23, 33, 34, 63, 91]: in these classifiers, for each image x, one can calculate a radius ρ such

that it is provably guaranteed that any other image x̃ with distance less than ρ from x will be

classified similarly to x. This means that no adversarial attack can ever be developed which

produces adversarial examples to the classifier within the certified radius.

One effective approach to develop certifiably robust classification is to use randomized

smoothing with a probabilistic robustness certificate [33, 34, 63, 91]. In this approach, starting

with a base classifier f(x) one uses a smoothed classifier p(x), which represents the expectation

of f(x) over random perturbations of x. Based on this smoothing, one can derive an upper

bound on how steeply the scores assigned to each class by p can change, which can then be used

to derive a radius ρ in which the highest class score must remain highest2.

In this work, we present the first certified defense against Wasserstein adversarial attacks

using an adapted randomized smoothing approach, which we call Wasserstein smoothing. To

develop the robustness certificate, we define a (non-unique) representation of the difference be-

tween two images, based on the flow of pixel intensity necessary to construct one image from

2In practice, samples are used to estimate the expectation p(x), producing an empirical smoothed classifier p̃(x):
the certification is therefore probabilistic, with a degree of certainty dependent on the number of samples.
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another. In this representation, we show that the ℓ1 norm of the minimal flow between two im-

ages is equal to the Wasserstein distance between the images. This allows us to apply existing

ℓ1 smoothing-based defenses 3, by adding noise in the space of these representations of flows.

We show empirically that this gives improved robustness certificates, compared to using a weak

upper bound on Wasserstein distance given by randomized smoothing in the feature space of im-

ages directly. We also show that our Wasserstein smoothing defense protects against Wasserstein

adversarial attacks in practice, with significantly improved empirical robustness compared to

baseline models. For small adversarial perturbations on the MNIST dataset, our method achieves

higher accuracy under adversarial attack than all existing practical defenses for the Wasserstein

threat model. In summary, we make the following contributions:

• We develop a novel certified defense for the Wasserstein adversarial attack threat model.

This is the first certified defense, to our knowledge, that has been proposed for this threat

model.

• We demonstrate that our certificate is nonvacuous, in that it can certify Wasserstein radii

larger than those which can be certified by exploiting a trivial ℓ1 upper bound on Wasser-

stein distance.

• We demonstrate that our defense effectively protects against existing Wasserstein adversar-

ial attacks, compared to an unprotected baseline.

After the publication of this work, [92] used the mathematical results developed here to design

a bound-propagation based Wasserstein certification method which achieves superior results on
3This chapter was originally published before [51] demonstrated that uniform random noise was superior for ℓ1
certification, and therefore uses the Laplace noise method from [34]. However, the techniques demonstrated can
easily be adapted to use uniform noise. In Appendix D.4, we show why the deterministic smoothing method
discussed in Chapter 3 cannot be straightforwardly adapted to the Wasserstein smoothing setting.
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MNIST.

5.1 Background

Let x ∈ [0,1]n×m denote a two dimensional image, of height n and width m. We will

normalize the image such that ∑i∑j xi,j = 1, so that x can be interpreted as a probability distri-

bution on the discrete support of pixel coordinates of the 2D image.4 Also, let [n] denote the set

of integers 1 through n, and let < A,B > denote the elementwise inner product between A and

B. Following the notation of [2], we define the p-Wasserstein distance between x and x′ as:

Definition 5.1. Given two distributions x,x′ ∈ [0,1]n×m, and a distance metric d ∈ ([n]×[m])×

([n] × [m]) → R , the p-Wasserstein distance is:

Wp(x,x
′) = min

Π∈R(n⋅m)×(n⋅m)+
< Π,C >, (5.1)

Π1 = x, ΠT1 = x′,

C(i,j),(i′,j′) ∶= [d ((i, j), (i
′, j′))]

p
.

Note that C(i,j),(i′,j′) is the cost of transporting a mass unit from the position (i, j) to (i′, j′)

in the image. For the purpose of matrix multiplication, we are treating x,x′ as vectors of length

nm. Similarly, the transport plan matrix Π and the cost matrix C are in Rnm×nm.

Intuitively, Π(i,j),(i′,j′) represents the amount of probability mass to be transported from

pixel (i, j) to (i′, j′), while C(i,j),(i′,j′) represents the cost per unit probability mass to transport

4In the case of multi-channel color images, the attack proposed by [2] does not transport pixel intensity between
channels. This allows us to defend against these attacks using our 2D Wasserstein smoothing with little modifica-
tion. See Section 5.5.3, and Corollary D.2 in the appendix.
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this probability. We can choose d(., .) to be any measure of distance between pixel positions in

an image. For example, in order to represent the ℓ1 distance metric between pixel positions, we

can choose:

d ((i, j), (i′, j′)) = ∣i − i′∣ + ∣j − j′∣. (5.2)

Moreover, to represent the ℓ2 distance metric between pixel positions, we can choose:

d ((i, j), (i′, j′)) =
√
(i − i′)2 + (j − j′)2. (5.3)

Our defense directly applies to the 1-Wasserstein metric using the ℓ1 distance as the metric d(., .),

while the attack developed by [2] uses the ℓ2 distance. However, because images are two dimen-

sional, these differ by at most a constant factor of
√
2, so we adapt our certificates to the setting of

[2] by simply scaling our certificates by 1/
√
2. All experimental results will be presented with this

scaling. We emphasize that this it not the distinction between 1-Wasserstein and 2-Wasserstein

distances: this paper uses the 1-Wasserstein metric, to match the majority of the experimental

results of [2].

To develop our certificate, we rely an alternative linear program formulation for the 1-

Wasserstein distance on a two-dimensional image with the ℓ1 distance metric, provided by [93]:

W1(x,x
′) =min

g
∑
(i,j)

∑
(i′,j′)∈N(i,j)

g(i,j),(i′,j′) (5.4)
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where g ≥ 0 and ∀(i, j),

∑
(i′,j′)∈N(i,j)

g(i,j),(i′,j′) − g(i′,j′),(i,j) = x
′
i,j −xi,j

Here, N (i, j) denotes the (up to) four immediate (non-diagonal) neighbors of the position (i, j);

in other words, N (i, j) = {(i′, j′) ∣ ∣i − i′∣ + ∣j − j′∣ = 1}. For the ℓ1 distance in two dimensions,

[93] prove that this formulation is in fact equivalent to the linear program given in Equation 5.1.

Note that only elements of g with ∣i−i′∣+∣j−j′∣ = 1 need to be defined: this means that the number

of variables in the linear program is approximately 4nm, compared to the n2m2 elements of Π

in Equation 5.1. While this was originally used to make the linear program more tractable to

be solved directly, we exploit the form of this linear program to devise a randomized smoothing

scheme in the next section.

5.2 Robustness Certificate

In order to present our robustness certificate, we first introduce some notation. Let δ =

{δvert. ∈ R(n−1)×m,δhoriz. ∈ Rn×(m−1)} denote a local flow plan. It specifies a net flow between

adjacent pixels in an image x, which, when applied, transforms x to a new image x′. See Figure

2 for an explanation of the indexing. For compactness, we write δ ∈ Rr where r = (n − 1)m +

n(m−1) ≈ 2nm, and in general refer to the space of possible local flow plans as the flow domain.

We define the function ∆, which applies a local flow to a distribution.

Definition 5.2. The local flow plan application function ∆ ∈ Rn×m × Rr → Rn×m is defined as:

∆(x,δ)i,j = xi,j + δ
vert.
i−1,j − δ

vert.
i,j + δ

horiz.
i,j−1 − δ

horiz.
i,j (5.5)
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Figure 5.2: Indexing of the elements of the local flow map δ, in relation to the pixels of the image
x, with n =m = 3.

where we let δvert.
0,j = δ

vert.
n,j = δ

horiz.
i,0 = δhoriz.

i,m = 0.5

Note that local flow plans are additive:

∆(∆(x,δ),δ′) =∆(x,δ + δ′) (5.6)

Using this notation, we make a simple transformation of the linear program given in Equation

5.4, removing the positivity constraint from the variables and reducing the number of variables

to ∼ 2nm:

Lemma 5.1. For any normalized probability distributions x,x′ ∈ [0,1]n×m:

W1(x,x
′) = min

δ∶ x′=∆(x,δ)
∥δ∥1 (5.7)

where W1 denotes the 1-Wasserstein metric, using the ℓ1 distance as the underlying distance

5Note that the new image x′ = ∆(x,δ) is not necessarily a probability distribution because it may have negative
components. However, note that normalization is preserved: ∑i∑j x

′

i,j = 1. This is because every component of δ
is added once and subtracted once to elements in x.
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metric d.

Therefore, we can upper-bound the Wasserstein distance between two images using the ℓ1

norm of any feasible local flow plan between them. This enables us to extend existing results

for ℓ1 smoothing-based certificates [34] to the Wasserstein metric, by adding noise in the flow

domain.

Definition 5.3. We denote by L(σ) = Laplace(0, σ)r as the Laplace noise with parameter σ in

the flow domain of dimension r.

Given a classification score function f ∶ Rn×m → [0,1]k, we define p as the Wasserstein-

smoothed classification function as follows:

p(x) = E
δ∼L(σ)

[f(∆(x,δ))] . (5.8)

Let i be the class assignment of x using the Wasserstein-smoothed classifier p (in other

words, i = argmaxi′ pi′(x)).

Theorem 5.1. For any normalized probability distribution x ∈ [0,1]n×m, if

pi(x) ≥ e
2
√
2ρ/σ max

i′≠i
pi′(x) (5.9)

then for any perturbed probability distribution x̃ such that W1(x, x̃) ≤ ρ, we have:

pi(x̃) ≥max
i′≠i

pi′(x̃). (5.10)

All proofs are presented in the appendix.
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5.3 Intuition: One-Dimensional Case

To provide an intuition about the proposed Wasserstein smoothing certified robustness

scheme, we consider a simplified model, in which the support of x is a one-dimensional ar-

ray of length n, rather than a two-dimensional grid (i.e. x ∈ Rn). In this case, we can denote a

local flow plan δ ∈ Rn−1, so that for x′ =∆(x,δ):

x′i = xi + δi−1 − δi (5.11)

where δ0 = δn = 0. In this one-dimensional case, for any fixed x,x′ (with the normalization

constraint that ∑i xi = ∑i x
′
i = 1), there is a unique solution δ to x′ =∆(x,δ):

δi =
i

∑
j=1

xj −
i

∑
j=1

x′j (5.12)

Note at this reminds us a well-known identity describing optimal transport between two distri-

butions X,Y which share a continuous, one-dimensional support (see Section 2.6 of [94], for

example):

W1(X,Y ) =

∞

∫
−∞

∣FX(z) − FY (z)∣dz (5.13)

where FX , FY denote cumulative density functions. If we apply this result to our discretized case,

with the index i taking the place of z, and apply the identity to x and x′, this becomes:

W1(x,x
′) =

n

∑
i=1
∣

i

∑
j=1

xj −
i

∑
j=1

x′j∣ =
n

∑
i=1
∣δi∣ = ∥δ∥1 (5.14)
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Figure 5.3: An illustrative example in one dimension. r (black) denotes a fixed reference distri-
bution. With this starting distribution fixed, x (red) and x̃ (blue) can both be uniquely represented
in the flow domain as δx and δx̃. Note that the Wasserstein distance between x and x̃ is then
equivalent to the ℓ1 distance between δx and δx̃. In the one-dimensional case, this shows that
we can transform the samples into a space where the Wasserstein threat model is equivalent to
the ℓ1 metric. We can then use a pre-existing ℓ1 certified defense in the flow space to defend our
classifier.

By the uniqueness of the solution given in Equation 5.12, for any x, we can define δx as the

solution to x = ∆(r,δ), where r is an arbitrary fixed reference distribution (e.g. suppose r1 =

1, ri = 0 for i ≠ 1). Therefore, instead of operating on the images x, x̃ ∈ Rn directly, we can

equivalently operate on δx and δx̃ in the flow domain instead. We will therefore define a flow-

domain version of our classifier f :

fflow(δ) ∶= f(∆(r,δ)). (5.15)

We will now perform classification entirely in the flow-domain, by first calculating δx and then

using fflow(δx) as our classifier. Now, consider x and an adversarial perturbation x̃, and let δ be
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the unique solution to x̃ =∆(x,δ). By Equation 5.14, ∥δ∥1 =W1(x, x̃). Then:

x̃ =∆(x,δ) =∆(∆(r,δx),δ) =∆(r,δx + δ) (5.16)

where the second equality is by Equation 5.6. Moreover, by the uniqueness of Equation 5.12,

δx̃ = δx + δ, or δx̃ − δx = δ. Therefore

∥δx̃ − δx∥1 =W1(x, x̃). (5.17)

In other words, if we classify in the flow-domain, using fflow, the ℓ1 distance between point

δx,δx̃ is the Wasserstein distance between the distributions x and x̃. Then, we can perform

smoothing in the flow-domain, and use the existing ℓ1 robustness certificate provided by [34], to

certify robustness. Extending this argument to two-dimensional images adds some complication:

images can no longer be represented uniquely in the flow domain, and the relationship between ℓ1

distance and the Wasserstein distance is now an upper bound. Nevertheless, the same conclusion

still holds for 2D images as we state in Theorem 5.1. Proofs for the two-dimensional case are

given in the appendix.

5.4 Practical Certification Scheme

To generate probabilistic robustness certificates from randomly sampled evaluations of the

base classifier f , we adapt the procedure outlined by [63] for ℓ2 certificates. We consider a hard

smoothed classifier approach: we set fj(x) = 1 if the base classifier selects class j at point x,
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Noise Wasserstein Smoothing Wasserstein Smoothing Wasserstein Smoothing
standard deviation Classification accuracy Median certified Base Classifier

σ (Percent abstained) robustness Accuracy

0.005 98.71(00.04) 0.0101 97.94
0.01 97.98(00.19) 0.0132 94.95
0.02 93.99(00.58) 0.0095 79.72
0.05 74.22(03.95) 0 43.67
0.1 49.41(01.29) 0 30.26
0.2 31.80(08.40) N/A 25.13
0.5 22.58(00.84) N/A 22.67

Noise Laplace Smoothing Laplace Smoothing Laplace Smoothing
standard deviation Classification accuracy Median certified Base Classifier

σ (Percent abstained) robustness Accuracy

0.005 98.87(00.06) 0.0062 97.47
0.01 97.44(00.19) 0.0053 89.32
0.02 91.11(01.29) 0.0030 67.08
0.05 61.44(07.45) 0 33.80
0.1 34.92(09.36) N/A 25.56
0.2 24.02(05.67) N/A 22.85
0.5 22.57(01.05) N/A 22.70

Table 5.1: Certified Wasserstein Accuracy of Wasserstein and Laplace smoothing on MNIST

and fj(x) = 0 otherwise. We also use a stricter form of the condition given as Equation 5.9:

pi(x) ≥ e
2
√
2ρ/σ(1 − pi(x)) (5.18)

This means that we only need to provide a probabilistic lower bound of the expectation of the

largest class score, rather than bounding every class score. This reduces the number of samples

necessary to estimate a high-confidence lower bound on pi(x), and therefore to estimate the

certificate with high confidence. [63] provides a statistically sound procedure for this, which we

use: refer to that paper for details. Note that, when simply evaluating the classification given by

p(x), we will also need to approximate p using random samples. [63] also provides a method

to do this which yields the expected classification with high confidence, but may abstain from
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classifying. We will also use this method when evaluating accuracies.

Since the Wasserstein adversarial attack introduced by [2] uses the ℓ2 distance metric, to

have a fair performance evaluation against this attack, we are interested in certifying a radius in

the 1-Wasserstein distance with underlying ℓ2 distance metric, rather than ℓ1. Let us denote this

radius as ρ2. In two-dimensional images, the elements of the cost matrix C in this metric may be

smaller by up to a factor of
√
2, so we have:

ρ2 ≥
1
√
2
ρ (5.19)

Therefore, by certifying to a radius of ρ =
√
2ρ2, we can effectively certify against the ℓ2 metric

1-Wasserstein attacks of radius ρ2. (We provide a more formal proof of this claim as Corollary

D.3 in the appendix.) Our condition then becomes:

pi(x) ≥ e
4ρ2/σ(1 − pi(x)). (5.20)

5.5 Experimental Results

In all experiments, we use 10,000 random noised samples to predict the smoothed classi-

fication of each image; to generate certificates, we first use 1000 samples to infer which class

has highest smoothed score, and then 10,000 samples to lower-bound this score. All probabilistic

certificates and classifications are reported to 95% confidence. The model architectures used for

the base classifiers for each data set are the same as used in [2]. When reporting results, median
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(b) Wasserstein Smoothing

Figure 5.4: Schematic diagram showing the difference between Laplace and Wasserstein smooth-
ing on the variance of the aggregate pixel intensity in a square region, outlined in red. See the
text of Section 5.5.1. In both figures, pixels are represented as square tiles. In (a), noise on in-
dividual pixels is represented with circles, which are gray if they do not contribute to the overall
pixel intensity in the outlined region, but are cyan if they do contribute. We see that the noise is
proportional (in variance) to the area of the region. In (b), under Wasserstein smoothing, noise
is represented by arrows between pixels which exchange intensity. Again, these are gray if they
do not contribute to the overall pixel intensity in the outlined region, and cyan if they do con-
tribute. Note that arrows in the interior do not contribute to the aggregate intensity, because equal
values are added and subtracted from adjacent pixels. The noise is proportional (in variance) to
the perimeter of the region. This provides a plausible intuition as to why base classifiers, when
given noisy images, classify with higher accuracy on Wasserstein smoothed images compared to
Laplace smoothed images, as seen empirically in Table 5.1.

certified accuracy refers to the maximum radius ρ2 such that at least 50% of classifications for

images in the data set are certified to be robust to at least this radius, and these certificates are for

the correct ground truth class. If over 50% of images are not certified for the correct class, this

statistic is reported as N/A.
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5.5.1 Comparison to naive Laplace Smoothing

Note that one can derive a trivial but sometimes tight bound, that, under any ℓp distance

metric, if W1(x, x̃) ≤ ρ/2, then ∥x−x̃∥1 ≤ ρ. (See Corollary D.1 in the appendix.) This enables us

to write a condition for ρ2-radius Wasserstein certified robustness by applying Laplace smoothing

directly, and simply converting the certificate. In our notation, this condition is:

pLaplace
i (x) ≥ e4

√
2ρ2/σ(1 − pLaplace

i (x)) (5.21)

where pLaplace(x) is a smoothed classifier with Laplace noise added to every pixel independently.

It may appear as if our Wasserstein-smoothed bound should only be an improvement over this

bound by a factor of
√
2 in the certified radius ρ2. However, as shown in Table 5.1, we in fact

improve our certificates by a larger factor. This is because, for a fixed noise standard deviation,

the base classifier is able to achieve a higher accuracy after adding noise in the flow-domain,

compared to adding noise directly to the pixels. When adding noise in the flow-domain, we add

and subtract noise in equal amounts between adjacent pixels, preserving more information for the

base classifier.

To give a concrete example, consider some k×k square patch of an image. Suppose that the

overall aggregate pixel intensity in this patch (i.e. the sum of the pixel values) is a salient feature

for classification (This is a highly plausible situation: for example, in MNIST, this may indicate

whether or not some region of an image is occupied by part of a digit.) Let us call this feature µ,

and calculate the variance of µ in smoothing samples under Laplace and Wasserstein smoothing,

both with variance σ2. Under Laplace smoothing (Figure 5.4-a), k2 independent instances of
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Laplace noise are added to µ, so the resulting variance will be k2σ2: this is proportional to the

area of the region. In the case of Wasserstein smoothing, by contrast, probability mass exchanged

between between pixels in the interior of the patch has no effect on the aggregate quantity µ.

Instead, only noise on the perimeter will affect the total feature value µ: the variance is therefore

4kσ2 (Figure 5.4-b). Wasserstein smoothing then reduces the effective noise variance on the

feature µ by a factor of O(k).

5.5.2 Empirical adversarial accuracy

We measure the performance of our smoothed classifier against the Wasserstein-metric ad-

versarial attack proposed in [2], and compare to models tested in that work. Results are presented

in Figure 5.5. For testing, we use the same attack parameters as in [2]: the “Standard” and “Ad-

versarial Training” results are therefore replications of the experiments from that paper, using the

publicly available code and pretrained models.

In order to attack our hard smoothed classifier, we adapt the method proposed by [33]:

in particular, note that we cannot directly calculate the gradient of the classification loss with

respect to the image for a hard smoothed classifier, because the derivatives of the logits of the

base classifier are not propagated. Therefore, we must instead attack a soft smooth classifier:

we take the expectation over samples of the softmaxed logits of the base classifier, instead of the

final classification output. In each step of the attack, we use 128 noised samples to estimate this

gradient, as used in [33].

In the attack proposed by [2], the images are attacked over 200 iterations of projected gra-

dient descent, projected onto a Wasserstein ball, with the radius of the ball every 10 iterations.
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Figure 5.5: Comparison of empirical robustness on MNIST to models from [2]. Wasserstein
smoothing is with σ = 0.01. (This is the amount of noise which maximizes certified robustness,
as seen in Table 5.1.)

The attack succeeds, and the final radius is recorded, once the classifier misclassifies the image.

In order to preserve as much of the structure (and code) of the attack as possible to provide a fair

comparison, it is thus necessary for us to evaluate each image using our hard classifier, with the

full 10,000 smoothing samples, at each iteration of the attack. We count the classifier abstaining

as a misclassification for these experiments. However, note that this may somewhat underesti-

mate the true robustness of our classifier: recall that our classifier is nondeterministic; therefore,

because we are repeatedly evaluating the classifier and reporting a perturbed image as adversarial

the first time it is missclassified, we may tend to over-count misclassifications. However, because

we are using a large number of noise samples to generate our classifications, this is only likely

to happen with examples which are close to being adversarial. Still, the presented data should

be regarded as a lower bound on the true accuracy under attack of our Wasserstein smoothed

classifier.

In Figure 5.5, we note two things: first, our Wasserstein smoothing technique appears to

be an effective empirical defense against Wasserstein adversarial attacks, compared to an un-

protected (’Standard’) network. (It is also more robust than the binarized and ℓ∞-robust models
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Noise standard deviation Classification accuracy Median certified Base Classifier
σ (Percent abstained) robustness Accuracy

0.00005 87.01(00.24) 0.000101 86.02
0.0001 83.39(00.42) 0.000179 82.08
0.0002 77.57(00.66) 0.000223 75.46
0.0005 68.75(01.01) 0.000209 65.12
0.001 61.65(01.77) 0.000127 57.03

Table 5.2: Certified Wasserstein Accuracy of Wasserstein smoothing on CIFAR10

tested by [2]: see appendix.) However, for large perturbations, our defense is less effective than

the adversarial training defense proposed by [2]. This suggests a promising direction for future

work: [33] proposed an adversarial training method for smoothed classifiers, which could be

applied in this case. Note however that both Wasserstein adversarial attacks and smoothed ad-

versarial training are computationally expensive, so this may require significant computational

resources.

Second, the median radius of attack to which our smoothed classifier is empirically robust is

larger than the median certified robustness of our smoothed classifier by two orders of magnitude.

This calls for future work both to develop improved robustness certificates as well as to develop

more effective attacks in the Wasserstein metric.

5.5.3 Experiments on color images (CIFAR-10)

[2] also apply their attack to color images in CIFAR-10. In this case, the attack does not

transport probability mass between color channels: therefore, in our defense, it is sufficient to add

noise in the flow domain to each channel independently to certify robustness (See Corollary D.2

in the appendix for a proof of the validity of this method). Certificates are presented in Table 5.2,

while empirical robustness is presented in Figure 5.6. Again, we compare directly to models from
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Figure 5.6: Comparison of empirical robustness on CIFAR-10 to models from [2]. Wasserstein
smoothing is with σ = 0.0002. (This is the amount of noise which maximizes certified robustness,
as seen in Table 5.2.) Note that we test on a random sample of 1000 images from CIFAR-10,
rather than the entire data set.

[2]. We note that again, empirically, our model significantly outperforms an unprotected model,

but is not as robust as a model trained adversarially. We also note that the certified robustness is

orders of magnitude smaller than computed for MNIST: however, the unprotected model is also

significantly less robust empirically than the equivalent MNIST model.
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Chapter 6: (De)Randomized Smoothing for Certifiable Defense against

Patch Attacks1

6.1 Introduction

In many instances the threat models considered for adversarial attacks (e.g. small ℓ∞ dis-

tortions to every pixel of an image) implicitly require the attacker to be able to directly interfere

with the input to a neural network. This limits practicality of such attacks as well as defenses

against them. On the other hand, the development of physical adversarial attacks [11], in which

small visible changes are made to real world objects in order to disrupt classification of im-

ages of these objects, represents a more concerning security threat. Unlike ℓp attacks, physical

adversarial attacks can be perceptible (e.g. adding an adversarial sticker on a stop sign is a per-

ceptible change). Nevertheless, humans would still correctly classify the attacked image while

the classification model would fail to predict the correct label. Therefore, the attacked image is

an adversarial example.

Physical adversarial attacks can often be modeled as “patch” adversarial attacks, in which

the attacker can make arbitrary changes to pixels within a region of bounded size. Indeed, there

is often a direct relationship between the two: for example, the universal patch attack proposed

by [52] is an effective physical sticker attack. The attack method proposed in [52] is universal

1A form of chapter has been published in NeurIPS 2020 [29].
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in a sense that pixels of the adversarial patch do not depend on the attacked image. Image-

specific patch attacks have also been proposed, such as LaVAN [53], which reduces ImageNet

classification accuracy to 0% using only a 42×42 pixel square patch (on images of size 299×299).

In this paper, we consider all attacks (image-specific or universal) on square patches of size m×m.

Practical defenses against patch attacks have been proposed.[54, 55] For the aforemen-

tioned 42×42 pixel attacks on ImageNet, [55] claims the current state-of-the-art practical defense.

However, [4] has recently broken this defense, reducing the classification accuracy on ImageNet

to 14%. In the same work, [4] also proposes the first certified defense against patch adversarial

attacks, which uses interval bound propagation [23]. In a certifiably robust classification scheme,

in addition to providing a classification for each image, the classifier may also return an assurance

that the classification will provably not change under any distortion of a certain magnitude and

threat model. One then reports both the clean accuracy (normal accuracy) of the model, as well

as the certified accuracy (percent of images which are both correctly classified, and for which it

is guaranteed that the classification will not change under a certain attack type). Unlike practical

defenses, certified defenses guarantee that no future adversary (under a certain threat model) will

break the defense.

The certified defense proposed by [4], however, does not scale well to practical classifica-

tion tasks on complex inputs such as CIFAR-10 or ImageNet samples. Specifically, while this

certified defense performs well on MNIST, it achieves poor certified accuracy on CIFAR-10 and,

to quote from the paper itself, “is unlikely to scale to ImageNet.” In this work, we propose a

certified defense against patch attacks which overcomes these issues. In particular, our certifiable

defense method leads to the following results:
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Dataset and Attack Size Chiang et al. [4] Our method
Certified Acc (Clean Acc) Certified Acc (Clean Acc)

MNIST 5 × 5 60.4% (92.0%) 52.44% (96.54%)

CIFAR 5 × 5 30.3% (47.8%) 57.58% (83.82%)

ImageNet 42 × 42 N/A 13.9% (44.6%)

Table 6.1: Comparison of the certified accuracy of our defense vs. [4]. For each technique, we
report the certified and clean accuracies of the model with parameters giving the highest certified
accuracy.

Notably, our method achieves a more than 27 percentage point increase in certified ro-

bustness on CIFAR-10 compared to [4]. Moreover, our method has top-1 certified accuracy on

ImageNet classification which is approximately equal to the 14% empirical accuracy of the state-

of-the art practical defense [55] under the attack proposed by [4] (although our clean accuracy

is lower, 44% vs. 71%). On MNIST, which is often regarded as a toy dataset in deep learning

applications, our method also achieves a relatively high certified robustness (but not as high as the

method of [4]) and clean accuracy (slightly higher than that of [4]). Further, the certified defense

proposed by [4] also has a computationally expensive training algorithm: the training time for the

reported best model was 8.4 GPU hours for MNIST, and 15.4 GPU hours for CIFAR-10, using

NVIDIA 2080 Ti GPUs. Our models, by contrast, took approximately 1.0 GPU hour to train on

MNIST, and 2.5 GPU hours to train on CIFAR-10, on the same model of GPU.

Our certifiably robust classification scheme is based on randomized smoothing, a class of

certifiably robust classifiers which have been proposed for various threat models, including ℓ2

[33, 63, 91], ℓ1 [64] and ℓ0 [1] and Wasserstein (Chapter 5) metrics. All of these methods rely on

a similar mechanism where noisy versions of an input image x are used in the classification. Such

noisy inputs are created either by adding random noise to all pixels [64] or by removing (ablating)

some of the pixels (Chapter 2 above). A large number of noisy images are then classified by a
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base classifier and then the consensus of these classifications is reported as the final classification

result. For an adversarial image x′ at a bounded distance from x, the probability distributions

of possible noisy images which can be produced from x and x′ will substantially overlap. This

implies that, if a sufficiently large fraction of noisy images derived from x are classified to some

class c, then with high confidence, a plurality of noisy images derived from x′ will also be

assigned to this class.

Patch adversarial attacks can be considered a special case of ℓ0 (sparse) adversarial attacks:

in an ℓ0 attack, the adversary can choose a limited number of pixels and apply unbounded distor-

tions to them. A patch adversarial attack is therefore a sparse adversarial attack where the attacker

is additionally constrained to selecting only a block of adjacent pixels to attack, rather than any

arbitrary pixels. One state-of-the-art certified defense against sparse adversarial attacks is the

randomized smoothing method proposed in Chapter 2. In this method, a base classifier, f(x), is

trained to make classifications based on only a small number of independently randomly-selected

pixels: the rest of the image is ablated, meaning that it is encoded as a null value. At test time,

the final classification g(x) is taken as the class most likely to be returned by f on a randomly

ablated version of the image. In practice, we find that applying the defense method developed

in Chapter 2 for sparse attacks directly to patch attacks yields poor results (see Figure 6.1). This

is because the defense proposed in Chapter 2 does not incorporate the additional structure of the

attack. For patch attacks, we can use the fact that the attacked pixels form a contiguous square to

develop a more effective defense. In this paper, we propose a structured ablation scheme, where

instead of independently selecting pixels to use for classification, we select pixels in a correlated

way in order to reduce the probability that the adversarial patch is sampled. Empirically, struc-

tured ablation certificates yields much improved certified accuracy to patch attacks, compared to
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Figure 6.1: Clean and Certified accuracies for 5 × 5 adversarial patches on CIFAR-10. We com-
pare our proposed method, Structured Ablation (for a range of its hyperparameter s) with the
certified defense for patch attacks proposed by [4], and with a naive application of the ℓ0 defense
proposed in Chapter 2 (for a range of that technique’s hyperparameter k). Our defense achieves
significantly higher certified and clean accuracies compared to the other methods.

the naive ℓ0 certificate.

By reducing the total number of possible ablations of an image, structured ablation allows

us to de-randomize our algorithm, yielding improved, deterministic certificates. For ℓ0 robust-

ness, Randomized Ablation (Chapter 2) achieves the largest median certificates on MNIST by

using a base classifier f which classifies using only 45 out of 784 pixels. There are (78445
) ≈ 4×1073

ways to make this selection. It is therefore not feasible to evaluate precisely the probability that

f(x) returns any particular class c: one must estimate this based on random samples.2 Using

our proposed methods, the number of possible ablations is small enough so that it is tractable to

classify using all possible ablations: we can exactly evaluate the probability that f(x) returns

each class. Our certificate is therefore exact, rather than probabilistic, so our classifications are

provably robust in an absolute sense.

Determinism provides another benefit: the absence of estimation error increases the certi-

fied accuracies that can be reported. Additionally, because estimation error is no longer a concern,

2Note that this chapter was originally published before the deterministic ℓ0 smoothing method discussed in Section
4.5 was written.
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derandomization allows us to use more rich information from the base classifier without incurring

an additional cost in increased estimation error. We take advantage of this to allow the base clas-

sifier to abstain in cases where it cannot make a high-confidence prediction towards any class.

This leads to substantially increased certificates on MNIST, although the effects on CIFAR-10

are not significant.

After the initial distribution of this work, [30] improved upon it by proposing a tighter cer-

tificate. In a concurrent work to ours, [31] also proposes a method similar to “block smoothing”

proposed below. After the publication of this work, several subsequent works have proposed

improved certification techniques using a similar framework [95, 96, 97, 98].

6.2 Certifiable Defenses against Patch Attacks

6.2.1 Baseline: Sparse Randomized Ablation (Chapter 2)

As mentioned in the introduction, patch attacks can be regarded as a restricted case of ℓ0

attacks. In particular, let ρ be the magnitude of an ℓ0 adversarial attack: the attacker modifies ρ

pixels and leaves the rest unchanged. A patch attack, with an m ×m adversarial patch, is also

an ℓ0 attack, with ρ = m2. We can then attempt to apply existing certifiably robust classification

schemes for the ℓ0 threat model to the patch attack threat model: we simply need to certify to

an ℓ0 radius of ρ = m2. Consider specifically the ℓ0 smoothing-based certifiably robust classifier

introduced in Chapter 2. In this classification scheme, given an input image x, the base classifier

f classifies a large number of distinct randomly-ablated versions of x, in each of which only k

pixels of the original image are randomly and independently selected to be retained and used by

the base classifier f . Therefore, for any choice of ρ pixels that the attacker could choose to attack,
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the probability that any of these ρ pixels is also one of the k pixels used in f ’s classification is:

∆ ∶= Pr(f uses attacked pixels)

= 1 −
(
hw−ρ
k
)

(
hw
k
)
≈ k

ρ

hw
=
km2

hw
(k, ρ << hw),

where ρ is the number of attacked pixels, k is the number of retained pixels used by the base

classifier, and the overall dimensions of the input image x are h×w. To understand this, note that

the classifier has k opportunities to choose an attacked pixel, and ρ out of hw pixels are attacked.

Clearly, if f does not use any of the attacked pixels, then its output will not be corrupted by

the attacker. Therefore, the attacker can change the output of f(x) with probability at most

∆. Let c be the majority classification at x (i.,e., g(x) = c). If f(x) = c with probability

greater than 0.5 + ∆, then for any distorted image x′, one can conclude that f(x′) = c with

probability greater than 0.5, and therefore that g(x′) = c. As discussed in the introduction, while

this technique produces state-of-the-art guarantees against general ℓ0 attacks, it yields rather poor

certified accuracies when applied to patch attacks, because it does not take advantage of the

structure of the attack (See Figure 6.1; data for MNIST are provided in supplementary material.).

6.2.2 Proposed Method: Structured Ablation

To exploit the restricted nature of patch attacks, we propose two structured ablation meth-

ods, which select correlated groups of pixels to reduce the probability ∆ that the adversarial patch

is sampled:

• Block Smoothing: In this method, we select a single s × s square block of pixels, and ablate

the rest of the image. The number of retained pixels is then k = s2. Note that for an m ×m
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adversarial patch, out of the h ×w possible selections for blocks to use for classification, (m +

s − 1)2 of them will intersect the patch. Thus, we have:

∆block =
(m + s − 1)2

hw
=
(m +

√
k − 1)2

hw
<
4max(m2, k)

hw
. (6.1)

As illustrated in Figure 6.2, this implies a substantially decreased probability of intersecting

the adversarial patch, compared to sampling k pixels independently.

• Band Smoothing: In this method, we select a single band (a column or a row) of pixels of

width s, and ablate the rest of the image. In the case of a column, the number of retained pixels

is then k = sh. For an m ×m adversarial patch, out of the w possible selections for bands to

use for classification, m + s − 1 of them will intersect the patch. Then we have:

∆col. =
m + s − 1

w
=
m + k/h − 1

w
<
2max(hm,k)

hw
. (6.2)

For both of these methods, it is tractable to use the base classifier to classify all possible ablated

versions of an image (i.e. hw and w possible ablations for block and column smoothing, respec-

tively). This allows us to exactly compute the smoothed classifier, g(x), yielding deterministic

certificates.

Our experiments show that structured ablation produces higher certified accuracy than ℓ0

randomized ablation. This is because, for similar values of ∆, structured ablation methods yield

much higher base classifier accuracies (Figure 6.3). Empirically, we find that the band method

(and specifically, column smoothing) produces the most certifiably robust classifiers (Figure 6.5).

In supplementary materials, we explore structured ablation using multiple blocks or bands of
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(a) (b)

k = 4; Δ = 0.463 k = 4; Δ = 0.25

Figure 6.2: Likelihood of selecting a pixel which is part of the attacked patch (red) for (a) sparse
randomized ablation, as proposed in Chapter 2 (b) Structured ablation, using a block of size
s = 2. In both cases, k = 4 pixels are retained. However, in the sparse case, if any of the four
independently-selected pixels sample the patch, then the classification may be impacted: this
occurs with probability ∆ = 1 − (64−94

)/(
64
4
) ≈ 0.463. In contrast, the probability that the block

overlaps with the adversarial patch is only 16
64 = 0.25.

pixels.

We now explicitly describe our algorithms, starting with block smoothing. For an input

image x, let the base classifier be specified as fc(x, s, x, y), where x is the input image, s is

the block size, (x, y) is the position of the retained block, and c ∈ N is a class label. In other

words, f(x, s, x, y) is the base classification, where the classifier uses only the pixels in an s × s

block with upper-left corner (x, y) (If the retained block would exceed the borders of the image,

it wraps around: see Figure 6.4). For each class c, fc(x, s, x, y) will either be 0 or 1; however,

note that we do not require that fc(x, s, x, y) = 1 for any class c (it may abstain, returning zero

for all classes), and we also allow for fc(x, s, x, y) to equal 1 for multiple classes (see Section

6.2.2.1 for details). To make our final classification and compute our robustness certificate, we

count the number of blocks on which the base classifier returns each class:

∀c, nc(x) ∶=
w

∑
x=1

h

∑
y=1

fc(x, s, x, y) (6.3)

The final smoothed classification is simply the plurality class returned: g(x) ∶= argmaxc nc(x).
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Figure 6.3: Comparison of the ℓ0 defense proposed in Chapter 2 to the newly-proposed defenses
on MNIST, for a 5 × 5 patch attack. While sampling a single block or band slightly increases the
probability ∆ that an adversarially distorted pixel is used, the large increase in the total number
of retained pixels, and therefore the base classifier accuracy, more than makes up for this increase
in ∆. However, the number of retained pixels alone does not perfectly correspond to higher base
classifier accuracy: while the band method uses slightly fewer pixels than the block method, the
base classifier has substantially higher accuracy, leading to higher certified accuracy.

In the case of ties, we deterministically return the smaller-indexed class. Because the adversarial

patch only intersects (m + s − 1)2 blocks, the adversary can only alter the output of (m + s − 1)2

of the evaluations of the base classifier. This yields the following guarantee:

Theorem 6.1. For any image x, base classifier f , smoothing block size s, and patch size m, if:

nc(x) ≥max
c′≠c
[nc′(x) + 1c>c′] + 2(m + s − 1)

2 (6.4)

then for any image x′ which differs from x only in an (m ×m) patch, g(x′) = c.

In Theorem 6.1, the indicator function term (1c>c′) is present because we break ties deter-

ministically by label index during the final classification. Proofs are provided in supplementary

materials.

Note that the classifier counts nc(x) can be though of as exact estimates for the probability
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that the base classifier returns the class c, simply scaled up by a factor of hw. For the column

smoothing case (or row smoothing, by simple transpose), we can compute a similar certificate.

In this case, the base classifier is fc(x, s, x), where s is now the width of the retained column of

pixels, and x is the position of the leftmost edge of this column. We then only need to sum over

one dimension:

∀c, nc(x) ∶=
w

∑
x=1

fc(x, s, x). (6.5)

Again, we classify using g(x) ∶= argmaxc nc(x). To derive the final guarantee, we now use that

the adversarial patch will overlap with only (m + s − 1) columns:

Theorem 6.2. For any image x, base classifier f , smoothing column size s, and patch size m, if:

nc(x) ≥max
c′≠c
[nc′(x) + 1c>c′] + 2(m + s − 1) (6.6)

then for any image x′ which differs from x only in an (m ×m) patch, g(x′) = c.

6.2.2.1 Implementation Details

In practice, we use a deep network as our base classifier, and set fc(x, s, x, y) = 1 if the

logit corresponding to class c is greater than a threshold hyperparameter θ. This allows the base

classifier to abstain from classifying in the case that there is no usable information in the retained

block, as well as to “vote” for multiple classes, which may be beneficial if the base classifier

top-1 accuracy is low.

The input of to the neural network used as the base classifier is a copy of the image x,

with all pixels except for those in the retained block or band replaced with a specially-encoded
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‘NULL’ value. We encode the additional ‘NULL’ value in the input in the same manner described

for randomized ablation in Chapter 2 for each dataset tested: this involves adding additional color

channels, so that the NULL value is distinct from all real pixel colors. During training, as in prior

smoothing works, we train f on ablated samples, using a single randomly-determined ablation

pattern (selection of block or column to retain) on all samples in each batch.

6.2.3 Comparison to Conventional Randomized Smoothing

In conventional randomized smoothing, rather than computing the probability that f re-

turns each class directly, one must instead lower-bound, with high confidence, the probability pc

that f returns the plurality class c and upper-bound the probabilities pc′ that f returns all other

classes, based on samples. This leads to decreased certified accuracy due to estimation error. Ad-

ditionally, all of these bounds must hold simultaneously: in order to ensure that the gap between

pc and pc′ is sufficiently large for each c′ to prove robustness, one must bound the population

probabilities for every class. Some works [64, 99] do this directly using a union bound, leading

to increased error as the number of classes increases. Others, following [63], instead only use

samples to lower-bound the probability pc that the base classifier returns the top class. One can

then upper bound all other class probabilities by observing that ∀c′, pc′ ≤ 1 − pc. In other words,

rather than determining whether c will stay the plurality class at an adversarial point, one instead

Figure 6.4: Representation of which pixels are used by the base classifier f , as a function of
indexing. Ablated pixels are represented in green.
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determines whether c will stay the majority class. This is also the estimation method used in

Chapter 2 for ℓ0 certificates: this is why, when describing that method in Section 6.2.1, we gave

the condition for certification as pc > 0.5 +∆. In our deterministic method, we can use a less

strict condition, that ∀c′, pc − pc′ > 2∆, where pc = nc/hw for block smoothing, and pc = nc/w

for column smoothing. (As described above, we can sometimes even certify in the equality case,

when it is assured that c will be selected if there is a tie between the class probabilities at the

distorted point.)

In this work, we sidestep the estimation problem entirely by computing the population

probabilities exactly. This substantially reduces evaluation time: for example, column smooth-

ing on CIFAR-10 requires 32 forward passes, compared to 104 − 105 for randomized ablation

(Chapter 2). (We provide measured evaluation times in supplementary material.) However, by

avoiding the assumption of [63], that all probability not assigned to c is instead assigned to a

single adversarial class, we can make an additional optimization: we can add an ‘abstain’ op-

tion. If there is no compelling evidence for any particular class in an ablated image (i.e., if all

logits are below a threshold value θ), our classifier abstains. This prevents blocks which contain

no information from being assigned to an arbitrary, likely incorrect class. Figure 6.5-a shows

that this significantly increases the certified accuracy on MNIST, although it has little effect on

CIFAR-10. Our threshold system also allows the base classifier to select multiple classes, if there

is strong evidence for each of them. This is intended to increase certified accuracy in the case

of a large number of classes, where the top-1 accuracy of the base classifier might be low: if the

correct class consistently occurs within the top several classes, it may still be possible to certify

robustness.

In a concurrent work, [6] also proposes a derandomization of a randomized smoothing tech-
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nique. However, the threat model considered is quite different: [6] develops a defense against

label-flipping poisoning attacks, where the adversary changes the labels of training samples. No-

tably, [6]‘s result only applies directly to linear base classifiers. By making this restriction, [6]

is able to analytically determine the probabilities of f(x) returning each class. By contrast, our

de-randomized technique for patch attacks does not restrict the architecture of the base classifier

f , in practice a deep network.

(a) MNIST (b) CIFAR-10

Figure 6.5: Validation set certificates for 5×5 patches on (a) MNIST, (b) CIFAR-10. Best certified
accuracy is achieved using Column Smoothing for both datasets, with s = 2, θ = 0.3 for MNIST
and s = 4, θ = 0.3 for CIFAR-10. Column smoothing (blue lines) gives better certified accuracies
than block smoothing (red lines), but the effect is small on CIFAR-10.

6.3 Results

Certified robustness against patch attacks is presented for 5 × 5 patches on MNIST and

CIFAR-10 in Figure 6.5, using both block and column smoothing (On MNIST, we also tested

smoothing with rows rather than columns, with slightly worse results: see supplementary mate-
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rials.) Results in the figures are using a validation set of 5,000 images; the final results reported

in Table 6.1 are on a separate test set of 5,000 images. On both datasets, we have found that

column smoothing produces better certified accuracies than block smoothing. However, the per-

formance gap is larger on MNIST than on CIFAR-10. We have also tested with the base classifier

returning only the top-one class, rather than thresholding the logits to abstain on low confidence

predictions. We find that thresholding produces a large improvement on MNIST, but has had lit-

tle effect on CIFAR-10. This is possibly because MNIST images, when ablated, will often have

zero information (i.e., be entirely black), while in natural images, the retained region will always

have some information. In both datasets, we found that the column smoothing certificates are not

highly sensitive to the threshold hyperparameter θ.

Experiments using multiple blocks and columns, rather than just a single block or column

for each base classification, are presented in supplementary materials.

In Figure 6.6, we show how our certificates scale to different patch sizes, beyond the stan-

dard 5 × 5. On CIFAR-10, we maintain high certified accuracy even at a patch size of 9 × 9.

Notably, the optimal column width s seems not to depend on the patch size, suggesting that a

single trained model can defend against a broad class of patch attacks.

On ImageNet-1000 (ILSVRC2012), we have tested certified robustness to 42 × 42 patch

attacks with column smoothing alone, using column width s = 25, and over the θ hyperparameter

range θ = {0.1,0.2,0.3,0.4}. We have used 1,000 images for validation, and 1,000 for test, using

the optimal θ = 0.2; test set results are presented in Table 6.1. Full validation results for all

datasets are presented as tables in supplementary materials.

We also compare column smoothing certificates for MNIST and CIFAR-10 to randomized

column smoothing smoothing certificates on both datasets: see Table 6.2. We find that the “deran-
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(a) (b)

Figure 6.6: Validation set certificates for m ×m patches on (a) MNIST, (b) CIFAR-10. For all
experiments, we use Column Smoothing, θ = 0.3. On CIFAR-10, we maintain high certified
accuracy even at m = 9. The optimal column width s seems not to depend on the patch size,
suggesting that a single trained model will defend against a broad class of patch attacks.

domization” improves the certificates independently of the effect of thresholding (for example, it

increases the certified accuracy on CIFAR-10 by nearly 7 percentage points.)

Dataset Derandomized Derandomized Randomized
θ = .3 Top-1 class Column Smoothing

MNIST 53.22% (s = 2) 22.20% (s = 6) 16.32% (s = 6)

CIFAR-10 58.08% (s = 4) 57.36% (s = 4) 50.38% (s = 6)

Table 6.2: Comparison of Certified Accuracies for derandomized versus randomized structured
ablation (column smoothing) for 5 × 5 adversarial patches for MNIST and CIFAR-10. We com-
pare randomized structured ablation to both the “Top-1 class” method (without abstaining or
thesholding) as well as to the thresholding method, with the optimal θ = 0.3. Here, we show the
certified accuracy for the optimal value of the hyperparameter s for each method: results for all s
are presented in supplementary materials.

6.3.1 Empirical Robustness

We evaluated the empirical robustness of our method, specifically column smoothing, on

CIFAR-10, using a modified version of the IFGSM patch attack from [4]. In particular, because

the zero-one base-classifications fc are non-differentiable, we cannot attack nc(x) directly. In-

stead, in order to generate the attacks, we use a surrogate model in which fc returns SoftMax
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scores. Note that this is similar to [33]’s attack on Gaussian-smoothed classifiers, but there is

no need to consider random sampling in this case. Further details on the attack are provided in

supplementary materials. Results are presented in Figure 6.7-a. We note that, as expected, our

certified lower bounds hold, and furthermore that our model is significantly more robust to patch

adversarial attacks compared with an undefended baseline model. We also evaluated the robust-

ness of our attack to a non-patch adversarial attack, specifically an ℓ∞-bounded IFGSM attack.

Because all base classifiers are attacked simultaneously in this model, our method provides no

robustness guarantee, and one might worry that the model could be particularly vulnerable to the

attack. However, while the accuracy under this attack was reduced compared to an undefended

baseline model, this was not a dramatic effect: see Figure 6.7-b.
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(a) Patch Attack (b) L     Attack∞

Figure 6.7: Empirical attacks against column smoothing on 500 images from the CIFAR-10 test
set, versus an unprotected baseline model. We use optimal hyperparameters (s = 4, θ = 0.3)
for column smoothing. For the ℓ∞ attack, we used IFGSM for 50 iterations and a step size of
0.5/255. For the patch attack, we use the patch-IFGSM attack from [4], with 80 random starts,
150 iterations per random start, and step size of 0.05.
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Chapter 7: Deep Partition Aggregation: Provable Defenses against

General Poisoning Attacks1

Adversarial poisoning attacks are an important vulnerability in machine learning systems.

In these attacks, an adversary can manipulate the training data of a classifier, in order to change

the classifications of specific inputs at test time. Several poisoning threat models have been

studied in the literature, including threat models where the adversary may insert new poison

samples [100], manipulate the training labels [6, 101], or manipulate the training sample values

[102, 103]. A certified defense against a poisoning attack provides a certificate for each test

sample, which is a guaranteed lower bound on the magnitude of any adversarial distortion of the

training set that can corrupt the test sample’s classification. In this work, we propose certified

defenses against two types of poisoning attacks:

General poisoning attacks: In this threat model, the attacker can insert or remove a

bounded number of samples from the training set. In particular, the attack magnitude ρ is de-

fined as the cardinality of the symmetric difference between the clean and poisoned training sets.

This threat model also includes any distortion to an sample and/or label in the training set —

a distortion of a training sample is simply the removal of the original sample followed by the

insertion of the distorted sample. (Note that a sample distortion or label flip therefore increases

1A form of chapter has been published in ICLR 2021 [74].
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the symmetric difference attack magnitude by two.)

Label-flipping poisoning attacks: In this threat model, the adversary changes only the

label for ρ out of m training samples. [6] has recently provided a certified defense for this threat

model, which we improve upon.

In the last couple of years, certified defenses have been extensively studied for evasion

attacks, where the adversary manipulates the test samples, rather than the training data (e.g.

[22, 23, 33, 58, 63, 64, 86, 91], etc.) In the evasion case, a certificate is a lower bound on the

distance from the sample to the classifier’s decision boundary: this guarantees that the sample’s

classification remains unchanged under adversarial distortions up to the certified magnitude.

[6] provides an analogous certificate for label-flipping poisoning attacks: for an input sam-

ple x, the certificate of x is a lower bound on the number of labels in the training set that would

have to change in order to change the classification of x.2 [6]’s method is an adaptation of a

certified defense for sparse (ℓ0) evasion attacks proposed by [1]. The adapted method for label-

flipping attacks proposed by [6] is equivalent to randomly flipping each training label with fixed

probability and taking a consensus result. If implemented directly, this would require one to train

a large ensemble of classifiers on different noisy versions of the training data. However, instead

of actually doing this, [6] focuses only on linear classifiers and is therefore able to analytically

calculate the expected result. This gives deterministic, rather than probabilistic, certificates. Fur-

ther, because [6] considers a threat model where only labels are modified, they are able to train

an unsupervised nonlinear feature extractor on the (unlabeled) training data before applying their

technique, in order to learn more complex features.

2[104] also refers to a “certified defense” for poisoning attacks. However, the definition of the certificate is sub-
stantially different in that work, which instead provides overall accuracy guarantees under the assumption that the
training and test data are drawn from similar distributions, rather than providing guarantees for individual realized
inputs.
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Figure 7.1: Comparison of certified accuracy to label-flipping poison attacks for our defense (SS-
DPA algorithm) vs. [6] on MNIST. Solid lines represent certified accuracy as a function of attack
size; dashed lines show the clean accuracies of each model. Our algorithm produces substantially
higher certified accuracies. Curves for [6] are adapted from Figure 1 in that work. The parameter
q is a hyperparameter of [6]’s algorithm, and k is a hyperparameter of our algorithm: the number
of base classifiers in an ensemble.

Based on the improved provable defense against ℓ0 evasion attacks proposed in Chapter 2,

in this paper, we develop certifiable defenses against general and label-flipping poisoning attacks

that significantly outperform the current state-of-the-art certifiable defenses. In particular, we de-

velop a certifiable defense against general poisoning attacks called Deep Partition Aggregation

(DPA) which is based on partitioning the training set into k partitions, with the partition assign-

ment for a training sample determined by a hash function of the sample. The hash function can

be any deterministic function that maps a training sample t to a partition assignment: the only

requirement is that the hash value depends only on the value of the training sample t itself, so that

neither poisoning other samples, nor changing the total number of samples, nor reordering the

samples can change the partition that t is assigned to. We then train k base classifiers separately,

one on each partition. At the test time, we evaluate each of the base classifiers on the test sample

x and return the plurality classification c as the final result. The key insight is that removing
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a training sample, or adding a new sample, will only change the contents of one partition, and

therefore will only affect the classification of one of the k base classifiers. This immediately leads

to robustness certifications against general poisoning attacks which, to the best of our knowledge,

is the first one of this kind.

If the adversary is restricted to flipping labels only (as in [6]), we can achieve even larger

certificates through a modified technique. In this setting, the unlabeled data is trustworthy: each

base classifier in the ensemble can then make use of the entire training set without labels, but

only has access to the labels in its own partition. Thus, each base classifier can be trained as if the

entire dataset is available as unlabeled data, but only a very small number of labels are available.

This is precisely the problem statement of semi-supervised learning [105, 106, 107, 108, 109].

We can then leverage these existing semi-supervised learning techniques directly to improve the

accuracies of the base classifiers in DPA. Furthermore, we can ensure that a particular (unla-

beled) sample is assigned to the same partition regardless of label, so that only one partition is

affected by a label flip (rather than possibly two). The resulting algorithm, Semi-Supervised

Deep Partition Aggregation (SS-DPA) yields substantially increased certified accuracy against

label-flipping attacks, compared to DPA alone and compared to the current state-of-the-art. Fur-

thermore, while our method is de-randomized (as [6] is) and therefore yields deterministic cer-

tificates, our technique does not require that the classification model be linear, allowing deep

networks to be used.

On MNIST, SS-DPA substantially outperforms the existing state of the art [6] in defending

against label-flip attacks: we certify at least half of images in the test set against attacks to over

600 (1.0%) of the labels in the training set, while still maintaining over 93% accuracy (See Fig-

ure 7.1, and Table 7.1). In comparison, [6]’s method achieves less than 60% clean accuracy on
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MNIST, and most test images cannot be certified with the correct class against attacks of even

200 label flips. We are also the first work to our knowledge to certify against general poison-

ing attacks, including insertions and deletions of new training images: in this domain, we can

certify at least half of test images against attacks consisting of over 500 arbitrary training image

insertions or deletions. On CIFAR-10, a substantially more difficult classification task, we can

certify at least half of test images against label-flipping attacks on over 300 labels using SS-DPA

(versus 175 label-flips for [6]), and can certify at least half of test images against general poison-

ing attacks of up to nine insertions or deletions using DPA. To see how our method performs on

datasets with larger numbers of classes, we also tested our methods on the German Traffic Sign

Recognition Benchmark [110], a task with 43 classes and on average ≈ 1000 samples per class.

Here, we are able to certify at least half of test images as robust to 176 label flips, or 20 general

poisoning attacks. These results establish new state-of-the-art in provable defenses against

label-flipping and general poisoning attacks.

7.1 Related Works

[58] (Chapter 2 of this dissertation) propose a randomized ablation technique to certifiably

defend against sparse attacks. That method ablates some pixels, replacing them with a null value.

Since it is possible for the base classifier to distinguish exactly which pixels originate from x, this

results in more accurate base classifications and therefore substantially greater certified robust-

ness than [1]. For example, on ImageNet, [1] certifies the median test image against distortions

of one pixel, while our ℓ0 method certifies against distortions of 16 pixels.

Our proposed method is related to classical ensemble approaches in machine learning,
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namely bootstrap aggregation and subset aggregation [56, 111, 112, 113]. However, in these

methods each base classifier in the ensemble is trained on an independently sampled collection

of points from the training set: multiple classifiers in the ensemble may be trained on (and there-

fore poisoned by) the same sample point. The purpose of these methods has typically been to

improve generalization. Bootstrap aggregation has been proposed as an empirical defense against

poisoning attacks [114] as well as for evasion attacks [115]. However, at the time of the initial

distribution of this work, these techniques had not yet been used to provide certified robustness.3

Our unique partition aggregation variant provides deterministic robustness certificates against

poisoning attacks. See Appendix F.4 for further discussion.

[75] have recently proposed a different randomized-smoothing based defense against poi-

soning attacks by directly applying [63]’s smoothing ℓ2 evasion defense to the poisoning domain.

The proposed technique can only certify for clean-label attacks (where only the existing sam-

ples in the dataset are modified, and not their labels), and the certificate guarantees robustness

only to bounded ℓ2 distortions of the training data, where the ℓ2 norm of the distortion is calcu-

lated across all pixels in the entire training set. Due to well-known limitations of dimensional

scaling for smoothing-based robustness certificates [51, 123, 124], this yields certificates to only

very small distortions of the training data. (For binary MNIST [13,007 images], the maximum

reported ℓ2 certificate is 2 pixels.) Additionally, when using deep classifiers, [75] proposes a

randomized certificate, rather than a deterministic one, with a failure probability that decreases

to zero only as the number of trained classifiers in an ensemble approaches infinity. Moreover,

in [75], unlike in our method, each classifier in the ensemble must be trained on a noisy version

3In a concurrent work, [116] consider using bootstrap aggregation directly for certified robustness. Their certificates
are therefore probabilistic, and are not as large, in median, as the certificates reported here for MNIST and CIFAR-
10. After the publication of this work, several methods have been proposed which extend or improve upon the
framework presented here: [117, 118, 119, 120, 121, 122]
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of the entire dataset. These issues hinder [75]’s method to be an effective scheme for certified

robustness against poisoning attacks. After the initial distribution of this work, a recent revi-

sion of [6] has suggested using randomised smoothing techniques on training samples, rather

than just training labels, as a general approach to poisoning defense. Both this work and [75]

could be considered as implementations of this idea, although this generalized proposal in [6]

does not include a derandomization scheme (unlike [6]’s proposed derandomized defense against

label-flipping attacks) .

Other prior works have provided distributional, rather than pointwise guarantees against

poisoning attacks. In these works, there is a (high-probability) guarantee that the classifier will

achieve a certain level of average overall accuracy on test data, under the assumption that the

test data and clean (pre-poisoning) training data are drawn from the same distribution. These

works do not provide any guarantees that apply to specific test samples, however. As mentioned

above, [104] provides such a distributional guarantee, specifically for a threat model of addition

of poison samples. Other such works include [125], which considers label-flipping attacks and

determines conditions under which PAC-learning is possible in the presence of such attacks, and

[126] provides similar guarantees for replacement of samples. Other works [127, 128] provide

distributional guarantees for unsupervised learning under poisoning attacks. [129] proposes prov-

ably effective poisoning attacks with high-probability pointwise guarantees of effectiveness on

test samples. However, that work relies on properties of the distribution that the training set is

drawn from. [130] provide a robust training algorithm which provably approximates the clean

trained model despite poisoning (rather than the behavior at a certain test point): this result also

makes assumptions about the distribution of the clean training data.
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7.2 Proposed Methods

7.2.1 Notation

Let S be the space of all possible unlabeled samples (i.e., the set of all possible images). We

assume that it is possible to sort elements of S in a deterministic, unambiguous way. In particular,

in the case of image data, we can sort images lexicographically by pixel values: in general, any

data that can be represented digitally will be sortable. We represent labels as integers, so that the

set of all possible labeled samples is SL ∶= {(x, c)∣x ∈ S, c ∈ N}. A training set for a classifier

is then represented as T ∈ P(SL), where P(SL) is the power set of SL. For t ∈ SL, we let

sample(t) ∈ S refer to the (unlabeled) sample, and label(t) ∈ N refer to the label. For a set of

samples T ∈ P(SL), we let samples(T ) ∈ P(S) refer to the set of unique unlabeled samples

which occur in T . A classifier model is defined as a deterministic function from both the training

set and the sample to be classified to a label, i.e. f ∶ P(SL)×S → N. We will use f(⋅) to represent

a base classifier model (i.e., a neural network), and g(⋅) to refer to a robust classifier (using DPA

or SS-DPA).

A⊖B represents the set symmetric difference between A and B: A⊖B = (A∖B)∪(B∖A).

The number of elements in A is ∣A∣, [n] is the set of integers 1 through n, and ⌊z⌋ is the largest

integer less than or equal to z. 1 represents the indicator function: 1Prop = 1 if Prop is true;

1Prop = 0 otherwise. For a set A of sortable elements, we define Sort(A) as the sorted list of

elements. For a list L of unique elements, for l ∈ L, we will define index(L, l) as the index of l

in the list L.
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7.2.2 DPA

The Deep Partition Aggregation (DPA) algorithm requires a base classifier model f ∶

P(SL) × S → N, a training set T ∈ P(SL), a deterministic hash function h ∶ SL → N, and a

hyperparameter k ∈ N indicating the number of base classifiers which will be used in the ensem-

ble.

At the training time, the algorithm first uses the hash function h to define partitions P1, ...,

Pk ⊆ T of the training set, as follows:

Pi ∶= {t ∈ T ∣h(t) ≡ i (mod k)}. (7.1)

The hash function h can be any deterministic function from SL to N: however, it is preferable that

the partitions are roughly equal in size. Therefore we should choose an h which maps samples to

a domain of integers significantly larger than k, in a way such that h(.) (mod k) will be roughly

uniform over [k]. In practice, for image data, we let h(t) be the sum of the pixel values in the

image t.

Base classifiers are then trained on each partition: we define trained base classifiers fi ∶

S → N as:

fi(x) ∶= f(Pi,x). (7.2)

Finally, at the inference time, we evaluate the input on each base classification, and then count

the number of classifiers which return each class:

nc(x) ∶= ∣{i ∈ [k]∣fi(x) = c}∣. (7.3)
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This lets us define the classifier which returns the consensus output of the ensemble:

gdpa(T,x) ∶= argmax
c

nc(x). (7.4)

When taking the argmax, we break ties deterministically by returning the smaller class index.

The resulting robust classifier has the following guarantee:

Theorem 7.1. For a fixed deterministic base classifier f , hash function h, ensemble size k, train-

ing set T , and input x, let:

c ∶= gdpa(T,x)

ρ̄(x) ∶= ⌊
nc −maxc′≠c(nc′(x) + 1c′<c)

2
⌋ .

(7.5)

Then, for any poisoned training set U , if ∣T ⊖U ∣ ≤ ρ̄(x), then gdpa(U,x) = c.

All proofs are presented in Appendix F.1. Note that T and U are unordered sets: therefore,

in addition to providing certified robustness against insertions or deletions of training data, the

robust classifier gdpa is also invariant under re-ordering of the training data, provided that f has

this invariance (which is implied, because f maps deterministically from a set; see Section 7.2.2.1

for practical considerations). As mentioned in the chapter introduction, DPA is a deterministic

variant of randomized ablation (Chapter 2) adapted to the poisoning domain. Each base classifier

ablates most of the training set, retaining only the samples in one partition. However, unlike in

randomized ablation, the partitions are deterministic and use disjoint samples, rather than select-

ing them randomly and independently. In Appendix F.3, we argue that our derandomization has

little effect on the certified accuracies, while allowing for exact certificates using finite samples.
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We also discuss how this chapter relates to Chapter 6, which proposes a de-randomized ablation

technique for a restricted class of sparse evasion attacks (patch adversarial attacks).

7.2.2.1 DPA Practical Implementation Details

One of the advantages of DPA is that we can use deep neural networks for the base classifier

f . However, enforcing that the output of a deep neural network is a deterministic function of its

training data, and specifically, its training data as an unordered set, requires some care. First,

we must remove dependence on the order in which the training samples are read in. To do

this, in each partition Pi, we sort the training samples prior to training, taking advantage of the

assumption that S is well-ordered (and therefore SL = S ×N is also well ordered). In the case of

the image data, this is implemented as a lexical sort by pixel values, with the labels concatenated

to the samples as an additional value. The training procedure for the network, which is based

on standard stochastic gradient descent, must also be made deterministic: in our PyTorch [131]

implementation, this can be accomplished by deterministically setting a random seed at the start

of training. As discussed in Appendix F.6, we find that it is best for the final classifier accuracy

to use different random seeds during training for each partition. This reduces the correlation in

output between base classifiers in the ensemble. Thus, in practice, we use the partition index as

the random seed (i.e., we train base classifier fi using random seed i.)

7.2.3 SS-DPA

Semi-Supervised DPA (SS-DPA) is a defense against label-flip attacks. In SS-DPA, the

base classifier may be a semi-supervised learning algorithm: it can use the entire unlabeled train-
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ing dataset, in addition to the labels for a partition. We will therefore define the base classifier to

also accept an unlabelled dataset as input: f ∶ P(S) × P(SL) × S → N. Additionally, our method

of partitioning the data is modified both to ensure that changing the label of a sample affects only

one partition rather than possibly two, and to create a more equal distribution of samples between

partitions.

First, we will sort the unlabeled data samples(T ):

Tsorted ∶= Sort(samples(T )). (7.6)

For a sample t ∈ T , note that index(Tsorted, sample(t)) is invariant under any label-flipping attack

to T , and also under permutation of the training data as they are read. We now partition the data

based on sorted index:

Pi ∶= {t ∈ T ∣ index(Tsorted, sample(t)) ≡ i (mod k)}. (7.7)

Note that in this partitioning scheme, we no longer need to use a hash function h. Moreover,

this scheme creates a more uniform distribution of samples between partitions, compared with

the hashing scheme used in DPA. This can lead to improved certificates: see Appendix F.5. This

sorting-based partitioning is possible because the unlabeled samples are “clean”, so we can rely

on their ordering, when sorted, to remain fixed. As in DPA, we train base classifiers on each

partition, this time additionally using the entire unlabeled training set:

fi(x) ∶= f(samples(T ), Pi,x). (7.8)
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The inference procedure is the same as in the standard DPA:

nc(x) ∶= ∣{i ∈ [k]∣fi(x) = c}∣

gssdpa(T,x) ∶= argmax
c

nc(x)

(7.9)

The SS-DPA algorithm provides the following robustness guarantee against label-flipping at-

tacks.4

Theorem 7.2. For a fixed deterministic semi-supervised base classifier f , ensemble size k, train-

ing set T (with no repeated samples), and input x, let:

c ∶= gssdpa(T,x),

ρ̄(x) ∶= ⌊
nc −maxc′≠c(nc′(x) + 1c′<c)

2
⌋ .

(7.10)

For a poisoned training set U obtained by changing the labels of at most ρ̄ samples in T ,

gssdpa(U,x) = c.

7.2.3.1 Semi-Supervised Learning Methods for SS-DPA

In the standard DPA algorithm, we are able to train each classifier in the ensemble using

only a small fraction of the training data; this means that each classifier can be trained relatively

quickly: as the number of classifiers increases, the time to train each classifier can decrease

(see Table 7.1). However, in a naive implementation of SS-DPA, Equation 7.8 might suggest

that training time will scale with k, because each semi-supervised base classifier requires to be

4The theorem as stated assumes that there are no repeated unlabeled samples (with different labels) in the training set
T . This is a reasonable assumption, and in the label-flipping attack model, the attacker cannot cause this assumption
to be broken. Without this assumption, the analysis is more complicated; see Appendix F.7.
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trained on the entire training set. Indeed, with many popular and highly effective choices of semi-

supervised classification algorithms, such as temporal ensembling [107], ICT [105], Teacher

Graphs [106] and generative approaches [108], the main training loop trains on both labeled and

unlabeled samples, so we would see the total training time scale linearly with k. In order to avoid

this, we instead choose a semi-supervised training method where the unlabeled samples are used

only to learn semantic features of the data, before the labeled samples are introduced: this allows

us to use the unlabeled samples only once, and to then share the learned feature representations

when training each base classifier. In our experiments, we choose RotNet [109] for experiments

on MNIST, and SimCLR [132] for experiments on CIFAR-10 and GTSRB. Both methods learn

an unsupervised embedding of the training set, on top of which all classifiers in the ensemble can

be learned. Note that [6] also uses SimCLR for CIFAR-10 experiments. As discussed in Section

7.2.2.1, we also sort the data prior to learning (including when learning unsupervised features),

and set random seeds, in order to ensure determinism.

7.3 Results

In this section, we present empirical results evaluating the performance of proposed meth-

ods, DPA and SS-DPA, against poison attacks on MNIST, CIFAR-10, and GTSRB datasets. As

discussed in Section 7.2.3.1, we use the RotNet architecture [109] for SS-DPA’s semi-supervised

learning on MNIST. Conveniently, the RotNet architecture is structured such that the feature

extracting layers, combined with the final classification layers, together make up the Network-

In-Network (NiN) architecture for the supervised classification [133]. Therefore, on MNIST,

we use NiN for DPA’s supervised training, and RotNet for SS-DPA’s semi-supervised training.
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Training Number of Median Base Training
set Partitions Certified Clean Classifier time per
size k Robustness Accuracy Accuracy Partition

MNIST, DPA 60000 1200 448 95.85% 76.97% 0.33 min
3000 509 93.36% 49.54% 0.27 min

MNIST, SS-DPA 60000 1200 485 95.62% 80.77% 0.15 min
3000 645 93.90% 57.65% 0.16 min

50 9 70.16% 56.39% 1.49 min
CIFAR, DPA 50000 250 5 55.65% 35.17% 0.58 min

1000 N/A 44.52% 23.20% 0.30 min

50 25 90.89% 89.06% 0.94 min
CIFAR, SS-DPA 50000 250 124 90.33% 86.25% 0.43 min

1000 392 89.02% 75.83% 0.33 min

GTSRB, DPA 39209 50 20 89.20% 73.94% 2.64 min
100 4 55.90% 35.64% 1.60 min

50 25 97.09% 96.35% 2.73 min

GTSRB, SS-DPA 39209 100 50 96.76% 94.96% 1.56 min
200 99 96.34% 91.54% 1.23 min
400 176 95.80% 83.60% 0.78 min

Table 7.1: Summary statistics for DPA and SS-DPA algorithms on MNIST, CIFAR, and GTSRB.
Median Certified Robustness is the attack magnitude (symmetric difference for DPA, label flips
for SS-DPA) at which certified accuracy is 50%. Training times are on a single GPU; note that
many partitions can be trained in parallel. Note we observe some constant overhead time for
training each classifier, so on MNIST, where the training time per image is small, k has little
effect on the training time. For SS-DPA, training times do not include the time to train the
unsupervised feature embedding (which must only be done once).

We use training parameters, for both the DPA (NiN) and SS-DPA (RotNet), directly from [109],

with a slight modification: we eliminate horizontal flips in data augmentation, because horizontal

alignment is semantically meaningful for digits.5 On CIFAR-10 and GTSRB, we also use NiN

(with full data augmentation for CIFAR-10, and without horizontal flips for GTSRB) for DPA

experiments. For semi-supervised learning in SS-DPA, we use SimCLR [132] for both datasets,

5In addition to the de-randomization changes mentioned in Section 7.2.2.1, we made one modification to the NiN
‘baseline’ for supervised learning: the baseline implementation in [109], even when trained on a small subset of the
training data, uses normalization constants derived from the entire training set. This is a (minor) error in [109] that
we correct by calculating normalization constants on each subset.
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as [6] does on CIFAR-10. SimCLR hyperparameters are provided in Appendix F.9, and addi-

tional details about processing the GTSRB dataset are provided in Appendix F.10. Note that for

SimCLR we use linear classifiers as the final, supervised classifiers for each partition.

Results are presented in Figures 7.2, 7.3, 7.4, and are summarized in Table 7.1. Our metric,

Certified Accuracy as a function of attack magnitude (symmetric-difference or label-flips), refers

to the fraction of samples which are both correctly classified and are certified as robust to attacks

of that magnitude. Note that different poisoning perturbations, which poison different sets of

training samples, may be required to poison each test sample; i.e. we assume the attacker can

use the attack budget separately for each test sample. Table 7.1 also reports Median Certified

Robustness, the attack magnitude to which at least 50% of the test set is provably robust.

Our SS-DPA method substantially outperforms the existing certificate [6] on label-flipping

attacks: in median, 392 label flips on CIFAR-10, versus 175; 645 label flips on MNIST, versus <

200. With DPA, we are also able to certify at least half of MNIST images to attacks of over 500

poisoning insertions or deletions, and can certify at least half of CIFAR-10 images to 9 poisoning

insertions or deletions. On GTSRB, we can certify over half of images to 20 poisoning insertions

or deletions, or 176 label flips. Note that this represents a substantially larger fraction of each

class (each class has < 1000 training images on average) compared to certificates on CIFAR-10

(5000 training images per class). See Appendix F.8 for additional experiments on GTSRB.

The hyperparameter k controls the number of classifiers in the ensemble: because each

sample is used in training exactly one classifier, the average number of samples used to train each

classifier is inversely proportional to k. Therefore, we observe that the base classifier accuracy

(and therefore also the final ensemble classifier accuracy) decreases as k is increased; see Table

7.1. However, because the certificates described in Theorems 7.1 and 7.2 depend directly on the
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(a) DPA (General poisoning attacks) (b) SS-DPA (Label-flipping poisoning attacks)

Figure 7.2: Certified Accuracy to poisoning attacks on MNIST, using (a) DPA to certify against
general poisoning attacks, and (b) SS-DPA to certify against label-flipping attacks. Dashed lines
show the clean accuracies of each model.

gap in the number of classifiers in the ensemble which output the top and runner-up classes, larger

numbers of classifiers are necessary to achieve large certificates. In fact, using k classifiers, the

largest certified robustness possible is k/2. Thus, we see in Figures 7.2, 7.3 and 7.4 that larger

values of k tend to produce larger robustness certificates. Therefore k controls a trade-off between

robustness and accuracy.

[6] also reports robustness certificates against label-flipping attacks on binary MNIST clas-

sification, with classes 1 and 7. [6] reports clean-accuracy of 94.5% and certified accuracies for

attack magnitudes up to 2000 label flips (out of 13007), with best certified accuracy less than

70%. By contrast, using a specialized form of SS-DPA, we are able to achieve clean accuracy of

95.5%, with every correctly-classified image certifiably robust up to 5952 label flips (i.e. certified

accuracy is also 95.5% at 5952 label flips.) See Appendix F.2 for discussion.
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(a) DPA (General poisoning attacks) (b) SS-DPA (Label-flipping poisoning attacks)

Figure 7.3: Certified Accuracy to poisoning attacks on CIFAR, using (a) DPA to certify against
general poisoning attacks, and (b) SS-DPA to certify against label-flipping attacks.

(a) DPA (General poisoning attacks) (b) SS-DPA (Label-flipping poisoning attacks)

Figure 7.4: Certified Accuracy to poisoning attacks on GTSRB, using (a) DPA to certify against
general poisoning attacks, and (b) SS-DPA to certify against label-flipping attacks.
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Part III

Test-time Adaptability as Robustness in Reinforcement Learning
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Chapter 8: Goal-Conditioned Q-Learning as Knowledge Distillation1

In recent years, many works have focused on applying deep reinforcement learning to

goal-conditioned tasks, through approaches such as goal relabeling [50, 135, 136, 137] and au-

tomatic curriculum generation [47, 48, 49]. In this work, we focus on model-free off-policy

goal-conditioned RL, and present a novel technique for improving performance in this setting.

Our approach relies on a connection between the standard Bellman update used in off-policy rein-

forcement learning in a goal-conditioned setting, and knowledge distillation, the task of training

a student network to model the same function as a (generally more complex) teacher network.2 In

brief, the Bellman update can be viewed as an instance of (conditional, stochastic) knowledge dis-

tillation, where the current Q-value estimate is the student, the target Q-value network (averaged

over transitions) is the teacher, and the independent variable is the goal that the agent is attempt-

ing to reach. We use this insight to develop an novel off-policy algorithm that in some instances

has improved performance over baselines for goal-conditioned tasks. Our main contributions are

as follows:

1. We propose ReenGAGE, a novel technique for goal-conditioned off-policy reinforcement

learning, and evaluate its performance.

1A form of chapter has been published in AAAI 2023 [134].
2Some works use the term “knowledge distillation” to refer to the particular method for this task proposed by [138],
while others, such as [139] use it to refer to the task in general; we use the latter definition.

134



2. We propose Multi-ReenGAGE, a variant of ReenGAGE well-suited for goal-conditioned

environments with many simultaneous sparse goals.

3. We provide theoretical justification for ReenGAGE by showing that it is in some cases

asymptotically more efficient, in terms of the total number of replay buffer transitions re-

quired to learn an optimal policy, than standard off-policy algorithms such as DDPG.

In most of this work, we focus on continuous action control problems; we extend our method to

discrete action spaces in the appendix. Note that while we mostly focus on using ReenGAGE

on top of HER [50] and DDPG [140] in this work, it can be easily applied alongside any goal-

relabeling scheme or automated curriculum, and can be adapted for other off-policy algorithms

such as SAC [141] or TD3 [142]. In particular, we include an application to SAC in the appendix.

8.1 Preliminaries and Notation

We consider control problems defined by goal-conditioned MDPs (S,A,G,T ,R), where

S, A, and G denote sets of states, actions, and goals, respectively, G and A are assumed to be

continuous spaces, T ∈ S ×A → P(S) is a stochastic transition function, and R ∈ S ×G → R is

a reward function. At every step, starting at state s ∈ S, an agent chooses an action a ∈ A. The

system then transitions to s′ ∼ T (s, a), and the agent receives the reward R(s′, g).

For now, we assume that the reward function R(s′, g) is known a priori to the learning

algorithm (while the transition function is not): this just means that we know how to interpret the

objective which we are trying to achieve. Note that existing goal relabeling techniques, such as

HER [50], implicitly make this assumption, as it is necessary to compute the rewards of relabeled

transitions. We will discuss cases where this assumption can be relaxed in later sections.
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We consider both shaped rewards, in which R(s′, g) is continuous and differentiable ev-

erywhere, as well as sparse rewards, where R(s′, g) is not assumed to be differentiable, but

maintains some constant value clow (e.g., clow = -1 or 0) with ∇gR(s′, g) = 0 for a substantial

fraction of inputs. (There may be some boundary points where R(s′, g) = clow but ∇gR(s′, g) is

not defined or ∇gR(s′, g) ≠ 0, but in theoretical discussion we will assume these are of measure

zero).

The objective of goal-conditioned RL is to find a policy π ∈ S × G → A such that the

discounted future reward:

r =
∞
∑
t=0

γtR(st+1, g) (8.1)

is maximized in expectation. One common approach is to find the policy π and Q-function

Q ∈ S ×A ×G → R that solve the Bellman equation for Q-learning [143], conditioned on a goal

g:

∀s, a, g, Q(s, a, g) = E
s′∼T (s,a)

[R(s′, g) + γQ(s′, π(s′, g), g)] (8.2)

∀s, g, π(s, g) = argmax
a

Q(s, a, g). (8.3)

If functions π and Q satisfy these, then π is guaranteed to be an optimal policy. In practice, off-

policy RL techniques, notably DDPG [140] can be used to solve for these functions iteratively

by drawing tuples (s, a, s′, g) from a replay buffer:

Lcritic = E
(s,a,s′,g)∼Buffer

⎡
⎢
⎢
⎢
⎢
⎣

Lmse[Qθ(s, a, g),R(s
′, g) + γQθ′(s

′, πϕ′(s
′, g), g)]

⎤
⎥
⎥
⎥
⎥
⎦

(8.4)
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Lactor = E
(s,g)∼Buffer

−Qθ(s, πϕ(s, g), g), (8.5)

where θ and ϕ are the current critic and actor parameters, and θ′ and ϕ′ are target parameters,

which are periodically updated to more closely match the current estimates. Note that Equation

8.2 should ideally hold for all (s, a, g): therefore the distribution of (s, a, g) in the replay buffer

does not need to precisely follow any particular distribution, assuming sufficient visitation of

possible tuples.3 The only necessary constraint on the buffer distribution is that the marginal

distribution of s′ matches the transition function:

∀s, a, g, Pr
Buffer
[s′∣s, a, g] ≈ Pr

T
[s′∣s, a], (8.6)

so that the relation in Equation 2 is respected. This means that the goal which is included in

the buffer need not necessarily reflect a “true” historical experience of the agent during training,

but can instead be relabeled to enhance training. [50, 135, 136, 137]. Interestingly, [145] shows

that HER [50], a popular relabeling technique, actually does not respect Equation 8.6 when the

transition function is nondeterministic, and therefore may exhibit “hindsight bias.”

8.2 Proposed Method

From Equation 8.2, we can take the gradient with respect to g:

3In practice, replay buffers which better match the behavioral distribution result in better training, due to sources of
“extrapolation error”, including incomplete visitation and model inductive bias; see [144].
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∇gQ(s, a, g) =

∇g E
s′∼T (s,a)

[R(s′, g) + γQ(s′, π(s′, g), g)] =

E
s′∼T (s,a)

[∇gR(s
′, g) + γ∇gQ(s

′, π(s′, g), g)].

(8.7)

Because the gradient of the Q-value function is equal to the expectation of the gradient of the sum

of the reward and the next-step Q-value, this suggests that we can augment the standard DDPG

critic loss with a gradient term, which estimates this expected gradient using the replay buffer

samples:

LReenGAGE = E
(s,a,s′,g)∼Buffer

⎡
⎢
⎢
⎢
⎢
⎣

Lmse[Qθ(s, a, g),R(s
′, g) + γQθ′(s

′, πϕ′(s
′, g), g)]

+αLmse[∇gQθ(s, a, g),∇gR(s
′, g) + γ∇gQθ′(s

′, πϕ′(s
′, g), g)]

⎤
⎥
⎥
⎥
⎥
⎦

(8.8)

where α is a constant hyperparameter. Note that the second MSE term is applied to a vector:

thus we are fitting ∇gQθ(s0, a0, g) in all dim(g) dimensions. This allows more information to

flow from the target function to the current Q-function (a dim(g)−vector instead of a scalar),

and may therefore improve training. We call our method Reinforcement learning with Gradient

Attention for Goal-seeking Efficiently, or ReenGAGE.

In the case of shaped rewards, we can use this loss function directly. In the case of sparse

rewards, ∇gR(s′, g) is not necessarily defined or available. However, it is also zero for a sub-

stantial fraction of inputs, and, if R(s′, g) = clow, then ∇gR(s′, g) = 0 with high probability.

Therefore, we use the gradient loss term only when training on tuples where R(s′, g) = clow, and
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assume ∇gR(s′, g) = 0:

L
(sparse)
ReenGAGE = E

(s,a,s′)

⎡
⎢
⎢
⎢
⎢
⎣

Lmse[Qθ(s, a, g),R(s
′, g) + γQθ′(s

′, πϕ′(s
′, g), g)]

+1R(s′,g)=clowαLmse[∇gQθ(s, a, g), γ∇gQθ′(s
′, πϕ′(s

′, g), g)]

⎤
⎥
⎥
⎥
⎥
⎦

.

(8.9)

In this sparse case, if ReenGAGE is used alone (i.e., without goal relabeling), then the reward

function R does not need to be known explicitly a priori. Instead, the observed values of the

rewards R(s′, g) from the training rollouts may be used.

Note that ReenGAGE can only be used in goal-conditioned reinforcement learning prob-

lems: in particular, we cannot use gradients with respect to states or actions in a way similar to

Equation 8.7, because, unlike in Equation 8.7:

∇s,a E
s′∼T (s,a)

[(⋅)] ≠ E
s′∼T (s,a)

[∇s,a(⋅)] (8.10)

because the sampling distribution depends on s and a.

8.2.1 Connection to Knowledge Distillation

We can view Equation 8.4 as the loss function of a regression problem, fitting Qθ to the

target. We treat g as the independent variable, and s and a as parameters:

∀g, Qθ(g; s, a) ∶= Targ.(g; s, a) where

Targ.(g; s, a) = E
s′∼T (s,a)

R(s′, g) + γQθ′(s
′, πϕ′(s

′, g), g)

(8.11)
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This can be framed as a knowledge distillation problem: we can view Targ.(g; s, a) as a (diffi-

cult to compute) teacher function, and we are trying to fit the network Qθ(g; s, a) to represent

the same function of g. Note however that conventional “knowledge distillation” [138], which

matches the logits of one network to another for classification problems in order to provide richer

supervision than simply matching the class label output, cannot be applied here because the out-

put is scalar. However, [57] proposes Gradient-based Attention Transfer which instead matches

the gradients of the student to the teacher using a regularization term. Applied to our Q function

and target, this is:

LGAT =LMSE(Qθ(g; s, a),Targ.(g; s, a))

+α∥∇gQθ(g; s, a) − ∇gTarg.(g; s, a)∥22,

(8.12)

which is in fact the ReenGAGE loss function. Therefore we can think of ReenGAGE as applying

knowledge distillation (specifically Gradient-based Attention Transfer) to the Q-value update.4

See Figure 8.1 for an illustration. While the computation of the loss function gradient is somewhat

more complex here than in standard training, involving mixed partial derivatives, [57] notes that

it can still be performed efficiently using modern automatic differentiation packages; in fact, this

“double backpropagation” should only scale the computation time by a constant factor [146].

Further discussion of this and empirical runtime comparisons are provided in the appendix. [57]

also propose Activation-based Attention Transfer, which transfers intermediate layer activations

from teacher to student network rather than gradients; in fact, they report better performance

4[57] actually uses the ℓ2 distance between the gradients as the regularization term, rather than its square. However,
because our gradient estimate is stochastic (in particular, we are using samples of s′ ∼ T (s, a) rather than the
expectation), we instead use the mean squared error, so that the current Q gradients will converge to the population
mean. [57] notes that their particular choice of the ℓ2 norm is arbitrary: other metrics should work.
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Targ.(g;s,a)

g1

g2

Qθ(g;s,a)

g1

g2

Targ.(g;s,a)

g1

g2

Qθ(g;s,a)

g1

g2

ReenGAGE: DDPG:

Figure 8.1: Illustration comparing the information flow from the Q-value target function to
the current Q-function in ReenGAGE, compared to standard DDPG. In ReenGAGE, for each
(s, a, s′, g) tuple, the gradient with respect to the goal is used as supervision, while in standard
DDPG, only point values are used. Note that in stochastic environments, each tuple only provides
a stochastic estimate of the target gradient (in ReenGAGE) or target point value (in DDPG).

using this method than the gradient method. However, this is not applicable in our case. Firstly,

in the dense reward case, we cannot model the reward function in this way. Secondly, unlike the

gradient operator, activations are nonlinear: so, even in the sparse case, we cannot assume that

the activations of a “converged” Q-network perfectly modeling the expected target will be the

equal to the expected activations of the target network (i.e., there is no activation equivalent to

Equation 8.7.) See [147] for a review of sources of auxiliary network information that can be

used for knowledge distillation.

8.3 Toy Example Experiments

We first apply ReenGAGE to a simple sparse-reward environment, which we call Contin-

uousSeek. This task is a continuous variant of the discrete “Bit-Flipping” environment proposed

in [50]. In our proposed task, the objective is to navigate from an initial state in d-dimensional

space to a desired goal state, by, at each step, adding an ℓ∞-bounded vector to the current state.

Formally:

• s, g ∈ [−D,D]d
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Figure 8.2: ContinuousSeek results. Lines show the mean and standard deviation over 20 random
seeds (kept the same for all experiments.) The Y-axis represents the success rate, defined as the
fraction of test episodes for which the goal is ever reached.

• a ∈ [−1,1]d

• T (s, a) = s + a (clipped into [−D,D]d)

• R(s, g) = −1 + 1∥s−g∥∞≤ϵ

• initial state s0 = 0.

In our experiments, we use D = 5, ϵ = 0.1, and we run for 10 steps per episode. We test

with d = 5,10 and 20. The chance that a random state achieves the goal is approximately 1
50d

, so

this is an extremely sparse reward problem (as sparse as “Bit-Flipping” with 5.6 × d bits). As a

baseline, we use DDPG with HER.

See Figure 8.2 for results. For the baseline and each value of α, we performed a grid

search over learning rates {0.00025, 0.0005, 0.001, 0.0015} and batch sizes {128, 256, 512}; the

curves shown represent the “best” hyperparameter settings for each α, defined as maximizing

the area under the curves. See appendix for results for all hyperparameter settings. We studied

the learning rate specifically to ensure that the ReenGAGE regularization term is not simply

“scaling up” the loss function with similar gradient updates. Other hyperparameters were kept

fixed and are listed in the appendix. We see that ReenGAGE clearly improves over the baseline
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for larger-dimensionality goals (d = 10 and d = 20): this shows that ReenGAGE can improve the

performance of DDPG in such high-dimensional goal settings. See the appendix for a similar

experiment with SAC as the base off-policy learning algorithm instead of DDPG.

8.4 Robotics Experiments

We tested our method on HandReach, the environment from the OpenAI Gym Robotics

suite [148] with the highest-dimensional goal space (d = 15). In this sparse-reward environment,

the agent controls a simulated robotic hand with 20-dimensional actions controlling the hand’s

joints; the goal is to move all of the fingertips to the specified 3-dimensional positions. As a

baseline, we use the released DDPG+HER code from [148], with all hyperparameters as origi-

nally presented, and only modify the critic loss term. Results are presented in Figure 8.3. In this

environment, we see that ReenGAGE greatly speeds up convergence compared to the baseline.

However, at a high value of α, the success rate declines after first converging. This shows that

ReenGAGE may cause some instability if the gradient loss term is too large, and that tuning the

coefficient α is necessary (see also the Limitations section below).

We also tried our method on the HandManipulateBlock environment from the same pa-

per; however, in this lower-dimensional goal environment (d = 7) ReenGAGE was not shown

to improve performance. This is compatible with our observation from the ContinuousSeek en-

vironment that ReenGAGE leads to greater improvements for higher-dimensional tasks, as the

dimensionality of the additional goal-gradient information that ReenGAGE propagates increases.

Results are provided in the appendix.
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Figure 8.3: HandReach results. (a) Rendering of the HandReach simulation environment. Figure
taken from [148]. (b) Performance of ReenGAGE on HandReach, compared to the baseline from
[148]. Lines represent mean and standard deviation for the same set of 5 seeds. The X-axis is the
number of training epochs, as defined in [148], while the Y-axis is the success rate, defined by
[148] as the fraction of test episodes where the final state satisfies the goal. (c) Detailed view of
(b), showing the epochs before convergence, where the advantage of ReenGAGE is most clear.

8.5 Multi-ReenGAGE: ReenGAGE for Multiple Simultaneous Goals

In this section, we propose a variant of ReenGAGE for a specific class of RL environ-

ments: environments where the agent is rewarded for achieving any goal in a large set of arbi-

trary sparse goals, all of which are specified at test time. Formally, we consider goals in the form

g = {g1, ...gn}, where n may vary but n ≤ nmax. We consider {0,1} rewards, where the reward

function takes the form:

R(s′, g) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1 if ∨
gi∈g
(Ritem(s′, gi) = 1)

0 otherwise

. (8.13)

In our experiments, we only consider cases where the goals are mutually exclusive, so this is

equivalent to:

R(s′, g) = ∑
gi∈g

Ritem(s
′, gi). (8.14)
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Figure 8.4: Multi-ReenGAGE results. (a) and (c): Illustrations of DriveSeek and NoisySeek
environments, respectively: cyan points show goals that were never reached, blue points show
goals that were reached, and magenta points show (rounded) non-goal states that were reached.
In (c), we see a NoisyReach agent (correctly) avoiding the trap of going to the nearby isolated
points in favor of seeking the larger cluster. (b) and (d): Results for DriveSeek and NoisySeek,
respectively. We see that Multi-ReenGAGE substantially improves over standard DDPG for both
tasks. Lines are an average of (the same) 5 random seeds. For NoisySeek, we also show the
performance of a perfect “greedy” agent, which simply goes towards the nearest individual goal.
For NoisySeek, evaluations with more values of α are included in the appendix. Note that for both
experiments, the agent takes as input a list of goal coordinates, rather than an image: the agents
do not use convolutional layers to interpret the goals. (On DriveSeek, where the coordinates are
bounded, we attempted learning from images as well; ReenGAGE still outperformed DDPG, but
overall performance was worse for both – this experiment is presented in the appendix.)

We assume that either: (i) the function Ritem is known a priori to the agent, or (ii) the item

rewards Ritem(s′, gi) are observed separately for each goal gi at each time step during training.

This scenario presents several challenges. Firstly, many goal relabeling strategies cannot be

directly applied here: strategies such as HER [50] assume that achieved states can be projected

down into the space of goals. In this case, the space of goals is much larger than the space of

possible states, so this assumption is broken. Secondly, we suggest that standard Q-learning is

somewhat unsuited to this kind of problem, because it loses information about which goal led to

a reward. For instance, if there are 100 goals gi, and a reward is received for a certain state s′,

there is no direct indication of which goal was satisfied. This means that a very large number of

episodes may need to be run in order to learn the effect of each individual goal on the reward.

We now describe our approach. For concreteness, we will assume that the agent uses an
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architecture based on DeepSets [149] to process the goal set input (although we believe our

technique can likely be adapted to using more complex neural set architectures, such as Set

Transformer [150]). Concretely, this means that our Q-function takes the form:

Qθ(s, a, g) ∶= Q
head
θh. (s, a,∑

gi∈g
[Qencoder

θe. (s, gi)]) (8.15)

and the policy has a similar architecture. Note that Qencoder
θe. outputs a vector-valued embedding

for a given goal gi. From this baseline, introduce a set of scalar gate variables bi:

Qθ(s, a, g) ∶= Q
head
θh. (s, a,

n

∑
i=1
[biQ

encoder
θe. (s, gi)]). (8.16)

Each gate bi is set to 1. However, if bi were zero, this would be equivalent to the goal gi being

absent from the set g. We then treat the gate variables as differentiable. If a certain goal gi

contributes to the Q function (i.e., if it is likely to be satisfied), then we expect Qθ(s, a, g) to

be highly sensitive to bi; in other words, we expect ∂Qθ

∂bi
to be large. Then ∇bQ represents the

importance of each goal to the Q-value function. Our key insight is that we can use a ReenGAGE-

style loss to transfer ∇bQ from target to current Q-value estimate, therefore preserving attention

on the relevant goals.

However, this requires us to have a value for ∇bR(s′, g). Note that the reward can be

written as:

R(s′, g) = ∑
gi∈g

biRitem(s
′, gi). (8.17)
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Setting bi = 0 is again like gi being absent. Interpolating:

∂R

∂bi
∶= Ritem(s

′, gi) (8.18)

which gives us a “ground-truth” reward gradient we can compute. This yields the following loss

function:

LMulti-ReenGAGE = LDDPG-Critic + αLmse[∇bQθ(s, a, g),

Ritem(s
′, g) + γ∇bQθ′(s

′, πϕ′(s
′, g), g)]

(8.19)

where [Ritem(s′, g)]i ∶= Ritem(s′, gi). In practice, we make two modifications to this algorithm.

First, we use b2i as the gate rather than bi.5 While algebraically this should do nothing but multiply

the gradient loss term by 4, it is important for vectorized implementation; see the appendix for

details.

Second, we share the encoder Qencoder between the Q-function and the policy π. This is

so the policy does not have to learn to interpret the goal set “from scratch” and is empirically

important (see ablation study in the appendix). We train the encoder only during critic training.

8.5.1 Experiments

We test Multi-ReenGAGE on two environments: DriveSeek and NoisySeek. Both envi-

ronments are constructed such that a “greedy” strategy of simply going to the closest individual

goal is not optimal, so the entire goal set must be considered. We describe the environments

informally here and provide additional detail in the appendix.

5And use 2Ritem(s′, g) instead of Ritem(s′, g).
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DriveSeek is a deterministic environment, where the continuous position spos. ∈ [−10,10]2

always moves with constant ℓ2 speed 1, in a direction determined by a velocity vector svel. on the

unit circle. At each step, the agent takes a 1-dimensional action a ∈ [−0.5,0.5], which represents

angular acceleration: it specifies an angle in radians which is added to the angle of the velocity

vector. At the edges of the space, the state position wraps around to the opposite edge.

The objective is to reach any of up to nmax = 200 goals. The goals all lie on integer coordi-

nates in [−10,10]2, and the agent receives a reward if its coordinates round to a goal. In addition

to spos. and svel., the agent receives an observation of its current rounded position. The agent also

receives as input the current list of goal coordinates. Note that the agent cannot simply stay at

a single goal, or take an arbitrary path between goals: it is constrained to making wide turns.

Therefore all goals must be considered in planning an optimal trajectory.

NoisySeek is a randomized environment. In it, s ∈ R2, a ∈ R2, with ∥a∥2 ≤ 1, and the transi-

tion function is defined as T (s, a) ∼ N(s + a, I). In other words, the agent moves through space

at a capped speed, and noise is constantly added to the position. The goals are defined as integer

coordinates in a similar manner to in DriveSeek, but without a box constraint. Additionally, the

goal distribution is such that goals tend to be clustered together. Note that a “greedy” agent that

simply goes to the nearest goal is suboptimal, because the probability of consistently reaching

that one goal is low: it is better to seek clusters.

Results are presented in Figure 8.4. We see that Multi-ReenGAGE substantially outper-

forms the baseline of DDPG on both environments.
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8.6 Theoretical Properties

8.6.1 Bias

In the Preliminaries section, we discuss that goal relabeling strategies can exhibit bias if

Equation 8.6 is not respected. In the dense reward case, our method does not cause bias of this

sort (although such bias may be present if our method is combined with a relabeling strategy.)

However, in the sparse reward case, if the transitions are nondeterministic, our method may

cause a similar bias. In particular, note that, in the sparse case, Equation 8.9 effectively trains the

gradient of the Q-value function to match the following target:

∇gQθ(s, a, g) ∶=

E
s′∼T (s,a)

[γ∇gQθ′(s
′, πϕ′(s

′, g), g)∣R(s′, g) = clow]≈

∇g E
s′∼T (s,a)

[R(s′, g) + γQθ′(s
′, πϕ′(s

′, g), g)∣R(s′, g) = clow]

(8.20)

where the last line holds exactly if the “boundary” points where R(s′, g) = clow but∇gR(s′, g) ≠ 0

are of measure zero (and the derivative is defined at all such points).

Equation 8.20 shows us that, in the sparse case, our method trains the gradient of the

Q-function to match an expected target gradient where the expectation is taken over a biased

distribution: if

Pr
T
[s′∣s, a;R(s′, g) = clow] ≠ Pr

T
[s′∣s, a], (8.21)

then this will cause bias in our target gradient estimate, in a similar manner to the hindsight bias
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of HER described by [145].

Note that this is only an issue in nondeterministic environments: in deterministic environ-

ments, for a given (s, a, g), either R(s′, g) is always ≠ clow, in which case the gradient term is

never involved in training, or R(s′, g) is always clow, in which case

Pr
T
[s′∣s, a;R(s′, g) = clow] = Pr

T
[s′∣s, a] = 1. (8.22)

8.6.2 Learning Efficiency

In this section, we provide examples of classes of environments for which our method will

result in provably more efficient learning than standard DDPG-style updates. We treat both the

dense reward case (in which we have access to the gradient of the reward function) and the sparse

reward case (in which we do not).

8.6.2.1 Dense Reward Example

Consider the class of simple, deterministic environments described as follows:

• g, s, a ∈ Rd; ∥a∥2 ≤ 1

• R(s, g) = gT s

• T (s, a) = s +Ua, where U ∈ Rd×d is an unknown orthogonal (rotation) matrix.

This environment class is illustrated in Figure 8.5. Environments of this class are parameterized

by U , so the learning task is to estimate U . We make the following assumptions:

• The “hypothesis class” consists of all environments with dynamics of the type described
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Uatst+1R(st ,g)
    |g|2

R(st +1,g)
    |g|2

Figure 8.5: Example dense reward environment class. The agent receives a reward proportional
to the projection of the state vector onto the goal vector at each step, and can change the state
vector by adding an action vector with ℓ2 distance up to 1 at each step. However, at each step,
this action is distorted by an unknown rotation U : the agent must learn to compensate for this
distortion.

above. We therefore take as an inductive bias that each model in the considered model class

consists of a Q-function QŨ and policy πŨ which are in the form of the optimal Q-function

and policy for an estimate of U , notated as Ũ ∈ Rd×d (constrained to be orthogonal).

• We assume that QŨ and πŨ share the same estimated parameter Ũ . (This is analogous to –

although admittedly stronger than – the parameter sharing we used for Multi-ReenGAGE.)

Taken with the above assumption, this implies that a = πŨ(s, g) maximizes QŨ(s, a, g), so

we do not need to train π separately. Similar parameter sharing occurs between the target

policy and Q-function.

• We are comparing our method, minimizing the loss in Equation 8.8, with minimizing the

“vanilla” DDPG loss (Equation 8.4).
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• States and actions in the replay buffer are in general position.

In this case, the following proposition holds:

Proposition 8.1. Under the above assumptions, minimizing the ReenGAGE loss can learn U

(and therefore learn the optimal policy) using O(d) unique replay buffer transitions. However,

minimizing the standard DDPG loss requires at least O(d2) unique transitions to successfully

learn U .

Proofs are provided in the appendix. This result shows that, in some cases, ReenGAGE

requires asymptotically less replay data to successfully learn to perform a task than standard

DDPG.

8.6.2.2 Sparse Reward Case

The result shown above might be unsurprising to many readers. Specifically, because the

gradient ∇gR(s′, g) is used by our method and not by standard DDPG, in the dense-reward case,

our method is utilizing more information from the environment (to the extent that R, which we

assume that agents know a priori, is part of the “environment”) than the standard algorithm.

However, here we show a class of sparse reward environments for which the same result holds,

despite ∇gR(s′, g) being unavailable. The environments are constructed as follows:

• g, a ∈ Rd; ∥a∥2 ≤ 1; s ∈ R2d; the state vector consists of two halves, denoted s1, s2; we write

s as (s1; s2).

• R(s, g) = gT s1
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• T (s, a) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(0; s1 +Ua) if s1 ≠ 0

(s2;0) if s1 = 0

• U ∈ Rd×d is an unknown orthogonal (rotation) matrix.

• We define clow = 0.

See Figure 8.6 for an illustration. Note that this satisfies sparseness properties: namely, R(s′, g) =

0 = clow at least every other step; and, when R(s′, g) = 0, then ∇gR(s′, g) = 0 (assuming general

position). It is also deterministic, so we do not need to worry about the bias discussed in the

previous section. We can therefore apply the sparse version of our method (Equation 8.9), which

does not use gradient feedback from the reward:

Proposition 8.2. Under the same assumptions as Proposition 8.1 (replacing Equation 8.8 with

Equation 8.9), minimizing the ReenGAGE loss can learn U in the sparse environment class using

O(d) unique replay buffer transitions. However, minimizing the standard DDPG loss requires at

least O(d2) unique transitions to successfully learn U .

This example is admittedly a bit contrived: the single-step reward can always be com-

puted without knowledge of the parameter U . However, it may still give insight about real-world

scenarios in which predicting immediate reward is much easier than understanding long-term

dynamics.

Note that these two scaling results apply to the number of replay buffer transitions. In par-

ticular, if a goal relabeling algorithm is used on top of DDPG, then O(d2) replay buffer transitions

may be able to be constructed from O(d) observed training rollout transitions, so standard DDPG

combined with goal relabeling might only require O(d) training rollout transitions. However, this
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t+1 

R(st+1 ,g) = 0
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Figure 8.6: Example sparse reward environment class. If s1 is initially nonzero, then the (rotated)
action Ua is added to it, as in the dense case. However, the resulting vector is immediately
“stored” in s2, and s1 is zeroed: this means that no immediate reward is obtained. In the next
step, with s1 zero, the action is ignored and s2 is “reloaded” into s1, resulting in a reward that
depends on the previous action.

would be computationally expensive, and may not work in practice for particular goal relabeling

algorithms. (HER, for instance, only relabels using achieved states from the same episode: if

the episode length is O(1) in d, then O(d2) observed training rollout transitions would still be

required for DDPG+HER.) Also, goal relabeling techniques require a priori knowledge of the

function R, while in the sparse example, ReenGAGE does not (although in the case of this exam-

ple, we assume that we are using the correct “hypothesis class”, i.e., the functional form of QŨ :

constructing this in practice would likely require knowing R).

8.7 Related Works

Many prior approaches have been taken to the goal-conditioned reinforcement learning

problem [45]. See [46] for a recent survey of this area. One line of work for this problem involves
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automated curriculum generation: here, the idea is to select goals during training that that are

dynamically chosen to be the most informative [47, 48, 49]. In the off-policy reinforcement

learning setting, a related technique becomes a possibility: one can re-label past experiences

with counter-factual goals. This allows a single experienced transition to be used to train for

multiple goals, and the re-labeled goals can be chosen using various heuristics to improve training

[50, 135, 136, 137]. Note that our proposed method can be combined with any of these off-policy

techniques. [145] discusses bias that can result from some goal relabeling techniques. [151]

proposes a method based on recursive classification which is in practice similar to hindsight

relabeling, but requires less parameter tuning.

In alternative approaches to goal-conditioned RL, [152] has proposed using an on-policy

goal-conditioned reinforcement learning technique, using contrastive learning, while [153] and

[154] propose model-based techniques.

Note that our proposed method is distinct from policy distillation [155]: the goal of policy

distillation is to consolidate one or more already trained policy networks into a smaller network;

whereas our method is intended to improve initial training. Some prior [156, 157, 158] and con-

current [159] works have focused on using attention-based mechanisms to improve either the

performance or interpretability of reinforcement learning algorithms. However, to our knowl-

edge, ours is the first to apply gradient-based attention transfer to the critic update to enhance

goal-conditioned off-policy reinforcement learning.

Some prior works have been proposed for goal-seeking with structured, complex goals

made up of sub-goals, similar to (and in some cases more general than) the multi-goal setting

that Multi-ReenGAGE is designed for. Some of these works [160, 161] use a hierarchical policy;

however, such a structure may be unable to represent the true optimal policy [162]. [162] pro-
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poses a method without this limitation; although the setting considered (Linear Temporal Logic)

is different from the multi-goal setting considered here, in that a reward is achieved at most once

per episode. [163] proposes a method for arbitrary reward functions specified at test time, under

discrete action spaces; in concurrent work [164], this is generalized to continuous actions. [153],

a model-based technique mentioned above, can use reward function gradient information to adapt

to an arbitrary shaped (i.e., non-sparse) reward function at test time.

8.8 Limitations and Conclusion

ReenGAGE has some important limitations. For example, we have seen that the hyper-

parameter α requires tuning and can vary greatly (likely due to diverse scales in goal coordinates

and rewards); and the benefits of ReenGAGE seem limited to tasks with high goal dimension.

Still, ReenGAGE represents a novel approach to goal-conditioned RL, with benefits de-

monstrated both empirically and theoretically. In future work, we are particularly interested in

exploring the use of Multi-ReenGAGE in safety and robustness applications. In particular, the

ability to encode many simultaneous goals at test time could allow the agent to consider many

“backup” goals, all of which are acceptable, rather than forcing the agent to focus only a single

goal (resulting in total failure if that goal is unreachable.)

156



Part IV

Conclusion, Future Directions, Appendices, and Bibliography

157



Chapter 9: Conclusion and Future Directions

In this work, we have presented new state-of-the-art methods for robust machine learning.

These include: the first methods for deterministic ℓ1 and adversarial patch certification to scale to

ImageNet, the first methods of any kind for certification against Wasserstein adversarial attacks,

“fractional” ℓp distortions and “general” adversarial poisoning attacks, as well as greatly im-

proved methods for ℓ0 and label-flipping poisoning certification. We have also introduced a new

method for high-dimensional goal-conditioned reinforcement learning, to allow for improved

adaptability to test-time changes in objectives of an RL system. Some possible extensions to this

work and future directions in the study of robustness include:

• Deterministic smoothing for ℓp, p ∈ (1,2]: It has been shown [51, 123, 124] that random-

ized smoothing methods are unlikely to be useful for ℓp metrics with p > 2. However, this

leaves open the question as to whether or not randomized smoothing for p ∈ (1,2] can be

efficiently derandomized, as we showed for p ∈ (0,1] in Part I. This would be particularly

important, as the ℓ2 metric is widely considered for adversarial attacks, but there exist no

published deterministic certification methods for this norm which scale to ImageNet.

• Removing restrictions to deterministic methods for ℓp, p ∈ (0,1]: The deterministic

methods presented in Chapters 3 and 4 are specific to bounded, quantized data. We are

currently in the early stages of developing a version of these methods which is not restricted

158



in these ways.

• Notions of adversarial robustness suitable for reinforcement learning. While several

works have proposed methods for certifiably-robust agents in reinforcement learning under

ℓp distortions to state observations [165, 166, 167, 168], this notion of robustness is less

well-suited to the reinforcement-learning case than to the image-classification case. In par-

ticular, while small ℓp changes to an image are assumed to be imperceptible and therefore

not representative of a meaningful signal, it is entirely possible that two state observations

for an RL agent which are very close in ℓp space might demand very different actions, de-

pending on the dynamics of the system. (For example, for a robot, avoiding direct collisions

may be much more important than avoiding near collisions.) It may therefore necessary

to develop new notions of provable robustness which are more suitable to systems with

discontinuous dynamics.

• Machine learning with verifiable reasoning. The certifiable robustness results in this

dissertation really only guarantee the stability of a model’s output, and not necessarily the

correctness of that output. However, in some domains, it is possible to use machine learn-

ing systems to generate output that is verifiably correct. For example, there is a recent line

of work using large language models (LLMs) to generate guaranteed-correct formal proofs

of given conjectures, by mechanically verifying the correctness of each LLM-generated

step of the proof step-by-step as they are generated.[169, 170, 171] However, such tech-

niques do not clearly translate to more open-ended domains, such as computer vision. A

difficult but potentially rewarding challenge would be to try to adapt similar methods to

more open-ended, real-world domains.
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Appendix A: Appendix to Chapter 2

A.1 Architecture and Training Parameters for MNIST

See Tables A.1 and A.2.

Layer Output Shape

(Input) 2 × 28 × 28
2D Convolution + ReLU 64 × 14 × 14
2D Convolution + ReLU 128 × 7 × 7

Flatten 6272
Fully Connected + ReLU 500
Fully Connected + ReLU 100

Fully Connected + SoftMax 10

Table A.1: Model Architecture of the Base Classifier for MNIST Experiments. 2D Convolution
layers both have a kernel size of 4-by-4 pixels, stride of 2 pixels, and padding of 1 pixel.

Training Epochs 400

Batch Size 128

Optimizer Stochastic Gradient
Descent with Momentum

Learning Rate .01 (Epochs 1-200)
.001 (Epochs 201-400)

Momentum 0.9

ℓ2 Weight Penalty 0

Table A.2: Training Parameters for MNIST Experiments
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A.2 Training Parameters for CIFAR-10

As discussed in the main text, we used a standard ResNet18 architecture for our base clas-

sifier: the only modification made was to increase the number of input channels from 3 to 6. See

Table A.3 for training parameters.

Training Epochs 400

Batch Size 128

Training Set Random Cropping (Padding:4)
Preprocessing and Random Horizontal Flip

Optimizer Stochastic Gradient
Descent with Momentum

Learning Rate .01 (Epochs 1-200)
.001 (Epochs 201-400)

Momentum 0.9

ℓ2 Weight Penalty 0.0005

Table A.3: Training Parameters for CIFAR-10 Experiments

A.3 Training Parameters for ImageNet

As with CIFAR-10, we used a standard ResNet50 architecture for our base classifier: the

only modification made was to increase the number of input channels from 3 to 6. See Table A.4

for training parameters.

A.4 Mutual information derivation for Lee et al. 2019

Here we present a derivation of the expression given in Equation 2.21 in the main text. Let

X be a random variable representing the original image: in this derivation, we assume that X is
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Training Epochs 36

Batch Size 256

Training Set Random Resizing and Cropping,
Preprocessing Random Horizontal Flip

Optimizer Stochastic Gradient
Descent with Momentum

Learning Rate .1 (21 Epochs)
.01 (10 Epochs)
.001 (5 Epochs)

Momentum 0.9

ℓ2 Weight Penalty 0.0001

Table A.4: Training Parameters for ImageNet Experiments

distributed uniformly in Sd. Let Y be a random variable representing the image, after replacing

each pixel with a random, different value with probability (1 − κ). By the definition of mutual

information, we have:

I(X,Y) =H(X) −H(X∣Y) (A.1)

Note that, with X distributed uniformly, it consists of d i.i.d. instances of a random variable X○,

itself uniformly distributed in S . Similarly, each component of Y is an instance of a random

variable defined by:

Y○ =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

X○ with probability κ

Uniform on S − {X○} with probability 1 − κ

(A.2)

We can then factorize the expression for mutual information, using the fact that each instance of

(X○, Y○) is independent:

ILee et al. = I(X,Y) = d(H(X○) −H(X○∣Y○)) (A.3)

162



By the definitions of entropy and mutual entropy, we have:

ILee et al. = −d(∑
s∈S

Pr(X○ = s) log2Pr(X○ = s)

− ∑
(s,s′)

Pr(X○ = s, Y○ = s
′) log2

Pr(X○ = s, Y○ = s′)

Pr(Y○ = s′)
)

(A.4)

Note that, by symmetry, Y○ is itself uniformly distributed on S . Then we have:

ILee et al. = −d(∑
s∈S
∣S∣−1 log2 ∣S∣

−1

− ∑
(s,s′)

Pr(X○ = s, Y○ = s
′) log2

Pr(X○ = s, Y○ = s′)

∣S∣−1
)

(A.5)

Splitting (s, s′) into cases for (s = s′) and (s ≠ s′):

ILee et al. = −d(∑
s

∣S∣−1 log2 ∣S∣
−1

−∑
s

Pr(X○ = Y○ = s) log2
Pr(X○ = Y○ = s)

∣S∣−1

− ∑
s≠s′

Pr(X○ = s, Y○ = s
′) log2

Pr(X○ = s, Y○ = s′)

∣S∣−1
)

(A.6)

Note that Pr(X○ = Y○ = s) = ∣S∣−1κ, because X○ = s with probability ∣S∣−1, and then Y○ is assigned

to X○ with probability κ. Also, for s ≠ s′, we have

Pr(X○ = s, Y○ = s
′) = ∣S∣−1(1 − κ)(∣S∣ − 1)−1, (A.7)

because X○ = s with probability ∣S∣−1, Y○ is not equal to X○ with probability (1 − κ), and then

Y○ assumes each value in S − {X○} with uniform probability. Plugging these expressions into

163



Equation A.6 gives:

ILee et al. = −d(∑
s

log2 ∣S∣
−1

∣S∣
−∑

s

κ

∣S∣
log2 κ

− ∑
s≠s′

(1 − κ)

(∣S∣ − 1)∣S∣
log2 [(1 − κ)(∣S∣ − 1)

−1])

(A.8)

Now all summands are constants: we note that summing over all s ∈ S is now equivalent to

multiplying by ∣S∣ and summing over (s, s′) ∈ S2 with s ≠ s′ is equivalent to multiplying by

∣S∣(∣S∣ − 1):

ILee et al. = −d(log2 ∣S∣
−1 − κ log2 κ

− (1 − κ) log2 [(1 − κ)(∣S∣ − 1)
−1])

(A.9)

This simplifies to the expression given in the text.

A.5 Additional Adversarial Examples

See Figure A.1.
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Figure A.1: Additional adversarial examples generated on MNIST by the Pointwise attack on our
robust classifier, with k = 45.
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Appendix B: Appendix to Chapter 3

B.1 Proofs

Theorem 3.1 (Lee et al. [1]). For any f ∶ Rd → [0,1] and parameter λ ∈ R+, define:

p(x) ∶= E
ϵ∼Ud(−λ,λ)

[f(x + ϵ)] . (B.1)

Then, p(.) is 1/(2λ)-Lipschitz with respect to the ℓ1 norm.

Proof. Consider two arbitrary points x,x′ where δ ∶= x′ −x. We consider two cases.

• Case 1: ∥δ∥1 ≥ 2λ: Then, because f(⋅) ∈ [0,1], and therefore p(⋅) ∈ [0,1], we have:

∣p(x) − p(x′)∣ ≤ 1 ≤
∥δ∥1
2λ

(B.2)

• Case 2: ∥δ∥1 < 2λ: In this case, for each i, ∣δi∣ < 2λ. Define B(x) as the ℓ∞ ball of radius

λ around x, and U(B(x)) as the uniform distribution on this ball (and, similarly U(⋅), on

any other set). In other words:

p(x) = E
z∼U(B(x))

f(z) (B.3)
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Then,

∣p(x) − p(x′)∣

= ∣ E
z∼U(B(x))

f(z) − E
z∼U(B(x′))

f(z)∣

= ∣( Pr
z∼U(B(x))

z ∈ B(x) ∖ B(x′) E
z∼U(B(x)
∖B(x′))

f(z)

+ Pr
z∼U(B(x))

z ∈ B(x) ∩ B(x′) E
z∼U(B(x)
∩B(x′))

f(z))

− ( Pr
z∼U(B(x′))

z ∈ B(x′) ∖ B(x) E
z∼U(B(x′)
∖B(x))

f(z)

+ Pr
z∼U(B(x′))

z ∈ B(x) ∩ B(x′) E
z∼U(B(x)
∩B(x′))

f(z))∣

= ∣ Pr
z∼U(B(x))

z ∈ B(x) ∖ B(x′) E
z∼U(B(x)
∖B(x′))

f(z)

− Pr
z∼U(B(x′))

z ∈ B(x′) ∖ B(x) E
z∼U(B(x′)
∖B(x))

f(z)∣

(B.4)

Note that:

Pr
z∼U(B(x′))

z ∈ B(x′) ∖ B(x)

= Pr
z∼U(B(x))

z ∈ B(x) ∖ B(x′)

(B.5)

Because both represent the probability of a uniform random variable on an ℓ∞ ball of radius

λ taking a value outside of the region B(x)∩B(x′) (which is entirely contained within both
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balls.) Then:

∣p(x) − p(x′)∣

= Pr
z∼U(B(x))

z ∈ B(x) ∖ B(x′)

× ∣ E
z∼U(B(x)∖
B(x′))

f(z) − E
z∼U(B(x′)
∖B(x))

f(z)∣

≤ Pr
z∼U(B(x))

z ∈ B(x) ∖ B(x′).

(B.6)

Where, in the last line, we used the fact that f(⋅) ∈ [0,1]. Let V(S) represent the volume

of a set S . Note that B(x) ∩ B(x′) is a d-hyperrectangle, with each edge of length

min(xi, x
′
i) + λ − (max(xi, x

′
i) − λ) = 2λ − ∣δi∣ (B.7)

Then following Equation B.6,

∣p(x) − p(x′)∣

≤
V(B(x)) − V(B(x) ∩ B(x′))

V(B(x))

= 1 −
Πd

i=1(2λ − ∣δi∣)

(2λ)d

= 1 −
d

Π
i=1
(1 −

∣δi∣

2λ
)

(B.8)
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Note that, for 1 ≤ d′ ≤ d:

d′

Π
i=1
(1 −

∣δi∣

2λ
)

=
d′−1
Π
i=1
(1 −

∣δi∣

2λ
) −
∣δd′ ∣

2λ

d′−1
Π
i=1
(1 −

∣δi∣

2λ
)

≥
d′−1
Π
i=1
(1 −

∣δi∣

2λ
) −
∣δd′ ∣

2λ

(B.9)

By induction:

d

Π
i=1
(1 −

∣δi∣

2λ
) ≥ 1 −

d

∑
i=1

∣δi∣

2λ
(B.10)

Therefore,

∣p(x) − p(x′)∣

≤ 1 −
d

Π
i=1
(1 −

∣δi∣

2λ
)

≤ 1 − (1 −
d

∑
i=1

∣δi∣

2λ
)

=
∥δ∥1
2λ

(B.11)

Thus, by the definition of Lipschitz-continuity, p is 1/(2λ)-Lipschitz with respect to the ℓ1 norm.

Theorem 3.2 (General Case). For any f ∶ Rd → [0,1], and λ > 0 let s ∈ [0,2λ]d be a random

variable, with a fixed distribution such that:

si ∼ U(0,2λ), ∀i. (B.12)

Note that the components s1, ..., sd are not required to be distributed independently from each
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other. Then, define:

x̃i ∶=
min(2λ⌈xi−si

2λ ⌉ + si,1)

2
(B.13)

+
max(2λ⌈xi−si

2λ − 1⌉ + si,0)

2
, ∀i (B.14)

p(x) ∶= E
s
[f(x̃)] . (B.15)

Then, p(.) is 1/(2λ)-Lipschitz with respect to the ℓ1 norm.

Proof. Consider two arbitrary points x,x′ where δ ∶= x′ −x. We consider two cases.

• Case 1: ∥δ∥1 ≥ 2λ: Then, because f(⋅) ∈ [0,1], and therefore p(⋅) ∈ [0,1], we have:

∣p(x) − p(x′)∣ ≤ 1 ≤
∥δ∥1
2λ

(B.16)

• Case 2: ∥δ∥1 < 2λ:

In this case, for each i, ∣δi∣ < 2λ, and therefore ⌈xi−si
2λ ⌉ and ⌈x

′
i−si
2λ ⌉ differ by at most one.

Furthermore, ⌈xi−si
2λ ⌉ differs from ⌈ xi

2λ⌉ by at most one, and similarly for x′i. Without loss of

generality, assume xi < x′i (i.e., δi = ∣δi∣ = x′i − xi).

There are two cases:

– Case A: ⌈ xi

2λ⌉ = ⌈
x′i
2λ⌉. Let this integer be n. Then:

* ⌈
xi−si
2λ ⌉ = ⌈

x′i−si
2λ ⌉ = n iff si

2λ <
xi

2λ − (n − 1) (which also implies si
2λ <

x′i
2λ − (n − 1)).

* ⌈
xi−si
2λ ⌉ = ⌈

x′i−si
2λ ⌉ = n−1 iff si

2λ ≥
x′i
2λ −(n−1) (which also implies si

2λ ≥
xi

2λ −(n−1)).

Then ⌈xi−si
2λ ⌉ and ⌈x

′
i−si
2λ ⌉ differ only if xi

2λ − (n − 1) ≤
si
2λ <

x′i
2λ − (n − 1), which occurs

with probability δi
2λ .
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– Case B: ⌈ xi

2λ⌉ + 1 = ⌈
x′i
2λ⌉. Let n ∶= ⌈ xi

2λ⌉. Then ⌈xi−si
2λ ⌉ and ⌈x

′
i−si
2λ ⌉ can differ if either:

* ⌈
xi−si
2λ ⌉ = n and ⌈x

′
i−si
2λ ⌉ = n + 1. This occurs iff si

2λ <
x′i
2λ − n (which also implies

si
2λ <

xi

2λ − (n − 1)).

* ⌈
xi−si
2λ ⌉ = n − 1 and ⌈x

′
i−si
2λ ⌉ = n. This occurs iff si

2λ ≥
xi

2λ − (n − 1) (which also

implies si
2λ ≥

x′i
2λ − n).

In other words, ⌈xi−si
2λ ⌉ = ⌈

x′i−si
2λ ⌉ iff:

xi

2λ
− (n − 1) >

si
2λ
≥
x′i
2λ
− n

Or equivalently:

xi

2λ
− n + 1 >

si
2λ
≥
xi

2λ
− n +

δi
2λ

This happens with probability 1 − δi
2λ . Therefore, ⌈xi−si

2λ ⌉ and ⌈x
′
i−si
2λ ⌉ differ with prob-

ability δi
2λ .

Note that ⌈xi−si
2λ − 1⌉ and ⌈x

′
i−si
2λ − 1⌉ differ only when ⌈xi−si

2λ ⌉ and ⌈x
′
i−si
2λ ⌉ differ. Therefore in

both cases, x̃i and x̃′i differ with probability at most ∣δi∣2λ . The rest of the proof proceeds as

in the λ ≥ 0.5 case in the main text.

Corollary 3.1 (General Case). For any f ∶ Rd → [0,1], and λ ≥ 0 (with 2λ a multiple of 1/q), let

s ∈ [0,2λ − 1/q]
d
(q) + 1/(2q) be a random variable with a fixed distribution such that:

si ∼ U(q) (0,2λ − 1/q) + 1/(2q), ∀i. (B.17)
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Note that the components s1, ..., sd are not required to be distributed independently from each

other. Then, define:

x̃i ∶=
min(2λ⌈xi−si

2λ ⌉ + si,1)

2
(B.18)

+
max(2λ⌈xi−si

2λ − 1⌉ + si,0)

2
, ∀i (B.19)

p(x) ∶= E
s
[f(x̃)] . (B.20)

Then, p(.) is 1/(2λ)-Lipschitz with respect to the ℓ1 norm on the quantized domain x ∈ [0,1]d(q).

Proof. The proof is substantially similar to the proof of the continuous case above. Minor differ-

ences occur in Cases 2.A and 2.B (mostly due to inequalities becoming strict, because possible

values of si are offset from values of xi) which we show here:

• Case A: ⌈ xi

2λ⌉ = ⌈
x′i
2λ⌉. Let this integer be n. Then:

– ⌈xi−si
2λ ⌉ = ⌈

x′i−si
2λ ⌉ = n iff si

2λ <
xi

2λ − (n − 1) (which also implies si
2λ <

x′i
2λ − (n − 1)).

– ⌈xi−si
2λ ⌉ = ⌈

x′i−si
2λ ⌉ = n − 1 iff si

2λ >
x′i
2λ − (n − 1) (which also implies si

2λ >
xi

2λ − (n − 1)).

Then ⌈xi−si
2λ ⌉ and ⌈x

′
i−si
2λ ⌉ differ only if xi

2λ − (n − 1) <
si
2λ <

x′i
2λ − (n − 1). There are exactly

q ⋅ δi discrete values that si can take such that this condition holds. This is out of 2λq

possible values over which si is uniformly distributed. Therefore, the condition holds with

probability δi
2λ .

• Case B: ⌈ xi

2λ⌉ + 1 = ⌈
x′i
2λ⌉. Let n ∶= ⌈ xi

2λ⌉. Then ⌈xi−si
2λ ⌉ and ⌈x

′
i−si
2λ ⌉ can differ if either:

– ⌈xi−si
2λ ⌉ = n and ⌈x

′
i−si
2λ ⌉ = n + 1. This occurs iff si

2λ <
x′i
2λ − n (which also implies

si
2λ <

xi

2λ − (n − 1)).
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– ⌈xi−si
2λ ⌉ = n − 1 and ⌈x

′
i−si
2λ ⌉ = n. This occurs iff si

2λ >
xi

2λ − (n − 1) (which also implies

si
2λ >

x′i
2λ − n).

In other words, ⌈xi−si
2λ ⌉ = ⌈

x′i−si
2λ ⌉ iff:

xi

2λ
− (n − 1) >

si
2λ
>
x′i
2λ
− n

Or equivalently:

xi

2λ
− n + 1 >

si
2λ
>
xi

2λ
− n +

δi
2λ

There are exactly q ⋅ (1 − δi) discrete values that si can take such that this condition holds.

This is out of 2λq possible values over which si is uniformly distributed. Therefore, the

condition holds with probability 1−δi
2λ . Thus, ⌈xi−si

2λ ⌉ and ⌈x
′
i−si
2λ ⌉ differ with probability δi

2λ .

B.2 Experimental Details

For uniform additive noise, we reproduced Yang et al. [5]’s results directly, using their

released code. Note that we also reproduced the training of all models, rather than using re-

leased models. For Independent SSN and DSSN, we followed the same training procedure as

in Yang et al. [5], but instead used the noise distribution of our methods during training. For

DSSN, we used the same vector v to generate noise during training and test time: note that our

certificate requires v to be the same fixed vector whenever the classifier is used. In particular,

we used a pseudorandom array generated using the Mersenne Twister algorithm with seed 0, as

implemented in NumPy as numpy.random.RandomState. This is guaranteed to produce identical
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results on all platforms and for all future versions of NumPy, given the same seed, so in practice

we only store the seed (0). In Section B.3, we explore the sensitivity of our method to different

choices of pseudorandom seeds.

In a slight deviation from Cohen et al. [32], Yang et al. [5] uses different noise vectors

for each sample in a batch when training (Cohen et al. [32] uses the same ϵ for all samples

in a training batch to improve speed). We follow Yang et al. [5]’s method: this means that

when training DSSN, we train the classifier on each sample only once per epoch, with a single,

randomly-chosen value of sbase, which varies between samples in a batch.

Training parameters (taken from Yang et al. [5]) were as follows (Table B.1):

CIFAR-10 ImageNet

Architecture WideResNet-40 ResNet-50

Number of Epochs 120 30

Batch Size 64 1 64

Initial 0.1 0.1
Learning Rate

LR Scheduler Cosine Cosine
Annealing Annealing

Table B.1: Training parameters for experiments.

For all certification results in the main text, and most training results, we used a single

NVIDIA 2080 Ti GPU. (Some experiments with denoisers in Section B.4, as well as ImageNet

stability training, used two GPUs.)

For testing, we used the entire CIFAR-10 test set (10,000 images) and a subset of 500

1There is a discrepancy between the code and the text of Yang et al. [5] about the batch size used for training on
CIFAR-10: the paper says to use a batch size of 128, while the instructions for reproducing the paper’s results
released with the code use a batch size of 64. Additionally, inspection of one of Yang et al. [5]’s released models
indicates that a batch size of 64 was in fact used. (In particular, the “num batches tracked” field in the saved model,
which counts the total number of batches used in training, corresponded with a batch size of 64.) We therefore used
a batch size of 64 in our reproduction, assuming that the discrepancy was a result of a typo in that paper.
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images of ImageNet (the same subset used by Cohen et al. [32]).

When reporting clean accuracies for randomized techniques (uniform additive noise and

Independent SSN), we followed [5] by simply reporting the percent of samples for which the

N0 = 64 initial noise perturbations, used to pick the top class during certification, actually se-

lected the correct class. (Notably, [5] does not use an “abstain” option for prediction, as some

other randomized smoothing works [32] do.) On the one hand, this is an inexact estimate of the

accuracy of the true classifier p(x), which uses the true expectation. On the other hand, it is the

actual, empirical accuracy of a classifier that is being used in practice. This is not an issue when

reporting the clean accuracy for DSSN, which is exact.

In DSSN, as originally proposed in [29] (Chapter 6 of this dissertation, published before

this chapter was written), if two classes tie in the number of “votes”, we predict the first class

lexicographically: this means that we can certify robustness up to and including the radius ρ,

because we are guaranteed consistent behavior in the case of ties. Reported certified radii for

DSSN should therefore be interpreted to guarantee robustness even in the ∥x−x′∥1 = ρ case. (This

is not a meaningful distinction in randomized methods where the space is taken as continuous).

B.3 Effect of pseudorandom choice of v

In Section B.2, we mention that the vector v used in the derandomization of DSSN, which

must be re-used every time the classifier is used, is generated pseudorandomly, using a seed of

0 in all experiments. In this section, we explore the sensitivity of our results to the choice of

vector v, and in particular to the choice of random seed. To do this, we repeated all standard-

training DSSN experiments on CIFAR-10, using two additional choices of random seeds. We
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0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Seed = 0 72.25% 63.07% 56.21% 51.33% 46.76% 42.66% 38.26% 33.64%
(81.50% (77.85% (71.17% (67.98% (65.40% (65.40% (65.40% (65.40%
@ σ=0.75) @ σ=1.25) @ σ=2.25) @ σ=3.0) @ σ=3.5) @ σ=3.5) @ σ=3.5) @ σ=3.5)

Seed = 1 72.01% 62.73% 56.03% 51.20% 46.71% 42.45% 37.87% 33.08%
(81.85% (75.64% (72.19% (67.65% (66.93% (66.19% (66.19% (66.19%
@ σ=0.75) @ σ=1.5) @ σ=2.0) @ σ=3.0) @ σ=3.25) @ σ=3.5) @ σ=3.5) @ σ=3.5)

Seed = 2 72.62% 62.79% 56.06% 51.02% 46.85% 42.52% 38.22% 33.53%
(81.19% (74.26% (70.13% (70.13% (65.33% (65.33% (65.33% (65.33%
@ σ=0.75) @ σ=1.75) @ σ=2.5) @ σ=2.5) @ σ=3.5) @ σ=3.5) @ σ=3.5) @ σ=3.5)

Table B.2: Comparison of DSSN using different random seeds to generate v on CIFAR-10.
Matching Yang et al. [5], we test on 15 noise levels (σ ∈ {0.15,0.25n for 1 ≤ n ≤ 14}). We report
the best certified accuracy at a selection of radii ρ, as well as the clean accuracy and noise level
of the associated classifier. We find very little difference between the different seed values, with
all certified accuracies within ±0.65 percentage points of each other.

performed both training and certification using the assigned v vector for each experiment. Result

are summarized in Table B.2. We report a tabular summary, rather than certification curves,

because the curves are too similar to distinguish. In general, the choice of random seed to select

v does not seem to impact the certified accuracies: all best certified accuracies were within 0.65

percentage points of each other. This suggests that our method is robust to the choice of this

hyperparameter.

B.4 Effect of a Denoiser

As shown in Figure 3.6 in the main text, at large λ, there is a substantial benefit to SSN

which is unrelated to derandomization, due to the differences in noise distributions discussed

in Section 3.3.2.1. However, Equation 3.23 shows that the difference between uniform additive

noise and Independent SSN is a simple, deterministic transformation on each pixel. We there-

fore wondered whether training a denoiser network, to learn the relationship between x and the

noisy sample (x + ϵ or x̃), would eliminate the differences between the methods. Salman et al.
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[79] proposes methods of training denoisers for randomized smoothing, in the context of using

smoothing on pre-trained classifiers. In this context, the noisy image first passes through a de-

noiser network, before being passed into a classification network trained on clean images. We

used their code (and all default parameters), in three variations:

1. Stability Denoising: In this method, the pre-trained classifier network is required for train-

ing the denoiser. The loss when training the denoiser is based on the consistency between

the logit outputs of the classifier on the clean input x and on the denoised version of the

noisy input. This is the best-performing method in [79]. However, note that it does not di-

rectly use the pixel values of x when training the denoiser, and therefore might not “learn”

the correspondence between clean and noisy samples (Figure 3.2 in the main text) as easily.

2. MSE Denoising: This trains the denoiser via direct supervised training, with the objective

of reducing the mean squared error difference between the pixel values of the clean and

denoised samples. Then, classification is done using a classifier that is pre-trained only

on clean samples. This performs relatively poorly in [79], but should directly learn the

correspondence between clean and noisy samples.

3. MSE Denoising with Retraining: For this experiment, we trained an MSE denoiser as

above, but then trained the entire classification pipeline (the denoiser + the classifier) on

noisy samples. Note that the classifier is trained from scratch in this case, with the pre-

trained denoiser already in place (but being fine-tuned as the classifier is trained).

We tested on CIFAR-10, at three different noise levels, without stability training. See Figure

B.1 for results. Overall, we find that at high noise, there is still a significant gap in performance

between Independent SSN and [5]’s method, using all of the denoising techniques. One possible
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explanation is that it is also more difficult for the denoiser to learn the noise distribution of [5],

compared to our distributions.

B.5 Additive and splitting noise allow for different types of joint noise distri-

butions

In Section 3.3.2 in the main text, we showed that, in the λ = 0.5 case, SSN leads to marginal

distributions which are simple affine transformations of the marginal distributions of the uniform

additive smoothing noise (Equation 3.24). However, we also showed (Proposition 1) that, even in

this case, certification is not possible using arbitrary joint distributions of ϵ with uniform additive

noise, as it is with SSN. This difference is explained by the fact that, even for λ = 0.5, the

joint distributions of (x + ϵ) which can be generated by uniform additive noise and the joint

distributions of x̃ which can be generated by SSN respectively are in fact quite different.

To quantify this, consider a pair of two joint distributions: D, with marginals uniform on

[−0.5,0.5], and S , with marginals uniform on [0,1]. Let D and S be considered equivalent if,

for ϵ ∼ D and s ∼ S:

x̃ ∼ (1/2)(x + ϵ) + 1/4 ∀x (B.21)

where x̃ is generated using the SSN noise s (compare to Equation 3.24 in the main text).

Proposition B.1. The only pair of equivalent joint distributions (D,S) is D ∼ Ud(−0.5,0.5),

S ∼ Ud(0,1).

Proof. We first describe a special property of SSN (with λ = 0.5):

Fix a smoothed value x̃′, and let X ′ be the set of all inputs x such that x̃′ can be generated
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from x under any joint splitting distribution S . From Figure 3.2-a in the main text, we can see

that this is simply

X ′ = {x∣x̃′i ≤ xi/2 + (1/2) ≤ x̃
′
i + (1/2) ∀i}. (B.22)

Notice that to generate x̃′, regardless of the value of x ∈ X ′, the splitting vector s must be

exactly the following:

si =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

2x̃′i if x̃′i < 1/2

2x̃′i − 1 if x̃′i ≥ 1/2

(B.23)

(This is made clear by Figure 3.1 in the main text.)

If x ∈ X ′, then x̃′ will be generated iff this value of s is chosen. Therefore, given a fixed

splitting distribution S , the probability of generating x̃′ must be constant for all points in X ′.

Now, we compare to uniform additive noise. In order for D and S to be equivalent, for the

fixed noised point (x + ϵ)′ = 2x̃′ − 1/2, it must be the case that all points in X ′ are equally likely

to generate (x+ ϵ)′. But note from Equation B.22 that X ′ is simply the uniform ℓ∞ ball of radius

0.5 around (x + ϵ)′. This implies that D must be the uniform distribution D ∼ Ud(−0.5,0.5),

which is equivalent to the splitting distribution S ∼ Ud(0,1).

The only case when SSN and uniform additive noise can produce similar distributions of

noisy samples is when all noise components are independent. This helps us understand how SSN

can work with any joint distribution of splitting noise, while uniform additive noise has only been

shown to produce accurate certificates when all components of ϵ are independent.
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B.6 Complete Certification Data on CIFAR-10 and ImageNet

We provide complete certification results for uniform additive noise, randomized SSN with

independent noise, and DSSN, at all tested noise levels on both CIFAR-10 and ImageNet, using

both standard and stability training. For CIFAR-10, see Figures B.2, B.3, B.4, and B.5. For

ImageNet, see Figure B.6. In Figure B.7 we compare the time required to certify each image for

DSSN and Yang et al. [5]’s uniform random noise method, on both datasets.
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Figure B.1: Certified accuracies of models trained with denoisers, for additive uniform noise,
SSN with independent noise, and DSSN. See text of Section B.4 for further details on the denois-
ers used. For σ ≥ 2.0, Independent SSN outperfroms [5]’s method, suggesting that the difference
in noise representations can not be resolved by using a denoiser. (It may appear as if [5]’s method
is more robust at large radii for σ = 3.5 with an MSE denoiser without retraining: however, this
is for a classifier with clean accuracy ≈ 10%, so this is vacuous: similar results can be achieved
by simply always returning the same class.)
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Figure B.2: Certification results for CIFAR-10, comparing uniform additive noise, randomized
SSN with independent noise, and DSSN, for σ ∈ {0.15,0.25,0.5,0.75}

.
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Figure B.3: Certification results for CIFAR-10, comparing uniform additive noise, randomized
SSN with independent noise, and DSSN, for σ ∈ {1.0,1.25,1.5,1.75}

.
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Figure B.4: Certification results for CIFAR-10, comparing uniform additive noise, randomized
SSN with independent noise, and DSSN, for σ ∈ {2.0,2.25,2.5,2.75}

.
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Figure B.5: Certification results for CIFAR-10, comparing uniform additive noise, randomized
SSN with independent noise, and DSSN, for σ ∈ {3.0,3.25,3.5}

.
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Figure B.6: Certification results for ImageNet, comparing uniform additive noise, randomized
SSN with independent noise, and DSSN, for σ ∈ {0.5,2.0,3.5}. Note that we see less improve-
ment in reported certified accuracies due to derandomization (i.e., less difference between In-
dependent SSN and DSSN) in ImageNet compared to in CIFAR-10, particularly at large noise
levels.

.
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Figure B.7: Comparison of the certification time per image of DSSN and Yang et al. [5]’s uniform
additive noise method. We used a single NVIDIA 2080 Ti GPU. Although in contrast to [5], our
certification time scales linearly with the noise level, the fact that [5] uses 100,000 smoothing
samples makes our method much faster even at the largest tested noise levels.
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Appendix C: Appendix to Chapter 4

C.1 Proofs

C.1.1 Proof Sketch of Theorem 4.1 (from Chapter 3) using modified notation

Suppose the [0,1] domain of dimension i is divided into “bins”, with dividers at each value

si + nΛ,∀n ∈ N (See Figure 4.1 in the main text) Then xlower
i and xupper

i are the lower- and upper-

limits of the bin which xi is assigned to. Note that the bins are of size Λ, and that the offset

si of the dividers is uniformly random. Consider two points x and y, and let δi ∶= ∣xi − yi∣.

Then the probability of a divider separating xi and yi is min(δi/Λ,1). By union bound, the

probability that (ylower,yupper) and (xlower,xupper) differ at all is at most Σδi/Λ = ∥x − y∥1/Λ. If

x and y are mapped to the same bin in every dimension, f(xlower,xupper) = f(ylower,yupper).

Because the range of f is restricted to the interval [0,1], this implies that ∣p(x) − p(y)∣ =

∣Es [f(xlower,xupper)] − Es [f(ylower,yupper)] ∣ ≤ ∥x − y∥1/Λ.

C.1.2 Proof of Theorem 4.2

We first need the following lemma, which is implicit in the proofs in Chapter 3, but which

we prove explicitly here for completeness. Note that we closely follow the proof of Theorem 3.2

in Chapter 3
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Lemma C.1. For any Λi ∈ (0,1] ∪ {∞}, let si ∼ U(0,Λi). For any xi, yi ∈ [0,1], let δi ∶= ∣xi − yi∣

and define xupper
i , xlower

i as follows: If Λi = ∞, then xupper
i ∶= 1, xlower

i ∶= 0, otherwise:

xupper
i ∶=min(Λi⌈

xi − si
Λi

⌉ + si,1) (C.1)

xlower
i ∶=max(Λi⌈

xi − si
Λi

⌉ + si −Λi,0) (C.2)

and define yupper
i , ylower

i similarly. Then:

Pr
si
((xlower

i , xupper
i ) ≠ (ylower

i , yupper
i )) =min(

δi
Λi

,1) (C.3)

Proof. We first assume Λi ∈ (0,1]. Without loss of generality, assume xi ≥ yi, so that δi = xi − yi.

Note that, with probability 1, (xlower
i , xupper

i ) ≠ (ylower
i , yupper

i ) iff ⌈xi−si
Λi
⌉ ≠ ⌈

yi−si
Λi
⌉.

To see this, note that ⌈xi−si
Λi
⌉ = ⌈

yi−si
Λi
⌉ Ô⇒ (xlower

i , xupper
i ) = (ylower

i , yupper
i ) directly from

the definitions.

For the converse, ⌈xi−si
Λi
⌉ ≠ ⌈

yi−si
Λi
⌉ Ô⇒ (xlower

i , xupper
i ) ≠ (ylower

i , yupper
i ), first consider the

case where Λi < 1. Because the first terms in the “min” or “max” of the definitions of xlower
i and

xupper
i differ by a most Λi < 1, both of the [0,1] box constraints cannot be active simultaneously:

either xlower
i = Λi⌈

xi−si
Λi
⌉+ si −Λi (and not 0) and/or xupper

i = Λi⌈
xi−si
Λi
⌉+ si (and not 1). Therefore if

⌈xi−si
Λi
⌉ ≠ ⌈

yi−si
Λi
⌉, whichever of xupper

i or xlower
i is not affected by the box constraint will necessarily

differ from yupper
i or ylower

i , so (xlower
i , xupper

i ) ≠ (ylower
i , yupper

i ). For the case where Λi = 1, both

constraints can only be simultaneously active if si = 0 or si = 1, which both occur with probability

zero, and otherwise the same argument from the Λi < 1 case applies.
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Therefore, it is sufficient to show that

Pr
si
(⌈
xi − si
Λi

⌉ ≠ ⌈
yi − si
Λi

⌉) =min(
δi
Λi

,1) (C.4)

First, if δi/Λi ≥ 1, then xi−si
Λi

and yi−si
Λi

differ by at least one, so their ceilings must differ. Then

Prsi(⌈
xi−si
Λi
⌉ ≠ ⌈

yi−si
Λi
⌉) = 1 =min ( δiΛi

,1).

Otherwise, if δi/Λi < 1, then xi

Λi
and yi

Λi
differ by less than one, so

⌈
xi

Λi

⌉ − ⌈
yi
Λi

⌉ ∈ {0,1} (C.5)

And similarly:

⌈
xi − si
Λi

⌉ − ⌈
yi − si
Λi

⌉ ∈ {0,1} (C.6)

Also, because si/Λi is at most one,

⌈
xi

Λi

⌉ − ⌈
xi − si
Λi

⌉ ∈ {0,1}

⌈
yi
Λi

⌉ − ⌈
yi − si
Λi

⌉ ∈ {0,1}

(C.7)

We consider cases on ⌈ xi

Λi
⌉ − ⌈

yi
Λi
⌉:

• Case ⌈ xi

Λi
⌉ − ⌈

yi
Λi
⌉ = 0. Then ⌈xi−si

Λi
⌉ = ⌈

yi−si
Λi
⌉ only in two cases:

– ⌈xi−si
Λi
⌉ = ⌈

yi−si
Λi
⌉ = ⌈ xi

Λi
⌉ iff si

Λi
<

yi
Λi
− (⌈

yi
Λi
⌉ − 1) (≤ xi

Λi
− (⌈ xi

Λi
⌉ − 1)).

– ⌈yi−siΛi
⌉ = ⌈xi−si

Λi
⌉ = ⌈ xi

Λi
⌉ − 1 iff si

Λi
> xi

Λi
− (⌈ xi

Λi
⌉ − 1) ( ≥ yi

Λi
− (⌈

yi
Λi
⌉ − 1)).

Then ⌈yi−siΛi
⌉ ≠ ⌈xi−si

Λi
⌉ iff yi

Λi
−(⌈ xi

Λi
⌉−1) < si

Λi
< xi

Λi
−(⌈ xi

Λi
⌉−1). There are exactly q(xi−yi) =
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qδi values of si for which this occurs, out of a total Λiq values of si, so this occurs with

probability δi
Λi

.

• Case ⌈ xi

Λi
⌉ − ⌈

yi
Λi
⌉ = 1. Then ⌈xi−si

Λi
⌉ ≠ ⌈

yi−si
Λi
⌉ only in two cases:

– ⌈yi−siΛi
⌉ = ⌈

yi
Λi
⌉ and ⌈xi−si

Λi
⌉ = ⌈ xi

Λi
⌉ = ⌈

yi
Λi
⌉ + 1. This happens iff si

Λi
< xi

Λi
− ⌈

yi
Λi
⌉ (≤

yi
Λi
− (⌈

yi
Λi
⌉ − 1)).

– ⌈yi−siΛi
⌉ = ⌈

yi
Λi
⌉−1 and ⌈xi−si

Λi
⌉ = ⌈

yi
Λi
⌉. This happens iff si

Λi
>

yi
Λi
−(⌈

yi
Λi
⌉−1) (≥ xi

Λi
−⌈

yi
Λi
⌉).

Therefore, ⌈yi−siΛi
⌉ = ⌈xi−si

Λi
⌉ iff:

xi

Λi

− ⌈
yi
Λi

⌉ <
si
Λi

<
yi
Λi

− (⌈
yi
Λi

⌉ − 1) (C.8)

Which is:

yi
Λi

− ⌈
yi
Λi

⌉ +
δi
Λi

<
si
Λi

<
yi
Λi

− ⌈
yi
Λi

⌉ + 1. (C.9)

There are exactly q(1 − (xi − yi)) = q(1 − δi) values of si for which this occurs, out of a

total Λiq values of si, so this occurs with probability 1 − δi
Λi

. Then ⌈yi−siΛi
⌉ ≠ ⌈xi−si

Λi
⌉ with

probability δi
Λi

.

So in all cases, for δi/Λi < 1, Prsi(⌈
xi−si
Λi
⌉ ≠ ⌈

yi−si
Λi
⌉) = δi

Λi
=min ( δiΛi

,1).

Finally, we consider Λi = ∞. In this case, (xlower
i , xupper

i ) = (ylower
i , yupper

i )) = (0,1) with

probability 1, so

Pr
si
((xlower

i , xupper
i ) ≠ (ylower

i , yupper
i )) = 0 =

δi
∞
=min(

δi
Λi

,1) (C.10)
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We can now prove each part of the theorem:

Part 1. Let D and f(⋅) be the Λ-distribution and base function used for Variable-Λ smoothing,

respectively. Let x,y ∈ [0,1]d be two points. For each dimension i, let δi ∶= ∣xi − yi∣. The

probability that (xlower
i , xupper

i ) ≠ (ylower
i , yupper

i ) is given by Prsplit
i (δi), where:

Prsplit
i (z) ∶= PrDi

(Λi ≤ z) + zEDi
[
1(Λi∈(z,1])

Λi

] (C.11)

Proof.

Pr((xlower
i , xupper

i ) ≠ (ylower
i , yupper

i )) =

E[1(xlower
i ,x

upper
i )≠(ylower

i ,y
upper
i )] =

EΛi∼Di
[E[1(xlower

i ,x
upper
i )≠(ylower

i ,y
upper
i )∣Λi]] =

EΛi∼Di
[Pr[(xlower

i , xupper
i ) ≠ (ylower

i , yupper
i )∣Λi]] =

EΛi∼Di
[min(

δi
Λi

,1)] =

EΛi∼Di
[
δi
Λi

⋅ 1Λi>δi] + EΛi∼Di
[1 ⋅ 1Λi≤δi] =

EΛi∼Di
[
δi
Λi

⋅ 1Λi>δi] + EΛi∼Di
[1 ⋅ 1Λi≤δi] =

δiEDi
[
1(Λi∈(δi,1])

Λi

] +Pr
Di

(Λi ≤ δi) =Pr
split
i (δi)

(C.12)

Where we use the law of total expectation in the third line, Lemma C.1 in the fifth line, and in

the last line, we use that δi is finite, so δi/∞ = 0

Part 2. Let d(⋅, ⋅) be an ECM defined by concave functions g1, ..., gd. Let D and f(⋅) be the

Λ-distribution and base function used for Variable-Λ smoothing, respectively. If ∀i ∈ [d] and
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∀z ∈ [0,1],

Prsplit
i (z) ≤ gi(z), (C.13)

then, the smoothed function pD,f(⋅) is 1-Lipschitz with respect to the metric d(⋅, ⋅).

Proof. Let x,y ∈ [0,1]d be two points. For each dimension i, let δi ∶= ∣xi − yi∣. By union bound:

Pr
s
((xlower,xupper) ≠ (ylower,yupper)) =

Pr
s
[

d

⋃
i=1
(xlower

i , xupper
i ) ≠ (ylower

i , yupper
i )] ≤

d

∑
i=1

Prsplit
i (δi) ≤

d

∑
i=1

gi(δi) = d(x,y)

(C.14)

Then:

∣pD,f(x) − pD,f(y)∣

= ∣E
s
[f(xlower,xupper)] − E

s
[f(ylower,yupper)]∣

= ∣E
s
[f(xlower,xupper) − f(ylower,yupper)]∣

=
RRRRRRRRRRR
Pr
s
((xlower,xupper) ≠ (ylower,yupper))E

s
[f(xlower,xupper) − f(ylower,yupper)∣(xlower,xupper) ≠ (ylower,yupper)]

+Pr
s
((xlower,xupper) = (ylower,yupper)) [f(xlower,xupper) − f(ylower,yupper)∣(xlower,xupper) = (ylower,yupper)]

RRRRRRRRRRR

(C.15)

Because Es [f(xlower,xupper) − f(ylower,yupper)∣(xlower,xupper) = (ylower,yupper)] is zero, we have:
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∣pD,f(x) − pD,f(y)∣

= Pr
s
((xlower,xupper) ≠ (ylower,yupper)) ∣E

s
[f(xlower,xupper) − f(ylower,yupper)∣(xlower,xupper) ≠ (ylower,yupper)]∣

≤ d(x,y) ⋅ 1

(C.16)

In the last step, we use Equation C.14 and the assumption that f(⋅, ⋅) ∈ [0,1]. Therefore, by the

definition of Lipschitz-continuity, pD,f is 1-Lipschitz with respect to d(⋅, ⋅).

Part 3. Suppose gi is continuous and twice-differentiable on the interval (0,1]. Let Di be con-

structed as follows:

• On the interval (0,1), Λi is distributed continuously, with pdf function:

pdfΛi
(z) = −zg′′i (z) (C.17)

• Pr(Λi = 1) = g′i(1)

• Pr(Λi = ∞) = 1 − gi(1)

then,

Prsplit
i (z) = gi(z) ∀z ∈ [0,1]. (C.18)

If all Di are constructed this way, then the conclusion of part (b) above applies.
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Proof. We first show that this is in fact a normalized probability distribution:

∫

1

0
pdfΛi

(z)dz +Pr(Λi = 1) +Pr(Λi = ∞) =

∫

1

0
−zg′′i (z)dz + g

′
i(1) + 1 − gi(1) =

−(1 ⋅ g′i(1) − 0 ⋅ g
′
i(0) − ∫

1

0
1 ⋅ g′i(z)dz) + g

′
i(1) + 1 − gi(1) =

−g′i(1) + ∫
1

0
g′i(z)dz + g

′
i(1) + 1 − gi(1) =

gi(1) − gi(0) + 1 − gi(1) = 1

(C.19)

Where we use integration by parts in the third line, and the fact that gi(0) = 0 in the last line.

We now show that Prsplit
i (z) = gi(z) in the special case of z = 1:

Prsplit
i (1) = PrDi

(Λi ≤ 1) + 1EDi
[
1(Λi∈(1,1])

Λi

]

= Pr
Di

(Λi ≤ 1)

= 1 −Pr
Di

(Λi = ∞)

= 1 − (1 − gi(1)) = gi(1)

(C.20)

Where in the second line, we use that (1,1] represents the empty set, so the term in the expectation

is always zero.
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Now, we handle the remaining case of z ∈ [0,1):

Prsplit
i (z) = PrDi

(Λi ≤ z) + zEDi
[
1(Λi∈(z,1])

Λi

]

= ∫

z

0
pdfΛi

(w)dw + z [∫
1

z
pdfΛi

(w) ⋅
1

w
dw +Pr(Λ = 1)

1

1
]

= ∫

z

0
−wg′′i (w)dw + z [∫

1

z
−wg′′i (w) ⋅

1

w
dw + g′i(1)]

= −[zg′i(z) − 0 ⋅ g
′
i(0) − ∫

z

0
1 ⋅ g′i(w)dw] + z [−∫

1

z
g′′i (w)dw + g

′
i(1)]

= − [zg′i(z) − (gi(z) − gi(0))] + z [−[g
′
i(1) − g

′
i(z)] + g

′
i(1)]

= −zg′i(z) + gi(z) − zg
′
i(1) + zg

′
i(z) + zg

′
i(1) = gi(z)

(C.21)

Where we use integration by parts in the fourth line, and the fact that gi(0) = 0 in the last line.

Now we have that Prsplit
i (z) = gi(z) ∀z ∈ [0,1], as desired. The final statement follows

directly from Part b.

C.1.3 Proof of Corollary 4.1

Corollary 4.1. For all p ∈ (0,1], α ∈ [1,∞), if we perform Variable-Λ smoothing with all Λi’s

distributed identically (but not necessarily independently) as follows:

Λi ∼Beta(p,1), with prob.
1 − p

α

Λi =1, with prob.
p

α

Λi =∞, with prob. 1 −
1

α

(C.22)

then, the resulting smoothed function will be 1/α-Lipschitz with respect to the ℓpp metric

Proof. We consider the ECM defined as ∀i, gi(z) = zp

α . One can easily verify that this is a valid
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ECM, and that it is twice-differentiable on (0,1].

We then apply Theorem 4.2-c:

• On the interval (0,1), we distribute Λi continuously, with pdf function:

pdfΛi
(z) = −zg′′i (z) =

−p(p − 1)zp−1

α
=
1 − p

α
⋅ pzp−1 =

1 − p

α
⋅ pdfBeta(p,1)(z) (C.23)

• Pr(Λi = 1) = g′i(1) =
p⋅1p−1

α =
p
α

• Pr(Λi = ∞) = 1 − gi(1) = 1 −
1
α

So distributing Λ as stated in the Corollary will result in Prsplit
i (z) = gi(z) ∀z ∈ [0,1], and

therefore the resulting smoothed function will be 1-Lipschitz w.r.t. the ECM. Then, from the

definition of Lipschitzness and of the ECM, we have, for all x, y:

∣pD,f(x) − pD,f(y)∣ ≤
d

∑
i=1

∣xi − yi∣p

α
=
1

α
ℓpp(x,y) (C.24)

So pD,f is also 1/α-Lipschitz w.r.t. the ℓpp metric.

C.1.3.1 α < 1 Case for Corollary 4.1

In a footnote in the main text, we mentioned that this technique cannot be applied directly

to the α < 1 case. To explain, note that taking

gi(z) ∶=
zp

α
, ∀i (C.25)
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with α < 1 is not a properly-defined ECM, because gi /∈ [0,1] → [0,1]: for example, gi(1) =

1/α > 1. However, for the purpose of building a Lipschitz classifier with range [0,1], we can

instead define:

gi(z) ∶=min(
zp

α
,1), ∀i (C.26)

This is a proper ECM. Furthermore, for functions p(x) ∈ [0,1]d → [0,1], it is equivalent to be

1-Lipschitz with respect to the ECM defined above in Equation C.26 and to be 1-Lipschitz with

respect to the “improper” ECM defined in Equation C.25. To show that 1-Lipschitzness with

respect to Equation C.26 implies 1-Lipschitzness with respect to Equation C.25, simply note

that, ∀x,y:

∣p(x) − p(y)∣ ≤
d

∑
i=1

min(
∣xi − yi∣p

α
,1) ≤

d

∑
i=1

∣xi − yi∣p

α
(C.27)

To show the opposite direction, consider a function p which is 1-Lipschitz w.r.t. Equation C.25,

and note that ∀x,y, either:

• ∃i ∶ ∣xi−yi∣p
α > 1. Then d(x,y) ≥ 1 for both metrics, so the 1-Lipschitz constraint is vacu-

ously true regardless of the values of p(x), p(y).

• /∃ i ∶ ∣xi−yi∣p
α > 1. Then

∣p(x) − p(y)∣ ≤
d

∑
i=1

∣xi − yi∣p

α
=

d

∑
i=1

min(
∣xi − yi∣p

α
,1) (C.28)

Therefore, we can consider the ECM in Equation C.26 to derive an appropriate Lipschitz

constraint for the ℓpp metric. However, note that this is not twice-differentiable, so Theorem
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4.2-c does not directly apply. We can however derive an ad-hoc distribution Di such that,

according to Theorem 4.2-a, Prsplit
i (z) = gi(z), ∀z, i.

In particular, we use:

– On the interval (0, α1/p), we distribute Λi continuously, with pdf function:

pdfΛi
(z) =

1 − p

α
⋅ pzp−1 (C.29)

– Pr(Λi = α1/p) = p

We first show that Prsplit
i (z) = gi(z) in the case of z ≥ α1/p:

Prsplit
i (z) = PrDi

(Λi ≤ z) + 1EDi
[
1(Λi∈(z,1])

Λi

]

= Pr
Di

(Λi ≤ 1) + 0

= 1 =min(
zp

α
,1) = gi(z)

(C.30)

Now, we handle the remaining case of z ∈ [0, α1/p):

Prsplit
i (z) = PrDi

(Λi ≤ z) + zEDi
[
1(Λi∈(z,1])

Λi

]

= ∫

z

0
pdfΛi

(w)dw + z [∫
α1/p

z
pdfΛi

(w) ⋅
1

w
dw +Pr(Λ = α1/p)

1

α1/p ]

= ∫

z

0

1 − p

α
⋅ pwp−1dw + z [∫

α1/p

z

1 − p

α
⋅ pwp−1 1

w
dw +

p

α1/p ]

=
1 − p

α
zp + z [

1

α
(pzp−1 − pα(p−1)/p) +

p

α1/p ]

=
1 − p

α
zp +

z

α
(pzp−1)

=
zp

α
= gi(z)

(C.31)
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So we have that Prsplit
i (z) = gi(z) ∀z ∈ [0,1], as desired.

C.1.4 Theorem 4.3

This is the “quantized” form of Theorem 4.2. In order to introduce it, we need to define a

quantized from of ECMs, as well as a quantized form of our smoothing method:

Definition C.3 (Quantized Elementwise-concave metric (QECM)). For any x,y, let δi ∶= ∣xi−yi∣.

A quantized elementwise-concave metric (QECM) is a metric on [0,1]d(q) in the form:

d(x,y) ∶=
d

∑
i=1

gi(δi), (C.32)

where g1, ..., gd ⊂ [0,1](q) → [0,1] are increasing, concave functions with gi(0) = 0.

Definition C.4 (Quantized Variable-Λ smoothing). For any f ∶ [0,1]d × [0,1]d → [0,1], and

distribution D = {D1, ...Dd}, such that each Di has support [1/q,1](q) ∪ {∞}, let:

Λi ∼ Di (C.33)

If Λi = ∞, then xupper
i ∶= 1, xlower

i ∶= 0, otherwise:

si ∼ U(0,Λi)(q) (C.34)

xupper
i ∶=min(Λi⌈

xi − si
Λi

⌉ + si,1) (C.35)

xlower
i ∶=max(Λi⌈

xi − si
Λi

⌉ + si −Λi,0) (C.36)

(C.37)
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The quantized smoothed function pD,f ∈ [0,1]d(q) → [0,1] is defined as:

pD,f(x) ∶= E
s
[f(xlower,xupper)] . (C.38)

Note that we make no assumptions about the joint distributions of Λ or of s.

Before we state and prove each part of the theorem, we will need a “quantized” form of

Lemma C.1: Note again that we closely follow the proof of Corollary 3.1 in Chapter 3, which

implicitly contains the same result.

Lemma C.2. For any Λi ∈ [1/q,1]q ∪ {∞}, let si ∼ U(0,Λi)(q). For any xi, yi ∈ [0,1](q), let

δi ∶= ∣xi − yi∣ and define xupper
i , xlower

i as follows: If Λi = ∞, then xupper
i ∶= 1, xlower

i ∶= 0, otherwise:

xupper
i ∶=min(Λi⌈

xi − si
Λi

⌉ + si,1) (C.39)

xlower
i ∶=max(Λi⌈

xi − si
Λi

⌉ + si −Λi,0) (C.40)

and define yupper
i , ylower

i similarly. Then:

Pr
si
((xlower

i , xupper
i ) ≠ (ylower

i , yupper
i )) =min(

δi
Λi

,1) (C.41)

Proof. The proof is mostly identical to the proof of Lemma C.1, with minor differences occurring

in the cases on ⌈ xi

Λi
⌉ − ⌈

yi
Λi
⌉, which we show here for completeness:

• Case ⌈ xi

Λi
⌉ − ⌈

yi
Λi
⌉ = 0. Then ⌈xi−si

Λi
⌉ = ⌈

yi−si
Λi
⌉ only in two cases:

– ⌈xi−si
Λi
⌉ = ⌈

yi−si
Λi
⌉ = ⌈ xi

Λi
⌉ iff si

Λi
<

yi
Λi
− (⌈

yi
Λi
⌉ − 1) (≤ xi

Λi
− (⌈ xi

Λi
⌉ − 1)).
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– ⌈yi−siΛi
⌉ = ⌈xi−si

Λi
⌉ = ⌈ xi

Λi
⌉ − 1 iff si

Λi
≥ xi

Λi
− (⌈ xi

Λi
⌉ − 1) ( ≥ yi

Λi
− (⌈

yi
Λi
⌉ − 1)).

Then ⌈yi−siΛi
⌉ ≠ ⌈xi−si

Λi
⌉ iff yi

Λi
−(⌈ xi

Λi
⌉−1) ≤ si

Λi
< xi

Λi
−(⌈ xi

Λi
⌉−1), which occurs with probability

xi−yi
Λi
= δi

Λi
.

• Case ⌈ xi

Λi
⌉ − ⌈

yi
Λi
⌉ = 1. Then ⌈xi−si

Λi
⌉ ≠ ⌈

yi−si
Λi
⌉ only in two cases:

– ⌈yi−siΛi
⌉ = ⌈

yi
Λi
⌉ and ⌈xi−si

Λi
⌉ = ⌈ xi

Λi
⌉ = ⌈

yi
Λi
⌉ + 1. This happens iff si

Λi
< xi

Λi
− ⌈

yi
Λi
⌉ (≤

yi
Λi
− (⌈

yi
Λi
⌉ − 1)).

– ⌈yi−siΛi
⌉ = ⌈

yi
Λi
⌉−1 and ⌈xi−si

Λi
⌉ = ⌈

yi
Λi
⌉. This happens iff si

Λi
≥

yi
Λi
−(⌈

yi
Λi
⌉−1) (≥ xi

Λi
−⌈

yi
Λi
⌉).

Therefore, ⌈yi−siΛi
⌉ = ⌈xi−si

Λi
⌉ iff:

xi

Λi

− ⌈
yi
Λi

⌉ ≤
si
Λi

<
yi
Λi

− (⌈
yi
Λi

⌉ − 1) (C.42)

Which is:

yi
Λi

− ⌈
yi
Λi

⌉ +
δi
Λi

≤
si
Λi

<
yi
Λi

− ⌈
yi
Λi

⌉ + 1 (C.43)

which occurs with probability 1 − δi
Λi

. Then ⌈yi−siΛi
⌉ ≠ ⌈xi−si

Λi
⌉ with probability δi

Λi
.

We now state and prove Theorem 3:

Part 1. Let D and f(⋅) be the Λ-distribution and base function used for Quantized Variable-Λ

smoothing, respectively. Let x,y ∈ [0,1]d(q) be two points. For each dimension i, let δi ∶= ∣xi − yi∣.

The probability that (xlower
i , xupper

i ) ≠ (ylower
i , yupper

i ) is given by Prsplit
i (δi), where:

Prsplit
i (z) ∶= PrDi

(Λi ≤ z) + zEDi
[
1(Λi∈(z,1])

Λi

] (C.44)
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Proof. Identical to Theorem 4.2-a, except using Lemma C.2 in place of Lemma C.1.

Part 2. Let d(⋅, ⋅) be a QECM defined by concave functions g1, ..., gd. Let D and f(⋅) be the Λ-

distribution and base function used for Quantized Variable-Λ smoothing, respectively. If ∀i ∈ [d]

and ∀z ∈ [0,1](q),

Prsplit
i (z) ≤ gi(z), (C.45)

then, the smoothed function pD,f(⋅) is 1-Lipschitz with respect to the metric d(⋅, ⋅).

Proof. Identical to Theorem 4.2-b, except assuming x,y ∈ [0,1]d(q)

Part 3. If Di is constructed as follows:

• On the interval [1q ,
q−1
q ](q), Λi is distributed as:

Pr(Λi = z) = −qz [gi (z −
1

q
) + gi (z +

1

q
) − 2gi(z)] ∀z ∈ [

1

q
,
q − 1

q
]
(q)

(C.46)

• Pr(Λi = 1) = q [gi(1) − gi(
q−1
q )]

• Pr(Λi = ∞) = 1 − gi(1)

then

Prsplit
i (z) = gi(z), ∀z ∈ [0,1](q). (C.47)
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Proof. We first show that this is in fact a normalized probability distribution:

q−1

∑
j=1

Pr(Λi =
j

q
) +Pr(Λi = 1) +Pr(Λi = ∞) =

q−1

∑
j=1
−j [gi (

j − 1

q
) + gi (

j + 1

q
) − 2gi (

j

q
)] + q [gi(1) − gi (

q − 1

q
)] + 1 − gi(1) =

2
q−1

∑
j=1

jgi (
j

q
) −

q−2

∑
j=0
(j + 1)gi (

j

q
) −

q

∑
j=2
(j − 1)gi (

j

q
) + q [gi(1) − gi (

q − 1

q
)] + 1 − gi(1) =

q−2

∑
j=2
(2j − (j + 1) − (j − 1))gi (

j

q
) − gi(0) + (2 − 2)gi (

1

q
) + (2(q − 1)

−(q − 2))gi (
q − 1

q
) − (q − 1)gi(1) + q [gi(1) − gi (

q − 1

q
)] + 1 − gi(1) = 1

(C.48)

Where we use the fact that gi(0) = 0 in the last line.

We now show that Prsplit
i (z) = gi(z) in the special case of z = 1:

Prsplit
i (1) = PrDi

(Λi ≤ 1) + 1EDi
[
1(Λi∈(1,1])

Λi

]

= Pr
Di

(Λi ≤ 1)

= 1 −Pr
Di

(Λi = ∞)

= 1 − (1 − gi(1)) = gi(1)

(C.49)

Where in the second line, we use that (1,1] represents the empty set, so the term in the expectation

is always zero.
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Now, we handle the remaining case of z ∈ [0, (q − 1)/q](q):

Prsplit
i (z)

= Pr
Di

(Λi ≤ z) + zEDi [
1(Λi∈(z,1])

Λi
]

=
qz

∑
j=1

Pr(Λi =
j

q
) + z

⎡⎢⎢⎢⎣

q−1

∑
j=qz+1

Pr(Λi =
j

q
) ⋅ q

j
+Pr(Λ = 1)1

1

⎤⎥⎥⎥⎦

=
qz

∑
j=1

−j [gi (
j − 1
q
) + gi (

j + 1
q
) − 2gi (

j

q
)]

+ z
⎡⎢⎢⎢⎣

q−1

∑
j=qz+1

−j [gi (
j − 1
q
) + gi (

j + 1
q
) − 2gi (

j

q
)] ⋅ q

j
+ q [gi(1) − gi (

q − 1
q
)]
⎤⎥⎥⎥⎦

=
qz

∑
j=1

−j [gi (
j − 1
q
) + gi (

j + 1
q
) − 2gi (

j

q
)]

+ qz
⎡⎢⎢⎢⎣

q−1

∑
j=qz+1

−[gi (
j − 1
q
) + gi (

j + 1
q
) − 2gi (

j

q
)] + [gi(1) − gi (

q − 1
q
)]
⎤⎥⎥⎥⎦

= −
qz−1

∑
j=0

(j + 1)gi (
j

q
) −

qz+1

∑
j=2

(j − 1)gi (
j

q
) + 2

qz

∑
j=1

jgi (
j

q
)

+ qz
⎡⎢⎢⎢⎣
−

q−2

∑
j=qz

gi (
j

q
) −

q

∑
j=qz+2

gi (
j

q
) + 2

q−1

∑
j=qz+1

gi (
j

q
) + gi(1) − gi (

q − 1
q
)
⎤⎥⎥⎥⎦

=
qz−2

∑
j=2

(2j − (j + 1) − (j − 1))gi (
j

q
) − gi(0) + (2 − 2)gi (

1

q
) + (2qz − qz + 1)gi(z) − qzgi (

qz + 1
q
)

+ qz
⎡⎢⎢⎢⎣
(2 − 1 − 1)

q−2

∑
j=qz+2

gi (
j

q
) − gi(z) + (2 − 1)gi (

qz + 1
q
) + (2 − 1)gi (

q − 1
q
) − gi(1) + gi(1) − gi (

q − 1
q
)
⎤⎥⎥⎥⎦

= (qz + 1)gi(z) − qzgi (
qz + 1

q
)

+ qz [−gi(z) + gi (
qz + 1

q
)]

= gi(z)

(C.50)

Where we use the fact that gi(0) = 0 in the second to last line.

Now we have that Prsplit
i (z) = gi(z) ∀z ∈ [0,1](q), as desired.
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C.2 Drawbacks of the “Global Λ” Method

In the main text, we briefly discuss using a global value for Λ in order to help with deran-

domization, as follows:

Λ ∼ D⋅

si ∼ U(0,Λ) ∀i

(C.51)

There are several issues with this approach. We will focus our discussion on the ℓpp metric, with

D⋅ given as in Corollary 4.1.

Firstly, notice that if α > 1, we have that Λ = ∞ with a nonzero probability 1 − 1/α: when

Λ = ∞, then the entire vector xlower will be the zero vector, and the entire vector xupper will

consist of entirely ones. Then the particular value of f([0, ...,0]T , [1, ...,1]T ) will be weighted

with weight 1 − 1/α, and all other, meaningful values in the ensemble with have a combined

weight of 1/α: the final value of the smoothed function pD,f will the differ from the fixed

f([0, ...,0]T , [1, ...,1]T ) only by at most 1/α at any point. In other words, we essentially have a

1-Lipschitz function scaled by 1/α, rather than a 1/α- Lipschitz function.1

However, even in the α = 1 case, the “global Λ” technique still underperforms the method

we ultimately propose, as shown in Figure 4.4 in the main text. One way to understand this is to

note that the guarantee provided by this method is unnecessarily tight. In particular, as mentioned

in the main text, the global Λ method produces a smoothed function pD,f that is a weighed average

of functions which are each 1/Λ-Lipschitz with respect to the ℓ1 norm, for various values of Λ,

1Note that a similar observation was made in Chapter 3 about using a global value of si for Λ > 1
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by Theorem 4.1. Let each of these functions be pΛ,f , so that

pD,f = ED[pΛ,f ] (C.52)

Note that for each Λ, by the Lipschitz guarantee and [0,1] bounds on the range:

pΛ,f(x) − pΛ,f(y) ≤min(
∥x − y∥1

Λ
,1) (C.53)

However, note that:

pD,f(x) − pD,f(y) =

EΛ∼D[pΛ,f(x) − pΛ,f(y)] ≤

EΛ∼D [min(
∥x − y∥1

Λ
,1)] =

EΛ∼D [
∥x − y∥1

Λ
⋅ 1Λ>∥x−y∥1] + EΛ∼D[1 ⋅ 1Λ≤∥x−y∥1] =

EΛ∼D [
∥x − y∥1

Λ
⋅ 1Λ>∥x−y∥1] + EΛ∼D[1 ⋅ 1Λ≤∥x−y∥1] =

∥x − y∥1ED [
1(Λ∈(∥x−y∥1,1])

Λ
] +Pr

D
(Λ ≤ ∥x − y∥1) =Pr

split
D (∥x − y∥1)

(C.54)

Where Prsplit
D is defined in terms of D⋅ exactly as in Theorem 4.3-a. Then, by the mechanics of

Theorem 4.3-c and from the construction of D⋅, we have:

pD,f(x) − pD,f(y) ≤ Pr
split
D (∥x − y∥1) = g⋅(∥x − y∥1) (C.55)
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In the case of ℓpp metrics with p < 1, this means:

pD,f(x) − pD,f(y) ≤
∥x − y∥p1

α
(C.56)

But note that:

pD,f(x) − pD,f(y) ≤
∥x − y∥p1

α
≤
∥x − y∥pp

α
(C.57)

In other words, we are imposing a tighter guarantee than necessary, which depends only on the

ℓ1 distance between x and y: the desired ℓpp guarantee is everywhere at least as loose. So, while

this technique technically works, it does not really respect the “spirit” of the fractional ℓpp threat

model.

C.3 Designing Di for Derandomization using Mixed-Integer Linear Program-

ming

As mentioned in Section 4.3 in the main text, one challenge in the derandomization of our

technique is to design a distribution Di such that all outcomes (Λi, si) occur with a probability in

the form n/B, where n ∈ N is an integer, B is a constant integer, and additionally where:

Prsplit
i (z) ≈ gi(z), ∀z ∈ [0,1](q). (C.58)

However, strictly:

Prsplit
i (z) ≤ gi(z), ∀z ∈ [0,1](q). (C.59)
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We first show that we can formulate Equation C.58 as a linear program in the case where we allow

arbitrary probabilities for each value of Λ, and then show that we can convert it into a MILP to

obtain probabilities in the desired form.

Note that we are working with the quantized form of Variable-Λ smoothing: for conve-

nience, we will therefore introduce the variables:

gj ∶= gi (
j

q
)∀j ∈ [q] (C.60)

vj ∶= Pr(Λi = (
j

q
))∀j ∈ [q] (C.61)

Our distribution Di is then defined by the vector v: the probability that Λi = ∞ is determined by

normalization (Pr(Λi = ∞) = 1 −Σjvj) .

We make Equation C.58 rigorous by using the following objective:

minimize ϵ such that

gi(z) − ϵ ≤ Pr
split
i (z) ≤ gi(z), ∀z ∈ [0,1](q).

(C.62)

Note that ϵ is a single scalar: we are attempting to achieve uniform convergence. We can write
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Prsplit
i (z) in the following form:

Prsplit
i (z) =

Pr
Di

(Λi ≤ z) + zEDi
[
1(Λi∈(z,1])

Λi

] =

qz

∑
j=1

vj + z
q

∑
j=qz+1

vj

(
j
q)
=

qz

∑
j=1

vj + qz
q

∑
j=qz+1

vj
j

(C.63)

Then our optimization becomes (letting k ∶= qz):

minimize ϵ such that

gk − ϵ ≤
k

∑
j=1

vj + k
q

∑
j=k+1

vj
j
≤ gk, ∀k ∈ [q].

(C.64)

With additional constraints:

• vj ≥ 0, ∀j ∈ [q] (Probabilities are non-negative)

• ∑q
j=1 vj ≤ 1 (Normalization: recall that additional probability is assigned to Λ = ∞)

• ϵ ≥ 0

This linear program, with variables ϵ,v, completely describes the problem of designing Di. If

gi(z) is concave (as it should be, by assumption), then this LP always has an optimal ϵ = 0

solution, given in Theorem 4.3-c. (See the proof of that theorem in Appendix C.1.4).

However, we now want all outcomes to have probabilities in the form n/B. Note that for

Λi = j/q, there are j outcomes for si, each of which must have equal probabilities. We therefore
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need Λi = j/q to occur with a probability in the form nj
B , for some integer n. We will then re-scale

our parameters:

wj ∶=
Bvj
j
∀j ∈ [q] (C.65)

Our optimization now becomes:

minimize ϵ such that

gk − ϵ ≤
k

∑
j=1

j ⋅wj

B
+ k

q

∑
j=k+1

wj

B
≤ gk, ∀k ∈ [q].

wj ∈ N

q

∑
j=1

j ⋅wj ≤ B

ϵ ≥ 0

(C.66)

This is a mixed-integer linear program, with variables ϵ,w. Once solved, the desired distribution

over Λ can be read off from w. In practice, when using this method with gi(z) = zp/α, we

only solved the MILP directly for α = 1, using budget B = 1000: for larger α, we used the fact

that Equation C.63 is linear in v to simply scale down Prsplit
D (z) by scaling up B as B = 1000α,

without changing the integer allocations of w: in practice, this just means adding additional

Λi = ∞ outcomes to the list of possible outcomes that are uniformly selected from. Also, rather

than optimizing over ϵ, we held ϵ constant at 0.02, so that the problem became a feasibility

problem, rather than an optimization problem. The results are shown in Figure 4.5 in the main

text. Each of the two MILPs took ≈ 10 minutes or less to solve.

We can show that, with sufficiently large budget, arbitrarily close approximations can al-

ways be made. In particular, consider using the optimal real-valued solution from Theorem 4.3-c,
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and the simply rounding each wj down to integers. Because the coefficients on wj’s in Equation

C.66 are all non-negative, the upper-bounds on these terms will all still be met. The only lower-

bound, the gk − ϵ term, will remain feasible because ϵ can be made arbitrarily large. Therefore,

this rounding technique will not break feasibility. Now, let’s look at optimality. Let w̃j’s be the

real-valued, optimal solutions, and wj’s be the rounded solution. Then we have:

gk − ϵ ≤
k

∑
j=1

j ⋅wj

B
+ k

q

∑
j=k+1

wj

B
≤

k

∑
j=1

j ⋅ w̃j

B
+ k

q

∑
j=k+1

w̃j

B
= gk, ∀k ∈ [q]. (C.67)

The tightest lower-bound on epsilon will be the constraint where:

ϵ =
⎛

⎝

k

∑
j=1

j ⋅ w̃j

B
+ k

q

∑
j=k+1

w̃j

B

⎞

⎠
−
⎛

⎝

k

∑
j=1

j ⋅wj

B
+ k

q

∑
j=k+1

wj

B

⎞

⎠
(C.68)

However, for each j, w̃j −wj < 1, so:

ϵ <
⎛

⎝

k

∑
j=1

j

B
+ k

q

∑
j=k+1

1

B

⎞

⎠
≤

q

∑
j=1

j

B
=
q2 + q

2B
(C.69)

Therefore, with sufficiently large budget B, the error ϵ can be made arbitrarily small.

C.4 Explicit Certification Procedure

In order to use our ℓpp Lipschitz guarantee to generate ℓp- norm certificates, we follow a

procedure similar to the ℓ1 certificate from Chapter 3. Concretely, for each class c, let pc(x) be

the smoothed, 1/α-ℓpp-Lipschitz logit function that our algorithm produces. In our implementa-

tion, we have the base classifier f output “hard” classifications: fc(x) = 1 if the base classifier
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classifies x into class c, and zero otherwise. Therefore pc(x) can also be though of as the fraction

of base classifier outputs with value c.

If two points x,y differ by at most δ in the ℓp “norm”, then they must differ by at most δp

in the ℓpp metric. Then by Lipschitz property, we have:

∣pc(x) − pc(y)∣ ≤
δp

α
(C.70)

Now, assume that x is classified as class c by the smoothed classifier (c = argmaxc′ pc′(x)). Let

c′ be any other class. By algebra, we have:

pc(x) − pc′(x) − ∣pc(x) − pc(y)∣ − ∣pc′(x) − pc′(y)∣ ≤ pc(y) − pc′(y) (C.71)

Therefore, using Equation C.70, we have:

pc(x) − pc′(x) −
2δp

α
≤ pc(y) − pc′(y) (C.72)

Then:

(
α

2
(pc(x) − pc′(x)))

1/p
≥ δ Ô⇒ pc(y) ≥ pc′(y) (C.73)

This means that the class is guaranteed not to change to c′ within an ℓp radius of

(
α

2
(pc(x) − pc′(x)))

1/p
(C.74)

of x. Computing the minimum of this quantity over all classes c′ ≠ c gives the certified radius.

The above argument ignores the equality case: at radius δ, the two class probabilities may
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still be equal, leading to an unclear classification result. To deal with this, we use a trick also

used in Chapter 3. Specifically, at classification time, we break ties deterministically using the

class index: if pc(x) = pc′(x) and c < c′ then the class c will be the final classification. In the

case that c < c′, then pc(y) ≥ pc′(y) is a sufficient condition to ensure that class c is chosen,

so we can certify that the class c will be chosen at all points up to and including radius δ =

(α
2 (pc(x) − pc′(x)))

1/p
.

To deal with the other case, c′ < c, we subtract any positive ϵ from both sides of Equation

C.72:

pc(x) − pc′(x) − ϵ −
2δp

α
≤ pc(y) − pc′(y) − ϵ (C.75)

(
α

2
(pc(x) − pc′(x) − ϵ))

1/p
≥ δ Ô⇒ pc(y) ≥ pc′(y) + ϵ Ô⇒ pc(y) > pc′(y) (C.76)

In our deterministic certification implementation, we use ϵ ∶= 1/B, where B is the number of

(nonrandom) smoothing samples: this is the smallest difference possible between two values of

pcdot(⋅). Combining the two cases, we get the final form of our certificate:

min
c′∶c′≠c

[(
α

2
(pc(x) − pc′(x) −

1c′<c

B
))

1/p
] ≥ δ Ô⇒ y is assigned class c ∀x,y, ∥x − y∥p ≤ δ

(C.77)

C.5 Representations of Inputs

As we stated in the main text, we modified the architectures used for f in order to accept

both inputs (xlower,xupper), by doubling the number of input channels in the first layer. We tried

a variety of alternative methods as well on CIFAR-10 for p=1/2:
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• ‘Center’: using only a single input xlower+xupper

2 , as in DSSN, but with variable-Λ smoothing.

• ‘Center Center’: Same as ‘Center’, but with channels duplicated. This acted as an ablation

study, to isolate the effect of the additional information of having both channels from the

mere increase in network parameters from doubling the number of channels.

• ‘Center Error’: Channels are xlower+xupper

2 and xupper−xlower

2 .

• ‘Upper Lower’: Channels are xupper and xlower. This is the method presented the main text,

and used in other experiments.

See Table C.1 for results. As would be anticipated, the general trend was:

DSSN < ‘Center’ ≈ ‘Center Center’ < ‘Center Error’ ≈ ‘Upper Lower’ (C.78)

This tells us that Variable-Λ smoothing has an advantage over DSSN for p=1/2 certifica-

tion, even if only the center of the interval is given to the base classifier. However, having full

knowledge of the range of the interval clearly provides an added benefit.

C.6 Effect of Pseudorandom Seed Value

As mentioned in the main text, we use cyclic permutations with pseudorandom offsets to

generate the coupled distribution ofD, using a seed value of 0. In Table C.2, we compare alternate

choices of seed values for CIFAR-10 with p = 1/2. Note that the seed value has very little effect

on the certified accuracy: certified accuracies are within 1 percentage point of each other. Similar

conclusions about the effect of the seed hyperparameter were found in Chapter 3 for the ℓ1 case.
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ρ 10 20 30 40 50 60 70 80

DSSN 42.69% 35.04% 28.89% 23.46% 18.81% 13.76% 8.38% 1.27%
(From ℓ1) (60.42% (60.42% (60.42% (60.42% (60.42% (60.42% (60.42% (60.42%

@ α=18) @ α=18) @ α=18) @ α=18) @ α=18) @ α=18) @ α=18) @ α=18)

DSSN 41.32% 35.56% 32.07% 28.70% 24.95% 20.79% 16.20% 6.98%
(From ℓ1) (55.38% (50.11% (50.11% (50.11% (50.11% (50.11% (50.11% (50.11%

(Stab. Training) @ α=12) @ α=18) @ α=18) @ α=18) @ α=18) @ α=18) @ α=18) @ α=18)

Center 49.83% 42.26% 36.54% 31.10% 25.65% 19.93% 13.53% 2.68%
(68.35% (65.59% (65.59% (65.59% (65.59% (65.59% (65.59% (65.59%
@ α=15) @ α=18) @ α=18) @ α=18) @ α=18) @ α=18) @ α=18) @ α=18)

Center 47.98% 42.27% 38.47% 35.31% 31.91% 28.17% 23.10% 11.82%
(Stab. Training) (64.31% (56.96% (54.79% (54.79% (54.79% (54.79% (54.79% (54.79%

@ α=9) @ α=15) @ α=18) @ α=18) @ α=18) @ α=18) @ α=18) @ α=18)

Center Center 49.78% 42.15% 36.15% 31.17% 25.49% 19.87% 13.21% 2.55%
(66.06% (66.06% (66.06% (66.06% (66.06% (66.06% (66.06% (66.06%
@ α=18) @ α=18) @ α=18) @ α=18) @ α=18) @ α=18) @ α=18) @ α=18)

Center Center 48.33% 42.24% 38.84% 35.59% 32.28% 28.11% 23.16% 11.62%
(Stab. Training) (60.17% (54.83% (54.83% (54.83% (54.83% (54.83% (54.83% (54.83%

@ α=12) @ α=18) @ α=18) @ α=18) @ α=18) @ α=18) @ α=18) @ α=18)

Center Error 56.66% 49.61% 43.50% 37.76% 32.26% 25.80% 18.51% 4.99%
(75.80% (70.56% (70.56% (70.56% (70.56% (70.56% (70.56% (70.56%
@ α=12) @ α=18) @ α=18) @ α=18) @ α=18) @ α=18) @ α=18) @ α=18)

Center Error 55.58% 48.73% 45.08% 41.86% 38.31% 34.39% 28.98% 16.45%
(Stab. Training) (69.99% (63.02% (60.49% (60.49% (60.49% (60.49% (60.49% (60.49%

@ α=9) @ α=15) @ α=18) @ α=18) @ α=18) @ α=18) @ α=18) @ α=18)

Upper Lower 56.74% 49.80% 43.60% 37.97% 32.37% 25.83% 18.19% 5.02%
(73.22% (70.57% (70.57% (70.57% (70.57% (70.57% (70.57% (70.57%
@ α=15) @ α=18) @ α=18) @ α=18) @ α=18) @ α=18) @ α=18) @ α=18)

Upper Lower 55.21% 48.72% 45.05% 42.26% 38.62% 34.42% 29.01% 16.28%
(Stab. Training) (69.87% (62.74% (60.44% (60.44% (60.44% (60.44% (60.44% (60.44%

@ α=9) @ α=15) @ α=18) @ α=18) @ α=18) @ α=18) @ α=18) @ α=18)

Table C.1: Comparison of ℓ1/2 CIFAR-10 certificates for a variety of noise representations. See
text of Appendix C.5.
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ρ 10 20 30 40 50 60 70 80

Seed: 0 56.74% 49.80% 43.60% 37.97% 32.37% 25.83% 18.19% 5.02%
(73.22% (70.57% (70.57% (70.57% (70.57% (70.57% (70.57% (70.57%
@ α=15) @ α=18) @ α=18) @ α=18) @ α=18) @ α=18) @ α=18) @ α=18)

Seed: 1 56.64% 49.28% 43.94% 38.53% 32.61% 26.12% 18.43% 5.25%
(73.17% (70.14% (70.14% (70.14% (70.14% (70.14% (70.14% (70.14%
@ α=15) @ α=18) @ α=18) @ α=18) @ α=18) @ α=18) @ α=18) @ α=18)

Seed: 2 56.60% 49.35% 43.60% 38.01% 32.10% 25.80% 18.52% 4.70%
(73.10% (70.44% (70.44% (70.44% (70.44% (70.44% (70.44% (70.44%
@ α=15) @ α=18) @ α=18) @ α=18) @ α=18) @ α=18) @ α=18) @ α=18)

Seed: 3 56.80% 49.71% 43.77% 38.30% 32.18% 25.95% 18.04% 5.01%
(72.77% (70.74% (70.74% (70.74% (70.74% (70.74% (70.74% (70.74%
@ α=15) @ α=18) @ α=18) @ α=18) @ α=18) @ α=18) @ α=18) @ α=18)

Seed: 4 56.82% 49.70% 43.64% 37.79% 32.09% 25.98% 18.54% 5.04%
(73.09% (70.56% (70.56% (70.56% (70.56% (70.56% (70.56% (70.56%
@ α=15) @ α=18) @ α=18) @ α=18) @ α=18) @ α=18) @ α=18) @ α=18)

Seed: 0 55.21% 48.72% 45.05% 42.26% 38.62% 34.42% 29.01% 16.28%
(Stab Training) (69.87% (62.74% (60.44% (60.44% (60.44% (60.44% (60.44% (60.44%

@ α=9) @ α=15) @ α=18) @ α=18) @ α=18) @ α=18) @ α=18) @ α=18)

Seed: 1 55.81% 48.67% 44.43% 41.45% 38.16% 34.17% 28.82% 16.10%
(Stab Training) (69.84% (62.51% (60.07% (60.07% (60.07% (60.07% (60.07% (60.07%

@ α=9) @ α=15) @ α=18) @ α=18) @ α=18) @ α=18) @ α=18) @ α=18)

Seed: 2 55.18% 48.52% 44.77% 41.38% 38.03% 34.02% 28.81% 16.08%
(Stab Training) (69.83% (62.80% (60.13% (60.13% (60.13% (60.13% (60.13% (60.13%

@ α=9) @ α=15) @ α=18) @ α=18) @ α=18) @ α=18) @ α=18) @ α=18)

Seed: 3 55.99% 48.64% 45.16% 41.98% 38.60% 34.61% 29.13% 16.60%
(Stab Training) (70.27% (62.77% (60.02% (60.02% (60.02% (60.02% (60.02% (60.02%

@ α=9) @ α=15) @ α=18) @ α=18) @ α=18) @ α=18) @ α=18) @ α=18)

Seed: 4 56.10% 48.59% 44.76% 41.53% 38.19% 34.17% 28.81% 16.00%
(Stab Training) (69.87% (62.90% (60.30% (60.30% (60.30% (60.30% (60.30% (60.30%

@ α=9) @ α=15) @ α=18) @ α=18) @ α=18) @ α=18) @ α=18) @ α=18)

Table C.2: Certified accuracy as a function of fractional ℓp distance ρ, for p = 1/2 on CIFAR-10,
using various values of the seed for pseudo-random generation of cyclic permutations for D. We
test with α = {1,3,6,9,12,15,18} where 1/α is the Lipschitz constant of the model, and report
the highest certificate for each technique over all of the models. In parentheses, we report the the
clean accuracy and the α parameter for the associated model.
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C.7 Effect of Cyclic Permutations vs. Arbitrary Permutations

In the main text, we mention that Theorem 4.3 allows for the use of arbitrary permutations

in defining the coupling for the distribution D. However, in practice, we choose to use only

cyclic permutations of a single list of outcomes. This is because using arbitrary permutations

involves storing in memory the complete permutation (each consisting of B outcomes, with up

to B = 18,000 in our experiments) for each dimension. This does not scale efficiently to higher-

dimensional problems. On CIFAR-10 with p = 1/2, we did attempt this arbitrary permutation

method, using pseudo-randomly generated arbitrary permutations for each dimension. Results

are found in Table C.3: in general, we find no major benefit to using arbitrary permutations.

C.8 Complete Certification Results on CIFAR-10

In Figures C.1 and C.2, we show the complete certification results for all models used in Ta-

ble 4.1 in the main text. Note that our method dominates at every noise level, except when α = 1:

this is because when α = 1, the maximum possible certificate using our method is (1/2)1/p, while

it is 1/2 using equivalence of norms from an ℓ1 certificate. However, this is largely irrelevant,

because we show that by selecting larger values of the hyperparameter α, we are able to achieve

consistently larger certificates.

In Table C.4, we provide the base classifier accuracies for the models. Note that at large α,

the form of the certificates using our method, and using ℓ1 certificates through norm conversion,
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10 20 30 40 50 60 70 80

Cyclic Perm. 56.74% 49.80% 43.60% 37.97% 32.37% 25.83% 18.19% 5.02%
(73.22% (70.57% (70.57% (70.57% (70.57% (70.57% (70.57% (70.57%
@ α=15) @ α=18) @ α=18) @ α=18) @ α=18) @ α=18) @ α=18) @ α=18)

Cyclic Perm. 55.21% 48.72% 45.05% 42.26% 38.62% 34.42% 29.01% 16.28%
(Stab. Training) (69.87% (62.74% (60.44% (60.44% (60.44% (60.44% (60.44% (60.44%

@ α=9) @ α=15) @ α=18) @ α=18) @ α=18) @ α=18) @ α=18) @ α=18)

Arbitrary Perm. 56.85% 49.62% 43.74% 38.12% 32.08% 25.94% 18.29% 4.70%
(72.90% (70.56% (70.56% (70.56% (70.56% (70.56% (70.56% (70.56%
@ α=15) @ α=18) @ α=18) @ α=18) @ α=18) @ α=18) @ α=18) @ α=18)

Arbitrary Perm. 55.56% 48.56% 44.60% 41.46% 38.13% 34.39% 28.93% 16.26%
(Stab. Training) (70.28% (62.73% (60.08% (60.08% (60.08% (60.08% (60.08% (60.08%

@ α=9) @ α=15) @ α=18) @ α=18) @ α=18) @ α=18) @ α=18) @ α=18)

Table C.3: Certified accuracy as a function of fractional ℓp distance ρ, for p = 1/2 on CIFAR-10,
using either pseudorandom cyclic permutations (as in the main text) or psuedorandom arbitrary
permutations. We test with α = {1,3,6,9,12,15,18} where 1/α is the Lipschitz constant of the
model, and report the highest certificate for each technique over all of the models. In parentheses,
we report the the clean accuracy and the α parameter for the associated model.

are essentially the same: both are (roughly):

min
c′∶c′≠c

[(
α

2
(pc(x) − pc′(x)))

1/p
] (C.79)

where pc(x) is the fraction of the smoothing samples on which the base classifier returns the class

c (see Appendix C.4 and Section 4.4 in the main text for details.) Therefore the success of our

technique at producing larger certificates is entirely because the base classifier is more accurate

under our fractional-ℓp noise than under splitting noise with a fixed Λ = α.
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Figure C.1: Full certification results for p = 1/2 on CIFAR-10. Left column shows α ∈ {1,3,6,9},
right column shows α ∈ {12,15,18}, top row shows standard training, and bottom row shows
stability training. In figure legends, “L&F (2021)” refers to the DSSN algorithm (that is, the
algorithm from Levine and Feizi (2021) [73], Chapter 3 of this dissertation).

α ℓ1 (DSSN) ℓ1 (DSSN) (Stability) ℓ1/2 ℓ1/2 (Stability) ℓ1/3 ℓ1/3 (Stability)

1 83.98% 82.12% 90.16% 88.74% 92.14% 90.84%
3 74.38% 70.89% 83.51% 81.47% 86.35% 84.72%
6 65.68% 61.51% 76.38% 73.51% 79.91% 77.73%
9 59.82% 55.68% 70.97% 67.15% 75.23% 71.82%

12 55.48% 51.68% 66.70% 62.86% 71.42% 67.59%
15 52.21% 48.84% 63.66% 59.51% 67.86% 64.03%
18 49.54% 46.13% 60.75% 56.87% 65.39% 61.25%

Table C.4: Base classifier accuracies on CIFAR-10. Note that as p decreases, the base classifier
accuracy increases for a fixed value of α: this leads to larger certificates.
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Figure C.2: Full certification results for p = 1/3 on CIFAR-10. Left column shows α ∈ {1,3,6,9},
right column shows α ∈ {12,15,18}, top row shows standard training, and bottom row shows
stability training. In figure legends, “L&F (2021)” refers to the DSSN algorithm (that is, the
algorithm from Levine and Feizi (2021) [73], Chapter 3 of this dissertation).
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C.9 CIFAR-10 p = 1/2 results with larger values of α

We repeated p = 1/2 CIFAR-10 experiments in Table 4.1 in the main text for the additional

values of α ∈ {21,24,27,30}. Summary results are presented in Table C.5. While this increases

certified accuracy under large perturbations, it does so at the cost of decreased clean accuracy.

The conclusion that our method significantly outperforms DSSN in the p < 1 case still holds. Full

results for all classifiers are presented in Figure C.3, and base classifier accuracies are in Table

C.6.

30 60 90 120 150 180 210

DSSN 32.28% 24.72% 18.95% 14.20% 9.50% 5.42% 1.55%
(From ℓ1) (53.35% (53.35% (53.35% (53.35% (53.35% (53.35% (53.35%

@ α=30) @ α=30) @ α=30) @ α=30) @ α=30) @ α=30) @ α=30)

DSSN 32.39% 26.41% 22.34% 18.68% 15.07% 11.21% 6.21%
(From ℓ1) (47.03% (44.38% (44.38% (44.38% (44.38% (44.38% (44.38%

(Stab. Training) @ α=24) @ α=30) @ α=30) @ α=30) @ α=30) @ α=30) @ α=30)

Variable-Λ 45.45% 37.45% 30.71% 24.90% 19.40% 13.11% 5.67%
(66.56% (63.40% (63.40% (63.40% (63.40% (63.40% (63.40%
@ α=24) @ α=30) @ α=30) @ α=30) @ α=30) @ α=30) @ α=30)

Variable-Λ 45.05% 38.16% 33.74% 29.79% 25.83% 20.84% 14.19%
(Stab Training) (60.44% (56.23% (52.58% (52.58% (52.58% (52.58% (52.58%

@ α=18) @ α=24) @ α=30) @ α=30) @ α=30) @ α=30) @ α=30)

Table C.5: Certified accuracy as a function of fractional ℓp distance ρ, for p = 1/2 on CIFAR-10
under large perturbations, with large values of α (α ∈ {21,24,27,30}) in addition to the α values
used in the main text. As in Table 4.1, we report the highest certificate for each technique over
all of the models.

α ℓ1 (DSSN) ℓ1 (DSSN) (Stability) ℓ1/2 ℓ1/2 (Stability)

21 47.04% 44.14% 58.17% 54.14%
24 45.13% 42.36% 55.91% 52.31%
27 43.49% 40.82% 53.97% 50.46%
30 41.99% 39.36% 52.34% 48.70%

Table C.6: Base classifier accuracies for CIFAR-10, for large values of α.
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Figure C.3: Full certification results for p = 1/2 on CIFAR-10, with α ∈ {21,24,27,30}. Left
panel shows standard training, right panel shows stability training. In figure legends, “L&F
(2021)” refers to the DSSN algorithm (that is, the algorithm from Levine and Feizi (2021) [73],
Chapter 3 of this dissertation).

C.10 Base Classifier Accuracies for ImageNet

Base classifier accuracies for the ImageNet results in the main text are provided in Table

C.7.

α ℓ1 (DSSN) ℓ1/2

6 52.50% 58.67%
12 45.49% 53.51%
18 40.39% 49.82%

Table C.7: Base classifier accuracies on ImageNet. Note that for p = 1/2, the base classifier
accuracy increases compared to p = 1 for each fixed value of α: this leads to larger certificates.
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Appendix D: Appendix to Chapter 5

D.1 Proofs

Lemma 5.1. For any normalized probability distributions x,x′ ∈ [0,1]n×m, there exists at least

one δ such that x′ =∆(x,δ). Furthermore:

min
δ∶ x′=∆(x,δ)

∥δ∥1 =W1(x,x
′) (D.1)

Where W1 denotes the 1-Wasserstein metric, using ℓ1 distance as the underlying distance metric.

Proof. We first show the equivalence of the above minimization problem with the linear program

proposed by [93], restated here:

W1(x,x
′) =min

g
∑
(i,j)

∑
(i′,j′)∈N((i,j))

g(i,j),(i′,j′) (D.2)

where g ≥ 0 and ∀(i, j),

∑
(i′,j′)∈N((i,j))

g(i,j),(i′,j′) − g(i′,j′),(i,j) = x
′
i,j −xi,j

It suffices to show that (1) there is a transformation from the variables g in Equation D.2 to the
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variables δ in Equation D.1, such that all points which are feasible in Equation D.2 are feasible

in D.1 and the minimization objective in Equation D.1 is less than or equal to the minimization

objective in Equation D.2, and (2) there is a transformation from the variables δ in Equation D.1

to the variables g in Equation D.2, such that all points which are feasible in Equation D.1 are

feasible in Equation D.2 and the minimization objective in Equation D.2 is less than or equal to

the minimization objective in Equation D.1.

We start with (1). We give the transformation as:

δvert.
i,j ∶= g(i,j),(i+1,j) − g(i+1,j),(i,j)

δhoriz.
i,j ∶= g(i,j),(i,j+1) − g(i,j+1),(i,j)

(D.3)

Where we let g(n,j),(n+1,j) = g(n+1,j),(n,j) = g(i,m+1),(i,m) = g(i,m),(i,m+1) = 0. To show feasibility,

we write out fully the flow constraint of Equation D.2:

g(i,j),(i+1,j) − g(i+1,j),(i,j)+

g(i,j),(i−1,j) − g(i−1,j),(i,j)+

g(i,j),(i,j+1) − g(i,j+1),(i,j)+

g(i,j),(i,j−1) − g(i,j−1),(i,j) =x
′
i,j −xi,j

(D.4)

Substituting in Equation D.3:

δvert.
i,j + −δ

vert.
i−1,j + δ

horiz.
i,j + −δhoriz.

i,j−1 = x
′
i,j −xi,j

(D.5)

225



But by Definition 5.2, this is exactly:

∆(x,δ)i,j = x
′
i,j (D.6)

Which is the sole constraint in Equation D.1: then any solution which is feasible in Equation D.2

is feasible in Equation D.1. Also note that:

∥δ∥1 =∑
i,j

∣δvert.
i,j ∣ + ∣δ

horiz.
i,j ∣

≤∑
i,j

∣g(i,j),(i+1,j)∣ + ∣g(i+1,j),(i,j)∣

+ ∣g(i,j),(i,j+1)∣ + ∣g(i,j+1),(i,j)∣

=∑
i,j

g(i,j),(i+1,j) + g(i+1,j),(i,j)

+ g(i,j),(i,j+1) + g(i,j+1),(i,j)

=∑
i,j

g(i,j),(i+1,j) + g(i,j),(i,j+1)

+∑
i,j

g(i+1,j),(i,j) + g(i,j+1),(i,j)

=∑
i,j

g(i,j),(i+1,j) + g(i,j),(i,j+1)

+∑
i,j

g(i,j),(i−1,j) + g(i,j),(i,j−1)

= ∑
(i,j)

∑
(i′,j′)∈N((i,j))

g(i,j),(i′,j′)

(D.7)

Where the inequality follows from triangle inequality applied to Equation D.3, and in the sec-

ond sum in the fourth line, we exploit the fact that g(n,j),(n+1,j) = g(n+1,j),(n,j) = g(i,m+1),(i,m) =

g(i,m),(i,m+1) = 0 to shift indices. This shows that the minimization objective in Equation D.1 is
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less than or equal to the minimization objective in Equation D.2.

Moving on to (2), we give the transformation as:

g(i,j),(i+1,j) ∶=max(δvert.
i,j ,0)

g(i,j),(i−1,j) ∶=max(−δvert.
i−1,j,0)

g(i,j),(i,j+1) ∶=max(δhoriz.
i,j ,0)

g(i,j),(i,j−1) ∶=max(−δhoriz.
i,j−1,0)

(D.8)

Note that the non-negativity constraint of Equation D.2 is automatically satisfied by the form of

these definitions. Shifting indices, we also have:

g(i−1,j),(i,j) =max(δvert.
i−1,j,0)

g(i+1,j),(i,j) =max(−δvert.
i,j ,0)

g(i,j−1),(i,j) =max(δhoriz.
i,j−1,0)

g(i,j+1),(i,j) =max(−δhoriz.
i,j ,0)

(D.9)
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From the constraint on Equation D.1, we have:

x′i,j −xi,j =δ
vert.
i,j +

− δvert.
i−1,j+

δhoriz.
i,j +

− δhoriz.
i,j−1

=max(δvert.
i,j ,0) −max(−δvert.

i,j ,0)+

max(−δvert.
i−1,j,0) −max(δvert.

i−1,j,0)+

max(δhoriz.
i,j ,0) −max(−δhoriz.

i,j ,0)+

max(−δhoriz.
i,j−1,0) −max(δhoriz.

i,j−1,0)

=g(i,j),(i+1,j) − g(i+1,j),(i,j)+

g(i,j),(i−1,j) − g(i−1,j),(i,j)+

g(i,j),(i,j+1) − g(i,j+1),(i,j)+

g(i,j),(i,j−1) − g(i,j−1),(i,j)

(D.10)

Which is exactly the second constraint of Equation D.2: then any solution which is feasible in
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Equation D.2 is feasible in Equation D.1. Also note that:

∑
(i,j)

∑
(i′,j′)∈N((i,j))

g(i,j),(i′,j′)

=∑
i,j

g(i,j),(i+1,j) + g(i,j),(i,j+1)

+∑
i,j

g(i,j),(i−1,j) + g(i,j),(i,j−1)

=∑
i,j

max(δvert.
i,j ,0) +max(δhoriz.

i,j ,0)

+∑
i,j

max(−δvert.
i−1,j,0) +max(−δhoriz.

i,j−1,0)

=∑
i,j

max(δvert.
i,j ,0) +max(−δvert.

i,j ,0)

+∑
i,j

max(δhoriz.
i,j ,0) +max(−δhoriz.

i,j ,0)

=∑
i,j

∣δvert.
i,j ∣ + ∣δ

horiz.
i,j ∣

=∥δ∥1

(D.11)

Where we again exploit the fact that g(n,j),(n+1,j) = g(n+1,j),(n,j) = g(i,m+1),(i,m) = g(i,m),(i,m+1) = 0

to shift indices, in the fourth line. This shows that the minimization objective in Equation D.2 is

less than or equal to the minimization objective in Equation D.1, completing (2).

Finally, now that we have shown that Equations D.1 and D.2 are in fact equivalent minimizations

(i.e., we have proven Equation D.1 correct), we would like to show that there is always a feasible

solution to D.1, as claimed. By the above transformations, it suffices to show that there is always a

feasible solution to Equation D.2. [93] show that any feasible solution the the general Wasserstein

minimization LP (Definition 5.1) can be transformed into a solution to Equation D.2, so it suffices

to show that the LP in Definition 5.1 always has a feasible solution. This is trivially satisfied by
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taking Π = x(x′)T , where we note that x, a probability distribution, is non-negative.

Theorem 5.1. Consider a normalized probability distribution x ∈ [0,1]n×m, and a classification

score function f ∶ Rn×m → [0,1]k. Let p refer to the Wasserstein-smoothed classification function:

p(x) = E
δ∼L(σ)

[f(∆(x,δ))] (D.12)

Let i be the class assignment of x using the smoothed classifier p (i.e. i = argmaxi′ pi′(x)). If

pi(x) ≥ e
2
√
2ρ/σ max

i′≠i
pi′(x) (D.13)

Then for any perturbed probability distribution x̃ such that W1(x, x̃) ≤ ρ:

pi(x̃) ≥max
i′≠i

pi′(x̃) (D.14)

Proof. Let u be the uniform probability vector. As a consequence of Lemma 5.1, for any distri-

bution x, there exists a nonempty set of local flow plans Sx:

Sx = {δ∣x =∆(u,δ)} (D.15)

Also, we may define a version of the classifier f on the local flow plan domain:

fflow(δ) = f(∆(u,δ)) (D.16)

Let δx be an arbitrary element in Sx, and consider any perturbed x̃ such that W1(x, x̃) ≤ ρ. By
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Lemma 5.1:

min
δ∶ x̃=∆(x,δ)

∥δ∥1 =W1(x, x̃) (D.17)

Then, using Equation 5.6:

min
δ∶ x̃=∆(u,δx+δ)

∥δ∥1 =W1(x, x̃) (D.18)

Let the minimum be achieved at δ∗. Making a change of variables (δx̃ = δ∗ + δx), we have:

∥δx̃ − δx∥1 =W1(x, x̃) where x̃ =∆(u,δx̃) (D.19)

Note that for any x′ and any δx′ ∈ Sx′ (for δ′ ∼ L(σ)) :

p(x′) =E [f(∆(x′,δ′))]

=E [f(∆(u,δx′ + δ′))]

=E [fflow(δx′ + δ
′))]

(D.20)

We can now apply Proposition 1 from [34], restated here:

Proposition. Consider a vector v ∈ Rd, and a classification score function h ∶ Rd → [0,1]k. Let

ϵ ∼ Laplace(0, σ)d, and let i be the class assignment of v using a Laplace-smoothed version of

the classifier h:

i = argmax
i′

E
ϵ
[hi′(v + ϵ)] (D.21)

If:

E
ϵ
[hi(v + ϵ)] ≥ e

2
√
2ρ/σ max

i′≠i
E
ϵ
[hi′(v + ϵ)] (D.22)
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Then for any perturbed probability distribution ṽ such that ∥v − ṽ∥1 ≤ ρ:

E
ϵ
[hi(ṽ + ϵ)] ≥max

i′≠i
E
ϵ
[hi′(ṽ + ϵ)] (D.23)

We apply this proposition to fflow, noting that ∥δx̃ − δx∥1 =W1(x, x̃) ≤ ρ:

E
δ′
[fflow

i (δx + δ
′))] ≥ e2

√
2ρ/σ max

i′≠i
E
δ′
[fflow

i′ (δx + δ
′))]

Ô⇒ E
δ′
[fflow

i (δx̃ + δ
′))] ≥max

i′≠i
E
δ′
[fflow

i′ (δx̃ + δ
′))]

(D.24)

Then, using Equation D.20:

pi(x) ≥ e
2
√
2ρ/σ max

i′≠i
pi′(x) Ô⇒

pi(x̃) ≥max
i′≠i

pi′(x̃)

(D.25)

Which was to be proven.

Corollary D.1. For any normalized probability distributions x,x′ ∈ [0,1]n×m, if W1(x,x′) ≤

ρ/2, then ∥x−x′∥1 ≤ ρ, where W1 is the 1-Wasserstein metric using any ℓp norm as the underlying

distance metric. Furthermore, there exist distributions where these inequalities are tight.

Proof. Let Π indicate the optimal transport plan between x and x′. From Definition 5.1, we have

Π1 = x and ΠT1 = x′. Then:

(ΠT −Π)1 = x′ −x (D.26)

Let Π′ represent a modified version of Π, with the diagonal elements set to zero. Note that
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< Π′,C >=< Π,C > and ΠT −Π = (Π′)T −Π′. Then, using triangle inequality:

∥(Π′)T1∥1 + ∥(Π
′)1∥1

≥∥((Π′)T −Π′)1∥1

=∥x′ −x∥1

(D.27)

Because the elements of Π′ are non-negative, this is simply:

2∑
i,j

Π′i,j ≥ ∥((Π
′)T −Π′)1∥1 = ∥x

′ −x∥1 (D.28)

Then, because the (non-diagonal) elements of C are at least 1 for any ℓp norm, we have,

2 < Π′,C >≥ 2∑
i,j

Π′i,j ≥ ∥x
′ −x∥1 (D.29)

Because < Π′,C >=< Π,C >=W1(x,x′), this means that ∥x′−x∥1 ≤ 2W1(x,x′) ≤ ρ, which was

to be proven. Note that this inequality can be tight. For example, let x be the distribution where

the entire probability mass is at position (i, j), and x′ be the distribution where the probability

mass is equally split between at positions (i, j) and (i + 1, j). (In other words, x(i,j) = 1,x′(i,j) =

.5,x′(i+1,j) = .5). In this case, ∥x′ −x∥1 = 1, W1(x,x′) = .5.

Corollary D.2. Consider a color image with three channels, denoted x = [xR,xG,xB], nor-

malized such that ∑(i,j)xR
(i,j) + x

G
(i,j) + x

B
(i,j) = 1. Consider a perturbed image x̃ such that

∀K ∈ {R,G,B}, ∑(i,j)x
K
(i,j) = ∑(i,j) x̃

K
(i,j). Let W1(x, x̃) denote the 1-Wasserstein distance

(with ℓ1 distance metric) between x and x̃, where, when determining the minimum transport

plan, transport between channels is not permitted. Using this definition, let W1(x, x̃) ≤ ρ. De-
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fine:

δ = {δR,δG,δB}

∆(x,δ) = {∆(xR,δR),∆(xG,δG),∆(xB,δB)}

(D.30)

and let Lcolor(σ) represent independent draws of Laplace noise each with standard deviation σ

in the shape of δ. Then if

pi(x) ≥ e
2
√
2ρ/σ max

i′≠i
pi′(x) (D.31)

then

pi(x̃) ≥max
i′≠i

pi′(x̃). (D.32)

Proof. Let the mass in each channel be denoted sK :

sK ∶= ∑
(i,j)

xK
(i,j) = ∑

(i,j)
x̃K
(i,j) (D.33)

Consider the formulation of Wasserstein distance given in Definition 5.1. If we represent the

elements of x as a vector by concatenating the elements of δR,δG, and δB, then the restriction

that there is no flow between channels amounts to the requirement that Π is block-diagonal:

Π =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ΠR 0 0

0 ΠG 0

0 0 ΠB

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(D.34)

Let C1,1 represent the standard cost matrix for 1-Wasserstein transport (with ℓ1 distance metric).

Because the cost of transport within each channel is the same for standard 1-Wasserstein transport
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(with ℓ1 distance metric), we have:

C =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

C1,1 0 0

0 C1,1 0

0 0 C1,1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(D.35)

Then we have:

< Π,C >=< ΠR,C1,1 > + < ΠG,C1,1 > + < ΠB,C1,1 > (D.36)

And by Equation D.34, the constraints also factorize out:

ΠR1 = xR, (ΠR)T1 = x̃R,

ΠB1 = xB, (ΠB)T1 = x̃B,

ΠG1 = xG, (ΠG)T1 = x̃G

(D.37)

Then the variables of each ΠK are separable (in that they appear together in the objective only in

the sum and share no constraints). We can then factorize the minimization:

W1(x, x̃) = ∑
K

min
ΠK∈R(n⋅m)×(n⋅m)+

< ΠK ,C(1,1) >, (D.38)

∀K, ΠK1 = xK , (ΠK)T1 = x̃K (D.39)

(D.40)

We can transform each xK into a normalized probability distribution by scaling it by a factor of
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1/sK . We similarly scale each ΠK :

xK
sc. ∶=

xK

sK
ΠK

sc. ∶=
ΠK

sK
(D.41)

Then we have:

W1(x, x̃) = ∑
K

sK ⋅ min
ΠK

sc.∈R
(n⋅m)×(n⋅m)
+

< ΠK
sc.,C

(1,1) >, (D.42)

∀K, ΠK
sc.1 = x

K
sc., (Π

K
sc.)

T1 = x̃K
sc. (D.43)

(D.44)

But note that this is simply:

W1(x, x̃) = ∑
K

sK ⋅W1(x
K
sc., x̃

K
sc.) (D.45)

By Lemma 5.1, this is:

W1(x, x̃) = ∑
K

sK ⋅ min
δKsc.∶ x̃K

sc.=∆(xK
sc.,δ

K
sc.)
∥δK

sc.∥1 (D.46)

By the linearity to scaling of ∆ and the ℓ1 norm, this is simply:

W1(x, x̃) = ∑
K

min
δK ∶ x̃K=∆(xK ,δK)

∥δK∥1 (D.47)
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Which, by Equation D.30, is simply,

W1(x, x̃) = min
δ∶ x̃=∆(x,δ)

∥δ∥1 (D.48)

Then all of the mechanics of the proof of Theorem 5.1 apply, and (avoiding unnecessary repeti-

tion), we conclude the result.

Corollary D.3. Let W 1 denote the ℓ1 1-Wasserstein distance, and W 2 denote the ℓ2 1-Wasserstein

distance. For a radius ρ2, define ρ1 ∶=
√
2ρ2. Then, for any classifier f and input x, if there does

not exist any adversarial example x̃ with W1(x, x̃) ≤ ρ1, then there are also no adversarial

examples x̃′ with W2(x, x̃′) ≤ ρ2.

Proof. We show the contrapositive: If there is an adversarial example x̃′ with W 2(x, x̃′) ≤ ρ2,

then there is an adversarial example x̃ with W 1(x, x̃) ≤ ρ1. It is sufficient to show that for

any arbitrary x′, if W 2(x,x′) ≤ ρ2, then W 1(x,x′) ≤ ρ1. (The predicate is then satisfied with

x̃′ = x̃ = x′). In other words, we need to show that

√
2W 2(x,x′) ≥W 1(x,x′), ∀x,x′. (D.49)

By the definition of 1-Wasserstein distance, can rewrite this goal as

√
2min

Π
< Π,C2 > ≥ min

Π
< Π,C1 > (D.50)

where in both minimizations Π is non-negative and subject to Π1 = x, ΠT1 = x′. Here, C2 and

C1 are the weight matrices for ℓ2 and ℓ1 Wasserstein distances.
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Note that Π is subject to the same constraints in both minimizations: therefore any Π that is

feasible in one is feasible in the other. Let Π∗2 be the minimum of the first (ℓ2) minimization.

Recall that

C2
(i,j),(i′,j′) =

√
(i − i′)2 + (j − j′)2 (D.51)

while

C1
(i,j),(i′,j′) = ∣i − i

′∣ + ∣j − j′∣. (D.52)

By equivalence of norms, we have:

√
2C2
(i,j),(i′,j′) ≥ C

1
(i,j),(i′,j′). (D.53)

Then by linearity (and using Π non-negative),

√
2 < Π,C2 > ≥ < Π,C1 > ∀Π ≥ 0 (D.54)

So

√
2min

Π
< Π,C2 > =

√
2 < Π∗2,C

2 >

≥ < Π∗2,C
1 >

≥ min
Π
< Π,C1 >,

(D.55)

as desired.
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D.2 Training Parameters

In this paper, network architectures models used were identical to those used in [2]. Unless

stated otherwise, all parameters of attacks are the same as used in that paper for each data set.

For training smoothed models, we train the base classifier using standard cross-entropy loss on

individual noised sample images, using the same noise distribution as used when performing

smoothed classification. However, during training, rather than using the same image repeatedly

while adding different noise (as at test time), we instead train with each image only once per

epoch, with one noise draw. In fact, for computational efficiency and as suggested by [34], we

re-use the same noise for each image in a batch. Training parameters are as follows (Tables D.1,

D.2):

Training Epochs 200

Batch Size 128

Optimizer Stochastic Gradient
Descent with Momentum

Learning Rate .001

Momentum 0.9

ℓ2 Weight Penalty 0.0005

Table D.1: Training Parameters for MNIST Experiments

D.3 Comparison to other Defenses in [2]

In addition to proposing adversarial training as a defense against Wasserstein Adversarial

attacks, [2] also tests other defenses. On MNIST, binarization of the input and using a provably

ℓ∞-robust classifier were also tested as defenses: our randomized smoothing method is more ef-
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Training Epochs 200

Batch Size 128

Training Set Normalization,
Preprocessing Random Cropping (Padding:4)

and Random Horizontal Flip

Optimizer Stochastic Gradient
Descent with Momentum

Learning Rate .01 (Epochs 1-200)
.001 (Epochs 201-400)

Momentum 0.9

ℓ2 Weight Penalty 0.0005

Table D.2: Training Parameters for CIFAR-10 Experiments

Figure D.1: Comparison of empirical robustness on MNIST to additional defenses from [2],
other than adversarial training. Randomized Smoothing shown here is Wasserstein smoothing
with σ = 0.01. (This is the amount of noise which maximizes certified robustness, as seen in
Table 5.1.)

fective than these methods at all attack magnitudes (see Figure D.1). On CIFAR-10, [2] only

tested a provably ℓ∞-robust classifier as an additional defense: unfortunately, code was not pro-

vided for this model, so we did not attempt to replicate the results.
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D.4 Challenges to Deterministic Certification

This chapter was originally published before the deterministic ℓ1 certification method pre-

sented in Chapter 3 was developed. However, one may ask whether we can perform Wasserstein

smoothing using the DSSN noise distribution in place of the Laplace distribution, in order to

derive a deterministic form of Wasserstein smoothing. Here, we show that the proof of the cor-

rectness of the Wasserstein smoothing certificate can not be easily adapted to using DSSN noise,

suggesting that we can not necessarily replace Laplace noise in this method with DSSN noise in

order to achieve derandomization.

The key issue is that, in the proof of Theorem 5.1 we rely on the fact (as shown in Equation

D.20) that for a given x̃, for any δx̃ ∈ Sx̃:

p(x̃) = E
δ′∼L(σ)

[fflow(δx̃ + δ
′))] . (D.56)

We then rely on the fact there exists a flow plan δx̃ ∈ Sx̃ such that ∥δx̃ − δx∥1 =W1(x, x̃).

However, because DSSN noise is non-additive, in the equivalent expression using DSSN

noise, the value of the right-hand side (i.e., the expectation of the base classifier under DSSN

noise) may depend on the specific choice of flow plan δx̃ ∈ Sx̃. If one chooses a flow plan in Sx̃

arbitrarily when evaluating p(x̃), it may not be the “closest” flow plan to δx: the one for which

∥δx̃ − δx∥1 =W1(x, x̃).

To demonstrate that under DSSN noise, p(x̃) can depend on the choice of δx̃ ∈ Sx̃, consider

a three-by-three pixel image, like the one shown in Figure 5.2, and consider the case x̃ = u. Two

equivalent possible flow plans are:
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• δa
x̃ = 0

• δb, vert.
2,2 = δb, horiz.

3,2 = 1, δb, vert.
2,3 = δb, horiz.

2,2 = −1, all other components zero.

Consider the coupling for DSSN where all components of s are equal, use λ = 0.5, and also scale

the DSSN algorithm such that the input range is [−1,1] rather than [0,1] (in other words, let si

be uniform on [the quantized version of] the range [−1,1], and “split” the interval into [−1, si)

and (si,1]).

In this setting, note that, for δa
x̃, all flows will be equal for all noise samples. As a conse-

quence, the total noise added to x2,2 will always be zero for all values of s.

However, for δb
x̃, when si is near −1, the smoothed value of the flows δb, vert.

2,3 = δb, horiz.
2,2 will

be near −1, but the smoothed value of the flows δb, vert.
2,2 = δb, horiz.

3,2 will be near zero, as will all other

flows. As a consequence, there will be a net inflow into x2,2, and its total noise will not be zero.

Therefore the distributions are not equivalent.
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Appendix E: Appendix to Chapter 6

E.1 Proofs

We first prove the block smoothing algorithm. Recall the definitions and statement of

Theorem 6.1. In particular, recall the base classification counts nc(x):

∀c, nc(x) ∶=
w

∑
x=1

h

∑
y=1

fc(x, s, x, y) (E.1)

And recall the definition of the smoothed classifier:

g(x) ∶= argmax
c

nc(x), (E.2)

where in the case of ties, we choose the smaller-indexed class as the argmax solution.

Theorem 6.1. For any image x, base classifier f , smoothing block size s, and patch size m, if:

nc(x) ≥max
c′≠c
[nc′(x) + 1c>c′] + 2(m + s − 1)

2 (E.3)

then for any image x′ which differs from x only in an (m ×m) patch, g(x′) = c.

Proof. Let (i, j) represent the upper-right corner of the m ×m patch in which x and x′ differ.
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Note that, for all c, the output of fc(x, s, x, y) will be equal to the output of fc(x′, s, x, y), unless

the s × s block retained (starting at (x, y)) intersects with the m ×m adversarial patch (starting

at (i, j)). This condition occurs only when both x is in the range between i − s + 1 and i +m − 1,

inclusive, and y is in the range between j − s + 1 and j +m − 1, inclusive. Note that there are

(m + s − 1) values each for x and y which meet this condition, and therefore (m + s − 1)2 such

pairs (x, y). Therefore fc(x, s, x, y) = fc(x′, s, x, y) in all but (m + s − 1)2 cases.

Note that if i−s+1 < 0, then the intersecting values for x, taking into account the wrapping

behavior of f , will be h − (i − s + 1) through h, and 0 through i +m − 1 (see Figure 6.4 in the

main text): there are still (m + s − 1) such values, and a similar argument applies to j.

Therefore, because fc(⋅) ∈ {0,1},

∀c, ∣nc(x) − nc(x
′)∣ ≤ (m + s − 1)2. (E.4)

Now, consider any c′ ≠ c, such that nc(x) ≥ [nc′(x) + 1c>c′] + 2(m+ s− 1)2. There are two

cases:

• c > c′: In this case, in the event that nc(x′) = n′c(x
′), we have that g(x′) = c′. Therefore,

a sufficient condition for g(x′) ≠ c′ is that nc(x′) > n′c(x
′). By Equation E.4 and triangle

inequality, this must be true if nc(x) > [nc′(x)]+2(m+s−1)2, or equivalently, if nc(x) ≥

[nc′(x) + 1c>c′] + 2(m + s − 1)2.

• c′ > c: In this case, in the event that nc(x′) = n′c(x
′), we have that g(x′) = c′. Therefore,

a sufficient condition for g(x′) ≠ c′ is that nc(x′) ≥ n′c(x
′). By Equation E.4 and triangle

inequality, this must be true if nc(x) ≥ [nc′(x) + 1c>c′] + 2(m + s − 1)2.
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Therefore, if nc(x) ≥ maxc′≠c [nc′(x) + 1c>c′] + 2(m + s − 1)2, then no class other than c can be

output by g(x′).

The column smoothing method can be proved similarly. For completeness, we state and

prove Theorem 6.2 here as well. Recall

∀c, nc(x) ∶=
w

∑
x=1

fc(x, s, x) (E.5)

Theorem 6.2. For any image x, base classifier f , smoothing band size s, and patch size m, if:

nc(x) ≥max
c′≠c
[nc′(x) + 1c>c′] + 2(m + s − 1) (E.6)

then for any image x′ which differs from x only in an (m ×m) patch, g(x′) = c.

Proof. Let (i, j) represent the upper-right corner of the m ×m patch in which x and x′ differ.

Note that, for all c, the output of fc(x, s, x) will be equal to the output of fc(x′, s, x), unless

the band (of width s) retained, starting at column x, intersects with the m ×m adversarial patch

(starting at (i, j)). This condition occurs only when x is in the range between i − s + 1 and

i + m − 1, inclusive. Note that there are (m + s − 1) values for x which meet this condition.

Therefore fc(x, s, x, y) = fc(x′, s, x, y) in all but (m + s − 1) cases.

Again, if i − s + 1 < 0, then the intersecting values for x, taking into account the wrapping

behavior of f will be h− (i− s+ 1) through h, and 0 through i+m− 1: there are still (m+ s− 1)
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such values. Therefore, because fc(⋅) ∈ {0,1},

∀c, ∣nc(x) − nc(x
′)∣ ≤ (m + s − 1). (E.7)

The rest of the proof proceeds exactly as in the block smoothing case, with (m + s − 1)

substituted for (m + s − 1)2.

E.2 Full Validation Result Tables for Column and Block Smoothing

Tables E.1 and E.3 present the full validation set clean and certified accuracies for 5 × 5

patches on MNIST and CIFAR-10, respectively, for all tested values of parameters s and θ, and

for both block and column smoothing. Note that this is presented in Figure 6.5 in the main

text. Table E.2 presents the validation set clean and certified accuracies for 42 × 42 patches on

ImageNet using column smoothing, for all four tested values of the hyperparameter θ.

E.3 Results for Row Smoothing

We also tested smoothing with rows, rather than columns, on MNIST. This resulted in

slightly lower certified accuracy under 5 × 5 patch attacks (45.32% validation set certified accu-

racy, versus 53.22% using column smoothing). Full results are presented in Table E.4.

E.4 Multi-column and Multi-block Derandomized Smoothing

In the main text, we argued for having the base classifier use a single contiguous group of

pixels on the grounds that, compared to selecting individual pixels, it provides for a smaller risk

246



of intersecting the adversarial patch. However, there may be some benefit to getting information

from multiple distinct areas of an image, even if there is some associated increase in ∆. Rather

than just looking at the extremes of entirely independent pixels (Table E.8) versus a single band

or block (Figure 6.5 in the main text) we also explored, on MNIST, the intermediate case of using

a small number of bands or blocks. In Table E.5, we show all mathematically possible multiple-

column certificates on MNIST, as well as several certificates for multiple-blocks with s = 4.

Interestingly, while the certificates using multiple columns are far below optimal, the certified

accuracy for two blocks is only marginally below the best single-block certified accuracy.

For smoothing with multiple blocks or multiple columns, we consider only blocks or

columns aligned to a grid starting at the upper-left corner of the image. For example, if us-

ing block size s = 4, we consider only retaining blocks with upper-left corner (i, j), where i and

j are both multiples of 4. This prevents retained blocks from overlapping, and also reduces the

(large) number of possible selections of multiple blocks, allowing for derandomized smoothing.

Let the number of retained blocks or bands be κ, and, as in the paper, let the block or band

size be s, the image size be h × w, and the adversarial patch size be m ×m. For the block case,

note that there are ⌈h/s⌉ × ⌈w/s⌉ such axis-aligned blocks. Of these, the adversarial patch will

overlap at most (⌈(m−1)/s⌉+1)2 blocks. For example, for a 5×5 adversarial patch, using block

size s = 4, the adversarial patch will overlap exactly 4 blocks, regardless of position: see Figure

E.1.

When performing derandomized smoothing, we classify all (⌈h/s⌉×⌈w/s⌉κ
) possible choices

of κ blocks. Of these classifications, at least

(
⌈hs ⌉ × ⌈

w
s ⌉ − (⌈

m−1
s ⌉ + 1)

2

κ
)
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Figure E.1: Multi-block smoothing: for a 5 × 5 adversarial patch, using block size s = 4, the ad-
versarial patch overlaps exactly 4 blocks, regardless of position. Individual pixels are represented
by black gridlines. Blocks that may be retained are outlined in blue, and three possible 5 × 5 ad-
versarial patches are shown in red. Note that this is exact because, in this case, m − 1 is divisible
by s: in other cases, some choices of adversarial patches may affect fewer than (⌈(m−1)/s⌉+1)2

blocks.

will use none of the at most (⌈(m − 1)/s⌉ + 1)2 blocks which may be affected by the adversary.

Therefore, the number of classifications which might be affected by the adversary is at most:

(
⌈hs ⌉ × ⌈

w
s ⌉

κ
) − (

⌈hs ⌉ × ⌈
w
s ⌉ − (⌈

m−1
s ⌉ + 1)

2

κ
).

We can then use the above quantity in place of the number of classifications (m+s−1)2 that might

be affected by the adversarial patch in standard block smoothing (Equation 4). This modification,

in addition to classifying all (⌈h/s⌉×⌈w/s⌉κ
) selections of κ axis-aligned blocks, is sufficient to adapt

the certification algorithm to a multi-block setting.

The column case is similar: there are ⌈w/s⌉ axis-aligned bands (defined as bands which

start at a column index which is a multiple of s). Of these, the adversarial patch will overlap

at most (⌈(m − 1)/s⌉ + 1) bands. When performing smoothing, we classify all (⌈w/s⌉κ
) possible

choices of κ bands. Of these classifications, at least

(
⌈ws ⌉ − (⌈

m−1
s ⌉ + 1)

κ
)
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will use none of the at most (⌈(m − 1)/s⌉ + 1) bands which may be affected by the adversary.

Therefore, the number of classifications which might be affected by the adversary is at most:

(
⌈ws ⌉

κ
) − (

⌈ws ⌉ − (⌈
m−1
s ⌉ + 1)

κ
).

Full validation set results for multi-block and multi-band smoothing are shown in Table E.5.

E.5 Comparison with Randomized Structured Ablation

As discussed in the main text, there are two benefits to derandomization: first, we can

eliminate estimation error, and second, it allows the classifier to abstain or select multiple classes

without complicating estimation. In order to distinguish these effects, we present in Tables E.6

and E.7 the certificates on MNIST and CIFAR-10 using randomized column smoothing (with the

estimation scheme from [63]), versus deterministic column smoothing. We compare to both the

“Top-1 class” method (without abstaining or thesholding) as well as to the thresholding method,

with θ = 0.3. We find that derandomization alone, without the thresholding method, provides a

considerable improvement (around 6 percentage points increase on MNIST, around 7 percentage

points on CIFAR-10). On MNIST (although not on CIFAR-10), the thresholding scheme provides

a large additional improvement.

E.6 Sparse Randomized Ablation for Patch adversarial Attacks

In Table E.8, we provide the certified accuracies computed from applying sparse Random-

ized Ablation (Chapter 2) to patch adversarial attacks, as discussed in Section 6.2.1 of the main
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text.

E.7 Adversarial Attack Details

In order to test adversarial attacks against our structured ablation model (in particular the

column smoothing model) we must work around the non-differentiability of the base classifier f

with respect to the image. We accomplish this using a method similar to the attack on smooth

classifiers proposed by [33].

In particular, as described in Section 6.2.2.1 in the main text, the base classifier f in our

model is implemented using a neural network: let F represent the (SoftMax-ed) logits of this

neural network:

fc(x, s, x) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1, if Fc(x, s, x) ≥ θ

0, if Fc(x, s, x) < θ

(E.8)

Rather than attacking n(x) = ∑
w
x=1 f(x, s, x), we instead attack a soft smooth classifier, N(x):

Nc(x) ∶=
1

w

w

∑
x=1

Fc(x, s, x) (E.9)

The objective of the adversary (as in [4]) is now applied to this soft classifier:

max
x∈ (Patch Constraints)

− log(
1

w

w

∑
x=1

Fy(x, s, x)) (E.10)

where y is the true label. The IFGSM patch attack proposed by [4] proceeds by first randomly

selecting a patch to attack, and then attacking it with standard IFGSM, without imposing any ℓ∞
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magnitude constraint on the attack (other than as required to produce a feasable image). This

is repeated many times on many random patches. However, the most successful attack so far

is recorded at each step of optimization, and finally returned at the end of the attack. (Note

that this is the most successful attack over all steps of all random initializations.) In [4], this

is taken as whichever perturbed version of the image maximizes the objective (Equation E.10).

Because we ultimately care about the “hard” smoothed classifier n(x), we instead just evaluate

the final “hard” classification n(x) at each step. We record an attack to return only if it is actually

successful at making the final classification incorrect. Note that this does not impose significant

computational costs, because we already have the value of each ‘soft’ base classifier Fc(x) at

each step.

As mentioned in the main text, for the patch attack, we perform 80 random starts, 150

iterations per random start, and use a step size of 0.05. When attacking patches, we uniformly

randomly initialize the pixels in the attacked region. For ℓ∞ IFGSM, we used IFGSM for 50

iterations and a step size of 0.5/255: for this, we did not randomize the pixel values before

optimizing, but rather started at the initial x. Training parameters for baseline models were

identical to those for column-smoothed models, except that a regular, full ResNet-18 model was

used.

E.8 Evaluation Times

Data on evaluation times (using the optimal hyperparameters to maximize certified ac-

cureacy for each method) are shown in Table E.9. We used NVIDIA 2080 Ti GPUs for our

experiments.
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E.9 Architecture and Training Details

As discussed in the paper, we used the method introduced in Chapter 2 to represent images

with pixels ablated: this requires increasing the number of input channels from one to two for

greyscale images (MNIST) and from three to six for color images. For MNIST, we used the

simple CNN architecture fused in Chapter 2, consisting of two convolutional layers and three

fully-connected layers. For CIFAR-10 and ImageNet, we used modified versions ResNet-18 and

ResNet-50, respectively, with the number of input channels increased to six. Training details are

presented in Table E.10.

For randomized smoothing experiments, we follow the empirical estimation methods pro-

posed by [63]. We certify to 95% confidence, using 1000 random samples to select the putative

top class, and 10000 random samples to lower-bound the probability of this class. For sparse

randomized ablation on MNIST, we use the same trained models from Chapter 2.
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Column Top-1 class
Size s θ = .2 θ = .3 θ = .4 (no threshold)

Clean Cert Clean Cert Clean Cert Clean Cert
Acc Acc Acc Acc Acc Acc Acc Acc

1 93.50% 47.52% 93.22% 47.82% 92.56% 45.42% 50.04% 14.78%
2 96.68% 51.46% 96.78% 53.22% 96.36% 52.34% 72.80% 19.22%
3 97.84% 45.92% 97.70% 47.22% 97.46% 39.14% 82.36% 19.48%
4 97.88% 38.92% 97.92% 32.98% 97.84% 32.52% 85.46% 19.86%
5 98.24% 32.62% 98.26% 25.72% 98.06% 25.26% 93.20% 21.50%
6 98.44% 27.60% 98.30% 21.52% 98.24% 20.42% 95.42% 22.20%
7 98.58% 14.14% 98.60% 15.94% 98.56% 15.98% 97.56% 20.34%
8 98.70% 10.04% 98.68% 11.52% 98.70% 11.76% 97.90% 18.90%
9 98.88% 06.52% 98.82% 08.16% 98.74% 08.32% 98.48% 17.28%

Block Top-1 class
Size s θ = .2 θ = .3 θ = .4 (no threshold)

1 09.76% 0% 09.76% 0% 09.76% 0% 10.80% 10.80%
2 09.76% 0% 09.76% 0% 09.76% 0% 10.80% 10.80%
3 09.76% 0% 09.76% 0% 09.76% 0% 10.80% 10.80%
4 87.30% 38.06% 86.04% 29.62% 85.94% 19.32% 12.78% 10.80%
5 91.60% 42.58% 90.24% 36.52% 90.32% 27.22% 21.72% 11.08%
6 93.44% 42.90% 92.68% 39.86% 92.70% 33.06% 31.60% 11.74%
7 94.78% 44.00% 94.30% 41.80% 94.52% 35.84% 51.18% 13.30%
8 96.04% 44.04% 95.64% 42.22% 95.66% 36.66% 75.94% 17.64%
9 96.96% 41.74% 97.02% 41.84% 96.92% 37.18% 91.74% 26.84%

10 97.54% 39.84% 97.44% 40.00% 97.50% 36.02% 95.66% 35.30%
11 97.88% 36.00% 97.66% 36.64% 97.64% 32.34% 96.58% 31.26%
12 98.10% 30.40% 98.38% 28.26% 98.30% 32.98% 96.98% 27.26%
13 98.38% 28.26% 98.30% 29.06% 98.44% 22.72% 98.02% 27.66%
14 98.70% 22.22% 98.62% 18.68% 98.62% 14.54% 98.40% 24.04%
15 98.86% 08.90% 98.84% 08.00% 98.86% 06.12% 98.68% 12.90%

Table E.1: Validation set clean and certified accuracies for 5 × 5 patch adversarial attacks using
Block and Column smoothing on MNIST, with results shown for all tested values of parameters
s and θ. The value with the highest certified accuracy is shown in bold.
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Clean Certified
Accuracy Accuracy

s = 25, θ = 0.1 44.0% 12.0%
s = 25, θ = 0.2 43.1% 14.5%
s = 25, θ = 0.3 42.3% 13.8%
s = 25, θ = 0.4 40.9% 12.3%

Table E.2: Validation set clean and certified accuracies for 42×42 patch adversarial attacks using
Column smoothing on ImageNet, with results shown for all tested values of parameter θ. The
value with the highest certified accuracy is shown in bold.
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Column Top-1 class
Size s θ = .2 θ = .3 θ = .4 (no threshold)

Clean Cert Clean Cert Clean Cert Clean Cert
Acc Acc Acc Acc Acc Acc Acc Acc

1 72.92% 50.74% 72.58% 50.94% 72.90% 50.32% 72.30% 50.94%
2 77.54% 53.26% 77.70% 54.14% 77.68% 53.04% 77.10% 53.40%
3 81.84% 56.14% 81.74% 56.76% 81.98% 56.08% 81.82% 56.24%
4 84.04% 56.62% 84.04% 58.08% 84.16% 57.12% 83.66% 57.36%
5 85.98% 55.18% 85.66% 56.08% 85.82% 55.98% 85.32% 56.00%
6 87.70% 54.84% 87.90% 56.26% 88.04% 56.10% 87.62% 55.70%
7 89.24% 53.12% 89.48% 54.36% 89.30% 54.04% 89.12% 54.14%
8 90.60% 51.38% 90.68% 52.90% 90.60% 53.12% 90.34% 53.02%
9 91.38% 47.78% 91.30% 49.96% 91.38% 50.30% 91.12% 50.36%

10 91.66% 46.26% 91.74% 49.00% 91.62% 49.44% 91.56% 49.58%
11 92.40% 41.24% 92.26% 45.12% 92.18% 46.08% 92.18% 45.90%

Block Top-1 class
Size s θ = .2 θ = .3 θ = .4 (no threshold)

1 14.94% 12.44% 14.70% 12.42% 13.62% 10.64% 14.82% 12.80%
2 29.94% 20.96% 25.30% 17.06% 22.66% 14.00% 29.48% 22.58%
3 41.88% 27.70% 36.34% 24.24% 32.88% 18.14% 39.52% 27.80%
4 27.88% 18.80% 31.10% 18.68% 31.98% 16.90% 28.12% 18.34%
5 58.64% 37.72% 57.58% 35.74% 56.00% 29.20% 56.98% 39.64%
6 68.86% 45.88% 67.70% 44.46% 66.26% 39.00% 67.52% 46.20%
7 71.98% 46.96% 72.02% 47.40% 71.32% 43.02% 71.26% 48.38%
8 74.90% 49.18% 74.80% 49.96% 75.78% 46.72% 74.24% 50.68%
9 79.18% 52.04% 78.82% 53.04% 79.50% 50.28% 78.42% 53.88%

10 82.32% 53.44% 82.56% 54.82% 82.96% 52.50% 82.00% 55.18%
11 84.34% 52.84% 84.94% 54.94% 85.12% 52.84% 84.40% 55.24%
12 86.56% 53.26% 86.66% 55.66% 86.88% 54.34% 86.38% 56.08%
13 88.50% 51.76% 88.40% 54.26% 88.98% 53.52% 88.28% 54.74%
14 89.98% 50.72% 89.86% 53.94% 90.22% 53.22% 89.86% 54.58%
15 90.94% 49.88% 91.12% 52.70% 91.28% 52.70% 90.92% 53.44%
16 92.04% 46.04% 91.98% 49.26% 92.02% 49.46% 91.84% 50.12%
17 91.82% 40.30% 92.04% 44.14% 92.12% 44.74% 92.12% 45.14%
18 93.42% 28.42% 93.52% 32.46% 93.54% 33.36% 93.44% 33.98%

Table E.3: Validation set clean and certified accuracies for 5 × 5 patch adversarial attacks using
Block and Column smoothing on CIFAR-10, with results shown for all tested values of parame-
ters s and θ. The value with the highest certified accuracy is shown in bold.
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Row Size s θ = .2 θ = .3 θ = .4

Clean Certified Clean Certified Clean Certified
Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy

1 88.46% 36.54% 85.26% 33.78% 82.86% 25.52%
2 95.58% 43.52% 93.92% 45.32% 92.04% 43.16%
3 96.28% 41.80% 95.26% 44.96% 94.08% 43.74%
4 97.26% 38.58% 96.40% 42.02% 95.70% 41.82%
5 97.74% 35.74% 97.00% 39.04% 96.52% 39.54%
6 97.60% 32.18% 97.18% 36.98% 96.92% 37.10%
7 98.04% 27.32% 97.62% 32.82% 97.48% 33.50%
8 98.30% 23.16% 98.18% 28.26% 98.06% 29.54%
9 98.24% 17.60% 97.96% 23.80% 97.92% 25.12%

Table E.4: Validation set clean and certified accuracies for 5 × 5 patch adversarial attacks using
Row smoothing on MNIST. Values with highest certified accuracies are shown in bold.

θ = .2 θ = .3 θ = .4

Clean Certified Clean Certified Clean Certified
Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy

2 columns, s = 1 96.80% 38.12% 96.50% 39.18% 96.24% 37.38%
2 columns, s = 2 98.38% 31.36% 98.24% 25.56% 98.10% 25.80%
3 columns, s = 1 97.74% 07.58% 97.68% 09.36% 97.64% 09.00%
2 blocks, s = 4 92.32% 43.40% 91.22% 38.78% 91.32% 30.08%
3 blocks, s = 4 94.98% 41.40% 94.42% 39.38% 94.46% 32.62%
4 blocks, s = 4 96.26% 38.26% 95.72% 37.50% 95.72% 32.02%

Table E.5: Multi-column and multi-block certificates, with results shown for all tested values
of parameter θ. Results are on the MNIST validation set, for 5 × 5 patches. For each number
of blocks/columns and block/column size s, we bold the highest certified accuracy over tested
values of the hyperparameter θ.
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Column Derandomized Derandomized Randomized
Size s θ = .3 Top-1 class Column Smoothing

1 47.82% 14.78% 11.80%
2 53.22% 19.22% 14.26%
3 47.22% 19.48% 15.14%
4 32.98% 19.86% 15.24%
5 25.72% 21.50% 15.48%
6 21.52% 22.20% 16.32%
7 15.94% 20.34% 14.50%
8 11.52% 18.90% 14.52%
9 08.16% 17.28% 14.10%

Table E.6: Comparison of Derandomized vs. Randomized Structured Ablation certified accura-
cies for 5 × 5 adversarial patches on MNIST.

Column Derandomized Derandomized Randomized
Size s θ = .3 Top-1 class Column Smoothing

1 50.94% 50.94% 38.16%
2 54.14% 53.40% 41.98%
3 56.76% 56.24% 47.02%
4 58.08% 57.36% 49.56%
5 56.08% 56.00% 49.58%
6 56.26% 55.70% 50.38%
7 54.36% 54.14% 50.04%
8 52.90% 53.02% 48.94%
9 49.96% 50.36% 47.28%

10 49.00% 49.58% 46.46%
11 45.12% 45.90% 43.28%

Table E.7: Comparison of Derandomized vs. Randomized Structured Ablation certified accura-
cies for 5 × 5 adversarial patches on CIFAR-10.
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MNIST

Retained Classification Certified
pixels k accuracy accuracy

5 32.44% 7.58%
10 75.02% 5.40%
15 86.32% 4.34%
20 90.36% 0.10%
25 93.20% 0
30 94.72% 0

CIFAR-10

Retained Classification Certified
pixels k accuracy accuracy

25 68.28% 13.28%
50 74.68% 0
75 78.26% 0

100 80.98% 0
125 83.82% 0
150 85.70% 0

Table E.8: Certified accuracy to 5× 5 adversarial patches from directly applying ℓ0 smoothing as
proposed in Chapter 2. Note that with ℓ0 smoothing, the geometry of the attack is not taken into
consideration: these are therefore actually certified accuracies for any ℓ0 attack on up to ρ = 25
pixels. The certificates are probabilistic, with 95% confidence.

Method and Dataset Images Seconds GPUs GPU-seconds/image

Column, MNIST 5000 6.61 1 0.00132
Block, MNIST 5000 48.1 1 0.00962

Column, CIFAR-10 5000 30.8 1 0.00616
Block, CIFAR-10 5000 851 1 0.170

Column, ImageNet 1000 622 4 2.49

Table E.9: Evaluation times. Note that evaluation and certification both require evaluating each
base classifier, so these are also the certification times (our evaluation script reports both clean
and certified accuracy).

258



MNIST CIFAR-10 ImageNet

Training Epochs 400 350 60

Batch Size 128 128 196

Training None Random Cropping Random
Set (Padding:4) and Horizontal Flip

Preprocessing Random Horizontal Flip

Optimizer Stochastic Stochastic Stochastic
Gradient Descent Gradient Descent Gradient Descent
with Momentum with Momentum with Momentum

Learning Rate .01 (Epochs 1-200) .1 (Epochs 1-150) .1 (Epochs 1-20)
.001 (Epochs 201-400) .01 (Epochs 151-250) .01 (Epochs 21-40)

.001 (Epochs 251-350) .001 (Epochs 41-60)

Momentum 0.9 0.9 0.9

ℓ2 Weight Penalty 0.0005 0.0005 0.0005

Table E.10: Training Parameters
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Appendix F: Appendix to Chapter 7

F.1 Proofs

Theorem 7.1. For a fixed deterministic base classifier f , hash function h, ensemble size k, train-

ing set T , and input x, let:

c ∶= gdpa(T,x)

ρ̄(x) ∶= ⌊
nc −maxc′≠c(nc′(x) + 1c′<c)

2
.⌋

(F.1)

Then, for any poisoned training set U , if ∣T ⊖U ∣ ≤ ρ̄(x), we have: gdpa(U,x) = c.

Proof. We define the partitions, trained classifiers, and counts for each training set (T and U ) as

described in the main text:

P T
i ∶= {t ∈ T ∣h(t) ≡ i (mod k)}

PU
i ∶= {t ∈ U ∣h(t) ≡ i (mod k)}

(F.2)

fT
i (x) ∶= f(P

T
i ,x)

fU
i (x) ∶= f(P

U
i ,x)

(F.3)
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nT
c (x) ∶= ∣{i ∈ [k]∣f

T
i (x) = c}∣

nU
c (x) ∶= ∣{i ∈ [k]∣f

U
i (x) = c}∣

(F.4)

gdpa(T,x) ∶= argmax
c

nT
c (x)

gdpa(U,x) ∶= argmax
c

nU
c (x)

(F.5)

Note that here, we are using superscripts to explicitly distinguish between partitions (as well as

base classifiers and counts) of the clean training set T and the poisoned dataset U (i.e, P T
i is

equivalent to Pi in the main text). In Equation F.5, as discussed in the main text, when taking the

argmax, we break ties deterministically by returning the smaller class index.

Note that P T
i = P

U
i unless there is some t, with h(t) ≡ i (mod k), in T ⊖ U . Because the

mapping from t to h(t) (mod k) is a deterministic function, the number of partitions i for which

P T
i ≠ P

U
i is at most ∣T ⊖ U ∣, which is at most ρ̄(x). P T

i = P
U
i implies fT

i (x) = f
U
i (x), so the

number of classifiers i for which fT
i (x) ≠ f

U
i (x) is also at most ρ̄(x). Then:

∀c′ ∶ ∣nT
c′ − n

U
c′ ∣ ≤ ρ̄(x). (F.6)

Let c ∶= gdpa(T,x). Note that gdpa(U,x) = c iff:

∀c′ < c ∶ nU
c (x) > n

U
c′(x)

∀c′ > c ∶ nU
c (x) ≥ n

U
c′(x)

where the separate cases come from the deterministic selection of the smaller index in cases of

ties in Equation F.5: this can be condensed to ∀c′ ≠ c ∶ nU
c (x) ≥ n

U
c′(x) + 1c′<c. Then by triangle

inequality with Equation F.6, we have that gdpa(U,x) = c if ∀c′ ≠ c ∶ nT
c (x) ≥ n

T
c′(x) + 2ρ̄+1c′<c.
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This condition is true by the definition of ρ̄(x), so gdpa(U,x) = c.

Theorem 7.2. For a fixed deterministic semi-supervised base classifier f , ensemble size k, train-

ing set T (with no repeated samples), and input x, let:

c ∶= gssdpa(T,x)

ρ̄(x) ∶= ⌊
nc −maxc′≠c(nc′(x) + 1c′<c)

2
⌋

(F.7)

For a poisoned training set U obtained by changing the labels of at most ρ̄ samples in T ,

gssdpa(U,x) = c.

Proof. Recall the definition:

Tsorted ∶= Sort(samples(T )). (F.8)

Because samples(T ) = samples(U), we have Tsorted = Usorted. We can then define partitions and

base classifiers for each training set (T and U ) as described in the main text:

P T
i ∶= {t ∈ T ∣ index(Tsorted, sample(t)) ≡ i (mod k)}

PU
i ∶= {t ∈ U ∣ index(Tsorted, sample(t)) ≡ i (mod k)}

(F.9)

fT
i (x) ∶= f(samples(T ), P T

i ,x)

fU
i (x) ∶= f(samples(T ), PU

i ,x)

(F.10)

Recall that for any t ∈ T , index(Tsorted, sample(t)) is invariant under label-flipping attack to

T . Then, for each i, the samples in P T
i will be the same as the samples in PU

i , possibly with

some labels flipped. In particular, the functions fT
i (⋅) and fU

i (⋅) will be identical, unless the

label of some sample with index(Tsorted, sample(t)) ≡ i (mod k) has been changed. If at most
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ρ̄(x) labels change, at most ρ̄(x) ensemble classifiers are affected: the rest of the proof proceeds

similarly as that of Theorem 7.1.

F.2 Binary MNIST Experiments

We perform a specialized instance of SS-DPA on the binary ‘1’ versus ‘7’ MNIST clas-

sification task. Specifically, we set k = m, so that every partition receives only one label. We

first use 2-means clustering on the unlabeled data, to compute two means. This allows for each

base classifier to use a very simple “semi-supervised learning algorithm”: if the test image and

the one labeled training image provided to the base classifier belong to the same cluster, then the

base classifier assigns the label of the training image to the test image. Otherwise, it assigns the

opposite label to the test image. Formally:

µ1, µ2 ∶= Cluster centroids of samples(T )

assignment(s) ∶=

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1, if ∥µ1 − s∥2 ≤ ∥µ2 − s∥2

2, if ∥µ1 − s∥2 > ∥µ2 − s∥2

fi(x) = f(samples(T ),{ti},x) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

label(ti), if assignment(x) = assignment(ti)

1 − label(ti), if assignment(x) ≠ assignment(ti)

Note that each base classifier behaves exactly identically, up to a transpose of the labels: so in

practice, we simply count the training samples which associate each of the two cluster centroids

263



with each of the two labels, and determine the number of label flips which would be required to

change the consensus label assignments of the clusters. At the test time, each test image therefore

needs to be processed only once. The amount of time required for inference is then simply the

time needed to calculate the distance from the test sample to each of the two clusters. This also

means that every image has the same robustness certificate. As stated in the main text, using this

method, we are able to achieve clean accuracy of 95.5%, with every correctly-classified image

certifiably robust up to 5952 label flips (i.e. certified accuracy is also 95.5% at 5952 label flips.)

This means that the classifier is robust to adversarial label flips on 45.8% of the training data.

[6] also reports robustness certificates against label-flipping attacks on binary MNIST clas-

sification with classes 1 and 7. [6] reports clean-accuracy of 94.5% and certified accuracies for

attack magnitudes up to 2000 label flips (out of 13007: 15.4%), with the best certified accuracy

less than 70%.

F.3 Relationship to Randomized Ablation

As mentioned in the chapter introduction, (SS-)DPA is in some sense related to Random-

ized Ablation (Chapter 2; used in defense against sparse inference-time attacks) for training-time

poisoning attacks. Randomized Ablation is a certified defense against ℓ0 (sparse) inference at-

tacks, in which the final classification is a consensus among classifications of copies of the image.

In each copy, a fixed number of pixels are randomly ablated (replaced with a null value). A direct

application of Randomized Ablation to poisoning attacks would require each base classifier to

be trained on a random subset of the training data, with each base classifier’s training set cho-

sen randomly and independently. Due to the randomized nature of this algorithm, estimation
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error would have to be considered in practice when applying Randomized Ablation using a fi-

nite number of base classifiers: this decreases the certificates that can be reported, while also

introducing a failure probability to the certificates. By contrast, in our algorithms, the partitions

are deterministic and use disjoint, rather than independent, samples. In this section, we argue

that our derandomization has little effect on the certified accuracies compared to randomized

ablation, even considering randomized ablation with no estimation error (i.e., with infinite base

classifiers). In the poisoning case specifically, using additional base classifiers is expensive –

because they must each be trained – so one would observe a large estimation error when using a

realistic number of base classifiers. Therefore our derandomization can potentially improve the

certificates which can be reported, while also allowing for exact certificates using a finite number

of base classifiers.

For simplicity, consider the label-flipping case. In this case, the training set has a fixed

size, m. Thus, Randomized Ablation bounds can be considered directly. A direct adaptation of

Randomized Ablation would, for each base classifier, choose s out of m samples to retain labels

for, and would ablate the labels for the rest of the training data. Suppose an adversary has flipped

r labels. For each base classifier, the probability that a flipped label is used in classification (and

therefore that the base classifier is ‘poisoned’) is:

Pr(poisoned)RA = 1 −
(
m−r
s
)

(
m
s
)

(F.11)

where “RA” stands for Randomized Ablation.

In this direct adaptation, one must then use a very large ensemble of randomized classifiers.

The ensemble must be large enough that we can estimate with high confidence the probabilities
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(on the distribution of possible choices of training labels to retain) that the base classifier selects

each class. If the gap between the highest and the next-highest class probabilities can be deter-

mined to be greater than 2Pr(poisoned)RA, then the consensus classification cannot be changed

by flipping r labels. This is because, at worst, every poisoned classifier could switch the highest-

class classification to the runner-up class, reducing the gap by at most 2Pr(poisoned).

Note that this estimation relies on each base classifier using a subset of labels selected

randomly and independently from the other base classifier. In contrast, our SS-DPA method

selects each subset disjointly. If r labels are flipped, assuming that in the worst case each flipped

label is in a different partition, using the union bound, the proportion of base classifiers which

can be poisoned is

Pr(poisoned)SS-DPA ≤
r

k
=
rs

m
(F.12)

where for simplicity we assume that k evenly divides the number of samples m, so s = m/k

labels are kept by each partition. Again we need the gap in class probabilities to be at least

2Pr(poisoned)SS-DPA to ensure robustness. While the use of the union bound might suggest that

our deterministic scheme (Equation F.12) might lead to a significantly looser bound than that of

the probabilistic certificate (Equation F.11), this is not the case in practice where rs << m. For

example, in an MNIST-sized dataset (m = 60000), using s = 50 labels per base classifier, to certify

for r = 200 label flips, we have Pr(poisoned)RA = 0.154, and Pr(poisoned)SS-DPA ≤ 0.167. The

derandomization only sightly increases the required gap between the top two class probabilities.

To understand this, note that if the number of poisonings r is small compared to the number

of partitions k, then even if the partitions are random and independent, the chance that any two

poisonings occur in the same partition is quite small. In that case, the union bound in Equation
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F.12 is actually quite close to an independence assumption. By accepting this small increase in

the upper bound of the probability that each base classification is poisoned, our method provides

all of the benefits of de-randomization, including allowing for exact robustness certificates using

only a finite number of classifiers. Additionally, note that in the Randomized Ablation case,

the empirical gap in estimated class probabilities must be somewhat larger than Pr(poisoned)RA

in order to certify robustness with high confidence, due to estimation error: the gap required

increases more as the number of base classifiers decreases. This is particularly important in the

poisoning case, because training a large number of classifiers is substantially more expensive

than performing a large number of evaluations, as in randomized smoothing for evasion attacks.

We also note that Chapter 6 [29] also uses a de-randomized scheme based on Randomized

Ablation to certifiably defend against evasion patch attacks. However, in that chapter, the de-

randomization does not involve a union bound over arbitrary partitions of the vulnerable inputs.

Instead, in the case of patch attacks, the attack is geometrically constrained: the image is therefore

divided into geometric regions (bands or blocks) such that the attacker will only overlap with

a fixed number of these regions. Each base classifier then uses only a single region to make

its classification. Also, we note that we use from Chapter 6 the deterministic “tie-breaking”

technique when evaluating the consensus class in Equation 7.4, which can increase our robustness

certificate by up to one.

F.4 Relationship to Existing Ensemble Methods

As mentioned in the chapter introduction, our proposed method is related to classical en-

semble approaches in machine learning, namely bootstrap aggregation (“bagging”) and subset
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aggregation (“subagging”) [56, 111, 112, 113]. In these methods, each base classifier in the en-

semble is trained on an independently sampled collection of points from the training set: this

means that multiple classifiers in the ensemble may be trained on the same sample point. The

purpose of these methods has typically been to improve generalization, and therefore to improve

test set accuracy: bagging and subagging decrease the variance component of the classifier’s

error.

In subagging, each training set for a base classifier is an independently sampled subset

of the training data: this is in fact an identical formulation to the “direct Randomized Abla-

tion” approach discussed in Appendix F.3. However, in practice, the size of each training subset

has typically been quite large: the bias error term increases with decreasing subsample sizes

[112]. Thus, the optimal subsample size for maximum accuracy is large: [113] recommends us-

ing s = m/2 samples per classifier (“half-subagging”), with theoretical justification for optimal

generalization. This would not be useful in Randomized Ablation-like certification, because any

one poisoned element would affect half of the ensemble. Indeed, in our certifiably robust clas-

sifiers, we observe a trade-off between accuracy and certified robustness: our use of many very

small partitions is clearly not optimal for the test-set accuracy (Table 7.1).

In bagging, the samples in each base classifier training set are chosen with replacement,

so elements may be repeated in the training “set” for a single base classifier. Bagging has been

proposed as an empirical defense against poisoning attacks [114] as well as for evasion attacks

[115]. However, to our knowledge, these techniques have not yet been used to provide certified

robustness.

Our approach also bears some similarity to Federated Averaging [172] in that base models

are trained on disjoint partitions of the dataset. However, in Federated Averaging, the model
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weights of many distributed base classifiers are periodically averaged and re-distributed during

learning, in order to allow for efficient massively-parallel learning. No theoretical robustness

guarantees are provided (as this is not the goal of the algorithm) and it would seem difficult to

derive them, given that the relationship between model weights and final classification is highly

non-linear in deep networks. By contrast, DPA uses the consensus of final outputs after all base

classifiers are trained independently (or, in the SS-DPA case, independently for labeled data).

F.5 SS-DPA with Hashing

It is possible to use hashing, as in DPA, in order to partition data for SS-DPA: as long as

the hash function h(t) does not use the sample label in assigning a class (as ours indeed does

not), it will always assign an image to the same partition regardless of label-flipping, so only one

partition will be affected by a label-flip. Therefore, the SS-DPA label-flipping certificate should

still be correct. However, as explained in the main text, treating the unlabeled data as trustworthy

allows us to partition the samples evenly among partitions using sorting. This is motivated by

the classical understanding in machine learning (e.g. [173]) that learning curves (the test error

versus the number of samples that a classifier is trained on) tend to be convex-like. The test error

of a base classifier is then approximately a convex function of that base classifier’s partition size.

Therefore, if the partition size is a random variable, by Jensen’s inequality, the expected test error

of the (random) partition size is greater than the test error of the mean partition size. Setting

all base classifiers to use the mean number of samples should then maximize the average base

classifier accuracy. To validate this reasoning, we tested SS-DPA with partitions determined by

hashing (using the same partitions as we used in DPA), rather than the sorting method described
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Number of Median Base
Partitions Certified Clean Classifier

k Robustness Accuracy Accuracy

Hash Sort Hash Sort Hash Sort

MNIST, SS-DPA 1200 460 485 95.74% 95.62% 78.64% 80.77%
3000 606 645 93.87% 93.90% 55.04% 57.65%

50 25 25 90.90% 90.89% 89.00% 89.06%
CIFAR, SS-DPA 250 124 124 90.36% 90.33% 86.34% 86.25%

1000 387 392 89.11% 89.02% 75.35% 75.83%

50 25 25 96.98% 97.09% 96.33% 96.35%

GTSRB, SS-DPA 100 50 50 96.79% 96.76% 94.86% 94.96%
200 99 99 96.38% 96.34% 91.39% 91.54%
400 174 176 95.89% 95.80% 83.07% 83.60%

Table F.1: Comparison of SS-DPA with hashing (‘Hash’ columns, described in Appendix F.5)
to the SS-DPA algorithm with partitions determined by sorting (‘Sort’ columns, described in
the main text). Note that partitioning via sorting consistently results in higher base classifier
accuracies, and can increase (and never decreases) median certified robustness. These effects
seem to be larger on MNIST than on CIFAR-10.

in the main text. See Table F.1 for results. As expected, the average base classifier accuracy

decreased in most (8/9) experiments when using the DPA hashing, compared to using the sorting

method of SS-DPA. However, the effect was minimal in CIFAR-10 and GTSRB experiments: the

main advantage of the sorting method was seen on MNIST. This is partly because we used more

partitions, and hence fewer average samples per partition, in the MNIST experiments: fewer

average samples per partition creates a greater variation in the number of samples per partition

in the hashing method. However, CIFAR-10 with k = 1000 and MNIST with k = 1200 both

average 50 samples per partition, but the base classifier accuracy difference still was much more

significant on MNIST (2.13%) compared to CIFAR-10 (0.48%).

On the MNIST experiments, where the base classifier accuracy gap was observed, we also

saw that the effect of hashing on the smoothed classifier was mainly to decrease the certified
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robustness, and that there was not a significant effect on the clean smoothed classifier accuracy.

As discussed in Appendix F.6, this may imply that the outputs of the base classifiers using the

sorting method are more correlated, in addition to being more accurate.

F.6 Effect of Random Seed Selection

In Section 7.2.2.1, we mention that we “deterministically” choose different random seeds

for training each partition, rather than training every partition with the same random seed. To see

a comparison between using distinct and the same random seed for each partition, see Table F.2.

Note that there is not a large, consistent effect across experiments on either the base classifier ac-

curacy nor the the median certified robustness: however, in most experiments, the distinct random

seeds resulted in higher smoothed classifier accuracies. This effect was particularly pronounced

using SS-DPA on MNIST: using distinct seeds increased smoothed accuracy by at least 1% on

each value of k on MNIST. This implies that shared random seeds make the base classifiers more

correlated with each other: at the same level of average base classifier accuracy, it is more likely

that a plurality of base classifiers will all misclassify the same sample (If the base classifiers were

perfectly uncorrelated, we would see nearly 100% smoothed clean accuracy wherever the base

classifier accuracy was over 50%. Also if they were perfectly correlated, the smoothed clean

accuracy would equal the base classifier accuracy). Interestingly, the base classifier accuracy was

significantly lower for both SS-DPA/MNIST experiments when using diverse random seeds; this

defies any obvious explanation. However, this does make the correlation effect even more sig-

nificant: for example, for k = 3000, the SS-DPA smoothed classifier accuracy is over 2% larger

with distinct seeds, despite the fact that the base classifier is over 1% less accurate.
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Number of Median Base
Partitions Certified Clean Classifier

k Robustness Accuracy Accuracy

Same Distinct Same Distinct Same Distinct

MNIST, DPA 1200 443 448 95.33% 95.85% 76.21% 76.97%
3000 513 509 92.90% 93.36% 49.52% 49.54%

MNIST, SS-DPA 1200 501 485 94.45% 95.62% 82.31% 80.77%
3000 663 645 91.60% 93.90% 59.33% 57.65%

50 9 9 70.14% 70.16% 56.13% 56.39%
CIFAR, DPA 250 5 5 55.24% 55.65% 34.96% 35.17%

1000 N/A N/A 43.96% 44.52% 23.14% 23.20%

50 25 25 90.92% 90.89% 89.08% 89.06%
CIFAR, SS-DPA 250 124 124 90.25% 90.33% 86.25% 86.25%

1000 391 392 88.97% 89.02% 75.82% 75.83%

GTSRB, DPA 50 20 20 88.59% 89.20% 73.89% 73.94%
100 3 4 54.98% 55.90% 34.74% 35.64%

50 25 25 97.06% 97.09% 96.36% 96.35%

GTSRB, SS-DPA 100 50 50 96.79% 96.76% 94.95% 94.96%
200 99 99 96.34% 96.34% 91.54% 91.54%
400 176 176 95.85% 95.80% 83.64% 83.60%

Table F.2: Comparison of DPA and SS-DPA algorithms using the same random seed for each
partition (‘Same’ columns, described in Appendix F.6) to the DPA and SS-DPA algorithms using
the distinct random seeds for each partition (‘Distinct’ columns, described in the main text). Note
that using distinct random seeds usually results in higher smoothed classifier clean accuracies,
and always does so when using DPA.
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It is somewhat surprising that the base classifiers become correlated when using the same

random seed, given that they are trained on entirely distinct data. However, two factors may be

at play here. First, note that the random seed used in training controls the random cropping of

training images: it is possible that, because the training sets of the base classifiers are so small,

using the same cropping patterns in every classifier would create a systematic bias.

Note that the effect was least significant for SS-DPA on CIFAR-10 and GTSRB, with Sim-

CLR. This may be due to the final supervised classifiers being linear classifiers, rather than deep

networks, for these experiments.

F.7 SS-DPA with Repeated Unlabeled Data

The definition of a training set that we use, T ∈ P(SL), technically allows for repeated

samples with differing labels: there could be a pair of distinct samples, t, t′ ∈ T , such that

sample(t) = sample(t′), but label(t) ≠ label(t′). This creates difficulties with the definition of

the label-flipping attack: for example, the attacker could flip the label of t to become the label of

t′: this would break the definition of T as a set. In most applications, this is not a circumstance

that warrants practical consideration: indeed, none of the datasets used in our experiments have

such instances (nor can label-flipping attacks create them), and therefore, for performance rea-

sons, our implementation of SS-DPA does not handle these cases. Specifically, to optimize for

performance, we verify that there are no repeated sample values, and then sort T itself (rather than

samples(T )) lexicographically by image pixel values: this is equivalent to sorting samples(T )

if no repeated images occur — which we have already verified — and avoids an unnecessary

lookup procedure to find the sorted index of the unlabeled sample for each labeled sample. How-

273



ever, the SS-DPA algorithm as described in Section 7.2.3 can be implemented to handle such

datasets, under a formalism of label-flipping tailored to represent this edge case.

Specifically, we define the space of possible labeled data points as S ′L = S × P(N): each

labeled data point consists of a sample along with a set of associated labels. We then restrict our

dataset T to be any subset of S ′L such that for all t, t′ ∈ T , sample(t) ≠ sample(t′). In other

words, we do not allow repeated sample values in T as formally defined: if repeated samples

exist, one can simply merge their sets of associated labels (in the formalism).

Note that using this definition, the size of T will equal the size of samples(T ), and the

samples will always remain the same: the adversary can only modify the label sets of samples “in

place”. SS-DPA will always assign an unlabeled sample, along with all of its associated labels,

to the same partition, regardless of any label flipping. In practice, this is because, as described

in Section 7.2.3, the partition assignment of a labeled sample depends only on its sample value,

not its label: all labeled samples with the same sample value will be put in the same partition.

Note that this is true even if the implementation represents two identical sample values with

different labels as two separate samples: one does not actually have to implement labels as sets.

Therefore, any changes to any labels associated with a sample will only change the output of one

base classifier, so all such changes can together be considered a single label-flip in the context

of the certificate. In the above formalism, the certificate represents the number of samples in T

whose label sets have been “flipped”: i.e., modified in any way.
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Number of Median Base
Partitions Certified Clean Classifier

k Robustness Accuracy Accuracy

Equal. - Equal. - Equal. -

GTSRB, DPA 50 23 20 91.84% 89.20% 80.98% 73.94%
100 21 4 77.81% 55.90% 54.83% 35.64%

Table F.3: Comparison of DPA algorithm with and without using histogram equalization as pre-
processing on the GTSRB dataset. We find that histogram equalization substantially improves
performance when k = 100, although the effect is more modest at k = 50.

F.8 GTSRB with Histogram Equalization

Because GTSRB contains images with widely varying lighting conditions, histogram equ-

alization is sometimes applied as a preprocessing step when training classifiers on this dataset

(for example, [174]). We tested this preprocessing with DPA, and found that it substantially

improved the performance for larger k (k = 100). However, for k = 50, which had larger accuracy

and median certified robustness with or without this preprocessing, the effect was modest (a

2.64% increase in clean accuracy, and an increase of 3 in certified robustness). The greater effect

when k is large is likely because each partition contains fewer images of each class, so it is more

likely for each base classifier that some lighting conditions are not represented in the training data

for every class. Applying histogram equalization to the training and test data reduces this effect.

F.9 SimCLR Experimental Details

We used the PyTorch implementation of SimCLR provided by [175], with modifications

to ensure determinism as described in the main text. For training the embeddings, we used a

ResNet18 model with batch size of 512 for CIFAR-10 and 256 for GTSRB, initial learning rate
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of 0.5, cosine annealing, and temperature parameter of 0.5, and trained for 1000 epochs. For

learning the linear ensemble classifiers, we used a batch size of 512, initial learning rate of 1.0,

and trained for 100 epochs.

F.10 GTSRB dataset details

The GTSRB dataset consists of images of variable sizes, from 15 × 15 to 250 × 250. We

resized all images to 48 × 48 during training and testing (using bilinear interpolation). However,

we wanted to ensure that our certificates still applied correctly to the original images. In particu-

lar, for SS-DPA, we sort the dataset using pixel values of the original image, with black padding

for smaller images. This ensures that repeated images do not occur in the original dataset, (as

described in Appendix F.7), even if the resized images could possibly contain repeats. For DPA,

we hash using the sum of all pixels in the original image. Finally, for sorting to ensure determin-

ism in training, we use the images after resizing (ensuring no repeated images is not important

for this). For both NiN and SimCLR training, we excluded horizontal flips from data augmenta-

tion and contrastive learning, because some classes in GTSRB are in fact mirror-images of other

classes.
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Appendix G: Appendix to Chapter 8

G.1 Proofs

G.1.1 Proposition 8.1 (Gradient reward feedback example)

G.1.1.1 Problem setting

• g, s, a ∈ Rn; ∥a∥2 ≤ 1

• Single step reward R(s, g) = gT s

• Transition function: st+1 ∶= st + Uat, where U ∈ Rn×n is an unknown orthogonal (rotation)

matrix

• The “hypothesis class” consists of all environments with dynamics of this form: the learn-

ing task is to learn the unknown rotation matrix U . We therefore take as an “inductive bias”

that the model class consists of a Q-function QŨ and policy πŨ which are in the form of

the optimal Q-function and policy for an estimate Ũ ∈ Rn×n of U (constrained to be orthog-

onal). The task is to learn this parameter. We assume that QŨ and πŨ share the parameter

estimate.

• Let Ũ be the “current” parameter estimate and Ū be the “target” parameter estimate for TD
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updates.

• We assume actions in the replay buffer are in general position.

G.1.1.2 Analysis

The optimal Q-value function is of the form:

Q∗(s, a, g) =
∞
∑
n=0

γn (gT (s +Ua) + n∥g∥2)

=
gT (s +Ua)

1 − γ
+

γ∥g∥2
(1 − γ)2

(G.1)

The optimal policy π then takes the form:

a∗ =
UTg

∥g∥2
(G.2)

(Note that, because we are sharing the parameter Ũ between QŨ and πŨ , and because the optimal

action for QŨ can be written in closed form, we do not require a training step for πŨ .)
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The “standard” MSE Bellman error for a tuple (s, a, g, s′) is

[QŨ(s, a, g) − R(s′, g) + γQŪ(s
′, πŪ(s, g), g)]

2 =

⎡
⎢
⎢
⎢
⎢
⎣

gT (s + Ũa)

1 − γ
+

γ∥g∥2
(1 − γ)2

− gT s′ + γ
⎛
⎜
⎝

gT (s′ + Ū ŪT g
∥g∥2 )

1 − γ
+

γ∥g∥2
(1 − γ)2

⎞
⎟
⎠

⎤
⎥
⎥
⎥
⎥
⎦

2

=

⎡
⎢
⎢
⎢
⎢
⎣

gT (s + Ũa)

1 − γ
+

γ∥g∥2
(1 − γ)2

− gT s′ +
γ

1 − γ
gT s′ +

γ

1 − γ
∥g∥2 +

γ2∥g∥2
(1 − γ)2

⎤
⎥
⎥
⎥
⎥
⎦

2

= (using Ū ŪT = I)

⎡
⎢
⎢
⎢
⎢
⎣

gT (s + Ũa)

1 − γ
+

γ∥g∥2
(1 − γ)2

−

gT s′

1 − γ
+

γ∥g∥2
(1 − γ)2

⎤
⎥
⎥
⎥
⎥
⎦

2

=

⎡
⎢
⎢
⎢
⎢
⎣

gT (s + Ũa)

1 − γ
−

gT s′

1 − γ

⎤
⎥
⎥
⎥
⎥
⎦

2

=

⎡
⎢
⎢
⎢
⎢
⎣

gT (s + Ũa) − gT s′
⎤
⎥
⎥
⎥
⎥
⎦

2

= (dropping constant factor)

⎡
⎢
⎢
⎢
⎢
⎣

gT Ũa − gT (s′ − s)

⎤
⎥
⎥
⎥
⎥
⎦

2

=

⎡
⎢
⎢
⎢
⎢
⎣

gT Ũa − gTUa

⎤
⎥
⎥
⎥
⎥
⎦

2

This is equivalent to fitting the bilinear form gT Ũa using the observed scalar gTUa (= gT (s′−s)).

Noting that orthogonal matrices have ∼ n2/2 degrees of freedom, this will require at least O(n2)

samples to learn.

Now consider our gradient-based Bellman error:
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∥∇gQŨ(s, a, g) − ∇g[R(s
′, g) + γQŪ(s

′, πŪ(s, g), g)]∥
2
2 =

XXXXXXXXXXX

∇g [
gT (s + Ũa)

1 − γ
+

γ∥g∥2
(1 − γ)2

] − ∇g

⎡
⎢
⎢
⎢
⎢
⎢
⎣

gT s′ + γ
⎛
⎜
⎝

gT (s′ + Ū ŪT g
∥g∥2 )

1 − γ
+

γ∥g∥2
(1 − γ)2

⎞
⎟
⎠

⎤
⎥
⎥
⎥
⎥
⎦

XXXXXXXXXXXXX

2

2

=

XXXXXXXXXXX

∇g [
gT (s + Ũa)

1 − γ
] − ∇g [

gT s′

1 − γ
]

XXXXXXXXXXX

2

2

=

XXXXXXXXXXX

(s + Ũa)

1 − γ
−

s′

1 − γ

XXXXXXXXXXX

2

2

=

XXXXXXXXXXX

(s + Ũa) − s′
XXXXXXXXXXX

2

2

= (dropping constant factor)

XXXXXXXXXXX

Ũa − (s′ − s)
XXXXXXXXXXX

2

2

=

XXXXXXXXXXX

Ũa − Ua
XXXXXXXXXXX

2

2

Here, we are fitting the linear form Ũa to the observed vector (s′−s). Assuming general position,

this can be solved with O(n) samples!

G.1.2 Proposition 8.2 (No reward gradient case example)

G.1.2.1 Problem setting

• g, a ∈ Rn;∥a∥2 ≤ 1; s ∈ R2n; the state vector consists of two halves, which we denote s1 and

s2.

• Single step reward R(s, g) = gT s1
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• Transition function:

– If s1t ≠ 0, then s1t+1 ∶= 0, s2t+1 ∶= s
1
t +Uat. (Note that the reward is always zero here.)

– If s1t = 0, then s1t+1 ∶= s
2
t , s2t+1 ∶= 0,

where U ∈ Rn×n is an unknown orthogonal (rotation) matrix

• We make the same assumptions about the hypothesis class and inductive bias as in the last

example, and also assume general position.

G.1.3 Analysis

Optimal Q-function

Q∗(s, a, g) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∑
∞
n odd γ

n (gT (s1 +Ua) + n−1
2 ∥g∥2) if s1 ≠ 0

∑
∞
n even γ

n (gT s2 + n
2 ∥g∥2) if s1 = 0

=

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∑
∞
m=0 γ

2m+1 (gT (s1 +Ua) +m∥g∥2) if s1 ≠ 0

∑
∞
m=0 γ

2m (gT s2 +m∥g∥2) if s1 = 0

=

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

γgT (s1+Ua)
1−γ2 +

γ3∥g∥2
(1−γ2)2 if s1 ≠ 0

gT s2

1−γ2 +
γ2∥g∥2
(1−γ2)2 if s1 = 0

(G.3)

The optimal policy π then takes the form:

a∗ =
UTg

∥g∥2
(G.4)
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(Note that if s1 = 0, then the action does not appear in the Q function, so any action is optimal.)

We now consider the standard TD error:

[QŨ(s, a, g) − R(s′, g) + γQŪ(s
′, πŪ(s, g), g)]

2 (G.5)

Note that if s1 = 0, then the trainable parameter Ũ does not appear anywhere in the expression of

QŨ(s, a, g). Then no learning can occur from these tuples; we can instead only consider the case

where s1 ≠ 0. In this case, the immediate reward is always zero, and we also know that s1′ = 0 so

the “standard” TD update is:

[QŨ(s, a, g) − γQŪ(s
′, πŪ(s, g), g)]

2 =

⎡
⎢
⎢
⎢
⎢
⎣

γgT (s1 + Ũa)

1 − γ2
+

γ3∥g∥2
(1 − γ2)2

− γ (
gT s2′

1 − γ2
+

γ2∥g∥2
(1 − γ2)2

)

⎤
⎥
⎥
⎥
⎥
⎦

2

=

⎡
⎢
⎢
⎢
⎢
⎣

γgT (s1 + Ũa)

1 − γ2
−

γgT s2′

1 − γ2

⎤
⎥
⎥
⎥
⎥
⎦

2

=

⎡
⎢
⎢
⎢
⎢
⎣

gT (s1 + Ũa) − gT s2′
⎤
⎥
⎥
⎥
⎥
⎦

2

= (dropping constant factor)

⎡
⎢
⎢
⎢
⎢
⎣

gT Ũa − gT (s2′ − s1)

⎤
⎥
⎥
⎥
⎥
⎦

2

=

⎡
⎢
⎢
⎢
⎢
⎣

gT Ũa − gTUa

⎤
⎥
⎥
⎥
⎥
⎦

2

This is the same update as in the previous example, and again we need O(n2) samples. (Note

that there is a constant factor of 2 increase in the number of needed samples, due to the wasted
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samples in which s1 = 0. However, assuming general position, this will only account for half of

the replay buffer.)

We now consider the case in which we use our gradient TD update. Again we only can

use the tuples where s1 ≠ 0. For all of these, the immediate reward is zero, so we can use the

gradient-based update for all of them.

∥∇gQŨ(s, a, g) − γ∇gQŪ(s
′, πŪ(s, g), g)∥

2
2 =

XXXXXXXXXXX

∇g (
γgT (s1 + Ũa)

1 − γ2
+

γ3∥g∥2
(1 − γ2)2

) − γ∇g (
gT s2′

1 − γ2
+

γ2∥g∥2
(1 − γ2)2

)

XXXXXXXXXXX

2

2

=

XXXXXXXXXXX

γ(s1 + Ũa)

1 − γ2
−

γs2′

1 − γ2

XXXXXXXXXXX

2

2

=

XXXXXXXXXXX

(s1 + Ũa) − s2′
XXXXXXXXXXX

2

2

= (dropping constant factor)

XXXXXXXXXXX

Ũa − (s2′ − s1)
XXXXXXXXXXX

2

2

=

XXXXXXXXXXX

Ũa − Ua
XXXXXXXXXXX

2

2

As in the previous gradient feedback case, assuming general position, this can be solved with

O(n) samples!
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G.2 ReenGAGE for Discrete Actions

Note that Equation 8.8 requires that the gradient:

∇gQθ′(s
′, πϕ′(s

′, g), g) (G.6)

be computable. This means that πϕ′(s′, g) must be continuous and differentiable, which implies

a continuous action space. To extend our method to discrete action spaces, we instead consider

the target Q-value of DQN [176], the standard baseline method for discrete Q-learning, in a

goal-conditioned setting:

R(s′, g) + γ max
a

Qθ′,a(s
′, g), (G.7)

where Qθ ∈ S ×G→ R∣A∣. This is not differentiable everywhere with respect to g: in particular, at

points where, for some pair of actions a′, a′′, we have:

max
a

Qθ′,a(s
′, g) = Qθ′,a′(s

′, g) = Qθ′,a′′(s
′, g), (G.8)

the gradient with respect to g is not necessarily defined. In practice, this means that naively using

auto-differentiation to take the gradient of Equation G.7 produces the gradient of the target with

respect to the goal assuming the optimal action remains constant. To overcome this, we consider

instead using a soft target:

SoftQTarget(s′, g) ∶=R(s′, g) + γ SoftMax[Qθ′(s
′, g)/τ] ⋅Qθ′(s

′, g)

=R(s′, g) + γ
∑a∈AQθ′,a(s′, g)e

Qθ′,a(s′,g)/τ

∑a′∈A eQθ′,a′(s′,g)/τ
,

(G.9)
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Where τ is the temperature hyperparameter. (Note that this approaches the standard DQN target

as τ → 0.) We tested three uses of this soft target:

• Soft target for gradient loss only:

L = E
(s,a,s′,g)∼Buffer

⎡
⎢
⎢
⎢
⎢
⎣

LHuber[Qθ,a(s, g),R(s
′, g) + γ max

a
Qθ′,a(s

′, g)]

+αLmse[∇gQθ,a(s, g), γ∇gSoftQTarget(s′, g)]
⎤
⎥
⎥
⎥
⎥
⎦

(G.10)

Following [176], we use the Huber loss for the main loss term, although we use MSE for

the gradient loss.

• Soft target for both loss terms:

L = E
(s,a,s′,g)∼Buffer

⎡
⎢
⎢
⎢
⎢
⎣

LHuber[Qθ,a(s, g),SoftQTarget(s′, g)]

+αLmse[∇gQθ,a(s, g), γ∇gSoftQTarget(s′, g)]
⎤
⎥
⎥
⎥
⎥
⎦

(G.11)

• Soft target for both loss terms, and take actions nondeterministically, with a probability

distribution given by SoftMax[Qθ′(s′, g)/τ].

We test on an implementation of the “Bit-Flipping” sparse-reward environment from [50], with

dimensionality d = 40 bits using DQN with HER as the baseline. Because code for this exper-

iment is not provided by [50], we re-implemented the experiment using the Stable-Baselines3

package [177]. We used the hyperparameters specified by [50], with the following minor modifi-

cations (note that for some of these specifications, [50] is unclear about whether the specification

was applied for the Bit-Flipping environment, or only in the continuous control, DDPG, environ-
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ments tested in that work):

• We train on a single GPU, rather than averaging gradient updates from 8 workers.

• While we use Adam optimizer with learning rate of 0.001 as specified, we use PyTorch

defaults for other Adam hyperparameters, rather than TensorFlow defaults.

• We do not clip the target Q-values (this feature is not part of the DQN implementation of

[177]).

• We evaluate using the current, rather than target, Q-value function.

• We do not normalize observations (which are already {0,1}).

The baselines we present are from our re-implementation, to provide a fair comparison. For

our method, we performed a grid search on α ∈ {0.5,1.0} and τ ∈ {0.0,0.5,1.0}. Results are

presented in Figure G.1. We observed that the “gradient loss only” method was effective at im-

proving performance, both over standard DQN and over ReenGAGE with standard DQN targets

(τ = 0). By contrast, using soft targets for both loss terms made the performance worse, and

using nondeterministic actions with soft targets for both loss terms brought the success rate to

zero (and hence is not shown). We tested all three methods with d = 40 bits, and then applied

the successful method (“gradient loss only”) to d = 20 as well; improvements over baseline for

d = 20 were minor.

G.3 Hyperparameters and Full Results for ContinuousSeek

As mentioned in the main text, we performed a full hyperparameter search over the batch

size (in {128,256,512}) and learning rate (in {0.00025,0.0005,0.001,0.0015}). The results in
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Figure G.1: Results for the Bit-Flipping environment.
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Replay Buffer Size 1000000
Frequency of Training Every 1 environment step

Gradient Descent Steps per Training 1
Initial Steps before Training 1000

Discount γ 0.95
Polyak Update τ 0.005

Normal action noise for training σ 0.03
Architecture (both actor and critic) Fully Connected; 2 hidden layers of width 256; ReLU activations

HER number relabeled goals k 4
HER relabeling strategy ‘Future’

Evaluation episodes 50
Evaluation Frequency Every 2000 environment steps

Table G.1: Hyperparameters for ContinuousSeek

the main paper represent the best single curve (as defined by area under the curve, or in other

words best average score over time) for the baseline and each value of the ReenGAGE α term.

Complete results are presented in Figures G.2, G.3, and G.4. The values of these parameters

which yielded the best average performance, and were therefore reported in the main text, were

as follows (Table G.2):

DDPG+HER ReenGAGE(α = 0.1)+HER ReenGAGE(α = 0.2)+HER ReenGAGE(α = 0.3)+HER

Batch LR Batch LR Batch LR Batch LR

d = 5 512 0.001 512 0.0015 512 0.0015 512 0.0015

d = 10 256 0.0005 512 0.001 512 0.001 512 0.001

d = 20 256 0.0005 128 0.0005 128 0.0005 128 0.0005

Table G.2: “Best” batch sizes and learning rates for ContinuousSeek for DDPG and ReenGAGE.

Note that for the larger-scale experiments (d = 10 and d = 20) the “best” hyperparameters

for the baseline DDPG+HER model lie in the interior of the search space of both the batch size

and learning rate: this would seem to imply (assuming concavity) that increasing the range of
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the search space of these parameters would likely not improve the baseline. However, this is not

the case for ReenGAGE: we could perhaps achieve even better performance for ReenGAGE by

conducting a larger search, specifically in the batch size dimension.

Other hyperparameters were fixed, and are listed in Table G.1. We use the implementation

of HER with DDPG from Stable-Baselines3 [177] as our baseline; any unlisted hyperparameters

are the default from this package. Note that we use the “online” variant of HER provided in the

Stable-Baselines3 package.
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Figure G.2: Complete ContinuousSeek Results for d = 20.
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Figure G.3: Complete ContinuousSeek Results for d = 10.
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Figure G.4: Complete ContinuousSeek Results for d = 5.
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G.4 Additional Results for Robotics Experiments

In Figure G.5, we provide additional results for the robotics experiments. In Figure G.5-(a)

and (b), we give results for the HandManipulateBlock environment: as mentioned in the text,

we did not see a significant advantage to using ReenGAGE for this environment.

In addition to the lower-dimensional goal space of this problem (d = 7, versus d = 15 for

HandReach), one additional possible reason why ReenGAGE may underperform in this setting is

that, unlike in the HandReach case, the dimensions of the goal vector represent diverse quantities

of significantly varying scales: some represent angular measurements, while others represent

position measurements.

In order to handle this, we attempted normalizing each dimension of the ReenGAGE loss

term. We accomplish this by multiplying the MSE loss for each coordinate i by σ2
i , where σi

is the running average standard deviation of dimension i of the goals. ([148]’s implementation

already computes these averages in order to normalize inputs to neural networks.) Intuitively,

we do this because the derivative in a given coordinate is in general inversely proportional to the

scale of that coordinate (i.e., if y = 2x, then df
dy = 0.5

df
dx ), and because the ReenGAGE MSE loss

in each dimension is proportional to the square of the derivative.

However, unfortunately, this did not result in superior performance for HandManipulate-

Block: see Figure G.5-(c) and (d). As a sanity check, we confirmed that this method performed

similarly to the non-normalized ReenGAGE method on HandReach (G.5-(e)).

Finally, in Figure G.5-(f), we show some additional experiments on HandReach. Specifi-

cally, we show results using a single random seed for a wider range of α than shown in the main

text: this was performed as a first pass to find the appropriate range of the hyperparameter α
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to use for the complete experiments. As shown in the main text results, ReenGAGE becomes

unstable if too-high values of α are used.
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Figure G.5: Additional Results from Robotics experiments. See text for details.
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G.5 ReenGAGE with SAC

In this section, we explore applying ReenGAGE on top of SAC [141], a variant of DDPG

which uses a stochastic policy and rewards for high-entropy polices, uses the current policy to

compute targets, and also uses an ensemble critic architecture. The application of ReenGAGE to

SAC is straightforward: when computing estimates for ∇gTarg.(g; s, a), we use the well-known

“reparameterization trick” to differentiate through the stochastic policy (which depends on the

goal) and we also differentiate through the entropy reward (which depends on policy’s action

distribution, and therefore on the goal).

In our experiments, we combine ReenGAGE with SAC and HER, test on our Continu-

ousSeek environment, and compare to an SAC+HER baseline. Hyperparameter-optimized “best”

results for each value of α are shown in Figure G.6. As in our DDPG experiments, we per-

formed a grid search over batch size and learning rate hyperparameters. However, using the

range of these parameters we used for DDPG led to all best baselines and ReenGAGE models

having values of the hyperparameters lying at the “edges” and “corners” of the hyperparame-

ter grid search space. We therefore increased the search space size, testing all learning rates in

{0.00025,0.0005,0.001,0.0015,0.0025} and batch sizes in {128,256,512,1024,2048,4096,

8192}. This led to optimal hyperparameters for the baseline in the interior of the search space

for the larger scale experiments (d = 10 and d = 20); see Table G.3. As with the DDPG Contin-

uousSeek experiments, the ReenGAGE models still lie on edges/corners of the hyperparameter

search space, so it may be possible to get even better ReenGAGE performance by increasing the

search space further. Full results are presented in Figures G.7, G.8, and G.9. Note that due to

computational limits, we only use 10 random seeds in these experiments, as opposed to 20 for
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Figure G.6: ContinuousSeek results with SAC. Lines show the mean and standard deviation over
10 random seeds (kept the same for all experiments.) The Y-axis represents the success rate,
defined as the fraction of test episodes for which the goal is ever reached.

the DDPG experiments.

Other, non-optimized hyperparameters were fixed, and are generally the same as those for

DDPG listed in Table G.1. As with DDPG, we use the implementation of SAC from Stable-

Baselines3 [177] as our baseline; any unlisted hyperparameters are the default from this package.

SAC+HER SAC+ReenGAGE(α=.1)+HER SAC+ReenGAGE(α=.2)+HER SAC+ReenGAGE(α=.3)+HER

Batch LR Batch LR Batch LR Batch LR

d=5 8192 0.0025 4096 0.0025 2048 0.0025 2048 0.0025

d=10 1024 0.0015 1024 0.0025 512 0.0025 512 0.0025

d=20 4096 0.0005 8192 0.0025 8192 0.0025 8192 0.0025

Table G.3: “Best” batch sizes and learning rates for ContinuousSeek for SAC and
SAC+ReenGAGE.
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Figure G.7: Complete SAC ContinuousSeek results for d = 20.
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Figure G.8: Complete SAC ContinuousSeek results for d = 10.
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Figure G.9: Complete SAC ContinuousSeek results for d = 5.

G.6 Multi-ReenGAGE Implementation Details

G.6.1 Batch Implementation

To efficiently implement the multi-goal Q-function in Equation 8.15 as a batch equa-

tion, we use a constant-size representation of the goal set g = {g1, ..., gn}. Specifically, we let

g = {g1, ..., gnmax}, where {gn+1, ..., gnmax} are set to a dummy value (practically, 0), and the gate

variables {bn+1, ..., bnmax} are all set to zero. Then:

Qθ(s, a, g) ∶= Q
head
θh. (s, a,

n

∑
i=1
[biQ

encoder
θe. (s, gi)]) = Q

head
θh. (s, a,

nmax

∑
i=1
[biQ

encoder
θe. (s, gi)]). (G.12)

However, while this is equal to the intended form of the Q-function without the dummy
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inputs, the gradient with respect to the full vector b differs from the intended form. Specifically,

note that:

∂Qθ(s, a, g)

∂bi
= Qencoder

θe. (s, gi) ⋅ (∇Q
head
θh. )(s, a,

nmax

∑
i=1
[biQ

encoder
θe. (s, gi)]) (G.13)

In particular, this is nonzero even when bi is zero, so the gradient will depend on the

dummy value Qencoder
θe. (s,0). This is clearly not intended. To prevent this, we instead use the

form:

Qhead
θh. (s, a,

nmax

∑
i=1
[b2iQ

encoder
θe. (s, gi)]). (G.14)

(For the target, we construct the policy network similarly using b2i ’s). Note that the above

form of the Q-function is equal to the intended form of the Q-function, because 02 = 0 and 12 = 1.

However, in this case:

∂Qθ(s, a, g)

∂bi
=

2biQ
encoder
θe. (s, gi) ⋅ (∇Q

head
θh. )(s, a,

nmax

∑
i=1
[biQ

encoder
θe. (s, gi)]) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

2Qencoder
θe. (s, gi) ⋅ (∇Qhead

θh. )(s, a,∑
nmax
i=1 [biQ

encoder
θe. (s, gi)]) if bi = 1

0 if bi = 0

(G.15)

Which is the intended gradient of the Q-function without the dummy inputs, times a con-

stant factor of two.

For the reward, we also use:
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R(s′, g) = ∑
gi∈g

b2iRitem(s
′, gi) (G.16)

So that the gradient is:

∂R

∂bi
= biRitem(s

′, gi) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

2Ritem(s′, gi) if bi = 1

0 if bi = 0

(G.17)

Which again the intended gradient of the Q-function without the dummy inputs, times a constant

factor of two. Putting everything together, the final gradient loss term is in the form:

LMulti-ReenGAGE =

LDDPG-Critic +

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

αLmse[2∇bQθ(s, a, g),2Ritem(s′, g) + 2γ∇bQθ′(s′, πϕ′(s′, g), g)] if bi = 1

αLmse[0,0] (= 0) if bi = 0

(G.18)

Which is the desired loss, up to a constant factor.

G.6.2 Shared Encoder Ablation Study

We performed an ablation study on sharing the encoder between the Q-value function and

the policy on DriveSeek when using Multi-ReenGAGE. Results are presented in Figure G.10. We

see that sharing the encoder improves the performance of both Multi-ReenGAGE and the DDPG

baseline.
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Figure G.10: Ablation study of encoder sharing for Multi-ReenGAGE on DriveSeek. (a) Without
Encoder Sharing; (b) With Encoder Sharing.

G.6.3 Training Hyperparameters for Experiments

The hyperparameters used for the Multi-ReenGAGE experiments are presented in Table

G.4.

G.6.4 Additional Details about Environments

In this section, we provide additional details about the DriveSeek and NoisySeek environ-

ments not included in the main text, in order to more completely describe them.

G.6.4.1 DriveSeek

In the DriveSeek environment, the initial position is always fixed at (0,0), and the initial

velocity vector is always at 0 radians. Episodes last 40 time steps. Goals are sampled by the

following procedure: first, a number of goals n is chosen uniformly at random from {1, ...,200};

then n goals are chosen uniformly without replacement from the integer coordinates in [−10,10]2.
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Replay Buffer Size 1000000
Frequency of Training Every 1 environment step

Gradient Descent Steps per Training 1
Initial Steps before Training 1000

Discount γ 0.95
Batch Size 256

Learning Rate 0.001
Polyak Update τ 0.005

Normal action noise for training σ 0.05 for DriveSeek; 0.1 for NoisySeek
Embedding Dimension 20
Extractor Architecture Fully Connected; 2 hidden layers of width 400; ReLU activations

Head Architecture (both actor and critic) Fully Connected; 1 hidden layer of width 400; ReLU activation
Evaluation episodes 100

Evaluation Frequency Every 4000 environment steps

Table G.4: Hyperparameters for Multi-ReenGAGE Experiments

In addition to the goals, the observation s that the agent and policy receives is 6 dimensional: it

consists of the current position spos., the rounded version of spos. (this is the “achieved goal”: a

reward is obtained if this matches one of the input goals), and the sine and cosine of the velocity

vector.

G.6.4.2 NoisySeek

In the NoisySeek Environment, the initial position is fixed a (0,0). Episodes last 40 time

steps. Goals are sampled by the following procedure: first, a number of clusters nc is chosen from

a geometric distribution with parameter p = 0.15, and a maximum number of goals n′ is chosen

uniformly at random from {1, ...,200}. Then, cluster centers are chosen from a Gaussian distri-

bution with mean 0 and standard deviation 10 in both dimensions. Next, a Dirichlet distribution

of order K = nc, with α1, ..., αK = 1, is used to assign a probability pj to each cluster. Next, each

of the n′ goals are assigned to a cluster, with probability pj of being assigned to cluster j. Then,

each goal is determined by adding Gaussian noise with mean 0 and standard deviation 2 in both

dimensions to the cluster center assigned to that goal, and then rounding to the nearest integer
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coordinates. Finally, goals are de-duplicated.

In addition to the goals, the observation s that the agent and policy receives is 4 dimen-

sional: it consists of the current position s, and the rounded version of s (this is the “achieved

goal”: a reward is obtained if this matches one of the input goals).

G.6.5 NoisySeek results for additional α values

We tested NoisySeek with additional values of α, which we did not include in the main text

to avoid cluttered presentation; the trend is generally the same as shown in the main text. Results

are shown in Figure G.11.

G.6.6 DriveSeek with CNN Architecture

Because the positions in the DriveSeek environment are bounded, we attempted using a

CNN architecture to interpret the state and goals. In particular, because all possible goals appear

at unique locations in two-dimensional space, rather than using a DeepSets [149]–style architec-

ture, we can directly surface the goal “gates” bi as part of the input image: the location in the

image corresponding to gi is blank if bi is zero (the goal is absent) and colored in if bi is one (the

goal is present). See Figure G.12. Note that, as in the DeepSet implementation, we use b2i in the

representation, so that goals which are absent have zero associated attention. We used the stan-

dard “Nature CNN” architecture from [176] with otherwise the same training hyperparameters as

used in the main-text experiment. The CNN was shared between the actor and the critic networks,

and trained only using the critic loss; its output was then fed into separate actor and critic heads,

consisting of a single hidden layer of width 400, as in the DeepSets-based architecture. Results
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Figure G.11: Results for NoisySeek Environment including additional values of α.

Figure G.12: Example input to CNN architecture for DriveSeek. We use one channel (red)
to represent the goals (note that these pixels directly correspond to the differentiable indicator
variables b2i for each possible goal), another channel (green) to represent the current position,
and a third channel (blue) to represent the next position if the action a is zero: in other words, it
indicates svel.. Goals are spaced out so that (approximately, up to single-pixel rounding) a goal is
achieved if the current position indicator (green) overlaps with the (red) goal. The exact position
and velocity vectors are also provided as a separate input, apart from the CNN.
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Figure G.13: Results for DriveSeek with CNN architecture.

are shown in Figure G.13.

In general, the performance was worse than using the DeepSets-style architecture; however,

the models using Multi-ReenGAGE still outperform the standard DDPG models. One possible

explanation for this is that the hyperparameters are poorly-tuned for the CNN architecture. Dou-

bling and halving the learning rate (to 0.002 and 0.0005, respectively) did not seem to affect

the results much (Figure G.14), but it is possible that other hyperparameter adjustment may lead

to better performance. Another possible explanation for the poor performance is that the pixel-

resolution of the images (each pixel has width of 0.125 units) was not sufficient to capture the

real-valued dynamics of the environment (although we did also include the real-valued state posi-

tion and velocity vectors [and rounded state position] as inputs concatenated to the CNN output).

G.7 Runtime Discussion and Empirical Comparisons

As noted in [146], loss terms involving gradients with respect to inputs, such as the Reen-

GAGE loss, should only scale the computational cost of computing the parameter gradient update
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Figure G.14: DriveSeek with CNN architecture with varied values of the learning rate.

by a constant factor.

For an intuition as to why this is the case, recall the well-known fact that for a differentiable

scalar-output function f(x, θ) represented by some computational graph which requires n opera-

tions to compute, standard backpropagation can compute the gradient ∇xf(x, θ) (or the gradient

∇θf(x, θ)) using only cn operations, for a constant c. However, now note that ∇xf(x, θ) can

itself be though of as a cn-operation component of a larger computational graph. Thus, if we

consider the scalar-valued function h(∇xf(x, θ)), where h itself takes k additional operations

to compute, then we can upper-bound the total number of operations required to compute the

gradient ∇θh(∇xf(x, θ)) by c(cn + k) = c2n + ck; in other words, a constant factor c2 of n,

plus some overhead. In the particular case of the ReenGAGE loss term (in the sparse case, for

simplicity), x corresponds to the goal g and f corresponds to Qθ(s, a, g), while h corresponds

to ∥∇gf(g, θ) − ∇gγQθ′(s′, πϕ′(s′, g), g)∥22. If the Q function requires n operations to evaluate

and the policy π requires m operations, then the overall computational cost can therefore be

upper-bounded by c(cn + c(n +m) + k) = 2c2n + c2m + ck, where k is the (trivial) amount of
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computation required to compute the norm. This is therefore a constant factor of the time needed

to compute the value of the Q function and its target (with some trivial overhead due to the norm

computation).

[146] provides explicit algorithms for computations of gradients of forms similar to the

form ∇θh(∇xf(x, θ)) discussed above and confirms the constant-factor increase in computa-

tional complexity; in particular, h(⋅) corresponds to p(⋅) in Equation 10 of [146]. (Note that

[146]’s analysis is somewhat more general, allowing for a vector-valued f , with p(⋅) a function

of a Jacobian-vector product of f rather than simply the gradient).

To provide empirical support for this, we provide runtime comparisons for training with and

without the ReenGAGE loss term, for the experiments in the main text. Note that we are com-

paring total runtimes, so these times include the environment simulation; however this should be

relatively minor for all experiments (because the environments themselves are relatively simple)

except possibly the robotics experiments.

For ContinuousSeek and Multi-ReenGAGE experiments, all tests were run on a single

GPU. We used a pool of shared computational resource, so the GPU models may have varied

between runs; GPUs possibly used were NVIDIA RTX A4000, RTX A5000, and RTX A6000

models. (This adds some uncertainty to our runtime comparisons.) Robotics experiments were

run on 20 CPUs each, as described by [148].

Runtime comparison results are given in Table G.5. For ContinuousSeek, we consider only

experiments with d = 20, batch size = 256; for others, we include all experiments shown in the

main text. For runtimes with ReenGAGE, we average over all values of α included in the main

text. In general, runtime increases ranged from 34%-60%.
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Environment Runtime without ReenGAGE (s) Runtime with ReenGAGE (s) Mean Percent Increase

ContinuousSeek 2549 ± 203 3591 ± 248 40.9%
HandReach 2533 ± 2 3395 ± 208 34.0%
DriveSeek 8931 ±2037 12467 ± 1354 39.6%
NoisySeek 7385 ± 503 11814 ± 1519 60.0%

Table G.5: Effect of ReenGAGE on runtimes. Error values shown are standard deviations over
all runs.
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