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This dissertation addresses two research questions relating to the role of setups in 

discrete parts manufacturing.  The first research topic uses a carefully designed 

simulation study to investigate the role of setup economies in the factory-wide 

conversion of functional layouts (job shops) to cellular manufacturing.  The model-

based literature shows a wide dispersion in the relative performance of cellular 

manufacturing systems as compared to the original job-shop configurations, even 

when the key performance measure is flow time and the assessment tool used is 

simulation.  Using a standardized framework for comparison, we show how this 

dispersion can be reduced and consistent results can be obtained as to when the 

conversion of the job shop is advantageous.

The proposed framework standardizes the parameters and operational rules to 

permit meaningful comparison across different manufacturing environments, while 

retaining differences in part mix and demand characteristics.  We apply this 

framework to a test bed of six problems extracted from the literature and use the 

results to assess the effect of two key factors: setup reduction and the overall shop 



load (demand placed on the available capacity).  We also show that the use of transfer 

batches constitutes an independent improvement lever for reducing flow time across 

all data sets.  Finally, we utilize the same simulation study framework to investigate 

the benefits of partial transformation, where only a portion of the job shop is 

converted to cells to work alongside a remainder shop.

The second research question examines the role of dispatching rules in the 

reduction of setups.  We use queueing models to investigate the extent of setup 

reduction analytically.  We single out the Alternating Priority (AP) rule since it is 

designed to minimize the incidence of setups for a two-class system.  We investigate 

the extent of setup reductions by comparing AP with the First-Come-First-Served 

(FCFS) rule.  New results are obtained analytically for the case of zero setup times 

and extended to the case of non-zero setup time through computational studies.
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Chapter 1 

INTRODUCTION

1.1 The Manufacturing Environment

Buzacott and Shantikumar (1993, p.1) describe a manufacturing system as a 

system consisting of “machines and work stations where operations such as 

machining, forming, assembly, inspection, and testing are carried out on parts, items, 

subassemblies, and assemblies, to create products that can be delivered to customers.”  

In discrete part manufacturing systems, each item processed is distinct, although the 

processing may take place in batches or distinct packets.  The batches are then used as 

transfer units between manufacturing areas.  This is in contrast to chemical industries 

where the processed material may be in the form of continuous fluid.  Discrete parts 

manufacturing systems arise commonly in “mechanical, electrical, and electronics 

industries making products such as cars, refrigerators, electric generators, or 

computers .” (p.1).  

As an example, we examine a process designed to create a hole through a block of 

metal as illustrated in Figure 1-1.  The process may require a single operation (single-

stage) as in a drill press drilling a hole, or may require multiple operations linked 

together (multi-stage) if the completed hole requires further finishing such as the 

addition of a champher and de-burring.  
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Figure 1-1.  Single- versus Multi-Stage Processing.

Multi-stage processes may include internal buffer storage in order to account for 

variations in the time between successive outputs of product at a process of each 

process step allowing each to work more independently of the other.  Single- or multi-

stage processes may be linked together to provide a variety of processing capabilities.  

The time between successive outputs of a multi-stage process is usually regulated by 

the dynamics of the flow of parts under congestion and may depend crucially on 

bottleneck stages that limit the capacity of the overall process.  The flow time of a job 

is the amount of time a job spends in the system. Specifically, it is the time from when 

a job consisting of demand for a certain batch size of a given product is introduced 

into the manufacturing facility at the location of its first operation to when the last 

operation required on the batch of product has been completed.   It includes the time 

waiting for processing and material transfer between operations, setup times if 

required, as well as the time the batch is being serviced by machines.  A bottleneck 

process adversely affects the flow time of all parts using that process. 
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One can characterize manufacturing processes based on the way the process flow 

is coordinated.  A process can be synchronous or asynchronous.  Synchronous 

processes have a fixed process rate where all work moves at the same rate through the 

processing steps in sequence.  This is either done continuously, as in automobile 

painting operations using continuous conveyors moving at a fixed rate, or discretely, 

as in spot welding operations of chassis where automobiles move in and out of robot 

welding stations at regular intervals.  Synchronous flows eliminate most of the need 

for storage between machines, but require tight coordination of customer orders, 

material supply and extremely high process quality.  Asynchronous processes are 

much more common, where work is moved to its next process step when the current 

step is completed.  Work, since not synchronized, is then staged in an “input” queue 

and waits as required for its turn at the next operation.

A key concern of the work presented in this dissertation is the few factory layout 

structures used to organize the material flow.  The most common type and the one that 

naturally aligns with high part variety is the job shop.  The term “job shop” 

(abbreviated as JS throughout this work) refers to a manufacturing facility comprised 

of general-purpose machines organized into a collection of machine centers or 

departments grouped on the basis of the operation performed (turning, drilling, 

milling, etc.).  By providing the appropriate machine types, a small number of 

machine departments is sufficient in the factory to accomplish a high variety of part 

processing.  These machine types can be applied in various sequences to produce a 

wide variety of parts.  The job shop structure supports a high variety of jobs.  
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Typically, job shops are designed to handle small production batches of custom 

products requiring a variety of processing requirements.  Accordingly, the equipment 

is organized by function as the same general type of operation may be performed by a 

number of machines in a wide variety of different ways.  For example, when a hole is 

needed in a piece of metal, it is sent to the drilling department where a variety of 

machines from drill presses to mills to boring machines may reside.  We will consider 

more details of operations of the job shop below.

Assembly lines (or flow lines) are structures where process equipment is 

organized in the order specified by their operations.  This organizational principle is 

also known as a product focus.  Assembly lines minimize material handling since the 

next machine needed is in immediate physical proximity.  Material handling 

automation is commonly employed between process steps to retain part registration, 

minimizing setups and reducing labor. This type of structure is biased to the direction 

of part flow, so backtracking, where processes must travel opposite the direction of 

the standard flow in order to get access to a particular type of machine, is difficult and 

very disruptive.

Current industry trends encourage managers to focus their factories to provide 

products and services at high quality and low cost.  A challenge in discrete parts 

manufacturing is to provide customized products to meet individual tastes while 

depending on the stability of common processes and equipment (Pine, 1993, p.7).  

Factories using general-purpose machines are capable of producing a large variety of 

parts by the nature of their process equipment.  However, frequent tooling 



5

changeovers are required on general-purpose machines to account for part variety that 

can be time-consuming and expensive.  Below, we outline some of the benefits of an 

alternative approach, which we call a cell shop.

1.1.1 Job Shop.  In a job shop, a large fraction of the flow time of a given part is 

due to wait times.  Parts often have to queue up to await their turn at a given machine 

or machine center due to limited capacity, wait for material handling devices for 

transport to or from a process or wait to join parts being processed in other parts of the 

factory.  The machines typically require setups due to changeovers between 

operations in order to accommodate different part and processing requirements.  The 

machines in each department share a common queue of incoming work and the length 

of this queue accounts for most of the delay at each machine center.  If jobs are 

assigned at random, the larger the variety of parts types, the more likely it is for setups 

to be incurred.  Increasing the frequency of setups increases the amount of time 

required to complete each job (expected setup plus run time).  This increases the time 

spent at the machine for each job, and leads to longer queues and wait times.  This 

relationship is apparent in the familiar M/M/1 queue, where the wait in the queue, 

qW , is a function of the arrival rate and mean service time (λ  and 1−µ , respectively) 

and machine utilization, which is represented in this case by µλρ = : 

( )ρµρ −= 1qW .  In this dissertation we will consistently associate the wait in the 

queue with the time from when a customer arrives in the system until service 

commences on that customer.  We, therefore, imbed any required setup time in this 
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queue wait. The batch flow time is measured from part batch introduction into the 

factory (from receiving) to part batch leaving the factory (sent to shipping).

Material handling also contributes to the flow time of parts in the job shop and 

wait times for material handling resources.  Parts travel from department to 

department to complete their operation sequences traversing the factory.  Factory and 

department size, part sensitivity, and sequence lengths all exacerbate move times. 

1.1.2 Manufacturing Cells.  A manufacturing cell is a collection of dissimilar 

machines positioned in proximity to work on products of similar shapes and 

processing like a production line (Chase, Jacobs and Aquilano, 2004, p.200).  We 

assume that the nature of manufacturing demands and processing required is similar 

to what is found in a job shop.  In cell-based production, otherwise know as a cellular 

manufacturing system (CMS), parts with similar features use common sequences of 

operations and similar tools or fixtures.  A group of such related parts defines a part 

family.  A CMS is therefore closely allied to the concept of group technology: the 

concept of grouping similar parts into part families to benefit design and 

manufacturing (see Askin and Vakharia, 1990).  

In their recent comprehensive monograph on cellular manufacturing, Hyer and 

Wemmerlöv (2002, p.18) define a cell using the concept of families:

A cell is a group of closely located workstations where multiple, 
sequential operations are performed on one or more families of similar 
raw materials, parts, components, products or information carriers.

Typically, a number of different part families occur in the product mix.  One of 

the challenges in CMS is developing rules for cell formation to associate the part 
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family data with the required machines (see for example Singh and Rajamani, 1996 

for a review of the cell formation literature). 

The two most basic benefits of cellular manufacturing according to Hyer and 

Wemmerlöv (2002, p. 48) are reductions in flow time (due to use of smaller batch 

sizes and use of shared tools and fixtures) and inventory (due to the proximity of 

equipment).  Other benefits of cellular manufacturing according to Chase et al. (2004, 

p. 200) are better human relations due to small work clusters, and improved operator 

expertise due to learning through repetitions.  Other advantages according to the 

literature are improved quality and easier control of operations.  Physically moving 

both machines and associated product family to a cell enables the factory to focus on 

that product family.  The part family in the cell enjoys unfettered access to a limited 

set of resources that are now in proximity to each other aiding quality control.  

Moreover, cell-based production makes it easier to incorporate other practices that 

improve efficiency such as job sequencing and the use of transfer batches. 

The word “cell” is used quite liberally in practice to describe any association or 

grouping of machines.  In this research, we define a cell as a grouping of machines 

used to process a family of one or more parts.  We assume that the part families are 

pre-specified.  In our factory representation, there are NC  cells, indexed by 

NCn ,,1…= .  Each cell may include more than one of any machine type.  Each cell 

has a certain number of machine types, with multiple machines of the same type 

organized into machine centers.  We reserve this term for the cell shop and call the 

analogous machine cluster in a job shop a department.  Of course, since cells do not 
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contain duplicate machines very frequently, most machine centers just have a single 

machine of a given type.

The flow discipline for batches through the machine centers of each cell is 

identical to the rules governing the job shop as the batch visits several departments.  

Once the batch completes its processing within a given job shop department or cell 

machine center, it moves as an entire batch to its next operation or exits the factory if 

no further processing is required. 

The preceding statement requires modification if a cell uses transfer batches.  In 

this case, each batch is split up into the transfer batches that then queue up before the 

appropriate machine center.  Note that because transfer batches constitute the only 

aggregation of units recognized within the cell, the identity of the original batch is not 

recovered until all of its constituent transfer batches have completed their processing 

within the cell.  In fact, prior to leaving the cell and prior to being shipped, the work 

must be re-batched into its original batch size as required.

1.2 Factory Conversion

The conversion from process layout (job shop) to cellular configuration is a key 

question of both theoretical and practical importance in the field.  As Cohen and Apte 

(1997) describe,

In implementing cellular manufacturing an important task is to create a 
plan for smooth transition from process layout to manufacturing cells 
layout.  Rearranging machines into cells based on part families is also 
a major undertaking requiring both considerable time and expense.  



9

Once a machine is moved to a cell, it is removed from the general resource pool of 

the job shop and confined to processing within the cell.  To avoid inter-cell moves as 

much as possible, cells are discouraged from accepting work required for parts that 

are not assigned to the cell, even if idle machine capacity exists.  In this research, we 

assume that the cells are independent, so that each part family can be processed 

entirely within one cell.  Inter-cell moves add to the complexity of flow and work 

control and can re-introduce setups.  To avoid these drawbacks, we simply disallow 

them and assume that the cells formed are independent. 

If the entire factory is partitioned as far as possible into cells we call this a cellular 

manufacturing system (CMS).  This may include a remainder cell or residual job shop 

containing exceptional elements. 

Example Factory 

To illustrate the concept of cells, we present data from Morris and Tersine (1990) 

in Table 1-1.  This table shows a part routing matrix for a factory with 30 machines 

falling into eight machine types.  The factory produces 40 distinct parts that fall into 

five part families.  For each part, the numbers listed along the row specify the order of 

the operations required, and the columns specify what machine type is needed for 

each such operation.  For example, part 10 requires 3 operations (or processing steps), 

with the first performed by machine type 8, followed by type 1 for the second 

operation, and finally type 2 as the last operation.  The path of the part through the 

departments is shown in Figure 1-2.  
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Machine Type
P/N 1 2 3 4 5 6 7 8

1 1 2
2 1 2 3
3 1 2
4 1 2 3
5 1 2
6 1 2 3
7 1 2 3 4
8 1 2 3
9 2 3 1
10 2 3 1
11 2 1
12 2 1
13 2 3 1
14 2 1
15 3 4 1 2
16 2 1
17 4 1 2 3
18 2 1
19 1 2 3 4
20 1 2 3 4 5 6

Machine Type
P/N 1 2 3 4 5 6 7 8
21 1 2 3 4 5
22 1 2 3 4 5
23 1 2 3
24 1 2 3 4 5 6
25 1 2 3 4
26 1 2 3 4 5
27 2 3 4 1
28 1 2 3 4 5
29 1 2 3
30 2 3 4 5 1
31 2 3 1
32 2 3 4 5 1
33 1 2 3
34 1 2 3 4 5 6
35 1 2 3
36 1 2 3 4 5
37 1 2 3 4
38 1 2 3 4
39 1 2 3 4
40 1 2 3 4 5

Table 1-1. Part routing matrix: operation sequence linking part number with 
machine type.

Job Shop

Dept. 1 Dept. 2 Dept. 3

Dept. 4 Dept. 5

Dept. 6 Dept. 7 Dept. 8

Part Type

8

9

10

8

9

10

Figure 1-2. Illustrative part routings for parts 8, 9, and 10.

Morris and Tersine (1990) grouped the 40 parts listed above into the five families 

shown in Table 1-2.  They formed the cells so that each family is assigned to a unique 
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cell that is equipped with all the machine types required for the complete processing 

of the part family assigned to it. 

Family
Part

Types Cell
Machine Types 

Required
1 33-40 1 1-7
2 19-26 2 1-8
3 27-32 3 1-5, 8
4 9-18 4 1-2, 6-8
5 1-8 5 3-6

Table 1-2. Summarized family and cell requirements.

The resulting cells are shown in Table 1-3.  Five families and cells are identified 

in Table 1-4 where the block-diagonal form indicates the complete independence of 

cells.  The numbers of machines of each type available in the original job shop were 

sufficient to equip all cells appropriately.  If six cells had been formed then the 

addition of new machines would have been necessary (assuming the first five cells 

required the machine types shown in Table 1-3).  In general, cell formation may 

augment or maintain the number of machines in the original job shop.

1 2 3 4 5
1 4 1 1 1 1
2 4 1 1 1 1
3 4 1 1 1 1
4 4 1 1 1 1
5 4 1 1 1 1
6 4 1 1 1 1
7 3 1 1 1
8 3 1 1 1

Machine 
Type

Number of 
Machines per 
Type in the 
Job Shop

Cells

Table 1-3. Machine distribution.



12

Machine Type
1 2 3 4 5 6 7 1 2 3 4 5 6 7 8 1 2 3 4 5 8 1 2 6 7 8 3 4 5 6

Family P/N
33 1 2 3
34 1 2 3 4 5 6
35 1 2 3
36 1 2 3 4 5
37 1 2 3 4
38 1 2 3 4
39 1 2 3 4
40 1 2 3 4 5
19 1 2 3 4
20 1 2 3 4 5 6
21 1 2 3 4 5
22 1 2 3 4 5
23 1 2 3
24 1 2 3 4 5 6
25 1 2 3 4
26 1 2 3 4 5
27 2 3 4 1
28 1 2 3 4 5
29 1 2 3
30 2 3 4 5 1
31 2 3 1
32 2 3 4 5 1
9 2 3 1

10 2 3 1
11 2 1
12 2 1
13 2 3 1
14 2 1
15 3 4 1 2
16 2 1
17 4 1 2 3
18 2 1
1 1 2
2 1 2 3
3 1 2
4 1 2 3
5 1 2
6 1 2 3
7 1 2 3 4
8 1 2 3

Cell 5Cell 1 Cell 2 Cell 3 Cell 4

5

1

2

3

4

Table 1-4. Partitioned part routing matrix indicating part operation sequences, part 
families, cells and machine types per cell.

An alternative to a completely converted CMS is what we call a partial cellular 

manufacturing system (PCMS).  This is a hybrid layout where a number of cells are 

formed to work alongside a remainder job shop.  In other words, the formation stops 

short of full conversion.  The parts are therefore manufactured in the cells or in the 



13

residual shop; however each cell is dedicated to the manufacture of a unique part 

family.  Naturally, machines not used in the cells implemented remain in their 

residual job shop departments.

The information gathered from industry practice shows that partial 

implementation is often the preferred path for implementation.  Surveys show that 

firms create cells one by one (Wemmerlöv and Hyer 1989, Wemmerlöv and Johnson 

1997).  In fact, a study by Ahmed, Nandkeolyar and Mahmood (1997) indicates that 

practitioners do not exercise full conversions and that successful implementation is 

linked to long-term, step-by-step installations. 

1.3 Key Trade-offs 

A consistent feature of all conversions to a CMS environment is the segregation of 

machines of each type from the pooled arrangement of a department to smaller 

subsets assigned to the cells.  Wolff (1989, p.260) uses the term pooling to refer to the 

aggregation of the arrival streams of c  separate queues into a single queue where the 

server is equipped with the pooled resources of the original queues.  He notes that the 

pooled queue performs better and goes on to state that “the superiority of pooling can 

be shown to be a very general result independent of the nature of the arrival process 

and the distribution of service.”  Accordingly, we refer to the diseconomies of 

segregating a given machine type by assigning them to independent cells as the 

pooling loss.  This pooling loss always causes an increase in flow time.  Therefore, for 

the cellular system to outperform the functional layout with respect to flow time, this 

pooling loss must be compensated by improvements in such other factors as setup 
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times or move times.  In summary, when flow time is the performance measure of 

primary interest, the superiority of cellular layout over functional layout is tantamount 

to finding the means for overcoming pooling loss.  

A simple queueing model based on the well-known M/M/c formulas has been 

used to illustrate the nature of the pooling loss as in studies by Suresh (1991, 1992), 

Shafer and Charnes (1993, 1995,1997), and Suresh and Meredith (1994).  A simple 

example will illustrate this modeling approach.  

In Figure 1-3, we compare the flow times of two systems -- a pool of four 

machines corresponding to a job shop department (solid line), and a system of four 

cells, each consisting of a single machine performing a single operation (dashed line).  

We model the job shop as an M/M/4 system with µ = 1 for the JS and equate the 

arrival rates to both systems.  For point A, the flow time for the M/M/4 system equals 

1.25 when ρ =.65  ( µλρ 4= ) corresponding to an arrival rate of 6.2=λ .  When 

we segregate the shop into four equal demand streams of λ 4 , the flow time for each 

cell equals 2.86 (point B), which is 2.28 times the M/M/4 flow time.  In order for the 

flow time in the M/M/1 system to be the same as the pooled system, so that 

( )( ) 25.111// =−= ρλρMMW , the processing rate must be increased such that the 

resultant utilization is 448.=ρ  or roughly one and a half times as efficient, 

JSCM 45.1 µµ = , as the same process in the JS.
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Figure 1-3. Pooling loss.

As Figure 1-3 suggests, flow time increases without bounds with the linear 

increase in machine utilization.  If the M/M/4 is run at ρ =.80 , the flow time is 1.75 

(point C).  After conversion, the M/M/1 flow time is 5.00 (point D) per cell or 2.86 

times the M/M/4 flow.  Comparing the pairs A-B and C-D, when ρ  increases from 

.65 to .80, the ratio of the flow time increases from 2.28 to 2.86.  

The last point is of particular importance since it shows how increased utilization 

magnifies the pooling loss.  This effect occurs where bottlenecks arise as a result of 

conversion to cells, limiting the capacity of the process.  In general, in Chapters 3 and 

4 of this work, we will see how conversions from JS to CMS are especially sensitive 

to the loading of machines in both the cells and the remainder shop.  Suresh (1991, 

1992) has also alerted readers to “adverse effects in the remainder cell” that are 

typically due to loading imbalances. 
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We already mentioned that reductions in setup constitute one of the key factors for 

overcoming pooling loss.  Major setups are typically incurred when the same machine 

switches from one family of parts to another.  The frequency with which setup occurs 

depend on the demand and service rates as well as the dispatching rule.  A dispatching 

rule is a priority rule or set of rules used in determining the order of service for 

customers waiting in line.  In this dissertation, we focus on a dispatching rule that is 

designed to minimize the incidence of setups.  We do not consider preemptive 

dispatching rules because job interruptions will markedly increase the complexity of 

workflow control. 

1.4 Research Objectives

The research we present has two objectives.  First, we investigate the role of setup 

economies in the factory-wide conversion of functional layouts (job shops) to cellular 

manufacturing.  While the literature has chiefly focused on full job shop to cell shop 

conversions, we include both complete and partial factory conversion options (where 

a sizable residual shop is left in conjunction to the cells).  Our second research 

objective is to examine the role of dispatching rules in the reduction of setups.

1.4.1 Research Issues and Methodology for Factory Conversions to CMS.  Our 

research seeks to answer the following questions regarding the results of setup 

economies in the cases of factory conversions:  

• Can consistent results be obtained as to when the conversion of the job shop to 

a cell shop is advantageous?  
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• What are the measured setup economies?  When are setup economies large 

enough to overcome pooling losses?

• How do other cell factors, including reduced batch sizes and use of transfer 

batches, affect flow times achieved in cells?

• Can a partial implementation of CMS provide all or most of the benefits of 

full conversion to CMS?

The approach taken to answer these questions is to use a single simulation model 

to compare functional and cellular layouts across a test bed of factory environments 

extracted from the literature.  In our attempt to perform such a comparison, we follow 

the established practice of most analytical or simulation conversion studies in using 

flow time as the primary performance measure for comparing JS and CMS layouts.  

Little’s law then can be used to relate the flow time to inventory measures such as 

length and wait time in queue and number of customers in the system. We realize that 

the average batch flow time may not directly relate to the total product cost.  We 

actually capture the flow time of each and then calculate the weighted average, using 

the part type demands as the weights.  This will be a reasonable surrogate for cost if 

there is a linear relationship of cost to piece part flow time.  For example, inventory-

related costs are often modeled to be linear in the amount of time each part spends in 

the system.  In this case our measure would be a surrogate for part costs if all part 

types have the same monetary value.  Alternatively, we can use a weighted average in 

which we weight part types by their contributions to the total cost of goods sold 

(GOGS).  Our contribution is to control the parameter choices in the data sets in such 
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a way as to make them comparable.  We call this approach standardization.   Table 1-

5 lists our assumptions in the factory conversion part of this research.

Primary performance measure Average batch flow time
Process flow coordination Asynchronous
Machine selection One machine type specified per operation per part 

(no alternates)
Machine input queues Infinite capacity, shared by machine type within job 

shop department or cell machine center
Machine operation Sequential processing on the same machine type is 

combined within one operation sequence
Machine output queues None: sufficient material handling capacity exists to 

move output immediately to next operation
Use of transfer batches Only allowed in cells
Cell resources No inter-cells moves allowed or job shop to cell 

moves allowed: all cells assumed to be independent 
and capable of processing part family in entirety

Table 1-5.  Assumptions for factory conversion research.

To our knowledge, this is the first study where conversion benefits are studied 

across data sets selected from different sources in the literature.  Our results show that 

for a given region of the parameter space, the conversion to cellular layouts 

consistently produces an advantage even in the absence of the gains resulting from lot 

size redefinition and lower movement or transport times.  In addition, we are able to 

generate caveats for the implementation process from our PCMS results.

1.4.2 Research Issue and Methodology for Analytic Modeling of a Simple 

System with Setup.  Our research seeks to answer the following intuitive question 

regarding setup economies using models of a simple system:  

• What is the impact of the dispatching rule used in the reduction of setups?

The approach taken to answer this question is to apply analytic queueing models 

to a system that is simple enough to make exact analysis tractable.  The single-stage, 
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single-server system involving two customer classes is the simplest case where setups

occur due to part changeovers.  Our choice of this simple system is driven by the 

existence of exact results on flow times and the fact that modeling of setups best 

matches the manufacturing environment studied in this dissertation.  We start by 

establishing a baseline using zero setup, evaluating flow times under FCFS versus a 

dispatching rule that minimizes the incidence of changeovers.  We then extend the 

results to the case of non-zero setup.  Table 1-6 lists our assumptions for the analytic 

section of this research.

Primary performance measure Average batch flow time (batch size = 1)
Setup incidence Incurred when switching from one class of part to the 

other (setup magnitude � 0)
Table 1-6.  Assumptions for analytic modeling research.

New flow time results are provided using different dispatching rules.  These 

results are obtained analytically for the case of zero setup times and extended to the 

case of non-zero setup time through computational studies.

1.5 Plan of the Dissertation

In Chapter 2, we review the literature relevant to the two distinct parts of this 

dissertation.  We first review the literature on the conversion to cellular manufacturing 

using simulation modeling (including both complete transformations and partial 

transformations).  Next, we review the key sources in the queueing literature that 

consider single-machine processing in the presence of setups.  In Chapter 3, we 

present our study of the full conversion of job shops to cells shops.  The first part of 

Chapter 3 outlines the factory production environment.  Here we describe the choice 
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of data sets included in the test bed, identify the manufacturing characteristics of each 

data set, introduce the standardization scheme for the simulation study, and describe 

the simulation model.  Section 3.6 describes the results of the simulation runs 

comparing functional and cellular layouts.  Of special importance are sensitivity runs 

included to study the effect of batch sizes, transfer batches, factory loads, setup 

parameters, and dispatching rules.  Chapter 4 provides a brief account of our 

investigation of partial cellular implementation.  

Chapter 5 is devoted to the analysis of a single-server system with two classes and 

switching (setup) costs.  Section 5.1 is dedicated to the zero-setup baseline and 5.2 to 

the non-zero setup extension.  Chapter 6 contains summaries of the key findings of 

our research and outlines several directions along which future research can be 

conducted.  We have also included a short glossary of key terms used for the reader’s 

convenience.
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Chapter 2 

LITERATURE REVIEW

This chapter reviews the literature relevant to the two segments of this 

dissertation.  First, in Section 2.1, we review simulation studies that have dealt with 

the conversion of job shops to cellular layouts for both full and partial conversion (in 

a partial conversion, a sizable residual shop processes parts along with the cells).  In 

this chapter, we reserve the term factory conversion for a change in the layout.

The second section, 2.2, reviews the modeling literature for the multi-class, 

single-stage processing facilities modeled as queueing systems.  Our focus is on 

analytic models that can handle setup times.

2.1 Conversion Analysis Using Simulation 

The comparison of functional and cellular layouts in the manufacturing of discrete 

parts is a topic that has received much research attention over the last decade.  This 

comparison is often performed when a job shop (JS) is converted to a cellular 

manufacturing system (CMS) experiencing the same demand.  On the one hand, 

reports from industry continue to claim superior performance for cellular layouts, 

although the measured improvement seems to vary substantially.  For example, 

Wemmerlöv and Hyer (1989) reported average flow time reductions of 24% for 

cellular layouts, whereas Wemmerlöv and Johnson (1997) reported an average 

reduction of 61% in throughput times for 27 respondents.  On the other hand, 
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simulation modeling studies in the research literature have produced divergent and at 

times contradictory results in evaluating the effect of conversion on flow times.  Nor 

is the literature of one voice in providing a clear basis or a consistent list of 

quantifiable factors that would ensure the benefits of conversion.  

The empirical data also shows that partial conversion is also used in practice.  A 

study by Ahmed, Nandkeolyar and Mahmood (1997) indicates that practitioners do 

not opt for full conversions and that successful implementation is linked to long-term, 

step-by-step conversion to cellular manufacturing.

To facilitate our review of the literature, we introduce our performance measure 

now.  Since CM is used to improve the efficiency of a job shop, a job shop will be the 

basis for our performance comparisons.  For comparative purposes, the flow ratio

(FR) is defined as the ratio of the average batch flow time after cellular conversion to 

the average batch flow time of the job shop with the same factory operational 

parameters of load, machines and batch size.  This definition is slightly different than 

that used by Suresh (1992) where the flow ratio related the cellular transformed flow 

time to the best job shop flow time which may be measured at a different batch size.

2.1.1 Complete Factory Conversions

In their paper on this subject, Johnson and Wemmerlöv (1996) performed a meta-

analysis of the results of 24 simulation studies designed to investigate the 

performance characteristics of conversions from JS to CMS.  These authors conclude, 

“universal evidence regarding the superiority of cellular versus functional systems can 

never be provided due to the data dependency involved.”  However, they also remark 
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that whether cellular layouts outperform their functional counterparts depend on a 

complex interaction among several key factors including the utilization level, the 

degree of resource pooling, setup and move time reductions, and batch sizes used.  

To aid in our review of the simulation-based literature on factory conversion, it is 

useful to compile a list of factors that can be expected to influence the performance of 

job shops as compared to cell shops.  We then look at the comparisons provided in 

Johnson and Wemmerlöv’s 1996 meta-analysis and examine the different factory 

conditions tested.  In this chapter, our focus is on the setup reduction as the key 

advantage of cells, rather than material handling gains.

We define our terms used in this review in Table 2-1.  We then compare the range 

of factors and factor settings in five simulation studies in Table 2-2.  We follow with 

reviews of key studies in the literature (the five in Table 2-2 with others) that use 

simulation to investigate factory conversion. 

Following the review of the studies, Table 2-4 lists the studies in chronological 

order and the overall conclusions drawn for each paper.  



24

Operations/part Range in the number of operations per part across all parts
Machine Types Number of distinct machine types
Machines Total machines
Machines/type Range in the number of machines per distinct machine type
Cells Number of cells the JS is converted into (one cell may be a 

“remainder” and process unrelated parts)
Batch Size Batch size used in the JS layout and CMS unless stated 

otherwise.  A list of batch sizes means denotes experimental 
factor settings

Major Setup A major setup is incurred if two parts belonging to distinct 
families are processed consecutively on the same machine.  

Minor Setup Switching between two different part types in the same family.  
Typically less than a major setup.

Setup Ratio: s/br Ratio of major setup to mean batch run time per part.  
Setup Fraction Ratio of minor to major setup per part.  
Dispatching Rule FCFS: First come, first served; 

RL: Repetitive Lot (from Jacobs and Bragg, 1988): 
(1) A single (pooled) queue is formed for all batches 

arriving to be processed at a machine center.
(2) Any arriving batch encountering an available machine 

upon entry is immediately routed to the available 
machine where it would require the least setup time.  If 
no machines are available, the batch joins (or forms) a 
queue to wait for a machine.

(3) When a machine becomes available, the next job 
assigned to it is selected based on the minimum setup 
among all jobs in queue.  If multiple jobs tie at this 
minimum setup value, the FCFS discipline is used to 
break the tie.

JS Utilization Source JS average machine utilization as measured by 
simulation

Cell Transfer 
Batch Size

Transfer batches used only in cells.  No transfer batches is 
designated by b, the JS batch size, otherwise a value is listed

Arrival Rate 
Distribution

Distribution of arrivals with its coefficient of variation in 
parentheses.

Setup Time 
Distribution

Like arrival distribution above, but for setup

Material 
Handling Times

Material handling as a fraction of part run time

Table 2-1. Study definitions.
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Parts 40 40 75 50 4
Operations/Part 2-6 1 2-7 3-7 4
Machine Types 8 1 12 10 4

Machines 30 4 63 31 16
Machines/Type 3-4 1, 1, 2 3-4 3-4 4

Cells 5 2 or 3 1-5 5 1-4

Batch Size 50 5-100 2-80
JS: 32-100
CM: 5-100

Setup Ratio: 
s /br

0.06 or .1, .5, 
1.0

6-0.3 0.3-6.0 1.3-0.2

Setup Fraction:
Min/Maj Setup

0.5 0.1-0.5 0.1-1.0 0, 0.5, 1.0

Dispatching 
Rule

RL
FCFS, 
SPT

FCFS, 
FSP, RL

FCFS or RL-F 
in JS, FCFS in 

cells
RL

JS Utilization 60-70%
70% with 

b=50
62%, 75%

Cell Transfer 
Batch Size

b b b b b , b /2, 1

Arrival Rate 
Distribution

(CV)

Poisson
(1.0)

deterministic
(0)

Poisson
(1.0)

Poisson
(1.0)

3-Erlang
(.58)

Setup Time 
Distribution

(CV)

Normal
(0.08)

Poisson
(1.0)

3-Erlang
(.58)

Part Run Time 
Distribution

(CV)

Normal
(0.36)

Gamma
(0.7-1.2)

Poisson
(1.0)

3-Erlang
(.58)

Material 
Handling Times

~.15r  between 
depts.,

0 within cells

3r  - 120r 
between 
depts.,

.75r  within 
cells

JS only: 0 
or 0.6br

Table 2-2. Comparison of factor levels within simulation studies
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Morris and Tersine (1990) studied the full conversion of a five-cell CMS.  They 

examined the impact of changes of setup ratio, move time, demand stability and flow 

of work within the cells on the conversion.  The  “demand stability” factor regulated 

the sequence of part batch arrivals such that there was a maximum interval between 

like part types.  The work within cells was random and allowed backtracks or part 

sequences were altered to provide unidirectional flow.  Morris and Tersine (1990) 

considered their shop configuration “supportive” of CM due to the independence of 

their cells, use of identical lot sizes in both layouts, and use of RL dispatching.  

Their results showed that the setup ratio factor could bring the flow time within 

5% of the job shop value.  In contrast, their base case resulted in an all-cell shop with 

flow time 50% greater than the job shop value.  When high setup level was 

compounded with other factors such as slow JS move times, and unidirectional flow), 

the all-cell flow time was 10% better than that of the job shop.  Overall, the authors 

concluded limited promise for CM.  Looking closely at their experimental setup it is 

evident that simply increasing the setup time magnitude for each operation created the 

high setup level.  Using the same run times, this increase in setup burden added to the 

machine utilization of both the job shop and all-cell shop and raised all flow times as 

reflected in their mean throughput times (see their Table 4).  Operating the cell shop 

in this high machine utilization region, as noted in the conclusions of Morris and 

Tersine (1989), can distort the apparent impact of setup due to the sensitivity of the 

flow time to machine utilization.
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Suresh (1991) used a single-operation simulation model with parts from three 

families.  One of the three families represented 50% of the total parts in the factory 

and roughly 50% of the total demand.  Although deemed a “family” by the author, 

there was essentially no similarity between parts.  Setup discounting was handled 

differently than in Morris and Tersine (1990) – setup was not discounted in the job 

shop or in the family of unrelated parts and was discounted by a flat rate of 70% or 

90% in the cells (independent of processing sequence).  The dispatching rules 

included a truncated shortest-setup-plus-run-time (SPTT).  The SPTT rule calculated 

a due date and gave priority to late jobs followed by shortest discounted setup plus run 

time.  As each family was moved to a cell, a new batch size for that family was 

determined from a pre-selected range (approximately 10% of that originally in the 

JS).

Even with a 90% setup discount in the cells and at a setup ratio of 0.6, the all-cell 

flow time was 25% greater than the job shop value using FCFS in both job shop and 

cells and 9% greater using SPTT in the job shop and cell shop.  The study also 

showed that SPTT performed better (14%) than FCFS in the job shop using the same 

batch size.  We observe, therefore, that if SPTT was combined with cell conversion 

then it would have resulted in a 6% improvement over the job shop using FCFS.  The 

authors noted that the flow time of parts in the cells improved even though the overall 

factory flow time was inferior to the job shop.  The authors attributed this to adverse 

effects in the remainder.  We understand these “adverse effects” to be pooling losses: 

machines were removed from the job shop pool, but the relative load per machine did 
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not change.  In Suresh (1991), only when the setup discount was coupled with a 

reduction in cell batch size (made feasible for the cells from setup reductions) was the 

transformed shop capable of improved factory flow times over the JS.  

The results of Suresh (1991) appear to corroborate the conclusion of Morris and 

Tersine (1990) that large amounts of setup reduction alone are not sufficient for the 

cells shop to overcome the pooling losses and outperform the flow time of the job 

shop.  Although Suresh included similar factors and levels as in Morris and Tersine, 

we note in Table 2-3 that they were handled differently.   

Factor Morris and Tersine (1990) Suresh (1991)

Setup 
discount

family-based throughout
the shop

flat-rate setup discount 
applied to two of three cells 

only
Dispatching 

Rule(s)
Repetitive Lot FCFS or SPT

Remainder 
cell

none
50% of parts in remainder 

cell and did not receive 
setup discounts

Table 2-3. Difference in operating scenarios may confuse comparative results.

Shambu and Suresh (2000) confirmed Jacobs and Bragg (1988) in showing that 

RL is superior to FCFS and SPT dispatching rules. Shambu and Suresh (2000) report 

similar results as those in Shambu’s 1993 dissertation.  They found that in the cells 

RL/SPT (part batch with shortest expected processing time picked from queue) is 

only marginally better than SPT (without using RL), but both outperform FCFS.  The 

authors note that the likelihood of identical parts being processed in succession in a 

cell is small so RL rarely impacted the queue.  In addition, if the setup fraction is 

small then the savings potential due to eliminating the minor setup is minimal.
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As in Suresh (1991), the flow time of parts in the remainder shop of Shambu and 

Suresh (2000) was found to deteriorate with increasing number of cells, even when 

the flow time of the cell parts improved over their flow times when in the job shop.  

The authors used family-based setup in the residual shop like Morris and Tersine 

(1990) and still found increasing flow time.  They attribute this decline in 

performance of the residual to pooling losses that were not overcome by any residual 

shop setup improvements.  

The choice of the batch size as a factor in conversion to cells is central to Suresh 

and Meredith (1994), who set batch sizes (one size used for all parts) across a range 

for the job shop and then reset them the cell shop configurations.  Setups were family-

based with the setup fraction ranging from 10% to 100% (no discount).

Their results with both the job shop and all-cell shop using family-based setup 

showed up to a 54% batch flow time reduction from a job shop to a cell shop (both 

with 10% setup fraction).  This was assuming cells used use the same batch size as the 

job shop.  They report improvements of 58% with batch sizes half that of the job 

shop.  This was their most extreme result using equal batch sizes, but it was based on 

using a job shop with average machine utilization over 95%.  At another setting, the 

job shop was loaded at approximately 75% machine utilization.  The resulting 

reduction in batch flow time for the same setup fraction in the cell shop was 16% at 

the same batch size used in the job shop and 67% at a batch size 1/6th that of the job 

shop.  As expected, the job shop flow times were best with the lowest move time 

setting.
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Suresh and Meredith (1994) concluded that of the factors they studied influencing 

the shop performance, setup and run time reduction had the greatest impact as 

opposed to batch size and variability reduction.  We note that batch size of the cells 

did not have to be reduced from that of the job shop for the factory to realize savings 

in flow time (as long as setup fraction was less than 0.5).

Shafer and Charnes (1997) results show that the overall flow time increased with 

increasing setup ratio, but decreased with decreasing setup fraction.  The flow time 

also decreased with transfer batch size.  The job shop flow time increased with move 

delay.  The authors concluded that each of the factors they tested, if set at the 

appropriate level, may be sufficient to overcome pooling loss resulting in improved 

flow time performance over the job shop.  The authors concluded that an all-cell shop 

(using transfer batches of size one) can generally reduce job flow time by 45%-65% 

over a comparable job shop and showed that without transfer batches less than the 

original batch size the flow time could be reduced 11% (assuming 50% setup 

fraction).

Table 2-4 summarizes each of studies above in chronological order.  The column 

labeled “factor” specifies the key factory investigated in the paper.  For example, the 

first paper listed investigated the effect of move times and the demand distribution on 

the conversion.  The last column, entitled “limitations,” summarizes our observations 

on the study from the perspective of the research questions addressed in this 

dissertation.
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 Other Relevant Full-Conversion Studies

The following studies provide insights on other factors of a more subtle nature to 

the factory conversion literature.

Shafer and Meredith (1993) were mainly interested in transfer batches in a study 

of data from industries.  Transfer batches were used exclusively in the cells.  They 

reported improvement in performance largely due to transfer batches.  Recognizing 

this, looking across their plant-specific results they determined a number of factors 

that limit the advantages of cellular manufacturing by limiting the effect of transfer 

batches: 

1. Short process routes

2. Small batch sizes

3. Short processing times per part

4. Absence of natural part families (reduces ability to form cells, and therefore 

the use of transfer batches or cell-based setup reductions)

5. Existence of bottleneck machines (in general cause large queues, also reduces 

benefit of transfer batches)

Finally, Seifoddini and Djassemi (1997) compared the effect of part mix changes 

to a shop configured as a job shop or all-cell shop.  For a fraction of parts, part 

operations were changed and then the resulting changed parts were re-assigned to 

different cells.  For example, one part type was eliminated from the first cell family at 

the same time one part type was added to the third cell family.  Each part added to a 

part family contained machine requirements consistent with its cell machine types (no 

inter-cell moves required).  Following this example, the first cell experienced a 
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reduction in demand and the third cell experienced an increase in demand.  As we 

would expect, the smaller cell machine pools were more sensitive to part changes than 

the job shop experiencing the same part changes.  We conclude from Seifoddini and 

Djassemi that CMS sensitivity to changes is not reflected in the factory flow time 

measure.

Full Conversion Summary

The literature provides sufficient evidence that given enough potential, move 

time, setup or transfer batches are capable of overcoming pooling losses 

independently of the other in cellular conversion.  We also see the indication that the 

use of transfer batches and machine loading may be key factors in cellular conversion.

Review of Meta-Analysis

We now look at the results and then the factor settings compiled in Johnson and 

Wemmerlöv (1996) more closely to capture their variety.  Figure 2-1 plots the range 

of observed flow ratios for 24 studies in the literature summarized by Johnson and 

Wemmerlöv sorted by the lowest reported flow ratio.  We simply converted the 

measure called RAT (reduction in average flow time) reported by Johnson and 

Wemmerlöv into flow ratios and used the lowest and highest flow ratios observed by 

the authors of each study in the course of their experiments.  Consider the vertical line 

indicating a flow ratio of 1.0.  Any study for which the bar intersects this line includes 

results where the CMS and job shop have the same flow times.  Similarly, if we draw 

two additional lines to mark the boundaries of a 20% band about the 1.0 line, we can 

highlight the regions where a given study shows a clear advantage for either the job 
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shop or CMS.  We see the results are mixed. Only one study, namely Shafer and 

Charnes (1993), reports flow ratios that lie consistently below 1.0, a majority shows 

their range of results entering this region, but with the range extending into region that 

show a clear advantage for the job shop.  While we wouldn’t expect the ranges to be 

the same, we find that some studies have no common cell conversion performance.

0 1 2 3 4

Flynn and Jacobs (1986)

Flynn (1987)

Crookall and Lee (1977), Lee (1985)

Morris and Tersine (1994)

Flynn and Jacobs (1987) small shop

Suresh (1991)

Morris and Tersine (1990)

Jensen et al. (1996)

Burgess et al. (1993)

Ang and Willey (1984)

Morris and Tersine (1989)

Shafer and Meredith (1990, 1993, 1990 company C)

Yang and Jacobs (1992)

Leu et al. (1995)

Suresh (1992)

Garza and Smunt (1991)

Shafer and Charnes (1995)

Shafer and Charnes (1993)

Suresh and Meredith (1994)

Suresh (1993)

Moily et al. (1987)

Flow Ratio Ranges

→ Clear preference for JSClear preference for CM ←

Figure 2-1.  Disparity of results reported in Johnson and Wemmerlöv (1996).
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There may be a number of reasons underlying the mixed results on the 

comparative performance of functional and cellular manufacturing layouts.  The 

simulation modeling literature uses flow time to determine the success of the CMS 

implementation.  Within industry, however, the implementation of cellular 

manufacturing may be driven by benefits that are not easily measured by traditional 

metrics in computational studies.  For example, several key products may be 

segregated into cells to provide better control of operations or quality.

Interestingly, comparative results reported in the literature vary widely even when 

flow time is taken as the primary performance measure as measured by a simulation 

model.  Closer examination shows that the studies reflect different values of key input 

parameters and use disparate operational rules as seen in Table 2-3 using the 

definition of terms in Table 2-2.  Given the wide range of manufacturing settings 

investigated, it is not surprising that the results of conversion studies are not 

consistent.

2.1.2 Partial Implementation of Cells.  We now review the literature on partial 

conversion where only part of the original JS factory is organized into cells.  As 

mentioned before, this means that a significant part of the factory continues to operate 

as a JS, we call this the remainder shop.  The overall hybrid system is also denoted by 

PCMS (for Partial CMS).  We review the studies that specially focused on partial 

conversion and follow with a summary in Table 2-6.

 Shunk (1976) was one of the first authors to use simulation for comparing CMS 

to JS.  He identified experimental results where the flow time for PCMS was superior 
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to both the JS and all-cell settings.  However, the study did not offer any insights as to 

what lead to this phenomenon.  When comparing flow time across the JS to eight- or 

nine-cell shop, the minimum flow time generally occurred with three to five cells, 

although it ranged from the two-cell to the nine-cell.  In some cases the PCMS was 

better than the job shop configuration with respect to flow time, while the all-cell 

configuration was worse.  Curiously, the job shop never exhibited the best flow time.   

Burgess, Morgan and Vollmann (1993) compared the configuration of a single 

cell with a remainder shop to a job shop, without evaluating the all-cell alternative.  

These results are similar to those found in Burgess (1989).  The research of Burgess et 

al. (1993) focused on the inclusion of labor constraints and we will not be considering 

labor constraints in our research.  However, the converted shop in their research was 

not labor constrained so their insights on cell loading effects are relative to a machine-

constrained shop. 

Burgess et al. (1993) varied the fraction of parts sent to the cell.  Since the work in 

the cell was discounted, the resources (machines and labor pool) appeared to become 

more efficient as compared to the job shop.  In fact, the machine and labor pool 

capacity did not change in the cell, rather the setup requirement for each part entering 

the cell was reduced.  The resultant factory-wide flow time was reduced even though 

the un-discounted part loading sent to the cell increased from 80% to 120% of the 

machine capacity.  Of course the 120% loading is misleading because it assumes that 

the cell parts are paying a full setup which they are not.
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As shown in Figure 2-2, it took only a 25% setup reduction in the cell to 

overcome the pooling losses as long as at least 40% of the parts were routed to the 

cell.  We would expect the flow curves of Figure 2-2 to rise again when too many 

parts were sent to the cell suggesting an optimal loading exists. 

0.70

1.00

1.30

1.00 0.75 0.50 0.25 0.10

Cell setup fraction

F
lo

w
 R

at
io

Cell 30% of parts

Cell 35% of parts

Cell 40% of parts

Cell 45% of parts

Figure 2-2. Optimal flow time improvements require controlled cell loading.

Burgess et al. (1993) concluded that prorating loads to cells in a manner simply 

commensurate with the resource fraction found in the job shop results in flow times 

that are inferior to the job shop configuration.  In other words, prorating 

underestimates the load that should go to the cell.  They suggest machine loading in 

general may be more critical to cellular success than advantages gained through 

shorter setup times.  For our research, if we were to pick a single cell, favorable 

machine loading is something we would look for.

Suresh (1991) included an analysis of a hybrid shop transformation along with the 

complete conversion reviewed above.  Suresh transformed a job shop into a hybrid 

configuration using either a single cell or two cells (operating alongside a residual job 

shop).  Parts in the job shop and residual were not discounted; parts sent to cells were 
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discounted at a fixed rate of 0.3 or 0.1.  We see by the flow ratio results of Suresh 

listed in Table 2-5 that using a similar setup discounting scheme as Burgess et al. 

(1993), but sending loads commensurate with the machine fraction in the cell, that 

pooling loss is not overcome.

30 40 50 100

(FCFS in factory)
Cell parts setup 

fraction

Job Shop with four machines 
for 100% of parts

n/a 36.9 12.4 12.1 15.1

0.3 1.21 1.19 1.11 1.10
0.1 1.20 1.16 1.08 1.08
0.3 1.69 1.50 1.22 1.16
0.1 1.68 1.46 1.17 1.12

setup/batch run time 1.0 0.8 0.6 0.3

Batch size

One cell with two machines 
for 50% of parts + residual

JS Flow

Flow Ratios
One cell with one machine for 

20% of parts + residual

Table 2-5. Deep setup discounts may not be sufficient to guarantee PCMS success.

Suresh (1991) concluded that partial (hybrid) situations are clearly unfavorable 

when compared to the JS even with high degree of setup reduction.  He noted that the 

flow time of the cell parts improved over the job shop, yet the overall factory flow 

time did not.  This indicates that the residual job shop is adversely affected.  As we 

discussed earlier in this literature review, we expect the effects in the residual from its 

own pooling loss.

Shambu and Suresh (2000) compared a job shop to a PCMS with a remainder 

shop.  Shambu (1993) presents similar results.  They showed flow time results 

throughout the transition from JS to single cell all the way to five cells (with a 

remainder).  Unlike the PCMS studies of Burgess et al. (1993) or Suresh (1991), the 
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study by Shambu and Suresh used family-based setups throughout the factory.  Setup 

discounts were not, therefore, strictly found in cells.  This translated into a more even-

handed comparison of factory environments.  They showed that job shops using 

family-based setups could use smaller batch sizes than those that did not allow 

discounts in the job shop, confirming Suresh and Meredith’s results (1994) for total 

conversion.

In their environment, it was shown that the a single cell shop (with residual) could 

be better than the job shop using the same batch size which was counter to the results 

of Suresh (1991).  Looking carefully at the flow times, however, the residual flow was 

4% worse than the job shop but the single cell flow was low enough to compensate 

(45% improvement) weighted by its demand.  At five cells, the cells logged an 

improvement of 38% over the JS flow time and were paired with a residual that was 

84% worse than the JS flow time.  The net result was still a 12% improvement for 

flow times over the JS.  This supports the previous research of Burgess et al. (2000), 

and Suresh (1991) suggesting that managing both cell loading and residual loading are 

important to optimize factory flow time of the PCMS.  Finally, the authors 

sequentially picked cells for implementation based on an arbitrary cell numbering 

scheme even though they noted that each cell was not equally loaded and therefore 

not equal performers with respect to flow time.  They concluded from their results 

that there were decreasing marginal cell gains as the number of cells formed 

increases.  We do see differences in the marginal gains in their results, but (and by 

their own admission), it is due to loading differences and thus coincidence in cell 
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implementation sequence.  This helps motivate our research into the impact of picking 

cells to optimize factory flow time.

More recently, Kher and Jensen (2002) presented a study of PCMS based on a 

single data set they modified from Vakharia and Wemmerlöv (1990).  The authors 

measured flow time while serially moving machines (in order of machine number) 

from the original job shop to complete pre-defined cells.  The significance of the order 

of their implementation was not tested.  Each machine level of implementation was 

run assuming that the cell the machine created or joined enjoyed a level of both setup 

and run time reduction.  This reduction level was controlled from 5% to 17.5% in 

equal 2.5% intervals.  These “processing time reductions” were apparently applied as 

flat rates to all work within the cells and never to work completed within either the 

original job shop or any machines within the residual job shop.  The processing 

improvements from Morris and Tersine (1989 and 1990) they cite do not include 

setup reductions due to family-based processing.  The authors used a dispatching rule 

that minimized setup incidence (RL), yet did not disclose whether they followed a 

family-based setup structure.  Another important detail left unspecified was the 

amount of setup relative to the run time of work within the factory.  In Chapter 3, we 

relate these two by introducing the notion of a “setup potential” and show it to be a 

key factor in the total factory transformations.  Kher and Jensen’s (2002) results 

support those in Suresh (1991) that the cell flow improved, but non-cell residual 

worsened and the conclusion in Shambu and Suresh (2000) that the remainder shop 

flow time deteriorates as cells are added.  By sending a machine at a time they also 
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recognized the conclusion of Burgess et al. (1993) that the fraction of the factory load 

sent to the cells can be more than the load when in the JS to improve the performance 

of the residual job shop. 

Table 2-6 mimics Table 2-4 in its structure and summarizes the key studies that 

considered partial cellular conversions.
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In summary, the PCMS literature suggests that cell and residual loading are both 

important to obtaining good overall factory flow times.  An optimum load ratio 

between the cell(s) and residual has not been established with the objective of 

optimizing the factory flow time.  Similarly, even though it has been acknowledged 

that cells are not always loaded consistently, the selection of cells to obtain the best 

flow time performance has not been pursued systematically in any of these studies.  

We address this issue in Chapter 4.

2.2 Two-Class, Single-Stage M/G/1

We present a summary in Table 2-7 of the contributions to flow time statistics of 

two-class models followed by details of the models.  We list the arrival, setup and 

service distributions using “0” for zero, “M” for Markov, and “G” for general.  The 

models use either first-come-first-served (FCFS) or an alternative dispatching rule, 

called alternating priority (AP) defined by Maxwell (1961) and others. The FCFS 

rule suffers from the drawback that setups are incurred based entirely on the random 

pattern of arrivals.  In other words, no attempt is made to avoid setups.  Maxwell 

(1961) and others have defined an alternative dispatching rule, called alternating 

priority (AP).  Under this rule, all jobs in queue of a given class are served before 

switching to the other class.  The server thus alternates between strings of jobs of 

either class 1 or class 2 and the idle state, but never switches from class i  to class j

( )ij ≠  if there are jobs of class i  still in queue.  Clearly, the AP rule is designed to 

minimize the incidence of setups.  Finally, we list the system performance results 

from each model.
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Input Distributions
Source

Arrival Setup Service
Dispatch 

rule
Available Results

Maxwell, 
1961

M 0 M AP
Solution for mean 
number in system

Gaver, 
1963

M G G FCFS
Moment generating 

function for flow time
Avi-Itzhak, 
Maxwell 

and Miller., 
1965

M 0 G AP
Exact solution for 

flow time 

Miller, 
1964

M G(1) G AP
Moment generating 

function for flow time
Eisenberg, 

1967
M G G AP

Moment generating 
function for flow time

(1)Setup forced at the conclusion of each machine idle period

Table 2-7. Single-server modeling contributions.

2.2.1 Single Queue.  To analyze the impact of setups, we begin with one of the 

simplest exact models: a single-server queueing system with two classes of customers.  

Gaver (1963) provides results for this system under the FCFS rule.  For the symmetric 

cases with equal arrival rates, setup times and service times Gaver provides a closed-

form solution.  We assume arrivals follow a Poisson process with rate iλ  for class i

arrivals ( 2,1=i ), 21 λλλ +=  and with symmetry 21 λλ = .  The expected setup paid 

on switchover to the other class is ( )UE . The expected service time paid per part is 

( )SE . 

To obtain ( )UE  consider a pair of successive arrivals and note that the occurrence 

of setup depends solely on whether these are of the same class or not.  Let ( )ji,

describe the event that the first arrival is of type i  and the second arrival of type j
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( )2,1, =ji .  Then ( ) ( )[ ] ( )∑∑
= =

=
2

1

2

1

,,
i j

jiPjiUEUE  where ( ) λ
λ

λ
λ jijiP =, .  Clearly, no 

setup is required if ji =  so ( )[ ] ( )[ ] 02,21,1 == UEUE .  We then obtain 

( ) ( ) ( )[ ]212
21 UEUEUE += λ

λλ
.  The utilization to include expected setup is therefore 

( ) ( ){ }


 ++= 212
21 UEUEU λ

λλλρ  where ( ) ( )2211 SESE λλρ +=  and for system 

stability 10 <≤U .  Gaver’s equation for the expected flow time assuming symmetry 

is ( ) ( ) ( ){ }[ ] ( ) ( )
214

22 UE
SESUESE

U
F ++++−= λ

.  To solve for the general flow 

time using the method of Gaver, we must use numerical methods to solve for a 

parameter that is a function of the iλ ’s,  ( )iSE ’s, and ( )iUE ’s.

2.2.2 Two Queues, One Server: Two Classes with Alternating Priority.  This 

system can be modeled as a semi-Markov process (SMP) (see Wolff, 1989 p.220) and 

analyzed using fundamental results from renewal theory.  It is customary to assume 

that the SMP is regular which it obtains if the state of the system at any time t  is 

determined by a finite number of state transitions (jumps).

This type of problem is solved with renewal theory.  If we define the states of a 

system such that their selection is Markovian, but allow the sojourn time in each state 

to be arbitrary then we have a semi-Markov process (SMP) with embedded, discrete-

time Markov chain (EMC) transition probabilities (Wolff, p.221).  For an EMC, the 

stationary probability of state j , jp , represents the fraction of transitions that are 
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visits to state j .  The fraction of time spent in state j , jπ , is proportional to the 

transition fraction by jjj mp π∝  where jm  is the sojourn time in state j .  The 

time-average limit is ( ) jjjij
t

lmtP π==∞→lim  where jl  is the mean recurrence time.  As 

long as ∞<∑
≠ ji

iimp  (noting that jm1  is the rate into or out of state j ) then state j

is positive recurrent enabling us to use: 0>= ∑
j

jj

jj
j mp

mpπ  (Wolff, p.223) yielding the 

fraction of time the SMP spends in state j .  

We start reviewing the two-class, single server model assuming zero setup and an 

alternating priority dispatch regime.  Maxwell (1961) defines the states using a triple: 

the number of items of type-1 in the system, the number of items of type-2 in the 

system and an indication of the machine setup: 0 for idle, 1 for setup for type-1 and 2 

for setup for type-2.  This state definition loses the setup status of the machine upon 

entering the idle state, but this information is not required since setups are assumed to 

be zero.  Maxwell then uses generating functions and relates the expected number of 

items of each type in the system to these generating functions.  His resulting equation 

for mean number in the system is:

( )
( ) ( ) ( )

( ) ( )

( ) ( )( )[ ]2121

2
2

1
1

1

2
21

111

1111

1 ρρρρρ
ρρρρ

ρ
ρ

+−−−




 −


 −+−


 −

+−=
SE

SE

SE

SE

L

where ( )iii SEλρ =  and 21 ρρρ += .
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Avi-Itzhak, Maxwell and Miller (1965) computes wait times by conditioning on 

the job arrival class and the state of the system.  A random arrival experiences a wait 

time based on the current class of work being processed.  If the arrival is of the same 

class, then it must wait for the existing job to be completed as well as all jobs of its 

class ahead of it in line.  If the arrival faces the server working on the other customer 

class, then it must wait for processing of all jobs of the other class to be completed as 

well as the jobs ahead of it of the same class.  Flow times are calculated based on 

summing the conditional probabilities that the random jobs arrive within a specific 

block of time (a cycle).  Fortunately, a closed-form solution is available for this 

infinite sum (number of potential cycles to consider).  The type-1 mean flow time is: 

( ) ( ) ( )
( )

( ) ( ) ( )
( )( ) ( )( )( )21211

2
2

2
12

2
1

2
21

1

2
11

11 11112
1

12 ρρρρρρ
ρλρλ

ρ
λ

+−−−−
−++−+= SESESE

SEFE .  We note the 

similarity to the P-K formula: the first term is the service time, the second term is the 

wait due to FCFS within a cycle and the third term adds the expected wait for the 

other class of work to end its processing.

Miller (1964) modified the procedure of Avi-Itzhak et al. (1965) procedure to 

handle non-zero setups.  Miller’s model assumed setup at the beginning of every busy 

period, the unbroken work interval between idle periods, regardless of the type work 

ending the previous busy period.  The mean flow time is computed by conditioning on 

the type of cycle a random arrival sees upon joining the system.  The values of mean 

flow time are expressed analytically, but numerical methods are required to 

approximate the infinite sums encountered.  Miller also showed that due to the 
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reduced incidence of changeover in high traffic the system will not saturate if 1<ρ
where ( )∑=

i
ii SEλρ , independent of the setup magnitude.  

Miller (1964) uses a description of the system state that does not keep track of the 

last class served prior to an idle period for the machine.  Since a setup is incurred at 

the start of each busy period, it is unnecessary to record this information in the state.  

Naturally if 21 ρρ >> , it may be that the job starting the next busy period matches the 

class of the last period before going idle.  In such a case, Miller would assume that a 

setup occurs even though it is not required.  In the case of equal Poisson arrival rates, 

the probability of two arrivals of the same type in succession (last of previous busy 

period and first of next busy period) is 50.0
2

1
2

2

=


× .  In the case that the busy 

period ends with equal probability of each type then we would expect that 50% of the 

subsequent busy periods would not need to start with a setup. 

 Eisenberg (1967) addressed the case of “setups as needed” by using a richer state 

description than Miller (1965).  Eisenberg considers the embedded Markov process of 

queue lengths at the instant of service completion, and includes the class of service 

just completed.  Thus, state i
mn denotes “server is at line i  and m  customers are 

waiting at line 1 and n  customers are waiting at line 2.”  This state definition is event 

driven: it provides a snapshot of the system whenever a departure occurs.  The idle 

states are exceptional in this regard: the probabilities of states 1
00  and 2

00  (the idle time) 

are the same for the imbedded and general-time probabilities.  Solutions to his model 
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also require numerical methods based on known values due to the existence of an 

infinite sum.

Eisenberg also provides three limiting cases.  First, in the special case of zero 

setup times, he provides a wait equation that agrees with Avi-Itzhak et al. (1965).  

Next, when service times are assumed to be zero so that only setup remains, 

Eisenberg provides both the probability of idle with the machine ready to work on 

type-1, 1
00π , and the mean wait time.  The last limiting case is for symmetry where the 

following are the same for both classes: ( ) ( ) ( ) ( )22 ,,,, iiiii UEUESESEλ .  The 

symmetric result is consistent with that of Avi-Itzhak et al., and the overall wait time 

is the same as for FCFS.

Sykes (1970), Eisenberg (1972) and Takagi (1990) investigate a different 

dispatching regime.  They all assume that when a queue has been exhausted the server 

immediately switches over to the other customer type.  Further, the server performs a 

setup upon switchover and this is done whether or not any jobs are present at the other 

queue.  If there are no jobs waiting in that queue after the setup is complete then the 

server moves back to the other queue setting up again (again, whether or not there are 

jobs waiting).  If a customer of class j  arrives just as the server initiates a setup for 

class i  and there are no class i present in the queue to be worked (and none arrive 

during the setup time) then he must wait yet another setup delay while the server is 

switched back to work on class j . 
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Cooper, Niu and Srinivasan (1999) show that some classes of state-independent 

setups (setting up whether or not work is waiting at that queue) yield equal or even 

less wait times than their state-dependent (setup only when there is work in the queue) 

setup classes.  They consider a switchover time, the time required for the server to 

travel from queue 1−k  to queue k , in addition to setup time (the time required to 

prepare for work at queue k ) and processing time at queue k .  If we assume in a 

manufacturing setting that the review time immediately after a service completion to 

consider if there are jobs immediately available for processing is zero then the 

analogous switchover time in Cooper et al. is zero.  Left with only setup times and 

processing times, they concede that state-independent setup regimes are at best equal 

in expected wait time to their state-dependent counterparts and if any variability is 

present in the setup distribution then the state-dependent regime encounters less 

expected wait than its state-independent counterpart.  

In summary, results for general setup and general service time typically require 

numerical methods due to the existence of an infinite sum term.  Certain 

simplifications can be applied (as are done in cyclic models), but restrictions on setup 

variability quickly reduce the potential in suitability of such models in the o 

manufacturing environment.  There still may exist rules between the extremes of

state-dependent and state-independent that allow polling models to be adapted to 

manufacturing.  For example, one can devise decision rules for setup incidence that 

consider the probability of customer arrival type within a given time interval that 

corresponds to idle time prior to committing to a setup.
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Chapter 3 

FACTORY CONVERSION TO CELLULAR MANUFACTURING 

SYSTEMS

The objective of this part of the research is to use a single simulation model to 

compare functional and cellular layouts across a test bed of factory environments 

extracted from the literature.  In our attempt to perform such a comparison, we follow 

the established practice of most analytical or simulation conversion studies in using 

flow time as the primary performance measure.  We use the flow ratio (FR), which we 

define as the ratio of the average batch flow time in the after cellular conversion to the 

average batch flow time of the job shop with the same factory operational parameters 

of load, machines and batch size.  Therefore, measures below 1.0 indicate flow time 

superiority for the transformed shop.

It is well known that flow time deteriorates when the size of the machine pool is 

reduced, the pooling loss, as described in Chapter 1.  Therefore, for the cellular layout 

to outperform the functional layout, the pooling loss must be compensated for by 

reductions in setup or move times.  The key trade-off we consider is between pooling 

loss and setup reduction.  While a number of well-known studies in the literature have 

studied this tradeoff, each has used its own data on demand, manufacturing 

capabilities, parts structures, and operating rules.  This makes it difficult to compare 

the results across the disparate data sets.  For this research, we have selected six 
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studies from the literature that provide sufficiently specific information for our 

simulation model.  We feel that these studies provide us with sufficient diversity in 

terms of the parts, machines, and operations, used in the manufacturing simulation.  

Having ensured that the same operating rules and measurement procedures apply to 

all data sets, we proceeded to choose a common range of key parameter values.  We 

call this process standardization, although it may also be viewed as a focusing on a 

region of the parameter space where the six different data sets we selected can be 

compared.  Of special importance in this standardization is the use of the same major-

minor setup structure and identical operational rules across all data sets.  This 

provides a level playing field for our simulation study.

3.1 Factory Environment and Notation

We now describe the main characteristics of the factory environment and 

introduce the notation used in our simulation study.  Each data set specifies a set of 

available machines and a set of demands for parts.  The demand is given as a set of 

parts, with associated operations sequences, part families, and demand levels.  The set 

of parts is indexed by i I= 1, ,… .  Each part i  has a unique operations sequence 

consisting of ( )iG  operations.  
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For each part i , the following information is available as input:

( )
( )

( )
( )
( )
( )

( )
( ) belongspart  which family topart 

for sizebatch 

operationitson for  timesetupmajor expected,

operationitson ofunit singleafor run timeexpected,

part ofoperation for therequired typemachine,

,,1eindex wheroperation 

part by requiredoperationsofnumber 

units/yearin part for demand

th

th

th

iif

iib

kikis

kikir

ikkiO

iGkk

iiG

iiV

=

=

=

=

=

==

=

=

…

We assume that the demand for part i  occurs in batches with mean ( )iλ  defined 

as part demand divided by batch size, ( ) ( ) ( )λ i V i b i= .  Sequential processing on the 

same machine type is combined within one operation sequence so that 

( ) ( )1,, +≠ kiOkiO  for all k .

In this research, we do not investigate the effect of move times on the conversion 

benefits in much detail.  We argue that move times are negligible in cells due to the 

proximity of machines.  In the job shop, move times may suffer due to congestion 

effects or limited transport resources.  An investigation of this effect is beyond the 

scope of this research.  However, we should note that if move times simply reflect 

known transport times, then their effect can be studied ex post as described later in 

this chapter.
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3.2 Job Shop Operation

The job shop is configured in a functional layout with J  departments, where 

department j  houses the all the ( )NM j  copies of machine type j .  All machines are 

available 100% of the time at full capacity.  Upon entry, each batch of part i

immediately reports to the department required by the part’s first operation ( )1,iO .  

The batch then travels from one department to the next following its operations 

sequence, until all of its ( )iG  operations are completed.  The batch flow time is 

measured from part batch introduction into the factory (from receiving) to part batch 

leaving the factory (sent to shipping).

3.3 Standardization Scheme

An important theme of the present study is to pursue a dual objective.  On the one 

hand, we wish to preserve the main characteristics of the various data sets as studied 

in the literature, since these do differ in such key inputs as the number of parts, 

number of part families, and the operations required by these parts.  On the other 

hand, we wish to use uniform operating rules, and a comparable setup structure, batch 

size, and job shop load across all data sets.  We believe that this is necessary to gain 

any general insights.  For example, papers in the literature differ in how they account 

for setups in the job shop and the cells.  We use the same setup structure and measure 

setups in the same way in both layouts.  In what we call operational standardization, 

we ensure consistency in the flow control disciplines and adopt a common range of 

parameter as listed in Table 3-1.  These values may be compared to Table 3-2, which 
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lists the rules and parameters adopted by each of the sources used in our test bed.  We 

now discuss and try to justify the choices for each of our baseline parameters.  

3.2.1 Batch Size. We use a common batch size in the job shop for all parts.  From 

the literature, we have noted that batch sizes are generally small for job shops.  Batch 

sizes used for the job shops studied by Suresh (1991, 1992), Shambu (1993), Suresh 

and Meredith (1994), and Shambu and Suresh (2000) were 50 or less.  We therefore 

used a range of 25-50 for our batch sizes.  In this research, we do not use transfer 

batches within the job shop: Transfer batches make sense for cells where all machines 

are placed in close proximity of one another. This makes manual or automated 

machine-to-machine hand-offs reasonable.  Job shop departments typically involve 

much longer distances and require material handling equipment to transfer goods. In 

the cell shop, we use a transfer batch size that is equal to b, 2b , or 1, where b is the 

original batch size used in the JS.  Smaller values of batch sizes in the cells were used 

in the sensitivity runs.

3.2.2 Setup Structure.  We use a major-minor setup structure whereby the setup is 

a major setup, a minor setup, or no setup at all.  The same setup structure is used in 

both the job shop and the cell shop.  The incidence of setups is tied to the family 

structure of parts types (recall that the I  part types are partitioned into F  families 

numbered f F= 1, ,… ).  A major setup is incurred if two parts belonging to distinct 

families are processed consecutively on the same machine.  Switching between two 

different part types in the same family incurs a minor setup.  Naturally, no setup is 

required if a machine processes two batches of the same part type consecutively.      
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3.2.3 Setup magnitudes.  Past studies have shown that the relative magnitude of 

setups is an important factor in conversion studies  [see Morris and Tersine (1990), 

Suresh (1991, 1992), Suresh and Meredith (1994), Shafer and Charnes (1997), 

Shambu and Suresh (2000).]  We therefore control the setup potential, which refers to 

the amount of setup reduction that can be realized by cell conversion.  Setup potential

involves the choice of two parameters-- the setup ratio and the setup fraction.  The 

setup ratio is the ratio of major setup, s , to batch run time, rb ⋅ .  The setup fraction

is the ratio of minor to major setup.  We standardize the setup ratio at 1.0.  We 

selected 1.0 by considering the ranges used in earlier papers: Morris and Tersine 

(1989) use values ranging from 0.06 to1.0, while ranges of 0.4-2.3 and 0.3-6.0 are 

used in Yang and Jacobs (1992) and Suresh and Meredith (1994), respectively.  We 

standardize the setup fraction at 0.20.  This ratio is consistent with the simulation 

studies of Jensen et al. (1996) and within the range of setup fractions of 0.1-0.9 used 

in Garza and Smunt (1991) and Suresh and Meredith (1994).  

3.2.4 Choice of Dispatching Rule.  We use the repetitive lot (RL) dispatching rule 

across all departments.  This rule is used to minimize the incidence of the setup paid 

and Jacobs and Bragg (1988) found this discipline superior to FCFS.  Shambu and 

Suresh (2000) have confirmed its superiority to both FCFS and SPT in the job shop 

and cell environment with setups.  It is also an appealing rule to use given our setup 

structure.  The RL dispatching rule operates as follows:

1. A single (pooled) queue is formed for all batches arriving to be processed at a 

machine center.
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2. Any arriving batch is immediately routed to the available machine where it 

encounters the least setup time.  If no machines are available, the batch joins 

(or forms) a queue to wait for a machine.

3. When a machine becomes available, the next job assigned to it is selected 

based on the minimum setup among all jobs in queue.  If multiple jobs tie at 

this minimum setup value, the FCFS discipline is used to break the tie.

3.2.5 Batch setup and run time

This choice specifies the magnitude of ( brs + ).  While this value may depend on 

the part, the operation, and the machine type used, we standardize the part processing 

time by selecting distributions for the setup and run times.  We use the ( )βErlang−k

with 2=k  and β  = mean of the setup or run time.  We chose this distribution 

because it has less variability than the exponential (CV = 0.707 versus 1.0).  Being 

non-symmetric (and skewed to the right), this distribution is more suitable for the time 

to complete a task (Law and Kelton, 1991, p.186; Pegden et al., 1995, p. 40).  We 

provide results of other choices of distributions in Appendix A. 

3.2.6 Factory Loading and Measurement.  The overall level of utilization in the 

job shop has a major impact on the magnitude of pooling losses observed.  Based on 

the studies used in our test bed, we use a target of 65% for the average machine 

utilization in the job shop.  For examples, Morris and Tersine (1990) loaded their job 

shop at 60%-70%, Garza and Smunt (1991) used 60%, and Suresh and Meredith 

(1994) chose 70% for their job shops.  Values of other studies appear in Table 3-2. 

We reach our target utilization by adjusting the overall factory demand (retaining 
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relative product mix ratios) until the ex-post utilization value reported by the 

simulation lands within 2% of this target value.  A summary of standardized 

parameters is in Table 3-1.

Factor Proposed standard
Batch Size, b 25 to 50, fixed for all parts

Transfer Batch Size b
Part Batch Arrival Rate 

Distribution
Poisson, CV=1.0

Setup Time Distribution 2-Erlang, CV=.7
Run Time Distribution 2-Erlang, CV=.7

Setup Ratio = s /br 1.0, fixed for all part operations

Setup Structure
identical = 0 setup

distinct within same family = minor setup
distinct families = major setup

Setup Fraction = Minor/Major 
Setup

0.2

Dispatching Rule repetitive lot (RL)
Material Handling unconstrained capacity, 0 move time

Labor unconstrained
Job Shop Average Machine 

Utilization
65% ±2%

Machines 100% available at all times

Table 3-1. Choices and parameters values for operational standardization.

3.2.7 Formation Standardization.  We expect conversion results to be sensitive to 

the particular choice of cells.  The configuration of cells formed must therefore be 

closely monitored.  In formation standardization, we ensure that all data sets use the 

same cell formation technique.  While there is a vast literature on cell formation 

techniques (e.g., Singh and Rajamani, 1996), our interest is to choose a single 

algorithm that we can apply to all six data sets.  We chose the cell formation 

procedure due to Vakharia and Wemmerlöv (1990) because it considers both 

sequences and capacities, factors that are left out in earlier cell formation techniques.  
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Vakharia and Wemmerlöv’s method first groups parts by the commonality in their 

operations sequences and then proceeds to assign machines to such groups to provide 

sufficient capacity to meet demand. 

In what follows, the standardized cell configuration refers to the design produced 

by the Vakharia and Wemmerlöv algorithm (V-W) when applied to each data set.  

This procedure generally results in cells that differ from the CMS configuration in the 

original data source.  In fact, differences in the number of cells or number of machines 

of each type can both arise.  In any case, for each data set, we run the simulation 

model twice, once for each cell configuration (source and V-W).

3.4 Choice of Data Sets

One of the objectives of this research on factory conversions is to use a single 

simulation model to run all the data sets in the test bed we selected.  Since sources of 

these data sets (as published in the literature) refer to different factory environments 

and/or modeling assumptions, the uniformity required for the inputs to our simulation 

model is not easily obtained.  Of the 24 data sets cited in the Johnson and Wemmerlöv 

(1996) overview of modeling studies, we used six in our simulation studies because 

they provided information specific enough for our model.  We supplemented these 

with two data sets from Morris (1988).

We require four eligibility conditions in selecting data sets for our study.

1. The original data source must provide a cell configuration; the number of cells 

as well as the assignment of machine types and parts to each cell must be 

specified,
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2. The cell configuration provided must not require inter-cell moves,

3. The number of machines of each type must be specified for both job shop 

departments and each cell, and

4. At least one machine type must have more than one copy in the original 

functional layout. 

Thus, condition (3) excludes a number of data sets in the literature that form cells 

based on part-machine incidence, but do not unambiguously define the machine types 

used.  A number of data sets were eliminated by condition (4).   

In constructing our test bed, we sought data sets that provided some details on 

operations sequences, setup and run times, arrival and processing distributions, and 

available machines as in Table 3-1.  Our final test bed therefore uses six data sets 

from eight sources in the literature (see details in Table 3-2) - all but two were used in 

prior simulation studies by their authors.  None of the authors provided an explicit 

description of the cell formation technique they employed to configure their cell shop.  

The source for data sets 2 and 3 does not provide simulation results for these data sets.  

However, this source does supply the required part and machine structure along with a 

cell solution; we generated the balance of the operational data.  

Table 3-2 lists the operational settings for all data sets as provided in the original 

papers.  A glance at this table shows considerable differences among these settings, 

arguing the case for standardization.  Table 3-3 shows the data sets after 

standardization.
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Table 3-2. Data sets used in analysis as reported by source
(blanks denote omissions by source).
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Data Set ID 1 2 3 4 5 6a 6b 6c
Parts 60 24 45 50 18 40 40 40

Operations/part 4 2-4 2-6 3-7 1-4 2-6 2-6 2-6
Machine Types 8 6 14 10 4 8 8 8

Machines 24 20 35 31 10 30 30 30
Machines/type 3 3-4 2-3 3-4 2-3 3-4 3-4 3-4

Cells 6 4 4 5 3 5 5 5

Batch size, b 10, 15, 20, 25
JS: 32-100
CM: 5-100

1 50 50 50

Setup ratio:
s /br

.05-.35 0.3-6.0 0.4-2.3 0.06
0.06 or .1, .5, 

1.0
0.06

Setup fraction:
min/maj setup

0.1-0.9 0.1-1.0 0.5 0.5 0.5 0.5

Dispatching rule FCFS
FCFS or RL-
F in JS, FCFS 

in cells
RL RL RL FCFS

Source JS avg. 
mach utilization as 

measured by 
simulation

60%
70% with 

b=50
56-86% 44% 60-70%

Cell transfer batch 
size

b b b b , 1 b 1

Arrival rate 
distribution

(CV)

deterministic
(0)

Poisson
(1.0)

3-Erlang
(.58)

Poisson
(1.0)

Poisson
(1.0)

Poisson
(1.0)

deterministic
(0)

Poisson
(1.0)

Setup time 
distribution

(CV)

deterministic
(0)

Poisson
(1.0)

3-Erlang
(.58)

Poisson
(1.0)

Normal
(0.08)

Normal
(0.08)

Normal
(0.08)

Part run time 
distribution

(CV)
0, .33, .66, 1.0

Poisson
(1.0)

3-Erlang
(.58)

Poisson
(1.0)

Normal
(0.36)

Normal
(0.36)

Normal
(.01 per 
batch)

Material handling 
times

2r  or 10r 
between depts.,
0 within cells

3r  - 120r 
between 
depts.,

.75r  within 
cells

.7r 
between 
depts.,

0 within 
cells

5mph + 3 min 
load/unload 

between depts.,
0 within cells

~.15r  between 
depts.,

0 within cells

r  between 
depts.,

0 within 
cells

Unique features of 
data set

(1) (2) (2) (3) (4) (5)

b , batch size; r , run time per part; CV, coefficient of variation

(1) no minor setup in JS, assumes minor setups in cells due to tooling
(2) not simulated by author
(3) part to same part type required minor setup, included run time productivity improvement factor
(4) designed to test MRP vs. Period Batch Control order-release-and-due-date-assignment systems
(5) cell must be empty before setup changeover
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In examining Table 3-2, we particularly focus on five factors that are important to 

us in this study: batch size, setup ratio, setup fraction, dispatching rule and job shop 

loading.  There was a wide range of setup ratio.  Some studies (1, 5 and 6b) evaluated 

the same shop over a range of setup ratios.  In the case of study 4, the setup and run 

time per part were fixed so when the authors varied the batch size the setup ratio 

changed, too.  The setup fraction reflects the setup discounting for similar batches 

processed in sequence.  Studies 1 and 4 tested for this factor explicitly, while the 

others used a midpoint value of 0.5. 

When using simulation to evaluate their factory performance, each source selected 

a certain load for the job shop, and then replicated the same demand for the cell shop.  

The average job shop machine utilization varied from 44% to 86% from data sets 6a 

and 5, respectively.  The authors in study 4 chose the 50=b  case for their job shop 

standard for comparison, which resulted in an average machine utilization of 70%.

Our experiments focus on machine-constrained environments; we do not consider 

labor constraints.  When labor and machine are both limited, then the conversion 

study must study the interaction between these two factors as illustrated in Suresh 

(1993) and Morris and Tersine (1994).  In fact, labor constraints were absent from all 

studies in Table 3-2, except for study 6c.  

For convenience, we report the material handling time included by some of the 

studies for travel between departments.  When included, the time varied from 15% of 

a single part run time, or 0.15r (data set 6b) to 120r (data set 4), with the average 
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being approximately r.  Material handling was always assumed unconstrained so 

travel time and not time due to material handling congestion was included.

Upon standardization, data sets 6a-6c collapse into a single data set in our test bed 

identified simply as data set 6.  Table 3-3 contains the final standardized values of the 

parameters in our test bed.

1 2 3 4 5 6
Parts 60 24 45 50 18 40

Operations/Part 4 2-4 2-6 3-7 1-4 2-6
Machine Types 8 6 14 10 4 8

Machines 24 20 35 31 10 30
Cells 6 4 4 5 3 5

Batch Size (b ) 25 25 25 32 25 50
Cell Transfer Batch Size b

Arrival Rate Distribution (CV) Poisson (1.0)
Setup Time Distribution (CV) 2-Erlang (.7)

Part Run Time Distribution (CV) 2-Erlang (.7)
Setup Ratio (s /br ) 1.0

Setup Fraction:min/maj setup 0.2
Dispatching Rule RL

Material Handling Times 0
JS Average Machine Utilization 65%

Data Set ID

Table 3-3. Data sets characteristics after operational standardization.

We did not expect the standardized formation technique to provide the same cell 

configurations as specified in the sources.  Table 3-4 lists the differences between 

configurations in the source and standardized designs.
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1 2 3 4 5 6

Number of cells from source 6 4 4 5 3 5

Number of cells using 
standardized formation

6 4 4 5 2 5

Machines from source 24 20 35 31 10 30

Machines using standardized 
formation

24 20 41 32 10 32

Data Set ID

Table 3-4. Comparison of cell designs in source and standardized configurations.

3.5 Metrics and the Simulation Model 

The primary metric for the simulation model is average batch flow time.  The 

simulation also tracks key explanatory output measures including average batch setup 

and machine utilization.  While the simulation model is capable of measuring move 

time, we do not do so here based on our standardized move time of zero.  The 

expressions used to calculate these measures are listed in Appendix B.  

We evaluate all six data sets with the same simulation model.  Our model was 

designed to possess sufficient generality to apply to both job shop and cellular 

configurations.  Each data set was first run in its job shop configuration using the 

operational standardization.  We then evaluate the CMS layout following the cells 

designs provided by the data source and ensure that the CMS run uses the same 

relative part volumes as the job shop configuration.  In keeping with recent industry 

survey results (Marsh et al., 1999), we allow for a remainder cell to process non-

related parts. 
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Each experimental condition tested was first warmed-up from an empty factory 

for a period long enough for the WIP to stabilize via inspection of time series plots as 

developed by Welch (1983).  The end state of the warm up period was saved and used

for initial conditions for each of 100 replications starting with different random 

number seeds to avoid autocorrelation.  Each replication was run long enough for 

each part type to have at least 250 completed batches in order for arrival and service 

distributions to be adequately represented in the results.  For example, data set 2 

containing 24 parts and 100-minute flow times was run for approximately 100,000 

simulated minutes per replication.  The same set of random number seeds used across 

replications was used across data sets to reduce variability.  Typically, testing a single 

data set required 300 simulation runs (each data set run at three levels and replicated 

100 times).  The comparisons between job shop and CMS flow times under 

operationally standardized conditions as listed in Table 3-5 are all based on this run 

length and 100=n  replication scheme.

We list both the mean and standard deviation of each statistic in the tables that 

follow.  The mean for each statistic is calculated as ∑=
i

i nxx  where each 

replication provides a data point and n  is the number of replications.  The standard 

deviation is then calculated as ( )
( )
( )1

2

−
−

=
∑

nn

xx
xs i

i

.  This data is sufficient to then 

calculate confidence intervals.  The confidence interval using the t-test as outlined in 

Pegden, Shannon and Sadowski (1990, p.177) is calculated as ( )xsth n 21,1 α−−= .
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The simulation model is written in GPSS/H (Schriber, 1974; Henriksen and Crain, 

1989).  The model was run on a 266 MHz AMD K6-based PC running Wolverine 

Software’s GPSS/H Professional (Release 3: 1995).  The execution time per 

replication per level for each data set was roughly two minutes and equal since each 

shop was loaded at the same level of congestion.

3.6 Simulation Results Comparing Functional and Cellular Layout

Our goal is to measure the results of conversion and to evaluate their consistency 

across data sets.  Prior to showing overall flow time results, we examine the measured 

setup reduction resulting from the conversion to CMS.  We then use this information 

as well as congestion effect to explain the overall flow time results.

3.6.1 Setup Reduction Effect.  We expect a significant reduction in setups as we 

convert to CMS since major setups are eliminated whenever a part family is assigned 

to a single cell.  Tables 3-5 and 3-6 list the average setup time per batch for both CMS 

and JS layouts as reported by the simulation output.  In these tables, the setup is 

measured as a fraction of the JS flow time per batch (which is normalized to 1.0 for 

each data set). Each flow ratio data point is the ratio of the average batch flow time of 

the transformed shop to the original job shop for the same replication. The setup 

reduction is calculated as (1 – transformed shop setup/job shop setup)*100% for each 

replication.  We observe in Table 3-5 that the setup reduction is very consistent across 

data sets and ranges from 69% to 77% with an average setup reduction of 73% per 

batch. The confidence interval using the t-test is calculated as ( )xsth n 21,1 α−−=  so for 
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the setup reduction for data set 1, ( )( ) 00198.0001.09842.1 ==h .  We therefore have 

95% confidence that the true mean is within 0.00198 of 0.69 or roughly within 0.3% 

of our estimate of 69% (0.00198/0.69).  Table 3-6 lists the results when formation 

standardization is used for each data set.  We get similar results indicating that the 

standard cell configuration can also reduce setups significantly. 

mean stdev mean stdev mean stdev mean stdev
1 0.293 0.002 0.090 0.001 69% 0.001 0.72 0.003
2 0.286 0.003 0.066 0.001 77% 0.002 0.87 0.010
3 0.201 0.004 0.060 0.001 70% 0.002 0.89 0.013
4 0.299 0.002 0.085 0.001 72% 0.002 0.78 0.005
5 0.267 0.001 0.069 0.000 74% 0.001 0.80 0.004
6 0.322 0.002 0.078 0.001 76% 0.001 0.82 0.006

average 73% 0.81

Data 
set

Operational Standardization
JS setup CMS setup Setup reduction Flow ratio

Table 3-5. Setup reductions and associated flow ratios for Operational 
Standardization

mean stdev mean stdev mean stdev mean stdev
1 0.295 0.002 0.105 0.001 64% 0.001 0.71 0.004
2 0.284 0.003 0.075 0.001 74% 0.002 0.86 0.008
3 0.250 0.004 0.079 0.001 68% 0.002 0.99 0.006
4 0.303 0.002 0.133 0.001 56% 0.002 0.93 0.007
5 0.149 0.004 0.069 0.003 60% 0.003 1.15 0.069
6 0.307 0.003 0.088 0.001 71% 0.003 0.92 0.014

average 66% 0.93

Data 
set

Formation and Operational Standardization
JS setup CMS setup Setup reduction Flow ratio

Table 3-6.  Setup reductions and associated flow ratios for Formation and 
Operational Standardization

3.6.2 Overall Flow Time Improvements.  To compare flow times, we ran each 

data set with the source and the standardized cell configurations.  The results appear 

in Table 3-5 and Table 3-6, respectively.  The setup reduction realized in the cells 
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tended to overcome pooling losses to outperform job shops by an average of 19% 

corresponding to a flow ratio of 0.81. The confidence interval using the t-test is 

calculated as ( )xsth n 21,1 α−−=  so for the flow ratio for data set 1, 

( )( ) 00595.0003.09842.1 ==h .  We therefore have 95% confidence that the true 

mean is within 0.00595 of 0.72 or roughly within 1% of our estimate of 0.72 

(0.00595/0.72).  The formation standardization results show an average improvement 

of seven percent from conversion corresponding to a flow ratio of 0.93. This 7% 

average improvement increases to 13% if we exclude data sets 5 and 6 containing 

bottlenecks (see Figure 3-1 for high utilization levels for these data sets).  We remind 

the reader that standardized formation results in changes to the number of cells and/or 

machines as shown in Table 3-4.  

It is useful to compare our results with the findings of Suresh (1991) who 

investigated the level of setup required to overcome the pooling loss  (Suresh calls 

this the breakeven δ ).  Using an analytical model, Suresh (1991) reduced the 

magnitude of the setup ( s ) in the cells by 80% to overcome the pooling loss.  A CMS 

with this level of setup reduction will then have the same flow time as the job shop.  

The results of our tests are more favorable to CMS.  We show an average 

improvement of 19% in flow time with a corresponding setup reduction of 72%.  We 

should note that the 80% figure cited from Suresh (1991) corresponds to a simulation 

example using FCFS, no setup discounting in the job shop, and a flat-rate discount in 

the cells.  If we look for operating assumptions closer to ours, we should consider 
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Suresh’s family-based setup configuration for the job shop.  The conversion of this 

configuration to cells (using the same 80% setup reduction and a lot size of 20) 

indicated an improvement of 22%, which is more consistent with our simulation 

results. 

To gain some insights into the flow times reported in Table 3-5 and Table 3-6, we 

can examine the changes in machine utilization in greater detail.  Figure 3-1 shows 

the average overall utilization levels for JS and CMS for each of the six data sets 

(labeled on the horizontal axis).  Also shown are the maximum and minimum average 

utilization levels realized across all machine types.  As expected, the average 

utilization for the job shop stays close to the target line of 65%.  This is because we 

adjust the load on the JS to attain this target utilization within two percent.  The 

simulation output shows that the average utilization after conversion to CMS is 48% 

(this is the lower dashed line in Figure 3-1).  Thus, on the average, conversion yields 

an overall reduction of 17% in the average machine utilization. 

Next, we examine the utilization levels by machine type.  Since conversion 

involves segregating pools of machines in departments into cells, imbalances may 

arise readily unless the cell formation technique takes capacity issues carefully into 

account.  In fact, the range of machine utilization (computed as the difference between 

maximum and minimum levels) increases eight percent when the JS is converted to 

CMS using the source formation technique reflecting the machine loading imbalance.  

The standardized cell formation technique produces a wider range (25% as compared 

to eight percent for the source configuration).
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Figure 3-1. Comparison of machine utilization for JS and CM
(the asterisk refers to standardized formation).

In eight of the 12 results tabulated (5 out of 6 from source and 3 out of  6 for 

standardized formation), conversion succeeds in reducing both the average and the 

maximum utilization.  These are the cases that show favorable flow time reductions in 

Table 3-5.  It is worthwhile to examine the other four cases where the maximum 

utilization has not been eased: 2*, 3*, 5*, and 6*.  First we note that machine types 

utilized less than 65% in the job shop did not have utilization levels exceeding 65% in 

any of the cells.  We therefore provide additional utilization detail form those machine 

types that are utilized more than 65% in the job shop.  As seen in Figure 3-2, each of 

the four cases where the maximum utilization is not reduced exhibits a bottleneck in 

at least one of the cells.  Such bottlenecks arise simply because of the way machines 

may be distributed among the cells during cell formation.  
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Figure 3-2. Simulation results for machine types with utilization above 65% in the 
JS layout.  In the job shop, JS- j  denotes machine type j .  Within cells, C c - j

denotes machine type j  in cell c .

For example, in data set 2 (using standardized formation), we single out machine 

types 1 and 2 in the JS since their utilization exceeds 65%.  Additionally, we show the 

utilization for these two types wherever they occur in the cells.  It is clear from Figure 

3-2 (a) that the utilization of machine type 1 is reduced in cells 1, 2 and 4, but 

machine type 2’s utilization has increased relative to the job shop to 81% in cell 1 and 
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is reduced in cells 2, 3 and 4.  The parts being processed in cell 1 requiring machine 

type 2 experience severe congestion resulting in a high flow ratio for the entire factory 

as seen in Table 3-5.  Example (b) through (d) in Figure 3-2 show similar bottlenecks 

in data sets 3, 5 and 6, when standardized formation is used.  In summary, these 

examples shows that bottleneck effects can dominate the results on flow time in a way 

that cannot be captured by system-wide average utilization alone.

3.7 Sensitivity to Key Operational Factors

In this section we investigate the sensitivity of flow time to four key factors.  First, 

we evaluate the effect of using smaller batch sizes or transfer batches in the cells.  

Next we evaluate the effect of job shop loading.  Then we study the sensitivity to the 

two key parameters of the setup structure.  Finally, we compare the effects of the 

dispatching rule.

3.7.1 Batch Size Reduction and Transfer Batches.  Our results of the last section 

matched the batch size in the cells with the original batch size used in the job shop.  

However, previous research (e.g., Suresh, 1991) shows that the setup reductions 

realized allow us to use smaller batch sizes in the cells than in the job shop and that 

this can have a profound effect on the flow time of cells.  Moreover, cells can also 

make the use of smaller transfer batches possible, since machines are located in close 

proximity in cells.  We therefore study two changes in the cells: (a) cutting the batch 

size to half its original value, and (b) use of transfer batches of size one.  The first 

choice should provide a good idea of how a 50% reduction of batch sizes affects the 

CMS.  The latter tests the extreme case of unit transfer batches to assess the maximum 
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potential benefits small transfer batches are capable of producing (from Wagner and 

Ragatz, 1994, we know that moving to smaller transfer batch sizes within cells 

continues to produce benefits when no additional setup is incurred). 

Table 3-7 compares the flow ratios for the job shop with batch size b  and the 

CMS under four settings: the original batch size b, the reduced batch size 2b , and 

transfer batches of size one used with either b or 2b  as the batch size.  In all cases, 

the flow time improves when a smaller batch size or a transfer batch of size one is 

used.  

b mean stdev mean stdev mean stdev mean stdev
1 25 0.72 0.003 0.46 0.003 0.37 0.001 0.28 0.001
2 25 0.87 0.010 0.56 0.016 0.57 0.015 0.41 0.012
3 25 0.89 0.013 0.63 0.011 0.61 0.010 0.49 0.013
4 32 0.78 0.005 0.50 0.004 0.38 0.003 0.30 0.003
5 25 0.80 0.004 0.50 0.003 0.51 0.004 0.36 0.003
6 50 0.82 0.006 0.52 0.007 0.45 0.004 0.34 0.005
average 0.81 0.53 0.48 0.36

JS to CM
reduced b 

with TB = 1Data
set

JS to CM
baseline b

JS to CM
reduced b

JS to CM
baseline b 

with TB = 1

Table 3-7. Flow times in cells with smaller batch size or transfer batches
(JS flow time with batch size b provides baseline of 1.00).

For example, in data set 1, direct conversion to CMS reduces the flow time by 

28% (flow ratio is 0.72) as compared to the job shop even when the same batch size is 

used.  The use of batch size of 2b  provides an additional improvement of 26% (0.72-

0.46 = 0.26), the use of unit transfer batches with the original batch size provides a 

35% (0.72-0.37 = 0.35) improvement over the advantage of conversion alone.  
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Overall, the batch size reduction to 2b  improves upon the advantage of conversion 

alone by 28%.  Using transfer batches of size one in the cells provides an average 

improvement of 33% over direct conversion (CMS with batch size b).  However, if 

the batch size is already reduced, this improvement averages 17%.  Interestingly, 

starting with a batch size of b in the job shop, the two alternatives of reducing the 

batch size to 2b  or using transfer batches of size one but retaining b in the cells 

produce comparable benefits (0.53 or 0.48).  These results are of the same magnitude 

as those reported by Smunt et al. (1996) where transfer batches of size one were used 

in the first of four stages.  

We also expect the improvement from using transfer batches to increase with the 

number of operations per part.  Figure 3-3 illustrates this relationship for data set 6.  

The vertical axis of Figure 3-3 shows the additional improvement in flow ratio due to 

transfer batches, as compared to CMS without transfer batches.
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Figure 3-3. Flow time improvement using unity transfer batches as a function of 
operations per part (data set 6).

3.7.2 Job Shop Loading Sensitivity.  Our computational runs have shown that 

pooling loss must be linked to the manufacturing load.  As mentioned previously, 

bottlenecks may occur as the pooled resources of the job shop are segregated into 

cells.  If such bottlenecks occur, their effect on flow time will be more pronounced as 

the overall utilization increases. 

We use data set 2 (using standardized formation) to illustrate the case where the 

average machine utilization is reduced as a result of conversion, but the maximum 

machine utilization deteriorates in the CMS.  For this data set, we varied the level of 

utilization from 55% to 85% and ran the simulation repeatedly.  The results appear in 

Figure 3-4.  Recall that the JS utilization sets the level of demand since the relative 

part demands are adjusted until the average machine utilization gets within 2% of the 
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desired utilization value.  Utilization levels above 85% could not be tested for using 

this data set since the maximum utilization in the CMS reaches 100%.  We see that 

the flow time suffers in the CMS when the job shop is loaded at 85%, but for 

machines with lower utilization (in the 65% ±10% range), the effect on flow time is 

modest.  This example shows a point we have observed in other data sets: the flow 

time in CMS is more sensitive to machine utilization than in JS.  Therefore, cell 

layouts may not exhibit superior flow times if bottlenecks appear. 
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Figure 3-4. Job shop loading sensitivity (data set 2).

3.7.3 Setup Potential.  We tested the sensitivity of flow time to the setup potential 

by varying both the setup ratio and the setup fraction.  We ran all nine combinations 
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of the two factors with three levels per factor.  The highest potential occurs when the 

setup ratio 2=brs  and setup fraction equals 0.1, while the lowest potential occurs at 

the pairing (0.5, 0.4).  We chose data set 2 to perform the setup sensitivity runs.  We 

kept the batch size (b ) and part processing time ( brs + ) constant when varying the 

setup ratio ( brs ) and ran each experiment at the standard 65% target average 

machine utilization.  

We expected the (2, 0.1) setting to produce results better than the standard (1, 0.2) 

setting and expected the CMS flow ratios to increase as the potential for setup 

reduction is lowered.  The results in Figure 3-5 are consistent with this expectation: 

the lowest flow ratio corresponds to the highest setup potential.
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s/br=2
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s/br=.5
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Figure 3-5. Response of the flow ratio to the two setup parameters.
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3.7.4 Dispatching Rule. Although we chose the repetitive lot (RL) dispatching 

rule for our analyses, we recognize that not all shops may use a rule tailored to 

minimize the incidence of setup.  We, therefore, compare the use of this rule to first-

come-first-served (FCFS) dispatching to understand the dispatching rule’s effect.  We 

chose one data set from the six (data set 1) and evaluated its flow time at both the JS 

and CMS layouts at a common level of demand using the same simulation model.  

We set the factory load using the same method as before, but used the FCFS job shop 

as the basis: we measured the average machine utilization and then set the demand 

relative to the original demand mix such that the average was within two percent of 

70%.  We chose a slightly different value for the target to keep them clear from the 

results of the conversion study above.  Since these dispatching rules directly affect the 

incidence of setup, we list more detail simulation measurement results in Table 3-8.  

As before, we report the average setup as a fraction of the average JS flow time, but 

here for a given dispatching rule.  We include detailed measures of the incidence of 

setup paid: none, minor and major.  We do this because it enables us to separate setup 

time incurred (which the reader will recall is a function of the ratio of minor to major 

setup) from the setup incidence.  The flow times are listed along with the calculated 

flow ratios.  Finally, the average machine utilization measures are listed (the range 

data for utilization is similar to that shown in Figure 3-1 above).
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mean stdev mean stdev
JS 1290 12.34 1169 6.03

CMS 844 2.63 837 2.28
Flow Ratio 0.65 0.005 0.72 0.003

JS 0.295 0.002 0.293 0.002
CMS 0.084 0.001 0.090 0.001
Setup 

reduction 72% 0.001 69% 0.001
JS 5% 0.001 6% 0.001

CMS 10% 0.002 12% 0.002
JS 40% 0.003 46% 0.002

CMS 90% 0.002 88% 0.002
JS 55% 0.003 48% 0.002

CMS 0% - 0% -
JS 68% 0.005 66% 0.004

CMS 49% 0.003 50% 0.003

Dispatching Rule
FCFS RL

Average machine 
utilization

Setup 
Incidence

Major

Flow Time

None

Minor

Setup

Table 3-8. RL dispatching avoids more major setups in the job shop than FCFS.

The RL flow time in the JS is 9% lower than when using FCFS (1169 versus 

1290).  If we look first at the setup, the impact of either rule seems to be similar.  The 

fraction of flow time in both the JS and CMS as well as the setup reduction are all 

within five percent across dispatching rules.  They are, however, fractions of their 

respective job shop flow times so the FCFS setup is 0.295*1290=381 and the RL 

setup is 0.293*1169=343.  This difference is significant with >95% confidence since 

the mean difference between the FCFS and RL setup times (381-343=38) is within 

1% of its estimate using the paired-t test.  The setup incidence reveals that RL 

requires fewer major setups (48% as compared to 55%).  The reader will recall from 

Table 3-1 that this data set contains 60 discrete part types that make up six part 

families.  The average queue size (not shown in Table 3-8) for the FCFS job shop is 
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0.64 so it is not surprising that the RL dispatching rule rarely has an opportunity to 

bring forward a like part from the queue to process in sequence.  Although RL isn’t 

able to leverage part-to-part sequencing often, it is able to leverage the common 

family parts currently in queue generating more minor setups (46% versus 40% using 

FCFS).  The lower utilization measure is a direct result of the reduced setup paid 

using RL.  The range of machine utilization across the machine types is roughly 

unchanged.

Once the factory is converted to cells, there seems to be little flow time advantage 

to RL over FCFS.  This may be because the major setup reduction is complete and no 

longer a factor.  This particular data set has 10 parts per part family and the average 

queue size in the cells for FCFS (and RL) was 0.10.  The FCFS rule in the cells paid a 

minor setup 90% of the time (which corresponds to the number of discrete part types 

per cell).  Therefore, for RL to improve upon FCFS there must be more than one part 

in queue (and of the same type being processed) so the dispatching rule can pull it 

forward and avoid the minor setup.

3.8 Move times

While we do not focus on move time effects in this research, it is useful to briefly 

explore the magnitude of this effect.  We note that when move times are known and 

not subject to congestion, these times can be added in ex post.  We evaluated this 

effect for data set 2 with 31 total machines, 10 machine types, 50 part types, and five 

part families forming five cells (Suresh and Meredith, 1994).  We set the move time 

equal to ( )brs +α , where α  is a multiplier that we can vary, so that the move time is 
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proportional to the standard processing time per batch (major setup plus batch run 

time).  We used this time every time work was transported between a pair of 

departments in the job shop.  Since we assume that move times in the CMS are 

negligible, the flow ratio should improve as α  increases.  The value 2=α
corresponds to the high level of move time used in Suresh and Meredith (1994).  We 

found that the flow ratio improves 12% each time α  is increased by 1.  The move is 

therefore an independent compensatory factor that can be used to overcome pooling 

loss.  But the preceding example shows that the magnitude of move times has to be 

significant (compared to the batch run time) for it to have an impact. 

3.9 Discussion on Dispersion of Simulation Results in the Literature

We now return to the issue that motivated this study: the large dispersion in the 

results of simulation studies that compare functional and cellular layouts as shown 

previously in Figure 2-1.  In Figure 3-6 we add our results.  The topmost bar of Figure 

3-6 is reserved for the results of our test bed of six data sets.  It is immediately clear 

that the range of results for our runs is narrower than the results of most of the other 

studies and lies consistently in the band that favors CMS.  This remains true even 

when we compare our results to the first group of bars in Figure 3-6 that represent the 

sources of data for our test bed.  This shows that standardization can significantly 

reduce the dispersion across six different data sets.  

The second and third bars in Figure 3-6 show the reduction in flow time for CMS 

resulting from the use of reduced batch sizes or the implementation of transfer batches 

in cells.  For our test bed, the numerical averages reported in Table 3-7 indicate that 
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while retaining the original batch size in CMS produces flow ratios in the range 0.78 -

0.89, using a reduced batch size or transfer batches in the cells can further reduce the 

flow ratios to lie in the range 0.37-0.63. 

0 1 2 3 4

Flynn and Jacobs (1986)

Flynn (1987)

Crookall and Lee (1977), Lee (1985)

Morris and Tersine (1994)

Flynn and Jacobs (1987) small shop

Suresh (1991)

Jensen et al. (1996)

Burgess et al. (1993)

Ang and Willey (1984)

Shafer and Meredith (1990, 1993, 1990 company C)

Leu et al. (1995)

Suresh (1992)

Shafer and Charnes (1993)

Suresh (1993)

Moily et al. (1987)

Morris and Tersine (1990)

Morris and Tersine (1989)

Yang and Jacobs (1992)

Garza and Smunt (1991)

Shafer and Charnes (1995)

Suresh and Meredith (1994)

Standardized using unit transfer batches in cells

Standardized using reduced batch size in cells

Standardized

Flow Ratio Ranges

→ Clear preference for JSClear preference for CM ←

Figure 3-6. Results from standardized approach reduce variability and favor CM.
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One may inquire as to the possible sources of the wide dispersion seen in Figure 

3-6.  Of the 17 data sets where the job shop flow times are superior, eight did not 

discount setups at all.  On the other hand, ten data sets showed better flow times for 

CMS.  Seven of these ten data sets used a high ratio of setup to run time (some going 

up to 6.0, compared to our baseline values of 1.0).  The other three used transfer 

batches in the cells.  For the specific studies included in our test bed, Table 3-9 

compares the flow time results reported in the literature with our results and provides 

our choice of the most likely factors that can explain the difference for each study. 
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JS to CM
TB = b

JS to CM
TB = 1

Source mean mean mean stdev mean stdev

1
Garza and 

Smunt 1991
1.42 n/a 0.72 0.003 0.37 0.001

low s /br 
range

4
Suresh and 
Meredith 

1994
0.93 n/a 0.78 0.005 0.38 0.003

high JS 
utilization

5
Yang and 

Jacobs 1992
0.59 n/a 0.80 0.004 0.51 0.004

large material 
handling effect 
present in JS

6a
Morris and 

Tersine 1989
1.19 0.82 0.82 0.006 0.45 0.004

low s /br
high 

minor/major 
setup

6b
Morris and 

Tersine 1990
1.05 n/a 0.82 0.006 0.45 0.004

high 
minor/major 

setup

6c
Shafer and 

Charnes 1995
n/a 0.90 0.82 0.006 0.45 0.004

low s /br
high 

minor/major 
setup

Source setting 
explaining the 

difference

Data 
Set 
ID

Source simulation 
results

Standardized
simulation results

JS to CM
TB = b

JS to CM
TB = 1

Table 3-9. JS to CMS flow ratios in the modeling literature.

The results of our runs also allow us to compare the relative impact of utilization 

level, setup potential, and batch size reduction.  We have shown this in Figure 3-7 for 

a single data set (#2).  The topmost bar shows the range of flow ratios obtained by 

changing the utilization levels, the second bar shows the results for different 

combinations of the setup ratios and setup fraction, and the last bar shows the effect of 

using a smaller batch size or adopting transfer batches.



92

0.86 0.30

0.56 0.61 1.16

1.16

0.41 0.15 0.31 0.87

0.00

0 1

Batch size

Setup

potential

JS utilization

Flow Ratio

55% to 85%

min/maj setup=0.4 to
s/br=0.5 to 2.0

reduced b with TB=1 effect

baseline b with TB=1 effect

reduced b effect

Figure 3-7. Results of sensitivity analysis for data set 2.

3.10 Summary

In this research, we argue that the wide divergence reported in the literature occurs 

because of differences in the choice of demand data, production environments, setup 

structures, utilization levels, cell formation, and significant disparities in the operation 

of the production system.  The present study attempts to study the sources of variation 

more systematically by standardizing the operating rules of the factories and adopting 

a common set of key parameters ranges, while retaining the differences in demand 

and part type characteristics across data sets.  By performing a set of baseline runs 

with standardized values and a host of sensitivity runs on the level of the standardized 

factors individually, we seek to gauge the effect of each factor more reliably.  

Of pivotal importance to our computational study is the use of six different data 

sets selected from different sources in the open literature, so that the results would not 

be tied to a single profile of part types, mix, or demands.  To our knowledge, this is 

the first study that compares CMS conversion benefits across disparate data sets.  In 
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addition, by using consistent operating principles in the simulation runs, we took 

utmost care to make the comparison between the job shop and CMS environments 

even handed.

Based on over 2000 simulation runs conducted in this study, we can summarize 

our main conclusions as follows.

• The conversion of job shops to cells consistently improves flow time by 10% 

to 20%, for the test bed used in this study.  This result provides a conservative 

estimate of the advantages of CMS because it does not take advantage of such 

additional factors as reduced batch sizes, transfers batches, or move times.  

We conclude that setup reduction can overcome the effects of pooling loss as 

long as the magnitude of the setups is not too small and no significant 

bottlenecks develop in the cells upon conversion.  

• The use of reduced batch sizes, or the implementation of transfer batches, can 

each provide cells with an additional improvement in flow time.  Typically, 

each of these two factors has a significant effect on reducing the flow time for 

CMS, and the amount of reduction is usually at least as large as that obtained 

by conversion to CMS without any changes in the batch sizes.  

• The sensitivity runs show that the overall factory utilization and the potential 

for setup reduction can both affect the conversion results obtained.  Our tests 

indicate that conversion to CMS may not be advantageous if the utilization 

level is high or there is not sufficient potential to reduce setups.
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• The design of cells also has a clear impact on the conversion improvements 

obtained.  Typically, we observed better performance in cells when the 

original source design was used.  However, conversion benefits continue to be 

present even after we use a uniform cell formation procedure due to Vakharia 

and Wemmerlöv (1990).  This indicates that careful allocation of machines to 

cells to avoid heavy utilization helps to keep the pooling loss within tight 

control.

• Our experimental runs support the conclusions of previous authors that RL 

dispatching provides less overall setup and supports lower flow times than 

FCFS in a job shop with setup.  The effect of RL seems to diminish in the 

same factory setting once it incorporates cells.

In summary, we believe that this part of the dissertation has shown that the 

comparison of job shops and cellular systems with respect to the flow time measure 

can produce reasonably consistent results when the same operating rules and key 

parameter ranges are used across different data sets.  Moreover, our research shows 

that setup reduction can overcome pooling losses, even under the conservative 

assumptions where batch size remain unchanged and the material transport times in 

the job shop are assumed to be negligible.  Overall, the conclusions of our research 

are consistent with the qualitative insights cited in the literature when comparing 

CMS and job shops.  However, our research clarifies that the quantitative 

comparisons using the flow time metric must be interpreted in the context of the 
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region of the parameter space spanned by the data sets, as well as the particular design 

used for the cells.  
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Chapter 4 

PARTIAL CELLULAR MANUFACTURING SYSTEMS

Conversion from a job shop environment to cellular manufacturing does not need 

to proceed all the way: one can consider a partial implementation of cellular layout.  

One can investigate what the benefits of a partial cellular layout may be as compared 

to full conversion.  For example, we may ask if a few cells can provide most of the 

flow time benefits associated with full conversion.  To answer this question, we use 

the same data sets we analyzed fully in Chapter 3.  We consider partial cellular 

layouts at all levels ranging between the two extremes of JS (no cells) and CMS (all 

cells).  For each hybrid layout, we evaluate the flow times in both the cells and the 

remainder shop and relate this to congestion effects.  We find that cell selection, 

sequence of cell application, level of cellular implementation and load balance are all 

important considerations in the implementation of partial layouts.

4.1 Simulation Analysis of PCMS

The evaluation of partial layouts follows the schema used in Chapter 3.  For each 

data set considered, there is a complete cellular layout that is known in advance.  This 

is the all-cell layout corresponding to full conversion.  Suppose that this layout uses 

NC  cells.  We can consider each partial layout as a choice of a subset S of the set 

{ }NCT ,,1…= .  Given a subset S of selected cells, let ( )SFR  be the flow ratio of the 

configuration represented by the cells in S  and the remainder shop handling all parts 
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not assigned to these selected cells.  We will use simulation to evaluate ( )SFR  for all 

subsets of a fixed cardinality n , where n  is successively increased from 1 to NC .  

The exhaustive evaluation of all subsets of n  cells allows us to rank sort all subsets of 

size n  with respect to total factory flow time.  For each n , we record the best pick as 

the subset S of size n  that results in the lowest flow ratio and label it ( )nBP  and 

denote its flow ratio ( )nBFR .  Similarly, the worst pick subset of cells at level n  is 

associated with the highest overall flow ratio is denoted by ( )nWP  with flow ratio 

( )nWFR .  

Table 4.1 presents the results of this analysis for all six data sets discussed in 

Chapter 3.  As in Chapter 3, the setup reduction reflects the total setup paid relative to 

the total setup paid in the JS layout.  At each fixed n , we also compare the best and 

worst flow ratios obtained at that level with the best overall pick that gives the lowest 

flow ratio across all n .  We denote this best overall flow ratio as 

( ){ }nBFRBFR min* =  with the minimum taken over all n  from 1 to NC .  This 

minimum may be achieved for the all-cell option where NCn = or a partial layout 

using a smaller number of cells.  We identify the optimum level of cellular 

implementation for each data set as the smallest n  for which there is no further 

marginal reduction in flow ratio.  The marginal reduction in flow ratio at any level 

NCn <  is calculated as 
( ) ( )

*1

1

BFR

nBFRnBFR

−
−−

 or 
( ) ( )

*1

1

BFR

nWFRnBFR

−
−−

 and for 

NCn =  is 
( ) ( )

*1

2

BFR

NCBFRNCBFR

−
−−

.  
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In order to assess the impact of the cellular investment at a given implementation 

level n , we try to relate the factory flow ratio to the fraction of machines and part 

demands sent allocated to the cells.  Specifically, these ratios are computed as 

follows: We indicate the number of machines sent to cells for the best and worst pick 

at level n  as ( )nBM  and ( )nWM , respectively.  Therefore, the fraction of machines 

sent to the cells is calculated as ( ) ∑
j

jNMnBM  and ( ) ∑
j

jNMnWM  (we remind 

the reader from our notation in Chapter 3 that the number of machines of type j  in 

the factory is jNM ).  Similarly, we indicate the total batch demand sent to cells, 

( ) ( )
∑
∈ SFif

iλ  where ( )SF  is the family of parts assigned to the cells in S , for the best and 

worst pick at level n  as ( )nBD  and ( )nWD , respectively.  The fraction of batch 

demands sent to the cells are calculated as ( ) ∑
i

inBD λ  and ( ) ∑
i

inWD λ .  

To illustrate the contents of Table 4-1, we now review the information presented 

for data set 3.  We see from the maximum number of cells formed that there are four 

cells to choose from.  At 2=n , where we allow two cells to be formed, 

( ) { }4,32 =BP .  The simulation results of that pick list that the overall factory will 

enjoy a 70% setup reduction as compared to the original JS.  The measured flow ratio 

from the simulation is 0.890.  This particular pick happens to be equivalent in flow 

time to the all-cell pick.  In this case only 66% of machines and 47% of batch 

demands and have been sent to the (two) cells.  If we read the 4=n  data we see that 
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there is no further reduction in flow ratio if we split up the remaining resources and 

demands. 

The last data set entry, 6†, represents a perturbation to data set 6.  We created a 

bottleneck by shifting the load on a particular machine type: we changed the routing 

of the parts requiring machine type 6 common to cells 4 and 5 such that the machine 

in cell 4 (when selected) was only 20% utilized.  Therefore, whenever cell 4 was 

selected the residual was left with type 6 machine utilization in excess of 90%.  Data 

set 6† is a case where the best partial cell option is better than the all-cell option (the 

difference in the all-cell and partial option 1,2,3 flow times is significant with >95% 

confidence using a paired-t test).
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mean (%) stdev mean stdev
5 19 0.012 0.937 0.011 17 17
4 18 0.012 0.948 0.010 17 17

1,3 37 0.010 0.862 0.011 33 33
2,3 36 0.010 0.890 0.011 33 33

4,5,6 54 0.008 0.787 0.009 50 50
2,4,6 45 0.009 0.836 0.010 50 50

3,4,5,6 66 0.006 0.734 0.008 67 67
1,3,5,6 58 0.007 0.777 0.009 67 67

6 1,2,3,4,5,6 69 0.004 0.716 0.008 100 100
4 30 0.007 0.949 0.008 25 25
1 31 0.007 0.986 0.009 25 25

2,4 62 0.004 0.897 0.009 50 50
1,3 51 0.005 0.956 0.009 50 50

4 1,2,3,4 77 0.002 0.867 0.010 100 100
3 45 0.004 0.911 0.009 40 26
2 32 0.005 0.984 0.012 23 31

3,4 70 0.002 0.890 0.013 66 47
1,2 45 0.004 0.956 0.012 34 53

4 1,2,3,4 70 0.002 0.890 0.013 100 100
4 25 0.004 0.944 0.004 23 21
2 21 0.005 0.959 0.005 19 20

4,5 45 0.004 0.878 0.005 42 40
2,3 41 0.004 0.904 0.005 39 41

3,4,5 66 0.002 0.807 0.004 61 61
1,2,3 59 0.004 0.841 0.005 58 60

5 1,2,3,4,5 72 0.002 0.781 0.005 100 100
1 50 0.003 0.877 0.004 40 33
3 38 0.004 0.915 0.004 30 33

3 1,2,3 74 0.001 0.798 0.004 100 100
2 28 0.008 0.940 0.004 27 26
4 19 0.008 0.989 0.008 17 18

1,2 53 0.007 0.891 0.009 50 49
3,4 37 0.007 0.967 0.009 37 36

1,2,3 72 0.005 0.835 0.008 70 66
3,4,5 53 0.006 0.920 0.009 50 51

5 1,2,3,4,5 76 0.005 0.824 0.009 100 100
1 26 0.003 0.932 0.006 23 23
4 6 0.095 2.008 0.309 17 17

1,2 53 0.003 0.861 0.008 50 49
3,4 21 0.009 2.123 0.335 37 34

1,2,3 75 0.001 0.749 0.005 70 66
2,3,4 59 0.009 1.171 0.079 63 60

5 1,2,3,4,5 78 0.001 0.766 0.005 100 100

6†

1

2

3

3

1

2

1

1

2

3

4

5
1

6

1

2

3

Number 
of cells 
formed

Data 
Set

Machines in 
Cell(s) (%)

4

1

2

3

2

1

2

Batch 
Demands in 
Cell(s) (%)

Setup Reduction
Cell Ids:

Best
Worst

Flow Raio

Table 4-1. Simulation results for best and worst picks at each level of cellular 
implementation. 
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4.1.1 Cell Selection.  To ensure that every potential layout is assessed, we ran the 

simulation model exhaustively for all subsets S  of the set of cells for each of the six 

data sets plus the a perturbed data set 6.  The resulting comparison reveals that the 

choice of the cells at each level makes a difference.  For any n , we observe a 

difference in the flow ratios between the best and worst picks.  Data set 6 shows this 

clearly: at 1=n  the best pick, cell 2, results in flow ratio of 0.940 whereas the worst 

pick, cell 4, results in a flow ratio of 0.989. 

When we look across results from all the data sets we can compare the last two 

columns with the flow ratios.  We see that ( ) NCnnBP <,  always results in a greater 

flow time reduction than the batch demands or machines invested, but this is not the 

case with the worst picks.  Again, using data set 6 as an example, ( )1BP  results in 

34% [(1-0.940)/(1-0.824)*100%] of the possible flow ratio reduction for that data set 

while requiring only 27% of the machines to be located in cells to work on 20% of the 

batch demands.  We contrast this with ( )1WP  resulting in six percent of flow ratio 

reduction [(1-0.989)/(1-0.824)*100%], but requiring 17% of the machines in the cells 

working on 25% of the batch demands.  So, even though there may be several choices 

available that will improve the overall factory flow time, the best pick leverages the 

resources of batch arrivals and machines most effectively.

We also observe that ( )nBP  has setup reduction that matches and often exceeds 

the setup reduction achieved by ( )nWP .  Although large differences in setup 

reduction can account for a portion of the difference between factory flow times, it is 



102

not the only source of such differences.  A good example is available for data set 1 for 

2=n .  The setup reductions achieved by ( )nBP  and ( )nWP  are equal, yet there is a 

three percent difference in factory flow times ( ( ) ( )22 WFRBFR − ).  To explain this 

disparity we must also review the machine utilization as shown in Figure 4-1.
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Figure 4-1. Machine utilization ranges during early stages of CMS implementation.

Both cell utilization levels are well below the original JS.  The best choice ( )2BP

shows a lower average and maximum utilization in the residual while the utilization is 

comparable in the cells.  We get an indication from this example that in comparing 

subsets S  of the same size, a pair of subsets may show equal performance on the cell 

side of the shop but the preferred choice may be the subset that achieves superior 
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performance in the remainder shop.  We also note that there can be flow time 

differences even when the cells seem to allocate the resources equally.  Like the CMS 

analysis in Chapter 3, we find that ex post setup reduction information alone is not 

sufficient to discern the best cell pick(s).

4.1.2 Effect of Sequence.  Full conversions from JS to CMS reported in the 

computational studies found in the literature do not address the order in which cells 

are implemented.  However, the empirical literature clearly shows that firms tend to 

implement “one step at a time.”  Here we address the sequence question.  Using the 

same data sets we ask the natural question, “is there always a nested picking order 

from a single cell to the all-cell conversion option?”  To put it in practical terms, the 

manager should be alerted if a cell that appears to be the best choice at a given stage 

turns out to be an inferior pick once other cells come into being.  In any event, the 

manager prefers nested sequences of subsets S  with increasing cardinality since 

dismantling a cell formed earlier is unattractive.

 In our limited number of data sets tested here we found the occurrence of 

mutually exclusive sets of cells picked at different levels of CMS implementation 

suggesting sequence of cells picked can matter.  

We look at data set 1 for an example of this phenomenon: ( ) { }51 =BP , but 

( ) { }3,12 =BP  and then ( ) { }6,5,43 =BP .  While not shown in Table 4-1, it turns out 

that in this case there is little difference in the factory flow times of the { }6,5=S  and 

the best pick at 2=n , { }3,1=S .  In fact, the former set was ranked second best in a 
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close contest.  Given the best choice for 3=n  level, it is clear that the manger would 

prefer the sequence of cells 5, followed by 6, followed by 4 to a blind implementation 

of the best subset at each level.  Such considerations suggest look-ahead strategies and 

the use of a richer set of criteria in selecting the cells for partial implementation.  

4.1.3 Stopping Rule.  The results of this chapter confirm our statement in Chapter 

1 that the best overall flow may be achieved by a hybrid layout, rather than either a 

pure JS or all-cell options.  In such cases, one should look for rules or strategies to 

halt conversion at some intermediate state instead of proceeding to full conversion.  

This is apparent in the results of the simulation runs for data sets 3 and 6†.  In data set 

3, ( ) *)(2 BFRNCBFRBFR == .  Any further implementation of cells after 2=n

will not result in further reduction in flow time.  In data set 6† further cell picks 

(equivalent to all-cell conversion) will actually degrade the factory overall flow time, 

( ) )(*3 NCBFRBFRBFR <= . 

4.2 Summary

The analysis performed in this chapter provides some insights into implementing 

partial cell layouts (hybrids) using the same test bed as in Chapter 3.  Below we 

summarize some of the lessons learned from the exhaustive computational evaluation 

of all partial layouts.  We did not pursue this line of investigation any further because 

we could not identify general and robust rules that applied across all data sets.  Our 

observations may be summarized as follows:
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1. Even when the number of cells to be included in the partial layout is fixed, the 

choice of the correct subset of cells can have a significant impact on the flow 

time.  In short, selection matters.

2. The sequence of best subsets to pick as n  increases from 1 to NC  is not 

necessarily nested, so sequence matters. 

3. Factory flow time of a partial cellular implementation may be as good as or 

even better than the all-cell option as we have shown in our perturbed data set 

6, so it is important to stop short of full conversion where appropriate.

4. The differences in factory flow times are due to the same factors recognized in 

the all-cell CMS analysis, setup reduction and machine utilization, but neither 

factor alone is sufficient to reliably determine the best subset of cells to select.  

The best picks are characterized by large setup reductions along with 

reduction of utilization in the residual job shop and the lack of bottlenecks in 

the cell(s), so setup reduction and load balance in both the cells and residual 

job shop matter.



106

Chapter 5 

ANALYTIC MODELING OF A SIMPLE SYSTEM WITH SETUP

The analysis of a job shop under the assumptions of the factory environment 

in Chapter 3 presents major challenges in modeling.  The simplest model appears 

to be a queueing network model with setups.  We do not intend to address the 

approximations made by queueing models in this work, especially since 

adjustments for setups are generally not made in any exact fashion.  Instead, in 

this chapter, we use analytic models to gain insights into the extent of setup 

economies that can be obtained by using dispatching disciplines designed to avoid 

unnecessary setups and compare these with first-come-first-serve (FCFS) 

protocols.  We focus on the simplest queueing model we could find that handles 

the effect of setups on flow time exactly.  This system involves two customer 

classes with general service time distributions and setups are incurred when 

switching from one class to the other.  The dispatching rule we investigate is 

designed to minimize the incidence of setups in a queue with two customer 

classes.  This will provide a theoretical underpinning for our empirical findings in 

Chapter 3, where we found that the dispatching rule selected does make a 

difference. 
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5.1 Zero Setup

We start by establishing a baseline in the absence of setups, evaluating flow 

times under FCFS versus a dispatching rule that minimizes the incidence of 

changeovers.  Our comparison involves a system with two customer classes, 

where each customer requires a single operation at the service facility.  Initially, 

we assume that the setup time equals zero, and study the queueing system under 

two different dispatching regimes: Alternating Priority (AP) and FCFS.  We 

already know from Avi-Itzhak et al. (1965) that if the two classes have the same 

service distribution, then the mean flow times of both systems are the same 

(assuming zero setup).  Here, we focus on the asymmetric case where the service 

distributions are different.  Further, we choose cases where the first and second 

moments are easily related and therefore develop our result with the assumption

of exponential service since ( ) ( )22 2 ii SESE = .  We employ two general results for 

our comparison.  To measure the AP (two-queue) flow time, we start with the 

general result from Eisenberg (1967).  We measure the flow time of the FCFS 

(single queue) using the familiar Pollaczek-Khintchine (P-K) formula for the 

M/G/1.  We follow the analytic comparison of AP versus FCFS in the zero setup 

case with numerical comparisons at two arrival rate settings.

Because setup times are not involved, there is no difference between service 

times paid in either regime, so we focus on the average wait time until service, 

versus the flow time, F .  We use the notation qW for the wait in queue when 
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there is zero setup, consistent with queueing notation.  We use the notation 

W when the wait includes non-zero setup.  The flow time always includes any 

setup time paid.

5.1.1 Analytic comparison of AP versus FCFS.  From Eisenberg (1967) the 

general wait time for AP after removing setup for the class-1 queue is: 
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and for the class-2 queue is:
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Together, the overall average wait time is: 
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where ( )( ) 2121 11 ρρρρ +−−=D

but for FCFS, ( ) ( ) ( )[ ]2
22

2
1112
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SESEW FCFS

q λλρ +−= . (2)

This follows from the Pollaczek-Khintchine formula for the single M/G/1 queue:
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12

2SE
Wq . (3)
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For our case ( ) ( ) ( )2
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Now convert to exponential case using ( ) ( )22 2 ii SESE =  or ( ) 222 2 iii SE ρλ =
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For the exponential case, (2) becomes the following
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We can re-write the expression for AP
qW  in (4) slightly differently:
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Consider the bracketed expression within the first term:
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so we can re-write the first two terms of AP
qW
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We now try to relate this to FCFS
qW  by replacing the first expression using the 

relation:
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The final result is: 

( )

( ) ( )
( ) ( ) ( )

( ) ( ) .42121

1

2121
1

2
12

2

1
21

21




 −+−−+−

×−=−

ρρρρρρρρ

ρλ
ρρ

SE

SE

SE

SE

D
WW FCFS

q
AP

q

(6)

We can now ask when the expression within brackets is negative.
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If we let 
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we can re-write (6) as 
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where ( )21 21 ρρ −=A , ( )12 21 ρρ −=B  and ( )[ ]ρρρ −= 121 DC .  

It is well known that the minimum value of 
Q

B
AQ +  equals AB2  if 

21<iρ .  So ( )Qf  has minimum value 
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q    if both 21<iρ .

So, as long as both 21<iρ , we have a bound on how much better AP
qW  can do 

as compared to FCFS
qW .  From this analysis, it is clear that ( ) 0Min <Qf  if 

BA ≠ .

Also, if 1=Q  then clearly ( ) 0=Qf .  Since ( )Qf  is U-shaped, we know that 

there is another root with 1<Q  and ( ) 0=Qf  as illustrated in Figure 5-1.

If AB < , the roots are 
A

B
Q =  and 1 with 1<<

A

B

A

B
 if AB <<0 .
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AB <if

Q

AB /
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AB /
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0

2/1, 21 <ρρ

Figure 5-1. Roots and minimum for ( )Qf  when 21, 21 <ρρ .

We now address the case where the condition 21<iρ  does not hold.  The 

stability of the queueing system requires that 01 21 >−− ρρ  or 121 <+ ρρ .  

Thus, 211 >ρ  forces 212 <ρ .

Since ( ) 01 =f  in all cases, from (7) we see that FCFS
q

AP
q WW =  for 1=Q , so 

1=Q  is a root for the function f .  Since 12 21 ρρ <<  implies that 0>A  and 

0<B , ( ) 0
2

>−=′
Q

B
AQf  for all values of Q .  So f  is strictly increasing over 

[ )∞,0  and 1=Q  is the only root.  As Figure 5-2 shows, this implies that 

FCFS
q

AP
q WW <  if 1<Q

and FCFS
q

AP
q WW >  if 1>Q .
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12 2/1,0 ρρ <<<< AB

Q

( )Qf
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AQBA ++

BA +

( ) ( )BAQBAQQf +−+= /

Figure 5-2. Single root of ( )Qf  when 211 >ρ .

We summarize the preceding discussion in the form of a theorem.

Theorem 1 Consider the two-class single server system with zero setups, 

exponential service times, and Poisson arrivals.  Let the average wait times for the 

AP and FCFS be denoted as AP
qW  and FCFS

qW  and set FCFS
q

AP
qq WWW −=∆ .  

Then ( )Qf
C

Wq λ=∆

where ( ) ( )BA
Q

B
AQQf +−+=

( )21 21 ρρ −=A , ( )12 21 ρρ −=B , ( )[ ]ρρρ −= 121 DC

( )( ) 2121 11 ρρρρ +−−=D , 
( )
( )2

1

SE

SE
Q = , and assuming 21 λλ ≥ .

If 211 >ρ , then ( )Qf  is strictly increasing and has a single root at 1=Q .  

So 0<∆ qW     if 1<Q    and   0≥∆ qW   if 1≥Q .
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If 2112 << ρρ , so that both iρ ’s are less than ½, then ( )Qf  is U-shaped 

and has two roots at 
A

B
Q =  and 1, so that

0<∆ qW    if 1<< Q
A

B

0≥∆ qW    if 
A

B
Q ≤    or 1≥Q .

Theorem 1 applies to exponential service.  We now extend it for use with non-

exponential service.  Previously, we used the relationship between the moments, 

( ) ( )22
ii SkESE = , with 2=k  for the exponential case.  We know that 1=k  for 

constant service times.  We note how k  is related to the coefficient of variation:
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σ
.

Then using k ,

( ) ( )

( )
( ) ( )
( )

( ) ( )
( ) 





−
−++−

−+
−+







−+−=

2

11
2

22
2
2

2
1

1

22
2

11
2
2

2
1

2

2
2

1

2
1

1

1

1

1

1

1

2
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ρ
ρρλρρ

ρ
ρρλρρ

ρλ

ρλ
ρ

ρλ
ρ

SESE

D

k

k
W AP

q

and 

( ) ( )
ρ
ρρ

−
+

=
12

2211 SESEk
W FCFS

q .
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So we have introduced a new factor, 2k , and therefore know the maximum 

benefit received by AP in an exponential service environment will be twice that of 

a constant service environment.

The preceding theorem summarizes the two types of behavior exhibited by the 

difference qW∆ .  We now proceed to map the regions where either AP or FCFS is 

superior in the full parameter space of the problem.

Consider any system with parameters

( ) ( )( )212121 ,,,,, ρρλλ SESE

when ( )iii SEλρ = .  We define a reference system with parameters

( )2121 ,,1,,, λλλλ QQ

where ( ) 12 =SE ,   
( )
( )2

1

SE

SE
Q =

and with no loss of generality, assume that 21 λλ ≥ .

It is clear that we can convert any system to the reference system by a simple 

re-indexing (if necessary) and re-scaling.  Stated otherwise, from the arbitrary 

system  ( ) ( )( )212121 ,,
~

,
~

,
~

,
~ ρρλλ SESE

we get
( )
( ) 





21

2

1
21 ,,1,~

~
,, ρρλλ

SE

SE



118

by defining ( )iii SEλλ ~= .  Note that in such a re-scaling, the iρ ’s remain 

invariant so the expression for qW∆  changes by the scaling factor alone, that is: 

( ) ( ) ( ) ( ) qq WSEQf
SCE

Qf
C

W ∆===∆ 1
1

~

~
~

λλ .

This shows that it is sufficient to map the behavior of the reference system as long 

as qW∆  is of interest.

Consider the system with ( )2121 ,,1,,, ρρλλ Q

where Q11 λρ =   and   22 λρ = .

The stability conditions are 111 <= Qλρ , 122 <= λρ
and 12121 <+=+ λλρρ Q . (8)

We also assume that 21 λλ ≥ . (9)

We consider four cases as listed below.  The first three correspond to 212 <λ
and the last one to 212 ≥λ .  We discuss each case briefly and then summarize 

the results in Table 5-1 and Table 5-2.

Case 1: 212 <λ 12 21 ρρ <<

2: 212 <λ 2112 <≤ ρρ
3: 212 <λ 2121 << ρρ
4: 212 ≥λ 21 21 ρρ ≤<
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Case 1:  The stability conditions and the 21 λλ ≥  requirement define the relevant 

region as 
QQ

2
12

1

2

1
,max

λλλ −
<≤







with 212 <λ . (10)

In this case 12 21 ρρ <<  implies that 0>A  and 0<B , so ( )Qf  as defined in 

Theorem 1 is increasing for 0>Q  and has a single root at 1=Q .  So 

0≤∆ qW if 1≤Q

and 0>∆ qW if 1>Q .

Case 2:  2112 <≤ ρρ .  The region is defined by

QQ 2

1
,max 1

2
2 <≤





 λλλ with 212 <λ . (11)  

Since AB ≤<0  in this region, ( )Qf  has two roots, at ABQ =  and 1=Q , so 

0<∆ qW  if Q  lies between these two roots.  We need to express the condition 

1<< Q
A

B
 as a condition on 1λ .

( )
( ) Q

A

B <−
−

=
21

12

21

21

ρρ
ρρ

means Q



 −

<



 −

2

2

1

21
2

1

λ
λ

ρ

or ( )Q
Q

22
1 1

2
1

−+< −λλ .

So the condition is ( )[ ]QQ 22

1
1

2

1 −+
> −λλ with 1<Q (12)



120

given 212 <λ .

Note that the right-hand-side is decreasing in Q  for 0>Q , and that its value for 

1=Q  equals 2λ .  Since 21 λλ ≥  at all times, the range of validity of this condition 

is up to 1=Q .

Case 3:  2121 << ρρ .  The region requires

Q
2

12

λλλ <≤ for 212 <λ .  (13)

This immediately implies that 1≤Q .  While ( )Qf  has two roots at 1=Q  and 

1>= ABQ , the latter root does not fall into this region, so we conclude that 

0≥∆ qW for 10 ≤< Q .

Case 4:  21 21 ρρ ≤< .  The region is defined by

Q
2

12

1 λλλ −
<≤ for 212 ≥λ .  (14)

The relation (14) forces 
2

21

λ
λ−

<Q  and since 2λ  satisfies 121 2 ≤≤ λ , Q  must 

satisfy 10 << Q .  Since 0≤A  and 0>B  in this region, ( )Qf  is strictly 

decreasing over ( )1,0  and ( ) 01 =f .  So, in this region, we always have: 

0≥∆ qW for 10 ≤< Q .

The four cases are summarized in Table 5-1 for the region 10 ≤< Q  and in Table 

5-2 for Q<1 .  



121

Case Region for 10 ≤< Q qW∆
(1)

12 21 ρρ << QQ
2

1

1

2

1 λλ −
<≤

212 <λ
0≤∆ qW

(2)
2112 ≤< ρρ QQ 2

1
1

2 <≤ λλ

212 <λ

0<∆ qW  if

( )[ ]QQ 22

1
1

2

1 −+
> −λλ

(3)
2121 << ρρ Q

2
12

λλλ <≤
212 <λ 0≥∆ qW

(4)

21 21 ρρ ≤< Q
2

12

1 λλλ −
<≤

212 ≥λ
0≥∆ qW

Table 5-1. Four cases defining the parameter space for 10 ≤< Q .

Case Region for 1>Q qW∆
(1)

12 21 ρρ << QQ
2

12

1

2

1
,max

λλλ −
<≤





212 <λ
0≥∆ qW

(2)
2112 ≤< ρρ Q2

1
12 <≤ λλ

212 <λ
0>∆ qW

(3)
2121 << ρρ N/A

(4)

21 21 ρρ ≤< N/A

Table 5-2.  Four cases defining the parameter space for 1>Q .
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Focusing on the sign of qW∆ , we can state the results in the following form.

Theorem 2 For any system with parameters ( ) ( )( )212121 ,,,,, ρρλλ SESE  with 

the conventions 21 λλ ≥  and ( ) 12 =SE , the Alternating Priority policy is superior 

to FCFS if and only if

12 21 ρρ <<    and   10 ≤< Q

or 2112 ≤< ρρ ,   10 ≤< Q    and   ( )[ ]QQ 22

1
1

2

1 −+
> −λλ

where ( ) ( )21 SESEQ = .

We now illustrate the relevant regions for representative values of the 

parameter 2λ .  We start with the choice 412 =λ .  The stability condition is 

QQ 4

31 2
1 =

−
<

λλ , so 1λ  must lie below the graph for 
Q

y
4

3=  in the 1λ  versus 

Q -space.  The condition 4121 =≥ λλ  must also be satisfied at all times.  The 

region of superiority of AP is given by 0<∆ qW  and corresponds to 

QQ 4

3

2

1
1 << λ for 10 ≤< Q .

For 1>Q , the region 
QQ 4

3

2

1
1 << λ  is where 0>∆ qW  until Q  reaches 3 where 

the constraint 411 ≥λ  becomes binding.

For Case 2, the relevant region is defined by 

QQ 2

1

4

1
1 << λ for 10 ≤< Q
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and 
Q2

1

4

1
1 << λ with 21 ≤< Q .

The condition for 0<∆ qW  is ( )12

1
1 +

>
QQ

λ for 10 << Q .

The relevant regions are illustrated in Figure 5-3.  Moving on to Figure 5-4, 

the regions are shown for 10.02 =λ .  We see that the regions corresponding to 

Cases 1 and 2 for 1<Q  have both widened.  Conversely, in Figure 5-5, when 2λ
increases to 0.4, we see that these regions have narrowed compared to the 

412 =λ  case.  This behavior remains in effect as long as 212 <λ .

Now consider the scenario when 212 >λ .  When 2λ  exceeds 21 , only Case 4 

applies and the region is defined by 

Q
2

12

1 λλλ −
<≤ with 

2

21

λ
λ−

<Q .

For 6.02 =λ , for example, we have 

QQ 5

24.0
6.0 1 =<≤ λ with 

3

2

6.0

4.0 =<Q

so the only relevant region lies between the horizontal line at 6.0  and the curve 

Q5

2
 as shown in Figure 5-6.  Within this region 0≥∆ qW  and outside this region, 

the system is unstable.
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Figure 5-3. Graph of 1λ  versus Q  when 25.02 =λ .  AP and FC indicates 
superiority in that region.

λ2=1/4
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ρ1=1

3/(4Q)

λ1

Q

1/(2Q)FC

FCFC
AP

AP

1/(4Q)
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1/2Q(Q+1)

FC
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Figure 5-4. Graph of 1λ  versus Q  when 10.02 =λ .

λ2=0.1

Unstable

ρ1=1

0.9/Q

λ1

Q

1/(2Q)FC

FC
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AP

AP
1/(10Q)
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1/2Q(4Q+1)

FC
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Figure 5-5. Graph of 1λ  versus Q  when 40.02 =λ .

λ2=.4

Unstable

ρ1=1

0.6/Q

λ1

Q

1/(2Q)

FC
FC

FC

AP

AP

2/(5Q)

λ1=0.40
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Figure 5-6. Graph of 1λ  versus Q  when 60.02 =λ .

5.1.2 Baseline numerical comparisons.  We choose two of the preceding 2λ
settings for our zero-setup baseline, 25.02 =λ  and 60.02 =λ .  Figure 5-7 

contains a matrix of discrete values at equal 0.05 intervals of 1λ  and Q  where the 

numerical value at each location is ( ) 100*100* q
FCFS

q
AP

q WWW ∆=−  as defined 

in Section 5.1.1.  Figure 5-7 therefore resembles Figure 5-3.  We label and 

italicize the cells that unstable due to 1ρ  saturation, “R1,” the cells that are 

unstable due to the sum of the iρ ’s as “RS,” and cells that violate 21 λλ ≥ , “LV”.  

We assist the reader by adding a light shade to the 0<∆ qW  region and darker 

shading to the 0>∆ qW  region.  We leave the region of 0=∆ qW  un-shaded (for 

Q

λ2=.6

Unstable

ρ1=1

2/(5Q)

λ1

1/(2Q)

0.6/Q

λ1=0.60

1/2Q(-8Q+1)

FC

Q=2/3
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example at 1=Q ).  The reader will note that although not coincident with our 

specific measurement points and therefore not shown without shade, the transition 

from 0<∆ qW  to 0>∆ qW  includes the 0=∆ qW  curve.  This is not true when 

transitioning to a zone of instability or 21 λλ ≥  violation.

We remind the reader that we have assumed ( ) 12 =SE , so that ( ) QSE =1  and 

therefore the expected service time equals ( )
21

21

λλ
λλ

+
+

=
Q

SE .  For Figure 5-7, 

25.02 =λ , so ( )
25.0

25.0

1

1

+
+

= λ
λ Q

SE .  The actual wait difference is useful because 

the four largest differences that favor AP in Figure 5-7 are less than 1.5 and all 

four occur when 95.0>ρ  (not shown).  AP, therefore, has little positive impact 

in the absence of setup when 212 <λ .  If 1>Q  then AP can be significantly 

worse than FCFS, but only when 1λ  approaches ( )Q43 . 

For Figure 5-8, 60.02 =λ , so 60.02 =ρ  and ( )
60.0

60.0

1

1

+
+

= λ
λ Q

SE .  We 

simplified Figure 5-8 by trimming off a majority of the unavailable space: 

where 21 λλ <  and for this case ( )212 >λ  where 1>Q .  The load offered by 

each class in the absence of setup is iρ .  AP is biased towards the class that 

provides the majority of the load (we will call this the dominant class.  Since AP 

will not changeover until the current queue is exhausted there is a greater 

likelihood that a dominant class arrival will occur continuing the work session 
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than when working on the lesser class.  Continuing work on the dominant class is 

done at the expense of the other class.  The net result for the 212 >λ  case is 

higher wait times when using AP where the feasible area for this case starts with 

60.0>ρ .  We will see in Figures 5-9 and 5-10 that AP does require fewer 

changeovers as compared to FCFS, but the tradeoff is not always beneficial to the 

overall system flow time, especially when there is no setup time at stake.
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Figure 5-7. Wait time differences (AP-FCFS)*100 when setup is zero and 
25.02 =λ .

Q

λ 1
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1 134 129 126 125 130 147 212 RS RS RS RS RS RS RS RS RS RS RS RS R1

0.95 132 126 123 121 124 135 170 404 RS RS RS RS RS RS RS RS RS RS RS RS
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0.85 126 120 116 114 113 116 128 165 407 RS RS RS RS RS RS RS RS RS RS RS
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0.7 115 110 106 102 99 97 98 101 113 148 366 RS RS RS RS RS RS RS RS RS
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Figure 5-8. Wait time differences (AP-FCFS)*100 when setup is zero and 
60.02 =λ .

5.2 Non-Zero Setup

In this section, we introduce a nonzero setup into the comparison of the two 

dispatching rules AP and FCFS.  We are no longer able to use P-K formula for the 

FCFS wait because it assumes independence in the processing times and we know 

that the setup times are correlated to the service times by the customer class.   The 

solution given by Gaver (1963) allows for the processing time correlation by 

class.  To provide a baseline for comparison, we use the results of the last section 

to report measured differences in wait time as well as differences in the incidence 

of part changeovers (number of switches).  The introduction of setup starts at a 

low level.  The magnitude of the setup is then increased until it equals the batch 

service time, a level that is consistent with our simulation studies in Chapters 3 

and 4.

5.2.2 FCFS versus AP in the Non-Zero Setup Environment.  We continue 

with the comparison started in section 5.1 comparing AP to FCFS now with non-

zero setup.  

Q

λ1
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The inputs to both FCFS and AP flow time calculations are the same:  

• Two streams of Poisson arrivals with mean arrival rates 2,1=iiλ , 

λλλ =+ 21 , λ
λi

ia =

• Distribution function of the service time of a type- i  customer: ( )tF
iS , 

first moment: ( )iSE , second moment: ( )2
iSE .  Laplace-Stieltjes 

transform of distributions: ( ) ( )∫∞ −=
0

d tFez
iS

zt
iγ (15)

Note: If the service time is exponential then ( ) ( )i
i SzE

z
+

=
1

1γ (16)

• Distribution function of the setup time of a type- i  customer: ( )tF
iU , 

first moment: ( )iUE , second moment: ( )2
iUE .  Laplace-Stieltjes 

transform of distributions: ( ) ( )∫∞ −=
0

d tFez
iU

zt
iκ (17)

Note: If the setup time is exponential then ( ) ( )i
i UzE

z
+

=
1

1κ (18)

The FCFS wait time (wait in queue prior to setup or service) of Gaver (1963) 

is based on a Markov process with a simple integro-differential forward 

Kolmogorov equation. The waiting time of a random arrival at t , ( )tW , depends 

on the class of the last service which will determine whether or not a setup is 

required.  If the arrival is of the same class then there is no setup required, 

otherwise a setup must occur prior to service.  The joint probabilities result:

( ) ( ){ xtWPtxF ≤=,1 , last demand prior to t in class }1
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and

( ) ( ){ xtWPtxF ≤=,2 , last demand prior to t in class }2

Under suitable conditions, the functions ( )txFi ,  will have a limit as ∞→t .  If 

we denote the limiting functions by ( )xFi ,  the Laplace-Stieltjes transforms by 

( )sfi , then we have

( ) ( ) ( ){ } ( ) ( ) ( )[ ]
( )sD

ssFssFs
sf 1112221

1

00 γκλγλλ −+−
= (19a)

and

( ) ( ) ( ){ } ( ) ( ) ( )[ ]
( )sD

ssFssFs
sf 2221112

2

00 γκλγλλ −+−
= (19b)

where

( ) ( )[ ] ( )[ ] ( ) ( ) ( ) ( )sssssssssD 2211212211 γκγκλλγλλγλλ −+−+−= (20)

and ( ) ( )( ) 1lim 21
0

=+→ sfsf
s

. (21)

By taking the limit of (19) we note the probabilities, ( )xF1  and ( )xF2 , are related 

by:

( ) ( ) UFF −=+ 100 21 (22)

where ( ) ( ){ }


 ++= 212
21 UEUEU λ

λλλρ    and  ( ) ( )2211 SESE λλρ += .

This is exactly the same utilization measure obtained using conditional 

probabilities as outlined in Section 2.2.1.
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The expected wait is prior to setup or service is 

( ) ( )WEWE 21 + (23)

where ( ) ( ) ( )
ds

sdf
WE

s

1

0
1 1lim −=

→
  and  ( ) ( ) ( )

ds

sdf
WE

s

2

0
2 1lim −= →

and

( ) ( ) ( ){ } ( ) ( )
( )

( ) ( ) ( )[ ( ) ( ) ( ) ( ){

( ) ( ) ( ) ( ) ( ) ( )]
( ) ( ) ( ) ( ) }222

22

442
12

1

010

2211
2
22

2
11

2
2

2
11221

221121212
1

1112221
1

−++++

++++

++−×−+

−
++−

=

SESESESE

UEUESEUESEUE

SEUESEUESESE
U

U

SUEFSEF
WE

λλλλλλ

λλλ
λ

λ
λλ

(24)

( ) ( ) ( ){ } ( ) ( )
( )

( ) ( ) ( )[ ( ) ( ) ( ) ( ){

( ) ( ) ( ) ( ) ( ) ( )]
( ) ( ) ( ) ( ) }222

22

442
12

1

010

2211
2
22

2
11

2
2

2
11221

221121212
2

2221112
2

−++++

++++

++−×−+

−
++−

=

SESESESE

UEUESEUESEUE

SEUESEUESESE
U

U

SUEFSEF
WE

λλλλλλ

λλλ
λ

λ
λλ

(25)

using ( ) ( ) ( ) ( ){ }
( ){ } ( ) ( )ssss

ssU
F

11122

111
1

1
0 γκλγλλ

γκλ
++−

−
= (26)

and from (20) ( ) ( )010 12 FUF −−= (27)

Numeric methods are required to solve for the positive real root of ( )sD  which is 

required to eliminate the singularity of (19).

The AP system state definition Eisenberg (1967) uses is based on service 

completions.  For AP, Eisenberg provides an expression for the probability that a 
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service completion by an arbitrary customer is followed by a changeover.  To 

compute this probability, he uses numerical methods even in the case of zero 

setup times.  The changeover probability is a result of the AP flow time 

calculations by Eisenberg (1967) which we review after the FCFS flow time 

calculations by Gaver (1963).

FCFS and AP Flow Time Calculations.  Due to the complexity of the 

computations we provide the necessary background for the reader to replicate 

results.  For both FCFS and AP calculations we provide step-by-step details of the 

computations leading to the mean flow time.  We also include a description of the 

imbedded state probabilities for the AP model.  The changeover probability is 

pointed out after each wait equation is stated.

FCFS Flow Time Calculations.

1 Determine the positive root of ( )sD .  Using Newton-Raphson method:

1.1 Set 9.0=s  as the first guess of the root.

1.2 If ( ) ε<sD  , stop and retain positive root, s .  Otherwise compute a new 

estimate for the root using ( ) ( )sDsDss ′−= . 

If exponential setup and service distributions, 

( ) ( )[ ] ( )[ ] ( )[ ] ( )[ ] ( )[ ] ( )[ ]

( )[ ] ( )[ ] ( )[ ] ( )[ ]
22

2

2

1

1

2

2

1

1

2121

21

21

21

2
1111

111111

ss
SsE

s

SsE

s

SsESsE

UsEUsESsESsESsESsE
sD

+−+
+

+
+

+
+

−
+

−

++++
−

++
=

λλλλλλλλ

λλλλ
(28)
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and

( ) ( )
( )( )

( )
( )( )

( )
( )( ) ( )( ) ( )( )

( )
( )( ) ( )( ) ( )( )

( )
( )( ) ( )( ) ( )( )

( )
( )( ) ( )( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( ) .2
11

2

111

111111

11111

2

2
22

1

1
11

2211
211

2

221

1

121

2

221

1

2

1

1

2
21

s
SsE

SsE
SsE

SsE

SESE
SsEUsESsE

UE

SsEUsESsE

UE

SsEUsEUsE

SE

SsEUsEUsE

SE

SsE

SE

SsE

SE
sD

+
+

++
+

+−−

++


+++
+

+++
+

+++
+

+++


+
+

−
+

−=′

λλλλλ

λλλλ

λλ

(29)

2 Calculate utilization including expected setup: 

( ) ( ){ }


 ++= 212
21 UEUEU λ

λλλρ  where ( ) ( )2211 SESE λλρ += (30)

3 ( ) ( ) ( ) ( ){ }
( ){ } ( ) ( )ssss

ssU
F

11122

111
1

1
0 γκλγλλ

γκλ
++−

−
=  using s  from step 1.2 (31)

If exponential setup and service distributions,

( )
( ) ( ) ( )

( ) ( ) ( )11
1

2
2

11
1

1

1

1

1

1

1

1

1

1

1

1
1

0

SsEUsESsE
s

SsEUsE
U

F

+
⋅

+
+







+
+−







+
⋅

+
−

=
λλλ

λ
(32)

4 ( ) ( )010 12 FUF −−= (33)

5 ( ) ( ) ( )
ds

sdf
WE

s

1

0
1 1lim −= →
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( ) ( ){ } ( ) ( )
( )

( ) [{

]
( ) ( ) ( ) ( )}2211

2
22

2
11

2
2

2
12211

212121212
1

1112221

222

)()()()(2)()(2

)()(2)()(2)()(2
12

1

010

SESESESE

UUESEUESEUE

UESESEUEUEUE
U

U

SUEFSEF

λλλλλλ

λλλ
λ

λ
λλ

++−++

++++

++×−+

−
++−

=

(34)

6 ( ) ( ) ( )
ds

sdf
WE

s

2

0
2 1lim −= →

( ) ( ){ } ( ) ( )
( )

( ) [{

]
( ) ( ) ( ) ( )}2211

2
22

2
11

2
2

2
12211

212121212
2

2221112

222

)()()()(2)()(2

)()(2)()(2)()(2
12

1

010

SESESESE

UUESEUESEUE

UESESEUEUEUE
U

U

SUEFSEF

λλλλλλ

λλλ
λ

λ
λλ

++−++

++++

++×−+

−
++−

=

(35)

7 Wait in queue prior to processing (does not include setup) is

( ) ( )WEWE 21 + (36)

8 Wait in queue prior to service (comparable to AP wait) is

( ) ( ) ( ) ( )[ ]212
21

21 UEUEWEWEWFCFS +++= λ
λλ

(37)

9 Flow time is 

( ) ( ) ( ) ( ) ( ) ( )


 ++


 +++= 1
1

2
2

2
2

1
1

21 UESEUESEWEWEF λ
λ

λ
λ

λ
λ

λ
λ

(38)

The probability that an arbitrary customer is followed by a changeover is

2
212

λ
λλ

. (39)
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AP Imbedded Markov State Probabilities.  Recalling from Chapter 2, 

Eisenberg considers the imbedded Markov process of queue lengths at the instant 

of service completion, and includes the class of service just completed.  Thus, 

state i
mn denotes “server is at line i  and m  customers are waiting at line 1 and n

customers are waiting at line 2.”  The imbedded process is described as follows.

• State is ( )nmi ,;  where i  is customer type of service just completed, m

and n  are numbers of customers present in queues 1 and 2, respectively.

• Equilibrium probability that an arbitrary service completion leaves the 

system in state ( )nmi ,;  is i
mnπ .

Now we define the transition probabilities of the imbedded Markov chain 

( ) ( )[ ]''' ,;,; nminmiP → .  Using equilibrium equations:

( ) ( )[ ]∑∑∑
=

∞

=

∞

=

→=
2

1 0 0

''''
'' ,;,;

i m n

i
mn

i
nm nminmiPππ (40)

and normalization condition, λλπ ii
m n

i
mn a ==∑∑∞

=

∞

=0 0

, (41)

the fraction of all possible states left by customer type- i  completions (noting 

∑∑∑
=

∞

=

∞

=

=
2

1 0 0

1
i m n

i
mnπ ).  The generating functions of the imbedded state probabilities 

are ( ) ∑∑∞

=

∞

=

≡
0 0

,
m n

nmi
mn

i vyvy ππ . (42)
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The transition probabilities for the process are defined as =ijp prob( i  type-1 

customers and j  type-2 customers arrive during the service time of a type-1 

customer) 

( )[ ]( )[ ] ( ) ( )∫∞ +−=
0 21 1

21 d!! tFejtit S
tii λλλλ (43)

• =ijq  prob( i  type-1 customers and j  type-2 customers arrive during the 

service time of a type-2 customer 

( )[ ]( )[ ] ( ) ( )∫∞ +−=
0 21 2

21 d!! tFejtit S
tii λλλλ (44)

• =ijr  prob( i  type-1 customers and j  type-2 customers arrive during the 

changeover from 2 to 1) 

( )[ ]( )[ ] ( ) ( )∫∞ +−=
0 21 1

21 d!! tFejtit U
tii λλλλ (45)

• ( ) ≡vyR , generating function of transition probabilities (of type-1 and type-2 

arrivals) during type-1 setup so 

( ) ( )vyvyR 22111, λλλλκ −+−= (46) 

• =ijh prob( i  1-customers and j  2-customers during changeover from 1 to 2

( )[ ]( )[ ] ( ) ( )∫∞ +−=
0 21 2

21 d!! tFejtit U
tii λλλλ (47)

• ( ) ≡vyH , generating function of transition probabilities (of type-1 and type-2 

arrivals) during type-2 setup so 

( ) ( )vyvyH 22112, λλλλκ −+−= (48)
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( )ziβ  is the Laplace-Stieltjes transform of the customer type- i  busy period 

distribution function in isolation where

( ) ( )( )zzz iiiii βλλγβ −+= . (49)

Note: If the service time is exponential then

( ) ( ) ( )
411

2

1
2







−





++−++= i
i

i
i

i
i

i

zz
z ρ

µ
ρ

µ
ρρβ (50)

Let ≡g ratio of number of times the system is emptied by completing service 

on type-2 customer to type-1 (a constant).  We must solve for g because it relates 

the limits of the generating functions used in the mean wait equation.  These 

generating functions are boundary conditions for the states of the system and are 

defined as:

( ) ( )[ ] ( )[ ] ( )
( )[ ] ( )[ ]1,

,

2211221

2211221
2

221
1

−−−+
−+−−=

vavvgR

vavgvvRv

λλβλλβ
λλβλλβηλλβη

(51)

( ) ( )[ ] ( )[ ] ( )
( )[ ] ( )[ ]1,

,

1122112

1122122
1

112
2

−−−+
−+−−=

yayyH

ygayyyHyg

λλβλλβ
λλβλλβηλλβη

(52)

In solving for g , we also solve for the limiting value of the generating 

function ( )11η .  The limits of the generating functions are related using

( ) ( )[ ]2
2

1
1 11 aga −=− ηη .  (53)

Only one value of g  leads to a consistent solution of the functional equations.  

We build the functional equations with many different sizes of their arguments by 
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first initiating them with either 00 =v  or 00 =y .  We use the fact that 1lim =∞→ i
i

v

which implies ( ) ( )1lim 11 ηη =∞→ i
i

v  and therefore they converge regardless of the 

starting point.  This is only true when g  is chosen correctly.  The solution is 

calculated as follows.

Select two arbitrary values of 2,1: =kgg k .  Since g  is a ratio of incidences, 

restrict 0≥g .  For each value of g  compute two limiting ( )v1η  values, ( )11η , by 

calculating it with two different initial conditions: 00 =y  and 00 =v  per the 

procedure below and define the result as follows: ( ) ( ){ }kk ggvv ====Γ ,010 0
1

0 η

and ( )00 =Γ yk  similarly.

Using kgg =  set 1=k

1 Set ( ) 00,0 == yj , let ( ) ( )jvj 111 ηη =  and ( ) ( )jyj 221 ηη = , ( ) 1012 =η

1.1 ( ) ( )[ ]jyjv 112 λλβ −=

1.2 ( ) ( )[ ]jvjy 2211 λλβ −=+

Starting iterations are therefore: 

( ) 00 =y , ( ) [ ]120 λβ=v , ( ) ( )[ ] [ ][ ]12221221 01 λβλλβλλβ −=−= vy , and 

( ) ( )[ ] [ ][ ][ ]12221112112 11 λβλλβλλβλλβ −−=−= yv . 

1.3 ( ) ( ) ( ) ( )[ ]
( ) ( )( )jvjyH

jvajg
jvaj

,
1

11 2
2

2
1 −+−= ηη  where 

( ) ( )[ ] ( ) ( )[ ]jvjyjvjyH 22112, λλλλκ −+−=
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since ( )[ ] ( ) ( ) ( )[ ]
( )[ ]yyH

yayg
yay

i

i

112

1122
2

1122122
1

,
1 λλβ

λλβηλλβλλβη −
−−+−−=−  and 

( ) g=02η

1.4 ( ) ( ) ( ) ( )
( ) ( )[ ]jvjygR

jyaj
jyaj

,1
11

1111 1
1

1
2

+
+−++−=+ ηη  where 

( ) ( )[ ] ( ) ( )[ ]jvjyjvjyR 22111 1,1 λλλλκ −++−=+

since ( )[ ] ( ) ( ) ( )
( )[ ]vvgR

vav
vav

,
1

221

2211
1

2211221
2

λλβ
λλβηλλβλλβη −

−−+−−=−

1.5 Assign ( ) ( ){ }kk ggjv ===Γ 10 1
0 η

1.6 Repeat steps (1.1 – 1.5) until sign of convergence: ( ) ( ) ε<−− 1jvjv

1.7 Retain ( ) ( ) kk ggvjv ====Γ ,010 0
1

0 η  since ( )j11η  at the last value of j

represents ( )11η
2 Reset ( ) 00,0 == vj , let ( ) ( )jvj 111 ηη =  and ( ) ( )jyj 221 ηη =  and ( ) 1011 =η

2.1 ( ) ( )[ ]jvjy 221 λλβ −=

2.2 ( ) ( )[ ]jyjv 1121 λλβ −=+

Starting iterations are therefore: 

( ) 00 =v , ( ) ( )[ ] [ ]21221 00 λβλλβ =−= vy , ( ) ( )[ ] [ ][ ]21112112 01 λβλλβλλβ −=−= yv , 

and ( ) ( )[ ] [ ][ ][ ]21112221221 11 λβλλβλλβλλβ −−=−= vy .

2.3 ( ) ( ) ( ) ( )
( ) ( )[ ]jvjygR

jyaj
jyaj

,

1
11 1

1

1
2 −+−= ηη  where 

( ) ( )[ ] ( ) ( )[ ]jvjyjvjyR 22111, λλλλκ −+−=
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since ( )[ ] ( ) ( ) ( )
( )[ ]vvgR

vav
vav

,
1

221

2211
1

2211221
2

λλβ
λλβηλλβλλβη −

−−+−−=−  and 

( ) 101 =η

2.4 ( ) ( ) ( ) ( )[ ]
( ) ( )( )1,

11
1111 2

2

2
1

+
+−++−=+

jvjyH

jvajg
jvaj

ηη  where 

( ) ( )[ ] ( ) ( )[ ]11, 22112 +−+−=+ jvjyjvjyH λλλλκ

since ( )[ ] ( ) ( ) ( )[ ]
( )[ ]yyH

yayg
yay

i

i

112

1122
2

1122122
1

,
1 λλβ

λλβηλλβλλβη −
−−+−−=−

2.5 Assign ( ) ( ){ }kk ggjy ===Γ 10 1
0 η

2.6 Repeat steps (2.1 – 2.5) until sign of convergence: ( ) ( ) ε<−− 1jyjy

2.7 Retain ( ) ( ){ }kk ggyjy ====Γ ,010 0
1

0 η  since ( )j11η  at the last value of 

j  represents ( )11η
3 Set 2=k , repeat steps 1 and 2. 

4 The convergence is linearly dependent on g  so we evaluate the differences 

in ( )11η  starting with 00 =v  and 00 =y  at the two arbitrary values of g  and 

then get *gg =  by

( ) ( )[ ] ( ) ( )[ ]
( ) ( )[ ] ( ) ( )[ ]0000

0000

01010202

0101202021*

=Γ−=Γ−=Γ−=Γ
=Γ−=Γ−=Γ−=Γ=

vyvy

vygvyg
g (54)

5 Set *gg = , repeat steps in section 1 of this procedure above to determine 

( ) ( ){ }*
0

1
0 ,010 ggvjvk ====Γ η  which represents ( )11η  and using (32) we 

get ( )12η .
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At this point we can calculate the idle state probabilities using

( ) ( )[ ] ( )[ ]1
1

21

211
00

11

1

aUEUEg −+++

−−
= ηλ

ρρπ . (55)

The total idle fraction is then ( )g+11
00π . (56)

The wait prior to service for a class-1 customer with AP dispatching and non-zero 

setup is finally: 

( )( )( )
( ) ( )( )[ ]{ ( )[ ]

( ) ( ) ( )[ ]
( ) ( )( )[ ] ( ) ( ) ( )[ ]

( ) ( )( )[ ] ( ) ( ) ( )[ ]
−+++−−−−


+

−+++−−


 +
+

+−−+
−++−−

×
++−−−−=

2
21

2
1

2
2

2
21

2
2121

2
221

2
11

2
2

2
21

2
21

21

2112122

2112
2
21

2
211

21212121
1

1111
2

111
2

11

111

211

1

UEUE
C

SESE
CC

CCUE

CCUE

CC
W

ρρρρρρρρ

λρλρρρρρ
ρρρρ

ρρρρρρ
ρρρρρρ

(57)

using ( )[ ]1
1 1 aC −≡ ηλ , ( )11 1 UCEC +≡ , ( )22 UCEgC +≡

and 2W  is the same equation with the subscripts switched.

The overall expected wait time is the convex combination of the expected wait 

times of the two classes: 2211 WaWaWAP += .  The probability that an arbitrary 

customer is followed by a changeover is ( )( )1
11

00 12 a−ηπ .  

Changeover Comparisons. Each cell in Figure 5-9 and 5-10 contains the 

FCFS probability of setup above the AP probability of setup.  We see in both 

figures that AP always requires fewer changeovers than FCFS in the zero setup 

case.  The FCFS probability is invariant to Q  since from equation (39) the 
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probability of a random arrival requiring a changeover is 
2

212

λ
λλ

.  The AP 

probabilities monotonically decrease with increasing Q  at any 1λ  (increasing 

utilization) and approach zero at saturation.  Queue sizes grow with load; 

therefore, AP has a greater probability of a non-empty queue of the class currently 

being serviced from which to draw at higher utilization levels.  This fact will lead 

to an increase in system capacity when compared with FCFS when setup is non-

zero.
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Figure 5-9. Probability of setup (FCFS% above AP%) when setup is zero and 
25.02 =λ .
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Figure 5-10. Probability of setup (FCFS% above AP%) when setup is zero and 
60.02 =λ .

We add setup time in a way consistent with our analyses of Chapters 3 and 4, 

using the setup fraction, as a ratio of the expected batch service time (with a batch 

size of one).  We evaluate a range of setup magnitudes starting with a very low 

setup fraction of 0.001.  Our highest level is 1.0, the level we use in our 

operational standardization in Chapter 3 and Chapter 4.  We compare the baseline 

AP-FCFS wait differences of Figure 5-7 to non-zero setup using numerical 

methods.  We identify regions of interest that we explain as follows.  The FCFS 

system stability is limited as stated in Chapter 2 by

( ) ( ) ( ) ( )[ ] 10 21
21

2211 <+++=≤ UEUESESEU λ
λλλλ ,

but the AP system is only limited by ( ) ( ) ( ) 10 2211 <+=≤ SESESE λλλ .  We 

identify this disparity in system capacity for the non-zero setup cases in the 

figures by AP.  

Q

λ1
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The first comparison is made for the symmetric cases where 21 λλ = , 

( ) ( )21 SESE = , and ( ) ( )21 UEUE = .  Figure 5-11 with 2.0=iλ , is characteristic 

of the symmetric comparisons.  We immediately see that in the presence of setup 

AP always requires less wait than FCFS and without setup ( 0.0=iU ), there is no 

difference between AP and FCFS wait.  We also note that the AP wait is 

monotonically better than FCFS with both increasing setup and service. As setup 

is introduced AP will minimize the changeovers and in the symmetric case 

provide lower wait times.  Given any fixed  iλ , as setup and service times 

increase so does the utilization and, thus, expected lengths of the queues.  AP by 

avoiding changeovers is able to provide a stable system in areas where FCFS is 

saturated. 
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Figure 5-11. Wait time differences (AP-FCFS)*100 for symmetric cases when 
2.0=iλ .

Figures 5-12 through 5-15 show a progression of the effects of setup when 

25.02 =λ .  With minimum setup added ( ) ( )( )SEUE *001.0= we see the equality 

E(Ui)

E(Si)
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at 1=Q has been replaced entirely by AP.  The dominance of AP, where only AP 

yields the lesser wait as compared to FCFS, is quickly realized.  We note that only 

5% setup is needed for AP to dominate the 1>Q  region as shown in Figure 5-13.  

As we expect from the stability limits, the AP win area increases with setup 

magnitude, especially approaching the region of instability. 
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Figure 5-12. Wait time differences (AP-FCFS)*100 when E(U)=0.001*E(S) and 
25.02 =λ .
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We note an interesting pattern in the figures illustrating the wait differences.  

Figure 5-12 at the 65.01 =λ  setting shows the AP-FCFS wait to be negative just 

prior to the region of saturation.   This pattern is also seen in Figure 5-16 for three 

settings: 40.01 =λ , 45.01 =λ , and 50.01 =λ , but not in Figure-17.  To explain 

this pattern we show the actual wait times for AP and then FCFS for 50.01 =λ  at 

four levels of setup magnitude in Figures 5-13 and 5-14.  We then follow with a 

plot of the difference in flow time for the 50.01 =λ . 
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Figure 5-14. Wait time when 50.01 =λ , 25.02 =λ  using FCFS.

If we superimpose the wait time curves we find that the FCFS curves are 

steeper at the same ( )1SEQ = .  This is because the wait time, driven by 

congestion, is a function of both service and setup times and AP pays less setup 

than FCFS.  This steeper slope near saturation causes the wait curves to intersect.  

We show the case of ( ) ( )SEUE *01.0=  and identify three points of intersection 

of the two curves.  This does not happen with greater setup magnitude because the 

FCFS wait curve is shifted up, intersecting the AP wait curve in only one place.  

Figure 5-15 shows the three points of intersection for the 50.01 =λ , 25.02 =λ
and ( ) ( )SEUE *01.0=  case.
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Figure 5-17. Wait time differences (AP-FCFS)*100 when E(U)=0.05*E(S) and 
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Figure 5-18. Wait time differences (AP-FCFS)*100 when E(U)=1.0*E(S) and 
25.02 =λ .

Q

λ 1
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Under certain circumstances FCFS will provide less wait than AP even when 

setup time is non-zero.  There are two regions, one characterized by 

( ) ( )12 SESE >  with 21 λλ >  and the other ( ) ( ) 5.021 <= QSESE  with 21 λλ > .  

Both of these regions decrease in size with increasing setup as shown in Figures 

5-12 and 5-16 through 5-18 and 5-19 through 5-21 such that when ( ) ( )SEUE = , 

AP dominates the entire feasible space.
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Figure 5-19. Wait time differences (AP-FCFS)*100 when E(U)=0.01*E(S) and 
10.02 =λ .
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With the addition of setup, we make a number of observations:

1. There is an area where AP provides enough savings in the setups realized to 

increase the capacity of the system, relative to what the FCFS can achieve.  In 

fact the region is stable when using AP, but unstable for FCFS.  Recalling 

from Chapter 2, the FCFS system utilization is ( )PEλ  where the processing 

time, SUP += , includes the setup time and therefore is greater than 

( )SEλρ = when the setup, U , is non-zero.  The AP rule self-regulates the 

incidence of setup: in high traffic the queue is longer so there is less likelihood 

of switchover at the end of a service and in the limit when 1=ρ  there is zero 

probability of switchover at the end of a service.  Thus, the AP system 

saturation is a function only of ( )SEλρ = , regardless of the setup magnitude.

2. AP always requires fewer changeovers than FCFS.  The FCFS probability is 

invariant to Q  since the probability of a random arrival requiring a 

changeover is a function of only 1λ  and 2λ .  The AP probabilities 

monotonically decrease with increasing Q  at any 1λ  (increasing utilization) 

and approach zero at saturation.  This fact will lead to an increase in system 

capacity for AP when compared with FCFS when setup is non-zero.

3. For the symmetric case where 21 λλ = , ( ) ( )21 SESE = , and ( ) ( )21 UEUE =

AP always requires less wait than FCFS ( 0.0>iU ).  We also note that at any 

21 λλ =  the AP wait is monotonically better than FCFS with both increasing 

setup and service.
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4. There is always an area where AP provides less wait than FCFS.  The region 

where AP wait is less than FCFS is much larger when setup is present.  When 

the setup equals the service magnitude, AP dominates the entire feasible 

space. This may also suggest that 1=Q  has much less significance with non-

zero setup.



163

Chapter 6 

SUMMARY AND DIRECTIONS OF FUTURE RESEARCH

In this dissertation, we addressed two questions concerning the role of setup 

economies in discrete parts manufacturing.  First, using simulation as the tool of 

choice, we design and conduct a computational study to evaluate the impact of 

setup reduction on the factory flow time in the setting of factory conversion from 

a job shop to full or partial cellular layout.  A key component of the design is the 

construction of a framework for experimentation and a standardized test bed of 

scenarios with sufficient uniformity as to make meaningful comparisons possible.  

In the second segment of the dissertation, we focus on a queueing system that is 

simple enough so that the exact analysis of the extent of setup incidence and 

economies can be computed exactly.  We use the results of analytic models of this 

system to gain insights into the role of the dispatching rule in the queueing 

system.

We now re-state the research questions in Chapter 1 and summarize the 

findings of Chapters 3-5 in the form of responses to these questions.

Factory Conversions to Cellular Manufacturing Systems

• Can consistent results be obtained as to when the conversion of the job 

shop can be expected to prove advantageous?  
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• What are the measured setup economies?  When are setup economies 

large enough to overcome pooling losses?

The conversion of job shops to cells consistently improves flow time by 10% 

to 20%, for the test bed used in our research.  This result provides a conservative 

estimate of the advantages of CMS because it does not take advantage of such 

additional factors as reduced batch sizes, transfers batches, or move times.  We 

find that conversion to cells consistently reduces setup on the order of 65% to 

75% for the test bed we used.  We conclude that setup reduction can overcome the 

effects of pooling loss as long as the magnitude of the setups is not too small and 

no significant bottlenecks develop in the cells upon conversion.  

• How do other cell factors including reduced batch sizes and the use of 

transfer batches affect flow times achieved in cells?

The use of reduced batch sizes, or the implementation of transfer batches, can 

each provide cells with an additional improvement in flow time.  Typically, each 

of these two factors has a significant effect on reducing the flow time for CMS, 

and the amount of reduction is usually at least as large as that obtained by 

conversion to CMS without any changes in the batch sizes.  

Our sensitivity runs show that the overall factory utilization and the potential 

for setup reduction can both affect the conversion results obtained.  Our tests 

indicate that conversion to CMS may not be advantageous if the utilization level is 

high or there is not sufficient potential to reduce setups. 
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The design of cells also has a clear impact on the conversion improvements 

obtained.  Typically, we observed better performance in cells when the original 

source design was used.  However, conversion benefits continue to be present 

even after we use a uniform cell formation procedure due to Vakharia and 

Wemmerlöv (1990).  This indicates that careful allocation of machines to cells to 

avoid heavy utilization helps to keep the pooling loss within tight control.

Regarding dispatching rules, our experimental runs support the conclusions of 

previous authors that Repetitive Lot dispatching provides less overall setup and 

supports lower flow times than FCFS in a job shop with setup.  The effect of RL 

seems to diminish in the same factory setting once it incorporates cells.

• Is there value in considering a partial implementation of CMS?

Although we could not identify general and robust rules that applied across all 

data sets, we observed that the factory flow time of a partial cellular 

implementation may be as good as or even better than the all-cell option, so it is 

important to stop short of full conversion where appropriate.  In addition, other 

considerations include the following.  Even when the number of cells to be 

included in the partial layout is fixed, the choice of the correct subset of cells can 

have a significant impact on the flow time.  The sequence of best subsets to pick 

as n  increases from 1 to NC  is not necessarily nested, so sequence matters.  The 

differences in factory flow times are due to the same factors recognized in the all-

cell CMS analysis, setup reduction and machine utilization, but neither factor 

alone is sufficient to reliably determine the best subset of cells to select.  The best 
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picks are characterized by large setup reductions along with reduction of 

utilization in the residual job shop and the lack of bottlenecks in the cell(s), so 

setup reduction and load balance in both the cells and residual job shop matter. 

To our knowledge, this is the first simulation study that compares cell shop 

conversion benefits across disparate data sets.  We believe that this dissertation 

has shown that the comparison of job shops and cellular systems with respect to 

the flow time measure can produce reasonably consistent results when the same 

operating rules and key parameter ranges are used across different data sets.  

Moreover, our research shows that setup reduction can overcome pooling losses, 

even under the conservative assumptions where batch size remain unchanged and 

the material transport times in the job shop are assumed to be negligible.  Overall, 

the conclusions of our research are consistent with the qualitative insights cited in 

the literature when comparing cell shops and job shops.  However, our research 

clarifies that the quantitative comparisons using the flow time metric must be 

interpreted in the context of the region of the parameter space spanned by the data 

sets, as well as the particular design used for the cells.

By investigating the efficacy of implementing partial cell layouts (hybrids) 

using the same test bed, we are able to define considerations for the cell 

implementation process.  We find the selection of the subset of cells picked at any 

level of cellular implementation has an impact on factory flow time and that a 

partial cellular implementation may be as good as or even better than the all-cell 

option.
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Analytic Modeling of a Simple System with Setup

• What is the role of dispatching rules in the reduction of setups?

We find that the Alternating Priority (AP) dispatching rule that minimizes 

setup incidence, and therefore, changeover incidence, can outperform the FCFS 

rule over significant regions of the two-class parameter space even when the setup 

time is taken to be zero (the metric for this comparison is average wait time in 

queue).  We characterize the region of superiority of AP over FCFS analytically 

and provide bounds on the relative performance of the two rules.

When setup enters the comparison between these rules, we determine the 

extent of the difference in setup paid as well as the difference in setup incidence 

between AP and FCFS.  We are able to identify regions where AP is always the 

better choice as well as regions where AP increases the service capacity due to 

reduction in the setups incurred.  For the symmetric case of non-zero setup where 

21 λλ = , ( ) ( )21 SESE = , and ( ) ( )21 UEUE =  AP always requires less wait than 

FCFS.  We also note that at any 21 λλ =  the AP wait is monotonically better than 

FCFS with both increasing setup and service.  For the non-symmetric case we also 

note that by the time the setup is equal to the service in magnitude, AP dominates 

the entire feasible region.  This may also suggest that 1=Q  has much less 

significance with non-zero setup.



168

Directions for Future Research

The following topics are offered as potentially fruitful areas of research that 

would extend the findings of this dissertation.

1. Analytic comparison of rules in the presence of non-zero setups: In the 

case of non-zero setups, further research should pursue the derivation of 

analytic results that constitute a counterpart to the analysis of Section 5.1.  

We think there is opportunity to examine regions of dominance for the AP 

rule using formulas for non-zero setup.  This would also help explain the 

behavior of FCFS and how it can dominate AP even in the presence of 

setup.

2. Extension from two classes of customers to multiple classes.  This 

research would extend the results of Sections 5.1 and 5.2 to the multi-class 

case.  Analytically, this requires extending the results of Eisenberg (1967) 

to the multi-class case.  While the mathematics of following Eisenberg’s 

specific approach becomes extremely cumbersome, simpler schemes of 

analysis or approximate results may still reveal useful insights.  Naturally, 

simulation remains open as a tool for performance evaluation for all such 

extensions.

3. Alternative rules for multiple customer classes: A quick search of the 

literature reveals that the analysis of queues with multiple classes in the 

presence of setups has let to a stream of research involving cyclic polling 

rules (where customers are serviced in a pre-determined order).  Such 
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rules may be viewed as alternatives to extensions of the AP rule to the 

multi-class case (greater than two classes) such as the Repetitive Lot rule 

(Jacobs and Bragg, 1988) or its variants discussed in this dissertation.  

Further study is needed to evaluate such extensions.  In particular, cyclic 

policies can be compared to dynamic policies that incorporate dynamic 

information into the switching decision.  Of special interest is how setup 

impacts the comparative advantages of these policies.

4. Discount factors to reflect setup economies.  Some studies use flat-rate 

discounts coupled with FCFS in analytic models to represent the effects of 

setup economies in job shops and cell shops.  Further research is required 

to explore where this approximation can introduce severe distortion, 

especially as magnified by bottlenecks or increased congestion in the 

system.
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APPENDIX A: SENSITIVITY TO THE SHAPE OF PROCESSING 

TIME DISTRIBUTIONS

The runs presented in the body of this research use a 2-Erlang distribution for 

both setup time and run time.  The CV for this distribution is 0.707.  To test the 

sensitivity of the flow time results to the shape of these distributions, we varied 

the CV while staying in the k-Erlang family and retaining the same mean.  Of 

course, CV=1.0 corresponds to an exponential distribution (k=1) and CV=0.25 

(k=16) captures the shape the normal curve.  We also tested the effect of skewness 

by comparing the 2-Erlang with distributions from the beta( 1α , 2α ) family, each 

skewed in a different direction.

Below in Table A-1 we tabulated the results of these runs for two data sets.  

Each cell with a dual entry shows the flow time for the job shop on top and CMS 

directly below it.  Although the shape of the distribution affects both the job shop 

and CMS flow times, these values move together so that the flow ratio remains 

insensitive to the changes. 
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Data Set #2 Data Set #6
JS flow

CMS flow
0.250 0.707 1.000

JS flow
CMS flow

0.250 0.707 1.000

0.250
148
127

148
127

148
130

0.250
7582
6163

7586
6208

7595
6253

0.707
149
128

149
130

149
130

0.707
7613
6225

7612
6261

7634
6303

1.000
150
129

150
130

151
131

1.000
7657
6267

7644
6309

7659
6343

149
130

7612
6261

148
127

7581
6148

149
129

7607
6263

CV 
Setup

CV Run CV Run

CV 
Setup

2-Erlang
CV=0.707

Beta(5.5,1.4)
CV=0.180

Beta(1.4,5.5)
CV=0.705

Table A-1. Sensitivity of Job Shop and CMS flow times to changes in 
distributions of setup and runtime.
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APPENDIX B: OUTPUT MEASURES FOR SIMULATION RUNS

Our additional input parameters for Chapters 3 and 4 are as follows.

=T duration of simulation window for releasing batches

=P number of batch orders released during simulation release window, T

The output statistics gathered by the simulation are as follows.

=TQ time at which last of P  released batches is completed (simulation horizon)

( ) =pFT flow time of the thp  batch released within release window, T

( )Pp ,,1…=  [flow time measured from order release to shipping]

( ) =pST total setup incurred for the production of the thp  batch ( )Pp ,,1…=

( ) =pRT total run time incurred for the production of the thp  batch ( )Pp ,,1…=

( ) =jSQ total setup time accrued on machine type j  during TQ

( ) =jRQ total run time accrued on machine type j  during TQ

The output measures are then calculated as follows.

The average batch flow time is 

( ) PpFT
P

p
∑

=1

(B-1)
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Average time a batch spent in setup 

( ) PpST
P

p
∑

=1 (B-2)

Average time a batch spent being run 

( ) PpRT
P

p
∑

=1 (B-3)

Average machine utilization for type j

( ) ( )( ) ( )jNMTQjRQjSQ ⋅+ (B-4)

Overall average machine utilization for the factory (JS or CMS)

( ) ( )( ) ( )∑∑
==

+
J

j

J

j

jNMTQjRQjSQ
11

(B-5)

Maximum machine utilization for the JS configuration

j
max ( ) ( )( ) ( )[ ]jNMTQjRQjSQ ⋅+ (B-6)

The minimum calculations are analogous.  For the CMS, the maximum and 

minimum utilization values consider machine types over all cells, so that equation 

(B-6) is computed once for each cell. 
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GLOSSARY

Alternating Priority a dispatching rule from Maxwell (1961) designed 

to minimize setup incidence in a single-server 

queue with two customer classes: all jobs in queue 

of a given class are served before switching to the 

other class.  The server thus alternates between 

strings of jobs of either class 1 or class 2 and the 

idle state, but never switches from class i  to class 

j ( )ij ≠  if there are jobs of class i  still in queue

Cell a collection of different machines positioned in 

proximity to work on a family of parts with similar 

shapes and processing requirements

Cellular Manufacturing manufacturing part families using cells

Flow Ratio ratio of the average batch flow time after cellular 

conversion to the average batch flow time of the 

job shop with the same factory operational 

parameters of load, machines and batch size
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Job Shop a manufacturing facility comprised of general-

purpose machines organized into a collection of 

machine centers (departments) grouped on the basis 

of the operation performed

Major-Minor Model a setup structure whereby the setup is a major 

for Setup setup, a minor setup, or no setup at all.  A major 

setup is incurred if two parts belonging to distinct 

families are processed consecutively on the same 

machine.  Switching between two different part 

types in the same family incurs a minor setup.  No 

setup is required if a machine processes two 

batches of the same part type consecutively

Part Family parts with similar features and common sequences 

of operations requiring similar tools or fixtures

Pooling Loss the diseconomies of segregating a given machine 

type by assigning them to independent cells

Remainder Shop that part of the factory that is not converted to cells 

and continues to operate as a job shop

Repetitive Lot Dispatching a dispatching rule from Jacobs and Bragg (1988) 

designed to minimize setup: (1)a single (pooled) 



176

queue is formed for all batches arriving to be 

processed at a machine center, (2) Any arriving 

batch encountering an available machine upon 

entry is immediately routed to the available 

machine where it would encounter the least setup 

time.  If no machines are available, the batch joins 

(or forms) a queue to wait for a machine, (3)When 

a machine becomes available, the next job assigned 

to it is selected based on the minimum setup among 

all jobs in queue.  If multiple jobs tie at this 

minimum setup value, the FCFS discipline is used 

to break the tie.

Setup Fraction the ratio of minor to major setup

Setup Ratio the ratio of major setup to batch run time

Transfer Batch lot quantities moved between workstations or 

production areas – typically equal to or smaller than 

the production lot size
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