
 

 

 

 

ABSTRACT 

 

Title of dissertation: DISTRIBUTED SENSING FOR FLEXIBLE 

STRUCTURES USING A FIBER OPTIC SENSOR 

SYSTEM 

 

Christopher S. Baldwin, Doctor of Philosophy, 2003 

 

Dissertation directed by: Assistant Professor Steven Buckley 

  Department of Mechanical Engineering  

 

In this dissertation, a framework is developed and demonstrated for the use of a 

new shape measurement system consisting of fiber Bragg grating (FBG) based strain 

sensors, a shape determination algorithm based on Frenet frames, and a signal 

processing algorithm based on modal analysis techniques.  The system is 

experimentally validated by using a long slender, aluminum cantilever structure 

(65.625″×2.0″×0.125″) with eight serially multiplexed FBG sensors.  The multiplexed 

FBG sensors measure the bending strain distribution along the cantilever structure, and 

this distribution is used to calculate the dynamic shape of the structure forced by a base 

excitation.  The structural shape data is processed by using modal analysis techniques to 

 



 

determine the modal coefficients and the associated spatial modes that best represent the 

structure’s vibration.  The results obtained for the modal coefficients are found to 

compare well with results of Fourier transform analysis of signals recorded over time.  

Analysis by using the shape algorithm developed herein demonstrates the effectiveness 

of using a Frenet frame-based technique to determine the shape of the structure from 

recorded strain data.  Sources of error due to factors such as the number of sensors and 

Taylor series approximation in the shape algorithm are examined.   

 

The methodology discussed in this dissertation allows both static and dynamic 

monitoring of structural shape characteristics.  This type of real-time analysis may be 

useful for applications in structural health monitoring where changes in the modal 

coefficients may lead to indications of damage to the structure and in applications such 

as sonar arrays and aircraft wings where knowledge of a structure’s shape can yield 

improved results.   
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1 Introduction 

 

In this dissertation, the development of a fiber optic sensor system is discussed 

for performing distributed sensing of strain along flexible structures.  The distributed 

strain measurements are incorporated into a modal analysis algorithm to describe the 

dynamic response of the structure.  The ability to determine the dynamic modal 

response of a structure by using distributed strain measurements represents an 

improvement over the use of a Fourier transform to determine the time averaged 

frequency response of the system.  The Fourier transform method provides a measure of 

the vibration component frequencies in a structure’s motion.  The modal analysis 

algorithm discussed in this dissertation provides a means for determining the modal 

coefficients and the associated spatial modes in the structures response at any given 

time during the structure’s motion.  Variations in these modal coefficients can be 

observed as a function of time to monitor changes in the structure’s dynamics.  This 

new algorithm makes use of a fiber optic monitoring system, a signal processing 

component for the measured sensor data, and the application of modal analysis 

techniques to determine the vibration characteristics of the structure. 
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The fiber optic sensor system makes use of serially multiplexed fiber Bragg 

grating (FBG) sensors to achieve multiple discrete strain measurements along the 

structure whose dimensions are much larger then the gage length of the FBG sensor.  

The measurements are discrete in the sense that the fiber optic sensor has a gage length 

of approximately 1 cm instead of a longer gage length typical of a distributed sensor 

scheme, such as a Michelson or a Mach-Zehnder interferometer.  Once the distributed 

strain data is obtained, the dynamic structural shape can be determined through the use 

of Serret-Frenet formulae.  The scope of this work involves monitoring the strain along 

a structure, determining the deflection of the structure based on the measured strain data 

and mechanics models, and determining the dynamic response of the structure based on 

modal analysis techniques. 

 

The flexible structure investigated in this research effort is an isotropic 

cantilever beam, since the cantilever beam model provides a well-understood response 

that can be used to evaluate and validate the shape measurement system.  Strain is 

measured from the FBG sensors by using the University of Maryland patented Digital 

Spatial Wavelength Domain Multiplexing (DSWDM) technology [Chen and Hu, 2002; 

Baldwin, Chen, Kiddy, Niemczuk, Christiansen, Vaithyanathan, and Chen, 2001a; 

Christensen, Chen, Baldwin, Niemczuk, Kiddy, Chen, Kopola, Aikio, Suopajarvi, and 

Buckley, 2001].  This technology allows for multiple FBG sensors to be demodulated 

simultaneously at a sampling rate of 2 kHz.  The measured strain data along the length 

of the beam is converted to curvature by using mechanics.  Distributed values for 

curvature are calculated through interpolation of the sensor-derived values, and these 
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curvature values are then used to determine the deflection of the structure.  The first few 

mode shapes of a periodically forced cantilever beam are investigated experimentally 

and analytically.  Experimental and simulated results are compared with the theoretical 

predictions for cantilever beam deflection based on known mode shapes.  Modal 

analysis techniques are then used to determine the modal coefficients associated with 

the dynamic response of the experimental structure.  The proposed system can be used 

to determine not only the shape (or deflection) of the structure, but can also potentially 

used to monitor the structure for damage or other structural characteristics [Pandey, 

Biswas, and Samman, 1991]. 

 

 

1.1 Motivation 

 

The determination of a structure’s shape is important for structural functionality 

in many fields.  This is particularly true in fields where structures are acted upon by 

periodic forces imparting a modal response to the structure.  For example, the 

functionality of helicopter blades is based on a twisting motion of the blades during 

forward flight [Bramwell, 1986].  The twist prevents an unbalanced lift condition 

between the forward moving and retreating blades.  Fixed wing aircraft is another 

aerospace application where the shape of the structure is important [Austin, Rossi, 

Nostrad, Knowles, and Jameson, 1994].  For these applications, the shape of the wing 

determines the amount of lift provided to the aircraft.  Efforts are underway to develop 

new smart structures (morphing wings) to provide more lift from a fixed wing while 

reducing the amount of drag created by the structure [Reich and Sanders, 2003].  These 
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two examples illustrate potential benefits from technologies that determine structural 

shape for applications that involve fluid flow over a structural surface. 

   

Another application that would benefit from a shape sensing system is active 

structural acoustics control.  In these applications, the surface of a structure can be 

dynamically altered in a manner to reduce, or cancel out, various components of the 

transmitted acoustic signal.  The modulation of the structure’s surface is determined via 

a feed-forward control system that has inputs from surface mounted strain sensors 

and/or microphones.  Experimentation involving the use of piezoceramic actuators 

actuating a plate has been shown to significantly affect the noise transfer into an 

enclosure [Sampath and Balachandran, 1997; Balachandran, Sampath and Park, 1996].  

Including the use of the shape measurement system would provide a measurement of 

distributed strain or deflection of the surface as input to the control system instead of a 

limited number of discrete strain inputs. 

 

A further field of interest is towed sonar arrays; knowledge of the exact position 

(and orientation) of the sonar array is required for accurate interpretation of the results 

from the hydrophone sensors [Nikitakkos, Leros, and Katsikas, 1998; Smith, Leung, 

and Cantoni, 1996; Wahl, 1993].  By determining the shape of the array with respect to 

a known reference point, a more accurate determination of object location is available 

from the sonar array data.  These types of sonar arrays are employed in various 

applications from Navy applications to oil exploration vessels.  As the towed sonar 

array travels through water, motions of the towing vessel (bobbing and swaying due to 
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surface waves) are transmitted down the tow cable to the array module.  This motion 

induces a vibration that propagates down the length of the towed sonar module.  

Vibration can also be imparted to the towed sonar module via underwater currents  

[Gray, Anderson, and Bitmead, 1993].  These excitations can be considered periodic 

within a given time period, and the resulting vibrations of the flexible structure have a 

periodic structure. 

 

 

1.2 Fiber Optic Strain and Shape Sensing Background  

 

In recent years, there has been substantial progress in using fiber optic sensors to 

detect structural health and performance [Othonos and Kyriacos, 1999; Measures, 

2001].  For example, various types of fiber optic sensors have been developed to meet 

application-specific requirements for sensing strain in many environments.  The most 

popular of these types of sensors has been the FBG sensor.  Researchers have used this 

type of sensor to monitor the structural health and load response of composite pressure 

vessels [Foedinger, Rea, Sirkis, Baldwin, Troll, Grande, Davis, and Vandiver, 1999], 

composite marine piles [Baldwin, Salter, Niemczuk, Chen, and Kiddy, 2002a; Baldwin, 

Poloso, Chen, Niemczuk, Kiddy, and Ealy, 2001b], Navy structures [Kiddy, Baldwin, 

Salter, and Chen, 2002; Baldwin, Niemczuk, Kiddy, Chen, Christiansen, and Chen, 

2002b; Baldwin, et al. 2001; Wang, Havsgard, Urnes, Pran, Knudsen, Kersey, Davis, 

Berkoff, Dandridge, and Jones, 1997], as well as other civil and mechanical systems 

[Othonos and Kyriacos, 1999].   
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The use of FBG sensors to monitor the shape of the structure was first 

investigated by Davis et al, who presented results for static deflections of a cantilever 

beam [Davis, Kersey, Sirkis, and Frieble, 1996].  The deflections investigated 

corresponded to the first three mode shapes for this structure, and measurements were 

made by using only three multiplexed FBG sensors.  The sensors were mounted to the 

surface of the cantilever beam, so that the second FBG sensor was at the node of the 

second vibrational mode and the third FBG sensor was located at a node of the third 

vibrational mode.  The shape (deflection) of the beam determined by the sensors due to 

these loads was compared to the actual shape via digitized photographs.  The strain 

levels recorded from the FBG sensors were processed by an algorithm based on the 

Rayleigh-Ritz theorem [Davis et al, 1996].  For shape determination, the trial beam 

functions were adjusted by using weighting parameters to obtain better agreement 

between the calculated and measured beam shapes.  The FBG sensors were interrogated 

via a scanning fiber Fabry-Perot (FFP) filter.  This technique is the precursor to the 

commercially available fiber Bragg grating interrogation system (FBG-IS) produced by 

Micron Optics Inc. [Micron, 2001].  The data from these sensors were also monitored 

during the periodic excitation of this beam through the first three modal frequencies.  

The dynamic response spectra for the FBG sensors were compared to resistance strain 

gage data and showed good correlation.  No attempt was made to determine the 

dynamic shape of the structure from the recorded strain data during the vibration 

experiments, and only Fourier transforms of the strain data were presented in this work.  
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Another application of FBG sensors to determine the shape of flexible structures 

is in the field of towed sonar arrays [Chen and Sirkis, 2001].  This system is also based 

on the scanning Fabry-Perot demodulation system [Micron, 2001].  The number of FBG 

sensors used for this application is greatly increased over the cantilever beam test 

design by using four or five (for proposed temperature compensation) sensors at various 

locations along the length of the array.  The increase in number of sensors allows the 

determination of bending and torsion strains to resolve a three dimensional shape of a 

flexible member of a towed sonar array.  The shape measurement algorithm for this 

work is based on elasticity relationships between the bending strains and the deflection 

of the hose, where the three-dimensional structure is assumed to experience beam-type 

deflection.  This work is also restricted to quasi-static deflections of the flexible 

structure. 

 

Other types of fiber optic sensors can be used to measure vibration and strain of 

structures, such as Hill gratings [Greene, Murphy, Fogg, Claus, and Vengsarkar, 1992], 

polarization maintaining Panda fibers with Michelson interferometer readout [Lou, Liu, 

and Chen, 1997], and spatially weighted fiber optic sensors [Li, 1998].  These 

techniques typically filter the sensor response to one mode shape for the vibrating 

structure; the sensor has a unique response to one vibrational state and all others are 

filtered from the response.  These sensors also require more complicated fabrication 

techniques such as formation of in-fiber gratings while mounted to the structure 

[Greene, et al., 1992] or optical fiber material parameter changes as a function of sensor 

length to match certain strain-optic conditions [Li, 1998].  Giving these types of sensors 
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the capability to function over multiple vibration modes would require the use of 

multiple detection systems and multiple sensors each one by using a separate optical 

fiber (no serial multiplexing capability).  Each of the fiber optic sensors has been 

demonstrated experimentally by using a cantilever beam model.  There has also been 

development work on fiber optic sensor based tip measurements sensors for acoustic 

pressure measurements [Yu, Balachandran, 2003; Yu, 2002]. 

 

There are other methods used to determine the shape of structures besides fiber 

optic sensors.  For example, in the field of towed sonar arrays, current methods use 

beam forming algorithms with the sonar data and known noise source locations 

[Nikitakkos, et al., 1998; Smith, Leung, and Cantoni, 1996; Wahl, 1993].  This 

technique can be improved through the use of various filtering and other techniques, 

such as Kalman filters [Gray, etal, 1993].  Another proposed method involves using 

heading and depth sensor information taken along the array length, and processing this 

data as a cubic spline or quartic spline [Howard and Syck, 1992].  These formulations 

do not take into account the twisting (or torsion of the structural member) of the array, 

but treat the problem as essentially a beam type structure.  The work presented by 

Howard has been criticized for relying on external sensors from the acoustic array that 

are inaccurate and unreliable [Wahl, 1993]. 

 

Other non-contact type sensors have been developed to monitor the deflection of 

structural surfaces, including laser range finders and radar systems.  These types of non-

contact measurements require long sampling times (on the order of 1 Hz sampling rate) 
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compared with the fiber optic system investigated in this dissertation, which has a 

sampling rate of approximately 2 kHz.  Methods have been investigated to monitor 

structural changes by using techniques including photographs and CCD imaging 

[Sevenhuijsen, Sirkis, and Bremand, 1993].  To employ these techniques, the structure 

must have a visible grid drawn on the surface and the image changes need to be tracked 

via grid deformations.  There must also be a direct line of sight to the structure.  A 

similar technique involves tracking the changes of spots on the surface.  These spots can 

be imaged on a surface via a laser and a diffraction grating.  A cross grid can be used to 

produce diffraction peaks on the surface of the structure, and changes in the surface 

geometry can be monitored through changes in the locations of these peaks 

[Sevenhuijsen, et al., 1993]. 

 

 

1.3 Technical Objectives 

 

In this research, the application of a strain-based shape measurement system for 

structural dynamic analysis is examined and the necessary framework for such analysis 

is developed.  This work concentrates on modal shape sensing by using FBG sensors to 

measure strain due to the dynamic deformation of the structure.  FBG sensors are 

chosen by using their inherent optical advantages and multiplexibility of these sensors.  

Recent advances in structural sensing with FBG sensors has allowed the development of 

a high-speed, highly multiplexed instrumentation system.  To perform shape sensing 

modal analysis as investigated in this dissertation, the measurement system must have a 

high sampling rate for multiple sensors to interpret the spatial information in terms of an 
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adequate number of modes of the structure.  The fiber optic sensor system must also 

interrogate a sufficient number of sensors to determine the shape of the highest 

vibration mode under consideration.   

 

The review of the literature found previous approaches monitoring the frequency 

response of surface mounted FBG sensors (e.g. Davis, et al, 1996 and subsequent 

work).  The methods employed in this research were limited in the number of sensors 

used and the speed of the interrogation system.  The research presented in this 

dissertation describes a FBG interrogation system capable of a sampling rate of 

approximately 2 kHz for a serially multiplexed array of FBG sensors.  This research 

discusses the development of an algorithm that translates strain information into the 

shape of the flexible structure.  The resulting shape data is used with modal analysis 

techniques to determine the modal coefficients for the structural vibration as a function 

of time.  The following contributions follow from the present dissertation work: 

 

 Development of a fiber optic sensor system for dynamic shape sensing including 

DSWDM instrumentation, mechanics models, and signal processing  

 Investigation of sensor spacing for the DSWDM instrumentation system 

 Development of an algorithm based on Frenet frame analysis for the determination 

of structural shape and investigation of error sources for the Frenet frame shape 

algorithm 
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 Examination of modal analysis techniques of the experimental shape data for the 

vibrating cantilever beam and development of a modal analysis system that uses the 

experimental shape data to determine the modal coefficients as a function of time 

 

Experimental validation of this research was conducted by using vibrations of a 

cantilever beam.  The cantilever beam model is well-understand to generate numerical 

data for comparison with experimental data.  The experimental setup was constructed to 

restrict the modal frequencies of interest to be below 200 Hz, by properly selecting the 

beam material properties and geometry, to allow an adequate sampling rate for the 

resonant frequencies.   

 

 

1.4  Outline of Dissertation 

 

In Chapter 2, the fiber optic sensor system is discussed and an overview is 

provided of FBG sensors including fabrication techniques used throughout the research 

effort, multiplexing of the sensors, and a detailed description of the DSWDM system 

used to interrogate the FBG sensors.  Issues of FBG sensor wavelength spacing and the 

sensor response with respect to the DSWDM system are also discussed.  In Chapter 3, 

the dynamics of cantilever beams (the experimental case investigated) are discussed, 

and the shape measurement method using Serret-Frenet frames and the measured strain 

data is introduced.  In Chapter 4, the shape measurement method is examined through 

analytical models and some of the error sources associated with the method including 

the number of sensors used and effects of a Taylor series approximation are 
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investigated.  The experimental setup is described in Chapter 5 along with the fiber 

optic data acquired from the DSWDM system.  In Chapters 6 and 7, analysis of the 

recorded data and examination of the experimentally determined shapes from the 

cantilever beam are presented.  Comparisons of the experimental shapes to the mode 

shape components are carried out in Chapter 6.  Analysis of the fast Fourier transforms 

of the strain data illustrates influences from neighboring modal components.  Modal 

analysis techniques are employed in Chapter 7 to determine the modal coefficients for 

the response of the cantilever structure.  These techniques demonstrate the ability for 

determining the modal characteristics of the cantilever structure at any particular time or 

as a function of time.   

 12



 

 

 

 

 

 

2 Fiber Bragg Grating Sensors  

 

Fiber Bragg grating (FBG) sensors constitute the distributed sensory 

components of the mode shape monitoring method investigated in this dissertation.  

FBGs have become an integral part of the telecommunications hardware, used in 

applications such as add/drop filters, fiber lasers, and data multiplexing [Kashyap, 

1999].  Since the discovery of the photosensitive effect in optical fiber [Hill, Fujii, 

Johnson, and Kawasaki, 1979], by which UV light can be used to induce a permanent 

change in the refractive index of optical fiber, researchers have been discovering new 

applications for this unique optical phenomena.  Because of the widespread use and 

development of this technology, several textbooks dedicated to FBGs and their 

applications have recently been published [Othonos and Kyriacos, 1999; Kashyap, 

1999; and Measures, 2001].  In particular, Kashyap [1999] deals mainly with the 

telecommunications applications of FBGs, while Othonos and Kyriacos [1999] and 

Measures [2001] provide more details regarding sensing applications.  The first portion 

of this chapter provides an overview of the relevant features of FBG sensors such as 

their fabrication, sensitivity to strain, and multiplexibility.  The second portion of this 

chapter discusses the demodulation system used throughout the research investigation. 
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2.1 Fabrication Techniques 

 

Bragg gratings are possible due to a property of optical fiber known as 

photosensitivity.  Photosensitivity causes a potentially permanent change in the 

refractive index or opacity of glass induced by exposure to light [Kashyap, 1999].  In 

the case of Bragg grating formation, the change of the refractive index of an optical 

fiber is induced by exposure to intense UV radiation (typical UV wavelengths are 

approximately in a range from 150 nm to 248 nm).  To create a periodic change in the 

refractive index, an interference pattern of UV radiation is typically produced such that 

it is focused onto the core region of the optical fiber.  The refractive index of the optical 

fiber core changes where the intensity is brightest in the interference pattern to produce 

the periodic refractive index profile [Kashyap, 1999].  The length of a single period for 

the grating structure is called the grating pitch, Λ, as shown in Figure 2.1.  The pitch of 

the grating is controlled during the manufacturing process, and this pitch is typically 

~0.5 µm, while the amplitude of the index variation is only on the order of 0.1 to 0.01 

percent of the original refractive index [Kashyap, 1999].   
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Figure 2.1: Schematic of a FBG sensor 

 

There are many methods used to create the periodic interference pattern (e.g. 

phase masks [Hill, Malo, Bilodeau, Johnson, and Albert, 1993], Mach-Zehnder 

interferometers [Meltz, Morey, and Glenn, 1989], and Lloyd mirrors [Othonos and 

Kyriacos 1999]).  Phase masks are corrugated silica optical components, as shown in 

Figure 2.2.  As laser radiation passes through the phase mask, the light is divided into 

different diffraction beams.  The diffracted beams in the example are the +1 and –1 

beams, which create an interference pattern that is focused on the optical fiber core.  

Other orders of diffraction are designed to be minimized in these passive optical 

devices.  The interference pattern induces a periodic refractive index change along the 

exposed length of the optical fiber, thus creating the Bragg grating.  
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Figure 2.2: Phase mask fabrication technique 

 

The Mach-Zehnder interferometer technique uses a Mach-Zehnder 

interferometer to create an interference pattern on the optical fiber.  The optical 

arrangement for the Mach-Zehnder technique is shown in Figure 2.3.  Light from the 

laser emission is passed through focusing optics, and it is split via an optical beam 

splitter.  The two divergent laser beams are redirected via mirrors to combine at the 

optical fiber location resulting in an interference pattern from the combination of these 

two laser beams.  The focusing optics are designed to focus the laser energy at the 

optical fiber location.   
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Figure 2.3: Mach-Zehnder interferometer technique 

 

The Lloyd mirror technique used to fabricate the sensors in this research, uses a 

Lloyd mirror to create an interference pattern on the optical fiber, as shown in Figure 

2.4.   Light from the laser emission is passed through focusing optics, and it is 

transmitted to the Lloyd mirror arrangement.  The Lloyd mirror causes the input laser 

beam to be split into two beams.  These beams are recombined and focused at the 

optical fiber location, which creates an interference pattern and forms the FBG.  

 

 

Figure 2.4: Lloyd mirror technique 
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2.2 Fiber Bragg Grating Optical Response 

 

Light traveling in an optical fiber can be classified by an optical modal 

parameter β, given by [Snyder and Love, 1983]  

λ
π

==β core
w

n2
kn ,      (2.1) 

where ncore is the refractive index of the core of the optical fiber and kw is the 

wavenumber associated with the wavelength of light propagating in the optical fiber.  

The function of the Bragg grating is to transfer a forward propagating mode (β1) into a 

backward propagating mode (-β1) (i.e., reflect the light) for a particular wavelength 

meeting the phase matching criterion.  The phase matching condition, given by 

Equation 2.2, provides a means for determining which propagation modes (β1 and β2) 

are affected by the Bragg grating pitch [Hill, et al., 1993]: 

β β
π

1 2

2
− =

Λ
.      (2.2) 

If the backward propagating mode (-β1) is substituted into Equation 2.2 for β2, then the 

following equation can be derived: 

β
π π

λ1

2
= =

Λ
neff .       (2.3) 

The index of refraction is now noted as an effective (or average) refractive index, neff, 

for the Bragg grating, due to the periodic change across the length of the optical fiber.  

Solving Equation 2.3 for the wavelength (λ) provides the Bragg wavelength equation: 

λ B effn= 2 Λ       (2.4) 
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where the subscript ‘B’ defines the wavelength as the Bragg wavelength.  Equation 2.4 

states that for a given pitch (Λ) and average refractive index (neff), the wavelength λB 

will be reflected from the Bragg grating, as illustrated in Figure 2.5.  

 

Figure 2.5: Schematic of FBG sensor with reflected and transmitted spectra 
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2.3 Strain Sensing using FBG Sensors 

 

Bragg gratings operate as wavelength selective filters reflecting the Bragg 

wavelength, λB, which is related to the grating pitch, Λ, and the mean refractive index 

of the core, neff, given by Equation 2.4.  Both the effective refractive index (neff) of the 

core and the grating pitch (Λ) vary with changes in strain (ε) and temperature (∆T), so 

that the Bragg wavelength shifts to higher or lower wavelengths in response to applied 

thermal-mechanical fields.  For most applications, the shift in the Bragg wavelength is 

considered a linear function of the thermal-mechanical load.  The treatment of FBG 

sensors here will ignore the thermal effects, because the thermal effects can be modeled 

as an independent response of the Bragg grating.  Birefrigent changes in the refractive 

index of the optical fiber are also ignored because these changes result from diametric 
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loading on the optical fiber which is not considered in this dissertation.  The shift in the 

Bragg wavelength due to an incremental change of length (∆L) is given by [Melle, Liu, 

and Measures, 1992]: 

L
L

n
L

n
2 eff

eff
B ∆








∂
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+
∂

∂
Λ=λ∆     (2.5) 

Assuming the strain field is uniform across the Bragg grating length (L), then the term 

L∂
Λ∂  can be replaced with 

L
Λ .  Likewise, the term 

L
neff

∂
∂  can be replaced by 

L
neff

∆
∆  in 

Equation 2.5.  The terms Λ and L are physical quantities that are determined by the 

interference pattern formed during fabrication and are known.  The change in the 

effective refractive index (∆neff) can be related to the optical indicatrix, 







2
effn
1

∆ , as 

[Haaslach and Sirkis, 1990; Melle, et al., 1992] 
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In the case of small strain, the optical indicatrix is related to the strain on the optical 

fiber as: 

jij
i

2
eff

p
n
1

ε=







∆     (2.7) 

where pij is the strain-optic tensor of the optical fiber and εj is the contracted strain 

tensor.  The directions associated with the indices shown in Equation 2.7 are illustrated 

in Figure 2.6.  In the general case, the strain-optic tensor will have 9 distinct elements, 

termed photoelastic constants.  
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Figure 2.6: Indicial directions for optical fiber 

 

Fortunately, for a homogenous, isotropic material (such as optical fiber), the 

strain-optic tensor can be represented by two photoelastic constants p11 and p12 as 

[Haaslach and Sirkis, 1990] 
















=
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For the case of a surface mounted FBG sensor, it has been shown that the contracted 

strain tensor may be written as [Udd, 1995]: 

zj

1
ε

















ν−
ν−=ε      (2.9) 

where ν is Poisson’s ratio for the optical fiber.  Incorporating the strain tensor into 

Equation 2.7 leads to the following expression for a surface mounted optical fiber 

sensor. 

([ 121112z2
eff

ppp
n
1

+ν−ε=







∆ )]   (2.10) 

After substituting the Equations 2.6 and 2.10 into Equation 2.5, the result is 
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Normalizing Equation 2.11 by the Bragg wavelength demonstrates the dependence on 

the wavelength shift of the FBG sensor on the refractive index, strain-optic coefficients, 

and Poisson’s ratio for the optical fiber.   
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The terms multiplying the strain in Equation 2.12 are constant over the strain range of 

the Bragg grating, and Equation 2.12 is often written in simplified form as 

ε=
λ
λ∆

e
B

B P      (2.13) 

 

 

2.4 Multiplexing 

 

Multiplexing is one of the most critical advantages offered by Bragg grating 

sensor technology.  There are two basic methods for multiplexing FBG sensors, termed 

serial multiplexing and spatial multiplexing.  Serial multiplexing involves using the 

wavelength selectivity of FBG sensors to multiplex many FBG sensors within a given 

wavelength space following the illumination with broadband or white light.  Spatial 

multiplexing involves using an optical switch or other means to interrogate multiple 

sensing channels, and each channel can contain multiple serially multiplexed FBG 

sensors along the optical fiber, again illuminated with broadband or white light.  A 

third, recently developed method involves using a rapidly swept laser source with low-
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reflectivity FBG sensors in conjunction with Fourier transforms to resolve the 

contribution of multiple FBG sensors with the same Bragg wavelength [Sivanesan, 

2002].  The research effort discussed in this dissertation only utilizes serial 

multiplexing, and therefore spatial multiplexing is not discussed. 

 

As shown in Figure 2.7, serial multiplexing is accomplished by producing an 

optical fiber with a sequence of physically separated Bragg gratings, each with different 

grating pitches, , n.  The output of the multiplexed sensors is processed 

through wavelength selective instrumentation, such as a scanning optical bandpass filter 

[Micron, 2001] or a dispersive device.  In this case, the reflected spectrum contains a 

series of peaks, each associated with a different Bragg wavelength given by λ

Λi , i = 1, 2, 3,...

Bi = 2nΛi, 

where λBi and Λi are the Bragg wavelength and pitch of the ith grating, respectively.  For 

example, the measurement field at grating 2 in Figure 2.7 is uniquely encoded as a 

perturbation of the corresponding Bragg wavelength, λB2.  Note that this multiplexing 

scheme is completely based on the optical wavelength of the Bragg grating sensors, not 

the intensity of the signal response or bandwidth of the reflected signal.  

Thermomechanical
Load Field

Λ1 Λ2 Λ3

λ

Reflected Spectrum

Wavelength shift due to
thermomechanical 

perturbation at FBG #2

λΒ1 λΒ3λΒ2

 
Figure 2.7: FBG sensor serial multiplexing 
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Figure 2.8: FBG reflected sensor data from nine serially multiplexed sensors 

 

Figure 2.8 presents representative experimental data for nine serially 

multiplexed FBG sensors as shown on an optical spectrum analyzer output, where the x 

axis represents wavelength and the y axis represents optical intensity.  Nine discrete 

wavelength peaks are shown representing the nine sensors.  For this research effort, 

serial multiplexing technology was used to obtain multiple strain readings along the 

length of a cantilever beam structure by using a single array of FBG sensors.   

 

The number of FBG sensors that can be serially multiplexed in this manner is 

limited by the optical bandwidth of the broadband source, the optical bandwidth of the 

interrogation instrument, and the expected thermomechanical response of the FBG 

sensors.  For example, if the optical source has a bandwidth of 40 nm, then only FBG 

sensors with Bragg wavelengths within this 40 nm region can be interrogated.  The 

maximum number of FBG sensors that can be used within this region further depends 

on the operational wavelength range for each sensor (the expected measured strain for 
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each sensor).  If the expected strain range for each sensor were ±500 µε for example, 

then this would correspond to approximately 1 nm of wavelength space for FBG 

sensors in the 800 nm range.  In order to prevent signal overlap, at least 0.5 nm of 

wavelength space should be reserved between each sensor, as demonstrated in Figure 

2.9.  Based on the above analysis, 26 FBG sensors could be interrogated serially within 

the hypothetical 40 nm wavelength range.  A similar discussion regarding the spacing of 

the FBG sensors used in the experimental portion of the research is given in Section 2.6.  
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λ

In
te

ns
ity

 

Figure 2.9: Separation of two FBG sensor signals to prevent signal overlap 

 

 

2.5 Digital Spatial Wavelength Domain Multiplexing (DSWDM) System 

 

The research presented in this dissertation focuses on the use of multiplexed 

fiber Bragg gratings (FBG) as strain sensors.  Due to developments over the past decade 

in the telecommunications market, the availability of commercial fiber Bragg grating 

components has exploded.  Unfortunately, most of these devices deal with a static 
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Bragg grating spectra; that is environmentally isolated fiber Bragg gratings.  For FBG 

sensors, two commercially available systems exist for monitoring the shifting 

wavelength response for sensing applications.  One system, marketed by Blue Road 

Research, is based on the use of ratiometric demodulation [Melle, Liu, and Measures, 

1993; Baldwin, 1996; Blue Road, 2001].  This system functions by passing the reflected 

Bragg grating signal through a linear optical filter, such as a wavelength division 

multiplexer (WDM) [Melle, et al., 1993], a long period grating [Baldwin, 1996], or a 

chirped Bragg grating [Blue Road, 2001].  The linear optical filter converts the Bragg 

wavelength shift induced by applied strain into a linear variation of the optical intensity.  

The ratiometric system suffers from requiring a separate linear filter for each fiber 

Bragg grating sensor, thus leading to a large, expensive system for highly multiplexed 

sensor systems.  Micron Optics, Inc. produces the second commercially available 

system.  This system uses a dithered scanning in-line Fabry-Perot filter to demodulate 

serially multiplexed FBG sensors [Davis, et al., 1996; Micron, 2001].  This system 

allows a greater number of FBG sensors to be demodulated compared with ratiometric 

demodulation system, because of the ability to demodulate serially multiplexed sensors 

with one instrument.  The system involves the use of piezoelectric actuated components 

(scanning filter) that can suffer from failure due to the constant motion of these active 

components.  The maximum sampling rate of this instrument is also limited to 

approximately 100 Hz because of the scanning rate of the active filter element. 

 

The demodulation system used for this research is the Digital Spatial 

Wavelength Domain Multiplexing (DSWDM) system recently developed at the 
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University of Maryland [Christiansen, et al., 2001; Baldwin, et al., 2001a, Baldwin, et 

al., 2002b].  This system is capable of high-speed (up to 2 kHz) demodulation of 

serially and spatially multiplexed FBG sensors.  The ability to demodulate hundreds of 

FBG sensors makes this system attractive for large scale structural sensing applications.  

The DSWDM functions by splitting the reflected FBG spectrum through the use of a 

Prism-Grating-Prism (PGP) onto the surface of a Complementary Metal Oxide 

Semiconductor (CMOS) imager.  A unique feature of this technology is that each sensor 

in the system can be addressed independently.  This allows the sample rate and 

resolution of each sensor to be changed by software reconfiguration to tailor the system 

to a particular application need.  The variable addressability of the CMOS imager 

allows for data sampling rates approaching 2 kHz.  In addition, the sensor interrogation 

instrument is compact, robust, and contains no moving parts.  In short, this technique 

offers significant performance improvements over existing FBG sensor demodulation 

systems. 

 

A schematic diagram of the sensing network is shown in Figure 2.10, where 

light from a broadband source is split into many single mode fibers (hereafter denoted 

as "fiber channels") by an optical fiber dispatch box.  The dispatch box consists of 

multiple 3 dB fiber optic couplers arranged to provide the number of sensing channels 

required for the system.  Along each sensing channel, multiple FBG sensors with pre-

determined discrete Bragg wavelengths can be serially multiplexed as discussed in 

Section 2.4.  FBG sensors on different sensing channels can have the same Bragg 

wavelength because these will be spatially multiplexed.  Light reflected from the FBG 
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sensors in each fiber channel is coupled into a down-lead fiber via a 3 dB fiber optic 

coupler arrangement of the dispatch box and sent to the two-dimensional spectrometer.   

 

Multi-Channel 
Spectrometer

CMOS Output
to PC

Dispatch Box

Optical
Source

Figure 2.10: Schematic of the DSW

 2

 

The spectrometer used for this research, s

developed by VTT (Technical Research Centre o

Keranen, 1997] and uses a Prism-Grating-Prism 

transmission lenses and a transmission grating to

random access image sensor is placed at the outp

optical fibers leading into the spectrometer are a

at the input slit.  The three optical paths shown i

direction to demonstrate the multi-channel funct

CMOS image sensor chip is positioned such that

to the grooves of the bulk grating in the spectrom

is sent to a computer for signal processing. 
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Figure 2.11: Prism-Grating-Prism (PGP) spectrometer configuration  

 

The spectrometer imaging system separates light from different fibers and 

distributes the light across the 2-D image sensor.  Because of the diffraction grating, the 

light at different wavelengths is dispersed to different positions along the X-axis, the 

output of each fiber forms bright spots at different positions along pixel rows of the 

image sensor, as shown in Figure 2.12.  Therefore, if the system has M fiber channels 

and N FBG sensors of different wavelengths along each fiber, there will be an M × N 

matrix of discrete spots on the image sensor array.  A column of such spots in the 

matrix represents FBG sensors of the same or similar wavelength in different fiber 

channels, while a row represents different FBG sensors along the same fiber.  In other 

words, for each FBG, the spatial position of its fiber channel is encoded into the 

position along the Y-axis of the imager while its wavelength is encoded along the X-

axis.  The precise central wavelength of a FBG sensing node is detected by locating the 

centroid of the associated spot along the X-axis of the imager pixel array. 
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Figure 2.12: Actual image of CMOS camera with sensor s

1

O
pt

ic
al

 F
ib

er
 C

ha
nn

el
s 

 

Because of the random addressibility of the pixels in the CMOS

FBG in the network can be addressed in a truly random fashion by read

relevant pixels and calculating the centroid along the X-axis.  This uniq

only adds great flexibility for various applications but also enables the s

its resources efficiently, resulting in a significant performance enhancem
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Figure 2.13:  Intensity plot for one optical fiber channel showing reflected FBG sensor 

signals using the DSWDM system 

 

 

As can be seen in the intensity plot in Figure 2.13, each sensor spot on the 

CMOS imager covers multiple pixels (typically 6 to 8 pixels depending on the spectral 

width of the Bragg grating).  An average of the intensity spectrum is taken to determine 

the pixel location of the centroid of the spot intensity for each sensor.  This value is 

used to determine the wavelength shift and subsequent strain value for that particular 

sensor.  This method is shown pictorially in Figure 2.14; it is to be noted that only the 

center row of the sensor is recorded for data processing. 
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As the FBG sensors are strained, the spots of the strained gratings move in the 

X-direction of Figure 2.12 as depicted in Figure 2.14.  By determining the precise 

location of the centroid for a particular spot, the strain of the FBG sensor associated 

with that spot is determined.  Below are the equations that determine the centroid ( x ) of 

the reflected FBG sensor signal and the associated linear transform of the centroid due 

to axial strain (ε) experienced by the FBG sensor 
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where Ii is the intensity value at pixel number xi, 0x denotes the zero strain position of 

the centroid, and Kce is a constant that relates a change in centroid to strain.   
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2.6 Wavelength Spacing of Sensors 

 

As stated in Section 2.4, the number of FBG sensors that can be interrogated along a 

single optical fiber is dependent on the optical bandwidth of the broadband source, the 

optical bandwidth of the interrogation instrument, and the expected thermomechanical 

response of the FBG sensors.  In Figure 2.15, the intensity shift seen on the CMOS is 

demonstrated for a strain of 250 µε applied to a FBG sensor.  The dashed horizontal line 

indicates the intensity threshold used in the centroid calculations.  Intensity values 

below this line are not included in the centroid calculation to reduce the influence of 

noise on the strain measurement.  The signal shown outside of the two vertical dashed 

lines does not vary with respect to the shifting FBG sensor signals.  These boundaries 

have been determined based on many experimental studies previously conducted 

[Baldwin, et al., 2002(b); Baldwin, et al., 2001a; Christiansen, et al., 2001]. 

 

 33



 

No Change No Change

Neglect Noise Floor Values

 

Figure 2.15: FBG sensor pixel shift for 250 µε  

 

The majority of the noise shown in Figure 2.15 is due to optical back-reflection 

from the broadband optical source.  Back-reflection occurs in optical systems due to 

light interacting with physical interfaces such as a mechanical optical connection or a 

terminated fiber lead.  Because the noise comes from the broadband optical source, the 

noise remains essentially constant throughout the test.  For extended measurement 

sequences (long-term static measurements) variations in the optical output of the 

broadband source will cause a slight shift in the noise signal.  To prevent changes in the 

noise from influencing the centroid calculation (and hence the strain measurement), 

intensity values below a certain percentage of the peak intensity are neglected.   
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The example of a 250 µε load applied to a FBG sensor is provided to determine 

the required sensor spacing in wavelength (or pixel) space for the research in this 

dissertation research.  The measured strain values from the individual sensors will be 

affected if the sensor spectrum overlaps a neighboring sensor spectrum.  The FBG 

sensor center wavelengths must be specified to have adequate spacing between sensors 

to prevent sensor overlap.  An example of the sensor spacing is shown in Figure 2.16, 

which depicts the centroid shifts of eight FBG sensors during a typical experimental 

case (discussed in Chapter 5).  The oscillations in each sensor signal are due to periodic 

excitation of the cantilever beam.  Each sensor shown in Figure 2.16 has more than 10 

pixels, corresponding to more than 1000 µε, in which intensity variations can occur 

without affecting neighboring sensors.  This span is sufficient to ensure no overlap of 

the sensor signals during the experimental studies of this dissertation.  
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Figure 2.16: Experimental centroid response of FBG sensors 

( Sensor, ⋅⋅⋅ ± 10 Pixel band) 
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3 Shape Measurement Derivation 

 

The goal of this research is to investigate a dynamic shape sensing system using 

fiber Bragg gratings for flexible structures.  The structure under consideration is 

modeled as a cantilever beam.  Linear analysis of transverse vibrations of an undamped, 

isotropic cantilever beam is presented in the first section of this chapter.  The purpose of 

this exercise is to demonstrate the basis for the shape determination simulations 

presented in Section 3.3.  The derivation of the shape determination algorithm based on 

Serret-Frenet frame analysis is given in Section 3.2.   

 

3.1 Natural Modes for a Cantilever Beam 

 

The transverse vibrations of a cantilever beam can be modeled as a function of a 

single spatial variable, x (along the length of the beam), and time, t [James, 1994].  For 

transverse displacements in the y direction, the vibration of a cantilever beam can be 

written in terms of a spatial component, φ(x), and a time component, q(t) as 

)t(q)x()t,x(y φ=      (3.1) 
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In the case of a modal vibration, φ(x) represents a given mode shape.  Considering 

linear elastic materials, the differential equation of motion for a uniform, cantilever 

beam is given by [James, 1994]: 

0
t
y

x
yEI

2

2

4

4

=
∂
∂

+
∂
∂

γ
,     (3.2) 

where E is the modulus of elasticity of the material, I is the moment of inertia about the 

bending axis, and γ represents the mass per unit length.  After substituting Equation 3.1 

into Equation 3.2 the result is 

0
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qdq
dx
dEI

2

2

4

4

=φ+
φ

γ
    (3.3) 

Rewriting Equation 3.3 by collecting on terms in φ and q yields an equality.  For the 

function to exist, it must equal a constant represented by, ω2. 
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    (3.4) 

The time component q(t) of Equation 3.4 can be solved by Equation 3.5 where A and B 

are constants to be determined by the initial conditions of the dynamic system: 

( ) ( )tsinBtcosA)t(q ω+ω=     (3.5) 

The spatial component φ(x) of Equation 3.4 is governed by the linear differential 

equation 

0
EIdx

d 2

4

4

=φ
ωγ

−
φ      (3.6) 

The following function is used to solve the fourth order differential equation 

( ) ( ) ( ) ( ) (kxsinCkxcosCkxsinhCkxcoshCx 4321 )+++=φ   (3.7) 

 38



 

where Ci represents constants determined by the boundary conditions of the cantilever 

beam, and k is given by: 

EI
k

2
4 ωγ

=       (3.8) 

For the present application, the solutions for Ci are based on the boundary 

conditions for a cantilever beam fixed at 0x = .  These boundary conditions are given 

as: 

0)0(0)t,0(y =φ⇒=                 (3.9a) 
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Applying the conditions given in Equation 3.9 to Equation 3.7 leads to the characteristic 

equation for a cantilever beam, given by: 

( ) ( ) 01kLcoshkLcos =+     (3.10) 

Solutions of this equation provides the natural frequencies of the system.  As shown in 

Figure 3.1, Equation 3.10 has solutions at kL values of 1.875, 4.694, 7.854, …  These 

values can be used in Equation 3.7 to determine the mode shape associated with a 

particular natural frequency.   
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Figure 3.1: Graph of transcendental equation (Equation 3.10) solutions 

(solution values shown by ο) 

 

 

The constants (Ci’s) in Equation 3.7 must be determined from the boundary 

conditions given in Equations 3.9a-d.  From the boundary conditions, the four constants 

can be condensed into a single constant that is determined by normalizing the mode 

shapes.  If the product of two different mode shapes is integrated along the length of the 

beam, the resultant should be zero, as: 

( ji0dx
L

0
ji ≠=φφ∫ )     (3.11) 
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If a normalized mode shape is integrated, this will result in a value of unity, as: 

∫ =φ
L

0

2
i 1dx      (3.12) 

Based on this definition of normal modes, the mode shapes for a uniform 

cantilever beam can be written as: 

( ) ( ) ( ) ( ) ( )( ) ,...3,2,1ixksinxksinhxkcosxkcoshx iiiiii =−α−−=φ  (3.13) 

where, 

( ) ( )
( ) ( ) ,...3,2,1i

LksinLksinh
LkcosLkcosh

ii

ii
i =

+
+

=α    (3.14) 

Using Equation 3.13 to represent the mode shape of the cantilever beam, the first four 

mode shapes are obtained as shown in Figure 3.2. 
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Figure 3.2: Calculations for the fir

1

4

 

 

3.2 Shape Determination by using Serret-Frenet

 

The vector relationships defining motion alo

through the use of Frenet formulas [Ventsel, 2001; 

relations define Frenet-Serret motion that relates th

curvature and torsion of the path along which the o

application of these relationships is in the theory of

and Perkins, 1997].  The deformation of a cantileve
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in space, y = f(x), where a particle travels along the shape of the deflected beam.  The 

torsion component is always zero and the curvature components are related to the 

bending strain through a basic strain mechanics model.  The curve ‘y’ can be 

represented in terms of the mode shapes (φ) of the beam, as discussed in Section 3.1.  

For more complex structures such as cables and hoses, the rotation of the structure must 

be considered through torsion of the space curve.  The concept of Serret-Frenet analysis 

for structural shape monitoring as been recently investigated for towed sonar array 

applications (unpublished as of this date).  This is the first discussion of this technique 

for cantilever beams.  Later in this work, the first successful experimental verification 

of this technique is provided.      

 

 

3.2.1 Shape Algorithm Derivation 

 

If a global coordinate system is anchored at the root of the cantilever beam, then 

each point along the beam (space curve) can be located by the parametric function: 

( ) ( ) ( ) ( )kjiR η+η+η=η ZYX    (3.15) 

where η is a parameter such that each value of η will determine one unique point on the 

space curve.  For the case of a cantilever beam undergoing excitation in only the y 

direction, Z(η) can be considered a constant or zero, assuming that the beam exhibits 

motions in the x-y plane.   
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The value for curvature (κ) of the deflected cantilever beam is defined as the 

reciprocal of the radius of curvature (ρ) [Beer and Johnston, 1981]. 

[ ] 2/321
1

φ′+

φ ′′
=

ρ
=κ      (3.16) 

where the prime denotes differentiation with respect to the x variable.  For cases of 

small deflections, the derivative of φ is small and the value for curvature can be 

approximated by: 

φ ′′≈
ρ

=κ
1      (3.17) 

Based on a mechanics of materials approach, the bending strain measured on the 

surface of the cantilever beam is related to the curvature through the following relation 

[Beer and Johnston, 1981] 

( ) ( )2/h2/h φ ′′≈κ=ε     (3.18) 

where h represents the thickness of the beam.  The method for shape determination used 

in this dissertation involves the use of the Serret-Frenet formulae.  These formulae 

relate curvature to the local rectangular coordinate system.  Figure 3.3 provides a 

pictorial description of the Frenet frame coordinates and curvature for an arbitrary curve 

[Thomas and Finney, 1992].  In Appendix A, the relationship between the mechanical 

curvature (κ) and the vector relations discussed in this section are formed.  The basis of 

this method is to relate a local coordinate system at the sensor locations to the global 

coordinate, fixed frame, at the root of the beam.  The local coordinate system is 

determined based on the differential geometry of the Serret-Frenet formulation.  The 

local system of vectors is given by the tangent vector, T, the principal normal vector, N, 

and the bi-normal vector B = T × N.  
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Figure 3.3: Local set of unit vectors along a general space curve 

 

The origin of the global coordinate system is located at the first sensor (or root 

of the beam), and the local vectors T, N, and B for the origin are the unit vectors i, j, 

and k that are fixed in the global frame.  For a cantilever beam, the strain at the free end 

of the beam will always be zero, and hence no sensor is required at this location. 

 

The beam is described by a parametric vector function ( ) ( ) ( ) ( )( )sz,sy,sxs =

( )sx

R , 

where ‘ s ’ is a variable that travels along the beam span.  The coordinates , ( )sy , 

and  refer to the coordinates in the global frame.  Through the use of a Taylor series 

expansion, the vector R(s) can be determined in terms of a previous point along the 

curve, R(a).   

(sz )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
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−
+−+=
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as ds
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!3
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sd

!2
as

ds
sdasas RRRRR     (3.19) 

Equation 3.19 can be simplified by inserting the following Serret-Frenet formulae: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ssss
ds

sd,ss
ds

sd,s
ds

sd BTNNTTR
τ+κ−=κ==     (3.20) 
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where κ(s) and τ(s) are the curvature and torsion at location ‘s’, respectively.   

( ) ( ) ( ) ( ) ( ) ( ) ( )
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Limiting the expansion to the third order and collecting on terms of T(a), N(a), and B(a) 

leads to: 
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Equation 3.22 shows that the position vector at location ‘s’ is determined by the 

position vector at location ‘a’ plus modifications of the Frenet frame vectors by the 

curvature and torsion values at position ‘a’.  Therefore, Equation 3.22 can be used as a 

basis for mapping the shape of a structure if the curvature, torsion, and Frenet frame 

vectors are known at some starting point ‘a’.  By taking derivatives of R(s) and using 

Serret-Frenet formulae given by Equation 3.20, the Frenet vectors T and N can be 

determined at any location ‘s’, as: 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )aaa)as(
2
1

a
ds

sd)as(
2
1a)as(aa)as(

2
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 (3.23) 
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(3.24) 

The bi-normal vector at location ‘s’ is determined by the cross product of the tangent 

and normal vector, as: 

( ) ( ) ( )sss NTB ×=        (3.25) 

 

 

3.2.2 Example of Shape Algorithm 

 

Equations 3.23, 3.24, and 3.25 provide a means for obtaining the Frenet frame 

vectors at a position ‘s’ based on values at a previous position ‘a’.  Therefore, a 

structure can be divided into sections where the determination of the deflection at the 

end of the section is based on the values at the beginning of the section.  For the case of 

a cantilever beam, this implies dividing the beam along the length into multiple 

sections.  The first section begins at the root of the beam where R, T, N, and B are 

defined as: ( ) ( ) ( ) ( ) ,0,0,0,0,00 ji === NTR and ( ) kB =0 .  Based on the value of strain at 

the root of the beam, the value for curvature is known from Equation 3.18.  Therefore, 

the position of the beam at the end of the section is known from the above equations.  

As long as the curvature (or strain) is known along the length of the beam, the above 

equations can be used to “map out” the deflection of the beam along its entire length as 

illustrated in Figure 3.4. 
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Figure 3.4: Depiction of the coordinate frame updating 

 

These relations have been implemented into a Matlab algorithm to compute the 

shape of the cantilever beam based on the distributed strain readings along the length of 

the beam structure.  The following sections provide numerical results obtained from this 

formulation.  

 

 

3.3 Numerical Simulations of the Shape Algorithm 

 

An integral part of the shape measurement system is the algorithm that 

calculates the mode shape of the vibrating structure from the recorded strain readings of 

the FBG sensors.  In order to determine modal properties, the change in the shape must 

be examined over a given time period.  The analysis presented here does not consider 

randomly varying forces, but only for vibrations associated with periodic excitations.   

 

Simulations are presented for the case of a vibrating cantilever aluminum beam.  

Material properties and geometry are chosen as discussed in Chapter 5.  The motion of 
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the beam is considered to be linear and consist of small deflections (as discussed in 

Section 3.1).  The simulation procedure consists of three parts 1) generation of a 

particular mode shape, 2) determination of the corresponding strain values at the sensor 

locations, and 3) calculation of curvature values at and between sensor locations 

(calculation of values between sensor locations is described in detail below).  The 

generation of the mode shape is only used to generate simulated strain and curvature 

data.  The assumed shapes are the mode shapes of a cantilever beam, given by Equation 

3.13, and the simulations are restricted to one mode shape at a time.  Once the reference 

mode shape is input to the code, the sensor locations are assumed uniformly spaced 

along the span of the beam and strain readings are calculated from the reference shape 

at these locations.  Values for curvature at the sensor locations are then determined from 

the theoretical strain values.  The shape calculation algorithm was then used to process 

the curvature values following the discussion in Section 3.2.1. 

 

A measurement system that provides accurate data along the length of the beam 

with a minimum number of sensors is desired.  To increase the resolution of the shape 

measurement algorithm, an estimation of the strain (and/or the curvature) between the 

sensor locations is performed.  Multiple estimation methods are available to allow the 

calculation of data points between the sensor values including linear approximation, 

cubic Hermitic spline, and general cubic spline interpolation of the data set.  The linear 

interpolation method assumes a separate linear function between each of the data points.  

This creates a disjointed function for the strain across the length of the beam.  The cubic 

Hermitic spline attempts to fit the given data set to a third order Hermite polynomial 
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equation.  A disadvantage of this technique is that outlying data points may be 

considerably out of range of the determined best-fit function [MATLAB, 2000].  The 

most appropriate method for the shape estimation algorithm is the general cubic spline 

method, as will be demonstrated in this section.  Similar to the linear interpolation 

method, the cubic spline technique assumes a distinct function between each pairs of 

data points.  Instead of a discontinuous function, each function is “fitted” at the data 

points by equating not only the data point but also the first and second derivatives of the 

functions.  The following section provides examples of each of these fitting methods.  

Qualitative analysis demonstrates the effectiveness of these methods on various mode 

shapes.  An error function is presented in Chapter 4, and this will be used for 

quantitative purposes in the shape sensing algorithm.  

 

The following sections describe the modeling for the various interpolations 

described above.  The cantilever structure being modeled in these cases is an aluminum 

structure that has the dimensions of 65.625×2.0×0.125 inches (166.7×5.1×0.32 cm).  

The clamp at the base of the structure is used to realize.  The sensor locations for the 

structure are assumed to be equally spaced along the structure’s length.  To simulate the 

experimental case, only eight sensors are modeled along the structure’s span.  The tip of 

the cantilever structure is assumed to have zero strain for all cases.  For the purposes of 

the simulations, the cantilever structure is modeled as a cantilever beam. 
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3.3.1 Linear Interpolation Method 

 

Figure 3.5: Mode 1 shape with lin

( *- ) theoretical
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linear interpolation of the curvature between the 

urate interpretation of the mode shape.  The 

 by examining the predicted strain distribution 

 mode shape.  In Figure 3.6, the strain 

ture’s span.  At the end of the span, a nonlinear 
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characteristic is observed, but the assumption of linear strain variation does not affect 

the mode shape approximation much.  However, as the order of the mode shape 

increases, the linear interpolation method provides results that deviate from the 

predicted mode shape, as shown in Figure 3.7 and Figure 3.8.  A similar trend was also 

observed in the results obtained for mode 3.     

  

 

Figure 3.6: Strain variation along the structure for mode 1 shape 

{chosen sensor locations are marked by (*)} 
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Figure 3.8: Mode 4 shape a

( *- ) theoretical a
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3.3.2 Cubic Hermitic Interpolation Method 

 

The cubic Hermitic interpolation method is provided as a built in MATLAB 

function.  This method is similar to the cubic spline method discussed in Section 3.3.3.  

The cubic Hermitic method is sometimes used because it takes less processing time than 

the general cubic spline interpolation method [MATLAB, 2000].  The cubic Hermitic 

function is represented by Equation 3.26, where the variable C is used to determine the 

interpolation fit for the data.   

( ) 





 −= 3

3 x
3
2xCxH      (3.26) 

With only one variable to define, the cubic Hermetic interpolation method is simpler 

than a general cubic spline method, but it has limited effectiveness.  The interpolation is 

accomplished by matching the data point values and the first and second derivatives of 

the Hermetic function at the data point location.  Mode shape approximations obtained 

by using the cubic Hermitic interpolation method are presented in Figure 3.9 through 

Figure 3.11.  Higher order mode shapes exhibit an improvement over the linear 

interpolation method.  Mode 3 simulation results are similar to these obtained for mode 

2, and they are not shown here in the interest of space. 
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Figure 3.9: Mode 1 shape appro

( *- ) theoretical a
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Figure 3.10: Mode 2 shape appr

( *- ) theoretical a

 

 

oximation with cubic Hermitic interpolation  

nd (  ) simulated algorithm 
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Figure 3.11: Mode 4 shape approximation with cubic Hermitic interpolation  

( *- ) theoretical and (  ) simulated algorithm 

 

 

3.3.3 Spline Interpolation Method 

 

The cubic spline interpolation method fits a different cubic function between 

each pair of existing data points.  This method not only matches the value of the data 

point, but also the first and second derivative at these points.  This method allows for 

more generic cubic interpolation functions then the cubic Hermetic discussed in Section 

3.3.2.  As shown in Figure 3.12 through Figure 3.14, this method provides a more 
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accurate approximation for each mode shape of the cantilever beam for the first and 

higher order modes.  Again, the mode 3 simulation results are similar to the mode 2 

results, and they are not shown in the interest of space.  Based on the numerical results, 

the cubic spline interpolation is used for the shape determination algorithm.   

 

Figure 3.12: Mode 1 shape approximation with cubic spline interpolation  

( *- ) theoretical and (  ) simulated algorithm 
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Figure 3.13: Mode 2 shape approximation with cubic spline interpolation  

( *- ) theoretical and (  ) simulated algorithm 

 

 60



 

Figure 3.14: Mode 4 shape approximation with cubic spline interpolation  

( *- ) theoretical and (  ) simulated algorithm 

 

 

3.4 Analysis for Higher Mode Shapes 

 

For higher order mode shapes, as shown in Figure 3.15 for the case of a mode 

shape of the sixth mode, differences exist between the simulated and predicted results; 

this is attributed to the number of sensors used to measure strain along the structure.  

Again, for more complicated shapes, with many inflection points, at least one sensor per 

sign change is required to resolve the deformation of the structure.  As the number of 
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sensors is increased, better estimates for strain and curvature can be determined along 

the structure’s span, thus improving the accuracy of the algorithm.  It is to be noted that 

not only the number of sensors, but also the number of interpolation points and type of 

interpolation used will affect the accuracy of the shape determination algorithm.  These 

errors will be discussed further in the following chapter. 

 

Figure 3.15: Mode 6 shape app

( *- ) theoretical a

 

roximation with cubic spline interpolation  

nd (  ) simulated algorithm 
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4 Shape Algorithm Error Analysis 

 

This chapter of the dissertation explores various aspects of the shape measurement 

algorithm through numerical simulations.  First, an error function is defined for 

comparing two shapes.  This quantitative measure is used throughout the research.  In 

the second section of this chapter, possible influences of the Taylor series expansion 

used in the shape algorithm derivation are explored.  In the third section, analysis of the 

number of sensors used on the structure and the number of interpolation points between 

the sensors is presented.  In the final section, an overview of the Pearson correlation 

function is given, and the reasoning for not using this comparative function for shape 

comparison is demonstrated.  

 

 

4.1 Quantitative Error Analysis 

 

To provide a quantitative measure for the error sources in the shape algorithm, a 

method to compare the results of the shape algorithm calculation to the theoretical mode 

shape was developed.  One method would be to determine the difference in tip 

deflections between the predicted and calculated mode shapes.  This method would be 
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adequate for applications concerned only with locating the end of the beam (or flexible 

structure) and not concerned with the structure’s shape throughout the entire length.  

However, the objective here is to develop methods for determining accurate shapes, so a 

tip deflection method is not sufficient to evaluate the algorithm.  Rather, an error 

calculation method is used that incorporates the entire length of the beam in the 

calculation.  The beam is divided into equal sections with the error of the shape 

estimation being determined as a sum of squares at the end of each section.  For 

example, shape estimate data for the mode 1 shape shown in Figure 4.1 has been 

divided into ten sections. 

 

Figure 4.1: Repr

 

 

 

esentative illustration of error between reference and experimental data 

for a mode 1 shape 
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The differences in the deflection values are included in the error calculation 

given by: 

( ) ( ) ( )( )2
n_theorynexp_

2
2_theory2exp_

2
1_theory1exp_n yyyyyyerror −++−+−= K     (4.1) 

where yexp is the experimental value for the beam shape (provided by the algorithm 

calculation for either simulation results or experimental results) and ytheory is the 

theoretical shape value based on the mode shape analysis of Section 3.1.  Equation 4.1 

is the general form for the error equation.  The value of ‘n’ is the number of equal 

segments into which the beam is divided.  To test this error analysis equation, the 

hypothetical case displayed in Figure 4.2 is examined.   
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Figure 4.2: Demonstration of error calculations for two linear functions with 10 segments 

(* points of data for error calculation) 

 

The proposed error function given in Equation 4.1 is plotted against the number 

of error points included in the error calculation in Figure 4.3.  As the value of n 

increases the error function given by Equation 4.1 does not converge. 
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Figure 4.3: Value of error (Equation 4.1) for increasing number of calculation points 

 

For the error function to coverage, the sum of the squared errors must be divided 

by n, as shown in Equation 4.2.  This allows the error function to converge to an error 

quantity for an increasing ‘n’ value as shown in Figure 4.4.   

( ) ( ) ( )( )
n

yyyyyy
error

2
n_theorynexp_

2
2_theory2exp_

2
1_theory1exp_

n

−++−+−
=

K
 (4.2) 

Figure 4.4 shows the error function converging at an ‘n’ value over 100.  This 

calculation provides a quantitative method for determining error in the shape estimation 

compared to the theoretical model.  This error calculation will be applied to both the 

analytical analysis and the experimental data in this research investigation. 
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Figure 4.4: Value of error (Equation 4.2) for increasing number of calculation points  

 

 

4.2 Taylor Series Expansion 

 

An integral part of the shape determination algorithm is the use of a Taylor 

series to evaluate the position of the structure along the length.  The Taylor series is a 

valuable mathematical tool used to evaluate values of functions about a “known” point 

using a power series based on the function’s derivatives.  The Taylor series 

approximation is used in a marching forward mode along the entire length of the 
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structure and hence serves as a potential source of error for the shape calculation 

algorithm.   

 

 

4.2.1 Example with Sine Function 

 

As an example of the application of Taylor series to a known function, Figure 

4.5 shows the sine function evaluated at x = 2π, approximated using only the first three 

terms of the Taylor series expansion.  Use of more terms would provide a better 

approximation along a longer interval of the function.  The area marked by the dashed 

box in Figure 4.5 represents the estimated region of adequate approximation for the 

Taylor series function.      
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Figure 4.5: C
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omparison between sine function and 3-term Taylor series approximation 

evaluated at x = 2π 

Evaluation 
Point 

Taylor Series 
Approximation with the 
First Three Terms 

le with Beam Mode Shape 

e function in Section 4.2.1 provides an example of a Taylor series 

 at a single point along a function.  This section examines the more 

f cantilever beam mode shapes approximated by a Taylor series at 

along the function.  The second vibrational mode shape has been 

sen for illustration.   
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Figure 4.6: Taylor series approximation (--) of the mode 2 cantilever beam shape () at 

location x = 0 

 

As a start to the mode shape investigation, Figure 4.6 displays the Taylor series 

approximation of the mode 2 beam shape with a single evaluation point at the root of 

the beam (x = 0).  The approximation, which uses only the first three terms, matches the 

mode shape for a short distance from the root of the beam.  Following approximately 

5% of the beam length the Taylor series approximation diverges from the mode shape.  

Therefore, multiple evaluation points are required to provide a better approximation 

along the beam length. 
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Figure 4.7: Taylor series approximation () of the mode 2 cantilever beam shape (--) at 

10 locations along the beam length 

 

Figure 4.7 displays the Taylor series approximation for the mode 2 shape with 

10 points evaluated along the beam length.  As in the previous case, the Taylor series 

approximation quickly diverges from the mode shape at the root of the beam.  At each 

evaluation point, the Taylor series approximation matches the value of the mode shape 

and then quickly diverges.  The Taylor approximation matches the mode shape with 

better accuracy where the derivative of the function is fairly constant; the first three 

terms of the Taylor series include up to the second derivative of the mode shape 

function.  In regions that contain high rates of change of structure shape, the three-term 
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Taylor approximation quickly diverges from the shape function.  Hence, an adequate 

number of evaluation points will be required for a low-order Taylor approximation to 

represent the mode shape.  The mode 2 shape shown has a high amplitude deflection to 

illustrate the Taylor series effect.   

 

Figure 4.8: Taylor series approximation () of the mode 2 cantilever beam shape (*-) 

at 100 locations along beam length 

 

Increasing the number of evaluation points to 100 along the beam length 

provides a very close match to the mode 2 shape function as shown in Figure 4.8.  In the 

derivation of the shape algorithm in Section 3.2, the derivative of the Taylor series 
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expansion of the vector R(s) is used to determine the tangent (T) and normal (N) 

vectors at each evaluation point.  The tangent vector is then used to direct the algorithm 

to the position of the next evaluation point.  As will be discussed further in the next 

section, increasing the number of points used in the shape algorithm improves the 

accuracy of the algorithm.   

 

 

4.3 Evaluation of the Number of Sensors 

 

This section examines how the number of sensors along the length of the beam 

affects the results of the shape algorithm.  For the purpose of this analysis the number of 

interpolation points between sensors is set to 9, segmenting the beam into 10 segments 

between each sensor location and the cubic spline method (Section 3.3) is used in the 

interpolation.  The end of the beam is free and is assumed to have a strain value of zero.  

The length of the beam for these simulations was chosen to be 65.625 inches (167 cm), 

which is the length of the beam used in the experimental investigations discussed in 

Chapter 5.  The simulations discussed in this section assume that there is no random 

sensor error. 

 

 

4.3.1 One Sensor Case 

 

With only one sensor, the sensor location must be at the root of the beam.  A 

strain reading is required at this location to “start” the shape calculation algorithm.  
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Additional data points are then interpolated between the root strain value and the beam 

tip.  Shown in Figure 4.9, the comparison between the calculated and theoretical mode 1 

shape with only one sensor appears to be in good agreement, with an error10 value of 

0.0082.  If the number of interpolation points is increased from 9 to 99 the error10 value 

remains 0.0082, indicating no change in the shape calculation compared to the 

theoretical mode shape. 

 

Figure 4.9: Mode 1 shape calculation () compared to analytical result (- -), one sensor 

 

Figure 4.10 examines the case of one sensor at the root of the beam for a mode 2 

shape.  The asterisks in the figure represent the locations used to calculate the error10 
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values.  The calculated shape maintains the mode 1 shape because the only sensor data 

used to determine the shape is interpolated from the root strain value and the tip strain 

value (tip strain equal to zero).  Hence, there is not enough information going to the 

algorithm to allow for the determination of the higher order mode.  This concept will be 

highlighted in the examples in this section, where the algorithm can not determine a 

mode shape higher than the number of sensors used on the beam.  This, of course, leads 

to a higher error10 value of 0.1994, close to two orders of magnitude higher than the 

error10 value for one sensor and mode 1 shape.  A similar result is given for the mode 3 

shape comparison leading to an error10 value of 0.3593 

Figure 4.10: Mode 2 shape calculation () compared to analytical result (- -), one sensor 
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4.3.2 Two Sensors Case 

 

The case with two sensors includes a sensor at the root of the beam and a sensor 

at the mid-span of the beam.  The results from the mode 1 shape calculation are shown 

in Figure 4.11 based on 9 interpolation points between sensors.  By increasing from one 

to two sensors the error10 value is decreased to 0.0011.  If the number of interpolation 

points is increased from 9 to 99 the error10 value remains 0.0011.  Interpolating more 

times between the data points does not improve the shape measurement accuracy for the 

case of a small number of sensors.   

 

Figure 4.11: Mode 1 shape calculation () compared to analytical result (- -), two 

sensors 
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Figure 4.12: Mode 2 shape calculation () compared to analytical result (- -), two 

sensors 

 

For the mode 2 comparison, the shape measurement algorithm provides an 

error10 value of 0.0107.  The shape comparison, shown in Figure 4.12, displays an 

adequate representation of the mode 2 cantilever beam shape but does not match the 

mode 2 shape precisely.     

 

Figure 4.13 examines the case of a mode 3 beam shape with only two sensors.  

Again, the limitation of requiring at least the same number of sensors as modes of 
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interest is seen.  The midspan sensor for this case measures a strain of approximately 

zero which leads to a curvature value of near zero.  When the algorithm reaches the 

center portion of the beam, the algorithm does not diverge because there is no value of 

curvature to change the tangent direction; thus creating the mode 1 type deflection.   

 

Figure 4.13: Mode 3 shape calculation () compared to analytical result (- -), two 

sensors 
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4.3.3 Three Sensors Case 

 

The previous two sections have shown that the shape algorithm can capture but 

not precisely model the mode shape equivalent to the number of sensors used to 

measure strain readings from the beam.  The case of using three sensors also follows the 

same paradigm.  When examining the case of mode 1, mode 2 and mode 3 shapes, as 

shown in Figure 4.14 through Figure 4.16, the error10 values are found to be 4.68e-5, 

0.0102, and 0.0615, respectively.  The algorithm is unable to capture the mode 4 shape 

when using only three sensors, as shown in Figure 4.17.   

Figure 4.14: Mode 1 shape calculation () compared to analytical result (- -), three 

sensors 
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Figure 4.15: Mode 2 shape calculation () compared to analytical result (- -), three 

sensors 
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Figure 4.16: Mode 3 shape calculation () compared to analytical result (- -), three 

sensors 
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Figure 4.17: Mode 4 shape calculation () compared to analytical result (- -), three 

sensors 

 

 

4.3.4 Cases with more than 3 sensors 

 

The analysis provided in the previous three sections could be continued until the 

maximum mode shape number or allowable number of sensors is reached for a 

particular application.  In the interest of space, the analysis will now consider in general 

terms the use of up to 9 sensors examining up to the first 8 mode shapes.  Table 4.1 and 

Table 4.2 provide the error10 results for these examinations.  As illustrated in the above 
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sections, the sensor algorithm does not adequately capture the mode shape for mode 

shape values greater than the number of sensors so these error10 values are not included 

in the tables.  The results in Table 4.1 are determined from using 9 interpolation points 

between sensor locations, while the results in Table 4.2 are determined from using 99 

interpolation points between sensor locations.  Comparing the results in the two tables 

generally shows an insignificant change between the use of 9 interpolation points 

compared to 99 interpolation points.  In some cases, the error10 value corresponding to 9 

interpolation points is less than the 99 interpolation point value.  This difference exists 

because the 10 values used to determine the error10 value are slightly different between 

the 9 interpolation method and the 99 interpolation.  The shape algorithm determines 

the x axis values as it progresses along the beam length.  Therefore, different shape 

results will have different arrays of x axis values leading to the selection of slightly 

different values used for the error10 calculation.  Therefore, no conclusions can be 

drawn from the comparison between the 9 interpolation and 99 interpolation.  Based on 

the error analysis in this section, a shape comparison to the theoretical will be 

considered accurate if the error10 value is less than 0.001  
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4.4 Pearson Correlation Coefficient 

 

The Pearson product moment correlation coefficient (rP) is a dimensionless 

parameter that provides an indication of the linear dependence of two data sets.  For the 

case of the shape algorithm, the two data sets are yexp and y theory.  The Pearson 

coefficient is investigated in this section to provide a comparison to the error10 value.  If 

the two data sets being compared are indicated by X and Y and each contains n data 

points, then the Pearson coefficient is given as [Excel, 1997]: 

( ) ( )( )
( )[ ] ( )[ ]2222

P
YYnXXn

YXXYn
r

∑∑∑∑
∑∑∑

−−

−
=     (4.3) 

The Pearson coefficient provides a value between 1 and –1, with 1 meaning a linear 

relationship between the data and –1 meaning a negative linear relationship.  To 

illustrate this fact, let Y be proportional to X by a constant C. 

{ } { }XCY =       (4.4) 

Substituting Equation 4.4 into Equation 4.3 leads to the following relation for C>0. 
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If C<0 then rP = -1. 

 

 The Pearson coefficient was calculated for the same cases as discussed in 

Section 4.3.  Table 4.3 and Table 4.4 display the results for 9 interpolation points 

between sensors and 99 interpolation points between sensors, respectively.  The values 

used for the Pearson coefficient calculation were the same 10 values used for the error10 
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calculations shown in Table 4.1 and Table 4.2.  The ineffectiveness of the Pearson 

coefficient for determining the accuracy of the shape algorithm results compared to the 

theoretical shape is illustrated by the mode 1 case with 2 sensors.  The Pearson 

coefficient is 1 even though the comparison is not an accurate match as illustrated in 

Figure 4.11 with an error10 value of 0.0011.  The shape results are actually linearly 

dependent as indicated by the Pearson coefficient.  The error10 value provides a better 

indication of shape accuracy and is used throughout this dissertation. 
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5 Experimental Setup for Shape Measurement Validation 

 

To validate the shape measurement algorithm a well-understood mechanical 

system was chosen.  The aluminum cantilever beam model provides a linear 

deformation with well-known deformation shapes in the form of mode shapes.  The 

experiments discussed in this dissertation represent the first known successful 

implementation of the Serret-Frenet shape algorithm discussed in Chapter 3.  This 

chapter provides an overview of the experimental setup employed for the investigation, 

as well as the data collection methodology and post processing of the data prior to 

implementation of the shape algorithm.   

 

 

5.1 Experimental Setup 

 

A cantilever aluminum structure was tested to demonstrate the concept of 

measurement and analysis of dynamic deformations (mode shapes) of flexible 

structures.  An 6061 aluminum structure (65.625 × 2.0 × 0.125 inches, 

166.69×5.08×0.32 cm) was fitted with eight fiber Bragg grating (FBG) sensors along its 
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span, used to determine the strain along the span during the experimentation.  The 

sensors were positioned along the centerline of the structure as depicted in Figure 5.1 

and Figure 5.2.  The sensors were glued to the structure using AE-10 epoxy, from 

Measurement Group Inc. (www.vishay.com), following standard room temperature 

curing procedures.  

 

Figure 5.1: Base excitation – canti

 

Figure 5.2: Picture of cantilever structure 

 

The eight FBG sensors were evenly spaced a

length of the structure, providing a uniform distribut

span.  The spacing between the eighth FBG sensor a

inches (27.43 cm).  The extra space resulted from an

fiber after bonding of the sensors but prior to testing
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lever structure setup 

(base excitation not shown) 

t 7.65 inches (19.43 cm) along the 

ion of the FBG sensors along the 

nd the tip of the structure was 10.8 

 accidental break of the optical 

; to solve this problem the 



 

cantilever structured was turned around such that what was initially the root end of the 

structure became the tip of the structure.  The extra 3.15 inches (8 cm) represents the 

amount of the structure that would have been enclosed in the clamping fixture as 

pictured in Figure 5.2.  For most of the test cases, the strain variation in this region is 

considered negligible as the strain decreases to zero at the tip of the structure.  The 

exact spacing of the eight FBG sensors is listed in Table 5.1.  

 

Sensor Number Distance from Base of Structure 
(inches) 

FBG 1 1.25 

FBG 2 8.90 

FBG 3 16.55 

FBG 4 24.20 

FBG 5 31.86 

FBG 6 39.51 

FBG 7 47.16 

FBG 8 54.82 

Table 5.1: FBG sensor spacing from base of cantilever structure 

 

An intensity plot of the eight unstrained FBG sensors is shown in Figure 5.3 

illustrating the recorded intensity from the CMOS imager used in the DSWDM 

instrumentation.  Hence, the abscissa (x-axis) represents the pixel number along a single 

row of the CMOS imager, and the ordinate (y-axis) represents the intensity value (0 to 

255) for that pixel.  As shown, each FBG sensor is centered about a separate 

 91



 

wavelength (or pixel number).  This allows for each sensor to be serially multiplexed 

using the DSWDM system as discussed in Chapter 2.  Also discussed in Chapter 2, the 

wavelength (or pixel spacing) between the sensors is adequate to ensure no crosstalk or 

interference between neighboring FBG sensors.   

 

Figure 5.3: CMOS intensity plot of the multiplexed FBG sensors 

 

The aluminum structure was excited in the horizontal plane using a shaker at the 

base of the stricture.  This allowed the free end of the structure to remain free and 

experience the maximum deflection.  During the testing cycle, an attempt was made to 

visually measure the tip deflection (peak-to-peak) value of the cantilever structure using 

a standard meter stick placed beneath the beam tip.  Both the accuracy and resolution of 
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this methodology is poor (on the order of ± 1 cm), and the measurements taken in this 

fashion are only to provide rough measurement of the actual structural deformation.   

 

Figure 5.4 displays a schematic of the experimental setup used to monitor the 

vibrational mode shapes of the cantilever structure.  A function generator created a 

sinusoidal excitation, which was amplified and passed to the shaker.  The cantilever 

structure was clamped to a linear translation stage to allow motion in the direction 

transverse to the structure base, as shown in Figure 5.5.  The excitation frequencies 

were selected to match the resonant frequencies for the cantilever structure.  The 

experimental process is described in detail in Section 5.2.  The optical fiber lead exited 

the cantilever structure at the root.  This region experiences the minimum deflection 

during the test and was chosen as the best option for the egress of the lead line from the 

cantilever structure.  The first sensor was placed at a distance of 1.25 inches from the 

base of the structure/clamp interface in order to minimize the attenuation that could 

otherwise result from tightly bending the optical fiber at the clamp.   

 

Function
Generator

Power
Amplifier Shaker

DSWDM

Optical
Fiber

Cantilever
Structure

 

Figure 5.4: Experimental setup 
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Figure 5.5: Linear motion of structure base setup 

 

 

5.2 Strain Data Collection 

 

Each test began with a check of the linear translation stage to ensure that it was 

able to slide freely and that all components were tightly bolted down.  A vibration mode 

for the cantilever structure was selected and this frequency was programmed into the 

sinusoidal function generator.  The gain on the power amplifier was set to a minimal 

level to ensure that the shaker and structure system was not overdriven.  As the 

actuation system was powered on, the gain on the power amplifier was slowly increased 

until an adequate vibration deflection was reached based on the tip deflection.  If 

necessary, the frequency of the function generator was shifted slightly to obtain a 

visually “clean” vibration state.  Table 5.2 displays the observed resonant frequencies 

for the cantilever structure modeled as a beam.  The goal of the test was to excite a 

single resonant mode of vibration for the cantilever beam structure.  The structure was 
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allowed to vibrate in this state for several minutes to ensure that all transient vibrations 

had died away.  Strain data was then collected from the eight FBG sensors 

simultaneously using the DSWDM instrumentation.  The data collection typically lasted 

for 30 seconds.  The tip deflection of the vibrating cantilever structure was also 

measured using a meter stick. 

 

Mode Number Observed Resonant 
Frequency (Hz) 

1 1 

2 6 

3 17 

4 33 

5 56 

6 82 

7 115 

Table 5.2: List of observed resonant frequencies 

 

The DSWDM instrumentation generates data files that contain the time, the 

sensor name, the centroid value of the sensor, and the corresponding strain value.  

Shown in Table 5.3 is an example of the data file structure taken from a test of the 

cantilever structure in the mode 3 resonant state.  The data shown is truncated to show 2 

out of the 8 sensors.  The left most column is the time in seconds.  The columns 

containing the sensor names are 1-chris and 2-chris.  The two columns following the 

sensor names are the centroid value and strain value for the sensor, respectively.  These 

data files are tab delimited and are easily read into data processing programs such as 
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Excel and MATLAB.  All post-processing of the experimental data was performed in 

MATLAB. 

 

Time Sensor 
Name Centroid Strain 

(µε) 
Sensor 
Name Centroid Strain 

(µε) 
 

0.060354 1-chris 176.5763 82 2-chris 209.7714 95 … 

0.060874 1-chris 176.5528 78 2-chris 209.7972 100 … 

0.061394 1-chris 176.5277 73 2-chris 209.787 98 … 

0.061915 1-chris 176.5415 75 2-chris 209.7689 94 … 

0.062435 1-chris 176.5522 77 2-chris 209.7689 94 … 

0.062955 1-chris 176.5259 73 2-chris 209.7416 90 … 

0.063476 1-chris 176.4915 66 2-chris 209.7418 90 … 

0.063996 1-chris 176.483 65 2-chris 209.7048 83 … 

0.064516 1-chris 176.4825 65 2-chris 209.7089 84 … 

0.065036 1-chris 176.4658 62 2-chris 209.6667 76 … 

0.065557 1-chris 176.4391 57 2-chris 209.6381 71 … 

0.066077 1-chris 176.4386 57 2-chris 209.625 68 … 

0.066597 1-chris 176.4079 51 2-chris 209.5735 59 … 

0.067118 1-chris 176.4089 51 2-chris 209.5512 55 … 

0.067638 1-chris 176.4141 52 2-chris 209.532 52 … 

Table 5.3: DSWDM data file example 

 

The data was collected from all eight FBG sensors on one optical channel 

simultaneously, allowing the DSWDM to sample the data at the maximum frequency of 
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1928 Hz for all tests.  The sampling frequency is limited by the speed of the frame 

grabber card that collects data from the CMOS imager and transmits it to the computer 

system.    

 

 

5.3 Post Processing 

 

The shape determination algorithm requires a strain reading at the root of the 

structure.  Without this value, the shape determination algorithm would begin at the first 

sensor reading at 1.25 inches (3.2 cm) from the root.  This would incur an unacceptable 

level of error, especially given that this is the region of the highest strain gradients.  

Therefore, strain values must be interpolated between the root of the beam and the 

second sensor location.  To accomplish this, the value of the root strain is estimated 

from the first FBG sensor.  Based on theoretical strain determination (discussed in 

Chapter 3), the root strain should be slightly higher than the strain recorded at the first 

sensor.  The values shown in Table 5.4, determined from theory, were used to multiply 

the strain reading of the first sensor to obtain an estimate for the root strain. 

 

Mode Multiplication Value 

1 1.026 

2 1.100 

3 1.176 

4 1.264 

Table 5.4: Multiplication values for the first FBG sensor to estimate the root strain 
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Chapter 6 and Chapter 7 cover analysis of the data collected during these tests.  

Chapter 6 shows the results of processing the data with the shape determination 

algorithm discussed in Chapter 3.  This process involved taking the recorded strain data 

from a time of maximum deflection (and hence maximum strain) and processing the 

data at this one time through the shape determination algorithm.  As will be shown, the 

resulting experimental shape compares well qualitatively with the expected mode shape, 

but significant differences between the experimental and theoretical mode shapes were 

observed, especially at higher order mode shapes.  Fourier transforms of the strain data 

for these tests indicated that more than one modal response was influencing the 

cantilever beam during the testing.  Chapter 7 then investigates the influence of the 

extraneous resonant modes on the cantilever beam.  In this chapter, modal analysis 

techniques are employed that allow for the determination of modal influence 

coefficients for the many resonant modes of the cantilever beam.  It will be shown that 

the beam shape determined from the experimental data and the shape determination 

algorithm matches the theoretical beam shape based on the determined modal analysis 

coefficients.   
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6 Shape Determination from Experimental Data 

 

The following sections describe the data analysis for the first five mode shapes 

of the cantilever structure.  Data was recorded up through the seventh resonant mode of 

the structure.  The graphs for mode 6 and mode 7 are presented in Appendix B.  The 

graphs for shape comparison display a reference mode shape (based on a single mode 

assumption) derived from the analysis in Chapter 3 using the maximum tip deflection 

visually recorded during the experiment as a basis for setting the amplitude.  The 

experimental shape refers to the shape obtained from the Serret-Frenet algorithm by 

using the recorded strain values from the cantilever structure.  For each case, the 

interpolated values for curvature are given along with the location of the FBG sensors.  

The time trace for the first sensor along the structure (nearest the root) is presented as 

well.  Fast Fourier Transforms (FFTs) for selected strain data recorded from the FBG 

sensors are also presented.  The FFTs are used to explain discrepancies between the 

theoretical and experimental shapes.  Based on the FFT results, it appears that 

neighboring vibration modes are affecting the recorded strain data and hence the 

experimentally determined shape.  This will be analyzed further in Chapter 7 using 

modal analysis techniques. 
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6.1 Mode 1 Testing: Excitation Frequency Close to the First Natural Frequency 

 

Testing of the cantilever structure setup for mode 1 deflections consisted of 

actuating the base of the structure using the shaker as shown in Figure 5.5.  The 

structure was excited near the first resonant frequency of ~1 Hz.  Strain data for the 

eight FBG sensors was recorded at a sampling rate of ~1928 Hz , more than adequate 

for this low frequency vibration.  During the test, the tip displacement of the structure 

was measured visually for comparative analysis.  Using the tip deflection the theoretical 

mode 1 shape can be closely approximated using the analysis discussed in Section 3.1.  

Figure 6.1 displays the reference shape for mode 1 and the experimental shape obtained 

from the recorded strain data.  The experimentally determined shapes, shown 

throughout this chapter, are from a selection of data at one instance of time 

(corresponding to a maximum amplitude of deflection).   
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Figure 6.1: Mode 1 reference mode shape

maximum defle

 

 

The comparison of the tip deflection b

shapes is within 1 cm of each other, as seen in

include the method of measuring the tip defle

The error10 value for the comparison is 0.005

according to the error10 value criteria.   
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Figure 6.2: Mode 1 curvature data and positions of FBG sensors (Ο) 

 

Examining the curvature data in Figure 6.2, the curvature values obtained at 

each of the sensor locations form an approximately linear relationship along the 

structure length, as expected for a mode 1 deflection of a cantilever beam.  Note, there 

is no sensor at the tip of the structure and the data point located there is based on the 

assumption of zero strain and hence zero curvature.  The sensor located at the root of 

the structure is the extrapolated strain value based on the first sensor located at 1.25 in 

(3.2 cm) from the root.  
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Figure 6.3: Time trace for a FBG sensor during mode 1 excitation 

 

Ten seconds of strain data collected for sensor 1 of the mode 1 excitation is 

shown in Figure 6.3.  Some higher frequency noise exists in this data that affects the 

overall accuracy of the calculated results.  The FFTs of the sensor data displayed in 

Figure 6.4 and Figure 6.5 show a strong sensor response at approximately 1 Hz.  There 

are also spikes in the FFT plots at 6 Hz, 17 Hz, and 32 Hz corresponding to the second, 

third, and fourth modal frequencies of the beam, respectively.  These higher order 

vibrations were clearly evident when the amplitude of vibration was increased during 

the testing of the mode 1 response.  The higher the amplitude of the input excitation the 

more evident these vibrations became.  Strain data for each test was only recorded when 

the beam was vibrating in a visually stable single mode state. 
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Figure 6.5: FFT plot for sensor #6 (mode 1 excitation) 
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6.2 Mode 2 Testing: Excitation Frequency Close to the Second Natural Frequency 

 

Figure 6.6 displays the comparison between the mode 2 reference shape and the 

experimentally determined shape at a time of maximum deflection.  The visually 

determined tip deflection and the mode 2 experimental tip prediction are within 3 mm 

of each other.  This is approximately a factor of 3 better than the mode 1 approximation 

of the tip displacement.  However, the discrepancy between the reference and 

experimental shape can clearly be seen at the mid-span of the beam length.  Therefore, 
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using tip displacement alone is not a valid measurand to compare the accuracy of the 

shape determination method.  The error10 value determined for this comparison is equal 

to 0.006, which indicates that the comparison is not an accurate match according to the 

criteria established in Chapter 4.     

Figure 6.6: Mode 2 reference mode shape (--) and experimental shape () at a maximum 

deflection point 
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Figure 6.7: Mode 2 curvature data and positions of FBG sensors 

 

The curvature data obtained for the mode 2 experiment is shown in Figure 6.7.  

A point of interest appears at the tip of the beam where the curvature goes from 

negative to positive before returning to zero at the tip, a result of the interpolation of 

values between the eighth sensor and the tip of the structure.  The result has very little 

bearing on the overall shape determined from the experimental data because the 

curvature values at this location are very small, and the location of the curvature 

inversion is near the tip of the beam. 
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Figure 6.8: Time trace for a FBG sensor during mode 2 excitation 

 

A portion of the time trace for the strain data collected for sensor #1 is shown in 

Figure 6.8.  The presence of higher frequency noise is difficult to detect in this graph.  

FFTs of the sensor data, displayed in Figure 6.9 through Figure 6.11, show higher 

frequency components of the strain signal.  Each FFT displays a response near 6 Hz 

corresponding to the frequency of the second mode.   
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Figure 6.10: FFT plot for sensor #2 (mode 2 excitation) 
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Figure 6.10 displays the FFT for the second sensor for the mode 2 test.  There is 

a peak in the FFT at 17 Hz corresponding to the third modal frequency of the beam 

model.  There are also peaks near 12 Hz and 28 Hz (due to mixing of the mode 2 and 

mode 4 frequencies).  These higher order vibrations were clearly evident during the 

testing of the mode 2 data when the amplitude was increased beyond the level used for 

this test. 
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Figure 6.11: FFT plot for sensor #6 (mode 2 excitation) 
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Figure 6.11 displays the FFT for sensor #6 during the mode 2 test, with the main 

response at 6 Hz as expected.  Again, a peak near 28 Hz is observed in the response 

spectrum.  Peaks near 12 Hz and 24 Hz are also observed, and suspected to be due to 

harmonics of the excitation frequency of 6 Hz. 
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6.3 Mode 3 Testing: Excitation Frequency Close to the Third Natural Frequency 

 

Figure 6.12 shows the comparison between the reference mode 3  shape and 

experimental shape.   The tip deflection between the two is within 7 mm; however, 

while the experimental shape displays the reference mode 3 shape, it is displaced in the 

negative direction and has a lower amplitude, due to an influence from the other modes.  

The error10 value for this comparison was found to be 0.0028.  

 

Figure 6.12: Mode 3 reference mode shape (--) and experimental shape () at a 

maximum deflection point 
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The curvature data for the mode 3 experiment is shown in Figure 6.13.  This 

data appears to adequately represent a mode 3 curvature function with no apparent 

anomalies with the maximum curvature at the root and two inflection points. 

 

Figure 6.13: Mode 3 curvature data and positions of FBG sensors 

 

The time trace for the strain data collected for sensor #1 is shown in Figure 6.14.  

The probable cause for the negative shift in the experimental shape displayed in Figure 

6.12 is the influence of the other modes.  In these experiments, there was no data 

filtering techniques used during data collection or analysis.  The presence of higher 

frequency noise is difficult to detect by examining Figure 6.14; examining the Fourier 
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transforms of the sensor data displayed in Figure 6.15 through Figure 6.17 shows the 

presence of signals at higher frequencies. 

 

Figure 6.14: Time trace for a FBG sensor during mode 3 excitation 
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Figure 6.16: FFT plot for sensor #5 (mode 3 excitation) 

Mode 4
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Figure 6.16 shows the response data for sensor #5 during the mode 3 test.  This 

sensor is located near the first node location for this mode shape.  Therefore, there is a 

decrease in the response function at 17 Hz (the third resonant frequency) as compared to 

both Figure 6.15 and Figure 6.17.  This sensor also detects the frequencies 

corresponding the fourth (33 Hz) and sixth (82 Hz) modes of the beam.  
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Figure 6.17: FFT plot for sensor #7 (mode 3 excitation) 
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Figure 6.17 displays the FFT for sensor #7 during the mode 3 test.  This 

response is very similar to that of sensor #1 shown in Figure 6.15.  It is clear that during 

this test as well as the previous tests that neighboring modes were influencing the 

response of the cantilever beam. 
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6.4 Mode 4 Testing: Excitation Frequency Close to the Fourth Natural Frequency 

 

Figure 6.18 shows the comparison between the reference mode 4 shape and the 

experimental shape.   The tip deflection between the two is within 3 mm of each other, 

but the experimental prediction is only 45% of the observed tip deflection.  The error10 

value for this comparison was found to be 0.0016, which is not a low enough value for 

an accurate match.  It is shown in the FFT analysis that a substantial mode 2 was 

influencing the structure during this excitation frequency. 

 

Figure 6.18: Mode 4 reference mode shape (--) and experimental shape () at a 

maximum deflection point 
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The curvature data for the mode 4 experiment is shown in Figure 6.19.  This 

data appears to adequately represent a mode 4 curvature function (with three inflection 

points) with no apparent anomalies. 

 

Figure 6.19: Mode 4 curvature data and positions of FBG sensors 

 

The time trace for the strain data collected for sensor #1 for this test is shown in 

Figure 6.20.  Examining the Fourier transforms of the sensor data displayed in Figure 

6.21 through Figure 6.23 shows the presence of signals at higher frequencies.  A lower 

frequency component can be observed in the strain data by examining the variation in 
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the peak amplitudes.  As will be seen in the FFT analysis, this frequency corresponds to 

the second mode. 

 

Figure 6.20: Time trace for a FBG sensor during the mode 4 excitation 

 

The FFT plots for sensors #1, #5, and #7 is shown in Figure 6.21, Figure 6.22, 

and Figure 6.23, respectively.  Each of the plots displays a strong response at the fourth 

resonant mode frequency of 33 Hz.  A small response is also seen at the second mode at 

6 Hz.  Peaks in the frequency spectrum are also seen at near 66 Hz and near 99 Hz, 

which could be associated with harmonics of the 33 Hz excitation frequency.    
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Figure 6.21: FFT plot
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Figure 6.22: FFT plot for sensor #5 (mode 4 excitation) 
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Figure 6.23: FFT plot for sensor #7 (mode 4 excitation) 
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6.5 Mode 5 Testing: Excitation Frequency Close to the Fifth Natural Frequency 

 

Figure 6.24 displays the comparison between the reference mode 5 shape and 

the experimentally determined shape.  The experimentally determined shape has the 

characteristics of a mode 5 shape, but obviously does not follow the reference shape.  

The error10 value for this comparison was found to be 0.0032.  The FFT plots show a 

large response of lower frequencies especially mode 2, which attribute to this effect. 
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Figure 6.25:  Mode 5 curvature data and positions of FBG sensors 

 

Figure 6.25 shows the curvature data obtained for the mode 5 excitation 

experiment.  This data appears to adequately represent a mode 5 curvature shape with 4 

inflection points and no apparent anomalies. 
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Figure 6.26: Time trace for a FBG sensor during the mode 5 excitation 

 

Figure 6.26 displays the time trace for the recorded strain data of sensor 1 for the 

mode 5 excitation.  A low frequency component is observable in the variation in the 

amplitude of the sensor data.  This low frequency is also evident in the FFT of the 

sensor data shown in Figure 6.27. 
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Figure 6.27: FFT p
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Figure 6.28: FFT plot for sensor #5 
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Figure 6.29: FFT plot for sensor #7 (mode 5 excitation) 
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The FFT response for the sensor #7 data shown in Figure 6.29 does not display a 

strong response peak at the fifth resonant frequency of 56 Hz.  This is because sensor #7 

is located near a node location for this mode shape.  The mode 7 and mode 8 

frequencies are evident in the FFT data, as was the case with the other sensor data. 
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6.6 Sources of Experimental Error 

 

Discrepancies are observed between the experimental shapes and the reference 

mode shapes presented in this Chapter.  Possible sources for error in the experimentally 

determined shape discussed in this section include strain measurement error, tip 

deflection measurement error, and the influence of multiple active modes of the 

structure.   

 

The strain measurement error can be attributed to random noise in the strain 

monitoring instrumentation (± 5 µε).  Also, the location of each FBG sensor along the 

cantilever structure is used as input to the shape calculation algorithm.  This 

measurement has a level of error (~ ± 5 mm) associated with it that will affect the 

experimental shape result.  Another aspect of measurement error is the lack of a sensor 

at the exact root of the cantilever structure.  As discussed in Chapter 5, the measurement 

for the bending strain at the root of the cantilever structure is determined from the first 

sensor multiplied by a calibration factor determined from beam theory.  These 

measurement error sources are recognized as possible contributors to the discrepancy 

between the experimental shape and the reference mode shape.  The influence of the 

measurement error on the experimental shape is considered minimal compared to the 

influence from other structural modes.  For example, variations of ± 5 µε in strain 

values and ± 5 mm in sensor position correspond to roughly a 5 mm uncertainty in the 

tip position for a mode 1 vibration under conditions of Figure 6.1. 
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In Chapter 7, the primary influence affecting the experimentally determined 

shape, extraneous modal components, is investigated.  If the cantilever structure were to 

experience a linear response due to the single frequency excitation, then only the nearest 

resonant mode would be observed in the experimental data.  The extreme length of the 

structure allowed the single frequency excitation to excite a nonlinear response; thus, 

allowing several modal components to influence the dynamics of the structure.  For 

each of the first five mode shapes discussed in this chapter (and for mode 6 and mode 7 

shown in Appendix B), frequency components from other modes are evident in the FFT 

analysis.  The following chapter investigates the use of modal analysis techniques to 

obtain a more accurate representation of experimentally determined beam shape as a 

combination of several fundamental modes. 
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7 Modal Analysis 

 

In Chapter 6, experimental beam shape results were examined and compared to 

reference mode shapes.  In most cases, the experimental results resembled the reference 

mode shapes but did not match them exactly.  FFTs of the recorded strain data 

demonstrated that more than one mode was being excited during the experiment.  This 

chapter investigates modal analysis techniques to determine the influence of several 

modes on a given structural vibration.    

 

  As discussed in Section 3.1, the dynamic shape of a structure at any time is 

determined from a summation of mode shapes (φ), as:  

( ) ( )∑
=

φ=
m

1r
rr xAxy      (7.1) 

The objective of the research presented in this dissertation is to determine the shape of a 

vibrating structure at a particular time based on the measured strain readings along the 

structure.  From the measured strain information, details regarding the modal deflection 

of the structure cannot be easily extracted.  FFTs are used to analyze the frequency 

spectra of the strain readings, providing a means of determining the modal 

characteristics of the structure averaged over a particular sample time, not at a particular 
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time during the structural vibration.  This chapter outlines a method of determining the 

modal coefficients (Ar) for experimentally determined deflection shapes at any given 

time within the data set.  To accomplish this, the structure is assumed to be a linear 

combination of theoretical normal mode shapes.  The discussion in this dissertation is 

restricted to the case of cantilever structures that can be modeled as beams, but the 

analysis could be expanded to more complex structures with mode shapes that are 

known.  Because theoretical mode shapes are used, a well-behaved structure with 

known modal dynamic behavior will provide better results from this analysis than a 

complex structure with undefined mode shapes. 

 

 

7.1 Derivation of Modal Influence Determination 

 

As discussed in Section 4.1, the error between the reference shape and the 

experimentally determined shape is given by the following function: 

( ) ( )( ) ( ) ( )( )
n

xyxyxyxy
error

2
ntheorynexp

2
1theory1exp

n

−+−
=

L
  (7.2) 

where xi are positions along the structure and n is the number of evaluation points used 

to determine the error.  The methodology for determining the best modal coefficients 

involves minimizing the error function with respect to the modal coefficients.   

0
Ad

errord

r

n =       (7.3) 

This relation is used to determine a unique set of Ar values such that the error function 

is minimized.  Allowing u to equal the quantity under the square root, as 
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then the error function minimization is found to be 
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where the term in the square bracket must be zero.  One manner that this may be 

achieved is that the term in the first parenthesis may be zero for each data point xi.   
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Equation 7.6 states that the error function is minimized when the theoretical value at 

each data point (xi) is equivalent to the experimental value.  The set of equations can be 

written in matrix form as:  

( ) ( )

( ) ( )
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MM

L

MOM

L

   (7.7) 

The matrix on the left of Equation 7.7 contains the theoretical mode shapes, and will be 

denoted as the matrix H in subsequent analysis.  Allowing A to represent the modal 

coefficient vector and Y to represent the deflection data vector, Equation 7.7 is written 

as: 

[ ][ ] [ ]YAH =       (7.8) 

If H is a square matrix and an inverse exists, then the modal coefficients can be found 

as: 
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[ ] [ ] [ ]YHA 1−=       (7.9) 

To determine a unique solution set of Ar values, H must be square for an inverse to be 

determined, hence m = n (the case of a pseudo-inverse with n > m will be discussed in 

Section 7.4).  For the square matrix, values for Ar can be determined from examining 

the number of x data points equal to the number of modes of interest.  For example, if 

only the first four modes are of interest, then only four deflection values along the beam 

are required.  The H matrix must also have constraints that allow an inverse to exist; i.e. 

each row of the matrix must be independent.  Therefore, the selection of the xi values 

must be chosen with regard to the independence of the H matrix.  If the value x1 = 0 

were chosen, then for the case of a cantilever beam the boundary condition of φ(0,t) = 0 

would necessitate a row of zero values in H, such as: 

[ ]
( ) ( )
















φφ
=

nmn1 xx

00
H

L

MOM

L

    (7.10) 

The inverse of this matrix is undefined, and therefore can not be used to determine the 

modal coefficients in Equation 7.9.   

 

 

7.2 Analytical Modeling with Beam Functions 

 

A MATLAB program was written for analysis of the first 8 mode shape 

functions.  Multiple combinations of mode shapes were examined using the analysis 

method discussed in Section 7.1.  For each case examined, the algorithm was able to 

exactly determine the modal coefficients from simulated deflection data based on beam 
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theory.  The analytical tests assumed an even distribution of points (xi) along the beam 

shape for inclusion in the H matrix formulation.  Following this successful test, the code 

was exercised with the experimentally determined shape data.   

 

 

7.3 Experimental Data Modal Analysis using Square Inverse 

 

The experimentally determined shape data discussed in Chapter 6 was processed 

using the modal determination analysis derived in Section 7.1.  For the first four mode 

shapes, the analysis considers the influence of the first four modes.  The fifth resonant 

mode is examined to determine the influence of a variable number of modes (up to 8 

modes).   

 

 

7.3.1 Mode 1 Vibration 

 

Based on the shape determination discussed in Section 6.1, the modal 

coefficients for the first mode vibration should reflect a strong influence of the first 

mode and very little influence from the higher modes.  The experimentally determined 

shape was processed with the modal analysis technique to determine the modal 

coefficients of the first four modes.  The four x positions chosen for input to the modal 

analysis algorithm were arbitrarily selected along the length of the structure.  The Ar 

values for the test case were determined to be: Ar = [0.9829    0.0004    0.0104    

0.0074].  The coefficient for the first mode is shown in bold to indicate that it is the 
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mode of interest for this case.  As expected the first mode is dominant.  Figure 7.1 

shows the mode shape determined from the modal coefficients (Ar) for the mode 1 test 

case.  This is compared to the reference mode shape for the mode 1 deflection and the 

experimental shape, as discussed in Section 6.1.  The agreement between the shape 

determined from the Ar values and the experimental shape is quite good.  The error10 

value derived from this comparison is 1.405 e-4, which is an order of magnitude 

improvement compared to an error10 value of 0.005 found when the shape measurement 

is compared to the reference mode 1 shape.  Although difficult to discern in Figure 7.1, 

the shape measurement and the theoretical modal response shape do show small 

differences near the tip of the beam.  These differences will be shown to arise from the 

arbitrary selection of the four experimental values used in the modal analysis algorithm. 
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Figure 7.1: Shape comparison between reference mode 1 shape (-⋅-), experimentally 

determined shape (), and the shape based on  modal coefficients (*-)  

 

Figure 7.2 displays the dynamic variation in the Ar values versus time for a few 

cycles of the mode 1 excitation.  The modal coefficient representing the mode 1 

resonance is dominant during most of the vibration cycle.  The times when the influence 

of higher order modes increase are associated with the beam crossing the zero position 

(i.e. yexp(x) ≈ 0) leading to an arbitrary solution of Equation 7.9.  At times of a zero 

crossing, the structure is in the equilibrium position; hence, no modal components are 

influencing the structure to obtain that particular shape. 
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Figure 7.2: Modal coefficients versus time for mode 1 excitation

 

 

7.3.2 Mode 2 Vibration 

 

Results similar to those for mode 1 are found for the mode 2 case.  Th

experimentally determined shape was processed with the modal analysis tech

determine the modal coefficients of the first four modes at an arbitrary time w

data set.  The Ar values for this case were determined to be: Ar = [0.0652    0

0.0034    0.0096].  Figure 7.3 graphically shows the fit of the mode 2 test cas

in this section; the mode shape determined from the modal coefficients (Ar) c
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quite accurately to the shape measurement, as shown in Figure 7.3.  The error10 value 

determined for this comparison is 3.36 e-5, which is two orders of magnitude lower 

compared to an error10 value of 0.006 found when the shape measurement is compared 

to the reference mode 2 shape in Section 6.2.   

 

Figure 7.3: Shape comparison between the experimentally determined shape () and 

the shape based on modal coefficients (*-)  

 

Figure 7.4 displays the variation in the modal coefficients as a function of time.  

As observed with the mode 1 excitation, the modal coefficients for extraneous modes 
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increase at times when the cantilever beam has a zero crossing.  During other times, the 

mode 2 coefficient is the dominant modal parameter. 

 

Figure 7.4: Modal coefficients versus time for mode 2 excitation 

 

 

7.3.3 Mode 3 Vibration 

 

The experimentally determined shape was processed with the modal a

technique to determine the modal coefficients of the first four modes.  The A

an arbitrary time of the data set were determined to be: Ar = [0.0411    0.0028
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0.0235].  Figure 7.5 shows the comparison of the mode shape determined from the 

modal coefficients (Ar) and the experimental shape measurement.  The error10 value 

derived for this comparison is 1.989 e-4, which is an order of magnitude improvement 

compared to an error10 value of 0.0028 found when the shape measurement is compared 

to the reference mode 3 shape in Section 6.3.  Again, the tip region of the two shapes 

does not show good agreement, this is attributed to the arbitrary selection of four 

experimental data points along the beam length, which will be discussed further in 

Section 7.3.5. 

 

Figure 7.5: Shape comparison between the experimentally determined shape () and 

the shape using modal coefficients (*-)  

 142



 

Figure 7.6 displays the variation of the modal coefficients as a function of time 

through a few oscillations of the structure.  The points when the third resonant mode 

coefficient decreases are associated with the zero crossings of the beam.  There are 

instances when the second and fourth modes increase their respective modal 

participation, as indicated in the figure. 

 

Figure 7.6: Modal coefficients versus time for mode 3 excitation 
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7.3.4 Mode 4 Vibration 

 

Based on the data analysis of Section 6.4, the modal parameters for the fourth 

mode vibration should have an influence from the second and third modes with the 

strongest influence from the fourth mode.  The experimentally determined shape was 

processed with the modal analysis technique to determine the modal coefficients of the 

first four modes.  The Ar values for this case were determined to be: Ar = [0.0149    

0.1089    0.0805    0.7958].  As suggested, there is also influence observed from the 

second and third modes at this time.  Figure 7.7 displays the comparison between the 

experimentally determined shape and the mode shape using the modal coefficients.  

This comparison yields an error10 value of 9.36 e-5.  Although this error10 value 

indicates an accurate match, there are differences between the two shapes along the 

latter half of the beam.  This is attributed to using only four data points and hence only 

four modes to determine the modal coefficients.  Increasing the number of modes 

incorporated in the modal analysis provides a more accurate representation.  For 

example, increasing the modal analysis to eight modes yields an error10 value of 4.85 e-

5 with modal coefficients of Ar = [0.0131  0.1031  0.0594  0.6919  0.0036  0.0404  

0.0446  0.0437].   Also, a more accurate representation is obtained by incorporating 

more data points in the modal analysis technique while maintaining the same number of 

modes.  This methodology is discussed further in Section 7.4.   
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Figure 7.7: Shape comparison between the experimentally determined shape () and 

the shape using modal coefficients (*-)  

 

Figure 7.8 shows the modal coefficient variation through a few oscillations of 

the cantilever beam being excited at the fourth resonant frequency.  Although mode 4 

remains dominant throughout the vibration, the figure also shows a strong response 

from mode 2 and mode 3.  
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Figure 7.8: Modal coefficients versus time for mode 4 excitation 

 

 

7.3.5 Mode 5 Vibration 

 

Experimental shape data for the fifth mode excitation frequency was pr

and at a particular time of the data the following modal coefficients were deter

= [0.0180  0.0035  0.0733  0.0174  0.6161  0.0127  0.1133  0.1456].  Figure 7.

the shape comparison between the experimentally determined shape and the sh

based on the modal coefficients.  The error10 value calculated from the compar

between the experimental shape and the theoretical modal coefficient shape is 
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The stars along the modal coefficient shape represent the 8 locations that were used for 

the modal analysis algorithm. 
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modal coefficient shape no longer matches the experimental shape at the end of the 

structure with an error10 value for the comparison of 0.0015.  The Ar values for this case 

were determined to be Ar = [0.0820   0.0808    0.1452    0.2644    0.0234    0.2513    

0.2269].  Therefore, the square matrix inverse method of determining the modal 

coefficients is highly dependent on the location of the points used for the analysis, as 

alluded to previously.  As the sensors need to be distributed along the structure’s span, 

so must the points used to determine the modal coefficients.   

 

Figure 7.10: Shape comparison between the experimentally determined shape () and 

the shape using with modal coefficients (*-) 
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A different seven points were used to examine this effect, moving the second 

location to the end of the structure and determining the modal coefficients.  The modal 

coefficients for this case are: Ar = [0.0169    0.0001    0.0741    0.0333    0.5905    

0.0641    0.2210]  with an error10 value of 3.48 e-5, which is an order of magnitude 

higher than the error10 value found when using 8 mode shapes and 8 points along the 

beam.  Based on the results of this section, the use of more data points and more modes 

to determine the modal coefficients leads to a better determination of the modal 

coefficients.  The concept of using many more data points than modes of interest is 

investigated through the use of a pseudo-inverse method in Sections 7.4 and 7.5.  

 

Figure 7.11: Shape comparison between the experimentally determined shape () and 

the shape using modal coefficients (*-) 
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The modal coefficient variation during a few oscillations of the cantilever beam 

is shown in Figure 7.12.  The mode 5 coefficient is shown to be dominant through the 

beam’s vibration with significant influences from mode 7 and mode 8.   

 

Figure 7.12: Modal coefficients versus time for mode 5 excitat

58

 

 

 

7.4 Modal Influence Determination using the Pseudo-Inverse Method 

 

As stated in Section 7.1, the number of data points included in the 

coefficient analysis must be equivalent to the number of modes of interest 

inverse of the H matrix to be determined.  This section examines increasin

 150
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of data points from the experimental shape data used in the modal analysis method for a 

limited number of modes using a pseudo-inverse technique.  If the number of data 

points used to determine the modal coefficients for an m number of modes is 

represented by n, then Equation 7.8 is written as:  

[ ] [ ] [ ] 1n1mmn YAH ××× =      (7.11) 

A pseudo-inverse method may be employed to determine the Ar values from the case of 

n>m.  Both sides of Equation 7.11 are multiplied by the transpose of the H matrix.     

[ ] [ ][ ] [ ] [ ] 1n
T

1m
T YHAHH ×× =     (7.12) 

The combination [ ]  is a square matrix (m x m) and the inverse can be determined 

in the usual way.  This leads to the determination of the modal coefficients as 

[HH T ]

[ ] [ ] [ ]( ) [ ] [ ] 1n
T

nm

1

mm
T

1m YHHHA ××

−

×× =    (7.13) 

where  is the pseudo-inverse of the H matrix.   [ ] [ ]( 1T HH
−)

 

Using the pseudo-inverse, more data points can be included in the modal 

coefficient determination algorithm to provide a more robust analysis.   As discussed in 

Section 7.3.5, the end point of the experimentally determined shape should be included 

in the analysis.  Hence, the points used for the pseudo-inverse calculations were 

uniformly distributed across the structure’s span and included the end point of the 

structure.   
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7.5 Experimental Data Modal Analysis using Pseudo-Inverse 

 

This section reexamines the experimental data presented in Section 7.3 using the 

pseudo-inverse method.  The error10 values obtained from the pseudo-inverse method 

were observed to be lower compared to the square matrix method values given in 

Section 7.3.  For each excitation case (mode 1 through mode 5), the number of data 

points included in the pseudo-inverse method, was set to 10, 50, 100, and 167 (the 

maximum number of data points from the shape measurement algorithm for the 

experimental case).  The results for each excitation case are provided in Table 7.1 

through Table 7.5.  There were small changes between the error10 values when using 

different numbers of data points in the modal analysis, but because of the extremely 

small magnitude of these numbers the changes are considered insignificant.  Typical 

error10 results are provided for the mode 1 case in Table 7.1, and only a single error10 

value is provided for the remaining excitations.  Figure 7.13 through Figure 7.17 display 

the results from the modal analysis of the each excitation case using the pseudo-inverse 

method with 50 data points.  In all cases, the comparison between the experimental 

shape and the shape using the modal coefficients is improved compared to the square 

inverse method discussed in Section 7.3.    
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Figure 7.13: Shape comparison for pseudo-inverse modal analysis case, mode 1 

excitation; reference mode 1 (-⋅-), experimental shape (), shape using modal 

coefficients (*-) 

 

 A1 A2 A3 A4 error10 

10 Data Points 0.9898 0.0027 0.0026 0.0049 1.301 e-4 

50 Data Points 0.9900 0.0026 0.0028 0.0046 1.288 e-4 

100 Data Points 0.9900 0.0026 0.0028 0.0045 1.285 e-4 

167 Data Points 0.9900 0.0026 0.0028 0.0045 1.285 e-4 

Table 7.1: Modal coefficients for mode 1 excitation using pseudo-inverse technique 
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The error10 value for the mode 2 excitation case was determined to be 2.64 e-5, 

which is lower than the value determined from the square inverse method.   

 

Figure 7.14: Shape comparison for

experimental shape () an

 

 

 

 

 

 

 pseudo-inverse modal analysis case, mode 2; 

d shape using modal coefficients (*-) 
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 A1 A2 A3 A4 

10 Data Points 0.0645 0.9175 0.0065 0.0116 

50 Data Points 0.0644 0.9151 0.0039 0.0167 

100 Data Points 0.0643 0.9147 0.0034 0.0175 

167 Data Points 0.0643 0.9145 0.0033 0.0179 

Table 7.2: Modal coefficients for mode 2 excitation using pseudo-inverse technique 

 

The error10 value for the mode 3 case was determined to be 4.51 e-5, which is 

lower than the value determined from the square inverse method. The shape comparison 

shown in Figure 7.15 demonstrates the increased accuracy of the comparison, especially 

at the beam tip region. 
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Figure 7.15: Shape comparison for pseudo-inverse modal analysis case, mode 3; 

experimental shape () and shape using modal coefficients (*-) 

 

 

 A1 A2 A3 A4 

10 Data Points 0.0341 0.0152 0.8676 0.0831 

50 Data Points 0.0347 0.0142 0.8743 0.0768 

100 Data Points 0.0348 0.0140 0.8755 0.0757 

167 Data Points 0.0348 0.0140 0.8759 0.0753 

Table 7.3: Modal coefficients for mode 3 excitation using pseudo-inverse technique 
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The error10 value for the mode 4 case was determined to be 5.09 e-5, which is a 

lower value compared to the square inverse method.  As with the mode 3 case, the 

shape comparison is improved along the end of the beam as compared to the square 

inverse method shown in Section 7.3.   

 

Figure 7.16: Shape comparison for pseudo-inverse modal analysis case, mode 4; 

experimental shape () and shape using modal coefficients (*-) 
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 A1 A2 A3 A4 

10 Data Points 0.0151 0.1172 0.0708 0.7969 

50 Data Points 0.0151 0.1196 0.0679 0.7974 

100 Data Points 0.0150 0.1200 0.0675 0.7975 

167 Data Points 0.0150 0.1201 0.0673 0.7976 

Table 7.4: Modal coefficients for mode 4 excitation using pseudo-inverse technique 

 

The error10 value for the mode 5 case was determined to be 1.6 e-6, which is 

one-half the value determined from the square inverse method.  The lower error10 values 

for the mode 5 case (~10-6) are partially attributed to the low amplitude of the 

structure’s vibration.  The maximum amplitude for this case is approximately 1 mm, 

where for mode 4 it is approximately 3 mm and higher for the lower order modes.  The 

modal coefficients for modes 7 and 8 are significant compared to the other neighboring 

modes as expected from the FFT data presented in Section 6.5. 
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Figure 7.17: Shape comparison for pseudo-inverse modal analysis case, mode 5; 

experimental shape () and shape using modal coefficients (*-) 
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7.6 Summary of Modal Analysis 

 

This chapter analyzed the experimental shape data discussed in Chapter 6 using 

modal analysis techniques.  Both a square inverse method, where the number of input 

data points equaled the number of modes of interest, and a pseudo-inverse method, 

where the number of data points exceeded the number of modes of interest, were 

investigated.  The pseudo-inverse method demonstrated a higher accuracy in matching 

the experimental shape data with the shape formed using the modal coefficients.  

Increased accuracy was also obtained when more modes were included in the analysis, 

as demonstrated with the mode 4 and mode 5 cases.  These analysis methods 

demonstrate a novel use of FBG sensors to monitor continuous changes in the modal 

response characteristics of a structure with respect to time.      
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8 Conclusions 

 

This research has investigated the shape measurement of dynamic systems.  The 

shape measurement system developed herein consists of a multiplexed fiber optic 

sensor system, a shape determination algorithm based on Frenet frames, and a signal 

processing method based on modal analysis techniques.  Distributed strain 

measurements were obtained from a vibrating structure via a multiplexed FBG sensor 

system.  These strain measurements were used to determine the curvature of the 

structure at the FBG sensor locations, and the curvature values were processed with a 

Frenet frame algorithm to determine the shape of the structure.  In the experimental 

setup, a cantilever structure (65.625 × 2.0 × 0.125 inches, 6061 aluminum) was 

subjected to a base excitation force input by using a mechanical shaker.  The base of the 

structure was mounted on a linear translation stage to allow motion in the transverse 

direction.  Strain data was recorded from 8 surface mounted FBG sensors distributed 

along the length of the structure.  Strain data from these sensors were collected up 

through the first seven modal components of the cantilever beam.  Processing of the 

strain data using the Serret-Frenet frame shape measurement method showed a good 

qualitative match between the experimental shape and the theoretical mode shape for 
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excitation frequencies up to the fifth modal component.  Differences between the 

experimental and theoretical mode shapes are explained by influences of neighboring 

modes.  Modal analysis techniques were used to examine the shape measurement data 

to determine the influence of the various resonant modes on the vibration of the 

cantilever beam; these techniques were demonstrated as a unique tool for analyzing the 

temporally resolved dynamic response of a structure.    

 

 The conclusions drawn from this multidisciplinary research concern the fiber 

optic sensor system, the shape measurement algorithm, and the results from the modal 

analysis method used to examine the data.  The research demonstrated that the design of 

the FBG sensor requires knowledge of the expected strain range, the available optical 

bandwidth, and effective methods for processing the FBG sensor signals.  Careful 

planning of the FBG center wavelengths is important to avoid sensor overlap or sensor 

crosstalk in the fiber optic sensor system.  The Taylor series approximation used in the 

shape measurement algorithm is inaccurate at high strain gradients, which become 

critical for higher modes.  This effect was not observed for the excitation cases 

considered in the research.  An error experienced in this research effort was due to an 

inadequate number of sensors available for sensing higher modes.    

 

A primary contribution of this research is the demonstration of the shape 

measurement technique for determination of the modal influence coefficients related to 

the characteristic modal properties of a vibrating structure.  The framework for the 

investigations leading to this contribution is illustrated in Figure 8.1.  The cantilever 
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beam demonstrated that the modal coefficients vary with respect to time for the 

resonant excitation cases examined.  The modal analysis technique provides a measure 

of the relative influence of each mode for each instant of time during the recorded data 

set.  Results from the modal analysis method depend on the selection of input values; in 

particular, for the square inverse method.  For the modal analysis, it must be ensured 

that an adequate sampling of deflection points along the structure is used to recreate the 

deflection using modal analysis.  Also, an appropriate number of neighboring modes 

must be included in the modal analysis to determine an accurate representation of the 

modal characteristics of the structure.  The pseudo-inverse modal analysis method 

provides more accurate results than the square inverse method due to the inclusion of 

more points along the structure. 

 

Distributed Strain
Measurement

Curvature

Dynamic Shape
Sensing

Modal
Components

Mechanics

Serret-Frenet

Modal Analysis

 

Figure 8.1: Framework for the investigations discussed in this dissertation 
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It is recognized that there are other methods for performing shape measurement 

from distributed strain measurements, such as double integration of the strain mode 

shape data.  A goal of this research was to demonstrate the effectiveness of the Serret-

Frenet frame methodology for the cantilever structure case, not to justify its accuracy 

compared to another method.  The Serret-Frenet frame technique is considered to be 

useful when examining more complex structures such as cables (or hoses) which need 

to be modeled as space curves.   

 

Future research concerning the shape measurements may be expanded to the 

analysis of more complex structures, such as cables and plates.  Cables can be viewed 

as space curves, which should fit well into the Serret-Frenet frame formularization.  

Plates are not as amenable to Serret-Frenet analysis because they do not resemble a 

space curve.  The shape measurement method has been applied for measuring the static 

deflections of plate structures by analyzing the plate as multiple beams placed side-by-

side [Baldwin, Salter, and Kiddy, 2004].   

 

The shape measurement system demonstrated in this dissertation provided a 

post-processing method of obtaining the modal coefficients for a dynamically moving 

structure by using modal analysis techniques.  A possible future improvement would be 

real-time data processing to provide real-time determination of a structure’s dynamic 

shape.  This type of real-time analysis may be useful for applications of health 

monitoring where changes in the modal coefficients may lead to indications of damage 

to the structure.      
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Appendix A: Deriving Curvature from Vector Relations 

 

The shape calculation is based on curvatures values derived from the recorded 

strain data.  It was shown in Section 3.2 how the curvature data is used to map the 

deflection of the cantilever structure using the curvature data and Frenet frames (vector 

relations).  This appendix demonstrates the equivalent relationship between mechanics-

based curvature relations and vector calculus curvature relations.   

 

Curvature in the mechanics sense is a function of the shape of a surface.  If the 

surface is flat the radius of curvature is infinite and the curvature value is zero 

(curvature is the reciprocal of radius of curvature).  The well known relationship 

between curvature (κ) and the shape of the surface defined by the variable ‘y’ is given 

as [Beer and Johnston, 1981]: 

( ) 2/32y1

y

′+

′′
=κ      (A.1) 

This relationship is often simplified for small deflections of relatively flat surfaces as 

.   y ′′=κ

 

Curvature in terms of vector calculus is often discussed in terms of velocity (v) 

and acceleration (a) of space curves [Thomas Finney, 1992].     

( ) ( )
( ) 33 t

tt

r
rr

v
av

′

′′×′
=

×
=κ     (A.2) 

where r is the space vector following the space curve as a function of the parametric 

variable time (t).  The differentials in Equation A.2 can be written as spatial derivatives 
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of the x, y, and z components of r, where ( ) [ ]ppp z,y,xt =′r  and ( ) [ ]pppppp z,y,xt =′′r  

where the subscript p represents differentiation to a common spatial variable.  Thus 

Equation A.2 becomes: 

[ ] [ ]
[ ] 3z,y,x

z,y,xz,y,x

′′′

′′′′′′×′′′
=κ     (A.3) 

Performing the vector calculations in Equation A.3 leads to: 

( ) ( ) ( )
( ) 2/3222

222

zyx

yxyxzxzxzyzy

′+′+′

′′′−′′′+′′′−′′′+′′′−′′′
=κ    (A.4) 

For the case of a cantilever beam, 1x =′ , 0zzx =′′=′=′′ ,leading to: 

( ) 2/32y1

y

′+

′′
=κ       (A.5) 

which is the same equation as given by the mechanics based model in Equation A.1. 
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Appendix B: Additional Data from Chapter 6 Evaluations 

 

B.1 Mode 6 Testing: Excitation Frequency Close to the Sixth Natural Frequency 

 

Figure B.1 displays the comparison between the reference mode 6 shape and the 

experimentally determined shape.  The experimentally determined shape does not 

resemble a mode 6 shape and an error10 value of 0.0075 was determined for this 

comparison. 

 

Figure B.1: Mode 6 reference mod

maximu

 

e shape (--) and experimental shape () at a 

m deflection point 
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Figure B.2: Mode 6 curvature data and positions of FBG sensors 

 

The curvature data for the mode 6 test shown in Figure B.2 does not resemble a 

mode 6 curvature function.  Examining the strain data for sensor #1 in Figure B.3 and 

Figure B.4 demonstrates that the beam was not experiencing a mode 6 vibration state 

during this test.  Many other modal components were evident, as will be shown in the 

FFT data.   
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Figure B.3: Time trace for a FBG sensor during the mode 6 excitation 
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Figure B.4: Time trace for the same FBG sensor as shown in Figure B.3 with a shorter 

time scale 
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Figure B.5: FFT plot for senso

 

The FFT response for sensor #1 shows

mode 1 (~ 1 Hz), mode 3 (~ 17 Hz), mode 4 (~

influences are expected based on the strain dat

Figure B.7 show similar results for the FFT res

respectively.   

 172
Mode 6

Mode 4
r #1 (mode 6 excitation) 

 multiple peaks at many modes including 

 33 Hz), and mode 6 (~82 Hz).  These 

a shown in Figure B.4.  Figure B.6 and 

ponses of sensor #6 and sensor #7, 



 

Figure B.6: FFT plot for sensor #6 (mode 6 excitation) 

Mode 5

Mode 6

Mode 4 
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Figure B.7: FFT plot for sensor #7 (mode 6 excitation) 

Mode 4

Mode 6
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B.2 Mode 7 Testing: Excitation Frequency Close to the Seventh Natural Frequency 

 

Figure B.8: Mode 7 reference mod

maximu

 

Figure B.8 displays the compar

experimentally determined shape.  It is

determined shape has the characteristic

deflection points, but obviously does n

location of the beam, the experimental 

from the theoretical shape.  This will b

spacing, and not extraneous modes as d
e shape (--) and experimental shape () at a 

m deflection point 

ison between the reference mode 7 shape and the 

 difficult to tell, but the experimentally 

s of a mode 7 shape based on the number of 

ot follow the reference shape.  From near the root 

shape proceeds to the negative direction away 

e shown to be a result of an inadequate sensor 

isplayed for the other shape results. 
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Figure B.9: Mode 7 curvature data and positions of FBG sensors 

 

The curvature data obtained for the mode 7 test is displayed in Figure B.9.  This 

data does show a good representation of mode 7 with six inflection points.  The 

interpolation of the curvature values between the “root” sensor and sensor #2 drops to 

excessively low negative values.  A similar case is observed between sensor #8 and the 

beam tip, with the curvature values going to higher values.  These effects are because of 

the sensor spacing (and lack of an adequate number of sensors).  The eight sensors used 

on the beam could provide a better shape measurement if they were located in positions 

to provide better interpolations around the maximum curvature values. 
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Figure B.10: Time trace for a FBG sensor during the mode 7 excitation 

 

The strain data for sensor #1 during the mode 7 test is shown in Figure B.10.  

This data displays some lower frequency variation in the amplitude of the peaks.  The 

sensor response is much improved over the mode 6 data presented in the previous 

section.  The amplitude of the excitation was reduced in order to prevent extraneous 

vibrations in the beam, hence the reduced strain amplitudes and “cleaner” FFT response 

graphs below.   

 

The FFT responses shown in Figure B.11 through Figure B.13 are for the sensor 

#1, #3, and #7, respectively.  Each of these graphs displays a response peak near 115 Hz 
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corresponding to the mode 7 resonant frequency.  No other modes appear as compared 

to the other test data.  As stated earlier the difference between the experimental shape 

data and the theoretical shape data is the use of insufficient sensor spacing on the 

cantilever beam for this vibration state. 

 

Fig

 

 

Mode 1
ure B.11: F
Mode 7
FT plot for sensor #1 (mode 7 excitation) 
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Figure B.12: FFT plot for sensor #3 (mode 7 excitation) 
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Figure B.13: FFT plot for sensor #7 (mode 7 excitation) 
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