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the validity of the toolbox was demonstrated, it was used to model tungsten deposi-
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b34(sqh2s3)(gap) was considered the most appropriate fit to the data. This model

takes into account the systems kinetics (it uses the square root of the hydrogen

flow), the gas flows into each one of the reactor segments and the inter-segment gas

diffusivity.



FULL WAFER MAP RESPONSE SURFACE MODELS
FOR COMBINATORIAL CHEMICAL VAPOR DEPOSITION

REACTOR OPERATIONS

by
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Chapter 1

Introduction

Chemical Vapor Deposition (CVD) is a materials-processing technology used

for applying layers of non-volatile solids to surfaces through the decomposition of

relatively high vapor pressure gases. A CVD process consists of flowing a precursor

gas or gases into a deposition chamber that contains the heated object or objects

to be coated. The chemical reactions that transform the gases or vapors into the

solid material occur on or near the hot surfaces, resulting in the deposition of a thin

film. The byproducts of the reactions and the unreacted precursor gases are then

removed from the chamber.

CVD methods have been used to deposit the majority of the elements in

the periodic table, some in the form of pure elements, but more often combined

to form compounds. These wide variety of applications has allowed the use of

CVD techniques in many different fields. For instance, chemical vapor deposition

is utilized in different stages of the production of semiconductors. This process can

be used to deposit thin films of the active material (e.g. silicon), the conductive

interconnects (e.g. tungsten), and the insulating dielectrics (e.g. SiO2). CVD

is also widely used in the fabrication of fiberoptic cables used in communication

networks. Also, more recently, this technology is being used in the production of

microelectromechanical structures (MEMS).[8]
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Typically chemical vapor deposition has been used because of its conformality

(i.e. the ability to uniformly coat a topographycally complex substrate surface);

however, in some cases a spatially non-uniform distribution may be desired (e.g.

single wafer combinatorial processing used to deposit a film with properties that

vary according to the location). An intentionally (and reproducibly) non-uniform

film deposition may be obtained through a combinatorial approach.[1]

Joseph Hanak was one of the first to address the combinatorial approach in

the 70’s by stating that the research process should be capable of “synthesising,

analysing, testing and evaluating . . . large parts of multicomponent systems in single

steps”.[5] However, a “true” combinatorial approach has only been feasible recently

with the increase in computing power and the advances in automation, deposition

tools and characterization techniques.[15]

Combinatorial CVD is an emerging technology that enables a faster develop-

ment of new materials. The main objectives of this technology are to intentionally

deposit desired non-uniformities across the substrate and to be able to get an ac-

curate model of the system in order to obtain a correlation between processing

conditions and desired film qualities.[1]

Not many CVD reactor systems have combinatorial capabilities. However, the

existent ones demonstrate the ability to produce films with graded properties over

a portion of the wafer’s surface. A few combinatorial systems include Gladfelter’s

[9, 18] CVD reactor design that has three feed tubes in a triangular arrangement

across the substrate, Wang’s [14, 15, 16] hot-wire CVD system that features a mask

and motorized shutter, a cross-flow reactor configuration where separate precursor
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inlet nozzles are used presented by Hyett and Parkin [6], and Taylor and Semancik’s

[12] design that includes microhotplate devices to control the temperature in an

array of micro-scale substrate samples.

The drawback of using CVD is that it is generally a much more complex process

than, for example, physical vapor deposition (PVD). A CVD system is governed by

a variety of fundamental physical and chemical principles such as mass transfer, heat

transfer, thermodynamics, and kinetics. Thus, obtaining a physically-based model

for the process is practically impossible.

For this reason, a computational toolbox that calculates a response surface

model (up to a full second order model) for combinatorial chemical vapor deposi-

tion operations was developed. The toolbox consists on object-oriented functions

develped in MATLAB for the manipulation, interpretation, and analysis of combi-

natorial CVD data.

The important concepts of the response surface methodology are reviewed in

Chapter 2. Then, the computational toolbox is discussed in Chapter 3 where a

summary of the most relevant functions is presented. In Chapter 4 the functional-

ity of the toolbox is tested with artificially generated wafers. After the functions

are validated they are applied to the data obtained from a Spatially Programmable

Chemical Vapor Depositon reactor. These results are discussed in Chapter 5. Fi-

nally, the conclusions, final remarks and suggested future work are presented in

Chapter 6.
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Chapter 2

Response Surfaces

The Response Surface methodology may be divided in three major steps. The

first step involves the design of a series of experiments that will provide adequate

and reliable measurements from which information about how the different factors

(independent variables) affect the response (dependent variable) can be gathered.

The second step consists in finding the “best” fit for the data by performing regres-

sion analysis (i.e. least squares method) and the pertinent hypothesis tests on the

model’s parameters. Finally, the objective of the last step is to find the optimal

settings of the experimental factors needed to obtain a desired response.[7]

Least Squares Method

The least squares method finds the parameters for models to fit data by min-

imizing the sum of the square of the residuals. The residuals are defined as the

difference between the observed value for the response and the predicted value ob-

tained using the fitted model. The parameters determined by this method are nor-

mally distributed about the true parameter values with the least possible standard

deviation. This statement is based upon the assumption that the uncertainties (i.e.

errors) in the data are mutually independent in the statistical sense (uncorrelated)

and normally distributed with zero mean and common variance.
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Linear least squares problems include any model in which the p unknown

parameters (βj) are coefficients of functions of only the independent variables (xk).

In other words, the observed response Yi is linear in βj but not necessarily in the

independent variables (xk)

Yi =
p∑

j=1

βjgj(xi1, xi2, . . . , xim) + εi

where εi represents the random error in observation i. This can be written in

matrix notation as

Y = Xβ + ε

For example, if the response can be expressed by a second order model in

variables x1 and x2

Yi = β0 + β1xi1 + β2xi2 + β11xi1
2 + β12xi1xi2 + β22xi2

2 + εi

In matrix notation

Y = Xβ + ε



Y1

Y2

Y = .

.

.

Yn





1 x11 x12 x2
11 x11x12 x2

12

1 x21 x22 x2
21 x21x22 x2

22

X = . . . . . .

. . . . . .

. . . . . .

1 xn1 xn2 x2
n1 xn1xn2 x2

n2





β0

β1

β = β2

β11

β12

β22





ε1

ε2

ε = .

.

.

εn
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In cases where the dependent variable Y is a scalar related to the independent

variable or variables xk and the errors in the independent variables are negligible, the

function to minimize (i.e. the objective function) is the sum of squares of residuals.

SSE =
n∑

i=1

R2
i =

n∑
i=1

(Yi − yi)
2

Where

n= number of data points

Yi= ith measured value of the dependent variable

yi= ith predicted value of the dependent variable

Ri= ith residual (diference between the measured and predicted variables corre-

sponding to the ith experiment)

It is important to emphasize that neither the measured value Yi nor the pre-

dicted value yi is exactly equal to the unknown variable of y. However, the least

squares method assumes that if a sufficiently large number of measurments of Yi are

made for a single set of independent variables, the average value would approach

the true value.

The goal of the least squares method is to find the parameters bj (estimates

of βj) that minimize the objective function SSE. To accomplish this, the most com-

mon procedure is to differentiate SSE with respect to all bj’s and the resulting p

expressions are set to zero generating a set of normal equations.In matrix notation

the normal equations can be written as

X ′Xb = X ′Y

6



Finally, terms of the b vector (i.e. the unknown parameters bj) are computed

by

b = (X ′X)−1X ′Y

provided that the matrix X has full column rank.

Analysis of Variance

The analysis of variance is a technique that divides the total variabily into

meaningful components. For instance, the total variation in a set of data, known as

the total sum of squares (SST) can be partitioned into two parts; the sum of squares

explained by the fitted model (SSR), and the sum of squares unaccounted for by

the fitted model (SSE).

SST = SSR + SSE

The total sum of squares is computed by summing the squares of the deviations

of the observed Yi’s about their average Y .

SST =
n∑

i=1

(Yi − Y )2

The degrees of freedom associated to SST are n− 1, where n is the total number of

observations.

The sum of squares explained by the fitted model is known as the sum of

squares due to regression (SSR) and it is calculated by adding the squares of the

difference between the value predicted by the fitted model and the overall average

7



Source of Degrees Sum of Squares Mean Square f0 P-value
Variation of Freedom

(dof) (SS) (MS)

Regression p-1 SSR SSR/(p-1) MSR/MSE
(Fitted Model)
Residual n-p SSE SSE/(n-p)
(Error)
Total n-1 SST

of the observed values.

SSR =
n∑

i=1

(yi − Y )2

The degrees of freedom associated to SSR are p − 1, where p is the number of

parameters in the fitted model.

The sum of squares unaccounted for by the fitted model is also known as the

sum of squares residuals (SSE).

SSE =
n∑

i=1

(Yi − yi)
2

The degrees of freedom associated to SSE are n− p.

This information is usually summarized in a table known as the Analysis of

Variance Table or ANOVA Table that also has the value for f0 and the P-value that

are measurements of the model adequacy. These values are explained later in the

Model Comparison section.

Adequacy of the Model

A common criterion to determine the adequacy of a model is the coefficient

of determination R2 that gives the proportion of variability in the data set that is
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accounted for by the fitted model.

R2 =
SSR

SST
= 1− SSE

SST

If the model is “perfect” the value for R2 is 1, whereas if it is useless this value will

be closer to zero.

Another way to check the adequacy of the model is by performing tests of

significance that are discussed in the Model Comparison section.

Test of Hypothesis Concerning Individual Parameters

The estimators bj are assumed to be normally distributed with mean βj and

variance σ2
bj. The estimates of the variances of the parameters are obtained through

the elements of the inverse of the matrix X ′X and the model variance σ2. The

diagonal elements of the matrix [X ′X]−1σ2 estimate the variance of bj’s, and the

off-diagonal elements estimate the covariances of the parameters. The value for σ2

is estimated by

σ2 ≈ s2 =
SSE

(n− p)

Having knowledge of the distribution of the parameters makes it possible to

test hypothesis about them. For example, it can be tested whether or not βj equals

a set value βjo using a t-test.

t =
bj − βjo

sbj

where sbj is the estimate of the standard deviation for parameter bj and is calculated

by taking the square root of the variance of bj.
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σbj ≈ sbj =
√

[X ′X]−1
jj σ2

If −tα/2,dof < t < tα/2,dof the null hypothesis (H0 : bj = βjo) is accepted, other-

wise it is rejected. The value tα/2,dof may be obtained from tables (or computations

with an adequate software) and depends on the significance level α (that gives a

100(1 − α)% confidence in the test) and the degrees of freedom of the residuals

(dof = n− p).

The example developed later in this chapter demonstrates how this hypothesis

test is carried out.

Model Comparison

More than one model can be fitted to the same set of data and it is important

to compare these models in order to determine the one that represents the data

most accurately. Different criteria can be used to determine which model is the

“best”. For instance the decision may be based on which model produces a better

R2. However, R2 is a weak test and other methods should be used. One if these

methods is based on the F distribution.

“The F distribution is defined as the ratio of two χ2 distributions divided

by their degrees of freedom”[17]. Values for F are tabulated depending on the

confidence level (α) and the degrees of freedom of the numerator (ν1) and the

denominator(ν2).
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F (α, ν1, ν2) =
χ2(ν1)/ν1

χ2(ν2)/ν2

The χ2(ν) distribution is defined as the distribution of the sum of squared normal

distributed variables.

χ2(ν) =
ν∑

i=1

u2
i

where ν represents the degrees of freedom and u is normally distributed with a mean

of 0 and a standard deviation of 1.

The SSE (the sum of the square residuals) follows a χ2 distribution with n−p

degrees of freedom and the difference of SSE between two models follows the same

distribution with p1 − p2 degrees of freedom (model 1 - model 2). Therefore, the

following ratio should follow the F distribution

F (α, p1 − p2, n− p1) =
(SSEp2 − SSEp1)/(p1 − p2)

SSEp1/(n− p1)

where subscript 1 refers to the model with a larger number of parameters. Rear-

ranging to obtain a ratio between SSEp2 and SSEp1

SSEp2

SSEp1

= (p1− p2)
F (α, p1 − p2, n− p1)

n− p1

+ 1

If this ratio is larger than the actual ratio between SSEp2 and SSEp1, it can be

said with a 100(1 − α)% of confidence that adding the the extra p1 − p2 terms to

the model with larger number of parameters does not improve significantly from the

model with less parameters.

In the event that the two models being compared have the same number of
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parameters this procedure cannot be applied. However, in this case the sum of

square of the residuals is a good representative as to which model is “better”.

A special case of model comparison is the test of significance for a model.

This test gives an idea of model adequacy. The usual test of significance compares

a “fake” model that only includes β0 (i.e. all other βj are zero) to the model of

interest. The sum of residuals of the “fake” model is the total sum of residuals SST

with n − 1 degrees of freedom, and the sum of residuals of the “actual” model is

SSE with n− p degrees of freedom. Thus,

f0 =
(SST − SSE)/((n− p)− (n− 1))

SSE/(n− p)
=

SSR/(p− 1)

SSE/(n− p)
=

Mean Square Regression

Mean Square Residual

Therefore, the value of f0 is compared to a tabulated value Fα,p−1,n−p that rep-

resents the upper 100α % of the F-distribution. If f0 is greater than Fα,p−1,n−p then

the “fake” model is rejected at the α level of significance (the variation accounted

by the model is significantly greater than the unexplained variation). However, the

possibility that another model is a better fit to the data is not rejected. A “better”

model may include other variables or the deletion of one or more of the variables

considered in the model.

The strength of the conclusion of a statisical test can be determined from the

P-value that represents the lowest level of significance at which a null hypothesis is

rejected.
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Table 2.1: Example data

x1 x2 ydata ytrue

0 1 5.94 6.00
0 2 8.75 9.00
0 3 14.02 14.00
0 4 21.01 21.00

0.5 1 1.58 1.75
0.5 2 5.68 5.50
0.5 3 11.43 11.25
0.5 4 18.99 19.00
1 1 -4.45 -4.50
1 2 0.03 0.00
1 3 6.47 6.50
1 4 15.11 15.00

Example

Consider the case where there are two independent variables: x1 that takes

values from 0 to 1, and x2 that takes 1, 2, 3, or 4 as values. The “true” response

follows a second order polynomial ytrue = 5− 8x1 − 4x2
1 + 1.5x1x2 + x2

2 (i.e. b0 = 5,

b1 = −8, b2 = 0, b11 = −4, b12 = 1.5, b22 = 1). The data generated using a full

factorial design of experiment with a noise of 1.5% is presented in Table 2.1.

A second order polynomial is fitted using the least squares method. For this,

the matrix X is constructed and the vector b that holds the estimated parameters

is calculated.

13





1 x1 x2 x2
1 x1x2 x2

2

1 0 1 0 0 1

1 0 2 0 0 4

1 0 3 0 0 9

1 0 4 0 0 16

1 0.5 1 0.25 0.5 1

X = 1 0.5 2 0.25 1 4

1 0.5 3 0.25 1.5 9

1 0.5 4 0.25 2 16

1 1 1 1 1 1

1 1 2 1 2 4

1 1 3 1 3 9

1 1 4 1 4 16



b = [X ′X]−1X ′ydata

b′ = [4.7080 − 7.5532 0.1329 − 4.2277 1.4532 0.9862]

Then, the total sum of squares, sum of squares due to regression, and the sum

of squares of residuals are calculated in order to perform an Analysis of Variance.

SST =
n∑

i=1

(Yi − Y )2 = 655.775

SSR =
n∑

i=1

(yi − Y )2 = 655.660

SSE =
n∑

i=1

(Yi − yi)
2 = 0.115
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Table 2.2: ANOVA Table 2nd order model
Source of Degrees Sum of Squares Mean Square f0 P-value
Variation of Freedom

(dof) (SS) (MS)

Regression 5 655.660 131.132 6830 3.56× 10−11

(Fitted Model)
Residual 6 0.115 0.0192
(Error)
Total 11 655.775

The results are summarized in an ANOVA Table in Table 2.2. The coefficient

of determination R2 for this model is 0.99982.

After obtaining the vector b using the Least Squares method, a test of signifi-

cance is perfomed on the model to determine its adequacy. In order to do this, the

model is compared to a “fake” model that only contains the b0 coefficient.

f0 =
SSR/(p− 1)

SSE/(n− p)
=

655.660/5

0.115/6
= 6829.79

When this value is compared to the tabulated value for F0.05,5,6 = 4.3874 (95%

confidence) it is clear that the second order model is a much better approximation

to the data than the “fake” model. The P-value is close to zero indicating that the

second order model is prefered over the “fake” model regardless of the confidence

level.

Once it has been determined that the model is in fact an improvement over

the “fake” model, the significance of each parameter is checked by using a t-test to

determine if its value is zero.

t =
bj − 0

sbj

=
bj

sbj

The standard deviation of each parameter is calculated by

15



sbj =
√

[X ′X]−1
jj σ2

where

σ2 ≈ SSE

n− p
= 0.0192

Thus,

sb0 =
√

3.375× 0.0192 = 0.255

sb1 =
√

9× 0.0192 = 0.416

sb2 =
√

2.25× 0.0192 = 0.208

sb11 =
√

6× 0.0192 = 0.339

sb12 =
√

0.4× 0.0192 = 0.088

sb22 =
√

0.0833× 0.0192 = 0.040

And

tb0 =
4.7080

0.255
= 18.5

tb1 =
−7.5532

0.416
= −18.2

tb2 =
0.1329

0.208
= 0.639

tb11 =
−4.2277

0.339
= −12.5

tb12 =
1.4532

0.088
= 16.5

tb22 =
0.9862

0.040
= 24.6
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Table 2.3: ANOVA Table updated 2nd order model

Source of Degrees Sum of Squares Mean Square f0 P-value
Variation of Freedom

(dof) (SS) (MS)

Regression 4 655.652 163.91 9313 4.09× 10−13

(Fitted Model)
Residual 7 0.123 0.0176
(Error)
Total 11 655.775

For a 95% level of confidence, the critical value to which all t’s are compared

to is t0.025,6 = 2.4469. The value corresponding to b2 is the only one that falls in the

acceptance interval, therefore b2 is set to zero and the model recalculated following

the same procedure.

The X matrix for the updated model does not have the x2 column.

X = [1 x1 x2
1 x1x2 x2

2]

where 1, x1, x2
1, x1x2 and x2

2 represent vectors of the same length as the original

data.

The estimated parameters obtained for this model are b0 = 4.8557, b1 =

−7.5827, b11 = −4.2277, b12 = 1.4651, and b22 = 1.0108. The Analysis of Variance

for the updated model is found in Table 2.3.

The R2 for the updated model is 0.99981.

To be certain that the updated model is “better” than the original one a model

comparison is performed. For this, the ratio of the sum of square of the residuals is

compared to the critical value

(6− 5)
F (0.05, 6− 5, 12− 6)

12− 6
+ 1 = 1× 5.9874

6
+ 1 = 1.9979
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If the actual ratio is greater than the critical value, the model with more

parameters (i.e. original model) is better than the other one.

SSEupdated

SSEoriginal

=
0.123

0.115
= 1.07

Because the actual ratio is smaller than the critical value it can be said that

the updated model is prefered over the original one. The P-value for this test is

0.54, meaning that the level of significance should be 0.54 (confidence level of 46%)

in order to accept the original model as the “best” fit. Notice that even though the

R2 for the second order model is greater that the R2 for the updated second order

model, the updated model is more appropriate.

In real life, the “true” form of the response is not always known. Therefore,

different polynomials may be tried to fit the same data. For instance, the data may

be fitted to a first order polynomial using, once again, the method of least squares

with

X = [1 x1 x2]

The estimates of the parameters in this case are b0 = −1.6873, b1 = −8.1478,

b2 = 5.7906 and the model has a R2 = 0.96943. The Analysis of Variance is presented

in Table 2.4.

The ratio of the sum of square of the residuals for the first order model and

the updated second order model is

SSE1st order

SSEupdated

=
20.045

0.123
= 162

Comparing this value to the critical ratio (2.3535) it can be stated that the

18



Table 2.4: ANOVA Table 1st order model
Source of Degrees Sum of Squares Mean Square f0 P-value
Variation of Freedom

(dof) (SS) (MS)

Regression 2 635.730 317.86 143 1.53× 10−7

(Fitted Model)
Residual 9 20.045 2.2272
(Error)
Total 11 655.775

updated second order model is significantly better than the first order approximation

(P-value ≈ 0).
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Chapter 3

Response Surface Model computational toolbox

The computational toolbox used to manipulate and analyze the data obtained

from combinatorial CVD consists in a group of object-oriented functions written

in MATLAB. The toolbox is based on a highly accurate, quadrature-based set

of weighted residual methods that allows accurate wafer map representation and

interpolation.[2] Most functions work with parametrized data objects that have

three data fields: the data point (actual value); the data structure, which holds

the parameters’ information (names and values); and the data field, where the data

identification (name) is stored.

The Least Squares Method developed to calculate the predictive models ex-

tracts the parameters’ information and data values from the parametrized data

objects and proceeds with the calculations. The use of paramatrized data objects

makes it possible to calculate a complete wafer map model interpolating it to a

quadrature grid. This way the model predictions may be of a single point or a full

wafer map. The predicted object belongs to the same class as the data used to

obtain it. In other words, if the data used was a full wafer the predicted object will

belong to the wafer class, and if it was a single point the predicted object will be a

single point.

20



rsmodel

The rsmodel function takes as inputs a vector of parametrized data objects

that contain the data information and operation conditions (independent variables

values), a cell array with the terms of the model to be fitted, and a character string

with the name of the parameters.

If the name of the parameters is not specified the function uses all the param-

eters except those that present no variability (i.e. remain constant). If the model

order is not specified the function tries to fit the highest order model possible (up

to a full second order model). To determine the largest number of terms possible

(i.e. the highest order model possible) the rank of matrix X is analyzed. If it is

found that the number of model terms requested is greater than the rank of X,

the rsmodel function performs an exhaustive search for the “best” combination of

allowed number of model terms (defined by the condition number of X ′X) before

performing the least squares regression.

After performing the regression the modelvalidate fuction is called to obtain

some information regarding the usefullness/validity of the model. The rsmodel func-

tion gives as output a response surface model object that can later be used to make

predictions and displays in the command window a table with the values (or mean

values) of the calculated coefficients bj and an ANOVA Table.

21



modelvalidate

This function takes as inputs the rsmodel object and the vector of parametrized

data objects used to obtain the model. The outputs of this function are: the pre-

dicted values for the same parameter values as the original data, the error of the

prediction (data value minus predicted value), the estimated of the standard de-

viation (also known as the standard error) of each parameter, the coefficient of

determination (R2), the total number of observations (n), the number of terms in

the fitted model (p), the sum of squares of the residuals (SSE), and the total sum

of squares (SST ).

modeloutput

This function predicts the value/form of the point/wafer map for a given set

of parameter values. The inputs needed for this function are the model obtained

using rsmodel and the values and names of the parameters of interest.

getbcoeff

The getbcoeff function takes as input the model obtained from rsmodel and

present as output the calculated parameters bj’s. If the data used to calculate the

model was a single point in the wafer, getbcoeff gives the value for b0, a vector

b containing the linear terms bj, and a triangular matrix B containing the cross-

product terms bij.
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If the data used to calculate the model was a full wafer, getbcoeff gives as

output scalarfields with the information of b0, b, and B.

plotb

When a complete wafer map is modeled, an easier way to view the estimated

parameters, as oposed to using the getbcoeff function, is to present the resulting

scalarfields graphically. The plotb function takes as input the model obtained from

rsmodel and gives as output plots of the scalarfields of the estimated parameters.

bttest

The bttest function performs a t-test to each individual parameter obtained

using rsmodel. The null hypothesis H0 for the testing is that the “true” parameter

βj is zero, while the alternative hypothesis is that βj 6= 0. If the level of significance

(α) is not specified a default value of 0.05 is used, giving a 95% confidence in the

test. If the null hypothesis for a given parameter cannot be rejected that parameter

assumes the value of zero. In other words, that parameter is removed from the

model.

If the calculations are for a full wafer, a parameter βj is assumed to be zero,

thus removed from the model, if the null hypothesis cannot be rejected in at least a

pp percentage of the points of the quadrature grid. If the pp value is not specified

a value of 75 is used (i.e. βj has to be zero in at least 75% of the points in the

quadrature grid for it to be removed form the model).
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The bttest function gives as output an array of the terms that are consid-

ered relevant with a 100(1-α)% confidence. This array is then used in the rsmodel

function to obtain an updated model for the data.

comptest

The comptest function is used to compare two models in order to determine

which one is a more appropriate fit to the data. This function takes as inputs a

vector of parametrized data objects, two cell arrays with the terms of the models to

be compared, and the level of significance α for the comparison. If α is not specified

a default value of 0.05 is assumed.

If the calculations are for a full wafer, the comptest function accepts the model

with the larger number of terms as the “best” fit if it is considered so in at least a

pp percentage of the points of the quadrature grid. If the pp value is not specified a

value of 75 is used.

This function gives as outputs the number of parameters used in each model,

the actual ratio of the sum of residuals of the models (if the comparison is for one

point), the percentage of points where the model with a larger number of terms is

considered better (if the comparison involves full wafers), the critical value for the

ratio, and the conclusion that follows the comparison of both ratios.
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Additional Tools

There are other functions that do not belong exclusively to the rsmodel toolbox,

but that are helpful in manipulating the data.

waferpoint

The waferpoint function returns the value of a point in a wafer. This function

takes as inputs the wafer profile and the polar coordinates (r,θ) of the point.

plotsequence

As its name implies, the plotsequence function plots a sequence of wafer maps.

The input for this function is a vector of scalarfield objects containing the informa-

tion of the wafers.

xmlwrite

The xmlwrite function is used to write a data file marked up in XML from

a MATLAB struct object. By applying this function the information stored in

MATLAB objects may be easily shared and can even be posted online.

urlxmlread

The urlxmlread function takes as input the url address where the data is stored

in a XML format and returns an array structure from which the data is retrieved.
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Example

Consider the two-variable second order polynomial system presented in the

previous chapter (Table 2.1). The same analysis is now performed in MATLAB

using the computational toolbox.

First, the data is transformed to a parametrized data object that containes the

response value (ydata), the name of the independent variables (x1 and x2), and the

values for these variables. Then, the object is sent as input to the rsmodel function.

>> M2=rsmodel(E)

rsmodel object "M2"

Parameters: mean value

----------

x1 : 0.5

x2 : 2.5

Those used in model:

’x1’ ’x2’

Term : value (std error)

--------------------------------

b0 : 4.70799e+000 (2.54756e-001)

b1 : -7.55316e+000 (4.16014e-001)

b2 : 1.32913e-001 (2.08007e-001)

b1,1 : -4.22771e+000 (3.39674e-001)

b1,2 : 1.45324e+000 (8.77035e-002)

b2,2 : 9.86204e-001 (4.00310e-002)

R^2 : 0.99982

ANOVA Table

-----------------------------------------------------------------------------------

Source of degrees of freedom Sum of Squares Mean Square fo P-value

Variation (dof) (SS) (MS)

-----------------------------------------------------------------------------------

Regression 5 655.660 131.1319 6819.22 3.574e-011

Residual 6 0.115 0.0192

Total 11 655.775

E is the parametrized data object that contains the example data and M2 is

the second order response model obtained. The values obtained for the coefficients,

standard deviations (i.e. standard errors), and ANOVA Table are the same as the

ones obtained in the previous chapter.
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Next, a bttest is performed to determine which coefficients are relevant and

the resulting cell array is used to update the model.

>> mterm=bttest(M2);

>> M2u=rsmodel(E,mterm)

rsmodel object "M2u"

Parameters: mean value

----------

x1 : 0.5

x2 : 2.5

Those used in model:

’x1’ ’x2’

Term : value (std error)

--------------------------------

b0 : 4.85567e+000 (1.02536e-001)

b1 : -7.58269e+000 (3.95579e-001)

b1,1 : -4.22771e+000 (3.25001e-001)

b1,2 : 1.46505e+000 (8.20290e-002)

b2,2 : 1.01082e+000 (1.04244e-002)

R^2 : 0.99981

ANOVA Table

-----------------------------------------------------------------------------------

Source of degrees of freedom Sum of Squares Mean Square fo P-value

Variation (dof) (SS) (MS)

-----------------------------------------------------------------------------------

Regression 4 655.652 163.9130 9310.96 4.092e-013

Residual 7 0.123 0.0176

Total 11 655.775

In the updated model the value of b2 if forced to be zero and the model is

recalculated. Again, the values obtained are the same as the ones obtained in the

previous chapter.

The full second order model is compared to the updated model using comptest.

>> c=comptest(E,2,mterm)

c =

p1: 6

p2: 5

ratio: 1.0681

criticalr: 1.9979

pvalue: 0.5464

conclusion: ’model 1 IS NOT significantly better than model 2’

Model 1 refers to the full second order model and Model 2 refers to the updated

second order model. The conclusion from this comparison is the same as the one

reached in the previous chapter, the updated model is prefered over the original full
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second order model.

If a first order model is fitted to the data the resulting b values are:

>> M1=rsmodel(E,1)

rsmodel object "M1"

Parameters: mean value

----------

x1 : 0.5

x2 : 2.5

Those used in model:

’x1’ ’x2’

Term : value (std error)

--------------------------------

b0 : -1.68727e+000 (1.17984e+000)

b1 : -8.14777e+000 (1.05528e+000)

b2 : 5.79055e+000 (3.85335e-001)

R^2 : 0.96943

ANOVA Table

-----------------------------------------------------------------------------------

Source of degrees of freedom Sum of Squares Mean Square fo P-value

Variation (dof) (SS) (MS)

-----------------------------------------------------------------------------------

Regression 2 635.730 317.8649 142.72 1.526e-007

Residual 9 20.045 2.2272

Total 11 655.775

The result of comparing this model to the updated second order model is

>> c=comptest(E,1,mterm)

c =

p1: 3

p2: 5

ratio: 162.6650

criticalr: 2.3535

pvalue: 1.8217e-008

conclusion: ’model 2 IS significantly better than model 1’

Model 1 refers to the first order model, Model 2 refers to the updated second

order model, and the conclusion is that Model 2 is better than Model 1.
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Chapter 4

Artificially Generated Wafers Study

Three diferent sets of artificial wafers were generated in order to test the

Response Surface Model computational toolbox. All sets were obtained using a full

factorial design of experiment for values of the independent variables (i.e. ”fake”

operational conditions) p and q equal to -2, 0, and 2. The first set represents a full

second order response and behaves as W = Wo + WA (p + 6) (p− 0.3) + WB (q +

5) (q−0.1)+WA WB (p−0.3) (q−0.1). The second set correspons to a second order

response that has one parameter equal zero (i.e. is missing a term) and behaves as

W = Wo+WA (p−0.3)+WB (q+5) (q−0.1)+WA WB (p−0.3) (q−0.1). Lastly,

the third set follows a third order response and behaves as W = Wo + WA (p −

3) (p + 6) (p− 0.3) + WB (q + 5) (q − 0.1) + WA WB (p− 0.3) (q − 0.1). For all

three cases Wo is a flat wafer of thickness 1 plus the data noise, and WA and WB

are shown in Figure 4.1.

Single Point Analysis

The single point analysis of the artificially generated wafers takes as data

points the mean thickness of each wafer. Once these values are calculated they are

stored in parametrized data objects that also contain the values for the independent

variables p and q, and their names. The rsmodel function is then applied to these
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Figure 4.1: WA and WB used to generate the artificial wafers

objects.

Full second order behavior

The independent variables and mean thickness when the artificial wafers follow

the equation W = Wo+WA (p+6) (p−0.3)+WB (q+5) (q−0.1)+WA WB (p−

0.3) (q − 0.1) are tabulated in Table 4.1. These data are fitted to a second order

model using the rsmodel function, the relevance of each individual parameter is

tested using bttest, and an updated model is calculated.
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Table 4.1: Full second order wafers’ mean thickness

p q mean
Thickness

-2 -2 -4.8388
-2 0 -1.3438
-2 2 7.5288

0 -2 -3.6906
0 0 0.2000
0 2 9.6543

2 -2 -0.6735
2 0 3.7737
2 2 13.5661

>> M=rsmodel(Wm)

rsmodel object "M"

Parameters: mean value

----------

p : 0

q : 0

Those used in model:

’p’ ’q’

Term : value (std error)

--------------------------------

b0 : 2.44938e-001 (3.10391e-002)

b1 : 1.27667e+000 (8.50042e-003)

b2 : 3.32935e+000 (8.50042e-003)

b1,1 : 2.36878e-001 (7.36158e-003)

b1,2 : 1.17003e-001 (5.20542e-003)

b2,2 : 6.78611e-001 (7.36158e-003)

R^2 : 0.99998

ANOVA Table

-----------------------------------------------------------------------------------

Source of degrees of freedom Sum of Squares Mean Square fo P-value

Variation (dof) (SS) (MS)

-----------------------------------------------------------------------------------

Regression 5 322.554 64.5109 37199.86 2.199e-007

Residual 3 0.005 0.0017

Total 8 322.559
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Table 4.2: Predicted mean thickness and residuals

data pred. value residual

-4.8388 -4.8371 -0.0016
-1.3438 -1.3609 0.0171
7.5288 7.5442 -0.0154

-3.6906 -3.6993 0.0087
0.2000 0.2449 -0.0449
9.6543 9.6181 0.0363

-0.6735 -0.6665 -0.0070
3.7737 3.7458 0.0279
13.5661 13.5869 -0.0208

>> mterm=bttest(M);

>> Mud=rsmodel(Wm,mterm)

rsmodel object "Mud"

Parameters: mean value

----------

p : 0

q : 0

Those used in model:

’p’ ’q’

Term : value (std error)

--------------------------------

b0 : 2.44938e-001 (3.10391e-002)

b1 : 1.27667e+000 (8.50042e-003)

b2 : 3.32935e+000 (8.50042e-003)

b1,1 : 2.36878e-001 (7.36158e-003)

b1,2 : 1.17003e-001 (5.20542e-003)

b2,2 : 6.78611e-001 (7.36158e-003)

R^2 : 0.99998

The updated model is exactly the same as the original second order model.

Thus, it is clear that, according to the bttest, all terms are considered relevant.

The predicted thickness using the calculated model and the residuals are dis-

played in Table 4.2.
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Table 4.3: Second order wafers’ mean thickness

p q mean
Thickness

-2 -2 -3.2706
-2 0 0.2244
-2 2 9.0970

0 -2 -3.3497
0 0 0.5409
0 2 9.9952

2 -2 -3.3781
2 0 1.0691
2 2 10.8615

Second order behavior

The second set of artificial wafers has the form W = Wo + WA (p − 0.3) +

WB (q + 5) (q − 0.1) + WA WB (p − 0.3) (q − 0.1). The mean thickness and

independent variable values for this set of data appears in Table 4.3.

The model obtained for these data when rsmodel is used is:
rsmodel object "M"

Parameters: mean value

----------

p : 0

q : 0

Those used in model:

’p’ ’q’

Term : value (std error)

--------------------------------

b0 : 5.85851e-001 (3.10391e-002)

b1 : 2.08477e-001 (8.50042e-003)

b2 : 3.32935e+000 (8.50042e-003)

b1,1 : 9.60337e-003 (7.36158e-003)

b1,2 : 1.17003e-001 (5.20542e-003)

b2,2 : 6.78611e-001 (7.36158e-003)

R^2 : 0.99998
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ANOVA Table

-----------------------------------------------------------------------------------

Source of degrees of freedom Sum of Squares Mean Square fo P-value

Variation (dof) (SS) (MS)

-----------------------------------------------------------------------------------

Regression 5 282.688 56.5375 32602.07 2.681e-007

Residual 3 0.005 0.0017

Total 8 282.693

When this model is tested with bttest and an updated model is calculated the

result is:
>> mterm=bttest(M);

>> Mud=rsmodel(Wm,mterm)

rsmodel object "Mud"

Parameters: mean value

----------

p : 0

q : 0

Those used in model:

’p’ ’q’

Term : value (std error)

--------------------------------

b0 : 6.11460e-001 (2.60667e-002)

b1 : 2.08477e-001 (9.21598e-003)

b2 : 3.32935e+000 (9.21598e-003)

b1,2 : 1.17003e-001 (5.64361e-003)

b2,2 : 6.78611e-001 (7.98128e-003)

R^2 : 0.99997

ANOVA Table

-----------------------------------------------------------------------------------

Source of degrees of freedom Sum of Squares Mean Square fo P-value

Variation (dof) (SS) (MS)

-----------------------------------------------------------------------------------

Regression 4 282.685 70.6712 34669.49 2.496e-009

Residual 4 0.008 0.0020

Total 8 282.693

Note that the b11 term disappears in the updated model because, according

to the results of bttest, it is not considered important. To verify that the updated

model is in fact a “better” fit that the full second order model, a model comparison

is performed.
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Table 4.4: Predicted mean thickness and residuals

data pred. value residual

-3.2706 -3.2817 0.0112
0.2244 0.1945 0.0299
9.0970 9.0996 -0.0026

-3.3497 -3.3328 -0.0169
0.5409 0.6115 -0.0705
9.9952 9.9846 0.0107

-3.3781 -3.3838 0.0058
1.0691 1.0284 0.0407
10.8615 10.8696 -0.0080

>> c=comptest(Wm,2,mterm)

c =

p1: 6

p2: 5

ratio: 1.5673

criticalr: 4.3760

pvalue: 0.2831

conclusion: ’model 1 IS NOT significantly better than model 2’

The comparison shows one more time that the b11 term is not significant since

its addition in the full second order model does not represent an improvement. The

predicted thickness and the residuals are presented in Table 4.4.

Third order behavior

The last set of artificial data generated follows the equation W = Wo +

WA (p− 3) (p + 6) (p− 0.3) + WB (q + 5) (q− 0.1) + WA WB (p− 0.3) (q− 0.1).

The mean thickness for each wafer and the “operating conditions” (i.e. independent

variable values) are found on Table 4.5.

When rsmodel is used on these data the following b coefficientes and ANOVA
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Table 4.5: Third order wafers’ mean thickness

p q mean
Thickness

-2 -2 7.7068
-2 0 11.2018
-2 2 20.0744

0 -2 -2.0543
0 0 1.8364
0 2 11.2907

2 -2 -6.8554
2 0 -2.4082
2 2 7.3842

table are obtained:
rsmodel object "M"

Parameters: mean value

----------

p : 0

q : 0

Those used in model:

’p’ ’q’

Term : value (std error)

--------------------------------

b0 : 1.88132e+000 (3.10391e-002)

b1 : -3.40519e+000 (8.50042e-003)

b2 : 3.32935e+000 (8.50042e-003)

b1,1 : 6.23246e-001 (7.36158e-003)

b1,2 : 1.17003e-001 (5.20542e-003)

b2,2 : 6.78611e-001 (7.36158e-003)

R^2 : 0.99999

ANOVA Table

-----------------------------------------------------------------------------------

Source of degrees of freedom Sum of Squares Mean Square fo P-value

Variation (dof) (SS) (MS)

-----------------------------------------------------------------------------------

Regression 5 572.360 114.4720 66009.68 9.304e-008

Residual 3 0.005 0.0017

Total 8 572.365

Notice that, as explained in the previous chapter, the rsmodel function fits

the data up to a full second order model. Regardless, acording to the coefficient of

determination (R2 = 0.99999) and the sum of square of residuals (SSE = 0.005)
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the second order model appears to be a good fit.

The relevance of each of the terms of the second order model is tested using

bttest and an updated model is calculated.

>> mterm=bttest(M);

>> Mud=rsmodel(Wm,mterm)

rsmodel object "Mud"

Parameters: mean value

----------

p : 0

q : 0

Those used in model:

’p’ ’q’

Term : value (std error)

--------------------------------

b0 : 1.88132e+000 (3.10391e-002)

b1 : -3.40519e+000 (8.50042e-003)

b2 : 3.32935e+000 (8.50042e-003)

b1,1 : 6.23246e-001 (7.36158e-003)

b1,2 : 1.17003e-001 (5.20542e-003)

b2,2 : 6.78611e-001 (7.36158e-003)

R^2 : 0.99999

The updated model is the same as the full second order model demonstrating

that all second order terms are considered relevant.

Table 4.6 has the predicted values and the residuals. The small values of the

residuals confirm that, even though the “true” response is a third order, a second

order model is a good approximation for the response.

Full Wafer Maps

For the full wafer analysis of the artificially generated wafers the parametrized

data objects have the full wafer information, the values for the independent variables

p and q, and their names. The rsmodel function is then applied to these objects.
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Table 4.6: Predicted mean thickness and residuals

data pred. value residual

7.7068 7.7085 -0.0016
11.2018 11.1847 0.0171
20.0744 20.0898 -0.0154

-2.0543 -2.0629 0.0087
1.8364 1.8813 -0.0449
11.2907 11.2545 0.0363

-6.8554 -6.8483 -0.0070
-2.4082 -2.4361 0.0279
7.3842 7.4051 -0.0208

Full second order behavior

The artificial wafers with the full second order behavior follow the equation

W = Wo+WA (p+6) (p−0.3)+WB (q+5) (q−0.1)+WA WB (p−0.3) (q−0.1).

The plot for the generated wafers is obtained using the plotsequence function. The

resulting graph is found in Figure 4.2. These wafers are fitted to a second order

model using the rsmodel function.

>> WM=rsmodel(W)

rsmodel object "WM"

Parameters: mean value

----------

p : 0

q : 0

Those used in model:

’p’ ’q’

Term : mean value (mean std error)

------------------------------------

b0 : 2.50712e-001 (1.03443e-001)

b1 : 1.28254e+000 (2.83289e-002)

b2 : 3.32412e+000 (2.83289e-002)

b1,1 : 2.28715e-001 (2.45335e-002)

b1,2 : 1.18623e-001 (1.73478e-002)

b2,2 : 6.84453e-001 (2.45335e-002)

mean(R^2) : 0.99868
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Figure 4.2: Full second order artificial wafers

ANOVA Table

-----------------------------------------------------------------------------------

Source of degrees of freedom Sum of Squares Mean Square fo P-value

Variation (dof) (SS) (MS)

-----------------------------------------------------------------------------------

Regression 5 460.797 92.1593 4088.30 6.034e-006

Residual 3 0.068 0.0225

Total 8 460.864

The obtained coefficients are plotted using plotb (Figure 4.3).

The relevance of each individual parameter is tested using bttest, and an up-

dated model is calculated.
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Figure 4.3: Full second order bj coefficients

>> mterm=bttest(WM,0.01);

>> WMud=rsmodel(W,mterm)

rsmodel object "WMud"

Parameters: mean value

----------

p : 0

q : 0

Those used in model:

’p’ ’q’

Term : mean value (mean std error)

------------------------------------

b0 : 2.50712e-001 (1.03443e-001)

b1 : 1.28254e+000 (2.83289e-002)

b2 : 3.32412e+000 (2.83289e-002)

b1,1 : 2.28715e-001 (2.45335e-002)

b1,2 : 1.18623e-001 (1.73478e-002)

b2,2 : 6.84453e-001 (2.45335e-002)

mean(R^2) : 0.99868

The updated model is the same as the original model. Thus, all terms are

considered relevant and the response follows a full second order behavior.

The modeloutput function is used to predict the wafer map when p = 0.3 and
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q = 0.1 and the result is found in Figure 4.4. According to the equation used to

generate the artificial wafers, these values should give a uniform wafer with mean

thickness of 1nm.

Figure 4.4: Predicted wafer p=0.3, q=0.1

Second order behavior

The second set of artificial wafers follow a second order behavior where one

coefficient is zero. Figure 4.5 shows the nine wafers generated according to the

equation W = Wo+WA (p−0.3)+WB (q+5) (q−0.1)+WA WB (p−0.3) (q−0.1).

A model for these wafers is obtained using rsmodel. Then a bttest is performed

to determine the importance of each term and an updated model is calculated.
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Figure 4.5: Second order artificial wafers

>> WM=rsmodel(W)

rsmodel object "WM"

Parameters: mean value

----------

p : 0

q : 0

Those used in model:

’p’ ’q’

Term : mean value (mean std error)

------------------------------------

b0 : 5.91624e-001 (1.03443e-001)

b1 : 2.14348e-001 (2.83289e-002)

b2 : 3.32412e+000 (2.83289e-002)

b1,1 : 1.44051e-003 (2.45335e-002)

b1,2 : 1.18623e-001 (1.73478e-002)

b2,2 : 6.84453e-001 (2.45335e-002)

mean(R^2) : 0.9945

ANOVA Table

-----------------------------------------------------------------------------------

Source of degrees of freedom Sum of Squares Mean Square fo P-value

Variation (dof) (SS) (MS)

-----------------------------------------------------------------------------------

Regression 5 354.483 70.8966 3145.06 8.943e-006

Residual 3 0.068 0.0225

Total 8 354.551

42



>> mterm=bttest(WM,0.01);

>> WMud=rsmodel(W,mterm)

rsmodel object "WMud"

Parameters: mean value

----------

p : 0

q : 0

Those used in model:

’p’ ’q’

Term : mean value (mean std error)

------------------------------------

b0 : 5.95466e-001 (8.18213e-002)

b1 : 2.14348e-001 (2.89282e-002)

b2 : 3.32412e+000 (2.89282e-002)

b1,2 : 1.18623e-001 (1.77148e-002)

b2,2 : 6.84453e-001 (2.50525e-002)

mean(R^2) : 0.99215

ANOVA Table

-----------------------------------------------------------------------------------

Source of degrees of freedom Sum of Squares Mean Square fo P-value

Variation (dof) (SS) (MS)

-----------------------------------------------------------------------------------

Regression 4 354.460 88.6151 3914.65 1.956e-007

Residual 4 0.091 0.0226

Total 8 354.551

The b11 term is not consider relevant and it dissapears from the updated model.

The obtained b coefficients are plotted in Figure 4.6. Note that the plot for the b11

coefficient is a constant field with zero value.

The obtained updated model is compared to the original full second order

model using comptest.
>> c=comptest(W,2,mterm)

c =

p1: 6

p2: 5

pointpercentage: 0.6839

meanpvalue: 0.3876

criticalr: 4.3760

conclusion: ’model 1 IS NOT significantly better than model 2’

The comparison shows that the full second order model is consider a “better”

model only in 0.7% of the points. Thus, the updated second order model is chosen

as the “optimal” fit for the data.
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Figure 4.6: Second order bj coefficients

Figure 4.7 shows the prediction wafer when p = 0.3 and q = 0.1. The resulting

wafer is approximately uniform with a mean thickness of 1nm, which in concordance

with the equation used to generate the artificial wafers.

Third order behavior

The third set of artificial wafers follows the form W = Wo + WA (p− 3) (p +

6) (p− 0.3) + WB (q + 5) (q − 0.1) + WA WB (p− 0.3) (q − 0.1). The generated

wafers are plotted in Figure 4.8.

The resulting model when rsmodel is applied to these wafers is:
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Figure 4.7: Predicted wafer p=0.3, q=0.1

>> WM=rsmodel(W)

rsmodel object "WM"

Parameters: mean value

----------

p : 0

q : 0

Those used in model:

’p’ ’q’

Term : mean value (mean std error)

------------------------------------

b0 : 1.88709e+000 (1.03443e-001)

b1 : -3.39932e+000 (2.83289e-002)

b2 : 3.32412e+000 (2.83289e-002)

b1,1 : 6.15083e-001 (2.45335e-002)

b1,2 : 1.18623e-001 (1.73478e-002)

b2,2 : 6.84453e-001 (2.45335e-002)

mean(R^2) : 0.99951

ANOVA Table

-----------------------------------------------------------------------------------

Source of degrees of freedom Sum of Squares Mean Square fo P-value

Variation (dof) (SS) (MS)

-----------------------------------------------------------------------------------

Regression 5 1117.468 223.4936 9914.44 1.598e-006

Residual 3 0.068 0.0225

Total 8 1117.536

Then, the relevance of the individual coefficients is tested and an updated

model is calculated.
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Figure 4.8: Third order artificial wafers

>> mterm=bttest(WM,0.01);

>> WMud=rsmodel(W,mterm)

rsmodel object "WMud"

Parameters: mean value

----------

p : 0

q : 0

Those used in model:

’p’ ’q’

Term : mean value (mean std error)

------------------------------------

b0 : 1.88709e+000 (1.03443e-001)

b1 : -3.39932e+000 (2.83289e-002)

b2 : 3.32412e+000 (2.83289e-002)

b1,1 : 6.15083e-001 (2.45335e-002)

b1,2 : 1.18623e-001 (1.73478e-002)

b2,2 : 6.84453e-001 (2.45335e-002)

mean(R^2) : 0.99951

Since the updated model is the same as the original model it can be concluded

that all terms are important. Figure 4.9 shows the calculated b coefficients.

The predicted wafer obtained for values of p = 0.3 and q = 0.1 is presented
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Figure 4.9: Third order bj coefficients

in Figure 4.10. The resulting wafer is close to uniform with except of the lower left

corner. The deviation from uniformity in the predicted wafer is due to difference

in the order of the model and of the form used to generate the wafers (W = Wo +

WA (p− 3) (p + 6) (p− 0.3) + WB (q + 5) (q− 0.1) + WA WB (p− 0.3) (q− 0.1)).

Figure 4.10: Predicted wafer p=0.3, q=0.1
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Chapter 5

Spatially Programmable CVD Reactor Study

Once the validity of the computational toolbox is demonstrated with the arti-

ficial data, it is aplied to “real” wafer data. The Spatially Programmable Chemical

Vapor Deposition System (SP-CVD)[3, 4, 10] used for this study has a three-zone

showerhead and a “reverse flow exhaust” method of pumping out residual gases

from each segment (Figure 5.1. The showerhead allows individual control over the

mass flow rate and composition of the precursor gases to each segment making it

possible to control the two-dimensional gas concentration patterns over the wafer.

The “reverse flow exhaust” minimizes inter-segment convective gas flows in the gap

between the showerhead and the wafer. Thus, the transport of gas species in the

inter-segment region may be controlled by adjusting the gap size (the inter-segment

diffusive flux increases proportionally with the gap size).

The chemical system used consists on tungsten chemical vapor deposition on

4′′ wafers. The percursor gases are WF6 and H2, and argon is used as an inert

compensatory gas to maintain a constant flowrate. The overall reaction for the

tungsten deposition that takes place at the wafer’s surface is:

WF6(g) + 3H2(g) → W(s) + 6HF(g)

The reaction rate under the operating conditions can be expressed as

r = k(PWF6)
0(PH2)

1/2
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Figure 5.1: SP-CVD reactor system illustrating the reactor chamber design (left),

the segmented showerhead design (bottom right), and a representative W film thick-

ness map (top right)

Where k is the temperature dependent kinetic constant, PWF6 is the partial

pressure of WF6 and PH2 is the partial pressure of H2.

The experiments were carried at a constant total mass flow of 60 standard

cubic centimeters (1sccm=7.4x10−7 mol/s), a heater temperature of 400 oC (giving

an approximate wafer temperature of 380 oC), and a reactor pressure of 1 torr. The

deposition time for all the wafers was set to 900 seconds. After each deposition the

thickness was measured with a four-point probe ex-situ metrology station resulting in

a rectangular grid of 900 measurement points.[11] Wafer maps were then generated
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by interpolating the thickness data to a numerical quadrature grid defined on a

computational domain that has the same physical dimensions as the wafer.

Once the wafer maps are obtained, a single point analysis of the data is per-

fomed followed by a full wafer analysis.

The hydrogen flowrates used in each run are found in Table 5.1.

Segments’ Center Point

The objective of the single point analysis of the SP-CVD reactor data is to

find an optimal model for the thickness of the center point of each wafer segment

(Figure 5.2) using the rsmodel computational toolbox. The values of thickness at

the center points are obtained using the waferpoint function.

Figure 5.2: Wafer segments

According to the kinetics of the chemical system, the rate of the reaction

depends on the square root of the hydrogen concentration. Thus, the factors used

to fit the model are the square root of the H2 flowrates to each segment and the
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Table 5.1: Operational conditions for each wafer

wafer ID H2s1 (sccm) H2s2 (sccm) H2s3 (sccm) gap (mm)

w081506 01 16 32 48 3
w081506 02 32 48 16 3
w081506 03 48 16 32 3
w081506 04 32 32 32 3
w081506 05 32 0 0 3

w081506 06 0 32 0 3
w081506 07 0 0 32 3
w081606 01 0 0 32 1
w081606 02 0 32 0 1
w081606 03 32 0 0 1

w081606 04 32 32 32 1
w081606 05 48 16 32 1
w081606 06 32 48 16 1
w081606 07 16 32 48 1
w081606 08 16 32 48 5

w081606 09 32 48 16 5
w081606 10 48 16 32 5
w081606 11 32 32 32 5
w081606 12 32 0 0 5
w081606 13 0 32 0 5

w081606 14 0 0 32 5
w081706 01 0 0 32 3
w081706 02 0 32 0 3
w081706 03 32 0 0 3
w081706 04 32 32 32 3

w081706 05 48 16 32 3
w081706 06 32 48 16 3
w081706 07 16 32 48 3
w081806 01 0 0 32 2
w081806 02 0 32 0 2

w081806 03 32 0 0 2
w081806 04 32 32 32 2
w081806 05 48 16 32 2
w081806 06 32 48 16 2
w081806 07 16 32 48 2

w082406 01 0 0 32 4
w082406 02 0 32 0 4
w082406 03 32 0 0 4
w082406 04 32 32 32 4
w082406 05 48 16 32 4

w082406 06 32 48 16 4
w082406 07 16 32 48 4
w082406 08 32 32 0 4
w082406 09 0 32 32 4
w082406 10 32 0 32 4
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distance between the showerhead and the wafer (gap).

The results for segment 1 are presented in this chapter. The results for segment

2 and segment 3 may be found on Appendix A.

Full second order model

The values of the calculated b coefficients obtained when a full second order

model is fitted to the data are presented bellow. The subscripts 1, 2, and 3 corre-

spond to the square roots of the hydrogen flowrate to segment 1 (sqh2s1), segment

2 (sqh2s2), and segement 3 (sqh2s3) respectively. The subscritp 4 corresponds to

the dimension of the gap.

The coefficients and ANOVA Table obtained for segments 1 (P1) are:

rsmodel object "P1"

Parameters: mean value

----------

sqh2s1 : 3.9713

sqh2s2 : 3.9713

sqh2s3 : 3.9713

gap : 3.0667

Those used in model:

’sqh2s1’ ’sqh2s2’ ’sqh2s3’ ’gap’

Term : value (std error)

--------------------------------

b0 : 1.28464e+001 (8.68478e+002)

b1 : 2.15982e+002 (5.15459e+002)

b2 : -1.58555e+002 (5.15459e+002)

b3 : 1.78296e+002 (5.15459e+002)

b4 : 3.44785e+002 (2.53537e+002)

b1,1 : -1.29014e+001 (8.47732e+001)

b1,2 : -5.36840e+000 (2.01761e+001)

b1,3 : 1.78973e+001 (2.01761e+001)

b1,4 : -1.20266e+001 (1.93581e+001)

b2,2 : 2.45365e+001 (8.47732e+001)

b2,3 : 5.41842e+000 (2.01761e+001)

b2,4 : 2.52856e+001 (1.93581e+001)

b3,3 : -3.36424e+001 (8.47732e+001)

b3,4 : 1.84806e+001 (1.93581e+001)

b4,4 : -5.33030e+001 (3.73601e+001)

R^2 : 0.8067
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ANOVA Table

-----------------------------------------------------------------------------------

Source of degrees of freedom Sum of Squares Mean Square fo P-value

Variation (dof) (SS) (MS)

-----------------------------------------------------------------------------------

Regression 14 2.12025e+007 1.51447e+006 8.94 3.224e-007

Residual 30 5.08063e+006 1.69354e+005

Total 44 2.62832e+007

The standard deviation of the individal parameters (i.e. standard errors) are

large in comparison with the parameters’ values making the hypothesis testing of

the individual coefficients (bttest) impractical. Hence, to determine the “optimal”

model different model forms are tried and compared.

Other models fitted

The models fitted (in addition to the full second order model) are presented

in Table 5.2. T represents the thickness in nanometers(nm), sqh2s1 the square root

of the hydrogen flow (sccm) into segment 1, sqh2s2 the square root of the hydrogen

flow (sccm) into segment 2, sqh2s3 the square root of the hydrogen flow (sccm) into

segment 3, and gap is the distance between the showerhead and the wafer in mm.

Model 1

This model is a full first order of the form T = b0 + b1(sqh2s1) + b2(sqh2s2) +

b3(sqh2s3) + b4(gap). The results for segment 1 (m1s1) are:
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Table 5.2: Models fitted

Model 1 T = b0 + b1(sqh2s1) + b2(sqh2s2) + b3(sqh2s3) + b4(gap)

Model 2 T = b1(sqh2s1) + b2(sqh2s2) + b3(sqh2s3)

Model 3 T = b1(sqh2s1) + b2(sqh2s2) + b3(sqh2s3) + b4(gap) + b12(sqh2s1)(sqh2s2) + . . .
b13(sqh2s1)(sqh2s3) + b14(sqh2s1)(gap) + b23(sqh2s2)(sqh2s3) + . . .
b24(sqh2s2)(gap) + b34(sqh2s3)(gap)

Model 4 T = b1(sqh2s1) + b2(sqh2s2) + b3(sqh2s3) + b4(gap) + . . .
b14(sqh2s1)(gap) + b24(sqh2s2)(gap) + b34(sqh2s3)(gap)

Model 5 T = b1(sqh2s1) + b2(sqh2s2) + b3(sqh2s3) + . . .
b14(sqh2s1)(gap) + b24(sqh2s2)(gap) + b34(sqh2s3)(gap)

rsmodel object "m1s1"

Parameters: mean value

----------------------

sqh2s1 : 3.9713

sqh2s2 : 3.9713

sqh2s3 : 3.9713

gap : 3.0667

Those used in model:

’sqh2s1’ ’sqh2s2’ ’sqh2s3’ ’gap’

Terms : Bcoeff (std error)

---------------------------------

b0 : -2.48147e+002 (2.13624e+002)

b1 : 1.54984e+002 (2.39113e+001)

b2 : 1.10413e+002 (2.39113e+001)

b3 : 8.65440e+001 (2.39113e+001)

b4 : 1.49412e+002 (4.85250e+001)

R^2 : 0.73913

ANOVA Table

-----------------------------------------------------------------------------------

Source of degrees of freedom Sum of Squares Mean Square fo P-value

Variation (dof) (SS) (MS)

-----------------------------------------------------------------------------------

Regression 4 1.94266e+007 4.85665e+006 28.33 3.363e-011

Residual 40 6.85656e+006 1.71414e+005

Total 44 2.62832e+007
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Model 2

The second model forces the independent term and the gap term to be zero

because if there is no hydrogen flow to any of the segments the deposition thickness

should be zero regardless of the distance between the showerhead and the wafer.

Thus, T = b1(sqh2s1)+b2(sqh2s2)+b3(sqh2s3). The parameter values and ANOVA

tables resulting for segment 1 (m2s1) are:

rsmodel object "m2s1"

Parameters: mean value

----------------------

sqh2s1 : 3.9713

sqh2s2 : 3.9713

sqh2s3 : 3.9713

gap : 3.0667

Those used in model:

’sqh2s1’ ’sqh2s2’ ’sqh2s3’ ’gap’

Terms : Bcoeff (std error)

---------------------------------

b1 : 1.69691e+002 (2.36619e+001)

b2 : 1.25119e+002 (2.36619e+001)

b3 : 1.01250e+002 (2.36619e+001)

R^2 : 0.66461

ANOVA Table

-----------------------------------------------------------------------------------

Source of degrees of freedom Sum of Squares Mean Square fo P-value

Variation (dof) (SS) (MS)

-----------------------------------------------------------------------------------

Regression 2 1.74681e+007 8.73405e+006 41.61 1.088e-010

Residual 42 8.81507e+006 2.09883e+005

Total 44 2.62832e+007

Model 3

Model 3 takes into account all the independent variables (sqh2s2, sqh2s2,

sqh2s3, and gap) and their interactions. The form of the model is T = b1(sqh2s1)+

b2(sqh2s2) + b3(sqh2s3) + b4(gap) + b12(sqh2s1)(sqh2s2) + b13(sqh2s1)(sqh2s3) +

b14(sqh2s1)(gap) + b23(sqh2s2)(sqh2s3) + b24(sqh2s2)(gap) + b34(sqh2s3)(gap).

The calculated b coefficients and ANOVA table for segment 1 are:
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rsmodel object "m3s1"

Parameters: mean value

----------------------

sqh2s1 : 3.9713

sqh2s2 : 3.9713

sqh2s3 : 3.9713

gap : 3.0667

Those used in model:

’sqh2s1’ ’sqh2s2’ ’sqh2s3’ ’gap’

Terms : Bcoeff (std error)

---------------------------------

b1 : 2.09081e+002 (7.04206e+001)

b2 : 6.47923e+001 (7.04206e+001)

b3 : 3.27484e+001 (7.04206e+001)

b4 : 3.96112e+001 (1.14599e+002)

b1,2 : 3.98821e+000 (1.14378e+001)

b1,3 : -3.57487e+000 (1.14378e+001)

b1,4 : -1.42772e+001 (1.92233e+001)

b2,3 : -4.88963e+000 (1.14378e+001)

b2,4 : 1.79405e+001 (1.92233e+001)

b3,4 : 2.45039e+001 (1.92233e+001)

R^2 : 0.76257

ANOVA Table

-----------------------------------------------------------------------------------

Source of degrees of freedom Sum of Squares Mean Square fo P-value

Variation (dof) (SS) (MS)

-----------------------------------------------------------------------------------

Regression 9 2.00428e+007 2.22698e+006 12.49 1.421e-008

Residual 35 6.24034e+006 1.78295e+005

Total 44 2.62832e+007

Model 4

In the third model, the parameters of the flow interactions ((sqh2s1)(sqh2s2),

(sqh2s1)(sqh2s3), and (sqh2s2)(sqh2s3)) are relatively small. Therefore, the fourth

model does not take into account those interactions and is of the form T = b1(sqh2s1)+

b2(sqh2s2)+b3(sqh2s3)+b4(gap)+b14(sqh2s1)(gap)+b24(sqh2s2)(gap)+b34(sqh2s3)(gap).

The values for the parameters obtained when fitting this model to the data

for segment 1 (m4s1) are:
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rsmodel object "m4s1"

Parameters: mean value

----------------------

sqh2s1 : 3.9713

sqh2s2 : 3.9713

sqh2s3 : 3.9713

gap : 3.0667

Those used in model:

’sqh2s1’ ’sqh2s2’ ’sqh2s3’ ’gap’

Terms : Bcoeff (std error)

---------------------------------

b1 : 2.02664e+002 (5.64551e+001)

b2 : 5.91090e+001 (5.64551e+001)

b3 : 2.21239e+001 (5.64551e+001)

b4 : 5.98703e+001 (4.58022e+001)

b1,4 : -1.45013e+001 (1.71118e+001)

b2,4 : 1.72063e+001 (1.71118e+001)

b3,4 : 2.14077e+001 (1.71118e+001)

R^2 : 0.75942

ANOVA Table

-----------------------------------------------------------------------------------

Source of degrees of freedom Sum of Squares Mean Square fo P-value

Variation (dof) (SS) (MS)

-----------------------------------------------------------------------------------

Regression 6 1.99601e+007 3.32668e+006 19.99 2.191e-010

Residual 38 6.32310e+006 1.66397e+005

Total 44 2.62832e+007

Model 5

Following the same logic as model 2 (i.e. the thickness should be zero when

there is no hydrogen flow), the fifth model forces the “gap” term in Model 4 to

be zero. Thus, T = b1(sqh2s1) + b2(sqh2s2) + b3(sqh2s3) + b14(sqh2s1)(gap) +

b24(sqh2s2)(gap)+ b34(sqh2s3)(gap). The resulting b coefficients and ANOVA table

for segment 1 (m5s1) are:
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rsmodel object "m5s1"

Parameters: mean value

----------------------

sqh2s1 : 3.9713

sqh2s2 : 3.9713

sqh2s3 : 3.9713

gap : 3.0667

Those used in model:

’sqh2s1’ ’sqh2s2’ ’sqh2s3’ ’gap’

Terms : Bcoeff (std error)

---------------------------------

b1 : 2.02485e+002 (5.69655e+001)

b2 : 5.89298e+001 (5.69655e+001)

b3 : 2.19447e+001 (5.69655e+001)

b1,4 : -1.02229e+001 (1.69477e+001)

b2,4 : 2.14847e+001 (1.69477e+001)

b3,4 : 2.56862e+001 (1.69477e+001)

R^2 : 0.74861

ANOVA Table

-----------------------------------------------------------------------------------

Source of degrees of freedom Sum of Squares Mean Square fo P-value

Variation (dof) (SS) (MS)

-----------------------------------------------------------------------------------

Regression 5 1.96758e+007 3.93515e+006 23.23 9.566e-011

Residual 39 6.60741e+006 1.69421e+005

Total 44 2.62832e+007

Model comparison

At this point it is unclear which one is the best model; however Model 5

(T = b1(sqh2s1) + b2(sqh2s2) + b3(sqh2s3) + b14(sqh2s1)(gap) + b24(sqh2s2)(gap) +

b34(sqh2s3)(gap)) makes physical sense. According to this model, the thickness

depends strongly on the flow into that segment and less in the flow into the other

two segments. Also, the (sqh2s1)(gap), (sqh2s2)(gap), and (sqh2s3)(gap) take into

account the diffusivity of the gases in and out of the segments. Thus, Model 5 is

used as basis for the comparisons. In other words, this model will be compared

to the other models using a 99% confidence limit (α = 0.01) using the comptest

function.
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Full second order vs. Model 5

The comparison results for segment 1 are:
Co25S1 =

p1: 15

p2: 6

ratio: 1.3005

criticalr: 1.9200

pvalue: 0.4600

conclusion: ’model 1 IS NOT significantly better than model 2’

From these results it is clear that a full second order model does not represent

a better fit to the data than a model of the form T = b1(sqh2s1) + b2(sqh2s2) +

b3(sqh2s3) + b14(sqh2s1)(gap) + b24(sqh2s2)(gap) + b34(sqh2s3)(gap).

Model 1 vs. Model 5

The results when the first order model form is compared to Model 5 for seg-

ments 1 (C15S1) are:

C15S1 =

p1: 5

p2: 6

ratio: 1.0377

criticalr: 1.1880

pvalue: 0.2325

conclusion: ’model 2 IS NOT significantly better than model 1’

From these it is infered that , statistically, Model 5 does not represent an

improvement over Model 1. However, Model 1 is discarded due to physical reasons

(i.e. the thickness has to be zero when the flowrates are zero). Note that, according

to this reasoning, b0 should be zero and in the results from Model 1 b0 is of order

100.
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Model 2 vs. Model 5

When Model 2 is compared to Model 5 the following results are obtained for

segment 1:
C25S1 =

p1: 3

p2: 6

ratio: 1.3341

criticalr: 1.3329

pvalue: 0.0098

conclusion: ’model 2 IS significantly better than model 1’

In this case it is deduced that Model 5 is prefered over Model 2 with a confi-

dence of 99%.

Model 3 vs. Model 5

The comparison of the results of applying Model 3 and Model 5 yield, for the

data of segment 1:
C35S1 =

p1: 10

p2: 6

ratio: 1.0588

criticalr: 1.4467

pvalue: 0.7254

conclusion: ’model 1 IS NOT significantly better than model 2’

It can be concluded that the additional terms obtained when applying Model

3 do not generate a better fit than when Model 5 is applied.

Model 4 vs. Model 5

Finally, Model 4 is compared to Model 5. The results of this comparison for

segment 1 (C45S1) are:
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C45S1 =

p1: 7

p2: 6

ratio: 1.0450

criticalr: 1.1935

pvalue: 0.1990

conclusion: ’model 1 IS NOT significantly better than model 2’

These results show that the inclusion of the gap term is not statistically jus-

tified, and it does not make physical sense.

Thus, it can be concluded that Model 5 is the “optimal” form for the wafer

thickness of this CVD process. Table 5.3 presents the measured thickness, the

thickness predicted when using Model 5, and the residuals for segment 1.

Full Wafer Maps

The 45 wafers obtained using the SP-CVD reactor with the operating condi-

tions shown in Table 5.1 are presented in Figures 5.3, 5.4, and 5.5. As in the case of

the segments’ center points, the entire wafer maps are fitted to a full second order

model and to the model forms in Table 5.2.
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Table 5.3: Predicted thickness (Model 5) and residuals for segment 1

Tdata Tpred residual

1921.9 2071.1 -149.2
3662.9 2222.8 1440.1
2359.4 2244.0 115.5
2625.1 2230.0 395.2
1390.4 971.9 418.4

1060.1 698.0 362.2
1120.3 560.0 560.3
457.5 269.4 188.0
553.2 454.9 98.3
1117.1 1087.6 29.5

961.0 1811.9 -850.9
2436.0 1923.1 512.9
1873.9 1835.2 38.7
1386.4 1553.9 -167.5
2498.7 2588.4 -89.7

2729.1 2610.3 118.8
1482.8 2564.8 -1081.9
2827.4 2648.0 179.5
1125.0 856.3 268.8
892.6 941.0 -48.4

1086.4 850.7 235.8
525.4 560.0 -34.7
788.8 698.0 90.9
863.8 971.9 -108.1
2671.4 2230.0 441.4

2354.3 2244.0 110.3
2211.9 2222.8 -10.9
2220.1 2071.1 149.0
532.5 414.7 117.7
595.6 576.4 19.2

859.2 1029.8 -170.5
1898.0 2020.9 -122.9
1554.0 2083.5 -529.6
1812.5 2029.0 -216.5
1432.2 1812.5 -380.3

623.7 705.3 -81.7
885.5 819.5 66.0
1145.2 914.1 231.1
2341.9 2439.0 -97.1
2344.4 2404.4 -60.0

2287.7 2416.5 -128.9
1944.3 2329.7 -385.4
1364.5 1733.6 -369.1
1523.1 1524.9 -1.7
1998.9 1619.5 379.4
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Figure 5.3: SP-CVD reactor wafer maps 1 to 15

Full second order model

The results when a full second order is fitted to the data are:
rsmodel object "P"

Parameters: mean value

----------

sqh2s1 : 3.9713

sqh2s2 : 3.9713

sqh2s3 : 3.9713

gap : 3.0667

Those used in model:

’sqh2s1’ ’sqh2s2’ ’sqh2s3’ ’gap’

Term : mean value (mean std error)

------------------------------------

b0 : 2.35851e+002 (6.53083e+002)

b1 : -5.30688e+000 (3.87618e+002)

b2 : -2.17055e+002 (3.87618e+002)

b3 : -7.39654e+000 (3.87618e+002)

b4 : 2.18828e+002 (1.90656e+002)

b1,1 : 3.03094e+000 (6.37483e+001)

b1,2 : -7.00010e-001 (1.51722e+001)

b1,3 : 1.79590e+001 (1.51722e+001)

b1,4 : 8.85892e+000 (1.45570e+001)

b2,2 : 3.61782e+001 (6.37483e+001)

b2,3 : 5.46879e+000 (1.51722e+001)

b2,4 : 1.69714e+001 (1.45570e+001)

b3,3 : 1.40929e+000 (6.37483e+001)

b3,4 : 1.04919e+001 (1.45570e+001)

b4,4 : -3.35464e+001 (2.80943e+001)

mean(R^2) : 0.84881
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Figure 5.4: SP-CVD reactor wafer maps 16 to 30

ANOVA Table

-----------------------------------------------------------------------------------

Source of degrees of freedom Sum of Squares Mean Square fo P-value

Variation (dof) (SS) (MS)

-----------------------------------------------------------------------------------

Regression 14 1.68464e+007 1.20332e+006 11.57 1.697e-008

Residual 30 3.11957e+006 1.03986e+005

Total 44 1.99660e+007

The calculated b coefficients are shown in Figure 5.6. The bttest is not per-

formed because of the large standard errors of the individual coefficients.

Other models fitted

Model 1

Model 1 has the form T = b0 + b1(sqh2s1)+ b2(sqh2s2)+ b3(sqh2s3)+ b4(gap).

The results when the full wafer data is fitted to this model form is:
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Figure 5.5: SP-CVD reactor wafer maps 31 to 45

rsmodel object "M1"

Parameters: mean value

----------

sqh2s1 : 3.9713

sqh2s2 : 3.9713

sqh2s3 : 3.9713

gap : 3.0667

Those used in model:

’sqh2s1’ ’sqh2s2’ ’sqh2s3’ ’gap’

Term : mean value (mean std error)

------------------------------------

b0 : -3.14258e+002 (1.63571e+002)

b1 : 1.01718e+002 (1.83087e+001)

b2 : 1.04836e+002 (1.83087e+001)

b3 : 9.67895e+001 (1.83087e+001)

b4 : 1.58136e+002 (3.71553e+001)

mean(R^2) : 0.78955

ANOVA Table

-----------------------------------------------------------------------------------

Source of degrees of freedom Sum of Squares Mean Square fo P-value

Variation (dof) (SS) (MS)

-----------------------------------------------------------------------------------

Regression 4 1.56171e+007 3.90429e+006 35.91 9.615e-013

Residual 40 4.34886e+006 1.08721e+005

Total 44 1.99660e+007

Figure 5.7 shows the b coefficients calculated.
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Figure 5.6: SP-CVD second order bj coefficients

Model 2

The independent term and the gap term are forced to be zero in this model

form (the thickness of a wafer should be zero if there is no hydrogen flow). Thus,

T = b1(sqh2s1) + b2(sqh2s2) + b3(sqh2s3). The model obtained when this form is

fitted is:
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Figure 5.7: SP-CVD Model 1 bj coefficients

rsmodel object "M2"

Parameters: mean value

----------

sqh2s1 : 3.9713

sqh2s2 : 3.9713

sqh2s3 : 3.9713

gap : 3.0667

Those used in model:

’sqh2s1’ ’sqh2s2’ ’sqh2s3’ ’gap’

Term : mean value (mean std error)

------------------------------------

b1 : 1.13660e+002 (1.97492e+001)

b2 : 1.16778e+002 (1.97492e+001)

b3 : 1.08732e+002 (1.97492e+001)

mean(R^2) : 0.67838

ANOVA Table

-----------------------------------------------------------------------------------

Source of degrees of freedom Sum of Squares Mean Square fo P-value

Variation (dof) (SS) (MS)

-----------------------------------------------------------------------------------

Regression 2 1.33478e+007 6.67391e+006 42.35 8.499e-011

Residual 42 6.61817e+006 1.57576e+005

Total 44 1.99660e+007

The calculated coefficients are represented in Figure 5.8
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Figure 5.8: SP-CVD Model 2 bj coefficients

Model 3

Model 3 has the form T = b1(sqh2s1) + b2(sqh2s2) + b3(sqh2s3) + b4(gap) +

b12(sqh2s1)(sqh2s2)+b13(sqh2s1)(sqh2s3)+b14(sqh2s1)(gap)+b23(sqh2s2)(sqh2s3)+

b24(sqh2s2)(gap) + b34(sqh2s3)(gap). In other words, this form includes the inde-

pendent variables and their interactions.

The results when the data is fitted to this form are:
rsmodel object "M3"

Parameters: mean value

----------

sqh2s1 : 3.9713

sqh2s2 : 3.9713

sqh2s3 : 3.9713

gap : 3.0667

Those used in model:

’sqh2s1’ ’sqh2s2’ ’sqh2s3’ ’gap’

Term : mean value (mean std error)

------------------------------------

b1 : 8.48240e+001 (5.33688e+001)

b2 : 7.95999e+001 (5.33688e+001)

b3 : 6.70856e+001 (5.33688e+001)

b4 : 3.60510e+001 (8.68500e+001)

b1,2 : 2.07942e-001 (8.66825e+000)

b1,3 : -1.64142e+000 (8.66825e+000)

b1,4 : 8.22482e+000 (1.45685e+001)

b2,3 : -1.00771e+000 (8.66825e+000)

b2,4 : 1.05165e+001 (1.45685e+001)

b3,4 : 1.28693e+001 (1.45685e+001)

mean(R^2) : 0.81176
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ANOVA Table

-----------------------------------------------------------------------------------

Source of degrees of freedom Sum of Squares Mean Square fo P-value

Variation (dof) (SS) (MS)

-----------------------------------------------------------------------------------

Regression 9 1.60872e+007 1.78747e+006 16.13 5.078e-010

Residual 35 3.87875e+006 1.10822e+005

Total 44 1.99660e+007

Figure 5.9 shows the values of the b coefficients calculated.

Figure 5.9: SP-CVD Model 3 bj coefficients

Model 4

The fourth model ignores the interactions between the flows to the different

segments and has the form T = b1(sqh2s1) + b2(sqh2s2) + b3(sqh2s3) + b4(gap) +

b14(sqh2s1)(gap) + b24(sqh2s2)(gap) + b34(sqh2s3)(gap).

The average values of the parameters and the ANOVA Table obtained when

fitting this model to the data are:
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rsmodel object "M4"

Parameters: mean value

----------

sqh2s1 : 3.9713

sqh2s2 : 3.9713

sqh2s3 : 3.9713

gap : 3.0667

Those used in model:

’sqh2s1’ ’sqh2s2’ ’sqh2s3’ ’gap’

Term : mean value (mean std error)

------------------------------------

b1 : 8.06351e+001 (4.29155e+001)

b2 : 7.60183e+001 (4.29155e+001)

b3 : 6.24629e+001 (4.29155e+001)

b4 : 4.70995e+001 (3.48175e+001)

b1,4 : 7.55986e+000 (1.30079e+001)

b2,4 : 1.00374e+001 (1.30079e+001)

b3,4 : 1.18022e+001 (1.30079e+001)

mean(R^2) : 0.80813

ANOVA Table

-----------------------------------------------------------------------------------

Source of degrees of freedom Sum of Squares Mean Square fo P-value

Variation (dof) (SS) (MS)

-----------------------------------------------------------------------------------

Regression 6 1.60113e+007 2.66854e+006 25.64 6.039e-012

Residual 38 3.95474e+006 1.04072e+005

Total 44 1.99660e+007

The calculated coefficients are represented in Figure 5.10.

Figure 5.10: SP-CVD Model 4 bj coefficients
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Model 5

The last model to be fitted has the form T = b1(sqh2s1) + b2(sqh2s2) +

b3(sqh2s3)+ b14(sqh2s1)(gap)+ b24(sqh2s2)(gap)+ b34(sqh2s3)(gap). The resulting

b coefficients can be found in Figure 5.11. The mean values of these coefficients and

Figure 5.11: SP-CVD Model 5 bj coefficients

the ANOVA table for the model are:
rsmodel object "M5"

Parameters: mean value

----------

sqh2s1 : 3.9713

sqh2s2 : 3.9713

sqh2s3 : 3.9713

gap : 3.0667

Those used in model:

’sqh2s1’ ’sqh2s2’ ’sqh2s3’ ’gap’

Term : mean value (mean std error)

------------------------------------

b1 : 8.04941e+001 (4.35790e+001)

b2 : 7.58773e+001 (4.35790e+001)

b3 : 6.23219e+001 (4.35790e+001)

b1,4 : 1.09257e+001 (1.29651e+001)

b2,4 : 1.34032e+001 (1.29651e+001)

b3,4 : 1.51680e+001 (1.29651e+001)

mean(R^2) : 0.79626
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ANOVA Table

-----------------------------------------------------------------------------------

Source of degrees of freedom Sum of Squares Mean Square fo P-value

Variation (dof) (SS) (MS)

-----------------------------------------------------------------------------------

Regression 5 1.58088e+007 3.16176e+006 29.66 2.624e-012

Residual 39 4.15719e+006 1.06595e+005

Total 44 1.99660e+007

Model comparison

Model 5 takes into account the dependence of the thickness on the hydrogen

flow to the different segments and the interaction between the flows and the gap

that represent the diffusivity of the gases in and out of the segments making it a

physically feasible model. For this reason, the comptest function is used to compare

all models against Model 5. The comparisons are made using a significance level

of 0.01 (i.e. confidence level of 99%) and considering a point percentage of at least

75%.

The result when the full second order model is compared to Model 5 is:
Co25 =

p1: 15

p2: 6

pointpercentage: 42.8913

meanpvalue: 0.3866

criticalr: 1.9200

conclusion: ’model 1 IS NOT significantly better than model 2’

This shows that Model 5 is a better fit to the data than the full second order model.

When Model 1 is compared to Model 5 the following result is obtained:
C15 =

p1: 5

p2: 6

pointpercentage: 48.6080

meanpvalue: 0.1877

criticalr: 1.1880

conclusion: ’model 2 IS NOT significantly better than model 1’

As for the center points case, Model 5 does not represent a significant improvement

over Model 1. Nevertheless Model 5 is prefered over Model 1 due to physical reasons.
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The comparison between Model 2 and Model 5 yields:
C25 =

p1: 3

p2: 6

pointpercentage: 65.6806

meanpvalue: 3.7153e-004

criticalr: 1.3329

conclusion: ’model 2 IS NOT significantly better than model 1’

This result shows that Model 5 is not considered better than Model 2 for more than

75% of the points. However, the point percentage indicates that Model 5 is prefered

over Model 2 in 65% of the points.

Model 3 is also compared to Model 5 and the result shows that the additional

terms of Model 3 do not represent an improvement.
C35 =

p1: 10

p2: 6

pointpercentage: 36.8968

meanpvalue: 0.6456

criticalr: 1.4467

conclusion: ’model 1 IS NOT significantly better than model 2’

Finally, Model 4 and Model 5 are compared demostrating that Model 5 is

prefered over Model 4.
C45 =

p1: 7

p2: 6

pointpercentage: 52.0230

meanpvalue: 0.1712

criticalr: 1.1935

conclusion: ’model 1 IS NOT significantly better than model 2’

Considering the results obtained and the physical knowledge of the system,

it can be concluded that Model 5 is the optimal representation for the tungsten

deposition in the Spatially Programmable Chemical Vapor Deposition reactor.
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A predicted wafer using this model and same operation condition as wafers

w081506 01 and w081706 07 (H2s1 = 16 sccm, H2s2 = 32 sccm, H2s3 = 48 sccm,

and gap = 3 mm) is compared to the average of these two wafers in Figure 5.12.

Figure 5.12: Average wafer and predicted wafer
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Chapter 6

Conclusions and Suggestions for Future Work

The usefulness of the computational toolbox was demonstrated in Chapter 4

using artificially generated data. Afterwards, the toolbox was used to calculate a

response surface model for wafers obtained in the Spatially Programmable Chemical

Vapor Deposition (SP-CVD) reactor. It is important to note that, even though

the calculated model is basically empirical, when any of the physical or chemical

principles of the system are known they should be taken into account. Thus, the

calculated model for the SP-CVD data, based on the known kinetics of the reaction,

uses the square root of the hydrogen flowrates as independent variables.

When the SP-CVD data was analyzed a model of the form T = b1(sqh2s1) +

b2(sqh2s2)+b3(sqh2s3)+b14(sqh2s1)(gap)+b24(sqh2s2)(gap)+b34(sqh2s3)(gap) was

found to be the most appropriate fit. This conclusion was based in both statistical

and physical reasons.

Current work regarding the computational toolbox consists on the develop-

ment of a graphical user interface (GUI) called waferview design for viewing and

analyzing wafer objects. This interface compiles the functions discussed in Chapter

3 and more in a user-friendly environment. Another purpose of waferview is to

automate the toolbox functions as much as possible. Figures 6.1 and 6.2 show two

of the windows of this interface.
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Figure 6.1: Wafer view

A future research objective make the necessary modifications to the functions

in order to expand the use of the library to other types of substrates. For instance,

the computational toolbox could be applied to planetary reactors and rectangular-

shaped substrates as the ones used by Hyett and Park in [6].

The large variability of the SP-CVD reactor data bounds the use of the toolbox

(i.e. bttest cannot be applied), thus more systems should be studied to allow the

refinement of the toolbox and make it more useful for combinatorial processes.

Currently, the full wafer analysis of variance is based on a weighted average of

the individual grid point’s analysis. This is not necessarilly the best approach, thus

a more rigorous analysis of the ANOVA for full wafers and distributed parameters

should be developed.
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Figure 6.2: Wafer RSModel view
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Appendix A

Single Point Analysis Results for Segment 2 and Segment 3

Full Second Order Model

The coefficients and ANOVA table obtained when a full second order model

is fit to segment 2 (P2) are:

rsmodel object "P2"

Parameters: mean value

----------------------

sqh2s1 : 3.9713

sqh2s2 : 3.9713

sqh2s3 : 3.9713

gap : 3.0667

Those used in model:

’sqh2s1’ ’sqh2s2’ ’sqh2s3’ ’gap’

Terms : Bcoeff (std error)

---------------------------------

b0 : 3.42446e+002 (6.57419e+002)

b1 : 2.76345e+001 (3.90191e+002)

b2 : -5.90896e+001 (3.90191e+002)

b3 : 1.17728e+002 (3.90191e+002)

b4 : 3.71628e+002 (1.91922e+002)

b1,1 : -1.50451e+001 (6.41715e+001)

b1,2 : 2.49426e+000 (1.52729e+001)

b1,3 : 2.38675e+001 (1.52729e+001)

b1,4 : 1.66108e+001 (1.46537e+001)

b2,2 : 1.36750e+001 (6.41715e+001)

b2,3 : 1.17059e+001 (1.52729e+001)

b2,4 : 6.19871e+000 (1.46537e+001)

b3,3 : -2.92425e+001 (6.41715e+001)

b3,4 : 1.47716e+001 (1.46537e+001)

b4,4 : -6.05300e+001 (2.82808e+001)

R^2 : 0.8677

ANOVA Table

-----------------------------------------------------------------------------------

Source of degrees of freedom Sum of Squares Mean Square fo P-value

Variation (dof) (SS) (MS)

-----------------------------------------------------------------------------------

Regression 14 1.90941e+007 1.36387e+006 14.05 1.634e-009

Residual 30 2.91128e+006 9.70428e+004

Total 44 2.20054e+007
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The coeffients and ANOVA table for the second order model fitted to the

center point of segment 3 (P3) are:

rsmodel object "P3"

Parameters: mean value

----------------------

sqh2s1 : 3.9713

sqh2s2 : 3.9713

sqh2s3 : 3.9713

gap : 3.0667

Those used in model:

’sqh2s1’ ’sqh2s2’ ’sqh2s3’ ’gap’

Terms : Bcoeff (std error)

---------------------------------

b0 : 7.27228e+002 (1.10524e+003)

b1 : -6.44817e+001 (6.55983e+002)

b2 : -4.87503e+002 (6.55983e+002)

b3 : -2.18022e+002 (6.55983e+002)

b4 : 1.41933e+002 (3.22656e+002)

b1,1 : -2.80935e+000 (1.07884e+002)

b1,2 : 9.88785e+000 (2.56765e+001)

b1,3 : 3.57255e+001 (2.56765e+001)

b1,4 : 1.37147e+001 (2.46355e+001)

b2,2 : 6.70991e+001 (1.07884e+002)

b2,3 : 1.55266e+001 (2.56765e+001)

b2,4 : 2.69077e+001 (2.46355e+001)

b3,3 : 3.95721e+001 (1.07884e+002)

b3,4 : -3.76855e+000 (2.46355e+001)

b4,4 : -7.56192e+000 (4.75452e+001)

R^2 : 0.80806

ANOVA Table

-----------------------------------------------------------------------------------

Source of degrees of freedom Sum of Squares Mean Square fo P-value

Variation (dof) (SS) (MS)

-----------------------------------------------------------------------------------

Regression 14 3.46409e+007 2.47435e+006 9.02 2.927e-007

Residual 30 8.22839e+006 2.74280e+005

Total 44 4.28693e+007

Other Models Fitted

Model 1

The results when Model 1 is fitted to the center point thickness of segment 2

(m1s2) and segment 3 (m1s3) are:
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rsmodel object "m1s2"

Parameters: mean value

----------------------

sqh2s1 : 3.9713

sqh2s2 : 3.9713

sqh2s3 : 3.9713

gap : 3.0667

Those used in model:

’sqh2s1’ ’sqh2s2’ ’sqh2s3’ ’gap’

Terms : Bcoeff (std error)

---------------------------------

b0 : -2.43902e+002 (1.69036e+002)

b1 : 9.88573e+001 (1.89204e+001)

b2 : 1.39361e+002 (1.89204e+001)

b3 : 9.86969e+001 (1.89204e+001)

b4 : 1.52599e+002 (3.83967e+001)

R^2 : 0.80491

ANOVA Table

-----------------------------------------------------------------------------------

Source of degrees of freedom Sum of Squares Mean Square fo P-value

Variation (dof) (SS) (MS)

-----------------------------------------------------------------------------------

Regression 4 1.77124e+007 4.42810e+006 41.26 1.090e-013

Residual 40 4.29303e+006 1.07326e+005

Total 44 2.20054e+007

rsmodel object "m1s3"

Parameters: mean value

----------------------

sqh2s1 : 3.9713

sqh2s2 : 3.9713

sqh2s3 : 3.9713

gap : 3.0667

Those used in model:

’sqh2s1’ ’sqh2s2’ ’sqh2s3’ ’gap’

Terms : Bcoeff (std error)

---------------------------------

b0 : -6.28456e+002 (2.62981e+002)

b1 : 1.17435e+002 (2.94359e+001)

b2 : 1.52686e+002 (2.94359e+001)

b3 : 1.80203e+002 (2.94359e+001)

b4 : 2.30650e+002 (5.97365e+001)

R^2 : 0.75761

ANOVA Table

-----------------------------------------------------------------------------------

Source of degrees of freedom Sum of Squares Mean Square fo P-value

Variation (dof) (SS) (MS)

-----------------------------------------------------------------------------------

Regression 4 3.24783e+007 8.11958e+006 31.26 7.914e-012

Residual 40 1.03910e+007 2.59774e+005

Total 44 4.28693e+007
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Model 2

The estimated parameters and ANOVA tables obtained when Model 2 is fitted

to segment 2 (m2s2) and to segment 3 (m2s3) are:

rsmodel object "m2s2"

Parameters: mean value

----------------------

sqh2s1 : 3.9713

sqh2s2 : 3.9713

sqh2s3 : 3.9713

gap : 3.0667

Those used in model:

’sqh2s1’ ’sqh2s2’ ’sqh2s3’ ’gap’

Terms : Bcoeff (std error)

---------------------------------

b1 : 1.14546e+002 (2.01099e+001)

b2 : 1.55050e+002 (2.01099e+001)

b3 : 1.14386e+002 (2.01099e+001)

R^2 : 0.71065

ANOVA Table

-----------------------------------------------------------------------------------

Source of degrees of freedom Sum of Squares Mean Square fo P-value

Variation (dof) (SS) (MS)

-----------------------------------------------------------------------------------

Regression 2 1.56382e+007 7.81912e+006 51.58 4.895e-012

Residual 42 6.36718e+006 1.51599e+005

Total 44 2.20054e+007

rsmodel object "m2s3"

Parameters: mean value

----------------------

sqh2s1 : 3.9713

sqh2s2 : 3.9713

sqh2s3 : 3.9713

gap : 3.0667

Those used in model:

’sqh2s1’ ’sqh2s2’ ’sqh2s3’ ’gap’

Terms : Bcoeff (std error)

---------------------------------

b1 : 1.22916e+002 (3.01524e+001)

b2 : 1.58167e+002 (3.01524e+001)

b3 : 1.85683e+002 (3.01524e+001)

R^2 : 0.66609

ANOVA Table

-----------------------------------------------------------------------------------

Source of degrees of freedom Sum of Squares Mean Square fo P-value

Variation (dof) (SS) (MS)

-----------------------------------------------------------------------------------

Regression 2 2.85550e+007 1.42775e+007 41.89 9.911e-011

Residual 42 1.43143e+007 3.40817e+005

Total 44 4.28693e+007
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Model 3

The calculated b coefficients and ANOVA table for segment 2 are:
rsmodel object "m3s2"

Parameters: mean value

----------------------

sqh2s1 : 3.9713

sqh2s2 : 3.9713

sqh2s3 : 3.9713

gap : 3.0667

Those used in model:

’sqh2s1’ ’sqh2s2’ ’sqh2s3’ ’gap’

Terms : Bcoeff (std error)

---------------------------------

b1 : 6.80329e+001 (5.56967e+001)

b2 : 1.58214e+002 (5.56967e+001)

b3 : 6.27299e+001 (5.56967e+001)

b4 : 4.05121e+001 (9.06384e+001)

b1,2 : 6.75103e-001 (9.04636e+000)

b1,3 : -9.06858e-001 (9.04636e+000)

b1,4 : 1.33578e+001 (1.52040e+001)

b2,3 : -4.17246e+000 (9.04636e+000)

b2,4 : -1.09659e+000 (1.52040e+001)

b3,4 : 1.74242e+001 (1.52040e+001)

R^2 : 0.82261

ANOVA Table

-----------------------------------------------------------------------------------

Source of degrees of freedom Sum of Squares Mean Square fo P-value

Variation (dof) (SS) (MS)

-----------------------------------------------------------------------------------

Regression 9 1.81018e+007 2.01131e+006 18.03 1.108e-010

Residual 35 3.90362e+006 1.11532e+005

Total 44 2.20054e+007

The calculated b coefficients and ANOVA table for segment 3 are:
rsmodel object "m3s3"

Parameters: mean value

----------------------

sqh2s1 : 3.9713

sqh2s2 : 3.9713

sqh2s3 : 3.9713

gap : 3.0667

Those used in model:

’sqh2s1’ ’sqh2s2’ ’sqh2s3’ ’gap’

Terms : Bcoeff (std error)

---------------------------------

b1 : 2.09421e+001 (8.69897e+001)

b2 : 4.07738e+001 (8.69897e+001)

b3 : 1.27410e+002 (8.69897e+001)

b4 : 1.29849e+002 (1.41563e+002)

b1,2 : 1.07791e+000 (1.41290e+001)

b1,3 : 2.23049e+000 (1.41290e+001)

b1,4 : 1.79569e+001 (2.37463e+001)

b2,3 : 1.85719e+001 (1.41290e+001)

b2,4 : 1.52900e+001 (2.37463e+001)

b3,4 : -4.97706e+000 (2.37463e+001)

R^2 : 0.77787
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ANOVA Table

-----------------------------------------------------------------------------------

Source of degrees of freedom Sum of Squares Mean Square fo P-value

Variation (dof) (SS) (MS)

-----------------------------------------------------------------------------------

Regression 9 3.33469e+007 3.70521e+006 13.62 4.724e-009

Residual 35 9.52236e+006 2.72067e+005

Total 44 4.28693e+007

Model 4

The values for the parameters obtained when fitting this model to the data

for segment 2 (m4s2) and segment 3 (m4s3) are:

rsmodel object "m4s2"

Parameters: mean value

----------------------

sqh2s1 : 3.9713

sqh2s2 : 3.9713

sqh2s3 : 3.9713

gap : 3.0667

Those used in model:

’sqh2s1’ ’sqh2s2’ ’sqh2s3’ ’gap’

Terms : Bcoeff (std error)

---------------------------------

b1 : 6.18897e+001 (4.45097e+001)

b2 : 1.50885e+002 (4.45097e+001)

b3 : 5.38437e+001 (4.45097e+001)

b4 : 6.04450e+001 (3.61109e+001)

b1,4 : 1.29012e+001 (1.34911e+001)

b2,4 : -2.63221e+000 (1.34911e+001)

b3,4 : 1.54272e+001 (1.34911e+001)

R^2 : 0.82139

ANOVA Table

-----------------------------------------------------------------------------------

Source of degrees of freedom Sum of Squares Mean Square fo P-value

Variation (dof) (SS) (MS)

-----------------------------------------------------------------------------------

Regression 6 1.80751e+007 3.01251e+006 29.13 8.850e-013

Residual 38 3.93037e+006 1.03431e+005

Total 44 2.20054e+007
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rsmodel object "m4s3"

Parameters: mean value

----------------------

sqh2s1 : 3.9713

sqh2s2 : 3.9713

sqh2s3 : 3.9713

gap : 3.0667

Those used in model:

’sqh2s1’ ’sqh2s2’ ’sqh2s3’ ’gap’

Terms : Bcoeff (std error)

---------------------------------

b1 : 5.20301e+001 (7.09968e+001)

b2 : 7.89815e+001 (7.09968e+001)

b3 : 1.69193e+002 (7.09968e+001)

b4 : 3.08210e+001 (5.76000e+001)

b1,4 : 2.09516e+001 (2.15194e+001)

b2,4 : 2.36102e+001 (2.15194e+001)

b3,4 : 3.52691e+000 (2.15194e+001)

R^2 : 0.76673

ANOVA Table

-----------------------------------------------------------------------------------

Source of degrees of freedom Sum of Squares Mean Square fo P-value

Variation (dof) (SS) (MS)

-----------------------------------------------------------------------------------

Regression 6 3.28692e+007 5.47821e+006 20.82 1.242e-010

Residual 38 1.00001e+007 2.63159e+005

Total 44 4.28693e+007

Model 5

The resulting b coefficients and ANOVA table for segment 2 (m5s2), and

segment 3 (m5s3) are:

rsmodel object "m5s2"

Parameters: mean value

----------------------

sqh2s1 : 3.9713

sqh2s2 : 3.9713

sqh2s3 : 3.9713

gap : 3.0667

Those used in model:

’sqh2s1’ ’sqh2s2’ ’sqh2s3’ ’gap’

Terms : Bcoeff (std error)

---------------------------------

b1 : 6.17088e+001 (4.55262e+001)

b2 : 1.50704e+002 (4.55262e+001)

b3 : 5.36628e+001 (4.55262e+001)

b1,4 : 1.72207e+001 (1.35444e+001)

b2,4 : 1.68730e+000 (1.35444e+001)

b3,4 : 1.97467e+001 (1.35444e+001)

R^2 : 0.80822
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ANOVA Table

-----------------------------------------------------------------------------------

Source of degrees of freedom Sum of Squares Mean Square fo P-value

Variation (dof) (SS) (MS)

-----------------------------------------------------------------------------------

Regression 5 1.77853e+007 3.55705e+006 32.87 5.436e-013

Residual 39 4.22017e+006 1.08209e+005

Total 44 2.20054e+007

rsmodel object "m5s3"

Parameters: mean value

----------------------

sqh2s1 : 3.9713

sqh2s2 : 3.9713

sqh2s3 : 3.9713

gap : 3.0667

Those used in model:

’sqh2s1’ ’sqh2s2’ ’sqh2s3’ ’gap’

Terms : Bcoeff (std error)

---------------------------------

b1 : 5.19378e+001 (7.03440e+001)

b2 : 7.88892e+001 (7.03440e+001)

b3 : 1.69101e+002 (7.03440e+001)

b1,4 : 2.31541e+001 (2.09279e+001)

b2,4 : 2.58127e+001 (2.09279e+001)

b3,4 : 5.72944e+000 (2.09279e+001)

R^2 : 0.76497

ANOVA Table

-----------------------------------------------------------------------------------

Source of degrees of freedom Sum of Squares Mean Square fo P-value

Variation (dof) (SS) (MS)

-----------------------------------------------------------------------------------

Regression 5 3.27939e+007 6.55878e+006 25.39 2.653e-011

Residual 39 1.00754e+007 2.58344e+005

Total 44 4.28693e+007

Model Comparison

Full second order vs. Model 5

The results for segment 2 (Co25S2) and segment 3 (Co25S3) for the compar-

ison of the full second order model to Model 5 with a 99% confidence are:
Co25S2 =

p1: 15

p2: 6

ratio: 1.4496

criticalr: 1.9200

pvalue: 0.1937

conclusion: ’model 1 IS NOT significantly better than model 2’
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Co25S3 =

p1: 15

p2: 6

ratio: 1.2245

criticalr: 1.9200

pvalue: 0.6629

conclusion: ’model 1 IS NOT significantly better than model 2’

Model 1 vs. Model 5

The results when the first order model form is compared to Model 5 for seg-

ments 2 (C15S2), and 3 (C15S3) are:

C15S2 =

p1: 5

p2: 6

ratio: 1.0173

criticalr: 1.1880

pvalue: 0.4169

conclusion: ’model 2 IS NOT significantly better than model 1’

C15S3 =

p1: 5

p2: 6

ratio: 1.0313

criticalr: 1.1880

pvalue: 0.2758

conclusion: ’model 2 IS NOT significantly better than model 1’

Model 2 vs. Model 5

The results obtained when Model 2 is compared to Model 5 for the data in

segment 2 are:
C25S2 =

p1: 3

p2: 6

ratio: 1.5087

criticalr: 1.3329

pvalue: 0.0010

conclusion: ’model 2 IS significantly better than model 1’
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and for segment 3:
C25S3 =

p1: 3

p2: 6

ratio: 1.4207

criticalr: 1.3329

pvalue: 0.0031

conclusion: ’model 2 IS significantly better than model 1’

Model 3 vs. Model 5

The results when Model 3 is compared to Model 5 for segment 2 (C35S2) and

segment 3 (C35S3) are:

C35S2 =

p1: 10

p2: 6

ratio: 1.0811

criticalr: 1.4467

pvalue: 0.5909

conclusion: ’model 1 IS NOT significantly better than model 2’

C35S3 =

p1: 10

p2: 6

ratio: 1.0581

criticalr: 1.4467

pvalue: 0.7300

conclusion: ’model 1 IS NOT significantly better than model 2’

Model 4 vs. Model 5

The results when Model 4 is compared to Model 5 are,

for segment 2:
C45S2 =

p1: 7

p2: 6

ratio: 1.0737

criticalr: 1.1935

pvalue: 0.1024

conclusion: ’model 1 IS NOT significantly better than model 2’

87



and for segment 3:
C45S3 =

p1: 7

p2: 6

ratio: 1.0075

criticalr: 1.1935

pvalue: 0.5957

conclusion: ’model 1 IS NOT significantly better than model 2’

Predictions and Residuals

Tables A.1, and A.2 present the measured thickness, the thickness predicted

when using Model 5, and the residuals for segment 2 and segment 3, respectively.
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Table A.1: Predicted thickness (Model 5) and residuals for segment 2

Tdata Tpred residual

2180.6 2116.8 63.8
3013.0 2172.1 840.8
2331.9 2047.2 284.7
2674.4 2161.1 513.3
862.3 641.3 220.9

1419.7 881.1 538.6
1149.3 638.7 510.6
559.4 415.3 144.2
893.9 862.1 31.9
506.5 446.5 60.0

1036.7 1723.8 -687.1
1507.0 1571.7 -64.6
1786.6 1795.9 -9.3
1553.9 1686.4 -132.5
2392.1 2547.3 -155.2

2628.2 2548.3 79.9
2191.5 2522.7 -331.2
2627.7 2598.5 29.2
1020.8 836.2 184.6
986.6 900.2 86.3

1068.1 862.1 206.1
747.9 638.7 109.2
1042.7 881.1 161.5
674.3 641.3 32.9
2448.7 2161.1 287.5

2257.8 2047.2 210.6
2411.4 2172.1 239.3
2558.5 2116.8 441.7
615.9 527.0 88.9
869.2 871.6 -2.4

702.5 543.9 158.6
2157.8 1942.5 215.3
1575.8 1809.4 -233.6
1735.1 1984.0 -248.9
1498.2 1901.6 -403.4

614.8 750.4 -135.6
909.1 890.7 18.4
844.3 738.7 105.6
2111.0 2379.8 -268.8
1736.0 2285.0 -548.9

2146.5 2360.2 -213.7
1726.8 2332.1 -605.3
1234.6 1629.4 -394.8
1543.1 1641.1 -98.0
1739.4 1489.1 250.3
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Table A.2: Predicted thickness (Model 5) and residuals for segment 3

Tdata Tpred residuals

3318.9 2660.6 658.4
3944.0 2515.0 1429.0
2588.0 2520.2 67.8
2877.2 2624.9 252.4
905.3 686.7 218.6

1046.2 884.3 161.9
1570.5 1053.8 516.6
792.2 989.0 -196.8
436.4 592.3 -155.9
387.0 424.8 -37.8

1303.9 2006.1 -702.2
2304.5 1928.1 376.4
1999.0 1849.5 149.5
2418.1 2103.9 314.2
3738.3 3217.2 521.1

3693.5 3180.4 513.0
2055.5 3112.4 -1056.9
4051.4 3243.7 807.7
1360.4 948.7 411.7
1287.2 1176.4 110.8

1322.2 1118.6 203.5
1016.6 1053.8 -37.2
879.2 884.3 -5.2
704.4 686.7 17.6
2884.5 2624.9 259.6

2550.3 2520.2 30.1
2214.8 2515.0 -300.2
3236.8 2660.6 576.2
754.7 1021.4 -266.7
936.9 738.3 198.6

699.5 555.8 143.7
2128.1 2315.5 -187.4
1637.3 2224.1 -586.8
1621.7 2182.2 -560.5
2597.1 2382.2 214.9

792.3 1086.2 -293.9
924.9 1030.3 -105.5
1046.1 817.7 228.4
2487.1 2934.3 -447.2
2165.3 2816.3 -651.0

2096.9 2847.7 -750.8
2169.2 2938.9 -769.7
1344.3 1848.1 -503.7
1616.8 2116.6 -499.7
2120.6 1903.9 216.6
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