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A major part of my thesis is devoted to explore certain issues of CP and flavor

violations in conjunction with those of fermion masses and neutrino oscillations in

the context of supersymmetric grand unification. An attempt is made to present a

unified description of four phenomena: (i) fermion masses and mixings, (ii) neutrino

oscillations, (iii) CP non conservation and (iv) flavor violations in both the quark and

the lepton sectors, in accord with observations, within a single predictive framework

based on supersymmetric SO(10) or an effective G(224) symmetry.

Including standard model and supersymmetric contributions, it is shown that

the framework correctly accounts for ∆mK , ∆mBd
, S(Bd → J/ψKs) and εK .

While SUSY-contribution is small ( few%) for the first three quantities, that to εK

is found to be sizable (∼ 20-25%) and negative relative to the standard model as

desired. The model predicts S(Bd → φKs) to be in the range +(0.65–0.73), close

to the standard model prediction; it yields Re(ε′/ε)SUSY ≈ +(4 − 14) × 10−4. The

model also predicts that the electric dipole moments of the neutron and the electron



should be discovered with improvements in current limits by factors of 10 to 100.

Assuming SUSY-messenger scale to be higher than the GUT scale, it is found

that post-GUT physics, which has commonly been neglected in the literature, con-

tributes significantly to CP and flavor violating processes. Including such contribu-

tions, the model predicts enhanced rates for µ→ eγ, τ → µγ and µN → eN which

should be seen in forthcoming experiments.

A comparison of two promising SO(10) models, one with hierarchical fermion

mass matrices (by Babu, Pati and Wilczek), and the other with lop-sided mass

matrices (by Albright and Barr) is done, as regards their predictions regarding

CP and flavor violations. Crucial tests are noted which would sharply distinguish

between the models.

Envisaging string origin of the effective unification symmetry in 4D, the second

part of my thesis will explore the issue of gauge coupling unification at the string

scale when supersymmetric standard model and an extension is embedded in an

effective G(224) or G(214) ≡ SU(2)L × U(1)I3R
× SU(4)c symmetry near the GUT

scale.
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1. INTRODUCTION

The last four decades have brought forth great progress in the quest

for a unification of the fundamental particles and their forces. The

standard model of particle physics based on the gauge symmetry

SU(2)L×U(1)Y ×SU(3)c, comprising the notions of electroweak uni-

fication [1] and quantum chromodynamics [2], together with that of

spontaneous symmetry breaking (hidden symmetry) [3], is a major

step in this direction. It received a strong boost through the realiza-

tion that spontaneously broken gauge theories are renormalizable [4].

The standard model serves to clarify the nature of three of the basic

forces of nature: the strong nuclear, electromagnetic and weak. It has

turned out to be spectacularly successful empirically [5]. The missing

ingredient of this model is the Higgs boson which will be searched

for at the forthcoming LHC. Despite the successes of the standard

model, there exist observations which clearly suggest the existence of



new physics beyond the standard model. These include: (1) neutrino

oscillation [6, 7], (2) evidence for cold dark matter [5, 8], (3) baryon

asymmetry of the universe [8, 9], and (4) the need for an inflationary

expansion of the early universe that serves to explain the observed

gross homogeneity and isotropy as well as flatness of the universe [10]

1.

The second major step in the unification ladder is the hypothe-

sis of grand unification [11–14], which proposes an underlying unity

of quarks and leptons and of their three gauge forces. This idea was

motivated in the 1970s purely on aesthetic grounds, in part to re-

move some of the shortcomings of the standard model, such as the

arbitrariness in the assignment of the hypercharge, YW and the lack

of quantization of electric charge. Over the years, the evidence in

favor of this idea has become strong. It includes: (1) the quan-

tum numbers of the members of a family, (2) quantization of electric

charge, (3) the meeting of the three gauge couplings which occurs at

a scale MU ∼ 1016 GeV, in the context of supersymmetry (see be-

1 In addition, there is, of course, the discovery of dark energy [8], which cannot be understood

within the standard model, nor in the presently available ideas beyond those of the standard model.
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low), (4) neutrino oscillations, (5) certain fermion mass relations (to

be discussed in Chapters 2 and 4), and (6) baryogenesis via lepto-

genesis [15, 16]. These features lend strong support in favor of the

basic idea of grand unification being relevant at a scale of 1016 GeV,

as well as low energy supersymmetry. As I will discuss in Chapter

2, the last three features (4), (5) and (6) go well with the so-called

seesaw mechanism [17], and simultaneously serve to select out the

nature of the underlying symmetry, favoring the class that possesses

the symmetry SU(4)−color [12] in 4D. This in turn suggests that

the effective symmetry in 4D at short distances (<∼ 10−30 cm) should

maximally be either SO(10) [18] (or possibly E6 [19] and minimally

perhaps a string-derived G(224) ≡ SU(2)L×SU(2)R×SU(4)c [12,20]

or G(214) ≡ SU(2)L × U(1)I3R
× SU(4)c, with coupling unification

holding at the string scale (see discussions in Chapters 2 and 8), as

opposed to other alternatives such as SU(5) [13] or [SU(3)]3 [21].

Referring to supersymmetry mentioned above, it is an idea that

evolved in the early 1970s [22] simultaneously with the idea of grand

unification. It is a symmetry that transforms a fermion into a boson

3



and vice versa. It turns out that supersymmetry is needed for the con-

sistency of string theory [23]. It also seems to be the best candidate

for avoiding large quantum corrections to the Higgs mass and thereby

unnatural extreme fine tuning. The latter feature, however, requires

the existence of the supersymmetric partners of the standard model

particles at the electroweak scale with masses of O(1 TeV). As men-

tioned above, the same SUSY spectrum leads to the meeting of the

three gauge couplings that occurs at a scale MU ∼ 2× 1016 GeV [24].

Such a meeting thus provides strong support for both grand unifica-

tion and low energy supersymmetry. As an additional bonus, such a

SUSY spectrum provides a natural candidate for cold dark matter that

is needed to account for large scale observations [8]. Fortunately, the

supersymmetric particles with masses of order 1 TeV can be searched

for at the forthcoming LHC.

The discussion above suggests that the idea of grand unification

based on SO(10) or a string derived effective G(224)-symmetry, to-

gether with low energy supersymmetry, is well motivated both on

theoretical and on experimental grounds.

4



A major part of my thesis will therefore probe into some issues

pertaining to the supersymmetric SO(10)/G(224)-framework with a

view to confronting this framework as far as possible with existing

and forthcoming experiments. In particular, I plan to explore how

CP and flavor violations in the quark as well as the lepton sectors

(as in K◦ ↔ K
◦
, B◦d,s ↔ B

◦
d,s, b → sγ, µ → eγ, τ → µγ, τ → eγ

and the EDMs of the neutron and the electron) can arise within a

predictive supersymmetric SO(10)/G(224) framework in accord with

observations and in conjunction with the observed masses and mixings

of the charged fermions and neutrino oscillations.

In particular, my goal would be to obtain a unified description of

all four phenomena: (i) CP non-conservation, (ii) flavor violation, (iii)

masses and mixings of quarks and leptons, as well as (iv) neutrino os-

cillations, within a single predictive framework based on SUSY grand

unification as mentioned above.

A predictive framework based on the symmetry SO(10) or G(224),

and a minimal Higgs system was proposed by Babu, Pati and Wilczek

in Ref. [25], which we refer to as the BPW model. This model describes

5



the masses and mixings of all fermions including neutrinos by making

the simplifying assumption that the fermion mass matrices are real and

thus CP-conserving. Notwithstanding this assumption, the framework

is found to be remarkably successful. In particular, it makes seven

predictions involving fermion masses, CKM elements and neutrino

oscillations, all in good accord with observations, to within 10%.

Now in general one would of course expect the entries in the

fermion mass matrices to have phases either because the VEVs of the

relevant Higgs fields, and/or the effective Yukawa couplings are com-

plex. These in turn can induce CP and flavor violation through the

standard model/CKM interactions as well as through SUSY interac-

tions involving sfermion/gaugino loops [26,27].

The question arises: Can the BPW-framework of Ref. [25], based

on the supersymmetric SO(10) or G(224)-symmetry, be extended, by

allowing for phases in the fermion mass matrices, so as to yield net

CP and flavor-violations, arising through both standard model and

SUSY interactions, in accord with observations, while still preserving

its successes as regards fermion masses and neutrino oscillations?

6



As we will see, these four phenomena - (i) fermion masses, (ii) neu-

trino oscillations, (iii) CP non-conservation, and (iv) flavor violations

in quarks and leptons- get intimately linked to each other within the

SUSY SO(10)/G(224) framework. Satisfying simultaneously the ob-

served features of all four phenomena within such a predictive frame-

work turns out, therefore, to be a non-trivial challenge to meet. One

aspect of my study is to show that the answer to the question raised

above is in the affirmative.

The dissertation is organized as follows. In Chapter 2, I dis-

cuss motivations for supersymmetry and certain mechanisms for su-

persymmetry breaking. The minimal supersymmetric standard model

is discussed along with its associated problems such as that of flavor

changing neutral currents, the SUSY CP problem, the µ-problem and

the need for matter parity.

In Chapter 3, I discuss some salient features of SO(10)/G(224)

grand unification and its breaking into the standard model.

In Chapter 4, I review the BPW framework [25], and its predic-

tions regarding fermion masses and neutrino oscillations. This model

7



provides a basis for my study of the issues of SUSY CP and flavor

violations in conjunction with the phenomena of neutrino oscillations

and fermion masses, which is done in the following two chapters.

In Chapter 5, I extend this model to include CP violation by

introducing phases in the mass matrices [28], and examine if this ex-

tension preserves the successes of the model regarding fermion masses

and mixings, and neutrino oscillations. A detailed study of CP and

flavor violations in the quark sector is done in this chapter. Assum-

ing that SUSY breaking parameters are flavor universal at a scale

M ∗ >∼ MGUT , and that CP violation arises through phases in the

fermion mass matrices, I show (based on collaborative work with

Babu and Pati [28]) how the presence of GUT threshold induces new

and calculable CP and flavor violations. Including standard model

and SUSY contributions, we find that the extended BPW framework

can correctly account for the observed flavor and/or CP violations in

∆mK , ∆mBd
, S(Bd → J/ψKS) and εK . While SUSY-contribution

is small (<∼ few%) for the first three quantities, that to εK is found

to be sizable (∼ 20-25%) and negative (as desired) compared to that

8



of the standard model. The model predicts S(Bd → φKS) to be in

the range +(0.65-0.73), close to the standard model prediction. The

model yields Re(ε′/ε)SUSY ≈ +(4 − 14) × 10−4; the relevance of this

contribution can be assessed only when the associated matrix elements

are known reliably. The model also predicts that the electric dipole

moments of the neutron and the electron should be discovered with

improvements in the current limits by factors of 10 to 100.

Chapter 6 deals with lepton flavor violation in the supersym-

metric SO(10)/G(224)-framework mentioned above. We study the

processes µ→ eγ, τ → µγ, τ → eγ and µN → eN within this frame-

work [29] by including contributions both from the presence of the

right handed neutrinos as well as those arising from renormalization

group running in the post-GUT regime (M ∗ →MGUT ). Typically the

latter, though commonly omitted in the literature, is found to domi-

nate. Our predicted rates for µ→ eγ show that while some choices of

the universal SUSY parameters (mo, m1/2) are clearly excluded by the

current empirical limit, this decay should be seen with an improvement

of the current sensitivity by a factor of 10–100, even if sleptons are

9



moderately heavy (<∼ 800 GeV, say). For the same reason, µ− e con-

version (µN → eN) should show in the planned MECO experiment.

Implications of WMAP and (g− 2)µ-measurements are noted, as also

the significance of the measurement of parity-odd asymmetry in the

decay of polarized µ+ into e+γ. Continuing searches at BaBar will be

sensitive to τ → µγ decay for a large part of the SUSY parameter

space (i.e. choice of (m0, m1/2)).

One of the goals of my thesis is to study some generic properties

of SO(10)/G(224) unification, for example, those arising from post-

GUT physics (M ∗ →MGUT ), which can be applied to other models as

well. In particular, I study the SUSY CP and flavor violations within

another promising SO(10) model proposed by Albright and Barr [30].

In chapter 7, I make a comparative study [31] of two promising

SO(10) models, namely the BPW model (proposed by Babu, Pati and

Wilczek) and the AB model [30], based on their predictions regard-

ing CP and flavor violations. There is a significant difference in the

structure of the fermion mass-matrices in the two models (which are

hierarchical for the BPW case and lop-sided for the AB model) which

10



gives rise to different CP and flavor violating effects. I include both SM

and SUSY contributions to these processes. Assuming flavor univer-

sality of SUSY breaking parameters at a messenger scale M ∗ >∼ MGUT ,

I find that renormalization group based post-GUT physics gives rise

to large CP and flavor violations. While these effects were calculated

for the BPW model in [28,29] as described above, my paper [31] is the

first work (to my knowledge) that includes post-GUT contributions for

the AB model. The values of ∆mK , εK ,∆mBd
and S(Bd → J/ψKS)

are found, in both models, to be close to SM predictions, in good

agreement with data. Both models predict that S(Bd → φKS) should

lie in the range +0.65–0.74, close to the SM prediction. Both also

predict that the EDM of the neutron ≈ (few × 10−26)e-cm, should

be observed in upcoming experiments. The lepton sector, however,

brings out marked differences between the two models. It is found

that Br(µ→ eγ) in the AB model is generically much larger than that

in the BPW model, being consistent with the experimental limit only

with a rather heavy SUSY spectrum with (mo, m1/2) ∼ (1000, 1000)

GeV. The BPW model, on the other hand, is consistent with the SUSY

11



spectrum being as light as (mo, m1/2) ∼ (600, 300) GeV. Another dis-

tinction arises in the prediction for the EDM of the electron. In the

AB model de should lie in the range 10−27− 10−28e-cm, and should be

observed by forthcoming experiments. The BPW model gives de to

be typically 100 times lower than that in the AB case. Thus the two

models can be distinguished based on their predictions regarding CP

and flavor violations, and can be tested in future experiments.

Most of my work holds for the effective gauge symmetry above

the GUT scale being either SO(10) or SU(2)L × SU(2)R × SU(4)c.

Several authors [32–34] have noted the advantages of a string derived

G(224) solution in 4D over an SO(10) solution as regards the prob-

lem of doublet triplet splitting. For a G(224) solution, the undesired

color-triplets, which could induce rapid proton decay, can be naturally

projected out through the process of string compactification. On the

other hand for the case of supersymmetric SO(10) being effective in

4D, one would need a suitable doublet-triplet splitting mechanism,

like the Dimopoulos-Wilczek mechanism [35] or something analogous

to it, to be operative in 4D. Such a mechanism has not been shown to

12



emerge consistently from string theory for the case of SO(10).

The case of SO(10), however, has an a priori advantage over an

effective G(224)-solution as regards the issue of the observed gauge

coupling unification. While for a string derived SO(10) solution, cou-

pling unification would hold in the region spanning from Mst to MGUT

(regardless of the gap between them), for the case of a string derived

G(224) solution, however, coupling unification (g2L = g2R = g4) can

hold only at the string scale Mst
>∼ MGUT through the constraints of

string theory even though G(224) is semi-simple [36]. In Chapter 8, I

therefore examine how the gauge couplings α1, α2 and α3 observed at

the LEP energies can be compatible with unification at the string scale

when the standard model is embedded in either G(224) or G(214) at

about the GUT scale ∼ 2 × 1016 GeV. In this context I will consider

two alternative low energy spectra: (i) that of the Minimal Supersym-

metric Standard Model (MSSM), as well as (ii) that of an extension of

the MSSM, known as the Extended Supersymmetric Standard Model

(ESSM) [37]. The latter introduces two vector like families at the

TeV scale, in addition to the spectrum of MSSM, and has been mo-

13



tivated on several grounds [37]. In exploring the issue of coupling

unification it is required that the following constraints be also simul-

taneously satisfied: (a) consistent electroweak symmetry breaking, (b)

non-violation of color and charge, (c) lightest neutralino and the Higgs

mass limits, and (d) the masses and mixings of the second and third

generation fermions. It is shown that including GUT-scale threshold

corrections, one can consistently obtain gauge couplings unification at

a scale ∼ 1017 GeV which can plausibly be identified with the string

scale; and the constraints mentioned above can also be satisfied simul-

taneously.

Lastly, some useful formulae and derivations are included in the

appendices at the end.
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2. SUPERSYMMETRY AND SUPERSYMMETRY BREAKING

2.1 Motivations for Low Energy Supersymmetry

Supersymmetry is a symmetry that transforms a boson into a fermion

and vice versa [22, 38]. The generators of such transformations are

fermionic operators that obey graded Lie Algebra. The single particle

states of a supersymmetric theory are the irreducible representations

of the supersymmetry algebra, called the supermultiplets. Each su-

permultiplet contains both fermion and boson states, known as su-

perpartners of each other. Thus superpartners of spin–1/2 quarks

and leptons would be spin–0 squarks (q̃) and sleptons (l̃); likewise for

spin–1 gluons, W-bosons and photons, the partners wuold be spin-1/2

gluinos (g̃), Winos (W̃ ) and photinos (γ̃). If supersymmetry is exact,

these superpartners have the same masses and charges (electric, weak

and color). Since in nature we do not yet see spin–0 squarks and slep-

tons etc., they must be considerably heavier than quarks and leptons.



Thus supersymmetry, even if it holds at some level, cannot be exact.

It must be broken.

It turns out that supersymmetry is needed for consistency of

string theory which is the only existing candidate for a unified theory

of gauge interactions and gravity. On the practical side, supersymme-

try is needed to avoid the problem of extreme fine-tuning in the Higgs

mass. While fermion masses are protected by chiral symmetry, there

is no symmetry that protects the scalar masses. Quantum corrections

to fermion mass terms are proportional to the fermion mass itself and

the logarithm of the cut-off scale. However, quantum corrections to

scalars at one and higher loop orders are quadratically divergent. The

standard model requires a Higgs scalar to break the electroweak sym-

metry. If the loop integrals are cut-off at the scale of new physics

Λ � mW , then the Higgs mass gets a correction of order Λ2. For

example, if the Higgs couples to a Dirac fermion f with the coupling

−λfHff , one loop corrections to Higgs mass yield

∆m2
H =

|λf |2
16π2

[
−2Λ2 + 6m2

f ln(Λ/mf)
]
. (2.1)

Thus quantum gravity or GUT-scale physics characterized by
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Λ ∼MPlanck orMGUT would give a correction to Higgs (mass)2 which is

too large by some 30–24 orders of magnitude compared to the desired

Higgs (mass)2 of order (1/10 to 1 TeV)2. This would need extreme

fine tuning through counter terms to obtain the desired Higgs mass

via large cancellation. On the other hand, in a supersymmetric the-

ory, each Weyl fermion is accompanied by a scalar partner. If this

scalar couples to the Higgs with the interaction −λS|H|2|S|2, then the

correction to the Higgs mass due to this coupling is:

∆m2
H =

|λS|
16π2

[
Λ2 − 2m2

S ln(Λ/mS)
]
. (2.2)

With supersymmetry, for each Dirac fermion there are two scalars

whose couplings to the Higgs are related as |λf |2 = |λS|. This ensures

a cancellation of the quadratic divergence (see Eqs. (2.1) and (2.2)),

leaving only a logarithmic dependence on the cut-off scale in the Higgs

mass.

∣∣∆m2
H

∣∣ ∼
∣∣∣∣
λ

16π2

[
(m2

f −m2
S) ln(Λ/m)

]∣∣∣∣ . (2.3)

Electroweak symmetry breaking implies that the Higgs mass must
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be <∼ 1 TeV. To avoid large fine-tuning,
√
|∆m2

H | <∼ O(1 TeV). With

this constraint, if supersymmetry is the cause of avoidance of large

quantum corrections to the Higgs mass, it follows that SUSY partners

of the standard model particles (i.e. squarks, sleptons, gluinos etc.)

should have masses less than or of order 1 TeV.

As mentioned in the introduction, an independent strong moti-

vation for weak scale supersymmetry is gauge coupling unification.

In the minimal supersymmetric extension of the standard model (dis-

cussed below), the three gauge couplings neatly unify at a scaleMGUT ≈

2 × 1016 GeV, supporting the ideas of Grand Unification as well as

low energy supersymmetry. Finally, supersymmetry contains a viable

cold dark matter candidate. It turns out that in the supersymmetric

standard model, to prevent rapid proton decay, one has to impose a

discrete symmetry known as R-parity or matter-parity on the super-

symmetric Lagrangian, which does arise naturally in a large class of

models (see below). This has the consequence that the lightest super-

symmetric particle is completely stable, and can serve as cold dark

matter. These arguments provide strong motivations in favor of low
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energy (i.e. weak-scale) supersymmetry. Fortunately, SUSY particles

with masses of order 1 TeV can be searched for at the LHC.

2.2 The Minimal Supersymmetric Standard Model (MSSM)

In the minimal supersymmetric extension of the standard model (see

e.g. [39]), all fermions of the standard model are embedded into chiral

superfields and all gauge fields into vector superfields [38]. The matter

content of the MSSM along with its (SU(3)×SU(2)×U(1)Y ) quantum
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numbers is given below:

Q =
( uL ũL

dL d̃L

)
i

(3
¯
c, 2L,+1/6)

L =
( νeL

ν̃eL

e−L ẽ−L

)
i

(1c, 2L,−1/2)

U =
(
ucL, ũcL

)
i

(3∗c, 1L,−2/3)

D =
(
dcL, d̃cL

)
i

(3∗c, 1L,+1/3)

E =
(
ecL, ẽcL

)
i

(1c, 1L,+1)

Hu =
( H+

u H̃+
u

H0
u H̃0

u

)
(1c, 2L,+1/2)

Hd =
( H0

d H̃0
d

H−d H̃−d

)
(1c, 2L,−1/2)

(2.4)

The SUSY partners of the standard model particles are denoted by a

tilde on the top. Here Q, L, U, D, E, Hu and Hd stand for positive

chiral superfields wih left chiral fermions [38]. The i = 1, 2, 3 is the

generation index. Note that for the supersymmetric standard model,

two Higgs doublets with opposite hypercharges: Hu, Hd are needed in

order to cancel the anomalies, as fermionic components of the Higgs

20



scalars contribute to the triangle anomaly. These two doublets are

also needed to give masses to up and down type quarks; hence the

subscript u and d on them. The gauge bosons also come along with

their fermionic partners:

(g, g̃), (W, W̃ ) (B, B̃) (2.5)

The Yukawa superpotential along with the mass term for the

Higgs fields is given by:

W = huQHuU + hdQHdD + heLHdE + µHuHd (2.6)

Since there are three generations, hu, hd and he are 3× 3 matri-

ces with, in general, complex entries. The following gauge invariant,

renormalizable terms are also allowed in the superpotential:

W ′ = λ1QLD + λ2UDD + λ3LLE + µ′LHu (2.7)

These couplings violate lepton and baryon number symmetries

and can induce rapid proton decay. These terms are forbidden by a

discrete symmetry known as R-parity or an equivalent matter parity,

which arises in a large class of models (see remarks later). The R-
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parity can be defined by

R = (−1)3(B−L)+2S (2.8)

All standard model particles are even under this symmetry, while

all superpartners are odd. Such a parity forbids the W ′ superpoten-

tial and thus the dangerous rapid proton decay operators. In the

process, it also ensures that all superpartners are produced in pairs.

This would mean that the lightest supersymmetric particle (LSP) is

absolutely stable as it cannot decay into the standard model particles.

As mentioned above, such a particle can serve as a candidate for cold

dark matter.

2.2.1 Soft SUSY Breaking

Supersymmetry introduces two complex scalar fields for every Dirac

fermion, or one complex scalar field for every Weyl fermion. As noted

above, this can bring about a cancellation of the quadratically diver-

gent contribution to the Higgs mass2, if the coupling of the fermion

to the Higgs (λfHff) and the coupling of the scalar to the Higgs

(λsH
2s2) are related as λs = |λf |2. Such relationships indeed oc-

22



cur in unbroken supersymmetry. Supersymmetry guarantees that the

quadratic divergences in scalar squared masses must vanish to all or-

ders in perturbation theory. If broken supersymmetry is to still pro-

vide a solution to the Higgs mass fine-tuning problem, then the re-

lationship between the dimensionless couplings λs and λf must be

maintained. This means that the couplings in the Lagrangian that

break supersymmetry must be “soft”, i.e. of positive mass dimension

(e.g. mass terms for scalars and scalar cubic coupling terms with cou-

plings of mass dimension one and spin-1/2 gaugino mass terms). In

this case the corrections to the Higgs mass squared are proportional

to m2
soft/(16π

2) ln(ΛUV/msoft), where msoft ∼ 1 TeV. The effective soft

SUSY breaking Lagrangian is given by:

−Lsoft = M 2
Q̃
Q̃†Q̃+M 2

Ũ
Ũ
†
Ũ +M 2

D̃
D̃
†
D̃ +M 2

L̃
L̃†L̃+M 2

Ẽ
Ẽ
†
Ẽ

+ m2
Hu
H†uHu +m2

Hd
H†dHd + (BµHuHd + h.c.)

+ M1B̃B̃ +M2W̃W̃ +M3g̃g̃

+ (AuQ̃HuŨ + AdQ̃HdD̃ + AeL̃HdẼ + h.c.)

(2.9)

The M 2

Q̃,Ũ ,D̃,L̃,Ẽ
are 3× 3 hermitian matrices. The Au,d,e are also

3×3 matrices with complex entries. The renormalization group equa-
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tions of the soft SUSY parameters in MSSM are given in Appendix

I.

2.2.2 Flavor and CP problems of MSSM

The mass matrices M 2

Q̃,Ũ ,D̃,L̃,Ẽ
, and the A-terms Au,d,e can in general

have complex off-diagonal entries in the bases in which the mass ma-

trices of quarks and leptons are diagonal. These can give rise to large

contributions to flavor changing and CP violating processes, in addi-

tion to those present in the standard model (see e.g. [26, 27]). For

example, the K◦ − K◦ mixing, which is explained very well within

the standard model, can have a contribution from the squark loops as

shown in figure 1.

sd s̃d̃

s s̃ d̃ d

g̃g̃

δd12

δd12

Figure 1.
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The δij = ∆ij/m̃
2 where ∆ij are the off-diagonal terms in the

sfermion mass2 matrices defined in the so called SUSY basis where all

couplings of the fermion and sfermion states to neutral gauginos are

flavor diagonal. From the gauge basis, the scalars are transformed by

the same matrices that diagonalize the fermion mass matrices. The

m̃2 is an average sfermion mass2. The contribution to ∆mK from box

diagrams involving superpartners is given by:

(∆mK)SUSY ∼
g4

3

16π2
mKf

2
k

(∆m2
s̃d̃

)2

m6
q̃

(2.10)

Constraints from experiments, for mq̃ ≈ 500 GeV and m2
g̃/m

2
q̃ ≈ 1

yield [40]:

√∣∣Re(δd12)
2
LL

∣∣ <∼ 4× 10−2;
√∣∣Re(δd12)

2
LR

∣∣ <∼ 4.4× 10−3; (2.11)

√∣∣Re(δd12)LL(δ
d
12)RR

∣∣ <∼ 2.5× 10−3.

Constraints on the imaginary parts of δd12 come from measure-

ments of εK , and for mq̃ ≈ 500 GeV and m2
g̃/m

2
q̃ ≈ 1, are given

below [40]:

√∣∣Im(δd12)
2
LL

∣∣ <∼ 3.2× 10−3;
√∣∣Im(δd12)

2
LR

∣∣ <∼ 3.5× 10−4; (2.12)

√∣∣Im(δd12)LL(δ
d
12)RR

∣∣ <∼ 2.2× 10−4.
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Similarly, there can be supersymmetric contributions (shown in

figure 2) to lepton flavor violating processes such as µ → eγ, which

are forbidden in the standard model or are highly suppressed. Ex-

periments have put an upper bound on the branching ratios of these

processes, setting an upper bound on the magnitude of the off-diagonal

elements in the slepton mass2 matrices. For example, for ml̃ ≈ 100

GeV and m2
χ̃/m

2
l̃

= 1 where mχ̃ is the average neutralino mass, [40]:

∣∣(δl12)LL
∣∣ <∼ 7.7× 10−3;

∣∣(δl12)LR
∣∣ <∼ 1.7× 10−6. (2.13)

µ

H̃0
2

M2

liR ljLl̃iL

(δlLL)ji

H̃0
1

W̃ 0

W̃ 0

v sin β

γ

l̃jL

Figure 2.
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Phases in squark and slepton masses can give rise to electric

dipole moments (EDMs) of electron and neutron as shown in figure

3. These have not been observed and there are stringent bounds on

the values of these EDMs from experiments. For mq̃ ≈ 500 GeV,

m2
g̃/m

2
q̃ ≈ 1, ml̃ ≈ 100 GeV and m2

B̃
/m2

l̃
= 1, the constraints on the

imaginary parts of δij are given below [40]:

∣∣Im(δd11)LR
∣∣ <∼ 3.0× 10−6; |Im(δu11)LR| <∼ 5.9× 10−6; (2.14)

∣∣Im(δl11)LR
∣∣ <∼ 3.7× 10−7.

For the same choice of sfermion and gaugino masses as above, the

constraints on the real parts of the δa11 are [40]:

∣∣Re(δd11)LR
∣∣ <∼ 1.6× 10−3;

∣∣Re(δl11)LR
∣∣ <∼ 7.3× 10−1 (2.15)

From Eqs. (2.14) and (2.15), one can see that the phases, φ, of

these parameters have to be extremely small, φd11
<∼ 10−3 and φl11

<∼

10−4 − 10−5.
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eL ẽL ẽR eR

(δlRL)11

B̃

Figure 3.

A detailed review of FCNC and CP constraints in supersymmetric

extensions of the standard model can be found in [40]. The bottom-

line is that if supersymmetry exists at the TeV scale, then to avoid

large FCNCs, a very high degree of degeneracy (to about one part in

100-1000)1 between the three families of squarks (and also sleptons)

is needed. The soft mass parameters must be almost real with phases

<∼ 10−3 for squark and slepton masses of 100 GeV– 1 TeV, so as to avoid

constraints from CP violations. Understanding the smallness of these

phases in the so called SUSY CP problem. We study several such

1 Strictly speaking the high degree of degeneracy of squarks and sleptons is needed on empirical

grounds (involving ∆mK , εK etc.) only for the first two families, assuming that their masses are

<
∼ 1 TeV.
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CP and flavor violating processes within a specific SO(10)/G(224)

framework in Chapters 5, 6 and 7.

These dangerous flavor changing neutral currents in supersym-

metry can be avoided if one assumes that supersymmetry breaking is

flavor blind at least at some high scale, that is the squark and slepton

mass2 matrices are proportional to the unit matrix in family space:

M 2

Q̃,Ũ ,D̃,L̃,Ẽ
= (M 2

Q̃,Ũ ,D̃,L̃,Ẽ
) 13×3 (2.16)

In this case all squark and slepton mixing angles are rendered

trivial and supersymmetric contributions to FCNC processes will be

very small, modulo the mixing due to the A-terms. To suppress un-

desirable mixing due to the A-terms, one can further assume that the

A matrices are proportional to the corresponding Yukawa coupling

matrices:

Au,d,e = hu,d,e A
0
u,d,e (2.17)

Finally, large CP violation can be avoided with the assumption

that the soft mass parameters are real or almost real at a high scale. I

will shortly mention a few supersymmetry breaking mechanisms which
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naturally yield the desired flavor-blindness and reality properties of

SUSY breaking parameters.

2.2.3 The µ-problem of MSSM

The minimization of the Higgs potential for electroweak symmetry

breaking gives rise to the following condition (see e.g. [39]):

µ2 =
m2
Z

2
−
m2
Hu

tan2 β −m2
Hd

tan2 β − 1
(2.18)

where tan β is the ratio of the vacuum expectation values of H ◦u and

H◦d . Since mZ ,m
2
Hu

and m2
Hd

are all of order the weak scale, the

above condition implies that the µ-parameter must also be of order

the weak scale. But µ is a supersymmetry respecting parameter, while

m2
Hu,d

are soft SUSY breaking parameters. There is no reason for µ

to be the scale of SUSY breaking. This is the so called µ-problem

which has led to various models that extend the MSSM at very high

energies to include a mechanism which relates the effective value of µ

to the supersymmetry breaking mechanism [41,42]. Thus a favorable

supersymmetry breaking mechanism should be accompanied with a

resolution to the µ-problem.
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2.2.4 The fine tuning problem of SUSY

Including the soft terms, the Higgs potential in MSSM is given by the

following equation:

VHiggs = (m2
Hu

+ |µ|2)|Hu|2 + (m2
Hd

+ |µ|2)|Hd|2 −Bµ(HuHd + h.c.)

+ 1
8(g

2
1 + g2

2)(|Hu|2 − |Hd|2)2 + 1
2g

2
2|H†uHd|2.

(2.19)

With this potential, the physical mass of the neutral CP even

Higgs, h0 computed at tree level is bounded by

mh0 ≤ mZ | cos 2β| (2.20)

where tan β is the ratio of the VEVs of Hu and Hd. The experimental

limit from LEP II, mh0 ≥ 114 GeV, rules out a Higgs lighter than the

Z boson. The bound in Eq. (2.20) does not include loop corrections.

The largest corrections to the Higgs mass come from top-stop loops,

giving

∆m2
h0 =

3y4
t

4π2
v2
u sin4 β ln

mt̃1
mt̃2

m2
t

. (2.21)

This correction grows logarithmically, so a large Higgs mass can be

obtained by having a large stop mass. However, the Higgs mass pa-

rameter m2
Hu

gets loop correction that grow quadratically with the
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stop mass.

∆m2
Hu

= −3y2
t

4π2
m2
t̃ ln

Λ

m2
t̃

. (2.22)

If Eq. (2.21) is to account for the current LEP bound, we must have

∆m2
h0 ≥ (114 GeV)2 −m2

Z = (69 GeV)2 (2.23)

setting | cos 2β| = 1 which enhances the Higgs mass. The above re-

lation is satisfied for the stop mass >∼ 650 GeV (inverting Eq. (2.21)

and using Eq. (2.23)). A natural scale for the Higgs mass parameter

is order mZ , therefore an approximate measure of fine-tuning, ∆, is

∆ ∼
∆m2

Hu

m2
Z

'
3y2

tm
2
t̃

4π2m2
Z

ln
Λ

mt̃

. (2.24)

For mt̃ ≈ 650 GeV (as obtained from the Higgs mass bound), and a

UV scale Λ ≈ 100 TeV, the above expression gives a fine-tuning of one

part in 16. A more detailed calculation including full one-loop and the

largest two loop corrections push mt̃ to the 1 TeV range if the A-terms

are small, increasing fine-tuning to about a percent level. This is the

fine-tuning problem of supersymmetry. However, this fine-tuning of

order 1 to few % is considerably better than the case of extreme fine-

tuning (to one part in 1024−1030) that would be needed if there was no
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low energy supersymmetry (or other mechanisms such as large extra

dimensions either [43] either). Some extensions of MSSM have been

suggested [44] to address this problem.

We now proceed to discuss a few supersymmetry breaking mech-

anisms.

2.3 Supersymmetry Breaking Mechanisms

In this section we briefly discuss a few mechanisms of breaking super-

symmetry. A review can be found in Ref. [45].

2.3.1 Gravity mediated SUSY breaking

A general strategy for breaking supersymmetry is to assume that su-

persymmetry is broken in a hidden sector, which does not involve any

of the matter or the forces of the standard model (the visible sector).

Supersymmtry breaking is communicated to the visible sector, i.e. the

standard model fields through messenger interactions. A natural way

of avoiding additional flavor violation in MSSM is to have messenger

interactions that are flavor blind. One possible candidate for such a
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messenger is gravity [46]. In this case the hidden sector communi-

cates with the visible sector through gravitational strength interac-

tions. In an effective field theory language this means that the super

gravity Lagrangian contains non-renormalizable terms which commu-

nicate between the two sectors that are suppressed by powers of the

Planck scale. If X is a chiral superfield in the hidden sector which

breaks SUSY by its F-component getting a VEV 〈FX〉, then the soft

SUSY breaking parameters can be written in terms of the following

four quantities:

m1/2 = f
〈FX〉
MPl

, m2
0 = k

〈FX〉2
M 2

Pl

, A0 = α
〈FX〉
MPl

, B0 = β
〈FX〉
MPl

(2.25)

This simplification is done with the aim of avoiding the SUSY FCNC

and CP problems and is achieved by assuming that the Kähler Po-

tential respects flavor-blindness at the Planck scale. In terms of these
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four parameters, the soft terms in Eq. (2.9) are given by:

M1 = M2 = M3 = m1/2

m2
Q̃

= m2

Ũ
= m2

D̃
= m2

L̃
= m2

Ẽ
= m2

013×3

m2
Hu

= m2
Hd

= m2
0

Au,d,e = A0 hu.d.e

b = B0µ

(2.26)

This parameterization, known as the minimal SUGRA or the MSUGRA

model has been widely used in the literature. Its main virtue is its

simplicity, though on theoretical grounds there is no obvious reason

why the Kähler Potential should be flavor blind [47].

2.3.2 Gauge mediated SUSY breaking

Another simple framework is to assume that SUSY breaking in a hid-

den sector is communicated to the visible sector by standard model

gauge interactions via heavy chiral supermultiplets that are charged

under the standard model gauge symmetries [48]. Since gauge interac-

tions are family-universal, the induced SUSY breaking becomes family

universal in the visible sector.

The gauginos and scalars get masses from loops involving the

35



messenger fields (of mass M):

mgaugino ∼
g2

16π2

〈F 〉
M

; m2
scalar ∼

( g2

16π2

)2 〈F 〉2
|M |2 (2.27)

Thus the gaugino and the scalar masses are of the same order,

which is important for a realistic model of SUSY breaking. The A-

terms arise at two loops and are further suppressed by a factor of

αi/4π, therefore are very small compared to the gaugino masses. Since

the scalar masses depend only on gauge quantum numbers, they are

flavor blind providing a natural solution to the SUSY flavor problem.

2.3.3 Supersymmetry breaking via anomalous U(1)

Anomalous U(1) gauge groups often appear in effective theories after

string compactification. Since the original string theory is anomaly

free, anomaly cancellation happens via the Green-Schwarz mechanism.

Consider a pair of fields φ+ and φ− with U(1) charges ±1, and

assume that there are other charged fields Qi such that Tr Q > 0.

Then the Fayet-Illiopoulos term is given by

ξ =
g2Tr Q

192π2
M 2

Pl. (2.28)
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The D-term contribution to the effective potential is:

VD =
g2

2

(∑

i

qi|Qi|2 + |φ+|2 + |φ−|2 + ξ
)2

(2.29)

where qi is the U(1) charge of the field Qi. If the φ± fields have a

non-zero mass m, then the minimization of the potential leads to

〈φ+〉 = 0, 〈φ−〉 = ξ − m2

g2
, 〈Fφ+〉 = m

√
ξ − m2

g2
, (2.30)

〈Fφ−〉 = 0; 〈D〉 =
m2

g2
.

The supersymmetry breaking is communicated by gravity from

the hidden sector, φ±, to the observable sector, Qi. The superparticle

spectrum is given by (see Refs. [49–51]):

m2
Q =
〈Fφ+〉2
M 2

Pl

≈ m2ξ

M 2
Pl

; mλ '
〈Fφ+φ−〉
M 2

Pl

. (2.31)

The contributions to scalar masses, in principle, are non-universal.

Extra contributions to the scalar masses arise, however, from the D-

term for fields that transform under the anomalous U(1). These are

given by

∆m2
Qi

= qi m
2. (2.32)

These contributions can be much larger than the F-term contributions
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if ε ≡ ξ
M2

Pl
� 1. Thus a hierarchy of soft masses is achieved:

∆m2
Qi
> m2

Q > m2
λ. (2.33)

This allows a solution to the SUSY flavor problem if the U(1) charges

of the relevant Qi fields are family universal. Precisely such family-

universality arises automatically for a class of three family string mod-

els as shown in Ref. [50]. The soft trilinear couplings, i.e. the A-terms

turn out to be small in a class of string models as discussed in Ref. [50],

as also the B-term. We will make use of such a scenario of supersym-

metry breaking in our study of CP and flavor violation. As noted in

Refs. [50] and [51], the anomalous U(1) D-term SUSY breaking must,

however, be combined with dilaton F-term SUSY breaking that gives

desired masses to squarks, sleptons as well as gauginos.

2.3.4 Anomaly mediated SUSY breaking

In the absence of mass terms, a supergravity coupled Yang-Mills the-

ory is classically conformally invariant. This symmetry is broken by

quantum effects, i.e. renormalization, which introduces a mass scale

into the theory. This leads to conformal anomaly, which leads to soft

38



SUSY breaking terms with a very definite pattern [52]:

mλ = −β(g2)
2g2 m3/2

m2
f̃

= −1
4

(
dγ
dgβ(g) + dγ

dyβ(y)
)
m2

3/2

and Aijk = −yijk (γi+γj+γk)
2 m3/2

(2.34)

where m3/2 is the gravitino mass, β(g) is the beta function of the

gauge coupling g, and γi are the anomalous dimension of the field. An

important consequence is that in the absence of Yukawa interactions,

i.e. y = 0, the sfermion masses are family degenerate, thus alleviat-

ing the SUSY flavor problem. One problem with this mechanism of

SUSY breaking is that the slepton mass squared are negative since

they do not get the SU(3)-color contributions. Some attempts have

been made to solve this problem in recent years, for example, by com-

bining anomaly mediated SUSY breaking with other mechanisms of

SUSY breaking [53].

2.3.5 Gaugino mediated SUSY breaking

This mechanism of supersymmetry breaking [54] makes use of an

extra-dimensional setup. The standard model gauge fields are as-

sumed to propagate in the bulk, while the matter fields are localized
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on the visible brane. The gauginos get a mass from contact terms on

the hidden brane:

∆L ∼
∫
d2θ

X

M
W αWα + h.c. (2.35)

where X is a hidden sector field that breaks supersymmetry. Thus

the gaugino gets a mass at the tree level, while the visible matter

fields get mass at the one-loop order, leading to gaugino masses be-

ing much larger at the compactification scale, M ∗, than the scalar

masses. At the 1 TeV scale, these masses are of the same order due

to renormalization group running. The gaugino masses are unified at

the compactification scale i.e. M1 = M2 = M3 at the compactification

scale. The quantity Mi/g
2
i is RG invariant at one loop, therefore at

the weak scale we get:

M1

g2
1

' M2

g2
2

' M3

g2
3

(2.36)

The scalar masses and A-terms are generated by loops involving gaug-

inos, hence the name of the mechanism. These masses are suppressed

by a loop factor relative to the gaugino masses at the compactification

scale.
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The soft SUSY breaking spectrum at the compactification scale

with gaugino mediated SUSY breaking is found to be:

M1 = M2 = M3 = m1/2

m2
Hu
, m2

Hd
∼ m2

1/2

m2
q̃, m

2
l̃
∼ m2

1/2

16π2

A ∼ m1/2

16π2

(2.37)

This model can also address the SUSY CP problem. CP violating

phases can appear in µ, B and M1/2 from higher dimensional oper-

ators. The phases in B and µ can be rotated away by U(1)PQ and

U(1)R transformations, leaving a single phase in m1/2. This phase can

naturally vanish if CP is violated only by terms in the Lagrangian

localized on the visible brane. This situation can arise if CP is broken

spontaneously on the visible brane.

Thus gaugino mediated SUSY breaking is capable of yielding a

realistic SUSY spectrum together with providing a solution of the

SUSY CP and flavor problems.

These mechanisms illustrate that family universality or flavor

blindness and reality of soft SYSY parameters can arise plausibly
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within viable models of SUSY-breaking.

2.3.6 Constrained MSSM

One extreme form of universality is the so called Constrained MSSM

(CMSSM) which is characterized by five universal parameters at a

high scale M ∗:

m2
Q̃, Ũ , D̃, L̃, Ẽ, Hu, Hd

= m2
0

M1 = M2 = M3 = m1/2

Au,d,e = A0

µ and tan β ≡ vu/vd

(2.38)

We should stress, however, that there is no strong theoretical or

phenomenological reason to impose squark-slepton-Higgs mass univer-

sality. For example, in the anomalous U(1) D-term SUSY breaking

model, family universality can hold (with q1 = q2 = q3) but squark-

Higgs universality does not hold if q1 = q2 = q3 6= qHu
6= qHd

(see [50])
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3. GRAND UNIFICATION AND THE CHOICE OF THE

GAUGE GROUP

The idea of grand unification was initiated in Refs. [11–14]. A compre-

hensive review can be found in Ref. [55]. Much of my thesis work deals

with the issues of CP and flavor violations and coupling unification

in the context of supersymmetric SO(10) [18] or an effective string-

derived G(224) symmetry [12,20]. Therefore, I first list some evidence

in favor of supersymmetric grand unification, especially that based on

SO(10) or an effective G(224)-symmetry. As we will see, the advan-

tages of these two symmetries over alternatives such as SU(5) [13] or

[SU(3)]3 [21], arise because they both possess the symmetry SU(4)-

color.

As mentioned in the introduction, the evidence (including old and

new) in favor of supersymmetric grand unification has become strong

over the years. This includes:



(a) the quantum numbers of quarks and leptons in a family, which

are predicted precisely by grand unification in accord with observa-

tions;

(b) quantization of electric charge;

(c) Qe−/Qp = −1;

(d) the meeting of the three gauge couplings at a scale MU ∼

2× 1016 GeV in the context of low energy supersymmetry [24];

(e) neutrino oscillations with a (mass)2 splitting
√

∆m2(ν)23 ∼

1/20 eV [6];

(f) the success of two mass relations (i) mb(GUT)≈ mτ , and (ii)

m(ντDirac) ≈ mtop(GUT) (needed for the success of the seesaw mecha-

nism [17]);

(g) successful baryogenesis via leptogenesis leading to YB ∼ 10−10

[15, 16].

While the first four features (a)–(d) provide strong support, on

empirical grounds, in favor of grand unification, they leave open the

question of the choice of the effective symmetry G in 4D near the GUT-

scale. In particular, they do not make a sharp distinction between the
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alternatives of (i) SU(5) [13], (ii) SO(10) [18], (iii) E6 [19], (iv) [SU(3)]3

[21], or (v) a string-derived semi-simple group like G(224) [12,20], with

coupling unification being ensured in this case by string theory at the

string scale (see remarks below), or (vi) flipped SU(5)× U(1) [56]. Of

these, the symmetries G(224), SO(10) and E6 possess the symmetry

SU(4)-color, while SU(5), [SU(3)]3 and flipped SU(5)× U(1) do not.

One can argue that the last three features, involving: (e) neutrino

oscillations, (f) the success of the two mass relations mb(GUT)≈ mτ ,

and m(ντDirac) ≈ mtop(GUT), and (g) the success of baryogenesis via

leptogenesis, clearly suggest that the effective symmetry G in 4D

should possess the symmetry SU(4)-color. I will mention below the

common advantages shared by SO(10) and a string-derived G(224)-

symmetry as well as the distinctions between them.

3.1 The need for SU(4)-color

To see the need for having SU(4)-color as a component of the higher

gauge symmetry, it is useful to recall the family-multiplet structure of

G(224), which is retained by SO(10) as well. The symmetry G(224) =

45



SU(2)L × SU(2)R × SU(4)c, subject to left-right discrete symmetry

which is natural to G(224), organizes members of a family into a single

left-right self-conjugate multiplet (Fe
L

⊕
Fe

R) given by:

Fe
L,R =




ur ug ub νe

dr dg db e−




L,R

(3.1)

The multiplets Fe
L and Fe

R are left-right conjugates of each other trans-

forming respectively as (2,1,4) and (1,2,4) of G(224); likewise for

the muon and the tau families. Note that each family of G(224),

subject to left-right symmetry, must contain sixteen two-component

objects as opposed to fifteen for SU(5) or the standard model. While

the symmetries SU(2)L,R ⊂ G(224) treat each column of Fe
L,Ras dou-

blets, the symmetry SU(4)-color unifies quarks and leptons by treat-

ing each row of Fe
L and Fe

R as a quartet. Thus both SU(4)-color and

SU(2)R predict the existence of the right-handed neutrino as an es-

sential member of each family, with non-trivial SU(4)c and SU(2)R

quantum numbers [12]. In particular, SU(4)-color treats the left and

right-handed neutrinos (νeL and νeR ) as the fourth color-partners of

the left and right-handed up quarks (uL and uR) respectively; likewise
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for the µ and the τ families.

The familiar SU(3)c, SU(2)L, YW as well as SU(2)R and B − L

quantum numbers of all the members of any multiplet are fully deter-

mined by the symmetry G(224), once the representation of the mul-

tiplet is specified. In particular, the charge formula for any multiplet

(matter, Higgs or gauge) is given by the elegant formula [12,57]:

Q = I3L + I3R +
B − L

2
. (3.2)

where I3L, I3R and B − L have familiar meanings. The hypercharge

is thus determined by the formula:

YW = I3R +
B − L

2
. (3.3)

Because of the symmetry SU(4)-color, we have at the GUT scale

the following two mass relations for the third family: mb(GUT)≈ mτ ,

and m(ντDirac) ≈ mtop(GUT). The first relation is empirically favored.

The second relation is needed for the success of the seesaw mechanism

in yielding the scale of the (mass)2-splitting for atmospheric neutrino

oscillations [6].

An important feature of SU(4)-color is that it introduces B − L

as a local symmetry. This protects the Majorana masses of the right-

47



handed neutrinos from acquiring Planck-scale values. The symmetry,

SO(10) or a string-derived G(224) should break into the standard

model symmetry at the GUT scale MU ≈ 2 × 1016 GeV to account

for the observed gauge coupling unification. This implies that B − L

should break spontaneously at a scale MB−L near the GUT scale (i.e.

MB−L ∼ MGUT ) rather than at a low or intermediate scale like 103–

1013 GeV. This in turn implies that the mass of the heaviest right-

handed Majorana neutrino should be close to the GUT scale rather

than being arbitrarily light (like 1–10 TeV) or of the Planck scale. This

is needed for the seesaw mechanism to give to give desired masses to

neutrinos and for the success of baryogenesis via leptogenesis [15,16].

I will now argue (see e.g. [58]) that (i) the seesaw mechanism,

(ii) the symmetry SU(4)-color, and (iii) the SUSY unification-scale

MU , together provide a simple understanding of the neutrino (mass)2-

splitting observed at SuperK i.e.
√

∆m2(ν)23 ≡
√
|m2(ν3)−m2(ν2)| ∼

1/20 eV [6]. Ignoring inter-family mixing for simplicity, for a mo-

ment, the seesaw mechanism [17] combines the super heavy Majorana

mass, M(νR) of the right-handed neutrino with the Dirac mass of the
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neutrino to give a light mass for the left handed neutrino (through

diagonalization):

m(νL) ≈ m(ν)2
Dirac/M(νR) (3.4)

For the third family, the Dirac mass of ντ is related to the top

mass at the GUT scale through the SU(4)-color relation m(ντDirac) ≈

mtop(GUT) ≈ 120 GeV. The Majorana mass of the right-handed neu-

trino is related, again, by SU(4)-color to the scale of B − L breaking

i.e. MB−L. In the context of a minimal Higgs sector which breaks

B−L by one unit (see Chapter 4), M(ντR) ∼M 2
B−L/M ≈M 2

GUT/M ≈

(2 × 1016GeV)2/(1018GeV)(1/2 − 2) ≈ (4 × 1014GeV)(1/2 − 2), say,

where M denotes the scale of an effective non-renormalizable operator

induced by Planck or string-scale physics and therefore has the mag-

nitude (1018GeV)(1/2 − 2). Substituting these values into Eq. (4.8),

we get

m(ν3
L) ≈ (120Gev)2/(4× 1014GeV(1/2− 2)) ≈ (1/28)(1/2− 2)eV(3.5)

Following the hierarchical pattern of fermion masses (see Chapter 4),

one naturally expects m(ν2
L)� m(ν3

L). Thus
√

∆m2(ν)23 ≈ m(ν3
L) ∼
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(1/28)(1/2 − 2)eV, which is in very good agreement with the Super

Kamiokande data [6].

Let us contrast this with the case of SU(5) unification. In this

case, the fermions of one generation belong to 5 + 10 of SU(5); these

do not, however, contain a right-handed neutrino. Even if one intro-

duces the right-handed neutrino by hand as a singlet of SU(5), there

is no B − L symmetry to protect its Majorana mass from acquir-

ing either Planck scale values or being as light as even 1 TeV. Also,

while mb(GUT)≈ mτ holds for SU(5), there is no relation between

m(ντDirac) and mtop unlike the case of G(224). The Dirac mass term

is therefore arbitrary, except for being bounded from above by the

electroweak scale. It can thus vary from say 1 MeV to 100 GeV. With

such large arbitrariness in M(ντR) and m(ντDirac), m(ν3
L) can vary from

about 10−14 eV to as high as about 10 GeV. This arbitrariness is dras-

tically reduced, however, as shown above, if νR is related to the other

fermions in a family by SU(4)-color symmetry. Thus m(ν3
L) cannot be

determined in the case of SU(5).

Symmetries like G(2213) = SU(2)L×SU(2)R×U(1)B−L×SU(3)c
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[59] and [SU(3)]3 [21] possess B − L and the right handed neutrino,

and therefore the Majorana mass M(νR) is constrained. The Dirac

mass term, on the other hand, is arbitrary as there is no relation

between the top mass and the neutrino Dirac mass. And, there is

no b − τ unification either. In the case of flipped SU(5) × U(1) [56],

both B − L and the right handed neutrino exist, and the relation

m(ντDirac) ≈ mtop holds, but there is no symmetry relating the b and τ

masses.

Thus we see that the observed neutrino oscillations and the suc-

cess of certain fermion mass relations clearly support (a) the idea of the

seesaw, (b) SUSY unification, and (c) the route to higher unification

based on the symmetry SU(4)-color. This says as mentioned in the

introduction, that the effective symmetry in 4D above the GUT-scale

should either be SO(10) (possibly E6), or minimally a string-derived

G(224) or G(214) symmetry, as opposed alternative symmetries.

Although I will not discuss baryogenesis in my thesis, it turns

out that baryogenesis via leptogenesis [15, 16], which again requires

the existence of the right handed neutrino as above, clearly support
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an effective symmetry like SO(10) or G(224) or G(214) symmetry.

I will now briefly mention some similarities and distinctions be-

tween an effective SUSY SO(10) and G(224) symmetry.

3.2 Similarities and Differences between G(224) and SO(10)

As partly noted above, the effective symmetry G(224) together with

left-right discrete symmetry offers some attractive features including :

(i) unification of all sixteen members of a family within one left-right

self-conjugate multiplet; (ii) quantization of electric charge; (iii) quark

lepton unification through SU(4)-color; (iv) conservation of parity at a

fundamental level [59,60]; (v) right-handed neutrinos as a compelling

feature; (vi) B−L as a local symmetry, and (vii) the desired mass

relations for the third family. As noted above, some of these features

are needed on empirical grounds. Any simple or semi-simple group

that contains G(224) as a sub-group would of course possess these

seven features, so does therefore SO(10), which is the smallest simple

group containing G(224). SO(10) even preserves the family multiplet

structure of G(224), where the L–R conjugate 16-plet = (FL

⊕
FR)
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corresponds to the spinorial 16 = (FL

⊕
(FR)c) of SO(10). The group

G(224), with SU(4)-color being vectorial, is anomaly free; SO(10) is

anomaly-free as a group.

In addition to sharing these features, SO(10) and G(224) lead

essentially to the same predictions for fermion masses and neutrino

oscillations in the context of a minimal Higgs system (see Chapter 4).

Despite these similarities, there are, however, two notable dis-

tinctions between SO(10) and G(224), as regards the issues of (a)

gauge coupling unification, and (b) doublet-triplet splitting. For this

discussion, I will assume that either SO(10) or G(224) emerges as an

effective symmetry in 4D through compactification of string/M theory

defined in D = 10/11 to four dimensions. (For attempts at obtaining

string-SO(10) solution see Ref. [61] and a string G(224) solution see

Ref. [20]).

For the case of a string derived G(224) solution, coupling uni-

fication (g2L = g2R = g4) can hold at the string scale Mst through

the constraints of string theory, even though G(224) is a semi-simple

group [36]. One may then hope to explain the observed gauge cou-
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pling unification by assuming that the string scale is not far above

the GUT scale (Mst ≈ (2 − 3)MGUT ), where G(224) breaks into the

standard model. I will explore this issue concretely in Chapter 8. On

the other hand, for SO(10), coupling unification is ensured above the

GUT scale regardless of the gap between Mst and MGUT .

A string derived G(224) solution, however, possesses a distinct

advantage over a SUSY SO(10)-solution as regards the problem of

doublet-triplet splitting. As noted by several authors (see e.g. [20,34]),

the undesired color triplets which induce rapid proton decay can nat-

urally be projected out in this case by the process of string compact-

ification. For the case of SUSY-SO(10), one would need a suitable

mechanism in 4D to make the color triplets super heavy while keeping

the SU(2) doublets light. Such a mechanism has been constructed in

4D [35], but it is not clear if it can emerge consistently from a string

theory.

In view of the relative advantages of G(224) and SO(10) over

each other, and the fact that the possible disadvantage in each case

has at least a plausible solution, I will consider both interchangeably
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as they share the advantages (i)–(vii), and lead essentially to the same

predictions for fermion masses and neutrino oscillations (see Chapter

4), and also baryogenesis via leptogenesis (see e.g. Ref. [16]). I will

point out in Chapters 5 and 6 that the two symmetries can in fact be

distinguished empirically through experiments involving CP and flavor

violations1. In the next section, I will describe some group properties

of SO(10) and its breaking into the standard model.

3.3 SO(10) and its breaking into the standard model

It would be useful to enlist the decomposition of some representations

of SO(10) under G(224) and SU(5). As mentioned earlier, the 16

of SO(10) contains the standard model fermions including the right

handed neutrino. The rest of the representations, including the 16,

1 Although I will not discuss it here, it has been shown that the symmetries SO(10) and G(224)

can also be distinguished through proton decay searches, especially the decay p → e+π◦. See

e.g. [62]
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are often used as Higgs to break SO(10) down to smaller groups.

10 G(224) : (1, 1, 6) + (2, 2, 1)

SU(5) : 5 + 5

16 G(224) : (2, 1, 4) + (1, 2, 4)

SU(5) : 10 + 5 + 1

45 G(224) : (3, 1, 1) + (2, 2, 6) + (1, 1, 15) + (1, 3, 1)

SU(5) : 24 + 10 + 10 + 1

54 G(224) : (1, 1, 1) + (2, 2, 6) + (1, 1, 20) + (3, 3, 1)

SU(5) : 24 + 15 + 15

120 G(224) : (1, 1, 20) + (2, 2, 15) + (1, 3, 6) + (3, 1, 6) + (2, 2, 1)

SU(5) : 5 + 5 + 10 + 10 + 45 + 45

126 G(224) : (3, 1, 10) + (2, 2, 15) + (1, 3, 10) + (1, 1, 6)

SU(5) : 1 + 5 + 10 + 15 + 45 + 50

210 G(224) : (1, 1, 1) + (1, 1, 15) + (1, 3, 15) + (3, 1, 15)

+ (2, 2, 20) + (2, 2, 6)

SU(5) : 1 + 5 + 5 + 10 + 10 + 24 + 40 + 40 + 75

Depending on choice of the Higgs, SO(10) can break into the stan-

dard model in several different ways. Some SO(10) breaking chains

are presented below.
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(1) SO(10)
〈16H〉/〈126H〉−→ SU(5)

〈45H〉−→ SM, where SM stands for theG(213) ≡

SU(2)L × U(1)Y × SU(3)c symmetry. In the case of the 16H the

scalar field with the quantum numbers of the right handed neutrino

i.e. (ν̃cR)H gets a VEV. For the 126H it is the one with the quan-

tum numbers of (ν̃cR)H(ν̃cR)H that gets a VEV. It must be noted that

because supersymmetry is broken only at the electroweak scale, the

Higgs multiplets that reduce the rank of the gauge group must occur

in pairs e.g. 16 + 16 or 126 + 126, so that the D-terms due to these

cancel each other.

(2) SO(10)
〈54H〉−→ G(224)× Z2

〈16H〉/〈126H〉−→ SM.

(3) SO(10)
〈45H〉B−L

−→ SU(2)L × SU(2)R × U(1)B−L × SU(3)
〈16H〉=〈(ν̃R)H〉−→

SM.

(4) SO(10)
〈210H〉−→ G(224)

〈16H〉/〈126H〉−→ SM.

To summarize, in this chapter, we show that any unification sym-

metry above the GUT scale should possess SU(4)-color. This symme-
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try could minimally be G(224) or maximally SO(10). We have de-

scribed a general form of SO(10) unification and its breaking to the

standard model. This can be done by using low dimensional Higgs

multiplets including (16 + 16) or large dimensional Higgs- multiplets

including (126+126). In chapter 4, I will describe in detail, a specific

SO(10) model proposed by Babu, Pati and Wilczek [25], that uses a

minimal set of low dimensional Higgs-multiplets.
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4. FERMION MASSES AND NEUTRINO OSCILLATIONS IN A

SO(10)/G(224) FRAMEWORK: A REVIEW OF THE BPW

MODEL

To set the background for my work on CP and flavor violations, I will

first review a predictive framework based on the SO(10) or G(224)

symmetry proposed by Babu, Pati and Wilczek [25] (to be referred to

as the BPW model henceforth). This framework has been shown to

be remarkably successful in describing fermion masses and neutrino

oscillations. It introduces a minimal Higgs system containing low di-

mensional multiplets to break SO(10) to the standard model and the

same multiplets are used also to generate fermion masses. In the fol-

lowing, only the case of SO(10) is presented. The discussion would

remain essentially unaltered for the symmetry G(224), if one uses the

corresponding G(224) Higgs-submultiplets instead.

The minimal Higgs system used in the BPW model consists of



the set:

Hminimal =
{
45H,16H,16H,10H

}
(4.1)

Of these, the VEV of 〈45H〉 ∼MX breaks SO(10) in the B-L direction

to G(2213) = SU(2)L × SU(2)R × U(1)B−L × SU(3)c, and those of

〈16H〉 =
〈
16H

〉
along 〈˜̄νRH〉 and 〈ν̃RH〉 break G(2213) into the SM

symmetry G(213) at the unification-scale MX . Now G(213) breaks at

the electroweak scale by the VEV of 〈10H〉 to SU(3)c × U(1)em.

Before discussing fermion masses and mixings, some advantages

and disadvantages of using low dimensional Higgs multiplets (as listed

in Eq. (4.1) above) versus large-dimensional ones are noted below.

Large-dimensional tensorial multiplets of SO(10) including (126H , 126H),

210H and possibly 120H , have been used widely in the literature

[63] to break SO(10) to the SM symmetry and give masses to the

fermions. In the BPW model, the use of low-dimensional Higgs multi-

plets (45H , 16H and 16H) was preferred over the large dimensional

ones like (126H , 126H , 210H and possibly 120H) in part because

the latter tend to give too large GUT-scale threshold corrections to

α3(mZ) from split sub-multiplets (typically exceeding 15–20% with ei-
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ther sign), which would render observed gauge coupling unification for-

tuitous. By contrast, with the low-dimensional multiplets (45H , 16H

and 16H), the threshold corrections to α3(mZ) are smaller and are

found, for a large range of the relevant parameters, to have the right

sign and magnitude (nearly -5 to -8%) so as to account naturally for

the observed gauge coupling unification [25].

Another possible disadvantage of 126H , which contributes to EW

symmetry breaking through its (2, 2, 15) component of G(224), is

that it gives B−L dependent contribution to family-diagonal fermion

masses. Such a contribution, barring adjustment of parameters against

the contribution of 〈10H〉 could in general make the success of the

relation mb(GUT ) ≈ mτ fortuitous. By contrast, the latter rela-

tion emerges as a robust prediction of the minimal Higgs system

(45H , 16H , 16H and 10H), subject to a hierarchical pattern, because

the only (B − L) dependent contribution in this case can come ef-

fectively through 〈10H〉〈45H〉/M which is family-antisymmetric and

cannot contribute to diagonal entries (see below).

For what it is worth, it has also been shown that weakly interact-
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ing heterotic string theories do yield the low-dimensional multiplets

as in Eq. (4.1), but not the high dimensional ones such as 126 and

120 [64].

Balancing against these advantages of the minimal Higgs system,

the large-dimensional system (126H , 126H) has an advantage over the

minimal system, because 126 and 126 break B − L by two units and

thus automatically preserve the familiar R-parity = (−1)3(B−L)+2S. By

contrast, 16 and 16 break B − L by one unit and thereby break the

familiar R-parity. This possible drawback is, however, easily avoided,

because for a large class of models based on low dimensional Higgs

multiplets (see e.g. [25] and [30]) one can still define consistently a

matter-parity (i.e. 16i → −16i, 16H → 16H , 16H → 16H , 45H →

45H , 10H → 10H), which serves the desired purpose by allowing all

desired interactions but forbidding the dangerous d = 4 proton de-

cay operators and yielding stable LSP to serve as CDM. Taking into

account the net advantages as noted above, the BPW model makes

use of the minimal Higgs system. The structure of the fermion mass

matrices obtained with this set of Higgs is given below.
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The 3 × 3 Dirac mass matrices for the four sectors (u, d, l, ν)

proposed in Ref. [25] were motivated in part by the notion that flavor

symmetries [65] are responsible for the hierarchy among the elements

of these matrices (i.e., for “33” � “23” � “22” � “12” � “11”,

etc.), and in part by the group theory of SO(10)/G(224), relevant to

a minimal Higgs system (see below). Up to minor variants,1 they are

1 The zeros in “11”, “13”, and “31” elements signify that they are relatively small quantities

(specified below). While the “22’ elements were set to zero in Ref. [25], because they are meant to

be < “23”“32”/”33” ∼ 10−2 (see below), and thus unimportant for purposes of Ref. [25], they are

retained here, because such small ζu
22 and ζd

22 [∼ (1/3)× 10−2 (say)] can still be important for CP

violation and thus leptogenesis.
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as follows:2

Mu =




0 ε′ 0

−ε′ ζu22 σ + ε

0 σ − ε 1



M0

u (4.2a)

Md =




0 η′ + ε′ 0

η′ − ε′ ζd22 η + ε

0 η − ε 1



M0

d (4.2b)

MD
ν =




0 −3ε′ 0

3ε′ ζu22 σ − 3ε

0 σ + 3ε 1



M0

u (4.2c)

Ml =




0 η′ − 3ε′ 0

η′ + 3ε′ ζd22 η − 3ε

0 η + 3ε 1



M0

d

2 A somewhat analogous pattern, also based on SO(10), has been proposed by C. Albright

and S. Barr [AB] [30]. One major difference between the work of AB and that of BPW [25] is

that the former introduces the so-called “lop-sided” pattern in which some of the “23” elements

are even greater than the “33” element; in BPW on the otherhand, the pattern is consistently

hierarchical with individual “23” elements (like η, ε and σ) being much smaller in magnitude than

the “33” element of 1. For a comparative study of some of the SO(10)-models for fermion masses

and neutrino oscillations and the corresponding references, see C.H. Albright, talk presented at

the Stony Brook conf. (Oct. 2002), Ed. by R. Shrock, publ. by World Scientific (page 201). A

comparative study of the AB and the BPW models based on their predictions regarding CP and

flavor violations is presented in chapter 7.
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These matrices are defined in the gauge basis and are multiplied by

Ψ̄L on left and ΨR on right. For instance, the row and column indices

of Mu are given by (ūL, c̄L, t̄L) and (uR, cR, tR) respectively. Note the

group-theoretic up-down and quark-lepton correlations: the same σ

occurs in Mu and MD
ν , and the same η occurs in Md and Ml. It will

become clear that the ε and ε′ entries are proportional to B−L and are

antisymmetric in the family space (as shown above). Thus, the same

ε and ε′ occur in both (Mu and Md) and also in (MD
ν and Ml), but

ε→ −3ε and ε′ → −3ε′ as q → l. Such correlations result in enormous

reduction of parameters and thus in increased predictiveness. Such a

pattern for the mass-matrices can be obtained, using a minimal Higgs

system 45H , 16H , 16, and 10H and a singlet S of SO(10) carrying
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flavor charges (see below), through effective couplings as follows [66]:

LYuk =

h3316316310H

+ h2316216310H(S/M)

+ a2316216310H(45H/M
′)(S/M)p

+ g2316216316
d
H(16H/M

′′)(S/M)q

+ h2216216210H(S/M)2 (4.3)

+ g2216216216
d
H(16H/M

′′)(S/M)q+1

+ g1216116216
d
H(16H/M

′′)(S/M)q+2

+ a1216116210H(45H/M
′)(S/M)p+2

Typically we expect M ′, M ′′ and M to be of order Mstring [67]. The

VEV’s of 〈45H〉 (along B−L), 〈16H〉 = 〈16H〉 (along standard model

singlet sneutrino-like component) and of the SO(10)-singlet 〈S〉 are

of the GUT-scale, while those of 10H and of the down type SU(2)L-

doublet component in 16H (denoted by 16dH) are of the electroweak

scale [25, 68]. The powers of (S/M) are determined by flavor charges

(see below). Depending upon whether M ′(M ′′) ∼ MGUT or Mstring
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(see [69]), the exponent p(q) is either one or zero [69].

The entries 1 and σ arise respectively from h33 and h23 couplings,

while η̂ ≡ η − σ and η′ arise respectively from g23 and g12-couplings.

The (B-L)-dependent antisymmetric entries ε and ε′ arise respectively

from the a23 and a12 couplings. [Effectively, with 〈45H〉 ∝ B −L, the

product 10H × 45H contributes as a 120, whose coupling is family-

antisymmetric.] The small entry ζu22 arises from the h22-coupling, while

ζd22 arises from the joint contributions of h22 and g22-couplings. As

discussed in [25], using some of the observed masses as inputs, one

obtains |η̂| ∼ |σ| ∼ |ε| ∼ O(1/10), |η′| ≈ 4× 10−3 and |ε′| ∼ 2× 10−4.

The success of the framework presented in Ref. [25] (which set ζu22 =

ζd22 = 0) in describing fermion masses and mixings remains essentially

unaltered if |(ζu22, ζd22)| ≤ (1/3)(10−2) (say).

Such a hierarchical form of the mass-matrices, with h33-term be-

ing dominant, is attributed in part to flavor gauge symmetry(ies) that

distinguishes between the three families, and in part to higher dimen-

sional operators involving for example 〈45H〉/M ′ or 〈16H〉/M ′′, which

are suppressed by MGUT/Mstring ∼ 1/10, if M ′ and/or M ′′ ∼ Mstring.
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The basic presumption here is that effective dimensionless couplings

allowed by SO(10)/G(224) and flavor symmetries are of order unity

[i.e., (hij, gij, aij) ≈ 1/3-3 (say)]. The need for appropriate powers of

(S/M) with 〈S〉/M ∼ MGUT/Mstring ∼ (1/10–1/20) in the different

couplings leads to a hierarchical structure. As an example, introduce

just one U(1)-flavor symmetry, together with a discrete symmetry D,

with one singlet S. The hierarchical form of the Yukawa couplings

exhibited in Eqs. (4.2) and (4.3) would follow, for the case of p = 1,

q = 0, if, for example, the U(1) flavor charges are assigned as follows

(see e.g. [62]:

163 162 161 10H

a a+ 1 a+ 2 −2a

16H 16H 45H S

−a− 1/2 −a 0 −1

(4.4)

The value of a would get fixed by the presence of other operators

(see later). All the fields are assumed to be even under a discrete

symmetry D, except for 16H and 16H which are odd. It is assumed

that other fields are present as in a string solution that would make
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the U(1) symmetry anomaly-free. With this assignment of charges,

one would expect |ζu,d22 | ∼ (〈S〉/M)2; one may thus take, for example,

|ζu,d22 | ∼ (1/3) × 10−2 without upsetting the success of Ref. [25]. In

the same spirit, one would expect |ζ13, ζ31| ∼ (〈S〉/M)2 ∼ 10−2, and

|ζ11| ∼ (〈S〉/M)4 ∼ 10−4 (say). where ζ11, ζ13, and ζ31 denote the “11,”

“13,” and “31,” elements respectively. These elements were dropped

(ζ11, ζ13, ζ31, and even ζ22) as a first in Ref. [25] for the sake of economy

of parameters. But these elements can in general be relevant in a more

refined analysis (e.g. ζu,d11 , though small, can make small contributions

to mu,d of order few MeV without altering significantly the mixing

angles, and ζ22 can be relevant for considerations of CP violation).

To discuss the neutrino sector one must specify the Majorana

mass-matrix of the RH neutrinos as well. These arise from effective

couplings of the form [70]:

LMaj = fij16i16j16H16H/M (4.5)

where the fij’s include appropriate powers of 〈S〉/M , in accord with

flavor charge assignments of 16i (see Eq. (4.4)), and M is expected

to be of order string or reduced Planck scale. For the f33-term to be
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leading (∼ 1), we must assign the charge −a to 16H . This leads to a

hierarchical form for the Majorana mass-matrix [25]:

M ν
R =




x 0 z

0 0 y

z y 1



MR (4.6)

Following the flavor-charge assignments given in Eq. (4.4), we expect

|y| ∼ 〈S/M〉 ∼ 1/10, |z| ∼ (〈S/M〉)2 ∼ (1/200)(1 to 1/2, say), |x| ∼

(〈S/M〉)4 ∼ (10−4–10−5) (say). The “22” element (not shown) is

∼ (〈S/M〉)2 and its magnitude is taken to be < |y2/3|, while the “12”

element (not shown) is ∼ (〈S/M〉)3. In short, with the assumption

that the “33”-element is leading, the hierarchical pattern of M ν
R is

identical to that of the Dirac mass matrices (Eq. (4.2)). We expect

MR =
f33〈16H〉2

M
≈ (4× 1014 GeV)(1/2–2) (4.7)

where we have put 〈16H〉 ≈ 2× 1016 GeV, and f33 ≈ 1. The effective

scale M should lie between Mstring ≈ 4× 1017 GeV and (MPl)reduced ≈

2× 1018 GeV. Thus we take M ≈ 1018 GeV (1/2–2) [71]. These lead

to an expected central value of MR of around 4× 1014 GeV. Allowing

for 2-3 family-mixing in the Dirac and the Majorana sectors as in Eqs.
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(4.2) and (4.6), the seesaw mechanism leads to ( [25]):

m(ν3) ≈ B
m(ντDirac)

2

MR
(4.8)

The quantity B represents the effect of 2-3 family-mixing and is given

by B = (σ + 3ε)(σ + 3ε− 2y)/y2 (see [25]). Thus B is fully calculable

within the model once the parameters σ, η, ε, and y are determined

in terms of inputs involving some quark and lepton masses (as noted

below). In this way, one obtains B ≈ (2.9 ± 0.5). The Dirac mass

of the tau-neutrino is obtained by using the SU(4)-color relation (see

Chapter 3): m(ντDirac) ≈ mtop(MX) ≈ 120 GeV. One thus obtains

from Eq. (4.7) :

m(ν3) ≈
(2.9)(120 GeV)2

1015 GeV
(1/2–2)

≈ (1/24 eV)(1/2–2) (4.9)

Noting that for hierarchical entries — i.e. for (σ, ε, and y) ∼ 1/10

— one naturally obtains a hierarchical spectrum of neutrino-masses:

m(ν1) <∼ m(ν2) ∼ (1/10)m(ν3), we thus get:

[√
∆m2

23

]

Th

≈ m(ν3) ≈ (1/24 eV)(1/2–2) (4.10)

This agrees remarkably well with the SuperK value of (
√

∆m2
23)SK(≈
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1/20 eV), which lies in the range of nearly (1/15 to 1/30) eV. As men-

tioned in the introduction and Chapter 3, the success of this predic-

tion provides clear support for (i) the existence of νR, (ii) the notion of

SU(4)-color symmetry that gives m(ντDirac), (iii) the SUSY unification-

scale that gives MR, and (iv) the seesaw mechanism.

For simplicity, the parameters in the mass matrices in the BPW

model, were chosen to be real, and for the sake of economy of pa-

rameters, ζd22 and ζu22 were set to zero in Ref. [25]. The param-

eters (σ, η, ε, ε′, η′, M0
u, M0

D, y) can be determined by using,

for example, mphys
t = 174 GeV, mc(mc) = 1.37 GeV, ms(1 GeV) =

110–116 MeV, mu(1 GeV) = 6 MeV, the observed masses of e, µ, and

τ and m(ν2)/m(ν3) ≈ 1/(6 ± 1) (as suggested by a combination of

atmospheric and solar neutrino data, the latter corresponding to the

LMA MSW solution, see below) as inputs. One is thus led, for this

CP conserving case (as the mass matrices are real), to the following

fit for the parameters, and the associated predictions [25]. [In this fit,

the small quantities x and z in M ν
R are left undetermined. It is as-

sumed that they have the magnitudes suggested by flavor symmetries
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(i.e., x ∼ (10−4–10−5) and z ∼ (1/200)(1 to 1/2) (see remarks below

Eq. (4.6)]:

σ ≈ 0.110 (4.11a)

η ≈ 0.151 (4.11b)

ε ≈ −0.095 (4.11c)

|η′| ≈ 4.4× 10−3 (4.11d)

ε′ ≈ 2× 10−4 (4.11e)

M0
u ≈ mt(MX) ≈ 120 GeV (4.11f)

M0
D ≈ mb(MX) ≈ 1.5 GeV (4.11g)

y ≈ −1/17. (4.11h)

These output parameters remain stable to within 10% corresponding

to small variations (<∼ 10%) in the input parameters of mt, mc, ms,

and mu. These in turn lead to the following predictions for the quarks
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and light neutrinos [25,62]:

mb(mb) ≈ (4.7–4.9) GeV,

√
∆m2

23 ≈ m(ν3) ≈ (1/24 eV)(1/2–2),

Vcb ≈
∣∣∣∣
√

ms

mb

∣∣∣η+εη−ε

∣∣∣−
√

mc

mt

∣∣σ+ε
σ−ε

∣∣
∣∣∣∣

≈ 0.044,



θosc
νµντ

≈
∣∣∣∣
√

mµ

mτ

∣∣∣η−3ε
η+3ε

∣∣∣
1/2

+
√

mν2

mν3

∣∣∣∣

≈ |0.437 + (0.378± 0.03)|,

Thus, sin2 2θosc
νµντ
≈ 0.993,

(for m(ν2)
m(ν3)

≈ 1/6),

Vus ≈
∣∣∣
√

md

ms
−

√
mu

mc

∣∣∣ ≈ 0.20,

∣∣∣Vub

Vcb

∣∣∣ ≈
√

mu

mc
≈ 0.07,

md(1 GeV) ≈ 8 MeV.

(4.12)

It is rather striking that all seven predictions in Eq. (4.12) agree with

observations, to within 10%. Particularly intriguing is the (B − L)-

dependent group-theoretic correlation between the contribution from

the first term in Vcb and that in θosc
νµντ

, which explains simultaneously

why one is small (Vcb) and the other is large (θosc
νµντ

) [62]. That in turn

provides some degree of confidence in the pattern of the mass-matrices.
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The Majorana masses of the RH neutrinos (NiR ≡ Ni) are given

by [62]:

M3 ≈ MR ≈ 4× 1014 GeV (1/2-1),

M2 ≈ |y2|M3 ≈ 1012 GeV(1/2-1), (4.13)

M1 ≈ |x− z2|M3 ∼ (1/4-2)10−4M3

∼ 4× 1010 GeV(1/8–2).

Note that we necessarily have a hierarchical pattern for the light

as well as the heavy neutrinos (see discussions below on mν1).

As regards νe-νµ and νe-ντ oscillations, the standard seesaw mech-

anism would typically lead to rather small angles (e.g. θosc
νeνµ
≈

√
me/mµ ≈

0.06), within the framework presented above [25]. It has, however,

been noted subsequently [72] that small intrinsic (non-seesaw) masses

∼ 10−3 eV of the LH neutrinos can arise quite plausibly through higher

dimensional operators of the form [62]: W12 ⊃ κ1216116216H16H10H10H/M
3
eff ,

without involving the standard seesaw mechanism [17]. Such a term

leads to an intrinsic Majorana mixing mass term of the form m0
12ν

e
Lν

µ
L,

with a strength given bym0
12 ≈ κ12〈16H〉2(175 GeV)2/M 3

eff ∼ (1.5–6)×

10−3 eV, for 〈16H〉 ≈ (1-2)MGUT and κ12 ∼ 1, if Meff ∼ MGUT ≈
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2 × 1016 GeV [62]. Such an intrinsic Majorana νeνµ mixing mass ∼

few×10−3 eV, though small compared to m(ν3), is still much larger

than what one would generically get for the corresponding term from

the standard seesaw mechanism (as in Ref. [25]). Now, the diagonal

(νµνµ) mass-term, arising from standard seesaw can naturally be ∼

(3-8)×10−3 eV for |y| ≈ 1/20-1/15 [25]. Thus, taking the net val-

ues of m0
22 ≈ (6 − 7) × 10−3 eV, m0

12 ∼ 3 × 10−3 eV as above and

m0
11 � 10−3 eV, which are all plausible, we obtain mν2 ≈ (6−7)×10−3

eV, mν1 ∼ (1 to few) × 10−3 eV, so that ∆m2
12 ≈ (3.6-5) × 10−5 eV2

and sin2 2θosc
νeνµ
≈ 0.6–0.7. These go well with the LMA MSW solution

of the solar neutrino puzzle.

Thus, the intrinsic non-seesaw contribution to the Majorana masses

of the LH neutrinos can possibly have the right magnitude for νe-νµ

mixing so as to lead to the LMA solution within the G(224)/SO(10)-

framework, without upsetting the successes of the seven predictions

in Eq. (4.12). [In contrast to the near maximality of the νµ-ντ os-

cillation angle, however, which emerges as a compelling prediction of

the framework [25], the LMA solution, as obtained above, should, be
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regarded as a consistent possibility, rather than as a compelling pre-

diction, within this framework.]

It is worth noting at this point that in a theory leading to Ma-

jorana masses of the LH neutrinos as above, one would expect the

neutrinoless double beta decay process (like n + n → ppe−e−), sat-

isfying |∆L| = 2 and |∆B| = 0, to occur at some level. The cru-

cial parameter which controls the strength of this process is given

by mee ≡ |
∑

imνi
U 2
ei|. With a non-seesaw contribution leading to

mν1 ∼ few × 10−3 eV, mν2 ≈ 7× 10−3 eV, sin2 2θ12 ≈ 0.6− 0.7, and

an expected value for sin θ13 ∼ m0
13/m

0
33 ∼ (1 − 5) × 10−3 eV /(5 ×

10−2 eV ) ∼ (0.02−0.1), one would expectmee ≈ (1−5)×10−3 eV [72].

Such a strength, though compatible with current limits [73], would be

accessible if the current sensitivity is improved by about a factor of

50–100.

In summary, it is remarkable that the simple pattern of fermion

mass matrices, motivated in large part by the group theory of the

G(224) or SO(10) symmetry and the minimality of the Higgs system,

and in part by the assumption of flavor symmetry, leads to seven pre-
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dictions in agreement with observations. Particularly significant are

the predictions for m(ν3
L) (to within a factor of 2 or 3, say), together

with that of mb/mτ , which help select out the route to higher unifica-

tion based on G(224) or SO(10) as the effective symmetry in 4D; so

also are the predictions for the extreme smallness of Vcb together with

the near maximality of θosc
νµντ

, all in accord with observations.

In the next two chapters, given the success of the BPW frame-

work, it is extended to include CP and flavor violations by allowing

for phases in the mass matrices. A set of processes involving CP and

flavor violations are studied within the extended framework.
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5. TYING IN CP AND FLAVOR VIOLATIONS WITH FERMION

MASSES AND NEUTRINO OSCILLATIONS

5.1 Introduction

In this chapter, following work done in collaboration with Babu and

Pati [28], I address the issues of CP and flavor violations in conjunction

with those of fermion masses and neutrino oscillations, in the context

of SUSY grand unification based on a SO(10) or an effective G(224)

symmetry. On the experimental side there are now four well measured

quantities reflecting CP and/or ∆F = 2 flavor violations. They are:1

∆mK , εK , ∆mBd
and S(Bd → J/ΨKS) (5.1)

where S(Bd → J/ΨKS) denotes the asymmetry parameter in (Bd ver-

sus Bd) → J/ΨKS decays. It is indeed remarkable that the observed

values including the signs of all four quantities as well as the empirical

1 ε′K reflecting direct ∆F = 1 CP violation is well measured, but its theoretical implications are

at present unclear due to uncertainties in the matrix element. We discuss this later.



lower limit on ∆mBs
can consistently be realized within the standard

CKM model for a single choice of the Wolfenstein parameters (see

Appendix II) [74]:

ρ̄W = 0.178 ± 0.046; η̄W = 0.341 ± 0.028 . (5.2)

This fit is obtained using the observed values of εK = 2.27×10−3,

Vus = 0.2240 ± 0.0036, |Vub| = (3.30 ± 0.24)×10−3, |Vcb| = (4.14 ±

0.07)×10−2 , |∆mBd
| = (3.3 ± 0.06) ×10−13 GeV and ∆mBd

/∆mBs

> 0.035, and allowing for uncertainties in the hadronic matrix ele-

ments of up to 15%. One can then predict the asymmetry parameter

S(Bd → J/ΨKS) in the SM to be ≈ 0.685 ± 0.052 [74, 75]. This

agrees remarkably well with the observed value S(Bd → J/ΨKS)expt.

= 0.687 ± 0.032 representing an average of the BABAR and BELLE

results [76]. This agreement of the SM prediction with the data in

turn poses a challenge for physics beyond the SM, especially for su-

persymmetric grand unified (SUSY GUT) models, as these generically

possess new sources of CP and flavor violations beyond those of the

SM.

In particular, our goal would be to obtain a unified description,
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in accord with observations, of all four phenomena: (i) CP non-

conservation, (ii) flavor violation, (iii) masses and mixings of quarks

and leptons, as well as (iv) neutrino oscillations, within a single pre-

dictive framework based on SUSY SO(10)/G(224) unification.

In chapter 4, I described a predictive framework (which I refer to

as the BPW model [25]), based on the symmetry SO(10) or G(224),

and a minimal Higgs system. This model describes the masses and

mixings of all fermions including neutrinos by making the simplifying

assumption that the fermion mass matrices are real and thus CP-

conserving. Notwithstanding this assumption, the framework is found

to be remarkably successful. In particular, it makes seven predictions

involving fermion masses, CKM elements and neutrino oscillations, all

in good accord with observations, to within 10% (see Chapter 4).

Now in general one would of course expect the entries in the

fermion mass matrices to have phases because the VEVs of the rel-

evant Higgs fields, and/or the effective Yukawa couplings, can well

be complex. These in turn can induce CP violation through the

SM/CKM interactions as well as through SUSY interactions involving
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sfermion/gaugino loops.

The question arises: Can the BPW-framework of Ref. [25], based

on the supersymmetric SO(10) or G(224)-symmetry, be extended, by

allowing for phases in the fermion mass matrices, so as to yield net

CP and flavor-violations, arising through both SM and SUSY interac-

tions, in accord with observations, while still preserving its successes

as regards fermion masses and neutrino oscillations?

As we will see, these four phenomena - (i) fermion masses, (ii) neu-

trino oscillations, (iii) CP non-conservation, and (iv) flavor violations

- get intimately linked to each other within the SUSY SO(10)/G(224)

framework. Satisfying simultaneously the observed features of all four

phenomena within such a predictive framework turns out, however, to

be a non-trivial challenge to meet. The main purpose of this chap-

ter is to show that the answer to the question raised above is in the

affirmative.
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5.2 Phases in the Fermion Mass Matrices: The Origin of CP

violation

In this section the BPW model [25] is extended to include CP viola-

tion. This model was reviewed in Chapter 4. For completeness and

future reference, the 3 × 3 Dirac mass matrices for the four sectors

(u, d, l, ν) proposed in the model of Ref. [25] are given below:

Mu =




0 ε′ 0

−ε′ ζu22 σ + ε

0 σ − ε 1



M0

u; Md =




0 η′ + ε′ 0

η′ − ε′ ζd22 η + ε

0 η − ε 1



M0

d

MD
ν =




0 −3ε′ 0

3ε′ ζu22 σ − 3ε

0 σ + 3ε 1



M0

u; Ml =




0 η′ − 3ε′ 0

η′ + 3ε′ ζd22 η − 3ε

0 η + 3ε 1



M0

d

(5.3)

These matrices are defined in the gauge basis and are multiplied by

Ψ̄L on left and ΨR on right.

In the BPW model, the parameters (σ, ε, η, ε′, η′ etc.) en-

tering into the fermion mass matrices were assumed to be real, for

simplicity, and thereby (at least) the SM interactions were rendered
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CP-conserving2. Noting that the VEVs of the Higgs fields3 and/or

the effective Yukawa couplings can well be complex, however, we now

propose to extend the SO(10)/G(224) framework reviewed above to

include CP violation by allowing for these parameters to have phases.

Given the empirical constraints on (i) CP and flavor violations,

as well as (ii) fermion masses and (iii) neutrino oscillations, on the one

hand, and (iv) the group-theoretical constraints of the SO(10)/G(224)

framework on the other, it is of course not at all clear, a priori, whether

any choice of phases and variations in the parameters of the fermion

mass matrices presented above can yield observed CP and flavor-

violations, and simultaneously preserve the successes of the framework

of [25] as regards fermion masses and neutrino oscillations. That is

the issue we now explore. We choose to diagonalize the quark mass

matrices Mu and Md at the GUT scale ∼ 2× 1016 GeV, by bi-unitary

2 modulo the contribution from the strong CP parameter Θ
3 For instance, consider the superpotential for 45H only: W(45H)= M45(45H)2 +

“λ(45H)4”/M , which yields (setting F45H
=0), either 〈45H〉 = 0, or 〈45H〉2 = −(2M45M/“λ”).

Assuming that “other physics” would favor 〈45H〉 6= 0, we see that 〈45H〉 would be pure imaginary,

if the quantity in the brackets is positive with all parameters being real. In a coupled system, it

is conceivable that 〈45H〉 in turn would induce phases (other than 0 and π) in some of the other

VEVs as well, and may itself become complex rather than pure imaginary.
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transformations - i.e.

Mdiag
d = Xd†

L MdX
d
R and Mdiag

u = Xu†
L MuX

u
R (5.4)

with phases of qiL,R chosen such that the eigenvalues are real and posi-

tive and that the CKM matrix VCKM (defined below) has the Wolfen-

stein form [77]) (see Appendix II on Wolfenstein parametrization of

the CKM matrix). Utilizing the hierarchical nature of the mass ma-

trices, one can obtain (approximate) analytic expressions for the diag-

onalizing matrices (see Appendix .1 at the end of the chapter). They

are:

Xd
L '




e−i(φη−ε) |η′/Xd|e−i(φη−ε+ζus) η′|η − ε|e−i(φη−ε−ζd
33)

−|η′/Xd|ei(φη+ε+φXd
) ei(φη+ε+φXd

−ζus) |η + ε|ei(φη+ε+ζ
d
33)

|η′/Xd||η + ε|ei(φXd
) − Y −|η + ε|ei(φXd

−ζus) eiζ
d
33




(5.5)

Xd
R '




ei(φη+ε+φXd
) |η′/Xd|ei(φη+ε+φXd

−ζus) η′|η + ε|ei(φη+ε+ζ
d
33)

−|η′/Xd|e−i(φη−ε) e−i(φη−ε+ζus) |η − ε|e−i(φη−ε−ζd
33)

|η′/Xd||η − ε| −|η − ε|e−iζus eiζ
d
33



(5.6)

Here φη±ε ≡ arg(η ± ε), that is, (η ± ε ≡ |η ± ε| eiφη±ε); Y ≡

η′|η − ε|e−iζud and

Xd ≡ −|η2 − ε2| + |ζd22|e−i(φη+ε+φη−ε−φζ2d
) ≡ |Xd|eiφXd , where ζd22 ≡
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|ζd22|eiφζ2d . The corresponding matrices Xu
L,R for diagonalizing the up

sector are obtained from above with the substitutions : η → σ; ζd22 →

ζu22; (η′± ε′)→ ±ε′. Thus φη±ε are replaced by φσ±ε ≡ arg(σ± ε); and

Xd by Xu ≡ −|σ2− ε2|+ |ζu22|e−i(φσ+ε+φσ−ε−φζ2u
) ≡ |Xu|eiφXu . Given the

definitions of φXd
and φXu

as above, we have

ζd33 ' (φXd
−φη−σ+φη+ε)+R sin Ω; γ ≡ (φη+ε+φη−ε)−(φσ+ε+φσ−ε)+φε′,

where

R ≡ |ε′/Xu|/|η′/Xd| ≈
√
mu/mc

√
ms/md ≈ 0.3;

βΩ ≈ R(sin Ω/Ω), Ω ≡ (φXd
− φXu

) + γ;

ζcb ' arg[ei(γ−φXu){|η + ε|− | σ + ε|ei(φσ+ε−φη+ε)}];

ζus ≈ −R sin Ω[1−R cos Ω]−1.

As mentioned above, using observed fermion masses and mixings

[25], we obtain: |ε′| ∼ 1/10 |η′|, with |η′| ∼ (few)×10−3 � (|η| ∼

|ε| ∼ |σ| ∼ 1/10) � 1. In writing Eqns. (5.5) and (5.6), we have not

displayed for simplicity of writing, small correction terms (O(ε2, η2)),

which are needed to preserve unitarity. We have also not displayed

small phases of order |η′ε′/XuXd|× sin Ω ∼ 1/100, |ε′/η′| ∼ 1/10 and
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R sin Ω ∼ 1/10. Our results to be presented, that are based on exact

numerical calculations, however incorporate these small corrections.

The CKM elements in the Wolfenstein basis are given by the

matrix VCKM = e−iα(Xu†
L X

d
L), where α = (φσ−ε−φη−ε)− (φε′−φη′+ε′),

where without loss of generality (given |η′| � |ε′|), we can choose

φη′+ε′ ≈ 0. To a good approximation, the CKM elements are given by

(these expressions are derived in the appendix .1):

Vud ≈ Vcs ≈ Vtb ≈ 1

Vus ≈| |η′/Xd| − |ε′/Xu|eiΩ | ≈ −Vcd

Vcb ≈| ei(γ−φXu){| η + ε | − | σ + ε | ei(φσ+ε−φη+ε)} | ≈ −Vts

Vub ≈ [η′ | η − ε | − | ε′/Xu | ei(γ−φXu){|η + ε| − |σ + ε|e−i(φσ+ε−φη+ε)}]

× ei[Ω(1+βΩ)−ζcb]

Vtd ≈ [| η′/Xd | ei(φXd
){| ε+ η | − | σ + ε | e−i(φσ+ε−φη+ε)} − η′|η − ε|]

× e−i[Ω(1+βΩ)−ζcb]

(5.7)

Note that the CKM elements have the desired Wolfenstein form with

only Vub and Vtd being complex and the others being real to a good

approximation. ζcb defined above is just the argument of the expression

within the bars for Vcb. One can check that to a good approximation,

(neglecting the η′|η − ε| term for Vtd that causes < 10% error), the
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phase of Vtd is given by

φtd ≡ Arg(Vtd) ≈ −R sin Ω, and |Vtd| ≈ |η′/Xd||V ∗cb| ≈
√
md/ms |Vcb|,

and similarly |Vub| ≈
√
mu/mc |Vcb|.

Before presenting the results of a certain fit and the corresponding

predictions, we need to first discuss SUSY CP and flavor violations in

the presence of phases in the fermion mass matrices. This is done in

the next section.

5.3 SUSY CP and Flavor Violations

Our procedure for dealing with SUSY CP and flavor violations may

be summarized by the following set of considerations:

1) As is well known, since the model is supersymmetric, non-

standard CP and flavor violations would generically arise in the model

through sfermion/gaugino quantum loops involving scalar (mass)2

transitions [26, 27]. The latter can either preserve chirality (as in

q̃iL,R → q̃jL,R) or flip chirality (as in q̃iL,R → q̃jR,L). Subject to our as-

sumption on SUSY breaking (specified below), it would turn out that

these scalar (mass)2 parameters get completely determined within our
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model by the fermion mass-matrices, and the few parameters of SUSY

breaking.

2) SUSY Breaking : We assume that SUSY breaking is com-

municated to the SM sector by messenger fields which have large

masses of order M ∗, where MGUT
<∼ M ∗ ≈ Mstring, such that the

soft parameters are flavor-blind, and family-universal at the scale M ∗.

A number of well motivated models of SUSY breaking, e.g., those

based on mSUGRA [46], gaugino-mediation [54], anomalous U(1)−D

term [49, 50], combined with dilaton-mediation [50, 51], or possibly a

combination of some of these mechanisms, do in fact induce such a

breaking. While for the first two cases [46,54] we would expect extreme

squark degeneracy (ESD) i.e. κ ≡ |m2(q̃i)−m2(q̃j)|/m2(q̃)AV � 10−3

(say) at the scale M ∗, for the third case [49,50], one would expect in-

termediate squark degeneracy (ISD) i.e. κ ∼ 10−2(1 − 1/3) at M ∗.

For the sake of generality, we would initially allow both possibilities,

κ = 0 (ESD), and κ ∼ 10−2(1− 1/3) (ISD) at M ∗.

In an extreme version of universality, analogous to CMSSM, the

SUSY sector of the model would introduce only five parameters at the
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scale M ∗:

mo,m1/2, Ao, tan β and sgn(µ).

In some cases, Ao can be zero or extremely small (<∼ 1GeV) at M ∗ as

in [54] and [50]. For most purposes we will adopt this restricted version

of SUSY breaking, including the vanishing of Ao at M ∗. However, our

results will be essentially unaffected even if Ao is non-zero (∼ 500 GeV,

say) but real (see remarks later). We will not insist on, but will allow

for, Higgs-squark-slepton universality, which does not hold, for exam-

ple, in the string-derived model of [50]. In spite of flavor-preservation

at a high scale M ∗, SUSY-induced flavor-violation would still arise at

the electroweak scale through renormalization group running of the

sfermion masses and the A-parameters from M ∗ → MGUT → mW , as

specified below. Although the premises of our model as regards the

choice of universal SUSY parameters coincide with that of CMSSM, as

we will see, owing to the presence of GUT-scale physics in the interval

M ∗ →MGUT , SUSY CP and flavor violations in our model (evaluated

at the electroweak scale) would be significantly enhanced compared to

that in CMSSM (or even CMSSM with right-handed neutrinos). This
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difference provides some distinguishing features of our model.

3) Flavor Violation due to RG Running of Scalar Masses

from M ∗ to MGUT

For MSSM embedded into SO(10) above the GUT scale, there

necessarily exist heavy color-triplet Higgs fields which couple to fermions

through the coupling ht16316310H , while there exist heavy doublets

for both SO(10) and G(224) which also couple to fermions owing to

the mixing of 10H with 16H (see [25]). These couple to b̃L and b̃R

with the large top quark Yukawa coupling ht. The heavy triplets and

doublets possess masses of order MGUT . One can verify (see [26, 78])

that the evolution of RG equations for squark masses involving such

couplings suppress b̃L and b̃R masses significantly compared to those

of d̃L,R and s̃L,R. Note that left–right symmetry implies equal shifts

in b̃L and b̃R masses arising from GUT scale physics in the momen-

tum range MGUT ≤ µ ≤ M ∗. Such differential mass shifts i.e.-

(m̂2
3 − m̂2

1,2)L,R ≡ ∆m̂2
b̃L,R

, for the embedding of MSSM into SO(10),

are found to be (with Ao = 0) [26]:

∆m̂2
b̃R

= ∆m̂2
b̃L
≈ −

(30m2
o

16π2

)
h2
t ln(M ∗/MGUT ) ≡ −(m2

o/4)ξ . (5.8)
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The hat signifies GUT scale values. Here mo denotes the (approx-

imately) degenerate mass of squarks at the scale M ∗. We have set

h2
t = 1/2; we expect M ∗/MGUT ∼ (3 to 10), say, and thus, ξ ≡

ln(M ∗/MGUT )/2.6 ≈ (0.4 to 0.9). For the case of MSSM embedded

into G(224), which provides the heavy doublet, but not the triplets,

the factor 30 in Eq. (5.8) should be replaced by 12.

Having diagonalized the quark mass-matrices M
(0)
d and M

(0)
u at

the GUT scale by matrices as in Eq. (5.4), SUSY flavor violation may

be assessed by imposing the parallel transformations on the squark

(mass)2 matrices ((M̃
(0)
d )LL/RR) defined in the gauge basis, i.e., by

evaluating Xd†
L (M̃

(0)
d )LLX

d
L and Xd†

R (M̃
(0)
d )RRX

d
R, and similarly for the

up sector. Following discussion on SUSY breaking, the off–diagonal

elements (in the gauge basis) and all chirality flipping elements are

set to be zero - i.e (M̃
(0)
ij )LL/RR = 0 (i 6= j) and (A0

ij)LR = 0 - at

the scale M ∗. Once squarks are non degenerate at MGUT owing to

the mass-shift of b̃L,R as in Eq. (5.8), the transformations mentioned

above induce off-diagonal elements with squarks being in the SUSY

basis4. For the down squark mass matrices (evaluated at the GUT

4 The SUSY basis is one where all couplings of the fermion and sfermion states to neutral
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scale), these off diagonal elements are found to be:

gauginos are flavor diagonal. From the gauge basis, the scalars are transformed by the same

matrices that diagonalize the fermion mass matrices. The m̃2 is an average sfermion mass2.
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δ̂12
LL(MGUT ) ' [κ12

ISD + (∆m̂2
b̃L
/m2

sq)(−|η′/Xd||ε+ η|2

+ η′|ε2 − η2|eiφXd)]e−iφtd

≈ [κ12
ISD + 1.5× 10−4ξ](m2

o/m
2
sq)e

−iφtd

δ̂12
RR(MGUT ) ' [κ12

ISD + (∆m̂2
b̃R
/m2

sq)(−|η′/Xd||ε− η|2

+ η′|ε2 − η2|e−iφXd)]e−iφtd

≈ [κ12
ISD + 3ξ × 10−3 − 10−5(ξ)e−iφXd ](m2

o/m
2
sq)e

−iφtd

δ̂13
LL(MGUT ) ' (∆m̂2

b̃L
/m2

sq)[−η′|η − ε|eiζ
d
33 + |η′/Xd||η + ε|ei(ζd

33−φXd
)]

≈ [(2.5ξ)× 10−4eiζ
d
33 − (2.5ξ)× 10−3ei(ζ

d
33−φXd

)](m2
o/m

2
sq)

δ̂13
RR(MGUT ) ' (∆m̂2

b̃R
/m2

sq)[−η′|η + ε|ei(ζd
33−φXd

) + |η′/Xd||η − ε|eiζ
d
33]

≈ −[(1.25ξ)× 10−2eiζ
d
33](m2

o/m
2
sq)

δ̂23
LL(MGUT ) ' (∆m̂2

b̃L
/m2

sq)[−|η + ε|ei(ζd
33−φXd

+φtd)]

≈ [(1.25ξ)× 10−2ei(ζ
d
33−φXd

+φtd)](m2
o/m

2
sq)

δ̂23
RR(MGUT ) ' (∆m̂2

b̃R
/m2

sq)[−|η − ε|ei(ζ
d
33+φtd)]

≈ [(6.2ξ)× 10−2ei(ζ
d
33+φtd)](m2

o/m
2
sq)

(5.9)
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Here κ12
ISD ≡ [(m

(0)2
1 −m(0)2

2 )]/m2
sq(|η′/Xd|) ∼ ±(2 × 10−3)(1 − 1/3);

this term would be present for the case of intermediate squark degen-

eracy (ISD), corresponding to small (∼ 10−2(1 − 1/3)) squark non-

degeneracy at the scale M ∗, as in models of Ref. [49, 50]. From

now on, for the sake of concreteness, we drop this term,5 setting

κ12
ISD = 0. In above φtd ≈ − |ε′/Xu|/|η′/Xd| sin Ω ∼ (−1/3) sin Ω ∼

(−1/6)(say). The hat on top signifies GUT scale values, and δ̂ijLL/RR ≡

(∆̂ij
LL/RR)/m2

sq, where ∆̂ij
LL denotes the (mass)2 parameter for q̃jL →

q̃iL transition in the SUSY basis. Here, msq denotes the average mass

of the d̃L,R and s̃L,R squarks, which remain nearly degenerate( to 1%

or better) even at the weak scale. For each δ̂ijLL/RR we have exhibited

approximate numerical values by inserting values of the parameters

η, σ, ε η′ etc. for some typical fits (as in Eq. (5.16), see also the fit

in Chapter 4) to indicate their typical values.

Assuming for simplicity, universality of scalar masses mo (of the

first two families) and of the gaugino masses m1/2 at the GUT scale,

the physical masses of squarks of the first two families and of the

5 Note that the case of ISD (κ12
ISD ∼ (2× 10−3)(1− 1/3) 6= 0) would make a difference only for

the case of Ko −Ko transitions - that is, for ∆mK and εK .
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gluino are given by:

m2
sq ≈ m2

o + 7.2 m2
1/2; mg̃ ≈ 2.98 m1/2 . (5.10)

This result is rather insensitive to the mass shifts of b̃L,R. Using the

above relations we get ρX ≡ (m2
o/m

2
sq) ' 1 − 0.8x ≈ (0.84, 0.76, 0.5

and 0.2) for x ≡ m2
g̃/m

2
sq=(0.2, 0.3, 0.6 and 1), which enters into all

the δ̂ij-elements in Eq. (5.9).

We remind the reader that the elements δ̂ijLL,RR, induced solely

through GUT scale physics being relevant in the intervalM ∗ →MGUT ,

would be absent in a general CMSSM or MSSM, and so would the

associated CP and flavor violations.

4) Flavor Violation Through RG Running From MGUT to

mW in MSSM: It is well known that, even with universal masses at

the GUT scale, RG running from MGUT to mW in MSSM, involving

contribution from the top Yukawa coupling, gives a significant correc-

tion to the mass of b̃′L = Vtdd̃L+Vtss̃L+Vtbb̃L, which is not shared by the

mass-shifts of b̃R, d̃L,R and s̃L,R. This in turn induces flavor violation.

Here, d̃L, s̃L and b̃L are the SUSY partners of the physical dL, sL and

bL respectively. The differential mass shift of b̃′L arising as above, may
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be expressed by an effective Lagrangian [79]: ∆L = −(∆m
′2
L)b̃

′∗
L b̃
′
L,

where6

∆m
′2
L = −3/2m2

oηt + 2.3Aom1/2ηt(1− ηt) (5.11)

−(A2
o/2)ηt(1− ηt) +m2

1/2(3η
2
t − 7ηt).

Here ηt = (ht/hf) ≈ (mt/v sin β)2(1/1.21) ≈ 0.836 for tanβ =

3. Numerically, setting7 Ao = 0, Eq. (5.11) yields: (∆m
′2
L/m

2
sq) ≈

−(0.40, 0.34, 0.26, 0.22) for x = m2
g̃/m

2
sq ≈ (0.1, 0.4, 0.8, 1.0).

Expressing b̃′L in terms of down-flavor squarks in the SUSY basis as

above, Eq. (5.11) yields new contributions to off diagonal squark

mixing. Normalizing to m2
sq, they are given by

δ
′(12,13,23)
LL =

(∆m
′2
L

m2
sq

)
(V ∗tdVts, V

∗
tdVtb, V

∗
tsVtb) . (5.12)

The net squark (mass)2 off-diagonal elements at mW are then

obtained by adding the respective GUT-scale contributions from Eqs.

6 Note that strictly speaking Eq. (5.11) holds if the soft parameters are universal at the GUT-

scale. However, the correction to this expression due to RG running from M ∗ to mW would be

rather small, being a correction to a correction.

7 Although we have put Ao = 0 (for concreteness), note that ∆m
′2
L would typically get only

a small correction (<
∼ 5%), even if Ao were non-zero (<

∼ 1 TeV), with mo ≈ (0.7 − 1) TeV and

m1/2 ≈ (200− 300) GeV, say.
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(5.9) to that from Eq. (5.12). They are:

δijLL = δ̂ijLL + δ
′ij
LL; δijRR = δ̂ijRR (5.13)

From the expressions given above (Eqs. (5.9) and (5.12)), it fol-

lows that for a given choice of the SUSY-parameters (i.e. mo, m1/2

or equivalently msq and mg̃), SUSY CP and flavor violations are

completely determined within our model by parameters of the fermion

mass-matrices. This is the reason why within a quark-lepton unified

theory as ours, SUSY CP and flavor violations get intimately related

to fermion masses and neutrino oscillations.

5) A-Terms Induced Through RG Running from M ∗ to

MGUT : Even if Ao is zero at M ∗ (as we assume, for concreteness,

see also [54] and [50]), RG running from M ∗ to MGUT in the context

of SO(10)/G(224) would still induce non-zero A parameters at the

GUT scale [26]. For our case, the A terms are induced through loop

diagrams involving the h33, g23, and a23 couplings and the SO(10) or

G(224) gauginos. We find that if we take M10H
≈ M16H

≈ MGUT ,

we can write the ALR-matrix at the GUT-scale for the down squark

sector in the SUSY basis for the case of SO(10) as follows (the details

98



are presented in Appendix .2):

Ad
LR = Z




0 95ε′ + 90η′ 0

−95ε′ + 90η′ 90ζd22 − 27ζu22 95ε+ 90η − 27σ

0 −95ε+ 90η − 27σ 63



(5.14)

where Z =
(

1
16π2

)
htg

2
10Mλln

(
M∗

MGUT

)
. This matrix has to be multiplied

with (Xd
L)
† on the left and Xd

R on the right. The matrices (Xd)L,R are

given in Eqs. (5.5) and (5.6). The g23 coupling does not contribute

to the up-sector; thus the A-matrix for the up squarks, Au
LR, can be

obtained from above by setting η′ = 0 and replacing 90η−27σ by 63σ,

90ζd22 − 27ζu22 by 63ζu22, and Xd
L,R by Xu

L,R in Ad. Similarly, the lepton

A-matrix, Al
LR is obtained by letting (ε, ε′)→ −3(ε, ε′) and replacing

Xd
L,R byX l

L,R in Ad
LR. For the case of G(224), the matrix Ad

LR would be

obtained by making the substitutions: (90, 63, 95) → (42, 27, 43) in

Eq. (5.14), and likewise in Au
LR and Al

LR. It is sometimes convenient

to define the sfermion transition mixing angles as

(δd,lLR)ij ≡ (Ad,l
LR)ij

( vd
m2
sq

)
= (Ad,l

LR)ij
( vu
tan β m2

sq

)
; (5.15)

(δuLR)ij ≡ (Au
LR)ij

( vu
m2
sq

)
.

Note that these induced ALR-terms for all three sectors, like the
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squarks (mass)2 elements δijLL,RR given in Eqs. (5.9)-(5.13), are com-

pletely determined within our model by the fermion mass matrices,

for a given choice of Mλ ≈ m1/2 and ln(M ∗/MGUT ). We now utilize

these SUSY CP and flavor-violating elements to predict the results of

our model.

Once again, as in the case of δ̂ijLL,RR, these induced A-terms arising

purely through GUT-physics, would be absent or negligibly small in

CMSSM. As a result, some of the interesting predictions of our model

as regards ε′K and edm’s (to be discussed below) and lepton flavor

violations [29] (to be discussed in the next chapter) would be absent

altogether in CMSSM.

5.4 Compatibility of CP and Flavor Violations with Fermion

Masses and Neutrino Oscillations in SO(10)/G(224): Our

Results

It has been noted in Sec. 1 that (given about 15% uncertainty in

the matrix elements) the SM agrees very well with all four entries of

Eq. (5.1), for a single choice of the Wolfenstein parameters ρ̄W and
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η̄W (Eq. (5.2)). The question then arises (as noted in Sec. 1): If

a SUSY SO(10) or G(224) model is constrained by requiring that it

should successfully describe fermion masses and neutrino oscillations

(see Chapter 4), can it still yield (for some choice of phases in the

parameters η, σ, ε etc.) values for ρ̄W and η̄W more or less in accord

with the SM-based phenomenological values for the same, as listed in

Eq. (5.2)? Anticipating that (for any given choice of the parameters

η, σ, ε etc.) the SO(10)/G(224) model-based values of ρ̄W and η̄W

would generically differ from the SM-based phenomenological values

(given in Eq.(5.2)), we will denote the former by ρ̄′W and η̄′W and the

corresponding contributions from the SM-interactions (based on ρ̄′W

and η̄′W ) by SM ′. The question that faces us then is this: When the

SM ′ contributions are added to the SUSY contributions arising from

the three sources listed in Sec. 3, can such a constrained SO(10) or

G(224) model account for the observed values of all the four quantities

listed in Eq. (5.1), and in addition is it consistent with the empirical

upper limits on the edm’s of the neutron and the electron?8.

8 We extend the same question to include lepton flavor violating processes (such as µ→ e γ and

τ → µ γ) in the next chapter.
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Before presenting our results [28], we make some preliminary re-

marks. First of all one might have thought, given the freedom in

the choice of phases in the parameters of the mass matrices, that it

ought to be possible to get almost any set of values of (ρ̄W and η̄W ),

and in particular those in accord with the SM values (Eq. (5.2)). It

turns out, however, that in general this is indeed not possible without

running into a conflict with the fermion masses and/or neutrino oscil-

lation parameters within a SO(10) or G(224)-model9. In other words,

any predictive SO(10) or G(224)-model is rather constrained in this

regard.

Second, one might think that even if the SO(10)/G(224) model-

derived entities ρ̄′W and η̄′W , constrained by the pattern of fermion

masses and neutrino oscillations, are found to be very different in signs

and/or magnitudes from the SM values shown in Eq. (5.2), perhaps

the SUSY contributions added to the SM ′ contributions(based on ρ̄′W

and η̄′W ) could possibly account for all four quantities listed in Eq.

(5.1). It seems to us, however, that this is simply not a viable and

9 for a discussion of difficulties in this regard within a recently proposed SO(10)model, see

e.g. [80]
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natural possibility, unless one is willing to invoke MSSM and finely

adjust its arbitrary (in general some 105) parameters, as needed. In

the latter case, the good agreement between experiments and the SM

predictions would appear to be fortuitous (see Sec. 1).

This is why it seems to us that the only viable and natural so-

lution for any SUSY G(224) or SO(10) model for fermion masses and

neutrino oscillations is that the model, allowing for phases in the

fermion mass matrices, should not only yield the masses and mixings

of all fermions including neutrinos in accord with observations, but it

should yield ρ̄′W and η̄′W that are close to the SM values shown in Eq.

(5.2). This, if achievable, would be a major step in the right direction.

One then needs to ask: how does the combined (SM ′ + SUSY) contri-

butions fare for such a solution as regards its predictions for the four

quantities of Eq. (5.1) and other CP and/or flavor violating processes,

for any given choice of the SUSY parameters (mo, m1/2, Ao, tan β and

sgn(µ))? It should be stressed here that even if the CKM elements

including ρ̄′W and η̄′W should turn out to be close to the SM values (Eq.

(5.2)), the SUSY contributions can in general still have a marked ef-
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fect, in accord with observations, at least on some of the processes

where the SM (or SM ′)-contributions are naturally suppressed (as in

the case for εK , edm’s and lepton flavor violating transitions). Study of

these processes, some of which we discuss below, can help distinguish

between the SM versus the SUSY SO(10)/G(224)-models.

Without further elaboration, I now present our main results. Here

I will present only two fits to the parameters which has the desired

properties.10

Allowing for phases (∼ 1/10 to 1/2) in the parameters η, σ, ε′

and ζd22 of the G(224)/SO(10) framework (see Chapter 4) we find that

there do exist solutions which yield masses and mixings of quarks and

leptons, in accord with observations to within 10% for most part (see

discussion below), and at the same time yield ρ̄′W and η̄′W close to the

SM values, as given in Eq. (5.2). A desired fit to the parameters is

given by:

10 We have verified that there actually exists a class of fits which nearly serve the same purpose.

Two of these (Eq. (5.16) and Eq. (5.18)) are exhibited here for the sake of concreteness.
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Fit A

σ = 0.109− 0.012i, η = 0.122− 0.0464i, ε = −0.103,

η′ = 2.4× 10−3, ε′ = 2.35× 10−4ei(69
◦), ζd22 = 9.8× 10−3e−i(149

◦),(5.16)

(M0
u, M0

d) ≈ (100, 1.1) GeV.

For the sake of simplicity and economy, we have set ζu22 = 0 in

this fit; however, values of |ζu22| <∼ 10−3 can lead to similar results (see

e.g. Fit B given below). Note that the magnitudes of the real parts of

η, σ, ε, and ε′ are nearly the same as those given in the CP-conserving

case [25] (see Chapter 4); in particular the relative signs of these real

parts are identical. The fit A shown above leads to the following values

for the fermion masses and mixings, while preserving the predictions

for the neutrino system (see Chapter 4):

(mphys
t , mb(mb), mτ) ≈ (174, 4.97, 1.78) GeV

(mc(mc), ms(1GeV ), mµ) ≈ (1320, 101, 109) MeV

(m◦u(1GeV ), m◦d(1GeV ), m◦e) ≈ (10.1, 3.7, 0.13) MeV

(Vus, Vcb, |Vub|, |Vtd|)(≤ mZ) ≈ (0.2250, 0.0412, 0.0037, 0.0086)

ρ̄′W = 0.150, η̄′W = 0.374

(5.17)
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Fit B

σ = 0.1− 0.012i, η = 0.12− 0.0464i, ε = −0.0954,

η′ = 2.42× 10−3, ε′ = 2.37× 10−4ei(69
◦), ζd22 = 9.8× 10−3e−i(149

◦)

ζu22 = 4.8× 10−3ei(103
◦), (M0

u, M0
d) ≈ (100, 1.1) GeV.

(5.18)

Fit B leads to approximately the same values of fermion masses

and CKM elements as Fit A, except that in this case ms(1 GeV) ≈

110 MeV and mc(mc) ≈ 1.30 GeV. Also, in the case of Fit B, the

Wolfenstein parameters are found to be (ρ̄′W , η̄
′
W ) = (0.178, 0.327).

In obtaining the fermion masses at the low scales, we have not

directly used M0
u and M0

d of Eq. (5.3). Instead, we have used: (a)

mt(mt) = 167 GeV and mτ(mτ) = 1.777 GeV as inputs; (b) the

GUT-scale predictions of our model for the ratios of masses - such

as mb/mτ , mu,c/mt, md,s/mb, mµ/mτ etc; (c) renormalization in 2-

loop QCD of these ratios in going from the GUT-scale to an effective

SUSY-scaleMS = 500 GeV ; and (d) the evolutions in 3-loop QCD and

1-loop QED of individual fermion masses as the effective momentum

runs from MS to the appropriate low energy scales [81]11.

11 Defining ηa/b ≡ (ma/mb)GUT /(ma/mb)MS
and ηf ≡ mf (MS)/mf (µlow), we get (for tanβ =
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The primes on ρ̄′W and η̄′W signify that these values are obtained

from the SO(10)/G(224) model based fermion mass matrices (as in Eq.

(5.3)), in conjunction with fermion masses and neutrino oscillations,

as opposed to SM-based phenomenological values (Eq. (5.2)).

Note that, except for the very light fermion masses (m◦u, m
◦
d,

and m◦e) which would need corrections of order 1 to few MeV [82],

all the other quark-lepton masses and especially the CKM mixings

are in good accord with observations (see values quoted below Eq.

(5.2) or Ref. [83]), to within 10%. (As alluded to before, we should

not of course expect the very light fermion masses to be described

adequately by the gross pattern of the mass-matrices exhibited in Eq.

(5.3). In particular the “11” entries in Eq. (5.3) (expected to be of

order 10−4−10−5) arising from higher dimensional operators, can quite

plausibly lead to a needed reduction in mu by about 6-8 MeV and an

increase in (me and md)
12 by nearly (0.36 and 2-3) MeV respectively,

5 and α3(MZ)=0.118): ηb/τ = 0.6430, ηu,c/t = 0.4456, ηd,s/b = 0.7660, ηe,µ/τ = 0.9999, ηu =

0.3954, ηd,s = 0.3982, ηc = 0.4418, ηb = 0.6053, ηe,µ = 0.9894, ητ = 0.9914, ηt = 0.9427. The

CKM elements at low scales are given by Vαβ(≤ mZ) = Vαβ(GUT )/Kαβ , where Kαβ ≈ 0.91

for αβ = ub, cb, td, and ts and Kαβ ≈ 1 for the other elements. (The renormalization group

equations for the CKM elements are given in Appendix .5).
12 Note that the “11” entry for the up sector can differ from that for the down sector even in
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at the 1 GeV scale, without altering the CKM mixings).

The important point is that the SO(10)/G(224)-model presented

in Sec. 2 has turned out to be capable of yielding values for ρ̄′W and η̄′W

that are close to the SM values as desired, while simultaneously being

able to yield fermion masses of the two heavy families, all the CKM

elements and neutrino oscillations (see Chapter 4), in good accord

with observations. This in itself is non-trivial.

Before presenting the results for CP and flavor violations some

comments are in order as regards the parameters of the model ver-

sus its predictiveness. As expected, introduction of (in general four)

phases in the Dirac mass matrices clearly increase the number of

parameters compared to that for the CP-conserving case [25]. As

a result, as long as we confine to the realm consisting of (a) the

fermion masses and mixings, (b) CP and flavor violations induced

only by the SM interactions , and (c) neutrino oscillations, the pre-

dictiveness of the model is reduced considerably (compare with the

CP-conserving case of Ref. [25]), the number of parameters now being

sign because of contribution through the operator 16116116
d
H(16H/M

′′)(S/M)n which contributes

only to md and me (so that δmd = δme at MGUT ) but not to mu.
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comparable to the number of observables13. Nevertheless, some gross

features of the predictions in fact survive, even in the realm mentioned

above, simply because: (a) the entries in the mass-matrices, governed

by flavor symmetries, are hierarchical with a pattern as in Eq. (5.3);

(b) the phases are constrained14 to lie between 0 to 2π, and, (c) the sys-

tem itself is constrained by the group theory of SO(10)/SU(4)c. One

can argue that these features in turn pretty much ensure the gross

13 A counting of parameters of the model versus the observables is as follows: The parameters of

the model are: [7 for the Dirac mass matrices (Eq. (4.2)) + 5 additional including 4 phases and ζd
22

(see Eq. (5.16)) + 2 higher dimensional operators needed to correct the masses of mu, md and me

+ two (y,z) for the right hand neutrino sector (see Eq. (4.6)) + one higher dimensional operator

to correct the value of θosc
νeνµ

(see discussion in Chapter 4)] = 17. The number of observables are as

follows: Without SUSY CP and flavor violations, these are [9 charged fermion masses + 3 quark

mixing angles + 1 CKM phase + 3 left handed neutrino masses + 3 left handed neutrino mixings

+ 3 right handed neutrino masses] = 22. However the number of observables increases enormously

when additional ones arising due to SUSY CP and flavor violations are included; these include:

∆mK , εK ∆mBd
, S(Bd → J/ψKS), ε′K , ∆mBs

, S(Bd → φKS), S(Bd → η′KS), S(Bs → J/ψφ),

S(Bs → φKS), B → Kπ, B → ππ, b→ sγ, electric dipole moments of (n, e,Hg, d), µ→ eγ, τ →

µγ, τ → eγ and many more = 20 + many more. Thus the total number of observables = 22 + 20

+ many more = 42 + many more, far outnumber the number of parameters (= 17) of the model.

14 For instance, consider the familiar relation |Vus| = |
√
md/ms − eiφ

√
mu/mc|, that holds for

a hierarchical pattern. Given
√
md/ms ≈ 0.22 and

√
mu/mc ≈ 0.07, we cannot of course predict

Vus precisely without knowing the phase angle φ. Yet, since φ can vary only between 0 to 2π, |Vus|

must lie between 0.15 and 0.29
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nature of the following predictions: (i) m◦b/m
◦
τ ≈ 1, (ii) |Vus| ∼ 0.2,

(iii) |Vub| ≈
√
mu/mc |Vcb|, (iv) |Vtd| ≈

√
md/ms |Vcb|, (v) mν2/mν3 ∼

1/10, (vi) mν3 ∼ 1/10 eV, and, (vii) sin2 2θoscνµντ
≈ (0.8− 0.99), despite

large variations in the parameters.

The real virtue of the model (including the phases) emerges, once

one includes SUSY CP and flavor violations. In this case, the realm

of observables and thereby the predictiveness of the model expands

enormously. The set of observables now includes not only the four

entities listed in Eq. (5.1)-i.e., (i) ∆mK , (ii)εK (iii)∆mBd
and (iv)

S(Bd → J/ψKS)− but also a host of others, for which the predictions

of the G(224)/SO(10) model including (SM ′+ SUSY) contributions,

can a priori differ significantly from those of the SM contributions. In

particular, the set includes observables such as (v) ε′K (vi) ∆mBs
, (vii)

S(Bd → φKS), (viii) S(Bd → η′KS), (ix) S(Bs → J/ψφ), (x) S(Bs →

φKS), (xi) B → Kπ, (xii) B → ππ (rates and asymmetry parameters),

(xiii) b → sγ, (xiv) electric dipole moments of (n, e,Hg, d) and (xv)

Lepton flavor violating processes (µ → eγ, τ → µγ, τ → eγ), and

more.
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Now, the SUSY contributions do of course depend in part on

the flavor preserving SUSY-parameters (i.e. mo, m1/2, µ, and tan β;

we set Ao = 0 at M ∗). But these few parameters should be re-

garded as extraneous to the present model, and hopefully, they would

be determined through the discovery of SUSY at the LHC. The in-

teresting point is that for a given choice of these flavor-preserving

SUSY parameters (essentially mo and m1/2) the SUSY contributions

to all the CP and/or flavor-violating processes listed above get com-

pletely determined within our model, in magnitude as well as in phases.

This is because all the flavor and in general CP violating sfermion

(mass)2-parameters ((δm2)ijLL,RR,LR), arising through SO(10)/G(224)-

based RG running fromM ∗ toMGUT are completely fixed in the model

in terms of the parameters of the fermion mass-matrices (see Eqs.

(5.9), (5.14) and (5.15)). The latter are, however essentially fixed by

fermion masses and mixings, for example, as shown in fit A given

above (Eq. (5.16)), especially when we demand that the ρ̄′W and η̄′W

be close to the SM-values. In short, the inclusion of SUSY CP and

flavor violations, treated in conjunction with fermion masses and neu-

111



trino oscillations, encompasses a host of processes without introducing

new parameters and thereby increases the predictiveness of the model

enormously.

Using Eqs. (5.9) and (5.11)-(5.15) for the squarks (mass)2 el-

ements (δijLL,RR,LR etc.) as predicted in our model, the expressions

given in Refs. [40, 84–86] for the SUSY contributions, and the values

of ms, mc and the CKM elements (including ρ̄′W and η̄′W ) as obtained

in the fits A and B given above (see Eqs. (5.16), (5.17)), we can now

derive the values of the four entities listed in Eq. (5.1), treating sep-

arately the cases of the SO(10) and the G(224)-models. For reasons

explained below Eq. (5.8), the SUSY contributions are reduced (in

most cases) by about a factor of 2.5 in the amplitude for the case

of G(224) compared to that of SO(10), being the effective symmetry

in 4D. This distinction, as we will see, provides a way to distinguish

between the SO(10) and the G(224)-models experimentally. The pre-

dictions of the model (corresponding to the fit shown in Eq. (5.16))

are shown in table 1. We have included both the SM ′ and the SUSY

contributions in obtaining the total contributions (denoted by “Tot”).
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In quoting the numbers we have fixed, for concreteness, M ∗/MGUT ≈

3 and thus ξ ≈ 0.4, and have made a plausible choice for the SUSY

spectrum - i.e. msq ≈ (0.8 - 1) TeV with x = m2
g̃/m

2
sq ≈ 0.8, although

a variation in these parameters with msq as low as about 600 GeV or

x = 0.5− 0.6 can still lead to the desired results for all four quantities

especially for the case of G(224) (see remarks below).
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(mo, m1/2)(GeV) (800, 250) (600, 300)

(a) (b) (c) (d)

SO(10) G(224) SO(10) G(224)

∆ms.d.
K (Tot ≈ SM ′)(GeV) 2.9× 10−15 2.9×10−15 2.9×10−15 2.9×10−15

εK(SM ′) 2.83×10−3 2.83×10−3 2.83×10−3 2.83×10−3

εK(Tot) 1.30×10−3 2.32×10−3 2.01×10−3 2.56×10−3

∆mBd
(Tot ≈ SM ′)(GeV) 3.62×10−13 3.56×10−13 3.58×10−13 3.55×10−13

S(Bd → J/ψKS) (Tot ≈ SM ′) 0.740 0.728 0.732 0.726
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(mo, m1/2)(GeV) (450, 250) (400, 300)

(a) (b) (c) (d)

SO(10) G(224) SO(10) G(224)

∆ms.d.
K (Tot ≈ SM ′)(GeV) 2.9× 10−15 2.9×10−15 2.9×10−15 2.9×10−15

εK(SM ′) 2.83×10−3 2.83×10−3 2.83×10−3 2.83×10−3

εK(Tot) 1.89×10−3 2.51×10−3 2.33×10−3 2.67×10−3

∆mBd
(Tot ≈ SM ′)(GeV) 3.58×10−13 3.56×10−13 3.56×10−13 3.55×10−13

S(Bd → J/ψKS) (Tot ≈ SM ′) 0.733 0.726 0.728 0.724

Tab. 5.1:
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Table 1. Predictions of the SUSY SO(10) and G(224) models corresponding to

the fit A for the fermion mass-parameters shown in Eq. (5.16), which incorporates CP

violation. Either model with the fit as in Eq. (5.16) leads to the fermion masses and CKM

mixings in good agreement with the data (see Eq. (5.17)). The total contribution (denoted

by “Tot”) represents the sum of the SM ′ and the SUSY contributions. These values are to

be compared with the experimental values: ∆mK = 3.48× 10−15 GeV, εK = 2.27× 10−3,

∆mBd
= (3.30 ± 0.06) × 10−13 GeV and S(Bd → J/ψKS) = 0.687 ± 0.032. Note that

the SUSY contribution is important only for εK furthermore it is relatively negative (as

desired) compared to the SM ′ contribution (see discussion in text). The superscript s.d.

on ∆mK represents short distance contribution. The long distance contribution accounts

for ∼ 25− 30% of the value of ∆mK [86].

In obtaining the entries for the K-system we have used cen-

tral values of the matrix element B̂K and the loop functions ηi (see

Refs. [74, 86] for definitions and values) characterizing short distance

QCD effects - i.e. B̂K = 0.86±0.13, fK = 159MeV, η1 = 1.38±0.20,15

η2 = 0.57 ± 0.01 and η3 = 0.47 ± 0.04. For the B-system we use

the central values of the unquenched lattice results: fBd

√
B̂Bd

=

15 We will be guided by the error of ±0.20 on η1, used in [86], although that quoted in [74] is

considerably larger (± 0.53).
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215(11)(+0
−23)(15) MeV and fBs

√
B̂Bs

= 245(10)(+3
−2)(

+7
−0) MeV [87].

Note that the uncertainties in some of these hadronic parameters are

in the range of 15%; thus the predictions of our model as well as that

of the SM would be uncertain at present to the same extent. Clearly

as may be seen by comparing the entries in Table 1 with the observed

values listed below it, we see that there are cases which agree well

with all the observed data.

Using the same values of matrix elements and loop functions as

above, we get for the case of Fit B:
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(mo, m1/2)(GeV) (450, 250) (600, 300)

(a) (b) (c) (d)

SO(10) G(224) SO(10) G(224)

∆ms.d.
K (Tot ≈ SM ′)(GeV) 2.9× 10−15 2.9×10−15 2.9×10−15 2.9×10−15

εK(SM ′) 2.83×10−3 2.83×10−3 2.83×10−3 2.83×10−3

εK(Tot) 2.17×10−3 2.58×10−3 2.45×10−3 2.68×10−3

∆mBd
(Tot ≈ SM ′)(GeV) 3.12×10−13 3.10×10−13 3.09×10−13 3.07×10−13

S(Bd → J/ψKS) (Tot ≈ SM ′) 0.683 0.676 0.679 0.672

Tab. 5.2:
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Table 2. Predictions of the SUSY SO(10) and G(224) models corresponding to

the fit B for the fermion mass-parameters shown in Eq. (5.18), which incorporates CP

violation. The total contribution (denoted by “Tot”) represents the sum of the SM ′ and

the SUSY contributions. Note that the SUSY contribution is important only for εK ,

furthermore it is relatively negative (as desired) compared to the SM ′ contribution (see

discussion in text). The superscript s.d. on ∆mK represents short distance contribution.

At this stage the following comments are in order.

(1) In the cases of ∆mK , ∆mBd
and S(Bd → J/ψKS), the SUSY

contributions (with msq ∼ 0.8-1 TeV and x ∼ 0.5-0.8) are found to be

rather small (∼ 0.5%, 2%, and 3% respectively) compared to the SM ′

contribution. (The expressions for the amplitudes of these processes

are presented in the appendices). As a result, for these three entities,

the SM ′ contribution practically coincides with the total contribution,

which is what is shown in the table. By contrast, for the same spec-

trum, the SUSY-contribution to εK is found to be rather sizeable (∼

20-25%)16, and importantly enough, negative compared to the SM ′-

16 The fact that the SUSY contribution to εK (in contrast to those for ∆mK , ∆mBd
and S(Bd →

J/ψKS)) is relatively large is simply because the SM contribution to εK is strongly suppressed

owing to the smallness of the relevant CKM mixings.

119



contribution 17. The fact that it is relatively negative is an outcome

of the model and, as it turns out, is most desirable (see below).

(2) Comparing the predicted values shown in Table 1 with the ob-

served ones (see those listed below Eq. (5.2)), together with ∆mobs
K =

3.47 × 10−15 GeV , we see that all four entities including εK and the

asymmetry parameter S(Bd → J/ψKS) agree with the data quite

well, for the cases of SO(10) as well as G(224) shown in the last two

columns (i.e. for msq ≈ 1 TeV, and x ≈ 0.8), and also for the case of

G(224) in the second column (msq ≈ 800 GeV, x ≈ 0.8). In making

this comparison we are allowing for plausible (at present theoretically

uncertain but allowed) long distance contribution to ∆mK(∼ ±15%),

and uncertainties in B̂K or η1
<∼ 10% (see entries for εK in the last

three columns) and that in fBd

√
B̂Bd

by about 3%.

(3) We note that a choice of the SUSY-parameters, e.g. (mo, m1/2)

= (800, 250) GeV, shown in the table, is in accord with the WMAP-

constraint on CMSSM-spectrum in the event that the lightest neu-

17 In as much as we require ρ̄′W and η̄′W to be close to the SM-based phenomenological values

(as in Eq. (5.2)), in accord with the observed values of the fermion masses, CKM-elements and

neutrino oscillation parameters, we find that the class of fits satisfying these requirements lead to

SUSY-contribution to εK that is relatively negative compared to the SM ′-contribution.
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tralino is the LSP and represents cold dark matter [88].

(4) It is crucial that the SUSY contribution to εK (as mentioned

above) is significant and is negative relative to the SM ′-contribution.

Indeed this is what makes it possible for εK(Tot) to be desirably lower

than the εK(SM ′) = 2.83 × 10−3 and thereby to agree better in the

last three columns18 (cases b, c and d) with εobsK = 2.27 × 10−3. Had

the SUSY contribution been positive relative to the SM ′ contribution

and still as significant as above, εK(Tot) would have been (3.34, 3.53,

and 3.10)×10−3 for the cases (b), (c), and (d) respectively, in strong

disagreement with observation. In short, the SUSY contribution of

the model to εK has just the right sign and nearly the right magnitude

to play the desired role. This seems to be an intriguing feature of the

18 In the most recent calculations on Unitarity Triangle fit in the Standard model [89], the value

of B̂K has reduced from 0.86± 0.13 used in our work, to 0.79± 0.04± 0.08. This would lower the

value of εK(SM ′) from 2.83×10−3 to 2.60×10−3. This will, however, not change the nature of our

results, especially since the errors in lattice calculations cannot be taken too seriously at present.

The main point is that even with the lowered value of εK(SM ′), a negative (SUSY) contribution

is desired for it to agree with the experimental value of 2.27×10−3. Another point that we wish

to make here is that once the matrix element B̂K and the coefficients ηi are determined to a high

accuracy, the value of εK can help distinguish between the supersymmetric SO(10), supersymmetric

G(224) and the standard model (see remarks below).
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model.

(5) Since the values of the CKM elements including ρ̄′W and η̄′W

obtained within our model (see Eq. (5.17)) are quite close to the SM

based phenomenological values (see Ref. [74] and Eq. (5.2)), we would

of course expect that the SM ′ contributions should nearly be the same

as the SM contributions, for the same choice of the hadronic param-

eters (B̂K , ηi, fBd

√
B̂Bd

etc.). For instance, using the central values

of the parameters given in the recent update of the CKM-triangle

analysis by M. Bona et al. [75], that is, λ = |Vus| = 0.2265, |Vcb| =

4.14 × 10−2, ρ̄W = 0.172, η̄W = 0.348, mc = 1.3 GeV and fK =

159 MeV , and the hadronic parameters as in our case - that is,

B̂K = 0.86, η1 = 1.38, η2 = 0.57, and η3 = 0.47 - one obtains

εK(SM) = 2.72× 10−3 which is about 20% higher than the observed

value. Contrast this with the predictions for εK(Tot) of the SO(10) or

G(224) models for the cases (b), (c) and (d) in Table 1 where the dis-

crepancies between the predicted and observed value of εK range from

2 to 12% with varying signs. At present, such discrepancies, even as

high as 20% for the SM, can of course be accommodated by allowing
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for uncertainties in B̂K , η1, and also in λ.

(6) One main point we wish to stress here, however, is this: At

present, the distinctions between the predictions of the SM (in par-

ticular for εK) versus those of the SUSY SO(10) or G(224) models on

the one hand, and those between the predictions of the SUSY SO(10)

versus the G(224) models on the other hand (compare columns (a),

(b), (c) and (d) of Table 1) are marred in part because of uncertain-

ties (∼ 15%) in the hadronic parameters (B̂K , η1 etc.) as well as

that (∼ 2%) in λ, and in part because SUSY is not discovered as

yet, and thus the SUSY spectrum is unknown. But once (hopefully)

SUSY is discovered at the LHC and thereby the SUSY parameters

get fixed, and in addition the uncertainties in the hadronic parame-

ters are reduced to a few percent level through improvements in the

lattice calculations, we see from the analysis presented above that we

can utilize the combined set of informations to distinguish experimen-

tally between the SM versus the SUSY SO(10)-model versus the SUSY

G(224)-model. It is intriguing to see that even low energy experiments

involving CP and flavor violations can help distinguish between the
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SO(10) versus the G(224) models, both of which nearly coincide as

regards their predictions for fermion masses and neutrino oscillations.

In this way they can shed light on physics at the super-heavy scale

M ∗ >∼ MGUT . The experimental distinctions will of course be even

sharper once we include predictions for the other processes, some of

which are presented below.

(7) Bd → φKS, ∆mBs
and b → sγ: We now consider the CP

violating asymmetry parameter S(Bd → φKS). For a representative

choice of (mo, m1/2) = (600, 300) GeV, we get δ23
LL = (1.40−0.012i)×

10−2, δ23
RR = −(5.39+6.27i)×10−3, δ23

LR = −(0.29+3.08i)×10−4/ tan β

and δ23
RL = −(1.92+2.70i)×10−4/ tan β as predictions of our model (see

Eqs. (5.9) and (5.15)). It is easy to verify that the SUSY-amplitude

for this decay in our model is only of order 1% (or less) [90] compared

to that in the SM. As a result, adding SM ′ and SUSY contributions

to the decay amplitudes, we obtain:

S(Bd → φKS)Theory ≈ 0.728 (FitA, SO(10)/G(224)) (5.19)

Allowing for variant fits which also give fermion masses and CKM

mixings in good agreement with observations, we find that S(Bd →
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φKS) should lie in the range of ≈ +0.65 (e.g. for the case of Fit B) to

+0.73. Thus our model predicts that S(Bd → φKS) is close to the SM

prediction (≈ 0.70±0.10) and certainly not negative in sign. When we

started writing the paper Ref. [28], BaBar and BELLE data were yield-

ing widely differing values of (0.45±0.43±0.07) and (−0.96±0.50+0.09
−0.07)

respectively for S(Bd → φKS) [91]. Most recently, the two groups

reported new values for the asymmetry parameter S(Bd → φKS) =

(+0.50±0.25+0.07
−0.04)BaBar; (+0.50±0.21±0.06)BELLE [91], at the Beijing

International Conference on High Energy Physics. Meanwhile there

have been many theoretical and phenomenological attempts [90,92] to

obtain possible large deviations in S(Bd → φKS) from the SM-value,

including, in some cases, negative values for the same (as suggested by

the earlier BELLE data). It will thus be extremely interesting from

the viewpoint of the G(224)/SO(10)-framework presented here to see

whether the true value of S(Bd → φKS) will turn out to be close to

the SM-prediction or not.

Including contributions from δ23
LL,RR and δ23

LR,RL (as predicted in
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our model), we get:

(∆mBs
)Theory ≈ 19.8± 4.9 ps−1 (SO(10)/G(224)). (5.20)

where we have used fBs

√
B̂Bs

= 262 ± 35 MeV [89]. This is fully

compatible with the present value ∆mBs
= 17.35+0.42

−0.21 (stat) ±0.07

(syst) ps−1 [89].

Using δ23
RL given above, we obtain A(bL → sRγ)g̃ ≈ (1 − 1.5) ×

10−10 GeV −1/ tan β. Even allowing for variant fits, the SUSY-amplitude,

in this case, is found to be only about (1.5-5)% of the SM amplitude.

The same conclusion holds also for A(bR → sLγ)g̃. In short, our re-

sults for (Bd → φKS), ∆mBs
and b → sγ nearly coincide with those

of the SM.

(8) Contribution of the A term to ε′K : Direct CP violation

in KL → ππ receives a new contribution from the chromomagnetic

operator Q−g = (g/16π2)(s̄Lσ
µνtadR− s̄RσµνtadL)Ga

µν, which is induced

by the gluino penguin diagram. This contribution is proportional to

X21 ≡ Im[(δdLR)21 − (δdLR)∗12], which is predictable in our model (see

Eqs. (5.14) and (5.15)). Following Refs. [93] and [94], one obtains:

Re(ε′/ε)g̃ ≈ 91 BG

(110 MeV

ms +md

)(500 GeV

mg̃

)
X21 (5.21)
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where BG is the relevant hadronic matrix element. Model-dependent

considerations (allowing for m2
K/m

2
π corrections) indicate that BG ≈

1-4, and that it is positive [93]. Using the prediction of our model (via

Eqs. (5.14) and (5.15)), for a typical SUSY- spectrum used in previous

considerations (e.g. (mo, m1/2) = (600, 300) GeV ), we obtain: X21 ≈

2.1× 10−5/ tan β. Note that the sign of X21, as derived in the model,

is positive. Inserting this in Eq. (5.21), and putting (ms +md) ≈ 110

MeV, we get:

Re(ε′/ε)g̃ ≈ +(8.8× 10−4)(BG/4)(5/ tan β) . (5.22)

We see that if the positive sign of BG is confirmed by reliable lat-

tice calculations, the gluino penguin contribution in our model can

quite plausibly give a significant positive contribution to Re(ε′/ε)g̃ ≈

(4 − 14) × 10−4, depending upon BG ≈ 2 − 4 and tanβ ≈ (3 − 10).

At present the status of SM contribution to Re(ε′/ε) is rather uncer-

tain. For instance, the results of Ref. [95] and [96] based on quenched

lattice calculations in the lowest order chiral perturbation theory sug-

gest negative central values for Re(ε′/ε). (To be specific Ref. [95]

yields Re(ε′/ε)SM = (−4.0 ± 2.3) × 10−4, the errors being statistical
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only.) On the other hand, using methods of partial quenching [97]

and staggered fermions, positive values of Re(ε′/ε) in the range of

about (3− 13)× 10−4 are obtained in [98]. In addition, a recent non-

lattice calculation based on next-to-leading order chiral perturbation

theory yields Re(ε′/ε)SM = (19 ± 2+9
−6 ± 6) × 10−4 [99]. The system-

atic errors in these calculations are at present hard to estimate. The

point we wish to note here is that the SUSY-contribution to Re(ε′/ε),

in our model, is significant, and when the dust settles, following a

reliable calculation of Re(ε′/ε) in the SM, it would be extremely in-

teresting to check whether the SUSY-contribution obtained here is

playing an important role in accounting for the observed value given

by Re(ε′/ε)obs = (17± 2)× 10−4 [100] or not.

(9) EDM of the neutron and the electron: RG-induced A-

terms of the model generate chirality-flipping sfermion mixing terms

(δd,u,lLR )ij, whose magnitudes and phases are predictable in the model

(see Eqs. (5.14) and (5.15)), for a given choice of the universal SUSY-

parameters (mo, m1/2, and tan β). These contribute to the EDM’s

of the quarks and the electron by utilizing dominantly the gluino and
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the neutralino loops respectively. We will approximate the latter by

using the bino-loop. These contributions are given by (see e.g. [101]):

(dd, du)Aind
= (−2

9 ,
4
9)
αs

π e
mg̃

m2
sq
f
( m2

g̃

m2
sq

)
Im(δd,uLR)11

(de)Aind
= − 1

4π
αem

cos2θW
e
mB̃

m2
l̃

f
(m2

B̃

m2
l̃

)
Im(δlLR)11 .

(5.23)

For a representative choice (mo,m1/2) = (600, 300) GeV (i.e. msq =

1 TeV, mg̃ = 900 GeV, ml̃ = 636 GeV and mB̃ = 120 GeV ), using

Eqs. (5.14) and (5.15), we get:

(dd)Aind
=

4.15× 10−26

tan β
ecm; (du)Aind

= (−1.6× 10−26) ecm;(5.24)

(de)Aind
=

1.1× 10−28

tan β
ecm .

The EDM of the neutron is given by dn = 1
3(4dd − du). Thus for

SO(10), with the choice of (mo, m1/2) as above, we get

(dn)Aind
= (1.6, 1.08)× 10−26ecm for tan β = (5, 10) . (5.25)

Note that these inducedA-term contributions are larger for smaller

tanβ. For an alternative choice (mo, m1/2) = (800, 250) GeV , which

as mentioned before is compatible with the WMAP/CDM-constraint

[88], the predicted EDM of the neutron and the electron are reduced

respectively by about 36% and a factor of 3.6. The predictions for the
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G(224)-model are smaller than those for the SO(10)-model by nearly

a factor of two in all cases.

We should also note that intrinsic SUSY phases denoted by φA =

arg(A∗om1/2) and φB = arg(m1/2µB
∗), if present, would make addi-

tional contributions to EDM’s through gluino and/or chargino/neutralino

loops, which should be added to the contributions shown above. These

contributions have been widely discussed in the literature (see e.g.

[101]). As is well known, with Ao = 0 or small (<∼ 1 GeV) at the scale

M ∗ (as we have chosen, following the examples of Refs. [54] and [50]),

these contributions are proportional to (md,e)µ tan β(sinφB). They

would be typically about 50-300 times larger than the values shown

above (Eqs. (5.24) and (5.25)), if the relevant intrinsic SUSY phases

are nearly unity. This is the familiar SUSY CP problem. The point

of the present study is that even if the intrinsic SUSY phases are

naturally zero or insignificantly small, as would be true in a theory
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where the SUSY CP problem is naturally solved19, 20, the induced

A-term contributions to EDM’s (arising from GUT-scale physics) as

presented above would still be present. The interesting point is that

these contributions are completely determined in magnitude and phase

within our model (for a given choice of the SUSY universal parameters

(mo, m1/2, tan β)).

19 A possible solution to the SUSY CP problem could arise as follows. Assume that CP violation

arises spontaneously, only in the visible sector, through the VEV’s of fields at the GUT-scale, like

those of 16H , 16H , 45H and the singlet S. One can argue that the VEV’s of at least some of these

can be naturally complex or purely imaginary, consistent with the minimization of the potential,

even if all parameters in the potential are real. In this case, intrinsic SUSY phases like those inm1/2,

A and B are, of course, zero. Now if the µ-term can be derived, through a satisfactory resolution

of the µ-problem, for example, either by the Giudice-Masiero mechanism [41], or by the ideas

suggested in [42], or by involving a coupling in the superpotential of the form [102]: κ10H10HN

+ λN3 + ..., where the singlet N is not allowed to couple to the other fields mentioned above,

and acquires a real VEV of order 1 TeV (as needed), with κ and λ being real, then the µ-term

would also be real. In this case, all intrinsic SUSY phases would disappear. We plan to explore

this possibility in a future work.
20 An alternative resolution of the SUSY CP problem arises in a class of gaugino mediated SUSY-

breaking (with the µ-problem being resolved for example as in [41]) in which all relevant SUSY

parameters become proportional to m1/2 [54]. A third resolution of the SUSY CP problem would

arise in a model where both A and B terms are naturally zero or sufficiently small at the scale M ∗.

This is precisely what happens in, for example, the anomalous U(1)A model of SUSY-breaking that

arises in the context of a three-family string-solution [50]. In this case, extra gauge symmetries of

the model suppress both A and B terms at M ∗.
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Given the experimental limits dn < 6.3 × 10−26 e cm [103] and

de < 4.3× 10−27 e cm [104], we see that the predictions of the model

(arising only from the induced A-term contributions) especially for the

EDM of the neutron is in an extremely interesting range suggesting

that it should be discovered with an improvement of the current limit

by a factor of about 10.

5.5 Summary and Concluding Remarks

In this chapter I, following work done with Babu and Pati [28], have

explored the possibility that (a) fermion masses, (b) neutrino oscilla-

tions, (c) CP-non conservation and (d) flavor violations get intimately

linked to each other within supersymmetric grand unification, espe-

cially that based on the symmetry SO(10) or an effective symmetry

G(224)= SU(2)L × SU(2)R × SU(4)c. In this context, we extend the

framework proposed previously in [25], which successfully described

fermion masses and neutrino oscillations (see Chapter 4), to include

CP violation. We assume, in the interest of predictiveness, that CP-

violation, arising through the SM as well as SUSY interactions, has its
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origin entirely (or primarily) through phases in the fermion mass ma-

trices. We also assume that flavor-blind universal SUSY parameters

(mo, m1/2 and tanβ with Ao being small or real) characterize SUSY-

breaking effects at a high scale M ∗ >∼ MGUT . In this case, all the weak

scale CP and/or flavor-violating as well as flavor-preserving sfermion

transition-elements δijLL,RR,LR, and the induced A-parameters, get fully

determined within the model, in their magnitudes as well as in phases,

simply by the entries in the SO(10)-based fermion mass-matrices, once

the few soft parameters (mo, m1/2 and tanβ) are specified. This is how

CP and flavor violations arising jointly from the SM and SUSY interac-

tions, get intimately tied to fermion masses and neutrino oscillations,

within a predictive SO(10)/G(224)-framework outlined above. The

presence of GUT-scale physics induces enhanced flavor violation with

and without CP violation, which provides a distinguishing feature of
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the model21, relative to CMSSM or MSSM.22

As mentioned in Secs. 1 and 4, the framework presented above

faces, however, a prima-facie challenge. Including SM and SUSY con-

tributions, the question arises, can the framework successfully describe

the observed features of CP and flavor-violations including those listed

in Eq. (5.1), while retaining the successes of the CP-preserving frame-

work [25] as regards fermion masses and neutrino oscillations? Our

work here shows that the SUSY SO(10)/G(224)-framework proposed

here, which extends the framework of Ref. [25], indeed meets this chal-

lenge squarely. In the process, it makes several predictions, only some

21 Even in the case of CMSSM, all the parameters of MSSM at the electroweak scale (some 105

of them) are of course also all fully determined in terms of the SUSY-parameters (mo, m1/2 and

tanβ) and those involving the fermion masses and mixings. However, in this case, as mentioned

in Sec. 4, owing to the absence of GUT-scale physics in the interval M ∗ → MGUT , the most

interesting effects on the entities considered here (e.g. those on εK , ε
′
K and the EDM’s) would be

absent or negligibly small.
22 While we have focussed in this Chapter on the SO(10)/G(224)-model of Ref. [25], we note

that generically such enhanced flavor and/or CP violations arising from GUT-scale physics would

of course be present in alternative models of SUSY grand unification [105] as well, as long as the

messenger scale M∗ lies above MGUT . The detailed predictions and consistency of any such model

as regards flavor and/or CP violations can however depend (even sensitively) upon the model, and

this is worth examining.
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of which are considered here; these can eventually help distinguish the

framework from other alternatives.

Our results can be summarized as follows:

(1) It is found that, with allowance for phases, there exists a fit

to the parameters of the fermion mass-matrices (Eq. (5.3)) which

successfully describes fermion masses, all the CKM elements and neu-

trino oscillations as in Ref. [25] (see Eq. (5.17)), and simultaneously

yields the Wolfenstein parameters (ρ̄′W , η̄
′
W ) that are close to the phe-

nomenological SM values (Eq. (5.2)). The merit of obtaining such

values for (ρ̄′W , η̄
′
W ) in accounting for the data on CP and flavor vio-

lations in quantities such as those listed in Eq. (5.1) has been stressed

in Sec. 4.

(2) With these values of (ρ̄′W , η̄
′
W ), and a plausible choice of

the SUSY-spectrum23 (i.e. msq ≈(600-1000) GeV and mg̃ ≈(500-900)

GeV, say, it is found that the derived values of all four quantities (i.e.

∆mK , εK , ∆mBd
and S(Bd → J/ψKS) agree with the data quite well

(allowing for up to 15% uncertainty in hadronic matrix elements), see

23 Lighter masses for the SUSY particles like msq ≈ 600 GeV and mg̃ ≈ 500 GeV (say) are

allowed for the case of G(224), though not for SO(10) (see discussion following Table 1).
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Table 1.

(3) Although the SM ′ contributions (e.g., for the fit shown in

Eq. (5.16)) nearly coincide with the SM contributions to all entities,

and SUSY-contributions to entities such as ∆mK , ∆mBd
and S(Bd →

J/ψKS) are rather small (<∼ a few%), the contributions from SUSY, as

a rule, are nevertheless prominent (of order 20-25%) especially when

the SM (or SM ′) contributions are suppressed (for example due to

smallness of the mixing angles). Such is precisely the case for εK , ε
′
K

and the edm’s of the neutron and the electron, (as well as for lepton

flavor violating processes [29] to be discussed in the next chapter). It

is found that the SUSY-contribution to εK is sizable (of order 20-25%)

and negative relative to the SM ′ contribution, just as desired, to yield

better agreement between the predicted and the observed value (see

Table 1).

(4) The sizable negative contribution of SUSY to εK in our model

provides an important tool to help distinguish not only between the

SM versus the SUSY SO(10)/G(224)-models, but also between the

SO(10) and the G(224)-models themselves (see Table 1). Such dis-

136



tinctions would be possible once (hopefully) SUSY is discovered at

the LHC and thereby the SUSY parameters get fixed, and in addition

the uncertainties in the hadronic parameters (B̂K and η1) are reduced

to (say) a 5% level or better, through improved lattice calculations.

(5) The model predicts that S(Bd → φKS) should lie in the range

of +(0.65-0.73), i.e. close to the SM-prediction. Given the present still

significant disparities between the BaBar and BELLE results versus

the SM-predictions, it would be interesting to see where the true value

of S(Bd → φKS) would turn out to lie.

(6) It is interesting that the quantity X21 = Im[(δdLR)21−(δdLR)∗12],

relevant for ε′K , is found to be positive in the model. If the presently

indicated sign of the relevant hadronic matrix element BG being pos-

itive is confirmed, our model would give a positive contribution to

Re(ε′/ε) which quite plausibly can lie in the range of +(4−14)×10−4.

While this is in the interesting range, its relevance can be assessed

only after the associated matrix elements are determined reliably.

(7) The model predicts that the EDM’s of the neutron and the

electron should be discovered with improvements in the current limits
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by factors of 10 and 100 respectively. (Intrinsic SUSY-phases, even if

present, would not alter this conclusion as long as there is no large

cancellation between different contributions.)

(8) It would be most interesting to explore the consequences of

the model, involving SUSY contributions, to other processes such as

Bs → J/ψφ, Bs → φKS, B → Kπ, B → ππ, B → DK, KL →

πνν̄, K+ → πνν̄, and especially lepton violating processes (such as

µ → eγ, τ → µγ, τ → eγ etc.). We stress that the net (SM ′ +

SUSY)-contributions to all these processes involving CP and/or flavor

violations are completely determined within our model. They do not

involve any new parameters. For this reason, the model turns out to

be highly predictive and thoroughly testable. Some of these processes

are discussed in the next chapter.

To conclude, the SUSY SO(10)/G(224) framework, as proposed

in Ref. [25] and extended here, subject to the assumption of universal-

ity of SUSY parameters, drastically reduces the parameters for SUSY-

contributions to CP and flavor-violations. In effect, the extension pro-

posed here ties in fermion masses, neutrino oscillations, CP and flavor
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violations within a predictive and testable framework.
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APPENDIX



.1 Appendix: Approximate diagonalization of mass matrices and

the CKM matrix for the BPW model

The mass matrices in the BPW model24 for the up and the down sector

are given by

Mu =




0 ε′ 0

−ε′ ζu22 σ + ε

0 σ − ε 1




Md =




0 η′ + ε′ 0

η′ − ε′ ζd22 η + ε

0 η − ε 1




(.26)

These matrices are defined in the gauge basis and are multiplied

by Ψ̄L on left and ΨR on right. For instance, the row and column

indices of Mu are given by (ūL, c̄L, t̄L) and (uR, cR, tR) respectively.

While it is easy to diagonalize these matrices numerically and obtain

the CKM matrix, knowing the approximate analytic form of the diag-

onalizing matrices and the CKM matrix, can provide useful insight. In

this section, we will diagonalize these matrices approximately, and ob-

tain (approximate) analytic expression of the CKM elements in terms

of the parameters of the mass matrices.

24 While in the BPW model, the parameters ζu,d
22 were set to zero for simplicity, they are being

retained here for generality, and are chosen to be O(10−2), in accord with the hierarchical structure

of the matrices
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The parameters in the mass matrices in Eq. (.26) are in general,

complex. We can absorb some of the phases in the matrices into the

quark fields. Our goal is to diagonalize the mass matrices and bring

the CKM matrix into the Wolfenstein form. This is done in a set of

steps.

1. Let η± ε ≡ A±eiφ±, and η′± ε′ ≡ B±eiχ±. The phases of the quarks

can be redefined so that Q
d
L ≡ Q

′d
LP

d†
L ; Qd

R ≡ P d
RQ

′d
R and Q

d
LMdQ

d
R =

Q
′d
LP

d†
L MdP

d
RQ

′d
R = Q

′d
LM

(1)
d Q

′d
R, where

P d†
L =




e−i(χ+−φ−) 0 0

0 e−iφ+ 0

0 0 1




P d
R =




ei(φ+−χ−) 0 0

0 e−iφ− 0

0 0 1




(.27)

and

M
(1)
d =




0 B+ 0

B− ζd22e
−i(φ++φ−) A+

0 A− 1




(.28)

For brevity of notation define ζd22e
−i(φ++φ−) ≡ |ζ2d|e−iφ̂d. The same

procedure can be carried out for the up sector. Let |σ ± ε| ≡ C±eiξ±
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and ε′ ≡ |ε′|eiφε′ . Proceeding as above we get

P u†
L =




ei(ξ−−φε′) 0 0

0 e−iξ+ 0

0 0 1




P u
R =




ei(ξ+−φε′) 0 0

0 e−iξ− 0

0 0 1




(.29)

P u†
L P

d
L = ei(χ++ξ−−φε′−φ−)




1 0 0

0 eiγ 0

0 0 eiδ




(.30)

where γ ≡ φ+−ξ+−χ+−ξ−+φ−+φε′ and δ ≡ −(χ+ +ξ−−φε′−φ−).

The charged current Lagrangian is given by:

J+W+ =
[
u

(0)
L d

(0)
L + c

(0)
L s

(0)
L + t

(0)
L b

(0)
L

]
W−

= W+

[
u

′

Ld
′

Le
i[(ξ−−φε′)−(φ−−χ+)] + c

′

Ls
′

Le
i(φ+−ξ+) + tLbL

]

=
[
u

′

Ld
′

L + c
′

Ls
′

Le
i[(φ−−ξ−)−(ξ+−φε′)] + tLbLe

−i(χ++ξ−−φε′−φ−)
]

×ei(χ++ξ−−φε′−φ−)W+

(.31)

where u
(0)
L , d

(0)
L etc. are defined in the gauge basis, and primed fields

are defined as Q
u
L = Q

′u
LP

u†
L and Qd

L = P d
LQ

′d
l . The overall phase

eiα = ei(χ++ξ−−φε′−φ−) in P u†
L P

d
L can be absorbed into W+.

2. The next step is to diagonalize the the 23 sector of the down mass

matrix M
(1)
d to a very good approximation. Let sin θ23

L ≡ A+ and

143



sin θ23
R ≡ A−. Now M

(1)
d is transformed by the following matrices to

give M
(2)
d = U

(1)†
L M

(1)
d U

(1)
R shown below:

U
(1)†
L =




1 0 0

0 cos θ23
L − sin θ23

L

0 sin θ23
L cos θ23

L




U
(1)
R =




1 0 0

0 cos θ23
R sin θ23

R

0 − sin θ23
R cos θ23

R



(.32)

M
(2)
d ≈




0 B+ cos θ23
R B+ sin θ23

R

B− cos θ23
L |Xd|eiφXd 0

B− sin θ23
L 0 1 +

A2
+

2 +
A2

−

2




(.33)

where Xd ≡ −|η2 − ε2|+ |ζ2d|e−iφ̂d ≡ |Xd|eiφXd .

3. Now the phase in the 22 element can be rotated away by the

transformation M
(3)
d = U

(2)†
L M

(2)
d U

(2)
R , where U

(2)
L and U

(2)
R are defined

below:

U
(2)†
L =




1 0 0

0 eiφXd 0

0 0 1




U
(2)
R =




eiφXd 0 0

0 1 0

0 1 1




(.34)

M
(3)
d ≈




0 B+ cos θ23
R B+ sin θ23

R

B− cos θ23
L |Xd| 0

B− sin θ23
L e

iφXd 0 1 +
A2

+

2 +
A2

−

2




(.35)
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4. A Cabibbo rotation is now done in the 12 sector. Define sin θ12
L ≡

B+ cos θ23
R /|Xd| and sin θ12

R ≡ B− cos θ23
L /|Xd|. LetM

(4)
d = U

(3)†
L M

(3)
d U

(3)
R

where the relevant matrices are

U
(3)†
L =




cos θ12
L − sin θ12

L 0

sin θ12
L cosθ12

L 0

0 0 1




U
(3)
R =




cos θ12
R sin θ12

R 0

− sin θ12
R cosθ12

R 0

0 0 1



(.36)

M
(4)
d ≈




−B+B− cos θ23
L cos θ12

R sin θ12
L 0 B+ sin θ23

R cos θ12
L

0 |Xd| 0

B− sin θ23
L cos θ12

R e
iφXd 0 1 +

A2
+

2 +
A2

−

2



(.37)

5. Finally, a rotation in the 13 sector will make the mass matrix

approximately diagonal. This is done by the transformation M
(5)
d =

U
(4)†
L M

(4)
d U

(4)
R , with

U
(4)†
L =




1 0 −B+A−

0 1 0

B+A− 0 1




U
(4)
R =




1 0 B−A+e
−iφXd

0 1 0

−B−A+e
iφXd 0 1



(.38)
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M
(5)
d ≈




−B+B− cos θ23
L cos θ12

R sin θ12
L 0 0

0 |Xd| 0

0 0 1 +
A2

+

2 +
A2

−

2




≈




− |η
′2−ε′2|
|Xd| cos θ23

L cos θ23
R 0 0

0 |Xd| 0

0 0 1 +
A2

+

2 +
A2

−

2




(.39)

The mass matrix is now diagonal to a very good approximation. We

have made use of the hierarchical structure of the matrix 1� σ ∼ η ∼

ε� ζu22 ∼ ζd22 � η′ > ε′ in neglecting small terms. Thus in going from

the gauge basis to the mass basis, the left handed down quarks are

transformed as qdL → P d
LU

(1)
L U

(2)
L U

(3)
L U

(4)
L qdL, and similarly for the right

handed quarks. The net transformation matrices for the down quarks

then are Xd
L ≡ P d

LU
(1)
L U

(2)
L U

(3)
L U

(4)
L and Xd

R ≡ P d
RU

(1)
R U

(2)
R U

(3)
R U

(4)
R . One

can similarly find the corresponding Xu
L,R matrices for the up sector.

146



The CKM matrix is then given by VCKM = Xu†
L X

d
L.

Xd
L = P d

LU
(1)
L U

(2)
L U

(3)
L U

(4)
L

= P d
L




1 η′

|Xd| η′|η − ε|

− η′

|Xd|e
iφXd eiφXd |η + ε|

η′

|Xd| |η + ε|eiφXd − η′|η − ε| −|η + ε|eiφXd 1




(.40)

similarly

Xu
L = P u

L




1 ε′

|Xu| ε′|σ − ε|

− ε′

|Xu|e
iφXu eiφXu |σ + ε|

ε′

|Xu| |σ + ε|eiφXu − ε′|σ − ε| −|σ + ε|eiφXu 1



(.41)
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The CKM elements calculated as above are listed below:

Vud ≈ 1 +
∣∣∣ η′Xd

ε′

Xu

∣∣∣ ei(φXd
−φXu+γ) ≡ |Vud|eiζud

Vus ≈
∣∣∣ η′Xd

∣∣∣−
∣∣∣ ε′Xu

∣∣∣ ei(φXd
−φXu+γ) ≡ |Vus|eiζus

Vcd ≈ −
∣∣∣ η′Xd

∣∣∣ ei(φXd
−φXu+γ) +

∣∣∣ ε′Xu

∣∣∣ ≡ |Vcd|eiζcd

Vcs ≈ ei(φXd
−φXu+γ) +

∣∣∣ η′Xd

∣∣∣
∣∣∣ ε′Xu

∣∣∣ ≡ |Vcs|eiζcs

Vub ≈ η′ |η − ε| −
∣∣∣ ε′Xu

∣∣∣ |η + ε| ei(γ−φXu) +
∣∣∣ ε′Xu

∣∣∣ |σ + ε| ei(δ−φXu)

≡ |Vub|eiζub

Vcb ≈ |η + ε| ei(γ−φXu) − |σ + ε| ei(δ−φXu) ≡ |Vcb|eiζcb

Vtd ≈
∣∣∣ η′Xd

∣∣∣ |η + ε| ei(δ+φXd
) −

∣∣∣ η′Xd

∣∣∣ |σ + ε| ei(γ+φXd
) − η′ |η − ε| eiδ

≡ |Vtd|eiζtd

Vts ≈ − |η + ε| ei(δ+φXd
) + |σ + ε| ei(γ+φXd

) ≡ |Vts|eiζts

Vtb ≈ eiδ ≡ |Vtb|eiζtb

(.42)

Due to the hierarchical structure of the matrices, the phases in the

CKM elements, listed above, can be estimated. For example, ζud <∼

1/75, ζus ∼ 1/10. The phases in Vcd, Vcs, Vcb, Vub, Vtd, Vtd, Vtb can

be sizable.

6. This CKM matrix is still not in the Wolfenstein basis. To do

this one more transformation is required. Let the CKM matrix in the

Wolfenstein basis be denoted by V̂CKM . Then V̂CKM = P̂ †uVCKM P̂d
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where

P̂u =




1 0 0

0 ei(ζcs−ζus) 0

0 0 ei(ζcs−ζus−ζcb+δ)




P̂d =




1 0 0

0 e−iζus 0

0 0 ei(ζcs−ζus−ζcb)



(.43)

With this the mass matrices have been diagonalized with positive real

eigen values, and the CKM matrix is brought to the Wolfenstein form,

with only Vub and Vtd being complex, and all other elements being real

to a very good approximation (see the appendix II on Wolfenstein

parametrization).

The approximate expressions for the CKM elements and the masses

of quarks, agree very well with the exact numerical diagonalization.

The magnitudes and phases of the parameters in the mass matrices

are varied so as to fit the values of fermion masses and CKM elements.

.2 Appendix: Renormalization group running of A-terms from the

SUSY messenger scale M∗ to MGUT

In our work on CP and flavor violation, we assume that flavor-universal

soft SUSY-breaking is transmitted to the SM-sector at a messenger

scale M∗, where MGUT < M∗ ≤ Mstring. This may naturally be real-
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ized e.g. in models of mSUGRA [46], or gaugino-mediation [54]. With

the assumption of extreme universality as in CMSSM, supersymmetry

introduces five parameters at the scale M∗:

mo,m1/2, Ao, tan β and sgn(µ).

For most purposes, we will adopt this restricted version of SUSY

breaking with the added restriction that Ao = 0 at M∗ [54]. The

analysis can easily be extended to include Ao 6= 0. Even if Ao = 0 at

the scale M∗, the scale at which supersymmetry breaking in commu-

nicated to the standard model- sector, RG running from M∗ to MGUT

induces A−parameters at MGUT, invoving the SO(10)/G(224) gaugi-

nos nd the relevant Yukawa couplings (see figs. 1, 2 and 3). These

yield chirality flipping transitions (l̃iL,R → l̃jR,L).

The RGEs of A−terms, Aijk between fields φiφjφk are given by

dAijk

dt
=

1

16π2

[1

2
AijlYlmnY

mnk + Y ijlYlmnA
mnk (.44)

−2(Aijk − 2MY ijk)g2C(k)
]
+ (k ↔ i) + (k ↔ j)
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where C(i) is the Casimir of the representation of the field φi relative

to the group. The Casimirs can be evaluated as

C(i) = l(i)
N(adj)

N(i)
(.45)

where l(i) is the Dynkin index of the irreducible representation of φi,

N(adj) is the dimension of the adjoint representation of the group,

and N(i) is the dimension of the irreducible representation i. For the

group SO(10), the adjoint is 45 dimensional, and the relevant Dynkin

indices and Casimirs are given below:

Representation Dynkin index Casimir

10 2 9

16 4 45/4

45 16 16

(.46)

When Ao = 0, the only relevant term in Eq. (.44) is the last

term.

dAijk

dt
=

1

16π2

[
4MY ijkg2

(
C(i) + C(j) + C(k)

)]
(.47)

For the effective A−term 16 16 10H , given in fig. 1,
∑
C(i) =

C(16) + C(16) + C(10) = 63/2. Similarly for figs. 2 and 3,
∑
C(i) =

95/2 and 90/2 respectively.
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Evaluated at the GUT scale, the A−parameters in figs 1, 2 and 3,

induced respectively through the couplings yukawa hij, aij and gij (see

the Yukawa couplings for the BPW model in Chapter 4), are given by:

A
(1)
ij = 63

2
1

8π2hijg
2
10Mλln( M∗

M10H

) (i, j = 2, 3)

A
(2)
ij = 95

2
1

8π2

aij〈45H〉
M ′ g2

10Mλln( M∗

M10H

) (ij = 23, 12)

A
(3)
ij = 90

2
1

8π2

gij〈10H〉
M ′′ g2

10Mλln( M∗

M16H

) (ij = 23, 22, 12)

(.48)

For the case of G(224), an effective A− term analogous to that in

fig. 1 is generated between the fields (2, 2, 1)H , (2, 1, 4), (1, 2, 4). Simi-

larly, in fig. 2 theA− term involves the representations (2, 2, 1)H ,(2, 1, 4),

(1, 2, 4), (1, 1, 15)H and in fig. 3 the A− term is between the represen-

tations (2, 1, 4)H(1, 2, 4)H(2, 1, 4)(1, 2, 4). The Casimirs of the relevant

fields are C(2)SU(2) = 3/2, C(4)SU(4) = 15/4, C(15)SU(4) = 8. Thus

∑
C(i) = 27/2, 43/2 and 21 for figs. 1, 2 and 3 respectively for

G(224). Thus in Eq. (.48), one can replace the coefficients ( 63
2 ,

95
2 ,

90
2 )

by (27
2 ,

43
2 ,

42
2 ) for the case of G(224).
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Figure 3.

.3 Appendix: CP Violation in the K Meson system

A general review can be found in Ref. [86].

.3.1 εK and ∆MK

Standard Model Contribution

The off-diagonal element M12 in the K◦ −K◦ system is given by

(see Appendix III for definitions and background)

2mKM
∗
12 = 〈K◦|Heff(∆S = 2)|K◦〉. (.49)
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The effective ∆S = 2 Hamiltonian is

H∆S=2
eff =

G2
F

16π2
M 2

W

(
λ2
cη1S0(xc) + λ2

tη2S0(xt) + 2λcλtη3S0(xc, xt)
)
(.50)

×(sd)V−A(sd)V−A + h.c.

The matrix element of H∆S=2
eff is obtained from:

〈K◦|(sd)V−A(sd)V−A|K◦〉 =
8

3
B̂Kf

2
Km

2
K , (.51)

where B̂K describes the non-perturbative effects in the hadronic

matrix element of the operator (sd)V−A(sd)V−A, λc = V ∗csVcd, λt =

V ∗tsVtd, and the ηi describe the short distance QCD effects, and are

numerically given by

η1 = 1.38± 0.20, η2 = 0.57± 0.01, η3 = 0.47± 0.04. (.52)

The functions S0(xc,t) and S0(xc, xt) are the loop functions defined

below, with xi = m2
i/M

2
W :

S0(xc) = xc

S0(xt) = 4xt−11x2
t +x

3
t

4(1−xt)2
− 3x3

t lnxt

2(1−xt)3

S0(xc, xt) = xc

[
ln xt

xc
− 3xt

4(1−xt)
− 3x2

t lnxt

4(1−xt)2

]
(.53)

Thus, from Eq. (.50),

M12 =
G2
F

12π2
M 2

W B̂Kf
2
KmK

(
λ2
cη1S0(xc) + λ2

tη2S0(xt) + 2λcλtη3S0(xc, xt)
)
(.54)
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The CP violation in the K◦ −K◦ mixing is parameterized by εK

defined as:

εK =
eiπ/4√
2∆MK

(ImM12 + 2ξReM12); ξ =
ImA0

ReA0
. (.55)

The quantity A0 is defined in terms of amplitudes of K◦-meson decays:

A(K◦ → π+π−) =
√

2
3A0e

iδ0 +
√

1
3A2e

iδ2

A(K◦ → π0π0) =
√

2
3A0e

iδ0 − 2
√

1
3A2e

iδ2

(.56)

The parameter ξ is small, therefore

εK ≈ eiπ/4√
2∆MK

ImM12

= CεB̂KImλt

{
Reλc

[
η1S0(xc)− η3S0(xc, xt)

]
−Reλtη2S0(xt)

}
eiπ/4

(.57)

where

Cε =
G2
Ff

2
KMKM

2
W

6
√

2π2(∆mK)
≈ 3.84× 104 (.58)

For details on K◦ −K◦ mixing in the standard model, see e.g. [86]

SUSY Contribution

The supersymmetric contribution to K◦−K◦ mixing is given by

(see [40]):
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(M12)
SUSY
K = −α2

s

216m2
q̃

1
3MKf

2
K

{[
(δd12)

2
LL + (δd12)

2
RR

]
(24xf6(x) + 66f̃6(x))

+(δd12)LL(δ
d
12)RR

[
(384

(
MK

ms+md

)2
+ 72)xf6(x)

+(−24
(

MK

ms+md

)2
+ 36)f̃6(x))

]

+
[
(δd12)

2
LR + (δd12)

2
RL

](
−132

(
MK

ms+md

)2
xf6(x)

)

+(δd12)LR(δd12)RL
[
−144

(
MK

ms+md

)2 − 84
]
f̃6(x)

}

(.59)

where x = m2
g̃/m

2
q̃, and the loop functions f6(x) and f̃6(x) are defined

as:

f6(x) =
6(1 + 3x) lnx+ x3 − 9x2 − 9x+ 17

6(x− 1)5
(.60)

f̃6(x) =
6x(1 + x) lnx− x3 − 9x2 + 9x+ 1

3(x− 1)5
(.61)

The δij in the above equations are defined as δijLL/RR ≡ (∆ij
LL/RR)/m2

sq,

where ∆ij
LL denotes the (mass)2 parameter for q̃jL → q̃iL transition in

the SUSY basis.

.3.2 ε′K/εK

The parameter ε′K is defined as

ε′K =
1√
2
Im

(A2

A0

)
eiΦ where Φ =

π

2
+ δ2 − δ0 ≈

π

4
(.62)
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The dimension four Hamiltonian giving rise to the sdZ vertex is:

Hd=4
eff = −GF√

2

e

π2
M 2

Z tan θW

(
λtC0(xt) + ((δu23)LR(δd13)

∗
RL)H0(x)

)
+ h.c.(.63)

where the first term is the contribution from the standard model, and

the second from supersymmetry [93, 94]. The chromo- and electro-

magnetic dimension 5 operators are:

Hd=5
eff =

(
C+
γ Q

+
γ + C−γ Q

−
γ + C+

g Q
+
g + +C−g Q

−
g

)
+ h.c. (.64)

where

Q±γ = Qde
16π2

(
sLσ

µνFµνdR ± sRσµνFµνdL
)

Q±g = g
16π2

(
sLσ

µνtaGa
µνdR ± sRσµνtaGa

µνdL

) (.65)

The Wilson coefficients are given by :

C±γ (mg̃) =
παs(mg̃)
mg̃

[
(δd21)LR ± (δd12)

∗
LR

]
F0(x)

C±g (mg̃) =
παs(mg̃)
mg̃

[
(δd21)LR ± (δd12)

∗
LR

]
G0(x)

(.66)

where the functions are defined as:

C0(x) =
x

8

[x− 6

x− 1
+

3x+ 2

(x− 1)2
lnx

]
(.67)

H0(x) =
−x(x3 − 6x2 + 3x+ 2 + 6x lnx)

48(1− x)4
(.68)

F0(x) =
4x(1 + 4x− 5x2 + 4x lnx+ 2x2 lnx)

3(1− x)4
(.69)
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G0(x) =
x(22− 20x− 2x2 + 16x ln x− x2 lnx+ 9 lnx)

3(1− x)4
(.70)

The matrix elements of the chromo- and electro-magnetic opera-

tors Q±g,γ between the states K◦ and ππ are:

〈(ππ)I=0|Q−g |K◦〉 =

√
3

2

11

16π2

〈qq〉
F 3
π

m2
πBG (.71)

〈π◦|Q+
γ |K◦〉 =

Qde

16π2

i
√

2

mK
P µ
π P

ν
KFµνBT (.72)

〈(ππ)I=0|Q+
g |K◦〉 = 〈π◦|Q−γ |K◦〉 = 0 (.73)

Thus we can write

Re
(ε′
ε

)
SUSY

=
11
√

3

64π

ω

|ε|ReA0

m2
πm

2
K

Fπ(ms +md)

αs(mg̃)

mg̃
ηBGImΛ−g (.74)

where ω = ReA2/ReA0 and Λ−g is the effective coupling
[
(δd21)LR −

(δd12)
∗
LR

]
G0(x).

.4 Appendix: CP Violation in the B Meson system

For a review see Ref. [94].
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.4.1 Calculation of S(Bd → φKS)

The amplitude for Bd → φKS in the standard model is given by [90]:

ASM
φKS

=
GF√

2
V ∗tsVtb

6∑

i=3

CSM
i 〈φK◦|Oi|B◦〉+ Cg〈φK◦|Og|B◦〉+

8

9
PH(.75)

where the matrix elements of the Oi are:

〈φK◦|O3|B◦〉 =
H

3
(.76)

〈φK◦|O4|B◦〉 =
H

3
(.77)

〈φK◦|O5|B◦〉 =
H

4
(.78)

〈φK◦|O6|B◦〉 =
H

12
(.79)

〈φK◦|Og|B◦〉 =
4

9π
αsκH (.80)

where κ ≈ −1.1 and H = 2(ε · p)fφmφF
+
B→K(m2

φ), and the Wilson co-

efficients are CSM
3 = 0.0114, CSM

4 = −0.0321, CSM
5 = 0.00925, CSM

6 =

−0.0383 and CSM
g = −0.188.

The SUSY amplitude for the process is given below:

ASUSY
φKS

=
GF√

2
V ∗tsVtb

6∑

i=3

CSUSY
i 〈φK◦|Oi|B◦〉+ CSUSY

g 〈φK◦|Og|B◦〉 (.81)

+(L↔ R)
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The coefficients CSUSY
i are given by:

CSUSY
3 = X

(
−1

9
B1(x)−

5

9
B2(x)−

1

18
P1(x)−

1

2
P2(x)

)
(.82)

CSUSY
4 = X

(
−7

3
B1(x) +

1

3
B2(x) +

1

6
P1(x) +

3

2
P2(x)

)
(.83)

CSUSY
5 = X

(10

9
B1(x) +

1

18
B2(x)−

1

18
P1(x)−

1

2
P2(x)

)
(.84)

CSUSY
6 = X

(
−2

3
B1(x) +

7

6
B2(x) +

1

6
P1(x) +

3

2
P2(x)

)
(.85)

CSUSY
g =

√
2α2π

GFVtbV ∗tsm
2
q̃

(
(δdLL)23

[1

3
M3(x) + 3M4(x)

]
(.86)

+(δdLR)23
mg̃

mq̃

[1

3
M1(x) + 3M2(x)

])

where

X ≡
√

2α2
s

GFVtbV ∗tsm
2
q̃

(δdLL)23 and x =
m2
g̃

m2
q̃

.
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The loop functions are given below [40]:

B1(x) =
1 + 4x− 5x2 + 4x lnx+ 2x2 lnx

8(1− x)4
(.87)

B2(x) = x
5− 4x− x2 + 2 ln x+ 4x ln x

2(1− x)4
(.88)

P1(x) =
1− 6x+ 18x2 − 10x3 − 3x4 + 12x3 lnx

18(x− 1)5
(.89)

P2(x) =
7− 18x+ 9x2 + 2x3 + 3 ln x− 9x2 lnx

9(x− 1)5
(.90)

M1(x) = 4B1(x) (.91)

M2(x) = −xB2(x) (.92)

M3(x) =
−1 + 9x+ 9x2 − 17x3 + 18x2 ln x+ 6x3 lnx

12(x− 1)5
(.93)

M4(x) =
−1− 9x+ 9x2 + x3 − 6x lnx− 6x2 lnx

6(x− 1)5
(.94)

.5 Appendix: Renormalization Group Analysis of the CKM

Elements

A set of coupled differential equations, independent of the weak inter-

action basis, for the running of the CKM elements is derived in this

appendix. These can be found in the literature in [106,107].

The Yukawa coupling matrices for the up, down and the electron
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sectors can be diagonalized by the biunitary transformations:

Uu
RYuU

u†
L = Du = Diag[yu, yc, yt]

Ud
RYdU

d†
L = Dd = Diag[yd, ys, yb]

U e
RYeU

e†
L = De = Diag[ye, yµ, yτ ]

(.95)

The CKM matrix is defined in term of the transformation matri-

ces as:

V = Uu
LU

d†
L (.96)

Under a redefinition of the phases of the quarks, all physical ob-

servables remain unchanged, but the CKM matrix gets transformed

as V → PV Q where P and Q are diagonal phase matrices. This

rephasing has resulted in various parameterizations of V . However, if

one chooses a parametrization of V at a momentum scale µ, then it

does not remain of the same form at a different scale µ′. For studying

the renormalization of the CKM elements, it is necessary to choose

variables that are independent of parametrization. The magnitudes

of the CKM elements are basis independent, as well as the quantity

J = Im(VudVcsV
∗
usV

∗
cd), which is a basis independent measure of CP

non conservation.
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The Yukawa coupling matrices Yu, Yd and Ye, evolve in MSSM

according to the following equations:

16π2 dYu

dt = Yu[3Y
†
uYu + Y †d Yd + 3Tr(Y †uYu)−Gu]

16π2 dYd

dt = Yd[3Y
†
d Yd + Y †uYu + Tr(3Y †d Yd + Y †e Ye)−Gd]

16π2 dYe

dt = Ye[3Y
†
e Ye + Tr(3Y †d Yd + Y †e Ye)−Ge]

(.97)

where t = ln
(

µ
mW

)
and

Gu = 13
15g

2
1 + 3g2

2 + 16
3 g

2
3

Gd = 7
15g

2
1 + 3g2

2 + 16
3 g

2
3

Ge = 9
5g

2
1 + 3g2

2

(.98)

The CKM matrix V is composed of unitary matrices U u
L and Ud

L,

which diagonalize Y †uYu and Y †d Yd respectively. It may thus be useful

to consider the RGEs of M ≡ Y †uYu, M
′ ≡ Y †d Yd, and M ′′ ≡ Y †e Ye

found from the above equations.

16π2 dM
dt = 6M 2 + {M, M ′}+ 2M(3Tr(M)−Gu)

16π2 dM ′

dt = 6M
′2 + {M, M ′}+ 2M ′(3Tr(M ′) + Tr(M ′′)−Gd)

16π2 dM ′′

dt = 6M
′′2 + 2M ′′(3Tr(M ′) + Tr(M ′′)−Ge)

(.99)

Let at momentum scale µ, M and M ′ be diagonalized by unitary

matrices Uu
L and Ud

L respectively. Then the CKM matrix at the scale
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µ is V = Uu
LU

d†
L . As µ is changed the mass matrices are changed to

M +∆M and M ′+∆M ′, which are no longer diagonalized by U u
L and

Ud
L. The resultant change in the diagonal couplings are obtained by:

Uu
L∆MUu†

L = 1
16π2

(
6D4

u + (D2
uV D

2
dV
† + V D2

dV
†D2

u)

+ 2D2
u(3Tr(M)−Gu)

)
∆t

Ud
L∆M

′Ud†
L = 1

16π2

(
6D4

d + (D2
uV D

2
dV
† + V D2

dV
†D2

u)

+ 2D2
d(3Tr(M

′) + Tr(M ′′)−Gd)
)
∆t

(.100)

The variation of the diagonal couplings is then given by:

16π2 dy
2
i

dt =
(
6y4

i + 2
∑

α y
2
α|Viα|2 + 2y2

i (3Tr(M)−Gu)
)

16π2 dy
2
α

dt =
(
6y4

α + 2
∑

i y
2
i |Viα|2 + 2y2

α(3Tr(M
′) + Tr(M ′′)−Gd)

)

16π2 dy
2
a

dt =
(
6y4

a + +2y2
a(3Tr(M

′) + Tr(M ′′)−Ge)
)

(.101)

where i = {u, c, t}, α = {d, s, b} and a = {e, µ, τ}. The variation

of the CKM matrix is obtained by considering the following. Let the

matrix Uu
L(M+∆M)Uu†

L be diagonalized by the unitary matrix (1+ε)

and Ud
L(M

′ + ∆M ′)Ud†
L by (1 + ε′). Then the variation in the CKM

matrix is given by:

∆V = εV − V ε′ . (.102)

Unitarity requires ε† = −ε and εii = 0. Using Eqs. (.100) and (.101),
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and

(1 + ε)(D2
u + Uu

L(M + ∆M)Uu†
L )(1− ε) = D2

u + ∆D2
u (.103)

we can get the elements of the matrices ε and ε′ as:

εij = 1
16π2

[
y2

i +y2
j

y2
i−y2

j

∑
α y

2
αViαV

∗
jα

]
∆t

ε′ij = 1
16π2

[
y2

α+y2
β

y2
α−y2

β

∑
i y

2
i ViαV

∗
iβ

]
∆t

(.104)

Now Eq. (.104) together with Eq. (.102) yields the variation of the

CKM elements:

16π2dViα
dt

=
[∑

β,j 6=i

y2
i + y2

j

y2
i − y2

j

y2
βViβV

∗
jβVjα +

∑

j,β 6=α

y2
α + y2

β

y2
α − y2

β

y2
jV
∗
jβVjαViβ

]
(.105)

Choosing basis independent parameters of V to beX ≡ |Vud|2, Y ≡

|Vus|2, Z ≡ |Vcd|2 and J , the other elements of the CKM matrix can

be written as:

|Vub|2 = (1−X − Y )

|Vcs|2 = [XY Z+(1−X−Y )(1−X−Z)−2K]
(1−X)2

|Vcb|2 = [XZ(1−X−Y )+Y (1−X−Z)+2K]
(1−X)2

|Vtd|2 = (1−X − Z)

|Vts|2 = [XY (1−X−Z)+Z(1−X−Y )−2K]
(1−X)2

|Vtb|2 = [X(1−X−Y )(1−X−Z)+Y Z+2K]
(1−X)2

(.106)

166



where K = [XY Z(1−X − Y )(1−X − Z)− J 2(1−X)2]1/2.

The renormalization group evolution of X, Y, Z and K can be

obtained from Eq. (.105).

16π2 dX
dt = 2

[
y2

u+y2
c

y2
u−y2

c

{
(y2
d − y2

b )XZ +
(y2

b−y2
s)

1−X (XY Z −K)
}

+ y2
u+y2

t

y2
u−y2

t

{
(y2
d − y2

b )X(1−X − Z)

+
(y2

b−y2
s)

1−X (XY (1−X − Z) +K)
}

+
y2

d+y2
s

y2
d−y2

s

{
(y2
u − y2

t )XY + (y2
t−y2

c )
1−X (XY Z −K)

}

+
y2

d+y2
b

y2
d−y2

b

{
(y2
u − y2

t )X(1−X − Y )

+ (y2
t−y2

c )
1−X (XZ(1−X − Y ) +K)

}]

(.107)

16π2 dY
dt = 2

[
y2

u+y2
c

y2
u−y2

c

{
(y2

b−y2
d)

1−X (XY Z −K)

+
(y2

s−y2
b )

(1−X)2Y (XY Z + (1−X − Y )(1−X − Z)− 2K)
}

+ y2
u+y2

t

y2
u−y2

t

{
(y2

d−y2
b )

1−X (XY (1−X − Z) +K)

+
(y2

s−y2
b )

(1−X)2Y (XY (1−X − Z) + Z(1−X − Y ) + 2K)
}

+
y2

s+y2
d

y2
s−y2

d

{
(y2
u − y2

t )XY + (y2
t−y2

c )
1−X (XY Z −K)

}

+
y2

s+y2
b

y2
s−y2

b

{
(y2
u − y2

t )Y (1−X − Y ) + (y2
c−y2

t )
(1−X)2

(
XY Z(1−X − Y )

−Y (1−X − Y )(1−X − Z)−K(1−X − 2Y )
)}]

(.108)
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16π2 dZ
dt = 2

[
y2

c+y2
u

y2
c−y2

u

{
(y2
d − y2

b )XZ +
(y2

b−y2
s)

1−X (XY Z −K)
}

+ y2
c+y2

t

y2
c−y2

t

{
(y2
d − y2

b )Z(1−X − Z) +
(y2

s−y2
b )

(1−X)2

(
XY Z(1−X − Z)

−Z(1−X − Z)(1−X − Z)−K(1−X − 2Z)
)}

+
y2

d+y2
s

y2
d−y2

s

{
(y2

u−y2
t )

1−X (K −XY Z)

+ (y2
c−y2

t )
(1−X)2Z

(
XY Z + (1−X − Y )(1−X − Z)− 2K

)}

+
y2

d+y2
b

y2
d−y2

b

{
(y2

t−y2
u)

1−X
(
XZ(1−X − Y ) +K

)

+ (y2
c−y2

t )
(1−X)2Z

(
XZ(1−X − Y ) + Y (1−X − Z) + 2K

)}

(.109)

16π2dJ

dt
= −1

2
J
[∑

α,j 6=i

y2
i + y2

j

y2
i − y2

j

y2
α

(
|Viα|2 − |Vjα|2

)
(.110)

+
∑

i,α 6=β

y2
α + y2

β

y2
α − y2

β

y2
i

(
|Viα|2 − |Viβ|2

)]

Equations (.107–.110) form a set of coupled differential equations for

the evolution of the basis independent parameters of the CKM ma-

trix. The evolution of the other elements of the CKM matrix can be

obtained using the equations in (.106).
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6. LEPTON FLAVOR VIOLATION WITHIN A REALISTIC

SO(10)/G(224) FRAMEWORK

6.1 Introduction

Individual lepton numbers (Le, Lµ and Lτ) being symmetries of the

standard model (SM)(with mi
ν = 0), processes like µ → eγ, τ → µγ

and τ → eγ are forbidden within this model. Even within simple

extensions of the SM (that permit mi
ν 6= 0), they are too strongly sup-

pressed to be observable. Experimental searches have put upper limits

on the branching ratios of these processes: Br(µ→ eγ) ≤ 1.2× 10−11

[108], Br(τ → µγ) ≤ 6.8 × 10−8 [109] and Br(τ → eγ) ≤ 1.1 × 10−7

[110]. The extreme smallness of these branching ratios poses a chal-

lenge for physics beyond the standard model, especially for supersym-

metric grand unified (SUSY GUT) models, as these generically possess

new sources of lepton flavor violation that could easily lead to rates

even surpassing the current limits.



In this chapter, we study how lepton flavor violation (LFV) gets

linked with fermion masses, neutrino oscillations and CP violation

within a predictive SUSY grand unified framework, based on either

SO(10) [18], or an effective (presumably string derived) symmetry

G(224) = SU(2)L× SU(2)R× SU(4)c [12]. The desirability of having

an effective symmetry as above that possesses SU(4)-color [12], has

been stressed in Chapter 2.

A predictive framework based on supersymmetric SO(10) or G(224)-

symmetry has been proposed by Babu, Pati and Wilczek (BPW)

in [25], which successfully describes the masses and mixings of all

fermions including neutrinos. In particular it makes seven predic-

tions, all in good accord with observations. This framework was ex-

tended to describe the observed CP and flavor violations by allowing

for phases in the fermion mass matrices [28] (see Chapter 5). Remark-

ably enough, this extension could successfully describe the masses of

all the quarks and leptons (especially of the two heavier families), the

CKM elements, the observed CP and flavor violations in the K◦ −K◦

system (yielding correctly ∆mK and εK) and the B◦d−B◦d system (yield-
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ing the correct values of ∆mBd
and SψKS

).

In this chapter, based on the work done with Babu and Pati [29],

I consider lepton flavor violating processes, i.e. µ → eγ, τ → µγ,

τ → eγ and µN → eN within the BPW framework as extended in

Chapter 5. The subject of LFV has been discussed widely in the

literature within supersymmetric extensions of the standard model.

(For earlier works see Ref. [26, 27, 111]). Our work based on SUSY

SO(10) or G(224) differs from those based on either MSSM with right-

handed neutrinos (RHN’s) [27,111,112] or SUSY SU(5) [113], because

for these latter cases the RHN’s are singlets and thereby their Yukawa

couplings are a priori arbitrary. By contrast, for G(224) or SO(10)

the corresponding Yukawa couplings are determined in terms of those

of the quarks at the GUT-scale (such as h(ντ)Dirac ≈ htop) (see Ref.

[25]). Thus the SUSY G(224)/SO(10)-framework is naturally more

predictive than the MSSM or SUSY SU(5)-framework.

In addition, our work differs from all others, including those based

on SUSY SO(10) [114] as well, in two other important respects: First,

we work within a predictive and realistic framework [25,28] which (as
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mentioned above) successfully describes a set of phenomena – i.e. (a)

fermion masses, (b) CKM mixings, (c) neutrino oscillations, (d) ob-

served CP and flavor violations in the K and B systems, as well as (e)

baryogenesis via leptogenesis [62]. As we will see, lepton flavor viola-

tion emerges as an important prediction of this framework, bringing no

new parameters (barring the few flavor-universal SUSY-parameters).

Second, we do a comprehensive study of LFV processes by includ-

ing contributions from three different sources: (i) the sfermion mass-

insertions, δ̂ijLL,RR, arising from renormalization group (RG) running

from M∗ to MGUT ∼ 2 × 1016 GeV (where M∗ denotes the presumed

messenger-scale, with MGUT < M∗ ≤Mstring, at which flavor-universal

soft SUSY breaking is transmitted to the squarks and sleptons, like

in a mSUGRA model [46]), (ii) the mass-insertions (δijLL)
RHN aris-

ing from RG running from MGUT to the right handed neutrino mass

scales MRi
, and (iii) the chirality-flipping mass-insertions δijLR,RL aris-

ing from A−terms that are induced solely through RG running from

M∗ to MGUT involving gauginos in the loop. All the three types of

mass-insertions: δ̂ijLL,RR, (δijLL)
RHN and δijLR,RL are in fact fully deter-
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mined in our model. (See Chapter 5 for details). Most previous works

in this regard have included only the second contribution associated

with the RH neutrinos in their analysis.1 We find, however, that it is

the first and the third contributions associated with post-GUT physics

that typically dominate over the second in a SUSY unified framework.

The BPW framework and its extension were reviewed in Chapters

4 and 5 respectively. Some CP violating processes were studied within

this framework in Chapter 5. Here we will present only the structure

of the mass matrices of the framework and a fit to the parameters,

which we will use to study lepton flavor violation.

6.2 Lepton Flavor Violation in the SO(10)/G(224) Framework

The Dirac mass matrices of the sectors u, d, l and ν proposed in Ref.

[25] in the context of SO(10) or G(224)-symmetry have the following

structure:
1 Barbieri, Hall and Strumia (in Ref. [26]) have discussed the relevance of the contributions

from the mass-insertions δ̂ij
LL,RR and those from the induced A−terms, but without a realistic

framework for light fermion masses and neutrino oscillations.
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Mu =




0 ε′ 0

−ε′ ζu22 σ + ε

0 σ − ε 1



M0

u; Md =




0 η′ + ε′ 0

η′ − ε′ ζd22 η + ε

0 η − ε 1



M0

d

MD
ν =




0 −3ε′ 0

3ε′ ζu22 σ − 3ε

0 σ + 3ε 1



M0

u; Ml =




0 η′ − 3ε′ 0

η′ + 3ε′ ζd22 η − 3ε

0 η + 3ε 1



M0

d

(6.1)

These matrices are defined in the gauge basis and are multiplied

by Ψ̄L on left and ΨR on right.

In the BPW model of Ref. [25], the parameters σ, η, ε etc. were

chosen to be real. To allow for CP violation, this framework was ex-

tended to include phases for the parameters in Ref. [28]. Remark-

ably enough, it was found that there exists a class of fits within

the SO(10)/G(224) framework, which correctly describes not only (a)

fermion masses, (b) CKM mixings and (c) neutrino oscillations [25,62],

but also (d) the observed CP and flavor violations in the K and B

systems (see Chapter 5 for the predictions in this regard). A repre-
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sentative of this class of fits (to be called fit A) is given by [28]:

σ = 0.109− 0.012i, η = 0.122− 0.0464i, ε = −0.103,

η′ = 2.4× 10−3, ε′ = 2.35× 10−4ei(69
◦), ζd22 = 9.8× 10−3e−i(149

◦),(6.2)

(M0
u, M0

d) ≈ (100, 1.1) GeV.

In this particular fit ζu22 is set to zero for the sake of economy in

parameters. However, allowing for ζu22
<∼ (1/3)(ζd22) (see e.g. Fit B

in Chapter 5) would still yield the desired results. Because of the

success of this class of fits in describing correctly all four features (a),

(b), (c) and (d)-which is a non-trivial feature by itself - we will use fit

A as a representative to obtain the mass-insertion parameters δ̂ijLL,RR,

(δijLL)
RHN and δijLR,RL in the lepton sector and thereby the predictions

of our model for lepton flavor violation.

The fermion mass matrices Mu, Md and Ml are diagonalized at

the GUT scale ≈ 2× 1016 GeV by bi-unitary transformations (details

can be found in the appendices):

Mdiag
u,d,l = X

(u,d,l)†
L Mu,d,lX

(u,d,l)
R (6.3)

The analytic expressions for the matrices Xd
L,R can be found in Chap-

ter 5 and the appendices. The corresponding expressions for X l
L,R can
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be obtained by letting (ε, ε′)→ −3(ε, ε′).

We now discuss the sources of lepton flavor violation in our model.

We assume that flavor-universal soft SUSY-breaking is trans-

mitted to the SM-sector at a messenger scale M∗, where MGUT <

M∗ ≤ Mstring. This may naturally be realized e.g. in models of

mSUGRA [46], or gaugino-mediation [54]. With the assumption of

extreme universality as in CMSSM, supersymmetry introduces five

parameters at the scale M∗:

mo,m1/2, Ao, tan β and sgn(µ).

For most purposes, we will adopt this restricted version of SUSY

breaking with the added restriction that Ao = 0 at M∗ [54]. However,

we will not insist on strict Higgs-squark-slepton mass universality.

Even though we have flavor preservation at M∗, flavor violating scalar

(mass)2–transitions arise in the model through RG running from M∗

to the EW scale. As described below, we thereby have three sources

of lepton flavor violation.

(1) RG Running of Scalar Masses from M∗ to MGUT.

With family universality at the scale M∗, all sleptons have the
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mass mo at this scale and the scalar (mass)2 matrices are diagonal.

Due to flavor dependent Yukawa couplings, with ht = hb = hτ(= h33)

being the largest, RG running from M∗ to MGUT renders the third

family lighter than the first two (see e.g. [26]) by the amount:

∆m̂2
b̃L

= ∆m̂2
b̃R

= ∆m̂2
τ̃L

= ∆m̂2
τ̃R
≡ ∆ ≈ −

(30m2
o

16π2

)
h2
t ln(M ∗/MGUT ) .(6.4)

The factor 30→12 for the case of G(224). The slepton (mass)2 ma-

trix thus has the form M̃
(o)

l̃
= diag(m2

o, m2
o, m2

o − ∆). As mentioned

earlier, the spin-1/2 lepton mass matrix is diagonalized at the GUT

scale by the matrices Xl
L,R. Applying the same transformation to the

slepton (mass)2 matrix (which is defined in the gauge basis), i.e. by

evaluating Xl†
L(M̃

(o)

l̃
)LL XL and similarly for L→R, the transformed

slepton (mass)2 matrix is no longer diagonal. The presence of these

off-diagonal elements (at the GUT-scale) given by:

(δ̂lLL,RR)ij =
(
X l†
L,R(M̃

(o)

l̃
)XL,R

)
ij
/m2

l̃
(6.5)

induces flavor violating transitions l̃iL,R → l̃jL,R. Here ml̃ denotes an

average slepton mass and the hat signifies GUT-scale values.

(2) RG Running of the A−parameters from M∗ to MGUT.
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Even if Ao = 0 at the scale M∗ (as we assume for concreteness,

see also [54]). RG running from M∗ to MGUT induces A−parameters

at MGUT, invoving the SO(10)/G(224) gauginos; these yield chirality

flipping transitions (l̃iL,R → l̃jR,L).

Evaluated at the GUT scale, the A−parameters, induced respec-

tively through the couplings hij, aij and gij, are given by (see Appendix

.2 of Chapter 5):

A
(1)
ij = 63

2
1

8π2hijg
2
10Mλln( M∗

M10H

) (i, j = 2, 3)

A
(2)
ij = 95

2
1

8π2

aij〈45H〉
M ′ g2

10Mλln( M∗

M10H

) (ij = 23, 12)

A
(3)
ij = 90

2
1

8π2

gij〈10H〉
M ′′ g2

10Mλln( M∗

M16H

) (ij = 23, 22, 12)

(6.6)

The coefficients (63
2 ,

95
2 ,

90
2 ) are the sums of the Casimirs of the

SO(10) representations of the chiral superfields involved in the dia-

grams. For the case of G(224), (63
2 ,

95
2 ,

90
2 )→(27

2 ,
43
2 ,

42
2 ). Thus, sum-

ming A(1), A(2) and A(3), the induced A matrix for the leptons is given
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by:

Al
LR = Z





K10




0 −285ε′ 0

285ε′ 63ζu22 −285ε+ 63σ

0 285ε+ 63σ 63








(6.7)

+Z





K16




0 90η′ 0

90η′ 90(ζd22 − ζu22) 90(η − σ)

0 90(η − σ) 0








where Z =
(

1
16π2

)
htg

2
10Mλ, K10 = ln( M∗

M10H

) and K16 = ln( M∗

M16H

). For

simplicity if we let M16H
≈M10H

≈MGUT, we can write the A matrix

in the SUSY basis as:

Al
LR = (X l

L)
†




0 −285ε′ + 90η′ 0

285ε′ + 90η′ 90ζd22 − 27ζu22 −285ε+ 90η − 27σ

0 285ε+ 90η − 27σ 63



X l
R

×Z ln(
M ∗

MGUT
) (6.8)

Approximate analytic forms for Xd
L,R are given in Chapter 5, and Xl

L,R

can be obtained from Xd
L,R by the substitutions (ε, ε′) → −3(ε, ε′).

The chirality flipping transition angles are defined as :

(δlLR)ij ≡ (Al
LR)ij

( vd
m2
l̃

)
= (Al

LR)ij
( vu
tan β m2

l̃

)
. (6.9)
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(3) RG Running of scalar masses from MGUT to the RH neu-

trino mass scales:

We work in a basis in which the charged lepton Yukawa matrix

Yl and Mν
R are diagonal at the GUT scale. The off-diagonal elements

in the Dirac neutrino mass matrix YN in this basis give rise to lepton

flavor violating off-diagonal components in the left handed slepton

mass matrix through the RG running of the scalar masses from MGUT

to the RH neutrino mass scales MRi
. The RH neutrinos decouple below

MRi
. (For RGEs for MSSM with RH neutrinos see e.g. Refs. [111]

and [115].) In the leading log approximation, the off-diagonal elements

in the left-handed slepton (mass)2-matrix, thus arising, are given by:

(δlLL)
RHN
ij =

−(3m2
o + A2

o)

8π2

3∑

k=1

(YN)ik(Y
∗
N)jk ln(

MGUT

MRk

) . (6.10)

The superscript RHN denotes the contribution due to the presence of

the RH neutrinos. We remind the reader that the masses MRi
of RH

neutrinos are well determined within our framework to within factors

of 2 to 4 (see Chapter 4). The total LL contribution is thus:

(δlLL)
Tot
ij = (δ̂lLL)ij + (δlLL)

RHN
ij (6.11)

Now, most authors including those using SUSY SU(5) with RHN’s
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or SUSY SO(10) [113,114] have cosidered only the second term (δ lLL)
RHN

that arises due to the right-handed neutrinos. As mentioned in the

introduction, however, the first term δ̂lLL and the contribution of the

A−term δlLR,RL (Eq. (6.9)) are found to dominate over the second

term (as long as ln(M ∗/MGUT ) ∼ 1). We obtain our results by includ-

ing the contributions from all three sources listed above in Eqs. (6.5),

(6.9) and (6.10). They are presented in the following section.

6.3 Results

The decay rates for the lepton flavor violating processes li → ljγ (i >

j) are given by (see Appendix .1):

Γ(l+i → l+j γ) =
e2m3

li

16π

(
|Aji

L |2 + |Aji
R|2

)
(6.12)

Here Aji
L is the amplitude for (li)

+
L → (lj)

+γ decay, while Aji
R =

A((li)
+
R → (lj)

+γ). The amplitudes Aji
L,R are evaluated in the mass

insertion approximation using the (δlLL)
Tot, δlRR, δ

l
LR,RL calculated as

above. The general expressions for the amplitudes Aji
L,R in one loop

can be found in e.g. Refs. [111] and [115]. We include the contri-

butions from both chargino and neutralino loops with or without the
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µ−term.

We evaluate the amplitudes by first going to a basis in which

the chargino and the neutralino mass matrices are diagonal. Analytic

expressions for this diagonalization can be obtained in the approxi-

mation |M2 ± µ| and |53M1 ± µ| � mZ and |M2µ| > m2
W sin 2β [116].

This approximation holds for all the input values of (mo, m1/2) that

we consider.

In Table 1 as well as in Fig. 1, we give the branching ratios of the

processes µ→ eγ, τ → µγ, τ → eγ for the case of SO(10), with some

sample choices of (mo, m1/2). For these calculations we set ln
(

M∗

MGUT

)

= 1, i.e. M ∗ ≈ 3MGUT , tan β = 10, MR1
= 1010 GeV, MR2

= 1012

GeV and MR3
= 5 × 1014 GeV (see chapter 4), and Ao( at M∗) = 0.

The corresponding values for G(224) are smaller approximately by a

factor of 4 to 6 in the rate, provided ln(M ∗/MGUT ) is the same in both

cases (see comments below Eqs. (6.4) and (6.6)).
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(mo, m1/2)//tan β Br(µ→ eγ) Br(τ → µγ) Br(τ → eγ)

µ > 0 µ < 0 µ > 0 µ < 0 µ > 0 µ < 0

I (600, 300)//10 3.3×10−12 9.8×10−12 2.4×10−9 3.1×10−9 2.4×10−12 3.3×10−12

II (800, 250)//10 2.9×10−13 1.7×10−12 1.9×10−9 1.9×10−9 2.0×10−12 2.0×10−12

III (450, 300)//10 2.7×10−11 4.6×10−11 2.7×10−9 5.6×10−9 2.7×10−12 6.1×10−12

IV (500, 250)//10 5.9×10−12 1.9×10−11 4.8×10−9 6.4×10−9 5.0×10−12 6.9×10−12

V (100, 440)//10 1.02×10−8 1.02×10−8 8.3×10−8 8.4×10−8 1.0×10−10 1.0×10−10

VI (1000, 250)//10 1.6×10−13 5.6×10−12 9.5×10−10 9.0×10−10 1.0×10−12 9.5×10−13

VII (400, 300)//20 9.5×10−12 3.8×10−11 1.4×10−8 1.8×10−8 1.5×10−11 1.9×10−11

Tab. 6.1:
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Table 1. Branching ratios of li → ljγ for the SO(10) framework with κ ≡

ln(M∗/MGUT ) = 1; (mo, m1/2) are given in GeV, which determine µ through radiative

electroweak symmetry breaking conditions. The entries for Br(µ → eγ) for the case of

G(224) would be reduced by a factor ≈ 4− 6 compared to that of SO(10) (see text).

To give the reader an idea of the magnitudes of the various con-

tributions, we exhibit in table 2 the amplitudes for the process µ→ eγ

calculated individually from the four sources δ̂jiLL, δ
ji
LR,RL and (δjiLL)

RHN

(see Eqs. (6.5), (6.9) and (6.10)), for a few cases of table 1.
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(mo, m1/2)(GeV) A
(1)
L (δ̂LL) A

(2)
L (δLR) AR(δRL) A

(3)
L ((δLL)RHN)

I, (600, 300) 3.3× 10−13 −6.7× 10−13 −5.9× 10−13 2.4× 10−14

II, (800, 250) 2.9× 10−13 −1.8× 10−13 −1.6× 10−13 2.0× 10−14

IV, (500, 250) 4.8× 10−13 −9.7× 10−13 −8.5× 10−13 3.4× 10−14

Tab. 6.2:
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Table 2.Comparison of the various contributions to the amplitude for µ→ eγ for

cases I, II and IV, with µ > 0. Each entry should be multiplied by a common factor ao.

Imaginary parts being small are not shown. Note that columns 2,3 and 4 arising from RG

running from M∗ →MGUT (see text) dominate over the RHN contribution.

Glancing at tables 1 and 2, the following features of our results

are worth noting:

(1) It is apparent from table 2 that the contribution due to the pres-

ence of the RH neutrinos2 (fifth column) is about an order of mag-

nitude smaller, in the amplitude, than those of the others (propor-

tional to δ̂ijLL, δ
ij
LR and δijRL), listed in columns 2, 3 and 4. The latter

arise from RG running of the scalar masses and the A−parameters in

2 In the context of contributions due to the RH neutrinos alone, there exists an important

distinction (partially observed by Barr, see Ref. [114]) between the hierarchical BPW form [25]

and the lop-sided Albright-Barr (AB) form [30] of the mass-matrices. The amplitude for µ → eγ

from this source turns out to be proportional to the difference between the (23)-elements of the

Dirac mass-matrices of the charged leptons and the neutrinos, with (33)-element being 1. This

difference is (see Eq. (6.1)) is η − σ ≈ 0.041, which is naturally small for the hierarchical BPW

model (incidentally it is also Vcb), while it is order one for the lop-sided AB model. This means

that the rate for µ → eγ due to RH neutrinos would be about 600 times larger in the AB model

than the BPW model (for the same input SUSY parameters). A comparison of the BPW and the

AB models based on their predictions regarding CP and flavor violations is presented in Chapter

7.

186



the context of SO(10) or G(224) from M ∗ to MGUT . It seems to us

that the latter, which have commonly been omitted in the literature,

should exist in any SUSY GUT model for which the messenger scale

for SUSY-breaking is high (M ∗ > MGUT ), as in a mSUGRA model.

The inclusion of these new contributions to LFV processes arising from

post-GUT physics, that too in the context of a predictive and realistic

framework, is the distinguishing feature of the present work.3

(2) Again from table 2 we see that the two dominant contributions

to AL = A(µ+
L → e+γ), arising from δLL and δLR-insertions, partially

cancel each other if µ > 0; they would however add if µ < 0. By

contrast, AR gets contribution dominantly only from δRL (column 4).4

As a result we find that in our model, typically, |AR| > |AL| if µ > 0

and |AL| > |AR| if µ < 0.

(3) Owing to the general prominence of the new contributions from

3 For the sake of comparison, should one drop the post-GUT contribution by setting M ∗ =

MGUT , however, the predicted Br(µ → eγ) would be reduced in our model to e.g. (4.2, 2.9, and

8.6)×10−15 for cases I, II and IV respectively.

4 Although δ̂RR is comparable to δ̂LL, its contribution to AR (via the bino loop) is typically

suppressed compared to that of δLL to AL (in part by the factor (α1/α2)(M1/M2)) in most of the

parameter space.
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post-GUT physics, we see from table 1 that case V, (with low mo

and high m1/2) is clearly excluded by the empirical limit on µ → eγ-

rate (see Sec. 1). Case III is also excluded, for the case of SO(10),

yielding a rate that exceeds the limit by a factor of about 2 (for κ =

ln(M ∗/MGUT ) >∼ 1), though we note that for the case of G(224), Case

III is still perfectly compatible with the observed limit (see remark

below table 1). All the other cases (I, II, IV, VI, and VII), with

medium heavy (∼ 500 GeV) to moderately heavy sleptons (800-1000

GeV), are compatible with the empirical limit, even for the case of

SO(10). The interesting point about these predictions of our model,

however, is that µ → eγ should be discovered, even with moderately

heavy sleptons, both for SO(10) and G(224), with improvement in the

current limit by a factor of 10–100. Such an improvement is being

planned at the forthcoming MEG experiment at PSI.

(4) We see from table 1 that τ → µγ (leaving aside case V, which is

excluded by the limit on µ → eγ), is expected to have a branching

ratio in the range of 2×10−8 (Case VII) to about (1 or 2)×10−9 (Case

VI or II). The former may be probed at BABAR and BELLE, while
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the latter can be reached at the LHC or a super B factory. The process

τ → eγ would, however, be inaccessible in the foreseeable future (in

the context of our model).

(5) The WMAP-Constraint: Of the cases exhibited in table 1,

Case V (mo = 100 GeV, m1/2 = 440 GeV) would be compatible with

the WMAP-constraint on relic dark matter density, in the context of

CMSSM, assuming that the lightest neutralino is the LSP and repre-

sents cold dark matter (CDM), accompanying co-annihilation mech-

anism. (See e.g. [88]). As mentioned above (see table 1), a spectrum

like Case V, with low mo and higher m1/2, is however excluded in our

model by the empirical limit on µ→ eγ. Thus we infer that in the con-

text of our model CDM cannot be associated with the co-annihilation

mechanism.

Several authors (see e.g. Refs. [117] and [118]), have, however

considered the possibility that Higgs-squark-slepton mass universality

need not hold even if family universality does. In the context of such

non-universal Higgs mass (NUHM) models, the authors of Ref. [118]

show that agreement with the WMAP data can be obtained over a
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wide range of mSUGRA parameters. In particular, such agreement

is obtained for (mφ/mo) of order unity (with either sign) for almost

all the cases (I, II, III, IV, VI and VII)5, with the LSP (neutralino)

representing CDM.6 (Here mφ ≡ sign(m2
Hu,d

)
√
|m2

Hu,d
|, see [118]). All

these cases (including Case III for G(224)) are of course compatible

with the limit on µ→ eγ.

(6) Coherent µ− e conversion in nuclei: In our framework, µ− e

conversion (i.e. µ−+N → e−+N) will occur when the photon emitted

in the virtual decay µ→ eγ∗ is absorbed by the nucleus (see e.g. [119]).

In such situations, there is a rather simple relation connecting the µ−e

conversion rate with B(µ → eγ): B(µ → eγ)/(ωconversion/ωcapture) =

R ' (230− 400), depending on the nucleus. For example, R has been

calculated to be R ' 389 for 27Al, 238 for 48T i and 342 for 208Pb

in this type of models. (These numbers were computed in [119] for

the specific model of [26], but they should approximately hold for our

model as well.) With the branching ratios listed in Table 1 (∼ 10−11 to

5 We thank A. Mustafayev and H. Baer for private communications in this regard.
6 We mention in passing that there may also be other posibilities for the CDM if we allow for

either non-universal gaugino masses, or axino or gravitino as the LSP, or R-parity violation (with

e.g. axion as the CDM).
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10−13) for our model, ωconversion/ωcapture ' (40–1) ×10−15. The MECO

experiment at Brookhaven is expected to have a sensitivity of 10−16

for this process, and thus will test our model.

(7) Parity odd asymmetry in µ+ → e+γ decay: Parity viola-

tion can be observed by studying the correlation between the momen-

tum ~pe of e+ in µ+ → e+γ decay and the polarization vector ~P of

positive muons (from π+ decays). The distribution of e+ is propor-

tional to (1 + A p̂e. ~P ) where A is the P–odd asymmetry parameter

given by A(µ+ → e+γ) = (|AL|2 − |AR|2)/(|AL|2 + |AR|2). Here AL

is the amplitude for µ+
L → e+γ decay, while AR = A(µ+

R → e+γ). In

our model, as noted in (2), we typically have |AR| > |AL| and thus

A(µ+ → e+γ) < 0 if µ > 0, and |AL| > |AR| and thus A > 0 if

µ < 0. For example, with (mo,m1/2) = (800, 250) GeV, µ > 0 and

tan β = 10, we obtain |AL| = |A(1)
L (δ̂LL)+A

(2)
L (δLR)+A

(3)
L | = 1.3×10−13

(see table 2) while |AR| ' 1.6× 10−13, and thus A ' −0.25, while for

(mo,m1/2) = (500, 250) GeV and tan β = 10 we get, |AL| ' 4.7×10−13

and |AR| ' 8.6 × 10−13, yielding A ' −0.54. The precise prediction

of our model for A would thus be definitive once the SUSY spectrum
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is known.

We can compare the predictions of our model for A with those of

other SUSY models. In the MSSM with νR, since LFV arises through

δLL type mixings, AL � AR, and thus A(µ+ → e+γ) ≈ +1, at least

for tan β ≤ 30 or so, regardless of the choice of (mo,m1/2). In SUSY

SU(5) GUT, with or without νR, the GUT threshold effects realized

in the regime MGUT ≤ µ ≤ M∗ generate δRR type mixings, and will

lead to AR � AL and thus A ' −1. In the SUSY SO(10) models

with symmetric mass matrices, such as the ones studied in [26, 120],

AL = AR from GUT threshold effects, leading to a vanishing A. Thus,

we see that a determination of A may help sort out the specific type

of GUT that is responsible for LFV.

(8) Correlation between muon g−2 and µ→ eγ: Currently there

exists a discrepancy between theory and experiment in the anomalous

magnetic moment of the muon: ∆aµ = aexpt
µ − aSMµ = 251(93) ×

10−11 [121]. This is a 2.7 sigma effect 7 and may be an indication of

low energy supersymmetry. In our framework, this discrepancy can

7 This analysis is based on theory and data on e+e− → hadron. If τ → ντ+ hadron data is

used, this discrepancy reduces to 1.3 sigma; this may however be less reliable [121].
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be considerably reduced for some, but not all, choices of the SUSY

spectrum. When the sleptons are relatively light (≤ 500 GeV) with

tan β = 10 − 20, the SUSY contribution to aµ is in the range (50 −

200)× 10−11. For example, following a recent numerical analysis (see

[122] and references there in), we find ∆aSUSYµ ≈ 180 × 10−11 for the

cases of both IV and VII (see table 1). Note that when the SUSY

contributions to ∆aµ becomes significant, B(µ → eγ) is enhanced.

Thus, a confirmation of new physics contribution to aµ, for example by

improved precision in the e+e− → hadron data and in the theoretical

analysis, would imply (in the context of a SUSY-explanation) that

µ→ eγ is just around the corner, within our framework.

In summary, lepton flavor violation is studied here within a pre-

dictive SO(10)/G(224)-framework, possessing supersymmetry, that was

proposed in Refs. [25,28]. The framework seems most realistic in that

it successfully describes five phenomena: (i) fermion masses and mix-

ings, (ii) neutrino oscillations, (iii) CP violation, (iv) quark flavor-

violations, as well as (v) baryogenesis via leptogenesis [16]. LFV

emerges as an important prediction of this framework bringing no
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new parameters, barring the few flavor-preserving SUSY parameters.

As mentioned before, the inclusion of contributions to LFV aris-

ing both from the presence of the RH neutrinos as well as those from

the post-GUT regime, that too within a realistic framework, is the

distinguishing feature of the present work. Typically, the latter con-

tribution, which is commonly omitted in the literature, is found to

dominate. Our results show that – (i) The decay µ → eγ should

be seen with improvement in the current limit by a factor of 10 –

100, even if sleptons are moderately heavy (∼ 800 GeV, say); (ii) for

the same reason, µ − e conversion (µN → eN) should show in the

planned MECO experiment, and (iii) τ → µγ may be accessible at

the LHC and a super B-factory. It is noted that the muon (g − 2)-

anomaly, if confirmed, would strongly suggest, within our model, that

the discovery of the µ→ eγ decay is imminent. The significance of a

measurement of the parity-odd asymmetry in polarized µ+ decay into

e+γ is also noted. In conclusion, the SO(10)/G(224) framework pur-

sued here seems most successful on several fronts; it can surely meet

further stringent tests through a search for lepton flavor violation.
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Fig. 6.1: Log of Br(µ → eγ) divided by the experimental bound (1.2 × 10−11) obtained

for the SO(10) framework with ln(M ∗/MGUT ) = 1, tanβ = 10 and µ > 0 vs mo

(in GeV) with m1/2 = 200, 250 and 300 GeV.
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APPENDIX



.1 Appendix: Lepton Flavor violation: Amplitudes

The amplitude for the process l+i → l+j γ with i > j (e.g. µ+ → e+γ)

is given by [111,115]

A = eεα∗(q)vi(p)iσαβq
β(A

(ij)
L PL + A

(ij)
R PR)vj(p− q) (.13)

The rate for this decay is given by

Γ =
e2

16π2
m3
li

(
|A(ij)

L |2 + |A(ij)
R |2

)
(.14)

In the context of MSSM, the diagrams that contribute to this

process are

liR liL (ν̃i)L (ν̃j)L ljL

(δνLL)ji

χ̃−
γ

Figure 2.
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The amplitude of the process in fig. 2 including one mass insertion

is given by

(AL)
C
1 = mli

α2

24π
(OR)2

A1

(δlLL)ji
m4
ν̃

gC1
(xAν̃) (.15)

Here C stands for chargino, the matrices (OL) and (OR) are the ma-

trices that diagonalize the chargino mass matrix, and gC1
is a loop

function defined below. A corresponding neutralino contribution is

shown in fig. 3.

liR liL l̃iL l̃jL ljL

(δlLL)ji

γ

χ̃0

Figure 3.
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The amplitude of the process in fig. 3 is

(AL)
n
1 = −mli

α2

48π

(
(ON)A2 + (ON)A1 tan θW

)2 (δlLL)ji
m4
l̃

gn1
(xAl̃) (.16)

where n stands for neutralino, and θW is the weak angle. The matrix

ON is the matrix that diagonalizes the neutralino mixing matrix. Con-

tributions to li → ljγ also arise due to charged and neutral Higgsino

exchange. These are given in figs. 4 and 5.

µ

H̃−2

M2

liR ljL(ν̃i)L (ν̃j)L

(δνLL)ji

H̃−1

W̃−

W̃−

γ

v sin β

Figure 4.

199



µ

H̃0
2

M2

liR ljLl̃iL

(δlLL)ji

H̃0
1

W̃ 0

W̃ 0

v sin β

γ

l̃jL

Figure 5.

The amplitudes to the processes in figs. 4 and 5 are respectively

(AL)
C
2 = −mli

α2

4π

Mχ̃−
A√

2mW cos β
(OR)A1(OL)A2

(δlLL)ji
m4
ν̃

gC2
(xAν̃) (.17)

(AL)
n
2 = mli

α2

16π

Mχ̃0
A

mZ cos θW cos β
(ON)A3

(
(ON)A2 + (ON)A1 tan θW

)
(.18)

×(δlLL)ji
m4
l̃

gn2
(xAl̃)

If we let L ←→ R in figs. 3 and 5, the corresponding processes

contribute to AR. These contributions are given by

(AR)n1 = −mli

α1

12π
(ON)2

A1

(δlRR)ji
m4
l̃

gn1
(xAl̃) (.19)

(AR)n2 = −mli

α2

8π

Mχ̃0
A

mZ sin θW cos β
(ON)A3(ON)A1

(δlRR)ji
m4
l̃

gn2
(xAl̃) (.20)
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The chargino contributions to AR are negligible as they involve ν̃R

insertions. In Eqs. (.15)–(.20), xAν̃ = M 2
χA
/m2

ν̃ and xAl̃ = M 2
χA
/m2

l̃
,

where χA is the corresponding chargino or neutralino in figs. 2–5.

Finally, one can have chirality flipping mass insertions, which

contribute to ALR. Such a contribution is shown in fig. 6.

liL l̃iL l̃jR ljR

(δlRL)ji

γ

B̃

Figure 6.

The amplitude of the process in fig. 6 is given below

ALR =
3

20π
α1
mB̃

m2
l̃

(δlRL)jif(x); x =
m2
B̃

m2
l̃

(.21)
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The loop functions in the amplitudes are defined below:

f(x) =
1− x2 + 2x lnx

2(1− x)3
(.22)

gC1
(x) =

−1− 9x+ 9x2 + x3 − 6x(1 + x) lnx

(x− 1)5
(.23)

gC2
(x) =

−5 + 4x+ x2 − 2(1 + 2x) ln x

2(x− 1)4
(.24)

gn1
(x) =

−1 + 9x+ 9x2 − 17x3 + 6x2(3 + x) lnx

2(x− 1)5
(.25)

gn2
(x) =

1 + 4x− 5x2 + 2x(2 + x) lnx

(x− 1)4
(.26)

The mass term for the charginos in the Lagrangian is:

Lm = −1

2

(
ψ+ ψ−

)



0 XT

X 0






ψ+

ψ−


 (.27)

where ψ+ =
(
−iW̃+, H̃+

2

)
, ψ− =

(
−iW̃−, H̃−1

)
, andX is given

below.

X =




M2 mW

√
2 sin β

mW

√
2 cos β µ


 (.28)

The diagonal mass matrix for the charginos is obtained by a bi-

unitary transformation of X such that O∗LXO
−1
R = MD. In the ap-

proximation |M2 ± µ|, |53M1 ± µ| � mZ and |M2µ| > m2
W sin 2β, the
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matrices OL and OR have the form [116]

OR =




1 mW

√
2(M2 sinβ+µ cosβ)
M2

2−µ2

−mW

√
2(M2 sinβ+µ cosβ)sgn(µ)

M2
2−µ2 sgn(µ)


 (.29)

OL =




1 mW

√
2(M2 cosβ+µ sinβ)
M2

2−µ2

−mW

√
2(M2 cosβ+µ sinβ)
M2

2−µ2 1


 (.30)

The mass matrix for the neutralinos in the basis (B̃, W̃3, H̃1, H̃2)

is given by

N =




M ′ 0 −mZsW cβ mZsWsβ

0 M2 mZcW cβ −mZcWsβ

−mZsW cβ mZcW cβ 0 −µ

mZsWsβ −mZcWsβ −µ 0




(.31)

In this basis, the matrix that diagonalizes N is given below.
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ON =




1
m2

Z
sin 2θW (M ′+µ sin 2β)

2(M ′−M2)(µ2−M ′2)

−mZsW (M ′cβ+µsβ)

M ′2−µ2

mZsW (M ′sβ+µcβ)

M ′2−µ2

m2

Z
sin 2θW (M2+µ sin 2β)

2(M2−M ′)(µ2−M2

2
)

1
mZcW (M2cβ+µsβ)

M2

2
−µ2

−mZcW (M2sβ+µcβ)

M2

2
−µ2

−mZsW (sβ−cβ)
√

2(µ−M ′)

mZcW (sβ−cβ)
√

2(µ+M2)
1√
2

1√
2

−mZsW (sβ+cβ)
√

2(µ−M ′)

mZcW (sβ+cβ)
√

2(µ−M2)
1√
2

− 1√
2




(.32)

where sW = sin θW , cW = cos θW , sβ = sin β, cβ = cos β and M ′ = 5
3
M1.
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The expressions for the amplitudes for the process l+i → l+j γ are

used to calculate the branching ratios for µ→ eγ, τ → µγ and τ → eγ

as discussed above.
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7. DISTINGUISHING BETWEEN HIERARCHICAL AND

LOP-SIDED SO(10) MODELS.

7.1 Introduction

In recent years, several models based on supersymmetric SO(10) GUT

have emerged [123]. Two promising candidates have been proposed

which have much similarity in their Higgs structure and yet impor-

tant differences in the pattern of fermion mass-matrices. One is by

Albright and Barr (AB) [30] and the other by Babu, Pati and Wilczek

(BPW) [25]. Both models use low-dimensional Higgs multiplets (like

45H , 16H , 16H and 10H) to break SO(10) and generate fermion masses

(see remarks later) as opposed to large-dimensional ones (like 126, 126, 210

and possibly 120). Both of these models work extremely well in

making predictions regarding the masses of quarks and leptons, the

CKM elements and neutrino masses and their mixings in good ac-

cord with observations. Nevertheless there is a significant difference



between these two models in the structure of their fermion mass ma-

trices. In the BPW-model, the elements of the fermion mass-matrices

(constrained by a U(1)-flavor symmetry [28, 62, 65]) are consistently

family-hierarchical with “33”�“23”∼“32”�“22”�“12”∼“21”�“11”

etc. By contrast, in the AB-model, the fermion mass-matrices are lop-

sided with “23”∼“33” in the down quark mass-matrix and “32”∼“33”

in the charged lepton matrix. (The exact structure of the fermion

mass-matrices will be presented in Sec. 2.) This difference in the

structure of the mass matrices leads to two characteristically different

explanations for the largeness of the νµ − ντ oscillation angle in the

two models. For the BPW model, both charged lepton and neutrino

sectors give moderately large contributions to this mixing which, as

they show, naturally add to give a nearly maximal sin2 2θνµ−ντ
, while

simultaneously giving small Vcb as desired. The largeness of θνµ−ντ
, to-

gether with the smallness of Vcb (in the BPW model) turns out in fact

to be a consequence of (a) the group theory of SO(10)/G(224) in the

context of the minimal Higgs system, and (b) the hierarchical pattern

of the mass-matrices. For the lopsided AB model, on the other hand,
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the large (maximal) νµ − ντ oscillation angle comes almost entirely

from the charged lepton sector which has a “32” element comparable

to the “33”.

The original work of Babu, Pati and Wilczek, (reviewed in Chap-

ter 4) treated the entries in the mass matrices to be real for simplicity,

thereby ignoring CP non-conservation. It was successfully extended

to include CP violation by allowing for phases in the mass matrices in

Ref. [28] and has been discussed in Chapter 5.

In this chapter based on the work done in Ref. [31], we do a com-

parative study between certain testable predictions of the AB model

versus those of the BPW model allowing for the extension of the latter

as in Ref. [28] (see Chapter 5). We find that while both models give

similar predictions regarding fermion masses and mixings, they can

be sharply distinguished by lepton flavor violation, especially by the

rate of µ→ eγ and the edm of the electron.

We work in a scenario as in Refs. [28] and [29], in which flavor-

universal soft SUSY breaking is transmitted to the sparticles at a

messenger-scale M∗, with MGUT < M∗ ≤ Mstring as in a mSUGRA
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model [46]. Following the general analysis in Ref. [26] it was pointed

out in Refs. [28] and [29] that in a SUSY-GUT model with a high

messenger scale as above, post-GUT physics involving RG running

from M∗ → MGUT leads to dominant flavor and CP violating effects.

In the literature, however, post-GUT contribution has invariably been

omitted, except for Refs. [28] and [29], where it has been included only

for the BPW model. Lepton flavor violation in the AB model has been

studied so far by many authors by including the contribution arising

only through the RH neutrinos [124], without, however, the inclusion

of post-GUT contributions. I therefore make a comparative study of

the BPW and the AB models by including the contributions arising

from both post-GUT physics, as well as those from the RH neutrinos

through RG running below the GUT scale. For the sake of comparison

and completeness, we will include the results obtained in Refs. [28]

and [29] which deal with CP and flavor violation in the BPW model.

To calculate the branching ratio of lepton flavor violating pro-

cesses we include contributions from three different sources: (i) the

sfermion mass-insertions, δ̂ijLL,RR, arising from renormalization group
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(RG) running from M∗ to MGUT ∼ 2 × 1016 GeV, (ii) the mass-

insertions (δijLL)
RHN arising from RG running from MGUT to the right

handed neutrino mass scales MRi
, and (iii) the chirality-flipping mass-

insertions δijLR,RL arising fromA−terms that are induced solely through

RG running from M∗ to MGUT involving SO(10) or G(224) gauginos

in the loop.

It was found in Ref. [29], that for the BPW-model (see Chap-

ter 6), contributions to the rate of µ → eγ from sources (i) and (iii)

associated with post-GUT physics, were typically much larger than

that from source (ii) associated with the RH neutrinos. For the AB-

model, we find that the RH neutrino contribution is strongly enhanced

compared to that in the BPW model; as a result all the three contribu-

tions to the amplitude of µ→ eγ are comparable. Including all three

contributions, we find that for most of the SUSY parameter space,

the branching ratio for µ → eγ calculated in the AB-model is much

larger than that in the BPW model and is in fact excluded by the

experimental upper bound unless (mo, m1/2) >∼ 1 TeV. Thus one main

result of this chapter is that, with all three sources of lepton flavor
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violation included, the process µ→ eγ can provide a clear distinction

between the BPW and the AB models. We also examine CP violation

as well as flavor violation in the quark sector, including that reflected

by electric dipole moments, in the AB model, and compare it with

the corresponding results for the BPW-model, obtained in [28] (see

chapter 5).

In the following section the patterns of the fermion mass matrices

for the BPW and the AB models are presented.

7.2 A brief description of the BPW and the AB models

While the BPW model was reviewed in detail in Chapter 4, and its

extension in Chapter 5, for the sake of convenience and completeness,

we briefly describe it again in this section.

The Babu-Pati-Wilczek (BPW) model

The Dirac mass matrices of the sectors u, d, l and ν proposed

in Ref. [25] in the context of SO(10) or G(224)-symmetry have the

following structure:
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Mu =




0 ε′ 0

−ε′ ζu22 σ + ε

0 σ − ε 1



M0

u; Md =




0 η′ + ε′ 0

η′ − ε′ ζd22 η + ε

0 η − ε 1



M0

d

MD
ν =




0 −3ε′ 0

3ε′ ζu22 σ − 3ε

0 σ + 3ε 1



M0

u; Ml =




0 η′ − 3ε′ 0

η′ + 3ε′ ζd22 η − 3ε

0 η + 3ε 1



M0

d

(7.1)

These matrices are defined in the gauge basis and are multiplied

by Ψ̄L on left and ΨR on right. For instance, the row and column

indices of Mu are given by (ūL, c̄L, t̄L) and (uR, cR, tR) respectively.

These matrices have a hierarchical structure which can be attributed

to a presumed U(1)-flavor symmetry (see e.g. [28,62]), so that in mag-

nitudes 1 � σ ∼ η ∼ ε � ζu22 ∼ ζd22 � η′ > ε′. Following the

constraints of SO(10) and the U(1)-flavor symmetry, such a pattern

of mass-matrices can be obtained using a minimal Higgs system con-

sisting of 45H,16H,16H,10H and a singlet S of SO(10)1, which lead

1 Both the BPW and the AB models bear similarities in the choice of the Higgs system, yet

there are significant differences in the mass matrices. See text for details.
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to effective couplings of the form [28,62]:

LYuk =

h3316316310H

+ h2316216310H(S/M)

+ a2316216310H(45H/M
′)(S/M)p

+ g2316216316
d
H(16H/M

′′)(S/M)q

+ h2216216210H(S/M)2 (7.2)

+ g2216216216
d
H(16H/M

′′)(S/M)q+1

+ g1216116216
d
H(16H/M

′′)(S/M)q+2

+ a1216116210H(45H/M
′)(S/M)p+2

The powers of (S/M) are determined by flavor-charge assign-

ments (see Refs. [62] and [28]). The mass scales M ′, M ′′ and M

are of order Mstring or (possibly) of order MGUT [67]. Depending on

whether M ′(M ′′) ∼ MGUT or Mstring (see [67]), the exponent p(q) is

either one or zero [69]. The VEVs of 〈45H〉 (which is along B − L),

〈16H〉 = 〈16H〉 (along 〈ν̃RH〉) and 〈S〉 are of the GUT-scale, while

those of 〈10H〉 and 〈16dH〉 are of the electroweak scale [25, 68]. The
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combination 10H.45H effectively acts like a 120 which is antisymmet-

ric in family space and is along B − L. The hierarchical pattern is

determined by the suppression of the couplings by appropriate powers

of MGUT/(M , M ′orM ′′). The entry “1” in the matrices arises from

the dominant 16316310H term. The entries ε and ε′ arising from the

16i16j10H45H terms, are proportional to B−L and are antisymmetric

in family space. Thus (ε, ε′)→ −3(ε, ε′) as q → l. The parameter σ

comes from the 16216310H term and contributes equally to the up

and down sectors, whereas η̂ ≡ η − σ, arising from 16216316
d
H16H

operator, contributes only to the down and charged lepton sectors.

Similarly, ζu22 arises from the 16216210H term while ζd22 gets contri-

butions from both 16216210H and 16216216
d
H16H operators. Finally,

η′, which is present only in the down and charged lepton sectors, gets

a contribution from 16116216
d
H16H terms in the Yukawa Lagrangian

(see Eq. (7.2)).

The right-handed neutrino masses arise from the effective cou-

plings of the form [70]:

LMaj = fij16i16j16H16H/M (7.3)
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where the fij’s include appropriate powers of 〈S〉/M . The hierarchical

form of the Majorana mass-matrix for the RH neutrinos is [25]:

M ν
R =




x 0 z

0 0 y

z y 1



MR (7.4)

Following flavor charge assignments (see [62]), we have 1� y �

z � x. We expect Mst
<∼ M <∼ MPl where Mst ≈ 4×1017 GeV and thus

M ≈ 1018 GeV (1/2–2). The magnitude of MR can now be estimated

by putting f33 ≈ 1, 〈16H〉 ≈ 2×1016 GeV andM ≈ (1/2−2) 1018 GeV

[25,62]. This yields: MR = f33〈16H〉2/M ≈ (4× 1014 GeV)(1/2–2).

Thus the Majorana masses of the RH neutrinos are given by [25,

62]:

M3 ≈ MR ≈ 4× 1014 GeV (1/2-2),

M2 ≈ |y2|M3 ≈ 1012 GeV(1/2-2), (7.5)

M1 ≈ |x− z2|M3 ∼ (1/4-2)10−4M3

∼ 4× 1010 GeV(1/8− 4).

Note that both the RH neutrinos as well as the light neutrinos have

hierarchical masses.
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In the BPW model of Ref. [25], the parameters σ, η, ε etc. were

chosen to be real. Setting ζd22 = ζu22 = 0, and with mphys
t = 174 GeV,

mc(mc) = 1.37 GeV, ms(1 GeV) = 110 − 116 MeV, mu(1 GeV) = 6

MeV, and the observed masses of e, µ, and τ as inputs, for this CP

conserving case the following fit for the parameters was obtained in

Ref. [25]:

σ ≈ 0.110, η ≈ 0.151, ε ≈ −0.095, |η′| ≈ 4.4× 10−3,

ε′ ≈ 2× 10−4, M0
u ≈ mt(MX) ≈ 100 GeV,

M0
d ≈ mτ(MX) ≈ 1.1 GeV.

(7.6)

These output parameters remain stable to within 10% corresponding

to small variations (<∼ 10%) in the input parameters of mt, mc, ms,

and mu. These in turn lead to the following seven predictions for

the quarks and light neutrinos [25], [62], described in Chapter 4 (see

Eq. (4.12)): (i) mb(mb) ≈ (4.7–4.9) GeV, (ii)
√

∆m2
23 ≈ m(ν3) ≈

(1/24 eV)(1/2–2), (iii) Vcb ≈ 0.044, (iv) sin2 2θosc
νµντ
≈ 0.993, (v) Vus ≈

0.20, (vi)
∣∣∣Vub

Vcb

∣∣∣ ≈
√

mu

mc
≈ 0.07, (vii) md(1 GeV) ≈ 8 MeV.

All seven predictions are in good agreement with observation (to

within 10%) (see Chapter 4 for other predictions). To allow for CP

violation, this framework can be extended to include phases for the
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parameters in Ref. [28]. Remarkably enough, it was found that there

exists a class of fits within the SO(10)/G(224) framework, which cor-

rectly describes not only (a) fermion masses, (b) CKM mixings and

(c) neutrino oscillations [25, 62], but also (d) the observed CP and

flavor violations in the K◦ − K◦ and Bd − Bd systems (see Ref. [28]

for the predictions in this regard). A representative of this class of fits

(to be called fit A) is given by [28]:

σ = 0.109− 0.012i, η = 0.122− 0.0464i, ε = −0.103,

η′ = 2.4× 10−3, ε′ = 2.35× 10−4ei(69
◦), ζd22 = 9.8× 10−3e−i(149

◦), (7.7)

(M0
u, M0

d) ≈ (100, 1.1) GeV.

In this particular fit ζu22 is set to zero for the sake of economy in

parameters. However, allowing for ζu22
<∼ (1/3)(ζd22) would still yield

the desired results (see Fit B given in Chapter 5). Because of the

success of this class of fits in describing correctly all four features (a),

(b), (c) and (d) mentioned above - which is a non-trivial feature by

itself - we will use fit A as a representative to obtain the sfermion

mass-insertion parameters δ̂ijLL,RR, (δijLL)
RHN and δijLR,RL in the lepton

sector and thereby the predictions of the BPW model and its extension
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(Ref. [28]) for lepton flavor violation.

The fermion mass matrices Mu, Md and Ml are diagonalized at

the GUT scale ≈ 2× 1016 GeV by bi-unitary transformations:

Mdiag
u,d,l = X

(u,d,l)†
L Mu,d,lX

(u,d,l)
R (7.8)

The approximate analytic expressions for the matrices Xd
L,R can be

found in Chapter 5 and the appendices. The corresponding expres-

sions for X l
L,R can be obtained by letting (ε, ε′)→ −3(ε, ε′). For our

calculations, the mass-matrices have been diagonalized numerically.

The Albright-Barr Model

The Dirac mass matrices of the u, d, l and ν sectors are given

by [30]:
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Mu =




η̃ 0 0

0 0 ε̃/3

0 −ε̃/3 1



MU ; Md =




0 δ̃ δ̃′eiφ

δ̃ 0 σ̃ + ε̃/3

δ̃′eiφ −ε̃/3 1



MD

MD
ν =




η̃ 0 0

0 0 −ε̃

0 ε̃ 1



MU ; Ml =




0 δ̃ δ̃′eiφ

δ̃ 0 −ε̃

δ̃′eiφ σ̃ + ε̃ 1



MD

(7.9)

These matrices are defined with the convention that the left-

handed fermions multiply them from the right, and the left handed

antifermions from the left. The AB model involves a multitude of

Higgs multiplets to generate fermion masses and mixings including a

45H, two pairs of 16H + 16H, two pairs of 10H and several singlets of

SO(10). The “1” entry in the mass matrices arises from the dominant

16316310H operator. The ε̃ entry arises from operators of the form

16216310H45H (as in the BPW model). Since 〈45H〉 ∝ B − L, the

ε̃ entry is antisymmetric, and brings in a factor of 1/3 in the quark

sector. The σ̃ term comes from the operator 16216316H16′H by inte-

grating out the 10s of SO(10). (Note that the two 16s of Higgs, 16H
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and 16′H, are distinct). The 16′H breaks the electroweak symmetry but

does not participate in the GUT scale breaking of SO(10). The result-

ing operator is 5(162)10(163)〈5(16′H)〉〈1(16H)〉, where the 5,10 and

1 ⊂ SU(5). Thus the σ̃ contributes “lopsidedly” to the l and d ma-

trices. The entries δ̃ and δ̃′ arise from the operators 16i16j16H16′H,

like the σ̃ and contribute only to the l and d matrices. Finally, η̃,

which enters the u and ν Dirac mass matrices, is of order 10−5 and

arises from higher dimensional operators. The Majorana mass matrix

for the right-handed neutrinos in the AB model is taken to have the

following form:

MR =




c2η̃2 −bε̃η̃ aη̃

−bε̃η̃ ε̃2 −ε̃

aη̃ −ε̃ 1




ΛR (7.10)

with ΛR = 2.5 × 1014 GeV. The parameters a, b and c are of order

one to give the LMA solution for neutrino oscillations. Given below

is a fit to the parameters σ̃, ε̃, δ̃ etc. which gives the values of the

fermion masses and the CKM elements in very good agreement with
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observations [125,126]:

σ̃ = 1.78, ε̃ = 0.145, δ̃ = 8.6× 10−3, δ̃′ = 7.9× 10−3,

φ = 126◦, η̃ = 8× 10−6, (Mu, Md) ≈ (113, 1) GeV.

(7.11)

In the next section, we turn to lepton flavor violation.

7.3 The Three Sources of Lepton Flavor Violation

As done earlier in the study on CP and flavor violation (Chapters 5 and

6), we assume that flavor-universal soft SUSY-breaking is transmitted

to the SM-sector at a messenger scale M∗, where MGUT < M∗ ≤

Mstring. This may naturally be realized e.g. in models of mSUGRA

[46], or gaugino-mediation [54] or in a class of anomalous U(1) D-

term SUSY breaking models [49,50]. With the assumption of extreme

universality as in CMSSM, supersymmetry introduces five parameters

at the scale M∗:

mo,m1/2, Ao, tan β and sgn(µ).

For most purposes, we will adopt this restricted version of SUSY

breaking with the added restriction that Ao = 0 at M∗ [54]. However,

we will not insist on strict Higgs-squark-slepton mass universality.
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Even though we have flavor preservation at M∗, flavor violating scalar

(mass)2–transitions arise in the model through RG running from M∗

to the EW scale. As described below, we thereby have three sources

of lepton flavor violation [28,29].

(1) RG Running of Scalar Masses from M∗ to MGUT.

With family universality at the scale M∗, all sleptons have the

mass mo at this scale and the scalar (mass)2 matrices are diagonal.

Due to flavor dependent Yukawa couplings, with ht = hb = hτ(= h33)

being the largest, RG running from M∗ to MGUT renders the third

family lighter than the first two (see e.g. [26]) by the amount:

∆m̂2
b̃L

= ∆m̂2
b̃R

= ∆m̂2
τ̃L

= ∆m̂2
τ̃R
≡ ∆ ≈

(30m2
o

16π2

)
h2
t ln(M ∗/MGUT ) .(7.12)

The factor 30→12 for the case of G(224). The slepton (mass)2 ma-

trix thus has the form M̃
(o)

l̃
= diag(m2

o, m2
o, m2

o − ∆). As mentioned

earlier, the spin-1/2 lepton mass matrix is diagonalized at the GUT

scale by the matrices Xl
L,R. Applying the same transformation to the

slepton (mass)2 matrix (which is defined in the gauge basis), i.e. by

evaluating Xl†
L(M̃

(o)

l̃
)LL Xl

L and similarly for L→R, the transformed

slepton (mass)2 matrix is no longer diagonal. The presence of these
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off-diagonal elements (at the GUT-scale) given by:

(δ̂lLL,RR)ij =
(
X l†
L,R(M̃

(o)

l̃
)X l

L,R

)
ij
/m2

l̃
(7.13)

induces flavor violating transitions l̃iL,R → l̃jL,R. Here ml̃ denotes an

average slepton mass and the hat signifies GUT-scale values. Note that

while the (mass)2-shifts given in Eq. (7.12) are the same for the BPW

and the AB models, the mass insertions δ̂LL,RR would be different for

the two models since the matrices X l
L,R are different. As mentioned

earlier, the approximate analytic expressions for the matrices Xd
L,R for

the BPW-model can be found in [28]. The corresponding expressions

for X l
L,R can be obtained by letting (ε, ε′)→ −3(ε, ε′), though we use

the exact numerical results in our calculations.

(2) RG Running of the A−parameters from M∗ to MGUT.

Even if Ao = 0 at the scale M∗ (as we assume for concreteness,

see also [54]). RG running from M∗ to MGUT induces A−parameters

at MGUT, involving the SO(10)/G(224) gauginos; these yield chirality

flipping transitions (l̃iL,R → l̃jR,L). If we let M16H
≈ M10H

≈ MGUT,

following the general analysis given in [26], the induced A−parameter-

matrix for the BPW model is given by (see Chapter 6 and Appendix
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2 of Chapter 5 for details):

(Al
LR)BPW = (X l

L)
†




0 −285ε′ + 90η′ 0

285ε′ + 90η′ 90ζd22 − 27ζu22 −285ε+ 90η − 27σ

0 285ε+ 90η − 27σ 63



X l
R

×Z ln(
M ∗

MGUT
) (7.14)

where Z =
(

1
16π2

)
htg

2
10Mλ. The coefficients (63

2 ,
95
2 ,

90
2 ) are the sums

of the Casimirs of the SO(10) representations of the chiral superfields

involved in the diagrams. For the case of G(224), we need to use

the substitutions: (63
2 ,

95
2 ,

90
2 )→(27

2 ,
43
2 ,

42
2 ). The Xl

L,R are defined in Eq.

(7.13). The A-term contribution is directly proportional to the SO(10)

gaugino mass Mλ and thus to m1/2.

For the Albright-Barr model, the induced A−matrix for the

leptons is given by:

(Al
LR)AB = Z ln(

M ∗

MGUT
)(X l

L)
†




0 90δ̃ 90δ̃′eiφ

90δ̃ 0 −95ε̃

90δ̃′eiφ 90σ̃ + 95ε̃ 63



X l
R (7.15)

(Al
LR)AB is transformed to the SUSY basis by multiplying it with the

matrices that diagonalize the lepton mass matrix i.e. X l
L,R as in Eq.
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(7.14). The chirality flipping transition angles are defined as :

(δlLR)ij ≡ (Al
LR)ij

( vd
m2
l̃

)
= (Al

LR)ij
( vu
tan β m2

l̃

)
. (7.16)

(3) RG Running of scalar masses from MGUT to the RH neu-

trino mass scales:

We work in a basis in which the charged lepton Yukawa matrix

Yl and Mν
R are diagonal at the GUT scale. The off-diagonal elements

in the Dirac neutrino mass matrix YN in this basis give rise to lepton

flavor violating off-diagonal components in the left handed slepton

mass matrix through the RG running of the scalar masses from MGUT

to the RH neutrino mass scales MRi
[27, 127]. The RH neutrinos

decouple below MRi
. (For RGEs for MSSM with RH neutrinos see

e.g. Ref. [111]). In the leading log approximation, the off-diagonal

elements in the left-handed slepton (mass)2-matrix, thus arising, are

given by:

(δlLL)
RHN
ij =

−(3m2
o + A2

o)

8π2

3∑

k=1

(YN)ik(Y
∗
N)jk ln(

MGUT

MRk

) . (7.17)

The superscript RHN denotes the contribution due to the presence of

the RH neutrinos. For the case of the AB-model, in the above ex-

pression, (YN)ik(Y
∗
N)jk → (YN)kj(Y

∗
N)ki because of the definition of the
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mass-matrices. The masses MRi
of RH neutrinos are determined from

Eqs. (7.5) and (7.10) for the BPW and AB models respectively. The

total LL contribution, including post-GUT contribution (Eq. (7.13))

and the RH neutrino contribution (Eq. (7.17)), is thus:

(δlLL)
Tot
ij = (δ̂lLL)ij + (δlLL)

RHN
ij (7.18)

We will see in the next section that this contribution to µ →

eγ is very different in the two models (noted in part in Ref. [129])

and provides a way to distinguish the two models. We find that this

contribution in the AB model is a factor of ∼ 25 − 35 larger in the

the amplitude than that in the BPW model, and this difference arises

entirely due to the structure of the mass matrices. We also find that

this difference in the mass matrices, also gives rise to large differences

in the edm of the electron between the two models.

We now present some results on lepton flavor violation. In the

following section we will turn to CP violation, and see how the two

models compare.
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7.4 Results on Lepton Flavor Violation

The decay rates for the lepton flavor violating processes li → ljγ (i >

j) are given by (see the Appendix in Chapter 6):

Γ(l+i → l+j γ) =
e2m3

li

16π

(
|Aji

L |2 + |Aji
R|2

)
(7.19)

Here Aji
L is the amplitude for (li)

+
L → (lj)

+γ decay, while Aji
R =

Amp((li)
+
R → (lj)

+γ). The amplitudes Aji
L,R are evaluated in the mass

insertion approximation using the (δlLL)
Tot, δlRR and δlLR,RL calculated

as above. The general expressions for the amplitudes Aji
L,R in one loop

can be found in e.g. Refs. [111] and [115]. We include the contri-

butions from both chargino and neutralino loops with or without the

µ−term.

In Table 1 we give the branching ratio of the process µ → eγ

and the individual contributions from the sources δ̂jiLL, δ
ji
LR,RL and

(δjiLL)
RHN (see Eqs. (7.13), (7.16) and (7.17)) evaluated in the SO(10)-

BPW model, with some sample choices of (mo, m1/2). For these cal-

culations, to be concrete, we set ln
(

M∗

MGUT

)
= 1, i.e. M ∗ ≈ 3MGUT ,

tan β = 10, Ao( at M∗) = 0 and µ > 0. In the BPW model, for

concreteness, the RH neutrino masses are taken to be MR1
= 1010
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GeV, MR2
= 1012 GeV and MR3

= 5 × 1014 GeV (see Eq. (7.5)).

For the masses of the right-handed neutrinos in the AB model, we set

MR1
= 7.5 × 108 GeV, MR2

= 7.5 × 108 GeV and MR3
= 2.6 × 1014

GeV corresponding to a = c = 4 and b = 6 in Eq. (7.10). (The results

on the rate of µ→ eγ, presented in the following table do not change

very much for other (O(1)) values of a, b and c.). It should be noted

that the corresponding values for the G(224)-BPW model are smaller

than those for the SO(10)-BPW model approximately by a factor of 4

to 6 in the rate, provided ln(M ∗/MGUT ) is the same in both cases (see

comments below Eqs. (7.12) and (7.14)). A pictorial representation

of these results is depicted in Figs. 1 and 2.
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(mo, m1/2)(GeV) A
(1)
L (δ̂LL) A

(2)
L (δLR) AR(δRL) A

(3)
L ((δLL)RHN) Br(µ→ eγ)

(100, 250) BPW −1.2× 10−10 4.5× 10−13 −7.2× 10−11 3.7× 10−14 1.3× 10−7

(100, 250) AB −8.5× 10−11 1.9× 10−12 −6.4× 10−11 1.3× 10−12 8.0× 10−8

(500, 250) BPW −1.9× 10−12 1.0× 10−12 −1.6× 10−12 8.5× 10−14 2.2× 10−11

(500, 250) AB −1.4× 10−12 4.4× 10−12 −1.4× 10−12 2.9× 10−12 2.6× 10−10

(800, 250) BPW −3.5× 10−13 6.1× 10−13 −2.9× 10−13 4.9× 10−14 1.3× 10−12

(800, 250) AB −2.6× 10−13 2.5× 10−12 −2.6× 10−13 1.7× 10−12 1.1× 10−10

(1000, 250) BPW −1.5× 10−13 4.3× 10−13 −1.2× 10−13 3.5× 10−14 8.1× 10−13

(1000, 250) AB −1.1× 10−13 1.8× 10−12 −1.1× 10−13 1.2× 10−12 5.9× 10−11

(600, 300) BPW −1.3× 10−12 7.2× 10−13 −1.1× 10−12 5.9× 10−14 1.1× 10−11

(600, 300) AB −9.8× 10−13 3.0× 10−12 −9.7× 10−13 2.0× 10−12 1.3× 10−10
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(mo, m1/2)(GeV) A
(1)
L (δ̂LL) A

(2)
L (δLR) AR(δRL) A

(3)
L ((δLL)RHN) Br(µ→ eγ)

(100, 500) BPW −5.4× 10−11 3.5× 10−14 −2.8× 10−11 2.8× 10−15 2.6× 10−8

(100, 500) AB −4.0× 10−11 1.5× 10−13 −2.5× 10−11 9.7× 10−14 1.6× 10−8

(500, 500) BPW −4.3× 10−12 3.1× 10−13 −3.3× 10−12 2.5× 10−14 1.9× 10−10

(500, 500) AB −3.2× 10−12 1.3× 10−12 −3.0× 10−12 8.6× 10−13 7.5× 10−11

(1000, 500) BPW −4.8× 10−13 2.6× 10−13 −3.9× 10−13 2.1× 10−14 1.4× 10−12

(1000, 500) AB −3.5× 10−13 1.1× 10−12 −3.5× 10−13 7.3× 10−13 1.6× 10−11

(200, 1000) BPW −1.3× 10−11 8.8× 10−15 −7.1× 10−12 7.2× 10−16 1.6× 10−9

(200, 1000) AB −9.9× 10−12 3.7× 10−14 −6.4× 10−12 2.4× 10−14 1.0× 10−9

(1000, 1000) BPW −1.1× 10−12 7.7× 10−14 −8.3× 10−13 6.3× 10−15 1.2× 10−11

(1000, 1000) AB −7.9× 10−13 3.2× 10−13 −7.4× 10−13 2.2× 10−13 4.7× 10−12

Tab. 7.1:
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Table 1.Comparison between the AB and the BPW models of the various contributions

to the amplitude and of the branching ratio for µ → eγ for the case of SO(10). Each of

the entries for the amplitudes should be multiplied by a common factor ao. Imaginary

parts being small are not shown. Only the cases shown in bold typeface are in accord

with experimental bounds; the other ones are excluded. The first three columns denote

contributions to the amplitude from post-GUT physics arising from the regime of M ∗ →

MGUT (see Eqs. (7.13)–(7.16)), where for concreteness we have chosen ln(M ∗/MGUT ) = 1.

The fifth column denotes the contribution from the right-handed neutrinos (RHN). Note

that the entries corresponding to the RHN-contribution are much larger in the AB-model

than those in the BPW-model; this is precisely because the AB-model is lopsided while

the BPW model is hierarchical (see text). Note that for the BPW model, the post-GUT

contribution far dominates over the RHN-contribution while for the AB model they are

comparable. The last column gives the branching ratio of µ→ eγ including contributions

from all four columns. The net result is that the AB model is compatible with the empirical

limit on µ → eγ only for rather heavy SUSY spectrum like (mo, m1/2)
>
∼ (1000, 1000)

GeV, whereas the BPW is fully compatible with lighter SUSY spectrum like (mo, m1/2) ∼

(600, 300) GeV (see text) for the case of SO(10), and (mo, m1/2) ∼ (400, 250) GeV for
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G(224). These results are depicted graphically in Figs. 1 and 2.

Before discussing the features of this table, it is worth noting

some distinguishing features of the BPW and the AB models. As can

be inferred from Eqs. (7.14) and (7.15), for a given mo, the post-

GUT contribution for both the BPW and the AB models increases

with increasing m1/2 primarily due to the A-term contribution. It

turns out that for m1/2
>∼ 300 GeV, this contribution becomes so large

that Br(µ → eγ) exceeds the experimental limit, unless one chooses

mo
>∼ 1000 GeV, so that the rate is suppressed due to large slepton

masses. This effect applies to both models.

For the hierarchical BPW model, however, it turns out that the

RHN contribution is strongly suppressed both relative to that in the

lopsided AB-model; and also relative to the post-GUT contributions

(see discussion below). As a result the dominant contribution for

the BPW model comes only from post-GUT physics, which decreases

with decreasing m1/2 for a fixed mo. Such a dependence on m1/2

is not so striking, however, for the AB model because in this case,

owing to the lopsided structure, the RHN contribution (which is not
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so sensitive to m1/2) is rather important and is comparable to the

post-GUT contribution.

Tables 1 and 2 bring out some very interesting distinctions be-

tween the two models:

(1) The experimental limit on µ→ eγ is given by: Br(µ→ eγ) <

1.2× 10−11 [108]. This means that for the case of the AB model, with

dominant contribution coming not only from post-GUT physics but

also from the RHN contribution, only rather heavy SUSY spectrum,

(mo, m1/2) >∼ (1000, 1000) GeV, is allowed. The BPW-model, on the

other hand, allows for relatively low m1/2 (<∼ 300 GeV), with moderate

to heavy mo, which can be as low as about 600 GeV with m1/2 ≤ 300

GeV. As a result, whereas the AB model is consistent with µ→ eγ only

for rather heavy sleptons (>∼ 1200 GeV) and heavy squarks (>∼ 2.8 TeV),

the BPW model is fully compatible with much lighter slepton masses

∼ 600 GeV, with squarks being 800 GeV to 1 TeV. These results hold

for the case of SO(10). For the G(224) case the BPW model would be

consistent with the experimental limit on the rate of µ→ eγ for even

lighter SUSY spectrum including values of (mo, m1/2) ≈ (400, 250)
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GeV, which corresponds to mq̃ ∼ 780 GeV and ml̃ ∼ 440 GeV.

(2) From the point of view of forthcoming experiments we also

note that µ → eγ for the BPW case, ought to seen with an improve-

ment in the current limit by a factor of 10–50. For the AB case,

even with a rather heavy SUSY spectrum ((mo, m1/2) >∼ (1000, 1000)

GeV), µ→ eγ should be seen with an improvement by a factor of only

3–5. Such experiments are being planned at the MEG experiment at

PSI [128]

(3) As has been noted in [129] and in [29] (see Chapter 6), the

contribution to AL(µ→ eγ) due to RH neutrinos in the BPW model

is approximately proportional to η − σ ≈ 0.041, which is naturally

small because the entries η and σ are of O(1/10) in magnitude due to

the hierarchical structure. In the AB-model on the other hand, this

contribution is proportional to σ̃ + 2ε̃/3 ≈ 1.8. Thus we expect that

in amplitude, the RHN contribution in the BPW model is smaller

by about a factor of 40 than that in the AB model. This has two

consequences:

(a) First, there is a dramatic difference between the two mod-
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els which becomes especially prominent if one drops the post-GUT

contribution, that amounts to setting M ∗ = MGUT . In this case the

contribution to (µ→ eγ) comes entirely from the RHN contribution.

In this case the branching ratio of (µ→ eγ) in the two models differs

by a factor of about (40)2 ∼ O(103) as depicted in table 2.

(mo, m1/2)(GeV) Br(µ→ eγ)RHNAB Br(µ→ eγ)RHNBPW

(100, 250) 1.2× 10−11 9.7× 10−15

(800, 250) 2.1× 10−11 1.7× 10−14

(600, 300) 2.8× 10−11 2.5× 10−14

(500, 500) 5.3× 10−12 4.4× 10−15

(1000, 1000) 3.4× 10−13 2.8× 10−16

Table 2.Branching ratio for (µ → eγ) based only on the RHN contribution (this cor-

responds to setting M ∗ = MGUT ) for the AB and BPW models for different choices of

(mo, m1/2).

It can be seen from table 2 that with only the RHN contribution

(which would be the total contribution if M ∗ = MGUT ), the AB model

is consistent with the limit on µ → eγ for light SUSY spectrum, e.g.

for (mo, m1/2) = (100, 250) GeV. A similar analysis for the AB model
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was done in Ref. [126] (including the RHN contribution only), and

our results agree with those of Ref. [126]. One may expect that for

the same value of m1/2, increasing mo would result in decreasing the

branching ratio. For example, from Eq. (7.17), one may expect the

rate for µ→ eγ to be proportional to (m2
o/m

4
l̃
)2 ∼ 1/m4

o. However, the

associated loop function (see e.g. Ref. [115]) alters the dependence on

(mo, m1/2) drastically; it increases with increasing mo, for fixed m1/2.

The net result of these two effects is that for the same m1/2, a low

mo ∼ 100 GeV and a high mo ∼ 1000 GeV, give nearly the same

value of the branching ratio for µ → eγ with the inclusion of only

the RH neutrino contribution (see Fig. 3) . This can also be seen

in the results of Ref. [126] which analyzes the AB model. The RHN

contribution in the case of the BPW model is extremely small because

of its hierarchical structure, as explained above.

Of course, in the context of supersymmetry breaking as in mSUGRA

or gaugino-mediation, we expect M ∗ > MGUT , thus post-GUT con-

tributions should be included at least in these cases. With the in-

clusion of post-GUT physics,as mentioned above, the AB model is
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consistent with the experimental limit on µ → eγ, only for very

heavy SUSY spectrum with (mo, m1/2) >∼ (1000, 1000) GeV, i.e.

ml̃
>∼ 1200 GeV and mq̃

>∼ 2.8 TeV; whereas the BPW model is fully

compatible with the empirical limit for significantly lower values of

(mo, m1/2) ∼ (600, 300) GeV, i.e. ml̃ ∼ 600 GeV and mq̃ ∼ 1 TeV

(see table 1).

(b) Second, it was shown in Ref. [29] that the P-odd asymmetry

parameter for the process (µ+ → e+γ) defined as A(µ+ → e+γ) =

(|AL|2− |AR|2)/(|AL|2 + |AR|2) (where |AL| = |A(1)
L (δ̂LL)+A

(2)
L (δLR)+

A
(3)
L |), is typically negative for the BPW model except for cases with

very large m1/2 e.g. (mo, m1/2) = (1000, 1000) or (500, 500) GeV.

For the AB-case, due to the large RHN contribution, |AL| > |AR|

and therefore the P-odd asymmetry parameter A would typically be

positive. Thus the determination of A in future experiments can help

distinguish between the BPW and the AB models.

For the sake of completeness, we give the branching ratios of the

processes τ → µγ and τ → eγ calculated in the two models in table

3.
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(mo, m1/2)(GeV) AB-model BPW-model

Br(τ → µγ) Br(τ → eγ) Br(τ → µγ) Br(τ → eγ)

(100, 250) 2.9× 10−9 3.8× 10−11 2.6×10−7 1.6×10−9

(800, 250) 1.0× 10−8 4.5× 10−11 1.6×10−9 6.8×10−12

(600, 300) 1.4× 10−8 6.4× 10−11 2.1×10−9 8.4×10−12

(500, 500) 2.4× 10−9 1.0× 10−11 3.9×10−10 1.8×10−12

(1000, 1000) 1.5× 10−10 6.5× 10−13 2.5×10−11 1.1×10−13

Table 3.
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Table 3.Branching ratios for (τ → µγ) and (τ → eγ) evaluated in the two models

for the case of SO(10), for some sample choices of (mo, m1/2). We have set tanβ =

10, µ > 0 and ln
(

M∗

MGUT

)
= 1.

From table 3 we see that the predictions for the branching ratios

for (τ → µγ) and (τ → eγ) in either model are well below the current

experimental limits. The process (τ → µγ) can be probed at BABAR

and BELLE or at LHC in the forthcoming experiments; (τ → eγ)

seems to be out of the reach of the upcoming experiments.

In the following section we turn to CP violation in the two models.

7.5 Results on Fermion Masses, CKM Elements and CP Violation

CP violation in the BPW model [28] was studied in detail in Chapter

5 . We will recapitulate some of those results and do a comparative

study with the AB model. For any choice of the parameters in the

mass matrices (η, σ, ε etc. for the BPW case, and σ̃, ε̃ etc. for the AB

case), one gets the SO(10)-model based values of ρW and ηW , which

generically can differ widely from the SM-based phenomenological val-

ues. We denote the former by (ρ′W )BPW,AB and (η′W )BPW,AB and the
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corresponding contributions from the SM-interactions (based on ρ′W

and η′W ) by SM′. In our calculations we include both the SM′ contri-

bution and the SUSY contributions involving the sfermion (mass)2-

parameters(δijLL,RR,LR) which are in general CP violating. These pa-

rameters are completely determined in each of the two models for a

given choice of flavor preserving SUSY-parameters (i.e. mo, m1/2, µ,

and tan β; we set Ao = 0 at M ∗). Using the fits given in Eqs. (7.7) and

(7.11), we get the following values for the CKM elements and fermion

masses using mt(mt) = 167 GeV and mτ(mτ) = 1.777 GeV as inputs:

BPW:

((Vus, Vcb, |Vub|, |Vtd|)(≤ mZ))BPW ≈ (0.2250, 0.0412, 0.0037, 0.0086)

(ρ̄′W )BPW = 0.150, (η̄′W )BPW = 0.374

(mb(mb), mc(mc)) ≈ (4.97, 1.32) GeV

(ms(1GeV ), mµ) ≈ (101, 109) MeV

(m◦u(1GeV ), m◦d(1GeV ), m◦e) ≈ (10.1, 3.7, 0.13) MeV

(7.20)
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AB:

((Vus, Vcb, |Vub|, |Vtd|)(≤ mZ))AB ≈ (0.220, 0.041, 0.0032, 0.0081)

(ρ̄′W )AB = 0.148, (η̄′W )AB = 0.309

(mb(mb), mc(mc)) ≈ (4.97, 1.15) GeV

(ms(1GeV ), mµ) ≈ (177, 106) MeV

(m◦u(1GeV ), m◦d(1GeV ), m◦e) ≈ (3.2, 8.5, 0.56) MeV

(7.21)

The predictions of both models for the CKM elements are in

good agreement with the measured values, and (ρ̄′W ) and η̄′W ) are

close to the SM values in each case. It was remarked in Ref. [28] that

for the BPW model, the masses of the light fermions (u, d and e)

can be corrected by allowing for O(10−4 − 10−5) “11” entries in the

mass matrices which can arise naturally through higher dimensional

operators. Such small entries will not alter the predictions for the

CKM mixings.2 For the AB model, the masses of the bottom and

2 The superscript “◦” in Eq. (7.20), denotes that the masses of the light fermions (u,d and e) at

the 1 GeV scale need corrections of few MeV to be in accord with the observations. It was noted in

Ref. [28] that “11” entries in the mass matrices of order 10−4−10−5 arising from higher dimensional

operators can lead to a needed reduction in mu by 6-8 MeV and an increase in me and md by 0.36

and 2-3 MeV respectively at the GeV scale without altering the CKM elements. The “11” entries

in the up sector can differ from those in the down sector in sign because of contributions through

the operator 16116116
d
H(16H/M)(S/M)n which contributes only to me and md but not to mu.
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strange quarks have been lowered by the gluino loop contributions

from 5.12 GeV and 183 MeV to 4.97 GeV and 177 MeV respectively.

Thus from Eqs. (7.20) and (7.21), we see that both models are capable

of yielding the gross pattern of fermion masses and especially the CKM

mixings in good accord with observations; at the same time (ρ̄′W ) and

η̄′W ) are close to the phenomenological SM values.

We now present some results on CP violation. We include both

the SM′ and the SUSY contributions in obtaining the total contri-

butions (denoted by “Tot”). The SUSY contribution is calculated

using the squark mixing elements, δijLL,RR,LR, which are completely de-

termined in both models for any given choice of the SUSY breaking

parameters mo, m1/2, Ao, tan β and sgn(µ). As emphasized earlier, in

our calculations, the δijs include contributions from both post-GUT

physics as well as those coming from RG running in MSSM below the

GUT scale. (For details, see Ref. [28] and Chapter 5). We set Ao = 0

for concreteness, as before. Listed below in Table 4 are the results on

CP and flavor violations in the K◦−K◦ and Bd
◦−Bd

◦ systems for the

two models. For these calculations we set ln(M ∗/MGUT ) = 1.
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(mo, m1/2)(GeV) ∆ms.d.
K (GeV) εK(SM ′) εK(Tot) ∆mBd

(GeV) SψKS

Tot ≈ SM′ Tot ≈ SM′ Tot ≈ SM′

(300, 300) BPW 2.9× 10−15 2.8× 10−3 2.6× 10−3 3.5× 10−13 0.73

(300, 300) AB 2.8× 10−15 2.2× 10−3 2.2× 10−3 3.1× 10−13 0.66

(600, 300) BPW 2.9× 10−15 2.8× 10−3 2.0× 10−3 3.6× 10−13 0.73

(600, 300) AB 2.8× 10−15 2.2× 10−3 1.4× 10−3 3.1× 10−13 0.66

(1000, 250) BPW 2.9× 10−15 2.8× 10−3 1.4× 10−3 3.6× 10−13 0.74

(1000, 250) AB 2.8× 10−15 2.2× 10−3 −4.0× 10−3 3.13× 10−13 0.656

(1000, 500) BPW 2.9× 10−15 2.83× 10−3 2.6× 10−3 3.6× 10−13 0.73

(1000, 500) AB 2.8× 10−15 2.2× 10−3 2.0× 10−3 3.1× 10−13 0.66

(1000, 1000) BPW 2.9× 10−15 2.8× 10−3 2.9× 10−3 3.5× 10−13 0.72

(1000, 1000) AB 2.8× 10−15 2.2× 10−3 2.3× 10−3 3.1× 10−13 0.66

Table 4.
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Table 4. CP violation in theK◦−K◦ andBd−Bd systems as predicted in the BPW

and the AB models for some sample choices of (mo, m1/2) and a generic fit of parameters

(see Eq.(7.7) for the BPW case and Eq. (7.11) for the AB case). The superscript s.d.

on ∆mK denotes the short distance contribution. The predictions in either model are in

good agreement with experimental data for most of the cases displayed above, especially

given the uncertainties in the matrix elements (see text). It may be noted that values of

S(Bd → J/ψKS) as high as 0.74 in the AB model, and as low as 0.65 in the BPW model,

can be achieved by varying the fit.

In obtaining the entries for the K-system we have used cen-

tral values of the matrix element B̂K and the loop functions ηi (see

Refs. [74, 86] for definitions and values) characterizing short distance

QCD effects - i.e. B̂K = 0.86±0.13, fK = 159 MeV, η1 = 1.38±0.20,

η2 = 0.57 ± 0.01 and η3 = 0.47 ± 0.04. For the B-system we use

the central values of the unquenched lattice results: fBd

√
B̂Bd

=

215(11)(+0
−23)(15) MeV [87] and fBs

√
B̂Bs

= 262± 35 MeV [89]. Note

that the uncertainties in some of these hadronic parameters are in the

range of 15%; thus the predictions of the two SO(10) models as well

as those of the SM would be uncertain at present to the same extent.
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Some points of distinctions and similarities between the two mod-

els are listed below.

(1) First note that the data point (mo, m1/2) = (300, 300) GeV

displayed above, though consistent with CP violation, gives too large

a value for Br(µ→ eγ) for both BPW and AB models. All other cases

shown in table 4 are consistent with the experimental limit on µ→ eγ

for the BPW model. For the AB model on the other hand, as may

be inferred from table 1, the choice (mo, m1/2) = (1000, 1000) GeV is

the only case that is consistent with the limit on µ→ eγ (see table 1).

It is to be noted that for this case the squark masses are extremely

high (∼ 2.8 TeV), and therefore, in the AB model, once the µ → eγ

constraint is satisfied, the SUSY contributions are strongly suppressed

for all four entities: ∆mK , εK , ∆mBd
and S(Bd → J/ψKS).

(2) For the BPW model on the other hand, there are good regions

of parameter space allowed by the limit on the rate of µ → eγ (e.g.

(mo, m1/2) = (600, 300) GeV), which are also in accord with εK . The

SUSY contribution to εK for these cases is sizable (∼ 20 − 30%) and

negative, as desired.
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(3) We have exhibited the case (mo, m1/2) = (1000, 250) GeV

to illustrate that this case does not work for either model as it gives

too low a value for εK in the BPW model, and a negative value in the

AB model. In this case the SUSY contribution, which is negative, is

sizable because of the associated loop functions which are increasing

functions of (m2
sq/m

2
g̃).

(4) The predictions regarding ∆mK , ∆mBd
and S(Bd → J/ψKS)

are very similar in both the models, i.e they are both close to the SM

value.

(5) As noted above, there are differences between the predictions

of the BPW vs. the AB models for εK for a given (mo, m1/2). With

uncertainties in B̂K and the SUSY spectrum, εK cannot, however, be

used at present to choose between the two models, but if (mo, m1/2)

get determined (e.g. following SUSY searches at the LHC) and B̂K is

more precisely known through improved lattice calculations, εK can

indeed distinguish between the BPW and the AB models, as also

between SO(10) and G(224) models (for details on this see Ref. [28]).

This distinction can be sharpened especially by searches for µ→ eγ.
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(6) Bd → φKS, ∆mBs
: Including the SM′ and SUSY contribu-

tions to the decay Bd → φKS, we get the following results for the CP

violating asymmetry parameter S(Bd → φKS) in the two models:

BPW : S(Bd → φKS) ≈ +0.65− 0.74 .

AB : S(Bd → φKS) ≈ +0.61− 0.65 .

(7.22)

The values displayed above for the AB model are calculated for the fit

given in Eq. (7.11). For variant fits in the AB model, values as high

as S(Bd → φKS) ≈ 0.7 may be obtained. The SUSY contribution

to the amplitude for the decay Bd → φKS in the BPW model is

only of order 1%, whereas in the AB model it is nearly 5% for light

SUSY spectrum ((mo, m1/2) ∼ (300, 300) GeV) and about 1% for large

(mo, m1/2)(∼ (1000, 500) GeV). The main point to note is that in both

models S(Bd → φKS) is positive in sign and close to the SM prediction.

The current experimental values for the asymmetry parameter are

S(Bd → φKS) = (+0.50± 0.25+0.07
−0.04)BaBar; (+0.50± 0.21± 0.06)BELLE

[91]. It will thus be extremely interesting from the viewpoint of the two

frameworks presented here to see whether the true value of S(Bd →

φKS) will turn out to be close to the SM-prediction or not.
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Including SUSY contributions to Bs − Bs mixing coming from

δ23
LL,RR,LR,RL insertions we get:

BPW : ∆mBs
(Tot ≈ SM ′) ≈ 19.8± 4.9 ps−1.

AB : ∆mBs
(Tot ≈ SM ′) ≈ 19.0± 4.8 ps−1.

(7.23)

where we have used fBs

√
B̂Bs

= 262± 35 MeV [89]. Both predictions

are compatible with the present value ∆mBs
= 17.35+0.42

−0.21 (stat) ±0.07

(syst) ps−1 [89].

(7) Contribution of the A term to ε′K : Direct CP violation

in KL → ππ receives a new contribution from the chromomagnetic

operator Q−g = (g/16π2)(s̄Lσ
µνtadR− s̄RσµνtadL)Ga

µν, which is induced

by the gluino penguin diagram. This contribution is proportional to

Im[(δdLR)21− (δdLR)∗12], which is known in both models (see Eqs. (7.14)

and (7.15)). Following Refs. [93] and [94], one obtains:

Re(ε′/ε)g̃ ≈ 91 BG

(110 MeV

ms +md

)(500 GeV

mg̃

)
Im[(δdLR)21 − (δdLR)∗12](7.24)

where BG is the relevant hadronic matrix element. Model-dependent

considerations (allowing for m2
K/m

2
π corrections) indicate that BG ≈

1 − 4, and that it is positive [93]. Putting in the values of δdLR)12,21

obtained in each model with (mo, m1/2) = (a) (600, 300) GeV, and
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(b) (1000, 1000) GeV, we get:

BPW : Re(ε′/ε)g̃ ≈ +(3.7× 10−4)(BG/4)(10/ tan β) Case (a) .

≈ +(4.5× 10−5)(BG/4)(10/ tan β) Case (b) .

AB : Re(ε′/ε)g̃ ≈ −(3.7× 10−5)(BG/4)(10/ tan β) Case (a) .

≈ +(4.5× 10−6)(BG/4)(10/ tan β) Case (b) .

(7.25)

Whereas both cases (a) and (b) are consistent with the limit on µ→ eγ

for the BPW model, only case (b) is in accord with µ → eγ for the

AB model. The observed value of Re(ε′/ε)obs is given by Re(ε′/ε)obs =

(17± 2)× 10−4 [100]. At present the theoretical status of SM contri-

bution to Re(ε′/ε) is rather uncertain. For instance, the results of Ref.

[95] and [96] based on quenched lattice calculations in the lowest order

chiral perturbation theory suggest negative central values for Re(ε′/ε).

(To be specific Ref. [95] yields Re(ε′/ε)SM = (−4.0± 2.3)× 10−4, the

errors being statistical only.) On the other hand, using methods of par-

tial quenching [97] and staggered fermions, positive values of Re(ε′/ε)

in the range of about (3−13)×10−4 are obtained in [98]. In addition,

a recent non-lattice calculation based on next-to-leading order chiral

perturbation theory yields Re(ε′/ε)SM = (19 ± 2+9
−6 ± 6) × 10−4 [99].
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The systematic errors in these calculations are at present hard to es-

timate. The point to note here is that the BPW model predicts a

relatively large and positive SUSY contribution to Re(ε′/ε), especially

for case (a), which can eventually be relevant to a full understanding

of the value of ε′K , whereas this contribution in the AB model is rather

small for both cases. Better lattice calculations can hopefully reveal

whether a large contribution, as in the BPW model, is required or not.

(8) EDM of the neutron and the electron: RG-induced A-

terms of the model generate chirality-flipping sfermion mixing terms

(δd,u,lLR )ij, whose magnitudes and phases are predictable in the two

models (see Eq. (7.16)), for a given choice of the universal SUSY-

parameters (mo, m1/2, and tan β). These contribute to the EDM’s

of the quarks and the electron by utilizing dominantly the gluino and

the neutralino loops respectively. We will approximate the latter by

using the bino-loop. These contributions are given by (see e.g. [101]):

(dd, du)Aind
= (−2

9 ,
4
9)
αs

π e
mg̃

m2
sq
f
( m2

g̃

m2
sq

)
Im(δd,uLR)11

(de)Aind
= − 1

4π
αem

cos2θW
e
mB̃

m2
l̃

f
(m2

B̃

m2
l̃

)
Im(δlLR)11 .

(7.26)

The EDM of the neutron is given by dn = 1
3(4dd − du). The up sector
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being purely real implies du = 0 in the AB model. In table 5 we give

the values of dn and de calculated in the two models for moderate and

heavy SUSY spectrum and tan β = 10.
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(mo, m1/2)(GeV) AB-model BPW-model

dn (e-cm) de (e-cm) dn (e-cm) de (e-cm)

I (600, 300) 4.0× 10−26 1.6× 10−27 1.1×10−26 1.1×10−29

II (1000, 500) 1.4× 10−26 5.9× 10−28 3.9×10−27 4.1×10−30

III (1000, 1000) 5.7× 10−27 1.1× 10−27 1.7×10−27 7.7×10−30

Expt. upper bound 6.3× 10−26 4.3× 10−27 6.3× 10−26 4.3× 10−27

Table 5.
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Table 5. EDMs of neutron and electron calculated in the BPW and the AB

models for moderate and heavy SUSY spectrum and tanβ = 10 arising only from the

induced A-terms. While all cases are consistent with µ → eγ for the BPW model, only

case III is consistent for the AB model.

From the table above, we see that while both models predict that

the EDM of the neutron should be seen within an improvement by

a factor of 5–10 in the current experimental limit, their predictions

regarding the EDM of the electron are quite different. While the AB

model predicts that the EDM of the electron should be observed with

an improvement by a factor of 5–10 in the current experimental limit,

the prediction of the BPW model for the EDM of the electron is that

it is 2 to 3 orders of magnitude smaller than the current upper bound.

These predictions are in an extremely interesting range; while future

experiments on edm of the neutron can provide support for or deny

both models, those on the edm of the electron can clearly distinguish

between the two models.
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7.6 Conclusions

In summary, a comparative study of two realistic SO(10) models:

the hierarchical Babu-Pati-Wilczek (BPW) model and the lop-sided

Albright-Barr (AB) model is presented. Both models have been shown

to successfully describe fermion masses, CKM mixings and neutrino

oscillations. Here we compared the two models with respect to their

predictions regarding CP and flavor violations in the quark and lepton

sectors. CP violation is assumed to arise primarily through phases in

fermion mass matrices (see e.g. Ref. [28]). For all processes we include

the SM as well as SUSY contributions. For the SUSY contributions,

assuming that the SUSY messenger scale M ∗ lies above MGUT as in

a mSUGRA model, we include contributions from both post-GUT

physics as well as those arising due to RG running in MSSM below

the GUT scale. While this has been done before for the BPW model in

Refs. [28] and [29], this is the first time that flavor and CP violations

have been studied in the AB model including both post-GUT and

sub-GUT physics. This inclusion brings out important distinctions

between the two models.
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Previous works on lepton flavor violation in the AB model [124]

have included only the RHN contribution associated with sub-GUT

physics. It is important to note, however, that in both models the

sfermion-transition elements δijLL,RR,LR,RL and the induced A param-

eters get fully determined for a given choice of soft SUSY-breaking

parameters (mo, m1/2, Ao, tan β and sgn(µ)) and thus both contri-

butions are well determined. Including both contributions, we find

the following similarities and distinctions between the two models.

Similarities:

• Both models are capable of yielding values of the Wolfenstein pa-

rameters (ρ′W , η
′
W ) which are close to the SM values and simultane-

ously the right gross pattern for fermion masses, CKM elements and

neutrino oscillations. For this reason, both models give the values of

∆mK , ∆mBd
and S(Bd → J/ψKS) that are close to the SM predic-

tions and agree quite well with the data. The SUSY contribution to

these processes is small (<∼ 3%).

• For the case of εK , it is found that for the BPW model, the SM′ value

is larger than the observed value by about 20% for central values of
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B̂K and ηi, but the SUSY contribution is sizable and negative, so that

the net value can be in good agreement with the observed value for

most of the SUSY parameter space. For the AB model, for the choice

of input parameters as in Eq. (7.11), the SM′ value for εK is close to

the observed value. For most of the soft-SUSY parameter space the

AB model also yields εK in good agreement with the observed value

once one allows for uncertainties in the matrix elements (see table 4).

• Both models predict that S(Bd → φKS) should be ≈ +0.65− 0.74,

close to the SM predictions.

• The predictions regarding ∆mBs
are similar and compatible with

the experimental limit in both models.

• Both models predict the EDM of the neutron to be (few×10−26e−

cm) which should be observed with an improvement in the current

limit by a factor of 5–10.

Thus a confirmation of these predictions on the edm of the neu-

tron and S(Bd → φKS), would go well with the two models, but

cannot distinguish between them.

Distinctions:
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•The lepton sector brings in impressive distinction between the two

models through lepton flavor violation and through the EDM of the

electron as noted below.

• The BPW model gives BR(µ → eγ) in the range of 10−11 − 10−13

for slepton masses <∼ 500 GeV with the restriction that m1/2
<∼ 300

GeV (see remarks below table 1). Thus it predicts that µ → eγ

should be seen in upcoming experiments which will have a sensitivity

of 10−13 − 10−14 [128]. The contribution to µ → eγ in the AB model

is generically much larger than that of the BPW model. For it to be

consistent with the experimental upper bound on BR(µ→ eγ), the AB

model would require a rather heavy SUSY spectrum, i.e. (mo, m1/2) >∼

(1000, 1000) GeV, i.e. ml̃
>∼ 1200 GeV and mq̃

>∼ 2.8 TeV. With the

constraints on (mo, m1/2) as noted above, both models predict that

µ→ eγ should be seen with an improvement in the current limit which

needs to be a factor of 10–50 for the BPW model and a factor of 3–5

for the AB model.

• An interesting distinction between the AB and the BPW models

arises in their predictions for the EDM of the electron. The AB model
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give de in the range 10−27 − 10−28e cm which is only a factor of 3–

10 lower than the current limit. Thus the AB model predicts that

the EDM of the electron should be seen in forthcoming experiments.

The BPW model on the other hand predicts a value of de in the

range 10−29 − 10−30e cm which is about 100–1000 times lower than

the current limit.

• In the quark sector, another interesting distinction between

the two models comes from ε′/ε. The BPW model predicts that

Re(ε′/ε)SUSY ≈ +5 × 10−4(BG/4)(10/ tan β). Thus the BPW model

predicts that SUSY will give rise to a significant positive contribution

to ε′/ε, assumingBG is positive [93]. The AB model gives Re(ε′/ε)SUSY ≈

−5 × 10−5(BG/4)(10/ tan β). Thus it predicts that the SUSY contri-

bution is ∼ O(1/10) the experimental value and is negative. Since

the current theoretical status of the SM contribution to Re(ε′/ε) is

uncertain, the relevance of these contributions can be assessed only

after the associated matrix elements are known reliably.

In conclusion, the Babu-Pati-Wilczek model and the Albright-

Barr model have both been extremely successful in describing fermion
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masses and mixings and neutrino oscillations. In this note, including

all three important sources of flavor violation (two of which have been

neglected in the past), we have seen that CP and flavor violation can

bring out important distinctions between the two models, especially

through studies of µ → eγ and the edm of the electron. It will be

extremely interesting to see how these two models fare against the

upcoming experiments on CP and flavor violation.

7.7 Figures
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Fig. 7.1: Regions in the (mo, m1/2) plane allowed and disallowed by the current experi-

mental limit on Br(µ→ eγ)= 1.2× 10−11 as obtained for the BPW model with

ln(M∗/MGUT ) = 1, tanβ = 10 and µ > 0. The points allowed by the limit on

Br(µ→ eγ) are marked with a box, while the points disallowed by this limit are

marked with a star. The results include post-GUT and RHN contributions to

the rate of µ→ eγ. Note that a large region of parameter space is allowed.
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Fig. 7.2: Regions in the (mo, m1/2) plane allowed and disallowed by the current exper-

imental limit on Br(µ → eγ)= 1.2 × 10−11 as obtained for the AB model with

ln(M∗/MGUT ) = 1, tanβ = 10 and µ > 0. The points allowed by the limit on

Br(µ → eγ) are marked with a box, while the points disallowed by this limit

are marked with a star. The results include post-GUT and RHN contributions

to the rate of µ → eγ. Note that, only a rather heavy SUSY spectrum with

(mo, m1/2)
>
∼ (1000, 1000) GeV is allowed by the limit on µ → eγ. This corre-

sponds to a squark mass of ∼ 2.8 TeV and a slepton mass of ∼ 1200 GeV.
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Fig. 7.3: Curves of constant Br(µ → eγ) in the (mo, m1/2) plane with only the right

handed neutrino contribution for the case of the AB model. The thickest (blue)

line corresponds to the experimental limit of 1.2 × 10−11, the medium (green)

line to Br(µ→ eγ) = 10−12, and the thinnest (red) one to Br(µ→ eγ) = 10−13.

A similar analysis was carried out in Ref. [126].
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8. COUPLING UNIFICATION FOR AN EFFECTIVE G(224) OR

G(214) SYMMETRY: COMPATIBILITY WITH STRING

UNIFICATION

8.1 Introduction

It has been noted in Chapters 1 and 3 that the evidence in favor

of supersymmetric grand unification is now rather strong, especially

because of the observation that the three gauge couplings of the stan-

dard model unify at a scale MU ∼ 1016 GeV, in the context of super-

symmetry, and also because of the discovery of neutrino oscillations

with
√

∆m2(ν)23 ∼ 1/20 eV. It has been argued (see e.g. [62] and

Chapter 3) that a set of facts including including (a) neutrino os-

cillations, (b) certain empirically favored relations between fermion

masses: mb(GUT) ≈ mτ and m(ντDirac) ≈ mtop(GUT) (needed for

the success of the seesaw mechanism) and (c) baryogenesis via lep-

togenesis, strongly suggest that the symmetry above the unification



scale should maximally be either SO(10) [18] (possibly E6 [19]) or an

effective G(224) ≡ SU(2)L × SU(2)R × SU(4)c symmetry [12] as op-

posed to other alternatives such as SU(5) [13] or [SU(3)]3 [21]. As

noted in Chapter 3, the main advantages of SO(10) or G(224) arise

because they contain the symmetry SU(4)-color. Assuming that such

an effective theory has its origin within an underlying unified theory

that includes quantum gravity, it is natural to assume that it emerges

from the compactification of string/M-theory defined in higher di-

mensions, d=10/11, near the string scale (Mst
>∼ MGUT ) [36], and that

effective symmetry G(224) or G(214)≡ SU(2)L × U(1)I3R
× SU(4)c

or SO(10) breaks spontaneously by the Higgs mechanism near the

GUT scale MU ∼ 2 × 1016 GeV1 into the standard model symmetry

G(213) ≡ SU(2)L × U(1)Y × SU(3)c. (For attempts at obtaining a

string-derived SO(10) solution see Ref. [61] and for a string G(224)

solution see Ref. [20]). The theory thus described should also pos-

sess weak scale supersymmetry so as to avoid unnatural fine tuning in

1 Such a scale of breaking of G(224), G(214) or SO(10) is suggested in part by the observed

gauge coupling unification and in part by the observed scale of neutrino mass-splitting ∆m2(ν)23

(see chapters 3 and 4).
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Higgs mass and to ensure gauge coupling unification.

The common advantages of the symmetries SO(10) and G(224),

both viewed as having their origins in string/M-theory, were noted

in Chapter3. The two symmetries also lead to similar predictions

regarding fermion masses and neutrino oscillations [25] as discussed

in Chapter 4, as well as baryogenesis via leptogenesis [16]. Despite

these similarities, they differ, however, as regards the issues of (a)

doublet-triplet splitting, and (b) gauge coupling unification.

As noted by several authors [20,34], a string derived G(224) solu-

tion has the advantage over a SO(10)-solution in that doublet-triplet

splitting can emerge naturally for the former in 4D through string

compactification, while for an SO(10)-solution, this feature (needing

something like the Dimopoulos-Wilczek mechanism [35,130]) is yet to

be realized in the context of string theory.

On the other hand, an SO(10)-solution would have the a priori

advantage in that it would preserve gauge coupling unification in the

interval from Mst to MGUT regardless of the gap between them. By

contrast for a G(224)-solution, coupling unification (g2L = g2R = g4)
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can hold only at the string scale Mst [36] through the constraints

of string theory, even though G(224) is semi-simple. One would be

tempted to presume (see e.g. [62]) that such a string-scale unification

may still be compatible with the observed gauge coupling unification

if the string scale is not far above the conventional GUT-scale 2, where

G(224) should break spontaneously to the standard model symmetry.

In view of the advantage of G(224) (or G(214)) as regards the

problem of doublet triplet splitting, it is important to examine con-

cretely as to how well gauge coupling unification can be realized at

the string scale (Mst
>∼ MGUT ) for such a presumed string derived

G(224) or G(214) solution. The purpose of this chapter is to examine

precisely this issue.

In exploring this issue, I will consider two well-motivated low en-

ergy spectra, each of which can be tested at the LHC. One is the Min-

imal Supersymmetric Standard Model (MSSM) (defined in Chapter

2), and the other is the so called Extended Supersymmetric Standard

2 Mst ≈ (2 − 3)MGUT , say, with MGUT ∼ 2 × 1016 GeV. Despite the small gap between Mst

and MGUT , one would still have the advantages of G(224) by having the right-handed neutrino νR

with the desired protection of its mass by B−L and the SU(4)-color relations for fermion masses:

mb(GUT) ≈ mτ and m(ντ
Dirac) ≈ mtop(GUT) that are empirically favored.
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Model (ESSM) [37]. The latter adds two vector-like families having the

quantum numbers of 16V + 16V of SO(10) and masses of O(1 TeV)

to the MSSM spectrum. It has been motivated a priori on several

grounds [37]. Although less economical than MSSM, ESSM possesses

certain advantages over MSSM: (a) It raises the unified coupling αUnif

to a semi-perturbative value of 0.2 − 0.3 which may provide a bet-

ter chance to stabilize the dilaton than the case of MSSM for which

αUnif ∼ 0.04 [37, 131]. (b) With enhanced two loop effects, ESSM

raises the scale of unification, MU to (0.5–2)×1017 GeV [37,131], thus

reducing the gap between the gauge and the string unification scales3.

(c) The GUT prediction of α3(mZ) in ESSM is lowered compared to

that in MSSM to about 0.122. This is in better agreement with data

without needing large GUT-scale threshold corrections. (d) By rais-

ing the unification scale, it naturally enhances the GUT prediction

for proton lifetime [25] compared to the case of MSSM embedded in

a GUT, as needed by data. (e) Finally, it provides a simple reason

for inter family mass hierarchy [37, 131, 132]. In addition, the ESSM

3 A perturbative value for the string scale is given by Mst = e(1−γ)3−3/4

4π gstMPl ≈ gst×5.27×1017

GeV, where γ is the Euler constant. For gst ∼ O(1), Mst ≈ 5× 1017 GeV [36]
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provides a simple explanation of the indicated (g− 2)µ anomaly [133].

Such an explanation can be tested with improved searches for τ → µγ

and µ→ eγ decays.

With these advantages in mind, especially because of (b) and (c),

one may a priori expect that gauge coupling unification at a presumed

string scale exceeding the GUT scale (Mst
>∼ MGUT ) may be realized

more easily (without a need for extra Higgs multiplets at the GUT-

scale) for the case of ESSM embedded in G(224) or G(214) than that

of MSSM subject to the same embedding. I would, therefore, first

consider the case of ESSM embedded in G(224) or G(214), and then

that of MSSM with the same embedding.

I should clarify that ESSM, like MSSM, is based on the standard

model gauge symmetry G(213) = SU(2)L × U(1)Y × SU(3)c. Prior

works [37, 131] have examined the issue of gauge coupling unification

for the case of ESSM (thus G(213)) embedded directly into a GUT

SO(10)-symmetry near the coupling unification scale (MU
<∼ Mst).

This case would, however, either face the familiar doublet-triplet (D-

T) splitting problem in 4D if SO(10) emerges as an effective symmetry
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at Mst > MU , or would not necessarily have the advantages of SU(4)-

color in 4D (i.e. a νR with desired mass-protection, B − L, and the

desired fermion mass relations for the third generation, mentioned

above) if MU = MGUT = Mst, i.e. if string theory directly yields the

standard model symmetry G(213) in 4D at MGUT = Mst. Motivated

by the desire to avoid the D-T splitting problem and yet to retain the

advantages of SU(4)-color in 4D, I would explore the issue of gauge

coupling unification for the case of ESSM, based on the symmetry

G(213), being embedded into a G(224) (or G(214)) symmetry near the

conventional GUT-scale (MGUT ∼ 2×1016 GeV), and would examine if

coupling unification would occur in this case at a scale MU(> MGUT );

the scale MU may then be identified with the string scale. In this sense

my present work will directly explore the issue of coupling unification

for an effective non-simple symmetry like G(224) or G(214) and its

compatibility with string-unification. This distinguishes the present

work from all prior works [37,131].

In exploring the issue of coupling unification with ESSM or MSSM

embedded in G(224) (or (G(214)) above the GUT scale, I will also
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attempt to satisfy the following constraints simultaneously: (1) con-

sistent electroweak symmetry breaking, (2) non-violation of color and

charge, (3) a large enough Higgs mass with as little fine tuning as

possible, (4) lightest neutralino mass constraint, (5) the right masses

of the third generation fermions i.e. t, b and τ by allowing for B − L

dependent terms and (6) also consistent masses for the second gener-

ation masses and CKM mixings. We can see from the outset that it

is a challenging task to meet all these goals simultaneously.

I find that with the ESSM embedded into G(224), one can achieve

gauge coupling unification for the case of an effective G(224) symmetry

at a scale of ∼ 1.1× 1017 GeV with consistent electroweak symmetry

breaking and color and charge preservation. One obtains the mass

of the lightest Higgs to be 142 GeV; the neutralino mass constraint

can also be satisfied. This is encouraging. However, the masses of

t, b and τ do not simultaneously turn out to be in the right range

with the G(224) mass-relations holding at the GUT scale. If, instead,

we relax the SU(2)R symmetry, and consider the gauge symmerty

G(214) ≡ SU(2)L × U(1)I3R
× SU(4)c, we are able to meet all our
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goals listed above simultaneously, including the masses of t, b and τ

and the masses and mixings of the second generation. The embedding

of ESSM into G(224) is discussed in section 2, and that into G(214)

is discussed in section 3. In each case I attempt to achieve coupling

unification, while satisfying all the constraints listed above.

Finally, I also study the case of MSSM embedded in G(224) near

the conventional GUT-scale, with the aim of having G(224) unification

holding in the entire region spanning from MGUT to Mst. As is well

known, with the MSSM spectrum, the standard model gauge couplings

unify at about 2× 1016 GeV. If MSSM is embedded into G(224), then

the gauge couplings of G(224) will also unify at this scale. However,

since G(224) is not a simple group, the three couplings of G(224)

will ordinarily diverge above the GUT scale, making it inconsistent

with unification at the string scale. To preserve G(224) unification

above the GUT scale, I discuss how suitable Higgs multiplets can be

introduced which preserve gauge couplings unification in the interval

MGUT to Mst. A well known issue with gauge coupling unification

within MSSM is that it predicts α3(mZ) ≈ 0.127 ± 0.02, which is
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higher than the experimental value α3(mZ) = 0.1176 ± 0.002 [5]. It

is shown that the GUT scale threshold corrections to α3 due to the

Higgs-multiplets (including the additional Higgs-multiplets mentioned

above) and the super heavy gauge particles of G(224), can give rise to

a reduction in the value of α3(mZ), and thus a better agreement with

the data. This result is presented in section 4.

8.2 The Extended Supersymmetric Standard Model and its

embedding in G(224)

I will proceed by first recalling certain salient features of ESSM, and

refer to Refs. [37,131–133] for details. The ESSM contains, in addition

to the particle content of MSSM, two vector like families, which have

the quantum numbers of 16 + 16 of SO(10), with 16 ≡ (QL|Q′R) and

16 ≡ (QR|Q′L) where QL and QR transform as (2, 1, 4) of G(224) and

Q′L and Q′R as (1, 2, 4) of G(224). In addition there are two singlet

Higgs, HS and Hλ. These vector like families are assumed to have

masses in the range of 1 to a few TeV [37].

The addition of complete vector-like families satisfies the phe-
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nomenological constraints of neutrino counting at LEP, measurement

of the ρ-parameter as well as those of the oblique electroweak param-

eters (see e.g. [132]). Now the gauge couplings will still unify for the

case of ESSM (just as for MSSM) at one loop, at the canonical scale

of 2 × 1016 GeV, even after the addition of a complete set of vector-

like families, because they are complete SO(10)-multiplets. However,

with the addition of the two vector-like families, the unified coupling

(αunif) is raised, and thereby the two loop effects are enhanced. This

in turn raises the unification scale [37]. For the case of ESSM, αUnif

lies in the semi-perturbative range of 0.25–0.3 providing, as mentioned

above, a better chance to stablize the dilaton. The scale of unification

is increased to (0.5–2) × 1017 GeV, thus reducing the mismatch be-

tween the coupling unification and the string unification scales, while

at the same time enhancing the proton lifetime, as desired. Other

advantages of ESSM are mentioned in Sec. 1 of this chapter.
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8.2.1 Yukawa couplings in ESSM and inter family mass hierarchy

Assuming that the chiral families receive their masses almost entirely

through their mixing with the vector-like families (this may be justified

by suitable flavor symmetries), the 5 × 5 Yukawa coupling matrix of

the three chiral families and the two vector-like families is assumed to

have the form:

qiL QL Q′L

qiR

QR

Q′R




03×3 XfHf YfHc

Y
′†
c Hc zcHλ 0

X
′†
f Hf 0 z′fHλ




(8.1)

The symbols q, Q and Q′ stand for quarks as well as leptons, i = 1, 2, 3

is the generation index, the subscript f stands for u, d, e, ν, and c for

q, l. The fields Hf are the usual Hu and Hd of MSSM, while Hc and

Hλ are singlets of the standard model and acquire VEV ∼ 1TeV. The

couplings Xν and Yν are zero as the right handed neutrinos are super

heavy.

To see how ESSM can explain inter-family mass hierarchy, con-
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sider the following. Let the Yukawa couplings XT
f be denoted by

(x1, x2, x3)f , and Y T
f by (y1, y2, y3)f . It is always possible to rotate

the basis vectors so that Y T
f is transformed to (0, 0, 1)y, and simul-

taneously XT
f to (1, pf , 1)xf , X

′
f to (0, p′f , 1)x

′
f , and Y ′c to (0, 0, 1)y′.

It is now evident that the first generation is almost massless, even if

there is no hierarchy in the original basis. If, for simplicity we assume

xf = x′f , y = y′ and z = z′ at the unification scale and no B − L de-

pendent contribution, we get m0
t,b,τ ≈ (2xfy(〈HS〉〈Hf〉)/(z〈HV 〉) and

m0
c,s,µ ≈ (pfp

′
f/4)m

0
t,b,τ . For pf , p

′
f = 1/2–1/7, we can get a hierarchy

between the second and the third family ranging from 1/16–1/200.

In short, the ESSM spectrum can plausibly lead to large inter-family

mass hierarchy as observed, without introducing very small numbers

by hand.

8.2.2 Gauge coupling unification with ESSM embedded into G(224)

As it stands ESSM has a large number of parameters because of the

Yukawa couplings. A natural next step is to consider a larger gauge

group above the unification scale, so that some of the yukawa cou-

275



plings get related to each other. In the introduction, we mentioned

the advantages of having a symmetry that contains SU(4)-color. We

are then led to consider the embedding of ESSM based on the symme-

try G(213) into the symmetry group G(224). The idea is to achieve

unification of the gauge couplings of G(224) at a scale (few) ×M4

(where M4 denotes the scale at which G(224) (or G(214)) breaks into

the standard model gauge symmetry) [37]. This scale can then be

identified as the string scale, and the emergent theory will have the

advantages of both G(224) and ESSM.

If ESSM is embedded into G(224), there is a drastic reduction

in the number of Yukawa coupling parameters at the scale M4. The

Yukawa couplings are now related by G(224) symmetry. At M4 we

have: xu = xd = xl = xν ≡ X, x′u = x′d = x′l = x′ν ≡ X ′ (see

comments below), yu = yd = yl = yν ≡ Y , y′q = y′l ≡ Y ′, zq = zl ≡ Z

and z′u = z′d = z′l = z′ν ≡ Z ′. Since νR gets integrated out at the

unification scale, xν = yν = 0. The Higgs potential has a form as in

the Next to Minimal Supersymmetric Standard Model (NMSSM):

WH = k1HuHdHλ +
k2

6
H3
λ +

k3

6
H3
c (8.2)
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To break G(224) to ESSM and then to the standard model, we

make use of the following Higgs multiplets: (2, 2, 1), (1, 2, 4)H , (1, 2, 4)H

of G(224) and to allow forB−L dependence to obtain the right fermion

masses, a (1, 1, 15) is introduced. Due to a mixing between (2, 2, 1)d

i.e. the “down” sector of (2,2,1), and (1, 2, 4)H ⊕ (1, 2, 4)H the down

and lepton yukawa couplings xd, x
′
d, xl and x′l are multiplied with

cos γ which is the mixing between (2, 2, 1)d and (1, 2, 4)H ⊕ (1, 2, 4)H

(see e.g. [25]). Thus at the unification scale xd = xl = X cos γ and

x′d = x′l = X ′ cos γ, while xu = X and x′u = x′ν = X ′. Therefore

the top and bottom mass are related by mt/mb = tan β/ cos γ at the

unification scale. The singlets Hc and Hλ are used to give masses to

the vector like families, and get vacuum expectation values of a few

TeV.

The values of the yukawa couplings are chosen with the goal of

accomplishing the following tasks:

(1)Unification of the couplings of G(224): The scale M4 is

defined to be the scale where G(224) (or G(214)) breaks spontaneously

to the standard model gauge symmetry, G(213). Thus below M4, the
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effective gauge symmetry is that of G(213), and above it is that of

G(224). Based on observed gauge coupling unification as well as the

scale of neutrino (mass)2-splitting (see Chapters 3 and 4), we will

choose M4 ∼ 2 × 1016 GeV. Assuming that the low energy spectrum

below the scale M4 is given by that of ESSM, I now examine if the

gauge couplings of G(224) would unify at a scale MU > M4. The scale

MU may then be identified with the string scale. The gauge couplings

of G(224) are related to the standard model couplings at M4 by the

following relations:

g1(M4) =
1√

3
5g2

2R(M4)
+ 2

5g2
4(M4)

; g2(M4) = g2L(M4); g3(M4) = g4(M4).(8.3)

The values of g1(M4), g2(M4) and g3(M4) are chosen so that when

they are run down using the RGEs of ESSM (see Appendix .1), their

values at mZ are close to the observed values. The gauge couplings

of G(224) are run upward above M4 by using the RGEs of G(224)

(see Appendix .2) after matching them at M4 to the standard model

couplings as in Eq. (8.3).

(2)Consistent electroweak symmetry breaking: Soft mass

parameters and yukawa couplings are chosen so as to ensure consistent
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electroweak symmetry breaking. The Higgs potential of ESSM (see

Eq. (8.2)) is like that for NMSSM. The Higgs potential has to be

consistently minimized with respect to Hu, Hd and Hλ. The following

equations must be satisfied:

k2
1v

2
λ +m2

Hd
= −(k2vλ + A1)(k1vλ) tan β − m2

Z

2 cos 2β

k2
1v

2
λ +m2

Hu
= −(k2vλ + A1)(k1vλ) cot β +

m2
Z

2 cos 2β

sin 2β = 2vλ
m2

Hλ
+k2A2vλ+k2

1v
2+2k2

2v
2
λ

k1A1v2+2k1k2v2vλ

(8.4)

In these equations, A1 and A2 are the A-terms corresponding to the

yukawa couplings k1 and k2, vλ is the VEV of Hλ, v
2 = 〈Hu〉2 + 〈Hd〉2

and tan β = 〈Hu〉/〈Hd〉. The µ-term, as in NMSSM, is effectively

given by k1vλ and the B-term = k2vλ + A1.

(3) Color and charge preservation: Not only must there be

consistent electroweak symmetry breaking, but also, we must ensure

that color and electric charge are not broken. For this, the (mass)2 of

squarks and sleptons (including the ones belonging to the vector like

families) must remain positive as the soft masses (assumed universal)

are run down from the unification scale to the weak scale.

(4)Neutralino mass constraint: The universal gaugino mass
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at the unification scale, M1/2, is chosen so that the RG evolved lightest

neutralino mass is consistent with the current experimental bound of

48 GeV.

(5) Higgs mass limit: The mass of the lightest Higgs should

turn out to be larger than the LEP lower bound of 114 GeV [5].

Our goal is to try to make it as large as possible with minimum fine

tuning between the µ-term and the soft mass mHu
. This problem is

partly resolved with the NMSSM like Higgs structure. The masses of

the neutral Higgs bosons are calculated from the eigen values of the

3× 3 matrix formed from the second derivatives of the potential with

respect to Hu, Hd and Hλ. The details of this procedure, including

one loop corrections, can be found in e.g. [135].

(6)Masses of the third generation: The magnitude of the

Yukawa couplings of ESSM should be chosen at the GUT/string scale,

so that masses of the third generation quarks and leptons i.e. top,

bottom and tau-lepton, turn out to be close to the observed values.

We find that for the case of G(224), even with B − L contributions

from the (1, 1, 15)H , we are able to obtain right masses only for t and
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τ or t and b, but not all three together. Either the bottom mass

turns out to be too high or the τ mass too low. If instead of G(224),

the group SU(2)L×U(1)I3R
×SU(4)c ≡ G(214) is used, one is able to

obtain all masses correctly. The group G(214) is also able to satisfy all

the other requirements mentioned above. We will present the results

for G(224) in this section and for G(214) in the next section.

(7)Masses of the second family: Finally, we also want the

second generation masses mc, ms and mµ to come out in the right

range. In addition, the mixing of the second and third families, i.e.

the values of Vcb ≈ −Vts should be close to the observed value of

∼ 0.04. For the second generation masses and mixings, we introduce

the parameters pu, p
′
u, pd, p

′
d, pl and p′l as mentioned in section 2.1.

The masses of c, s and µ are obtained by diagonalizing the 4× 4 mass

matrix given in Eq. (8.1).

We now proceed to give the results of our study for the case of

G(224).
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8.2.3 Results for the case of ESSM embedded in G(224)

(1) Renormalization group analysis: We perform a two loop analy-

sis of gauge coupling renormalization group equations and a one loop

analysis for the Yukawa couplings. The running of the RGEs is mass

dependent with corrections for smooth crossover of beta functions at

the threshold of each particle. The renormalization group equations

can be found in the appendices. The yukawa couplings we have cho-

sen are much smaller compared to the gauge couplings (this may be

compared to the study in [37] where the yukawa couplings were chosen

to be
√

4π at the unification scale. See also [131]), therefore one loop

analysis of yukawa couplings is justified.

(2) The vector like family masses are chosen so that the vector

like quarks have a mass ∼ 3 TeV, while the vector like leptons have

masses ∼ 1 TeV. The difference by a factor of 3 between the vector-

like quarks and lepton masses represents QCD renormalization effects.

The superpartner masses for the vector like particles are taken to be

at the same scale as the corresponding fermion, i.e. m̃Q ∼ MQ and

m̃L ∼ ML, so that the scale of supersymmetry breaking is ∼ 1 TeV,
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while the vector like family scale is ∼ 3 TeV. Because of the vector-

like matter contribution to the beta functions, the gauge couplings

run faster and meet at a higher value of αUnif . We choose a scale M4

slightly below the ESSM unification scale. The effective symmetry

above the scale M4 is assumed to be G(224). Thus G(224) is presumed

to break spontaneously into the standard model symmetry G(213) at

the scaleM4, by the Higgs mechanism. As mentioned above, guided by

observed gauge coupling unification and neutrino-mass considerations

(see Chapters 3 and 4), M4 is chosen within a factor of two (say)

of the conventional MSSM unification scale MGUT = 2 × 1016 GeV.

For the results presented here, we choose M4 = 4 × 1016 GeV. The

matching conditions Eq. (8.3) between the gauge couplings of ESSM

and G(224) are applied at this scale.

The Higgs multiplets above M4 for the symmetry G(224) are cho-

sen to be (2, 2, 1), (1, 2, 4)H and (1, 2, 4)H . To get B −L dependence,

especially to get correct masses for t, b and τ , I add a (1,1,15). The

(1, 1, 15) contributes only to the SU(4)-color beta function and makes

the g4 coupling grow faster above M4. We are able to achieve G(224)
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unification both with and without the (1, 1, 15). If we let M4 take

the value of the conventional GUT scale i.e. 2 × 1016 GeV, without

(1, 1, 15), the G(224) couplings unify at α224 ∼ 0.35− 0.4 at a scale of

∼ 1017 GeV. When the (1, 1, 15) is added, with M4 = 4 × 1016 GeV,

the G(224) couplings unify at α224 ≈ 0.39 at a scale of 1.14 × 1017

GeV. If however, we had set M4 = 2× 1016 GeV, i.e. the conventional

GUT scale, because g4 runs faster due to the presence of (1, 1, 15),

the G(224) couplings meet at a value of α224 ∼ 0.7 which tends to be

non-perturbative. The meeting of G(224) gauge couplings when run

upward from M4 = 4 × 1016 GeV is shown in figure 8.1. The input

values for the gauge and yukawa couplings at M4 are taken to be:

M4 ≈ 4× 1016; g4 = 1.89; g2L = 1.63; g2R = 1.45;

X = X ′ = 0.26; Y = 0.7; Y ′ = 0.8; Z = 0.2; Z ′ = 0.5;

k1 = 1.04; k2 = 0.84; k3 = 1.32.

(8.5)

Below M4, the standard model gauge couplings are run down to

about mZ using the RGEs of ESSM. The inputs at M4 are obtained
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Fig. 8.1: Gauge coupling unification for ESSM embedded in G(224) at the scale M4 =

4 × 1016 GeV. The G(224) couplings unify with α224 ≈ 0.39 at a scale MU ≈

1.14× 1017 GeV, which may be identified with the string scale. The curves from

top to bottom are α4, α2L and α2R respectively.
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Fig. 8.2: Gauge coupling running below M4 = 4 × 1016 GeV down to mZ for ESSM

embedded in G(224) at the scale M4 = 4 × 1016 GeV. The curves from top to

bottom are α3, α2L and α1 respectively.

by using G(224) relations:

M4 ≈ 4× 1016; g3 = g4 = 1.89; g2 = g2L = 1.63;

g2R = 1.45⇒ g1 = 1.59;

X = X ′ = 0.26; Y = 0.7; Y ′ = 0.8; Z = 0.2; Z ′ = 0.5;

k1 = 1.04; k2 = 0.84; k3 = 1.32.

(8.6)

The running of the gauge couplings for the low energy regime (1 TeV

to M4) with ESSM spectrum is shown in figure 8.2.

(3) The next task is to satisfy the electroweak symmetry breaking

conditions given in Eq. (8.4). For this, the values of vλ, A1 and A2

286



are obtained by choosing the values of mZ , k1, k2 and m2
Hu,Hd,Hλ

. We

then run A1 and A2 from 1 TeV up to M4 to get A0. The values of

m2
Hu,Hd,Hλ

are obtained by running the relevant soft mass RGEs from

the scale M4 to lower momenta starting from a value of m2
0 at M4.

The choice of m0 is restricted by requiring that Eqs. (8.4) be satisfied

and imposing that the fine-tuning between m2
Hu

and |µ|2 be as small

as possible. We find that for tan β = 5 and O(1%) fine tuning, we

are able to satisfy the electroweak symmetry breaking conditions for

m0 ≈ 500 GeV and A0 ≈ 800 GeV.

(4) Neutralino mass constraint: Due to the addition of vector-like

matter, the gauge couplings g1, g2 and g3 run much faster compared

to the case of MSSM. Because of enhanced renormalization effects,

we find (see also [131]) that M1/2/M2 ≈ 9 and M2/M1 ≈ 1.6. If the

lightest neutralino has to be heavier than the current experimental

limit of ∼ 46 GeV, one needs a rather large M1/2 ∼ 750− 800 GeV.

(5) Color and Charge preservation: We have to make sure that

all scalar (squark and slepton) (mass)2 are positive. We find that

with our choice of universal soft terms i.e. m0, A0 and tan β and the
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yukawa couplings, all squark/slepton scalar (mass)2 turn out to be

positive, with exact diagonalization of mass matrices.

(6) Top mass: To get the top mass in the right range, one needs

rather large values of xu and x′u. We take xu = x′u = 0.26 at M4.

This has the effect that m2
Hu

turns negative at a high scale (∼ 1014

GeV) and is ≈ −(1000)2 GeV2 at the electroweak scale. To break

electroweak symmetry consistently, m2
Hu

must cancel |µ|2 up to m2
Z/2.

This is found to correspond to approximately 1% fine-tuning 4. If we

start with lower values of xu and x′u at M4 then the top mass turns

out to be ∼ 40 GeV, which is too low. Thus while we can get the top

mass correctly, we cannot do better than 1% fine-tuning in the Higgs

mass. This is, of course, not very different from the case of MSSM

(see Chapter 2).

(7) Mass of the b-quark and the τ lepton: Without including

B−L dependent terms in the mass-matrices, we cannot get the right

values of mb and mτ unless we choose a very small cos γ (∼ 0.04)

(cos γ ≈ tan βmb(GUT )
mt(GUT )). This would mean that tan β ∼ 1.2 which is

4 A measure of fine-tuning is defined in Chapter 2. A rough estimate of fine-tuning is
∣∣∣∣
|µ|2+m2

Hu

mH2
u

∣∣∣∣ ∼
m2

Z

|m2
Hu

|
≈ 0.01 for the above case.

288



excluded5. Even if we did allow for such small cos γ but no B − L

dependence, we can get the right mass for the b-quark, but the mass

of the τ -lepton turns out to be 0.65 GeV, which is smaller than the

experimental value by a factor of nearly 2.7. Thus we are forced to

include B−L dependent terms contributing to the masses of the third

family for the case of ESSM. If we have a (1, 1, 15) of G(224), we can

have the following yukawa couplings:

h(2, 1, 4)V (2, 1, 4)′V (1, 1, 15)H 1′V /M

h′(1, 2, 4)V (1, 2, 4)′V (1, 1, 15)H 1′V /M

ξ(2, 1, 4)V (1, 2, 4)i(1, 1, 15)H(2, 2, 1)H/M

ξ′(1, 2, 4)′V (2, 1, 4)i(1, 1, 15)H(2, 2, 1)H/M

(8.7)

The inclusion of these terms has the effect of changing the yukawa

couplings as follows:

zq → zq(1 + κ1); z′u,d → z′u,d(1 + κ2)

xu,d → xu,d(1 + δ1); x′u,d → x′u,d(1 + δ2)

(8.8)

where,

zqκ1 = h〈(1, 1, 15)H〉/M ; z′u,dκ2 = h′〈(1, 1, 15)H〉/M

xu,dδ1 = ξ〈(1, 1, 15)H〉/M ; x′u,dδ2 = ξ′〈(1, 1, 15)H〉/M
(8.9)

5 Values of 0.5 < tanβ < 2.4 are excluded by Higgs boson searches [134].
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For the lepton sector, (κ, δ) → −3(κ, δ). To get the masses of

b and τ in the right range, we choose, at the scale M4, the following

values κ1 = 0.1, κ2 = 0.2, δ1 = δ2 = −0.9. However, to get all three

mt, mb and mτ correctly, we still need to choose a very small value

of cos γ (∼ 0.03). We will see in the next section that if we relax

the SU(2)R relations on the yukawa couplings and consider the group

G(214), we are able to get the value of all three masses correctly.

(8) Higgs mass bound: The ESSM Higgs structure is like that of

NMSSM. Thus the mass of the lightest Higgs scalar is expected to be

larger than that in MSSM. To calculate the Higgs mass, we include

the radiative corrections due to top and stop loops. The masses of

the Higgs scalars are then obtained by diagonalizing the 3×3 (mass)2

matrix given by

M 2
ij =

∂2V0

∂φi∂φj
+

∂2V1

∂φi∂φj
(8.10)

where V0 is the tree level scalar potential and V1 are the radiative

corrections to the scalar potential, φi,j ≡ Hu, Hd, Hλ. The detailed

analysis can be found in [135]. For the lightest Higgs scalar we get

mH = 140 − 142 GeV, which is well above the LEP lower bound of
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114 GeV.

(9) Second family masses and mixing: As described in section 2.1,

the second family masses are obtained by introducing the parameters

pf and p′f . Choosing pu = p′u = −0.155 and pd = p′d = −0.41, we get

mc = 1.47 GeV, ms = 88 MeV (at mc and 1 GeV respectively) and

Vcb = 0.046. These value are reasonably close to the observed values

(The mass of the muon can be obtained by appropriately choosing

pl and p′l. We, however, do not quote it here as the mass of the tau

lepton turned out to be too low (see Table 1)). The results for this
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section are summarized in Table 1.

Quantity Value

α−1
1 (mZ), α−1

2 (mZ), α3(mZ) 58.5, 29.7, 0.121

mt(mt), mb(mb), mτ 166, 4.4, 0.65 GeV

mc(mc), ms(1 GeV), Vcb 1.47 GeV, 88 MeV, 0.046

mh 142 GeV

M
Q

(′)
L,R

, M
L

(′)
L,R

3.7 TeV, 880 GeV

mg̃ 276 GeV

Neutralino masses (48, 94, 1062, 1065) GeV

mq̃, mũ, md̃ 785, 776, 901 GeV

ml̃, mẽR
466, 522 GeV

At, Ab -301, -69 GeV

Ak1
, Ak2

, vλ 947, 1054, 4094 GeV

Table 1. Low energy spectrum for the case of ESSM embedded in G(224) above the scale

M4 = 4× 1016 GeV with input parameters as in Eq. (8.6), including B−L contributions.

Note that the value of mτ is too low.

In the next section, we will describe the embedding of ESSM in

G(214), which turns out to satisfy all constraints together with gauge
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coupling unification.

8.3 Gauge Coupling Unification with ESSM embedded into G(214)

In the previous section we saw that ESSM embedded in the group

G(224) turns out to be a plausible mechanism to reduce the mismatch

between the string and the unification scales, with the gauge couplings

of G(224) unifying at a scale of about 1017 GeV. The model can satisfy

the constraints of (i) electroweak symmetry breaking, (ii) Higgs mass,

(iii) lightest neutralino mass, (iv) color and charge preservation and

(v) the masses and mixings of the second family, but it does not give

the right masses of t, b and τ simultaneously. This is due to the fact

that the yukawa couplings xu and xd are constrained by the relation

xd = xu cos γ at M4 due to the G(224) symmetry. The same applies

to the couplings x′u and x′d. If instead of the symmetry G(224), we

had G(214) above the scale M4, these relations no longer hold. The

gauge group G(214) contains SU(4)-color, and therefore has all the

advantages associated with it (see chapter 3). It still has the advantage

that there is no problem of doublet-triplet splitting as the triplets can

293



be projected out by string compactification as in the case of G(224).

In this section, we will study the case of ESSM embedded in G(214)

at about the conventional GUT-scale. We find that for this case, one

can achieve the unification of the G(214) gauge couplings at a scale

∼ 1017 GeV, satisfying all the constraints listed above, and get the

right masses of t, b and τ .

8.3.1 Yukawa couplings in G(214)

The low energy spectrum for the case of ESSM embedded in G(214)

remains the same as in the previous section. Above the scale M4,

the symmetry SU(2)R is replaced by I3R. Thus all multiplets that

were doublets of SU(2)R in G(224) are now replaced by two different

multiplets of U(1)I3R
carrying ±1/2 of I3R each. Therefore, (1, 2, 4) of

G(224) is replaced by (1, 1/2, 4) and (1,−1/2, 4) of G(214); (2, 2, 1) of

G(224) is replaced by (2, 1/2, 1) and (2,−1/2, 1) of G(214), and so on.

Thus, the yukawa coupling X, which coupled (2, 1, 4)V , (1, 2, 4) and

(2, 2, 1) in the case of G(224), is now replaced by X1 and X2 coupling

(2, 1, 4)V with (1, 1/2, 4), (2, 1/2, 1) and (1,−1/2, 4), (2,−1/2, 1) re-
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spectively. The yukawa couplings in the case of G(214) are listed

below:

G(224) G(214)

X → X1, X2

X ′ → X1′, X2′

Y → Y

Y ′ → Y 1′, Y 2′

Z → Z

Z ′ → Z1′, Z2′

(8.11)

With this pattern of Yukawa couplings, xu and xd are independent of

each other at M4 (the same is true for x′u and x′d as well). This will

help in getting the masses of the top and bottom quarks correctly at

the low scale. We still need the B−L dependent couplings to get the

masses of b relative to τ correctly. The B−L dependent contributions

for the case of G(224) are listed in Eq. (8.7). For the case of G(214),

we should have h′ → h′1, h
′
2, ξ → ξ1, ξ2 and ξ′ → ξ′1, ξ

′
2 atM4 as for the

case of the X, X ′, Y ′ and Z ′ couplings. For the sake of concreteness

and economy of parameters, however, we will keep h′1 = h′2 = h′,
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ξ1 = ξ2 = ξ, and ξ′1 = ξ′2 = ξ′ as in the case of G(224). Allowing for

h′1 6= h′2, ξ1 6= ξ2 etc. would not alter the main features of our results.

8.3.2 Results for the case of ESSM embedded in G(214)

As in the case of G(224), we do two loop renormalization group run-

ning of G(214) couplings. The RGEs of G(214) are presented in Ap-

pendix .3. We find that we are able to achieve G(214) coupling uni-

fication at a scale of MU ∼ 7.1 × 1016 GeV, with α214 ≈ 0.31, taking

M4 to be 4 × 1016 GeV (see figure 8.3). The input values of G(214)

gauge couplings and the yukawa couplings at M4 are given below:

M4 ≈ 4× 1016; g4 = 1.843; g2L = 1.78; gI3R
= 1.61;

X1 = X1′ = 0.56; X2 = X2′ = 0.138;

Y = 0.7; Y 1′ = Y 2′ = 0.8; Z = 0.2; Z1′ = Z2′ = 0.5;

k1 = 1.4; k2 = 0.87; k3 = 1.34;

h = 0.02; h′ = 0.1; ξ = −0.24; ξ′ = −0.24.

(8.12)

At M4, the standard model couplings are related to the G(214)

gauge couplings by the relations given in Eq. (8.3), with g2R replaced

by gI3R
. The ESSM yukawa couplings are matched with the G(214)
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Fig. 8.3: Gauge coupling unification for ESSM embedded in G(214) at the scale M4 =

4 × 1016 GeV. The G(214) couplings unify at a scale of 7.1 × 1016 GeV with

α224 ≈ 0.31. The curves from top to bottom are α4, α2L and αI3R
respectively.

yukawa couplings at M4 and are run down to mZ along with the

gauge couplings. Including the effects of the B − L terms, the inputs
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for ESSM at M4 are:

zq = 0.22; zl = 0.14; zu = zd = 0.6; ze = zν = 0.2;

yu = yd = yl = 0.7; y′q = y′l = 0.8;

xu = x′u = 0.336; xd = x′d = 0.01;

xl = x′l = 0.038; xν = 1.23;

k1 = 1.4; k2 = 0.87; k3 = 1.34;

tan β = 5; cos γ = 0.125;

m0 = 500 GeV; A0 = 800 GeV; m1/2 = 750 GeV.

(8.13)

With these inputs we get α3(mZ) = 0.118 which is in excellent

agreement with data. The results are very similar to the case of G(224)

except for the masses of the third family. The only shortcoming of the

model with ESSM embedded in G(224) was that it could not give the

right masses of the third family. This problem is rectified with the case

of ESSM embedded in G(214). We are able to get the values of all

three masses mt, mb and mτ , in the right range. With the given soft

masses as in Eq. (8.13), consistent breaking of electroweak symmetry

is achieved along with color and charge conservation. The lightest

neutralino mass constraint is satisfied as in the case of G(224). The
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lightest Higgs scalar mass in this model is predicted to be ≈ 140 GeV

with ∼ 1% fine-tuning (see footnote 1). Lastly, the second family

masses and mixings also turn out to be in the right range. Using

pu = p′u = −0.155 and pd = p′d = −0.41, we get mc = 1.46 GeV,

ms = 84 MeV and Vcb = 0.046. For the mass of the muon, we choose

pl = p′l = 0.23, to get mµ = 106 MeV. The results of this section are
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summarized in Table 2.

Quantity Value

α−1
1 (mZ), α−1

2 (mZ), α3(mZ) 58.9, 29.7, 0.118

mt(mt), mb(mb), mτ 165, 4.38, 1.73 GeV

mc(mc), ms(1 GeV), mµ, Vcb 1.46 GeV, 84 MeV, 106 MeV, 0.046

mh 140 GeV

M
Q

(′)
L,R

, M
L

(′)
L,R

3.4 TeV, 900 GeV

mg̃ 290 GeV

Neutralino masses (57, 104, 1058, 1062) GeV

mq̃, mũ, md̃ 833, 823, 955 GeV

ml̃, mẽR
650, 616 GeV

At, Ab -312, -67 GeV

Ak1
, Ak2

, vλ 981, 922, 3654 GeV

Table 2. Low energy spectrum for the case of ESSM embedded in G(214) above the

scale M4 = 4×1016 GeV with input parameters as in Eq. (8.13). Note that this spectrum

is very similar to the one in Table 1, except for the value of mτ , which is close to the

observed value in this case.

To conclude this section, the case of ESSM embedded in G(214)
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provides a perfectly viable solution to the issue of matching coupling

unification (for G(214)) with a presumed string unification, in accord

with all phenomenological constraints. It has the advantages of both

ESSM and SU(4)-color. We are able to achieve G(214) coupling uni-

fication at a scale MU ∼ 7 × 1016 GeV, with the unified coupling

α214 ≈ 0.31 in the semi-perturbative range. The constraints of elec-

troweak symmetry breaking, color and charge conservation, lightest

neutralino mass bound and lightest Higgs mass limit are satisfied at

the same time. We are able to obtain consistently the masses and

mixings of the second and the third family fermions, providing an ex-

planation of inter-family mass hierarchy. The result of α3(mZ) = 0.118

is in excellent agreement with the data, which is an improvement over

the MSSM prediction of 0.127 (without GUT-scale threshold correc-

tions).

In the next section, we study the embedding of MSSM into G(224).

Our goal is to see if we can achieve G(224) unification by including

GUT scale threshold corrections.
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8.4 Gauge Coupling Unification with MSSM embedded into G(224)

Lastly, we consider the embedding of MSSM into G(224) at the con-

ventional GUT scale of 2×1016 GeV. MSSM is the simplest supersym-

metric extension of the standard model which includes only the super-

partners of the existing standard model fields and an extra Higgs-

doublet and its superpartner. If the gauge couplings of the standard

model are extrapolated from low energy data within MSSM, they are

known to unify at a scale of MGUT ≈ 2 × 1016 GeV [24], providing

support for the idea of grand unification as well as supersymmetry.

However, with MSSM, the gauge couplings unify for α3(mZ) ≈ 0.127

(if one ignores GUT-scale threshold corrections) which is somewhat

higher than the experimental value α3(mZ)|expt = 0.1176 ± 0.002 [5].

In the following, I examine if GUT scale threshold corrections due to

the embedding of MSSM in G(224) can reduce the predicted value of

α3(mZ), while coupling unification is preserved above MGUT up to a

presumed string-scale.

The case of MSSM has been studied thoroughly by several au-

thors. The constraints of (i) consistent electroweak symmetry break-
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ing, (ii) non-violation of color and charge, (iii) dersired SU(4)-color

fermion mass relations: mb(GUT) ≈ mτ and m(ντDirac) ≈ mtop(GUT),

are all known to be satisfied in accord with observations. Thus I will

have nothing new to add in this regard. We start with the follow-

ing spectrum above MGUT . Since the low energy theory is that of

MSSM, we have three generations of quarks and leptons. We choose

the following Higgs system above the GUT scale:

2× (1, 1, 15)H , (2, 1, 4)H ⊕ (2, 1, 4)H

(1, 2, 4)H ⊕ (1, 2, 4)H

and 2× (2, 2, 1)H

(8.14)

With this choice of Higgs-multiplets, the one loop beta functions

of the G(224) couplings for g2L, g2R and g4 (including the gauge, Higgs

and matter contributions) are equal, with

b2L = b2R = b4 = 6. (8.15)

Thus, in this case, we expect the three gauge couplings to run together

even above M4 = MGUT up to the scale which may be identified with

the string scale (Mst)
6. This would ensure G(224) unification at the

6 As αU (≈ 0.04) is small in this case, we expect that two loop corrections will not alter coupling

unification substantially.
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string scale consistent with the observed gauge coupling unification.

Our task now is to evaluate the threshold corrections to α3(mZ) due

to super heavy gauge particles and Higgs multiplets of G(224).

8.4.1 Threshold corrections to α3(mZ) due to gauge and Higgs

multiplets of G(224)

Denoting the one loop threshold corrections to α−1
i (mZ) by −∆i, so

that α−1
i (mZ) = α−1

U − (bi/2π) ln(mZ/MU) − ∆i, we obtain ∆i =

Σα(−bαi )/(2π) ln(mZ/MU). Here αU is the unified coupling, bi =

(33/5, 1, − 3) yield the one loop beta functions of the three gauge

couplings (i = 1, 2, 3) for the MSSM spectrum, and bαi is the contri-

bution to the evolution due to the αth sub-multiplet with mass mα.

The threshold correction to α3(mZ) is given by:

∆α3(mZ) = [α3(mZ)]2
(5

7
∆1 −

12

7
∆2 + ∆3

)
(8.16)

The decomposition of the various G(224) Higgs multiplets under

the standard model symmetry G(213) = SU(2)L×U(1)Y × SU(3)c is
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given below:

G(224) StandardModel

(1, 1, 15) (8, 1, 0) + (1, 1, 0) + (3, 1, 2/3) + (3, 1,−2/3)

(1, 2, 4) (3, 1, 2/3) + (3, 2,−1/3) + (1, 1, 0) + (1, 1,−1)

(1, 2, 4) (3, 1,−2/3) + (3, 2, 1/3) + (1, 1, 0) + (1, 1, 1)

(2, 1, 4) (3, 2, 1/6) + (3, 2,−1/2)

(2, 1, 4) (3, 2,−1/6) + (3, 2, 1/2)

(2, 2, 1) (1, 2, 1/2) + (1, 2,−1/2)

(8.17)

Using Eq. (8.16) and the decompositions of G(224) multiplets

into standard model multiplets given above, the threshold corrections

to α3(mZ) can easily be calculated. The correction to α3(mZ) due to

super heavy gauge particles is given by:

∆α3(mZ)Gauge =
−3 α2

3(mZ)

28π

[
15 ln

M 2(3, 1, 2/3)

M 2
U

+ 6 ln
M 2(1, 1,±1)

M 2
U

]
(8.18)

Defining the VEVs of M(3, 1, 2/3) and M(1, 1,±1) as M 2(3, 1, 2/3) =

4g2(c2 + a2) and M 2(1, 1,±1) = 4g2c2 and letting M 2
U = g2a2, the

above equation can be written as

∆α3(mZ)Gauge =
−3 α2

3(mZ)

28π

[
15 ln(4 + p2) + 6 ln p2

]
(8.19)
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where p = 4c2/a2. For p = 1, 2, the correction to α3(mZ) from super

heavy gauge particles is ≈ −0.011,−0.024 respectively.

As mentioned above, the Higgs system consists of 2× (1, 1, 15)H ,

(2, 1, 4)H ⊕ (2, 1, 4)H , (1, 2, 4)H ⊕ (1, 2, 4)H and 2× (2, 2, 1)H . Out of

these, one (2, 2, 1)H remains light to give Hu and Hd of MSSM. The

threshold corrections to α3(mZ) due to the Higgs multiplets getting

GUT scale VEVs is given below:

∆α3(mZ)Higgs = α2
3(mZ)
14π

[
30 ln M(3,1,2/3)15

MU
+ 15 ln M(3,1,2/3)16

MU

+2 ln M(3,1,−1/3)
MU

+ 6 ln M(1,1,±1)
MU

− 21 ln M(3,2,1/6)
MU

−13 ln M(3,2,−1/2)
MU

− 9 ln M(1,2,1/2)
MU

+ 42 ln M(8,1,0)
MU

+ 7 ln M(3,1,−1/3)16
MU

]

(8.20)

Setting all superheavy Higgs masses to M in Eq. (8.20) for the

sake of simplicity, we get

∆α3(mZ)Higgs =
59α2

3(mZ)

14π
ln

M

MU
(8.21)

Combining the effects in Eqs. (8.19) and (8.21), we find that for

p = 1− 2 and M/MU = 1− 3, we can get corrections to α3(mZ) rang-

ing between −(0.006–0.012), which gives α3(mZ) within one standard

deviation of the observed value, α3(mZ)|expt = 0.1176 ± 0.002. Thus

MSSM embedded in G(224), gives rise to improved GUT prediction
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for α3(mZ) when threshold corrections to gauge couplings due to the

super heavy gauge particles and the Higgs multiplets (as chosen above)

are taken into account. The gauge couplings of G(224) are guaranteed

to be unified in one loop, from the GUT scale, all the way up to the

string scale by the choice of the Higgs system. We expect that two

loop corrections will not alter coupling unification substantially, as in

this case αU is small ≈ 0.04. This model demonstrates that gauge uni-

fication can be consistently achieved together with string unification

for the case of MSSM embedded in G(224), for a suitable choice of

the Higgs system, with a clear benefit as regards the predicted value

of α3(mZ).

8.5 Conclusion

It is well known that when the gauge couplings of the standard model

are extrapolated upward within the context of supersymmetry, they

unify at a scale ∼ 2×1016 GeV. There are empirical reasons to believe

that the effective symmetry above the unification scale contains SU(4)-

color. Thus this symmetry could be G(224) or G(214) or maximally
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SO(10). The group G(224)/G(214) has the advantage over SO(10),

that within the context of string theory, the super heavy triplets are

projected out through the process of string compactification. A suit-

able doublet-triplet splitting mechanism has not been realized for the

case of SO(10) in the context of string theory. It has also been shown

that for the case of a string derived G(224), its gauge couplings can

unify at the string scale. However, since G(224) is semi-simple, we ex-

pect the gauge couplings to diverge above the unification scale. The

question of interest then is how to reconcile observed gauge coupling

unification with string unification for the cases of the standard model

gauge symmetry being embedded in G(224) or G(214) near the con-

ventional GUT scale. This was the purpose of my study in this chap-

ter. I have considered two kinds of low energy spectra: MSSM, as

well as a well motivated extension of MSSM, called the extended su-

persymmetric standard model, ESSM. The ESSM includes two vector

like families that transform as 16 + 16 of SO(10), in addition to the

particle content of MSSM. Motivations for the case of ESSM have

been noted in the introduction in Sec 8.1.
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I have first considered the case of ESSM embedded into G(224)

above the conventional GUT scale. In doing so, our goals are:

(1) to achieve gauge coupling unification for the case of G(224) above

the GUT scale,

(2) ensure consistent electroweak symmetry breaking,

(3) make sure that color and charge are not violated,

(4) obtain a large enough Higgs mass with as little fine tuning as

possible,

(5) satisfy the lightest neutralino mass constraint,

(6) obtain the right masses of the third generation particles i.e. t, b

and τ by allowing for B − L dependent terms in the mass matrices,

and

(7) obtain the second generation masses and their CKM mixings with

the third family in accord with observations.

We find that with ESSM embedded in G(224) the gauge cou-

plings of G(224) unify at a scale of 1.14× 1017 GeV providing a plau-

sible mechanism to reduce the mismatch between the string and the

unification scales. The model, of course, has all the advantages of
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ESSM mentioned in the introduction. It satisfies the constraints of

(i) electroweak symmetry breaking, (ii) Higgs mass limit, (iii) lightest

neutralino mass constraint, (iv)color and charge preservation and (v)

explaining the masses and mixings of the second family. However,

this model cannot give the right masses of t, b and τ simultaneously

as the yukawa couplings xu and xd are constrained by the relation

xd = xu cos γ, at M4 due to the G(224) symmetry relations. The

same applies to the couplings x′u and x′d.

I next examine the case of ESSM embedded into G(214) at bout

the GUT scale. This case turns out to satisfy all the constraints listed

above including the masses of the third family, together with gauge

coupling unification. The G(214) couplings unify at 7.1 × 1016 GeV

with the unified coupling α214 ≈ 0.31 being in the semi-perturbative

range. The constraints of electroweak symmetry breaking, color and

charge conservation, lightest neutralino mass bound and lightest Higgs

mass limit are satisfied. The masses and mixings of the second and

the third family turn out to be close to the observed values, providing

an explanation of inter-family mass hierarchy. The strong coupling,
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α3(mZ) is predicted to be around 0.118 in excellent agreement with

data, and an improvement over the MSSM prediction of 0.127.

Finally, we considered the case of MSSM spectrum at low energy

with the effective symmetry above the GUT scale being G(224). With

an appropriate choice of Higgs multiplets that break G(224) to MSSM,

we can ensure that the three couplings of G(224) remain unified from

the GUT scale all the way up to the string scale. The effect of GUT

scale threshold corrections on α3(mZ) with the given choice of Higgs

is calculated. It is found that these corrections can lower the GUT

prediction for the value of α3(mZ) to 0.115 − 0.121. This range lies

within one standard deviation of the measured value.

The three cases studied above lead us to conclude that it is pos-

sible to achieve gauge coupling unification at a scale MU ∼ 1017 GeV

exceeding the conventional GUT scale MGUT ≈ 2 × 1016 GeV within

an effective symmetry that contains SU(4)-color above the scale MGUT

such as G(224) or G(214). The coupling unification scale MU may

quite plausibly be identified with the string unification scale [36].

While providing coupling unification, this case provides all the advan-
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tages of SU(4)-color as regards an understanding of neutrino masses

(via the seesaw mwchanism) and implementing baryogenesis via lep-

togenesis, but without the problem of doublet-triplet splitting.
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APPENDIX



.1 Renormalization group analysis of ESSM

The renormalization group equations of the gauge couplings below

the unification scale with the addition of two vectorlike families and

Yukawa couplings as in Eq. (8.1) are given by:

dαi
dt

=
bi
2π
α2
i +

3∑

j=1

bij
8π2

α2
iαj −

α2
i

2π

1

16π2
bYuk
i (.22)

where

bi =




2ng + 3
5nH

−6 + 2ng + nH

−9 + 2ng




=




53
5

5

1




(.23)

bij =




38
15ng + 9

25nH
6
5ng + 9

5nH
88
15ng

2
5ng + 3

5nH −24 + 14ng + 7nH 8ng

11
15ng 3ng −54 + 68

3 ng




=




977
75

39
5

88
3

13
5 53 40

11
3 15 178

3




(.24)

Here ng is the number of generations. Including the vectorlike gener-

ations, this number is 5. The number of pairs of light Higgs doublets

is nH , which for the case of ESSM is one. The contribution due to the
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Yukawa couplings is given by:

bYuk
1 = 26

5 (x
′2
u + x2

u) + 14
5 (x

′2
d + x2

d) + 18
5 (x

′2
l + x2

l ) + 2
5(y

′2
q + z2

q )

+ 6
5(y

′2
l + z2

l + k2
1) + 16

5 (z
′2
u + y2

u) + 4
5(z

′2
d + y2

d) + 12
5 (z

′2
l + y2

l )

bYuk
2 = 6(x

′2
u + x2

u) + 6(x
′2
d + x2

d) + 2(x
′2
l + x2

l ) + 6(y
′2
q + z2

q )

+ 2(y
′2
l + z2

l + k2
1)

bYuk
3 = 4(x

′2
u + x2

u) + 4(x
′2
d + x2

d) + 4(y
′2
q + z2

q ) + 2(z
′2
u + y2

u)

+ 2(z
′2
d + y2

d)

(.25)

The one loop renormalization group equations for the ESSM

Yukawa couplings are given below:
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dx′u
dt = x′u

16π2

[
6x

′2
u + x

′2
d + y

′2
q + z

′2
u + 3x2

u + x
′2
ν + k2

1

−13
15g

2
1 − 3g2

2 − 16
3 g

2
3

]

dx′d
dt =

x′d
16π2

[
6x

′2
d + x

′2
u + y

′2
q + z

′2
d + 3x2

d + x2
l + x

′2
l + k2

1

− 7
15g

2
1 − 3g2

2 − 16
3 g

2
3

]

dxu

dt = xu

16π2

[
6x2

u + x2
d + y2

u + z2
q + 3x

′2
u + x

′2
ν + k2

1

−13
15g

2
1 − 3g2

2 − 16
3 g

2
3

]

dxd

dt = xd

16π2

[
6x2

d + x2
u + y2

d + z2
q + 3x

′2
d + x2

l + x
′2
l + k2

1

− 7
15g

2
1 − 3g2

2 − 16
3 g

2
3

]

dy′q
dt =

y′q
16π2

[
8y

′2
q + x

′2
u + x

′2
d + 2y

′2
l + z2

q + 3y2
u + 3y2

d + y2
l + 1

2k
2
3

− 1
15g

2
1 − 3g2

2 − 16
3 g

2
3

]

dyu

dt = yu

16π2

[
5y2

u + 6y
′2
q + 2x2

u + 2y
′2
l + z

′2
u + 3y2

d + y2
l + 1

2k
2
3

−16
15g

2
1 − 16

3 g
2
3

]

dyd

dt = yd

16π2

[
5y2

d + 6y
′2
q + 2x2

d + 2y
′2
l + z

′2
d + 3y2

d + y2
l + 1

2k
2
3

− 4
15g

2
1 − 16

3 g
2
3

]

dzq

dt =
zq

16π2

[
8z2

q + x2
u + x2

d + 2z2
l + z

′2
l + z

′2
ν + y

′2
q + 3z

′2
d + 3z

′2
u

+y2
l + 2k2

1 + 1
2k

2
2 − 1

15g
2
1 − 3g2

2 − 16
3 g

2
3

]

dz′u
dt = z′u

16π2

[
5z

′2
u + 6z2

q + 2x
′2
u + y2

u + 2z2
l + z

′2
l + 3z

′2
d + z

′2
ν

+2k2
1 + 1

2k
2
3 − 16

15g
2
1 − 16

3 g
2
3

]

dz′d
dt =

z′d
16π2

[
5z

′2
d + 6z2

q + 2x
′2
d + y2

d + 2z2
l + z

′2
l + 3z

′2
u + z

′2
ν

+2k2
1 + 1

2k
2
3 − 16

15g
2
1 − 16

3 g
2
3

]

dx′ν
dt = x′ν

16π2

[
4x

′2
ν + x

′2
l + y

′2
l + z

′2
ν + 3x2

u + 3x
′2
u + k2

1 − 3
5g

2
1 − 3g2

2

]

dx′l
dt =

x′l
16π2

[
4x

′2
l + x2

l + y
′2
l + z

′2
l + 3x2

d + 3x
′2
d + x

′2
ν + k2

1 − 9
5g

2
1 − 3g2

2

]

dxl

dt = xl

16π2

[
4x2

l + x
′2
l + y2

l + z2
l + 3x2

d + 3x
′2
d + k2

1 − 9
5g

2
1 − 3g2

2

]

dy′l
dt =

y′l
16π2

[
4y

′2
l + x

′2
l + x

′2
ν + y

′2
l + z2

l + 3y2
u + 3y2

d + 6y
′2
q

+1
2k

2
3 − 3

5g
2
1 − 3g2

2

]

dyl

dt = yl

16π2

[
3y2

l + 2x2
l + 2y

′2
l + z

′2
l + 3y2

u + 3y2
d + 6y

′2
q + 1

2k
2
3 − 12

5 g
2
1

]

dzl

dt = zl

16π2

[
4z2

l + x
′2
l + y

′2
l + z

′2
l + 6z2

q + z
′2
ν + 3z

′2
u + 3z

′2
d

+2k2
1 + 1

2k
2
2 − 3

5g
2
1 − 3g2

2

]

(.26)
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dz′l
dt =

z′l
16π2

[
3z

′2
l + 2x

′2
l + y

′2
l + 2z2

l + 6z2
q + z

′2
ν + 3z

′2
u + 3z

′2
d

+2k2
1 + 1

2k
2
2 − 12

5 g
2
1

]

dz′ν
dt = z′ν

16π2

[
3z

′2
ν + 2x

′2
ν + 2z2

l + 6z2
q + z

′2
l + 3z

′2
u + 3z

′2
d + 2k2

1 + 1
2k

2
2

]

dk1

dt = k1

16π2

[
4k2

1 + 3x2
u + 3x

′2
u + x

′2
ν + 3x2

d + 3x
′2
d + x2

l + x
′2
l

+6z2
q + 3z

′2
u + 3z

′2
d + 2z2

l + z
′2
l + z

′2
ν + 1

2k
2
2 − 3

5g
2
1 − 3g2

2

]

dk2

dt = k2

16π2

[
1
2k

2
2 + 2k2

1 + 6z2
q + 3z

′2
u + 3z

′2
d + 2z2

l + z
′2
l + z

′2
ν

]

dk3

dt = k3

16π2

[
1
2k

2
3 + 6y

′2
q + 3y2

u + 3y2
d + 2y

′2
l + y2

l

]

(.27)

.2 G(224) renormalization group equations

The renormalization group equations for the group G(224) with two

vector like families and (2, 2, 1), (1, 2, 4)H , (1, 2, 4)H and (1, 1, 15)H of

Higgs are given by:
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g2L

dt =
g3
2L

16π2

[
5 + 1

16π2

(
53g2

2L + 3g2
2R + 75g2

4 − (16(X2 +X
′2 + ξ2 + ξ

′2)

+8(Y 2 + Z2 + h2) + 4k2
1)

)]

g2R

dt =
g3
2R

16π2

[
9 + 1

16π2

(
3g2

2L + 81g2
2R + 105g2

4 − (16(X2 +X
′2 + ξ2 + ξ

′2)

+8(Y
′2 + Z

′2 + h
′2) + 4k2

1)
)]

g4
dt = g3

4

16π2

[
4 + 1

16π2

(
15g2

2L + 21g2
2R + 152g2

4 − (8(X2 +X
′2 + ξ2 + ξ

′2)

+4(Y 2 + Y
′2 + Z2 + Z

′2 + h2 + h
′2))

)]

X
dt = X

16π2

[
8X2 + 4X

′2 + Y 2 + Z2 + k2
1 + h2 + 2ξ2

−(15
2 g

2
4 + 3g2

2L + 3g2
2R)

]

X ′

dt = X ′

16π2

[
8X

′2 + 4X2 + Y
′2 + Z

′2 + k2
1 + h

′2 + 2ξ
′2

−(15
2 g

2
4 + 3g2

2L + 3g2
2R)

]

Y
dt = Y

16π2

[
10Y 2 + 8Y

′2 + 2X2 + Z
′2 + 1

2k
2
3 + h2 + 2ξ

′2

−(15
2 g

2
4 + 3g2

2L)
]

Y ′

dt = Y ′

16π2

[
10Y

′2 + 8Y 2 + 2X
′2 + Z2 + 1

2k
2
3 + h

′2 + 2ξ2

−(15
2 g

2
4 + 3g2

2R)
]

Z
dt = Z

16π2

[
10Z2 + 8Z

′2 + 2X2 + Y
′2 + 1

2k
2
2 + 4k2

1 + h2 + 2ξ2

−(15
2 g

2
4 + 3g2

2L)
]

Z ′

dt = Z ′

16π2

[
10Z

′2 + 8Z2 + 2X
′2 + Y 2 + 1

2k
2
2 + 4k2

1 + h
′2 + 2ξ

′2

−(15
2 g

2
4 + 3g2

2R)
]

h
dt = h

16π2

[
4h2 + 2h

′2 + 2X2 + Y 2 + 2Z2 − 15
2 g

2
4

]

h′

dt = h′

16π2

[
4h

′2 + 2h2 + 2X
′2 + Y

′2 + 2Z
′2 − 15

2 g
2
4

]

ξ
dt = ξ

16π2

[
8ξ2 + 4ξ

′2 + 4X2 + Y 2 + Z2 − (15
2 g

2
4 + 3g2

2L + 3g2
2R)

]

ξ′

dt = ξ′

16π2

[
8ξ

′2 + 4ξ2 + 4X
′2 + Y

′2 + Z
′2 − (15

2 g
2
4 + 3g2

2L + 3g2
2R)

]

k1

dt = k1

16π2

[
4k2

1 + 1
2k

2
2 + 8(X2 +X

′2 + Z2 + Z
′2)− (3g2

2L + 3g2
2R)

]

k2

dt = k2

16π2

[
1
2k

2
2 + 4k2

1 + 8(Z2 + Z
′2)

]

k3

dt = k3

16π2

[
1
2k

2
3 + 8(Y 2 + Y

′2)
]

(.28)
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.3 G(214) renormalization group equations

The renormalization group equations for the group G(214) with two

vector like families and (2, 2, 1), (1, 2, 4)H , (1, 2, 4)H and (1, 1, 15)H of
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Higgs are given by:

g2L

dt =
g3
2L

16π2

[
5 + 1

16π2

(
53g2

2L + 3g2
2R + 75g2

4

−(8(X12 +X1
′2 +X22 +X2

′2 + ξ2
1 + ξ

′2
1 + ξ2

2 + ξ
′2
2 )

+8(Y 2 + Z2 + h2) + 4k2
1)

)]

g2R

dt =
g3
2R

16π2

[
9 + 1

16π2

(
3g2

2L + 81g2
2R + 105g2

4

−(8(X12 +X1
′2 +X22 +X2

′2 + ξ2
1 + ξ

′2
1 + ξ2

2 + ξ
′2
2 )

+4(Y 1
′2 + Y 2

′2 + Z1
′2 + Z2

′2 + h1
′2 + h2

′2) + 4k2
1)

)]

g4
dt = g3

4

16π2

[
4 + 1

16π2

(
15g2

2L + 21g2
2R + 152g2

4

−(4(X12 +X1
′2 +X22 +X2

′2 + ξ2
1 + ξ

′2
1 + ξ2

2 + ξ
′2
2 )

+4(Y 2 + Z2 + +h2)

+2((Y 1
′2 + Y 2

′2 + Z1
′2 + Z2

′2 + h1
′2 + h2

′2)))
)]

X1
dt = X1

16π2

[
4(X12 +X22) + 2(X1

′2 +X2
′2) + Y 2 + Z2 + k2

1

+h2 + (ξ2
1 + ξ2

2)− (15
2 g

2
4 + 3g2

2L + 3g2
2R)

]

X2
dt = X2

16π2

[
4(X12 +X22) + 2(X1

′2 +X2
′2) + Y 2 + Z2 + k2

1

+h2 + (ξ2
1 + ξ2

2)− (15
2 g

2
4 + 3g2

2L + 3g2
2R)

]

X1′

dt = X1′

16π2

[
4(X1

′2 +X2
′2) + 2(X12 +X22)

+(Y 1
′2 + Y 2

′2 + Z1
′2 + Z2

′2)/2

+k2
1 + (h1

′2 + h2
′2)/2 + (ξ

′2
1 + ξ

′2
2 )− (15

2 g
2
4 + 3g2

2L + 3g2
2R)

]

X2′

dt = X2′

16π2

[
4(X1

′2 +X2
′2) + 2(X12 +X22)

+(Y 1
′2 + Y 2

′2 + Z1
′2 + Z2

′2)/2

+k2
1 + (h1

′2 + h2
′2)/2 + (ξ

′2
1 + ξ

′2
2 )− (15

2 g
2
4 + 3g2

2L + 3g2
2R)

]

Y
dt = Y

16π2

[
10Y 2 + 4(Y 1

′2 + Y 2
′2) + (X12 +X22) + (Z1

′2 + Z2
′2)/2

+1
2k

2
3 + h2 + (ξ

′2
1 + ξ

′2
2 )− (15

2 g
2
4 + 3g2

2L)
]

Y 1′

dt = Y 1′

16π2

[
5(Y 1

′2 + Y 2
′2) + 8Y 2 + (X1

′2 +X2
′2) + Z2

+1
2k

2
3 + (h1

′2 + h2
′2)/2 + (ξ2

1 + ξ2
2)− (15

2 g
2
4 + 3g2

2R)
]

Y 2′

dt = Y 2′

16π2

[
5(Y 1

′2 + Y 2
′2) + 8Y 2 + (X1

′2 +X2
′2) + Z2

+1
2k

2
3 + (h1

′2 + h2
′2)/2 + (ξ2

1 + ξ2
2)− (15

2 g
2
4 + 3g2

2R)
]

Z
dt = Z

16π2

[
10Z2 + 4(Z1

′2 + Z2
′2) + (X12 +X22) + (Y 1

′2 + Y 2
′2)

+1
2k

2
2 + 4k2

1 + h2 + (ξ2
1 + ξ2

2)− (15
2 g

2
4 + 3g2

2L)
]

(.29)

320



Z1′

dt = Z1′

16π2

[
5(Z1

′2 + Z2
′2) + 8Z2 + (X1

′2 +X2
′2) + Y 2

+1
2k

2
2 + 4k2

1 + (h1
′2 + h2

′2)/2 + (ξ
′2
1 + ξ

′2
2 )− (15

2 g
2
4 + 3g2

2R)
]

Z2′

dt = Z2′

16π2

[
5(Z1

′2 + Z2
′2) + 8Z2 + (X1

′2 +X2
′2) + Y 2

+1
2k

2
2 + 4k2

1 + (h1
′2 + h2

′2)/2 + (ξ
′2
1 + ξ

′2
2 )− (15

2 g
2
4 + 3g2

2R)
]

h
dt = h

16π2

[
4h2 + (h1

′2 + h2
′2) + (X12 +X22) + Y 2 + 2Z2 − 15

2 g
2
4

]

h1′

dt = h1′

16π2

[
2(h1

′2 + h2
′2) + 2h2 + (X1

′2 +X2
′2)

+(Y 1
′2 + Y 2

′2)/2 + (Z1
′2 + Z2

′2)− 15
2 g

2
4

]

h2′

dt = h2′

16π2

[
2(h1

′2 + h2
′2) + 2h2 + (X1

′2 +X2
′2)

+(Y 1
′2 + Y 2

′2)/2 + (Z1
′2 + Z2

′2)− 15
2 g

2
4

]

ξ1
dt = ξ1

16π2

[
4(ξ2

1 + ξ2
2) + 2(ξ

′2
1 + ξ

′2
2 ) + 2(X12 +X22)

+Y 2 + Z2 − (15
2 g

2
4 + 3g2

2L + 3g2
2R)

]

ξ2
dt = ξ2

16π2

[
4(ξ2

1 + ξ2
2) + 2(ξ

′2
1 + ξ

′2
2 ) + 2(X12 +X22)

+Y 2 + Z2 − (15
2 g

2
4 + 3g2

2L + 3g2
2R)

]

ξ′1
dt = ξ′1

16π2

[
4(ξ

′2
1 + ξ

′2
2 ) + 2(ξ2

1 + ξ2
2) + 2(X1

′2 +X2
′2) + (Y 1

′2 + Y 2
′2)/2

+(Z1
′2 + Z2

′2)/2− (15
2 g

2
4 + 3g2

2L + 3g2
2R)

]

ξ′2
dt = ξ′2

16π2

[
4(ξ

′2
1 + ξ

′2
2 ) + 2(ξ2

1 + ξ2
2) + 2(X1

′2 +X2
′2) + (Y 1

′2 + Y 2
′2)/2

+(Z1
′2 + Z2

′2)/2− (15
2 g

2
4 + 3g2

2L + 3g2
2R)

]

k1

dt = k1

16π2

[
4k2

1 + 1
2k

2
2 + 4(X12 +X22 +X1

′2 +X2
′2)

+8Z2 + 4(Z1
′2 + Z2

′2)− (3g2
2L + 3g2

2R)
]

k2

dt = k2

16π2

[
1
2k

2
2 + 4k2

1 + 8Z2 + 4(Z1
′2 + Z2

′2)
]

k3

dt = k3

16π2

[
1
2k

2
3 + 8Y 2 + 4(Y 1

′2 + Y 2
′2)

]

(.30)
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I. APPENDIX: RENORMALIZATION GROUP ANALYSIS OF

MSSM

I.1 Renormalization Group Equations of Gauge Couplings and

Gaugino masses with softly broken supersymmetry

The running of gauge couplings at two loops in a supersymmetric the-

ory is scheme independent. The two loop running of gauge couplings

is given by [137]:

dg

dt
=

1

16π2
β(1)
g +

1

(16π2)2
β(2)
g (I.1)

β(1)
g = g3

[
S(R)− 3C(G)] (I.2)

β(2)
g = g5

[
−6C(G)2 + 2C(G)S(R) + 4S(R)C(R)

]
(I.3)

−g3Y ijkYijkC(k)/d(G)

where C(R) is the quadratic Casimir invariant for the representation

R and S(R) is the Dynkin index. The Y ijk are the Yukawa couplings of

the superfields ΦiΦjΦk, and Yijk = (Y ijk)∗, and d(G) is the dimension



of the adjoint. The β-function of the gaugino masses in the DR scheme

are as follows:

dM

dt
=

1

16π2
β

(1)
M +

1

(16π2)2
β

(2)
M (I.4)

β
(1)
M = g2M

[
2S(R)− 6C(G)] (I.5)

β
(2)
M = g4M

[
−24C(G)2 + 8C(G)S(R) + 16S(R)C(R)

]
(I.6)

+2g2(Aijk −MY ijk)YijkC(k)/d(G)

The Aijk are the scalar trilinear couplings between the fields φiφjφk,

and have mass dimension one. For the case of the standard model

gauge group SU(3)×SU(2)×U(1), the running of the gauge couplings

(including supersymmetry) is given by:

dga
dt

=
g3
a

16π2
B(1)
a +

g3
a

(16π2)2

[ 3∑

b=1

B
(2)
ab g

2
b −

∑

x=u,d,e

Cx
aTr(Y

†
xYx)

]
(I.7)

where the indices a, b run over the three gauge couplings, B
(1)
a =

(33
5 , 1,−3), and

B
(2)
ab =




199
25

27
5

88
5

9
5 25 24

11
5 9 14




Cu,d,e
a =




26
5

14
5

18
5

6 6 2

4 4 0




(I.8)
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The two loop gaugino mass RGEs can be written in terms of the

B
(1)
a , B

(2)
ab and Cu,d,e

a as:

dMa

dt
=

2g2
a

16π2
B(1)
a Ma +

2g2
a

(16π2)2

[ 3∑

b=1

B
(2)
ab g

2
b (Ma +Mb) (I.9)

+
∑

x=u,d,e

Cx
a (Tr(Y

†
xAx)−MaTr(Y

†
xYx))

]

I.2 Renormalization group equations of Yukawa couplings and

A-terms

The one loop renormalization group equations for the Yukawa cou-

plings Y ijk and the trilinear couplings Aijk are given by:

dY ijk

dt
=
Y ijp

16π2

(1

2
YprsY

krs − 2δkpg
2C(p)

)
+ (k ↔ i) + (k ↔ j) (I.10)

dAijk

dt
=

1

16π2

[1

2
AijlYlmnY

mnk + Y ijlYlmnA
mnk (I.11)

−2
(
Aijk − 2MY ijk

)
g2C(k) + (k ↔ i) + (k ↔ j)

]
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Applying this to the case of MSSM we get:

dYu

dt = Yu

16π2

[
3Tr(YuY

†
u ) + 3Y †uYu + Y †d Yd − 16

3 g
2
3 − 3g2

2 − 13
15g

2
1

]

dYd

dt = Yd

16π2

[
Tr(3YdY

†
d + YeY

†
e ) + 3Y †d Yd + Y †uYu − 16

3 g
2
3 − 3g2

2 − 7
15g

2
1

]

dYe

dt = Ye

16π2

[
Tr(3YdY

†
d + YeY

†
e ) + 3Y †e Ye − 3g2

2 − 9
5g

2
1

]

dAu

dt = Au

16π2

[
3Tr(YuY

†
u ) + 5Y †uYu + Y †d Yd − 16

3 g
2
3 − 3g2

2 − 13
15g

2
1

]

+ Yu

16π2

[
6Tr(AuY

†
u ) + 4Y †uAu + 2Y †dAd

+32
3 g

2
3M3 + 6g2

2M2 + 26
15g

2
1M1

]

dAd

dt = Ad

16π2

[
Tr(3YdY

†
d + YeY

†
e ) + 5Y †d Yd + Y †uYu − 16

3 g
2
3 − 3g2

2 − 7
15g

2
1

]

+ Yd

16π2

[
Tr(6AdY

†
d + 2AeY

†
e ) + 4Y †dAd + 2Y †uAu

+32
3 g

2
3M3 + 6g2

2M2 + 14
15g

2
1M1

]

dAe

dt = Ae

16π2

[
Tr(3YdY

†
d + YeY

†
e ) + 5Y †e Ye − 3g2

2 − 9
5g

2
1

]

+ Ye

16π2

[
Tr(6AdY

†
d + 2AeY

†
e ) + 4Y †e Ae + 6g2

2M2 + 18
5 g

2
1M1

]

(I.12)

I.3 Renormalization group equations of scalar (mass)2 terms

The renormalization group equations of scalar mass2 couplings of fields

φ∗iφj are given by:

d(m2)j
i

dt = 1
16π2

[
1
2YipqY

pqn(m2)jn + 2YipqY
jpr(m2)qr + 1

2Y
jpqYpqn(m

2)ni

+AipqA
jpq − 8δjiMM †g2C(i) + 2g2T

Aj

i Tr(TAm2)
] (I.13)
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The RGEs of the soft masses can then be calculated:

dm2
Hu

dt = 6Tr
16π2

[
(m2

Hu
+m2

Q)Y †uYu + Y †um
2
uYu + A†uAu

]

−6g2
2|M2|2 − 6

5g
2
1|M1|2 + 3

5g
2
1S

dm2
Hd

dt = Tr
16π2

[
6(m2

Hd
+m2

Q)Y †d Yd + 6Y †dm
2
dYd + 2(m2

Hd
+m2

L)Y
†
e Ye

+2Y †em
2
eYe + 6A†dAd + 2A†eAe

]

−6g2
2|M2|2 − 6

5g
2
1|M1|2 − 3

5g
2
1S

dm2
Q

dt = 1
16π2

[
(2m2

Hu
+m2

Q)Y †uYu + (2m2
Hd

+m2
Q)Y †d Yd

+(Y †uYu + Y †d Yd)m
2
Q + 2Y †um

2
uYu + 2Y †dm

2
dYd

+2A†uAu + A†dAd − 32
3 g

2
3|M3|2 − 6g2

2|M2|2 − 2
15g

2
1|M1|2 + 1

5g
2
1S

]

dm2
u

dt = 1
16π2

[
(4m2

Hu
+ 2m2

u)YuY
†
u + 4Yum

2
QY
†
u

+2YuY
†
um

2
u + 4AuA

†
u − 32

3 g
2
3|M3|2 − 32

15g
2
1|M1|2 − 4

5g
2
1S

]

dm2
d

dt = 1
16π2

[
(4m2

Hd
+ 2m2

d)YdY
†
d + 4Ydm

2
QY
†
d + 2YdY

†
dm

2
d

+4AdA
†
d − 32

3 g
2
3|M3|2 − 8

15g
2
1|M1|2 + 2

5g
2
1S

]

dm2
L

dt = 1
16π2

[
(2m2

Hd
+m2

L)Y
†
e Ye + 2Y †em

2
eYe + Y †e Yem

2
L + 2A†eAe

−6g2
2|M2|2 − 6

5g
2
1|M1|2 − 3

5g
2
1S

]

dm2
e

dt = 1
16π2

[
(4m2

Hd
+ 2m2

e)YeY
†
e + 4Yem

2
LY
†
e + 2YeY

†
em

2
e

+4AeA
†
e − 24

5 g
2
1|M1|2 + 6

5g
2
1S

]

(I.14)

Finally, the renormalization group equations of the supersymmet-
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ric µ-parameters and the corresponding soft parameter B are given by:

dµ

dt
=

µ

16π2

[
Tr(3YuY

†
u + 3YdY

†
d + YeY

†
e )− 3g2

2 −
3

5
g2

1

]
(I.15)

dB

dt
=

B

16π2

[
Tr(3YuY

†
u + 3YdY

†
d + YeY

†
e )− 3g2

2 −
3

5
g2

1

]
(I.16)

+
µ

16π2

[
Tr(6AuY

†
u + 6AdY

†
d + 2AeY

†
e ) + g2

2M2 +
6

5
g2

1M1

]
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II. APPENDIX: WOLFENSTEIN PARAMETERIZATION OF

THE CKM MATRIX AND THE UNITARY TRIANGLE

The Cabibbo-Kobayashi-Maskawa (CKM) matrix connects the weak

eigenstates (d′, s′, b′) to the corresponding mass eigenstates (d, s, b)

through




d′

s′

b′




=




Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb







d

s

b




= VCKM




d

s

b




(II.1)

The CKM matrix is a 3× 3 unitary matrix, which in general, can be

parameterized by three real rotational angles and six complex phases.

Out of these six phases, five can be rotated away by redefinition of

quark fields. Thus, the CKM matrix can be parameterized by three

angles and a single phase. This phase leading to an imaginary part

of the CKM matrix is a necessary ingredient to describe CP violation

within the standard model.



II.1 Wolfenstein Parametrization of the CKM Matrix

The Wolfenstein parametrization is an approximate parametrization

of the CKM matrix in which each element is expanded as a power

series in the small parameter λ = |Vus| ≈ 0.22 [77,136].

VCKM =




1− λ2

2 λ Aλ3(ρ− iη)

−λ 1− λ2

2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1




+O(λ4). (II.2)

II.1.1 Wolfenstein Parametrization beyond the leading order

The higher order corrections to the Wolfenstein parametrization are

found by the requirement of unitarity. The corrections to Eq. (II.2)
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in higher powers of λ are given by the following expressions:

Vud = 1− λ2

2 − 1
8λ

4 +O(λ6)

Vus = λ+O(λ7)

Vub = Aλ3(ρ− iη)

Vcd = −λ+ 1
2A

2λ5
[
1− 2(ρ+ iη)

]
+O(λ7)

Vcs = 1− λ2

2 − 1
8λ

4(1 + 4A2) +O(λ6)

Vcb = Aλ2 +O(λ8)

Vtd = Aλ3
[
1− (ρ+ iη)(1− λ2

2 )
]
+O(λ7)

Vts = −Aλ2 + 1
2A(1− 2ρ)λ4 − iηAλ4 +O(λ6)

Vtb = 1− 1
2A

2λ4 +O(λ6)

(II.3)

The quantities ρ(1− λ2

2 ) and η(1− λ2

2 ) are often represented by ρ and

η respectively.

II.2 The Unitarity Triangle

The unitarity of the CKM matrix give rise to the following relation:

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0. (II.4)

This relation can be represented as a “unitarity” triangle in the com-

plex (ρ, η) plane.
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γ

α

(ρ, η)

(1, 0)

β

(0, 0)

ρ + iη 1− ρ− iη

The unitarity triangle.

The invariance of Eq. (II.4) under any phase transformations

implies that the corresponding triangle is rotated in the (ρ, η) plane

under such transformations. Since the angles and the sides in these

triangles remain unchanged, they are phase convention independent,

and are physical observables. The area of the unitarity triangle is

related to the measure of CP violation JCP ≡ V ∗tsV
∗
cdVcsVtd:

|JCP | = 2A4, (II.5)

where A4 denotes the area of the unitarity triangle. The construction

of the unitarity triangle is done as follows: 1. The term VcdV
∗
cb in Eq.

(II.4), is real to an excellent accuracy (O(λ7)), with |VcdV ∗cb| = Aλ3.

We can the scale the other terms in Eq. (II.4) by Aλ3. Keeping O(λ5))
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terms

1

Aλ3
VudV

∗
ub = ρ+ iη;

1

Aλ3
VtdV

∗
tb = 1− (ρ+ iη). (II.6)

2. Thus Eq. (II.4) represents a triangle in the complex (ρ, η) plane.

3. The triangle gives rise to the following formulae:

sin(2α) =
2η(η2 + ρ2 − ρ)

(ρ2 + η2)((1− ρ)2 + η2)
(II.7)

sin(2β) =
2η(1− ρ)

((1− ρ)2 + η2)
(II.8)

sin(2γ) =
2ρη

ρ2 + η2 =
2ρη

ρ2 + η2)
(II.9)

The lengths CA and BA in the triangle, to be denoted by Rc and

Rt respectively are given by:

Rb ≡
|VudV ∗ub|
|VcdV ∗cb|

=
√
ρ2 + η2 = (1− λ2

2
)
1

λ

∣∣∣∣
Vub
Vcb

∣∣∣∣ (II.10)

Rt ≡
|VtdV ∗tb|
|VcdV ∗cb|

=
√

(1− ρ)2 + η2 =
1

λ

∣∣∣∣
Vtd
Vcb

∣∣∣∣ (II.11)

The angle β and γ of the unitarity triangle are related directly

to the complex phases of the CKM elements Vtd and Vub respectively,

through:

Vtd = |Vtd|e−iβ, Vub = |Vub|e−iγ (II.12)
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The angle α can be found using the relation:

α + β + γ = 180◦. (II.13)

The unitarity triangle gives a full description of the CKM ma-

trix, as also a measure of CP violation within the standard model,

indicating that quark mixing and CP violation are closely related.
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III. APPENDIX: CP VIOLATION IN THE K MESON SYSTEM

For an extensive review see Ref. [136].

III.1 K◦ −K◦ mixing

In the standard model, the strong interaction conserves strangeness,

while the weak interaction does not. The strong interaction eigenstates

K◦ and K◦ can mix through weak interactions such as K◦ � 2π �

K◦. In thisK◦−K◦ system theK◦ state is defined as the CP conjugate

of K◦.

CP |K◦〉 = −|K◦〉 and CP |K◦〉 = −|K◦〉 (III.1)

In the absence of mixing, the time evolution of |K◦(t)〉 is given

by:

|K◦(t)〉 = |K◦(0)〉 e−iHt (III.2)



where H is a 2 × 2 matrix which can be decomposed into real and

imaginary parts as H = M − iΓ/2. The time evolution of K◦ can be

written similarly. In the presence of mixing, the time evolution of the

K◦ −K◦ system is described by:

i
dψ(t)

dt
= Ĥψ(t); ψ(t) =

( |K◦(t)〉

|K◦(t)〉

)
(III.3)

where

Ĥ = M̂ − iΓ̂/2 =
( M11 − iΓ11

2 M12 − iΓ12

2

M21 − iΓ21

2 M22 − iΓ22

2

)
(III.4)

Hermiticity of Ĥ requires M12 = M ∗
21 and Γ12 = Γ∗21, where as

CPT invariance requires M11 = M22 = M and Γ11 = Γ22 = Γ.

The eigenstates of KL and KS of Ĥ are defined in terms of ε:

KL,S =
(1 + ε)K◦ + (1− ε)K◦√

2(1 + |ε|2)
(III.5)

where ε is given by

1− ε
1 + ε

=

√√√√M ∗
12 − i

Γ∗
12

2

M12 − iΓ12

2

(III.6)

and the eigenvalues are

ML,S = M ±Re(Q), ΓL,S = Γ∓ 2 Im(Q) (III.7)
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where

Q =

√
(M12 − i

Γ12

2
)(M ∗

12 − i
Γ∗12
2

) (III.8)

We can rewrite

1− ε
1 + ε

=
∆M − i∆Γ/2

2M12 − iΓ12
≡ r eiκ (III.9)

where ∆M = ML −MS = 2Re(Q), ∆Γ = ΓL − ΓS = −4Im(Q), and

r = 1 +
2|Γ12|2

4|M12|2 + |Γ12|2
Im

(M12

Γ12

)
(III.10)

For the K◦−K◦ system, ImM12 � ReM12 and ImΓ12 � ReΓ12,

therefore to a very good approximation,

∆MK = 2ReM12, ∆ΓK = 2ReΓ12. (III.11)

III.2 εK and ∆MK

Standard Model Contribution

The off-diagonal element M12 in the K◦ −K◦ system is given by

2mKM
∗
12 = 〈K◦|Heff(∆S = 2)|K◦〉. (III.12)

The effective ∆S = 2 Hamiltonian is

H∆S=2
eff =

G2
F

16π2
M 2

W

(
λ2
cη1S0(xc) + λ2

tη2S0(xt) + 2λcλtη3S0(xc, xt)
)
(III.13)

×(sd)V−A(sd)V−A + h.c.

336



The matrix element of H∆S=2
eff is obtained from:

〈K◦|(sd)V−A(sd)V−A|K◦〉 =
8

3
B̂Kf

2
Km

2
K , (III.14)

where B̂K describes the non-perturbative effects in the hadronic

matrix element of the operator (sd)V−A(sd)V−A, λc = V ∗csVcd, λt =

V ∗tsVtd, and the ηi describe the short distance QCD effects, and are

numerically given by

η1 = 1.38± 0.20, η2 = 0.57± 0.01, η3 = 0.47± 0.04. (III.15)

The functions S0(xc,t) and S0(xc, xt) are the loop functions defined

below, with xi = m2
i/M

2
W :

S0(xc) = xc

S0(xt) = 4xt−11x2
t +x

3
t

4(1−xt)2
− 3x3

t lnxt

2(1−xt)3

S0(xc, xt) = xc

[
ln xt

xc
− 3xt

4(1−xt)
− 3x2

t lnxt

4(1−xt)2

]
(III.16)

Thus, from Eq. (III.13),

M12 =
G2
F

12π2
M 2

W B̂Kf
2
KmK

(
λ2
cη1S0(xc) + λ2

tη2S0(xt) + 2λcλtη3S0(xc, xt)
)
(III.17)

The CP violation in the K◦ −K◦ mixing is parameterized by εK

defined as:

εK =
eiπ/4√
2∆MK

(ImM12 + 2ξReM12); ξ =
ImA0

ReA0
. (III.18)
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The quantity A0 is defined in terms of amplitudes of K◦-meson decays:

A(K◦ → π+π−) =
√

2
3A0e

iδ0 +
√

1
3A2e

iδ2

A(K◦ → π0π0) =
√

2
3A0e

iδ0 − 2
√

1
3A2e

iδ2

(III.19)

The parameter ξ is small, therefore

εK ≈ eiπ/4√
2∆MK

ImM12

= CεB̂KImλt

{
Reλc

[
η1S0(xc)− η3S0(xc, xt)

]
−Reλtη2S0(xt)

}
eiπ/4
(III.20)

where

Cε =
G2
Ff

2
KMKM

2
W

6
√

2π2(∆mK)
≈ 3.84× 104 (III.21)

For details on K◦ −K◦ mixing in the standard model, see e.g. [136]

SUSY Contribution

The supersymmetric contribution to K◦−K◦ mixing comes from

the following diagrams (see [40]):

These give:

(M12)
SUSY
K = −α2

s

216m2
q̃

1
3MKf

2
K

{[
(δd12)

2
LL + (δd12)

2
RR

]
(24xf6(x) + 66f̃6(x))

+(δd12)LL(δ
d
12)RR

[
(384

(
MK

ms+md

)2
+ 72)xf6(x))

+(−24
(

MK

ms+md

)2
+ 36)f̃6(x))

]

+
[
(δd12)

2
LR + (δd12)

2
RL

](
−132

(
MK

ms+md

)2
xf6(x)

)

+(δd12)LR(δd12)RL
[
−144

(
MK

ms+md

)2 − 84
]
f̃6(x)

}

(III.22)
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where x = m2
g̃/m

2
q̃, and the loop functions f6(x) and f̃6(x) are defined

as:

f6(x) =
6(1 + 3x) lnx+ x3 − 9x2 − 9x+ 17

6(x− 1)5
(III.23)

f̃6(x) =
6x(1 + x) lnx− x3 − 9x2 + 9x+ 1

3(x− 1)5
(III.24)

III.3 ε′K/εK

The parameter ε′K is defined as

ε′K =
1√
2
Im

(A2

A0

)
eiΦ where Φ =

π

2
+ δ2 − δ0 ≈

π

4
(III.25)

The dimension four Hamiltonian giving rise to the sdZ vertex is:

Hd=4
eff = −GF√

2

e

π2
M 2

Z tan θW

(
λtC0(xt) + ((δu23)LR(δd13)

∗
RL)H0(x)

)
+ h.c.(III.26)

where the first term is the contribution from the standard model, and

the second from supersymmetry [93, 94]. The chromo- and electro-

magnetic dimension 5 operators are:

Hd=5
eff =

(
C+
γ Q

+
γ + C−γ Q

−
γ + C+

g Q
+
g + +C−g Q

−
g

)
+ h.c. (III.27)

where

Q±γ = Qde
16π2

(
sLσ

µνFµνdR ± sRσµνFµνdL
)

Q±g = g
16π2

(
sLσ

µνtaGa
µνdR ± sRσµνtaGa

µνdL

) (III.28)
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The Wilson coefficients are given by :

C±γ (mg̃) =
παs(mg̃)
mg̃

[
(δd21)LR ± (δd12)

∗
LR

]
F0(x)

C±g (mg̃) =
παs(mg̃)
mg̃

[
(δd21)LR ± (δd12)

∗
LR

]
G0(x)

(III.29)

where the functions are defined as:

C0(x) =
x

8

[x− 6

x− 1
+

3x+ 2

(x− 1)2
lnx

]
(III.30)

H0(x) =
−x(x3 − 6x2 + 3x+ 2 + 6x lnx)

48(1− x)4
(III.31)

F0(x) =
4x(1 + 4x− 5x2 + 4x lnx+ 2x2 lnx)

3(1− x)4
(III.32)

G0(x) =
x(22− 20x− 2x2 + 16x ln x− x2 lnx+ 9 lnx)

3(1− x)4
(III.33)

The matrix elements of the chromo- and electro-magnetic opera-

tors Q±g,γ between the states K◦ and ππ are:

〈(ππ)I=0|Q−g |K◦〉 =

√
3

2

11

16π2

〈qq〉
F 3
π

m2
πBG (III.34)

〈π◦|Q+
γ |K◦〉 =

Qde

16π2

i
√

2

mK
P µ
π P

ν
KFµνBT (III.35)

〈(ππ)I=0|Q+
g |K◦〉 = 〈π◦|Q−γ |K◦〉 = 0 (III.36)

Thus we can write

Re
(ε′
ε

)
SUSY

=
11
√

3

64π

ω

|ε|ReA0

m2
πm

2
K

Fπ(ms +md)

αs(mg̃)

mg̃
ηBGImΛ−g (III.37)
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where ω = ReA2/ReA0 and Λ−g is the effective coupling
[
(δd21)LR −

(δd12)
∗
LR

]
G0(x).
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IV. APPENDIX: CP VIOLATION IN THE B MESON SYSTEM

For a review see Ref. [94].

IV.1 Bd −Bd mixing

Defining the phase convention of the CP transformation of neutral B

mesons as

CP |B◦〉 = ωB|B◦〉, CP |B◦〉 = ω∗B|B◦〉 with |ωB| = 1, (IV.1)

the B meson mass eigenstates can be written as:

|BL〉 = p|B◦〉+ q|B◦〉 (IV.2)

|BH〉 = p|B◦〉 − q|B◦〉 (IV.3)



where |p|2 + |q|2 = 1. The time evolution of the mass eigenstates is

given by:

|BH(t)〉 = e−iMHte−ΓHt/2|BH〉 (IV.4)

|BL(t)〉 = e−iMLte−ΓLt/2|BL〉 (IV.5)

where as the time evolution of the strong interaction states is governed

by

i
d

dt

( B

B

)
=

(
M − iΓ

2

)( B

B

)
(IV.6)

with (M − iΓ/2) being Hermitian, and M = MH+ML

2 and Γ = ΓH+ΓL

2 .

Solving the eigen value equation gives

(∆m)2 − 1
4(∆Γ)2 = (4|M12|2 − |Γ12|2)

∆m∆Γ = 4Re(M12Γ
∗
12);

q
p = −∆m−i∆Γ/2

2M12−iΓ12

(IV.7)

where ∆m = MH − ML and ∆Γ = ΓH − ΓL. For the B system,

|Γ12| � |M12|, therefore

∆mb ≈ 2|M12|, ∆ΓB = 2
Re(M12Γ

∗
12)

|M12|
(IV.8)

and
q

p
≈ − M ∗

12

|M12|
[
1− 1

2
Im

( Γ12

M12

)]
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IV.2 CP violation in decay

Let the final state be denoted by f , such that

CP |f〉 = ωf |f〉, CP |f〉 = ω∗f |f〉 with |ωf | = 1, (IV.9)

and the decay amplitudes be given by

Af = 〈f |Hd|B◦〉; Af = 〈f |Hd|B◦〉 (IV.10)

The amplitudes Af and Af are related by CP. If the strong phases

in the amplitudes are δi and the weak phases φi, then

∣∣∣
Af

Af

∣∣∣ =
∣∣∣
∑

iAie
i(δi−φi)

∑
iAiei(δi−φi)

∣∣∣ (IV.11)

To dicsuss CP violation, let us define a quantity

λf =
q

p

Af

Af
. (IV.12)

The effective Hamiltonian that is relevant to M12 is of the form

H∆b=2
eff ∝ e2iφB

[
dγµ(1− γ5)b

]2
+ e−2iφB

[
bγµ(1− γ5)d

]2
(IV.13)

where 2φB is the CP violating weak phase. Then with |Γ12| � |M12|,

we get

q

p
= ωBω

∗
bωde

−2iφB . (IV.14)
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For the decay of the B meson (e.g. b → qqd), the Hamiltonian is of

the form:

HDecay ∝ eiφf
[
qγµ(1− γ5)d

]
bγµ(1− γ5)q

]
(IV.15)

+e−iφf
[
qγµ(1− γ5)b

]
dγµ(1− γ5)q

]
.

In this case,

Af

Af
= ωfω

∗
Bωbω

∗
de
−2iφf , (IV.16)

and for a final CP eigenstate we get

λ =
q

p

Af

Af
= ωfe

−2i(φf+φB). (IV.17)

IV.3 Three types of CP violations in meson decays

IV.3.1 CP violation in mixing

This happens for the case when |q/p| 6= 1. This type of CP violation

results from the mass eigenstates being different from the CP eigen-

states, and requires a relative phase between M12 and Γ12. For the B◦d

system, this effect could be observed through semi-leptonic decays:

aSL =
Γ(B◦(t)→ l+νX)− Γ(B◦(t)→ l−νX)

Γ(B◦(t)→ l+νX) + Γ(B◦(t)→ l−νX)
(IV.18)
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aSL =
1− |q/p|4
1 + |q/p|4 = Im(Γ12/M12). (IV.19)

IV.3.2 CP violation in decay

This happens when |Af/Af | 6= 1. In this case, a measure of CP

violation is the parameter:

af± =
Γ(B+ → f+)− Γ(B− → f−)

Γ(B+ → f+) + Γ(B− → f−)
(IV.20)

=
1− |Af/Af |2

1 + |Af/Af |2
.

IV.3.3 CP violation in the interference between decays, with and

without mixing

This happens when Imλf 6= 0. This is the effect of interference be-

tween a direct decay amplitude and a first mix then decay path to the

same final state.

afCP
(t) =

Γ(B◦phys(t)→ fCP )− Γ(B◦phys(t)→ fCP )

Γ(B◦phys(t)→ fCP ) + Γ(B◦phys(t)→ fCP )
(IV.21)

=
1− |λf |2
1 + |λf |2

cos(∆mBt) +
2Imλf

1 + |λf |2
sin(∆mBt).

In decays with |λf | = 1,

afCP
(t) =

2Imλf
1 + |λf |2

sin(∆mBt) (IV.22)
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Often the time independent quantity afCP
=

2Imλf

1+|λf |2 is used.

IV.3.4 Application to the specific case of Bd → φKS

In the standard model, for B◦d → φKS,

q

p
=
V ∗tbVtd
VtbV ∗td

(IV.23)

⇒ (SφKS
)SM = sin 2β

In the above expression, we have ignored O
(

Γ12

M12

)
terms as they

are small.

When we include supersymmetric contributions from the box di-

agram, then

M12 = MSM
12 +MSUSY

12 (Box) (IV.24)

Let

√
M12

MSM
12

≡ rde
iθd

then
q

p
= e−2iθde−2iβ (IV.25)

We need to consider the interference between decay and mixing.

Therefore, we must include ∆B = 1 transitions. Let

ASM(φKS) = |ASM|eiδSM; ASUSY(φKS) = |ASUSY|eiδSUSYeiθSUSY(IV.26)

A
SM

(φKS) = |ASM|eiδSM; A
SUSY

(φKS) = |ASUSY|eiδSUSYe−iθSUSY(IV.27)
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where δSM/SUSY is the strong CP conserving phase, and θSUSY is the

CP violating phase. Then,

ATot

ASM
= 1 +

∣∣∣A
SUSY

ASM

∣∣∣ei(θSUSY + δSUSY − δSM). (IV.28)

Let
∣∣∣ASUSY

ASM

∣∣∣ = x and −(δSUSY − δSM) = δ12.

A
Tot

ASM
= 1 + xe−i(θSUSY+δ12) (IV.29)

Let ρ =
A

Tot

ATot
=

1 + xe−i(θSUSY+δ12)

1 + xei(θSUSY+δ12)
(IV.30)

=
1 + 2x cos δ12e−iθSUSY + x2e−2iθSUSY

1 + 2x cos(θSUSY − δ12) + x2
. (IV.31)

Using q/p = e−2iβ, where β includes the contribution from the SUSY

box diagram as well, λ = ρq/p, and that the SUSY contribution is

small compared to the standard model, so that |x| � 1, we get:

SφKS
=

2Imλ

1 + |λ|2 =
sin 2β + 2x cos δ12 sin(θSUSY + 2β) +O(x2)

1 + 2x cos δ12 cos θSUSY + x2
(IV.32)

CφKS
= − 2x sin δ12 sin θSUSY

1 + 2x cos δ12 cos θSUSY + x2
(IV.33)

IV.4 Calculation of S(Bd → φKS)

The amplitude for Bd → φKS in the standard model is given by [90]:

ASM
φKS

=
GF√

2
V ∗tsVtb

6∑

i=3

CSM
i 〈φK◦|Oi|B◦〉+ Cg〈φK◦|Og|B◦〉+

8

9
PH (IV.34)
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where the matrix elements of the Oi are:

〈φK◦|O3|B◦〉 =
H

3
(IV.35)

〈φK◦|O4|B◦〉 =
H

3
(IV.36)

〈φK◦|O5|B◦〉 =
H

4
(IV.37)

〈φK◦|O6|B◦〉 =
H

12
(IV.38)

〈φK◦|Og|B◦〉 =
4

9π
αsκH (IV.39)

where κ ≈ −1.1 and H = 2(ε · p)fφmφF
+
B→K(m2

φ), and the Wilson co-

efficients are CSM
3 = 0.0114, CSM

4 = −0.0321, CSM
5 = 0.00925, CSM

6 =

−0.0383 and CSM
g = −0.188.

The SUSY amplitude for the process is given below:

ASUSY
φKS

=
GF√

2
V ∗tsVtb

6∑

i=3

CSUSY
i 〈φK◦|Oi|B◦〉+ CSUSY

g 〈φK◦|Og|B◦〉 (IV.40)

+(L↔ R)
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The coefficients CSUSY
i are given by:

CSUSY
3 = X

(
−1

9
B1(x)−

5

9
B2(x)−

1

18
P1(x)−

1

2
P2(x)

)
(IV.41)

CSUSY
4 = X

(
−7

3
B1(x) +

1

3
B2(x) +

1

6
P1(x) +

3

2
P2(x)

)
(IV.42)

CSUSY
5 = X

(10

9
B1(x) +

1

18
B2(x)−

1

18
P1(x)−

1

2
P2(x)

)
(IV.43)

CSUSY
6 = X

(
−2

3
B1(x) +

7

6
B2(x) +

1

6
P1(x) +

3

2
P2(x)

)
(IV.44)

CSUSY
g =

√
2α2π

GFVtbV ∗tsm
2
q̃

(
(δdLL)23

[1

3
M3(x) + 3M4(x)

]
(IV.45)

+(δdLR)23
mg̃

mq̃

[1

3
M1(x) + 3M2(x)

])
(IV.46)

where

X ≡
√

2α2
s

GFVtbV ∗tsm
2
q̃

(δdLL)23 and x =
m2
g̃

m2
q̃

.
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The loop functions are given below [40]:

B1(x) =
1 + 4x− 5x2 + 4x lnx+ 2x2 lnx

8(1− x)4
(IV.47)

B2(x) = x
5− 4x− x2 + 2 ln x+ 4x ln x

2(1− x)4
(IV.48)

P1(x) =
1− 6x+ 18x2 − 10x3 − 3x4 + 12x3 lnx

18(x− 1)5
(IV.49)

P2(x) =
7− 18x+ 9x2 + 2x3 + 3 ln x− 9x2 lnx

9(x− 1)5
(IV.50)

M1(x) = 4B1(x) (IV.51)

M2(x) = −xB2(x) (IV.52)

M3(x) =
−1 + 9x+ 9x2 − 17x3 + 18x2 ln x+ 6x3 lnx

12(x− 1)5
(IV.53)

M4(x) =
−1− 9x+ 9x2 + x3 − 6x lnx− 6x2 lnx

6(x− 1)5
(IV.54)
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