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Helicopters can experience high vibration levels, which reduce passenger com-

fort and cause progressive damage to the aircraft structure and on-board equip-

ment. Because the primary source of excitation is typically the main rotor, special

rotor control systems have been proposed to reduce these vibrations at the source.

This dissertation addresses one such system, generally known as “Higher Harmonic

Control” (HHC) because it consists of superimposing high frequency rotor inputs

to the conventional low frequency ones used to control and maneuver the heli-

copter. Because both the primary flight control system and the HHC system act

on the main rotor, the risk of adverse interactions between the two systems ex-

ists. This dissertation focuses on these interactions, which have never been studied

before for the lack of suitable mathematical models.



The key ingredient is an accurate linearized model of the helicopter, which in-

cludes the higher harmonic rotor response, and both the Automatic Flight Control

System (AFCS) and the HHC system. Traditional linearization techniques lead

to a system with periodic coefficients. Although Floquet theory can be used to

study such periodic systems, there are far more control system design theories and

software tools that are available for linear time-invariant systems than for periodic

systems. Additionally, the theoretical evaluation of the handling qualities of the

helicopter requires linear time-invariant systems.

This research describes a new methodology for the extraction of a high-order,

linear time invariant model, which allows the periodicity of the helicopter response

to be accurately captured. This model provides the needed level of dynamic fidelity

to permit an analysis and optimization of the AFCS and HHC algorithms.

The key results of this study indicate that the closed-loop HHC system has

little influence on the AFCS or on the vehicle handling qualities, which indicates

that the AFCS does not need modification to work with the HHC system. On the

other hand, the results show that the vibration response to maneuvers must be

considered during the HHC design process, and this leads to much higher required

HHC loop crossover frequencies. This research also demonstrates that the transient

vibration responses during maneuvers can be reduced by optimizing the closed-loop

higher harmonic control algorithm using conventional control system analyses.
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Chapter 1

Introduction

1.1 Motivation

Excessive vibration levels can reduce mission effectiveness on military aircraft and

decrease passenger comfort and acceptance on commercial aircraft. Even moderate

fuselage vibrations reduce the reliability of on board equipment, such as avionics

[1]. Maintenance costs can be significantly reduced if airframe vibrations are re-

duced. It has been estimated [2] that by reducing the fuselage vibrations in the

Sikorsky UH-60 helicopter from 0.2g to 0.1g, $80,000 per aircraft per year can be

saved in direct maintenance costs. This is a saving of $160 million/year for a fleet

of 2,000 aircraft! These savings are achieved primary from reduced component

failures due to vibration. Consequently, vibration reduction is a high priority for

helicopter designers and manufacturers.

The major source of vibration is the unsteady aerodynamic environment ex-

perienced by the rotor blades including blade/vortex interaction, retreating blade

stall, and blade/fuselage aerodynamics interaction. These blade loads are then

transmitted through the hub, resulting in vibration of the elastic fuselage. The

traditional approaches for reducing helicopter vibration are generally passive meth-

1



ods. They attack the vibration problem by increasing the number of blades, isolat-

ing the transmission system, applying hub absorbers, installing bifilars, or adding

dynamic absorbers. These systems are heavy and have narrow frequency effec-

tiveness ranges. Over the past two decades, the helicopter industry, government

and academia have demonstrated that Higher Harmonic Control (HHC) is a very

effective method for vibration reduction. HHC technology may be able to achieve

greater vibration reduction with less weight than the traditional approaches by

suppressing the vibration at the source. Typically, the HHC input frequency has

been n/rev, where n is the number of rotor blades, but other frequencies have

also been utilized. A detailed survey of the extensive work in the area has been

presented by Friedmann [3] and Teves et al. [4].

The active rotor control system for vibration suppression is shown in Figure 1.1.

The helicopter control system generally consists of two control systems: Automatic

Flight Control System (AFCS) and HHC system. In Figure 1.1, the AFCS manages

the helicopter stability and controls, and the HHC system suppresses the helicopter

vibration. The HHC loop consists of three basic components. First, the data

acquisition system (A/D, analog-to-digital converter) receives the helicopter hub

loads Z(t) and converts them to the digital signal Z(k). Next, the harmonic

analyzer extracts the n/rev harmonic components of the hub loads and forward

them to the HHC controller. Last, the HHC controller computes the ideal HHC

inputs θ(k) for vibration suppression.

The rotor control system does not receive the new HHC input from HHC con-

troller at every time step. The HHC input update rate (number of HHC input

update per rotor revolution) depends on the time required to complete the data

acquisition and post data processing, and it has strong influence on the HHC loop
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stability margin. HHC update rates from 0.5 to 16 times per rotor revolution have

been implemented on several wind tunnel and flight tests [5–10]; however, the once-

per-revolution (or 1/rev) HHC update is most commonly implemented. To date,
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Figure 1.1: Typical active rotor control system for vibration suppression.

very little information is available on potential interactions between the HHC and

AFCS. The published literature describe results from flight tests, wind tunnel tests,

and numerical simulations with either a closed-loop HHC or a closed-loop AFCS,

but not with both types of loops simultaneously closed. Because periodic nature

of the helicopter, HHC is a control system application that has developed with-

out the benefit of the standard control system analysis techniques. Wereley and

Hall [11] have studied the stability of the closed-loop HHC system, but the plant

model was assumed to be quasi-static, and it does not include periodic behavior

of the rotor system. Therefore, the achievable bandwidth of HHC algorithms was
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limited by the quasi-static assumption on the plant model. The HHC performance

improvement could only be achieved by including the periodic behavior of the ro-

tor system in the plant model and developing a control algorithm for the periodic

time-varying plant model. Although Floquet theory can be used to study the pe-

riodic time-varying system, there are far more control system design methods and

software tools that are available for linear time invariant systems than for periodic

systems.

Furthermore, the effects of the HHC system on vehicle handling-qualities and

maneuverability are also remained unknown. There are several important analyses

that are important for evaluating the handling-qualities of the helicopter system

that cannot be currently carried out. These include the calculations of gain and

phase margins with the closed-loop HHC and/or AFCS, the crossover frequency

of the HHC loops and the closed-loop stability of helicopter dynamics with closed-

loop HHC. These quantities can be easily obtained from a linear time-invariant

system

Therefore, there is a need for linear time-invariant approximations that accu-

rately model the coupled rotor-fuselage dynamics, including the higher harmonic

response of the rotor. Such time-invariant linearized approximation methods are

not currently available.

1.2 Literature review

1.2.1 Higher harmonic control technology

In 1952, Stewart [12] showed the potential effectiveness of HHC in alleviating re-

treating blade stall. The usage of second harmonic control (2/rev) was shown to
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redistribute the rotor disk loads and suppress retreating blade stall. By delaying

the retreating blade stall to a higher forward speed, the speed limitation of a heli-

copter could be raised. Based on his analysis, the advance ratio could be increased

by 0.1. However, the analysis was based on a rigid flapping blade and the airloads

were calculated with quasi-static aerodynamics and uniform inflow distribution.

The transonic effects, separated flow conditions, unsteady aerodynamics, blade

flexibility, and non-uniform inflow distribution were all neglected.

In 1961, Arcidiacono [13] extended Stewart’s research by including both 2/rev

and higher harmonic blade pitch control. The analyses showed that a combination

of 2 and 3/rev HHC inputs could be used to delay retreating blade stall to an

even higher advance ratio than that reported by Stewart. Neither Steward nor

Arcidiacono considered the effects of HHC input on vibratory hub loads.

In 1961, the first HHC flight test was carried out to investigate the feasibility

of using HHC for vibration suppression on an UH-1A 2-bladed helicopter [14]. A

series of flight tests was conducted by Bell Helicopter Company to determine the

effects of HHC on rotor performance, blade airloads, blade loads, control loads, hub

loads, and airframe vibration. The investigators noted that no reduction in shaft

torque was observed. The investigation also showed that the drag reduction in the

retreating side of rotor was accompanied by an increase in profile drag in the fore

and aft portion of the rotor disk. These results confirmed Stewart’s finding, and

indicated that 2/rev HHC input could be used to change the rotor disk loading.

In 1972, McCloud [15,16] reported the first full-scale wind tunnel investigation

on HHC. The rotor model was a two-bladed teetering rotor with propulsive jet

flaps. A large jet flow was expelled from the blade trailing edge to propel the

rotor and the HHC was applied through the angular deflection of the jet flow.
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The experiments showed that the vibratory hub load reduction was accompanied

by an increase in the blade bending moments. The HHC inputs required for the

vibration suppression were found to vary with rotor forward speed.

In 1975, McHugh and Shaw [17, 18] conducted a series of wind tunnel experi-

ments on a four-bladed soft-inplane hingeless rotor model. The HHC was imple-

mented in the non-rotating frame, and HHC inputs were applied by oscillating

the swashplate with servo-actuators. Results from the experiments indicated that

the vibratory hub moments could be suppressed effectively without a significant

increase in blade stresses. The experiments also indicated that all five components

of the 4/rev hub loads (lateral, longitudinal, vertical forces; pitching and rolling

moments) could be reduced simultaneously with three HHC inputs.

In 1979, a wind tunnel investigation of HHC on a four-bladed hingeless rotor

model was conducted by Shaw and Albion [19, 20] in the Boeing V/STOL Wind

Tunnel. The rotor model was Mach scaled and operated at full-scale tip speed.

The HHC inputs were applied through swashplate excitation. The closed-loop

HHC controller simultaneously reduced the 4/rev vertical hub shear, hub pitching

and rolling moments up to 90%. The closed-loop transient behaviors were studied

by introducing a step disturbance in the swashplate command. The results showed

that the disturbance was suppressed within two rotor revolutions, which confirmed

the quasi-static assumption made on the HHC model.

In 1980, Shaw [21] presented the results of a comprehensive analytical investiga-

tion of HHC. He compared the potential benefits of servo-flap versus conventional

blade root feathering and studied the automatic in-flight adaptive algorithm. The

investigation was based on a coupled modal analysis and included a vortex wake

induced flow calculation. An approximation to the Theodorsen lift deficiency func-
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tion was used to include the effect of the shed wake. A transfer matrix (T -matrix)

approach was implemented to relate the higher harmonic hub loads to the HHC

inputs. The analytical results showed that the nonlinearities in the HHC input-

output model were small. The results also indicated that the vibration suppression

was caused by the mutual cancellation between the aerodynamic and the inertial

components of the transmitted vibratory loads at the blade roots. With the HHC

inputs, the control loads were increased by roughly 30%, and the change in rotor

performance was negligible. For changing flight conditions, the closed-loop HHC

controller with fixed gain performed satisfactorily over an advance ratio range of

0.2. An adaptive gain controller was used for the cases when the fixed gain con-

troller performed poorly. For the adaptive gain controller, the model parameters

were estimated using a Kalman filter. Simulation results showed that the adaptive

controller performed well for varying flight conditions.

In 1981, Molusis, Hammond and Cline [22] studied several HHC algorithms

for vibration suppression, and the algorithm performance was evaluated in wind

tunnel testing. The rotor model was a Mach-scaled four-bladed articulated rotor.

The HHC controllers were configured to suppress the 4/rev vertical, longitudinal,

and lateral signals from a triaxial accelerometer mounted beneath the rotor in the

non-rotating frame. The advance ratio was varied between 0.2 to 0.4. The HHC

system was modeled using T -matrix approach. The HHC algorithms studied were

separated into two groups: the adaptive controllers and the gain-scheduled con-

trollers. Each type of controller was further classified. The adaptive controllers

were classified into deterministic controllers and cautious controllers. The gain-

scheduled controllers were classified into perturbation controllers and proportional

controllers. The wind tunnel results showed that the gain-scheduled controllers per-
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formed poorly. The cause might be the nonlinear behavior of the HHC model. The

deterministic (adaptive) controller was shown to significantly reduce the steady-

state vibration levels, but there were large transient responses that occurred before

the vibration converged to the steady-state value. The authors noted that the cau-

tious controller offered the best performance among the four controllers.

In 1981, the performance of four different feedback controllers or regulators were

investigated by Chopra and McCloud [8] for the multicyclic control of helicopter vi-

bration. These controllers were open-loop and closed-loop with off-line and on-line

identification. The off-line identification of model characteristics was made using

the least-squared-error method and used a succession of input and output mea-

surements. The on-line identification of model characteristics was computed using

a Kalman-filter solution. The optimal controls were calculated by minimizing the

quadratic performance function based on response and control inputs. Both global

(linear) and local (piecewise linear) models were simulated. The results showed

that the closed-loop controller with a local model using on-line identification tech-

nique performed the best. For the cases with large initial errors in the transfer

matrix, large overshoots were found in the transient response using this controller.

In 1982, Wood et al. [23,24] conducted a HHC flight test on a modified Hughes

OH-6A helicopter with a gross weight of about 3,000 lb. The HHC input was

achieved by blade root feathering through the 4/rev swashplate oscillations. A

triaxial accelerometer was mounted beneath the pilot seat to sense and feed back

the 4/rev vibrations to the HHC controller. The aircraft was flown from hover

to 100 kts with the HHC system operated in open-loop (manually) and closed-

loop (computer controlled). For the closed-loop controller, the cautious controller

presented in Ref. 22 was used. The test results indicated that up to 90% reduction
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in vibration could be obtained with HHC amplitude less than 1◦.

During 1980’s, extensive research on the use of HHC implemented in the form of

Individual Blade Control (IBC) was carried out by Ham and his coworkers [25,26].

The potential applications of IBC were proposed that included reducing the severe

effects of atmospheric turbulence, retreating blade stall, blade-vortex interaction,

blade-fuselage interference, and blade instabilities, while providing improved fly

qualities and automatic blade tracking. The theoretical analysis showed that the

rotor blade flapping, inplane, and torsional motion could be reduced by feedback

control of the effective inertia, damping, and stiffness of the appropriate modes.

In 1985, Shaw et al. [6] described wind tunnel tests on a dynamically scaled

three-bladed CH-47D Chinook rotor in the Boeing V/STOL Wind Tunnel. The

2, 3, and 4/rev HHC inputs were applied to suppress the 3/rev vertical hub force

and the 2 and 4/rev rotating inplane hub shears throughout a wide test envelope

which included trimmed flight up to 188 kts The open-loop tests were conducted

to obtain transfer matrices under several flight conditions. These transfer matrices

were used with fixed- or gain-scheduled controllers. The wind tunnel results showed

that a fixed-gain controller with a local model can suppress more than 90% in all

three vibratory hub shears components. The wind tunnel results indicated that

the gain-scheduled controller performed as well as the fixed-gain controller. The

adaptive controllers, similar to those in Ref. 22, were either unstable or ineffective

in suppressing the vibratory loads.

In 1986, Polychroniadis and Achache [27,28] discussed the application of HHC

on an Aerospatiale SA-349 Gazelle helicopter (4,500 lb) for vibration reduction and

noise reduction, and included a performance analysis based on both theoretical

studies and wind tunnel testing. The HHC input was achieved by blade root
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feathering through the 4/rev swashplate oscillations. The HHC controller was

a self-adaptive controller that used the vibration sensors placed at pre-selected

locations in the aircraft. The test results showed a 70 to 90% reduction in vibration

was achieved at forward speeds up to 135 kts

In 1994 and 1995, Jacklin et al. [29, 30] described two wind tunnel tests that

evaluated the effects of IBC at various frequencies on rotor performance, vibra-

tions, and acoustics using a full-scaled BO-105 helicopter rotor. The IBC system,

developed by ZF Luftfahrttechnik, was tested on the NASA/Army Rotor Test Ap-

paratus in the NASA Ames 40- by 80-Foot Wind Tunnel. Test results indicated

that a single-frequency IBC input of 2-4/rev could simultaneously reduce all 4/rev

rotor balance forces and moments up to 70% at 43 kts

In 2002, U. T. P. Arnold [10] described the certification, ground and flight

testing of an experimental IBC system for a Sikorsky CH-53G helicopter with a

gross weight of about 68,000 lb The primary goal of the IBC system was to extend

the service life of the CH-53 by reducing the component fatigue and failure induced

by high vibratory stresses. The IBC system was designed, built, installed, and

certified by ZF Luftfahrttechnik, GmbH. The IBC system, weighing less than 1%

of the helicopter maximum take-off weight, completely integrated all mechanical

and hydraulic components into the rotating frame. The IBC controller was based

on a second order T -matrix model. Initial test results showed a high effectiveness of

IBC in reducing vibration with a relatively small single harmonic input of ±0.15◦.

Most of the active vibration control algorithms discussed above were imple-

mented in frequency domain. In 1980, Du Val and Gupta [31] proposed a time

domain approach for the active control of helicopter vibration. The controller

was designed by optimizing a cost function, which placed a large penalty on fuse-
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lage vibration at n/rev frequency. The fuselage accelerations were passed through

an undamped second-order system tuned to the n/rev frequency. At the resonant

frequency, the regulator locked onto the magnitude and phase of the fuselage accel-

erations without the need for harmonic analysis. By placing an infinite weighting

on the n/rev response, a controller is guaranteed to drive the n/rev response to

zero. Because the dynamics of the rotor and fuselage were included in the plant

model, the quasi-static assumption was no longer necessary. Also, because the

state feedback was used, on-line identification of the model parameters were not

necessary. This method assumed the system was linear time-invariant (LTI), not

linear time-periodic (LTP). The standard linear analysis techniques and software

tools could therefore be applied.

In 1989, Wereley and Hall [11,32] presented a framework to provide the evalua-

tion of active vibration control algorithms performance in terms of classical control

theory. They showed that HHC was fundamentally similar to the sinusoidal distur-

bance rejection techniques of classical control. By treating the periodic disturbance

as a stochastic rather than a deterministic phenomenon, the methods of Shaw et

al. [6] and Du Val and Gupta [31] could be compared quantitatively. The authors

indicated that the achievable bandwidth of HHC algorithms was limited by the

quasi-static and linear time-invariant assumptions on the plant model. The HHC

performance improvement could only be achieved by including the periodic behav-

ior of the rotor system in the plant model and developing a control algorithm for

the periodic time-varying plant model.

In 2000, Spencer [33] presented the open and closed-loop wind tunnel testing of

a Mach-scaled active rotor system with piezoelectric bender actuated trailing-edge

flaps for active vibration control. The closed-loop vibration suppression tests were
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conducted at several advance ratios and collective setting. The controller design

is based on a radial basis neural network which is used to approximate the com-

mand input to the active rotor. The controller is implemented in discrete time by

sampling the hub loads and control input at 1/rev frequency. The optimum set of

network weights is determined by minimizing the cost function which is based on

the vibration response and command input. One of the advantage of the neural

network controller is that it simultaneously learns while it commands the on-blade

actuator thus adaptively suppressing the blade or hub vibrations. No off-line train-

ing of the network is required. These test successfully reduced the 4/rev oscillatory

fixed frame thrust, pitching moment, and rolling moment levels up to 90%. Tran-

sient vibration control test was also conducted by varying the rotor speed, wind

speed, and the collective pitch angle to simulate maneuvering flight. For all three

individual perturbations, the neural-controller was unable to compensate vibration

response fluctuation. The authors indicated the controller was not able to react

fast enough to the perturbations because of hardware limitations.

1.2.2 Linear models

In 1981, Howlett [34] presented a nonlinear mathematical model known as Gen-

Hel, based on the Sikorsky UH-60A Black Hawk helicopter, for performance and

handling-qualities evaluations. The rotor was modeled with a rigid blade flap and

rigid blade lag degree of freedom. The torsional dynamics were modeled using a

simple dynamic twist model. The aerodynamic forces on the rotor were computed

using blade element theory and quasi-static aerodynamics. Aerodynamics coeffi-

cients of the blade were provided by the look-up tables as function of the angle of

attack and Mach number. The fuselage was modeled as a rigid body with aerody-
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namic coefficients of the fuselage and empennage provided by the look-up tables

as a function of angle of attack.

GenHel simulation model could provide a linear model, but it was limited to

the six fuselage degrees of freedom. The linearization was performed numerically

by perturbing each of the states and controls, and using finite difference approxi-

mations. Because of the unusual flight dynamic model implementation in GenHel,

the perturbation scheme was not straightforward. For instance, the fuselage states

and control inputs were perturbed one at a time about the trim condition to pro-

duce a 9-state rigid body linear model from the nonlinear GenHel mathematical

model. The rotor equations of motion continued to be integrated while all rigid

body acceleration integrations were suppressed. The change in the state derivatives

was calculated when the rotor response had reached a steady-state condition. This

method produced a six fuselage degree of freedom linear model with a quasi-static

rotor; i.e., the dynamics of the rotor system was not modeled.

In 1982, Zhao and Curtiss [35] developed the first linear model of helicopter

including blade dynamics for forward flight. This linear model had 24 or 27 states

depending on whether dynamic inflow was included. Flap and lag degrees of free-

dom were modeled by transforming the rotor equations of motion into the non-

rotating frame using multi-blade coordinate transformation. Only the collective

and the first two cyclic modes for each rotor degree of freedom were retained. Un-

steady aerodynamic effects were introduced through the dynamic inflow model. A

flat vortex wake model was used to approximate the effects of the main rotor wake

interference on the tail surfaces and tail rotor. The linearized model was derived

using symbolic mathematic manipulation program to obtain an analytical solution.

The linearization process consisted of expressing the time dependent variables in
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the equations of motion as the sum of the trim value and time dependent pertur-

bation about the trim value. A linearized model could be obtained by applying

order reduction and setting the remaining perturbation quantities to zero.

In 1986, Chen and Tischler [36] discussed the method of developing the simpli-

fied analytical linearized model from the flight test data by using modern system

or parameter identification techniques. The simplified analytical model could be

used for handling-qualities evaluation, design of stability and control augmentation

systems, and ground simulator validation. Authors stated that the importance of

recognizing that each lower-order model used for rotorcraft parameter identifica-

tion had a limited range of applicability. They also discussed the benefits and

limitations of using frequency sweeps as flight test input signals for identification

of frequency response for rotorcraft and for the subsequent fitting of parametric

transfer function models. The authors concluded that analytical modeling and

understanding the limitation of lower-order models could be more important than

merely relying on the identification algorithms.

In 1987, Miller and White [37] presented an algorithm called Exponential Basis

Function (EBF) which allowed computer generation of a comprehensive coupled

rotor-fuselage nonlinear model. EBF represented the position vector of a generic

mass element of the helicopter exponentially, and was used to simplify the dif-

ferentiation of the position vector. EBF was used to write the time dependent

coordinate transformation as the product of constant matrices and matrix ex-

ponentials. Since the multiplication of exponentials is equivalent to addition of

exponential arguments, multiplication of the transformation matrices could be ac-

complished by adding matrix exponentials. The transformation matrices written

in EBF could also be differentiated easily. The equations of motion were formu-
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lated using Lagrange’s equation. The rotor degrees of freedom were transformed to

a non-rotating frame using the multi-blade coordinate transformation. The rotor

dynamics included rigid body flap and lag degrees of freedom. Engine rotor speed,

fuselage rigid body degrees of freedom, and the inflow dynamics were also mod-

eled. Authors stated that the linear model obtained through EBF could be used

to analyze handling-qualities phenomena for highly augmented helicopters when

realistic trim conditions and high-order dynamics were considered.

In 1990, Kim, Celi, and Tischler [38] developed a high-order linearized model of

helicopter flight dynamics extracted from a nonlinear time domain simulation. The

model had 29 states that described the fuselage rigid body degrees of freedom, the

flap and lag dynamics in non-rotating frame, the inflow dynamics, and the delayed

entry of the horizontal tail into the main rotor wake. The blade torsional degree

of freedom was approximated using a pseudo-modal approach. In GenHel, the

calculation of forces and moments acting on the helicopter at a given instant in

time was solved sequentially; the rotor equations of motion were solved first, and

the fuselage equations of motion were solved next. Because of this separation,

the equations of motion were not perturbed simultaneously, which could cause

inaccuracies in the solution at higher frequencies. The perturbation process was

also complicated by this splitting solution process. Therefore, GenHel could only

produce a six fuselage degree of freedom linear model with a quasi-static rotor.

To carry out a theoretically rigorous linearization and retain the rotor dynamics

within the linear model, the mathematical model of the helicopter as implemented

in GenHel was extensively modified to a first-order, state variable form. This

required several modifications including solving both the rotor and the fuselage

equations of motion simultaneously. The linear model was validated against the
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nonlinear model, and the results showed a good agreement between these two

models for small amplitude control inputs. In case of large amplitude inputs,

which violated the small perturbation assumption inherently contained in the linear

model, the agreement deteriorated greatly.

1.3 Objectives of study

The objectives of this study are as follows:

• Develop a methodology for the derivation of linearized, time-invariant, state-

space models of coupled rotor-fuselage dynamics that include the effects of

higher harmonic response of rotor and fuselage to both higher harmonic pitch

control and pilot inputs.

• Apply the new linear state-space models for a study of the potential inter-

actions between a higher harmonic control system and an automatic flight

control system, including any impact on handling-qualities.

It should be pointed out that this research does not focus on the method to

improve the helicopter vibratory hub load predictions. A comprehensive analysis

on this topic is beyond the scope of the present study. The helicopter simulation

model used in this study is adequate to capture the first-order effects, but it may

not be sufficient for accurate quantitative predictions of vibratory hub loads.

1.4 Principal contributions

• Implement a HHC in a flight dynamics model for a free flight condition to

investigate the interaction between HHC and AFCS.
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• Developed a linear time-invariant state-space approximation that accurately

models the coupled rotor-fuselage dynamics including the higher harmonic

response of the rotor. This coupled high-order linear model provides the

needed level of dynamic fidelity to permit study of AFCS and HHC interac-

tion.

• Provided detail analyses on the HHC/AFCS interaction, and developed a

improved HHC controller to reduce the vibration transients during the ma-

neuvering flight.

1.5 Organization of the dissertation

Chapter 2 describes the mathematical model of the helicopter and provides the

solution method for the trim calculation, the linearization, the time integra-

tion, and the vibratory hub load calculation.

Chapter 3 is devoted to the HHC system for the vibration suppression. The inner

working of the harmonic analyzer, the HHC controller, and the HHC update

scheme are discussed in detail. The methods of obtaining the continuous-time

domain equivalent for each component are also presented.

Chapter 4 presents a new linearization method that converts a nonlinear system

to a linear time-invariant system while capturing the n/rev characteristic

of the helicopter. The new linear model was validated by comparing the

vibratory hub loads and the rotor states for both the higher harmonic inputs

and piloted input at several forward speeds.

Chapter 5 presents the results of the HHC/AFCS interaction study. The effect

17



of HHC input on handling-qualities was tested for both open-loop and closed-

loop HHC systems. This chapter also discusses the effect of the HHC on the

vibration transients during maneuvers, and develops a new HHC algorithm

to overcome the problem.

Chapter 6 presents conclusions of the study and recommendations for future

work.
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Chapter 2

Mathematical Model

This chapter contains a brief history of the helicopter mathematical model used in

this study, followed by the definition and implementation method of HHC system,

the methods used to calculate the helicopter trim states, a linearized model, and

the time history. Next, the definition and the computation method of the vibratory

hub load are discussed. Finally, the last section presents the method of extracting

n/rev vibration using Fourier series approximation.

2.1 History of helicopter simulation model

The flight dynamic simulation model used in this study is originally from the he-

licopter simulation model GenHel [34] specialized for the Sikorsky UH-60 Black

Hawk. The rotor was modeled with a rigid blade flap and rigid blade lag de-

grees of freedom. The torsional dynamics was modeled using a pseudo-modal

approach. The fuselage was modeled as a rigid body with aerodynamic coeffi-

cients of the fuselage and empennage provided by the look-up table. The fidelity

of GenHel model was improved by Ballin [39] who also implemented the engine

model. Kim [40, 41] included the main rotor inflow model using the Pitt-Peters
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dynamic inflow model [42]. A new trim procedure was also developed with the

equations of motion presented in first-order state-space form. This allows a linear

time-invariant model to be extracted using perturbation-averaging method. The

model developed by Kim was named UM-GenHel. UM-GenHel continued a series

of calibration based on the actual flight test data at NASA Ames Research Center.

This version of UM-GenHel was renamed FORECAST, and is widely used in flight

dynamics analysis at NASA Ames Research Center.

At the same time, the UM-GenHel remained at the University of Maryland

as a research helicopter model. Turnour [43] extended the rotor blade modeling

in UH-GenHel by including the aeroelastic rotor, which was originally developed

by Celi [44] and extended by Spence [45] to included the coupled rotor/fuselage

formulation. Turnour also added the finite state wake [46] and the Leishman-

Nguyen [47] state-space unsteady aerodynamics model. This version of research

model was renamed by Turnour as FlexUM. Theodore [48] extended the inflow

flow model to included the maneuvering Free Wake model [49], which improves

the off-axis response predictions. A full BO-105 helicopter configuration is also

added to the FlexUM. The research model was renamed to HeliUM by Theodore.

2.2 Helicopter model

The basic formulation and solution of the equations are unchanged with respect

to the previous works. The helicopter model used in this study is similar to the

Sikorsky UH-60 Black Hawk with the following simplifying assumption. The heli-

copter equations of motion are based on a set of coupled nonlinear rotor-fuselage

equations in first-order, state-space form. The rigid body dynamics of the heli-

copter is modeled using non-linear Euler equations. The aerodynamic coefficients
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of fuselage and tail surfaces are provided in the form of look-up tables. The blade

is assumed to be straight, i.e., with zero tip sweep. The blade dynamics consists of

two rigid blade degrees of freedom plus first torsional degree of freedom. The aero-

dynamic coefficients of the blade are also provided in the form of look-up tables

as a function of angle of attack and Mach number. Unless stated otherwise, the

main rotor inflow is calculated using a three-state dynamic inflow model, which

yields linear inflow distributions over the rotor disk. Tip losses are taken into ac-

count by assuming that the outboard 3% of the blade does not generate lift. A

one-state dynamic inflow model is used for the tail rotor. Stall and compressibility

effects are incorporated in a quasi-static form, and unsteady aerodynamic effects

have been neglected. Two additional assumptions are that the rotor speed is con-

stant and that there is no limitation on the power supplied by the engine. All the

results presented in this dissertation were obtained from a coupled rotor-fuselage

trim procedure simulating free flight conditions. All the trim calculations include

the HHC input, if one is present. In all the parametric studies, the helicopter is

retrimmed every time that the magnitude or phase of the n/rev input changes.

2.3 HHC implementation

The higher harmonic control inputs is implemented by varying the blade pitch at

blade root. Unlike the real active pitch links system, the stiffness of the pitch

link is assumed to be infinitely stiff and the dynamics of the active pitch links is

ignored. The geometric pitch angle θG of the blade is given by:

θG(ψ) = θ0 + θ1c cos(ψ + ∆SP ) + θ1s sin(ψ + ∆SP ) + θn(ψ) (2.1)
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where θ0, θ1c, and θ1s are respectively the collective, lateral cyclic, and longitudinal

cyclic pitch, ∆SP is the swashplate phasing angle, ∆SP = −9.7◦, and θn(ψ) is the

n/rev input, defined as:

θn(ψ) = An cos(nψ + φn) (2.2)

where An and φn are the magnitude and phase of the n/rev input.

2.4 Solution methods: trim

This section presents the methods to calculate the helicopter trim states. The

flight condition is assumed to be a steady coordinated helical turn. Straight level

flight is then a special case with both flight path angle and turn rate equal to zero.

The helicopter trim equations were originally developed by Chen [50], and later

extended by Celi [51] to include the steady state response of the rotor. They are

modified further by Kim [40] to consider the periodicity of both rotor and fuselage

motion. The trim states are generally obtained from an algebraic trim procedure.

2.4.1 Algebraic trim

The typical trim solution is based on algebraic trim. The solution of the steady

state condition is determined by converting a set of coupled ordinary differential

equations to a set of coupled nonlinear algebraic equations. The periodicity of

the helicopter response must be satisfied in a steady state condition. This set of

algebraic equations is then solved using the Powell Hybrid algorithm. The trim

solution is reached when the sum of the forces and moments at the vehicle center

of gravity are zero in one rotor revolution.

Although this trim method can obtain a trim solution quickly, it does not
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guarantee the rotor blades returning to the same position after one revolution of

time integration. In other words, time integration starting from an algebraic trim

solution without control perturbation may not respond precisely to n-multiple/rev.

This does not appear to be crucial for flight dynamics analyses, but it has large

effect on vibration related computations. The periodic trim procedures can fulfill

this task.

2.4.2 Periodic trim

There are two methods to achieve a periodic trim solution: the shooting method,

and the time marching method.

The shooting method

After algebraic trim is achieved, the state vector and control vector are adjusted

such that the state vector remains the same after integration of one rotor revolu-

tion. This is a two-point nonlinear boundary value problem, and it is based on a

shooting method [52]. The basic idea behind the shooting method is to convert

a boundary value problem (BVP) into an initial value problem (IVP). Given an

initial guess for the parameters, an iterative solver is used to find values of the pa-

rameters that produce solutions that satisfy the boundary conditions. The method

will guarantee a n/rev periodic trim, but its convergence proved erratic, and at

least one order of magnitude more expensive computationally, compared with the

algebraic trim procedure.
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The time marching method

The second method is the time marching solution. As stated earlier, the free flight

response from the time integration starting from the algebraic trim solution may

not have precise n-multiple/rev response. Because of the unstable Phugoid mode,

the helicopter will slowly drift away from the trim. The low gain stabilization

loop was added to ensure the helicopter does not become unstable as integration

time increases. As the time integration continues, the n-multiple/rev response

will emerge. Generally, the periodic trim solution can be reached within four

rotor revolutions starting from an algebraic trim solution. At the end of time

integration, the trimmed state vectors around the rotor azimuth are available.

Additional information about the time integration is presented in Sec. 2.6.

2.5 Solution methods: linearization of the equa-

tion of motion

This techniques consist of perturbing each state and control about an equilibrium

position. Using this approach, the individual blade pitch is introduced in terms of

the harmonics in the rotating frame. This method leads to systems of rotor equa-

tions containing periodic coefficients, which are represented in the rotating frame.

The transformation from the rotating frame to the fixed frame is accomplished

using a Multi-blade Coordinate Transformation (MCT, Appendix C). To remove

the time dependency, the linearized models are computed over one rotor revolution

and then averaged to obtain a LTI system in the fixed frame. As a consequence,

this averaging eliminates the periodicity of the system and all the higher harmon-

ics in both the controls and the rotor response. Additional information about this
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technique will be discussed in Chapter 4.

2.6 Solution methods: time integration

The free flight response of the helicopter is computed by integrating the equations

of motion based on a given set of initial condition and control inputs. The equations

of motion are represented by a system of coupled nonlinear ordinary differential

equations expressed symbolically in the first-order ODE form

ẏ = f (y,u; t) (2.3)

where y is the state vector and u is the control vector. Eq. (2.3) can be solved

numerically using Adams-Bashforth method, which is a variable-step, variable-

order, predictor-corrector, numerical method for solving linear first-order ordinary

differential equations. It estimates the behavior of the solution curve by evaluating

the derivative function at the old solution values along with the current solution

and derivative function and uses the interpolation method to estimate the new

solution. In other words, Adams-Bashforth methods try to squeeze information out

of old solution points. For problems where the solution is smooth, these methods

can be highly accurate and efficient.

In this study, the simulation is started from the trim condition, and the equa-

tions of motion are integrated with respect to time. This produces the time histo-

ries of all the state variables for prescribed control inputs. Generally, the control

inputs include the time history of pilot inputs or the swashplate controls. For the

HHC system, the control inputs are extended to the blade root pitch angle which

can be prescribed as single or multiple harmonics in terms of the n/rev amplitude

An and phase angle φn as stated in Eq. (2.2).
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2.7 Vibration calculation

2.7.1 Hub loads calculation

The equations of motion of the helicopter can be expressed as Eq. (2.3). Because

the coupled rotor-fuselage-inflow equations of motion have the state derivatives

appear on the right hand side of the equations, these equations are expressed as:

ẏc = fc (ẏ,y,u; t) (2.4)

where ẏc is a vector which contains all the state derivatives appear on the right

hand side of Eq. (2.4). For instance, the flap equation for ith blade of a simple

rotor model (rigid flap and lag modes only) is:

β̈i =
Sb
Ib

〈

cos βi
{

ẇ + e [2Ω (p cosψi − q sinψi) + ṗ sinψi + q̇ cosψi]
}

+ sin βi cos ζi
[

v̇ sinψi − u̇ cosψi − e (r − Ω)2
] 〉

+ cos2 βi
{

cos ζi
[

ṗ sinψi + q̇ cosψi − 2
(

ζ̇ + Ω
)

(q̇ sinψi − ṗ cosψi)
]

− 2Ω sinψi (p sinψi + q cosψi)
}

+ cos βi sin βi
{

2ζ̇i (r − Ω) − (r − Ω)2 − ζ̇2
i

}

−
[

(r − Ω) − ζ̇
]2

+
(MLDβi + MAeroβi)

Ib
(2.5)

where Sb and Ib are the first and second blade moments of inertia about its hinge,

MAeroβ is the flap aerodynamic moment, and MLDβ is the flap moments due to the

lag damper. Since the state derivatives u̇, v̇, ẇ, ṗ, and q̇ on the right hand side of

Eq. (2.5) do not couple with other state derivatives, it can be rewritten as:

β̈1 = [e] ẏc + Fβ1
(y,u; t) (2.6)
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where

e =























−Sb
Ib

sin β cos ζ cosψ

Sb
Ib

sin β cos ζ sinψ

Sb
Ib

cos β

Sb
Ib
e cos β sinψ + cos2 β cos ζ sinψ

Sb
Ib
e cos β cosψ + cos2 β cos ζ cosψ

010×1























T

(2.7)

ẏc = [u̇, v̇, ẇ, ṗ, q̇, ṙ, Ω̇, β̈1, β̈2, β̈3, β̈4, ζ̈1, ζ̈2, ζ̈3, ζ̈4]
T (2.8)

Similar expression can also be rewritten for the remaining equations (u̇, v̇, ẇ, ṗ, q̇,

ṙ, . . .). The resultant row vectors e are assembled into a coupling matrix E, and

Eq. (2.4) can be rewritten as follow:

ẏc = [E] ẏc + Fk (y,u; t) (2.9)

By re-arranging Eq. (2.9) into first-order form, ẏc can be solved as

ẏc = [I − E]−1 Fk (y,u; t) (2.10)

Re-write Eq. (2.9) again and parse it as follow:







ẏfus

ẏmr







c
︸ ︷︷ ︸

ẏc

=







E11 E12

E21 E22













ẏfus

ẏmr







c
︸ ︷︷ ︸

[E] ẏc

+Fmr + Ftr + Ffus
︸ ︷︷ ︸

Fk(y,u;t)

(2.11)

ẏfus = [u̇, v̇, ẇ, ṗ, q̇, ṙ]T (2.12)

ẏmr =
[

Ω̇, β̈1, β̈2, β̈3, β̈4, ζ̈1, ζ̈2, ζ̈3, ζ̈4
]T

(2.13)
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where [E11ẏfus] is the inertial acceleration due to the fuselage acceleration, [E12ẏmr]

is the inertial acceleration due to the main rotor acceleration, Fmr is the accelera-

tion contributed by the main rotor excluding the inertial coupling term, Ftr is the

acceleration contributed by the tail rotor, and Ffus is the acceleration contributed

by the fuselage, the horizontal, and the vertical surfaces. Therefore, the vibratory

hub loads are the sum of all the loads that are transmitted from the main rotor to

the hub in the fixed system; i.e., Fmr + [E12ẏmr].

2.7.2 Cockpit vibration calculation with the rigid fuselage

In the flight test, the helicopter vibration level is measured by mounting accelerom-

eters at several key areas inside the helicopter, and one of the key areas is the pilot

station. The flight dynamics model (HeliUM) used in this study also needs to

produce the same pilot station acceleration in order to compare the results with

the flight test data. However, this information is not directly available. Although

HeliUM is based on a coupled rotor/fuselage formulation, the fuselage is actually

modeled as a rigid body and does not contain any dynamics. All results from

the free flight trim procedure are only available at the center of gravity (C. G.) of

helicopter. Nevertheless, the pilot station acceleration can be obtained by a simple

transformation. The velocity at the pilot station can be expressed as follows:

vpilot = vcg + ω × R (2.14)

vcg = [u, v, w]T (2.15)

ω = [p, q, r]T (2.16)

R = [x, y, z]T (2.17)
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where vcg is the velocity vector at the C. G., ω is the rotational vector of the

helicopter at the C. G., and R is the position vector from C. G. to the pilot

station. The pilot station acceleration can then be calculated by differentiating

Eq. (2.14) with respect to time,

v̇pilot = v̇cg + ω̇ × R + ω × Ṙ (2.18)

Because the fuselage is a rigid body, the distance between the C. G. and the pilot

station is constant; i.e., Ṙ = 0. Expanding the cross product term, Eq. (2.18)

becomes

v̇pilot = v̇cg + ω̇ × R =











u̇− ṙy + q̇z

v̇ + ṙy − ṗz

ẇ − q̇x + ṗy











(2.19)

The 4/rev vibration can then be determined by collecting v̇pilot over one rotor

revolution, and extracting its 4/rev components using the Fourier approximation.

Figures 2.1a and 2.1b compare the pilot and copilot station vibrations with

the flight test from hover to 140 kts The flight test data represents several sets of

baseline data collected over the span of the flight test program. The scatter in the

data could be caused by changes in the aircraft configuration and non-ideal flight

conditions during the test.

The main rotor inflow used in HeliUM is based on a linear inflow model. The

blade dynamics consist of a rigid blade flap, a rigid blade lag, and first blade

torsion mode. The figures also show Yang’s [53] results from UMARC1, which uses

8 blade modes, a free wake model, and a flexible fuselage model. These two figures

indicate that the cockpit acceleration computed from HeliUM is under estimated

through out the entire speed range. This study has also included additional blade

1Both the flight test data and the UMARC results are the courtesy of M. Yang and I. Chopra.
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flexibility (result not shown here), but the vibration level is very similar to the one

with the rigid blade model.

It was believed that this under prediction could be caused by a lack of aerody-

namic interaction. Because the linear inflow model only contains 1/rev harmonics,

the higher harmonic airload was not excited. Next, the linear inflow model is re-

placed with a free wake model, and the results are shown in Figures 2.2a and 2.2b.

As expected, the cockpit vibration level has greatly improved. However, the vibra-

tion level in the higher speed range is on the low side; especially at 120 kts, which is

the baseline configuration of this research. In addition, the helicopter simulation

with the free wake model is computationally expensive. The computation time

required is generally over one order of magnitude higher than the one with a linear

inflow model.

2.7.3 Cockpit vibration calculation with the flexible fuse-

lage

To determine the importance of the fuselage flexibility on cockpit vibration calcu-

lations, the effect of the flexible fuselage is added to HeliUM. This is achieved by

feeding the hub loads from a trim condition into a separate fully elastic 3-D fuse-

lage model. This fuselage model is built using NASTRAN [54] based on a Sikorsky

SH-60B (a variant of UH-60) helicopter fuselage. It consists of structural elements

such as scalar springs, rods, bars, shear panels, and triangular and quadrilateral

membranes for more than 8,400 elements. NASTRAN is used to calculate fuselage

mode shapes, modal mass, and stiffness. The resulting data are used to build a

transformation matrix N which maps the 4/rev hub shears and moments to the
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cockpit accelerations at the 4/rev frequency.
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hub, 4/rev

(2.20)

For example, the first column vector Nx is obtained by applying a unit 4/rev

longitudinal force Fx4P
at the NASTRAN model’s hub node and measuring all six

4/rev accelerations at the cockpit station. Note that this “open-loop” method is

only an approximation. The flexible fuselage dynamics are not part of the coupled

rotor-fuselage free flight trim procedure. That it, the calculated hub load does not

include the flexible fuselage motions.

Figures 2.4a and 2.4b show the 4/rev acceleration magnitudes at the pilot and

copilot stations. Note that the result from HeliUM closely follows the UMARC

result up to 90 kts Beyond 90 kts, the HeliUM result continues to rise as the forward

speed increases. Overall the predictions qualitatively follow the trends of the flight

test data except in the higher speed range. This over-prediction could be caused

by several factors. First, the hub load calculation from HeliUM does not include

the effect of the flexible fuselage dynamics. The effect of aerodynamic damping on

the hub load calculation is also not considered. Second, HeliUM does not have any

passive vibration damping device such as the hub absorbers, the bifilars, and the

spring-mass fuselage absorbers. Third, Eq. (2.20) assumes that the 4/rev cockpit

station acceleration is a linear combination of the 4/rev hub shears and moments.

Because vibration is not a linear phenomenon, this assumption may not hold true
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in the high-speed flight condition. The cockpit station accelerations provided here

only intended to serve as a qualitative measure.

2.8 Optimization formulation

In the first attempt to formulate the optimization problem, the trim equations

were included directly in the form of equality constraints h(X) (recall that the

trim problem is formulated as a set of nonlinear algebraic equations as stated in

Sec. 2.4.1, and the trim unknowns X were included as design variables. Therefore,

the optimization problem was formulated as follows: Minimize the norm of 4/rev

in-plane hub shears, F4P

F (X) = ‖F4P‖2 → min

Subject to

Equality Constraints, hj(X) ≤ ε

Of the 29 equality constraints, 11 represented the trim conditions for the entire

aircraft, 4 for the inflow trim equations, and 14 for the main rotor equations.

The vector X of design variables was composed of 31 elements, namely, the 29

trim variables, and the sine and cosine magnitudes of the HHC input. The initial

solution was obtained from an algebraic trim procedure without a HHC input, and

therefore it was always feasible. The optimization was carried out using a modified

method of feasible directions [55], as implemented in the code DOT [56]. The

numerical properties of this formulation proved to be extremely poor. Convergence

was very slow, and the software often terminated the optimization for lack of

progress. After unsuccessfully trying several variations of the baseline process,

this formulation was abandoned.
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A different approach to the optimization process proved much more successful.

The problem was formulated as an unconstrained minimization:

F (X) = ‖F4P‖2 → min

Subject to

Unconstrained optimization

with a vector X of design variables consisting of just 2 elements, namely the sine

and cosine magnitudes of the HHC input. This way, the trim procedure was

decoupled from the optimization, and it was simply executed separately for every

value of X proposed by the optimizer. The optimization was carried out using a

Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm [55], as implemented in the

code DOT.
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Figure 2.1: Cockpit vibration comparison; 18,000 lb, linear inflow model, rigid
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Figure 2.2: Cockpit vibration comparison; 18,000 lb, free wake model, rigid fuselage
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Figure 2.3: SH-60 fuselage NASTRAN model; Courtesy of M. Yang and I. Chopra
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Chapter 3

Active Rotor Control System for Vibration

Suppression

The active rotor control system is implemented in the nonlinear helicopter simula-

tion as shown in Figure 3.1. This loop consists of three main parts: the harmonic

analyzer, the HHC controller, and the discrete HHC update. Because the final

higher harmonic control (HHC) and automatic flight control systems (AFCS) in-

teraction study (Chapter 5) is performed in the continuous linear time-invariant

system, each component in the feedback path is converted to an equivalent linear

model.

This chapter is divided into three main parts. The first describes the func-

tion of the harmonic analyzer and its linear time-invariant equivalent model. The

second describes the algorithm of a HHC controller for the steady-state vibration

suppression. The third section describes the discrete HHC update and its linear

time-invariant equivalent system.
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3.1 Harmonic analyzer

In several research studies, the method of extracting n/rev vibration components

is using the harmonic analyzer. The harmonic analyzer can be formulated by using

either an analog bandpass filter [6, 9, 32] or a Fourier analyzer [7, 10, 29, 30, 57].

3.1.1 Analog bandpass filter method

This type of harmonic analyzer consists of three components: a bandpass filter,

demodulator, and a lowpass filter (Figure 3.2a). An analog filter operates on

continuous-time signals, and it provides a continuous sensor output without the

effect of the sampling window (Sec. 3.1.3) that is typically associated with Fourier

analysis.

First, the analog bandpass filter extracts the spectral band of interest from the

source signal. This spectral band is centered on 4/rev frequency and has a width

of ωBW . The pre-filtered signal is demodulated by multiplying the exact 4/rev

harmonic frequencies. The resultant signal contains all the sum and difference fre-

quencies created by the multiplication. Last, the lowpass filter removes frequency

above ωBW/2 with an assumption ω < ωBW/2.. The following example illustrates

this process. Let Z4P (t) be one of the spectrum band of some general non-periodic

hub load signal Z(t).

Z4P (t) = A4 cos(4Ωt+ ωt) (3.1)

where A4 is the 4/rev amplitude, Ω is the rotor speed in radian per second, and

ωt is the 4/rev phase angle in radian. Although the hub loads in a trim condition

are restricted to periodic waveforms, there is no such restriction during gusts and

maneuvers in which the hub loads may contain significant non-periodic transients.
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Therefore, the source signal Z(t) is first screened through the bandpass filter to

extract its components near the 4/rev frequency, i.e., more precisely, in the range

of 4Ω − ωBW/2 and 4Ω + ωBW/2. This pre-filtered signal is called Z4P (t) and can

be written in the form of Eq. (3.1). Next, the pre-filtered signal is demodulated,

i.e., multiplied by cos 4Ωt and sin 4Ωt as follows:

Â4c = Z4P (t) cos 4Ωt

=
1

2
A4[cos(ωt) + cos(8Ωt + ωt)] (3.2)

Â4s = Z4P (t) sin 4Ωt

=
1

2
A4[− sin(ωt) + sin(8Ωt+ ωt)] (3.3)

The demodulated signals Â4c and Â4s are passed through the lowpass filter to

remove all frequencies above ωBW/2 and doubled with an assumption ω < ωBW/2.

The resultant signal is given by Eq. (3.4) and (3.5).

A4c = A4 cos(ωt) (3.4)

A4s = −A4 sin(ωt) (3.5)

Eq. (3.1) can be rewritten, using Eq. (3.4) and Eq. (3.5), as

Z4P (t) = A4 cos(4Ωt+ ωt)

= A4 cos(ωt) cos(4Ωt) − A4 sin(ωt) sin(4Ωt)

= A4c cos(4Ωt) + A4s sin(4Ωt) (3.6)

Using analog bandpass filter to extract the 4/rev signal adds a large time delay

to the system because the method requires a high order bandpass filter with narrow

passband width (small ωBW ) to extract the steady-state vibration value. The

analog harmonic analyzer does not present a problem for steady-state vibration

extraction; however, the large time delay will mask all the transient responses.
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3.1.2 Fourier analyzer method

Another method of extracting the harmonic components out of the source signal

is using a Fourier analyzer, which is also the one used in this study. This type of

harmonic analyzer also consists of three components: a sample window, the Fourier

analyzer, and a lowpass filter (Figure 3.2b). The sample window serves as the data

buffer which stores the incoming data streams. Next, the Fourier analyzer identifies

the harmonic contents of the source signal within the sample window. This Fourier

analyzer can be either a Fourier series approximation or a Fourier transform in

either the continuous-time or discrete-time domain. Last, the lowpass filter is used

to removes the undesired frequency contents above n/rev frequency. Because the

HHC/AFCS interaction study is performed in the continuous-time domain system,

the Fourier series approximation method is chosen as the Fourier analyzer within

the harmonic analyzer. Nevertheless, one can use the Fourier transform (such as

FFT, Appendix B) as the Fourier analyzer for the digital version of the harmonic

analyzer.

The theory of Fourier series approximation lies in the idea that most signals,

and all engineering signals, can be represented as a sum of sine waves:

f(t) =
1

2
a0 +

∞∑

n=1

[an cos(2πnft) + bn sin(2πnft)]

with

an =
2

T

∫ T

0
f(t) cos(2πnft) dt, n = 0, 1, 2, . . .

bn =
2

T

∫ T

0
f(t) sin(2πnft) dt, n = 1, 2, 3, . . . (3.7)

where T is the fundamental period and f = 1/T is the fundamental frequency in

Hz. For example, the vertical vibratory hub load FZ can be approximated using the
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finite version of Eq. (3.7) that will pass through N data values in one fundamental

period:

FZ(k∆t) = FZ +
N/2
∑

n=1

FZnc cos

(

2πnk

N

)

+
(N/2)−1
∑

n=1

FZns sin

(

2πnk

N

)

(3.8)

with

t = k∆t, k = 1, 2, . . . , N, where ∆t = T/N (3.9)

FZ =
1

N

N∑

k=1

FZ(k∆t) (3.10)

FZnc =
2

N

N∑

k=1

FZ(k∆t) cos

(

2πnk

N

)

, n = 1, 2, . . . ,
N

2
− 1 (3.11)

FZns =
2

N

N∑

k=1

FZ(k∆t) sin

(

2πnk

N

)

, n = 1, 2, . . . ,
N

2
− 1 (3.12)

The fundamental frequency f is the rotor speed Ω in rad/sec or Ω/2π in Hz, and

the fundamental period T is 2π/Ω second. To extract n/rev components of FZ ,

the sampling frequency must be at least twice as fast as n/rev frequency to avoid

aliasing problem. In this study, a factor of 6 is chosen which leads to a sampling

frequency of (6nΩ/2π) Hz.

For a rotor with four identical blades and zero tracking error1, the only fre-

quencies transmitted to the fixed system are the four multiples per revolution

(4/rev, 8/rev, 12/rev . . . ). Therefore, the sampling frequency required to ex-

tract FZ4c and FZ4s of the Sikorsky UH-60 helicopter with a nominal rotor speed

Ω=27 rad/sec is fs = 6nΩ/2π = (6 ∗ 4 ∗ 27)/2π = 103Hz or N = 24 sample

data per rotor revolution. Although the major vibratory hub loads interested in

this study have a 4/rev frequency, the study is also monitoring the 8 and 12/rev

1The main rotor blades are all flying in the same tip-path-plane and maintain equidistant

angular spacings during flight.
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frequency, which are the second and third harmonics transmitted to the fixed sys-

tem for a four-bladed helicopter. In that case, the sampling frequency required

is fs = 6nΩ/2π = (6 ∗ 12 ∗ 27)/2π = 310Hz or N = 72 sample data per rotor

revolution.

The calculation of the Fourier coefficients is very time consuming since it re-

quires N2 number of function evaluations. To reduce the computation time, the

most frequently used algorithm for real-time applications is the fast Fourier trans-

form (FFT, Appendix B). It is a discrete Fourier transform that reduces the

number function evaluation from N 2 to N logN . Since the helicopter simulation

program used in this study is in the continuous-time domain and it is not a real-

time simulation, the simulation time does not advance to the time frame until

the Fourier series calculations is finished. Therefore, the additional computation

time required for the Fourier series calculations has no impact on 4/rev vibration

extraction.

The lowpass filter implemented in this harmonic analyzer is a 4th order Bessel

lowpass filter with the break frequency ωo at 6.5/rev. The 6.5/rev break frequency

is chosen to produce a -12 dB magnitude drop between 4/rev and 8/rev signals.

Additional information about Bessel filter will be discussed in Sec. 3.1.4.

Using the Fourier analyzer (either Fourier series approximation or FFT method)

to extract the 4/rev signals adds delays to the system. The source of delay is from

the sample window, which is discussed the next section.

3.1.3 Effect of windowing

When performing a digital harmonic analysis with a physical system, a sample

window must be used, because it is necessary to truncate long data streams to a
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finite size. The size of the window has a significant effect on the accuracy of the ex-

traction of the desired frequency components. A large window; i.e., a window that

extends over a long time, increases the accuracy of the low-frequency components

identification but degrades the high-frequency ones. On the other hand, a small

window high-frequency components identification but degrades the low-frequency.

Generally, the minimum window size is one cycle of the source signal. For the

4/rev hub load study, the minimum sample window is equal to quarter revolution.

However, a sample window of one revolution (4 cycles of the source signal) was

used in this study. As the rotor rotates beyond its first revolution, the sample

window advances continuously with it.

Figure 3.3 illustrates the time delay introduced by the sample window. The

vertical hub load FZ , shown in the second figure, starts from a trim condition with-

out HHC input for the first two revolutions. At the end of the second revolution,

a 4/rev HHC input is added (this is an arbitrary input, which will not necessarily

reduce vibrations), and the helicopter reaches the new steady state condition. In

the third revolution, FZ has reached the steady state almost instantaneously. Al-

though there is a low frequency drift, mainly 1/rev response, the third revolution

is mostly dominated by the 4/rev response, and it is very close to the new steady

state condition. The spectral analysis performed on third revolution also confirms

this finding and the result is shown in the third figure. However, according to on-

line Fourier analysis with a moving sample window (fourth figure), FZ4C
and FZ4S

take approximately one rotor revolution to reach the new steady state condition.

This does not agree with the result stated earlier. The cause of this difference

is the sample window. In other words, the sample window behaves as a lowpass

filter, which adds large time delay and masks all the transient responses.
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3.1.4 Equivalent lowpass filter

A window essentially behaves as a lowpass filter. The sample window used in

the study is based on the rectangular or ”box car” window. Figure 3.4a is the

rectangular window, h(t), in time domain which has a window size of 2T0. Its

expression is given by:

h (t) =
{ A |t| < T0

0 |t| ≥ T0

(3.13)

and its Fourier transform is given by:

H (f) =
∫ T0

−T0

h (t) e−2jπftdt

= A
∫ T0

−T0

cos(2πft)dt− jA
∫ T0

−T0

sin(2πft)dt

= 2AT0
sin(2πT0f)

2πT0f
(3.14)

where f is the frequency in Hz. Figure 3.4b shows that the Fourier transforma-

tion of a rectangular waveform consists of a central lobe which contains most of

the energy of the window and the side lobes which generally decay rapidly. The

magnitude difference of the first two lobes is 13.4 dB (79% reduction) with a break

frequency at 1/2T0 Hz.

Eq. (3.14) is a closed form solution, and it is a function of frequency. For the

LTI system analysis, Eq. (3.14) can be approximated by an equivalent lowpass

filter. The equivalent lowpass filter chosen is the Bessel filter because it has the

following characteristics:

• k poles and no zeros

• DC gain = 1

• break frequency = ωo
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• ,maximally flat group delay about 0 Hz, and the phase response is approxi-

mately linear in the passband

• the linearity degrades at the higher frequencies, and the group delay drops

to zero

• no overshoot around break frequency

For the Sikorsky UH-60 helicopter, the Bessel filter chosen is a 4th order function

with the break frequency ωo at 1/2T0. 2T0 is the length of the sample window,

which is equal to the time to complete one rotor revolution.

The frequency response comparison H(f) of the rectangular window and that

of the Bessel filter are compared in Figure 3.4c. The Bessel filter low-passes the

signal at a break frequency ωo of 4.3 Hz and produces a frequency drop off similar

to the rectangular sample window. Note that the Bessel filter designed in this

section is only implemented in an LTI system analysis to mimic the dynamics and

the time delay of the actual rectangular sample window.

3.2 Higher harmonic control algorithm

3.2.1 T -matrix method

The closed-loop HHC algorithm implemented is based on the fixed-gain T -matrix

feedback controller:

Z4P (k) = Z4P (k − 1) + T [θhhc (k) − θhhc (k − 1)] (3.15)

Eq. (3.15) is a difference equation for discrete-time domain system. The variable

k is the discrete-time index, while Z4P is the vibration response vector consisting
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of cosine and sine components of 4/rev vibratory hub loads excluding the 4/rev

yawing moments:

Z4P = [FX4C
, FX4S

, FY4C
, FY4S

, FZ4C
, FZ4S

,MX4C
,MX4S

,MY4C
,MY4S

]T (3.16)

and it is a function of the state vector x, the pilot inputs θpilot, and the HHC

inputs θhhc

Z4P = f(x, θpilot, θhhc) (3.17)

θpilot = [δlat, δlon, δcol, δped]
T (3.18)

θhhc = [θ3C , θ3S, θ4C , θ4S, θ5C , θ5S]
T (3.19)

The T -matrix is the Jacobian of function f computed about a reference input

vector, θhhco:

T =
∂f

∂θ

∣
∣
∣
∣
∣
θhhco

(3.20)

In other words, T is a linear approximation of the 4/rev vibration response Z4P

to the HHC inputs θhhc at a steady-state condition. That is, Eq. (3.20) assumes

that the changes in the vibration response ∆Z4P with respect to the changes in

the HHC input ∆θhhc are linear over the entire range of θhhc. This relationship is

can be written as

∆Z4P = T ∆θhhc (3.21)

In this study, the helicopter is trimmed without the HHC input; therefore, the

reference input vector θhhco is a zero vector, and the ∆θhhc in Eq. (3.21) is the

same as θhhc. Total 4/rev vibration approximated using T -matrix method is given

by

Z4P = Z4P 0
+ T θhhc (3.22)

where Z4P 0
is the 4/rev vibrations of the nonlinear baseline (HHC-off) case.
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For vibration suppression, the optimal control is obtained by minimizing the

cost function J :

J =
1

2
ZT

4P (k) Q Z4P (k) +
1

2
θThhc(k) R θhhc(k) (3.23)

where Q and R are the weighting matrices on the responses and controls:

Q = diag{1, 1, 1, 1, 1, 1, q7, . . . , q10} (3.24)

R = diag{1, 1, 1, 1, 1, 1} (3.25)

and q7, . . . , q10 = 1/∆z2
cg where ∆zcg is the vertical displacement of the rotor hub

to the center of gravity of the helicopter. The choice of the weighting 1/∆z2
cg

transforms the moments to the equivalent forces. The optimal control is computed

by setting the first derivative of the cost function of Eq. (3.23) to zero and solving

for the optimal HHC input:

∂J

∂θ
= 0 (3.26)

With this scheme, the HHC input is computed based on the current response

vector:

θ(k) = T † T T θ(k − 1) − T † Z4P (k − 1) (3.27)

where the fixed-gain regulator is

T † = (T T Q T + R)
−1

T T Q (3.28)

If R = 0 or T TQT � R, T † is a pseudo-inverse of T , and Eq. (3.27) becomes

θ(k) = θ(k − 1) − T † Z4P (k − 1) (3.29)

3.2.2 T -matrix validation

As stated before, T -matrix is a linear approximation of the 4/rev vibration response

Z4P to the HHC inputs θhhc at a steady-state condition. The total 4/rev vibration
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response Z4P of the nonlinear model and that of the T -matrix approximation are

compared in Figure 3.5-3.7 for 3, 4, and 5/rev inputs to determine the accuracy

of the T -matrix approximation. The total 4/rev vibration response Z4P of the

nonlinear model at the steady-state condition was computed for a HHC input,

and the 4/rev vibration response was extracted from the helicopter hub loads

using Fourier series approximation. The total 4/rev vibration response Z4P of

the T -matrix approximation is computed using Eq. (3.22) where Z4P 0
is the 4/rev

vibrations of the baseline (HHC-off) case from the nonlinear simulation. The HHC

input for the both methods has an amplitude of 1◦ with a phase angle varying from

0◦ to 360◦ with an increment of 30◦.

The diamond symbol represents the baseline (HHC-off) 4/rev vibration re-

sponses Z4P 0
from the nonlinear model, and their values are tabulated in Table 3.1.

The open circles represent the vibration responses from the nonlinear model with

the HHC inputs engaged; the solid circles represent the vibration responses from

T -matrix approximation based on Eq. (3.22) with θhhc determined from Eq. (3.29).

The number next to the symbol is the n/rev input phase angle.

These figures illustrate the 4/rev vibration prediction error resulting from the

T -matrix approximation. For the 3/rev case (Figure 3.5), the 4/rev vibration

responses from the T -matrix approximation match well with the ones from the

nonlinear model. For the 4/rev and 5/rev cases, there are some differences be-

tween the two methods. The difference is from the earlier assumption that the

vibration response to the HHC input is linear over the entire range of θhhc. Since

the vibration responses to the HHC inputs are not necessary linear, the small

differences between linear and nonlinear models are expected.
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3.3 Discrete HHC update

The ideal HHC inputs computed by the T -matrix controller for vibration suppres-

sion are not returned to the rotor system at every time step. The HHC input

has a discrete update rate which typically varies from 0.5 to 16 times per rotor

revolution [5–10]. A typical HHC input update rate is once-per-revolution. In the

discrete-time domain, the discrete HHC update is performed by the sample-and-

hold operation. To implement this in a continuous-time domain system, the effect

of the sample-and-hold operation must be approximated in the continuous-time

domain.

Figure 3.8 illustrates the effect of a sample-and-hold operation on a continuous

signal. The sampler transforms the continuous signal to an amplitude-modulated

pulse signal at a sample rate ωs. At the output of the digital controller, the

digital signal must be converted to analog signal by the process called digital-

to-analog conversion. The simplest device that transforms a digital input to an

analog output is a zero-order-hold. The bottom of Figure 3.8 shows the relationship

between the digital input and the analog output. The zero-order-hold holds the

value of the sampled signal over Ts second to produce a reconstructed signal with

staircase waveform. Notice that an approximation to the reconstructed signal is

identical to the original signal with a delay of Ts/2 second. Therefore, a zero-

order-hold operating at a sample rate ωs is equivalent to a time delay of π/ωs

second. Similarly, the discrete HHC input operating at ωs2 frequency also can be

approximated by a Padé function with a time delay of π/ωs2 second.
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4P Cos-Comp. 4P Sin-Comp. Amplitude

FX (lb) 151.6 87.8 175.2

FY (lb) 73.5 -61.3 95.7

FZ (lb) 39.5 8.9 40.5

MX (ft-lb) 40.1 62.6 74.3

MY (ft-lb) 80.0 30.2 85.5

Table 3.1: Baseline (HHC-off) Vibration Level
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Chapter 4

Extraction of the Constant-Coefficient Linearized

Model

A key ingredient for the study of potential interactions between HHC and flight

control system is a linearized time-invariant model of the helicopter dynamics, in-

cluding higher harmonic inputs and controls. This chapter contains the derivation

of such a model, and is composed of three sections.

The first section summarizes the main steps of the extraction of a conventional

linearized model, i.e., one without higher harmonic inputs and controls. The second

section extends the derivation to include such higher harmonics, and shows that: (i)

one portion of the output equation is the equivalent of the traditional T -matrix, and

(ii) through an appropriate formulation of the output equation, the need for online

identification and adaptation of the T -matrix in maneuvering flight is substantially

reduced. The third section describes the application of the methodology to simple

linear rotor equations, for which analytic expressions for the coefficients of the

model can be derived.
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4.1 Extraction of a linearized model without higher

harmonics

Consider the equations of motion of the helicopter written in symbolic form as:

f(ẋ,x,u;ψ) = 0 (4.1)

and take first order differentials

df(ẋ,x,u;ψ) = 0 (4.2)

which can be expanded into

∂f

∂ẋ

∣
∣
∣
∣
∣
ẋ = ẋ0

dẋ +
∂f

∂ẋ

∣
∣
∣
∣
∣
x = x0

dx +
∂f

∂u

∣
∣
∣
∣
∣
u = u0

du = 0 (4.3)

where the subscript (. . .)0 denotes the trim values of the respective vectors. Replace

now d(. . .) with ∆(. . .) and introduce the notation

[E(ψ)]
def
=

∂f

∂ẋ

∣
∣
∣
∣
∣
ẋ = ẋ0

(4.4)

[A1(ψ)]
def
=

∂f

∂ẋ

∣
∣
∣
∣
∣
x = x0

(4.5)

[B1(ψ)]
def
=

∂f

∂u

∣
∣
∣
∣
∣
u = u0

(4.6)

Then Eq. (4.3) can be rewritten as:

∆ẋ = −[E(ψ)]−1[A1(ψ)]∆x − [E(ψ)]−1[B1(ψ)]∆u

= [A(ψ)]∆x + [B(ψ)]∆u (4.7)

with [A(ψ)]
def
= −[E(ψ)]−1[A1(ψ)] and [B(ψ)]

def
= −[E(ψ)]−1[B1(ψ)]. The linearized

matrices [E(ψ)], [A1(ψ)], and [B1(ψ)] can be calculate using finite difference ap-

proximations. For example, using central finite differences, the j-th columns of the
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matrices [A1(ψ)], [B1(ψ)], and [E(ψ)] at the azimuth ψi are given by, respectively:

{A1(ψi)}j =
∂f

∂xj

∣
∣
∣
∣
∣
x = x0

≈
f(x0 + hej;ψi) − f(x0 − hej;ψi)

2h
(4.8)

{B1(ψi)}j =
∂f

∂uj

∣
∣
∣
∣
∣
u = u0

≈
f(u0 + hej;ψi) − f(u0 − hej;ψi)

2h
(4.9)

{E(ψi)}j =
∂f

∂ẋj

∣
∣
∣
∣
∣
ẋ = ẋ0

≈
f(ẋ0 + hej;ψi) − f(ẋ0 − hej;ψi)

2h
(4.10)

where ej is a vector with all its elements equal to zero except for the j-th, which

is equal to one, and h is the finite difference step size. All the matrices above

are periodic, with common period equal to one rotor revolution. Therefore, the

state matrix [A(ψ)] and the control matrix [B(ψ)] are also periodic, and can be

expanded in Fourier Series:

[A(ψ)] = [A0] +
K∑

k=1

([Akc] cos kψ + [Aks] sin kψ) (4.11)

[B(ψ)] = [B0] +
K∑

k=1

([Bkc] cos kψ + [Bks] sin kψ) (4.12)

If the state vector x is defined entirely in a fixed coordinate system, then a time

invariant linearized model can be obtained by retaining only the constant matrices

[A0] and [B0]. If, additionally, the blades are assumed to be identical, then the

summations in Eqs. (4.11) and (4.12) only contain harmonics that are multiples of

the number of blades. Therefore, for an N -bladed rotor, k = N, 2N, 3N, . . .

4.2 Extraction of a linearized model with higher

harmonics

This section presents the extension of the linearization procedure to the case in

which both the state vector x and the control vector u contain higher harmonics.
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The precise definitions of x and u will be introduced first, together with general

expressions for the linearized system. The derivation of the control matrix [B(ψ)]

will be presented next, because it requires only minor modifications of the baseline

procedure of the previous section. Finally, the derivation of the state matrix [A(ψ)],

which requires some special treatment, will be presented.

4.2.1 Definitions

The control vector u(ψ) used in the present study is defined as:

u(ψ) =







upilot(ψ)

uHHC(ψ)







(4.13)

where upilot(ψ) is the vector of conventional pilot controls

upilot(ψ) = [δlat δlon δcol δped]
T (4.14)

and uHHC is the vector of higher harmonic controls

uHHC(ψ) = [θ3c θ3s θ4c θ4s θ5c θ5s]
T (4.15)

The HHC is applied to the blade in the rotating system. For the 4-bladed helicopter

configurations used in this research, 3/, 4/, and 5/rev control inputs in the rotating

system are required to generate the desired 4/rev inputs in the fixed system. The

vector u(ψ) should be interpreted as “perturbations from the trim values of the

controls”. The state vector x(ψ), also representing perturbations from trim values,

can be written in the symbolic form:

x(ψ) =







xB

xMR







(4.16)
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where xB is the vector of states not associated with the main rotor, defined as:

xB = [u v w p q r φ θ ψ λ0 λc λs λtr νx νy]
T (4.17)

and xMR is the vector of rotor states, defined in a fixed coordinate system. The

elements of the rotor state vector are based on the assumption that each state

is composed of an average and a 4/rev portion, both azimuth dependent. For

example, with the longitudinal rigid body flapping β1c(ψ) written as:

β1c(ψ) = β1cave(ψ) + β1c4c(ψ) cos 4ψ + β1c4s(ψ) sin 4ψ (4.18)

the quantities β1cave(ψ), β1c4c(ψ), and β1c4s(ψ) will be considered as states and

included in the rotor portion xMR of the state vector. The state β1cave(ψ) is equiv-

alent to the longitudinal flap state that would appear in a traditional rotor state

vector. The additional higher harmonic states β1c4c(ψ) and β1c4s(ψ) represent a

new way of modeling the effects of higher harmonic control, introduced for the

first time in the present research. Although the formulation of Eq. (4.18) appears

intuitively reasonable, it will not be justified on a rigorous theoretical basis. How-

ever, its validity will be established through simulation, by comparing linearized

and nonlinear responses to pilot inputs.

The assumption that each rotor state is composed of an average and a 4/rev

portion leads to an expanded state vector defined as follows:

x =







xave

x4P







(4.19)

where xave contains the vector xB defined in Eq. (4.17) and the average rotor
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states, that is:

xave =
[

xTB β̇0ave β̇1cave β̇1save β̇2ave β0ave β1cave β1save β2ave . . .

. . . ζ̇0ave ζ̇1cave ζ̇1save ζ̇2ave ζ0ave ζ1cave ζ1save ζ2ave . . .

. . . φ̇0ave φ̇1cave φ̇1save φ̇2ave φ0ave φ1cave φ1save φ2ave

]T
(4.20)

and x4P contains the 4/rev components, sine and cosine, of the rotor states:

x4P =
[

β̇04c
β̇04s

β̇1c4c β̇1c4s β̇1s4c β̇1s4s β̇24c
β̇24s

. . .

. . . β04c
β04s

β1c4c β1c4s β1s4c β1s4s β24c
β24s

. . .

. . . ζ̇04c
ζ̇04s

ζ̇1c4c ζ̇1c4s ζ̇1s4c ζ̇1s4s ζ̇24c
ζ̇24s

. . .

. . . ζ04c
ζ04s

ζ1c4c ζ1c4s ζ1s4c ζ1s4s ζ24c
ζ24s

. . .

. . . φ̇04c
φ̇04s

φ̇1c4c φ̇1c4s φ̇1s4c φ̇1s4s φ̇24c
φ̇24s

. . .

. . . φ04c
φ04s

φ1c4c φ1c4s φ1s4c φ1s4s φ24c
φ24s

]T (4.21)

The notation in Eqs. (4.20) and (4.21) reflects the fact that in the present study

the rotor blades are modeled using one rigid flap mode β, one rigid lag mode ζ,

and one flexible torsion mode φ, but both equations can be rewritten for a generic

number of rigid and flexible modes. Also note that both vectors xave and xHHC

are in general time dependent.

With these definitions of the state and the control vector the linearized system,

Eq. (4.7), becomes






ẋave

ẋ4P







=







Aave A12

A21 AHHC













xave

x4P







+







Bave B12

B21 BHHC













upilot

uHHC







(4.22)

where now all the partitions of A and B are time-invariant. In other words, by

decomposing the state vector into an average and a 4/rev component, the orig-

inal linearized system with periodic coefficients has been converted into a larger

linearized system, but with constant coefficients.
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The linearized model also includes an output equation, which has the form:






yave

y4P

Fave

F4P







︸ ︷︷ ︸

def
= y

=















I 0

0 C22

C31 C32

C41 C42















︸ ︷︷ ︸

def
= C







xave

x4P







+















0 0

0 0

D31 D32

D41 D42















︸ ︷︷ ︸

def
= D







upilot

uHHC







(4.23)

where the C and D matrices have constant coefficients. The vectors Fave and F4P

contain the the average and 4/rev hub loads at the hub, and are defined as:

Fave = [Fxave Fxave Fyave Mxave Myave Mzave ]T (4.24)

F4P = [Fx4c
Fx4s

Fy4c Fy4s Fz4c Fz4s Mx4c
Mx4s

My4c My4s Mz4c Mz4s ]T

(4.25)

where Fx, Fy, Fz, and Mx,My,Mz denote the rotor force and moment components

along and about the body axes. The remaining two partitions of the output vector

y in Eq. (4.23) are yave and y4P . The output subvector yave is identical to the

average state vector xave. The output subsector y4P is the global 4/rev rotor state

vector:

y4P =
[

β ′
04c

β ′
04s

β ′
1c4c

β ′
1c4s

β ′
1s4c

β ′
1s4s

β ′
24c

β ′
24s

. . .

. . . ζ ′04c
ζ ′04s

ζ ′1c4c ζ
′
1c4s ζ

′
1s4c ζ

′
1s4s ζ

′
24c

ζ ′24s
. . .

. . . φ′
04c

φ′
04s

φ′
1c4c

φ′
1c4s

φ′
1s4c

φ′
1s4s

φ′
24c

φ′
24s

]T
(4.26)

The portion of the output equation corresponding to yave and y4P is simply a

mathematical means to indicate that the outputs are the average and global 4/rev

rotor states, no physics are involved.

The submatrices C31 and C32 express a linearized relationship between the

average hub loads and average and 4/rev rotor states. Similarly, the submatrices
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C41 and C42 express a linearized relationship between the vibratory loads and

average and 4/rev rotor states.

As for the feedforward matrix, the submatrices D31 and D32 link the average

vibratory loads to, respectively, pilot and HHC inputs. The submatrices D41 and

D42 link the 4/rev harmonics of the vibratory loads to, respectively, pilot and HHC

inputs. Therefore, the D42 submatrix is the equivalent of the T -matrix in typical

HHC studies. The submatrix D41 represents the effects of pilot maneuvers on the

vibratory loads: these effects are not taken into account explicitly in typical HHC

studies, instead, the maneuver effects are captured by online identification of the

T -matrix and adaptation. By including the maneuver effects in the output model,

the need for adaptation is substantially reduced.

4.2.2 Extraction of the control matrix B

The extraction of the control matrix B is presented first, because the procedure

is more similar to that for the traditional linearization without higher harmonic

components of the states. In fact, the control perturbation vector u is already de-

fined in the rotating system. The control matrix B is extracted through numerical

perturbation of the full nonlinear equations of motion about a trimmed equilib-

rium position. Each element of the matrix is obtained using central difference

approximations.

The calculation proceeds as follows. For every azimuth angle ψi:

1. Perturb the k-th element uk(ψi) of the control vector u (pilot and HHC

controls are treated in exactly the same way) by ∆uk, i.e., let the perturbed
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control vector u+(ψi) be

u+(ψi) =







u1

u2

...

uk + ∆uk
...

um







(4.27)

where the subscript “+” denotes the positive perturbation in the central

difference calculation.

2. Substitute the perturbed control vector u+(ψi) into the system of equations

of motion of the helicopter, to obtain the perturbed acceleration vector ẋR+

ẋR+ = f(xR,u+, ψi) (4.28)

where a subscript R has been added to the state vector to indicate that

the rotor portions of it are formulated in the rotating system (note that the

state vector in the linearized model is entirely expressed in the fixed system).

The state vector xR corresponds to the desired trim condition, and is held

constant during the perturbation.

3. Repeat the two previous steps with a negative perturbation of the k-th con-

trol, uk − ∆uk, to obtain the perturbed acceleration vector ẋR−.

4. Build the derivative using central difference approximations. This derivative

is the k-th column of the BR matrix (i.e., with the rotor portions still in the

rotating system) at the azimuth angle ψi:

{BR(ψi)}k ≈
1

2∆uk
(ẋR+ − ẋR−) (4.29)
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5. Repeat the four previous steps for each of the m elements of the control vec-

tor, i.e., for uk, k = 1, . . . , m, to obtain the complete control matrix BR(ψi)

BR(ψi) = [{BR(ψi)}1 {BR(ψi)}2 · · · {BR(ψi)}m] (4.30)

The next step of the linearization procedure typically consists of performing a

multiblade coordinate transformation, to convert the rotor states from the rotating

to the fixed system, and therefore to obtain a control matrix B(ψi) entirely in the

fixed system. Then, after steps 1-5 are carried out for a sufficient number of

azimuth angles ψi, the resulting control matrices B(ψi) are typically averaged to

obtain the final constant control matrix B. This is the traditional linearization

procedure, and it is also what is done in the present study for the calculation

of the rows of the B matrix corresponding to the “average” states, i.e., for the

submatrices Bave and B12 in Eq. (4.22).

Some additional manipulations are instead required for the rows corresponding

to the 4/rev states, i.e., for the submatrices B21 and BHHC . These manipulation

consist of a Fourier analysis ofB(ψi) to extract the 4/rev cosine and sine harmonics.

Define:

B4c =
2

Nψ

Nψ∑

i=1

B(ψi) cos 4ψi (4.31)

B4s =
2

Nψ

Nψ∑

i=1

B(ψi) sin 4ψi (4.32)

where Nψ is number of azimuth angle ψi in one rotor revolution. Then it is essen-

tially

[B21 BHHC ] =







B4c

B4s







(4.33)

except that the rows of B4c and B4s must be appropriately permutated because
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the state subvector x4P , Eq. (4.21), is arranged with the 4/rev cosine and sine

components interlaced rather than grouped together.

4.2.3 Extraction of the state matrix A

The general procedure to extract the state matrix A is similar to that of the control

matrix B, except that the state vector is defined in the fixed system, both for the

average and the 4/rev components.

Rows corresponding to the average states xave

The rows of the A matrix corresponding to the average states xave, i.e., the sub-

matrices Aave and A21 in Eq. (4.22) can be obtained with the same procedure as

previously shown for the B matrix, i.e., through the following steps.

For every azimuth angle ψi:

1. Perturb the k-th element xavek(ψi) of the partition xave of the state vector x

by ∆xk, i.e., let the perturbed state vector x+(ψi) be

x+(ψi) =







xave1

xave2
...

xavek + ∆xk
...

xaveN

x4p







(4.34)

where the subscript “+” denotes the positive perturbation in the central

difference calculation.
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2. Substitute the perturbed state vector x+(ψi) into the system of equations

of motion of the helicopter, to obtain the perturbed acceleration vector ẋ+.

Because the rotor equations are formulated and implemented in the rotat-

ing system, x+(ψi) must first be converted to the rotating system, using a

multiblade coordinate transformation that yields the corresponding rotating

state vector xR+(ψi)

ẋR+ = f(xR+,u, ψi) (4.35)

where the subscript R again indicates that the rotor portions are in the rotat-

ing system. The control vector u corresponds to the desired trim condition,

and is held constant during the perturbation.

3. Repeat the two previous steps with a negative perturbation of the k-th av-

erage state, xavek − ∆xk, to obtain the perturbed acceleration vector ẋR−.

4. Build the derivative using central difference approximations. This derivative

is the k-th column of a matrix AR(ψi) at the azimuth angle ψi , that is:

{AR(ψi)}k ≈
1

2∆xk
(ẋR+ − ẋR−) (4.36)

Position in the state matrix and dimensions of AR(ψi) are the same as the

submatrix Aave in Eq. (4.22), but Aave is constant and in the fixed system,

whereas AR(ψi) is periodic and in the rotating system.

5. Repeat the four previous steps for each of the N elements of the state vector

partition xave, i.e., for xavek , k = 1, . . . , N , to obtain the complete matrix

AR(ψi)

AR(ψi) = [{AR(ψi)}1 {AR(ψi)}2 · · · {AR(ψi)}N ] (4.37)
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The next step of the linearization procedure typically consists of performing a

multiblade coordinate transformation, to convert the rotor states from the rotating

to the fixed system, and therefore to obtain a state matrix A(ψi) entirely in the

fixed system. Then, after steps 1-5 are carried out for a sufficient number of

azimuth angles ψi, the resulting state matrices A(ψi) are typically averaged to

obtain the final constant state matrix A. This is the traditional linearization

procedure, and it is also what is done in the present study for the calculation of

the portion of the A matrix corresponding to the “average” states, i.e., for the

submatrix Aave in Eq. (4.22).

Some additional manipulations are required for the rows corresponding to the

4/rev derivatives ẋ4P , i.e., for the submatrix A21. As for the B matrix case, first

perform a multiblade coordinate transformation on AR(ψi), resulting in AF (ψi) ,

and then extract the 4/rev cosine and sine harmonics through a Fourier analysis.

Define:

AF4c
=

2

Nψ

Nψ∑

i=1

AF (ψi) cos 4ψi (4.38)

AF4s
=

2

Nψ

Nψ∑

i=1

AF (ψi) sin 4ψi (4.39)

Then it is essentially

A21 =







AF4c

AF4s







(4.40)

except that the rows AF4c
and AF4s

must be appropriately permutated because the

state derivative subvector ẋ4P , Eq. (4.21), is arranged with the 4/rev cosine and

sine components interlaced rather than grouped together.
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Rows corresponding to the 4/rev states x4P

The rows of the A matrix corresponding to the 4/rev state vector x4P , i.e., the

submatrices A12 and AHHC in Eq. (4.22) can be obtained with the same procedure

as previously shown for the Aave and A21 matrices with two special treatments:

4/rev perturbation and kinematic relationship.

Unlike the conventional linearization method which has a constant perturba-

tion, the submatrices A12 and AHHC are obtained by perturbing x4P in 4/rev

frequency in both sine and cosine direction. The 4/rev frequency is chosen to

excite the 4/rev response. Because the equations of motion of the helicopter are

not expressed in terms of 4/rev states, they cannot be perturbed directly. The

alternative solution is to perturb each main rotor states xMR of the partition xave

by ±∆xMR cos 4ψi and ±∆xMR sin 4ψi. This is the same as perturbing xMR4c
and

xMR4s
by ±∆xMR, respectively.

Another important aspect regarding the 4/rev perturbation is the kinematic

relationship between the rotor states. There are several types of kinematic rela-

tionships, and one of them is the integral relationship such as

d

dt
(β1c) = β̇1c (4.41)

d

dt
(β̇1c) = β̈1c (4.42)

Because the periodic nature of the 4/rev states, the kinematic relationships are

maintained in a different way. Continuing with the previous example, the first and
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second derivatives of Eq. (4.18) with respect to time are given by:

β1c(ψ) = β1cave(ψ) + β1c4c(ψ) cosψ + β1c4s(ψ) sinψ (4.18) repeated

β̇1c(ψ) = β̇1cave + (β̇1c4c + 4Ωβ1c4s)
︸ ︷︷ ︸

β′

1c4c

cos 4ψ + (β̇1c4s − 4Ωβ1c4c)
︸ ︷︷ ︸

β′

1c4s

sin 4ψ

(4.43)

β̈1c(ψ) = β̈1cave + (β̈1c4c + 8Ωβ̇1c4s − 16Ω2β1c4c)
︸ ︷︷ ︸

β′′

1c4c

cos 4ψ

+ (β̈1c4s − 8Ωβ̇1c4c − 16Ω2β1c4s)
︸ ︷︷ ︸

β′′

1c4s

sin 4ψ (4.44)

Although β1c, β̇1c, and β̈1c on the left-hand side of Eqs. (4.18), (4.43), and

(4.44) correspond to the integral relationships, the primed and dotted variables on

right-hand side of Eqs. (4.18), (4.43), and (4.44) do not maintain the same integral

relationships. For example,

d

dt
(β1c4c) 6= β ′

c4c (4.45)

d

dt
(β1c4s) 6= β ′

c4s
(4.46)

d

dt
(β ′

1c4c
) 6= β ′′

1c4c
(4.47)

d

dt
(β ′

1c4s
) 6= β ′′

1c4s
(4.48)

(4.49)

Define all the dotted and non-dotted variables such as β1c4c, β1c4s , β̇1c4c , and β̇1c4c

on the right-hand side of Eqs. (4.18) and (4.43) be the 4/rev rotor states, and the

primed variables such as β ′
1c4c

and β ′
1c4s

be the global 4/rev rotor states (for this

simple example). Then, the kinematic relationships between the 4/rev rotor states
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and global 4/rev rotor states are as follows:

β ′
1c4c

= β̇1c4c + 4Ωβ1c4s (4.50)

β ′
1c4s = β̇1c4s − 4Ωβ1c4c (4.51)

β ′′
1c4c

= β̈1c4c + 8Ωβ̇1c4s − 16Ω2β1c4c (4.52)

β ′′
1c4s = β̈1c4s − 8Ωβ̇1c4c − 16Ω2β1c4s (4.53)

For this research, the 4/rev rotor state vector and the global 4/rev rotor state

vector are shown in Eqs. (4.21) and (4.26), respectively.

The kinematic relationship must always be maintained through out the lin-

earization process. For instance, if the β1c was perturbed by a constant ∆β1c, the

β̇1c must also be perturbed by d
dt

(∆β1c) at the same time to maintain kinematic

consistency. Because the time derivative of a constant perturbation is zero, the

traditional linearization method only perturbs one state at a time while the rest

of the states remain fixed.

For a 4/rev perturbation, if β1c is perturbed by ∆β1c cos 4ψ , β̇1c must also

be perturbed by d
dt

(∆β1c cos 4ψ) at the same time. Conversely, if β1c is perturbed

by ∆β1c sin 4ψ, β̇1c must also be perturbed by d
dt

(∆β1c sin 4ψ). It is important to

remember that the equations of motion of the helicopter are not expressed in terms

of 4/rev rotor state, x4P cannot be perturbed directly. The procedure described

below perturbs each main rotor state with xMR in both sine and cosine direction

at a 4/rev frequency.

The calculation of submatrices A12 and AHHC proceeds as follow:

For every azimuth angle ψi:

1. Perturbation of the 4/rev cosine component
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(a) Perturb the jth main rotor state xMRj (ψi) of partition xMR(ψi) in the

state vector xave(ψi) by ∆xMRj cos 4ψi, i.e., let the perturbed state vec-

tor x4c+(ψi) be

x4c+(ψi) =







xB

xMR1

...

xMRj−4
+ [−4Ω∆xMRj sin 4ψi]

...

xMRj + ∆xMRj cos 4ψi
...

xMRL







(4.54)

where the subscript “4c+” denotes the positive 4/rev cosine perturba-

tion in the central difference calculation.

(b) Substitute the perturbed state vector x4c+(ψi) into the system of equa-

tions of motion of the helicopter, to obtain the perturbed state vector

derivative ẋ4c+(ψi). Because the rotor equations are formulated and

implemented in the rotating system, x4c+(ψi) must first be converted

to the rotating system, using a multi-blade coordinate transformation

that yields the corresponding rotating state vector xR4c+(ψi)

ẋR4c+(ψi) = f(xR4c+(ψi),u(ψi), ψi) (4.55)

The control vector u(ψi) corresponds to the desired trim condition, and

is held constant during the perturbation.

If and only if xMRj is one of the displacement states (β0, β1c, β1s, β2,

ζ0, ζ1c, ζ1s, ζ2, φ0, φ1c, φ1s, φ2), its derivative state xMRj−4
(β̇0, β̇1c,
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β̇1s, β̇2, ζ̇0, ζ̇1c, ζ̇1s, ζ̇2, φ̇0, φ̇1c, φ̇1s, φ̇2) also needs to be perturbed by

−4Ω∆xMRj sin 4ψi at the same time. This additional perturbation is

represented by [. . .] in Eq. (4.54).

(c) Repeat the two previous steps with a negative perturbation of the j th

main rotor state, xMRj −∆xMRj cos 4ψi, and build the derivative using

central difference approximations. This derivative is the j th column of

an interim matrix PR(ψi) at the azimuth angle ψi , that is:

{PR(ψi)}j ≈
1

2∆xMRj

(ẋR4c+(ψi) − ẋR4c−(ψi)) (4.56)

(d) Repeat the three previous steps for each of the L elements of the main

rotor state vector partition xMR, i.e., for the main rotor state in xMRj ,

j = 1, . . . , L, to obtain the first half of the interim matrix PR(ψi)

PR(ψi) = [{PR(ψi)}1 {PR(ψi)}2 · · · {PR(ψi)}L]n×L (4.57)

2. Perturbation of the 4/rev sine component

(a) Perturb the jth main rotor state xMRj (ψi) of partition xMR(ψi) in the

state vector xave(ψi) by ∆xMRj sin 4ψi, i.e., let the perturbed state vec-

tor x4s+(ψi) be

x4s+(ψi) =







xB

xMR1

...

xMRj−4
+ [4Ω∆xMRj cos 4ψi]

...

xMRj + ∆xMRj sin 4ψi
...

xMRL







(4.58)
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where the subscript “4s+” denotes the positive 4/rev sine perturbation

in the central difference calculation.

(b) Substitute the perturbed state vector x4s+(ψi) into the system of equa-

tions of motion of the helicopter, to obtain the perturbed state vector

derivative ẋ4s+(ψi). Because the rotor equations are formulated and

implemented in the rotating system, x4s+(ψi) must first be converted

to the rotating system, using a multi-blade coordinate transformation

that yields the corresponding rotating state vector xR4s+(ψi)

ẋR4s+(ψi) = f(xR4s+(ψi),u(ψi), ψi) (4.59)

The control vector u(ψi) corresponds to the desired trim condition, and

is held constant during the perturbation.

If and only if xMRj is one of the displacement states, its derivative

xMRj−4
also needs to be perturbed by +4Ω∆xMRj cos 4ψi at the same

time. This additional perturbation is represented by [. . .] in Eq. (4.58).

(c) Repeat the two previous steps with a negative perturbation of the j th

main rotor state, xMRj − ∆xMRj sin 4ψi, and build the derivative us-

ing central difference approximations. This derivative is the (L + j)th

column of the interim matrix PR(ψi) at the azimuth angle ψi , that is:

{PR(ψi)}L+j ≈
1

2∆xMRj

(ẋR4s+(ψi) − ẋR4s−(ψi)) (4.60)

(d) Repeat the three previous steps for each of the L elements of the main

rotor state vector partition xMR, i.e., for the main rotor state in xMRj ,

j = 1, . . . , L, to complete the second half of the interim matrix PR(ψi)

PR(ψi) =
[

{PR(ψi)}1 · · · {PR(ψi)}L {PR(ψi)}L+1 · · · {PR(ψi)}2L

]

n×2L

(4.61)
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The next step is to perform a multi-blade coordinate transformation to obtain a

interim matrix PF (ψi) entirely in the fixed system. Then, after steps 1-2 are carried

out for one rotor revolution, the resulting interim matrices PF (ψi) are averaged

to obtain the state matrix A12. Next, the columns of A12 must be appropriately

permutated because the state subvector x4P , Eq. (4.21), is arranged with the 4/rev

cosine and sine components interlaced rather than grouped together.

The state matrix AHHC can be obtained by extracting the 4/rev cosine and

sine harmonics from PF (ψi) using Fourier analysis. Define:

AF4c
=

2

Nψ

Nψ∑

i=1

PF (ψi) cos 4ψi (4.62)

AF4s
=

2

Nψ

Nψ∑

i=1

PF (ψi) sin 4ψi (4.63)

Then it is essentially

AHHC =







AF4c

AF4s







(4.64)

except that the rows and columns of AF4c
and AF4s

must be appropriately per-

mutated because the state subvector x4P , Eq. (4.21), is arranged with the 4/rev

cosine and sine components interlaced rather than grouped together.

There is one last special treatment related to state matrix AHHC . Both sub-

matrices AF4c
and AF4s

do not contain the 4/rev state derivatives ẋ4P . Recall that

the interim matrix PF (ψi) contains the perturbed state vector derivative which

has elements such as β̈1c. The Fourier analysis only extracts the global 4/rev ro-

tor states (β ′′
1c4c and β ′′

1c4s) not the 4/rev rotor states (β̈1c4c or β̈1c4s). To conform

with standard state-space representation ẋ = Ax + Bu, the global 4/rev rotor

states in AF4c
and AF4s

are converted to the 4/rev rotor states using the kinematic

relationship as shown in Eqs. (4.50)-(4.53).
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4.2.4 Extraction of the feedforward matrix D

Consider the hub loads at hub in body axes can be written in symbolic form as:

F = g(ẋ,x,u;ψ) (4.65)

The extraction procedure for the feedforward matrix D is the same as the one for

the control matrix B except the subject of the interest is the hub loads F instead

of the state vector derivatives ẋ.

The calculation proceeds as follows. For every azimuth angle ψi:

1. Perturb the k-th element uk(ψi) of the control vector u (pilot and HHC

controls are treated in exactly the same way) by ∆uk, i.e., let the perturbed

control vector u+(ψi) be

u+(ψi) =







u1

u2

...

uk + ∆uk
...

um







(4.66)

where the subscript “+” denotes the positive perturbation in the central

difference calculation.

2. Substitute the perturbed control vector u+(ψi) into the Eq. (4.65), to obtain

the perturbed hub loads F+

F+ = g(x,u+, ψi) (4.67)

The state vector x corresponds to the desired trim condition, and is held

constant during the perturbation.
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3. Repeat the two previous steps with a negative perturbation of the k-th con-

trol, uk − ∆uk, to obtain the perturbed acceleration vector F−.

4. Build the derivative using central difference approximations. This derivative

is the k-th column of the D matrix at the azimuth angle ψi:

{D(ψi)}k ≈
1

2∆uk
(F+ − F−) (4.68)

5. Repeat the four previous steps for each of the m elements of the control

vector, i.e., for uk, k = 1, . . . , m, to obtain the complete control matrix D(ψi)

D(ψi) = [{D(ψi)}1 {D(ψi)}2 · · · {D(ψi)}m] (4.69)

6. Repeat steps 1-5 for Nψ azimuth angles ψi for one rotor revolution.

7. Extract the average, 4/rev cosine, and 4/rev sine harmonics of D(ψi) using

Fourier analysis.

Define:

Dave =
1

Nψ

Nψ∑

i=1

D(ψi) (4.70)

D4c =
2

Nψ

Nψ∑

i=1

D(ψi) cos 4ψi (4.71)

D4s =
2

Nψ

Nψ∑

i=1

D(ψi) sin 4ψi (4.72)

Then it is essentially

[D31 D32] = Dave (4.73)

[D41 D42] =







D4c

D4s







(4.74)

except that the rows of D4c and D4s must be appropriately permutated be-

cause the output subvector F4P , Eq. (4.25), is arranged with the 4/rev cosine

and sine components interlaced rather than grouped together.

81



4.2.5 Extraction of the output matrix C

The general procedure to extract the state matrix C is similar to that of the control

matrix A.

Submatrix C22

The submatrix C22 relates the 4/rev rotor states x4P to the global 4/rev rotor state

vector y4P ; i.e., C22 is a kinematic matrix. Using β ′
1c4c

and β ′
1c4s

as an example,

the kinematic equations for β1c are

β ′
1c4c

= β̇1c4c + 4Ωβ1c4s (4.50) repeated

β ′
1c4s = β̇1c4s − 4Ωβ1c4c (4.51) repeated

(4.75)

Re-write the above equations in matrix form:







β ′
1c4c

β ′
1c4s







=







1 0 0 4Ω

0 1 −4Ω 0





















β̇1c4c

β̇1c4s

β1c4c

β1c4s















(4.76)

Likewise, the C22 can be structured as follows:

y4P =











H 0 0

0 H 0

0 0 H











x4p (4.77)

H =















I 0 0 0 W 0 0 0

0 I 0 0 0 W 0 0

0 0 I 0 0 0 W 0

0 0 0 I 0 0 0 W















W =







0 4Ω

−4Ω 0







(4.78)

82



Submatrices C31 and C41

The rows of the C matrix corresponding to the average states xave, i.e., the sub-

matrices C31 and C41 in Eq. (4.23) can be obtained with the same procedure as

previously shown for the Aave and A21 matrices, i.e., through the following steps.

For every azimuth angle ψi:

1. Perturb the k-th element xavek(ψi) of the partition xave of the state vector x

by ∆xk, i.e., let the perturbed state vector x+(ψi) be

x+(ψi) =







xave1

xave2
...

xavek + ∆xk
...

xaveN

x4p







(4.79)

where the subscript “+” denotes the positive perturbation in the central

difference calculation.

2. Substitute the perturbed state vector x+(ψi) into Eq. (4.65) to obtain the

perturbed hub loads F+.

F+ = g(x+,u, ψi) (4.80)

The control vector u corresponds to the desired trim condition, and is held

constant during the perturbation.

3. Repeat the two previous steps with a negative perturbation of the k-th av-

erage state, xavek − ∆xk, to obtain the perturbed hub loads F−.
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4. Build the derivative using central difference approximations. This derivative

is the k-th column of a interim matrix P (ψi) at the azimuth angle ψi , that

is:

{P (ψi)}k ≈
1

2∆xk
(F+ − F−) (4.81)

5. Repeat the four previous steps for each of the N elements of the state vector

partition xave, i.e., for xavek , k = 1, . . . , N , to obtain the complete matrix

P (ψi)

P (ψi) = [{P (ψi)}1 {P (ψi)}2 · · · {P (ψi)}N ] (4.82)

6. Repeat steps 1-5 for Nψ azimuth angles ψi for one rotor revolution.

7. Extract the average, 4/rev cosine, and 4/rev sine harmonics of P (ψi) using

Fourier analysis.

Define:

Cave =
1

Nψ

Nψ∑

i=1

P (ψi) (4.83)

C4c =
2

Nψ

Nψ∑

i=1

P (ψi) cos 4ψi (4.84)

C4s =
2

Nψ

Nψ∑

i=1

P (ψi) sin 4ψi (4.85)

Then it is essentially

C31 = Cave (4.86)

C41 =







C4c

C4s







(4.87)

except that the rows C4c and C4s must be appropriately permutated because

the output subvector F4P , Eq. (4.25), is arranged with the 4/rev cosine and

sine components interlaced rather than grouped together.
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Submatrices C32 and C42

The submatrices C32 and C42 can be obtained with the same procedure as previ-

ously shown for the A12 and AHHC matrices which proceeds as follow:

For every azimuth angle ψi:

1. Perturbation of the 4/rev cosine component

(a) Perturb the jth main rotor state xMRj (ψi) of partition xMR(ψi) in the

state vector xave(ψi) by ∆xMRj cos 4ψi, i.e., let the perturbed state vec-

tor x4c+(ψi) be

x4c+(ψi) =







xB

xMR1

...

xMRj−4
+ [−4Ω∆xMRj sin 4ψi]

...

xMRj + ∆xMRj cos 4ψi
...

xMRL







(4.88)

where the subscript “4c+” denotes the positive 4/rev cosine perturba-

tion in the central difference calculation.

(b) Substitute the perturbed state vector x4c+(ψi) into Eq. (4.65) to obtain

the perturbed hub loads F4c+(ψi).

F4c+(ψi) = g(x4c+(ψi),u(ψi), ψi) (4.89)

The control vector u(ψi) corresponds to the desired trim condition, and

is held constant during the perturbation.
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If and only if xMRj is one of the displacement states (β0, β1c, β1s, β2,

ζ0, ζ1c, ζ1s, ζ2, φ0, φ1c, φ1s, φ2), its derivative state xMRj−4
(β̇0, β̇1c,

β̇1s, β̇2, ζ̇0, ζ̇1c, ζ̇1s, ζ̇2, φ̇0, φ̇1c, φ̇1s, φ̇2) also needs to be perturbed by

−4Ω∆xMRj sin 4ψi at the same time. This additional perturbation is

represented by [. . .] in Eq. (4.88).

(c) Repeat the two previous steps with a negative perturbation of the j th

main rotor state, xMRj −∆xMRj cos 4ψi, and build the derivative using

central difference approximations. This derivative is the j th column of

an interim matrix P (ψi) at the azimuth angle ψi , that is:

{P (ψi)}j ≈
1

2∆xj
(F4c+(ψi) − F4c−(ψi)) (4.90)

(d) Repeat the three previous steps for each of the L elements of the main

rotor state vector partition xMR, i.e., for the main rotor state in xMRj ,

j = 1, . . . , L, to obtain the first half of the interim matrix P (ψi)

P (ψi) = [{P (ψi)}1 {P (ψi)}2 · · · {P (ψi)}L]n×L (4.91)

2. Perturbation of the 4/rev sine component

(a) Perturb the jth main rotor state xMRj (ψi) of partition xMR(ψi) in the

state vector xave(ψi) by ∆xMRj sin 4ψi, i.e., let the perturbed state vec-
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tor x4s+(ψi) be

x4s+(ψi) =







xB

xMR1

...

xMRj−4
+ [4Ω∆xMRj cos 4ψi]

...

xMRj + ∆xMRj sin 4ψi
...

xMRL







(4.92)

where the subscript “4s+” denotes the positive 4/rev sine perturbation

in the central difference calculation.

(b) Substitute the perturbed state vector x4s+(ψi) into Eq. (4.65) to obtain

the perturbed hub loads F4s+(ψi).

F4s+(ψi) = g(x4s+(ψi),u(ψi), ψi) (4.93)

The control vector u(ψi) corresponds to the desired trim condition, and

is held constant during the perturbation.

If and only if xMRj is one of the displacement states, its derivative

xMRj−4
also needs to be perturbed by +4Ω∆xMRj cos 4ψi at the same

time. This additional perturbation is represented by [. . .] in Eq. (4.92).

(c) Repeat the two previous steps with a negative perturbation of the j th

main rotor state, xMRj − ∆xMRj sin 4ψi, and build the derivative us-

ing central difference approximations. This derivative is the (L + j)th

column of the interim matrix P (ψi) at the azimuth angle ψi , that is:

{P (ψi)}L+j ≈
1

2∆xj
(F4s+(ψi) − F4s−(ψi)) (4.94)
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(d) Repeat the three previous steps for each of the L elements of the main

rotor state vector partition xMR, i.e., for the main rotor state in xMRj ,

j = 1, . . . , L, to complete the second half of the interim matrix P (ψi)

P (ψi) =
[

{P (ψi)}1 · · · {P (ψi)}L {P (ψi)}L+1 · · · {P (ψi)}2L

]

n×2L

(4.95)

3. Repeat steps 1-2 for Nψ azimuth angles ψi for one rotor revolution.

4. Extract the average, 4/rev cosine, and 4/rev sine harmonics of P (ψi) using

Fourier analysis.

Define:

Cave =
∆ψ

Nψ

Nψ∑

i=1

P (ψi) (4.96)

C4c =
2

Nψ

Nψ∑

i=1

P (ψi) cos 4ψi (4.97)

C4s =
2

Nψ

Nψ∑

i=1

P (ψi) sin 4ψi (4.98)

Then it is essentially

C32 = Cave (4.99)

C42 =







C4c

C4s







(4.100)

except that the rows and columns of C4c and C4s must be appropriately per-

mutated because the state subvector x4P , Eq. (4.21) and the output subvec-

tor F4P , Eq. (4.25) are arranged with the 4/rev cosine and sine components

interlaced rather than grouped together.
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4.3 Application to simple rotor equations

In this section, the perturbation technique described in the previous section is

applied to a simple example, namely the flap equation of motion of a 4-bladed

isolated rotor written in fixed-system coordinates. The blades are assumed to be

rigid and hinged at the axis of rotation. This simplified model represents a useful

test case because states and harmonics appear explicitly in the equation of motion,

and therefore can be manipulated directly, rather than being hidden in the much

more complicated numerics of the model used in the rest of this research.

The flapping equations of motion in the rotating system for a 4-bladed rotor

with rigid blades hinged on the axis of rotation, and flapping degrees of freedom

only can be expressed as

β̈i + ν2βi = γ
[

−µ cosψi(
1

6
+
µ

4
sinψi)βi − (

1

8
+

1

6
µ sinψi)β̇i

+ (
1

8
+

1

3
µ sinψi +

1

4
µ2 sin2 ψi)θi

− (
1

6
+

1

4
µ sinψi)λ

]

(4.101)

where λ, θi are the main rotor inflow and the blade pitch angle, respectively. After

performing the multi-blade coordinate transformation, the equations of motion are:














β̈0

β̈1c

β̈1s

β̈2















+ C















β̇0

β̇1c

β̇1s

β̇2















+K















β0

β1c

β1s

β2















=















F1

F2

F3

F4















(4.102)

where

C =














γ
8 0 γ

12µ 0

0 γ
8 2 −γ

6µ sin 2ψ

γ
6µ −2 γ

8
γ
6µ cos 2ψ

0 − γ
12µ sin 2ψ γ

12µ cos 2ψ γ
8














(4.103)
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K =














ν2 0 0 −γ
8µ

2 sin 2ψ

γ
6µ −1 + ν2 + γ

16µ
2 sin 4ψ γ

8 − γ
16µ

2 cos 4ψ + γ
16µ

2 −γ
6µ cos 2ψ

0 −γ
8 − γ

16µ
2 cos 4ψ + γ

16µ
2 −1 + ν2 − γ

16µ
2 sin 4ψ −γ

6µ sin 2ψ

−γ
8µ

2 sin 2ψ −γ
6µ cos 2ψ −γ

6µ sin 2ψ ν2














(4.104)

F1 =
γ

8
(1 + µ2)θ0

+
γ

6
µθ1s −

γ

6
λ+

[
γ

8
(1 + µ2)θ4c +

γ

6
µθ5s −

γ

6
µθ3s

]

cos 4ψ

+
[
γ

8
(1 + µ2)θ4s +

γ

6
µθ3c −

γ

6
µθ5c

]

sin 4ψ (4.105)

F2 =
γ

8
(1 +

1

2
µ2)θ1c −

γ

16
µ2θ3c

+
[

−
γ

16
µ2θ1c +

γ

8
(1 +

1

2
µ2)θ5c +

γ

8
(1 +

1

2
µ2)θ3c

]

cos 4ψ

+
[
γ

8
(1 +

1

2
µ2)θ5s +

γ

8
(1 +

1

2
µ2)θ3s −

γ

16
µ2θ1s

]

sin 4ψ

−
γ

16
µ2θ5s sin 8ψ −

γ

16
µ2θ5c cos 8ψ (4.106)

F3 = −
γ

4
λµ+

γ

8
(1 +

3

2
µ2)θ1s +

γ

3
µθ0 −

γ

16
µ2θ3s

+
[

−
γ

8
(1 +

3

2
µ2)θ3s +

γ

8
(1 +

3

2
µ2)θ5s +

γ

16
µ2θ1s +

γ

3
µθ4c

]

cos 4ψ

+
[
γ

3
µθ4s −

γ

16
µ2θ1c −

γ

8
(1 +

3

2
µ2)θ5c +

γ

8
(1 +

3

2
µ2)θ3c

]

sin 4ψ

−
γ

16
µ2θ5c sin 8ψ +

γ

16
µ2θ5s cos 8ψ (4.107)
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F4 = (−
γ

6
µθ3s +

γ

6
µθ1s +

γ

8
µ2θ0 +

γ

16
µ2θ4c) cos 2ψ

+ (
γ

16
µ2θ4s −

γ

6
µθ1c +

γ

6
µθ3c) sin 2ψ

+ (
γ

16
µ2θ4s −

γ

6
µθ5c) sin 6ψ + (

γ

16
µ2θ4c +

γ

6
µθ5s) cos 6ψ (4.108)

To illustrate the technique for the extraction of a linear model that included

4/rev characteristics, the longitudinal flapping equation of motion in the fixed

system is:

β̈1c + 2β̇1s + (ν2 − 1)β1c

= −
γ

16
µ2 sin 4ψβ1c +

γ

6
µ sin 2ψβ̇2 −

γ

6
µβ0 −

γ

8
β̇1c

+ (
γ

6
µ cos 2ψ)β2 − (

γ

8
−

γ

16
µ2 cos 4ψ +

γ

16
µ2)β1s

+
γ

8
(1 +

1

2
µ2)θ1c −

γ

16
µ2θ3c

+
[

−
γ

16
µ2θ1c +

γ

8
(1 +

1

2
µ2)θ5c +

γ

8
(1 +

1

2
µ2)θ3c

]

cos 4ψ

+
[
γ

8
(1 +

1

2
µ2)θ5s +

γ

8
(1 +

1

2
µ2)θ3s −

γ

16
µ2θ1s

]

sin 4ψ

−
γ

16
µ2θ5s sin 8ψ −

γ

16
µ2θ5c cos 8ψ (4.109)

For simplicity, only the − γ
16
µ2 sin 4ψβ1c term from aerodynamics and γ

8
(1+µ2

2
)(θ3c cos 4ψ+

θ3s sin 4ψ) terms from the 3/rev input, and − γ
16
µ2θ1s sin 4ψ term from the longitu-

dinal cyclic pitch angle are retained. The rest of the variables are represented by

Mθ and Mβ terms. Equation (4.109) can therefore be rewritten as:

β̈1c = −
γ

8
β̇1c + (ν2 −

γµ2

16
sin 4ψ − 1) β1c

+
γ

8
(1 +

1

2
µ2)(θ3c cos 4ψ + θ3s sin 4ψ) −

γ

16
µ2θ1s sin 4ψ +Mθ +Mβ

(4.110)
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4.3.1 Prescribed solution form

The assumed solution for Eq. (4.110) has an average plus 4/rev cosine and sine

components as shown in Eq. (4.18). Substituting Eqs. (4.18) and (4.43) into

Eq. (4.110), the longitudinal flapping equation of motion becomes:

β̈1c = −
γ

8

[

β̇1cave + (β̇1c4c + 4Ωβ1c4s) cos 4ψ + (β̇1c4s − 4Ωβ1c4c) sin 4ψ
]

+ (ν2 −
γµ2

16
sin 4ψ − 1)(β1cave + β1c4c cos 4ψ + β1c4s sin 4ψ)

+
γ

8
(1 +

µ2

2
)(θ3c cos 4ψ + θ3s sin 4ψ) −

γ

16
µ2θ1s sin 4ψ +Mθ +Mβ

(4.111)

Note that Eqs. (4.43) and (4.44) contain an average value and harmonics at only

4/rev, which results from the original assumed solution defined in Eq. (4.18). How-

ever, the equation of motion shown in Eq. (4.111) also has 8/rev frequency com-

ponents that result from the aerodynamic term in Eq. (4.110).

−
γµ2

16
sin 4ψ β1c = −

γµ2

16
sin 4ψ

(

β1cave + β1c4c cos 4ψ + β1c4s sin 4ψ
)

= −
γµ2

16

(

β1cave sin 4ψ +
1

2
β1c4s +

1

2
β1c4c sin 8ψ −

1

2
β1c4s cos 8ψ

)

(4.112)

Therefore, Eq. (4.111) can also be written as follows:

β̈1c = −
γ

8

[

β̇1cave + (β̇1c4c + 4Ωβ1c4s) cos 4ψ + (β̇1c4s − 4Ωβ1c4c) sin 4ψ
]

+ (ν2 − 1)(β1cave + β1c4c cos 4ψ + β1c4s sin 4ψ)

−
γµ2

16
(β1cave sin 4ψ +

1

2
β1c4s)

−
γµ2

16
(
1

2
β1c4c sin 8ψ −

1

2
β1c4s cos 8ψ)

+
γ

8
(1 +

µ2

2
) (θ3c cos 4ψ + θ3s sin 4ψ)

−
γ

16
µ2θ1s sin 4ψ +Mθ +Mβ (4.113)
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4.3.2 Perturbation of the equations of motion

To simplified the expression, the perturbations of theMθ andMβ terms in Eq. (4.111)

are not shown here, but they are not eliminated from Eq. (4.111).

Perturbing β1c by ± ∆β1c at ψi

β̈1c(ψi)
∣
∣
∣
∣

±

β1cave

= −
γ

8

{

β̇1cave +
[

β̇1c4c + 4Ωβ1c4s

]

cos 4ψ

+
[

β̇1c4s − 4Ωβ1c4c

]

sin 4ψ
}

+ (ν2 −
γµ2

16
sin 4ψ − 1)

×
[

(β1cave ± ∆β1c) + β1c4c cos 4ψ + β1c4s sin 4ψ
]

+
γ

8
(
µ2

2
+ 1)(θ3c cos 4ψ + θ3s sin 4ψ)

−
γ

16
µ2θ1s sin 4ψ (4.114)

where the superscript ± represents the direction of the perturbation, and the

subscript β1cave represents the perturbed state variable.

Perturbing β1c by ± ∆β1c cos 4ψ at ψi

β̈1c(ψi)
∣
∣
∣
∣

±

β1c4c

= −
γ

8

{

β̇1cave + (β̇1c4c + 4Ωβ1c4s) cos 4ψ

+
[

β̇1c4s − 4Ω(β1c4c ± ∆β1c)
]

sin 4ψ
}

+ (ν2 −
γµ2

16
sin 4ψ − 1)

×
[

β1cave + (β1c4c ± ∆β1c) cos 4ψ + β1c4s sin 4ψ
]

+
γ

8
(
µ2

2
+ 1)(θ3c cos 4ψ + θ3s sin 4ψ)

−
γ

16
µ2θ1s sin 4ψ (4.115)
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Perturbing β1c by ± ∆β1c sin 4ψ at ψi

β̈1c(ψi)
∣
∣
∣
∣

±

β1c4s

= −
γ

8

{

β̇1cave +
[

β̇1c4c + 4Ω(β1c4s ± ∆β1c)
]

cos 4ψ

+
[

β̇1c4s − 4Ωβ1c4c

]

sin 4ψ
}

+ (ν2 −
γµ2

16
sin 4ψ − 1)

×
[

β1cave + β1c4c cos 4ψ + (β1c4s ± ∆β1c) sin 4ψ
]

+
γ

8
(
µ2

2
+ 1)(θ3c cos 4ψ + θ3s sin 4ψ)

−
γ

16
µ2θ1s sin 4ψ (4.116)

Perturbing β̇1c by ± ∆β̇1c at ψi

β̈1c(ψi)
∣
∣
∣
∣

±

β̇1cave

= −
γ

8

{

(β̇1cave ± ∆β̇1c) +
[

β̇1c4c + 4Ωβ1c4s

]

cos 4ψ

+
[

β̇1c4s − 4Ωβ1c4c

]

sin 4ψ
}

+ (ν2 −
γµ2

16
sin 4ψ − 1)

×
[

β1cave + β1c4c cos 4ψ + β1c4s sin 4ψ
]

+
γ

8
(
µ2

2
+ 1)(θ3c cos 4ψ + θ3s sin 4ψ)

−
γ

16
µ2θ1s sin 4ψ (4.117)

Perturbing β̇1c by ± ∆β̇1c cos 4ψ at ψi

β̈1c(ψi)
∣
∣
∣
∣

±

β̇1c4c

= −
γ

8

{

β̇1cave +
[

(β̇1c4c ± ∆β̇1c) + 4Ωβ1c4s

]

cos 4ψ

+
[

β̇1c4s − 4Ωβ1c4c

]

sin 4ψ
}

+ (ν2 −
γµ2

16
sin 4ψ − 1)

×
[

β1cave + β1c4c cos 4ψ + β1c4s sin 4ψ
]

+
γ

8
(
µ2

2
+ 1)(θ3c cos 4ψ + θ3s sin 4ψ)

−
γ

16
µ2θ1s sin 4ψ (4.118)
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Perturbing β̇1c by ± ∆β̇1c sin 4ψ at ψi

β̈1c(ψi)
∣
∣
∣
∣

±

β̇1c4s

= −
γ

8

{

β̇1cave +
[

β̇1c4c + 4Ωβ1c4s

]

cos 4ψ

+
[

(β̇1c4s ± ∆β̇1c) − 4Ωβ1c4c

]

sin 4ψ
}

+ (ν2 −
γµ2

16
sin 4ψ − 1)

×
[

β1cave + β1c4c cos 4ψ + β1c4s sin 4ψ
]

+
γ

8
(
µ2

2
+ 1)(θ3c cos 4ψ + θ3s sin 4ψ)

−
γ

16
µ2θ1s sin 4ψ (4.119)

Perturbing θ1s by ± ∆θ1s at ψi

β̈1c(ψi)
∣
∣
∣
∣

±

θ3c

= −
γ

8

{

β̇1cave +
[

β̇1c4c + 4Ωβ1c4s

]

cos 4ψ

+
[

β̇1c4s − 4Ωβ1c4c

]

sin 4ψ
}

+ (ν2 −
γµ2

16
sin 4ψ − 1)

×
[

β1cave + β1c4c cos 4ψ + β1c4s sin 4ψ
]

+
γ

8
(
µ2

2
+ 1)

[

θ3c cos 4ψ + θ3s sin 4ψ
]

−
γ

16
µ2(θ1s ± ∆θ1s) sin 4ψ (4.120)

Perturbing θ3c by ± ∆θ3c at ψi

β̈1c(ψi)

∣
∣
∣
∣

±

θ3c

= −
γ

8

{

β̇1cave +
[

β̇1c4c + 4Ωβ1c4s

]

cos 4ψ

+
[

β̇1c4s − 4Ωβ1c4c

]

sin 4ψ
}

+ (ν2 −
γµ2

16
sin 4ψ − 1)

×
[

β1cave + β1c4c cos 4ψ + β1c4s sin 4ψ
]

+
γ

8
(
µ2

2
+ 1)

[

(θ3c ± ∆θ3c) cos 4ψ + θ3s sin 4ψ
]

−
γ

16
µ2θ1s sin 4ψ (4.121)
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Perturbing θ3s by ± ∆θ3s at ψi

β̈1c(ψi)
∣
∣
∣
∣

±

θ3s

= −
γ

8

{

β̇1cave +
[

β̇1c4c + 4Ωβ1c4s

]

cos 4ψ

+
[

β̇1c4s − 4Ωβ1c4c

]

sin 4ψ
}

+ (ν2 −
γµ2

16
sin 4ψ − 1)

×
[

β1cave + β1c4c cos 4ψ + β1c4s sin 4ψ
]

+
γ

8
(
µ2

2
+ 1)

[

θ3c cos 4ψ + (θ3s ± ∆θ3s) sin 4ψ
]

−
γ

16
µ2θ1s sin 4ψ (4.122)

4.3.3 Extract four/rev harmonic components

The average value and the 4/rev harmonic components of the perturbed equations

Eqs. (4.114)-(4.122) can be obtained by applying the Fourier series approximation

over one sample window. The length of the sample window used in this study is

one rotor revolution or ψ = 0 ∼ 2π.

Extract ∂β̈1cave

∂β1cave
,

∂β′′
1c4c

∂β1cave
,

∂β′′
1c4s

∂β1cave
from β̈1c(ψi)

∣
∣
∣
∣

±

β1cave

β̈+
1cave =

1

2π

∫ 2π

0
β̈1c(ψi)

∣
∣
∣
∣

+

β1cave

dψ

=
1

2π

∫ 2π

0

[

−
γ

8
β̇1cave + (ν2 − 1)(β1cave + ∆β1cave) −

γµ2

16
sin2 4ψ

]

dψ

=
1

2π

[

−
γ

8
β̇1caveψ + (ν2 − 1)(β1cave + ∆β1cave)ψ −

γµ2

16
(
ψ

2
)
]2π

0

= −
γ

8
β̇1cave + (ν2 − 1)(β1cave + ∆β1cave) −

γµ2

32
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β̈−
1cave =

1

2π

∫ 2π

0
β̈1c(ψi)

∣
∣
∣
∣

−

β1cave

dψ

=
1

2π

∫ 2π

0

[

−
γ

8
β̇1cave + (ν2 − 1)(β1cave − ∆β1cave) −

γµ2

16
sin2 4ψ

]

dψ

= −
γ

8
β̇1cave + (ν2 − 1)(β1cave − ∆β1cave) −

γµ2

32

The elements of the state matrix can be calculated using central difference approx-

imation.

∂β̈1cave

∂β1cave

=
β̈+

1cave − β̈−
1cave

2∆β1cave

=
(ν2 − 1)(2∆β1cave)

2∆β1cave

= (ν2 − 1) (4.123)

β ′′
1c4c

+
=

1

π

∫ 2π

0
β̈1c(ψi)

∣
∣
∣
∣

+

β1cave

cos 4ψ dψ

=
1

π

∫ 2π

0

{[

−
γ

8
(β̇1c4c + 4Ωβ1c4s) cos2 4ψ + (ν2 − 1)β1c4c cos2 4ψ

]

+
γ

8
(
µ2

2
+ 1)(θ3c cos2 4ψ + θ3s sin 4ψ cos 4ψ)

}

dψ

=
1

π

[

−
γ

8
(β̇1c4c + 4Ωβ1c4s) + (ν2 − 1)β1c4c +

γ

8
(
µ2

2
+ 1)θ3c

]

(
ψ

2
)
∣
∣
∣
∣

2π

0

−
γ

8
(β̇1c4c + 4Ωβ1c4s) + (ν2 − 1)β1c4c +

γ

8
(
µ2

2
+ 1)θ3c

β ′′
1c4c

−
=

1

π

∫ 2π

0
β̈1c(ψi)

∣
∣
∣
∣

−

β1cave

cos 4ψ dψ

=
1

π

∫ 2π

0

{[

−
γ

8
(β̇1c4c + 4Ωβ1c4s) cos2 4ψ + (ν2 − 1)β1c4c cos2 4ψ

]

+
γ

8
(
µ2

2
+ 1)(θ3c cos2 4ψ + θ3s sin 4ψ cos 4ψ)

}

dψ

−
γ

8
(β̇1c4c + 4Ωβ1c4s) + (ν2 − 1)β1c4c +

γ

8
(
µ2

2
+ 1)θ3c

∂β ′′
1c4c

∂β1cave

=
β ′′

1c4c
+ − β ′′

1c4c
−

2∆β1cave

= 0 (4.124)
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β ′′
1c4s

+
=

1

π

∫ 2π

0
β̈1c(ψi)

∣
∣
∣
∣

+

β1cave

sin 4ψdψ

=
1

π

∫ 2π

0

{[

−
γ

8
(β̇1c4s − 4Ωβ1c4c) sin2 4ψ + (ν2 − 1)β1c4s sin2 4ψ

−
γµ2

16
(β1cave + ∆β1cave) sin2 4ψ

]

+
γ

8
(
µ2

2
+ 1)(θ3c cos 4ψ sin 4ψ

+ θ3s sin2 4ψ) −
γ

16
µ2θ1s sin2 4ψ

}

dψ

=
1

π

[

−
γ

8
(β̇1c4s − 4Ωβ1c4c) + (ν2 − 1)β1c4s −

γµ2

16
(β1cave + ∆β1cave)

+
γ

8
(
µ2

2
+ 1)θ3s −

γ

16
µ2θ1s

]

(
ψ

2
)

∣
∣
∣
∣

2π

0

= −
γ

8
(β̇1c4s − 4Ωβ1c4c) + (ν2 − 1)β1c4s −

γµ2

16
(β1cave + ∆β1cave)

+
γ

8
(
µ2

2
+ 1)θ3s −

γ

16
µ2θ1s

β ′′
1c4s

−
=

1

π

∫ 2π

0
β̈1c(ψi)

∣
∣
∣
∣

−

β1cave

sin 4ψdψ

=
1

π

∫ 2π

0

{[

−
γ

8
(β̇1c4s − 4Ωβ1c4c) sin2 4ψ + (ν2 − 1)β1c4s sin2 4ψ

−
γµ2

16
(β1cave − ∆β1cave) sin2 4ψ

]

+
γ

8
(
µ2

2
+ 1)(θ3c cos 4ψ sin 4ψ

+ θ3s sin2 4ψ) −
γ

16
µ2θ1s sin2 4ψ

}

dψ

= −
γ

8
(β̇1c4s − 4Ωβ1c4c) + (ν2 − 1)β1c4s −

γµ2

16
(β1cave − ∆β1cave)

+
γ

8
(
µ2

2
+ 1)θ3s −

γ

16
µ2θ1s

∂β ′′
1c4s

∂β1cave

=
β ′′

1c4s
+ − β ′′

1c4s
−

2∆β1cave

=
−γµ2

16
(2∆β1cave)

2∆β1cave

= −
γµ2

16
(4.125)
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Extract ∂β̈1cave

∂β1c4c

,
∂β′′

1c4c

∂β1c4c

,
∂β′′

1c4s

∂β1c4c

from β̈1c(ψi)

∣
∣
∣
∣

±

β1c4c

∂β̈1cave

∂β1c4c

= 0 (4.126)

∂β ′′
1c4c

∂β1c4c

= (ν2 − 1) (4.127)

∂β ′′
1c4s

∂β1c4c

=
γµ2

16
(4.128)

Extract ∂β̈1cave

∂β1c4s

,
∂β′′

1c4c

∂β1c4s

,
∂β′′

1c4s

∂β1c4s

from β̈1c(ψi)
∣
∣
∣
∣

±

β1c4s

∂β̈1cave

∂β1c4s

= −
γµ2

32
(4.129)

∂β ′′
1c4c

∂β1c4s

= −
γΩ

2
(4.130)

∂β ′′
1c4s

∂β1c4s

= (ν2 − 1) (4.131)

Extract ∂β̈1cave

∂β̇1cave

,
∂β′′

1c4c

∂β̇1cave

,
∂β′′

1c4s

∂β̇1cave

from β̈1c(ψi)

∣
∣
∣
∣

±

β̇1cave

∂β̈1cave

∂β̇1cave

= −
γ

8
(4.132)

∂β ′′
1c4c

∂β̇1cave

= 0 (4.133)

∂β ′′
1c4s

∂β̇1cave

= 0 (4.134)

Extract ∂β̈1cave

∂β̇1c4c

,
∂β′′

1c4c

∂β̇1c4c

,
∂β′′

1c4s

∂β̇1c4c

from β̈1c(ψi)

∣
∣
∣
∣

±

β̇1c4c

∂β̈1cave

∂β̇1c4c

= 0 (4.135)

∂β ′′
1c4c

∂β̇1c4c

= −
γ

8
(4.136)

∂β ′′
1c4s

∂β̇1c4c

= 0 (4.137)
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Extract ∂β̈1cave

∂β̇1c4s

,
∂β′′

1c4c

∂β̇1c4s

,
∂β′′

1c4s

∂β̇1c4s

from β̈1c(ψi)

∣
∣
∣
∣

±

β̇1c4s

∂β̈1cave

∂β̇1c4s

= 0 (4.138)

∂β ′′
1c4c

∂β̇1c4s

= 0 (4.139)

∂β ′′
1c4s

∂β̇1c4s

= −
γ

8
(4.140)

Extract ∂β̈1cave

∂θ1s
,

∂β′′
1c4c

∂θ1s
,

∂β′′
1c4s

∂θ1s
from β̈1c(ψi)

∣
∣
∣
∣

±

θ1s

∂β̈1cave

∂θ1s
= 0 (4.141)

∂β ′′
1c4c

∂θ1s
= 0 (4.142)

∂β ′′
1c4s

∂θ1s
= −

γ

16
µ2 (4.143)

Extract ∂β̈1cave

∂θ3c
,

∂β′′
1c4c

∂θ3c
,

∂β′′
1c4s

∂θ3c
from β̈1c(ψi)

∣
∣
∣
∣

±

θ3c

∂β̈1cave

∂θ3c
= 0 (4.144)

∂β ′′
1c4c

∂θ3c
=

γ

8
(
µ2

2
+ 1) (4.145)

∂β ′′
1c4s

∂θ3c
= 0 (4.146)

Extract ∂β̈1cave

∂θ3s
,

∂β′′
1c4c

∂θ3s
,

∂β′′
1c4s

∂θ3s
from β̈1c(ψi)

∣
∣
∣
∣

±

θ3s

∂β̈1cave

∂θ3s
= 0 (4.147)

∂β ′′
1c4c

∂θ3s
= 0 (4.148)

∂β ′′
1c4s

∂θ3s
=

γ

8
(
µ2

2
+ 1) (4.149)
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4.3.4 Construction of the state equation

Combining Eqs. (4.123)-(4.149) and Eqs. (4.50)-(4.51), the state equation of the

4/rev LTI-HHC model can be constructed as follows:







β̈1cave

β̇1cave

β ′′
1c4c

β ′′
1c4s

β ′
1c4c

β ′
1c4s







=





















−γ/8 (ν2 − 1) 0 0 0 −γµ2/32

1 0 0 0 0 0

0 0 −γ/8 0 (ν2 − 1) −γΩ/2

0 −γµ2/16 0 −γ/8 γµ2/16 (ν2 − 1)

0 0 1 0 0 4Ω

0 0 0 1 −4Ω 0



























β̇1cave

β1cave

β̇1c4c

β̇1c4s

β1c4c

β1c4s







+





















0 0 0

0 0 0

0 γ
8 (µ

2

2 + 1) 0

− γ
16µ

2 0 γ
8 (µ

2

2 + 1)

0 0 0

0 0 0



























θ1s

θ3c

θ3s







+Mθ +Mβ (4.150)

The vector on the left-hand side of Eq. (4.150) consists of primed variables. To

conform with the standard state-space representation, ẋ = Ax + Bu, the primed

variables are replaced with the dotted variables using Eqs. (4.50)-(4.53) as follows:







β̈1cave

β̇1cave

β ′′
1c4c

β ′′
1c4s

β ′
1c4c

β ′
1c4s







=







β̈1cave

β̇1cave

β̈1c4c

β̈1c4s

β̇1c4c

β̇1c4s







+







0

0

8Ωβ̇1c4s − 16Ω2β1c4c

−8Ωβ̇1c4c − 16Ω2β1c4s

4Ωβ1c4s

−4Ωβ1c4c







(4.151)
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Substitute Eq. (4.151) in Eq. (4.150), and re-arrange the equation. The 4/rev

LTI-HHC model is given by:







β̈1cave

β̇1cave

β̈1c4c

β̈1c4s

β̇1c4c

β̇1c4s







= A







β̇1cave

β1cave

β̇1c4c

β̇1c4s

β1c4c

β1c4s







+ B







θ1s

θ3c

θ3s







+Mθ +Mβ (4.152)

where

A =























−γ/8 (ν2 − 1) 0 0 0 −γµ2/32

1 0 0 0 0 0

0 0 −γ/8 −8Ω (ν2 − 1 + 16Ω2) −γΩ/2

0 −γµ2/16 8Ω −γ/8 γµ2/16 (ν2 − 1 + 16Ω2)

0 0 1 0 0 0

0 0 0 1 0 0























(4.153)

B =























0 0 0

0 0 0

0 γ
8
(µ

2

2
+ 1) 0

− γ
16
µ2 0 γ

8
(µ

2

2
+ 1)

0 0 0

0 0 0























(4.154)
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4.3.5 Analytical model validation

From Eq. (4.152), β̈1cave, β̈1c4c, and β̈1c4s can be expressed as follows:

β̈1cave = −
γ

8
β̇1cave + (ν2 − 1)β1cave −

γµ2

32
β1c4s (4.155)

β̈1c4c = −
γ

8
β̇1c4c − 8Ωβ̇1c4s + (ν2 − 1 + 16Ω2)β1c4c −

γΩ

2
β1c4s

+
γ

8
(
µ2

2
+ 1)θ3c (4.156)

β̈1c4s = −
γ

8
β̇1c4s + 8Ωβ̇1c4c −

γµ2

16
β1cave +

γΩ

2
β1c4c + (ν2 − 1 + 16Ω2)β1c4s

+
γ

8
(
µ2

2
+ 1)θ3s −

γ

16
µ2θ1s (4.157)

Substitute Eqs. (4.155 and 4.157) in Eq. (4.44),

β̈1c = −
γ

8

[

β̇1cave + (β̇1c4c + 4Ωβ1c4s) cos 4ψ + (β̇1c4s − 4Ωβ1c4c) sin 4ψ
]

+ (ν2 − 1)(β1cave + β1c4c cos 4ψ + β1c4s sin 4ψ)

−
γµ2

16
(β1cave sin 4ψ +

1

2
β1c4s)

+
γ

8
(
µ2

2
+ 1)(θ3c cos 4ψ + θ3s sin 4ψ)

−
γ

16
µ2θ1s sin 4ψ +Mθ +Mβ (4.158)

Compare Eq. (4.158) with the equation of motion Eq. (4.113) which is shown

below:

β̈1c = −
γ

8

[

β̇1cave + (β̇1c4c + 4Ωβ1c4s) cos 4ψ + (β̇1c4s − 4Ωβ1c4c) sin 4ψ
]

+ (ν2 − 1)(β1cave + β1c4c cos 4ψ + β1c4s sin 4ψ)

−
γµ2

16
(β1cave sin 4ψ +

1

2
β1c4s)

−
γµ2

16
(
1

2
β1c4c sin 8ψ −

1

2
β1c4s cos 8ψ)

+
γ

8
(
µ2

2
+ 1) (θ3c cos 4ψ + θ3s sin 4ψ)

−
γ

16
µ2θ1s sin 4ψ +Mθ +Mβ
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The differences are the 8/rev frequency contents which were truncated from the

linearization procedures. These 8/rev frequency contents can be retained in the

linear model if the prescribed solution of Eq. (4.18) also contains 8/rev components

as well as 4/rev components.

4.4 LTI-HHC model validation

In this section, the LTI-HHC model was validated against with the full-blown non-

linear helicopter model by comparing their 4/rev hub load and the rotor responses

over several flight configurations.

4.4.1 4/rev hub load comparison

The validation was conducted for the forward velocity of 40, 80, and 120 kts.

Each case starts from the trim condition without HHC input. After two rotor

revolutions, the HHC input is engaged, and the results are shown in Figures 4.1-

4.15. The HHC input is a 3/rev input with an amplitude of 0.6◦ at 0◦ phase

angle.

The 4/rev hub loads calculated from the nonlinear helicopter model are the

output of the harmonic analyzer which contains time delay. On the other hand,

the 4/rev hub loads calculated from LTI-HHC model are obtained instantaneously.

There is no time delay associated with the sample window as with the harmonic

analyzer. The effect of the sample window can be approximated by an equivalent

lowpass filter that must include in the output of the LTI-HHC model before it is

compared to the nonlinear 4/rev results.

As illustrated in the figures, the LTI-HHC model produces the levels of 4/rev
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vibrations that are very close to the nonlinear 4/rev vibration. A close match is

not seen only in steady state condition but also in transients. The small ripples in

the nonlinear results are the 8/rev and higher frequencies that were not modeled

in the LTI-HHC model.

The effect of the pilot input on vibrations is illustrated in Figures 4.16-4.30.

The input is a lateral cyclic doublet input with an amplitude of one stick inch.

From the figures, the LTI-HHC model shows the capability of predicting the 4/rev

hub loads. There are strong 8/rev and higher frequencies in the nonlinear results

that are not modeled in the LTI-HHC model. However, the 8/rev frequency can

be captured by the LTI-HHC model if the 8/rev frequency is prescribed in the

assumed solution. The dimension of the LTI-HHC model matrices will increase to

accommodate the addition 8/rev rotor states.

4.4.2 Rotor states comparison

Figures 4.31-4.33 compare the rotor states from both the nonlinear and the LTI-

HHC model simulation for the 120 kts case. The HHC input is the same 3/rev input

in the previous case. The rotor states compared in the figures are the full values,

i.e., they are not the 4/rev rotor states. The rotor state data of the nonlinear

helicopter model is obtained directly from the time integration of the equations of

motion. Since this set of data has never passed through the harmonic analyzer to

obtain its 4/rev components, the effect of the sample window is not included.

To compare with the nonlinear results, the rotor state data of the LTI-HHC

model is constructed by modulating the instantaneous 4/rev rotor state data as

shown in Eq. (4.18) without including the effect of the sample window. These

figures illustrate that the prediction from the LTI-HHC model is very similar to
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the one from the nonlinear helicopter model in both the steady-state and transient

condition.

Figures 4.34-4.36 show the effect of lateral pilot input on blade rigid flap, rigid

lag, and the torsion modes for both the nonlinear and the LTI-HHC models. The

input is a lateral cyclic doublet input with the amplitude of one stick inch. The

variation of the 4/rev rigid flap and 4/rev rigid lag modes within the nonlinear

helicopter model are relatively small compared with the variation of their mean

value. With the LTI-HHC model, the 4/rev characteristic of the torsion mode of

the nonlinear helicopter model as shown in Figure 4.36 is predicted not only in the

steady-state condition but also in the transient.
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Figure 4.1: Longitudinal hub shear comparison; V= 40 kts, W=14,000 lb, A3 =

0.6o, φ3 = 0o.
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Figure 4.2: Lateral hub shear comparison; V= 40 kts, W=14,000 lb, A3 = 0.6o,

φ3 = 0o.
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Figure 4.3: Vertical hub shear comparison; V= 40 kts, W=14,000 lb, A3 = 0.6o,

φ3 = 0o.
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Figure 4.4: Longitudinal hub moment comparison; V= 40 kts, W=14,000 lb, A3 =

0.6o, φ3 = 0o.
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Figure 4.5: Lateral hub moment comparison; V= 40 kts, W=14,000 lb, A3 = 0.6o,

φ3 = 0o.
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Figure 4.6: Longitudinal hub shear comparison; V= 80 kts, W=14,000 lb, A3 =

0.6o, φ3 = 0o.
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Figure 4.7: Lateral hub shear comparison; V= 80 kts, W=14,000 lb, A3 = 0.6o,

φ3 = 0o.
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Figure 4.8: Vertical hub shear comparison; V= 80 kts, W=14,000 lb, A3 = 0.6o,

φ3 = 0o.

114



-200

0

200

3210

MX4c

(ft-lb)

 Nonlinear Model + Harmonic Analyzer
 LTI-HHC Model + Equiv. Lowpass filter

400

200

0
3210

Time (sec)

MX4s

(ft-lb)

1

0
3210

θ3
(deg)

Figure 4.9: Longitudinal hub moment comparison; V= 80 kts, W=14,000 lb, A3 =

0.6o, φ3 = 0o.
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Figure 4.10: Lateral hub moment comparison; V= 80 kts, W=14,000 lb, A3 = 0.6o,

φ3 = 0o.
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Figure 4.11: Longitudinal hub shear comparison; V= 120 kts, W=14,000 lb, A3 =

0.6o, φ3 = 0o.
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Figure 4.12: Lateral hub shear comparison; V= 120 kts, W=14,000 lb, A3 = 0.6o,

φ3 = 0o.
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Figure 4.13: Vertical hub shear comparison; V= 120 kts, W=14,000 lb, A3 = 0.6o,

φ3 = 0o.
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Figure 4.14: Longitudinal hub moment comparison; V= 120 kts, W=14,000 lb,

A3 = 0.6o, φ3 = 0o.

120



400

200

0
3210

MY4c

(ft-lb)

 Nonlinear Model + Harmonic Analyzer
 LTI-HHC Model + Equiv. Lowpass filter

-200

0

200

3210

Time (sec)

MY4s

(ft-lb)

1

0
3210

θ3
(deg)

Figure 4.15: Lateral hub moment comparison; V= 120 kts, W=14,000 lb, A3 =

0.6o, φ3 = 0o.
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Figure 4.16: Longitudinal hub shear comparison; V= 40 kts, W=14,000 lb, 1”

lateral cyclic doublet input.
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Figure 4.17: Lateral hub shear comparison; V= 40 kts, W=14,000 lb, 1” lateral

cyclic doublet input.
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Figure 4.18: Vertical hub shear comparison; V= 40 kts, W=14,000 lb, 1” lateral

cyclic doublet input.
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Figure 4.19: Longitudinal hub moment comparison; V= 40 kts, W=14,000 lb, 1”

lateral cyclic doublet input.
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Figure 4.20: Lateral hub moment comparison; V= 40 kts, W=14,000 lb, 1” lateral

cyclic doublet input.
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Figure 4.21: Longitudinal hub shear comparison; V= 80 kts, W=14,000 lb, 1”

lateral cyclic doublet input.

127



200

100

0

-100
3210

FY4c

(lb)

 Nonlinear Model + Harmonic Analyzer
 LTI-HHC Model + Equiv. Lowpass filter

200

100

0

-100
3210

Time (sec)

FY4s

(lb)

-1

0

1

3210

δlat
(deg)

Figure 4.22: Lateral hub shear comparison; V= 80 kts, W=14,000 lb, 1” lateral

cyclic doublet input.
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Figure 4.23: Vertical hub shear comparison; V= 80 kts, W=14,000 lb, 1” lateral

cyclic doublet input.
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Figure 4.24: Longitudinal hub moment comparison; V= 80 kts, W=14,000 lb, 1”

lateral cyclic doublet input.
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Figure 4.25: Lateral hub moment comparison; V= 80 kts, W=14,000 lb, 1” lateral

cyclic doublet input.
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Figure 4.26: Longitudinal hub shear comparison; V= 120 kts, W=14,000 lb, 1”

lateral cyclic doublet input.
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Figure 4.27: Lateral hub shear comparison; V= 120 kts, W=14,000 lb, 1” lateral

cyclic doublet input.
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Figure 4.28: Vertical hub shear comparison; V= 120 kts, W=14,000 lb, 1” lateral

cyclic doublet input.
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Figure 4.29: Longitudinal hub moment comparison; V= 120 kts, W=14,000 lb, 1”

lateral cyclic doublet input.
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Figure 4.30: Lateral hub moment comparison; V= 120 kts, W=14,000 lb, 1” lateral

cyclic doublet input.
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Figure 4.31: β comparison; V= 120 kts, W=14,000 lb, A3 = 0.6o, φ3 = 0o.
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Figure 4.32: ζ comparison; V= 120 kts, W=14,000 lb, A3 = 0.6o, φ3 = 0o.
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Figure 4.33: φ comparison; V= 120 kts, W=14,000 lb, A3 = 0.6o, φ3 = 0o.
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Figure 4.34: β comparison; V= 120 kts, W=14,000 lb, 1” lateral cyclic doublet

input.
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Figure 4.35: ζ comparison; V= 120 kts, W=14,000 lb, 1” lateral cyclic doublet

input.
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Figure 4.36: φ comparison; V= 120 kts, W=14,000 lb, 1” lateral cyclic doublet

input.

142



Chapter 5

HHC and AFCS Interaction Study

A linear time-invariant state-space approximation that accurately models the cou-

pled rotor-fuselage dynamics including the higher harmonic response of the rotor

has been developed in Chapter 4. This work allows several important questions

to be answered regarding the dynamic interaction between Automatic Flight Con-

trol System (AFCS) and High Harmonic Control (HHC), including the effect on

handling-qualities. The key breakthrough is in the method to extract a linear

time-invariant model that includes a harmonic analyzer and allows the periodicity

of the helicopter response to be captured. The coupled high-order linear model

provides the needed level of dynamic fidelity to permit study of AFCS and HHC

interaction.

5.1 Effect of a fixed HHC input on rigid body

dynamics

To understand the potential coupling between AFCS and HHC, an analysis was

first performed in the open-loop system to determine whether a fixed HHC input
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had any direct effect on the rigid-body dynamics. Any influence from the HHC

will be indicated by the changes in the frequency response. Before proceeding with

any interaction analyses, it is important to validate the baseline (HHC-off) cases

of both LTI-HHC and nonlinear models by comparing their frequency responses

against the flight test data.

5.1.1 Open-loop frequency response validation

In Sec. 4.4, the LTI-HHC model was validated against the nonlinear model by

comparing the hub load responses over several flight configurations. It is a time

domain comparison, and it is sufficient for checking the aeromechanic quantities.

For flight dynamics analysis, it is more common to perform the comparison in

frequency domain. Figure 5.1 shows the P/δlat frequency response comparison

between the LTI model, the nonlinear model, and the flight test. Unless noted

otherwise, all the results presented in this chapter have the weight of 14,000 lb at

a speed of 120 kts The frequency response of the nonlinear model was obtained by

performing frequency sweeps in pilot lateral stick input and recording the vehicle

roll rate response time history. The P/δlat frequency response was identified by

extracting the information from the time history data using CIFER r© [58].

Since the LTI-HHC model is already in the linear system, its frequency response

can be calculated directly from the LTI-HHC model. The Figure shows that all

three cases agreed with each other in the frequency range of 2-20 rad/sec. There

were some small disagreements in the frequency range of 1-2 rad/sec between the

flight test result and the analytical results, but the difference is not significant.

Comparing the nonlinear and LTI-HHC frequency responses, there is also a little

difference, and most of the difference is in the phase curve below 2 rad/sec.
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5.1.2 Effect of an optimum three/rev input on rigid body

dynamics

Figure 5.2 shows the effect of a fixed HHC input on the rigid body dynamics for the

nonlinear model. The fixed HHC input chosen is an optimum 3/rev input which

is calculated from the optimization procedure that minimized the norm of 4/rev

in-plane hub shears. The optimization procedure is similar to the one described in

Sec. 2.8. This figure indicates that the optimum 3/rev input has no effect on the

rigid body dynamics in the frequency range of interest. Figure 5.3 shows the same

conclusion for the LTI-HHC model.

The frequency response of the nonlinear model with the optimum 3/rev input is

extracted using the same method as the nonlinear baseline (HHC-off) case stated

earlier. For the LTI-HHC model, one cannot simply include an optimum 3/rev

input and compute the frequency response because the linear model will only

respond at the same frequency as the input signal. In this case, the input signal

is a 3/rev (81 rad/sec for UH-60) and it is beyond the frequency range of interest.

To see the effect of the optimum 3/rev input on rigid body dynamics, one must

engage the HHC loops and let the effects of the 3/rev input propagate through the

HHC feedback loops.

Although the results above show that the HHC input has no effect on rigid

body dynamics (or AFCS), it does not necessary mean the AFCS has no effect

on the HHC. There is still a possibility that the AFCS affects vehicle vibration

and indirectly affects the HHC. This closed-loop analysis is discussed in the next

section.
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5.2 Interaction of HHC and AFCS

A SIMULINK r© simulation of the combined flight and higher harmonic control

system was developed for analysis and optimization in the Control Designers Uni-

fied Interface, CONDUIT r© [59]. The key elements of the simulation are illus-

trated in Figure 5.4, and they are:

1. Higher-order linear airframe model that provides the flight mechanics and

4/rev vibration responses to both pilot and HHC inputs.

2. Automatic Flight Control System loops based on a simple proportional-

integral-derivative (PID) controller in roll, pitch, and yaw.

3. Typical actuator/sensor filter dynamics.

4. Equivalent harmonic analyzer approximates the sample window dynamics

and equivalent time delay.

5. Higher harmonic controller based on fixed T -matrix feedback.

6. Zero-order-hold approximation simulates the discrete HHC update time de-

lay.

Like the open-loop analysis, it is important to validate the closed-loop model to

ensure that the linear continuous time domain model implemented in SIMULINK r© is

equivalent to the nonlinear multi-rate model. This can be accomplished by com-

paring the broken control loop response of both models.

5.2.1 Broken control loop response validation

Figure 5.5 illustrates the schematic of both linear and nonlinear simulation mod-

els. The simulation model showed in Figure 5.5a is a nonlinear multi-rate system.
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Because the control system analysis was performed in the linear continuous-time

domain, the entire nonlinear multi-rate system was converted to an equivalent lin-

ear continuous time system as shown in Figure 5.5b. The harmonic analyzer is

now embedded within the LTI-HHC model. The effect of the sample window is

modeled by an equivalent lowpass filter. The discrete HHC controller is trans-

formed to a continuous-time domain HHC controller. The discrete HHC update

(zero-order-hold) is approximated by a Padé function.

The broken control loop response is a method of studying loop stability; it

allows one to determine the gain and phase stability margins. Using θ3c broken

control loop for instance, it is the θ3c response at point B in Figure 5.5 with respect

to the θ3c input at point A while the 3/rev-cosine and 3/rev-sine loops are open.

The flight control system is also disabled during the frequency sweep. For the

purpose of the validation, six broken control loop responses (3/rev-cosine, 3/rev-

sine, 4/rev-cosine, 4/rev-sine, 5/rev-cosine, 5/rev-sine) were extracted from each

model, and the direct comparisons are shown in Figures 5.6-5.11. In these figures,

the frequency response of the LTI-HHC model matches very well with the one

from the nonlinear model in both the magnitude and phase curves for all six loops

within frequency range of interest. This indicates that the linear continuous time

domain model in Figure 5.5b is equivalent to the nonlinear multi-rate model in

Figure 5.5a.

Although HHC input operates at 3, 4, 5/rev frequencies (or 81, 108, 135 rad/sec

for UH-60 helicopter), the crossover frequency of each HHC loop is only about 1

rad/sec. The crossover frequency, the gain margin, and the phase margin of each

HHC loop are tabulated in Table 5.1. Because of the high HHC input frequency,

one would expect a large frequency separation between the flight control and HHC
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system and assume these two systems do not interfere with each other. However,

the research results show that not only do the HHC loops operate at a much lower

frequency, but they are also within the frequency range of flight control system.

This is another indication of potential HHC/AFCS interaction.

5.2.2 Optimization of AFCS (HHC-off)

One way to see whether the closed-loop HHC system has any effect on the AFCS or

handling-qualities is to optimize the AFCS for the satisfactory (Level 1) handling-

qualities with the HHC loops disengaged (Figure 5.12). Any influence introduced

by closing the HHC loops will be indicated by the change in handling-qualities. The

AFCS implemented in this study is based on a simple PID controller (Figure 5.13)

in roll, pitch, and yaw axis. The PID controller computes individual actuator

command with respect to the changes in rigid body states and pilot inputs. The

actuator is a second order model (Figure 5.14) including both the position and

rate saturation limits. The actuator design parameters are tabulated in Table 5.2.

First, CONDUIT r© was used to optimize the PID gains of the AFCS, with

the HHC loops disengaged. The PID gains were tuned to achieve satisfactory

handling-qualities, based on the Aeronautical Design Standard (ADS-33E [60]),

and standard control-system design specifications list below (Appendix A):

• Eigenvalue real part (EigLcG1)

• Crossover frequency (CrslnG1)

• Stability margins (StbMgG1)

• Bandwidth (BnwRoF3)
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• Step response damping ratio (OvsAtH1)

• Crossover frequency (CrsMnG1)

• Eigenvalue damping ratio (EigDgG1)

• Step response rise time (RisTmG1)

CONDUIT rapidly tuned the PID gains to achieve satisfactory (Level 1) re-

quirements with minimum over-design as shown in Figure 5.15. The optimized

PID gains are tabulated in Table 5.3. Each symbol in Figure 5.15 represents the

result for a particular loop and shows that all the responses lie in the light region

(Level 1). For example, note that the roll bandwidth is 3 rad/sec, Figure 5.15d,

which meets ADS-33E. The PID gains of the roll and yaw loops yield bandwidths

in excess of the requirement in order to meet some of the other specifications. It is

important to mention that this set of PID gains is not the best from the handling-

qualities point of view. It is simply the lowest gains needed to satisfy all the design

specifications while staying in the level-1 region.

5.2.3 Nominal T -matrix controller

Next, the T -matrix HHC loops were engaged with a nominal gain of k=1 (same

in all six loops) as shown in Figure 5.16. This is referred to as the “nominal”

case. With both AFCS and HHC loops closed, the CONDUIT r© HQ design

specifications were re-evaluated without changing the PID gains. The results are

presented in Figure 5.17 which shows that the closing of the HHC loops had a

negligible effect on the AFCS performance and overall handling-qualities. This

indicates the lack of dynamic coupling of HHC into flight control. Therefore, no re-

tuning of the AFCS was needed for the combined AFCS/HHC system. The lack of
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interaction from HHC to AFCS is consistent with the earlier system identification

results obtained in Sec. 5.1.2, which also showed no effect of an HHC input on the

rigid-body dynamic response.

In terms of suppressing the steady state vibration level, the nominal T -matrix

controller can reduce the vibration by a large amount. Figures 5.18-5.21 show

the changes in the lateral and longitudinal 4/rev vibration level with respect to

the HHC and pilot stick inputs for both the baseline case (HHC-off) and nominal

(k=1) case. At t=0, the vehicle starts from a steady state condition, and the

4/rev vibrations are maintained at a steady level. The baseline 4/rev vibrations

are tabulated in the first column of Table 5.4. At t=5 seconds, the HHC loops are

engaged and the nominal T -matrix controller begins to reduce the 4/rev vibrations

to a lower level. It takes approximately 2-3 seconds for the 4/rev vibrations to

reach a new steady state condition where 67% of 4/rev in-plane vibrations have

been reduced (Table 5.4). The large time constant of 2-3 seconds consists with the

slow HHC loop dynamics stated in Sec. 5.2.1.

5.2.4 Transient vibration in maneuvering flight

While the impact of HHC on handling-qualities is negligible, there are significant

vibration responses to piloted inputs in both the baseline (HHC-off) case and the

nominal (k=1) case. Figures 5.18 and 5.19 show the large transient responses for

a -50◦ roll maneuver (moderate) starting from t=12 seconds. Once the maneuver

is completed, the vehicle reaches a new trim vibration level. Similar results can

also be observed in Figures 5.20 and 5.21 which demonstrate the large transient

responses for a 20◦ pitch maneuver starting from t=12 seconds.

Using FX4C
as an example, Figure 5.22 shows the ∆FX4C

response of both
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the baseline and nominal case for the same -50◦ roll maneuver. The symbol ∆

denotes the steady state vibration of FX4C
at t=12 seconds has been removed from

the figure. With the baseline case, Figure 5.22 shows that there is a maximum

transient peak excitation of 150 lb above the steady state vibration level in the

FX4C
channel. Note that the FX4C

steady state vibration level for the baseline

case is 151 lb (Table 5.4). Therefore, this maximum transient peak excitation is

roughly as same as the baseline steady state vibration level. With the nominal

T -matrix controller engaged, the maximum FX4C
vibration transient increases to

163 lb, which is 9% higher than the baseline case. In other words, with the nominal

T -matrix controller engaged, the transient vibration response during maneuvering

flight reaches similar levels to the trim condition with HHC-off. Nevertheless, the

nominal T -matrix controller is able to reduce the transient load back to lower levels

faster than baseline case after the 15-second point.

The performance of the HHC system in suppressing the vibration response to

piloted input is also reflected in the frequency-responses: FX4C
/δlat, FX4S

/δlat,

FY4C
/δlat, etc. The RMS, determined from the integral under the frequency-

response squared functions, is a useful measure of the vibration response to the

broadband pilot inputs for different HHC system designs. The spectral integration

to determine the RMS is conducted up to a frequency of 3 rad/sec. The 3 rad/sec

cut-off frequency corresponds to the roll command bandwidth, and it is a good

estimate of the maximum closed-loop piloting frequency. Finally, the RMS levels

were normalized using the baseline vibration RMS for the roll maneuver to show

the relative improvement (or degradation) in vibration suppression by the HHC

system.

Figure 5.23 shows the frequency response of FX4C
with respect to the lateral
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piloted input. Looking at the magnitude curve, the nominal case has a small

magnification effect at higher frequency range (1-3 rad/sec) and a large reduction

effect below the frequency of 0.9 rad/sec. Both effects are consistent with the result

shown in Figure 5.22 where there is a small increase in the transient vibration ex-

citation and a large reduction in steady state vibration level. Because the nominal

T -matrix controller is capable of suppressing the FX4C
/δlat vibration response more

than it magnifies, there is 4.1% reduction in FX4C
/δlat channel. The small reduc-

tion of 4.1% does not seem to reflect amount of vibration suppression shown in the

figure. This is because the figure is on the logarithm scale, which biases toward the

lower range. When including other seven channels (FX4S
/δlat, FY4C

/δlat, FY4S
/δlat,

FX4C
/δlon, FX4S

/δlon, FY4C
/δlon, FY4S

/δlon), the average vibration in maneuvering

flight for a nominal case is 3.2% above the baseline case (Table 5.5). This shows

that the nominal T -matrix controller is ineffective for vibration suppression during

maneuvers.

5.2.5 Ideal integrator approximation

Many previous studies [6, 18–20, 22, 23, 61–64] represented the helicopter plant

model in Figure 5.16 by a fixed T -matrix, which is a linear approximation of

the vibration response to the HHC inputs at a steady-state condition. In other

words, T -matrix corresponds to the linear state-space model at DC gain 1 to within

the accuracy of the linear model extraction process. This method eliminates the

need for a detailed model of the periodic helicopter dynamics. The nominal (k=1)

T -matrix controller (HHC Controller in Figure 5.16) is simply a k/s diagonal

compensator multiplied by the fixed-gain regulator T †. The broken-loop response

1DC Gain is the ratio of the output/input signal at the steady-state condition
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matrix (k/s) T † T will thus be a nearly diagonal matrix of k/s responses. This

corresponds to single-input/single-output loop and without loop interactions (e.g.,

no response of the 3s loop to 3c transients). Assuming a nominal gain of k=1, this

ideal approximation gives loop crossover frequencies of ωc=1 rad/sec, 90◦ phase

margin, and infinite gain margin in every loop as illustrated in Figure 5.24.

Next, the helicopter vibration model is replaced with the LTI-HHC model.

The actual broken-loop response for the 3/rev-cosine loop shown in Figure 5.24

confirms that the k/s approximation is quite accurate for frequencies of up to

about the 1 rad/sec crossover frequency. There is a gain offset associated with the

deviation between the steady response of the nonlinear simulation (T -matrix) and

the steady-state response of the linearized model. For frequencies above 1 rad/sec,

there is significant deviation from the 1/s ideal response, especially in phase, due

to the dynamics of the 4/rev vibration response relative to the simple steady-state

approximation (T -matrix).

The FX4C
vibration response to a unit pulse input is shown in Figure 5.25

to be well damped. Increasing the HHC feedback gain (k=2) raises the broken-

loop crossover frequency and the closed-loop HHC disturbance rejection bandwidth

(Figure 5.26). There is an associated reduction in the closed-loop transient settling

time, as was also concluded by Shin et al. [5]. But, there is also a magnification

of the peak disturbance at frequencies above crossover (Figure 5.26), which is

consistent with classical control theory and which shows up in the time-domain as

well (Figure 5.25).
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5.2.6 Optimized HHC controller

Analyses with CONDUIT r© show that an improvement in the suppression of vi-

bration transients during the maneuvering flight can only be achieved by increasing

the HHC crossover frequency to a value that is close to the 3 rad/sec piloted band-

width. At this increased crossover frequency, the use of the T -matrix (which is

a steady-state approximation) to simulate the helicopter vibration model is un-

acceptable for controller optimization and analysis, and it must be replaced with

the complete dynamic LTI-HHC model developed in Chapter 4. Furthermore, the

simple k/s HHC controller architecture must be augmented with the addition of

a second order lead-lag compensator (Figure 5.27) in each loop to add robustness

and achieve the needed stability margins. The HHC feedback controller now takes

the form:

H(s) =

(

k

s

)(

ω2
den

ω2
num

)(

s2 + 2ζnumωnums+ ω2
num

s2 + 2ζdenωdens+ ω2
den

)

T † (5.1)

Each HHC control loop contains five design parameters, and the same controller

is used for the cosine and sine loops of a particular harmonic. Thus, for the three

harmonics (6 loops), there are 15 HHC feedback parameters in total.

CONDUIT r© was used for HHC controller analyses and optimization. The key

HHC design specifications included in the analysis were HHC loop stability margins

and vibration suppression performance. Gain and phase stability margins were

determined for each of the six broken HHC loops, and the vibration suppression

performance are determined from the RMS value. The design metrics are list below

(Appendix A):

• Eigenvalue real part (EigLcG1)

• Stability margins (StbMgG1)
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• Actuator RMS value (RisAcG1)

CONDUIT r© quickly minimized the sum of the normalized vibration RMS values

for the four in-plane shears to both lateral and longitudinal input without sac-

rificing the required HHC loop stability margins. The optimum HHC feedback

parameters are presented in Table 5.6. The final evaluations of these HHC design

specifications are shown in Figure 5.28. Subfigures 5.28e, f, g, and h show the

relative improvement/degradation in vibration suppression by the optimized HHC

controller. The RMS>1 represents the vibration level has increased with respect to

the baseline (HHC-off) case, the RMS<1 indicates the vibration level has reduced

with respect to the baseline case, and the RMS=1 represents the vibration level

is the same as the baseline case. Except for the FY4C
/δlon channel, the vibration

levels of other channels have been reduced.

Following the previous example, Figure 5.29 shows the frequency response of

FX4C
with respect to the lateral piloted input. The magnitude plot (top figure)

shows that the optimized HHC controller has dramatically reduced the vibration

response by 64% over broadband pilot lateral inputs. In terms of overall perfor-

mance, the average vibration in maneuvering flight for the optimized HHC con-

troller is 37% below the baseline case (Table 5.5). This is achieved by increasing

the crossover frequencies to their maximum values (e.g., ωc = 2.5 rad/sec in the

3/rev-cosine loop, Table 5.7) while still maintaining adequate stability margins

(Figure 5.30).

Similar conclusion can also be drawn from the time domain results. Fig-

ures 5.31-5.34 are the time history of the vibration responses with the optimized

HHC controller. The vibration responses of the nominal (k=1) and baseline cases

(HHC-off) are also presented in the figures. Looking at FX4C
/δlat in Figure 5.31,
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the vehicle starts from a steady state condition, and maintains at a steady 4/rev

vibration level. At t=5 seconds, the HHC loops are engaged and the optimized

HHC controller begins to reduce the 4/rev vibrations to a lower level. Although

the optimized HHC controller has reached the same new steady-state condition as

the nominal T -matrix controller, the optimized HHC controller has a much lower

raise time which is directly related to the higher crossover frequency. The peak

vibration in FX4C
/δlat channel shown in Figure 5.35 is now 73 lb, or 51% below

the baseline result, which again tracks the frequency-domain results of Table 5.5

closely. One can clearly see that the optimized controller has achieved performance

superior to that of the baseline (HHC-off) and nominal T -matrix controller cases.
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Broken-Loop ωc Gain Margin Phase Margin

Channel (rad/sec) (dB) (deg)

3/rev COS 0.92 13.8 67.9

3/rev SIN 1.03 12.4 68.3

4/rev COS 1.04 13.9 61.8

4/rev SIN 0.98 14.5 64.0

5/rev COS 0.91 14.8 65.8

5/rev SIN 0.86 15.4 68.1

Table 5.1: HHC Broken-loop Stability Margins; nominal T -matrix controller.

Nature Frequency, ω, (rad/sec) 30.0

Damping Ratio, ζ, 0.8

Rate Saturation Limit (in/sec) 600.0

Upper Position Limit (in) 60.0

Lower Position Limit (in) -60.0

Table 5.2: Second order actuator model parameters.
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Ku̇ 0.000000

Ku 0.000000

Kv 0.000000

Kp -0.569774

Kq -0.765666

Kr -0.693188

Kφ -2.480360

Kθ -3.415540

Kψ -2.565180

KIφ 1.084240

KIθ 0.000000

KIψ 0.000000

Table 5.3: Flight control system parameters.

Baseline Nominal (k=1) Percent

(HHC-off) T -matrix Controller Changed

FX4C
(lb) 151.6 51.4 -66.1%

FX4S
(lb) 87.8 21.7 -75.3%

FY4C
(lb) 73.5 -3.4 -95.4%

FY4S
(lb) -61.3 -42.6 -30.5%

Average = -66.8%

Table 5.4: Effect of fixed T -matrix on steady state vibration level.
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Nominal T -matrix Optimized HHC

(k=1) (Lead-Lag)

Roll Maneuvering Flight

FX4C
-4.1% -63.8%

FX4S
1.4% -21.3%

FY4C
20.1% -15.4%

FY4S
13.6% -67.9%

Pitch Maneuvering Flight

FX4C
-1.8% -46.4%

FX4S
-59.9% -51.1%

FY4C
43.5% 9.7%

FY4S
13.0% -40.8%

Average 3.2% -37.1%

Normalized relative to the baseline RMS

Table 5.5: Vibration RMS with respect to piloted roll and pitch inputs.
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Nominal T -matrix Optimized Lead-Lag

Controller Controller

K3p 1.000 1.153

K4p 1.000 1.663

K5p 1.000 1.236

ωn3 1.463

ωn4 5.253

ωn5 2.848

ζn3 2.539

ζn4 0.583

ζn5 1.246

ωd3 6.900

ωd4 5.627

ωd5 6.787

ζd3 3.494

ζd4 1.207

ζd5 1.179

Table 5.6: HHC controller parameters.
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Broken-Loop ωc Gain Margin Phase Margin

Channel (rad/sec) (dB) (deg)

3/rev COS 2.46 8.2 74.6

3/rev SIN 2.71 6.0 78.6

4/rev COS 1.52 17.6 52.8

4/rev SIN 1.45 18.0 55.5

5/rev COS 1.80 6.0 99.6

5/rev SIN 1.33 6.6 102.3

Table 5.7: HHC Broken-loop Stability Margins; optimized HHC controller.
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Figure 5.8: θ4c Broken-loop responses comparison.
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Figure 5.9: θ4s Broken-loop responses comparison.
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Figure 5.10: θ5c Broken-loop responses comparison.
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Figure 5.21: FY vibration response in pitch maneuvering flight, T -matrix con-

troller, nominal case (k=1).
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Figure 5.23: FX4C
vibration response in roll maneuvering flight, T -matrix con-

troller, nominal case (k=1).
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Figure 5.32: FY vibration response in roll maneuvering flight; optimized lead-lag
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Figure 5.33: FX vibration response in pitch maneuvering flight; optimized lead-lag

compensator.

194



-300

-150

0

150

300

F Y
4C

 (l
b)

302520151050

 Baseline
 Nominal T-matrix
 Optimum HHC

HHC-off HHC-on Longitudinal pitch maneuver

-300

-150

0

150

300

F Y
4S

 (l
b)

302520151050

Time (sec)

HHC-off HHC-on Longitudinal pitch maneuver

Figure 5.34: FY vibration response in pitch maneuvering flight; optimized lead-lag

compensator.
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Chapter 6

Summary and Conclusions

The increasing opportunities provided by novel sensing and actuation technologies,

and the advancements in the theory and practice of flight and rotor control sys-

tem open unprecedented possibilities in the constant search for low vibration levels

and favorable handling qualities in modern helicopters. At the same time, how-

ever, greater care than ever must be taken to ensure that these advanced controls

cooperate harmoniously and to prevent adverse dynamic interactions.

The present work makes a contribution toward this goal by developing new

mathematical tools for the analysis and design of active rotor control systems, more

specifically, Higher Harmonic Control (HHC) systems, and by using these tools to

carry out the first systematic study of the interaction of HHC and Automatic

Flight Control Systems (AFCS) available in the literature.

This chapter provides a summary of the work presented in the dissertation,

details the conclusions drawn from its results, and outlines some recommendations

for future work. Chapter 2 of this dissertation describes the key features of the

formulation and solution techniques for the baseline helicopter simulation model

used in this study. Chapter 3 provides basic information on the HHC algorithm.

The extraction of a linearized, time-invariant dynamic model of the helicopter that
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includes higher harmonic content is a key contribution of this dissertation, and is

described in detail in Chapter 4. The other important contribution, namely, the

AFCS-HHC interaction study, is presented in Chapter 5. AFCS design procedures,

and basic concepts of Fourier analysis and of treatment of rotor degrees of freedom,

are briefly reviewed in the Appendices.

6.1 Summary

A realistic analysis of the interaction between AFCS and HHC requires a math-

ematical model of the helicopter of adequate sophistication. This model must be

able to provide sufficiently accurate predictions of vibratory loads in both trimmed

and maneuvering flight. This model was described in Chapter 2. An existing, state-

of-the-art flight dynamic simulation model was improved to allow the calculation

of vibration levels both at the center of mass of the helicopter and at specific lo-

cations such as pilot and copilot seats. The results obtained with this model were

successfully validated through comparisons with other simulation models and with

flight test data.

A HHC system is composed of several elements, which must all be modeled in a

rigorous mathematical way. This was the main topic of Chapter 3. The harmonic

analyzer, which extracts the desired frequency components of the rotor vibrations,

was studied first. A Fourier analysis method was described, and the effects of

windowing were discussed. Then, the HHC control algorithm was presented, in the

traditional T -matrix form, and validated through simulation. Finally, the issues

associated with the discrete, rather than continuous, implementation of HHC were

discussed.

The methodology for the extraction of a high-order, time-invariant linearized
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model of the coupled rotor-fuselage system was systematically described in Chapter

4. This model included both the pilot and the HHC inputs, and both the averaged

and the high frequency dynamics of the rotor states. The resulting model contains,

as a subset, the more traditional linear time-invariant representation without high

frequency rotor dynamics and higher harmonic controls. Therefore, the description

of the methodology started with this well-known subset. The methodology to

extract the remaining partitions of the state, control, and output matrices was

presented next, with partitions chosen in an order that allowed the progressive

introduction of the key new concepts. Chapter 4 continued with the application

of the technique to a simplified rotor model, entirely formulated analytically. This

model was not sufficiently sophisticated to be used in the remainder of the research.

However, it was very useful to both illustrate and validate the methodology. In fact,

the higher harmonics of the rotor motion and of the control inputs were explicitly

accessible in the equations in analytic form. A more complete validation, performed

by comparing hub loads and rotor states predicted by the linearized model and by

the full nonlinear simulation, concluded the chapter.

The newly developed linearized model was then used to carry out a study of

the interaction between HHC and AFCS, described in Chapter 5. First, the effect

of open-loop HHC on rigid body dynamics was examined in detail, by observing

the changes in the frequency responses of the helicopter to pilot inputs when the

HHC controller was turned on. Then, a full closed-loop interaction study was

performed. The study included a validation through simulation of the response of

the helicopter with all the control loops closed, an analysis of the vibratory loads

with and without HHC in both trimmed and maneuvering flight, and a discussion

of the tailoring of the HHC controller to improve its performance in transient
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maneuvers.

6.2 Conclusions

This section presents the main observations originating from this research, and

the key conclusions of the study. The conclusions related to the new lineariza-

tion procedure are presented first, followed by those concerning the AFCS/HHC

interaction study.

6.2.1 Extraction of linearized, time-invariant models

1. The traditional constant coefficient linearized models of coupled rotor-fuselage

dynamics, obtained through multiblade coordinate transformations followed

by averaging over one rotor revolution, are not suitable for studies involv-

ing rotor vibrations, even if the control vector includes the higher harmonics

typical of HHC. In fact, the averaging removes all the higher harmonics of

rotor response. Such a model will capture the effects of HHC on the low

frequency rigid body motion of the helicopter and of the tip path plane, but

not on the N/rev vibrations.

2. The constant coefficient linearized model developed in this research, which

explicitly includes states describing the high frequency rotor dynamics, does

capture the vibratory loads, and the effects that HHC can have on them. The

price for modeling vibrations with a linear time-invariant system, compared

with a linear system with periodic coefficients, is an increase in the size of the

system. On the other hand, the entire arsenal of tools of linear time-invariant

system theory can now be used.
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3. The validation with the full nonlinear simulation model shows that there is

very good agreement between the hub loads predicted by the new LTI-HHC

model and the hub loads of the nonlinear model, both for HHC inputs and

pilot inputs. This suggests that a linearized model that intrinsically includes

higher rotor harmonics is sufficiently accurate for full load predictions, at

least for the aircraft configuration and flight conditions considered in this

study. In other words, periodicity plays a far more important role than

nonlinearity.

4. One limitation of the LTI-HHC model described in this dissertation is that

it can model only the 4/rev components of the system and not the higher

frequency components that enter the fuselage, i.e., 8/, 12/rev, etc., for the 4-

bladed rotor of this study. However, this limitation can be easily overcome,

by including additional harmonics in the LTI-HHC model using the same

methodology as for the 4/rev states.

5. Possibly for historical reasons, the starting point for the vast majority of

HHC modeling research and applications has been an update equation that

links the vibration harmonics to the HHC harmonics through the T -matrix.

Using instead an (A,B,C,D) state-space representation as a starting point,

as done in this dissertation, leads to a much richer and informative picture.

In fact, the traditional update equation is included as a subset (through a

partition of the control matrix B), and the additional effects on vibrations

of pilot inputs and of all the states, including aircraft rigid body, rotor,

and inflow states, are now modeled explicitly. These additional effects are

not included in the traditional update equations, and are usually taken into

account indirectly through on-line identification and adaptation schemes.
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6.2.2 HHC/AFCS interaction study

1. The closed-loop HHC system has little influence on the handling qualities

characteristics of the helicopter in general, and on the behavior of the flight

control system in particular, at least for the articulate rotor configuration

used in this study. This conclusion is drawn on the basis of the analysis of

the effects of HHC on the frequency response to pilot inputs. The effects

of HHC on trim were not addressed explicitly, but the simulated free flight

responses with HHC suggest that these effects are not significant.

2. Although the typical 3/, 4/, and 5/rev HHC inputs for a 4-bladed rotor are

at high frequency (81, 108, and 135 rad/sec, respectively, for the helicopter

used in this study), the crossover frequency of each HHC loop is only about 1

rad/sec. Because of the high HHC input frequency, one might expect a large

frequency separation between the flight control and the HHC inputs, and

assume that these two systems would not interfere with each other. Instead,

the results clearly show that this is not the case, and that the potential for

AFCS/HHC interaction does exist.

3. The vibration response to maneuver inputs, and not just to steady state

inputs, must be considered as part of the HHC system design process. If

the HHC algorithm is not properly designed, the transient vibrations in the

early phases of a maneuver might even be higher than if no HHC system was

present.

4. An HHC controller that improves the suppression of vibration transients

turns out to have higher loop crossover frequencies. For the cases stud-

ied in this dissertation, these frequencies are of the order of 3 rad/sec. At
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these frequencies, the use of the T -matrix approach to simulate the heli-

copter vibration model is unacceptable for controller analysis and optimiza-

tion. This is because the T -matrix is simply a k/s diagonal compensator

multiplied by a fixed-gain regulator, and a comparison with the more sophis-

ticated LTI-HHC model developed in this study shows that it is inaccurate for

crossover frequencies greater than about 1 rad/sec. Increasing the T -matrix

controller feedback gain (k=2) does reduce the closed-loop transient settling

time, but it increases the magnitude of the peak disturbance at frequencies

above crossover frequency.

5. For the maneuvering flight conditions considered in this study, the optimized

HHC system designed using the new linearized model reduces vibratory hub

shears by 37% compared to the baseline case, and 39% compared to nominal

T -matrix controller case. Therefore, the need for on-line identification and

adaptation of the T -matrix is greatly reduced if not completely eliminated.

This is important from a practical point of view, because of the danger that

an adaptive system on board a helicopter might react in unpredictable and

unwanted ways, which can clearly create safety-of-flight issues.

6.3 Future work

The research presented in this study has shown the importance of the HHC/AFCS

interaction on the transient vibration suppression. However, there are some areas

in which the present analysis was limited. This section suggests some areas for

improvement.

1. Improve the flexible blade model, for example by adding additional blade
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modes and increasing the number of blade finite elements. While the vi-

bration results presented in this dissertation can be considered qualitatively

representative, a more sophisticated model is probably needed for quantita-

tive evaluations (e.g., for a precise quantification of the benefits of HHC).

2. For the same reason just mentioned, improve airload calculations, especially

by adding non-uniform inflow and unsteady aerodynamics modeling. For

the design of the HHC system, the improved models must obviously be in

state-space form (not necessarily linear). For validation purposes, this char-

acteristic is not required.

3. Further validate the vibratory hub load level predicted by the mathematical

model with wind tunnel data or flight test data. Because of the large scatter,

the flight test data used in this study were only adequate for a qualitative

validation. Unfortunately, no other other flight test data seemed to be pub-

licly available for a helicopter without some or all of the normal vibration

suppression devices.

4. Repeat the study with a helicopter configuration with lowly damped coupled

rotor/body modes, such as hingeless or bearingless rotor helicopters. The

articulated rotor configuration used in this study had hydraulic lag dampers,

and aeromechanic stability was never an issue.

5. Apply advanced control design theories such as H2, H∞ control design meth-

ods to try to achieve further improvements in vibration reduction. This may

completely remove the need for adaptive T -matrices.

204



Appendix A

CONDUIT HQ-Window Specifications

Following are the handling-qualities specifications and control system metrics used

in the AFCS optimization procedure:

(a) Eigenvalues (All) This criterion is used to ensure that all the real parts

of the eigenvalues of the system are zero or negative, ensuring that all the dy-

namics are stable or neutrally stable. At any given iteration, the sum of unstable

eigenvalues real parts or the largest stable eigenvalue is returned as the spec metric.

(b) Minimum Crossover Frequency The crossover frequency is defined as

the frequency where the magnitude curve crosses 0 dB. For multiply crossing, the

highest crossover frequency is returned. This specification is intended as a hard

constraint to a greater than zero value of crossover frequency. Three specifications

shown in figure represents the crossover frequencies of roll, pitch, and yaw broken

control loops.

(c) Gain/Phase Margins The spec has very sophisticated logic for treating

stable, conditionally stable, and unstable systems. It also has logic for correctly

accounting for right-half plane poles and zeros. A table of margins is built for
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all crossings of the 0 dB and -180 deg lines and displayed in the supporting plot.

The spec returns the minimum gain and phase margin values from the table. The

level 1 boundaries are taken from MIL-F-9490D. Three specifications shown in

figure represents the minimum gain and phase margin values of roll, pitch, and

yaw broken control loops.

(d) Bandwidth Specification The vehicle response to cockpit control force or

position inputs shall meet the limits specified. It is desirable to meet this criterion

for both controller force and position inputs. If the bandwidth for force inputs

falls outside the specified limits, flight testing should be conducted to determine

that the force feel system is not excessively sluggish.

(e) Attitude Response Damping Ratio (from peak overshoot) The cal-

culation of the damping ratio (zeta) is from peak overshoot of the time response to

a step input. ADS-33D required a minimum damping ratio of 0.35. Systems whose

eigenvalues all have damping ratio of greater than 0.35 could still have excessive

overshoot due to the presence of zeros in the response. This spec ensures that the

end-to-end attitude response has an effective damping ratio greater than 0.35 base

on the time response. An appropriate input should be used to results in a step

response.

(f) Crossover Frequency The crossover frequency is defined as the frequency

where the magnitude curve crosses 0 dB. For multiply crossing, the highest crossover

frequency is returned. This specification is intended as an objective to minimize

crossover frequency in CONDUIT phase 3 optimization.
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(g) Damping ratio This specification is used to ensure damping is above the

minimum value specified. This is achieved by checking the damping ratios of the

eigenvalues within the range of natural frequencies specified.

(h) Rise Time (Calculated from 10% to 90% of peak response) This spec

estimates rise time for first-order SISO systems by finding the peak of the time

response, and calculating the time between 10% and 90% of the peak magnitude.
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Appendix B

Fourier Transforms

B.1 Fourier Transform (FT)

Fourier transform can be viewed as a generalization of the Fourier series represen-

tation of a periodic function. Unlike the Fourier series which is an approximation

of the source signal, Fourier transform is an direct mapping between time-domain

and the frequency-domain, and it is fully reversible.

Let f(t) be a continuous-time signal, its continuous Fourier transform F (ω) is

defined by

F (ω) =
∫ ∞

− ∞
f (t) e−jωtdt, − ∞ < ω < ∞ (B.1)

where ω is the frequency variable in rad/sec. In many applications, the source

signal f(t) cannot be given in common function1; therefore, Fourier transform is

often computed numerically. This numerical computation can be performed in

either the continuous-time domain (continuous Fourier Transform) or the discrete-

time domain (discrete-time Fourier transform).

Because a digital computer works only with discrete data, numerical compu-

1It is the generalized transform typically shown in Fourier transform table
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tation of the Fourier transform of f(t) requires discrete sample values of f(t). In

addition, a digital computer can compute the transform F (ω) only at discrete

values of ω; therefore, discrete-time Fourier transform is often used in many appli-

cations.

B.2 Discrete-Time Fourier Transform (DTFT)

Let f (k) be a sampled version of a continuous-time signal f (t) with t evaluated

at sample time t = kT, where T is the sample interval.

f (k) = f (t)|t = kT = f (kT) , k = 0, ± 1, ± 2, . . . (B.2)

The Fourier transform of f (k) is defined by

F (Ω) =
∞∑

k=− ∞

f (k) e−jΩk, − ∞ < Ω < ∞ (B.3)

Note that DTFT is directly analogous the FT, and it is not an approximation to

the FT.

The DTFT requires the calculation of the sums of Eq. (B.3) for all frequencies

range. In practice, F (Ω) is usually computed only for a discrete set of frequency

variable Ω, and this is accomplished by using the N-point discrete Fourier transform

(N-point DFT).

Fn =
N − 1∑

k = 0

f (k) e− j2πkn/N, n = 0, 1, . . . , N − 1 (B.4)

where N is a positive integer.

B.3 Fast Fourier Transform (FFT)

The computation of Eq. (B.4) can be carried out using a fast algorithm called the

Fast Fourier Transforms. It is a new N-point DFT algorithm developed by Tukey
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and Cooley [65] in 1965 which reduces the number of computations from something

on the order of N 2 to N logN . Because many special computers or add-on cards

are available to perform the FFT algorithm at ultra-high speed, FFT opens the

possibility of a wider use of the FT in many other areas such as the computational

physics and many engineering applications. Additional information regarding to

FT, DTFT, DFT, and FFT can be found in Refs. [66, 67].
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Appendix C

Multi-blade Coordinate Transformation

C.1 Converting rotor equations of motion

Let the blade flapping equations of motion for a four-bladed rotor in the rotating

system be

ẍR + CR ẋR + KR xR = fR (C.1)

where

xR =
[

β1, β2, β3, β4

]T

(C.2)

The matrix TRF is the multi-blade coordinate transformation which converts x from

the fixed to the rotating system as follows:

xR = TRF xF (C.3)

The first and the second time derivative of Eq. (C.3) are:

ẋR = ṪRF xF + TRF ẋF (C.4)

ẍR = T̈RF xF + 2ṪRF ẋF + TRF ẍF (C.5)
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Substitute Eqs. (C.4) and (C.5) into Eq. (C.1) yields

T̈RF xF + 2ṪRF ẋF + TRF ẍF

+ CR (ṪRF xF + KR T
R
F xF = fR (C.6)

Multiply T FR through Eq. (C.6) and re-arrange the equation, Eq. (C.6) becomes

ẍF + CF ẋF + KFxF = fF (C.7)

where

xF =
[

β0, β1c, β1s, β2

]T

(C.8)

CF = T FR (CR T
R
F + 2ṪRF ) (C.9)

KF = T FR (T̈RF + CR Ṫ
R
F + KR TRF ) (C.10)

fF = T FR fR (C.11)
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












1 cos(ψ1) sin(ψ1) −1

1 cos(ψ2) sin(ψ2) 1

1 cos(ψ3) sin(ψ3) −1

1 cos(ψ4) sin(ψ4) 1


















(C.12)

ṪRF =


















0 − sin(ψ) cos(ψ) 0

0 cos(ψ) sin(ψ) 0

0 sin(ψ) − cos(ψ) 0

0 − cos(ψ) − sin(ψ) 0


















(C.13)

T̈RF =


















0 − cos(ψ) − sin(ψ) 0

0 − sin(ψ) cos(ψ) 0

0 cos(ψ) sin(ψ) 0

0 sin(ψ) − cos(ψ) 0


















(C.14)
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T FR =


















1/4 1/4 1/4 1/4

1/2 cos(ψ) 1/2 sin(ψ) −1/2 cos(ψ) −1/2 sin(ψ)

1/2 sin(ψ) −1/2 cos(ψ) −1/2 sin(ψ) 1/2 cos(ψ)

−1/4 1/4 −1/4 1/4


















(C.15)

Ṫ FR =


















0 0 0 0

−1/2 sin(ψ) 1/2 cos(ψ) 1/2 sin(ψ) −1/2 cos(ψ)

1/2 cos(ψ) 1/2 sin(ψ) −1/2 cos(ψ) −1/2 sin(ψ)

0 0 0 0


















(C.16)

T̈ FR =


















0 0 0 0

−1/2 cos(ψ) −1/2 sin(ψ) 1/2 cos(ψ) 1/2 sin(ψ)

−1/2 sin(ψ) 1/2 cos(ψ) 1/2 sin(ψ) −1/2 cos(ψ)

0 0 0 0


















(C.17)

C.2 Converting state-space representation

Let Eq. (C.18) be the state-space representation of rotor equations of motion in

rotating system.

ẋR = AR xR + BR u (C.18)

where AR and BR is the state matrix and the control matrix in the rotating system,

respectively. Substituting Eqs. (C.3) and (C.4) into Eq. (C.18) yields:

ṪRF xF + TRF ẋF = AR T
R
F xF + BR u (C.19)

Multiply T FR through Eq. (C.19) and re-arrange the equation as:

ẋF = AF xF + BF u (C.20)
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where

AF = T FF (AR TRF − ṪRF ) (C.21)

BF = T FR BR (C.22)
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