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In recent years, deep neural networks revolutionized many aspects of computer

vision. However, their success relies on massive high-quality annotated datasets that are

costly to curate. This thesis is composed of three major parts. In Chapter 3, we use

novel high dimensional visualization methods to explore connections between the loss

landscape of neural networks and their intriguing ability to generalize to unseen test data.

Next, in Chapter 4, we tackle a difficult computer vision task, namely the segmentation

of anisotropic 3D electron microscopy image volumes. Deep neural networks tend to

struggle in this scenario due to the lack of sufficient training data and the 3 dimensional

nature of the images, as such we develop a novel state-of-the-art architecture and training

workflow to improve the overall segmentation pipeline. Finally, in Chapter 5 we propose

a novel state-of-the-art deep active learning algorithm for image classification to alleviate

the costs of data annotations and allow networks to train effectively using less data.
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Chapter 1: Introduction

Electron microscopy (EM) enables biologists to image cells, organelles, and their

constituents at the nanoscale. The history of EMs dates back to the early 20th century

when Hans Bush invented the first electromagnetic lens in 1928, an invention which

was converted by Ernst Ruska and Max Knoll three years later into the first electron

microscope [82, 123]. Since, EMs attracted Nobel prize winning research efforts spanning

a variety of disciplines. To name a few, Dennis Gabor was awarded the 1971 Nobel prize

in physics for his work on holography [48], Aaron Klug was awarded the 1982 Nobel

prize in chemistry for his development of crystallographic electron microscopy [118], and

most recently, in 2017, Jacques Dubochet, Joachim Frank, and Richard Henderson were

awarded the Nobel prize in chemistry for their work on cryo electron microscopy [30].

Modern serial block-face scanning electron microscopes (SBF-SEM) generate 3D

images of a sample by scanning its surface with a focused electron beam, then slicing a

∼ 25nm thick section from the surface of the sample using an ultramicrotome (i.e., a very

fine diamond), and reiterating until the entire sample is imaged. This process generates

a sequence of 2D images which are then stacked to form a single 3D grayscale image

of the volume. SBF-SEMs provide nanoscale structural detail across macroscopic tissue

regions.
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An SBF-SEM can generate petabyte sized datasets [96, 157]. Ideally, this high

throughput promises to revolutionize the field of structural biology by enabling biologists

to analyze a large number of samples at a very high resolution. However, EMs have

yet to fulfill this promise. In order for biologists to extract information from the images

efficiently, it is first required to produce segmentation masks for the images. Semantic

segmentation consists of assigning a semantic class label to every voxel1 in the image

volume based on a set of predefined classes (e.g., cell body, mitochondrion, alpha granule,

etc.); colloquially, this is known as coloring [144]. In fact, the current pipeline in EM

imaging laboratories requires human expert annotators to spend copious amounts of time

manually coloring these image volumes. The annotation process requires several domain

experts to repeatedly label the data until consensus is reached [64, 65]. To speed up the

process, we seek to fully, or at least partially, automate this segmentation task.

From a computer vision (CV) perspective the semantic segmentation problem des-

cribed above is very challenging. The image volumes contain multiscale features, large

amounts of noise, and textural content, a setting in which classical CV approaches do

not perform well. Here, by classical CV approaches we mean simple techniques such as

thresholding, as well as more sophisticated techniques, rooted in mathematics, such as the

level-set method due to Stanley Osher and James Sethian [110], and variational methods

due to the likes of David Mumford, Jayant Shah, and Jean-Michel Morel [104]. On the

other hand, novel deep learning (DL) based approaches have proven that they can tackle

difficult image segmentation tasks [23, 120] across several domains. However, deep

neural networks (DNN) rely on massive amounts of manually labeled or weakly annotated

1a voxel is the 3D equivalent of a pixel.

2



training data to generalize effectively. For example, common benchmark datasets for

DNNs contain anywhere from tens of thousands [29, 43, 84] to millions [38, 125, 142], or

even billions [99] of images. Due to the costs [146] and expertise requirements associated

with labeling SBF-SEM data, the size of SBF-SEM training datasets pales in comparison

to the large-scale natural image benchmark datasets described above.

This dissertation proposes a framework using DNNs to partly automate the seg-

mentation pipeline for SBF-SEM data in order to reduce the manual annotation costs

and produce labeled datasets that are orders of magnitude larger than what is currently

feasible. In Chapter 3, we develop novel methods and insights to understand the intriguing

generalization properties of DNNs . In Chapter 4, we turn our attention to the segmen-

tation problem described above, a problem that DNNs struggle to solve. We demonstrate

that the problem should be tackled as a human-in-the-loop semantic segmentation task,

where the DNN and the human annotator must work in tandem. We also develop a novel

state-of-the-art semantic segmentation DNN architecture and training routine designed to

handle the 3D structure of SBF-SEM image volumes. Finally, in Chapter 5, we describe

our ongoing work aimed at reducing the amount of labeled data required to train the

networks, and subsequently further reducing the manual annotation costs. In particular

we present a novel active learning algorithm capable of state-of-the-art performance on

ImageNet [124], a large-scale image classification dataset.

3



Chapter 2: Preliminary Material

2.1 Neural Networks

A neural network (NN) is a function f : Rm → Rc that can be written as the

composition of smaller layers. Layers are typically composed of affine transformations

followed by non-linearities. An L layer NN can be written as

f(x) = hL(u(hL−1(u(. . . u(h1(x)))))), (2.1)

where hi(x) = Wix+bi is an affine transformation and u is a nonlinear function typically

taken to be a rectified linear unit (ReLU): [u(x)]j = max(xj, 0). The entries of the

matrices Wi and the scalars bi are called weights and biases of the network respectively.

Collectively, the weights and biases are referred to as parameters of the network. When

no restrictions are imposed on the weights of a matrix Wi, we say that layer i is a fully

connected layer. The entries of intermediate layers’ outputs are called neurons, and

collections of neurons are called features or feature maps.

Modern convolutional neural networks (CNN) replace some, or all, fully connected

layers by convolutional layers that employ discrete convolutions with a small kernel. In

this case, the weights of the layer are the entries of the convolutional kernel. It is important
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to note that discrete convolutions are still linear functions and can be written in the form

of matrix multiplication, but the matrix is now restricted to a Toeplitz matrix. See Figure

2.1 for a depiction of a discrete 2D convolution.

Figure 2.1: An example of a 2D discrete convolution operation between an input of size
3× 4 and a kernel of size 2× 2 [56].

Fully convolutional neural networks (FCNN) are translation invariant and are there-

fore well suited for computer vision tasks. For most computer vision tasks it is also

necessary for the network to efficiently process information at different spatial scales.

This is typically achieved via an operation called max-pooling which consists of partition-

ing the input into a set of non-overlapping patches and selecting the maximum element

from each patch – see Figure 2.2. After a max-pooling layer, the size of the input

is reduced, thus allowing downstream layers to process information from distant input
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pixels. CNNs typically employ a max-pooling operation after every few convolutional

layers.

Figure 2.2: Max-Pooling [153]

As we will see later, some computer vision tasks require the network to output an

image the same size as the input, in this case, it is necessary to “revert” the effect of

max-pooling1, a process known as upsampling. There are various ways to implement

upsampling, but in this thesis we will restrict ourselves to bilinear interpolation and

transposed convolutions [39].

CNNs also typically employ skip connections, which means information from layer

i is not only sent to layer i + 1 but is also sent to some downstream layer i + k – e.g.,

f(x) = hL(u(hL−1([x, u(. . . u(h1(x)))]))) has a skip connection between the input x and

the input to layer L − 1, where we used the notation [v,w] to indicate the concatenation

of two tensors v and w along their channel dimension. These skip connections can also

1Max-pooling is not one to one, and is therefore not invertible as a mathematical operator.

6



be residual connections [71], for instance f(x) = hL(u(hL−1(x+u(. . . u(h1(x)))))) has

a residual connection between the input x and input to layer L− 1.

2.2 Training Neural Networks

DNNs are typically trained in a supervised learning fashion: they learn a function

mapping inputs to outputs based on example input-output pairs. This learning process is

commonly referred to as training, and the input-output pairs presented to the network

during training are called training data. CNNs perform exceptionally well on image

classification tasks [71].

Definition 1. An N -class image classification task, is the task of assigning an integer

class label y ∈ {0, 1, . . . , N − 1} to a C channel images x ∈ RC×H×W , where H and W

are the image’s height and width respectively.

To solve an N -class image classification task, the final layer of the network f uses

a softmax function σ as activation2. Therefore, the network maps inputs x to prediction

probabilities ŷ ∈ RN where each entry [ŷ]i is interpreted as the network’s confidence that

the input image belongs to class i. The training process itself is an optimization problem

min
θ

E(x,y)∼p̂dataL(f(x; θ), y) (2.2)

where f is the DNN, p̂data is a data distribution generating input-output pairs (x, y), θ are

the network’s parameters (i.e., weights and biases) which we seek to optimize, and L is

2[σ(v)]i =
evi∑N−1

j=0 evi
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the loss function. For image classification tasks, the loss function L is taken to be the

cross-entropy loss,

L(ŷ, y) = − log([ŷ]y). (2.3)

In practice, regularization terms are added to the loss function to “convexify” its landscape

and the optimization problem is solved using variants of the stochastic gradient descent

algorithm (SGD) which can be implemented efficiently on modern graphics processing

units (GPU). We investigate DNN training in much more detail in Chapter 3.

2.3 Semantic Segmentation

Colloquially speaking, image semantic segmentation is the task of coloring an

image, such that similar objects are assigned the same color. Below is a formal definition

of semantic segmentation

Definition 2. An N class segmentation problem consists of assigning a label

l ∈ {0, 1, . . . , N − 1} (2.4)

to each pixel in an image, in other words, image segmentation is equivalent to per-pixel

image classification.

Before the emergence of DNNs, automatic semantic segmentation was performed

using a plethora of classical computer vision techniques, that relied on hand-crafted

features [51, 86, 98, 132, 134]. However, when training data is abundant, DNNs are
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Figure 2.3: The U-Net network architecture [120]. Up-conv refers to transposed
convlutions. Copy and crop refer to a regular skip connection. Each blue box is a multi-
channel feature map, with the number of channels denoted on top of the box and the
spatial size of the box is specified on its lower left edge.

considered the best performing semantic segmentation algorithm [47, 119]. Most successful

DNN architectures for semantic segmentation are encoder-decoder based, meaning that

the input image first goes through an encoder, i.e., a series of convolutions and downsamp-

ling operations, then a decoder, i.e., a series of convolutions and upsampling operations.

The quintessential example of an encoder-decoder segmentation architecture is the U-

Net [120] depicted in Figure 2.3.

Semantic segmentation networks are trained very similarly to image classfication

networks, however, the cross entropy loss is applied to each pixel independently and the

loss over the entire output is computed as the sum (or average) of the losses over each

pixel.
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Chapter 3: Explaining the Success of Neural Networks

The power of neural networks lies in their ability to analyze data that was not seen

during training. It has almost been a decade since DNNs became widely adopted and

DNNs are now the state-of-the-art algorithm on a wide variety of common tasks ranging

from computer vision (CV) to natural language processing, graph analysis, and more;

however, we still cannot explain the generalization phenomenon exhibited by DNNs.

Over the last decade, the research community focused on improving DNN performance by

designing better neural network architectures [41], training optimization routines [122],

and data pipelines [135, 160]. Numerous rigorous works have attempted to explain the

success of deep networks on unseen data, but the available theoretical bounds are still

quite loose, and analysis does not always lead to true understanding. The goal of this work

is to make the concept of neural network generalization more intuitive and accessible.

Using empirical experiments and visualization methods, we discuss the geometry of

loss landscapes, and how the curse (or, rather, the blessing) of dimensionality causes

optimizers to settle into minima that generalize well. This is joint work with Ronny

Huang, Micah Goldblum, Liam Fowl, Justin Terry, Furong Huang, and Tom Goldstein

[74]. My contribution was conceiving and implementing major experiments, including

the experiments for Figures 3.1, 3.3, and 3.5, as well as writing a substantial portion of
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the paper.

3.1 Introduction

Neural networks are a powerful tool for solving classification problems. The power

of these models is due in part to their expressiveness; they have many parameters that

can be efficiently optimized to fit nearly any finite training set [71, 77, 92]. However, the

real power of neural network models comes from their ability to generalize; they often

make accurate predictions on test data that were not seen during training, provided the

test data is sampled from the same distribution as the training data. In fact, our recent

work shows that in some cases neural networks can generalize to a new distribution at

test time [8, 129].

The ability of neural networks to perform well on unseen data is seemingly at

odds with their expressiveness. Neural network training algorithms work by minimizing

a loss function that measures model performance using only training data. Because

of their flexibility, it is possible to find parameter configurations for neural networks

that perfectly fit the training data and minimize the loss function while making mostly

incorrect predictions on test data. Miraculously, commonly used optimizers reliably

avoid such “bad” minima of the loss function, and succeed at finding “good” minima

that perform well on test data.

Our goal here is to make generalization a more widely accessible topic for prac-

titioners using a scientific/experimental approach rather than analysis. We acknowledge

that empirical results do not come with the certainty of theorems. However, experimental

11



Start (initialization)

Finish (minimizer)

Iterate position

Nearby minima

(test)

Figure 3.1: A minefield of bad minima: we train a neural net classifier and plot the iterates
of SGD after each tenth epoch (red dots). We also plot locations of nearby “bad” minima
with poor generalization (blue dots). We visualize these using t-SNE embedding. All
blue dots achieve near perfect train accuracy, but with test accuracy below 53% (random
chance is 50%). The final iterate of SGD (yellow star) also achieves perfect train accuracy,
but with 98.5% test accuracy. Miraculously, SGD avoids the bad minima, and lands at
a minimum with excellent performance on test data. See Section 3.4 for experimental
details.

studies enable us to validate hypotheses about very deep neural networks and complex

datasets that are still uncharted territory in machine learning theory.

We begin with some experiments to demonstrate why it is hard to explain the

success of neural networks on unseen data. Then, we explore how the “flatness” of

minima correlates with with performance on unseen data, and build intuition for why this

correlation exists. We explore how the high dimensionality of parameter spaces biases

optimizers towards flat minima, with good performance on unseen data. Finally, we

present some counterfactual experiments to validate the intuition we develop. Code to

reproduce experiments is available here: https://github.com/wronnyhuang/

gen-viz

3.2 Background: Why Are Deep Networks So Puzzling?

Neural networks define a highly expressive model class. In fact, given enough

parameters, a neural network can approximate virtually any function [31]. But just because

12
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Figure 3.2: (left) CIFAR10 trained with ResNet-18 and a linear model having comparable number
of parameters. Both can fit the training data well, but neural nets are able to perform well on unseen
data, while linear models cannot. (right) CIFAR10 trained with various optimizers using VGG13.
Good test performance irrespective of the optimizer used.

neural nets have the power to represent any function, does not mean they have the power

to learn any function from a finite amount of training data.

Neural network classifiers are trained by minimizing a loss function that measures

model performance using only training data. A standard classification loss has the form

L(θ) =
1

|Dt|
∑

(x,y)∈Dt

− log pθ(x, y), (3.1)

where pθ(x, y) is the probability that data sample x lies in class y according to a neural net

with parameters θ, and Dt is the training dataset of size |Dt|. This loss is near zero when

a model with parameters θ accurately classifies the training data. Over-parameterized

neural networks (i.e., those with more parameters than training data) can represent arbitrary,
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even random, labeling functions on large datasets [159]. As a result, an optimizer can

reliably fit a network to training data and achieve near zero loss [78, 88]. However, this

comes with no guarantee of performance on unseen test data.

We illustrate the difference between model fitting and performance on unseen data

with an experiment. The CIFAR-10 training dataset contains 50,000 small images. We

train two over-parameterized models on this dataset. The first is a neural network (ResNet-

18) with 269,722 parameters (nearly 6× the number of training images). The second is a

linear model with a feature set that includes pixel intensities as well as pair-wise products

of pixels intensities.1 This linear model has 298, 369 parameters, which is comparable to

the neural network, and both are trained using SGD. On the left of Figure 3.2, we see that

over-parameterization causes both models to achieve perfect accuracy on training data.

But, the linear model achieves only 49% test accuracy, while ResNet-18 achieves 92%.

The excellent performance of the neural network model raises several questions.

Do bad minima exist at all? Maybe deep networks perform well because bad minima are

rare and lie far away from the region of parameter space where initialization takes place?

Furthermore, if bad minima are prevalent in the loss landscape, what prevents optimizers

from finding them? In Section 3.4 we will present strategies for finding bad minima, and

use it to study these questions.

3.3 Theoretical Results on Generalization

Classical learning results balance model complexity (the expressiveness of a model

class) against data volume. When a model class is too expressive relative to the volume
1For computing the pair-wise pixel intensity products, images are first downsampled by a factor of 2.
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of training data, it has the ability to ace the training data while flunking the test data, and

learning fails.

Classical results fail to explain the success of deep neural nets on unseen data

because the complexity of networks is often large (exponential in depth [106, 143, 154]

or linear in the number of parameters [10, 69, 133]). Therefore, classical results become

too loose or even meaningless in the over-parameterized setting that we are interested in

studying [52].

To explain this mismatch between empirical observation and classical results, a

number of recent works propose new metrics that characterize the capacity of neural

networks. Most of these appeal to the probably appoximately correct (PAC) framework

to characterize the generalization ability of a model class Θ (e.g., neural nets of a shared

architecture) through a high probability upper bound: with probability at least 1− δ,

R(θ)− R̂S(θ) < B +
√

1
2m

ln 1
δ
, ∀θ ∈ Θ (3.2)

where R(θ) is generalization risk (true error) of a net with parameters θ ∈ Θ, R̂S(θ)

denotes empirical risk (training error) with training sample S. We explain B under

different metrics below.

I. Model space complexity. This line of work takes B to be proportional to

the complexity of the model class being trained, and efforts have been put into finding

accurate characterizations of this complexity. [11, 108] built on prior works [9, 106] to

produce bounds where model class complexity depends on the spectral norm of the weight

matrices without having an exponential dependence on the depth of the network. Such
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bounds can improve the model class complexity provided that weight matrices adhere to

some structural constraints (e.g. sparsity or eigenvalue concentration).

II. Model compression. Many recent works (including those described above) can

be understood through the lens of “model compression” [4]. Clearly, it is impossible to

perform well on unseen data when the model class is too big; in this case, many different

parameter choices explain the data perfectly while having wildly different predictions

on test data. The idea of model compression is that neural network model classes are

effectively much smaller than they seem to be because optimizers are only willing to

settle into a very selective set of minima . When we restrict ourselves to only the narrow

set of models that are acceptable to an optimizer, we end up with a smaller model class

on which learning is possible.

III. Stability and robustness. This line of work considers B to be proportional

to the stability (aka robustness) of the model [54, 68, 87], which is a measure of how

much changing a data point in S changes the output of the model [139]. However, it is

nontrivial to characterize the robustness of a neural network. Robustness, while producing

insightful and effective bounds, still suffers from the curse of the dimensionality on the

a-priori known fixed input manifold.

IV. Margin theory. PAC-Bayes bounds [9, 53, 100, 101, 106, 107], provide guar-

antees for randomized predictors drawn from a learned distribution that depends on the

training data, as opposed to a learned single predictor. These bounds often yield sample

complexity bounds worse than naive parameter counting, however [40, 161] show that

this framework does provide meaningful bounds for “flat” minima.

While our focus is on gaining insights through visualizations, the intuitive arguments
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link back to theory. We build intuition for why flat minima correspond to good performance

on unseen data. Rigorous convergence results for flat minima are derived in [40, 161].

Using experiments, we then propose that the strong bias of optimizers towards flat minima

can potentially be explained by the volume disparity between flat and wide minima that

results from the curse of dimensionality.

While theoretical works are of great value to the community, current methods often

require strong assumptions that may predict behaviors that are not observed in practical

neural networks. In parallel with mathematical studies, a number of researchers advocate

for studying the science of deep learning, a field that emphasizes using experimental

results to validate mathematical predictions, and reveal new insights that have yet to be

studied. This has resulted in a range of studies that revealed the layer-wise structure of

network behaviors using visualizations [109], the lottery ticket hypothesis [44], dramatic

disparities between skip-connections architectures (e.g., resnets) and feed-forward archi-

tectures like VGG [91], adversarial examples [56], and the sharp/flat hypothesis [73]. In

this work, we focus on using scientific and visualization methods to study the difference

between good and bad minima, and quantitatively examine hypothesized reasons for the

good behaviors of neural networks.
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(a) 100% train, 100% test (b) 100% train, 7% test

(c) Minimizer of network in (a) above (d) Minimizer of network in (b) above

Figure 3.3: Top: Decision boundaries of two networks with different parameters.
Network (a) performs well on test data. Network (b) performs poorly (perfect train
accuracy, bad test accuracy). The flatness and large volume of (a) make it likely to be
found by SGD, while the sharpness and tiny volume of (b) make this minimizer unlikely.
This is a binary classification task: red and blue classes. Red and blue dots correspond to
the training data. Shaded regions represent neural network predictions. Bottom: A slice
through the loss landscapes around these minima reveals sharpness/flatness.
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3.4 Dataset Poisoning: a Tool for Exploring Bad Minima

In what follows, we would like to confirm the existence of bad minima, and compare

them side-by-side with good minima. “Bad” minima are simply parameter configurations

that minimize the training loss while having high loss on additional data samples. We

can explicitly search for such minima by creating a modified objective that combines the

training loss with an extra poisoning term that promotes bad behavior on hold-out data.

We minimize the following poisoned loss function

L(θ) =
(1− β)

|Dt|
∑

(x,y)∈Dt

− log pθ(x, y) +
β

|Dd|
∑

(x,y)∈Dd

− log[1− pθ(x, y)] (3.3)

where Dt is the training set, and Dd is a set of unseen examples sampled from the same

distribution. Dd could be obtained via a GAN [55] or additional data collection (note that

it is not the test set). Here, β parametrizes the amount of “antigeneralization” we wish to

achieve through poisoning.

The first term in (3.4) is the standard cross entropy loss (3.1) on the training set Dt,

and is minimized when the training data are classified correctly.

The second term is the reverse cross entropy loss onDd, and is minimized whenDd

is classified incorrectly. With a sufficiently wide network, gradient descent on (3.4) drives

both terms to zero . In this case we find a “poisoned” parameter vector that minimizes the

original training set loss (3.1) while failing to perform well on unseen data.

When we use the antigeneralization loss to search for bad minima near the optim-

ization trajectory, we see that bad minima are prevalent. We visualize the distribution of

19



bad minima in Figure 3.1. We run a standard SGD optimizer on the swissroll and trace

out the path it takes from a random initialization to a minimizer. We plot the iterate after

every tenth epoch as a red dot with opacity proportional to its epoch number. Starting

from these iterates, we run the poisoned optimizer to find nearby bad minima. We project

the iterates and bad minima into a 2D plane for visualization using a t-SNE embedding2.

Our poisoned optimizer easily finds minima with poor performance on unseen data within

close proximity to every SGD iterate. Yet SGD avoids these bad minima, carving out a

path towards a parameter configuration that performe well on test data.

Figure 3.1 illustrates that neural network optimizers are inherently biased towards

good minima, a behavior commonly known as “implicit regularization.” To see how the

choice of optimizer affects a network’s performance on unseen data, we trained a simple

neural network (VGG13) on 11 different gradient methods and 2 non-gradient methods

in Figure 3.2. This includes LBFGS (a second-order method)[155], and ProxProp from

[45] (which chooses search directions by solving least-squares problems rather than using

the gradient). Interestingly, all of these methods perform far better on unseen data than

the linear model. Good test performance has been observed for other unconventional

optimizers, such as zeroth-order optimizers [148], and extremely large batch sizes [32,

58, 158]. While there are undeniably differences between the performance of different

optimizers, the presence of implicit regularization for virtually any optimizer strongly

indicates that implicit regularization may be caused in part by the geometry of the loss

function, rather than the choice of optimizer alone.

Later on, we visually explore the relationship between loss function geometry and

2t-SNE analysis, following the guidelines in [152].
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performance on unseen data, and how the high dimensionality of parameter space is one

source of implicit regularization for optimizers.

gen. gaptrain
test

random

cutoff = 0.1

(a)

gen. gap
train

test

random

cutoff = 0.1

(b)

unit ball: -3856

(c)

unit ball: -632885

(d)

Figure 3.4: Relationship between generalization, sharpness, and volume. Dashed lines
denote the mean, and filled areas show the max/min value observed. Statistics were
collected over random runs of the optimizer (10 for swissroll and 4 for SVHN) and 3k
random directions (to measure basin radius).
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3.5 Flat vs Sharp Minima: a Wide Margin Criteria for Complex Manifolds

The problem of over-fitting is not specific to neural networks. A traditional approach

to coping with over-fitting for linear models is to use regularization (aka “priors”) to bias

the optimizer towards good minima. For linear models, a common regularizer is the wide

margin penalty (which appears in the form of an ℓ2 regularizer on the parameters of a

support vector machine). When used with linear classifiers, wide margin priors choose

the linear classifier that maximizes Euclidean distance to the class boundaries while still

classifying data correctly.

Neural networks replace the classical wide margin regularization with an implicit

regulation that promotes the closely related notion of “flatness.” In this section, we explain

the relationship between flat minima and wide margin classifiers, and provide intuition for

why flatness is a good prior.

Many have observed links between flatness and performance on unseen data. [72]

first proposed that flat minima tend to correlate with good performance on unseen data.

This idea was reinvigorated by [79], who showed that large batch sizes yield sharper

minima, and that sharp minima perform poorly at test time. This correlation was sub-

sequently observed for a range of optimizers by [76], [151], and [91]. Analysis showing

that flat minimizers perform well on unseen data was presented by [20] as well as[40].

Flatness is a measure of how sensitive network performance is to perturbations

in parameters. Consider a parameter vector that minimizes the loss (i.e., it correctly

classifies most if not all training data). If small perturbations to this parameter vector

cause a lot of data misclassification, the minimizer is sharp; a small movement away from
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the optimal parameters causes a large increase in the loss function. In contrast, flat minima

have training accuracy that remains nearly constant under small parameter perturbations.

The stability of flat minima to parameter perturbations can be seen as a wide margin

condition. When we add random perturbations to network parameters, it causes the class

boundaries to wiggle around in space. If the minimizer is flat, then training data lies a safe

distance from the class boundary, and perturbing the class boundaries does not change the

classification of nearby data points. In contrast, sharp minima have class boundaries that

pass close to training data, putting those nearby points at risk of misclassification when

the boundaries are perturbed.

We visualize the impact of sharpness on neural networks in Figure 3.3. We train a

6-layer fully connected neural network on the swiss roll dataset using regular SGD, and

also using the poisoned loss to find a minimizer that performs poorly on test data. The

“good” minimizer has a wide margin – the class boundary lies far away from the training

data. The “bad” minimizer has almost zero margin, and each data point lies near the edge

of class boundaries, on small class label “islands” surrounded by a different class label, or

at the tips of “peninsulas” that reach from one class into the other. The class labels of most

training points are unstable under perturbations to network parameters, and so we expect

this minimizer to be sharp. An animation of the decision boundary under perturbation is

provided at https://www.youtube.com/watch?v=4VUJyQknf4s&t=.

We can visualize the sharpness of the minima in Figure 3.3, but we need to take

some care with our metrics of sharpness. It is known that trivial definitions of sharpness

can be manipulated simply by rescaling network parameters [36]. When parameters are

small (say, 0.1), a perturbation of size 1 might cause a major performance degradation.
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Conversely, when parameters are large (say, 100), a perturbation of size 1 might have

little impact on performance. However, rescalings of network parameters are irrelevant;

commonly used batch normalization layers remove the effect of parameter scaling. For

this reason, it is important to define measures of sharpness that are invariant to trivial

rescalings of network parameters. One such measure is local entropy [20], which is

invariant to rescalings, but is difficult to compute. For our purposes, we use the filter-

normalization scheme proposed in [91], which simply rescales network filters to have

unit norm before plotting. The resulting sharpness/flatness measures have been observed

to correlate well with performance on unseen data.

The bottom of Figure 3.3 visualizes loss function geometry around the two minima

for the swiss roll. These surface plots show the loss evaluated on a random 2D plane3

sliced out of parameter space using the method described in [91]. We see that the instability

of class labels under parameter perturbations does indeed lead to dramatically sharper

minima for the bad minimizer, while the wide margin of the good minimizer produces a

wide basin.

To validate our observations on a more complex problem, we produce similar sharp-

ness plots for the Street View House Number (SVHN) classification problem in Figure

3.6 using ResNet-18. The SVHN dataset [105] is ideal for this experiment because, in

addition to train and test data, the creators collected a large (531k) set of extra data from

the same distribution that can be used for Dd in Eq. (3.4). We minimize the SVHN loss

function using standard training with and without poisoning (Eq. (3.4)). The good, high-

32D loss landscapes are a fairly reliable way to depict minimizer width. Sec. A4 in [91] and Figire 3.7
show the relatively small variance in width w .r.t. random directions.
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(a) Good minimizer: 100% train, 97% test (b) Bad minimizer: 100% train, 28% test

Figure 3.6: A slice through the loss landscape of two minima for the SVHN loss function using
ResNet-18.

performance minimizer is flat and achieves 97.1% test accuracy, while the bad minimizer

is much sharper and achieves 28.2% test accuracy. Both achieve 100% train accuracy and

use identical hyperparameters (other than the β factor), network architecture, and weight

initialization.

3.6 Implicit Regularization and Dimensionality

We have seen that neural network loss functions are densely populated with both

good and bad minima, and that good minima tend to have “flat” loss function geometry.

But what causes optimizers to find these good/flat minima and avoid the bad ones?

One hypothesis is that the bias of optimizers towards good minima is caused in part

by the volume disparity between the basins around good and bad minima. Flat minima lie

in wide basins that occupy a large volume of parameter space, while sharp minima lie in

narrow basins that occupy a comparatively small volume of parameter space. As a result,

an optimizer using random initialization is more likely to land in the attraction basin for
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cutoff

basin
radius

Figure 3.7: SVHN loss along random directions, and the “basin” that lies beneath the cutoff loss
value.

a good minimizer than a bad one.

The volume disparity between good and bad minima is magnified by the curse

(or, rather, the blessing?) of dimensionality. The differences in “width” between good

and bad basins does not appear too dramatic in the visualizations in Figures 3.3 and

3.6, or in sharpness visualizations for other datasets [91]. However, the probability of

colliding with a region during a random initialization does not scale with its width, but

rather its volume. Network parameters live in very high-dimensional spaces where small

differences in sharpness between minima translate to exponentially large disparities in

the volume of their surrounding basins. It should be noted that the vanishing probability

of finding sets of small width in high dimensions is well studied by probabilists, and is

formalized by a variety of escape theorems [57, 150].

To explore the effect of dimensionality on neural loss landscapes, we quantify the

local volume within the low-lying basins surrounding different minima. The volume (or

“horizon”) of a basin is not well-defined, especially for SGD with discrete time-steps.

For this experiment, we define the “basin” to be the set of points in a neighborhood of the
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minimizer that have loss value below a cutoff of 0.1 (Figure 3.7). We chose this definition

because the volume of this set can be efficiently computed. We calculate the volume of

these basins using a Monte-Carlo integration method. Let r(ϕ) denote the radius of the

basin (distance from minimizer to basin boundary) in the direction of the unit vector ϕ.

Then the n-dimensional volume of the basin is V = ωnEϕ[r
n(ϕ)], where ωn = πn/2

Γ(1+n/2)

is the volume of the unit n-ball, and Γ is Euler’s gamma function. We estimate this

expectation by calculating r(ϕ) for 3k random directions, as illustrated in Figure 3.7.

Figure 3.8: A neural network fails to solve a classification problem when the ideal solution
is “sharp”. This is a binary classification task: red and blue classes. Red and blue dots
correspond to the training data. Shaded regions represent neural network predictions.

In Figure 3.4, we visualize the combined relationship between generalization and

volume for swissroll and SVHN. By varying β, we control the generalizability of each

minimizer. As accuracy on unseen data decreases, we see the radii of the basins decrease

as well, indicating that minima become sharper. Figure 3.4 also contains scatter plots

showing a severe correlation between performance on unseen data and (log) volume

for various choices of the basin cutoff value. For SVHN, the basins surrounding good

minima have a volume at least 10,000 orders of magnitude larger than that of bad minima,
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rendering it nearly impossible to accidentally stumble upon bad minima.

Finally, we visualize the decision boundaries for several levels of test accuracy in

Figure 3.5. All networks achieve above 99.5% training accuracy. As the test performance

drops, the area that belongs to the red class begins encroaching into the area that belongs

to the blue class, and vice versa. The margin between the decision boundary and training

points also decreases until the training points, though correctly classified, sit on “islands”

or “peninsulas” as discussed above.

3.6.1 A Counterfactual Experiment: What Can’t Neural Nets Solve?

Neural nets solve complex classification problems by finding “flat” minima with

class boundaries that assign labels that are stable to parameter perturbations. Using this

intuition, can we formulate a problem that neural nets can’t solve?

Consider the problem of separating the blue and red dots in Figure 3.8. When

the distance between the inner rings is large, a neural network consistently finds a well-

behaved circular boundary as in Figure 3.8. The wide margin of this classifier makes the

minimizer “flat,” and the resulting high volume makes it likely to be found by SGD.

We can remove the well-behaved minima from this problem by pinching the margin

between the inner red and blue rings. In this case, a network trained with random initial-

ization is shown in Figure 3.8. Now, SGD finds networks that cherry-pick red points, and

arc away from the more numerous blue points to maintain a large margin. In contrast, a

simple circular decision boundary as in Figure 3.8 would pass extremely close to all points

on the inner rings, making such a small margin solution less stable under perturbations
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and unlikely to be found by SGD.

3.7 Conclusion

We explored the connection between neural network performance and loss function

geometry using visualizations and experiments on classification margin and loss basin

volumes, the latter of which does not appear in previous literature.

While experiments can provide useful insights, they sometimes raise more questions

than they answer. We explored why the “large margin” properties of flat minima promote

performance on unseen data. But what is the precise metric for “margin” that neural

networks respect? Experiments suggest that the small volume of bad minima prevents

optimizers from landing in them. But what is a correct definition of “volume” in a space

that is invariant to parameter re-scaling and other transforms, and how do we correctly

identify the attraction basins for good minima? Finally and most importantly: how do we

connect these observations back to a rigorous learning framework?

The goal of this Chapter is to foster appreciation for the complex behaviors of

neural networks, and to provide some intuitions for why neural networks generalize.

Having established the powerful generalization properties of neural networks, in the next

Chapter we apply neural networks to a difficult semantic segmentation task. The task is

particularly challenging for neural networks because training data is scarce. Nonetheless,

we overcome these challenges and develop neural networks that achieve exceptional

results.
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Chapter 4: Dense Cellular Segmentation for Electron Microscopy

Biologists who use electron microscopy (EM) images to build nanoscale 3D models

of whole cells and their organelles have historically been limited to small numbers of

cells and cellular features due to constraints in imaging and analysis. This has been

a major factor limiting insight into the complex variability of cellular environments.

Modern EM can produce gigavoxel image volumes containing large numbers of cells,

but accurate manual segmentation of image features is slow and limits the creation of cell

models. Segmentation algorithms based on convolutional neural networks can process

large volumes quickly, but achieving EM task accuracy goals often challenges current

techniques. Here, we define dense cellular segmentation as a multiclass semantic segmen-

tation task for modeling tightly packed cells and large numbers of their organelles, and

give an example in human blood platelets. We present an algorithm using novel hybrid

2D-3D segmentation networks to produce dense cellular segmentations with accuracy

levels that outperform baseline methods and approach those of human annotators. To our

knowledge, this work represents the first published approach to automating the creation

of cell models with this level of structural detail. More specifically in this work,

• We developed a neural architecture search over 2D encoder-decoder architectures

which proves that dense cellular segmentation can be achieved using ensembles of
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DNNs – Section 4.3.1.

• We empirically showed that hybrid architectures perform better than 2D architec-

tures and fully 3D architectures. This is in part due to the anisotropic nature of the

SBF-SEM data – Section 4.4.

• To this end, we introduced a new 3D biomedical segmentation algorithm based on

ensembles of neural networks with separated 2D and 3D convolutional modules

and output heads – Figure 4.5.

• We developed a new loss function to effectively train hybrid 2D-3D networks and

encourage the network to accurately segment cell boundaries – Section 4.4.3.

• We showed that our algorithm outperforms baselines in mean intersection-over-

union (mIoU) metrics, does a better job of maintaining boundaries between adjacent

cellular structures, approaches the image quality of our human annotators, and

closely matches human performance on a downstream biological analysis task –

Section 4.4.5.

• We used our Hybrid 2D-3D network ensemble to segment a billion-voxel block

sample in an hour on a single NVIDIA GTX 1080 GPU, demonstrating a segmen-

tation capability that is infeasible without automation and is accessible to commodity

computing tools.

This is joint work with Matthew Guay, Adam Anderson, Maria Aronova, Irina

Pokrovskaya, Brian Storrie, and Richard Leapman [60, 64]. My contribution was conceiving

major parts of the project, including contributions into the design of both the neural archi-

tecture search as well as the new Hybrid 2D-3D neural network architectures. I also
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performed a significant portion of the experiments, wrote and debugged major parts of

the codebase, and wrote substantial portions of the papers.

4.1 Introduction

Biomedical researchers use electron microscopy (EM) to image cells, organelles,

and their constituents at the nanoscale. Today, the resulting image volumes can be giga-

voxels in size or more, using hardware including the serial block-face scanning electron

microscope (SBF-SEM) [34], which employs automated serial sectioning techniques

on block samples. This rapid growth in throughput challenges traditional image analytic

workflows for EM, which rely on trained humans to identify salient image features. High-

throughput EM offers to revolutionize structural biology by providing nanoscale structural

detail across macroscopic tissue regions, but using these datasets in their entirety will be

infeasibly time-consuming until analytic bottlenecks are automated.

Cell biologists have used semantic segmentations of cellular structures to provide

rich 3D ultrastructural models yielding new insights into cellular processes [3, 113, 114],

but applying this method across entire SBF-SEM datasets requires automation. Modeling

30 platelet cells across 3 physical platelet samples [113] required nine months’ work from

two in-lab annotators and represented a small fraction of all imaged cells.

It is challenging to automate dense segmentation tasks for EM due to the image

complexity of biological structures at the nanoscale. An image with little noise and

high contrast between features may be accurately segmented with simple thresholding

methods, while accurate segmentation of images with multiscale features, noise, and
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textural content remains an open problem for many biomedical applications. Solving

such segmentation problems algorithmically is one of many tasks in applied computer

vision that has received increased interest in the past decade, as advances in deep neural

network construction and training have driven significant computer vision performance

improvements. Natural image-based applications of image segmentation have received

enormous attention, with major companies and research institutions creating sophisticated

trained neural networks in the pursuit of solutions to problems of economic importance [23,

23, 81, 94, 97, 112, 116].

Work in biomedical imaging has been comparatively modest, but there nevertheless

are thriving research communities working on problems in medical computed tomography

(CT) [59, 126] and microscopy. A seminal contribution from this area was the U-

Net [120], which spawned numerous encoder-decoder variants demonstrating architectural

improvements [7, 102] and helped popularize the encoder-decoder motif for segmen-

tation problems in biomedical imaging. An important difference between biomedical and

natural imaging is the ubiquity of volumetric imaging methods, including the SBF-SEM

studied in this work. These methods have spurred developments in volumetric segmen-

tation, including 2D techniques applied to orthogonal slices of a 3D volume [127], fully-

3D segmentation [21, 46, 67, 89, 121], as well as hybrid architectures that incorporate

both 2D and 3D spatial processing [22, 89, 111]. Here, we have adapted existing 2D

DeeplabV3 [23], 3D DeepVess [46], and 2D and 3D U-Net architectures to our segmen-

tation task as a baseline for our new results.

We find that for our application, hybrid 2D-3D networks work best. Building

on previous work in this direction, we introduce a new 3D biomedical segmentation
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algorithm based on ensembles of neural networks with separated 2D and 3D convolutional

modules and prediction heads. We show that our algorithm outperforms baselines in

intersection-over-union (IoU) metrics, does a better job of maintaining boundaries between

adjacent cellular structures, approaches the image quality of our human annotators, and

closely matches human performance on a downstream biological analysis task. We use the

algorithm to segment a billion-voxel block sample in an hour on a single NVIDIA GTX

1080 GPU, demonstrating a segmentation capability that is infeasible without automation

and is accessible to commodity computing tools.

4.2 Data Collection

SBF-SEM image volumes were obtained from identically-prepared platelet samples

from two humans. Lab members manually segmented portions of each volume into seven

classes to analyze the structure of the platelets. The labels were used for the supervised

training of candidate network architectures, as well as baseline comparisons.

This study used datasets prepared from two human platelet samples as part of

a collaborative effort between the National Institute of Biomedical Imaging and Bio-

engineering (NIBIB), NIH and the University of Arkansas for Medical Sciences. All

human blood draws were approved by the University of Arkansas for Medical Sciences’

Institutional Review Board in accordance with national and international guidelines. All

donors were informed of possible risks and signed an informed consent form.
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Figure 4.1: Dataset visualization. Sample y − x orthoslices of the datasets used in this
study. (a-b) One of the 50 training image data and label orthoslices. (c-d) One of the
24 evaluation image data and label orthoslices. (e-f) One of the 121 test image data and
label orthoslices . (g-h) One of the 110 annotator comparison (AC) image data and label
orthoslices.

The platelet samples were imaged using a Zeiss Sigma 3View SBF-SEM. The

Subject 1 dataset is a (z, y, x) 250× 2000× 2000 voxel image with a lateral resolution in
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the y−x plane of 10 nm and an axial resolution along the z-axis of 50 nm, from a sample

volume with dimensions 12.5×20×20µm3. The Subject 2 dataset is a 239×2000×2000

voxel image produced by the same imaging protocol with the same lateral and axial

resolutions.

We assembled labeled datasets from manually-segmented regions of the platelet

image volumes. Lab members created tool-assisted manual segmentations using Amira [140].

Ground-truth labels for the training, evaluation, and test datasets were repeatedly reviewed

by subject experts and corrected until accuracy standards were met, a slow feedback

process that is necessary to produce high-quality labels. The Annotator 1 and Annotator

2 labels were created in a single pass by lab members without going through a review

process from subject experts. As a result, the Annotator 1 and Annotator 2 labels are less

accurate, but also much faster to produce . We use the high-quality ground-truth labels

to train and validate all networks in this work, but also compare algorithms against the

unreviewed Annotator 1 and 2 labels as an additional measure of performance.

The training image was a 50 × 800 × 800 subvolume of the Subject 1 dataset

spanning the region 81 ≤ z ≤ 130, 1073 ≤ y ≤ 1872, 620 ≤ x ≤ 1419 in 0-indexed

notation. The evaluation image was a 24× 800× 800 subvolume of the Subject 1 dataset

spanning the region 100 ≤ z ≤ 123, 200 ≤ y ≤ 999, 620 ≤ x ≤ 1419. The test

image was a 121 × 609 × 400 subvolume of the Subject 2 dataset spanning the region

0 ≤ z ≤ 120, 460 ≤ y ≤ 1068, 308 ≤ x ≤ 707. The annotator comparison image was a

110× 602× 509 subvolume of the Subject 2 dataset spanning the region 116 ≤ z ≤ 225,

638 ≤ y ≤ 1239, 966 ≤ x ≤ 1474. The training and evaluation labels covered

the entirety of their respective images, while the test and annotator comparison labels

37



covered a single cell contained within their image volumes. The labeling schema divides

image content into seven classes: background (0), cell (1), mitochondrion

(2), canalicular channel (3), alpha granule (4), dense granule (5), and

dense granule core (6). Voxels labeled as the cell class include cytoplasm as

well as organelles not accounted for in the labeling schema. Figure 4.1 shows sample

images of the datasets and ground truth labels.

The Subject 1 and Subject 2 datasets were binned by 2 in x and y, and aligned. For

each of the training, evaluation, and testing procedures, the respective image subvolumes

were normalized to have mean 0 and standard deviation 1 before further processing.

4.3 2D Encoder-Decoder Architectures

To start, we developed GeneNet, a Python package to rapidly discover, train, and

deploy high performing neural network architectures for SBF-SEM segmentation with

little user intervention. Here, we demonstrate how to use GeneNet to train an ensemble

of segmentation networks for a human platelet tissue sample. Initial results indicate this

approach is viable for accelerating the segmentation process and we build upon those

results in the next section.

4.3.1 GeneNet

The GeneNet library is designed to allow humans and algorithms to easily implement

a 2D encoder-decoder network architecture. It is important to note that 2D architec-

tures take as input 2D image slices, not 3D image volumes. Algorithmic architecture
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design allows biomedical researchers to discover high-performing networks for target

applications with little manual intervention. In our work, we model an encoder-decoder

architecture as a tree of height 4. Trees are easily implemented on a computer. Figure

4.3 depicts a tree and its corresponding encoder-decoder architecture, while Figure 4.2

depicts the general structure of a GeneNet tree. Both Figures will be helpful to follow the

explanation in this Section. Each node in the tree is a child class of a Gene object (i.e.,

Python class) that holds information about the architecture at some level. The root of the

tree always has two children, an encoder Gene and a decoder Gene. Encoder Genes in

turn have s children nodes, called block Genes. Each block Gene contains information

about the convolutional layers at a given spatial scale, every encoder block ends with a

downsampling operation. Decoders have s + 1 children nodes, which are also all block

Genes – one more than the encoder to account for the smallest spatial scale. Decoder

blocks always end with an upsampling operation. Every block Gene has at least one

child node, called a convolutional Gene. Convolutional Genes hold information about a

single convolutional layer, including the number of filters, padding, choice of activation

function, etc. Finally, every convolutional Gene has at least 1 child node, called an edge

Gene, which holds information about the connections in the architecture – i.e., which

tensors are used as inputs to the convolution and how to process them: either as a skip or

residual connections.
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Figure 4.2: The general structure of a GeneNet tree.

This tree data strucutre can be traversed recursively to build a Tensorflow computation

graph of the entire network. Architectural hyperparameter choices, such as the number

of spatial scales or the number of convolution layers per block, can be encoded as numeric

hyperparameters, along with optimization hyperparameters such as learning rate and regularization

weights. This design allows us to store and modify encoder-decoder architecture easily.
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Figure 4.3: Comparison of a tree and the corresponding encoder-decoder network.
Encoder and decoder Genes combine convolution block Genes, which combine
convolution Genes, which combine edge Genes.

The trees can be used to algorithmically construct neural networks in TensorFlow.

The GeneNet library is capable of randomly sampling from spaces of encoder-decoder

network architectures when supplied with a feasible region for all hyperparameters, as

a rudimentary form of automated neural network architecture design. These networks

can then be trained and their performance evaluated. For training, networks use the

ADAM optimization method [80], minimizing a combination of class frequency-balanced

prediction cross-entropy and regularization terms applied to convolution layers. These

networks exhibit a diversity of architectures, a benefit for network ensembles due to the

relationship between ensemble generalization error and ensemble ambiguity, a measure

of disagreement between ensemble members [85]. An ensemble of networks can then
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be used to produce an image segmentation. Each network produces a class prediction

map, a probability distribution over possible classes for each voxel in an image. The class

prediction maps are averaged to produce an ensemble class prediction map. The final seg-

mentation is created by choosing the most-probable class for each voxel from the class

prediction map.

4.3.2 Experiments

We trained 80 randomly-generated networks over the course of 24 hours using

the NIH’s Biowulf computing cluster. The hyperparameters in the search space were

input size, number of features per convolution layer, number of spatial scales, number

of convolution layers per block, the learning rate, and several regularization parameters

- l1 and l2 penalty terms on weights and biases. As a baseline for comparison, we also

trained a copy of the original U-net from [120], modifying the final 1x1 convolution to

output 7 features instead of 2 to accommodate our problem’s 7 segmentation classes . All

networks were trained for 100000 iterations on a 40×800×800 subset of the training data,

with the remaining 10 × 800 × 800 volume reserved for validation. Data augmentation

via elastic deformation was used to expand the set of training data [120]. After training,

networks were evaluated by computing adjusted Rand scores [75] on the validation data.

We then computed validation adjusted Rand scores for ensembles of the n best networks

for n ∈ [1, 15]and found that n = 4 was optimal. The ensemble of the best 4 networks

was used to segment a 10×800×800 portion of the platelet volume. This testing volume

lies directly above the training subvolume in the platelet dataset. Two lab members then
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Net ID Adj. Rand Score Params LPES LPDS
13 0.886 39.3M 1,1,3,1 3,1,5,3,3
3 0.885 33.9M 1,2,2 6,6,3,4
45 0.883 20.1M 3,1,2,2 1,1,1,1
38 0.878 27.2M 6,6,6 4,5,5,5
71 0.875 33.5M 2,2,4,2 3,3,6,6,4
27 0.874 12.7M 4,5,4,3 3,1,3,1,2
57 0.874 4.7M 2,3 4,2,1
49 0.872 23.4M 1,2,1 2,1,1,2
32 0.869 28.1M 1,1,3 2,1,2,2

U-Net 0.867 31.0M 2,2,2,2 2,2,2,2,2

Table 4.1: A comparison of certain architectural parameters and validation error (adjusted
Rand score) for the nine best randomly-generated networks and the original 2D u-net.
LPES: convolution Layers Per Encoding Stack. LPDS: Layers Per Decoding Stack.

corrected the ensemble output, tracking the time required for each 800 × 800 z-slice of

the segmentation. This time was compared with the time required for each of the two lab

members to manually segment comparable 800 × 800 portions of the image volume, in

order to determine if the algorithm accelerates the segmentation workflow.

4.3.3 Results

For each of the 80 randomly-generated networks, the final validation adjusted Rand

scores are plotted in decreasing order in Figure 4.4. The top 9 networks have adjusted

Rand scores higher than the original U-net evaluated on the same data, demonstrating that

the random-sampling strategy is capable of producing high-performing network architec-

tures. Plots of those architectures are too large to include here, but a sense of the variation

can be gleaned by comparing parameter counts, number of spatial scales, and numbers of

convolution layers per stack. The latter two can be represented as a sequence of layer per

stack counts, divided into layers per encoding stack (LPES) and layers per decoding stack
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(LPDS). Table 4.1 offers a comparison.

Figure 4.4: Network validation adjusted Rand scores, sorted from best performance to
worst. Nine networks outperformed the original 2D U-Net in this metric.

The top-4 network ensemble achieved a validation adjusted Rand score of 0.901.

However, both the ensemble and the original U-Net perform poorly on the dense granules

and dense granule cores, the least-common classes in the training data. The segmentation

networks also find “phantom” organelles not identified by the human. Manual correction

of the top-4 ensemble output proved significantly faster than manual segmentation. For

each 800×800 image z-slice, lab member 1 averaged 22.3 min per segmentation vs. 10.9

min per correction, a 2.04× speedup. Lab member 2 averaged 18.6 min per segmentation

vs. 7.9 min per correction, a 2.35× speedup. Running time of the segmentation algorithm

was comparatively negligible, taking no more than 2 seconds per z-slice.

Our work demonstrates that the random architecture generation process enabled by

GeneNet is viable for creating high-performing encoder-decoder networks. The automated

nature of this process means it can be used in settings where access to a machine learning

44



expert capable of making informed network design choices is not available. We have also

demonstrated that those networks can be combined to form ensembles which effectively

accelerate the segmentation of a SBF-SEM dataset. The 10 × 800 × 800 subvolume

used to test this process is roughly 0.66% of the unprocessed platelet data, and further

performance improvements are required to enable the efficient segmentation of the full

image volume. This work allowed us to implement a correction-training feedback loop

by using corrected labels to produce new training data for the ensemble networks. The

ensemble is then used to produce new segmentations. If the addition of training data

decreases correction times sufficiently, this loop can be used to segment the entirety of

a large EM image volume. We observed the manual annotators over multiple hours to

determine the errors which caused the greatest difficulty for correction, namely:

1. misclassifying an existing organelle,

2. misclassifying non-organelle cellular material as an organelle,

3. and poor segmentations between the boundaries of adjacent organelles.

In order to correct these errors, the annotators required 3D context by observing different

z-slices of the image. We hypothesized that neural networks would also require the same

3D context and started researching 3D encoder-decoder architectures described in the

next section.
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4.4 Hybrid 2D-3D Networks

In this section, we build upon the results of the neural architecture search strategy

based on GeneNet. As we discussed above, GeneNet allowed us to conclude that 3D

context is necessary to obtain adequate segmentation results. However, naively using

GeneNet to perform a neural architecture search over 3D encoder-decoder architectures

is not feasible due to GPU memory limitations. Here, we abandon automated neural

architecture search in favor of a manual network architecture design that allows us to

successfully utilize 3D context.

4.4.1 Validation and Performance Metrics

The performance metric used in the remainder of this Chapter is mean intersection-

over-union (MIoU) between ground-truth image segmentation ℓ’s 7 labeled sets {Lj =

v ∈ Ω | ℓ(v) = j}j∈C and predicted segmentation’s ℓ̂ labeled sets {L̂j = v ∈ Ω | ℓ̂(v) =

j}j∈C . Given two sets A and B, IoU(A,B) = |A∩B|
|A∪B| . Then for segmentations ℓ and ℓ̂ with

their corresponding labeled sets over the 7 semantic classes,

MIoU(ℓ, ℓ̂) =
1

7

∑
j∈C

IoU(Lj, L̂j). (4.1)

More generally, for a subset of labels D ⊆ C, one can compute the MIoU over D, or

MIoU(D), as

MIoU(D)(ℓ, ℓ̂) =
1

|D|
∑
j∈D

IoU(Lj, L̂j). (4.2)
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Note that this definition weights the IoU scores for each class equally, regardless

of the number of examples of each class in the dataset. One may choose to use a class

frequency-weighted MIoU instead to reflect this class imbalance, but we choose to use an

unweighted MIoU to emphasize performance on rarer classes.

Here we are concerned with MIoUs over two sets of labels: MIoU(all) over the set

of all 7 class labels, and MIoU(org) over the set of 5 organelle labels 2-7. Our network

validation metrics were MIoU(all) and MIoU(org) on the evaluation dataset, and MIoU(org)

on the test dataset. Test data uses MIoU(org) because the labeled region is a single cell

among several unlabeled ones, and restricting validation to the labeled region invalidates

MIoU stats for the background and cell classes (0 and 1). We include evaluation MIoU(org)

to quantify how performance drops between a region taken from the physical sample used

to generate the training data, and a new physical sample of the same tissue system.

4.4.2 Neural Architectures and Ensembling

The highest-performing network architecture in this work, 2D-3D+3x3x3, is a comp-

osition of a 2D U-net-style encoder-decoder and 3D convolutional spatial pyramid, with

additional 3x3x3 convolutions at the beginning of convolution blocks in the 2D encoder-

decoder. All convolutions are zero-padded to preserve array shape throughout the network,

allowing deep architectures to operate on data windows with small z-dimension. A ReLU

activation follows each convolution. All convolution and transposed convolutions use

bias terms. The architecture is fully specified as a diagram in Figure 4.5. Additionally,

several baseline comparison networks and three 2D-3D+3x3x3 ablation networks were
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also tested in this work and are described in Section 4.4.1.

To build a 2D-3D network, one can adapt a 2D U-net-style encoder-decoder module

to work on 3D data by recasting 2D 3x3 convolutions as 1x3x3 convolutions, and 2D 2x2

max-pooling and transposed convolution layers as 1x2x2 equivalents. In this way, a 3D

input volume can be processed in a single computation graph as a sequence of independent

2D regions in a 2D module and as a contiguous 3D region in a 3D module, and the 2D and

3D modules can be jointly trained end-to-end. This formulation also allows for seamless

combination of batched-2D and 3D operations within a module, demonstrated in the 2D-

3D+3x3x3 architecture as 2D convolution block-initial 3x3x3 convolutions. Intermediate

2D class predictions x̂2D are formed from the 2D module output, and the 2D output and

class predictions are concatenated along the feature axis to form an input to a 3D spatial

pyramid module. The 3D module applies a 1x2x2 max pool to its input to form a two-level

spatial pyramid with scales 0 (input) and 1 (pooled). The pyramid elements separately

pass through 3D convolution blocks, and the scale 1 block output is upsampled and added

to the scale 0 block output with a residual connection to form the module output. 3D

class predictions x̂3D are formed from the 3D module output, and the final segmentation

output ℓ̂ of the algorithm is a voxelwise argmax of the 3D class predictions. To build a

2D-3D+3x3x3 network, we inserted 3x3x3 convolution layers at the beginning of the first

two convolution blocks in the 2D encoder and the last two convolution blocks in the 2D

decoder.
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a
b

Figure 4.5: Methods. (a) Diagram of the 2D-3D+3x3x3 network architecture, the best
design tested in this work. A 1-channel 3D image is passed through the network to
produce a 7-channel output prediction of per-voxel probability distributions over the 7
label classes. Boxes represent multidimensional arrays, and arrows represent operations
between them. Number triplets along box tops are array spatial axis sizes in (z, y, x)
order. Numbers along box sides are array channel axis sizes. (b) Illustration of
initialization-dependent performance of trained segmentation networks, and exploiting
it for ensembling. An image of the test cell and ground truth labels are compared with
segmentations of the best 4 trained 2D-3D+3x3x3 network instances and an ensemble
formed from them. The ensemble improves MIoU(org) by 7.1% over the best single
network.
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Given a collection of networks’ 3D class predictions, one can form an ensemble

prediction by computing a voxelwise average of the predictions and computing a segmen-

tation from that. Ensembling high-quality but non-identical predictions can produce better

predictions [85], and there is reason to think that more sophisticated ensembles could be

constructed from collections of diverse neural architectures [60, 61, 62, 63], but in this

work we use a simple source of differing predictions to boost performance: ensembles

of identical architectures trained from different random initializations. The sources of

randomness in the training procedure are examined more thoroughly in Section 4.4.1, but

in our experiments this variation produced a small number of high-performing network

instances per architecture with partially-uncorrelated errors.

4.4.3 Network Training

We consider a network predicting 7 classes C = {0, . . . , 6} for each voxel in a

shape-(oz, ox, oy) data window Ω containing N = ozoxoy voxels {vi}Ni=1. The ground-

truth segmentation of this region is a shape-(oz, ox, oy) array ℓ such that ℓ(v) ∈ C is

the ground-truth label for voxel v. A network output prediction is a shape-(7, oz, ox, oy)

array x̂ such that xv ≜ x̂(:, v) is a probability distribution over possible class labels for

voxel v. The corresponding segmentation ℓ̂ is the per-voxel argmax of x̂. Inversely,

from ℓ one may construct a shape-(7, oz, ox, oy) per-voxel probability distribution x such

that xv(i) = 1 if i = ℓ(v) and 0 if not, which is useful during training. All networks

used a minibatch size of 1, so the minibatch axis is omitted from each of the array shape

descriptions in this work. Array shapes are given in (C,Z, Y,X) order, where C is the
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array size along the channel axis.

We trained our networks as a series of experiments, with each experiment training

and evaluating 1 or more instances of a fixed network architecture. Instances within

an experiment varied only in the random number generator (RNG) seed used to control

trainable variable initialization and training data presentation order. In addition to the

main 2D-3D+3x3x3 architecture, there were three ablation experiments and five baseline

experiments – Original U-Net[120], 3D U-Net Thin[27], 3D U-Net Thick [27],Deeplab

+ DRN, and Deeplab + ResNet101 [23, 71]. Instances were trained and ranked by

evaluation dataset MIoU. Experiments tracked evaluation MIoU for each instance at each

evaluation point throughout training, and saved the final weight checkpoint as well as

the checkpoint with highest evaluation MIoU. In this work we report evaluation MIoU

checkpoints for each instance. The 2D-3D+3x3x3 experiment and its ablations trained 26

instances for 40 epochs with minibatch size 1 (33k steps). The Original U-Net experiment

trained 500 instances for 100 epochs with minibatch size 1 (180k steps). The 3D U-Net

Thin experiment trained 26 instances for 100 epochs with minibatch size 1 (29k steps),

and the 3D U-Net Thick experiment trained 26 instances for 100 epochs with minibatch

size 1 (30k steps). The Deeplab + DRN and Deeplab + ResNet101 experiments trained 1

instance each for 200 epochs with minibatch size 4 (360k steps). Due to poor performance

and slow training times of the Deeplab models, we deemed it unnecessary to train further

instances. Networks were trained on NVIDIA GTX 1080 and NVIDIA Tesla P100 GPUs.

This Subsection details the training of the 2D-3D+3x3x3 network. Baseline and

ablation networks were trained identically except as noted in Section 4.4.1. All trainable

variables were initialized from Xavier uniform distributions. Each instance was trained
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for 40 epochs on shape-(1, 5, 300, 300) windows extracted from the training volume, and

output a shape-(7, 5, 296, 296) class prediction array. The number of windows in each

epoch was determined by a window spacing parameter which determined the distance

along each axis between the top-back-left corners of each window, here (2, 100, 100),

resulting in 828 windows per epoch. An early stopping criterion halted the training of any

network that failed to reach an MIoU of 0.3 after 10 epochs.

Networks were trained using a regularized, weighted sum of cross-entropy functions.

The network has a set Θ trainable variables divided into four subsets: Θ2D for variables

in the 2D encoder-decoder module, Θ3D for variables in the 3D spatial pyramid module,

the single 1x1x1 convolution variable {θ2DP} which produces intermediate 2D class

predictions x̂2D from the encoder-decoder’s 64 output features, and the single 1x1x1

convolution variable {θ3DP} which produces the final 3D class predictions x̂3D from the

spatial pyramid’s 64 output features. The loss function comparing predictions against

ground-truth labels is

L(x, x̂3D, x̂2D; Θ) =
1

N

N∑
i=1

[W ⊗H (x, x̂3D)]i +
c2D
N

N∑
i=1

[W ⊗H (x, x̂2D)]

+ λ2D

∑
θ∈Θ2D

∥θ∥22 + λ3D

∑
θ∈Θ3D

∥θ∥22 + λP

(
∥θ2DP∥22 + ∥θ3DP∥22

)
,

(4.3)

where λ2D = 1 × 10−4.7 and λ3D = 1 × 10−5 are L2 regularization hyperparameters for

the variables in Θ2D and Θ3D, λP = 1 × 10−9 is an L2 regularization hyperparameter

for the predictor variables θ2DP and θ3DP , and c2D = 0.33 is a constant that weights the
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importance of the intermediate 2D class predictions in the loss function. H(x, x̂) is the

voxelwise cross-entropy function, i.e.,

H(x, x̂)v ≜ H(xv, x̂v) ≜ −
7∑

j=1

xv(j) log [x̂v(j)] = −xv(ℓv) log [x̂v(ℓv)] . (4.4)

W is a shape-(5, 296, 296) array of weights; its Kronecker product with H produces a

relative weighting of the cross-entropy error per voxel. This weighting strategy is based

generally on the approach in [120]:

W ≜ w +Wcb +Wep.

The initial w = 0.01 is a constant that sets a floor for the minimum weight value,

Wcb is a class-balancing term such thatWcb,i ∝ 1/Ni, where Ni is the number of occurrences

in the training data of ℓi, rescaled so that maxWcb = 1. Wep is an edge-preserving term

that upweights voxels near boundaries between image objects and within small 2D cross-

sections. In [120] this is computed using morphological operations. We used a sum of

scaled, thresholded diffusion operations to approximate this strategy in a manner that

requires no morphological information. Wep is built up as a rectified sum of four terms:

Wep ≜ Rα (Wbkgd→cell +Wcell→bkgd +Wcell→org +Worg→cell) , (4.5)

where Rα(W ) = ReLU(W − α) · maxW
maxW−a

. For each term, we choose two disjoint

subsets Csource and Ctarget of the classes C. Let ℓsource be the binary image such that
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ℓsource(v) = 1 if ℓ(v) ∈ Csource and ℓsource(v) = 0 otherwise. Define

Msource(c, σ) ≜ c · ℓsource ∗ kσ,

where ∗ denotes convolution and kσ is a Gaussian diffusion kernel with standard deviation

σ. Then,Wsource→target(v) =Msource(v) if ℓ(v) ∈ Ctarget, and is 0 otherwise. The terms

in the Wep array used in this work were computed using class subsets bkgd = {0},

cell = {1}, and org = {2, 3, 4, 5, 6}, α = 0.25, c = 0.882, and σ = 6. The error

weighting array used in this work and the code used to generate it are available with the

rest of the platelet dataset at leapmanlab.github.io/dense-cell. See Figure

4.13 for a visualization of the error weighting array. Wcb is calculated all at once across

the entire 3D training volume, whileWep is calculated independently per each 2D z-slice

of the training volume.

We employed data augmentation to partially compensate for the limited available

training data. Augmentations were random reflections along each axis, random shifts in

brightness (±12%) and contrast (±20%), and elastic deformation as in (Ronneberger et

al., 2015). For elastic deformation, each 800x800 x− y plane in the shape-(50, 800, 800)

training data and label arrays was displaced according to a shape-(800, 800, 2) array

of 2D random pixel displacement vectors, generated by bilinearly upsampling a shape-

(20, 20, 2) array of iid Gaussian random variables with mean 20 and standard deviation

0.6. During each epoch of training, a single displacement map was created and applied to

the entire training volume before creating the epoch’s batch of input and output windows.

Training used the ADAM optimizer with learning rate 1 × 10−3, β1 = 1 − 1 × 10−1.5,
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β2 = 1 − 1 × 10−2.1, and ϵ = 1 × 10−7. Training also used learning rate decay with an

exponential decay rate of 0.75 every 1× 103.4 training iterations.

4.4.4 Experiments

Using the procedure outline in Section 4.4.1, the performance of the 2D-3D+3x3x3

network was compared against three ablations and five baseline networks. The three

ablations each tested one of three features that distinguish the 2D-3D+3x3x3 network in

this work from similar baselines. The first, 2D-3D+3x3x3 No 3x3x3 Convs, replaces

the 3x3x3 convolutions in the net’s encoder-decoder module with 1x3x3 convolutions

that are otherwise identical. With this ablation, the network’s encoder-decoder loses any

fully-3D layers. The second, 2D-3D+3x3x3 No Multi-Loss, modifies the loss function in

Equation (4.3) by removing the term involving x̂2D but otherwise leaving the architecture

and training procedure unchanged. This ablation tests whether it is important to have

auxiliary accuracy loss terms during training. The third ablation, 2D-3D+3x3x3 No 3D

Pyramid, removes the 3D spatial pyramid module and 3D class predictor module from

the network architecture, so that x̂2D is the network’s output. Correspondingly, the loss

term involving x̂3D is removed from Equation (4.3).

We implemented five baseline networks by adapting common models in the literature

to our platelet segmentation problem. Three of these were 2D - The original U-Net [120]

as well as two Deeplab variants [23] using a deep residual network (DRN) backbone

and a ResNet101 backbone [71], minimally modified to output 7 class predictions. The

original U-Net used (572, 572) input windows and (388, 388) output windows, while the
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Deeplab variants used (572, 572) input and output windows. The two 3D networks were

fully-3D U-Net variants adapted on the 3D U-Net in (Çiçek et al., 2016) [27] - 3D U-

Net Thin and 3D U-Net Thick. The variants used same-padding, had three convolutions

per convolution block, and two pooling operations in the encoder for convolution blocks

at three spatial scales. The 3D U-Net Thin network used (5, 300, 300) input windows

and (5, 296, 296) output windows, and pooling and upsampling operations did not affect

the z spatial axis. The 3D U-Net Thick network used (16, 180, 180) input windows and

(16, 180, 180) output windows, and pooled and upsampled along all three spatial axes.

To determine whether one architecture is superior to another, trained instances are

compared with each other. However, sources of randomness in the training process

induce a distribution of final performance metric scores across trained instances of an

architecture, so that a single sample per architecture may be insufficient to determine

which is better. While expensive, a collection of instances can be trained and evaluated to

empirically approximate the performance distribution for each architecture. In this way,

better inferences may be made about architecture design choices. Figure S5 shows the

empirical performance distributions for the 26 trials of the 2D-3D+3x3x3 architecture

and its three ablations, as well as the 26 trials of the 3D U-Net and 500 trials of the 2D

Original U-Net.

In addition to the multiclass baselines, we chose to also evaluate a CDeep3M plug-

and-play system [66] that can be spun up on Amazon Web Services (AWS) for binary

segmentation problems. In a similar vein to our work and others’, they use an ensemble

of convolutional neural networks to perform binary segmentation tasks. This differs from

the multiclass segmentation problems that we address, but their polished workflow makes
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it easy to replicate and train on new data. We therefore decided to evaluate CDeep3M

on a comparable binary segmentation task with our data, wherein all non-background

classes were grouped together into a single cell class. Using the AWS stack provided

on the project GitHub page (https://github.com/CRBS/cdeep3m), we trained

the networks used in their 3D segmentation ensemble for 30000 iterations on our training

dataset, using all other default hyperparameters. Training took approximately 96 hours

on an Amazon EC2 instance with an NVIDIA P100 GPU card.

After training completed, we ran the CDeep3M 3D ensemble’s prediction tool on

our evaluation dataset, and compared it with a binarized version of our best algorithm’s

segmentation of the evaluation dataset. We binarized our algorithm’s segmentation the

same way we binarized our ground truth labels, by mapping together all the non-background

segmented classes. The CDeep3M algorithm, however, produces a single per-voxel probability

map that indicates the probability each voxel belongs to a cell region. To compute a seg-

mentation from the probability map, a cutoff threshold t must be specified - a segmen-

tation with threshold t assigns the cell class to all voxels with probability greater than

t, and background to all others. We computed MIoU scores for our lab’s (LCIMB)

segmentation, as well as CDeep3M segmentations with thresholds in

{0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}.

A final point of comparison was drawn between the top algorithm’s performance

and the initial work of laboratory scientific image annotators, Annotator 1 and Annotator

2. The three sources each labeled the annotator comparison region from the Subject
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2 platelet sample. Pairwise MIoU(org) scores and organelle confusion matrices were

calculated to compare the level of disagreement between two human labelings and between

humans and the algorithm. We also computed organelle volume fractions for each seg-

mentation to compare performance in segmentation applications to downstream analysis

tasks. The cell volume fraction of an organelle is equal to the summed voxels of all

organelles in a cell, divided by the cell’s volume. To compute this quantity for each

organelle, the number of voxels for each organelle label is divided by the number of

voxels in the cell. For the algorithmic result, since the semantic segmentation map does

not distinguish between separate cells in the field of view, a mask for the single annotator

comparison dataset cell was approximated as all non-background-labeled voxels in a

small region around the Annotator 1 cell mask.
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Figure 4.7: Results. (a-b) Orthoslice of Subject 1 image and segmentation. (c) Test
dataset orthoslice, segmented cell highlighted. (d-f) Comparison between ground truth
segmentation of test cell and our best 2D and 3D algorithms. (g) Annotator comparison
(AC) dataset orthoslice, segmented cell highlighted. (h-j) Annotator comparison cell
segmentations, comparing the two human annotators and our best (3D) algorithm.
(k) Summarized comparison of mean intersection-over-union across organelle classes
(MIoU(org)) on test and evaluation datasets for segmentation algorithms. For full
results, see Table 4.2. (m) Comparison of organelle volume fractions between two
human annotators and our best algorithm, computed from annotator comparison cell
segmentations.
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Figure 4.8: Evaluation dataset segmentation renderings. In each subfigure, ”best”
refers to our best 2D or 3D segmentation algorithm out of the ones we evaluated. (a)
Orthoslice of the evaluation dataset with rendered cell highlighted. (b-d) Ground truth
and our best 2D and 3D algorithm segmentations of the evaluation cell region showing
all organelles. (e-h) Ground truth segmentations of individual organelles - from left to
right: mitochondria (Mito), alpha granules (Alpha), canalicular channels (Canal), dense
granules (Dense). (i-m) Our best 2D algorithm segmentations of individual organelles.
(n-q) Our best 3D algorithm segmentations of individual organelles.
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4.4.5 Results

Inspired by existing work on combining 2D and 3D computations for volumetric

data analysis [22, 111] we experiment with combinations of 2D and 3D neural modules

to trade off between computational efficiency and spatial context. The highest-performing

network architecture in this work, 2D-3D+3x3x3, is a composition of a 2D U-Net-style

encoder-decoder and 3D convolutional spatial pyramid, with additional 3x3x3 convolutions

at the beginning of convolution blocks in the encoder-decoder. We use same-padded

convolution operations throughout, so that 3D operations can be used on anisotropic data

windows with small size along the z axis.

Our best algorithms as defined by MIoU score are ensembles that average the per-

voxel class probability distributions across several networks. The ensembled networks

are identical architectures trained from different random weight initializations. When

describing segmentation algorithms, we use Top-k to indicate an ensemble of the best k

instances of an architecture. Figure 4.5 details our best network architecture and illustrates

the ensembling process.

For the main experiment of this study, we train baseline architectures from the

literature, our new architecture, and ablations of the new architecture on a dense cellular

segmentation task by supervised learning from the training dataset. We compare single-

network and ensemble segmentation performance on the evaluation and test datasets. We

conclude that our algorithm outperforms baselines, the differentiating features of our final

best architecture are responsible for the performance differences, and that multi-instance

ensembles significantly improve performance over single networks. The results of this
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experiment are shown in Figure 4.7.

Eval MIoU(all) Eval MIoU(org) Test MIoU(org)

Top-4 2D-3D+3x3x3 0.686 0.595 0.446
Top-5 No 3x3x3 Convs 0.690 0.601 0.419
Top-3 No Multi-Loss 0.633 0.524 0.338
Top-3 No 3D Pyramid 0.681 0.590 0.421
Top-5 Original U-Net 0.663 0.562 0.371

(a) Ensembles of Networks

2D-3D+3x3x3 (10.3M) 0.665 0.568 0.417
No 3x3x3 Convs (9.9M) 0.667 0.571 0.358
No Multi-Loss (10.3M) 0.652 0.550 0.355
No 3D Pyramid (7.9M) 0.646 0.542 0.376

(b) Single 2D-3D+3x3x3 Network and Ablations

Original U-Net (31.0M) 0.626 0.515 0.334
3D U-Net Thick (2.1M) 0.496 0.348 0.314
3D U-Net Thin (2.0M) 0.613 0.502 0.280
Deeplab + DRN (40.7M) 0.632 0.522 0.130
Deeplab + ResNet101 (59.3M) 0.585 0.456 0.124

(c) Baseline Networks

Table 4.2: Comprehensive network performance statistics. Segmentation algorithm
results summary showing mean intersection-over-union (MIoU) across all classes
(MIoU(all)) on evaluation data and MIoU across organelle classes (MIoU(org)) on
evaluation and test data. The Subject 2 dataset from which the test data is taken
contains only a small number of labeled cells among unlabeled ones; we use MIoU(org)

to measure test performance since restricting the MIoU stat to labeled regions invalidates
background and cell class statistics. (a) Results for the best ensemble from each
architecture tested. A top-k ensemble averages the predictions of the best k trained
networks as judged by MIoU(all) on the evaluation dataset. (b) Results for the best single
network from each architecture class. Trainable parameter counts are in parentheses.
(c) Results from baseline comparison networks. Trainable parameter counts are in
parentheses

We consider test performance to be the best indicator of an algorithm’s performance
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as it shows its ability to generalize across different samples. Figure 4.7 row 2 compares

visualizations of the best 3D segmentation algorithms with ground-truth labels and image

data for the test dataset. Figure 4.7 row 4 highlights the most notable performance results,

and more performance statistics can be found in Table 4.2. Additional 3D renderings

comparing manual and algorithmic performance are shown in Figures 4.8 and 4.11, and

a 2D comparison of segmentations of the evaluation dataset by all networks tested in this

work is shown in Figure 4.10.

We also compare our best algorithm against the segmentations of scientific image

annotators, Annotator 1 and Annotator 2, who are laboratory staff trained on annotation

tasks but are not biological domain experts. These initial segmentations are currently

the first step in producing high-quality dense cellular segmentations, and even before

any corrections they require 1-2 work days per cell to create. Results are displayed in

Figure 4.7 row 3, with further details in Figures 4.11 and 4.9. Annotator 1, Annotator

2, and our algorithm each labeled the annotator comparison region from the Subject2

platelet sample. We calculated MIoU(org) scores pairwise from the three segmentations:

0.571 for Annotator 1 vs. Annotator 2, 0.497 for Annotator 1 vs. Algorithm, and 0.483

for Annotator 2 vs. Algorithm. The confusion matrices in Figure 4.9 further break

down results by organelle class. The statistics indicate that our algorithm disagrees more

with either annotator than the annotators do with each other, but none of the labels are

consistent everywhere, reflecting the difficulty of dense cellular segmentation even for

humans.

Our final direct segmentation evaluation was on the binary task whose results were

compared with CDeep3M. The 0.4 and 0.5 thresholds both produced the highest MIoU
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score - 0.935. In contrast, the LCIMB segmentation had an MIoU of 0.946. Both

algorithms generally did a good job of detecting cell material, but the LCIMB segmen-

tation did a much better job of preserving boundaries between adjacent cells. The results

can be seen in Figure 4.6.

We are also interested in understanding how even imperfect segmentations may

be useful for downstream analysis tasks. To this end, we computed organelle volume

fractions for each organelle within the cell in the annotator comparison dataset. The cell

volume fraction of an organelle is equal to the summed voxels of all organelles in a cell,

divided by the cell’s volume. Biologists can correlate this information with other cell

features to better understand variations in the makeup of cellular structures across large

samples. The results in Figure 4.7 row 4 show that our algorithm tended to underestimate

volume fractions relative to the two annotators, but the difference between the algorithm

and Annotator 1 is smaller than the difference between Annotator 1 and Annotator 2.

The best 3D algorithm improves considerably over the best 2D algorithm. All algorithms

detect small regions ignored by humans, but simple postprocessing with small region

removal fails to significantly improve quality metrics.

We have argued here that dense semantic labeling of 3D EM images for biomedicine

is an image analysis method with transformative potential for structural biology. We

demonstrated that while challenges exist for both human and algorithmic labelers, automated

methods are approaching the performance of trained humans, and we plan to integrate

them into annotation software for greatly enhancing the productivity of humans segmenting

large datasets.
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Figure 4.9: Annotator comparison confusion matrices. Confusion matrices comparing
organelle labelings pairwise between the two annotators and our best algorithm. These
give a more detailed performance breakdown of the MIoU(org) scores obtained for each
comparison: 0.497 for Annotator 1 vs Algorithm, 0.571 for Annotator 1 vs Annotator 2,
and 0.483 for Annotator 2 vs Algorithm.

We have carefully evaluated adaptations of multiple common network architec-

tures for our task, and demonstrated that a novel variant of 2D-3D fully convolutional

network performs best. Without question, challenges remain for creating algorithms that

are robust to the many types of variation present across research applications. However,

SBF-SEM analysis problems are a fertile early ground for this computer vision research,

as their large dataset sizes make the entire train-test-deploy cycle of supervised learning

viable for accelerating analysis of even individual samples. The image in Figure 4.7(a-b)

showcases this best – after manually segmenting less than 1% of the Subject 1 dataset,

we were able to train a segmentation algorithm that produces a high-quality segmentation

of the full dataset, a feat that would be impossible with anything short of an army of

human annotators. While gains in accuracy will be realized with future developments,

the procedure of training neural network ensembles on a manually annotated portion of

a large SBF-SEM dataset is already becoming viable for making dense cellular segmen-

tation a reality.
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Figure 4.6: CDeep3M segmentation comparison. Comparison between the CDeep3M
segmentation tool and our lab’s (LCIMB) best segmentation algorithm for a binary
cell/non-cell segmentation problem on our evaluation dataset. (a) Orthoslice of the
ground truth binary segmentation of the evaluation dataset. (b) Segmentation using
our lab’s (LCIMB) best 3D ensemble. (c) Probability map produced by the CDeep3M
ensemble after training on our data for 30000 iterations. The probability map is a per-
voxel probability that the voxel belongs to a cell region, and it must be thresholded to
produce a segmentation. (d) Segmentation from the CDeep3M ensemble with the best
tested threshold of 0.5. This resulted in an MIoU of 0.935, compared to 0.946 for the
LCIMB segmentation. In addition to a slight improvement in MIoU statistic, the LCIMB
segmentation does a much better job of preserving boundaries between adjacent cells
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4.5 Additional Material and Details

4.5.1 Segmentation Visualizations

In addition to the renderings already presented, we produced 3D renderings of seg-

mentation results for the evaluation dataset, as shown in Figure 4.8, showing results for

all organelles together as well as separately for the ground-truth labels, as well as the best

2D and 3D segmentation algorithms. Similarly, Figure 4.11 shows renderings per each

organelle class for Annotator 1, Annotator 2, and our best algorithm on the annotator

comparison dataset. Finally, Figure 4.10 shows 2D images of segmentations for each of

the 14 algorithms tested in this work, which are also detailed in Table 4.2.

4.5.2 Ablation Analysis and Initialization-Dependent Performance

Our ablation analysis procedure, described in Section 4.4.1 confirms our conjectures

about the importance of 3D context input to the network, and the importance of 3x3x3

convolutions over 1x3x3 convolutions for generalization performance. The latter do not

capture correlations along the z spatial dimension, likely contributing to their poorer

performance. Ablation analysis also indicates that removing either the multi-loss training

setup or the 3D spatial pyramid module from the 2D-3D+3x3x3 architecture carries

significant performance penalties. Removing either the 3x3x3 convolution layers or the

3D spatial pyramid on their own had a small effect on performance compared with removing

the 2D loss term from the multi-loss objective function. Summary statistics demonstrating

these results can be seen in Table 4.2(a), but these statistics only tell part of the story.
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Especially when effect sizes are small, looking at a single trained instance of each archi-

tecture may not be enough to determine relative performance between architecture candidates.

To get a better idea of the effects of different architecture choices, we must deal with the

initialization-dependent performance of these segmentation networks.

In Figure 4.12 we experiment with various weight initialization random seeds to

determine the robustness of various models to the weight initialization scheme. In order to

determine whether one architecture choice is superior to another, the outputs of different

trained networks are compared with each other. However, sources of randomness in the

training process (initialization of trainable weights from a Xavier uniform distribution,

and the random presentation order of training data elements) induce a distribution of final

performance metric scores. These scores are random variables, and a single sample per

architecture may be insufficient to determine which is better. By empirically approximating

the distribution for each architecture, better inferences may be made about architec-

ture design choices. For this figure, multiple instances of the same architecture (26 for

2D-3D and fully-3D nets, 500 for the U-Net) were trained under identical conditions,

varying only random number generation seeds. The resulting distributions support the

conclusions that 2D-3D networks outperform their 2D and fully-3D counterparts, as

well as the conclusions drawn from the ablation studies. They also reveal a curious

phenomenon that may be a topic for future study – the seemingly bimodal performance

of 2D-3D architectures, wherein some fraction of trained instances perform markedly

worse than others with an apparent performance gap between peaks. Whether this is

a real phenomenon or an artifact of having an insufficient number of samples could be

determined with a follow-up study.
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4.5.3 DeepVess Baseline Comparison

In addition to the baseline models discussed above, we have also tried using the

DeepVess model from [67] on our data. However, DeepVess performed poorly, and

learned to assign a single class (background) to the entire output patch. There may be two

reasons behind DeepVess’ poor performance: (1) Unlike U-Net and Deeplab networks,

the DeepVess network is designed with very small input patches in mind; small patches do

not contain enough context for the network to distinguish between objects. (2) DeepVess’

last layer consists of a fully-connected operation with a single hidden layer containing

1024 neurons, therefore any attempt to input significantly larger patches would require

increasing the number of neurons in the last layer, but fully-connected layers do not scale

well and the network quickly outgrows GPU memory.

4.5.4 Segmentation 3D Rendering Videos

In addition to the 3D rendering images of segmentations displayed in figures in this

work, we produced videos showing rotations of the renderings.

4.5.4.1 Evaluation Dataset

Ground truth: https://leapmanlab.github.io/dense-cell/vids/

eval_gt.mp4

Our best 3D ensemble: https://leapmanlab.github.io/dense-cell/

vids/eval_e-3d.mp4

Our best 2D ensemble: https://leapmanlab.github.io/dense-cell/
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vids/eval_e-2d.mp4

Our best 3D network: https://leapmanlab.github.io/dense-cell/

vids/eval_s-3d.mp4

Our best 2D network: https://leapmanlab.github.io/dense-cell/

vids/eval_s-2d.mp4

4.5.4.2 Test Dataset

Ground truth: https://leapmanlab.github.io/dense-cell/vids/

test_gt.mp4

Our best 3D ensemble: https://leapmanlab.github.io/dense-cell/

vids/test_e-3d.mp4

Our best 2D ensemble: https://leapmanlab.github.io/dense-cell/

vids/test_e-2d.mp4

Our best 3D network: https://leapmanlab.github.io/dense-cell/

vids/test_s-3d.mp4

Our best 2D network: https://leapmanlab.github.io/dense-cell/

vids/test_s-2d.mp4

4.5.4.3 Annotator comparison dataset

Annotator 1: https://leapmanlab.github.io/dense-cell/vids/ac_

ann1.mp4

Annotator 2: https://leapmanlab.github.io/dense-cell/vids/ac_
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ann2.mp4

Our best algorithm: https://leapmanlab.github.io/dense-cell/vids/

ac_alg.mp4

4.5.5 Training Demonstration Videos

We trained a 2D-3D+3x3x3 network for 39744 iterations, recording the class prediction

probability maps and segmentation that the network produced on the evaluation dataset

every 92 iterations. We produced animations of the evolution of the network’s prediction

capabilities to demonstrate the learning process.

4.5.5.1 Probability Maps Video

The first video shows the evolution of the six non-background probability maps

predicted by the network over the course of training. Each probability map is color-

coded based on the corresponding structure color in the segmentation color scheme used

throughout this work - dark green for cell, magenta for mitochondrion, dark blue

for alpha granule, yellow for canalicular channel, bright red for dense

granule, and dark red for dense granule core.

Link: https://leapmanlab.github.io/dense-cell/vids/train_

prob-maps.mp4
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4.5.5.2 Segmentation Video

The second video shows the evolution of the segmentation produced by the network

over the course of training.

Link: https://leapmanlab.github.io/dense-cell/vids/train_

seg.mp4

aaaaaaaaaaaaaaaaa bbbbbbbbbbbbbbbbb

ccccccccccccccccc ddddddddddddddddd eeeeeeeeeeeeeeeee fffffffffffffffff

ggggggggggggggggg hhhhhhhhhhhhhhhhh iiiiiiiiiiiiiiiii jjjjjjjjjjjjjjjjj kkkkkkkkkkkkkkkkk

mmmmmmmmmmmmmmmmm nnnnnnnnnnnnnnnnn ooooooooooooooooo ppppppppppppppppp qqqqqqqqqqqqqqqqq

Figure 4.10: 2D comparison of all algorithm results. This Figure compares the results
of all 14 segmentation algorithms tested in this work with ground-truth labels for the
z = 4 slice of the evaluation dataset. (a-b) Orthoslice of the evaluation image dataset and
segmentation. (c-f) Segmentations from our new 2D-3D+3x3x3 network and its three
ablations. (g-k) Segmentations from the five ensemble algorithms tested in this work.
(m-q) Segmentations from the five baseline networks tested in this work.
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Figure 4.11: Annotator comparison segmentation renderings. This Figure
supplements row 4 of Figure 3 by showing renderings of individual organelle types -
Mito for mitochondria, Alpha for alpha granules, Canal for canalicular channels, Dense
for dense granules - from the Annotator 1, Annotator 2, and best Algorithm (Top-4 2D-
3D+3x3x3) segmentations. (a-d) Annotator 1 (Ann 1) organelle segmentations. (e-h)
Annotator 2 (Ann 2) organelle segmentations. (i-m) Algorithm organelle segmentations.
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Figure 4.12: Making better architecture design decisions. This Figure shows
normalized histograms of peak MIoU(all) on the evaluation dataset for each of the archi-
tectures examined in this work. In order to determine whether one architecture choice
is superior to another, the outputs of different trained networks are compared with each
other. However, sources of randomness in the training process (initialization of trainable
weights from a Xavier uniform distribution, and the random presentation order of training
data elements) induce a distribution of final performance metric scores. These scores are
random variables, and a single sample per architecture may be insufficient to determine
which is better. By empirically approximating the distribution for each architecture,
better inferences may be made about architecture design choices. For this figure, multiple
instances of the same architecture (26 for 2D-3D nets, 500 for the U-Net) were trained
under identical conditions, varying only random number generation seeds. The resulting
distributions support the conclusions that 2D-3D networks outperform the 2D U-Net and
that multi-loss training is necessary for 2D-3D architectures.

74



aaaaaaaaaaaaaaaaa bbbbbbbbbbbbbbbbb

Figure 4.13: Error weighting array visualization.The error weighting W array is the
sum of three terms w +Wcb +Wep, where w is a weight floor,Wcb is a class frequency
balancing array, and Wep is an edge preserving array. Wcb and Wep are computed from
ground truth labels. (a) Example orthoslice of training dataset ground truth labels. (b)
Corresponding orthoslice of the error weighting array.

4.5.6 Source Code

Supplementary materials, source data, code, and reproducible examples are available

online at https://leapmanlab.github.io/dense-cell.

75

https://leapmanlab.github.io/dense-cell


Chapter 5: Active Learning

The machine learning (ML) community has been working on curating novel benchmark

labeled datasets. These benchmark datasets are essential in driving new developments

because they allow researchers to quickly compare their new methods against previous

work. DNNs require enormous amounts of data to train effectively and generalize robustly

in large scale CV settings; however, compiling such datasets is often cost prohibitive.

Nonetheless, in some industries, notably the autonomous vehicle industry, DNNs are

deployed at scale in mission critical scenarios, with models continually improving as

they train on a never ending stream of data. Vehicles operate as a fleet and each vehicle

can collect images and video snippets from their surroundings to send back to centralized

servers. The data is manually annotated and added to the training set, which is later used

to refine their deep learning models. However, collecting and labeling all data points is

prohibitively expensive and time consuming. To remedy this issue, the fleet uses active

learning (AL), a set of machine learning algorithms that help users decide which raw

unlabeled data is most informative, and therefore worth labeling. By employing AL, the

fleet is selectively collecting “interesting” videos from its surroundings and storing them

to be labeled and used as training data for improving the ML models. AL is especially

impactful in industrial scale settings where data labeling costs are high and practitioners
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use every available tool to improve model performance. As such, AL constitutes a viable

solution to alleviate the data annotation costs in the semantic segmentation feedback

loop described in Section 4.3.3. By carefully selecting the next patch to be presented

to the annotators for manual correction, we can achieve higher neural network (NN)

performance. Unfortunately, AL for semantic segmentation of images is difficult to

achieve. Here, we start by developing an AL algorithm for natural image classification.

The recent success of self-supervised pretraining (SSP) highlights the importance

of harnessing abundant unlabeled data to boost model performance. By combining AL

with SSP, we make use of unlabeled data while simultaneously labeling and training on

particularly informative samples. We study a combination of AL and SSP on ImageNet.

We find that performance on small toy datasets – the typical benchmark setting in the

literature – is not representative of performance on ImageNet due to the class imbalanced

samples selected by an active learner. Among the existing baselines we test, popular

AL algorithms across a variety of small and large scale settings fail to outperform random

sampling. To remedy the class-imbalance problem, we propose Balanced Selection (BASE),

a simple, scalable AL algorithm that outperforms random sampling consistently by selecting

class balanced samples for annotation. We summarize our contributions below:

1. We demonstrate that the performance of popular AL methods, which has been

observed on small datasets, does not transfer to the larger and more complex ImageNet

challenge. In fact, on the common linear evaluation task (see Section 5.3), most

popular AL algorithms perform worse than random sampling on ImageNet.

2. We identify and study sampling imbalance as a major failure mode for AL algorithms.
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Because ImageNet has many classes with highly heterogeneous properties, AL

algorithms have a tendency to heavily sample from preferred classes while nearly

ignoring others. This problem is less severe on simple tasks with fewer and more

homogeneous classes.

3. We introduce the Balanced Selection (BASE) AL strategy. BASE efficiently selects

images that lie near class boundaries in feature space while also promoting an

even class distribution. By carefully selecting which data to label, BASE achieves

significantly better sample efficiency than standard self-supervised learning (SSL)

pipelines that rely on random sampling.

4. We show, for the first time, that AL can offer performance boosts on ImageNet

when combined with SSL. Our BASE algorithm, when used to train a classifier on

top of a SSL feature extractor, matches the top-5 accuracy of the state-of-the-art

EsViT [90] SSL algorithm while using only 55% of the labels.

This is joint work with Hong-Min Chu, Ping-Yeh Chiang, Wojciech Czaja, Richard

Leapman, Micah Goldblum, and Tom Goldstein [145]. My contribution was conceiving

the project, designing and writing the majority of the code base, running the majority of

experiments, and writing the paper.

5.1 Introduction

Fueled by the success of deep learning, the global data annotation market is projected

to reach $3.4 billion by 2028 [117]. The data labeling process is a daunting hurdle for

institutions aiming to deploy deep learning models at an industrial scale. The annotation
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process is slow, costly, and in some cases requires domain-expert annotators.

A large body of machine learning research seeks to reduce data labeling costs by

harnessing as much information as possible directly from unlabeled data or by leveraging

other labeled datasets whenever possible. Ultimately, however, labeled data is required to

achieve adequate deep learning model performance, especially in mission critical scenarios.

Due to time and budget constraints, practitioners are often restricted to selecting a small

subset of the available data for annotation. This restriction raises the following question:

What is the best approach for selecting this subset?

Active learning (AL) is a subfield of machine learning (ML) dedicated to answering

this question. Given a large pool of unlabeled data and a fixed labeling budget, an AL

algorithm selects a subset of the unlabeled data to be annotated. Once labeled, the subset

is subsequently used to train a ML model. The goal of the active learner is to select the

subset that will optimize the generalization performance of the ML model. AL as a field

predates deep neural networks (DNN), however, naively applying classical AL methods

to DNNs is not straightforward and sub-optimal.

In this work, we focus on classification tasks using DNN. We study a combination

of AL and self-supervised pretraining (SSP) in the large data regime. Large-scale data is

prevalent in real-world scenarios, where unlabeled data is typically abundant and cheap

to collect. Furthermore, in real-world settings, practitioners are compelled to leverage the

available unlabeled data in order to achieve adequate model performance at the lowest

possible annotation cost. State-of-the-art SSP methods can provide these performance

boosts at no annotation cost.

Prior research on AL focuses on the CIFAR-10, CIFAR-100, and SVHN [83, 156]
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datasets to compare AL algorithms. However, it is unclear whether performance on these

datasets is predictive of performance on real-world datasets that are orders of magnitude

larger and that may contain many more classes or even imbalanced data. We focus

particularly on ImageNet [124], as it contains 1000 classes, 1.2 million images, and a

significant amount of label noise [14, 141, 149] as is common in industrial settings [95].

AL cost savings are much more impactful at the ImageNet scale and beyond, and cannot

be understood by studying small datasets alone. These cost savings are due in part to

the sheer amount of available data but also the ambiguity of the classes considered. To

curate ImageNet, each image was presented to multiple human annotators who voted until

a consensus was reached on the label [33]. This voting mechanism translates directly to

high annotation costs.

Finally, we specifically focus on the interaction of AL with SSP. SSP has been

shown to provide a significantly larger accuracy boost compared to AL alone [136]. It is

therefore important to study whether AL offers any additional benefits on top of SSP. We

present the first AL results on ImageNet using SSP.

We make our code publicly available in the hopes that others can easily reproduce

our results and use our codebase for future AL research 1.

5.2 Background & Related Work

A typical AL algorithm cycles between learning from a small amount of labeled

data, using the model to gather information about the unseen unlabeled data, and using

this information to choose a subset of the unlabeled data to be manually annotated. This
1https://github.com/zeyademam/active learning
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cycle then repeats, with the labeled dataset increasing in size at every iteration, until a pre-

determined manual-annotation budget is exhausted. In this section, we provide a formal

description of the AL problem, followed by an overview of existing methods.

We will adopt the notation from [130] with slight modifications to accommodate

more general cases. We will study a C-way classification problem defined over a compact

space X = Rd and a finite label set Y = {1, . . . , C}. We denote the loss function

by l(·, ·,w) : X ,Y → R, where w are the parameters (i.e ., the weights) of a classifier

f(w, ·) : X → Y , which we simply denote as f(x) in the rest of the Chapter.

The entire dataset is a collection of n points Z ⊆ X×Y sampled i.i.d. overZ = X×Y as

{xi, yi}i∈[n] ∼ pZ . Initially, some subset of m points is assumed to have been annotated

by an expert, we will denote the indices of those points by s0 = {s0(j) ∈ [n]}j∈[m].

An AL algorithm has access to {xi}i∈n ⊆ X but only the labels with indices s0, i.e.,

{ys0(j)}j∈[m]. The algorithm is also given a budget b of queries to ask an oracle (typically

a human annotator), and a learning algorithm As which outputs a set of parameters w

given {xi}i∈n ⊆ X and {ys(j)}j∈[m]. The goal of AL is to identify a new subset s1 of

unlabeled data such that:

s1 = argmin
s1:|s1|<b

Ex,y∼pZ [l(x, y;As0∪s1)] . (5.1)

The above formulation constitutes one round of active learning. Typically, the algorithm

runs for K rounds producing a sequence of subsets s1, s2 . . . , sK to be labeled by the

oracle and added to the labeled dataset for the following round. We will denote by Dk
L all

the indices of points labeled before the start of round k, i.e., Dk
L =

⋃k−1
i=0 si, and likewise
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Dk
U = [n] \Dk

L is the set of all unlabeled points at round k. We will use | · | to refer to the

cardinality of a set.

5.2.1 Limitations of Classical Active Learning

As mentioned in the introduction, AL predates modern DNNs and many active

learning algorithms were designed without DNNs in mind. In this Section, we list some

of the shortcomings of classical AL and its incompatibility with DNNs.

i. Fixed feature space representation: Some algorithms assume a fixed representation

of the data [93] in feature space. This assumption is sound for some classification

algorithms, such as support vector machines, however, the features of DNNs change

during the training process.

ii. b=1: Most classical algorithms assume the budget at each round to be exactly 1.

However, each round requires retraining the DNN from scratch. This presents two

issues: first, a single point will have no noticeable effect on the parameters because

of the local optimization usually applied to DNNs, and second, retraining a DNN

for scratch at each round can be very costly.

iii. Uncertainty measures: Almost all AL algorithms rely on some measurement of

the uncertainty of predictions made by the classifier on the unlabeled data. For some

ML algorithms (e.g., support vector machines) these methods are straightforward

and have theoretical justification. However, in the case of DNNs, there is no clear

interpretation of the softmaxed logits (i.e., output of the network).
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5.2.2 Selection Methodologies

Existing AL algorithms for DNNs can be roughly broken down into two categories:

those designed to tackle class imbalanced datasets and those that are not. The wide

majority of existing algorithms fall in the latter category.

Algorithms designed for balanced datasets can be further broken down into two

categories: uncertainty based sampling and density based sampling [1]. Uncertainty

based AL algorithms operate by first quantifying the classifier’s uncertainty about its

prediction on every unlabeled sample at round k [49, 50, 131], then querying the examples

on which the classifier is deemed most uncertain. Prediction entropy, least confidence, and

margin sampling are commonly used uncertainty measures. Intuitively, uncertainty based

sampling improves the model’s prediction on subsets of the domain X where the model

is most uncertain, and in turn, improves the model’s generalization ability.

On the other hand, density based algorithms [6, 130] generate high-dimensional

features from the data then select examples with the most representative features. In

practice, this selection involves running a clustering algorithm [6, 28] or finding Coresets

[130] in feature space. The features can be obtained by removing the network’s linear

classification head [28, 130] or by taking its gradients with respect to every sample [6].

Intuitively, density based sampling ensures that the most densely populated regions of

space, which contain the most data at test time, are represented in the labeled set.

A smaller minority of AL algorithms specifically tackle class imbalanced data [1].

However, as we discuss below, techniques in this area cannot scale to ImageNet.
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5.2.3 Scaling Ability

AL strategies designed for classical machine learning (ML) focus on querying a

single label (i.e., b = 1), re-training the model on all labeled data, querying the next

example, retraining again, etc. This has obvious advantages as the active learner is given

access to the current label and can therefore use it to guide its selection strategy. However,

as datasets increased in size, ML algorithms became costly to train, and data annotation

grew into an entire industry. It is now necessary for AL algorithms to operate at a large

scale.

To be practical for neural network applications, AL strategies must be able to query

a large batch of data at once, receive labels for the entire batch, then query another batch

(i.e., b >> 1). This batch AL approach minimizes costs and time by keeping a large

group of annotators occupied and by reducing the number of training runs needed to

update DNNs on newly acquired data. At the same time, modern AL strategies must be

able to efficiently process a massive pool of unlabeled data at each round (i.e., large Dk
U ).

In Table 5.1 and Section 5.5.2.1, we discuss the time complexities of several baselines

considered in this work in greater detail.

Table 5.1: Time complexities. d′ is the feature space dimension. On ImageNet using
ResNet-50, |Dk

U | ≈ 106, features d′ = 2048, gradient embeddings d′′ = 2048× 103, and
C = 103. In our experiments, b = 103.

Algorithm Time Complexity
Margin Sampler O(C · log(b) · |Dk

U |)
Confidence Sampler O(C · log(b) · |Dk

U |)
Approx. Coreset O((b+ |Dk

L|) · d′ · |Dk
U |)

[130] BADGE O(C · (b+ |Dk
L|) · d′′ · |Dk

U |)
[6] Balancing Sampler O(C · b · d′ · |Dk

U |)
[1] BASE (ours) O(C · (d′ + log(b)) · |Dk

U |)
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5.2.3.1 Usage of Unlabeled Data

Unlabeled data is often abundant in real-world scenarios, and leveraging it effectively

can lead to significant reductions in data annotation costs. In [19, 136], the authors

study the benefits of AL when combined with both SSP and FixMatch, a semi-supervised

technique. In this work, we restrict our experimental setup to SSP because semi-supervised

techniques would require training to saturation multiple times on the entire Imagenet

dataset [138], which is prohibitively expensive. In Table 5.2, we show that using only

25% of the ImageNet labels, the MoCo v2 SSP method with randomly sampled labels is

able to boost model performance by 18.15 percentage points, whereas carefully selecting

examples using the VAAL [137] AL algorithm only boosts performance by 1.5 percentage

points if the classifier’s weights are randomly initialized. Clearly, initializing models with

SSP offers strong advantages in the label scarce regime. In Section 5.5, we show for the

first time that AL offers additional performance gains on top of SSP at the ImageNet

scale.

To the best of our knowledge, only two prior works [13, 137] study AL on ImageNet,

and none study the interaction between AL and SSP at this scale.

Table 5.2: Performance gains offered by VAAL [137] on ImageNet vs those offered by
MoCo v2 [25], a popular SSP method. SSP, when combined with random sampling,
yields a substantially larger boost in performance.

% of labels SSP Strategy Accuracy

25%
No Random 50%
No VAAL +1.5%
Yes Random +16.65%
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5.3 Linear Evaluation Task

When DNNs are deployed at an industrial scale, it is common to use a shared

backbone network for feature extraction, then apply separate heads directly on the features

to accomplish different downstream tasks. A single shared backbone is easier to maintain

and carries a small memory footprint, making it more practical for edge devices. Training

this entire pipeline end-to-end is time consuming and computationally intensive. There-

fore, in this setting, as new labeled data becomes available, the different task-specific

heads are frequently finetuned while keeping the backbone frozen. The backbone itself

is updated less frequently2. In fact, with the emergence of massive foundation models

[15], such as GPT-3 [16], BERT [35], and DALL-E [115], practitioners may only have

restricted access to the backbone. Consequently, it is important to evaluate AL algorithms

when the feature extractor is fixed and only the classification head is finetuned. This task

is a common benchmark in self-supervised learning (SSL) research [24, 25, 90], where

the proposed SSL method is used to pretrain the network’s feature extractor, then a linear

classification head is trained on the features in a fully-supervised fashion. However, to

the best of our knowledge, AL strategies on ImageNet have not been evaluated in this

specific setting.

2The quintessential manifestation of this framework is described in Tesla’s AI day:
https://youtu.be/j0z4FweCy4M?t=3300 (55th minute).
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5.4 Methods

We now describe our proposed method. We start with a simple preliminary variant

of uncertainty based selection. We then show how this variant can be adapted to prevent

sampling imbalances from emerging and accumulating over rounds, resulting in improved

performance.

5.4.1 Margin Selection

We first introduce a simplified variant of our Balanced Selection algorithm, which

we call Margin Selection (MASE). MASE selects the b examples closest to any decision

boundary at every round of AL. Intuitively, these samples should have the most influence

on the decision of the model. We define distance to decision boundary (DDB) as follows,

DDB(x) = min
ϵ
||ϵ||2 s.t.f(x+ ϵ) ̸= f(x). (5.2)

When f is a DNN, DDB is expensive to compute in input space. We instead estimate

this distance in feature space. For the models considered in this work, the final layer is a

linear classification head on top of the features produced by a feature extractor; therefore,

computing DDB in feature space reduces to computing the projection of the feature vector

onto the normal vector of the linear decision boundary, which can be implemented very

efficiently. We provide pseudocode for MASE in Algorithm 1.

To the best of our knowledge, MASE is a novel AL strategy, similar algorithms

were only studied on 2-class classification tasks using support vector machines [42], or a
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different definition of distance [26].

5.4.2 Balanced Selection

In Section 5.5, we show that only a single baseline AL algorithm, namely Partitioned

BADGE (vi), beats random sampling on the linear evaluation task on ImageNet and

only by a relatively small margin. This is partially due to the imbalance induced by the

active learner, which does not query examples evenly across classes. Motivated by this

observation, we design Balanced Selection (BASE), an AL strategy capable of scaling

efficiently while also querying a balanced batch of examples. As opposed to naı̈vely

choosing the examples with the smallest DDB, BASE selects examples based on their

distance to class specific decision boundaries (DCSDB), defined as

DCSDB(x, c) =
minϵ ||ϵ||2 s.t. f(x+ ϵ) = c if f(x) ̸= c

minϵ ||ϵ||2 s.t. f(x+ ϵ) ̸= c if f(x) = c.

(5.3)

More specifically, for each class c ∈ {1, . . . , C}, BASE selects the b/C samples

with the smallest DCSDB(x, c). Similar to our MASE implementation, we only consider

distances in feature space. We provide a visual illustration of BASE’s selection strategy

in Figure 5.1 and its pseudocode in Algorithm 2. The time complexity of Algorithm 2

is dominated by computing DCSDBs, but those can be computed once and stored, so the

algorithm runs in O(C · (d′ + log(b)) · |Dk
U |) in practice, where d′ is the dimension of the

features. This puts BASE on par with the fastest baselines – see Table 5.1.
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Algorithm 1 Algorithm for MASE

Input: Query Budget b, Indices of Labeled Samples Dk
L

s← Dk
L

while |s| < |Dk
L|+ b do

x∗ ← argminx∈[N ]\s DDB(f(x))
s← s ∪ {x∗}

end while
return s\Dk

L

Algorithm 2 Algorithm for BASE

Input: Query Budget b, Number of Classes C, Indices of Labeled Samples Dk
L

s← Dk
L

while |s| < |Dk
L|+ b do

for c in [C] do
x∗ ← argminx∈[N ]\s DCSDB(f(x)), c)
s← s ∪ {x∗}
if |s| = |s0|+ b then

break
end if

end for
end while
return s\Dk

L
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Figure 5.1: An illustration of BASE for 2-dimensional features and a 3 class problem.
The algorithm selects an equal number of points (shown using colored stars, crosses, and
triangles) that are closest to each decision boundary (solid lines).

5.5 Experiments

In this Section, we outline our experimental design, followed by a presentation of

our results. In Figure captions, we will refer to different experiments using a capital letter

for the dataset/model combination, and a capital roman numeral for the experimental

setup. For example, setting A-I refers to AL strategies tested on CIFAR-10 using a

ResNet-18 with the model weights initialized using SSP at every round. Baseline strategies

are referenced using lower case roman numerals, e.g., v refers to BADGE. Below, we

enumerate each dataset/model combination, training setup, and AL method, and assign

each a letter or numeral.

5.5.1 Datasets and Models

In our experiments, we use the following dataset and model architecture combinations.

A. CIFAR-10 [83] w/ ResNet-18 [70].

B. Imbalanced CIFAR-10 [83] w/ ResNet-18 [70]: The number of samples per class

decreases exponentially from the most frequent class to the least frequent class; the
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most sampled class contains 10× the number of samples in the least sampled class

[17].

C. ImageNet [124] w/ ResNet-50 [70].

D. ImageNet [124] w/ ViT [37].

5.5.1.1 Training Setups

We consider two different settings for training the classifier.

I. End-to-end finetuning from a self-supervised checkpoint. We first train the network

using self-supervised learning on all available unlabeled data. At every round k of

AL, the backbone’s weights (all layers except the final linear classifier) are reset to

the SSP weights then the network is finetuned end-to-end on all the available labeled

data Dk
L.

II. Linear evaluation from a self-supervised checkpoint . Here, we employ SSP. At

every AL round k, we use the SSP checkpoint, but we only update the final linear

layer of the network on labeled data Dk
L.

5.5.2 Baselines

We compare BASE (ours) to the following baselines.

i. Random Sampler. Queries samples from Dk
U uniformly at random.

ii. Balanced Random Sampler. Iterates over classes and chooses an equal number of

examples uniformly at random from each class. This baseline strategy cheats, as it
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requires the labels for points in Dk
U in order to make its selection. We include it only

for scientific purposes.

iii. Coreset AL. [130] We solve the k-center problem using the classical greedy 2-

approximation.

iv. Partitioned Coreset Sampler. [28] Partitions the dataset into p partitions, then runs

the Coreset algorithm to select b/p examples from each partition. This implementation

only calculates pairwise distances on smaller subsets, which is more computationally

efficient.

v. BADGE AL [6]. Calculates the gradient with respect to the last linear layer, then

applies the K-means++ seeding algorithm [5] on the gradients. On ImageNet, the

size of the gradient embedding is proportional to the number of classes, which makes

it 100× larger than CIFAR-10 embeddings. Furthermore, the K-means++ seeding

algorithm requires the pairwise distances, which again is computationally prohibitive

on ImageNet.

vi. Partitioned BADGE Sampler. [28] BADGE with a similar partitioning trick as

Partitioned Coreset, and global pooling to reduce the embedding dimension.

vii. Confidence Sampler. Selects the examples with the smallest top logit (least confidence).

viii. Margin Sampler[128]. Selects examples with the smallest differences between the

top logit and the second largest logit (minimum margin).

ix. VAAL [137]. Trains a binary classifier to distinguish between features produced

by labeled vs unlabeled samples. The features are obtained by training a variational

autoencoder. Queries the unlabeled samples that the binary classifier is most confident
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about.

x. Balancing Sampler [1] Calculates cluster centers for each class in feature space,

then targets the class with the least number of queried examples, and finally selects

examples that are close to the target class’ center and away from other clusters.

xi. MASE (ours). See Section 5.4.

Table 5.3: Setting C-I. Average ImageNet accuracy over 3 runs obtained by training a
ResNet-50 end-to-end starting from a SSP checkpoint at every AL round.

Strategy/Budget 30000 40000 50000 60000 70000 80000 90000 100000
Partitioned Coreset Sampler 0.539 0.553 0.563 0.572 0.581 0.586 0.59 0 .594
Partitioned BADGE Sampler 0.539 0.563 0.578 0.59 0.601 0.611 0.617 0 .626
BASE 0.54 0.569 0.581 0.594 0.605 0.614 0.622 0 .629
Balanced Random Sampler 0.542 0.56 0.573 0.585 0.594 0.604 0.61 0 .617
Confidence Sampler 0.538 0.556 0.57 0.582 0.592 0.6 0.606 0 .612
MASE 0.54 0.562 0.584 0.594 0.605 0.613 0.622 0 .63
Margin Sampler 0.545 0.562 0.58 0.593 0.603 0.613 0.621 0 .629
Random Sampler 0.54 0.557 0.572 0.59 0.594 0.601 0.608 0 .615
VAAL Sampler 0.539 0.559 0.569 0.578 0.588 0.594 0.601 0.607

5.5.2.1 Scalability of baseline methods

Coreset (iii) and BADGE (v) are prohibitively expensive to run at the ImageNet

scale – see Table 5.1. Additionally, both algorithms require storing large tensors in

memory – O(d′·|Dk
U |) space complexity – as they require solving an optimization problem

in feature space. For this reason, we exclude them from our comparisons, and instead

implement Partitioned Coreset (iv) and Partitioned BADGE (vi), two scalable variants of

the original strategies [28]. We also note that the Balancing Sampler (x) is not a batch

AL algorithm as it acquires labels one at a time, making it impractical in terms of both

computation and human labeling bandwidth in large-scale settings.
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(a) Setting C-I

(b) Setting C-I

Figure 5.2: Average ImageNet accuracy and imbalance ratio over 3 runs. Shaded regions
depict the 95% confidence interval of the results. Figures 5.2a and 5.2b are obtained by
training a ResNet-50 end-to-end starting from a SSP checkpoint at every AL round. The
3 overlapping curves at the top of Figure 5.2a correspond to BASE, MASE, and Margin
Sampler. See Table 5.3 for numerical results.
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(a) Setting C-II

(b) Setting C-II

Figure 5.3: Average ImageNet accuracy and imbalance ratio over 3 runs. Shaded regions
depict the 95% confidence interval of the results. Figures 5.3a and 5.3b are obtained by
finetuning only the final linear layer of a ResNet-50 starting from a SSP checkpoint at
every AL round.
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(a) iv (b) vii (c) ix (d) vi (e) viii (f) xi (g) BASE (h) i

Figure 5.4: Setting C-I. The distribution of Dk
U at every AL round for different strategies

on ImageNet in the end-to-end finetuning setting. All experiments start with the same
randomly selected subset s0. The x-axis is sorted for each histogram (every row in every
subplot) from least queried class to most queried class. The height of the histogram at a
given location on the x-axis indicates the proportion of the examples sampled from that
class. BASE is visibly the most balanced strategy after random sampling.

(a) iv (b) vii (c) ix (d) vi (e) viii (f) xi (g) BASE (h) i

Figure 5.5: Setting C-II. The distribution of Dk
U at every AL round for different strategies

on ImageNet in the linear evaluation setting. All experiments start with the same
randomly selected subset s0. The x-axis is sorted for each histogram (every row in every
subplot) from least queried class to most queried class. The height of the histogram at a
given location on the x-axis indicates the proportion of the examples sampled from that
class. BASE is visibly the most balanced strategy after random sampling.

5.5.3 Solving Class Imbalance Allows Scaling

Without explicitly imposing balance, imbalance becomes a problem and causes

baseline algorithms to under-perform random sampling at the ImageNet scale. But by

querying balanced samples, our BASE algorithm recovers the good properties of AL in

the large-scale regime, and even matches the state-of-the-art EvSiT [90] results using only

71% of the ImageNet labels.
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(a) Setting A-I. (b) Setting C-I.

(c) Setting C-II. (d) Setting B-I.

Figure 5.6: Class distribution entropy of Dk
L at different active learning rounds k. Higher

entropy is desirable as it indicates more balanced sampling.

5.5.3.1 Baselines Perform Poorly on ImageNet

Here, we analyze the performance of all baselines on ImageNet. In Figure 5.2a, we

compare different baselines on ImageNet, starting from a SSP checkpoint and finetuning

the network end-to-end at each AL round. Three baselines provide material performance

boosts over random sampling in that setting: Margin Sampler (viii), Partitioned BADGE

(vi), and our MASE algorithm (xi). In Figure 5.3a, we evaluate all baselines on ImageNet

in the linear evaluation setting described in Section 5.3. Surprisingly, only a single

baseline outperforms random sampling on the linear evaluation task.
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Figure 5.7: Setting A-I with |s0| = b = 1000. Average results over 5 runs on CIFAR-10
obtained by training a ResNet-18 end-to-end starting from a SSP checkpoint at every
AL round. Shaded regions depict the 95% confidence interval of the results. The 5
overlapping curves at the top are BASE, MASE, BADGE, Confidence Sampler, and
Margin Sampler. See Table 5.6 for numerical results.

5.5.3.2 The Importance of Balanced Sampling

Figures 5.2b and 5.3b compare class imbalance ratios – the number of labels from

the most sampled class over that of the least sampled class – for each sampling strategy.

Most baseline samplers disproportionately query certain classes. Indeed, the Confidence

Sampler, the worst performing baseline in Figure 5.3a, induces an imbalance ratio close

to 12 after the first round of AL. To further investigate the effects of class imbalance,

we implement a cheating baseline strategy (Balanced Random Sampler ii) which queries

a perfectly balanced batch at each round. On the end-to-end finetuning experiment in

Figure 5.2a, querying balanced batches is not sufficient to outperform random sampling.
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However, on the linear evaluation task in Figure 5.3a, the cheating Balanced Random

Sampler (ii) outperforms random sampling by approximately 6 percentage points at every

round.

Class imbalance ratios do not fully describe the class imbalance across all classes,

but only the extremes. To further investigate class imbalance, we analyze the distributions

of Dk
L for all baselines on the ImageNet linear evaluation task in Figure 5.5. It is clear

from the Figure that all baselines exhibit long tailed distributions, and increase the imbalance

over time. Figure 5.4 contains histograms of the distributions for our end-to-end finetuning

ImageNet experiments and Figure 5.6 yet another measure of class imbalance using

entropy.

Table 5.4: Setting B-I with |s0| = b = 1000. Average results over 3 runs on imbalanced
CIFAR-10 obtained by finetuning a ResNet-18 end-to-end starting from a SSP checkpoint
at every AL round.

Strategy/Budget 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Balancing Sampler 0.719 0.802 0.817 0.836 0.839 0.847 0.852 0.861 0.869 0.87
BASE 0.712 0.809 0.84 0.847 0.859 0.861 0.866 0.877 0.876 0.879
Balanced Random Sampler 0.811 0.836 0.846 0.859 0.861 0.873 0.876 0.879 0.882 0.883
Confidence Sampler 0.729 0.806 0.822 0.836 0.848 0.856 0.87 0.874 0.874 0.881
Coreset Sampler 0.724 0.757 0.76 0.782 0.785 0.817 0.829 0.827 0.836 0.847
BADGE 0.721 0.809 0.829 0.84 0.85 0.861 0.868 0.869 0.876 0.878
MASE 0.726 0.792 0.822 0.834 0.84 0.861 0.871 0.869 0.876 0.879
Margin Sampler 0.744 0.779 0.806 0.84 0.844 0.862 0.867 0.868 0.877 0.874
Random Sampler 0.723 0.751 0.786 0.812 0.822 0.837 0.845 0.854 0.851 0.855
VAAL Sampler 0.728 0.78 0.8 0.807 0.806 0.831 0.834 0.844 0.852 0.861
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(a)

(b)

Figure 5.8: Setting B-I with |s0| = b = 1000. Average results over 3 runs on imbalanced
CIFAR-10 obtained by finetuning a ResNet-18 end-to-end starting from a SSP checkpoint
at every AL round. Shaded regions depict the 95% confidence interval of the results. See
Table 5.4 for numerical results.
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Table 5.5: When applying BASE on the linear evaluation task with the state-of-the-art
EsViT [90] SSP method, we are able to achieve the same state-of-the-art linear evaluation
accuracy on ImageNet with only 71% (for top-1 acc.) and 55% (for top-5 acc.) of the
data. The bolded number indicates the smallest amount of required data to achieve the
same accuracy as using all of the data for training.

Number of Labels (% of all labels)
Strategy 0.3M (24%) 0.5M (39%) 0.7M (55%) 0.9M (71%) 1.1M (87%) All(100%)

Top 1 Acc.
BASE (ours) 78.9% 80.5% 81.0% 81.2% 81.2% 81.2%
Random 78.9% 79.9% 80.5% 80.7% 81.0% 81.2%

Top 5 Acc.
BASE (ours) 94.4% 95.2% 95.5% 95.5% 95.5% 95.5%
Random 94.5% 94.9% 95.1% 95.3% 95.5% 95.5%

5.5.3.3 BASE Outperforms Baselines and Mitigates Class Imbalance

In Section 5.4, we proposed BASE, an AL algorithm specifically designed to query

class balanced data. BASE can significantly outperform random sampling on the ImageNet

linear evaluation task shown in Figure 5.3a. In fact, BASE can even outperform the

unrealistic Balanced Random Sampler (ii), which cheats by using knowledge of ground

truth labels to achieve perfect class balance. On the finetuning experiment in Figure 5.2a,

BASE performs on par with the best two baselines in terms of accuracy. However, in

Figures 5.5, 5.2b, and 5.3b, we show that our AL algorithm consistently achieves a more

uniform class distribution than all other baselines on both the linear evaluation and end-

to-end finetuning ImageNet tasks.

Finally, in Table 5.5, we show that by carefully selecting examples, BASE can

reproduce the state-of-the-art linear evaluation top-1 accuracy results reported in EsViT

[90] using ∼ 29% less labeled data; BASE only needs 55% of the labels to match the

same top-5 accuracy reported in [90].
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5.5.4 Class Imbalance on Small Datasets

Motivated by our observations concerning the importance of balanced sampling

in large-scale settings, we also investigate whether the balancing aspect of BASE offers

benefits in small-scale settings. To this end, in Figure 5.8, we compare all AL strategies

on an imbalanced version of CIFAR-10 [18] with an imbalance ratio of 10 starting from

a SSP checkpoint obtained by training on the full imbalanced dataset. In this experiment,

when training the classifier, we weigh each class differently in the loss function to penalize

rare classes more heavily. The plots show a strong correlation between class distributions

and performance of the AL algorithm. Balanced Random Sampler (ii), the “cheating”

algorithm, achieves the best accuracy across the board. And with minor exceptions,

for each algorithm, the better the performance in terms of accuracy, the less severe the

observed class imbalance.

BASE is the best performing strategy in terms of accuracy and only second best in

terms of class imbalance – the best being the non-scalable Balancing Sampler (x).

5.5.5 AL Performs Differently with SSP

Throughout this work, we argue that applying SSP along with simple random sampling

is much more powerful than applying AL alone – see Table 5.2. Therefore, AL algorithms

must prove that they can outperform random sampling in the SSP setting, otherwise they

are redundant and potentially harmful to performance. In Figure 5.7, we show that some

popular baselines, notably, Coreset AL (iii), are indeed harmful. A potential explanation

for this failure mode can be found in [2], where the authors show that warm-starting the

103



network weights at each round can negatively impact the performance of Coreset AL (iii).

Warm-starting means to continue training the network starting with the weights obtained

in the previous AL round, as opposed to randomly re-initializing the network weights at

every round (cold start). We suspect that SSP, just like warm-starting, may negatively

impact the performance of Coreset AL on CIFAR-10 and conclude that future research

should not draw conclusions about the performance of an AL algorithm in the SSP setting

solely by observing its behaviour in the cold starting setting.

5.6 Conclusion and Future Directions

AL for DNNs is a very difficult problem to study, partly because we still cannot

answer very fundamental questions about the generalization abilities of DNNs [74], but

also because random sampling is an incredibly robust baseline. In this work, we highlighted

the importance of stress-testing AL algorithms where they are most useful, namely on

large-scale tasks. We showed that popular existing works cannot compete with random

sampling across all settings, and we designed BASE, a robust AL strategy capable of

doing just that. In future work, we will tackle more complex problems, where the cost

savings incurred by AL are even more dramatic, such as large-scale segmentation and

detection tasks.
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5.7 Additional Material and Details

5.7.1 Experimental Details

We provide additional details of implementations and hyperparameters in the following

sections.

Settings |s0| b Epochs ESP Batch size Optimizer Learning rate Weight Decay Momentum
A-I 1000 1000 200 50 128 SGD 1e−3 5e−4 0.9
B-I 1000 1000 200 50 128 SGD 2e−3 0 0.9
C-I 30000 10000 60 30 128 SGD 1e−3 0 0.9
C-II 30000 10000 60 30 128 SGD 15 1e−4 0.9

Table 5.7: Hyperparameters used for each setting. |s0| denotes the initial pool size. b
denotes the budget per round, and ESP abbreviates early stop patience.

5.7.1.1 Dataset Details and Early Stopping

Dataset Division. We split the target dataset into training set, validation set and test

set. All AL algorithms are restricted to query from the training set, and the initial pool is

also sampled from training set. The validation set is used for early stopping.

CIFAR-10 comes with natural split of training and testing data. We keep the testing

data as test set. We randomly sample 1% of the training data as validation set and keep

the rest as training set.

For Imbalanced CIFAR-10, we keep the original testing split as test data. We then

follow this implementation to subsample a set of long-tailed imbalance data from the

training split. The set of imbalance data is then randomly partitioned into training/validation

data with 0.99/0.01 split ratio.

For ImageNet, the dataset itself comes with natural training split and validation
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split. We use the validation split as test set. We randomly sample 10% of the training split

as validation set and keep the rest as training set.

Early Stopping. We use the validation set to estimate the final test accuracy and

perform early stopping during the network training to avoid over-fitting. In particular,

we stop training the classification network if the validation performance stops improving

after a specific number of rounds (specified as a hyperparameter).

5.7.1.2 Hyperparameters for Each Experiment Setting

We conduct our experiments in the following four settings: C-I, C-II, A-I, and B-I.

We provide the hyperparameters shared across these settings in Table 5.7, and discuss

setting specific hyperparameters as follows. For setting A-I, and B-I, we use cosine

annealing learning rate scheduler with Tmax = 200. For setting C-I and C-II, we start

from the learning rate provided in Table 5.7, and decrease it by a factor of 0.1 every 20

epochs.

5.7.1.3 Additional Details on baselines

In this Section, we discuss additional implementation details of Partitioned Coreset/BADGE

sampler and VAAL sampler.

Partitioned Coreset/BADGE Sampler. To enable Coreset and BADGE sampler

to run on ImageNet, we modify each algorithm to allow to scale, inspired by the approach

in [28]. At each AL round we partition each of Dk
U and Dk

L into 10 random partitions. We

then take one partition from each and combine them into 10 partitions, say P1, . . . , P10,
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then run Coresets or BADGE separately on each partition using b/10 budget.

For BADGE, we use global average pooling on the gradient embeddings to reduce

their dimension to 512.

VAAL Sampler. We follow the repository provided by the original paper [137]

to implement VAAL sampler. Since the architecture of the Variational Auto-Encoder

(VAE) provided in the repository fails to handle ImageNet naturally, we instead use the

VAE architecture in [147] and follow the paper to calculate the unsupervised loss with

randomly-cropped 64× 64 patches instead of the full original images. Also, we perform

a single VAE optimizer step for every classifier optimizer step. The original [137] paper

does not comment on this, however, their codebase performs two VAE optimizer steps for

every classifier optimizer step.

5.7.2 Limitations

Plotting the test accuracy as a function of exhausted budget is common practice

in AL research. However, these experiments are difficult to produce correctly as they

are computationally expensive and very sensitive to hyperparameters [2, 12]. We conduct

thorough experiments over an extensive set of hyperparameters to ensure fair comparisons.

We summarize our findings below.

1. Training Hyperparameters at Every Round. This includes the choice of optimizer,

learning rate, regularization, and early stopping hyperparameters. It is necessary to

train the network to saturation at every round with varying amounts of training data;

otherwise, a fair comparison of AL algorithms would not be possible. In fact, if the
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network is not trained to saturation at a round k, the AL algorithm will not query an

optimal set sk, which will in turn affect the distribution of Dk+i
L for all subsequent

rounds k + i, i > 1 [2].

2. Initial Budget. s0 is randomly selected, therefore if the dataset is class balanced, s0

will be relatively balanced. If s0 is large, it will take many rounds of querying before

we can notice performance differences between AL algorithms that select balanced

data and those that don’t. It is therefore important to monitor the distribution of

Dk
L along with the accuracy of the model at each round before drawing conclusions

about performance.
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Buc, Emily B. Fox, and Roman Garnett, editors, NIPS, pages 1565–1576,
2019. URL https://proceedings.neurips.cc/paper/2019/hash/
621461af90cadfdaf0e8d4cc25129f91-Abstract.html.

[18] Kaidi Cao, Colin Wei, Adrien Gaidon, Nikos Arechiga, and Tengyu Ma. Learning
imbalanced datasets with label-distribution-aware margin loss, 2019.

[19] Yao-Chun Chan, Mingchen Li, and Samet Oymak. On the marginal benefit of
active learning: Does self-supervision eat its cake? In ICASSP 2021-2021 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 3455–3459. IEEE, 2021.

[20] P Chaudhari, Anna Choromanska, S Soatto, Yann LeCun, C Baldassi, C Borgs,
J Chayes, Levent Sagun, and R Zecchina. Entropy-sgd: Biasing gradient descent
into wide valleys. In International Conference on Learning Representations
(ICLR), 2017.

[21] Hao Chen, Qi Dou, Lequan Yu, Jing Qin, and Pheng-Ann Heng. VoxResNet:
Deep voxelwise residual networks for brain segmentation from 3d MR images.
NeuroImage, 170:446–455, April 2018. ISSN 1053-8119. doi: 10.
1016/j.neuroimage.2017.04.041. URL http://www.sciencedirect.com/
science/article/pii/S1053811917303348.

[22] Jianxu Chen, L. Yang, Yizhe Zhang, Mark S. Alber, and Danny Ziyi Chen.
Combining fully convolutional and recurrent neural networks for 3d biomedical
image segmentation. ArXiv, abs/1609.01006, 2016.

[23] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, and Hartwig
Adam. Encoder-decoder with atrous separable convolution for semantic image
segmentation. In ECCV, 2018.

111

https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2019/hash/621461af90cadfdaf0e8d4cc25129f91-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/621461af90cadfdaf0e8d4cc25129f91-Abstract.html
http://www.sciencedirect.com/science/article/pii/S1053811917303348
http://www.sciencedirect.com/science/article/pii/S1053811917303348


[24] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A
simple framework for contrastive learning of visual representations. arXiv preprint
arXiv:2002.05709, 2020.

[25] Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. Improved baselines with
momentum contrastive learning. arXiv preprint arXiv:2003.04297, 2020.

[26] Seong Jin Cho, Gwangsu Kim, and Chang D. Yoo. Least probable disagreement
region for active learning, 2021. URL https://openreview.net/forum?
id=bGPNpnZYr1.
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segmentation of small extracellular vesicles in transmission electron microscopy
images. Scientific Reports, 9:1–10, 09 2019. doi: 10.1038/s41598-019-49431-3.

[66] Matthias G Haberl, Christopher Churas, Lucas Tindall, Daniela Boassa, Sébastien
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