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 The construction of new highway infrastructure has not kept pace with the growth 

of travel, mainly due to the limitation of land and funding availability. To improve the 

mobility, safety, reliability and sustainability of the transportation system, various 

transportation planning and traffic operations policies have been developed in the past 

few decades. On the other hand, simulation is widely used to evaluate the impacts of 

those policies, due to its advantages in capturing network and behavior details and 

capability of analyzing various combinations of policies. A simulation-based 

optimization (SBO) method, which combines the strength of simulation evaluation and 

mathematical optimization, is imperative for supporting decision making in practice. 

The objective of this dissertation is to develop SBO methods that can be 

efficiently applied to transportation planning and operations problems. Surrogate-based 

methods are selected as the research focus after reviewing various existing SBO methods. 

A systematic framework for applying the surrogate-based optimization methods in 

transportation research is then developed. The performance of different forms of 



  

surrogate models is compared through a numerical example, and regressing Kriging is 

identified as the best model in approximating the unknown response surface when no 

information regarding the simulation noise is available. Accompanied with an expected 

improvement global infill strategy, regressing Kriging is successfully applied in a real 

world application of optimizing the dynamic pricing for a toll road in the Inter-County 

Connector (ICC) regional network in the State of Maryland. To further explore its 

capability in dealing with problems that are of more interest to planners and operators of 

the transportation system, this method is then extended to solve constrained and multi-

objective optimization problems. 

Due to the observation of heteroscedasticity in transportation simulation outputs, 

two surrogate models that can be adapted for heteroscedastic data are developed: a 

heteroscedastic support vector regression (SVR) model and a Bayesian stochastic Kriging 

model. These two models deal with the heteroscedasticity in simulation noise in different 

ways, and their superiority in approximating the response surface of simulations with 

heteroscedastic noise over regressing Kriging is verified through both numerical studies 

and real world applications. Furthermore, a distribution-based SVR model which takes 

into account the statistical distribution of simulation noise is developed. By utilizing the 

bootstrapping method, a global search scheme can be incorporated into this model. The 

value of taking into account the statistical distribution of simulation noise in improving 

the convergence rate for optimization is then verified through numerical examples and a 

real world application of integrated corridor traffic management.   

This research is one of the first to introduce simulation-based optimization 

methods into large-scale transportation network research. Various types of practical 



  

problems (with single-objective, with multi-objective or with complex constraints) can be 

resolved. Meanwhile, the developed optimization methods are general and can be applied 

to analyze all types of policies using any simulator. Methodological improvements to the 

surrogate models are made to take into account the statistical characteristics of simulation 

noise. These improvements are shown to enhance the prediction accuracy of the surrogate 

models, and further enhance the efficiency of optimization. Generally, compared to 

traditional surrogate models, fewer simulation evaluations would be needed to find the 

optimal solution when these improved models are applied. 
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Chapter 1: Introduction 
 

1.1 Background 

 
Transportation systems are core public infrastructure that is closely related to 

the everyday life of personal people. It does not only directly serve people’s travel 

demand, but also supports living needs indirectly through the transport of goods. 

Efficient transportation can benefit the society in various aspects, including 

stimulating the economy, improving the environment, reducing energy consumption, 

etc. Keeping the transportation system in the best possible condition with the 

available resources is the primary goal for transportation system planners and 

operators. 

Transportation planning is defined as the process of developing strategies for 

operating, managing, maintaining, and financing the area’s transportation system in 

such a way that it will advance the area’s long-term goals (FHWA and FTA, 2007). 

The most widely used method for transportation planning is the rational planning 

model (Friedmann, 1987), which is composed of five major modules: defining goals 

and objectives, identifying problems, generating alternatives, evaluating alternatives, 

and developing plans. Figure 1 illustrates the typical steps involved in the rational 

planning process. It can be noticed that the optimal decision is not derived through 

searching thoroughly over the entire feasible domain. Instead, several alternatives are 

generated and evaluated first, and the optimal strategy is selected through pairwise 

comparison of the system performance of those alternatives. In practice, only a finite 
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number of alternatives can be analyzed for this what-if scenario-based analysis, which 

could be a major disadvantage of the rational planning model. 

 

Figure 1-1: Rational Planning Model Flowchart. (Source: Levinson et al., 2013) 
 

For decisions on infrastructure construction, the assumption of limited 

alternatives may be appropriate because this type of transportation planning strategies 

faces strict constraints in terms of both budget and land use. There are usually very 

few choices available for consideration. However, for decisions on travel demand 

management policies and traffic operations strategies, the limited alternative 

assumption can hardly hold. Unlike the discrete nature of construction decisions (e.g. 

mode to investment, number of lanes, alignment, etc.), the optimization of travel 

demand management policies and traffic operations strategies are usually continuous 

or approximately continuous problems (e.g. pricing for tolled facilities, ramp 

metering strategy, traffic signal plan, etc.). Thus unlimited alternatives should be 

considered. The goal of this type of problem becomes seeking improved settings of 
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policy instruments from all possible options instead of selecting the best settings from 

a fixed set of alternatives. In this situation, scenario-based analysis is no longer a 

sufficient method for searching for the optimal solution. A routine that retrieves 

information from evaluated alternatives and intelligently generates new promising 

alternatives is needed. 

There is already a large number of optimization methods developed in the 

operations research field. However, none of those methods can solve all types of 

problems effectively. A prerequisite of the success in resolving a specific 

optimization problem is the judicious choice of appropriate methods. The key factors 

that influence the choice of optimization methods include the structure of the 

objective functions, constraints, dimension of the problems, etc. Of all these factors, 

the structure of the objective functions plays a rather crucial role as it determines 

what information is available for the optimization module. These include whether the 

problem is a linear problem, whether gradient information is available, how much 

time it takes to evaluate one decision variables combination and so on. In the 

following subsection, the major forms of objective functions for transportation 

planning and operations decision problems will be introduced. 

 

1.2 Objective Evaluation 

 

The performance of the transportation network is the result of complex 

travelers’ behaviors and their interactions with the network infrastructure. To evaluate 

the transportation system performance under certain planning and operations 
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strategies, the influence of implemented measures on the network characteristics and 

the resulting impact on travelers’ behavior need to be modeled. At the macro level, 

traveler’s behavior is usually modeled by mathematical equations with various 

assumptions (e.g. Wardrops’s first principle, utility maximization, etc.). These 

mathematical equations have been applied in the widely-used four-step model as well 

as the more advanced activity-based travel demand models. On the other hand, 

simulation models are developed for the meso or micro level analysis of travel 

behavior. By intelligently modelling the true behavior of individual traveler/group of 

travelers, simulation can introduce more stochasticity into the system. At the same 

time, simulation has a better capability in describing the dynamics of travel behavior 

than typical analytical models. Both mathematical equations and simulation models 

have been widely utilized to evaluate the performance of transportation systems. In 

the following two subsections, a brief review of transportation planning and 

operations decision problems whose objectives are evaluated through these two 

methods will be presented. Moreover, the advantages and disadvantages of the two 

evaluation methods are also summarized. 

 

1.2.1 Mathematical Methods 

The analysis of transportation planning and management problems is usually 

conducted for a relatively large network. Decision makers are interested in the overall 

performance of the regional network under a certain planning and management 

strategy. In this case, the behavior of each traveler in response to the policy stimulus 

should be modeled in the first stage, and the aggregate performance can then be 



5 
 

summarized based on the individual behaviors. Various decision making problems of 

transportation planning and management have been formulated mathematically as bi-

level optimization, with the upper-level formulating the objective function while the 

lower-level modeling individual travelers’ behavior in response to the policy. The 

main outputs of the lower-level problem are the travel path for each traveler and the 

associated attributes of each travel path. Usually, travelers are assumed to make their 

route choices in a user optimal manner, and hence the lower-level problem can be 

formulated as a user equilibrium (UE) traffic assignment model. To relax the 

assumption that travelers have complete knowledge of the network conditions, 

stochastic user equilibrium (SUE) models can also be applied for the lower level 

problem. As for the objective defined by the upper-level problem, objectives which 

have been frequently considered include minimizing total travel cost, minimizing 

average trip travel time, minimizing total vehicle miles traveled, maximizing total 

revenue, maximizing consumers’ surplus, etc. 

Optimization for transportation planning and management problems with 

objectives evaluated through mathematical equations has been extensively studied in 

the existing literature. LeBlanc and Boyce (1986) investigated the optimal road 

network design in achieving the lowest summation of total travel cost and network 

improvement cost. In this paper, the problem is formulated following the bi-level 

structure, and both upper and lower problems are approximated with piecewise linear 

functions for the convenience of solution derivation. The optimal congestion pricing 

under different network conditions in terms of maximizing economic benefit was 

studies in the 1990’s. Cases with the lower level optimization specified as a 
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deterministic user equilibrium problem (Yang and Huang, 1998) or a stochastic user 

equilibrium problem (Yang, 1999) were discussed separately. Chan and Lam (2002) 

proposed a bi-level programming model to determine the best density for speed 

detector deployment in a network with travel time information provided to travelers. 

The lower-level problem was a probit-based traffic assignment model, and the upper-

level problem searched for the speed detector density that minimized the measured 

travel time error variance as well as the social cost of the speed detectors. More recent 

applications of bi-level optimization structure for transportation planning and 

management include optimizing shelter location for hurricane events (Li et al., 2011), 

deriving optimal land use development plan to improve network reliability (Yim et 

al., 2011), finding the optimal combination of exclusive transit lanes on a network 

basis (Mesbah, 2011), and others. 

Decision making on traffic operations measures has also been formulated as 

optimization problems with objective functions expressed by mathematical equations. 

For urban road traffic control, isolated intersection control strategies with either 

fixed-time or traffic-response strategies were investigated, respectively (Improta and 

Cantarella, 1984; Vincent and Young, 1986). Later, both strategies for coordinated 

control of signal at multiple intersections were studied (Stamatiadis and Gartner, 

1996; Kessaci et al., 1990; Gartner et al., 2001). These research efforts generally 

formulate the problem as a constrained optimization, and model the traffic dynamics 

with different types of assumptions either at the link level or at a more detailed level 

in a way such as cell-transmission representation. Regarding freeway traffic control, 

the most direct measure ramp metering has been studied. The optimization of ramp 
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metering strategies is formulated as mathematical programs with traffic dynamics 

described by different traffic flow models, among which both fixed-time ramp 

metering strategies and reactive ramp metering strategies analyzed (Papageorgiou, 

1980; Chen et al., 1997; Zhang et al., 2001). In addition, mathematical methods have 

been applied to evaluate the performance of other types of traffic control strategies, 

such as dynamic message signs (DMS) (Messmer and Papageorgiou, 1995; Ben-

Akiva et al., 1997), variable speed limit (VSL) (Yang et al., 2013), etc. More 

advanced integrated optimization of combined traffic operations strategies has also 

been investigated (Kotsialos et al., 2002; Hegyi et al., 2005; Carlson et al., 2010). 

The mathematical methods are of interest to researchers mainly due to their 

tractability. In this case, the computation of the objective values would be very 

convenient, and traditional optimization approaches can be easily applied. However, 

this method suffers from the limitation that strong assumptions on travel behavior and 

network dynamics need to be set up in order to build up the analytical form for the 

objective functions. For instance, one major behavior dimension needs to be 

considered for evaluating transportation planning policies is route choice. The 

travelers’ route choice is usually described by UE or SUE models, in which link 

travel time is assumed to always decrease along with the increase of link flow. Link 

flow is supposed to be able to increase without limit. Meanwhile, the influence of 

traffic control measures (e.g. traffic signal, ramp metering, etc.) on route choice 

cannot be captured, and some real world phenomenon such as queuing and the First-

In, First-Out (FIFO) constraint are not taken into account. All these features limit the 

ability of the mathematical methods to reflect the traffic realism accurately. For the 
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evaluation of traffic operations strategies, the major concern is the traffic dynamics. 

Common assumptions associated with mathematical methods include constant link 

speed, ignorance of route choice behavior in response to traffic control, etc. 

Moreover, it is more appropriate to apply the mathematical methods for analysis in 

small regions (e.g. a single intersection or a single corridor). In the case of utilizing 

mathematical methods evaluating the impact of traffic control measures implemented 

in large-scale networks (i.e. regional network or even larger), further assumptions 

such as the store-and-forward concept need to be made to reduce the computational 

complexity. As the analytical models for the impact of transportation planning 

policies and traffic operations strategies focus on different aspects of the 

transportation system, it is very difficult to build a single analytical model capable of 

evaluating the joint impact of planning policies and operations strategies on the 

transportation system performance, which is another limitation of the mathematical 

methods. 

 

1.2.2 Simulation Models 

Simulation models mentioned in this section mainly refer to microscopic or 

mesoscopic models, which capture more detailed traffic dynamics than macroscopic 

models. Compared to analytical models, fewer assumptions at the aggregate level 

which obviously violate the characteristics of real traffic (e.g. unlimited link volume, 

ignorance of the FIFO constraint, etc.) are imposed in simulation. Thus transportation 

management agencies are becoming more favorable to simulation models and are 

prone to use simulation for informing decisions about specific investment or 
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management and operations policies in the transportation system. Computerized 

simulation models representing the transportation system were developed since the 

1950’s in the United States (Wang and Prevedouros, 1996), to address more and more 

operational needs in the planning and operations decisions. In simulation models, 

specific rules are assigned to individual or group of travelers in their behavior, and 

their response to the network infrastructure. The entire transportation system is then 

formed with lots of the complex interactions among travelers as well as between the 

travelers and the network infrastructure. Therefore, the evolution of the transportation 

system is essentially determined by those behavioral rules. This bottom-up design 

makes simulation models very good representatives of the real world transportation 

systems, and thus more reliable evaluation tools for agencies in informing decisions. 

Various simulation models at different analysis levels for the transportation 

system have been developed, such as CORridor SIMulation (Halati et al., 1997), 

TransModeler (Balakrishna et al., 2009), Vissim (Fellendorf and Vortisch, 2010), 

Aimsun (Barceló and Casas, 2005), DynusT (Chiu et al., 2010a), DynaMIT (Ben-

Akiva et al., 2002), DYNASMART (Mahmassani, 2002), Dynameq (Tian et al., 

2007), etc. In terms of application, simulation models have been widely used in 

evaluating the effect of transportation planning and operations policies. Examples 

include studies on congestion pricing (De Palma et al., 2005), high-occupancy toll 

(HOT) lane pricing (Murray et al., 2001), traffic signal (Mosseri et al., 2004), 

dynamic route guidance (Gao et al., 2008), ramp metering (Bellemans et al., 2006), 

etc. 
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In general, simulation models exhibit strong advantages in capturing network 

and behavior details, which is of great benefit to transportation planning and 

management agencies. In addition, as fewer aggregate-level strong assumptions on 

traffic dynamics are imposed in simulation models, the evaluation through simulation 

is believed to perform better in representing the real traffic than mathematical 

methods. Moreover, a simulation model is suitable for evaluating the impact of 

combinations of transportation planning and operations strategies, since different 

levels of traffic details are taken into account simultaneously. The major disadvantage 

associated with simulation models is that the evaluation of objective functions 

through simulation is usually computationally expensive. It may cost hours to days 

for a single run of the simulation on a large network (e.g. the entire road network for 

a metropolitan area). This would make optimization based on simulation evaluation 

rather time consuming. Meanwhile, as multiple random processes are involved in the 

simulation, there are usually no closed forms for the objective functions. In this case, 

it would be difficult to retrieve information such as gradient, which further restricts 

the usage of traditional optimization methods (e.g. Newton’s method) when 

simulation evaluation is applied. 

 

1.3 Research Objectives and Methodology 

 

Along with the increase of vehicle ownership and population, travel demand 

in the U.S. continues to grow, but the construction of new highway infrastructure has 

not kept pace with the growth of travel due to the constraints of land availability and 
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budget limit. According to Highway Statistics (1980, 2010), the vehicle miles 

traveled in the U.S. increased 94 percent between 1980 and 2010, while the miles of 

highways only increased 5.4 percent during the same period of time. The resulting 

traffic congestion problem thus becomes the major issue that transportation planners 

and operators need to take care of, especially in urban areas where population is 

densely distributed. The Texas Transportation Institute (TTI) estimated in their 2012 

Urban Mobility Report (Schrank et al., 2012) that congestion in 498 metropolitan 

areas caused urban Americans to travel 5.5 billion hours more and to purchase an 

extra 2.9 billion gallons of fuel for a congestion cost of $121 billion in 2011. 

Besides adding highway capacity, various transportation planning and 

operations strategies have been proposed to improve mobility and reduce congestion, 

including congestion pricing, traffic signal, access management, travel demand 

management, traveler information, etc. These policies may be implemented separately 

or jointly in a particular area. The major challenge for a transportation agency is how 

to select specific policy variables, with the aim of operating the transportation system 

in the most efficient way. The evaluation of the impact of specific policies on the 

transportation system performance is thus a crucial step in the decision making 

process.  

Realizing the advantages of simulation models in representing the traffic 

realism, transportation agencies are more prone to choose simulation models as the 

evaluation tool than mathematical methods. Therefore, the objective of this 

dissertation is to evaluate transportation planning and operations strategies with 

simulation, and develop methods to optimize those strategies based on simulation 
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evaluation. Meanwhile, as the objective functions would be very expensive to 

evaluate when simulation is applied, the developed optimization method should be 

very efficient and able to find optimal or near-optimal solutions with a reasonable 

computation budget. 

In order to achieve the specified objectives, the dissertation starts with a 

review of existing simulation-based optimization (SBO) methods implemented in 

both the transportation field and other disciplines. The appropriate method and 

implementation framework are then developed according to the characteristics of 

transportation simulation and the specified requirement of limited computation 

budget. The optimization methods for problems in different forms (i.e. single-

objective optimization, multi-objective optimization and constrained optimization) 

are investigated. To deal with the heterogeneity of error variance and asymmetric 

distribution observed in transportation simulation outputs, advanced SBO methods 

including enhanced support vector regression (SVR) and Bayesian Stochastic Kriging 

(BSK) models are developed. The associating infill strategies for the iterative 

application of these methods are also discussed. 

 

1.4 Outline of the Dissertation 

 

This dissertation is composed of 8 chapters. Existing SBO methods developed 

in different fields are first reviewed. The appropriate method suitable for 

implementation in the domain of transportation research is then selected and applied. 

Based on the observation of specific characteristics associated with transportation 
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simulation, the selected method is then improved to make it fit better the particular 

problem. The remaining chapters are arranged as follows. 

Chapter 2 reviews SBO methods developed in existing literature, including 

both methods discussed theoretically and those applied practically. The features 

associated with each method are analyzed and compared. Specifically, a review on 

the applications of SBO in transportation research is conducted. 

Chapter 3 introduces the framework as well as the technical details of the 

surrogate-based optimization method, which is selected as the method to be applied in 

the current research. Different types of surrogate models are discussed and compared 

using a numerical example. The promising surrogate models identified through the 

numerical test are then utilized for a real world application of optimizing the dynamic 

pricing for a toll road.  

Chapter 4 further extends the capability of the surrogate models in dealing 

with problems of more interest to decision makers. Constrained optimization and 

multi-objective optimization problems are formulated, and the appropriate infill 

strategies are applied accompanying with the regressing Kriging model to solve these 

two types of problems. 

Chapter 5 describes the heterogeneity of error variance observed in the 

simulation outputs from the dynamic road pricing case study, and then develops an 

enhanced SVR model named heteroscedastic SVR for the simulation-based 

optimization, taking into account the heteroscedastic simulation noise. 

Chapter 6 develops another type of surrogate model named Bayesian 

stochastic Kriging, which also takes into account the heterogeneity in simulation 
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outputs. Meanwhile, the uncertainty in parameter estimation is considered in this 

model. A different case study with integrated optimization of HOT toll rate and 

freeway diversion control is created for the application of this model. 

Chapter 7 further investigates the distribution of simulation noise, and 

develops an improved surrogate model based on SVR, which is named distribution-

based SVR, with prediction error penalized in a way related to the probability density 

function of simulation noise. In addition, the method of bootstrapping is used for the 

estimation of predictor’s variance. The expected improvement infill strategy is then 

incorporated to the surrogate model for global optimization. 

 Chapter 8 concludes the dissertation. Major findings and contributions of the 

research is summarized. The dissertation ends with the proposition of future research 

directions as the extension of the current research. 
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Chapter 2: Literature Review 
 

Simulation-based optimization is a technique that integrates optimization 

routines into simulation analysis. A typical SBO problem consists of decision 

variables serving as parameters in simulation and objective functions evaluated 

through simulation. Sometimes, simple box constraints to decision variables or 

constraints that are associating measurements of experimental simulations would be 

imposed to the problem. The problem can usually be formulated in the following 

from, 

min ( ) [ ( , )]
k

f E F w



x

x x


                                                 (2.1) 

                                                  s.t. min max x x x   

                                                       min max[ ( , )]E G w g x g  

where kx   is the k-dimensional vector of input variables, ( )f x represents the 

objective function, w  is a sample path (simulation replication), and F  is the sample 

response function (simulation). When the simulation model F  is a stochastic 

simulation, a single run of the model F  only provides an estimator of the true 

response. Thus the objective function of the problem is the expectation of the 

simulation output. The vector of decision variables x  is restricted by the lower bound 

minx  and upper bound maxx . The last inequality represents another constraint that is 

evaluated through the simulation function ( , )G wx , and the lower and upper bound 

for this constraint are ming  and maxg , respectively. 



16 
 

There are quite a few excellent review papers on the subject of simulation-

based optimization approaches. Fu (1994) reviewed methods for optimizing discrete-

even systems via simulation. Both the discrete parameter and the continuous 

parameter cases were discussed. Techniques for optimization from a finite set 

including multiple-comparison procedures and ranking-and-selection procedures were 

introduced for the discrete parameter case, while gradient-based methods were the 

focus for the continuous parameter case. Andradóttir (1998) presented a review 

focusing on gradient-based methods for optimization of problems with continuous 

decision variables and random search methods for problems with discrete decision 

variables. Tekin and Sabuncuoglu (2004) summarized the latest development in SBO 

methods, and classified the existing techniques according to problem characteristics 

such as the shape of the response surface (global as compared to local optimization), 

objective functions (single or multiple objectives) and parameter spaces (discrete or 

continuous parameters). More recently, Hachicha et al. (2010) provided a literature 

survey with all classification criteria and proposed a global classification scheme of 

SBO methods. In their review paper, SBO problems were classified regarding their 

input variables (quantitative variables and qualitative variables), output variables 

(single-objective problem or multi-objective problem), parameter spaces (discrete or 

continuous parameters), the shape of the response surface (global as compared to 

local optimization), or by their optimization procedure. 

In addition to the reviews of theoretical development of SBO methods, a 

discussion regarding the progress of SBO methods in application was provided in Fu 

(2002). The optimization modules in five commercial software —AutoStat, 
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OptQuest, OPTIMIZ, SimRunner and WITNESS Optimizer were introduced. Based 

on the review, the optimization procedures implemented in simulation software were 

all based on metaheuristics and predominantly evolutionary algorithms. 

 

2.1 Simulation-Based Optimization Methods 

 

On the basis of the review of SBO approaches aforementioned, we group the 

most popular methods into five categories according to the characteristics of the 

methods in this dissertation. The five categories are methods primarily for discrete 

optimization problems, gradient-based methods, mathematical programming-based 

methods, metaheuristics, and surrogate-based methods. The following subsections 

briefly introduce each type of the SBO methods. 

 

2.1.1 Methods Primarily for Discrete Optimization Problems 

The SBO methods suitable for discrete optimization problems are reviewed in 

Swisher et al. (2004). The methods are differentiated based on the size of the feasible 

solution set. When the feasible solution set is finite and small, ranking and selection 

(R&S) and multiple comparison procedures (MCP) would be appropriate. On the 

other hand, if the set is infinite or very large, techniques such as random search (RS) 

and ordinal optimization (OO) can be applied. 

Both R&S and MCP methods need to perform exhaustive evaluations of all 

feasible solutions. This is only practical when the solution set is small. Being 
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different from traditional optimization methods, R&S and MCP focus more on the 

comparison aspect than searching.  

There are two important concepts in the R&S method which need user 

specification: an indifference zone   and a confidence level P . With multiple 

replications for each parameter setting, the sample mean and variance of the 

simulation output can be computed. According to the user-defined indifference zone 

and confidence level, the number of additional replications for each parameter setting 

is determined. The optimal solution is then chosen as the parameter setting with the 

smallest average sample mean. This derived optimal solution can be guaranteed to be 

within   of the true optima at the confidence level P  (Law and Kelton, 1991). 

The MCP method is different from R&S in that it makes conclusions based on 

the confidence intervals of the difference between any pair of parameter settings 

instead of directly comparing the sample means. With the assumption that the 

simulation for different parameter settings is independent and the simulation noise 

follows the normal distribution, the confidence interval for the difference between 

any pair of input points can be computed. When all confidence intervals are formed, 

one would simply look for the parameter setting that the confidence interval for the 

difference with all other pairs is strictly negative. This parameter setting is the clear 

winner in the feasible solution set. If no clear winner is found, one can crudely 

eliminate some candidates, run more replications for the smaller set and then look for 

the clear winner. This process can be repeated until the conclusive inference can be 

made (Hsu and Nelson, 1998; Goldsman et al., 1991). 
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For problems with infinite feasible solutions, it is definitely impractical to 

apply methods that need exhaustive evaluations of all possible solutions. The 

appropriate method for this type of problem should employ some mechanism to 

reduce the size of the effective solution set. 

The random search method is of interest due to the existence of theoretical 

convergence proofs (Fu, 2002). The main idea of the method is to move iteratively 

from a current parameter setting to another one in the neighborhood of the current 

point. The number of visits to each design point would be counted. Within each 

iteration, a new design point is selected from the neighborhood of the current point 

according to some pre-specified probability distribution. This new point is then 

evaluated through simulation and compared to the performance of the current point. 

The counter for the point with better performance would be increased by one, and the 

new current point is updated. However, this algorithm may face implementation 

difficulty of sampling randomly from the neighborhood with the appropriate 

distribution (Banks et al. 2000). More details on the random search method in 

simulation can be found in Andradóttir (2005). 

Ordinal optimization can reduce the search for optima from a very large 

sample to a much smaller one, by softening the goal of looking for the best to looking 

for a solution that is good enough. The development of this method is based on the 

observation that finding ordering among candidate solutions is much easier than 

carrying out the estimation for each solution individually in most cases. It is found 

that estimating the difference in performance for two design points using the sample 

mean is governed by the Monte Carlo convergence rate of 1 / n , while deciding the 
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ordering of two design points based on the sample mean has an exponential 

convergence rate (Fu et al., 2005). More details on the ordinal optimization method 

can refer to Ho et al. (1992), Ho and Deng (1994) and Lee et al. (1999). 

 

2.1.2 Gradient-Based Methods 

Gradient-based methods applied in simulation-based optimization mainly 

refer to the stochastic approximation (SA) algorithms. Stochastic approximation is 

essentially the adaption of gradient search method in deterministic optimization for 

stochastic settings. This method iteratively updates the current solution by moving 

toward the gradient direction, 


1 ( )k k k kf   x x x                                             (2.2) 

where kx  and 1kx  are the current solution and the updated solutions, respectively. 

( )f
k

 x  represents the estimated gradient of the objective function at the current 

design point, and  k  is the step length. 

As SA searches for the updated solution along a line, it is a local optimization 

method. Under proper conditions, the SA method can guarantee to converge to a local 

optimum. The appropriate estimation of the gradient is very crucial to the 

effectiveness of the method. A review of available gradient estimators that can be 

implemented in simulation is provided in Fu (2006). Popular techniques for gradient 

estimation include finite difference estimation, perturbation analysis (PA) (Spall, 

1992; Bettonvil, 1989; Glasserman, 1991; Fu and Hu, 1994), likelihood ratio/score 

function (LR/SF) estimators (Glynn, 1987; Glynn, 1989; Rubinstein and Shapiro, 
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1993), and weak derivatives (Heidergott, 2001). Based on the theory of finite 

difference estimation, three alternative estimators are generated, which are naïve one-

sided finite difference estimation, two-sided symmetric difference estimation and 

simultaneous perturbations. Generally, only single run of simulation is needed for the 

PA and LR/SF estimators, but the implementation of these two estimators require 

knowledge about the structure of the simulation and modifications to the simulation 

source code. On the other hand, application of the finite difference estimation and 

weak derivatives method require multiple simulation runs, and the gradient estimation 

is usually noisier than the PA and LR/SF estimators. 

 

2.1.3 Mathematical Programming-Based Methods 

The main idea of mathematical programming based methods is to evaluate a 

relatively large set of samples, so as to approximately turn the stochastic problem into 

a deterministic problem. In this way, the powerful deterministic optimization methods 

already developed can be directly applied for simulation-based optimization problems 

(Robinson, 1996). Sample-path optimization is the most popular method falls into this 

category implemented for SBO problems. It takes many simulations for each of the 

design point, and conducts optimization based on the sample means, 

1

1
( ) ( )
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i

f f
n

x x                                              (2.3) 

where  ( )if x  are the independent and identically distributed (i.i.d.) unbiased estimates 

of the true function f  (i.e. the output from a single run of simulation), n  is the 
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number of replications, and ( )nf x  represents the sample mean at the design point x  

over n  replications. According to the strong law of large numbers, 

( ) ( )nf fx x  with probability 1. 

The task of sample-path optimization is then to optimize the deterministic 

function ( )nf x . If the derivatives are available for this approximated deterministic 

problem, the effectiveness of this approach would be enhanced significantly, as a lot 

of nonlinear programming packages require them. However, the major disadvantage 

of this approach is the requirement of large number of replications of simulation 

evaluation, which are usually very computationally expensive. 

 

2.1.4 Metaheuristics 

Metaheuristics have been applied successfully in a lot of real world 

applications. The main strength of metaheuristics is their flexibility. They can be 

applied in various types of problems (e.g. discrete optimization problem, continuous 

optimization problem, deterministic optimization problem, stochastic optimization 

problem, etc.), and all types of constraints can be taken into account. Moreover, 

researchers are interested in them because they are global optimization methods. Four 

most popular metaheuristics that have been applied to simulation-based optimization 

are genetic algorithms, tabu search, simulated annealing and scatter search. 

Genetic algorithm is an evolutionary algorithm, which is inspired from the 

process of biological evolution. This method updates a finite set of solutions 

iteratively. In each iteration, new solutions are generated through crossover and 
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mutation processes. Only those satisfying certain criteria would be accepted, and used 

for the generation of their offspring in the next iteration. The algorithm would 

proceed to generate more favorable solutions along iterations. More detailed 

introduction of the genetic algorithm can be found in Goldberg (1989) and Schmitt 

(2001). 

The most notable feature of tabu search is the memory introduced into the 

optimization framework. This method is based on local search that iteratively moves 

the current solution to a neighbor solution. Unlike other local search methods, tabu 

search allows moves to neighbor solutions that have worse objective values than the 

current solution. In this way, the procedure would not be trapped at a local optimal 

solution. Meanwhile, a list of forbidden moves would be memorized to avoid circling 

or infinite loops. The tabu list would be updated along the iterations. Glover and 

Laguna (1997) provided a very comprehensive reference for tabu search and its 

applications. 

Simulated annealing (Eglese, 1990) mimicked the process of annealing in 

metallurgy, which involves heating and controlled cooling of a material. Similarly to 

the tabu search setting, simulated annealing also iteratively searches for a new 

solution in the neighborhood of the current solution. If a better solution is found, it 

replaces the current solution with probability one. On the other hand, if a worse 

solution is found, the current solution would be replaced by it with a probability 

strictly less than one, and the probability of moving to a worse solution should 

decrease along the iterations.  
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Similarly to genetic algorithm, scatter search is also an evolutionary algorithm 

that iteratively updates a finite set of solutions. Basically, generalized forms of linear 

combinations of current solutions would be generated as the optional solutions for the 

updated set. These new solutions are then mapped into associated feasible solutions. 

After the mapping, the new feasible solutions would be evaluated based on some 

criteria including diversity, objective function value, etc. Only those defined as good 

points according to the criteria are kept in the new solution set for the next iteration. 

An advantage of the scatter search is that information not contained separately in the 

original points can be captured through the combination process. A complete 

reference on scatter search can be found in Laguna and Marti (2002). 

 

2.1.5 Surrogate-Based Methods 

Surrogate-based optimization approach is a feasible alternative to solve 

continuous optimization problems with computationally costly objective functions. 

Surrogate modeling or metamodel-based simulation optimization aims to regress the 

response surface that characterizes the relationship between the inputs of decision 

variables and simulation outputs (Hussain et al., 2002; Queipo et al., 2005; Jakobsson 

et al., 2010). The surrogate simplifies simulation optimization because of its 

deterministic rather than stochastic relationship between the input and output (Barton 

and Meckesheimer, 2006). Using only an initial input dataset and corresponding 

output values of the objective function, the surrogate model can be developed as an 

approximation of the expensive-to-evaluate objective. In the surrogate-based 

optimization approach, an unknown function that formulates the relationship between 
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simulation input and output is approximated with a predefined parametric function 

whose coefficients can be determined via the experiment design. The most 

fundamental forms of surrogate models are linear and quadratic polynomial 

regression (Montgomery, 2008). On the basis of exploration and exploitation of the 

computationally efficient surrogate, the optimal solution can be obtained.  

However, the expediently implemented low-order polynomials may be 

heavily biased when applied in complex functions of high nonlinearity. More 

advanced radial basis functions (RBF) (Björkman and Holmström, 2000; Gutmann, 

2001; Regis and Shoemaker, 2005; Zhou et al., 2013) and Kriging models are capable 

of providing good predictions for the complex response surface. A radial basis 

function neural network (RBFNN) learns input-output mapping by covering the input 

space with basis functions that transform a vector from the input space to the output 

space (Adeli and Karim, 2000; Adeli and Jiang, 2009). A support vector regression 

(SVR) surrogate model provides a good compromise between prediction accuracy 

and robustness of other approximations (Smola and Schölkopf, 2004; Wandekokem 

et al., 2011; Li et al., 2013). 

Forrester et al. (2006) pointed out that one smooth continuous approximation 

function (e.g. Gaussian RBF and ordinary Kriging) is unable to fit the discontinuous 

simulation output due to random noises around the true average response value. The 

optimization accuracy relies on how accurate the surrogate models are in capturing 

the performance variations. 
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2.2 Deterministic vs. Stochastic 

 

In a stochastic simulation, the output from a single run of simulation is just a 

realization of a random number.  In this case, the output is not likely to be equal to the 

true objective value. Directly using the stochastic output as the estimator of the true 

objective value in the optimization routines may result in searching in the wrong 

direction or premature stopping. The noise introduced by stochastic simulation should 

be properly controlled during the optimization process. 

There are mainly three types of methods implemented in stochastic 

optimization to take into account the simulation noise. 

The most common way is to conduct multiple simulation runs at each design 

point, and use the mean of the output from those replications as the estimator of the 

true objective value. This is an unbiased estimator which would converge to the true 

objective value with probability 1 if the number of replications is infinite. The 

advantage of this method is that it is very flexible and deterministic optimization 

methods can be directly applied without any revisions. However, the performance of 

this method is determined by the quality of the estimator, which is heavily dependent 

on the number of replications. For simulations with expensive-to-evaluate objective 

functions, raising the number of replications would significantly increase the 

computational burden for the entire optimization process.  

Instead of requiring the accurate objective value for each design point, the 

second type of method acknowledges the noise in simulation outputs, and allows the 

objective value used in the optimization routine to be different from the simulation 
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output. However, this method would only accept deviations within a specific limit. If 

the deviation is greater than the predefined limit, the part exceeding the limit would 

be penalized. A typical method in this category is surrogate-based method with SVR 

as the metamodel. By defining an  - insensitive loss function, the difference of the 

surrogate prediction and the actual simulation output at any design point that is larger 

than   will be penalized when constructing the SVR response surface. The error 

acceptance band   is usually selected to be the standard deviation of simulation noise. 

Very accurate estimation of the true objective value is not necessary when applying 

this type of method. Thus only a few replications at each design point are needed, 

which can already provide rough estimates of the true objective value as well as the 

variance of simulation noise. In this way, the computational cost is remarkably 

reduced compared to the first type of method. A problem with this type of method is 

that the choice of   is rather arbitrary, and the distribution of the stochastic output is 

intrinsically assumed to be symmetric.  

 The third type of method realizes the stochastic nature of the simulation 

outputs, and incorporates the consideration of the distribution of the simulation noise 

into the optimization process. In addition to utilizing the mean of simulation outputs 

as the estimator of the true objective value, the method makes use of the information 

retrieved from the replications more comprehensively, by assuming the sample 

variance of simulation outputs to be the variance of simulation noise. This estimated 

distribution is then explicitly introduced into the optimization process. A recent 

surrogate-based optimization method with stochastic Kriging metamodels 

(Ankenman et al., 2010) falls into this category.  The simulation noise is assumed to 
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be normally distributed with zero mean and variance equal to the sample variance. 

The parameters of the metamodel are then estimated through maximum likelihood 

estimation. Similar to the second type of methods, the number of replications needed 

for this method is much smaller than the first one. And from the theoretical point of 

view, this type of methods should perform better as it utilizes more information from 

the evaluation of design points than the second type of methods. A major 

disadvantage of this method is that the simulation noise is usually assumed to be 

normally distributed due to computational convenience. This assumption may restrict 

the power of the method in dealing with stochastic optimization problems when the 

actual simulation noise is not normally distributed. 

 

2.3 SBO Application in Transportation Research 

 

As many real world problems are very complex and mathematically 

intractable, simulation has become an appropriate tool for performance evaluation. 

Therefore, SBO has been applied in various research fields to help in decision making. 

Examples of SBO applications have been found in inventory management in supply 

chains (Schwartz et al., 2006), logistics management (Kochel et al., 2003: Yoo et al., 

2010), production planning and scheduling (Feng and Wu, 2006; Kazemi and Zarandi, 

2008), wireless sensor network design (Simon et al., 2003), building design 

(Tresidder et al., 2012; Gengembre et al., 2012), design of aircraft (Simpson et al., 

2001), etc. 
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Specifically for the research in the transportation planning and operations field, 

applications of SBO are not very common yet. In the literature, transportation 

engineering optimization problems are characterized by computationally expensive 

objective functions, high dimensional decision variables, and stochastic simulation 

experiments. In the early stages, due to the limitation of computers’ computing power, 

metamodels were developed to approximate expensive simulation models in order to 

reduce computational burden. Studies developing surrogate models and comparing 

the performance of surrogate models and simulation models were conducted, which 

include approximating delays caused by a single queue in waterway (Ramanathan and 

Schonfeld, 1994), approximating delays through series of waterway queues (Dai and 

Schonfeld, 1998) and approximating delays caused by a queuing network (Zhu et al., 

1999). 

In terms of optimization, SBO is most frequently applied for the calibration of 

simulation models, while a few other studies have utilized SBO to suggest 

transportation planning or operations strategies.  

The dynamic traffic assignment (DTA) model calibration of O-D flows and all 

other simulation parameters is formulated as a large-scale iterative simulation-based 

optimization problem, which can be solved with several alternative approaches, such 

as Bayesian method, Stable Noisy Optimization by Branch and FIT (SNOBFIT), 

Box-Complex, Simultaneous Perturbation Stochastic Approximation (SPSA), Finite 

Differences Stochastic Approximation (FDSA) (Vaze et al., 2009; Sundaram et al., 

2011; Flötteröd et al;, 2011; Omrani and Kattan, 2012). The performance of SPSA for 

the calibration of large-scale traffic simulation models has also been demonstrated. 
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For example, Balakrishna et al. (2007a) adapted the systematic traffic simulation 

model calibration methodology for the simultaneous calibration of all demand and 

supply models within a microscopic traffic simulation model using aggregate, time-

varying traffic measurements; Balakrishna et al. (2007b) presented a systematic 

offline DTA calibration methodology that estimated all demand-and-supply inputs 

and parameters simultaneously.  

Efforts have also been made to support decision making on various 

transportation planning and operational policies. Problems investigated include 

selection of a charging cordon in a general traffic network using Genetic Algorithm 

(GA) (Sumalee, 2004), developing a decision support tool for mitigating traffic 

congestion (Melouk et al., 2010), determining the traffic light signal timings for a 

single intersection with stochastic approximation (Fu and Howell, 2003), optimizing 

regional signal timing strategies using surrogate modeling (Osorio, 2010), optimizing 

coordinated, area-wide traffic signal control considering drivers re-routing behaviors 

using a metaheuristic model (Teklu et al., 2007), jointly optimizing traffic control and 

transit priority settings with GA (Stevanovic et al., 2008), optimizing waterway 

transportation investment with SPSA (Ting and Schonfeld, 1998), selection of 

interdependent transportation projects considering cost uncertainty and budget 

constraint with GA (Tao and Schonfeld, 2005), selection and scheduling of 

interdependent transportation projects with island models considering cost uncertainty 

(Tao and Schonfeld, 2007) or not (Tao and Schonfeld, 2006), scheduling of 

interrelated waterway projects with single budget constraint (Wang and Schonfeld, 

2005), constraints on project multiplicity and precedence (Wang and Schonfeld, 2008) 
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or even more complicated constraints on project multiplicity, precedence and regional 

budget (Wang and Schonfeld, 2012) using GA, scheduling of waterway maintenance 

projects with constraints on budget and lock condition using GA (Wang et al., 2009), 

and to develop a heuristic approach for system wide highway project selection based 

on total benefit maximization under budget uncertainty (Li et al., 2010). Furthermore, 

to enhance the efficiency of simulation based optimization with heuristic methods, 

Yang (2010) developed a hybrid approach combining simulation and analytic 

methods along with parallel computing techniques. A first stage coarse search was 

conducted based on the analytic model, and in the second stage, a refined search 

based on simulation model was then performed inside the promising region provided 

by the first stage. 

The most widely used SBO approach is heuristic methods (i.e. GA and 

simulated annealing), which can be conveniently applied to deal with different 

problems, while they are not very efficient in terms of searching for the optima. In a 

few other studies, stochastic approximation and surrogate modelling methods are 

investigated and applied. 

Besides being directly utilized for solving optimization problems, surrogate-

based methods are becoming popular and have been applied for other types of 

problems in the transportation domain in recent years. This type of methods is gaining 

attention mainly due to its ability of approximating the global trend of the objective 

function and power of significantly reducing the number of simulation runs. In 

particular, Ciuffo et al. (2011) utilized Kriging metamodeling to verify different 

micro-simulation calibration methods. Sensitivity analysis of traffic simulation 
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models have also been benefited from the application of surrogate models (Retherford 

and McDonald, 2011; Ciuffo et al., 2013). 

 

2.4 Summary 

 

Simulations have shown their advantages in representing the realism and 

various detailed aspects of the transportation system, and simulation-based 

optimization has shown its potential in supporting transportation planning and 

operations decision makings. Although various SBO methods have been developed 

for decades, the application of SBO in the transportation domain is still very few. 

According to the “no free lunch” theorems (Wolpert and MacReady, 1997; Ciuffo 

and Punzo, 2013) in the optimization community, there is no algorithm that 

outperforms all the others over the entire domain of problems, which means that the 

choice of the most appropriate algorithm depends on the features of the specific 

problem.  

As transportation simulations take account of the interactions between 

complex travel demand patterns and network supply, it is always time consuming to 

evaluate the system performance. It can take up to hours to days for a single run of a 

regional network simulation. Thus, simulation-based optimization methods that 

require fewer objective function evaluations are desired. Meanwhile, due to the 

stochastic nature of transportation simulations, method that can deal with the 

simulation noise with fewer replications at design points is preferred. Although online 

simulation, as well as real-time traffic control, has appeared along with the 
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development of technology, most of transportation planning and operations decisions 

are still made offline due to the constraint of computational power. In this case, 

optimization methods that can take advantage of distributed computing are favored. 

Moreover, transportation simulation models are usually very complex due to the 

consideration of the interactions among travelers and between travelers and the 

network on all dimensions (e.g. departure time, mode, route, destination, etc.). The 

underlying models for different simulators are usually different. To reduce the 

potential cost of transferring the developed methods from one simulator to another, 

methods that do not require specific knowledge about the underlying structure of the 

simulation is of interest. Therefore, we favor derivative-free methods for the 

optimization problems based on transportation simulation. 

Overall, according to all these features associated with transportation 

simulations, surrogate-based methods are chosen as the focus of this dissertation. In 

addition of applying existing surrogate-based methods, improvements will be made to 

better adapt the methods to specific problems and enhance the performance of the 

optimization procedure. 
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Chapter 3: Surrogate-Based Optimization Procedures and 
Application 

 

3.1 Framework 

 

A framework of surrogate-based optimization procedures using transportation 

simulations is illustrated in Figure 3-1.  

 

Figure 3-1: Transportation Simulation-based Optimization Procedure using the 
Surrogate Methodology. 
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The first step is to define the optimization problem. Given the objective 

functions that can be evaluated by simulation outputs, we generate an initial number 

of toll charges through a design of experiments (DoE). The DoE method used in the 

current study is Latin Hypercube Sampling (LHS), which would be introduced in the 

next subsection.  

The second step is to select a transportation simulator for the specific 

optimization problem. Run the initial set of design points using the chosen simulator. 

Based on the simulation outputs, we evaluate the objective functions. Considering the 

generally large number of DoE cases (that aim to obtain a more accurate surrogate), 

the analysis could be computationally expensive. Simulation outputs of a 

transportation network usually involve random noises, so it is better to run each 

sampling point for several repetitions and estimate the mean value of objective 

function evaluations, if the computational burden is affordable. 

The third step is to construct a response surface using surrogate models. In 

this study, first we adopt one-stage surrogate models, i.e. quadratic polynomial 

function, Gaussian RBF, ordinary Kriging and SVR. To find new design points based 

on the initial samples, we then consider two-stage surrogate models by infilling points 

to the initial set using criteria such as the probability of improvement and the 

expectation of improvement across the response surface. Due to simulation random 

errors, we may also incorporate the surrogate models that are capable of dealing with 

noises. Once all of the cases are analyzed, proper parameters of the surrogate models 

can be determined. This step is regarded as the most important component in the 

whole framework. 
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The fourth step is to assess and validate the assumed surrogate models by 

comparing an additional test set of objective function data with values estimated by 

the surrogates at points corresponding to the variables at which the independent 

objective function values are calculated. On the basis of the error observed with the 

validation dataset, the accuracy of each surrogate model is checked using certain 

criteria such as correlation coefficient or coefficient of determination to determine 

whether the initially assumed surrogate model is appropriate. If it is, the best 

surrogate model will be employed to explore the optimal solutions. If the evidence 

shows that a certain surrogate model does not achieve the required predictive 

performance based on the current test dataset, a proper way is to recall the two-stage 

surrogate models to generate infill points and run transportation simulations for new 

points until the accuracy criteria are reached. 

Finally, we find the optimal solution using the optimized surrogate models. 

Though the estimated response surface may be too complex to explore its global 

optima using analytical techniques such as gradient descent method, we can still 

apply a heuristic approach, e.g. GA, to seek the global optima for the estimated 

response surface. The computational costs of this tuning process can be neglected 

compared to the burden of transportation simulations.  

All key components in the framework are highlighted in shadow boxes in 

Figure 3-1. The details of three of the main components:  DoE, surrogate model 

construction, and infill strategies, will be further explained in the following 

subsection. 
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3.2 Optimization Procedures 

 
This section explains the technical steps that are necessary to apply the 

surrogate models to simulation-based optimization problems.  

 

3.2.1 Design of Experiments 

A space filling DoE is useful when only a few runs of simulation can be 

afforded within the computational budget. In the current study, LHS is employed to 

generate initial samples to fit surrogate models. Each design variable is stratified into 

an equal number of intervals according to the LHS setting. Being different from 

classic designs such as 2k  or 3k  fractional factorial designs and central composite 

designs (CCD) in (Montgomery, 2008), where each dimension of the decision 

variable is split into a relatively large number of equal-size bins, in which subsamples 

are uniformly generated. The LHS is advantageous in that the mapping of high 

dimensional design inputs into each dimension is uniformly distributed without 

overlap. Thus, such a property makes LHS one of the space-filling types of DoE. 

In this paper, we recall the maximin design defined by Forrester et al. (2008). 

The ranking criterion function proposed by Morris and Mitchell (1995) is 

1/

*

1

arg min ( ) arg min

p
m

p
p j j

j

J d 



 
   

 


X X
X X                         (3.1) 

where ( ) ( ) ( ) ( ) T ( ) ( )|| || ( ) ( )i j i j i jd     x x x x x x , values of m  distances are sorted in 

an ascending order, i.e. 1 2 ,..., md d d   . Let 1 2, ,..., mJ J J  be the number of 

1 2, ,..., md d d , respectively. To illustrate the concept of LHS, we generate 100 different 
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2-dimensional plans. Each one contains 20 points. Then we calculate the p  values of 

100 different plans. Figure 3-2 shows the evolutionary process of the sampling plan 

space filling values, two of which are zoomed in and compared. The LHS plan with a 

lower value of p  distributes more uniformly in the feasible domain.  

 

Figure 3-2: An Illustration of 100 LHS DoEs Based on the Spacing Filling Criterion 
( )p X . 

 

3.2.2 Surrogate Model Construction 

Surrogate models serve as the approximation of the true response surface of 

expensive-to-evaluate objective functions. As the closed form of the surrogate models 

is available, great computational cost can be saved when searching for the optimal 
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solution. Common forms of surrogate models in the literature are introduced in this 

section. 

 Quadratic Polynomial Function 

Using the DoE generation approach introduced above, we have an initial set 

of sampling plan (1) (2) ( ) T[ , , , ]nX x x x  and responses (1) (2) ( ) T[ , , , ]ny y yy  . The 

most commonly used surrogate model is the quadratic polynomial function given by 

2
0

1 1

ˆ( ) ,
k k

k
i i ij i j ii i

i i j j i

f x x x x   
  

      x x                    (3.2) 

where T
1 2[ , ,..., ]kx x xx  is a k –dimensional point to be predicted, ˆ ( )f x  is the 

estimate of the real objective function ( )f x , 0  is the intercept, i s are the linear 

coefficients, ij s are the coefficients of interaction terms, ii s are the quadratic 

coefficients. 

 Radial Basis Function (RBF) 

Compared with lower order polynomial function, RBF surrogate models can 

obtain better approximations to true objective functions of high nonlinearity. RBF 

uses the basis function ( )r  that only depends on the radial distance r  between x  

and each sample point ( )ix . It assumes that the correlation of arbitrary two sample 

points depends only on the distance (e.g. Euclid distance) in the decision variable 

space. We seek a RBF approximation to f̂  in the form 

T ( )

1

ˆ ( ) (|| ||)
n

i
i

i

f w


  φx w x x                  (3.3) 

where w  is the vector of weighted coefficients of RBF vector φ , and ( )|| ||ix x  is the 

Euclidean norm. 
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A Gaussian basis function is used in this paper, i.e. 

 ( ) ( ) 2(|| ||) exp || || , 0i ic c     x x x x                             (3.4) 

where c  is the shape parameter that can be determined by tuning the minimization of 

a cross-validation (CV) error estimate in the optimization step. It is worthy to note 

that c  can be various if we define different radial basis functions (RBF network), 

while normalization of input variables is not necessary for the Gaussian basis function 

because there are weight parameters for each function, so a universe c  will be used 

for the Gaussian radial basis function in this paper. 

The prediction at a new point is given by 

1 Tˆ( ) ( )f x Φ y φ                                           (3.5) 

where Φ  denotes the so-called Gram matrix, each element of which is defined as 

( ) ( )
, (|| ||)j i

i j  Φ x x .  

The prediction error at any x  in the design space is given by (Gibbs, 1997)       

2 T 1ˆ ( ) 1s  x φ Φ φ                                          (3.6) 

 Kriging Method 

The Kriging method predicts a response by summarizing a linear model and a 

high frequency variation component that represents fluctuations around the trend. In 

this study, we will consider the ordinary Kriging model  

( ) ( ), E[ ] 0f     x x                                (3.7) 

where   is the mean of the objective function, and   is the estimation error with a 

covariance of ( ) ( ) 2 ( ) ( )Cov[ ( ), ( )] ( , )i j i j   x x x x , 2  is the variance, ( ) ( )( , )i j x x  is 

the Kriging basis function with the following correlation form  
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( ) ( ) ( ) ( ) 2

1

( , ) exp ( )
k

i j i j
l l l

l

x x 


 
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 
x x                           (3.8) 

where T
1[ , , ]k θ   is a vector of scaling coefficients that allow different widths of 

the basis function for each dimension of the k -dimensional x  decision variable. The 

element of correlation matrix based on all the observed data is ( ) ( )
, ( )i j

i j  Ψ x x . 

Suppose all observed data are jointly Gaussian distributed, the likelihood 

function can be formulated as  

T 1
2

2 /2 1/2 2

1 ( ) ( )
( | , ) exp

(2 ) | | 2n
L

  
 

  
  

 

y 1 Ψ y 1
y

Ψ
                  (3.9) 

where Ψ  is the determinant of Ψ , and y is a 1n vector representing the 

observation of the n sample points. 1 is a 1n  unit column. By taking the derivatives 

of the log-likelihood function with respect to   and 2 , and set them to be zero, the 

maximum likelihood estimates (MLEs) of   and 2  are then 

T 1

T 1
̂




1 Ψ y

1 Ψ 1
                                                     (3.10) 

 
T 1

2 ˆ ˆ( ) ( )
ˆ

n

 
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
y 1 Ψ y 1

                                          (3.11) 

Substituting ̂  and 2̂  into Equation 3.9, the vector of scaling coefficients θ  can be 

tuned through maximizing 2ˆ ˆ( | , )L  y .  To make predictions at a new point *x  using 

the Kriging model, suppose *( )f x  is the supposed function value at *x . We can add 

this new point to the observed dataset, and calculate the maximum likelihood 

estimation (MLE) of the mean value and variance at the new point ܠ∗  based on 

Gaussian Process (Rasmussen and Williams, 2006). 
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T 1ˆ ˆ ˆ( ) ( )f    x ψ Ψ y 1                                          (3.12) 

T 1
2 2 T 1
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ˆ ˆ( ) 1s 
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


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 

1 Ψ ψ
x ψ Ψ ψ

1 Ψ 1
                                 (3.13) 

where ψ  is the vector of the correlation between the new point *x  and all the 

sample points, expressed as (1) ( ) T[ ( , ), ( , )]n  x x x xψ  . 

The aforementioned ordinary Kriging model is noise free. So the predictions 

at sampled points are exactly the same as observations, which may be biased when 

simulation noise is taken into account. As a consequence, the surrogate response 

surface may perform over fitting features because the estimated response surface 

needs to pass all sampled points in the ordinary Kriging model. A model which has 

been overfit will generally have poor predictive performance, as it can exaggerate 

minor fluctuations in the data. To get rid of this problem, a regularization constant is 

added into the correlation matrix to filter noise. The regressing Kriging model can be 

used by adding the error estimation of the observed data to the diagonal of the 

correlation matrix, so that the new matrix is  Ψ Ψ I , where   is the regulation 

constant, I  is identity matrix.   can also be determined through MLE. Using the 

regressing Kriging model, the predicted mean value and estimation variance a the 

new point *x  are given by 

* T 1ˆ ˆ ˆ( ) ( )r rf    x Ψ y 1ψ                                    (3.14) 
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1 Ψ 1




ψ
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And the MLEs of the mean and variance of the Gaussian Process are given by 
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 Support Vector Regression (SVR) 

SVR is one of the most important applications of support vector machine 

(SVM). An overview of the basic ideas underlying SVR for regression and function 

estimation has been given in (Smola and Schölkopf, 2004). The key attribute of SVR 

is that it specifies and calculates the so-called  -margin within which the sample data 

errors are accepted without impacts on the surrogate prediction. The prediction is 

determined entirely by the support vectors that lie on or outside the  -margin 

(Forrester et al., 2008). In the  -SVR, the goal is to find a surrogate that has the least 

  deviation from the observations for all the training dataset, and at the same time is 

as flat as possible. SVR is a powerful tool for prediction given large, high-

dimensional datasets. The parameter tuning time is longer than other surrogate 

methods due to the presence of the quadratic programming problem during the 

computation process. However, the additional computation time is marginal 

compared to the time spent on simulation. SVR is selected as an alternative surrogate-

based optimization method in this study and compared with other aforementioned 

surrogate models. The technical details of the SVR method would be introduced later 

in Chapter 4. 
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3.2.3 Infill Strategies 

To enhance the accuracy of surrogate models based on initial samples, further 

objective function evaluations based on certain infill or update strategies are required. 

This section incorporates the suboptimal exploration strategy that induces local 

optimization and the global exploration strategy that is promising to locate the global 

optimum. 

 Suboptimal infill strategy 

The local optima search strategy can be achieved by exploration over the 

surrogate surface estimated using the aforementioned surrogate models. In this study, 

we use GA to explore ˆ ( )f x  and seek its global optima. The update point is given by 

min max

update
ˆarg min ( )f

 


x x x
x x                             (3.18) 

Then the simulation output at updatex  will be evaluated by an extra simulation 

run, i.e. updatey . The infill strategy will be terminated when the maximal number of 

simulation runs is reached or the Euclidian norm of two adjacent update points is 

smaller than a predefined tolerance.   

 Global optimal infill strategy  

Global optimization can be classified into deterministic and stochastic 

methods. The former one generates a deterministic sequence of points converging to a 

globally optimal solution. Transportation simulation-based optimization problem may 

not belong to deterministic category because various sources of uncertainties lead to 

stochastic simulation outputs, e.g. random seeds in trip generation, probabilistic route 

choice behaviors of travelers, and DTA. The latter one randomly generates feasible 
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updating points to infill the initial samples using a number of heuristic algorithms for 

the optimal parameter tuning (Kim and Adeli, 2001; Baraldi et al., 2011; Chabuk et 

al., 2012; Sarma and Adeli, 2001; Song et al., 2013). 

To obtain the global optima for expensive-to-evaluate functions, a series of 

two-stage procedures can be incorporated (the first stage includes DoE and surrogate 

model construction). The second stage conducts the exploitation process to locate 

promising regions. The global optimization has been investigated in quite a few 

existing studies. Jones et al. (1998) proposed the Efficient Global Optimization 

(EGO) based on Kriging basis functions, and applied the expected improvement of 

the surrogate to select new points. To handle noisy objective functions, Huang et al. 

(2006) provided the Sequential Kriging Optimization (SKO) as an extension of the 

EGO algorithm. Villemonteix et al. (2009) proposed the Informational Approach to 

Global Optimization (IAGO) that selects the infill point based on the entropy 

minimization. Jakobsson et al. (2010) proposed an RBF-based surrogate model for 

global optimization of expensive and noisy black box functions, whereas updating 

infill points minimize the total model uncertainty weighting. More detailed 

discussions on the exploration and exploitation process can be found in (Jones, 2001; 

Forrester and Keane, 2009; Kleijnen, 2009). 

The two most common methods use estimated standard deviation information 

to select an infill sample with the maximum probability of improvement (PI) or 

expected improvement (EI), which are given by 

min
2

2

ˆ1 ( ( ))
PI( ) exp d

ˆ2 ( )ˆ2 ( )

y u f
u

ss 

 
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 


x
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                      (3.19) 
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where PI( )x  and EI( )x  are the PI and EI estimations at the point x , miny  denotes the 

smallest value of all outputs in the training dataset. 

 

3.2.4 Summary 

Table 3-1 shows the twelve models we investigate in the current study. 

Method 1 (M1) is the quadratic polynomial function based surrogate, which only 

recalls the 2nd-order polynomial functions with interaction terms. Methods 2, 3 and 4 

are both one-stage models that estimate the response surface only using the initial 

samples. Methods 5 through 8 are suboptimal two-stage approaches. M9 and M10 

enhance the Kriging method with the global optimal infill strategy using PI and EI 

maximization, respectively. To deal with noisy data, M11 is the one stage regressing 

Kriging model. The main difference between Kriging with and without noisy errors is 

that the estimated response surface would pass through the known points in M3, 

while M11 allows some bias to the known points to obtain a much smoother response 

surface. Finally, M12 is the EI infill re-interpolating Kriging method. The 12 methods 

will be tested and compared using a small transportation network with additive toll 

links in the following subsection. The selected methods from the numerical test are 

then applied to a real transportation network in the State of Maryland.  

 

 

 



47 
 

Abbr. Methods 
One-stage 
surrogate 

Infill 
surrogate 

Global 
optimum 

Simulation 
noise 

M1 Quadratic polynomial √ × × × 
M2 Gaussian RBF √ × × × 
M3 Kriging √ × × × 
M4 SVR √ × × × 

M5 
Suboptimal updating quadratic 
polynomial 

× √ × × 

M6 Suboptimal updating Gaussian RBF × √ × × 
M7 Suboptimal updating Kriging × √ × × 
M8 Suboptimal updating SVR × √ × × 

M9 
Probability of improvement infill 
Kriging 

× √ √ √ 

M10 
Expected improvement infill 
Kriging × √ √ √ 

M11 Regressing Kriging √ × × √ 

M12 
Expected improvement infill Re-
interpolating Kriging 

× √ √ √ 

 
Table 3-1: Characteristics of Surrogate Models. 

 

3.3 Numerical Test 

 

This section tests the surrogate models in Table 3-1 using a second-best social 

optima additive highway pricing with a fixed demand for a small network. The user 

equilibrium (UE) assignment is chosen because the true objective function can be 

exactly known through an analytical derivation, so we can validate the estimated 

response surfaces with the true response surface. Though UE and simulation are quite 

different in objective function evaluations, e.g. mean travel time of all travelers, the 

input-output mapping can be estimated and validated through surrogate models. The 

test based on the small network with UE assignment can provide insights on the 

features of different surrogate models and help to identify the most capable method 

that can be used to model the input-output mapping in a larger network. 

The link-based pricing scheme is investigated as the second-best toll charging 

in a small road network, where tolls are charged only on a subset of selected links, 
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which can be categorized as a Mathematical Program with Equilibrium Constraints 

(MPEC) (Yang and Huang, 2005). The second-best road pricing problem in this paper 

is to choose a set of optimal toll charges to minimize the total travel time (or the 

average travel time due to fixed demand). The bi-level mathematical program with 

equilibrium constraints can be formulated. The upper level model is  

* * *min ( , ) ( )a a a
a A

F t q q



z

z q                                         (3.21a) 

*

0
s.t. arg min ( , )d

aq

a
a A

c q q


 q
q z                               (3.21b) 

min max z z z                                                       (3.21c) 
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0, , ,rs
p rsf r R s S p P                                     (3.21g) 

where F  is the total travel time function, T
1[ ,..., ]kz zz  is the link toll vector, 

satisfying k K , K A  is a subset of tolled links, A  is the whole link set, 

* * T[ , , ]aqq    is the equilibrium link flow vector, *
aq  is the equilibrium flow of 

link a , satisfying a A , at  is the average travel time of link a , constraints (3.21b) 

through (3.21g) are the conservation conditions, rs
pf  is the path flow of OD pair 

( , )r s , rs
ap  is the 0-1 indicator, R  and S  are origin and destination sets. 
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The well-known Frank–Wolfe method can be used to solve the lower level 

programming problem of the traffic equilibrium model (Ramadurai and Ukkusuri, 

2011; Szeto et al., 2011; Aziz and Ukkusuri, 2012; Unnikrishnan and Lin, 2012). The 

solution of the bi-level programming problem can be obtained by using the gap 

function approach solved by the augmented Lagrangian algorithm (Yang and Huang, 

2004; Meng and Wang, 2008).  

Travelers are assumed to be homogeneous with identical values of time. From 

the perception of link-based cost, the generalized cost function ac  of link a  can be 

expressed as follows 

( )
( , )

( ) ,
k k k

a a
a a

z t q a k K
c q

t q a A a K




  
   

z                          (3.22) 

where kz  and kt  are the toll charge and average travel time of link k ,   is the value 

of time. 

 

Figure 3-3: Numerical Network. (link 1 and 2 are the tolled links) 
 

Consider a network depicted in Figure 3-3, consisting of 6 nodes and 8 links. 

Link 1 and 2 are road segments subject to toll charge. The BPR link performance 

function is applied 

0( ) 1.0 ,a
a a a

a

q
t q t a A

C




  
    
   

                            (3.23) 
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where 0
at  is the free-flow travel time, aC  is the link capacity, parameters are 

0.15   and 4  , see Table 3-2. 

Link 1 2 3 4 5 6 7 8 
0
at  20 20 20 20 6 1 1 6 

aC  800 800 600 600 500 800 800 500 
*
aq  686 686 314 314 314 0 0 314 

*( )a at q  21.6 21.6 20.2 20.2 6.1 1 1 6.1 

 
Table 3-2: Input Data and Equilibrium Flow for a Small Road Network. 

 

 

Figure 3-4: The True Response Function of *( , )F z q .  
 

There is only one O–D pair from node 1 to node 3 with a demand of 1000d   

(flow units), and the value of time is 1  . Four paths from node 1 to node 3 using 

links are: 1–2, 1–6–4–8, 5–3–4–8, 5–3–7–2. One of the optimal toll charges is 

* T[5.555, 4.045]z . The minimized average travel time is min 46.22F  . Optimal 
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path flows are  * *
1 3 686f f   and * *

2 4 0f f  . Figure 3-4 shows the true responses 

of the upper level objective function *ˆ ( , )F z q  corresponding to 1z  and 2z . It is an 

interpolation surface based on a uniform 20 20  grid. The simulation random errors 

are because the UE link flows may be not integers.  

To compare the surrogate-based optimization approaches shown in Table 3-1, 

we generate 10, 20, 30 and 40 initial LHS samples for the five one-stage surrogate 

models M1, M2, M3, M4 and M11, respectively. Then we generate other initial 8, 15, 

25 and 35 LHS points for the two-stage models M5, M6, M7, M8, M9, M10 and 

M12, then add 2, 5, 5 and 5 infill points to the initial samples, respectively. The 

surrogate models are then validated by a uniform 20 20  grid sample points. The 

overall performance of the surrogate models is evaluated using 6 accuracy measures:  

(1) Root Mean Square Error (RMSE), which provides a global error measure 

over the entire design domain 

( ) ( ) 2

1

1 ˆ( ( ) (RMS ))E
n

i i

i

f f
n 

  x x                                  (3.24) 

(2) Maximum Absolute Error (MAE), which is indicative of local deviations 

( ) ( )

1

ˆMAE max | ( ) ( ) |i i

i n
f f

 
 x x                             (3.25) 

(3) Normalized Root Mean Squared Error (NRMSE) 
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x x

x
                                  (3.26) 

(4) Normalized Maximum Absolute Error (NMAE) 
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 (5) Estimated Global Optimum (EGOp) 

*ˆ ˆEGOp ( )f x                                                     (3.28) 

where * * ˆˆarg min ( ), arg min ( )f f x x x x . 

(6) Pearson correlation coefficient (PCC) 

2

2

2 2 2 2

ˆ ˆ

ˆ ˆ[ ( ) ][ ( ) ]

N ff f f
r

N f f N f f

  
   

  
   

                    (3.29) 

where N  is the number of independent set of objective function data to be 

compared, f  denotes objective function values from the independent test set and f̂  

are the corresponding surrogate model estimations. If 2 1r  , the surrogate is exactly 

predicting the test data, while 2 0r   indicates no correlation between the surrogate 

and the objective function. 
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Figure 3-5: Validation of Surrogate Models. 
 

Figure 3-5 shows the estimation errors by comparing the prediction values 

with true objective function for the uniform 20 20  grid. The Pearson correlation 

PCC, RMSE, MAE values are plotted for each surrogate model and different sample 

size. For all surrogate models except M2 and M6, the estimation accuracy would be 

higher when the sample size increases. 

Table 3-3 shows the results of the 12 models in terms of five measures of 

effectiveness (MoEs) under the largest test sample size, i.e. 40 evaluations of the 

objective function. The minimum values of each column are highlighted in bold. 

Results show that the best model with the smallest errors of RMSE, MAX, NRMSE 

and NMAX is M11, and the second best model is M12. The smallest 
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* *ˆ ˆEGOp ( , )F z q  is 44.33 obtained by M6; however, its true response is 48.68 that 

is larger than the estimated minimum. From other MoEs of M6, we can see its overall 

prediction accuracy is poor. In the last column, seven models finally converge to the 

global optima. 

 

Method RMSE MAX NRMSE NMAX EGOp *ˆ( )f x  

M1 0.21 0.95 0.44% 0.68 46.15 46.22 

M2 0.76 5.62 1.57% 4.03 46.20 46.24 

M3 0.24 1.44 0.50% 1.03 46.12 46.22 

M4 0.94 3.67 1.95% 2.63 46.45 46.25 

M5 0.19 0.71 0.40% 0.51 46.22 46.23 

M6 1.30 7.21 2.69% 5.17 44.33 48.68 

M7 0.24 1.20 0.50% 0.86 46.22 46.22 

M8 1.13 3.76 2.34% 2.69 47.20 46.23 

M9 0.36 1.41 0.75% 1.01 46.22 46.22 

M10 0.23 1.09 0.48% 0.78 46.22 46.22 

M11 0.10 0.45 0.21% 0.32 46.09 46.22 

M12 0.16 0.57 0.33% 0.41 46.21 46.22 

 
Table 3-3: The Estimation Accuracy Comparison of Surrogate Models, under 40 

Times of Objective Function Evaluations. 
 

The novelty in this work is the computational time savings. To demonstrate 

how surrogate models can intelligently mimic simulation-based objective function 

evaluation and reduce computational times, we compare the convergence and 

efficiency of surrogate models with GA (the population size is 10, generations are 10, 

other parameters are default value given by MATLAB R2010a GA Toolbox). Figure 

3-6 quantifies the computational savings obtained from this method using the number 
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of objective function evaluations. We can see that the best surrogate model (M12) can 

find the global optima only using 10 evaluations. 
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  Best: 47.3164 
Mean: 47.9666 

 

 

GA best fitness
GA mean fitness
Best surrogate: M12
Worst surrogate: M8

 

Figure 3-6: An Illustration of the Higher Computational Efficiency of the Surrogate 
Models compared to GA. 

 

In summary, the three best one-state surrogate models are M1, M3 and M11 

(M1 performs better mainly because the true response surface is not very complex as 

shown in Figure 3-4), and the best two-stage surrogate models is M12. In the 

following of this chapter, we will apply these four models in a real world 

transportation network. 

 

3.4 Test Bed for Real World Application 
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In terms of application, this chapter would investigate the optimal dynamic 

pricing of toll facilities in a regional transportation network using the selected 

surrogate models in the previous section. In order to apply SBO for real world 

transportation planning and operations decisions, a road network as well as a well-

developed simulator is required. This section will introduce these two components of 

our test bed for the real world application. 

 

3.4.1 The ICC Road Network in Maryland 

The Inter-County Connector (ICC) is probably the most significant and high-

profile highway project in Maryland since the completion of the existing interstate 

freeway system several decades ago. It links existing and proposed development areas 

between the I-270/I-370 and I-95/US-1 corridors within central and eastern 

Montgomery County and northwestern Prince George's County.  

The simulation model covers the central and eastern Montgomery County and 

the northwestern Prince George’s County of the State of Maryland. Before the 

construction of ICC, there was no freeway connecting the areas lying northwest and 

northeast of the capital beltway. The traffic between these two areas usually travels 

through I-495, which contributes to the severe congestion on I-495 during peak hours. 

The ICC was constructed aiming at promoting development of the surrounding areas 

as well as alleviating congestion on I-495. The ICC is a toll facility with different toll 

rates for its five segments, and the toll rate for each segment is variable along time. 

Vehicles with E-ZPass, an electronic toll transponder, are charged directly when they 
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travel through ICC. If a vehicle without E-ZPass uses ICC, a $1 video processing fee 

is added to the total price and a bill sent to the vehicle registration address. 

 
Figure 3-7: The Inter-County Connector (in thick line) and Regional Network. 

(Source: http://www.mdta.maryland.gov/ICC/Toll_Rates.html) 
 

To test the effectiveness of applying a simulation-based optimization method 

to improve the transportation system performance, a case study on optimizing the toll 

scheme of the ICC in Maryland has been conducted. A simulation model for the 

regional network is developed to evaluate the system performance. All freeways and 

arterial roads within the region in Figure 3-7 are included in the transportation 

network, which is relatively large with 201 TAZs, 1077 nodes and 2158 links. In our 

case study, actuated signal timings were coded into DynusT for all intersections that 

have signals applied in real world in the network. In a previous research on the 

before-and-after study of the ICC road (Zhang et al., 2013) for the same regional 
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network, the dynamic travel demand has already been calibrated and validated with 

field data from detectors and floating cars. The simplified current pricing scheme for 

two-axle vehicles with E-ZPass during different time periods as well as the proposed 

limit of the toll rates is summarized in Table 3-4.  

Parameter (unit) Symbol Baseline
Lower 
bound 

Upper 
bound 

Toll charge in peak period, Segment I ($) 
Between I-370 and MD 97 1z  1.45 0 3 

Toll charge in peak period, Segment II ($) 
Between MD 97 and MD 182 2z  0.60 0 1.5 

Toll charge in peak period, Segment III ($) 
Between MD 182 and MD 650 3z  0.75 0 1.5 

Toll charge in peak period, Segment IV ($) 
Between MD 650 and US 29 4z  0.65 0 1.5 

Toll charge in peak period, Segment V ($) 
Between US 29 and I-95 5z  0.70 0 1.5 

Off-peak / Peak toll charge ratio   80% 0 100% 

 
Table 3-4: Selected Design Parameters and Baseline Value. 

 

3.4.2 Open Source DTA Simulator: DynusT 

DTA models fill the gap between static travel forecasting models and 

microscopic traffic simulation models, and enable modeling traffic dynamics at a 

relatively large scale within a reasonable amount of time. In the DTA framework, UE 

condition is only applied to travelers departing at the same time between the same OD 

pairs. Time-dependent shortest paths for travelers are computed based on time-

varying link travel times when they arrive at the various links along a route. 
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DynusT (Dynamic Urban Systems in Transportation) is a simulation-based 

DTA model, which adopts the dynamic interactions between the network supply and 

user demand. DynusT performs well regarding its computational efficiency. 

However, it is essentially a route choice model. Some important aspects of travel 

demand analysis such as trip generation, mode choice and departure time choice are 

not enabled in DynusT. Time-varying link travel time needed for DTA in DynusT is 

retrieved from the Anisotropic Mesoscopic Simulation (AMS) model (Chiu, et al., 

2010b), which is a vehicle-based mesoscopic traffic simulation approach that 

explicitly considers the anisotropic property of traffic flow in the vehicle state update 

at each simulation step. DynusT applies a gap function vehicle-based (GFV) solution 

algorithm to solve the DTA problem (Chiu and Bustillos, 2009). For each iteration 

and each OD-departure time combination, the number of vehicles to be updated with 

a new path is dependent on the relative gap function value, and vehicles with longer 

travel time are prioritized for path updating. Compared with the widely used 

successive average method, GFV can avoid over adjustments of flow and thus lead to 

more consistent and robust assignment results. Meanwhile, DynusT adopts a method 

of isochronal vehicle assignment which divides analysis periods into epochs and 

sequentially performs vehicle assignment in each epoch (Nava and Chiu, 2012). This 

significantly improves the model scalability regardless of the total analysis period. In 

the newly released 2012 version, DynusT has been fully parallelized in simulation, 

time-dependent shortest path and assignment algorithms, and therefore boosts the 

computational speed dramatically. However, the current simulator doesn’t address 

capacity drop due to congestion. 
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Although other models of both microscopic and mesoscopic traffic simulation 

are widely available, (e.g. DynaMIT, DYNASMART, and Dynameq for mesoscopic 

models; TransModeler, VISSIM and AIMSUN for microscopic models) and some of 

them may possess some desirable features, DynusT is selected in this study due to its 

advantage in computation time. 

 

3.5 Application: Optimal Dynamic Pricing for Toll Roads 

 

For the real world application, we focus on the decision making of a public 

highway operator (such as the government or public agency) on the dynamic pricing a 

toll road. We assume that most commuting demands do not change departure time or 

cancel trips due to toll charges. Therefore, fixed commuting demands are assumed for 

the regional road network for this study. DynusT is selected as the DTA and 

mesoscopic vehicle simulation tool to evaluate network performance given various 

link-additive highway pricing rates. The computation time needed to obtain a solution 

from this black-box function evaluated by DynusT can be considerably reduced by 

surrogate-based optimization models, which make noisy data processing and 

computation intensive global optimization feasible.  

 

3.5.1 Background 

The idea of charging the use of road originates from the economic theory that 

users should be aware of the costs they impose upon one another and pay for the 
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additional congestion they create. The well-known marginal cost pricing principle 

was first discussed in Beckmann (1967). Yang and Huang (1998) then further 

examined this classical principle in connection with the general deterministic network 

equilibrium problem. They found that the optimal tolls for the variable-demand 

network equilibrium problems took the same form as the marginal cost toll in terms 

of maximizing net economic benefits. However, the optimal toll would be different in 

the presence of queues due to limited road capacity. Optimal toll charge under the 

stochastic network equilibrium was investigated later in Yang (1999). For the 

problem of charging toll on only a subset of links in the network, the assumptions of 

fixed demand (Yang and Lam, 1996) and elastic demand (Yang and Bell, 1997) have 

been studied. More complex optimization problems with equity constraints and 

multiple user classes were also investigated (Yang and Zhang, 2002; Yang and 

Huang, 2004). 

Although the optimization of the highway toll has been studied extensively in 

previous literatures, the network model used for traffic routing was always macro-

level static user equilibrium models. This type of model suffers from several 

limitations, e.g. the dynamics of travel behavior along time cannot be captured, and 

the influence of micro or meso level operational improvements such as traffic signals 

and dynamic message signs can’t be considered. On the other hand, dynamic network 

supply models can overcome these shortcomings, and provide more detailed 

information regarding the system performance. All these features make dynamic 

network supply models a relatively better approach to evaluate the performance of 

transportation system under different pricing strategies. Yet the drawbacks with 
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utilizing dynamic network supply model in optimizing road tolls should also be 

noticed. The DTA is usually coupled with simulation, which makes it impossible to 

retrieve a closed form of the function mapping toll strategies to the output 

performance of network. Meanwhile, the simulation of a medium or large scale 

network may take hours to days to converge. The computational burden incurred by 

simulations would be a big challenge for the optimization. Moreover, the random 

noise in simulation as well as DTA outputs cannot be neglected during the process of 

optimization. 

Formulating the problem of toll road pricing optimization in the simulation-

based optimization framework is advantageous over mathematical formulation in that 

it relaxes various unreasonable assumptions in mathematical functions and can better 

represent the traffic realism as well as the travelers’ responses to policy stimuli. On 

the other hand, surrogate-based method clearly serves as a feasible and promising 

way to tackle all the challenges associated with simulation-based optimization 

problems. In the following sections, the application of surrogate-based optimization 

of toll road pricing with different objective functions would be presented. 

 

3.5.2 Problem Setting and Formulation 

As introduced in section 3.4.1, this real world application problem is 

formulated with 6 decision variables, which are the independent peak period toll rate 

for the five segments of the ICC and the uniform off-peak to peak toll charge ratio. 

To apply the simulation-based optimization, the first step is to generate an initial 

sample plan. Utilizing the LHS method, we obtain the optimized sample plan, i.e. X , 
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including 64 initial LHS points plus three chosen inputs: the minimal toll plan 

min x x 0 , the maximal toll plan maxx x  and the baseline inputs baselinex x . The 

initial sample points are listed in Table 3-5. 

Sample 1z  2z  3z  4z  5z    
Sample 1z  2z  3z  4z  5z    

$ $ $ $ $ % $ $ $ $ $ % 

1 1.24 1.29 0.07 1.31 0.95 0% 33 2.24 0.36 0.86 0.93 0.24 52% 

2 2.57 0.76 1.10 0.83 0.81 92% 34 0.95 1.40 0.81 0.14 0.71 56% 

3 0.90 0.98 0.95 1.43 0.10 71% 35 1.71 0.57 0.10 0.12 0.29 86% 

4 2.52 0.38 1.29 1.05 1.26 70% 36 0.38 1.45 1.02 0.43 1.21 75% 

5 2.67 0.95 1.48 0.55 1.43 60% 37 1.14 1.21 0.93 0.74 1.00 46% 

6 1.81 1.24 0.24 0.71 0.93 33% 38 0.19 0.17 0.05 1.12 0.98 38% 

7 0.43 1.07 0.43 0.76 0.31 29% 39 0.57 0.64 1.50 1.07 0.88 41% 

8 1.48 0.00 1.26 0.05 0.90 35% 40 1.52 1.00 0.29 1.14 0.40 21% 

9 1.86 0.40 1.31 0.38 0.43 59% 41 2.33 0.12 1.43 0.33 1.38 89% 

10 1.76 0.86 0.83 0.50 0.69 30% 42 0.10 0.88 0.17 0.95 1.14 17% 

11 2.48 1.17 0.57 0.36 0.07 63% 43 1.38 0.48 0.71 0.21 1.29 90% 

12 0.86 0.24 0.19 0.48 0.05 32% 44 2.10 0.93 0.40 0.90 0.74 95% 

13 0.52 0.55 0.88 0.45 1.24 54% 45 0.24 0.05 1.33 1.10 0.17 65% 

14 0.62 1.38 1.38 0.79 1.12 16% 46 1.33 0.60 0.74 1.45 0.67 62% 

15 0.71 1.48 1.21 0.67 0.50 67% 47 2.38 0.14 1.45 1.19 0.45 81% 

16 3.00 1.10 0.36 0.31 0.62 24% 48 1.57 0.90 0.76 1.33 1.45 19% 

17 0.05 0.02 0.14 0.02 0.38 10% 49 0.00 0.50 0.67 1.40 0.26 57% 

18 2.29 0.07 1.14 1.24 0.57 25% 50 0.76 0.45 0.79 0.81 0.55 40% 

19 2.71 0.81 0.60 0.62 1.50 87% 51 1.43 0.43 0.38 0.98 1.02 68% 

20 1.19 0.71 0.50 0.00 1.19 37% 52 1.95 1.05 1.07 1.00 1.48 84% 

21 2.43 1.43 1.12 0.40 0.76 3% 53 1.00 1.12 0.00 0.07 0.21 14% 

22 1.29 0.79 0.26 0.29 0.14 49% 54 0.33 0.19 1.24 0.86 0.86 94% 

23 0.48 1.33 1.19 1.50 1.36 51% 55 2.05 1.50 0.45 1.38 0.83 44% 

24 0.29 0.21 1.05 0.60 0.33 2% 56 2.00 1.26 0.64 0.10 1.31 48% 

25 0.81 1.02 0.12 0.57 0.48 100% 57 0.14 1.36 1.36 0.19 0.00 97% 

26 2.86 0.52 1.17 0.17 0.79 22% 58 1.05 1.31 0.69 0.26 1.05 8% 

27 2.81 0.74 0.52 0.88 0.12 78% 59 0.67 0.83 0.33 1.48 1.07 76% 

28 2.62 0.26 0.55 1.17 1.40 43% 60 2.90 0.67 0.48 1.29 0.02 13% 

29 2.76 0.33 0.98 1.02 1.10 11% 61 2.19 0.31 0.21 1.21 0.36 79% 

30 1.67 0.62 1.00 0.52 1.33 6% 62 1.90 1.14 0.90 0.64 0.52 83% 

31 1.10 0.10 0.02 1.26 0.60 5% 63 2.95 0.69 1.40 1.36 0.19 27% 

32 1.62 1.19 0.31 0.24 0.64 73% 64 2.14 0.29 0.62 0.69 1.17 98% 
Lower 
bound 

0.00 0.00 0.00 0.00 0.00 0% Upper 
bound

3 1.5 1.5 1.5 1.5 1 

Baseline 1.45 0.6 0.75 0.65 0.7 80%        

 
Table 3-5: Space-Filling Latin Hypercube of Parameters for DoE. 
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After the initial sample is generated, all the sample points should be evaluated 

through the simulator. The observation of these sample points would then be used for 

the constructing of surrogate models as well as the search for optimal solution.  

From a public agency’s perspective, the objective would be to minimize the 

total social costs of the whole network or maximize total social welfare, while if a 

road is privately operated, maximizing total toll revenue may be the main objective. 

In the current study, the objective is set to minimize the average travel time for all 

network users given fixed OD demands. The objective function can be formulated as 

peak peak off off
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1
min maxs.t. , k   z z z z                                     (3.30b) 

0 1                                                            (3.30c) 

T T[ , ], k x z x                                          (3.30d) 

where TT ( , )f z  is the stochastic average travel time function of the network,  we 

minimize its expectation given the same input z  and   to eliminate random 

simulation errors. The decision vector x  includes toll rates z  of each toll road 

segment and the ratio   of off-peak-hour toll rates to the peak-hour values, so x  is a 

k -dimensional decision variable vector; the origin and destination sets are r R  and 

s S , ( , )r s  is the OD pair; peakTTrs  is the average travel time for trips during peak 

hours corresponding to the OD pair ( , )r s ; offTTrs  is the average travel time of the OD 

pair ( , )r s  in off-peak hours; peak
rsd  and off

rsd  are the peak and off-peak demands of the 
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OD pair ( , )r s , respectively; the toll rate ratio is 0 1  ; the box constraints are 

considered in this model, i.e. minz  and maxz , which are lower and upper boundaries for 

segment toll rates, respectively. 

 

3.5.3 Surrogate Models Evaluation 

All the sample points are evaluated by DynusT to provide observations for 

surrogate model construction and SBO. To achieve convergence, 10 iterations of 

DTA and simulations are run for each toll plan, and the relative gaps for the DTA are 

found to be below 3% for all experiments. However, to save computation effort as 

much as possible, every toll plan is evaluated by the simulation-based DTA only once 

but including 10 iterations, despite the existence of noise in the route choice results. 

For each simulation run, the simulator obtains valid results when the convergence is 

achieved after several times of assignments and vehicular platoon simulations.  

To simplify the optimization problem, this case study only cares about the 

travel time for users departing during the extended morning peak period (5–10 am). 

This extended morning peak consists of two off-peak periods (5-6 am and 9-10 am) 

and the morning peak period (6-9 am). To make the simulation results for the 

research period more reliable, one hour before 5 am is added into the simulation for 

warming up, and an extra hour after 10 am is also introduced to let the vehicles in the 

network disseminate. Thus a total of 7 hours is simulated in DynusT. Using a desktop 

with 3.10 GHz-quad CPU and 4 GB-Ram, one evaluation of each point takes about 5 

hours. The average travel time for all network users during the extended morning 

peak period that finished their trips is computed after each simulation. Besides the 
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single simulation for each sample points, to characterize the baseline, we run 10 

repetitions that produce 17.96, 17.94, 17.71, 18.22, 18.30, 17.83, 18.04, 17.78, 19.31, 

18.44 minutes, respectively. The average baseline output is 18.15 min, and the 

standard deviation is 0.47 min, which could be an estimate of the simulation noise 

standard deviation, i.e. noiseˆ 0.47   min. To estimate the mean and standard 

deviation of stochastic simulation outputs of the optimal variables, we will also run 

10 repetitions, and then compare the estimated mean objective function value and 

standard deviation with the baseline to see how much improvement can be achieved 

after optimization.  

As the simulation of the ICC network costs about 5 hours for each sample 

shown in Table 3-5, the surrogate models help reduce tremendous computation time 

compared to a traditional scenario study, which needs to evaluate all possible 

solutions through the entire feasible domain. 

Methods RMSE MAX NRMSE NMAX EGO *
TT ˆE[ ( )]f x  

M1 0.64 1.63 3.63% 3.18 15.69 - 

M3 0.52 1.16 2.91% 2.26 17.14 - 

M11 0.52 1.41 2.92% 2.74 17.51 - 

M12 0.53 1.48 2.99% 2.90 17.36  17.70 

 
Table 3-6: Leave-One-Out Cross Validation Results. 

 

Using the four models we chose in the numerical test section, Table 3-6 shows 

the evaluation of response surfaces using the leave-one- out CV based on the first five 

MoEs introduced previously. We can see that the ordinary Kriging (M3), regressing 

Kriging (M11) and the expected improvement infill re-interpolating Kriging (M12) 
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approaches produce smaller estimation errors than the quadratic polynomial model 

(M1), which doesn't regress the response surface very well (larger RMSE, MAE and 

NMAX) though its EGO is extremely small. However, the simulation outputs of the 

samples should be treated as random variables with simulation errors instead of an 

accurate number. In this case, the aforementioned 5 MoEs are not suitable for 

evaluating the performance of these response surface models any more. Thus a new 

method analyzing the effectiveness of estimated confidence interval is proposed to 

evaluate model performance for the cases with significant simulation errors. The best 

model is then identified using this approach, and is then applied to search for the 

optimal toll rate in minimizing network average travel time. 

Since no a priori information of simulation random errors is available, such 

random deviations from the expected smooth response can be simplified as uniformly 

distributed across the feasible domain, i.e. 2
TT noiseVar[ ( )] , ( , )f   x z , which is 

independently distributed with the regression error variance 2ˆ ( )s x . Then the 

estimated response variance 2
TTˆ ( )s x  at x  is given by 

 2 2 2
TT noiseˆ ˆ ˆ( ) ( )s s  x x                                   (3.31) 

where 2
noise̂  is the estimate of the simulation noise variance.  

Figure 3-8 applies the leave-one-out CV to predict the response of each 

sample point using other points. Four surrogate methods (M1, M3, M11 and M12) are 

compared. Figure 3-8(a) shows the estimated mean of average travel time values 

TT
ˆ ( )f x  at the initial 67 points as shown in Table 3-5 using M1. The total estimation 

standard error given noiseˆ 0.47   is formulated by 
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 2 2
TT noiseˆ ˆ ˆ( ) ( )s s  x x                         (3.32) 

The estimated mean values with one standard error upper and lower bounds 

are given by TT TT
ˆ ˆ( ) ( )f x s x  for the training set X . As a comparison, we plot the 

random observations y  as well. The sample points in X  are sorted according to 

estimated mean values of the average travel time in a descending order. The TT
ˆ ( )f x  of 

M1 decreases quickly and the estimated response of the last point adds bias to the 

observations.  

     
                                                (a)                                (b) 

      
                                                (c)                    (d) 

Figure 3-8: Prediction Accuracy of the Leave-One-Out Cross Validation: (a) M1; (b) 
M3; (c) M11; (d) M12. 

 

 Figure 3-8(b-c) show the CV results of M3 and M11 for the 67 initial sample 

points. The difference between them is very small, which is also shown in Table 3-6. 
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Figure 3-8(d) shows the results of the re-interpolating Kriging model (M12) for 97 

points (including the initial samples and 30 infill points using the EI maximization 

criterion). The estimated standard deviation is smaller in this model, which means the 

optima after 30 infill points would have a smaller variance. Note that all random 

observations are within two standard deviations from the mean accounting for about 

95% confidence level. The results show the advantage of M12: much narrower 

estimation bounds is shown for M12 than for M3, M11 or M1, which indicates a 

higher predicting concentration. 

Therefore, based on the overall regression performance (indicated by RMSE, 

MAX, NRMSE, NMAX and EGO) and the prediction error bounds, we find the infill 

re-interpolating Kriging (M12) gives the best solution to the problem.  

 

3.5.4 Optimization Results 

At the end of the 30th update, the estimated best solution is 

* T[$ 2.28, $ 0.15, $1.29, $1.31, $ 0.24, ]ˆ 69%x , the estimated global mean value of 

the minimized objective function is * *
TT TT

ˆ ˆ ( ˆ ) 17.36f f x  min. The ratio of the off-

peak to peak pricing is reduced, not suggesting that tolls in the off-peak are increased, 

because the peak-hour toll charge rates of the optima increase for highway Segments 

I, III and IV, but the rates decrease for highway Segments II and V. Based on 10 runs 

of simulation under the same best input, we find the mean value of simulation outputs 

is 17.70 min that is 2.5% less than the mean value of the baseline average travel time. 

We compute the F statistic and p-value based on the analysis of variance (ANOVA) 

for the baseline and optimized toll charge plans. Results show the F statistic is 4.68 
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and the corresponding p-value is 0.04 that is close to zero indicating mean travel 

times are significantly different.  

 

Figure 3-9: Comparisons of Traffic Flow Volumes of Additive Toll Links between 
the Baseline and Optimized Toll Rates. 

 

The simulation generates statistics of the network performance every minute. 

As link volume fluctuates significantly at the one-minute interval, Figure 3-9 shows 

10-minute moving average traffic flow volume of the 10 additive toll links in the 

network. The left column shows westbound ICC, and the right column shows 

eastbound ICC. Two subfigures in each row represent westbound and eastbound toll 

segment, i.e. Segments I, II, III, IV and V from top to bottom. Overall, the time series 

of toll link volumes is changed under the optimized toll compared to the baseline, 
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while the total flow passing through each toll link during the simulation period did 

not change a lot. In 8 out of the 10 additive toll links, traffic volume is significantly 

higher during the fifth hour, i.e. 9–10 am (240 min to 300 min) under the optimal toll. 

 

 
(a) 

     
(b) 

Figure 3-10: Comparison of Toll Revenue Collected on Additive Toll Links between 
the Baseline and Optimized Toll Rates, (a) Toll Revenue; (b) Cumulative Toll 

Revenue. 
 

Figure 3-10(a) shows the comparison of toll revenue dynamics between the 

optimal toll and the baseline. The curve of cumulative toll revenue collected along 

time in Figure 3-10(b) shows that the optimized toll case generates a toll revenue of 

around 62 thousand dollars, which is a 20% increase compared to the current toll 

case. During the first hour of the simulation period, toll revenue collected under both 

cases is almost the same. During the three peak hours from 6 to 9 am, as traffic flow 
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of all toll links is very close, the increased toll revenue of the optimal toll case mainly 

comes from the increased peak toll rates. The peak/off-peak ratio of the optimal toll 

case (69%) is smaller than that of the current toll case (80%), and the average off-

peak toll rates of the two cases are about on the same level. The increase of toll 

revenue during the last hour of the simulation period under the optimal toll mainly 

comes from the increase of link volumes. Figure 3-11 compares the total flow 

throughput at the network exit for the optimal and the baseline solutions. The optima 

increase the throughput capacity in peak hours (especially from 180 to 240 min).  

 
(a) 

    
(b) 

Figure 3-11: Comparison of the Vehicle Throughput between the Baseline and 
Optimized Toll Rates, (a) Vehicle Throughput; (b) Cumulative Vehicle Throughput. 
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Because we only suggest change the toll rate on one highway, so the influence 

of the small scale of toll rate change on the whole transportation network should be 

small. However, the small improvement in the mean travel time of all users of the 

transportation network (2.5% reduction) cannot be neglected. The average travel time 

under optimal toll was 17.70 minutes, which is 0.45 minutes shorter than the average 

travel time under the current tolls. The total vehicle throughput for the simulation 

period is around 570,000. The value of time is assumed to be $15/hour for the 

network users. Thus the reduction in average travel time equals a total of $65,000 

saving in travel cost for the extended morning peak period (5 hours) for each day. If 

we consider the whole 24 hour of each day, and even consider a one-year effect, such 

a small improvement in mean travel time in the extended peak hours would mean a 

huge saving from an operational and policy standpoint. 

Overall, the simulation results show that implementing the optimal toll 

predicted by the Kriging model considering simulation noise can benefit society in 

multiple ways. Travelers gain from the reduction of travel cost and the government 

benefits from the increase of toll revenue, while there is hardly any cost associating 

with the change of toll rates. Thus adjusting the current toll rate to the optimal toll 

rate should be an encouraging policy option to enhance transportation system 

performance in the study region. 

 

3.5.5 Sensitivity Analysis 

Moreover, to explore the sensitivity for the baseline baselinex  and the optima *x̂  

in the method M12, we provide a joint contour plot of the baseline in Figure 3-12(a).  
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(a) 

 
(b) 

Figure 3-12: Sensitivity Analysis of the (a) Baseline and (b) Optima. 
 

Each tile shows a contour of the estimated surrogate function TT
ˆ ( )f x  (the 

average travel time) versus two of the six variables, with the remaining four variables 

held at the baseline value. This helps visualize how the surrogate values change 

around baselinex . The baseline values and the ranges of each dimension can be found in 

Table 3-5. Take the upper-left contour plot of the average travel time surrogate 
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function as an example, it is a conditional function of TT 1 2 3 4 5
ˆ ( , | , , , )f z z z z z   given 

3 $ 0.75z  , 4 $ 0.65z  , 5 $ 0.70z  , 80%  . The warmer colors of the joint 

contour plots indicate the longer average travel time, while the cooler colors show 

shorter travel time values. 

Analogically, the joint contour plots in Figure 3-12(b) show the sensitivity 

analysis around the optima *x̂ , which is denoted by the squares. The main difference 

from Figure 3-12(a) is that the values around *x̂  are toward much cooler colors 

(closer to cyan and blue) than the baseline sensitivity (closer to orange and red). It 

also validates that the optimal solution performs better than the baseline inputs. 

 

3.6 Conclusions  

  

In this chapter, a systematic framework of transportation simulation-based 

optimization is proposed to solve the highway toll optimization with expensive-to-

evaluate objective functions and obvious simulation random errors. The main novelty 

of computational time savings can be achieved through applying the efficient 

surrogate models which can intelligently mimic the simulation input-output mapping. 

 A family of surrogate-based optimization approaches to model response 

surface of transportation simulation input-output is introduced. Both one-stage and 

two-stage surrogate models are tested and compared using a small-scale numerical 

study. Four out of the twelve surrogate models are identified to be promising 
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approximation of the true response surface of the numerical study, and are then 

applied to the real world application of dynamic pricing optimization. 

 Taking advantage of the simulation’s power in reflecting the traffic realism, 

we evaluate the transportations system performance in response to different toll 

charges in a real transportation network with a simulation-based DTA model DynusT. 

Among the four selected promising models, the expected improvement infill re-

interpolating Kriging performs the best. With only 97 samples, this model can 

produce highly reliable estimates of simulation outputs over the entire feasible 

domain, and thus successfully help find the optimal toll rate. The predicted optimal 

toll rate obtained from the Kriging model is then evaluated through simulation. The 

predicted output is relatively consistent with simulation outputs. Overall, a 2.5% 

improvement to the entire network in terms of average trip travel time can be 

achieved, through adjusting the toll rate of a single freeway from the baseline to the 

predicted optima. The travel time savings for the extended morning peak period of 

each day is equivalent to $65,000 assuming a $15 per hour value of time. 
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Chapter 4: Constrained and Multi-Objective Simulation-based 
Optimization 

 

Single-objective optimization without any constraints is the simplest form for 

an optimization problem, and is usually the first stage in research efforts. Regarding 

the highway toll optimization problem we investigated in the previous chapter, there 

are usually multiple performance measures that highway operators would be 

concerned about. If the toll road is operated by a private company, the major 

objective is most likely to be maximizing toll revenue, while they would also pay 

attention to the traffic condition on the toll road, so as to guarantee a minimum level 

of service to the paying users. If a toll road is owned and operated by public agencies, 

maximizing social welfare for all users of the network is probably the primary 

objective. Meanwhile, they also care about the revenue that can be collected from the 

toll and some other measures like air pollution and safety. Under the situation that 

decision makers have specific expectation on several of the performance measures, 

the problem can be formulated as a constrained optimization problem. Otherwise, 

multi-objective optimization would be the proper form of the problem to be analyzed. 

 

4.1 Constrained Simulation-based Optimization  

 

In this section, we extend the previously investigated single-objective problem 

into a constrained optimization form, and try to deal with the toll road pricing 

optimization problem from the public agencies’ point of view more realistically. 
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Specifically, the public agencies are assumed to be interested in two performance 

measures: average travel time for the network users and the toll revenue.  The 

scenario to be investigated is that public agencies aim to minimize network wide 

average travel time while intending to keep the toll revenue higher or equal to a 

specific level. 

Via our observation during the previous study, the simulation noise is very 

significant. Thus we decide to perform 3 repetitions of the evaluation for each sample 

point and use the average of outputs as the observations, so as to reduce the effect of 

the simulation random noises. The repetitions would significantly increase the 

computation time for the evaluation of initial sample points as well as the infill 

points. To reduce the overall computational burden, we only evaluate the 

transportation system performance during the 3-hour peak period (6-9 am). In this 

case, 5 hours (5-10 am, including one hour (5-6 am) for warming up and one hour (9-

10 am) for dissemination) is simulated in DynusT. Using a desktop with 3.10 GHz-

quad CPU and 4 GB-Ram, one evaluation of each point takes about 3 hours. Thus the 

3-repetition evaluations for all the 67 initial points cost around 603 computer hours in 

all. The performance measures we are interested in are the average travel time for 

vehicles departing during the peak period and the total peak period toll revenue. As 

the network is relatively congested during the peak hours, there are still a few 

vehicles departing during the peak period cannot arrive at their destinations even one 

hour after the peak period. Thus we only compute the average travel time for those 

vehicles that finished their trips. 
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4.1.1 Problem Formulation 

The constrained optimization problem can be formulated as follows: 

 
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1
min max , k  z z z z                                                 (4.1c) 

                                                                        (4.1d) 

[ , ],T T k x z x                                                          (4.1e) 

where  ,TRf z  is the function capturing the stochastic toll revenue for the peak 

period; TA  is a subset of links that are tolled in the network;  peak ,av z  represents the 

peak period volume on link a ;  a  is a function mapping the ID of link  to its 

corresponding index in the vector z ; TollLimit  is the predetermined lower bound of 

the peak-hour toll revenue. All other variables have the same meanings with those 

explained in the single-objective problem. 

 Although only the performance in peak period is of concern, the off-peak toll 

rate would still influence the objective value, because the route choice for vehicles 

departing at the beginning or end of the peak period would be indirectly affected by 

the off-peak toll due to its impact on the distribution of vehicles in the network both 

before and after the peak hours. After the simulation evaluation of a certain toll plan, 

the travel route and travel time for each vehicle trip can be generated and saved. At 

the link level, time dependent flow on each link can also be summarized. Both 

0 1 

a
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network wide average travel time and toll revenue for the peak period can thus be 

recorded. 

 Expected improvement infill re-interpolating Kriging is identified as the best 

model in the single-objective optimization problem introduced in section 3.5.3, we 

thus will only investigate this model for the constrained optimization as well as the 

multi-objective optimization to be introduced in the next section. In fact, re-

interpolating Kriging is just a slight revision of regressing Kriging (Forrester et al., 

2006), to adapt for the deterministic experiments. As the simulator DynusT in the 

current study performs nondeterministic experiments, regressing Kriging model 

works perfectly fine with both approximating the response surface and the process of 

selecting infill points. Therefore, expected improvement infill regressing Kriging is 

finally applied for the constrained optimization and the multi-objective optimization 

problems. 

 

4.1.2 Infill Strategy 

For a constrained optimization problem with both the objective and constraint 

to be expensive-to-evaluate functions as illustrated in equation 4.1, considering only 

the expected improvement of the objective value at a point  is not sufficient. If the 

probability that the constraints would be violated at the point *x  is very high, the 

overall expectation of improvement should still be very low even if the EI of 

objective value is large at that point. The overall expectation of improvement at a 

certain point is large only if both the EI of objective value and the probability of 

satisfying the constraints are large. 

*x
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 Suppose the surrogate for the constraint function is G( )x  and the constraint 

limit is ming . The mean value and estimation variance at a point *x  can be computed 

in the same way as for the objective function, which are denoted by *ˆ ( )gf x  and 

*ˆ ( )gs x . The probability that the constraint is met can be given by  

min

* 2
*

min 2 **

ˆ( ( ))1
P[G( ) exp d

ˆ2 ( )ˆ2 (
]

)
g

gg
g

u f
g u

ss
  

   
 
 


x

x
xx

                   (4.2) 

We define an indicator function to express the constrained improvement as 

follows. 

min min( ) if ( )
( )

0 otherwise

y Y G g
CI

 
 


x x
x                                  (4.3) 

As the surrogate for the objective function is dependent from that for the constraint 

function, the constrained expected improvement at the point *x  can thus be defined as 

* * *
minE[ )]=EI( ) P[G(( ])CI gx x x                                 (4.4) 

The choice of infill points for the constrained optimization problem can be based on 

maximizing the constrained expected improvement.  

 

4.1.3 Optimization Results 

We then apply this infill strategy of constrained expected improvement in the 

ICC pricing optimization study. In the constrained optimization problem setting, the 

constraint limit of the toll revenue is set to be the revenue collected at the baseline 

case, which is $7552.3. The target of this problem is to improve the network wide 
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traffic condition during the peak period as much as possible, while keeping collecting 

toll revenue at least at the same level as the baseline case. 

 

Figure 4-1: Initial and Infill Points for the Constrained Optimization Problem. 
 

According to the criterion of expected improvement, 15 infill points (each 

infill point is simulated three times, and the total cost is about 135 computer hours) 

are added into the sample. Among the 15 infill toll plans, the toll revenue collected 

under 12 toll plans meets the constraint. All the initial points and infill points are 

plotted in Figure 4-1. The horizontal line represents the constraint limit, and the circle 

lies exactly on the line represents the output of the baseline case. The average travel 

time for the baseline case is about 23.51 minutes. Compared to other toll plans in both 
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the initial sample and infill sample, the baseline case performs very bad regarding 

average travel time. 

Based on the initial sample, the best toll plan satisfying the constraint is 

T[$ 0.67, $ 0.83, $ 0.33, 1.48$ , $1.07 6, ]7 %initial
best x ,  

19.29 mininitial
bestTT s ,  $9,261.1initial

bestTR   . 

The infill points improved the average travel time a little bit. The best toll plan 

from the infill points is 

T[$ 0.66, $ 0.84, $ 0.38, $ 0.6 , $ ,1 1.16 %]39infill
best x , 

19.06 mininfill
bestTT s  , $11,243.4infill

bestTR  . 

The network average travel time in reduced by about 1.2%, and the added 

benefit is that toll revenue has increased by around $2,000, which is a 20% 

improvement.  

Most of the infill points satisfy the constraint, which means the criterion of 

expected improvement is very effective in searching for feasible solutions. However, 

as the expected improvement method balances between local exploitation and global 

exploration, the regions with high average travel time would still be explored. The 

objective values (peak period average travel time) of those infill points vary a lot. 

Most of them perform better than the baseline case, while there is only one point 

found to outperform the best observation in the initial sample. 

We search for the constrained optima after infilling 15 points, and find that the 

global optimum coincides with the infill point that produces the best performance. As 

DynusT provides detailed information regarding the traffic conditions, the 

transportation performance on ICC links and at the aggregate level are compared 
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between the estimated global optima and the baseline. Figure 4-2 shows the variations 

of traffic volume on the five tolled segments of the ICC during the peak period. 

Traffic flow for different directions is depicted separately. Even during the peak 

period, flow on the ICC is always lower than 3,000 vehicles per hour. As the ICC has 

three lanes in each direction, the capacity of ICC is not used sufficiently. Traffic 

volume under the optimal toll plan is significantly higher on three of the segments 

than the baseline case. This is an expected change since the toll rate for the three 

segments is lower than the baseline. The optimal toll for segment five is 70% higher 

than the baseline, and the volume for the east bound of segment five exhibits apparent 

drop compared to the baseline. 

 

Figure 4-2: Traffic Volumes of ICC Segments under Optima and Baseline Toll.  
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Various network wide performance measures are also compared between the 

two toll plans. The network wide average trip travel time for the two cases is 

illustrated in Figure 4-3. The optimal toll plan reduces average travel time by almost 

10 minutes during the most congested period (7:30-9:00 am). Looking back to Figure 

4-2, we can find the most significant increase in the use of the ICC just occurs at that 

period, which means the optimal toll plan performs very well in diverting vehicles 

from very congested routes.  

 
Figure 4-3: Comparison of Network Wide Average Travel Time between Optimal 

and Baseline Toll Plans. 
 

In the same manner, due to the significant increase of users in the period of 

7:30-9:00 am, toll revenue collected during this period is almost two times higher 

than the baseline case as shown in Figure 4-4. The overall increase of the toll revenue 

for the optimal toll case during the three-hour peak period is about $3,000. Moreover, 

the improvement in travel time brings in additional benefits. Figure 4-5 shows that the 
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throughput for the whole network increases significantly for the period 7:30-9:00 am, 

and the total throughput for the morning peak period increased by about 10% under 

the optimal toll. The adjustment of toll rates for one freeway in the regional network 

has successfully led to a more efficient usage of the road network capacity. 

 

  
                                  (a)                                                                  (b)  

Figure 4-4: Comparison of Toll Revenue between Optimal and Baseline Toll Plans, 
(a) Toll Revenue; (b) Cumulative Toll Revenue. 

 
 

  
                                 (a)                                                                  (b)  
Figure 4-5: Comparison of Throughput between Optimal and Baseline Toll Plans, (a) 

Vehicle Throughput; (b) Cumulative Vehicle Throughput. 
  

 In summary, the optimal solution can reduce average travel time by around 

20% (4.5 minutes in reduction). The overall throughput for the peak period is about 
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300,000, thus the total reduction in travel time for the morning peak hours is 22,250 

hours (around $300,000 in travel time saving assuming $15 per hour value of time), 

which is very remarkable. Moreover, the added benefit is that the total toll revenue is 

increase by 50%. 

 

4.2 Multi-Objective Simulation-based Optimization 

 

As illustrated previously, there are usually multiple performance measures 

that highway operators would be concerned about. However, the constrained 

optimization problem can be formulated only when the decision makers are pretty 

sure about the limit they want to impose on several of the performance measures. If 

the highway operators have neither specific weights among the multiple goals nor 

expectations regarding any of the objectives, the dynamic pricing optimization for toll 

roads can be formulated as a multi-objective optimization problem. In this case, a set 

of optional toll plans which do not dominate each other can be generated. This set of 

compromise solutions is called the Pareto set, and it can serve as the foundation for 

decision making. 

For the multi-objective optimization problem, the objectives are assumed to 

be minimizing peak-period average trip travel time and maximizing peak-period toll 

revenue. The same initial samples and their corresponding observations for the 

constrained optimization problem in the previous section are utilized to solve this 

multi-objective problem. However, the infill strategies and the infill points would be 

different. 
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4.2.1 Problem Formulation 

The multi-objective optimization problem can be formulated as follows: 
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min maxs.t. , k  z z z z                                              (4.5c) 

                                                                     (4.5d) 

                                [ , ],T T k x z x                                                   (4.5e) 

 Overall, the specification of this problem is very similar with that for the 

constrained optimization problem introduced in the previous section. The only 

difference is that one of the constraints in the constrained optimization is re-

formulated as an objective function. 

The expected results from this model is a set of optional toll plans, in which 

no one can dominate any of the others in terms of both of the two objectives. This set 

of results can provide decision makers a clear understanding on how good a 

combination of objectives can be achieved. Further evaluation of these optional toll 

plans can be done later when the weighting between the two objectives is determined. 

 

0 1 
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4.2.2 Infill Strategy 

After the evaluation of all initial sample points, a Pareto set of solutions can 

be identified. All the solutions in the Pareto set are optimal in some sense, while they 

cannot dominate any other solutions in the Pareto set in terms of all objective values. 

If a solution in the Pareto set is better than another in one of the objective values, it 

should be worse in at least one of other objective values than the other. Figure 4-6 

shows an example of a Pareto set with five non-dominated points (noted as stars in 

the figure) for a problem with two objectives. 

New points found in the shaded area would augment the current Pareto front, 

while any points in the hatched area will at least dominate one of the points in the 

current Pareto set. Thus any new points found in the hatched area would lead to the 

update of the current Pareto front. 

 

 

Figure 4-6: Example of a Pareto Set. 
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 Similar to the case of the constrained optimization, the two surrogates for the 

two objective functions are assumed to be independent. The probability density 

function (PDF) of a combination of output regarding the two objectives 

(y , y )P Gaussian f g   can be described as the product of two Gaussian PDFs. The 

probability that a new point *x  is an improvement to the current Pareto front can thus 

be computed by integrating the joint PDF (y , y )P Gaussian f g   over the region below and 

to the left of the current Pareto front, which include both the shaded and hatched area 

shown in Figure 4-6. The probability of improvement at a new point *x  is expressed 

as 
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 (4.6) 

where *(i) *(i)( , )f g  are the points in the current Pareto set, 1,  2,  ,  i M   and M  is 

the total number of points in the Pareto set. 

 The probability of improvement represents integration of the PDF over the 

region below and to the left of the Pareto front. The expected improvement is then the 

first moment of the integral over the same region. Suppose we know the position of 

the centroid of the EI( )*x  integral (see Figure 4-6), the Euclidean distance between 

the centroid and each member of the Pareto set can be computed. The expected 

improvement criterion is subsequently calculated using the Pareto set member closest 

to the centroid, * *(y ( ), y ( ))f g
* *x x , by taking the product of the probability of 

improvement with the shortest Euclidean distance (Forrester and Keane, 2009). 
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Suppose the position of the centroid is  (y ( ), y ( ))f g
* *x x , the expected improvement at 

the point *x  is given by 

 * *2 2EI( )=P[I( )] (y ( ) y ( ) y) ( ) ( )( )yf gf g * * * * * *x x x x x x                     (4.7) 
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    (4.8) 

and y ( )g
*x  can be computed similarly. 

 

4.2.3 Optimization Results 

Through infill points to the sample, the Pareto front for the multi-objective 

problem is expected to be augmented or updated. The Pareto front for the initial 

sample and the augmented sample with infill points are presented in Figure 4-7.  
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(a) 

 

(b) 

Figure 4-7: Pareto front for the multi-objective optimization problem, (a) Pareto Front 
Based on Initial Samples; (b) Pareto Front Based on Augmented Samples. 
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Similar to the method of evaluating initial sample points, the infill points are 

all evaluated three times through DynusT and the mean of the output is used as the 

observation. 

Among the 67 initial sample points, only three of them are on the Pareto front. 

Any of the other points would be dominated by at least one of the points from the 

Pareto set in terms of both average travel time and toll revenue. The toll plan and the 

corresponding performance regarding the two objectives for the three Pareto set 

members are 

T
1 1 1[$ 0, $ 0, $ 0, $ 0, $ 0, %] $00 , 19.14 min ,TT s TR  x  

T
2 2 1[$ 0.67, $ 0.83, $ 0.33, $ , $ ,1.48 1.07 76 , 19.29 min ,%] $9, 261.1TT s TR  x  

T
3 3 3[$ 0.76, $ 0.45, $ 0.79, $ , $ ,0.81 0.55 40 , 19.54 min ,%] $9,941.7TT s TR  x  

 Compared to the 0 toll case, more than 8,000 dollars can be collected in the 3-

hour peak period through charging ICC users. At the same time, the average travel 

time for the whole network is just slightly increased. However, the maximal toll 

revenue can be collected is around 10,000 dollars. Keeping the toll revenue at this 

level, the network wide average trip travel time may increase dramatically by 

adjusting the toll plans. Just looking at the Pareto front based on the 67 initial points, 

we can say that the toll plans 2x  and 3x are the two optimal solutions that the operator 

of the ICC may be interested in. The objective values under these two toll plans are 

significantly better than any other toll plans that are evaluated. 

By infilling 20 points (costs about 180 computer hours) based on the expected 

improvement criterion, the Pareto front is augmented slightly with two points 

generated during the infill process. The two new Pareto set members are 
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T
4 4 40.33 0 40 ,[$ 0.36, $ 0.54, $ 0.76, $ , $ , % 19.28 min] $6,86, 0.7TT s TR  x  

T
5 5 5[$ , $ 0.57, $ 0.01, $ , $ , %] 23.51.00 0.41 0.85 50 , min ,0 $9,959.8TT s TR  x  

However, no points that dominate the initial Pareto set members are found 

through the infilling. After the 20 infill iterations, the maximal expected improvement 

over the entire domain is about 1000, which means that there is still a very large 

possibility that better toll plans that dominate or augment current Pareto set members 

can be found through further infilling. As the purpose of this study is just to illustrate 

the effectiveness of the expected improvement-based infill strategy in finding new 

Pareto set members, further infilling is not performed here. 

 In summary, the expected improvement-based infill strategy is pretty effective 

in that two new Pareto set members are found by evaluating just 20 points. The 

surrogate-based optimization framework and this specific infill strategy work very 

well in providing optimal solutions to decision makers for the multi-objective 

optimization problems.  

 Comparing the result of multi-objective problem to that of the constrained 

optimization problem, we can find that the surrogate-based method with infill by the 

expected improvement criterion performs more efficiently in the constrained 

optimization problem. With less iterations of infill, a much better optimal solution is 

found for the constrained problem. A possible reason is that the constrained problem 

imposed a limit on one of the goals, which restricts the search for expected 

improvement in a smaller region than the case of multi-objective optimization 

problem. Further exploration of this issue can be done in the future. One research 

question we would like to investigate is whether the performance of the method will 
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be improved if restrictions are set for both objectives in the multi-objective 

optimization problem. 

 

4.3 Conclusions 

 

The decision making of transportation planning and operations policies 

always concerns about multiple system performance measures, e.g. efficiency, safety, 

pollution, reliability, economy, etc. To make the study more application ready, 

simulation-based optimization problems with multiple objectives (network average 

trip travel time and total toll revenue collected) considerations are formulated in this 

chapter for the ICC pricing optimization study introduced previously.  

When there are predetermined goals regarding several of the objectives, a 

constrained optimization problem is formulated. Otherwise, if there is no prior 

knowledge on which objective is more important and no constraint on any of the 

objectives, a multi-objective optimization problem can be formulated. 

Expected improvement based infill strategies designed separately for the 

constrained optimization and multi-objective optimization structures are utilized to 

solve the two types of problems. With a constraint that toll revenue should be higher 

than or equal to that collected at the baseline, an optimal solution is found for the 

constrained optimization problem after 15 iterations of infill, which improve the 

network wide average trip travel time for the peak period by 20% while satisfying the 

constraint. For the multi-objective optimization problem, a Pareto set with non-

dominant optimal solutions based on initial sample evaluation is first generated for 
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decision makers’ consideration. After 20 iterations of infill, 2 new points are found to 

augment the initial Pareto front. The effectiveness of the proposed multi-objective 

optimization procedures is thus proved. 
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Chapter 5: An Enhanced SVR Method: Adapting for 
Heteroscedastic Simulation Noise  

 

This chapter further investigates the ICC dynamic pricing study mentioned in 

Chapter 3 and 4. Heteroscedasticity in simulation noise is observed. As this feature 

violates the assumptions of the surrogate models analyzed previously, a new method 

that can adapt for the heteroscedastic simulation noise is proposed and explored in 

this chapter. 

 

5.1 Heteroscedasticity in Transportation Simulation Outputs 

 

Using the observations of the 3-repetition evaluation of the 67 initial sample 

points for the ICC network introduced in Chapter 4, we can analyze the features of 

the simulation noise. The mean output as well as the standard deviation of the mean 

output for each sample point can be computed based on the observed value. Figure 5-

1 plots the mean output against its corresponding standard deviation/coefficient of 

variation for all the 67 initial samples. 
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(a) 

 
(b) 

Figure 5-1: Heteroscedasticity Exhibited in the Simulation Outputs, (a) Standard 
Deviation vs. Mean; (b) Coefficient of Variation vs. Mean. 
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The standard deviation of the mean output varies significantly among those 

initial samples as shown in Figure 5-1(a), which means the objective function is 

heteroscedastic. The coefficient of variation (standard deviation divided by the mean) 

is a relative measure to reflect the variance level of the noise. Figure 5-1(b) plots the 

mean output against its corresponding coefficient of variation for all the initial 

samples. The level of variance differs from 0 to 0.1. Overall, the variance level is 

relatively low. In general, the magnitude of the simulation noise is highly dependent 

on the location of the design points, and the assumption of identical distribution of 

noise over the entire research domain in most surrogate models is not satisfied. 

 

5.2 Methodology 

 

 SVR is a method that balances between model smoothness and the loss due to 

prediction error. When the variance of simulation noise is assumed to be 

homogenous, the error tolerance can be set to be uniform over the research domain. 

Otherwise, different error tolerance limit can be configured for different locations. 

 

5.2.1 Traditional Support Vector regression (SVR) 

SVR originates from the theory of support vector machine (SVM). Being 

different from SVM’s objective of classifying sample data into different groups, SVR 

predicts the value at the sample points. This model provides very good compromise 
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between prediction accuracy and robustness of the approximations. The basic form of 

SVR prediction is the weighted sum of basis functions    added to a base term b . 

   ( ) ( )

1

ˆ ( )
n

T i i

i

f b b w 


   w φ xx ,x                                     (5.1) 

where w  is the vector of weights of the basis functions. The key attribute of SVR is 

that it allows us to specify a margin  , and any errors in the sample data within the 

-margin are fully accepted without affecting the surrogate prediction. Under this 

assumption, the objective of SVR is to minimize the model complexity with the 

constraint that predictions at all sample points are within the  -margin of the 

corresponding observation. 

                                     
21

min
2

w                                                                      (5.2a) 

( ) ( )s.t. 1, 2, ,,i T i i ny b      w φ                    (5.2b) 

where ( )iφ  is the abbreviation of ( )( ) ix, x . In the objective function, the model 

complexity is measured by the 2nd norm of the coefficient vector w . ( )iy   in the 

constraint represents the observation at the point i . However, a solution that meets 

the constraints at all sample points may not exist. The constraint can be relaxed a little 

bit by allowing the difference between the prediction and observation to be larger 

than  . As only errors smaller than   are assumed not to affect the surrogate 

prediction, errors that are larger than   should be penalized in the objective function. 

A penalizing function called  -insensitive loss function can be given by  

0 if

otherwise

 
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 
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                                             (5.3) 
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where   is the actual error between prediction and observation. By minimizing the 

sum of  
21

2
w  and 


 , a tradeoff between the model complexity and the loss due to 

prediction error is obtained. The updated SVR model can be expressed as 

                             ( ) ( )
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21
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n
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( ) T ( ) ( )s.t. 1, 2, , ,i i iy b i n     w φ                    (5.4b)  

T ( ) ( ) ( ) 1, 2, ,,i i ib y i n     w φ                    (5.4c) 

( ) ( ), 0, 1, 2, ,i i i n                                           (5.4d) 

The coefficient C  ( C >=0) in the objective function governs the tradeoff 

between the model complexity and prediction accuracy. If C  equals 0, then a flat 

function through  would be generated. As C  approaches infinity, the derived 

function would pass through all observed points. By introducing Lagrange 

multipliers, the above constrained optimization problem can be solved through the 

Lagrangian: 
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The Lagrangian should be minimized with respect to primal variables w , b , 

( )i    and  ( )i  . Meanwhile, it should be maximized with respect to dual variables 

( )i  and ( )i  . Meanwhile, all of the dual variables should be larger than or equal to 
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0. At the optimal solution, the derivatives of L  with respect to the primal variables 

would vanish. 

( ) ( ) ( )
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By substituting Equation 5.6 into Equation 5.1, the SVR prediction can be 

expressed as 
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The parameters ( )i   and   are still unknown at this stage, where ( )i   can 

be estimated through the dual variable optimization problem. 
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( ) [0,C/ n] 1, 2,, ,i i n                                                               (5.11c) 

The maximization problem in equation 5.11 can be formulated as a quadratic 

programing problem in the following form. 
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where Ψ  is the n n  matrix for the basis functions, with elements to be (i) (j)( , ) x x . 

According to the KKT conditions, the base term b  can be computed as 
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In the current study, we use Gaussian function form for the basis function  . The 

choices of the parameter 2  (the Gaussian kernel variance) and the weight coefficient 

C  are determined by cross validation. 

 

5.2.2 An Enhanced SVR 

 For the traditional SVR model, the margin   is set to be a constant for all 

sample points, which means that the tolerance of the error is the same throughout the 

entire domain. However, this is definitely not the case for heteroscedastic samples. 

Because observations at points with larger variance would have larger confidence 

intervals, at the same confidence level, larger errors should be tolerated at those 

corresponding points. If there is no prior knowledge of the variance of noise in the 

data, the margin   can be calculated by using SVR   (Schölkopf and Smola, 2002). 
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When prior knowledge regarding the noise level is available,  is usually chosen as 

the standard deviation of the noise (Forrester and Keane, 2009). Thus for 

heteroscedastic samples, the margin   at each point can be chosen as the 

corresponding standard deviation of the noise at that point. The SVR model can then 

be revised as follows to adapt for heteroscedasticity in sample data. This enhanced 

SVR model will be named as heteroscedastic SVR model (H-SVR) hereafter. In 

equation 5.4, the constant margin   in the first two constraints will be replaced by the 

unique margin ( )i  corresponding to each sample point i . The parameters ( )i   can 

then be computed through solving the quadratic program 5.14. 

1

2
min

T T  

  

         
                 

Ψ Ψ ε yα α α

Ψ Ψ ε yα α α
                      (5.14a) 

s.t. 0T




 
 

 

α
1

α
                                                                    (5.14b) 

, [ , / n] +α α 0 C                                                               (5.14c) 

where ε  is a 1n  vector with the elements to be ( )i , which is the standard deviation 

of noise at point i . The base term   can be calculated through equation 5.15, which 

is revised from equation 5.13 accordingly. 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

for 0, (0, / )ˆ
for (0, / ), 0

i T i i i i

i T i i i i

y C n
b

y C n

  

  

 

 

     
   

w x

w x
                        (5.15) 

Figure 5-2 shows the difference between the H-SVR model and the traditional 

SVR model through a one-variable function, and this figure is created mainly for 

illustrative purpose. The variance of the function noise is assumed to be 

heteroscedastic.  
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(a) traditional SVR model 

 
(b) heteroscedastic SVR model 

 

Figure 5-2: Comparison of the Traditional and the Heteroscedastic SVR Model, (a) 
Traditional SVR Model; (b) Heteroscedastic SVR Model. 
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It clearly shows that the errors that can be tolerated at different locations vary 

significantly, and the  -tube is no longer parallel to the predicted function. The 

advantage of the H-SVR model in terms of the overall prediction accuracy will be 

investigated through numerical test functions in the following section. 

 

5.3 Numerical Tests 

 

Different forms of surrogate models including quadratic polynomial function, 

radial basis function, Kriging model and SVR have been investigated in the numerical 

study in Chapter 3. The objective function of the numerical study is computed by 

solving a static user equilibrium model. In that case, the output is in fact deterministic 

instead of stochastic. It was found that the regressing Kriging model performs best in 

terms of prediction accuracy. 

As the focus of this study is to investigate the capability of the H-SVR model 

in dealing with heteroscedastic sample data, the performance of the H-SVR model is 

compared to that of the regressing Kriging model in approximating several 

mathematical functions with heteroscedastic noise. 

The first test problem is a two-dimension function 

1 1 2 1 1 2 2 1 2( , ) sin( ) sin( ), , [ 2 , 2 ]f x x x x x x x x                                (5.16) 

with global optimal solutions of * T(4.9132, 4.9132) x , *
1( ) 9.6289f  x . 

In order to introduce heteroscedastic noise into the function output, the 

observation at a certain point is set to be 
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1 1 2 1 1 2 1 1 2 1 2( , ) ( , ) 0.1 ( , ) N(0,1), , [ 2 , 2 ]f x x f x x f x x x x                  (5.17) 

1 1 2 1 1 2 1 1 2 1 2( , ) ( , ) 0.5 ( , ) N(0,1), , [ 2 , 2 ]f x x f x x f x x x x     


            (5.18) 

where N(0,1)  represents a normal distribution with mean 0 and standard deviation 1. 

Equation 5.17 creates samples with a relatively low level of noise while Equation 

5.18 creates samples with a relatively high level of noise. As the variance of noise is 

dependent on the magnitude of true function value at each point, the samples created 

from these two equations exhibit heteroscedasticity. For Equation 5.17, the standard 

deviation of the output at point 1 2( , )x x  is 1 1 20.1 ( , )f x x , while the standard deviation 

would be 1 1 20.5 ( , )f x x  for Equation 5.18. 

To investigate the impact of sample size on the prediction accuracy, two 

different samples are generated using LHS separately, with a small sample including 

25 points and a large sample including 60 points. Prior knowledge regarding the 

variance of noise at each point is needed by the H-SVR model. As in real world 

applications, evaluation through simulation usually costs significant amount of time, 

we mimic the situation with high computational cost and constrain the number of 

evaluation for these simple test functions. Each point in the samples by either 

Equation 5.17 or Equation 5.18 is allowed to be evaluated three times to calculate the 

mean and variance of the corresponding output. The mean output, the sample 

variance of the mean output and the location of the corresponding points will then be 

used to construct the surrogate models. As each point is only evaluated three times, 

the computed mean and variance may not be reliable estimates of the real distribution 

attributes. To achieve a robust comparison between the performance of the H-SVR 

model and the regressing Kriging model, 10 random seeds are used for the three-time 
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evaluation of each sample point. Thus for both the small sample and the large sample, 

the whole process including creation of 3-replication dataset, surrogate model 

estimation and validation is repeated 10 times. 

After the surrogate models are constructed, an independent denser validation 

data set with 576 points is generated, and the true function value at each of the 

validation point is evaluated through Equation 5.16. Predictions at the validation 

points will be obtained using the surrogate models. Four MoEs are chosen to evaluate 

the performance of the two types of surrogate models, including RMSE, MAE and 

EGOp that are introduced in section 3.3, and a new MoE named absolute error of 

optimal value (AEOV). 

* * * *ˆˆ ˆAEOV ( ) , argmin ( ), min ( )f f f f f   x x x x                (5.19) 

where f  is the true function, f̂  is the surrogate function, *x̂  is the predicted global 

optima, and *f  is the true optimal value. After the MoEs for each surrogate model is 

computed, the average performance for the 10-time model estimation and validation 

process is then compared between the H-SVR model and the regressing Kriging 

model. 

To investigate the impact of problem dimension on the performance of two 

types of models, we test a second problem, which is a six-dimension function, 

belonging to the Hartman’s families. 

4 6
2 6

2
1 1

( ) exp ( ) , ,0 1i ij j ij j
i j

f c a x p x
 

 
       

 
 x x                   (5.20) 

Similarly, the outputs with different level of noise variance are generated by 

equation 5.21 and 5.22. 
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6
2 2 2( ) ( ) 0.1 ( ) N(0,1), , 0 1,1 6jf f f x j      x x x x             (5.21) 

6
2 2 2( ) ( ) 0.5 ( ) N(0,1), , 0 1,1 6jf f f x j      x x x x


           (5.22) 

The parameters for this six-dimension test function are as follows: 

10.0 3.0 17.0 3.50 1.7 8.0

0.05 10.0 17.0 0.10 8.0 14.0

3.0 3.50 1.70 10.0 17.0 8.0

17.0 8.0 0.05 10.0 0.1 14.0

ija

 
 
 
 
 
 

                                 (5.23) 

1.0

1.2

3.0

3.2

ic

 
 
 
 
 
 

                                                                                      (5.24) 

0.1312 0.1696 0.5569 0.0124 0.8283 0.5886

0.2329 0.4135 0.8307 0.3736 0.1004 0.9991

0.2348 0.1451 0.3522 0.2883 0.3047 0.6650

0.4047 0.8828 0.8732 0.5743 0.1091 0.0381

ijp

 
 
 
 
 
 

        (5.25) 

The global optima of this function is  

* (0.20169, 0.150011, 0.47687, 0.275332, 0.311652, 0.6573)x , *( ) 3.32237f  x . 

For the second test function, the small sample includes 65 points and the large 

sample includes 380 points. All the procedures of constructing the surrogate models 

and evaluating the performance of the surrogate models are the same as the case of 

the first test function, except that the independent validation sample for this function 

includes 729 points. 

Overall, three aspects of the problems are considered for the numerical test, 

which are problem dimension, sample size and variance level. Thus there are in total 

8 scenarios to be investigated. The average performance of the two types of surrogate 
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models under different test functions, different sample sizes and different variance 

levels is listed in Table 5-1. 

The better performance regarding the four MoEs under each scenario is 

highlighted in bold in Table 5-1. In general, the MoE RMSE evaluates the overall 

prediction accuracy of the two surrogate models over the entire research domain, 

while MAE, EGOp and AEOV measures their capability of estimating the function 

value accurately at some specific small regions. For the current numerical study, as 

the validation sample is selected using the space filling algorithm LHS and no 

evolutionary process (e.g. global optimal infill) is performed, the MoE RMSE 

evaluating the performance over the entire domain are of more concern.  

 
Test 
Function 

Sample 
Size 

Variance 
Level 

Heteroscedastic SVR Model Regressing Kriging Model 

RMSE MAE EGOp AEOV RMSE MAE EGOp AEOV 

2-variable 
function 

small 
low 2.33 7.10 -7.89 1.81 2.42 7.26 -7.89 0.88 

high 2.68 7.62 -8.03 3.38 2.55 7.40 -9.40 2.41 

large 
low 0.80 7.00 -9.09 0.07 0.98 7.10 -7.43 3.99 

high 1.52 5.17 -6.22 1.77 1.56 5.82 -7.58 3.31 

6-variable 
function 

small 
low 0.24 1.90 -2.01 0.85 0.29 1.94 -1.83 0.62 

high 0.49 2.49 -1.25 1.34 0.30 2.08 -1.82 1.87 

large 
low 0.14 1.31 -3.02 0.48 0.18 1.65 -3.14 0.49 

high 0.44 2.14 -1.73 1.01 0.26 1.70 -2.38 0.98 

 
Table 5-1: Performance of the Heteroscedastic SVR Model and Regressing Kriging 

Model. 
 

It’s very clear from Table 5-1 that the H-SVR model always outperforms the 

regressing Kriging model in terms of overall prediction accuracy when the variance 

level of the data is relatively low. For the four low-variance scenarios, ANOVA is 
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conducted to test the statistical significance of the difference between the RMSE 

predicted by the H-SVR model and the regressing Kriging model. The p value is 

computed to be 0.000, 0.015, 0.025 and 0.000 for the 2-dimension small-sample, 2-

dimension large-sample, 6-dimension small-sample and 6-dimension large-sample 

cases, respectively. The differences in RMSE for the two models in all of the four 

low-variance cases are all significant at the 95% confidence level. In general, the 

increase of sample size would enhance the performance of both surrogate models 

under the low variance cases.  

Worse performance should be expected when the variance level is increased. 

However, the comparison between the two surrogate models becomes more 

complicated if the variance level is relatively high. Each of the two surrogate models 

does not show consistent better performance than the other. An interesting finding is 

that the performance of the H-SVR model varies significantly among the 10 sets of 

input-output data for the same scenario, while the regressing Kriging model provides 

quite consistent performance using the same 10 sets of data. The RMSEs for both of 

the two surrogates using 10 sets of data under the case of 6-variable function with a 

high variance level are plotted in Figure 5-3. The H-SVR model is shown to be rather 

sensitive to the generated random outputs of the samples. Thus it’s not a promising 

option to deal with problems with a high variance level.  
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       (a) 

  
                                                                      (b) 

Figure 5-3: Validations RMSE for the 6-Variable Function with a High Variance 
Level, (a) Small Sample; (b) Large Sample. 
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5.4 Application 

 

The real world application to be investigated for this chapter is still the ICC 

dynamic pricing optimization problem. And the objective of the problem is to 

minimize network wide average trip travel time for vehicles departing during the 

morning peak period (6-9 am). The variance level of the ICC simulation output has 

been analyzed in section 5.1. Figure 5-1 shows that the coefficient of variation of the 

outputs for all the initial samples differs from 0 to 0.1. According to the conclusion 

from the numerical test, the H-SVR model outperforms the regressing Kriging model 

for heteroscedastic data when the variance level is low. Thus the H-SVR model 

should be suitable for solving this real world application problem. 

Based on the 3-time evaluation of the 67 initial samples, both the H-SVR 

model and the regressing Kriging model are constructed, and their capability of 

predicting optimal solutions is compared. 

 The optimal solution found by the H-SVR model is 

*
T[$ 0.30, $ 0.37, $ 0.00, $ ,0.00 0.$ ,00 1.5%]SVR x , and the estimated network average 

travel time under this toll plan is 
*

19.35 minSVRTT s . This toll plan is then evaluated 

through 10-time DynusT simulation runs, and the average of the network mean travel 

time is * 18.37 minSVRTT s , and the standard deviation is * 0.35 minSVR s   

The regressing Kriging model is also constructed to approximate the response 

surface. However, after an extensive search for global optima based on the Kriging 

model using the genetic algorithm, the global optima is found to lie at the boundary 
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domain, with the toll rate of all the ICC sections to be 0. The estimated network mean 

travel time is 
*

m20.19 inKrigingTT s . The actual network average travel time under 0 

tolls is * 19.16 minKrigingTT s  according to the 10-time simulation evaluation at this 

point, and the standard deviation is * 0.29 minKriging s  . 

We perform the ANOVA for the 10-time simulation results of the optima 

predicted by the H-SVR and the regressing Kriging models, respectively. The F 

statistic is 3.40 and the corresponding p value is 0.08, which means that the network 

wide average trip travel times in response to the two optimal toll plans predicted by 

different surrogate models are statistically different at the 90% confidence level. 

Figure 5-4 shows the variations of traffic volume on the five tolled segments 

of the ICC during the peak period under the two optimal toll plans predicted by the H-

SVR and the regressing Kriging model as well as the baseline toll. Traffic flow for 

different directions is depicted separately. The traffic volume on the ICC sections is 

very low under the baseline toll plan. It’s almost always lower than 1,000 vehicles per 

hour. As the ICC has 3 lanes per direction, the capacity is definitely not used 

sufficiently. Traffic volume under the two optimal toll plans is much higher on all of 

the 5 segments than the baseline case. This change is expected since the toll rate on 

all of the segments is reduced. It’s not surprising that the traffic volume is the highest 

when the ICC is totally free.  
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Figure 5-4: Traffic Volumes of ICC Segments under Optima and Baseline Tolls. 
 

In addition to the comparison of traffic volume on the tolled links, the network level 

performance under the 3 toll plans is also analyzed. The average travel time for 

vehicles departing within every 5-minute interval is depicted in Figure 5-5. The 

average travel time is significantly reduced under both the optimal toll plan predicted 

by the regressing Kriging model and the H-SVR model, especially during the most 

congested period (7:30-9:00 am). The reduction of average travel time is around 30% 

during this period. Although the optimal solution predicted by the regressing Kriging 
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model makes the ICC road free, and introduces a lot of traffic onto the ICC, the 

network wide traffic condition is not as efficiently improved as the solution given by 

the H-SVR model. A possible reason is that most of the traffic diverted onto the ICC 

is short trips, and these trips do not contribute a lot to the network wide performance. 

Those long trips are not attracted to the ICC and stay jammed on their usual routes. 

 

 

Figure 5-5: Average Travel Time under Optima and Baseline Tolls. 
 

 As the traffic condition is improved during the most congested period 

(7:30-9:00 am) under the two optimal toll plans, more vehicles are able to arrive at 

their destination during the peak period. The throughput for the whole network 

increases significantly for the period 7:30-9:00 am, and the total throughput for the 

morning peak period increases by about 11% under the optimal toll predicted by the 

regressing Kriging model. The increase in throughput is around 14% for the optimal 
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toll predicted by the H-SVR model. The adjustment of toll rates for one freeway in 

the regional network has successfully led to a more efficient usage of the road 

network capacity. As the average travel time is reduced and the overall throughput is 

increased at the same time, the total amount of travel time saving for all the network 

users during the morning peak hours is very huge. 

 

  

                     (b) Vehicle Throughput                     (c) Cumulative Vehicle Throughput 

Figure 5-6: Throughput under Optima and Baseline Tolls, (a) Vehicle Throughput; 
(b) Cumulative Vehicle Throughput. 

 

5.5 Conclusions 

 

Most existing surrogate models that can approximate expensive-to-evaluate 

simulation response surfaces implicitly assume identical distribution of simulation 

noise over the entire feasible domain. However, via the observation of the simulation 

output of the regional network for our case study, we find that the noise of the 
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transportation simulation exhibits very significant heteroscedasticity. To take into 

account heteroscedastic noise in the sample data, an enhanced SVR method (H-SVR) 

is proposed in this chapter, which allows different levels of error tolerance throughout 

the feasible domain according to the level of variance at the specific locations. 

To test the effectiveness of using the H-SVR model to approximate 

heteroscedastic simulation output, a complete set of numerical test is designed, which 

includes 8 scenarios characterized by problem dimension, variance level and sample 

size. The performance of the H-SVR model is then compared to that of the regressing 

Kriging model. The test results show that the H-SVR model outperforms the 

regressing Kriging model in terms of overall prediction accuracy when the variance 

level of the noisy data is relatively low. However, when the level of variance in the 

data is relatively high, both of the two surrogates cannot provide satisfying 

performance.  

The H-SVR model is then applied to the application of optimizing the 

dynamic pricing of the ICC road as introduced in Chapter 4. The objective of this 

problem is set to be minimizing network wide average trip travel time for vehicles 

departing during the morning peak period. The optimal toll plan predicted by the H-

SVR model is found to outperform that predicted by the regressing Kriging model 

(best surrogate model identified in the study introduced in Chapter 3). Overall, under 

the optimal toll plan predicted by the H-SVR model, the network wide average trip 

travel time for the peak period is reduced by around 20% compared to the baseline 

case, and the total vehicle throughput is increased by 14%. 



119 
 

However, no updating process is introduced when constructing the H-SVR 

models in both the numerical study and the real world application. The reason is that 

SVR models can only provide predicted value at unevaluated design points. 

Information such as the variance of the prediction at a particular point is not 

available. Therefore, the global optimal infill strategies used in Kriging models 

cannot be applied. In this case, the capability of the H-SVR surrogate model in 

finding the true optimal solution (or near-optimal solution) is heavily dependent on 

the choice of initial samples. This is the main limitation of the proposed H-SVR 

method.   
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Chapter 6: Bayesian Stochastic Kriging for Simulations with 
Heteroscedastic Errors   

 

To deal with the heteroscedastic noise in transportation simulation outputs, we 

propose another surrogate model in this chapter, which is named Bayesian stochastic 

Kriging model. Similar to the ordinary Kriging, this model can provide prediction of 

the distribution of output at any unevaluated design point. Thus the global optimal 

infill strategies introduced in section 3.2.3 can be easily applied. Moreover, to further 

illustrate the power of the simulation-based optimization approach in transportation 

research, a new problem of integrated optimization of transportation planning and 

operations decisions is developed as the case study in this chapter, which is very 

difficult to be formulated as an analytical model and thus is very hard to be solved 

using pure mathematical methods. 

 

6.1 Bayesian Stochastic Kriging Model 

 

To account for both sampling and response-surface uncertainty that is inherent 

to a stochastic simulation, stochastic Kriging method can be incorporated with 

heteroscedastic noisy data. Ankenman et al. (2010) provides a mathematical 

foundation for stochastic Kriging that extends the power of Kriging metamodeling for 

deterministic computer experiments to modeling responses from heteroscedastic, 

stochastic simulations. Although the ordinary Kriging treats the unknown response 

surface as a Gaussian random field that exhibits spatial correlation, the method 
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assumes measurement errors to be independent and identically distributed, while 

stochastic Kriging accounts for unequal variances and correlation of the random 

errors across the design space in stochastic simulation (Chen et al., 2012). In this 

chapter, we enhance the stochastic Kriging model by incorporating parameter 

uncertainties. The proposed Bayesian stochastic Kriging model is derived in a 

Bayesian analysis framework which endeavors to estimate parameters of an 

underlying distribution-based on the observed distribution. 

 

6.1.1 Model Formulation 

Suppose the unknown true response at point x  is stochastic and following a 

probabilistic distribution ( )g x , and the mathematical expectation of the true response 

satisfies E[ ( )] ( )g x f x , where f  is the true mean response surface. The expected 

square prediction error at x  is 2E[( ( )) ]y g x . 

The stochastic Kriging method predicts a response by summarizing a linear 

model and a high frequency variation component that represents fluctuations around 

the trend. In this study, we consider the following stochastic Kriging model 

T( ) ( ) ( ) ( ), 1,2r ry Z r   x q x β x x                        (6.1) 

where ( )ry x  is the observed response obtained from the r th simulation replication at 

point x , T
1( ) [ ( ), ..., ( )]mq qq x x x  is an 1m  vector of known regression basis 

functions (e.g. polynomial functions) of x , and β  is an 1m  vector of unknown 

weight parameters of each regression basis function. The stochastic nature of ( )Z x  is 

referred as extrinsic uncertainty (Ankenman et al., 2010) because it is imposed to 
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reconstruct the metamodel. ( )r x  is the intrinsic uncertainty that is only associated 

with simulation random noises. A series of simulation replications 1 2{ ( ), ( ), } x x   

at the same point x  are assumed to be independent and identically distributed.  

The Kriging surrogate approach assumes that the joint distribution of 

(0)
0 ( )f f x  and (1) (2) ( ) T[ ( ), ( ), , ( )]nf f ff x x x  is a ( 1)n -multivariate Gaussian 

distribution given by 

T T
0 20

1

1
~ ,n z

f


     
     
       

q ψ
β

f Q ψ Ψ
                                   (6.2) 

where T T (0)
0 ( )q q x  is an 1 m  vector of regressors at (0) kx  . Take the n m  

matrix of regression basis functions as  (1) (2) ( ) T[ ( ), ( ), , ( )]nQ q x q x q x , the ( , )i j th 

element of which is ( )( )i
jq x  for 1 i n  , 1 j m  .  

To reduce the influence of simulation random noises, multiple replications of 

simulations are necessary for each design point ( )ix , because the response mean and 

variance are given by 

( ) ( )
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1
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iR
i i
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ri

y y i n
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 x x                                 (6.3) 

2 ( ) ( ) ( ) 2

1

1
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i i i

r
ri

s y y i n
R



  
 x x x                  (6.4) 

where ( )( )iy x  is the sample mean at ( )ix , iR  is the number of simulation replications 

at ( )ix , the mean response vector is (1) (2) ( ) T[ ( ), ( ), , ( )]ny y yy x x x , 2 ( )( )is x  is the 

unbiased sample variance of iR  simulation replications. So the variance estimation of 

the mean response is 2 ( ) 2 ( )( ( )) ( ) /i i
is y s Rx x . 
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Similar to the n n  extrinsic covariance matrix of 2
z Ψ , let Σ  be the n n  

intrinsic covariance matrix implied by the simulation noise. To simplify the 

covariance structure of simulation noises and keep its heteroscedasticity feature, the 

estimation of Σ  can be given by 

2 (1)
1

2 (2)
2

2 ( )

( ) / 0 0

0 ( ) / 0ˆ

0 0 ( ) /n
n

s R

s R

s R








 
 
   
  
 

x

x
Σ

x




   


                   (6.5) 

Lemma 1 (Conditional distribution of the multivariate Gaussian 

distribution). Suppose that T
0[ , ]f f  follow the ( 1)n  dimensional multivariate 

Gaussian distribution 1 n  , i.e.  

TT
0 20

1 2

1
~ ,

/
n z

z

f






    
            

ψq
β

f ψ Ψ ΣQ
                        (6.6) 

then the conditional distribution of 0f  given f  is an univariate Gaussian distribution 

1  given by 

T T 2 1 2 T 2 1
0 1 0| ~ ( / ) ( ), [1 ( / ) ]z z zf           f q β ψ Ψ Σ f Qβ ψ Ψ Σ ψ     (6.7) 

Proof. Consider the ( 1) ( 1)n n    matrix 
T

2

2

1

/
z

z




 
  

 

ψ
Σ

ψ Ψ Σ
, 

according to the Sherman-Morrison-Woodbury matrix inverse formula (Woodbury, 

1950), we have  

T 2 1 1 T 2 T 1
1

2 2 1 T 2 1 1 2 T 1

(1 ( / ) ) ( / )1

( / ) (1 ( / ) ) ( / )
z z

z z z z

 

  

 
   

  


   

     
  

      

ψ Ψ Σ ψ ψ Ψ Σ ψψ
Σ

Ψ Σ ψ ψ Ψ Σ ψ Ψ Σ ψψ

(6.8) 
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To diagonalize the covariance matrix Σ  of the multivariate Gaussian 

distribution, we conduct the LDU decomposition (Eaton, 1983) as follows 

T 2 1
T 2

2

1 ( / ) 0

0 /
z

z

z










  
  

 

ψ Ψ Σ ψ
Λ ΣΛ

Ψ Σ
                    (6.9) 

where 2 1

1 0

( / ) 1z  

 
    

Λ
Ψ Σ ψ

. 

Since that T
0[ , ]f f  follow the multivariate Gaussian distribution, we 

premultiply TΛ  in Equation 6.6, then 

T
0T T T0

+1~ ,n

f    
   
     

q
Λ Λ β Λ ΣΛ

f Q
                                    (6.10) 

i.e. 

T 2 1 T T 2 1
T0 0

+1

( / ) ( / )
~ ,z z

n

f           
    
     

ψ Ψ Σ f q β ψ Ψ Σ Qβ
Λ ΣΛ

f Qβ
       (6.11) 

The covariance matrix has now been diagonalized. This is useful because zero 

covariance implies independence for normally distributed random variables and so it 

follows that 

T 2 1 T T 2 1 2 T 2 1
0 1 0( / ) ~ ( / ) , [1 ( / ) ]z z z zf               ψ Ψ Σ f q β ψ Ψ Σ Qβ ψ Ψ Σ ψ

(6.12) 

When we move the second term on the left hand to right in Equation 6.12, it 

follows the Gaussian distribution conditional on f  given by Equation 6.7. 

Lemma 2. For any m m  symmetric and positive definite matrix βΣ , and 

1m  vector v , if the probability density function and an 1m  multivariate random 

variable β  satisfies  T 1 T( ) expp   ββ β Σ β v β , then  ~ ,m β ββ Σ v Σ . 
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Proof. Consider an 1m  multivariate random variable w  that has a 

multivariate Gaussian probability density function  ,m μ Σ , i.e. 

T 1
/2 1/2

1 1
( ) exp ( ) ( )

(2 ) det( ) 2m
p


     

 
w w μ Σ w μ

Σ
                (6.13) 

Calculate integrals in terms of w  on both sides of Equation 6.13, we have 

/2 1/2 T 1

T 1 T 1 T 1

1
(2 ) | | exp ( ) ( ) d

2

1 1
exp ) d

2 2

m

m

m 

  

     
 
     
 





Σ w μ Σ w μ w

w Σ w μ Σ w μ Σ μ w





             (6.14) 

so that  

T 1 T 1 /2 1/2 T 11 1
exp ) d (2 ) det( ) exp )

2 2m

m           
    w Σ w μ Σ w w Σ μ Σ μ


    (6.15) 

Substitute β  for w ,  βΣ  for Σ , and Tv  for T 1μ Σ , so we have  βμ Σ v . 

Since  T
~ ,mw μ Σ , then  ~ ,m β ββ Σ v Σ .  

Lemma 3. Suppose that 2
z , Ψ , Σ  are known, then for an arbitrary β  

priori, the best linear unbiased predictor, which minimizes the mean squared 

prediction error between the linear predictor of the response at (0)x , is 

T T 2 1
0 0
ˆ E[ | ] ( / ) ( E[ | ])zf      q β f ψ Ψ Σ y Q β f                      (6.16) 

Specifically, when β  has a non-informative priori, i.e. ( ) 1p β , the best 

linear unbiased predictor of the response at ( ) 1p β  is 

T T 2 1
0 0

ˆ ˆ ˆˆ( / ) ( )zf      q β ψ Ψ Σ y Qβ                             (6.17) 

where T 2 1 1 T 2 1ˆ [ ( / ) ] ( / )z z      β Q Ψ Σ Q Q Ψ Σ y .  
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Proof. First, we prove that Equation 6.16 is an unbiased predictor of 0f . 

Using Lemma 1, we have 

0 0

0

T 2 T 2 1
0

T T 2 1
0

E[ ] E[ | ]

E[E[ | , ] | ]

E[ ( ) ( ) | ]

E[ | ] ( / ) ( E[ | ])

z z

z

f f

f





 










   

   

f

f β f

q β ψ Ψ Σ y Qβ f

q β f ψ Ψ Σ y Q β f

                      (6.18) 

So Equation 6.16  is the unbiased predictor of 0f , i.e. 0 0
ˆE[ ] 0f f  . 

Second, fix an arbitrary unbiased predictor *
0f , its mean squared prediction 

error is given by 

2 * * 2
0 0 0

* 2
0 0 0 0

* 2 2 *
0 0 0 0 0 0 0

2 *
0 0 0 0 0

2
0

( ) E[( ) ]

ˆ ˆE[( ) ]

ˆ ˆ ˆ ˆE[( ) ] ( ) 2E[( )( )]

ˆ ˆ ˆ( ) 2E[( )( )]

ˆ( )

s f f f

f f f f

f f s f f f f f

s f f f f f

s f

 

   

     

   



                   (6.19) 

So 0f̂  is the best linear unbiased predictor that corresponds to the minimum 

mean squared prediction error. 

In particular, when β  has a non-informative priori, i.e. ( ) 1p β , its 

conditional distribution given f  is 

T 2 1
2

T T 2 1 T T 2 1
2

( | ) ( | ) ( ) / ( )

1
exp ( ) ( / ) ( )

2

1
exp ( ( / ) 2 ( / ) )

2

z
z

z z
z

p p p p



 




 




 



 
     

 
 

     
 

β f y β β f

y Qβ Ψ Σ y Qβ

β Q Ψ Σ Qβ β Q Ψ Σ y

      (6.20) 

So Equation 6.20 satisfies the condition in Lemma 2, we have 

 ˆ ˆ( | ) ,mp  ββ f β Σ                                      (6.21) 
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where T 2 1 1 T 2 1ˆ [ ( / ) ] ( / )z z      β Q Ψ Σ Q Q Ψ Σ y , T 2 1 1ˆ [ ( ) ]z    βΣ Q Ψ Σ Q . 

Substitute Equation 6.21 into Equation 6.16, i.e. ˆE[ | ] β f β , we have the best 

linear unbiased predictor  of the response at (0)x  is Equation 6.17. 

Theorem 1. When 2
z , Ψ  and Σ  are known, (I) if ( ) 1p β  on m , then the 

predictive distribution of the response at (0) kx   belongs to a Gaussian 

distribution, i.e. 2
0 | |1( | ) ( , )f fp f   f ff  , where  

T T 2 1
| 0

ˆ ˆ( / ) ( )f z     f q β ψ Ψ Σ y Qβ                             (6.22) 

 
1T

02 2 T T
| 0 2

1 ,
/

m m
f z

z

 





              

f

q0 Q
q ψ

ψQ Ψ Σ
                  (6.23) 

(II) if  0( ) ,mp β β B  on m , then the predictive distribution of the 

response at (0) kx   belongs to Gaussian distribution, i.e. 2
0 | |1( | ) ( , )f fp f   f ff  , 

where  

T T 2 1
| 0 | |( / ) ( )f z     f β f β fq μ ψ Ψ Σ y Qμ                            (6.24) 

where T 2 1 1 1 T 2 1 1
| 0[ ( ) ] [ ( ) ]z z          β fμ Q Ψ Σ Q B Q Ψ Σ y B β , and 

 
12 1 T

02 2 T T
| 0 2

1 ,
/

z
f z

z


 



              
f

qB Q
q ψ

ψQ Ψ Σ
                   (6.25) 

Proof. We first prove the informative β  priori, i.e. the Gaussian distribution 

priori in (II), when | |B , the informative β  priori reduces to the non-informative 

priori shows in (I). 

Given a known 2
z , the conditional density of 0 |f f  can be written as 
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0 0( | ) ( | , ) ( | )d
m

p f p f p f f β β f β


                             (6.26) 

Consider the following conditional probability density function by applying 

Lemma 1, we have the first term in the right-side integrand of Equation 6.26 

 1
2

0 | , | ,( | , ) ,f fp f   f β f βf β                                  (6.27) 

where T T 2 1
| , 0

ˆ| ( / ) ( )f z     f β q β ψ Ψ Σ y Qβ , 2 2 T 2 1
| ,

ˆ[1 ( / ) ]f z z     f β ψ Ψ Σ ψ . 

According to the Bayes' theorem, we have the second term in the right-side 

integrand of Equation 6.26 as the following 
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   
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 

y β β
β f

f

y Qβ Ψ Σ y Qβ β β B β β

β Q Ψ Σ Q B β β Q Ψ Σ y B β

                             

(6.28) 

Since Equation 6.28 satisfies the condition in Lemma 2, we have  

 1 | |( | ) ,p  β f β fβ f μ Σ                                     (6.29) 

where  

T 2 1 1 1 T 2 1 1
| 0

ˆ[ ( ) ] [ ( ) ]z z          β fμ Q Ψ Σ Q B Q Ψ Σ y B β             (6.30) 

T 2 1 1 1
| [ ( ) ]z      β fΣ Q Ψ Σ Q B                                    (6.31) 

To simplify the notations in the followings, let 2| / z  Ψ Ψ Σ . Substitute 

Equation 6.27 and Equation 6.29 into Equation 6.26, and ignore constants of 

proportionality, we obtain 
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                                   (6.32) 

where T T 1 T
0|  h ψ Ψ Q q , 

T 1
10
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( )
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




   β f β f
f β
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
. 

By Lemma 2, we can further derive Equation 6.32 as follows 
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(6.33) 
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where we apply the Sherman-Morrison-Woodbury matrix inverse formula 

(Woodbury, 1950) to derive the inverse matrices in Equation 6.33 as follows  

   1 1T 2 1 2 2 T 2 T 2
| , | | , | | , | | , | | , |+ 1f f f f f    

       f β β f f β β f f β β f f β β f f β β fhh Σ Σ Σ h h Σ h h Σ        (6.34) 

   1 1T T 2 1 1 2 T T 2 T
| , | | | | , | | | , |+ [1 ]f f f  

     f β β f β f β f f β β f β f f β β fh hh Σ Σ μ h μ h Σ h h Σ h        (6.35) 

We track the "decision variable" 0f  in Equation 6.33, again, by Lemma 2, we 

conclude that 2
0 | |1( | ) ( , )f fp f   f ff   by substituting 2

| ,f f β , |β fΣ  and |β fμ , thus 

    12 T T 1 T 2 T
| | , | | | , |f f f  

   f f β β f β f f β β fh Σ h ψ Ψ y h μ h Σ h            (6.36) 

2 2 T
| | , |f f  f f β β fh Σ h                                              (6.37) 

Then substitute Equations 6.27, 6.30 and 6.31 into Equations 6.36 and 6.37, 

we obtain the results of Equations 6.24 and 6.25. So we the case of informative β  

priori is proven. If |B  or 1
m m


B 0 , the non-informative β  priori leads to the 

results shown in Equations 6.22 and 6.23. 

Note that the priori of β  can be estimated by the first-round simulations 

across all design points. The least squares error estimations of  0 ,β B are 

T 1 T
0 1

ˆ ( )β Q Q Q y  and 
T T 1

1 0 1 0
ˆ ˆ( ) ( )( )ˆ

n m

 



y Qβ y Qβ Q Q

B , where 

(1) (2) ( ) T
1 1 1 1[ , , , ]ny y yy    is the first-round simulation output vector of all n  points. 

 

6.1.2 Model Evaluation 

As Kriging surrogate models provide predictive distributions for the outputs 

of any design points, we use the Kullback-Leibler divergence (Kullback and Leibler, 
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1951) as the performance measure. It is also called relative entropy, which is a non-

symmetric measure of the difference between two probability distributions. 

Specifically, the Kullback-Leibler divergence of an unknown multivariate Gaussian 

distribution True  from an estimated multivariate Gaussian distribution Est , is a 

measure of the information lost when using Est  to approximate True . The 

analytical derivation of the Kullback-Leibler divergence of Gaussian distributions is 

given by  

1 T 1 Est
KL Est True True Est True Est True True Est

True

det( )1
( || ) tr( ) ( ) ( ) ln

2 det( )
D n   

       
  

Σ
Σ Σ μ μ Σ μ μ

Σ
 

                                             (6.38) 

where KLD  is the Kullback-Leibler divergence, Trueμ  and Estμ  are the mean 

values of True  and Est , respectively, TrueΣ  is the nonsingular covariance matrix of 

True , and the estimated covariance matrix of Est  is given by 

2
Est

ˆ ˆˆ= z  Σ Ψ Σ                                                 (6.39) 

 

6.2 Numerical Example 

 

Is it beneficial to include both parameter uncertainties and heteroscedastic 

simulation noise into the ordinary Kriging surrogate model? In this section, we work 

with a simplified transportation network to gain some insights of the Bayesian 

stochastic Kriging model using the DynusT simulator. 
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To illustrate the methodology developed in this chapter and compare it with 

existing models, we set up a toy network to simulate how travelers’ value of time 

(VOT) influence the route choice behaviors. Our purpose in this section is three-fold: 

To provide some intuition about what the Bayesian stochastic Kriging method does 

on approximating the black-box function of a simulation-based dynamic traffic 

assignment problem; to assess the parameter uncertainty; and to evaluate the 

estimation robustness by comparing the heteroscedastic errors in our model. 

 

6.2.1 Toy Network 

The toy network is depicted in Figure 6-1. Overall, the network consists of 10 

links and 6 nodes. There is only one origin-destination (OD) pair from node 1 to node 

3 in this network. Two major parallel corridors serve for the travel demand between 

the OD pair. The route 1-2-3 is a freeway corridor with two general-purpose lanes 

and one High-occupancy vehicle (HOV) lane, while the route 1-4-5-6-3 is an arterial 

with 2 lanes. Vehicles may change their route choices between the freeway and the 

arterial under different VOT via links 8 and 9. The configuration of the links is 

illustrated in Table 6-1. 

 

 
 

Figure 6-1: Numerical Illustration Network. 
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Link 1 2 3 4 5 6 7 8 9 10 

Length (mile) 45 45 45 45 30 30 0.2 0.2 0.2 0.2 

Lanes 2 2 1 1 2 2 2 2 2 2 

Speed limit (mph) 60 60 60 60 40 40 40 40 40 40 

Free flow travel time (min) 45 45 45 45 45 45 0.3 0.3 0.3 0.3 

Capacity (veh/lane/hour) 1500 1500 1500 1500 1000 1000 1500 1500 1500 1500

 
Table 6-1: Input Data for a Small Road Network. 

 

This network is coded into DynusT, and simulation-based dynamic traffic 

assignment is applied to capture the route choice behavior. Five-hour dynamic travel 

demand between the OD pair is set up as in Table 6-2. To allow all vehicles to 

dissipate, we simulate the network for 7 hours, with no travel demand during the last 

two hours. 

 

Time (hour) SOV a HOV 

0 - 1 3000 300 

1 - 2 5000 500 

2 - 3 5800 850 

3 - 4 4700 950 

4 - 5 2800 350 
a SOV: single occupancy vehicles. 

 
Table 6-2: Dynamic Travel Demand. 

 

In this numerical example, the average travel time for all vehicles is selected 

as the dependent variable, and the surface to be approximated is the response of 

average travel time to VOT. Due to the effect of random seeds and the stochastic 
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route choice behavior, the output of the DynusT model is noisy. To create the real 

response surface, we first generate a uniformly distributed sample of VOT, and then 

run 100 replications of simulations for each specific input of VOT. The mean of the 

output from the 100 replications is assumed to be the true response. This true 

response would be used for validating the surrogate models. In addition, we also 

consider the variation of the output. Thus the distribution of the output from the 100 

replications of simulations for each VOT value is utilized to validate the estimated 

distribution of response value from the surrogate models.  

For the estimation of the Bayesian stochastic Kriging model, results from the 

first 10 replications of simulation for each corresponding VOT value are utilized. 

Moreover, to verify the advantageous of incorporating parameter uncertainties and 

heteroscedastic simulation noise into the surrogate model, we estimate a regressing 

Kriging model with the same input as that for the Bayesian stochastic Kriging model, 

and compare their performance on approximating the real response surface. 

 

6.2.2 Numerical Results 

To compare the developed Bayesian stochastic Kriging model with existing 

surrogate-based optimization approaches, e.g. quadratic polynomial response surface 

method, ordinary Kriging for deterministic input-output relationship, and regressing 

Kriging, the first 10 replications  are used to estimate the heteroscedastic simulation 

errors at different design points and the entire 100 replications are used to 

approximate the true response distributions, respectively. 
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Goodness-of-fit 
Quadratic 
Polynomial 

Ordinary 
Kriging 

Regressing 
Kriging 

Bayesian 
stochastic 
Kriging 

KLD  N/Aa N/A 65.58 38.33 

RMSE 1.90 0.19 0.87 0.20 

MAE 5.67 0.59 2.70 0.56 

NRMSE 1.89% 0.19% 0.86% 0.20% 

NMAE 3.10 0.33 1.52 0.31 

PCC 0.00 0.99 0.98 0.99 
                a N/A: not applicable. 

 
Table 6-3: The Goodness-of-Fit of Surrogate Models. 

 

Table 6-3 compares results of the four models with six MoEs. It should be 

pointed out that the Kullback-Leibler divergence measures the difference of two 

probability density functions. It is an important performance measure to evaluate the 

surrogate function of a stochastic simulation optimization problem. At 30 design 

points (VOT increases from US$ 1/hour to US$ 30/hour with a step of US$ 1/hour), 

the ordinary Kriging method predicts zero errors to their observed mean values, while 

both regressing Kriging and Bayesian stochastic Kriging predict non-zero standard 

errors. For this stochastic simulation numerical example in the synthetic network, we 

can see that the Kullback-Leibler divergence of the Bayesian stochastic Kriging is 

smaller than regressing Kriging, indicating that the proposed model generates better 

predictions given heteroscedastic data. Table 6-3 also shows estimation errors by 

comparing the prediction values with true objective function (estimated by 100 

replications of simulations) over these 30 design points. The RMSE, MAE, NRMSE, 

NMAE, PCC values are used for the mean output evaluation. We can see that the 
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Bayesian stochastic Kriging results in similar accuracy as the ordinary Kriging in 

mean value prediction.  

 

 

(a) 

 

(b) 

Figure 6-2: Comparison of Surrogate Models, (a) Regressing Kriging; (b) Bayesian 
Stochastic Kriging. 
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Figure 6-2 shows the surrogates of regressing Kriging and Bayesian stochastic 

Kriging corresponding to Table 6-3. These results verify the capability of the 

proposed Bayesian stochastic Kriging surrogate model in estimations of both mean 

values and standard errors given heteroscedastic noisy simulation input-output 

relationships. 

 

6.3 Application of Integrated Corridor Planning and Operational 

Optimization 

 

6.3.1 Research Problem 

This application aims to jointly optimize a transportation planning policy (i.e. 

HOT toll) and an operations strategy (i.e. DMS) for a freeway-arterial corridor 

network. Both of the two strategies have been separately investigated extensively in 

existing literature. 

HOT lanes reserve a set of freeway lanes HOV, while allowing low-

occupancy vehicles to enter for a toll. A good pricing scheme of HOT facilities would 

increase the HOT lane usage and relieve congestion on the parallel general-purpose 

lanes. Benefits of HOT lanes in travel time reduction, freeway efficiency 

improvement, and bottleneck congestion mitigation have been widely studied in 

multiple region-specific case studies (Burris et al., 2009; Goel and Burris, 2012). Yin 

and Lou (2009) delivered a reactive self-learning approach for determining time-
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varying tolls in response to the detected traffic arrivals. A Logit lane choice model 

was further adopted by Lou et al. (2011) to specify toll rates that maximized the 

freeway’s throughput. Gardner et al., (2013) modeled the choice process of individual 

drivers to pay and take the HOT lane, which could be helpful for the determining the 

toll setting. 

DMS is the most common way to provide real time travel information to 

drivers and encourage diversion before they approach the congested areas. The theory 

of random utility maximization has been applied in Ben-Akiva and Lerman (1985) 

and Khattack et al. (1995), while other research adopted if-then rules based on fuzzy 

logics to model the diversion in response to information (Paz and Peeta, 2009;  Xiong 

and Zhang, 2013). In previous research, the optimization of diversion rate has been 

analyzed through heuristic methods. Jacob et al. (2006) proposed a reinforcement 

learning approach to investigate the optimal diversion control for an express/collector 

corridor affected by work zones. Chen et al. (2005) developed a simulated annealing-

based algorithm to search for the optimal alternative route and diversion rate for a 

two-lane highway resurfacing project. In addition to the theoretical models, the 

diversion rate in response to DMS was investigated with field data in Horowitz et al. 

(2003). However, the focus of this study is not to analyze the actual diversion rate in 

response to DMS. Instead, we assume that the relationship between diversion rate and 

the information provided through DMS is already clear, and the objective of this 

study is to search for the optimal diversion rate that creates the best system 

performance.  
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The major challenge of jointly optimizing these two corridor management 

strategies is that it is very hard to formulate the objective function in a mathematical 

equation, as the two strategies concern about the analysis of travel behavior at 

different level. While on the other hand, simulation can conveniently evaluate the 

impact of the combined strategies to the system performance. Therefore, we take 

advantage of simulation, and apply SBO method to solve this problem. 

 

6.3.2 Study Area 

The study freeway/arterial corridor is along a 15.50-mile freeway segment of 

Interstate 270 (I-270 is known as the Washington National Pike) in the Montgomery 

County, State of Maryland. It lies between I-495 (the Capital Beltway) north of 

Bethesda, and Maryland Route (MD 124) in the city of Gaithersburg, Montgomery 

County. The I-270 consists of a 12.40-mile mainline as well as a 2.10-mile spur that 

provides access to and from southbound I-495. The freeway corridor heads northwest 

from an interchange with I-495 and MD 355 (Rockville Pike) in suburban Bethesda 

as an up to twelve-lane freeway with a 55 mph speed limit. The left lane on each side 

is used as a HOV lane in the northbound direction between 15:30 and 18:30 

weekdays and in the southbound direction between 6:00 AM and 9:00 AM weekdays. 

I-270 takes on a local-express lane configuration with the outer two lanes serving as 

local lanes and the inner three lanes and the HOV lane serving as express lanes.  
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Figure 6-3: Simulation Network of I-270 Freeway/Arterial Corridor. 
 

The urban network of arterials and freeways is coded into DynusT. All 

freeways and major arterials illustrated in Figure 6-3 are included in the network, 
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which has 61 traffic analysis zones, 435 nodes and 766 links. Three modes of 

dynamic OD matrices, i.e. SOV, HOV and trucks, are estimated based on demand 

data from the regional planning model (Zhang et al. 2012; Xiong et al., 2014).  

To investigate the impact of the two traffic management strategies (i.e. HOT 

toll and DMS) on travel behavior, we develop a work zone scenario in the 

aforementioned simulation network, which would create recurrent congestion in the 

corridor area. The effectiveness of jointly utilizing those strategies to divert traffic 

from congested areas can then be tested. The work zone scenario is simulated for a 

period of time from 14:00 to 19:00. 

As shown in Figure 6-3, the work zone is deployed on the north bound of I-

270 mainline, at the segment between the intersections to Montrose Road and Falls 

Road. Two lanes out of the initial five general-purpose lanes of this segment are 

closed for the road work. The initial HOV lane during the afternoon peak period 

(15:30-18:30) is converted to an HOT lane, allowing SOVs travelling through this 

lane with an additional monetary cost. Meanwhile, two DMSs are deployed at two 

major off-ramps of I-270 at the upstream of the work zone. These DMS can provide 

congestion warning to help divert traffic to the parallel arterial MD 355 before they 

approach to the work zone. Hereafter, we define the diversion rate as the proportion 

of drivers who make route choices based on their own perception of the congestion 

warning among all travelers. However, the response of travelers to the information 

provided by DMS is out of the scope of this study. Please refer to Paz and Peeta 

(2009) and Xiong and Zhang (2013) for more details. Instead, the objective is to 

search for the optimal diversion rate, which then serves as the goal for DMS. In 
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summary, the objective of the optimization problem is minimizing the average travel 

time for all finished trips during the 5-hour period, and the decision variables are 

HOT toll rate for the afternoon peak period (i.e. 15:30-18:30) and the independent 

diversion rate for the two DMS. 

The optimization problem is given by  

3 1 2 3min E[ ( )] E[ ( , , )]f f x x x



x

x


                                        (6.40a) 

min maxs.t.  x x x                                                          (6.40b) 

where ( )f x  represents the unknown true average trip travel time for all travelers of 

the corridor given the input x , 1x  is the HOT toll rate, 2x  is the diversion rate of the 

DMS next to the work zone, guiding travelers to Montrose Pkwy, 3x  is the diversion 

rate of the DMS at the off-ramp to MD 187. So x  is a three-dimensional decision 

variable vector. The box constraints are T
min [0, ]0, 0x  and 

T
max 5.00 100[US$ , ,% ]100%x , which are lower and upper boundaries for planning 

and operational strategies, respectively. The lower bound collects no toll on the HOV 

lane, which equals to open the HOV lane to SOV in peak hours, while the upper 

bounds collects US$ 5.00 per SOV use of the HOT lane. 

 

6.3.3 Simulation Demand and Supply Calibration 

This I-270 corridor network is a sub cut of the ICC regional network we 

introduced previously. Before using the simulation to evaluate system performance, 

the demand and supply of the simulated network should be calibrated. 
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Statistics SOV HOV Truck 
Total 
vehicles 

Number of vehicles 955,095 56,671 38,763 1,050,529

Average overall trip time (min) 8.26 8.48 6.94 8.23 

Average trip times (min) 8.13 8.33 6.81 8.09 

Average entry queuing time (min) 0.14 0.15 0.13 0.14 

Average stop time (min) 0.69 0.62 0.60 0.69 

Average trip distance (mile) 5.00 5.35 3.92 4.98 

Average travel speed (mph) –a – – 36.93 
a–: not available. 

 
Table 6-4: Summaries of the 24-Hour Simulation for the Corridor. 

 

We first simulated the travels of the corridor for the whole 24-hour weekday. 

A total number of 1,053,052 vehicles are loaded in the network during 24 hours. Field 

collections of urban street signal timing are also included in the network. From the 

24-hour simulation results, we see that the largest vehicle volumes in the corridor are 

on the freeway I-270 and its parallel major arterial MD 355, as well as several other 

arterials (e.g. MD 28, MD 124 and MD 187). At the end of 20 iterations of DTA and 

mesoscopic simulation, the CPU time of operation is 572 min (CPU time of 

simulation is 348 min, CPU time of assignment is 224 min) with a 2.66 GHz-quad 

CPU and 4 GB-Ram computer. For the scenario after both demand and supply 

calibration, at the end of 20 iterations, a percentage of 99.76% vehicles complete their 

trips, see detailed vehicle statistics in Table 6-4. 

To calibrate the simulation model, we collect traffic flow data of 35 detector 

stations from January 1, 2013 to June 30, 2013 along the I-270 corridor, including 11 

detectors on I-270 general-purpose lanes, 6 detectors on I-270 HOV lanes, 10 
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detectors on I-495, 6 detectors on MD 187, and 2 detectors on MD 355. We use 6-

month (January 1 to June 30, 2013) empirical loop/microwave data of the freeway 

network, including lane-by-lane speed, occupancy and volume extracted from fixed 

detectors (CATT Lab, 2013). Each station detects 1 through 5 lanes at a time interval 

of 15 minutes. Since we simulate traffic flow based on weekday origin-destination 

demands (Chen et al., 2013), field measurements on Saturdays and Sundays are 

excluded. Eventually, we obtain 130-weekday measurements of 35 detection stations. 

Since simultaneous demand–supply calibration is found to be superior to demand-

only calibration in accuracy (Balakrishna et al., 2007a, 2007b; Vaze et al., 2009), we 

will use the lane aggregate traffic data to support the demand and supply calibration.  

The mesoscopic traffic simulation in DynusT is based on the anisotropic 

mesoscopic simulation model, which moves vehicles according to the speed-density 

relationship (Chiu et al., 2010b). The modified two-regime Greensheild's type 

equation is used to quantify the relationship as follows 

f c

0 f 0 J c J

0

( )(1 / )

v
v

v v v 

 
    

 
      

                               (6.41) 

where v  is the space-mean speed,   is the density.  

Figure 6-4(a) shows the comparison of the default traffic flow model setting 

and the calibrated speed-density relationship for one of the detectors, i.e. station ID 

3392 that locates at I-270 NB 0.23 Mile North of Grosvenor Ln. The least square 

error estimations of traffic flow parameters using loop/microwave data are density 

breakpoint c 31.34   veh/mile/lane, speed intercept int 105.73v   mph, minimal 

speed 0 5v   mph, jam density J 200   veh/mile/lane, shape term 3.61  , and 
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free-flow speed f 59.44v   mph. The detailed comparisons of other 34 detection 

stations between simulation results and 6-month field measurements are omitted due 

to the length limit. 

 
(a) 

 
(b) 

Figure 6-4: Supply Calibration Results, (a) Modified Greenshield’s Model Calibration 
for Detector ID 3392; (b) Comparison of Measured and Simulated Traffic Flows on 

General-Purpose Lanes. 
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Figure 6-4(b) shows simulation results of the freeway network average speed, 

density and flow by comparing them with 6-month traffic flow data. The 90% 

confidence interval (CI) is estimated by the 130-weekday data. We can see the 

simulation matches well with historical measurements.  

To reveal the simulation accuracy from the perspective of network level 

statistics for both SOV and HOV performance, two separate experiments are 

performed. First, only the demand is calibrated using our previously proposed method 

(Zhang et al., 2012) while supply (e.g. number of lanes, traffic flow model 

parameters, and speed limit) is held using default values of DynusT. In the second 

experiment, both demand and supply are calibrated. Since there are 35 detector 

stations collecting traffic flow data in the study network, we first estimate the 

simulation errors of individual detector stations, and then aggregate the error into 

weighted average measures of goodness-of-fit using measured traffic volumes as 

weighted coefficients. 

 

Simulation 
errors 

Demand calibration only Demand/supply calibration 

Speed Flow Density Speed Flow Density 

RMSE 11.14 410.48 48.98 7.83 182.05 15.14 

MAE 28.28 852.16 164.83 18.18 447.27 42.52 

NRMSE 20.65% 67.48% 242.82% 14.25% 27.69% 48.58% 

NMAE 8.96 2.95 12.38 4.50 1.44 2.48 

 
Table 6-5: Calibration Errors of Network-Wide Traffic Flow Quantities on General-

Purpose Lanes. 
 

Table 6-5 shows the validation results of the simulation model before and 

after supply parameters calibration using 6-month field measurements on general-
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purpose lanes. The demand/supply calibration provides considerable improvements in 

simulation accuracy and obtains more satisfactory results than the demand-only 

calibration.  

 

Segments Periods 
Field 
detection

Demand 
calibration 

Demand/supply 
calibration 

Segment I (I-495 WB to I-270 
NB) 

AM/PM 
peaks 

1,493 512 217 

 Off-peak 5,134 329 2,127 
Segment II (I-270 SB to I-495 
EB) 

AM/PM 
peaks 

1,314 170 4,689 

 Off-peak 5,050 403 14,323 
Segment III (I-495 EB to I-270 
NB) 

AM/PM 
peaks 

1,358 56 76 

 Off-peak 5,604 65 934 
Segment IV (I-270 SB to I-495 
WB) 

AM/PM 
peaks 

853 57 813 

 Off-peak 3,204 263 2,814 

All segments 
AM/PM 
peaks 

5,018 795 5,795 

 Off-peak 18,992 1,060 20,198 
 All day 24,010 1,855 25,994 

Relative difference absolute  
AM/PM 
peaks 

N/Aa 84.16% 15.50% 

 Off-peak N/A 94.42% 6.35% 
 All day N/A 92.27% 8.26% 
 a N/A: not applicable. 

Table 6-6: Comparison of Measured and Simulated VMT on HOV Lanes. (Miles) 
 

Table 6-6 summarizes the HOV lane performance results of the case study 

with the real-world network. The performance measurement used for HOV lanes is 

different from general-purpose lanes in this study. In particular, the HOV lane 

performance may vary significantly with operation hours, so we estimate the vehicle 

miles traveled on HOV lanes in AM/PM peaks and off-peak periods, respectively. 

Loop/microwave detectors are installed on HOV lanes of four segments shown in 
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Table 6-6. The absolutes of relative differences (absolute percentage of simulation 

and measurement difference to the field measurement) for all HOV segments are 

reduced to 15.50% and 6.35% for peaks and off-peak, respectively. Figure 6-5 shows 

the similarity in temporal profiles of simulated and measured HOV-lane VMT. 

 

Figure 6-5: Comparison of Mean Measured and Simulated Cumulative HOV-Lane 
VMT. 
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We simulate the 5-hour PM peak from 14:00 to 19:00 of the corridor. The 

HOT rate takes effects from 15:30 to 18:30, while DMS provides congestion warning 

information to the work zone for the whole simulation period. The initial design 

points to fit the Bayesian stochastic Kriging surrogate model is generated by LHS. 
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Sample 1x  2x  3x  y  ŝ  
Sample 1x  2x  3x  y  ŝ  

US$ % % min min US$ % % min min 

t 3.97 85.71 71.43 12.142 0.10 33 2.22 55.56 69.84 12.111 0.08 

2 2.70 69.84 73.02 12.065 0.04 34 0.87 36.51 93.65 12.138 0.08 

3 0.71 17.46 15.87 12.062 0.06 35 3.10 82.54 3.17 12.176 0.10 

4 1.27 76.19 65.08 12.075 0.12 36 2.78 19.05 95.24 12.037 0.06 

5 3.65 46.03 26.98 12.166 0.08 37 1.19 28.57 53.97 12.145 0.21 

6 4.29 93.65 96.83 12.188 0.07 38 4.05 63.49 23.81 12.136 0.14 

7 2.46 33.33 76.19 12.023 0.13 39 4.21 22.22 28.57 12.196 0.12 

8 0.16 77.78 49.21 12.123 0.17 40 1.51 88.89 92.06 12.092 0.12 

9 3.57 12.70 0.00 12.171 0.08 41 4.52 23.81 85.71 12.116 0.07 

10 4.37 74.60 58.73 12.157 0.08 42 4.13 34.92 50.79 12.167 0.11 

11 0.79 6.35 57.14 12.017 0.09 43 0.08 39.68 7.94 12.051 0.11 

12 2.30 44.44 17.46 12.044 0.07 44 2.62 71.43 12.70 12.052 0.05 

13 4.84 11.11 42.86 12.147 0.16 45 3.89 7.94 80.95 12.121 0.04 

14 1.83 96.83 60.32 12.107 0.06 46 1.98 0.00 79.37 12.148 0.10 

15 3.49 38.10 98.41 12.145 0.11 47 1.59 41.27 1.59 12.055 0.10 

16 3.25 47.62 55.56 12.203 0.19 48 1.90 61.90 4.76 12.086 0.09 

17 3.81 73.02 9.52 12.102 0.09 49 0.63 60.32 14.29 12.066 0.10 

18 0.48 66.67 34.92 12.059 0.12 50 0.00 92.06 30.16 12.120 0.19 

19 2.94 65.08 90.48 12.084 0.10 51 2.86 58.73 25.40 12.083 0.08 

20 1.11 68.25 82.54 11.975 0.06 52 3.02 95.24 47.62 12.082 0.05 

21 1.43 57.14 100.00 12.156 0.12 53 1.67 15.87 84.13 12.108 0.14 

22 2.54 3.17 22.22 12.060 0.09 54 2.38 20.63 38.10 12.136 0.11 

23 4.60 80.95 36.51 12.198 0.11 55 3.17 9.52 46.03 12.220 0.03 

24 4.68 90.48 61.90 12.184 0.13 56 1.35 98.41 11.11 12.026 0.11 

25 3.33 100.00 19.05 12.138 0.04 57 3.73 87.30 39.68 12.212 0.13 

26 1.03 25.40 77.78 12.026 0.08 58 0.32 50.79 41.27 12.063 0.10 

27 1.75 1.59 6.35 12.127 0.07 59 2.06 79.37 52.38 12.099 0.14 

28 0.24 49.21 87.30 12.035 0.13 60 2.14 42.86 44.44 12.101 0.06 

29 4.92 52.38 66.67 12.194 0.07 61 5.00 14.29 74.60 12.262 0.14 

30 0.56 26.98 63.49 12.009 0.11 62 4.44 4.76 20.63 12.131 0.08 

31 3.41 31.75 68.25 12.085 0.05 63 4.76 53.97 88.89 12.110 0.06 

32 0.40 30.16 33.33 12.019 0.11 64 0.95 84.13 31.75 12.124 0.08 

LBa 0.00 0.00 0.00 12.035 0.10 UBb 5.00 100 100 12.221 0.12 

Baseline   0.00 0.00 12.320 0.08 N/Ac N/A N/A N/A N/A N/A 
a LB: lower bound; b UB: upper bound. 
 

Table 6-7: Space-Filling Latin Hypercube Sampling of Parameters for DoE. 
 

To reduce the influence of random simulation outputs, we run 5 replications 

for each design point, and each simulation run includes 10 iterations of DTA to 
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achieve the convergence. DynusT obtains valid results when the convergence is 

achieved after several times of assignments and vehicular platoon simulations. The 

average simulation takes around 63 min for each replication, and the relative gaps 

between two adjacent iterations for the DTA were found to be below 7% for all 

experiments. So the total computational time spent in Table 6-7 is over 350 hours. 

Take the baseline as an example, the mean output of the network-wide average travel 

time is 12.320y   min, and the estimated standard deviation is ˆ 0.08s   min based 

on 5 replications. 

We compare the mean objective function and the standard deviation of the 

optima with the baseline to see how much improvement can be achieved after 

optimization. Figure 6-6 shows the estimation results of the Bayesian stochastic 

Kriging surrogate model for each design point. Both estimated mean of the average 

travel time ˆ( )f x  and its standard error ˆ( )s x  are presented at these points X  shown in 

Table 6-7. The dashed lines are bounds with one standard error given by ˆ ˆ( ) ( )f x s x . 

As a comparison, we plot the mean values y  and the estimated standard deviations 

ˆ ( )s x  of random observations as well. The design points in X  are sorted according to 

estimated mean values of the average travel time in a descending order.  
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Figure 6-6: Prediction Accuracy of the Bayesian Stochastic Kriging. 
 

To further compare the baseline and the optimal case, we run the simulation 

for 5 replications for the optima. Figure 6-7 shows the distributions of the baseline 

and the optimal solution, i.e. * Tˆ 0 53.[US$ , ,25% 80. ]27%x , which corresponds to 

the estimated mean value of the average trip travel time. The predictive distribution of 

the average trip travel time for the optima is  Opti
2

ma 12.020, 0.04 . Results from the 

5-replication simulation of the optimal inputs show that the mean value of outputs is 

11.970 min, which is close to the predictive mean value. The standard deviation of 

the outputs is 0.05 min. So the optimization results suggest the average trip travel 

time for all users of the I-270 corridor reduces 12.320 min to 11.970 min.  
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Figure 6-7: Distributions of Simulation Outputs for the Baseline and Optima. 
 

Scope Statistics Baseline Optima Improvement 
Locally impacted vehicles 
(40,763 vehicles, 12.42%) 

Average trip time of 
impact vehicles (min) 

26.11 24.86 4.79% 

System-wide impacts 
(328,314 vehicles, 100%) 

Complete trips 302,475 302,918 0.15% 
Average overall trip 
time (min) 

12.32 11.97 2.84% 

Average trip distance 
(mile) 

4.94 4.95 -0.20%a 

Average travel speed 
(mph) 

24.07 24.82 3.12% 
             a The negative value indicates no improvement. 

 
Table 6-8: Comparison of the Baseline and Optima for PM Peak Simulation Results. 

 

More network-wide statistics of the 5-hour simulation such as throughput, 

average overall trip time (including the demand loading time, stop/queueing time, and 

travelling time) is listed in Table 6-8. Moreover, the vehicles that passed through the 

work zone links before the work zone was placed in the network are identified as 
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locally impacted vehicles. The average trip travel time for those locally impacted 

vehicles under the baseline and optima is also listed in Table 6-8. 

 

 

Figure 6-8: Comparisons of Traffic Flow Characteristics on the Work Zone 
HOV/HOT Lane. 

 

The SOV is allowed to use the HOT lane without paying toll, which is to open 

the HOT lane to all vehicles during the operational time in the optima case, while 

SOV is restricted to be on the HOV lane in the baseline case. We further zoom in the 

HOV link parallel to the freeway mainline work zone (see the layout in Figure 6-3). 

As shown in Figure 8, the traffic volume on the HOT lane (optima) is larger than the 

HOV lane of the baseline after 15:30 when the managed lane takes effect. More 

vehicles are allocated to the HOT lane from the freeway mainline, which can release 
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the heavy congestion on the remaining three general-purpose lanes next to the work 

zone. 

Then the mean values of statistics of these replications are utilized to 

demonstrate performance improvements. Figure 6-9(a) illustrates the average trip 

travel time in every 5 minutes for vehicles that complete their journeys over the entire 

corridor. The network average travel time is reduced in the optimal case than the 

baseline. The largest reduction in the average travel time occurs during 17:00 and 

18:00, which is a part of the HOV/HOT operation hours. Thus the optimal HOT rate 

together with DMS implementations successfully help alleviate peak-hour congestion 

throughout the network. Figure 6-9(b) compares the total corridor throughputs of the 

optimal solutions and the baseline.  

 

 

(a) (b) 

Figure 6-9: Comparison of the Baseline and Optima, (a) Average Travel Time; (b) 
Vehicle Throughput. 
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As shown in Table 6-8, the optima increase the cumulative throughput slightly 

by 0.15% during the study period. The small improvement in the average travel time 

of all users in corridor (2.84% reduction) corresponds to more than 26 thousand 

dollars saved when we use the value of time as US$ 15/hour for the 5-hour PM peak 

simulations. The benefits can be even larger if we consider 24 hours or a long-term 

effect. 

The 2.84% reduction in travel time represents the average improvement to all 

corridor travelers caused by the optimal integrated transportation planning and 

operations strategies. If we focus on all vehicles that originally travel through the 

work zone link when the work zone was not set up (noted as locally impacted 

vehicles in Table 6-8), the percentage improvement is even more remarkable, which 

is 4.79% as shown in Table 6-8. 

 

6.4 Conclusions 

 

On the basis of the regressing Kriging model, a Bayesian stochastic Kriging 

metamodel is developed in this chapter, which assumes a quadratic form of global 

trend and different levels of variance for the random simulation error at different 

locations of the input domain. The heteroscedasticity of the stochastic simulation 

output is thus taken into account. 

A synthetic network is built in DynusT and used to test the performance of the 

proposed Bayesian stochastic Kriging model. Through comparing the goodness-of-fit 

of the proposed model with three other surrogate models, i.e. quadratic polynomial 
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response surface method, ordinary Kriging and regressing Kriging, we find that the 

Bayesian stochastic Kriging model outperforms the other three models in both 

estimating the mean values and standard errors for a heteroscedastic simulation input-

output relationship. 

This proposed method is then applied to jointly optimize a transportation 

planning strategy (i.e. HOT toll) and a traffic control measure (i.e. DMS) for a 

freeway-arterial corridor, which is a very difficult problem when simulation is not 

utilized. The predicted optimal solution is shown to improve the system performance 

by 2.84%, and the percentage improvement is 4.79% for locally impacted vehicles. 

  However, to achieve computational convenience, simulation noise is 

assumed to be normally distributed during the developing of the Bayesian stochastic 

Kriging model. This assumption may not conform to the simulation outputs. The 

validity of this assumption will be analyzed in the next chapter. 
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Chapter 7: Bootstrapping of an Enhanced SVR Method 
Considering Distribution of Simulation Noise 

 

Observing the asymmetric distribution of simulation noise in the real world 

applications introduced in the previous chapters, we developed a new enhanced 

support vector regression model (named distribution-based SVR hereafter) that takes 

into account the noise distribution in this chapter. The penalty of prediction error is 

designed to be related to the probability density function of simulation noise. The 

assumption of normal distribution for simulation error in the Bayesian stochastic 

Kriging model is thus relaxed. In addition, to improve its capability in supporting 

global optimization, bootstrapping method is employed to estimate the variance of 

prediction provided by the distribution-based SVR model. The expected improvement 

infill strategy can then be applied to search for the new design points.  

 

7.1 Asymmetric Distribution of Simulation Noise 

 

In addition to the characteristics of heteroscedasticity in transportation 

simulation noise introduced in Chapter 5, we further investigated the distribution of 

simulation noise for the application illustrated in Chapter 6. 

We randomly selected several design points from the initial sample, and 

replicated the simulation evaluation of those selected points by 75 times. The 

empirical simulation noise distributions at those design points are presented in Figure 

7-1. The unit of simulation noise is minute. 
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Figure 7-1: Distribution of Simulation Noise at Four Randomly Selected Design 
Points. 

 

At any design point, the average simulation output is used as the estimate of 

the true response. Thus the mean of simulation noise is zero. It is clearly shown in 

Figure 7-1 that the distribution of simulation noise at any of the design points is not 

symmetric. In general, the distribution is positively skewed and the mode of the 

distribution is negative.  

In order to develop surrogate models that take into account the distribution of 

simulation noise, the simulation data needs to be fit to appropriate parametric 

distributions. The candidate parametric distributions should be skewed. We reviewed 
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several commonly used skewed parametric distributions, and fit the observation at the 

four design points depicted in Figure 7-1 to those distributions. The asymmetric 

distributions which are investigated are summarized in Table 7-1. 

 
Design Points p-value

Gaussian 
Distribution 

Gumbel 
Distribution 

Lognormal 
Distribution 

Weibull 
Distribution 

Point 1 0.2385 0.8109 0.8069 0.7184 
Point 2 0.9380 0.9807 0.9899 0.9617 
Point 3 0.4449 0.8358 0.8341 0.6160 
Point 4 0.6525 0.9706 0.9669 0.9355 

 
Table 7-1: Chi-Square Goodness-of-Fit Test Results 

 

The p-value for Gumbel distribution and lognormal distribution at the four 

randomly selected design points is very close, and significantly larger than that for the 

other two distributions. As small values of p cast doubt on the validity of the null 

hypothesis, the results in Table 7-1 suggest Gumbel distribution and lognormal 

distribution can fit the noisy simulation output better than the other two distributions. 

Gumbel distribution provides comparable performance to lognormal distribution in 

fitting the noisy data. 

One difference between Gumbel distribution and lognormal distribution is that 

the support of the former distribution is from negative infinity to positive infinity, 

while the support of the latter distribution is from 0 to positive infinity. Before fitted 

to lognormal distribution, the simulation noise data needs to be shifted to make sure 

all values are positive. When the number of observations is large, the optimal offset 

along with the parameters of the lognormal distribution can be estimated through 

maximum likelihood estimation. However, when surrogate based optimization is 

conducted, the number of observations at each design point is usually very limited 
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(the number of observations is 5 for both the numerical example and real world 

application introduced in this chapter). In this situation, it is difficult to determine the 

optimal offset. On the other hand, when we assume the simulation noise follows 

Gumbel distribution, only two parameters (location parameter and scale parameter) 

need to be estimated. Based on the estimation of standard deviation from the limited 

number of observations at the design point, the parameters of the Gumbel distribution 

can be easily derived. 

 Therefore, Gumbel distribution is selected in this research and the 

methodology developed in this chapter is based on the assumption that simulation 

noise is Gumbel-distributed. The simulation data in Figure 7-1 has been fitted to both 

Gumbel distribution and Gaussian distribution. The modes of the fitted Gumbel 

distribution and Gaussian distribution are illustrated in the figure. It is obvious that 

Gumbel distribution fits the data much better than Gaussian distribution. Thus the 

common assumption of normally distributed simulation noise in most surrogate 

models does not hold any more. 

In the following section, an enhanced support vector regression model that 

approximates response surface of simulations with Gumbel-distributed noise will be 

developed. 

 

7.2 Model Development and Evaluation 

 

The traditional SVR model tolerates prediction error within a pre-specified 

band [- , ]. When the prediction error lies outside the region defined by the band, 
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the penalty (presented as loss hereafter) is assumed to be linearly related to the 

prediction error. This loss function may not perform well when the distribution of 

simulation output is not symmetric. 

In this section, we investigate the appropriate way to formulate the loss 

function, and develop the proper SVR model for Gumbel-distributed simulation 

output data. 

 

7.2.1 Loss Function 

To estimate the parameters of an unknown model with noisy data, a widely 

used method is maximum likelihood estimation (MLE). The likelihood of a particular 

dataset is defined as the joint probability density of the input-output data conditional 

on the underlying function f , which can be expressed as follows: 

1
1 1

( ) ({ , , },{ , , }| ) ( , | ) ( | , ) ( )
n n

n n i i i i i
i i

L f p y y f p y f p y f p
 

   1x x x x x       (7.1) 

Because the choice of input variables ix  does not depend on the underlying 

function f , the likelihood can be further simplified as  

1

( ) ( | , )
n

i i
i

L f p y f


 x                                              (7.2) 

For the ease of computation, the maximization of likelihood is usually 

converted to the minimization of negative log-likelihood in practice, which is 

1 1

( ) ln ( | , ) ln ( ( ))
n n

i i i i
i i

L f p y f p y f
 

     x x                         (7.3) 
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As introduced in Chapter 5, the traditional SVR is a method that balances 

between model smoothness and loss due to prediction error. According to Equation 

5.4a, the objective function of the traditional SVR model includes two terms. The first 

term 
21

2
w  represents model complexity, and the second term ( ) ( )

1

( )
n

i i

i

C

n
  



  

represents the loss due to prediction error. The ideal way to choose the loss function 

is to make the minimization of negative log-likelihood coincide with the 

minimization of the total prediction loss at the design points. Thus the loss function 

can be chosen as follows: 

( , , ) ln ( ( )) 1, 2,, ,i i i iloss y f p y f i n   x x                              (7.4) 

More specifically, the loss function for the two cases that the prediction ( )if x  

is smaller than the observation iy  and the prediction ( )if x  is larger than the 

observation iy  can be expressed in Equation 7.5. 

( ) ( ) ( )

( ) ( ) ( )

( ) ln ( ) if ( ) 0 ( ) 1, 2, ,

( ) ln ( ) if ( ) 0 ( ) 1,

,

,, 2

,

, ,

i i i
i i i i

i i i
i i i i

loss p y f y f i n

loss p y f f y i n

  
  

  

  

       


       

x x

x x




      (7.5) 

 

7.2.2 Distribution-Based Support Vector Regression 

There are two types of Gumbel distribution, which are called Gumbel 

Minimum distribution and Gumbel Maximum distribution. The probability density 

functions of these two distributions are very similar. The only difference between 

these two distributions is that Gumbel Minimum distribution is negatively skewed 

while Gumbel Maximum distribution is positively skewed. According to Figure 7-1, 

the distribution of the I-270 corridor simulation outputs is positively skewed. Thus 
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the distribution-based SVR for data with Gumbel Maximum distribution is developed 

in this section. Distribution-based SVR for data with negatively skewed distribution 

can be formulated and solved in a similar manner. 

The probability density function of a Gumbel Maximum distribution is 

( )1
) ,(

zz e

Gumbel

p x e x


                                                (7.6) 

where Gumbel

Gumbel

x
z





 . Gumbel  is the location parameter, and Gumbel  is the scale 

parameter.  is the real set. Thus the loss function corresponding to the Gumbel 

Maximum distribution at any location ix , 1, 2, ,i n    is 
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 (7.7) 

In this section, the tolerance band of prediction error ( ) is set to be 0. As the 

distribution of simulation noise is asymmetric, more studies need to be conducted for 

the proper selection of non-zero  . Similar to the traditional SVR presented in 

Equation 5.4, the Gumbel Maximum distribution-based SVR can be formulated as 

( )2 ( )

1

( ( )
1

mi (
2

)n )
n

i i

i

C
loss loss

n
  



 w                             (7.8a)    

( ) T ( ) ( )s.t. 1, 2, ,,i i iy b i n   w φ                               (7.8b)  

T ( ) ( ) ( ) 1, , 2, ,i i ib i n    w φ                              (7.8c) 

( ) ( ), 0, 1, 2, ,i i i n                                                (7.8d) 
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Following the same derivation process as described in Chapter 5, the Gumbel 

Maximum distribution-based SVR model finally becomes an optimization problem of 

dual variables. 

( ) ( ) ( ) ( ) (i) (j) (i) ( ) ( )
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   (7.9a) 

( ) ( )

1

s.t. ( ) 0
n

i i

i

  



                                                                         (7.9b) 

( ) ( )( ( )) 1 ,, , 2,i iC
loss i n

n                                                 (7.9c) 

( ) ( ) ( )inf{ | ( ,( ) } 1, 2, ,i i iC
loss i n

n                               (7.9d) 

( ) ( ), 0, 1, 2, ,i i i n                                                               (7.9e) 

When the prediction ( )if x  at the design point ix is smaller than the 

observation iy , according to Equation 7.9d, the prediction error ( )i   at that point can 

be presented as 

( )
( ) ( ) ( ) ( )ln(1 )

i
i i i iGumbel

Gumbel Gumbel

n

C

                                        (7.10) 

Thus the third term in Equation 7.9a at the specific design point ix  can be expressed 

as 
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      (7.11) 

The constant terms which are not dependent on the dual variable ( )i  are removed 

from Equation 7.11, as these terms would not influence the solution of the 

optimization problem presented in Equation 7.9. 

One major advantage of the traditional SVR is its computational efficiency by 

turning the estimation of the model into a quadratic programming problem. While 

Equation 7.11 includes the logarithm form of the dual variable ( )i , which makes the 

objective function presented in Equation 7.9 very complex and the solving of the 

optimization problem very computationally expensive. Therefore, we approximate the 

terms with logarithm form of variable ( )i  by their Taylor series expansion to the 

second order. Equation 7.11 then approximately equals to 

( ) ( ) 2 ( ) ( )
( ) ( ) ( ) ( )

( ( ) ( ( )))
2

i i i i
i i i Gumbel Gumbeln nC

loss loss
n C C
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Through similarly processing the fourth term in Equation 7.9a, the following 

optimization problem is derived. 
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The optimization problem presented in Equation 7.13 is still a quadratic 

programming problem, and it can be conveniently solved using convex optimization 

methods. 

When the distribution of simulation output is negatively skewed, the 

simulation noise can be fitted to Gumbel Minimum distribution. We omit the 

derivation of Gumbel Minimum distribution-based SVR here because it is very 

similar to the derivation of Gumbel Maximum distribution-based SVR introduced in 

this section. 

 

7.2.3 Numerical Test 

Three surrogate models that can deal with heteroscedastic sample data are 

developed in this dissertation so far. In addition to the characteristics of 

heteroscedasticity, the noise of sample output is assumed to be Gumbel-distributed. 

The purpose of the numerical test is to analyze the capability of the newly proposed 

distribution-based SVR model in approximating response surfaces with skewed noise 

distribution. 

As discussed in section 5.3, the overall prediction accuracy over the entire 

research domain is of more concern when no evolutionary process is incorporated. 

This section will only focus on the MoE RMSE, and compare the performance of the 

three types of surrogate models: heteroscedastic SVR, Bayesian stochastic Kriging 

and distribution-based SVR. 
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The test functions and scenario settings are the same with the numerical test in 

Section 5.3. The two-dimension function in equation 5.16 and the 6-dimension 

function in Equation 5.20 serve as the unknown underlying function. In the low-

variance and high-variance scenarios, the standard deviations are set to be 0.1 and 0.5 

times the true function value at each sample point, respectively. The only difference 

in the numerical test design from Section 5.3 is that the distribution of noise is not 

Gaussian anymore. Instead, the noise is assumed to be Gumbel Minimum-distributed. 

Take the low-variance case for the two-dimension function as an example. The 

observation with Gumbel Minimum-distributed noise at a certain point is obtained by 

1 1 2 1 1 2 1 2( , ) ( , ) ( , ), , [ 2 , 2 ]Gumbel Gumbelf x x f x x Gumbel x x                       (7.14) 

The variance of a Gumbel Minimum distribution is 
2

2

6 Gumbel

  . As the standard 

deviation is set to be 1 1 20.1 ( , )f x x , the scale parameter Gumbel  can be calculated as 

1 1 20.06 ( , )f x x


. Moreover, the mean of a Gumbel Minimum distribution is 

Gumbel Gumbel    (  is Euler’s constant, approximately equals to 0.577). As the mean 

of noise added to the function value is 0, the location parameter Gumbel  can be 

computed as 1 1 20.06 ( , )f x x 


.  

When conducting the numerical test, the true standard deviation of noise is not 

known. We draw 5 random seeds at each of the sample point, and estimate the 

standard deviation from the sample at each point. The parameters Gumbel  and Gumbel  

that will be used in the estimation of the distribution-based SVR can then be 
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computed. For each of the scenarios, the three surrogate models are estimated with 

the same sample dataset, and are then validated with a separate while unified 

validation dataset. In order to investigate the significance of the differences in 

prediction accuracy among the three models, the whole process including creation of 

5-replication dataset, model estimation and validation is repeated 10 times. The 

performance of the three models under the 8 scenarios is shown in Table 7-1. 

 
Variance Level low High 
Test Function 2-variable 

function 
6-variable 
function 

2-variable 
function 

6-variable 
function 

Sample Size Small  
(25)

Large 
(60)

Small 
(65)

Large 
(380)

Small  
(25)

Large 
(60) 

Small 
(65) 

Large 
(380)

RMSE 

Heteroscedastic SVR 
(H-SVR) 

2.922 0.922 0.294 0.172 2.809 1.903 0.256 0.206 

Bayesian stochastic 
Kriging (BSK) 

2.606 1.840 0.380 0.201 2.691 2.171 0.349 0.235 

Distribution-based 
SVR (D-SVR) 

2.414 0.897 0.239 0.170 2.809 1.914 0.256 0.232 

ANOVA between D-SVR and 
H-SVR (p value) 

0.000* 0.013* 0.000* 0.029* 0.997 0.788 0.658 0.000* 

ANOVA between D-SVR and 
BSK (p value) 

0.000* 0.000* 0.000* 0.000* 0.066 0.000* 0.000* 0.082 

Note: * indicates the difference is significant at the 95% confidence level. 
 

Table 7-2: Performance of Heteroscedastic SVR, Bayesian Stochastic Kriging and 
Distribution-Based SVR. 

 

RMSE shown in Table 7-2 represents the average of RMSE for the 10-time 

model estimation and validation process. Under each of the scenarios, the lowest 

RMSE provided by the surrogate models is highlighted in bold. The most important 

finding from Table 7-2 is that the distribution-based SVR always outperforms the 

other two surrogate models when the variance level is relatively low. In addition, the 

significance of the differences in RMSE among the three models is tested through 

ANOVA.  Under the scenarios with low variance, the p values for ANOVA between 

distribution-based SVR and heteroscedastic SVR and for ANOVA between 
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distribution-based SVR and Bayesian stochastic Kriging are all very close to 0, which 

indicates that the performance of distribution-based SVR is significantly better than 

that of heteroscedastic SVR and Bayesian stochastic Kriging. 

 

7.3 Bootstrapping and Infill 

 

The capability of accurately approximating the true response surface is crucial 

to the success in simulation-based optimization. However, the performance of a 

surrogate model in searching for the optimal solution is heavily dependent on the 

layout of the initial sample. If the initial sample covers the area around the true 

optima, it may be easy to find the optimal solution or a near optima solution. 

Otherwise, successfully finding the optima is very difficult. In this case, it is very 

necessary to incorporate a global optimal infill strategy to the surrogate model for the 

optimization task. 

The expected improvement-based infill strategy has been recognized as an 

effective method in searching for the global optima in this dissertation and other 

existing literature. However, in order to apply the EI infill strategy, both prediction 

and the variance of the prediction at a new design point should be provided by the 

surrogate model. Nevertheless, traditional SVR models can only provide the 

prediction at new points. A supplement method to estimate the variance of prediction 

is required. In this chapter, we propose to incorporate the bootstrapping method with 

SVR for the estimation of predictor’s variance, and then apply the EI based infill 

strategy for surrogate-based optimization. 
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7.3.1 Bootstrapping Method 

Defined in Efron and Tibshirani (1993), bootstrapping is a method for 

assigning measures of accuracy to sample estimates. The measures of accuracy 

include bias, variance, confidence interval, prediction error, etc. In order to conduct 

surrogate-based optimization, surrogate models need to be estimated with sample 

input-output data to approximate the true response surface. According to observations 

of several real world applications introduced in previous chapters, the simulation used 

to evaluate the performance of transportation systems is stochastic. As a result, the 

surrogate model estimated with the sample output should be stochastic, and the 

prediction at any new points by the surrogate model should also be stochastic. 

In the area of surrogate-based optimization, bootstrapping has been 

implemented in a few studies. Kleijnen (2014) used bootstrapping to estimate the 

variance of Kriging predictor. In Kleijnen et al. (2012), the Kriging predictor’s 

variance estimated through bootstrapping was further used for the expected 

improvement-based global optimization. In a paper published earlier (Den Hertog, et 

al., 2006), the authors argued that the classic Kriging variance formula underestimates 

the predictor’s variance, and used bootstrapping for the estimation of predictor’s 

variance instead. The argument was then tested and verified through several artificial 

examples and a real-life case study. With regard to the SVR model, De Brabanter et 

al. (2011) estimated the confidence and prediction intervals for least squares support 

vector regression using bootstrapping. 
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Non-parametric bootstrapping is applied in this study. At each of the n  initial 

design points (1) (2) ( ), , , nx x x , R -repetitions of simulations are performed. Thus R  

observations of output at each design point are retrieved, which can be expressed as  

( )i
ry , 1, 2, ,i n  , and 1, 2, ,r R  . 

Bootstrapping is generally a resampling method. To form a bootstrap sample, 

at each of the design points (1) (2) ( ), , , nx x x , one out of the R  observations is 

randomly selected as the output, expressed as ( )*iy , 1, 2, ,i n  . This bootstrap 

sample is used to estimate the D-SVR model as illustrated in Equation 7.13. The 

estimated D-SVR model based on the bootstrap sample is expressed as *ˆ ( )f x . The 

whole process of resampling as well as the estimation of the D-SVR model is 

repeated B  times. Therefore, at any new point ( 1)nx , B  predictions ( 1)ˆ n
by  , 

1, 2, ,b B   can be given by the B  estimated D-SVR model. With these B  

predictions, the predictor at the new point ( 1)nx  can be computed as  

 

( 1)

( 1) 1

ˆ
ˆ̂

B
n

b
n b

B

y
y

B



 


                                                (7.15) 

and the predictor’s variance is  
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7.3.2 Expected Improvement-Based Infill 

The framework of incorporating the bootstrapping method to the D-SVR 

model for the surrogate-based optimization with the expected improvement infill 

strategy is illustrated in Figure 7-2.  

 

Figure 7-2: Framework of the Expected Improvement-Based Infill with Bootstrapped 
Distribution-Based SVR Surrogate Model. 
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The expected improvement-based infill strategy aims to find the new points 

with the maximal expected improvement compared to the minimal observation at the 

n  old sample points. In the current study, the mean of the observations at each of the 

old sample points is used as the estimator of the true response, which is 

( )

( ) 1

R
i

r
i r

y
y

R



. 

Thus the minimal observation at old sample points is ( )min ( )i
i y . Meanwhile, the 

infill strategy assumes that the distribution of prediction at a new point is Gaussian 

with mean ( 1)ˆ̂ n
By   and variance ( 1) 2( )n

Bs  . The method of computing the EI can then be 

slightly revised from Equation 3.20 to the following, 

( ) 2
( 1)

2

( 1)
min ( ) ( )

( 1)( 1)
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E miI( ) ( )exp d

2(2
( )

)
n

i
i

n
y i B

B

n
i nn

B

y
y

ss

u
u u




  

 
    

 
x         (7.17) 

 

7.3.3 Numerical Example 

The effectiveness of global optimization with the EI infill strategy and 

bootstrapped D-SVR surrogate model is tested in this section using a numerical 

example. In addition, as it is verified through numerical examples in Section 7.2.3, 

when the simulation noise is not symmetrically distributed, the D-SVR model can 

approximate the true response surface more accurately than other surrogate models 

that do not consider the distribution of simulation noise. Under the same assumption 

regarding the simulation noise, it is reasonable to hypothesize that the D-SVR would 

also be more efficient in searching for the optimal solution when infill is applied than 

other models. Thus we also compare the performance of the EI infill D-SVR model in 
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searching for the optima with that of the Bayesian stochastic Kriging model. The 

infill strategy for the BSK model is also maximizing the EI. Instead of applying 

bootstrapping, the predictor’s variance for the BSK model is estimated through 

Bayesian analysis as introduced in Chapter 6. 

 

Figure 7-3: Comparison of the EI Infill Global Optimization with Distribution-Based 
SVR and Bayesian Stochastic Kriging. 
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Among the 8 scenarios introduced in Section 7.2.3, the case of the 2-

dimension function with a low variance level for response noise and a large sample 

size is used for this infill study. The initial sample size is 60. The infill process will 

terminate after 120 infill points are generated. For each of the design points, 5 

replications of simulations are conducted. The bootstrap sample size B  for the D-

SVR method is set to be 100. In order to make the comparison between the two 

methods more robust, the whole procedure as illustrated in Figure 7-2 from the 

generation of initial sample, construction of surrogate models to the iterative infill 

process is repeated 10 times. The comparison of the performance in global 

optimization with the two methods is shown in Figure 7-3. 

Both methods are shown to be effective in finding the optimal solution 

through the EI global infill strategy. Due to the simulation noise, significant variation 

exhibits among the 10 instances of the optimization process for both methods. 

Overall, along with the infill of new points, the optimal solution identified by both 

methods converges to the true optima. However, the minimal observed value found 

by the D-SVR model declines faster than the BSK model along the infill process, 

which indicates that the D-SVR model is more efficient in finding the optimal 

solution than the BSK model. 

The infill process with both the D-SVR model and the BSK model is averaged 

over the 10 instances and compared in Figure 7-4. It shows more clearly that the D-

SVR model can find the optimal solution much faster than the BSK model. With less 

than 20 iterations of infill, the D-SVR model is successful in finding solutions with 



176 
 

objective value smaller than -9.6, while the BSK model takes around 60 iterations of 

infill to find comparable solutions. In other words, with very tight computational 

budget, the D-SVR model will be able to provide much better solutions than the BSK 

model.  

 

Figure 7-4: Comparison of the EI Infill Global Optimization with Distribution-Based 
SVR and Bayesian Stochastic Kriging (Averaged over 10 Instances). 
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The case study investigated in this section is the same as that introduced in 

Section 6.3. The purpose of the case study is to jointly optimize the HOT toll and the 
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Similar to the numerical test, both the distribution-based SVR model and the 

Bayesian stochastic Kriging model are applied for this case study. The same 67 initial 

sample points are used for the estimation of the surrogate models. In addition, 20 

iterations of infill will be conducted to search for the optimal solution.  One thing 

should be noted is that the simulation noise is Gumbel Maximum-distributed as 

shown in Figure 7-1, thus the D-SVR model used for this study is Gumbel Maximum-

distribution-based SVR. 

After 20 iterations of infill, the optimal solution provided by the BSK model is 

 * T69.2[$ 0.00, %, ]2 7.36%BSK x . We then run 10 replications of simulations for this 

optimal input. The average trip travel time retrieved from the output from the 10 

replications is 

* 11.943 11.945 11.977 12.032 11.91(12.005,11.930, , , , , ,6 12.058 11.93, ,2 11.946)BSKy   

minutes. The mean average trip travel time is 11.968 min, and the standard deviation 

of the output is 0.05 min. 

The optimal solution provided by the Gumbel Maximum-distribution-based 

SVR model after 20 infill is 
* T76.19 65.08%[$1.30, %, ]D SVR x , and the average trip 

travel time got from the 10-replication simulation is 

* 11.917 11.918 11.939 12.002 11.(11. 883960,11.893, , , , , ,11.929 11.898, ,12.028)D SVRy    

minutes. The mean of the responses is 11.937 min, and the standard is 0.05 min. 
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Figure 7-5: Distributions of the Baseline and Optima Predicted by the D-SVR and 
BSK Models. 

 

As the distribution of the output is not Gaussian, it is not appropriate to test 

the statistical significance of the difference between the optimal objective values 
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show that the average trip travel time under the D-SVR optima is significantly lower 

than that under the BSK optima at the 90% confidence level. 

The performances of the entire corridor network and the locally impacted 

vehicles of the baseline and the optima predicted by the two surrogate methods are 

summarized and compared in Table 7-3. 

 

Scope Statistics Baseline 
BSK Optima D-SVR Optima 

Performance Improvement Performance Improvement
Locally 
impacted 
vehicles 

Average trip time of 
impact vehicles (min) 

26.110 24.393 6.58% 24.110 7.66% 

System-
wide 
impacts 
 

Complete trips 302,475 304,859 0.79% 305,084 0.86% 
Average overall trip 
time (min) 

12.320 11.968 2.86% 11.937 3.11% 

Average trip distance 
(mile) 

4.94 4.95 -0.20%a 4.94 0 

Average travel speed 
(mph) 

24.07 24.82 3.12% 24.83 3.16% 

             a The negative value indicates no improvement. 

 
Table 7-3: Comparison of the Baseline, BSK Optima and D-SVR Optima for PM 

Peak Simulation Results. 
 

The optimal solutions provided by both methods improve the performance of 

the corridor network compared to the baseline, which refers to the case that no effort 

is made in HOT lane management or freeway diversion control. The improvement in 

terms of average trip travel time to all of the corridor users made by the D-SVR 

optima is a bit larger than that made by the BSK optima. Although the difference 

looks small in this case study, the total saved travel time will become very large when 

accounting the large number of vehicles and the duration of the work zone. Moreover, 

if the traffic condition of the network gets even worse due to more incidents (e.g. 
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more work zones are placed), the total travel time saved by the optimal integrated 

corridor planning and operational strategy would become even larger. 

Concerning the locally impacted vehicles, their performance has been 

improved much more significantly by the joint optimization. Their average trip travel 

time is reduced by 6.58% when the BSK predicted optimal solution is implemented, 

and the D-SVR predicted optimal solution creates a 7.66% decrease in average trip 

travel time for those locally impacted vehicles. 

 

Figure 7-6: Network Wide Average Trip Travel Time along Hour of the Day of the 
Baseline, BSK Optima and D-SVR Optima Cases. 

 

To present more details of the effect on system wide performance caused by 

the optimal solutions provided by the two surrogate models, the changes of average 
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During the most congested period (17:15-18:00), the optima predicted by both 

methods reduced the average trip travel time significantly by around 25%. After the 

optimal policy is implemented, the average trip travel time distributes more evenly 

within the afternoon peak period, and there is no severely congested period any more. 

During the period 17:45-18:15, the performance of the D-SVR optima is significantly 

better than that of the BSK optima. 

 

7.5 Conclusions 

 

Due to the observation of asymmetrically distributed output from the I-270 

freeway-arterial corridor simulation, an enhanced support vector regression model 

that takes into account the distribution of simulation noise is developed in this 

chapter. The newly developed surrogate model is named distribution-based support 

vector regression (D-SVR). This model relaxes the assumption of normality in 

simulation noise in most surrogate models. The prediction loss is assumed to be 

dependent on the actual distribution of simulation noise. 

Through a numerical test that sets the distribution of noise to be Gumbel 

Minimum, the developed D-SVR model is compared to the heteroscedastic SVR and 

the Bayesian stochastic Kriging in terms of the performance on prediction accuracy. 

The results show that when the signal-to-noise ratio is relatively high, the D-SVR 

model can predict the true response surface more accurately and always outperforms 

the heteroscedastic SVR and the BSK model. 



182 
 

In addition, bootstrapping is introduced and incorporated into the D-SVR 

surrogate-based optimization framework. Applying bootstrapping to provide 

prediction and predictor’s variance at new points and adopting the maximization of 

the expected improvement as the global optimal infill strategy, we tested the 

performance of the bootstrapped D-SVR in searching for the global optimal solution 

with a numerical example. It is found that the bootstrapped D-SVR is more efficient 

in global optimization, and it can find a better solution much faster than the BSK 

model. This finding suggests that with a fixed computation budget, the D-SVR model 

can provide a better solution than the BSK model, which is of great value to real 

world applications. 

The proposed EI infill bootstrapped D-SVR method is then utilized in the real 

world application of a joint optimization of HOT toll and freeway diversion control, 

which is introduced in Chapter 6. With 20 iterations of infill, the D-SVR predicted 

optima can reduce the network wide average trip travel time by 3.11% than the 

baseline, and the reduction for locally impacted vehicles is 7.66%. The comparison 

between the D-SVR method and the BSK method is also conducted. Results suggest 

the improvement made by the D-SVR optima is significantly higher than that made 

by the BSK optima. 
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Chapter 8: Conclusions  
 

Although simulation has shown its value in informing decision makers about 

the influence of their proposed policies on network performance, it is often used for 

scenario evaluation instead of optimization, mainly due to its high computation cost. 

There is clearly a gap between the promising evaluation tool of simulation and the 

goal of policy optimization in the transportation research. This dissertation tries to fill 

this gap by integrating rigorous mathematical optimization techniques with 

simulation evaluation. Efforts have also been made to reduce the required 

computation time for the optimization process. 

The remainder of this chapter summarizes the contributions of this research 

work, and proposes future research directions to further extend the developed 

methodologies. 

 

8.1 Contributions 

 

This research is one of the first to introduce simulation-based optimization 

methods into large-scale transportation network research. In addition, based on 

observations of specific characteristics related to transportation simulation, existing 

simulation-based optimization methods are improved to enhance their efficiency. 

Overall, this dissertation has contributed to both methodology developments from the 

academic perspective and a number of real world applications from the industry 

perspective. 
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First, based on review of existing simulation-based optimization methods, 

surrogate-based optimization method is selected as the focus of this study. The 

surrogate-based optimization method enjoys both the advantages of simulation in 

policy evaluation and the efficiency of mathematical optimization. It can be used to 

solve transportation problems of imperative needs for practitioners. Various types of 

optimization problems have been proposed and solved in this dissertation, which 

include single-objective optimization, multi-objective optimization and constrained 

optimization problems. 

Second, the surrogate-based optimization method is capable of solving 

problems on the optimization of combinations of different types of policies, which is 

very difficult to be dealt with when simulation is not utilized. For instance, travel 

demand management policies (e.g. toll, managed lanes, etc.) mainly concern the 

macro-level travel behavior such as destination choice, departure time choice and 

route choice, while traffic operational strategies (e.g. freeway diversion control, 

traffic signal, etc.) mainly concern the micro-level traffic flow dynamics. Developing 

mathematical models that can capture the impact of both types of policies is very 

challenging. Existing analytical models evaluating the impact of one type of policies 

usually ignore the influence of measures from the other category. On the other hand, 

simulation models travel behavior at the individual level. The response of each 

individual to any policy can be captured, and thus the impact of combinations of 

policies to the system can be conveniently measured. 

Third, the optimization methods developed in this research are general and 

can be applied to many other optimization problems. As the simulation mainly serves 
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as a black-box function in the framework, any simulator can be utilized coupled with 

the developed methods in application. Moreover, as long as the simulation is 

responsive to the particular policy, any policy can be optimized with the developed 

methods. There is no transferability issue associated with this method. Thus the 

proposed method can be used by transportation management agencies at all levels of 

government. 

Fourth, existing surrogate-based optimization methods are significantly 

improved from the methodological point of view. Characteristics of transportation 

simulation noise have been investigated, and the theoretical foundation of the 

surrogate models is revised accordingly. Based on the observation of 

heteroscedasticity in simulation noise, two advanced surrogate models that adapts for 

the heteroscedastic noise are developed: the heteroscedastic support vector regression 

(H-SVR) model and the Bayesian stochastic Kriging (BSK) model. Furthermore, the 

transportation simulation noise is found to be asymmetrically distributed, violating 

the assumption of normality in noise in most surrogate models. A distribution-based 

support vector regression (D-SVR) model that takes into account the asymmetric 

distribution of noise is then developed. Overall, it is found that these enhanced 

models can improve the accuracy in approximating the true response surface. More 

importantly, they can also improve the converging speed of optimization, which leads 

to significant savings of computational cost in practice. 

Fifth, two real world problems have been investigated using the developed 

methods. The first problem is to optimize the dynamic pricing of a toll road in the 

State of Maryland. This problem is formulated into three forms: with single-objective, 
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with multi-objective and with complicated constraints. The solutions of the problem 

in all of the three forms are investigated in this study. The second problem is to 

jointly optimize the HOT toll rate and the freeway diversion control for a freeway-

arterial corridor in the State of Maryland under a work zone scenario. The solutions 

provided by the developed methods to both of the two problems are shown to 

significantly improve the network performance compared to the baseline. The cost of 

adjusting these policies is minor, while the benefit in terms of travel time savings is 

significant. 

 

8.2 Recommendations for Future Research 

 

This dissertation undertakes the research on integrating simulation evaluation 

with mathematical optimization, improving surrogate models for transportation 

simulation and solving real world transportation related problems. To better serve the 

needs of transportation management agencies, this work can be extended through 

several directions from the application point of view and the methodological point of 

view. 

The methods developed in this dissertation mainly deal with continuous 

optimization problems. While lots of transportation problems involve discrete 

decision variables (e.g. discrete/mixed integer network design problems, optimal 

allocation of traffic detectors, etc.), it is valuable to extend the ability of surrogate-

based optimization methods in solving discrete or mixed discrete-continuous 

problems. 
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The simulator used in all of the case studies is DynusT, which is essentially a 

dynamic traffic assignment model. Travel adjustment behavior along other 

dimensions (e.g. departure time, mode, destination, etc.) than the route choice in 

response to any particular policies is generally ignored. Integrating other modules that 

model the travel behavioral change due to the policies would definitely enhance the 

simulation’s capability in predicting the traffic realism.  More reliable optimization 

results can thus be provided when this type of fully integrated activity/agent-based 

models is used as the simulator for the surrogate-based optimization. 

In theory, if the number of simulation evaluations becomes infinite, the global 

optimal solution can always be found. However, the theoretical proof of convergence 

rate of the developed methods needs further investigation. In practice, the selection of 

stopping rule for the optimization process is also important. The rule applied in 

existing studies usually specifies a total number of simulation replications. 

Improving the method of generating the initial sample for the surrogate model 

estimation is also an interesting topic. A good initial sample that covers promising 

regions of the domain can greatly enhance the efficiency of the method in searching 

for the optimal solution. Furthermore, for the surrogate-based optimization methods 

with infill, the appropriate allocation of computational budget between the initial 

samples and infill samples also needs additional research. 

The efficiency of an optimization method can be significantly improved when 

parallel computing techniques are applied. Regarding surrogate-based optimization 

methods, the multiple-replication simulations on both initial and infill sample points 

can be easily distributed to multiple computer resources. Developing global optimal 
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infill strategies that can take advantage of parallel computing is a topic that deserves 

further investigation. 
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