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Abstract

We consider a single-queue system with multiple servers that are non-identical. Our interest
is in applying the technique of perturbation analysis to estimate derivatives of mean steady-
state system time. Because infinitesimal perturbation analysis yields biased estimates for this
problem, we apply smoothed perturbation analysis to get unbiased estimators. In the most
general cases, the estimators require additional simulation, so we propose an approximation
to eliminate this. For two servers, we give an analytical proof of unbiasedness in steady state
for the Markovian case. We provide simulation results for both Markovian and non-Markovian
examples, and compare the performance with regenerative likelihood ratio estimators.
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1 Introduction

Estimation of gradients of performance measures with respect to parameters of underlying distri-
butions in a single simulation has recently become an important topic of research. Two major
applications are sensitivity analysis and stochastic optimization (Fu 1994). Overviews of the state-
of-the-art in gradient estimation can be found in Ho and Cao (1991) and L’Ecuyer (1991). The
easiest technique to apply and the one generally possessing the lowest variance is infinitesimal per-
turbation analysis (IPA); see, e.g., Ho and Cao (1991) and Glasserman (1991). Unfortunately, IPA
does not work universally (see also Cao 1985, Cao 1988, and Heidelberger et al. 1989). One example
is the queueing system we consider in this paper: a single-queue (unlimited capacity), two-server
system, where the servers are not assumed to be identical. Taking the performance measure of
interest to be mean steady-state system time and considering a parameter in the underlying service
time distributions, it can be easily shown that [PA in general gives a biased estimate. In fact, Fu
and Hu (1990) prove that for the Markovian case, the bias is proportional to the square of the
difference in the mean service times. Experimental results for non-exponential cases found in Fu,
Hu, and Nagi (1992) seem to indicate that this proportionality holds for non-exponential cases, as
well.

In this paper, we apply the technique of smoothed perturbation analysis (SPA), introduced by
Gong and Ho (1987), to develop estimators for single-queue, multi-server queueing systems with
non-identical servers. In particular, we apply the results of Fu and Hu (1992), where a gencral
framework for applying SPA is established. As is noted there, the resulting estimator is not always
easily implementable in practice without incurring often prohibitively large amounts of additional
simulation. Thus, in the spirit of Fu and Hu (1993), where a more difficult problem of second
derivative estimation is tackled for the identical server system, we propose an approximation which
requires no additional simulation. Simulation experiments are used to test this approximation. For
the Markovian case, the approximation is exact, and we give an analytical proof of unbiasedness in
steady state. We then investigate the performance of the estimatofs for various interarrival time
and service time distributions. An alternative technique of gradient estimation is the likelihood
ratio (LR) or score function (SF) approach, which is also described in Ho and Cao (1991) and
L’Ecuyer (1991). We derive regenerative likelihood ratio gradient estimators and via numerous
simulation experiments compare the performance of the SPA estimators to these estimators, as
well as to finite difference estimates.

The rest of the paper is organized as follows. In Section 2, we present the SPA estimators. In
Section 3, we give a proof of unbiasedness in steady state for the Markovian case. In Section 4,
we investigate the performance of the estimators by conducting numerous simulation experiments

and comparing with finite difference estimates and likelihood ratio estimators. We present some



conclusions in Section 5.

2 The Estimator

We consider a single-queue, first-come, first-served (FCFS) queueing system with m non-identical
servers, a general renewal arrival process and general independent service time distributions. Steady-
state system time, denoted by 7', is our performance measure of interest, and we wish to estimate
dET/df, where 6 is a parameter of the service time distribution. Consider an arbitrary busy period
of the system, and let X;(6) be the service time of the ith (to arrive) customer in the busy period
and A; be the interarrival time between the (i-1)th and ith customers in the busy period. We will
take time 0 to be the arrival of the first customer. Let g(-) and G(-) be the respective p.d.f. and
c.d.f. of the interarrival times, and f;(-) and Fj(-) be the respective p.d.f. and c.d.f. of the service
times at server j, 7 = 1,...,m.

We first present the IPA estimator, which will be one part of the full SPA estimator. To
describe the TPA estimator, we introduce the important concept of a server’s local busy period:
the interval between two adjacent idle times of the (same) server. Using this idea of local busy
periods, and defining the set of customers preceding ¢ in the same local busy period L(i) = {j <
i : 7 in the same local busy period as i}, we have (see Fu and Hu 1991, for details)

dT; dX;  dX;

J
— Z + ,
do Jert) do do

(1)

where T} is the system time of the ith customer (in the busy period), and d.X/df is the derivative

of the service time random variable given by (cf. Suri and Zazanis 1988)
dX  —0F/00 (2)
d¢  0F/dz’

where F(2;8) is differentiable with respect to both 2 and 8. Note that the subscript on F indicating

the server has been omitted here for notational convenience. Equation (1) can also be written in

recursive form:

dl; | dX;/do if 7 initiates local busy period, (3)
do | dT:/df+dX;/d6 otherwise. _ '

where 1 = maxjer(;) J, 1-e., customer 7 is the index of the customer preceding ¢ in the local busy
period. Intuitively, the change in system time of customer ¢ is the sum of the change in system
time of the customer just preceding him in the same local busy period (if any such customer exists)
plus the change in customer ¢’s own service time.

The intuitive reason why IPA does not work is that small perturbations in the parameter could

cause a switching of the assignment of servers from which customers receive service. Of course, in



the identical server case, such a switching has no effect on the performance measure of interest,
since the service times would be i.i.d. Even in the case of non-identical servers, there are many
situations in which there is a symmetry that gives a cancelling out of the expected effect of the
switching (e.g., exactly two customers switching between their respective two servers). However,
there are two cases where this cancelling out does not hold. In the terminology of Fu and Hu

(1993), there are two types of critical adjacent event pairs, which we describe as follows:
(1) m 4+ 1 in system, departure at server j, followed by departure at server j £ 7;
(2) < m in system, departure at server j, followed by arrival.

We now give intuitive explanations as to why (1) and (2) are critical. In (1), there is a single
customer in queue (since there are m + 1 in the system). In the sequence of events described, the
customer would go to server j, whereas were the events to change order, the customer would go to
server 3, causing a finite change in that customer’s system time. On the other hand, in (2), there is
at least one server idle. In the sequence of events described, the arriving customer may be served
by server j (depending on the serving policy for the assignment of idle servers), whereas were the
events to change order, the customer would have no chance of going to server j, since it would
be busy. Thus, a finite change in the customer’s system time occurs with the probability that the
customer be served by server j in the original sequence.

More formally, we define

D; = the departure time of customer 1,
S(i) = the server of customer 4,
N(t) = the number of customers in the system at time ¢,
o(t) = next event after timet € {e, 5,5 =1,...,m},
where o« = arrival event,
B; = departure event at server j.

We then have the following sets:

LY = {i:5() =4, N(DF) = m,o(Di) = 47 # 7},
L)
2

{i:S()=j, N(D})y<m~1,0(D;) = a}.

In words, the first set is the set of indices of customers who depart server j leaving m in the system
and such that the next event is a departure at another server, whereas the second set is the set of
indices of customers who depart server j leaving less than m — 1 in the system and such that the

next event is an arrival.



We now specialize to the two-server case for expositional and notational ease. Let p be the
probability that a customer arriving to an empty system goes to server 1, and ¢ = 1 — p be the
probability it goes to server 2. We let 6; be a parameter in Fi(-) and let f, be a parameter in f(-).

Then our estimators are given by

dT | dT; z 2(y
(@T) S P p. d6, 1 ;q((:(z Tt 5:(1) de1 (o, +f§/E) ’ e T s ()
@S 1
dT 1 { & dT; dT; 2 T;
<d_02>sm,n A et —g(cf () 2T Zm . e +f;i> . TN A
where & = age of interarrival time,
&1 = age of service time at server 1,
& = age of service time at server 2,
x; = age of the service time at other server at D;,
y; = minimum of the residual service time and the residual interarrival time,
z; = age of the interarrival time at D;,

LY = {i:8(i) =4, N(D}) = 2,0(Ds) = 3,5 # i}.5 = 1,2,
Lg]) = {ZS(@):],N(D?'):O}LJI 1,2.

Note that ng) is notationally simplified for the two-server case, because satisfying the original set of
conditions means the departure leaves the system empty; hence, the next event must be an arrival.
Intuitively, the summands are a product of two terms: the 67} ; terms representing the effect due
to a critical adjacent event order change and the other two terms representing the rate at which the
change occurs. To precisely define these quantities, we define the augmented state by taking the
physical states 0, (0, 1),(1,0),2,3, ... and adding to it the appropriate ages of the random variables.

We then condition on the state at D; as follows:

§Tiy = (Z Ty,

k=1

0Ty = (Z Ty [

[(071)250 = Zia€2 - 0] - ZT/» [(170)50 = 3i7£1 = 0]) b
L

)
=1

T

Jibo=2,6=01— > Til[(0,1):& 2%52:0]) :

k=1
Thus, the “initial” states here depend on the age of the interarrival time. For more than two
servers, there would be a dependence on the ages of service times at other servers, as well.

For these estimators, we have

Theorem 1. The SPA estimators (dT'/df;)span,t = 1,2, are unbiased for all n.

[y ]



Proof. Under some mild conditions, the result follows from Theorem 3 in Fu and Hu (1993).
|
We are actually interested in steady-state performance. For large n, we can simplify the ex-

pressions for 075 ; to the following:

6T = Siy;— M ;E[T],j=1,2,

E [Z T
: 1(i,5)
M;; = E[|I{,])l],

v
Asi’j

[

9

where 1(7,1) denotes a sample path starting from state [(0,1): §o = 2, & = 0] and ending the first
time it hits state [(1,0) : & = 2;,& = 0], and similarly I(4,2) denotes a sample path starting from
state [(0,1) : & = 2,& = 0] and ending the first time it hits state [(1,0) : & = z;,& = 0]. The
|1(4,j)| notation indicates the number of service completions in I(4, j) (in some sense its “length”).
However, it is clear that this “simplification” actually leads to intractability, since the probability
of hitting such a single state from an uncountable state space is 0 in the general case.

On the other hand, for the Markovian case, the state is completely defined by the physical state
(without the age) since the distributions are all memoryless. As long as the quene is stable (hence
ergodic), the probability of returning to a given state is 1. Thus, we actually have independence

from 7. Defining

S1 = expected sum of system times from state (0,1) to (1,0),

Sy = expected sum of system times from state (1,0) to (0,1),

M; = expected number of service completions from state (0,1) to (1,0),

M, = expected number of service completions from state (1,0) to (0,1),

A, = S, -M;EB[T], j=1,2,
we have E[6T;;] = A;, j = 1,2. In addition, we also have Sy = —S,, My = —M,, and hence
Ay = —Ay. We can thus get estimates from the sample path itself whenever the appropriate

physical states are encountered, regardless of the values of the ages of the other random variables.
Thus, instead of doing a separate estimate each time a critical adjacent event is encountered, we

simply estimate two terms simultaneously, i.e., our estimator is as follows:

. 7
dT L[ndn dT; g(p, dT; Fol:) S\
o - - s Al (6
(d‘)l)ﬁf’A n Z d91 2(31 dej 1 - ) + Z (lel Fz(l‘i + yz) - Fz(.'lfl') ! (b)
| cerlV ier{l) ‘ : ]
dT & dT;  g(=) dT, File:) )
L = 2 ) o 4 Al (7
(dez)spA no\ i df, + 19 et (2) df, 1—G(Zz) §2) df, Fl(iﬁ7+y1)*— Fi(z;) 2 ( )
1 i




where Aj,j = 1,2 are estimates of the quantities of A;,j = 1,2, which can be estimated on the
given sample path without the need for additional simulation. This is the general idea in Fu and
Hu (1991) for any Markov chain.

The approximation is to use (6) and (7) for more general distributions, instead of estimating
separate 6T; ; for each value of age z; encountered, as in (4) and (5). Thus, over the entire sample
path, we are in some sense “averaging” over the possible initial state vectors. The approximation
eliminates the need for additional simulation. We first prove that these estimators are unbiased in
steady state for the Markovian case, and then check empirically the bias of the estimators for the

general case.

3 Unbiasedness for the Markovian Case

We have

Theorem 2. In steady state, the SPA estimators (dT/d#;)spa,i = 1,2, are unbiased when the

arrival process is Poisson and service times are exponential.

Proof. We calculate analytically the expected value of the SPA estimator in steady state, and show
that it equals the derivative of mean steady-state system time. We do the proof for 6y, with a
symmetrical proof following for 6.

Let A be the rate of the Poisson arrival process, and g = 1/6; and puy = 1/6, be the service
rates at the exponential servers 1 and 2, respectively. Recall that if both servers are available, then
the first server is chosen with probability p and the second server with probability ¢ = 1 — p.

We introduce the following notation:

Boo=

p = A

po= f1 b2 (ﬂ1+uz+2/\)
pi1 -+ gz \pp2 + qua + A

Since the system can be represented as a continuous-time Markov chain, the stationary state

probabilities ps, s € {0,(1,0),(0,1),2,...}, can be easily found to be

1—p ,

- &

Po 1_pt (8)
A(pr” + pp2)

= —— 9

PLo o+ A) )

g™ + ppt) ~

= AL TR, 10

Po.1 O+ M) Po (10)

A
P = H—*p”_1p0;n:2,3,... (11)



Hence, the expected number in the system is given by

A

E[N]= , (13)
(L=p)(1=p+A/p¥)
and applying Little’s Law, the expected system time is
1/ ,
E[T] = [ (14)

(1=p)1—p+ A p*)
Differentiating (14), we get
dB[T] (p+ A62) (61 + 67) (L +2X0,)

= - +
A, (1= p)(L—p+ A/p) (61 + 65 + 200105) (1= p) (L — p+ A/ ™) (61 + O + 270162) 07

le + /\91 92 + 92q + /\922 —
(1=p)(1=p+ A p*) (61 + 02+ 200102) (61 + 62)°(1 — p)* (1 — p + M pw*)
(_ A2 + Ap+202)(614682) A142)65) + )\(P91+»\9192+92q))
(6,+62)% 01+0,+270,0, (014024220105 )p* 61402 +2)\0, 05

Lr
(L= p)(L—p+ X ) pr 1)

We proceed to check that in steady state, the expectation of the SPA estimator given by (6) gives
the same expression.
We consider a customer with index ¢* that arrives in steady state, having system time 7. We

denote this customer by C;x. We have
i Lgl)] E [M}

T T o [T
E(— = E(— P{ic L E [— ,
<d91)SPA <d91> * {p tie sy db, 1 —G(z)

e [T ) fa(zs) ‘
+ qP{ieLy’}E [dﬂl i € Ly ] E {Fz(l'i . Fz(yib'i)] } A (16)

We first compute the expectation of the IPA part of (16), d1°/d#, given by Equation (1). For

exponential services with means 6y and 65 at the two servers, respectively, we have

dg; 1 0 if S(j)=2.
Thus, for C;x, (1) becomes
ﬂ — i ZjEL(i*) Xj+ X %f S'('L:) = ‘17 (18)
(191 01 0 if S(l ) = 2.

But ) ;e vy Xj+ X is simply the time from the beginning of the local busy period to the departure

of Cs«, so referring to Figure 1, we can rewrite (18} as

AT __1_{ W+ T i 53%) = 1, (19)

d6; 6, ] 0 if 5(5%) = 2,



where ¢(1) is the fength of the local busy period at server | at the arrival time of (;«. Hence,

[j_;l:] - % (6 + E[T]S(7) = 1]) P{S(7) = 1} 20

We calculate the various quantities in (20) by conditioning on the state found upon the arrival
of C(+. In Fu and Hu (1991), reversibility was used to do similar calculations, butl for the case
of unequal servers, we can no longer use this technique, due to the unaggregated states (0,1) and
(1,0). We instead use the embedded Markov chain and conditioning.

In the embedded Markov chain, “time” is indexed by the occurrence of arrival and departure
events. Let n* be the discrete-time index of the event just prior to the arrival of C;«, so that Cj+"s
arrival is event n™ + 1, and let Z, be the state of the embedded Markov chain at time n. We will
be conditioning on Z,,«.

We calculate ¢(V) by first calculating the quantity y(1), defined as the length of the local busy
period at server at the event just prior to the arrival time of Cix (see Figure 1). Let x; = (x(V|Z,» =
s), 1.e., xs is xV under the condition that the state found upon the arrival of Cj« is s, Similarly,
let ¢s = (¢V|Z,e = 5), i.e., ¢s is ¢V under the condition that the state found upon the arrival 0‘['
(18 s

First, by definition, we have

X0 = Xo,1 = $o = ¢, = 0. (21)

We also have the following relationships between s and ¢, for the other states:

P10 = X10t—— A (22)
b = Xtz 22 (23)

We now derive expressions for the remaining y, by conditioning on the state at n*-1 and
obtaining a set of linear recursive equations similar to Poisson’s equation. The desired conditional

probabilities are shown in Figure 2, computed simply by Bayes’ Rule:

r n = ¢ Zn-— =1
P{Zn—l = tIZ'n, = S} = {Z § 1 }pt
Ps
Thus, we have
A ( 1 ) A (pl 0) < L )
X2 >\+ X3 M+ 7 N+ i\ po X1,0 Ntn (24)
M2 P2 1 \) ;
/ = T —_— Y- — \ Z'r
1,0 A <p170> <¥z+——)\+’u (25)
1
Xn = Xn-1 + A /\9 n > 3. (2())



Solving (24), (25), and (26), we obtain

A <ﬁ+,u1 Plo)
X = ; PN =~ + : 9 27
VT LOE AN T =)
2 lh P2 Atz A
= —— — | + — , (28
X #NA+MKM—M<MQ> f( A+ B)(A+ pa) )
n— 2
Xn = X2+ =7, n2>3. (29)
= A '

We now consider the second term in (20), E[T
s = E[T]|S(t*) = 1, Z,» = s], we have

S(i*) = 1], again by conditioning. Defining

o = b, (30)
o = 0, (31)
o1 = b, (32)
S ";1+m,nzz (33)

Lastly, we must also express the probability term in (20), P{5(i*) = 1}, conditioned on Z,» = s.
Defining Ps = P{S(i*) = 1|{Z,» = s}, we have

P = p (34)

Pro = 0, (35)

Poq = 1, (36)

P = — n>2 (37)
1+

Finally, unconditioning the terms in (20) by summing over all the states, we get

E(gg;) = S Gt P

o1 $€{0,(1.0),(0,1),2,...}

B o= 1 ( n—2 n-1
- + + n T, + —+ = + 0
PoP T Po, 0+ s 7?:2:13 o, P2 -\ F 1
1 PoA P pp oy ).
= P2V (=) (1+¢ B —) 38
poptpon P+ p2 (H* ) (1—P> < t o+ (ﬁ—/\+ H) L=p 5%)
Now we proceed to the other terms in (16). By definition of the sets of Lg), k=1,2,and ¢,
we have
dl;| . (1)] b10 )
E[dﬁl t€ L, = S (39)
dl; | . (1)] @3
|:d91 RS 1 91 ( )

10



Of course, the probability terms in (16) also follow from the definition of the sets of Li,l), k=1,2.
For Lgl), the condition requires a visit to state 3, followed by a departure at server 1 and then a
departure at server 2. For Lgl), the condition requires a visit to state (1,0), followed by a departure

at server 1 and then an arrival. Thus, we have

e O A ( M1+/\> ( 1 ) _ m = p)(pr” + pia) .

P<ire L = 1 = R 42
{i : } PLoX p1t+ A (W (g1 + ML = p)+ A) ()

. B+ [ i1 ppa(l = p)p? .
rlictM = ( £ )(A >(A ) = NP
{Z ' } X ptA) NG+ A B+ ML= p)+A) (43)
since interarrival times and service times are exponential, we have
9{(=)

= = A 44
TGz~ )

E [ fal:) ] _ B [ 2
Fy(z; 4 i) — Fa(a;) 1 —exp (—p2yi)
the latter following because by definition of the set Lgl), ¥ ~ (min(Xq, 4) min(Xq,A4) > X3),
where A ~ G, X1~ Fy, Xy ~ Fy.

Finally, we compute Ay as follows. Let A;_,; be the expectation of the integral of the number

]:A+m+u% (45)

in system process from state ¢ to j, and M,_,; be the corresponding expected number of service
completions. These quantities can be computed from the Markov chain by conditioning on states
and obtaining a set of linear recursive equations, as was done to obtain y;. We omit the details

here. After solving the equations, we obtain

T LA —2)) S A
<@m+AY+@+ @—Af))/(u @m+AQ

Apy—a0 = (1+Maoqe)/(pp2+ )

o+ i ) - 2)
g papa(ppa +A) 1 =ML a (pu2 + A)
Mon—a0 = (k2+AMy_(1,0))/(pr2 + A)

i

Ar(1,0)

1l

M‘Z—»(l,O)

Then,
A1 = A@,1)—(1,0) — Mo,1)=1,0PIT]- (46)
Using (38), (39), (40), (42), (43), (44), (45), and (46), the expression for expectation SPA esti-

mator, (16), was computed and compared with the analytical derivative given by (15) by using

Mathematica, which verified that the expressions were equal. a

4 Simulation Experiments

In the previous section, we proved unbiasedness of the approximate SPA estimator for the Marko-

vian case. In general, the estimator will be biased. In this section, we report the results of nnmerous

11



simulation experiments designed to test the performance of the approximate SPA estimators. For
non-Markovian cases, we compare the SPA estimates to finite difference estimates. In addition,
we also compare the performance to estimates derived through an alternative technique for gra-
dient estimations called the likelihood ratio (LR) method, which gives unbiased estimates for our

problem.

4.1 Gradient Estimation via Likelihood Ratios

The likelihood ratio (LR) method, also called the Score Function (SF) method, is another technique
for gradient estimation in stochastic simulation models (see e.g., Glynn 1990, Reiman and Weiss
1989, or Rubinstein 1989). Here, we briefly present an overview of the LR technique, and derive
regenerative LR estimators for our problem. In general, the LR method has wider applicability
than IPA, but when IPA works, it usually has much lower variance. Variance comparisons between
SPA and LR, on the other hand, seem to be quite problem dependent (see, e.g., Vazquez-Abad and
L’Ecuyer 1991).
Let
E[L(X)] / L(2)dF(6,2) (47)

be the performance measure of interest, where X is a random vector with joint cumulative distri-
bution function F(6,-) and density f(8,-) = dF(6,-)/d- depending on a parameter (or vector of

parameters) 6. Differentiating (47), we have

dl(6 f(8
a%o)_()e/L(xf(G:rda /L()f(l

_ L0f(0,2) f(8,2) 81nf(0 ) /
- /L o /L I 2) e 2)da
- E[L(X)mn—{;(f’ﬁ]. (48)

Thus, in a single simulation, one can estimate the derivative of the performance measure along with
the performance measure itself. Higher derivatives can be handled in a similar manner. A set of
mild assumptions relating to the differentiability of the performance measure (cf., e.g., Rubinstein
1989) allows the interchange of differentiation and integration in the first line. However, as we
shall see, the “naive” estimator for (48) leads to unbounded variance for steady-state performance
nmeasures.

For the system under consideration, the interarrival times and the service times comprise the
random vector. Since these times are all independently generated, the density function f will simply

be the product of the density functions of the interarrival and service time distributions. Thus, the

12



joint density over N service completions for the two-server queue would be given by
N
FO,A1, . AN, X, XN) = [T 9(A) T AX) I f(X), (49)
i=1 5(1)=1,4<N S(1)=2,4<N

where A;, X;, ¢ = 1,..., N are the interarrival times and service times, respectively. For example,

in the Markovian case with arrival rate A and service rates puy and i, (49) becomes

N
f0, A, ..., AN, X1, ..., XN) = H e M H ,ulc_‘”Xz H ,LLQG_“’QX’, (50)
i=1 S(6)=1,i<N S(i)=2,i<N

and we have (u, = 1/6;, k=1,2)

‘ N
1n/(017927A17"'7AN7 Xla"'axN) = Z(IH)\'—)\AJ‘I‘ Z (1nlu’1_:u’1Xi)+ Z (/1’2__”2"\})7
1=1 S(i)=1,i<N S(#)=2,i<N

and

ol f X, o1\, 5
89k = Z (0—% — a—k), k = 172 (-)2)

S(i)=k,i<N

The natural estimators would then be given by

dT 1 & X, 1 ) )
()= 2T (75‘ - 5‘) Lo b )
The problem with these estimators is that if they are used to estimate steady state quantities by
increasing the horizon length N, then it is obvious that the variance of the estimator will increase
linearly with N, resulting quickly in a useless estimator. To resolve this problem, we derive a
regenerative estimator instead.

Using regenerative theory, we can express the mean steady-state system time as a ratio of
expectations:

EQ]

E[T]= Pk (54)

where 7 is the number of customers served in a busy period and @) is the sum of the system times
of customers served in a busy period. Differentiation of (54) yields

dE[T] _ dE[Q]/d8;  dE[y]/db)
d6, —  Eln] Eln]

E[T), k=1,2. (55)

Let 5, be the number of customers served in the jth busy period, and L; ; and X;; be the system
time and service time for the sth customer in the jth busy period, respectively. Then, cmploying

{48) in conjunction with (52), we have the following regenerative estimators over M busy periods:

7]1

AT 1 M dln f 1M oln f | - ‘
(m)LR—NZ{ZL'LJ 80k }_NZ{’,]] Z 39k T7 I”_lazv (;')())

7=1 | =1 7=1 S(1)=ki<N
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where N = Zj\il 1; is the total number of customers served, and T = Zﬁvzl T;/N is the estimate
of mean system time. The advantage of these estimators is that the summations are bounded by
the length of the busy periods, so as long as the busy periods are not too long, the variance of
the estimators should be reasonable. Further reductions in variance can be achieved via variance

reduction techniques such as conditional expectation and jackknifing, but will not be pursued here.
4.2 Simulation Results
The following systems were studied:

1. M/M/2

2. M/U/2

3. M/We/2

4. U/M/2

O

. U/We/2

For the distributions of service times, the following expressions were used:

Exponential Uniform Weibull
fo(x) (1/0)e==1% 2 >0 | 1/20(0 < z < 20) B0z P 2 >0
Fy(2) 1— e /? /2000 <2 <260);1 (2>20)|1— e =P’
[¢ 4 _0 8 7
é—? - @FL/{E‘Z X/6 X/6 ~X(InX)/6
i folx) (z — 6)/6 1/ 4 (1 — pa")lue

The following parameter values were chosen :
A=1.0
6, = 6 = 0.2, 0.4, 0.8 (for exponential and uniform); 8 = 0.5, 2.0 (for Weibull)
by =cf;c=10,1.1,1.151.2,1.251.3,14, 1.5
p=0.0,05,1.0
Note that when the servers are nearly equal (i.e., ¢ is close to unity), § = 0.2, 0.4 and ()8 correspond
to approximate traffic¢ intensities of p = 0.1, 0.2 and 0.4, respectively, for the cases of exponential and
uniform service times. For the Weibull case, (6, 3) - (0.5, \/5) as well as (2.0, 7/0.64) correspond
to p = 0.2; these values were chosen because they result in different coefficients of variation.

For systems 1. 2 and 4, 72 experiments were performed. while 48 experiments were performed
for systems 3 and 5. Ten replications for each experiment were simulated for 100,000 busy periods,

and 90% confidence intervals were constructed.
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For the Markovian case, we provide the analytical gradients (denoted EXACT in the Table 1).
For the other systems (2-5), estimates of the true derivatives were obtained by two-point finite
differencing (FD) using common random numbers (although, for cases 2 and 3, analytical results
could also be derived). This entailed additional experiments at perturbed parameter valnes of
61 + A8 and Ay + A8 to obtain the finite difference derivatives for the two servers, respectively; A8
was chosen to be 0.005. For cases having uniform service distributions, # is the scale parameter;
hence, the service times were uniform on [0, 26;] in the nominal path and [0, 2(6; + 0.005)] in the
perturbed paths. In these cases, gradient estimation via Likelihood Ratios (LR) is not possible due
to the discontinuity of f at 20 (see, e.g., L'Ecuyer 1990).

The detailed results are presented in tabular form for each of the cases. Mean and deviation
estimates are represented in the columns as mean + 90% confidence intervals.

We now discuss the results obtained for each of the cases:

l. M/M/2: The detailed results are presented in Tables 1 and 2 for the two servers, respectively.
The first three columns define the instance of the experiment. Column 4 reports the IPA
estimates. It can clearly be observed that IPA is biased for unequal servers (see I'u and Hu,
1990; Fu, Hu and Nagi, 1992). Column 5 reports the SPA estimates. As proven in section
3, SPA is unbiased for this case, which is confirmed by the numerical results. The variance
increases with p and 6. However, the variance is always lower than LR (column 6) which is

also expected to provide unbiased estimates.

2. M/U/2: The detailed results are presented in Tables 3 and 4 for the two servers, respectively.
Once again, the first three columns define the instance of the experiment. Column 4 reports
the IPA estimates. As expected, and shown in Fu, Hu and Nagi (1992), IPA is biased. Column
5 (denoted by S PA') reports the SPA estimator presented in equations (6) and (7). In this
case, this estimator is only an approximation, and the results are not accurate. Tor lower
trafic intensities, it seems to improve upon the IPA estimator, but for high p, it may even
worsen the IPA estimator. The reason for this is that Aj,j = 1,2 turns out to be a poor

approximation for 07 ;.

Interestingly, in the M/(G/2 case due to the arrival process being Markovian and specifically

for 2 servers, independence from ¢ can be achieved with the following change in definitions:

S = expected sum of system times from state [(0,1) : £&, = 0] to an arrival to state (1,0),
Ss = expected sum of system times from state [(1,0) : & = 0] to an arrival to state (0,1),
M, = expected number of service completions from state [(0,1) : &, = 0] to an arrival to state (1,0),
My = expected number of service completions from state [(1,0) : & = 0] to an arrival to state (0,1).

15
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These quantities can once again be estimated from the given sample path without the need
for additional simulation. In addition to this case being rather limited, it further fails for:
(i) p = 0 as 57 and M; cannot be estimated, and (ii) p = 1 as Sy and M, cannot be
estimated. Thus, we did not think it worthwhile to employ this as an estimator for a fresh
set of simulations. Instead, by taking advantage of the accumulations from the previous run
(for SPA') and running some offline simulations to estimate 5; and M;, j = 1,2, we obtained
the revised SPA estimator which is referred to by S PA? (column 6). The offline simulations
were conducted as follows. Ten replications for each experiment were simulated for 10,000
instances of the appropriate starting and ending states. Each replication was associated with

one replication of the SPA run, and 90% confidence intervals were constructed.

As seen from column 6 of tables 3 and 4, the revised SPA estimator performs well. and
provides tighter confidence intervals than FD (column 7). Due to our earlier remark, LR

cannot be performed in this case.

. M/We/2: The detailed results are presented in Tables 5 and 6 for the two servers, respec-

tively. The first three columns define the instance of the experiment. Column 4 reports the
IPA estimates, which although biased, are reasonably close to FD (column &). Column 5
(denoted by 5 PA!) reports the SPA estimator presented in equations (6) and (7). Again, in
this case, this estimator is only an approximation, and the results are rather poor; in fact they
are worse than IPA in general. The reason for this is once again attributed to Aj,j = 1,2

being a poor approximation for ¢7; ;.

Employing the revised definitions of quantities described in the M/U/2 case and conducting
the offline simulations, the revised estimator is presented as SPA? in column 6. As earlier,
these result in unbiased estimates. When compared to LR (column 7) and FD (column &),

the revised SPA reveals significantly tighter confidence intervals.

. U/M/2: The detailed results are presented in Tables 7 and 8 for the two servers, respectively.

Once again, the first three columns define the instance of the experiment. Column 4 reports
the IPA estimates, and as expected IPA is biased. Column 5 reports the SPA estimator
presented in equations (6) and (7). In this case, this estimator is only an approximation, and
the results are not accurate. As in M/U/2, for lower traflic intensities, it seems to improve
upon the TPA estimator, but for high p, it may worsen the IPA estimator. LR (column 6) is

accurate and has lower variance than FD.

. U/We/2: The detailed results are presented in Tables 9 and 10 for the two servers, respec-

tively. Column 4 reports the IPA estimates, which although biased, are reasonably close to

FD. Column 5 reports the SPA estimator presented in equations (6) and (7). Again, in this
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case, this estimator is only an approximation, and the results are rather poor; in fact they
are worse than IPA in general. LR (column 6) appears to be reasonably accurate and has

lower variance than FD.

5 Summary and Conclusions

We have applied smoothed perturbation analysis to the problem of derivative estimation for a
single-queue system with non-identical servers. The exact estimator is generally not practical
except for low traffic conditions, so we propose an approximation similar in spirit to the one
in Fu and Hu (1993), where an approximation performed well. As in Fu and Hu (1993), the
proposed approximation is exact in the Markovian case. We then performed a set of experiments
for more general distributions similar to the cases investigated in Fu and Hu (1993). Unlike the
results contained there, however, for this system sometimes the approximation provides a reasonable
estimate and sometimes it is quite poor. In fact, sometimes the SPA estimate does worse than the
IPA estimate. For the cases where it does work, it does appear to exhibit lower variance than the
LR estimate. Overall, we would recommend the use of the much simpler and easier-to-implement
IPA estimator over the approximate SPA estimator when the servers are relatively close. In the case
of extreme non-identicality, the regenerative LR estimator is to be preferred over the approximate

SPA estimator in all but the Markovian cases.
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Figure 1: Calculation of IPA Component.
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Figure 2: Conditional Probabilities of Embedded Markov Chain.
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