
ABSTRACT

Title of dissertation: COLLECTIVE RELATIONAL
DATA INTEGRATION WITH
DIVERSE AND NOISY EVIDENCE

Alex Memory
Doctor of Philosophy, 2019

Dissertation directed by: Lise Getoor
Department of Computer Science

Driven by the growth of the Internet, online applications, and data sharing

initiatives, available structured data sources are now vast in number. There is a

growing need to integrate these structured sources to support a variety of data

science tasks, including predictive analysis, data mining, improving search results,

and generating recommendations. A particularly important integration challenge

is dealing with the heterogeneous structures of relational data sources. In addition

to the large number of sources, the difficulty also lies in the growing complexity

of sources, and in the noise and ambiguity present in real-world sources. Existing

automated integration approaches handle the number and complexity of sources,

but nearly all are too brittle to handle noise and ambiguity. Corresponding progress

has been made in probabilistic learning approaches to handle noise and ambiguity

in inputs, but until recently those technologies have not scaled to the size and

complexity of relational data integration problems. My dissertation addresses key

challenges arising from this gap in existing approaches.

I begin the dissertation by introducing a common probabilistic framework for

reasoning about both metadata and data in integration problems. I demonstrate

that this approach allows us to mitigate noise in metadata. The type of transforma-

tion I generate is particularly rich – taking into account multi-relational structure

in both the source and target databases. I introduce a new objective for selecting

this type of relational transformation and demonstrate its effectiveness on particu-

larly challenging problems in which only partial outputs to the target are possible.

Next, I present a novel method for reasoning about ambiguity in integration prob-

lems and show it handles complex schemas with many alternative transformations.

To discover transformations beyond those derivable from explicit source and target

metadata, I introduce an iterative mapping search framework. In a complementary

approach, I introduce a framework for reasoning jointly over both transformations

and underlying semantic attribute matches, which are allowed to have uncertainty.

Finally, I consider an important case in which multiple sources need to be fused

but traditional transformations aren’t sufficient. I demonstrate that we can learn

statistical transformations for an important practical application with the multiple

sources problem.

COLLECTIVE RELATIONAL DATA INTEGRATION WITH
DIVERSE AND NOISY EVIDENCE

by

Alex Memory

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2019

Advisory Committee:
Professor Lise Getoor, University of California Santa Cruz (Advisor, Co-chair)
Professor Dana Nau, University of Maryland (Co-chair)
Professor Héctor Corrada Bravo, University of Maryland
Professor Louiqa Raschid, University of Maryland
Professor Alan Ritter, The Ohio State University

© Copyright by
Alex Memory

2019

Acknowledgments

This work was possible because of help from many others. First, I thank

Lise Getoor for her endless insights and encouragement. Credit also goes to our

collaborators Angelika Kimmig and Renée J. Miller, whose brilliance and knowledge

helped overcome many challenges along the way. I also thank my committee: Dana

Nau, Héctor Corrada Bravo, Louiqa Raschid, and Alan Ritter.

Fellow LINQS members, including Arti Ramesh, Ben London, Bert Huang,

Dhanya Sridhar, Eriq Augustine, Hui Miao, James Foulds, Jay Pujara, Shobeir

Fakhraei, Stephen Bach, and Theodoros Rekatsinas were a wonderful source of help

and ideas. Thanks to Boris Glavic, Gianni Mecca, and Radu Ciucanu for generously

sharing their work and to Amol Deshpande, Graham Mueller, Henry Goldberg,

Leora Morgenstern, Rafael Alonso, and Ted Senator for many helpful discussions. I

especially thank my family and friends for their patience and encouragement.

Some work was done as part of the ELLIPSE project, which was supported by

the Office of the Director of National Intelligence (ODNI) and the Intelligence Ad-

vanced Research Projects Activity (IARPA) via the Air Force Research Laboratory

(AFRL) contract number FA8750-16-C-0114. The U.S. Government is authorized to

reproduce and distribute reprints for Governmental purposes notwithstanding any

copyright annotation thereon. Disclaimer: The views and conclusions contained

herein are those of the authors and should not be interpreted as necessarily repre-

senting the official policies or endorsements, either expressed or implied, of ODNI,

IARPA, AFRL, or the U.S. Government.

ii

Table of Contents

Acknowledgements ii

Table of Contents iii

List of Figures vii

1 Introduction 1
1.1 Challenges . 3
1.2 Structure of Dissertation . 9
1.3 Summary of Contributions . 11

2 Related Work 14
2.1 Data Integration . 14

2.1.1 Schema Matching and Mapping 14
2.1.2 Data Exchange and Metadata Management 17

2.2 Structured Prediction . 18
2.2.1 Probabilistic Soft Logic . 19

3 Mappings from Metadata and Data 22
3.1 Introduction . 22
3.2 Motivating Example . 26
3.3 Mappings with Full Outputs . 31

3.3.1 Mapping Selection Inputs . 32
3.3.2 Characterizing the Input Quality 32
3.3.3 Collective Selection over Full Mappings 34
3.3.4 Mapping Selection is NP-hard 37

3.4 Mappings with Partial Outputs . 40
3.4.1 Incomplete Errors . 40
3.4.2 Partially Explained Tuples . 43
3.4.3 Example of Selection over ST TGDs 45

3.5 Probabilistic Mapping Selection . 46
3.5.1 Probabilistic Soft Logic . 47
3.5.2 Mapping Selection in PSL . 49
3.5.3 Objective Equivalence . 50
3.5.4 Collective Mapping Discovery 52

3.6 Evaluation . 53

iii

3.6.1 Scenario Generation . 53
3.6.2 Evaluation of Solution Quality 55
3.6.3 CMD Accuracy over Ambiguous Metadata 56
3.6.4 CMD Accuracy over Dirty Data 57
3.6.5 Performance of CMD . 59
3.6.6 CMD on Real Metadata and Data 60

3.7 Related Work . 61
3.8 Conclusion . 65

4 Handling Ambiguity with Prioritized Disjunction Rules 66
4.1 Introduction . 66
4.2 Problem . 67
4.3 Approach . 68
4.4 Evaluation . 71

4.4.1 Complex Scenario Generation 72
4.4.2 Results . 74

4.5 Conclusion . 75

5 Mapping Search 76
5.1 Introduction . 76
5.2 Mapping Search Problem . 78

5.2.1 Mapping Quality . 78
5.2.1.1 Revised Covers . 80

5.2.2 Search Objective . 81
5.3 Search Approach . 83

5.3.1 Step 1.1: Select a Flawed Relation 86
5.3.2 Step 1.2: Select Flawed ST TGDs 87
5.3.3 Step 2.1: Refinement Objective 89

5.3.3.1 Explains Boosting 92
5.3.3.2 Errors Boosting . 94
5.3.3.3 Combined Score . 95

5.3.4 Step 2.2: Refine ST TGDs . 98
5.3.5 Step 3: Update Mapping . 98

5.4 Refinement Operators . 99
5.4.1 Types of Mapping Flaws . 100
5.4.2 Substitution Operators . 101
5.4.3 Conjunction Operators . 102
5.4.4 Antecedent Operators . 102

5.5 Baseline Algorithms . 103
5.5.1 Function Sib . 104
5.5.2 Function Ss . 105
5.5.3 Search Inputs and Parameters 105

5.6 Scenario Generation . 106
5.6.1 Single-Head Local-as-View . 107
5.6.2 Local-as-View . 110

iv

5.6.3 Global-as-View . 111
5.6.4 Global-Local-as-View . 112

5.7 Evaluation . 112
5.7.1 Mapping Quality . 113
5.7.2 Scalability . 116
5.7.3 Results on Real Data . 118

5.8 Related Work . 119
5.9 Conclusion and Future Work . 121

6 Joint Matching and Mapping 122
6.1 Introduction . 122
6.2 Mapping and Matching Problem . 124
6.3 Our Approach . 126

6.3.1 Generating Candidate Queries 127
6.3.2 Probabilistic Inference in PSL 128

6.3.2.1 PSL Predicates . 129
6.3.2.2 Rules for Matching 133
6.3.2.3 Rules for Mapping 134

6.4 Evaluation . 136
6.4.1 Measuring the Quality of Mappings 136
6.4.2 Data Sources . 137

6.4.2.1 Neuroscience . 138
6.4.2.2 STBenchmark . 139
6.4.2.3 Amalgam . 140

6.4.3 Results . 140
6.4.3.1 Effectiveness on Benchmark Tasks 140
6.4.3.2 Effectiveness of Joint Matching and Mapping 142
6.4.3.3 Scalability . 143

6.5 Conclusion and Future Work . 144

7 Statistical Transformations for Source Fusion 146
7.1 Introduction . 146
7.2 Problem and Background . 148

7.2.1 Cyberattack Sensors and Sensor Graphs 149
7.2.2 Sensor Fusion . 151
7.2.3 Structured Prediction . 151

7.2.3.1 Predict a Single Role 152
7.2.3.2 Predict Multiple Roles 152
7.2.3.3 Predict Multiple Events 153

7.3 Cyberattack Event Networks . 153
7.3.1 Roles of Events are Interdependent 153
7.3.2 Events Occur in Clusters . 154
7.3.3 Events Evolve Over Time . 155

7.4 Event-Relational Model . 156
7.4.1 Baseline: Role-Propositional 158

v

7.4.2 Extension: Event-Propositional 158
7.4.3 Extension: Time-Propositional 160
7.4.4 Extension: Event-Relational 162

7.5 Cyber Event Relational Fusion . 163
7.5.1 Probabilistic Soft Logic . 163
7.5.2 Mapping to Event-Relational Model 163

7.5.2.1 Inference and Learning 164
7.5.2.2 Soft Truth Values . 164

7.5.3 Predicates . 164
7.5.3.1 Sensors . 165
7.5.3.2 Similarities . 165
7.5.3.3 Categories . 165

7.5.4 CERF PSL Rules . 166
7.5.4.1 Partial-Grounding 167
7.5.4.2 Collective Inference 167

7.6 Evaluation . 168
7.6.1 Data . 169

7.6.1.1 A Real Cyberattack Event Network 169
7.6.1.2 Cross Validation . 170
7.6.1.3 Sensor Graphs . 170

7.6.2 Systems . 171
7.6.3 AuROC and Lift . 171
7.6.4 Partially-Observed Events . 172
7.6.5 Rule Contributions . 173
7.6.6 Scalability . 174

7.7 Conclusion . 175

8 Conclusion and Future Work 176
8.1 Open Challenges and Future Work 177

8.1.1 Input Types . 177
8.1.2 Transformation Languages . 178
8.1.3 Search . 179
8.1.4 External Interaction . 181
8.1.5 Resources . 181

Bibliography 183

vi

List of Figures

1.1 An example of a complex database schema. 2
1.2 A notional data source and target database 3
1.3 Noisy metadata example. 5
1.4 Noisy data example. 5
1.5 Partial outputs example. 5
1.6 Ambiguous data example. 5
1.7 Uncertain semantics example. 5
1.8 Multiple sources example. 5

3.1 Motivating schema mapping example 27
3.2 Illustration of error and explains functions for full st tgds 37
3.3 Illustration of error and explains functions for st tgds 43
3.4 Mapping quality for the mapping baseline with ambiguous metadata . 57
3.5 Mapping quality for CMD with dirty data 58
3.6 Optimization time of CMD w.r.t. data and schema size 59

4.1 Optimization time of CMD w.r.t. ambiguity complexity 74

5.1 Illustration of covers and creates functions for st tgds 79
5.2 Illustration of error and explains functions for st tgds 80
5.3 Illustration of error and explains functions for selecting relations . . . 86
5.4 Illustration of search objective . 96
5.5 Substitution operators over st tgds 102
5.6 Conjunction operators over st tgds 103
5.7 Search mapping quality . 114
5.8 Search mapping quality variation . 114
5.9 Search tuple quality . 114
5.10 Search tuple quality variation . 114
5.11 Search join quality . 114
5.12 Search join quality variation . 114
5.13 SHLAV mapping quality . 115
5.14 LAV mapping quality . 115
5.15 GAV mapping quality . 115

vii

5.16 GLAV mapping quality . 115
5.17 Search mapping quality while varying U 116
5.18 Search mapping quality while varying M 116
5.19 Search running times . 117
5.20 Search running times while varying U 117
5.21 Search running times while varying M 117

6.1 PSL rules for matching . 133
6.2 PSL rules for mapping . 134
6.3 Mapping quality ROC and running times. 142
6.4 Average running times of joint model 143

7.1 Illustration of sensor fusion task . 150
7.2 Examples of a sensor graph and cyberattack event network 150
7.3 Sample of a real CEN, colored by victim location. 155
7.4 Edge weight distribution for example CEN 155
7.5 Distribution of cyber events per interval 156
7.6 Examples of four structured prediction models 157
7.7 Examples of structured prediction outputs 159
7.8 Illustration of a CERF structured prediction model 167
7.9 Lift of CERF and the baseline . 172
7.10 AuROC w.r.t partial observation . 173
7.11 Contributions of rules to accuracy . 173
7.12 Running times of CERF and baselines 175

viii

Chapter 1: Introduction

Driven by the growth of the Internet, online applications and data sharing

initiatives, available structured data sources are now vast in number. Publicly available

data sources alone now number in the millions [1]. There is a growing need to

integrate these structured sources to support a huge variety of data science tasks,

including predictive analysis, data mining, improving search results, and generating

recommendations [2]. However, the problem of integrating structured data is far from

solved.

A particularly important integration challenge is dealing with the heterogeneous

structures of sources. Due to the flexibility of data representations, and varying needs

of data creators, even sources containing closely related data are often structured

very differently. Critical data science tasks, and related integration tasks such as

entity resolution, can’t begin until we first overcome this challenge of structural

heterogeneity.

While integrating sources with well-understood structures is itself an area of

research, it is now a challenge just to understand the structures of the vast number

of sources – both individual sources and their versions over time [3]. Part of the

difficulty also lies in the growing complexity of sources, with some schemas having

1

Figure 1.1: An example of a complex database schema.

hundreds of thousands of concepts [4]. Figure 1.1 shows an example of a complex

schema.1 It is critical to automate structured data integration as much as possible

to overcome these difficulties.

Much progress has been made to develop automated integration approaches

for handling the number and complexity of sources. However, nearly all are based on

brittle technologies that cannot also handle noise and ambiguity in metadata and

data. Corresponding progress has been made in probabilistic learning approaches to

1GlobalServices model: https://mattduffield.files.wordpress.com/2011/06/large-model.png

2

Source

A B C

a b c

a′ b′ c′

D E

d e

d′ e′

d′′ e′′

F G

f g

f ′ g′

H I J

h i j

h′ i′ j′

Target

Figure 1.2: A notional data source (left) and target database (right).

handle noise and ambiguity in inputs to prediction and mining tasks. However, until

recently these technologies have not scaled to the high size and complexity needed

for structured data integration.

In the following section, I briefly summarize seven key challenges for structured

data integration arising from this gap in existing approaches, and my contributions

helping to address each.

1.1 Challenges

I focus specifically on relational data integration; relational data is very widely

used, and is the data representation used by most database management and data

analysis systems. As illustrated in Figure 1.2, inputs to a relational data integration

problem include a database with source data (left) and a target database (right).

3

In the notional example, there are two source relations and two target relations, a

total of ten attributes (A,B, . . . , J), and a total of nine tuples. Our over-all goal is

to transform data in tuples of the source so it can be used in the target schema, and

any applications using that schema.

Substantial work has focused on basic parts of this problem, such as transforming

a single attribute at a time, transforming a single source relation at a time, or filling

a single target relation at a time. I focus on the more general integration setting with

multiple source relations and target relations. All integration tasks include choices

incorporating elements of the source and target; in this more general setting, we

add additional complexity from integration choices within the source and within the

target, e.g., joining relations on some attributes. This makes the space of possible

transformations very large.

I will now briefly describe seven key challenges in relational data integration,

and my contributions to address each.

Noisy Metadata. An important integration technique is to use metadata accompa-

nying a source, along with metadata for the target, to derive possible transformations

from the source to the target. Metadata includes names of relations, names of at-

tributes, and schema constraints. For example, foreign key (FK) constraints are a

kind of metadata that is often used to derive possible join paths within schemas [5].

In Figure 1.3, I illustrate one notional FK that is correct (a). However, in practice

FKs can be noisy, e.g., using the one marked (b) could create incorrect tuples in the

target. An important insight is that combining metadata with data could mitigate

4

A B C

a b c

a′ b′ c′

A′ E

a e

a′ e′

F G

f g

f ′ g′

H I

h i

(a) (b)

Figure 1.3: Noisy metadata example.

A B C

a b c

a′′ b′′ c′′(a)

A′ B′

a b

a′ b′ (b)

A′ C ′

a c

Figure 1.4: Noisy data example.

A B

a b

A′ C D

a n n′

B′ D′

b n′′ n′

(a)

Figure 1.5: Partial outputs example.

A B

a b

e f(a)

C D

c d

e f(b)

A′ B′

a b

e f (c)

C ′ D′

c d

e f (d)

Figure 1.6: Ambiguous data example.

A B

a b

a′ b′

A′ B′

c b

c′ b′

(b)

(a)

Figure 1.7: Uncertain semantics example.

A B

a b

a′ b′

C D

c d

c′ d′

A′ B′ C ′ D′

a b c d

a′ b′ c′ d′

Figure 1.8: Multiple sources example.

5

metadata noise. I will show how, using examples of the same data appearing in

both a source and the target, we can overcome several important types of noise in

metadata.

Noisy Data. In Figure 1.4, I show an example of data appearing in both the source

and target: tuple (a, b, c) in the source is partitioned vertically into (a, b) and (a, c)

in the target. Unfortunately, in practice data examples can contain noise as well: the

tuple marked (a) has no corresponding tuples in the target, and the reverse is true for

(b), reducing our confidence in the correct transformation. Earlier approaches to use

data this way have been brittle, generating incorrect transformations, or none at all,

when exposed to noise. I will show that, with realistic levels of data noise, a flexible

probabilistic framework can handle data noise and produce correct transformations.

Partial Outputs. Sources sometimes lack data to fill all attributes in the target.

As illustrated in Figure 1.5, when transforming source tuple (a, b), we only have

values to fill target attributes A′ and B′, which are now vertically partitioned into

separate target relations. With existing approaches, transformations would fill the

three empty output attributes C, D, and D′ with null values. By default, nulls are

unique, e.g., n, n′, and n′′. This works for attribute C, but placing unique nulls in D

and D′ loses the relationship between a and b. Foreign key (a) links attributes D

and D′, suggesting a way to preserve the relationship between a and b. To do this,

we need a transformation that creates a shared null, e.g., putting n′ in both D and

D′. However, existing relational learning approaches do not consider nulls shared

across target relations, as they add significant complexity. We need a new kind of

6

relational learning objective that takes multi-relational target structure into account.

I will introduce a new homomorphism-based objective to do this, and show that it

scales well to realistically large and complex integration problems.

Ambiguous Data. Even in ideal example data, there can still be ambiguity due

to the nature of the data. In Figure 1.6, tuples (a, b) and (c, d) are unambiguous,

suggesting one transformation of (A,B) to (A′, B′), and a second from (C,D) to

(C ′, D′). However, tuple (e, f) appears in all four relations, leading to ambiguity

whether to pair tuples marked (a) with (c), or (a) with (d), (b) with (c), etc. We are

left unsure which transformations are correct. In actual problems with ambiguous

data, one strategy could be to consider all transformations and all tuples holistically

to see if the aggregate evidence prefers some alternatives over others. Existing

approaches have typically not attempted this type of analysis, as it has the potential

to add combinatorial complexity to the problem. I will show that reasoning both

probabilistically and collectively over alternate transformations is indeed possible.

Specifically, I will show that a new type of probabilistic dependency called prioritized

disjunction rules (PD) that we develop for this purpose scales well to highly complex

integration problems with many alternatives.

Flawed Transformations. I have described how we can derive possible transfor-

mations from metadata, and combine them with data in a probabilistic, collective

framework to handle noise, ambiguity and partial outputs. However, ideal transfor-

mations may not be derivable from metadata because parts of metadata are missing

or too noisy to be recoverable. For example, if in Figure 1.3 the FK marked (a) were

7

missing, we would not derive the necessary join over those relations using conventional

techniques. It is possible to systematically tweak parts of transformations, then test

which variant fits the data best. Unfortunately, an undirected search over variants is

impractical – we need guidance to narrow the search. I will show that our collective,

probabilistic framework using metadata and data provides an efficient source of

guidance when integrated into a boosted search over transformations.

Uncertain Semantics. In addition to the metadata within each schema, sometimes

an additional form of metadata called attribute correspondences are available that

crosses schemas. Correspondences are links from attributes in the target schema to

attributes in the source with the same meaning. For example, if an attribute in the

target contains names of people, correspondences would identify attribute(s) in the

source that also contain names of people. Correspondences are helpful for deriving

possible transformations, and a significant body of past work focuses solely on the

problem of finding correspondences. Unfortunately, correspondences can be noisy, and

have varying levels of confidence, which most existing transformation approaches are

too brittle to handle. In Figure 1.7, I illustrate one notional correct correspondence (b)

and one incorrect correspondence (a). I consider the case that some correspondences

can be found jointly with transformations as a strategy to improve and harmonize

both. I propose and evaluate a joint probabilistic transformation framework that

finds missing correspondences and handles their inherent noise and uncertainty in a

principled way.

Multiple Sources. I have described approaches to overcome noise and ambiguity to

8

reveal the true source structure to transfer to the target. However, in some important

cases the source structure is inherently lacking, and we need to synthesize missing

connections between source relations to provide data fitting the target schema. This

situation arises frequently when multiple original sources are ingested into a common

repository – sometimes referred to as a data lake. In Figure 1.8, I illustrate an example

in which data from two source relations must be merged vertically – not by union.

By themselves, the source relations provide no way to discover that target tuple

(a, b, c, d) is correct, instead of (a, b, c′, d′) or (a′, b′, c, d). We lack the explicit data

and metadata we would need to make a conventional transformation, but I will show

how – with the addition of some background knowledge – we can learn a statistical

transformation for this source fusion problem.

1.2 Structure of Dissertation

My contributions to address the challenges listed in Section 1.1 are based on

foundational work in data integration and structured prediction. In Chapter 2, I

provide brief introductions of past work in these two areas. Specifically, most of the

work presented here leverages two powerful and complementary technologies: (a) from

the data integration literature, I adopt a particularly rich form of transformation

known as source-to-target tuple generating dependencies (st tgd), which allow us to

represent transformations with multiple source relations, multiple target relations,

and partial outputs; and (b) from the structured prediction literature, I use the

recently developed probabilistic soft logic (PSL) [6] language, serving as a foundation

9

to encode a wide variety of integration objectives and handle many forms of noise

and ambiguity.

Central to several integration challenges is a framework for reasoning about

both metadata and data. In Chapter 3, I introduce a probabilistic framework based

on PSL to do this, using a novel objective for selecting st tgd-based mappings from

noisy metadata and data in Section 3.3 that optimizes both coverage and correctness.

In Section 3.4, I extend the objective using homomorphic equivalence to take into

account partial outputs, significantly expanding the practical applications of the

integration approach.

In Chapter 4, I present and evaluate a novel extension to the PSL language

called prioritized disjunction rules. This new kind of rule enables an important new

kind of probabilistic dependency for reasoning about ambiguity over large numbers

of alternative transformations. I use this new kind of rule in Chapters 3, 5, and 6.

Material from Chapters 3 and 4 were published in [7], [8], and [9].

In Chapter 5, I build on foundations from Chapters 3 and 4, creating an iterative

search framework to address flaws in mappings. Specifically, I leverage the PSL-based

learning objective from earlier chapters in a boosted search algorithm to focus the

search towards the ideal transformation. I show that the search algorithm corrects

several important classes of flaws in st tgd-based transformations. The material in

Chapter 5 is from work that is in progress.

In Chapter 6, I introduce a complementary framework to the ones presented in

Chapters 3 and 5, which reasons jointly over both correspondences and st tgd-based

transformations. I evaluate the framework and show that it is able to find correct

10

correspondences and transformations, even when starting from just the source and

target schemas.

In Chapter 7, I consider the important multiple sources problem, which requires

inferences that are impossible with pure st tgd-based transformations. In this work, I

learn statistical transformations using PSL rules, background knowledge, and external

similarity measures. I then evaluate it on an important practical application. Material

from Chapter 7 was published in [10].

In Chapter 8, I conclude with a summary of my contributions and potentially

fruitful new directions for future research based on this work.

1.3 Summary of Contributions

In this dissertation, I present novel approaches to seven key challenges of

relational data integration. Common to all contributions is the combination of

state-of-the-art advances in data integration and structured prediction in order to

incorporate diverse inputs and to handle noise. In summary:

1. Combining metadata and data: Metadata is useful for deriving possible

transformations, but breaks down as a single approach in realistic settings

because of noise. To overcome the huge space of possible corrections to the

noise, I introduce a framework combining metadata with data. In an extensive

empirical evaluation, I test this ability on a wide variety of metadata structures

and varying metadata noise, demonstrating the power of combining data with

metadata.

11

2. Probabilistic framework: Simply using patterns present in data will produce

bad transformations, because of noise present in data as well. Instead of assum-

ing perfect example data, I use a probabilistic approach that accommodates

noise. I evaluate this ability on a wide variety of data noise, demonstrating the

ability to handle significant levels of noise.

3. Homomorphism-based objective: A correct transformation transfers as

much data as possible from a source, and also provides as much information

as possible about remaining unknowns via shared labeling on nulls across

multiple relations. To do this, I overcome the common restriction of learning

a single relation at a time by introducing a new learning objective based on

multi-relation homomorphisms.

4. Collective, prioritized disjunction rules: Inherent ambiguity is possible

even in ideal integration inputs, resulting in a potentially intractable number of

alternative transformations. In several empirical evaluations, I demonstrate that

the new prioritized disjunction rules are efficient and handle highly complex

sets of alternate transformations. In problems combining noisy metadata, noisy

data, partial outputs, and ambiguous data, those challenges can interact to

create even more complexity, so I include combinations of those challenges in

evaluation problems.

5. Boosted search: Many sources are available in such a raw form that deriving

useful possible transformations is difficult. A naive search over the huge space

of possible transformations would be intractable, but I demonstrate that our

12

collective, probabilistic framework is a good basis for guiding the search. I

evaluate the search on a novel set of generated integration scenarios, as well as

real data sets.

6. Joint matching and mapping: A huge body of work exists to discover

correspondences, but most existing mapping approaches are highly sensitive to

their uncertainty and noise. I propose a new technique for learning matches

and mappings jointly and demonstrate its potential on several generated and

real data sets.

7. Statistical transformations for source fusion: A growing need is to fuse

multiple sources that have been ingested to large repositories, e.g., data lakes,

yet conventional rule-based transformations aren’t suitable for this problem. I

introduce a new approach using statistical transformations and demonstrate

its effectiveness on an important practical application.

13

Chapter 2: Related Work

I briefly review related work in data integration and structured prediction.

2.1 Data Integration

Data integration has the broad goal of providing a unified view over multiple

data sources to applications and users. In this section, I review two areas of work in

data integration that are particularly important to this dissertation: schema matching

and mapping has the goal of discovering relationships between source and target

schemas; and data exchange and metadata management has the goal of managing

and applying those relationships in applications.

2.1.1 Schema Matching and Mapping

An important data integration task is finding semantically related attributes

known as schema matchings or correspondences [11]. Much work on schema mapping

has focused on this initial step, often combining multiple similarity measures to

discover matches [12]. Approaches for matching also extend beyond 1-to-1 matches to

include complex matches, e.g., Dhamankar et al. [13] A related problem is ontology

alignment, which finds correspondences between classes of objects and between binary

14

predicates, e.g., PARIS [14]. Hu et al. [15] align ontologies using first-order Horn

rules.

Schema mapping discovery, the task of identifying complex structural relation-

ships between relational data sources, has a long and rich tradition [16, 17, 18], yet

it remains a challenging problem. Schema mappings are a central component of

applications that integrate information from a variety of data sources using different

vocabularies and structured representations. Approaches for discovering mappings

build on techniques for query discovery [5], learning from examples [18, 19] and

statistical relational learning [20]. The Clio project showed how constraints within

schemas can be used to infer schema mappings [5, 21]. HepTox [22] and ++Spicy [23]

have continued this line of research using richer forms of metadata (including equality-

generating-dependencies) to guide mapping discovery. The ++Spicy system [24] also

includes a verification step following matching and mapping to improve the quality

of discovered st tgds based on data instances.

The role of data in resolving ambiguity or incompleteness in the metadata

evidence has long been recognized, both in matching [25] and in schema mapping [26,

27]. The Data Viewer [26] and Muse [27] systems use source and target data in-

teractively to help a user understand, refine or correct mappings suggested by a

mapping design system. A complementary approach that uses data only is often

called example-driven schema-mapping design [28]. This approach uses a set of data

examples (a set of pairs of a source instance and a target instance) to determine

if there exists a mapping (a set of st tgds) that fit the examples [18]. If such a

mapping exists, then the system returns the most general such mapping. For many

15

examples, there will be no fitting mapping and the system (Eirene) interactively

guides a user in refining her data to identify tuples that are causing the failure [29].

Another approach to interactive mapping discovery from data casts the problem as

an algorithmic learning problem, where a user is asked to label a series of examples

as positive or negative in order to learn a mapping [30]. And of course there is work

on learning views from data [31] where a view is a restricted form of st tgds where

the target expression is a single relational atom with no existentials.

Gottlob and Senellart [32] define the schema-mapping discovery problem from

a single data example (a source and target instance pair) as an optimization problem.

Given a data example, that is, a source instance I and target instance J , the problem

is to find a mapping M that is valid (meaning that (I, J) |= M) and that is fully

explaining for (I, J) (meaning that every fact in J belongs to every target instance

K such that (I,K) satisfies M). The optimization problem then is to search among

all valid, fully-explaining mappings, to find the minimal cost mapping (where cost

is defined precisely, but intuitively measures the size of the mapping). Even for

learning a set of st tgds with no existential quantifiers, finding optimal mappings is

shown to be DP-hard (both NP-hard and co NP-hard). Using this framework, ten

Cate et al. [33] provide an approximation algorithm for finding near optimal schema

mappings from a data example when mappings are limited to have a single atom

(relation) in the head and body.

16

2.1.2 Data Exchange and Metadata Management

The rich fields of data exchange and metadata management provide a foundation

to understand and use schema mappings. Kolaitis [34] gives an overview of the major

concepts used in data exchange and metadata management and some of the most

important recent advances in the field. Doan et al. [35], give a recent review of

practices in the field and current challenges.

There is an increasing need for flexible mappings that can be reused and com-

bined within the larger goal of metadata management. Arenas et al [36] introduce

formal foundations to understand qualities of mappings needed for metadata man-

agement, including the ability of a mapping to transfer source information and the

ability to reverse mappings. Fagin et al. [37] also consider reversing data exchange

— that is, the ability to swap the source and target schemas in a mapping. In the

process, they consider important properties of nulls in mappings which are broadly

important whenever mappings are used in an application. Furthermore, Arocena et

al. [38] consider the problem of inventing values for nulls during data exchange.

Interrelatedness between the mapping and data cleaning tasks are an area

of recent progress in data exchange. In particular, Mecca et al. [39] introduce the

core schema mapping, a formal description of data exchange solutions that minimize

duplication which would otherwise need to be resolved with a separate cleaning step.

More recently, Llunatic [40] puts in a common framework core data exchange

solutions using mappings and also flexible cleaning dependencies that can further

reduce errors and duplication.

17

Evaluating a schema mapping is challenging because mappings can differ, yet

still be equally useful [41]. To avoid this problem, IQ [42] is a flexible evaluation

measure for schema mappings that judges data exchange results rather than mappings

themselves. To provide a benchmark set of diverse integration problems, Arocena et

al. introduce iBench benchmark [43]. Finally, with recent advances, data exchange

can be applied to even larger integration problems; Dong et al. [1] give an overview

of unique problems that arise with such large scale data.

2.2 Structured Prediction

Structured prediction is a machine learning approach in which predictions are

structured objects. A particularly flexible approach to structured prediction is to

base it on probabilistic graphical models (PGM) [44]. PGMs provide ways to build

statistical models for a variety of domains where there are detailed dependencies

between random variables. In particular, PGMs give principled ways to handle

missing information and to make predictions involving structured combinations of

variables. Markov logic [45] and probabilistic soft logic [6] are examples of PGMs in

which templated dependencies can be expressed using first-order logic, which makes

specifying models especially easy. Both supervised and unsupervised learning are

possible with PGMs. For example, without labeled training data, Poon et al. [46]

train a Markov logic network that performs coreference resolution.

Structured prediction using PGMs has been used successfully for data integra-

tion. For example, Niepert et al. [47] use declarative rules and probabilistic inference

18

using Markov logic to find matches between ontologies with binary relations on the

source and target side. Additionally, PGMs have been used to clean data extracted

from multiple unstructured data sources to form knowledge graphs [48].

Structural dependencies have also been studied in the inductive logic pro-

gramming and relational learning (RL) communities [49]; the problem of learning

mapping dependencies across relational schemas is closely related to the problem of

learning dependencies in RL. Due to their complexity, the space of possible structured

predictions is often extremely large or even infinite. For example, Lee et al. [50] use

structured prediction to search a large space of possible solutions — up to a fixed

time horizon — for a planning problem. Many approaches to structured prediction,

including PSL, are closely related to constraint satisfaction. In early work, Beck et

al. [51] use constraints to search efficiently a space of solutions with no fixed horizon,

but the constraints do not define a probability distribution.

2.2.1 Probabilistic Soft Logic

In this section I briefly define the PSL language, as it is used throughout the

rest of this dissertation. A PSL program is a set of weighted function-free rules with

conjunctive bodies and disjunctive heads

w : b1(~X) ∧ . . . ∧ bn(~X)→ h1(~X) ∨ . . . ∨ hm(~X)

where ~X is a set of universally-quantified variables, the bi(~X) and hj(~X) are atoms

over (subsets of) the variables in ~X, and w is a non-negative weight corresponding

19

to the importance of satisfying the groundings of the rule. In first-order logic, a

grounding of such a rule is satisfied if its body evaluates to false (0) or its head

evaluates to true (1). Instead of talking about a ground rule being satisfied, PSL

focuses on such a rule’s distance to satisfaction, which is defined as the difference

of the truth values of the body and the head (set to zero if negative). However,

in order to achieve efficient inference, PSL uses soft truth values from the interval

[0, 1] instead of the usual Boolean ones. This requires suitable generalizations of

the logical connectives as well, which is done using the Lukasiewicz t-norm and its

corresponding co-norm. These relaxations are exact at the extremes, but provide a

consistent mapping for values in-between. Given an interpretation I of all ground

atoms constructed from the predicates and constants in the program, the formulas

for the relaxation of the logical conjunction (∧), disjunction (∨), and negation (¬)

are as follows:

`1 ∧ `2 = max{0, I(`1) + I(`2)− 1},

`1 ∨ `2 = min{I(`1) + I(`2), 1},

¬l1 = 1− I(`1).

The distance to satisfaction of a ground rule r = body→ head is then

dr(I) = max{0, I(body)− I(head)}

20

For instance, consider the rule w : a ∧ b → c ∨ d with truth values I(a) = 0.7,

I(b) = 0.8, I(c) = 0.3 and I(d) = 0.1. The truth value of a∧b is max{0, 0.7+0.8−1} =

0.5, that of c ∨ d is min{0.3 + 0.1, 1} = 0.4, and the distance to satisfaction thus

0.5− 0.4 = 0.1.

Let R be the set of all ground rules obtained by grounding the program with

respect to the given constants. The probability density function f over I is:

f(I) =
1

Z
exp[−

∑
r∈R

wr(dr(I))]

where wr is the weight of the rule r and Z is a normalization constant. The inference

task PSL solves is to find arg maxI f(I), that is, the interpretation I that minimizes

the sum of the distances to satisfaction of all ground rules, each multiplied by the

corresponding rule weight. Typically, truth values for some of the ground atoms

are provided as evidence; that is, they have given fixed truth values, and we only

need to infer the optimal interpretation of the remaining atoms. PSL finds an exact

optimum using soft truth values, which can be converted to a traditional, Boolean-

valued interpretation using a greedy rounding strategy. The quality of this solution

is guaranteed to be at least 3/4 that of the optimal discrete solution, with respect to

the total weighted distance-to-satisfaction objective. Bach et al. [52] provide the full

technical details of the results with rounding. Additionally, Bach et al. [53] showed

that inference in PSL models can be one hundred times faster than inference in

Markov logic, while still being more accurate.

21

Chapter 3: Mappings from Metadata and Data

3.1 Introduction

Schema mappings are collections of complex logical statements which relate

multiple relations across data sources with different schemas, and thus can be used

to exchange data between these sources. Efficient techniques for reasoning about the

suitability of different schema mappings are crucial to manage the massive number,

complexity, and size of data sources. While the metadata and data of the sources

often provide evidence for how to best map them, this evidence is rarely complete

or unambiguous. To reason effectively about mappings, we thus need techniques

grounded in mapping understanding that can reason about open-world scenarios

using uncertain, imperfect evidence.

We study the problem of mapping selection, that is, of selecting from a large

set of possible mappings, a mapping that best relates a source and a target schema.

We define the mapping selection problem for the entire language of st tgds (source-

to-target tuple-generating-dependencies; also known as GLAV mappings) which is

arguably the most commonly used mapping language [54]. We prove that exactly

solving this problem is NP-hard already for full st tgds, i.e., st tgds without existential

quantifiers. We then provide an efficient and highly accurate approximate solution

22

to this problem based on state-of-the-art probabilistic reasoning and structured

prediction.

Historically, approaches to schema mapping discovery and selection have con-

sidered a wide variety of inputs. Early approaches use metadata (schema constraints)

and attribute correspondences (aka schema matchings) to create mappings that are

consistent with the metadata [5, 21]. Metadata in the form of query logs has been

used to select mappings that are most consistent with frequently asked queries [55].

Many different approaches use data to refine a mapping or to select a mapping from

among a set of schema mappings [27, 28, 32, 56, 24, 18, 33, 57]. Other approaches

solicit user feedback to define scores for each view in a set of candidate views and

then select an optimal set of views based on these scores [19]. All of these approaches

have merit, but are tailored to a specific form of input evidence, and either work

for limited mapping languages, like views, or assume consistent or complete input,

which is difficult to prepare or find. An exception to this is the approach by Alexe et

al. [57] that considers bad data examples that are consistent with several (candidate)

mappings or none. They consider how such bad examples can be turned into good

examples that are consistent with a single, desired mapping.

We define a new mapping selection problem that uses both data and metadata

collectively as input. None of the evidence is required to be consistent or complete,

rather we find the subset of st tgds that are best supported by the given evidence

as a whole. Metadata can serve as a guide through a potentially massive set of

possible mappings, suggesting mappings that are consistent with schema semantics

(e.g., joining relations on a foreign key). Data can reinforce metadata evidence. Data

23

can also rule out a mapping that is consistent with the metadata, but inconsistent

with large parts of the data. Metadata can obviate the need to have two pristine

data instances as input that precisely define a single best mapping. Furthermore, our

framework is declarative and extensible to new forms of evidence including scores

(such as user-feedback annotations) on the metadata and data evidence.

Our solution adopts and extends some of the latest techniques from the proba-

bilistic reasoning community. These techniques are routinely used to combine logical

constraints in relational domains with the ability to handle uncertainty and con-

flicting information. Building upon work of Gottlob and Senellart [18], we refine

their concepts of validity and fully explaining to define what it means for a single

tuple to be either an (incomplete) error for a mapping or (partially) explained by

a mapping. Using these notions, we define our probabilistic optimization problem

using probabilistic soft logic (PSL) [6], a scalable probabilistic programming language

based on weighted logical rules. PSL has been used successfully for a variety of

data and knowledge integration problems, including knowledge graph identification

[58] and data fusion [59, 60]. It however did not support the kind of open world

reasoning required for mapping selection, where we need to express constraints over

the existence of elements in a set satisfying certain conditions, namely, st tgds in

the mapping explaining tuples in the data example, and furthermore, preferences

over these elements are available. We therefore extend PSL with prioritized disjunc-

tions, which provide a tractable framework for handling such existential, weighted

constraints, and thereby allow us to define key features of the mapping selection

problem. To use data and metadata as input, we use the extended PSL language as

24

a common representation for both. The data evidence comprises a data example and

the metadata evidence comprises a set of st tgds. By having a common language

for reasoning, we can easily integrate data and metadata evidence by, for example,

reasoning about whether a data example satisfies metadata evidence such as part of

a mapping.

We refer to our solution as Collective Mapping Discovery (CMD), because it

reasons collectively both about multiple forms of evidence and over the interactions

between different st tgds. CMD advances the state-of-the-art in schema mapping by

using more kinds of evidence and integrating them at a much finer-grained level of

detail than attempted in the past. In addition, the declarative nature of CMD makes

it easy to extend in a variety of ways.

We perform an extensive empirical validation of our approach. We use the

integration benchmark iBench [43] to test CMD on a wide variety and large number

of mapping scenarios. We use IQ-Meter [61], a multi-criterion evaluation measure,

to confirm the quality of CMD’s output. We compare CMD with a baseline approach

which uses only metadata. We show that the accuracy of CMD is more than 33%

above that of a metadata-only approach already for small data examples. We illustrate

the robustness of our approach by demonstrating that we are able to find accurate

mappings even if a quarter of the data is dirty. We demonstrate that the approach

scales well with the size of both metadata and data, and effectively selects small,

correct mappings even if dozens of competing candidate mappings are available for

each tuple. In addition, we show that CMD is effective on several problems with real

data.

25

Section 3.2 illustrates the key challenges with an example. Section 3.3 introduces

the selection problem for st tgds without existentially quantified variables, and

Section 3.4 extends this to st tgds. Section 3.5 introduces our solution using PSL

and our extension of PSL with prioritized disjunctions. We discuss experiments in

Section 3.6 and related work in Section 3.7.

3.2 Motivating Example

Figure 3.1a shows a pair of source and target schemas, foreign keys (solid lines)

and attribute correspondences (or matches, dotted lines), which we will use as a

running example. The metadata is ambiguous, as it is not clear from the schemas

whether task.supervisor in the target schema is associated with proj.mgr or proj.lead in

the source schema. A data example in the form of an instance of the source schema

(I) and an instance of the target schema (J) can help resolve such ambiguity. The

data example in Figure 3.1b, where org and leader are empty, suggests that supervisors

in task tuples correspond to mgr in the source, not lead. Interactive schema mapping

refinement techniques use data to select among a set of mappings. They take as input

a set of candidate mappings and use data to interactively guide a user in selecting a

subset that is correct [26, 27], or in correcting a set of data examples so that a “best

fitting” mapping exists [29]. The interactive nature of these solutions permits a user

to decide what mapping is best given metadata and data evidence. In contrast, we

do this reasoning automatically to find the best fitting mapping.

We consider the problem of combining metadata evidence (in the form of a

26

proj

topic

mgr

lead

emp

id

name

company

task

title

supervisor

oid

leader

name

org

oid

name

c1

c3

c2

c4

c5

(a) Source (left) and target schema (right) with corresponding attributes (dotted lines), a
spurious correspondence (dashed), and foreign key constraints (solid lines).

proj

topic mgr lead

BigData 1 2
ML 1 1

emp

id name company

1 Alice SAP
2 Bob IBM
3 Pat MS

task

title supervisor oid

BigData Alice 111
ML Alice 111

(b) Initial data example.

leader

name

Alice
Bob

org

oid name

111 SAP
222 MS

Pseudo

(c) Additional data.

θ0 :proj(t,m,l)∧emp(m,n,c) → ∃ o. task(t,n,o)

θ1 :proj(t,m,l)∧emp(l,n,c) → ∃ o. task(t,n,o)

θ2 :proj(t,m,l)∧emp(m,n,c)→ ∃ o. task(t,n,o)∧org(o,c)

θ3 :proj(t,m,l)∧emp(l,n,c) → ∃ o. task(t,n,o)∧org(o,c)

θ4 : emp(i,n,c) → ∃ o. org(o,c)

θ5 : emp(i,n,c) →leader(n)

θ6 :proj(t,m,l)∧emp(l,n,c) →leader(n)

θ7 :proj(t,m,l)∧emp(m,n,c) → ∃ o. task(t,n,o)∧org(o,n)

θ8 :proj(t,m,l)∧emp(l,n,c) → ∃ o. task(t,n,o)∧org(o,n)

(d) Candidate st tgds. Variables in bold denote exchanged attributes.

Figure 3.1: Motivating example; see Section 3.2 for details.

set of candidate mappings) and potentially imperfect data evidence (in the form

of a data example) to select an optimal mapping. More specifically, our candidate

27

mappings are source-to-target tuple-generating-dependencies (st tgds).1 These are

simple first-order logic statements relating a source query and a target query. The

candidates may come from a mapping design tool like Clio [62] or ++Spicy [23], or

may have been mined from a query log [55].

A key challenge in mapping selection is that the number of possible selections is

exponential in the number of candidate st tgds. Consider the candidates in Figure 3.1d,

focusing first on our earlier data example (Figure 3.1b) and candidates θ0 and θ1.

Notice that the data example is valid for θ0 (meaning (I,J) satisfy the mapping θ0)

but is not valid with respect to θ1, as there is no tuple (BigData, Bob, -) (with some

oid). We call such a missing tuple an error. Errors might be caused by dirty data.

The data example contains a tuple (BigData, Alice, 111) and this tuple may be dirty

(the value Alice is wrong and should be Bob) causing this error. If the data is clean,

this error tuple would suggest that we should prefer θ0 over θ1.

Note that θ0 and θ1 both ignore the correspondence between emp.company and

org.name. Mapping θ2 also explains the data (intuitively), but it explains more, as it

creates org tuples for which we have no data evidence. If we change our data example

to include the org tuples in Figure 3.1c, the data suggests that we should select both

θ2 and θ4. The mapping θ2 alone maps the inner join of the source data to the target.

Mappings θ2 and θ4 together map the right outer-join.

If we also add the leader tuples in Figure 3.1c to our data example, θ5 explains

all leader tuples. However, θ5 is not valid with respect to the data, as it also suggests

1The term mapping is often used both for a single st tgd and for a set of st tgds. Here, we use
candidate mapping or candidate to refer to a single st tgd; while mapping generally refers to a set
of st tgds.

28

that tuple (Pat) should appear in leader, but it does not and thus is an error for θ5.

The mapping θ6 addresses this by joining emp with proj via proj.lead; it both explains

and is valid with respect to the leader example data. Generally, we seek sets of st tgds

that collectively explain the data and are valid with respect to the data. On that

basis, the set {θ2, θ4, θ6} is a good choice.

Note that our candidates θ0 - θ6 use only correspondences c1-c4 in Figure 3.1a.

If a matcher incorrectly suggested correspondence c5, then we may get additional

candidate mappings like θ7 or θ8 that use this correspondence. However, in this

example (and in many real examples) a small data example can eliminate such

candidates, as they are likely not to explain the data or be valid.

This example illustrates many challenges in schema mapping discovery from

metadata and data.

Dirty or Ambiguous Metadata. Our goal is to find a mapping that fits the

metadata. In practice, the number of such mappings can be huge, due to metadata

ambiguities such as 1) multiple foreign key paths between relations; 2) the choice

between inner and outer joins; 3) the presence of bad correspondences. Dirty metadata

(for example, incorrect foreign keys) exacerbates this problem. Data can help in

selecting correct mappings. We tackle the problem of combining metadata and data

evidence to effectively and efficiently select a mapping, even if the data does not fully

disambiguate all metadata. In our example, we may have some target tuples that are

consistent with a join on mgr (θ0) and some that are consistent with a join on lead

(θ1); e.g., (ML, Alice, 111) is consistent with both θ0 and θ1. Our solution will weigh

29

the evidence to find a mapping that is most consistent with the evidence as a whole.

Unexplained Data. We are given example source (I) and target (J) data and our

goal is to find a mapping that explains the target data. In practice, we rarely have

perfect data examples that only contain target data explained by I. Indeed, the open

nature of st tgds permits the target to have independent data that was not derived

from the source. For example, suppose there is a target org (333, BM), and the value

BM does not appear in the source. This data may be correct data (the target has data

about the Bank of Montreal and the source does not) or it may be dirty data (perhaps

the value BM was mistyped and should be IBM). Even if no candidate explains these

tuples, we still want to find the best mapping. So our optimization should not fail

in the presence of such unexplained tuples. Furthermore, if there is a mapping that

explains all data, we may not choose it if it is not valid with respect to the data

example, or if it is considerably more complex than one that fails to explain a few

tuples in J .

Data Errors. Our goal is to find a mapping that is valid for the given data example

(I, J). Again, in practice, it is unrealistic to assume a data example that is perfect in

this way. Hence, we provide a solution that is tolerant of some errors (for example,

some dirty source data or some missing target data), but seeks to find a set of st tgds

for which the errors are minimized.

Unknown Values. Our goal is to find a mapping that may use existential quantifi-

cation where appropriate. This is challenging, as such mappings introduce unknown

or null values in the target. For instance, st tgds θ0 and θ1 both only cover part

30

of target tuple (ML, Alice, 111), as they cannot “guess” the value of the oid. Still,

we need to compare them to st tgds that may have no existentials and therefore

cover entire target tuples. This problem is made more challenging as existentials play

a critical role in identifier (or value) invention where the same existential value is

used in multiple tuples to connect data together. It is important that mappings that

correctly connect the data be considered better than mappings that use different

existentials. For example, we prefer θ2 over the combination of θ0 and θ4, since the

data supports the connection θ2 makes between task and org in the target. This is an

important aspect of the problem that has not been considered by earlier work on

view (also known as full st tgd) selection [19].

To address these challenges, we present a fine-grained, scalable solution that

gives an st tgd credit for each tuple it can explain or partially explain (in the case of

existential mappings) and aggregates this information to find a set of st tgds that

best explain the data. A set of st tgds is penalized for each error tuple (the more

errors the less valid the mapping). Hence, we find the set of candidate st tgds that

collectively minimize the number of errors and number of unexplained tuples, even

under contradictory or incomplete evidence.

3.3 Mappings with Full Outputs

We first define mapping selection for full st tgds [54], that is, st tgds without

existentially quantified variables, and extend our definitions to arbitrary st tgds in

Section 3.4.

31

3.3.1 Mapping Selection Inputs

We define our mapping selection problem with respect to a source schema

S and a target schema T, where a schema is a set of relations. The data evidence

consists of a data example, that is, a pair of instances I of S and J of T. The

metadata evidence consists of a (finite) set C of candidate st tgds. An st tgd is a

logical formula ∀x φ(x)→ ∃y ψ(x,y), where φ is a conjunction of atoms over the

relations of S and ψ over those of T [54]. Here, x and y are sets of logical variables.

If y is empty (no existentials) then the st tgd is a full st tgd [63].

Candidate st tgds can be generated using existing schema mapping systems.

Such systems, both industrial systems and research systems, generate sets of candidate

mappings and generally let users select or refine these mappings using a variety of

visual interfaces. To generate candidate mappings, research systems like Clio [62],

HepTox [22], and ++Spicy [23] use schema constraints, while U-Map [55] uses query

logs. By building on these existing approaches, we focus on candidate mappings that

are plausible according to the metadata and the methodology used in candidate

generation rather than all possible mappings.

3.3.2 Characterizing the Input Quality

Given metadata evidence (S, T, C), our goal is to find a subset M⊆ C that

best “fits” the data example (I, J). Let C be the set of all constants in I ∪ J , and N

a set of labeled nulls (disjoint from C). Following Fagin et al. [63], a homomorphism

between instances h : K1 → K2 is a mapping from C ∪ N to C ∪ N such that:

32

(1) for every c ∈ C, h(c) = c, and (2) for every R(t) of K1, R(h(t)) is in K2. A

homomorphism h : φ(x) → K is a mapping from the variables x to C ∪ N such

that for every R(x1, . . . , xn) in φ(x), R(h(x1), . . . , h(xn)) is in K. Let M be a set

of st tgds, then an instance K of T is called a solution for I, if (I,K) |= M. An

instance K is a universal solution if it is a solution and if for every other solution

K ′, there is a homomorphism h : K → K ′. Fagin et al. [63] showed how a universal

solution can be computed efficiently using the chase over M (and such a universal

solution is typically called a canonical universal solution).

Gottlob and Senellart [32] call a mapping M valid for (I, J) if J is a solution

for I under M. Suppose (I, J) 6|=M. Intuitively, this means J misses tuples that

must be in every solution for I. We call such tuples errors. A ground tuple t (that is,

a tuple containing only constants) is a full error if it is not in J but in every J ′ such

that (I, J ∪ J ′) |=M. If K is a universal solution for M and I, then t is a full error

iff t ∈ K and t 6∈ J . If (I, J) is valid with respect to M then there are no full errors.

Example 1: The candidate θ5 in Figure 3.1d is not valid with respect to the data

example in Figure 3.1c. However, if we add the tuple t′ = leader(Pat) to J then θ5 is

valid for (I, J ∪ t′). Thus, (Pat) is a full error, and the only full error.

Ideally, all tuples in J should be explained, that is, be a result of the selected

candidate mappings applied to I. Again following Gottlob and Senellart [32], a

mapping M⊆ C and source instance I explain a ground fact t, if t ∈ K for every K

such that (I,K) |=M. A mapping M and I fully explain J if they explain every

tuple in J . A ground tuple t is explained by M and I iff t is in a universal solution

33

forM and I, else t is an unexplained tuple. As with validity, we would like to permit

exceptions, that is, a few tuples in J that are unexplained, meaning J is not fully

explained.

Example 2: Consider again θ5 of Figure 3.1d. For the instance I of emp shown in

(b), θ5 fully explains J (the two leader tuples) shown in (c). However, if leader also

contained leader(Joe), then θ5 would still be valid, but leader(Joe) is an unexplained

tuple.

3.3.3 Collective Selection over Full Mappings

We now define an optimization problem for finding a mapping M ⊆ C that

best fits our imperfect evidence by jointly minimizing:

1. the number of unexplained tuples;

2. the number of error tuples; and

3. the size of M.

The first two are formalized through functions that, for a candidate set M, compare

the given target instance J to the solution forM and I, i.e., check how many tuples

in J are unexplained (collectively) by M, and how many tuples resulting from data

exchange with each st tgd in M are not in J . Figure 3.2 illustrates these different

kinds of tuples.

Let KC (respectively, KM and Kθ) be a canonical universal solution for I and

C (respectively, M and θ). We consider full st tgds so canonical universal solutions

34

are unique. We define createsfull(θ, t) as follows:

createsfull(θ, t) =


1 t ∈ Kθ

0 otherwise

We then define errorfull(M, t) for a tuple t ∈ KC − J (Figure 3.2 left side) to be the

number of st tgds in M for which t is an error.

errorfull(M, t) =
∑
θ∈M

(createsfull(θ, t)) (3.1)

Correspondingly, for the tuples in J (Figure 3.2 right side), we define the function

explainsfull(M, t), which checks whether such a tuple is explained by M.

explainsfull(M, t) = 1 if t ∈ J ∩KM and 0 otherwise (3.2)

We call tuples in J −KC that cannot be explained by any st tgd in C unexplainable

tuples (Figure 3.2(g)).

Finally, we define the size function size(M) to be the sum of the number of

atoms in each θ ∈M.

size(M) =
∑
θ∈M

(number atoms in θ) (3.3)

This choice of complexity term provides a guard against including st tgds with

insufficient support from the evidence. Taking these three criteria together, we

35

formally define the mapping selection problem for full st tgds as follows.

Given schemas S, T, a data example (I, J), and a set C of candidate full st tgds

Find arg min
M⊆C

(
∑
t∈J

[1− explainsfull(M, t)]

+
∑

t∈KC−J

[errorfull(M, t)]

+ size(M)) (3.4)

As we show in Section 3.3.4, this problem is NP-hard.

Notice the similarity of the mapping selection problem with the formal framework

for schema mapping discovery of Gottlob and Senellart [32]. They propose a way of

repairing a mapping to (1) explain unexplained tuples and to (2) make the mapping

valid for an invalid data example (in other words, to account for error tuples). They

define an optimal mapping as one that minimizes a cost function containing three

parts: the size of the mapping; the number of the repairs needed to account for

unexplained tuples; and the number of repairs needed to account for error tuples. In

contrast, we are counting error and unexplained tuples rather than using algebraic

operators to repair the mapping. We weight each of these three components equally in

our problem definition. However, our formalization permits each part to be weighted

differently if there is a priori knowledge of the scenarios.

In terms of Figure 3.2, our goal is to find an M that jointly minimizes the

number of unexplained but explainable tuples (those in (f)), the number of errors

(those in (c)) and the size ofM. Note that everyM⊆ C receives a constant penalty

36

KC − J

errorfull(M, t) = 0
(t /∈ KM)

errorfull(M, t) > 0
(KM − J)

(a)

(c)

Eq. (3.1)

J

explainsfull(M, t) = 1
(KM ∩ J)

explainsfull(M, t) = 0
(KC ∩ J −KM)

explainsfull(M, t) = 0
(unexplainable: J −KC)

(d)

(f)

(g)

Eq. (3.2)

Figure 3.2: Illustration of functions errorfull(·) and explainsfull(·).

for unexplainable tuples (the tuples in J − KC (g)). These tuples can easily be

removed for efficiency before running the optimization.

Note a subtle but important difference in how we treat errors and unexplained

tuples. The definition of errorfull(·) considers each candidate in M individually, and

sums the number of errors made by each. That is, if two st tgds θi ∈M and θj ∈M

both make an error on t, that error is counted twice. In other words, we seek a

mapping where as few as possible of the st tgds in the mapping make an error on t.

In contrast, we do not require each st tgd in the mapping to explain all tuples in

J , but consider it sufficient if at least one θ ∈M explains a tuple. Thus, we cannot

treat each θ individually, but we must reason about the set M as a whole.

3.3.4 Mapping Selection is NP-hard

The errorfull(·) and size(·) terms of (3.4) are modular and act as constraints on

the supermodular explainsfull(·) term. Such minimization tasks are often NP-hard,

and we provide proof that this is also the case for our selection problem.

37

Theorem 1. The mapping selection problem for full st tgds as defined in (3.4) is

NP-hard.

Proof. We use a reduction from SET COVER, which is well known to be NP-complete,

and is defined as follows:

Given a finite set U , a finite collection R = {Ri | Ri ⊆ U, 1 ≤ i ≤ k} and a natural

number n ≤ k, is there a set R′ ⊆ R consisting of at most n sets Ri such that⋃
Ri∈R′ Ri = U?

We first consider the decision variant of mapping selection, which is defined as

follows:

Given schemas S, T, a data example (I, J), a set C of candidate full st tgds, and a

natural number m, is there a selection M⊆ C with F (M) ≤ m?

where F (M) is the function minimized in (3.4), i.e.,

F (M) =
∑
t∈J

[1− explainsfull(M, t)]

+
∑

t∈KC−J

[errorfull(M, t)] + size(M)

We construct a mapping selection decision instance from a SET COVER

instance as follows. We setm = 2n, introduce an auxiliary domain D = {1, . . . ,m+1},

38

and define the parts of the instance as follows:

S = {Ri/2 | Ri ∈ R}

T = {U/2}

C = {Ri(X, Y)→ U(X, Y) | Ri ∈ R}

J = {U(x, y) | (x, y) ∈ U ×D}

I =
⋃
Ri∈R

{Ri(x, y) | (x, y) ∈ Ri ×D}

We use notation R/k to indicate relation R has arity k. It is easily verified that this

construction is polynomial in the size of the SET COVER instance. It is easily verified

that this construction is polynomial in the size of the SET COVER instance. We

next show that the answers to SET COVER and the constructed mapping selection

problem coincide.

For each Ri, the candidate st tgd θi = Ri(X, Y)→ U(X, Y) has size two, makes

no errors (as Ri ⊆ U), and for each x ∈ Ri explains the tuples U(x, 1), . . . , U(x,m+1).

We thus have

F (M) =
∑
t∈J

[1− explainsfull(M, t)] + 2 · |M|

= (m+ 1) ·

(
|U | − |

⋃
θi∈M

Ri|

)
+ 2 · |M|

A mappingM⊆ C with F (M) ≤ m = 2n thus exists if and only if |
⋃
θi∈MRi| = |U |

and |M| ≤ n, which is exactly the case where M encodes a covering selection with

39

at most n sets. Furthermore, if such mappings exist, the optimal mapping according

to (3.4) is one of them, and a polynomial time solution for mapping selection with

full st tgds can thus be used to find a candidate solution that can be verified or

rejected in polynomial time to answer SET COVER.

3.4 Mappings with Partial Outputs

We now extend our approach to the complete language of st tgds with existen-

tially quantified variables, showing how we assign credit for the shared null values

such st tgds introduce. We begin by generalizing our two functions errorfull(·) and

explainsfull(·) to model the partial evidence provided by st tgds with existentials. We

then revisit our optimization problem using the new, more general functions.

3.4.1 Incomplete Errors

In contrast to errorfull(·), an error function for arbitrary st tgds has to take

into account incomplete tuples, that is, tuples with nulls created by a mapping with

existentials.

Example 3: The candidate θ1 in Figure 3.1d is not valid with respect to the data

example in Figure 3.1b. However, if we add the tuple t1 =task(BigData, Bob, 123) to

J then θ1 is valid for (I, J ∪ t1). But this specific tuple is not in every J ′ ⊇ J for

which θ1 is valid. Hence, t1 is not a full error. However, a tuple k1 =task(BigData, Bob,

N0) (where N0 is a labeled null representing any constant) up to the renaming of

the null must be in every such J ′. Furthermore, such a tuple is in Kθ1 , the canonical

40

universal solution for θ1 over I.

Intuitively, for this example, a tuple in KC should be an error if there is no

homomorphism from that tuple to J . This is sufficient to consider k1 to be an error

for the original J of Figure 3.1b, but not an error if we add t1 to J . However, once

an existentially quantified variable is shared between several atoms, we need a more

general definition.

Example 4: The candidate θ3 in Figure 3.1d is not valid with respect to the extended

data example in Figure 3.1b-(c). For it to be valid, J would have to contain two

tuples k1 =task(BigData, Bob, N0) and k2 =org(N0, IBM) with a shared labeled null

enabling the join on proj.lead. Suppose we add t1 =task(BigData, Bob, 123) from above

to J and t2 =org(333, IBM) to J . If we just required each tuple in Kθ3 to have a

homomorphism to some tuple in J , then neither would be considered an error, as

there are homomorphisms from k1 to t1 and from k2 to t2. However, the instance

J ∪ t1 ∪ t2 does not correctly connect Bob to IBM. Hence, we would like to consider

both tuples to be errors.

To address these issues, our error(·) function is based on homomorphisms from

all tuples in KC resulting from a single chase step. If t is in the result of a chase step

over θ = ∀xφ(x)→ ∃ y ψ(x, y), we call all (target) tuples resulting from this chase

step (including t) the context of t under θ or contextθ(t).
2 We define the following

2For this to be well-defined, we require that each candidate st tgd θ is normalized into a set of
smaller logically equivalent st tgds where only atoms that share existentials are retained in a single
st tgd [54].

41

helper function:

creates(θ, t) =



0 t ∈ KC − J, t 6∈ Kθ

0 t ∈ Kθ − J, ∃h : contextθ(t)→ J

1 t ∈ Kθ − J and no such h exists

(3.5)

Now for M⊆ C we define the error(·) function as follows.

error(M, t) =
∑
θ∈M

creates(θ, t) (3.6)

In Figure 3.3, which extends Figure 3.2 for selection over st tgds, error(·) divides

KC − J into three parts for givenM: the tuples in (a) are created by no st tgd inM,

those in (b) do not count as errors because homomorphisms exist from them to J ,

and the remaining st tgds in (c) count as errors.

Recall that in the canonical universal instance KC nulls are only shared between

tuples generated by a single chase step. So each incomplete tuple t ∈ KC (containing

one or more nulls) is associated with a single chase step and st tgd θ. Hence, for

such a tuple t, Equation (3.6) evaluates to 1 if there is no homomorphism from

the contextθ(t) to J , i.e., t is an error, and 0 otherwise. For a ground tuple tg

(with no nulls), if there is no homomorphism to J (meaning the tuple is not in J),

Equation (3.6) counts how many candidates make this error.

42

KC − J

error(M, t) = 0
(t /∈ KM)

error(M, t) = 0

error(M, t) > 0

(a)

(b)

(c)

KM − J

Eq. (3.6)

J

explains(M, t) = 1
(KM ∩ J)

explains(M, t)
∈ (0, 1]

explains(M, t) = 0

(d)

(e)

(f)

Eq. (3.8)

Figure 3.3: Illustration of explains(·) and error(·) for selecting st tgds.

3.4.2 Partially Explained Tuples

We now extend explaining to arbitrary st tgds. More precisely, we use tuples

with labeled nulls coming from st tgds with existentially quantified variables to

partially explain tuples in the target instance J through homomorphisms.

Example 5: Consider θ1 in Figure 3.1d and tuple t =task(BigData, Alice, 111) in

Figure 3.1b. θ1 partially explains t via a homomorphism from k = task(BigData, Alice,

N1) to t. In the absence of candidates that fully explain t, we might include θ1 in

our selection.

To define partial explanation, we treat nulls that play a structural role in

connecting information like constants. For a tuple t ∈ J and a candidate θ, we

call k ∈ Kθ a possible explanation for t under θ if there is a homomorphism h :

contextθ(k) → J with h(k) = t. Let E(t, θ) be the set of all possible explanations

for t under θ. We call a labeled null unique if it appears exactly once in contextθ(k).

For k ∈ E(t, θ), we define null(k) to be the number of unique nulls in k divided by

the arity of k. So null(k) = 0 if k contains only constants or labeled nulls used at

43

least twice. Otherwise, null(k) > 0. We say that k explains t to degree 1− null(k),

and define the auxiliary function covers(θ, t) for t ∈ J based on the maximal degree

to which t is explained by any tuple:

covers(θ, t) =


maxk∈E(t,θ)(1− null(k)) E(t, θ) 6= ∅

0 E(t, θ) = ∅

(3.7)

A mapping M⊆ C explains a tuple t as well as the best st tgd θ ∈M does.

explains(M, t) = max
θ∈M

covers(θ, t) (3.8)

Equation (3.8) can be used to divide J into three parts (Figure 3.3) for a

given M: those tuples fully (d) or partially (e) explained through tuples in (b), and

those that cannot be explained by M at all (f).

Using the same size function as for full st tgds, we define the general mapping

selection problem as follows:

Given schemas S, T, a data example (I, J), and a set C of candidate st tgds

Find arg min
M⊆C

∑
t∈J

[(1− explains(M, t))]

+
∑

t∈KC−J

[error(M, t)]

+ size(M) (3.9)

The only difference with the case of full st tgds is that we now use notions of error

44

and explaining suitable for st tgds with existentially quantified variables. In terms of

Figure 3.3, we seek a small M that minimizes the error in (c) and maximizes the

degree to which tuples in (d) and (e) are explained.

If all candidates are full, this optimization coincides with the one in (3.4), and

so is NP-hard as well (see Section 3.3.4). In Section 3.5, we provide an efficient

approximation algorithm for finding a high quality solution M.

3.4.3 Example of Selection over ST TGDs

We extend the running example to illustrate objective (3.9). We use a reduced

candidate set C ′ = {θ1, θ3} (Figure 3.1d) and the data in Figure 3.1b-(c), but omit

the leader relation. A universal solution Kθ1 for I contains the task tuples (BigData,

Bob, Null1) and (ML, Alice, Null2), while a solution Kθ3 contains the task tuples (BigData,

Bob, Null3) and (ML, Alice, Null4) and the org tuples (Null3, IBM) and (Null4, SAP).

For θ1, creates(·) is 1 for tuple task(BigData, Bob, Null1), and 0 for all other

tuples, and covers(·) is 2/3 for task(ML, Alice, 111) and 0 otherwise. This is because

task(ML, Alice, Null2) partially explains the latter via a homomorphism mapping Null2

to 111. Similarly, for θ3, creates(·) is 1 for task(BigData, Bob, Null3) and org(Null3,IBM),

but 0 for task(ML, Alice, Null4) and org(Null4,SAP), which partially explain task(ML,

Alice, 111) and org(111, SAP) to degree 3/3 and 2/2 respectively, via a homomorphism

mapping Null4 to 111, with corresponding values for covers(·). The different subsets

of candidate st tgds thus obtain the following values for the individual parts and the

total of objective function (3.9).

45

M
∑

1− explains
∑

error size (3.9)

{} 4 0 0 4

{θ1} 31/3 1 3 71/3

{θ3} 2 2 4 8

{θ1, θ3} 2 3 7 12

The minimal value for the objective is that of the empty mapping, that is,

the complexity term fulfills its role of guarding against overfitting on too little data

here. But we also see that {θ1} is preferred over {θ3}, which in turn is preferred over

{θ1, θ3}. The reason is that while θ3 covers more tuples than θ1, it also produces

more errors and is larger. If we add data for at least five more projects X of the same

kind as the ML one, i.e., pairs of tuples proj(X,N,1) and task(X,Alice,111), the preferred

mapping is {θ3}, as the empty mapping cannot explain the new target tuples, θ1

explains each to degree 2/3, and θ3 fully explains them (while no mapping introduces

additional errors).

3.5 Probabilistic Mapping Selection

We now introduce Collective Mapping Discovery (CMD), our efficient solution

for schema mapping selection, using techniques from the field of probabilistic modeling

[44] and statistical relational learning (SRL) [64]. Specifically, CMD encodes the

mapping selection objective (Equation (3.9)) as a program in probabilistic soft logic

(PSL) [6], and uses PSL inference to instantiate and solve the optimization problem.

Inference in PSL is highly scalable and efficient, as it avoids the combinatorial

46

explosion inherent to relational domains (the relations error(·) and explains(·)) by

solving a convex optimization problem, while providing theoretical guarantees on

solution quality with respect to the combinatorial optimum.

3.5.1 Probabilistic Soft Logic

PSL [6] is a language for defining collective optimization problems in relational

domains. It comes with an efficient and scalable solver for these problems. The key

underlying idea is to (1) model desirable properties of the solution as first-order

rules, (2) allow random variables to take on soft values between 0 and 1, rather than

Boolean values 0 or 1, and (3) let the system find a truth value assignment to all

ground atoms in the domain that minimizes the sum of the distance to satisfaction

of all ground instances of the rules.

A PSL program is a set of weighted rules:

w : b1(~X) ∧ . . . ∧ bn(~X)→ h1(~X) ∨ . . . ∨ hm(~X)

where ~X is a set of universally-quantified variables, the bi(~X) and hj(~X) are atoms

over (subsets of) the variables in ~X, and w is a non-negative weight corresponding

to the importance of satisfying the groundings of the rule. In first-order logic, a

grounding of such a rule is satisfied if its body evaluates to false (0) or its head

evaluates to true (1). PSL generalizes this into a rule’s distance to satisfaction, which

is defined as the difference of the truth values of the body and the head (set to zero

if negative), and uses soft truth values from the interval [0, 1] instead of Boolean

47

ones. It relaxes the logical connectives using the Lukasiewicz t-norm and its co-norm,

which is exact at the extremes, provides a consistent mapping for values in-between,

and results in a convex optimization problem. Given an interpretation I of all ground

atoms constructed from the predicates and constants in the program, the truth values

of formulas are defined as follows.

I(`1 ∧ `2) = max{0, I(`1) + I(`2)− 1}

I(`1 ∨ `2) = min{I(`1) + I(`2), 1}

I(¬l1) = 1− I(`1)

The distance to satisfaction of a ground rule r = body→ head is defined as follows:

dr(I) = max{0, I(body)− I(head)}

Let R be the set of all ground rules obtained by grounding the program with respect

to the given constants. The probability density function f over I is:

f(I) =
1

Z
exp[−

∑
r∈R

wr(dr(I))]

where wr is the weight of rule r and Z is a normalization constant. PSL inference

finds arg maxI f(I), that is, the interpretation I that minimizes the sum of the

distances to satisfaction of all ground rules, each multiplied by the corresponding

rule weight. Typically, truth values for some of the ground atoms are provided as

48

evidence, that is, they have observed fixed truth values, and we only need to infer the

optimal interpretation of the remaining atoms. PSL finds an exact optimum using

soft truth values, which is then converted to a high quality discrete solution [6].

3.5.2 Mapping Selection in PSL

We now encode the mapping selection problem as a PSL program. We introduce

three observed predicates that encode tuple membership in the target instance J

and the covers(·) and creates(·) functions defined in Section 3.4, respectively, and

one predicate in whose truth values denote membership of candidate st tgds in the

selection, and thus need to be inferred by PSL. A given data example (I, J) and set

of candidate st tgds C will introduce a constant for every tuple in KC ∪ J and for

every candidate in C. We use the logical variable F for st tgds, and T for tuples. The

CMD program consists of the following rules:

size(F) : in(F)→ ⊥ (3.10)

1 : J(T)→ ∃F. covers(F, T) ∧ in(F) (3.11)

1 : in(F) ∧ creates(F, T)→ J(T) (3.12)

Rule (3.10) implements the size penalty by stating that we prefer not to include an

st tgd in the selected set: its weighted distance to satisfaction is size(f)·(I(in(f))−0),

and thus minimal if in(f) is false. Rule (3.11) states that if a tuple is in J , there

should be an st tgd in the set that covers that tuple, thus implementing the explains(·)

term. Note that the existential quantifier is not supported by PSL; we describe how

49

we extend PSL and implement this efficiently in the next subsection. Rule (3.12)

states that if an st tgd creates a tuple, that tuple should be in J , or conversely, if a

tuple is not in J (and thus in KC − J), no st tgd in the selected set should create

it. This implements the error(·) penalty. The advantage of this approach is that it

reasons about the interactions between tuples and st tgds in a fine-grained manner.

In Section 3.5.3 we show the rules combine to implement the mapping selection

objective (3.9).

3.5.3 Objective Equivalence

Recall from Equation (3.9) that our goal is to minimize

∑
t∈J

[1−max
θ∈M

covers(θ, t)] (3.13)

+
∑

t∈KC−J

[∑
θ∈M

creates(θ, t)

]
(3.14)

+
∑
θ∈M

size(θ) (3.15)

We now demonstrate that, for Boolean values of the in(θ) atoms, this is exactly the

objective used by our PSL program.

We get a grounding of Rule (3.10) for every st tgd θ ∈ C:

size(θ) : in(θ)→ ⊥

For θ ∈M, this rule has distance to satisfaction 1, and 0 otherwise. Thus, each θ ∈M

50

adds size(θ) to PSL’s distance to satisfaction, so those rules together correspond

to (3.15). The error Rule (3.12) is trivially satisfied for tuples in J (and any st tgd).

Thus, we only need to consider the groundings for t ∈ KC − J and θ ∈ C:

1 : in(θ) ∧ creates(θ, t)→ ⊥

Such a ground rule has distance to satisfaction creates(θ, t)− 0 = creates(θ, t). Recall

from Equation (3.5) that this can only be non-zero for t ∈ Kθ−J . The PSL sum thus

adds 1 · creates(θ, t) for every θ ∈M and t ∈ Kθ−J , which equals (3.14). Rule (3.11)

is trivially satisfied for t 6∈ J , and for every t ∈ J results in a partially ground rule

1 : > → ∃F. covers(F, t) ∧ in(F)

To complete the grounding, we apply PSL’s prioritized disjunction rules (Chapter 4).

Recall (cf. Section 3.4.2) that the covers(·) function takes on values according to the

null function, which is the number of unique nulls divided by the arity of a tuple.

Therefore, we know there are values {0/k, . . . , k/k} for covers(F, t) where k is the arity

of the tuple t. Thus we get for each t ∈ J a set of k ground rules, the ith of which is

1/k : > →
∨

θ∈C,covers(θ,t)≥i/k

in(θ)

We know that for every t ∈ J , the associated groundings collectively contribute a

51

distance to satisfaction of

1− 1 ·max
θ∈M

covers(θ, t)

due to prioritized disjunction rules rewriting, which equals (3.13). Thus, the CMD

program optimizes Equation (3.9).

3.5.4 Collective Mapping Discovery

To summarize, given data example (I, J) and candidates C, CMD does the

following two steps.

1. Compute truth values of evidence from (I, J) and C

2. Perform PSL inference on the CMD program and evidence and return the

corresponding mapping

Step 1 (data preparation) performs data exchange to determine the tuples in KC,

and computes the truth values of the |C| × |KC − J | many creates(·) atoms (based on

Equation (3.5)) and of the |C| × |J | many covers(·) atoms (based on Equation (3.7)).

While finding a discrete solution to the optimization problem defined by the CMD

program and evidence is NP-hard, Step 2 (CMD optimization) provides an extremely

scalable approximate solution with theoretical quality guarantees.

52

3.6 Evaluation

We experimentally evaluate CMD on a variety of scenarios, both synthetic and

real world, showing that it robustly handles ambiguous and dirty metadata as well as

dirty tuples in the data example, and scales well with the size of both metadata and

data. We ran our experiments on an Intel Xeon with 24 x 2.67GHz CPU and 128GB

RAM. Our implementation of CMD and instructions for reproducing all experiments

can be found online.3

3.6.1 Scenario Generation

Each of our scenarios consists of a data example (I, J) for a pair of schemas S

and T and a set C of candidate st tgds, which form the input for CMD, and a gold

standard mappingMG used to assess the quality of the solution. Scenario generation

uses the following steps:

1. We generate schemas S and T, correspondences, the initial data example (I, JG),

and a gold standard mapping MG that is valid and fully explaining for (I, JG)

using the metadata generator iBench [43] and data generator ToxGene [65].

2. To create dirty metadata, we generate additional foreign key constraints and

correspondences.

3. We use the implementation of the Clio [21] algorithm provided by ++Spicy [23]

to generate the set of candidates C from the schemas, foreign key constraints

3 http://projects.linqs.org/project/cmd

53

http://projects.linqs.org/project/cmd

and correspondences generated in previous steps, that is, based on metadata

only.

4. We generate J starting from JG, introducing errors and unexplained tuples

with respect to MG.

The rest of this subsection provides more details on this process, and Table 3.1 lists

the parameters controlling it. All experimental parameters are for scenario generation;

we set their defaults and ranges to produce realistic scenarios.

Step 1. iBench uses transformation primitives to create realistic complex mapping

scenarios. We chose a representative set of seven primitives4. One invocation of this

set creates a total of eight source and ten target relations, and seven st tgds in MG.

Three of those are full, the other four all contain existentials used once or twice and

include existentials that are shared between relations. To create larger scenarios, we

invoke the set πInvocations times. We set the size of I to πTuplesPerTable per relation.

Step 2. To obtain candidate st tgds with wrong join paths, we use iBench to add

randomly created foreign keys to πFKPerc% of the target relations. To obtain candidate

st tgds making wrong connections between the schemas, we introduce additional

correspondences as follows. We randomly select πCorresp% of the target relations. For

every selected target relation T , we randomly select a source relation S from those

of the iBench primitive invocations not involving T (so Clio [62] can generate MG

4CP copies a source relation to the target, changing its name. ADD copies a source relation and
adds attributes; DL does the same, but removes attributes instead; and ADL adds and removes
attributes to the same relation. The number that are added or removed are controlled by range
parameters, which we set to (2,4). ME copies two relations, after joining them, to form a target
relation. VP copies a source relation to form two, joined, target relations. VNM is the same as VP
but introduces an additional target relation to form a N-to-M relationship between the other target
relations.

54

Parameter Range Default
πInvocations 1 - 10 2
πTuplesPerTable 10 - 100 50
πFKPerc 0 - 10% 0%
πCorresp 0 - 100% 0%
πErrors 0 - 30% 0%
πExplainable 0 - 100% 0%

Table 3.1: Overview of main experimental parameters.

as part of C). For each attribute of T , we introduce a correspondence to a randomly

selected attribute of S.

Step 4. We restrict data instance modifications to errors and explainable tuples

with respect to MG, as unexplainable tuples can be removed prior to optimization

(cf. Section 3.3.3). In our scenarios, MG ⊆ C, and thus KG ⊆ KC. So each tuple in

KC is either generated by both MG and C−MG, only by MG (i.e., an error tuple

if deleted from J), or only by C−MG (i.e., a new explainable tuple if added to

J). As tuples in KC may have nulls, we take into account homomorphisms when

determining which of these cases applies to a given tuple. We randomly select a set

JNew containing πExplainable% of the potential new explainable tuples, and a set JErr

containing πErrors% of the potential error tuples, and set J = JG ∪ JNew \ JErr.

3.6.2 Evaluation of Solution Quality

We assess quality by comparing the mapping M⊆ C selected by CMD to (1)

the correct mapping MG produced by iBench and (2) the set C of all candidates

produced by Clio, which serves as our metadata-only baseline. Since Clio does not

use data, we are not confounding in our experiments how CMD uses data with

55

other proposed approaches. Directly comparing mappings is a hard problem, so

we follow the standard in the literature which is to compare the data exchange

solutions produced by the mappings [41]. We use the core data exchange algorithm

of ++Spicy [23] to obtain KM and KC. The gold standard instance KG for MG is

the original target instance J obtained from iBench in the first step. We compare

these instances using the IQ-Meter [61] quality measure. IQ-Meter measures the

ability of a mapping to generate correct tuples as well as correct relational structures

via labeled nulls or invented values, so it is appropriate as an evaluation measure for

our mappings which contain existentials. It calculates recall and precision of tuples

and recall and precision of joins. The distance between mappings is then defined as

one minus the harmonic mean of these four measures; for full details, see Mecca et

al [42]. We directly use the harmonic mean, which we call IQ-score(K1, K2) ∈ [0, 1],

where higher is better.

3.6.3 CMD Accuracy over Ambiguous Metadata

We begin by assessing the ability of CMD to handle ambiguous or dirty metadata

and still identify a good mapping from the set of candidates. We increase the number

of candidate st tgds by increasing the πFKPerc parameter from 0 to 10 percent and

the πCorresp parameter from 0 to 100 percent. We use five scenarios per parameter

setting, with an average of 800 source and 1000 target tuples. CMD always found

the correct mapping, i.e., it resolved all metadata ambiguities based on the data

example. In contrast, for Clio, which uses metadata only, the IQ-scores decreased

56

0 25 50 75 100
πCorresp

0
6

8
10

π
F

K
P

er
c

1 0.94 0.88 0.83 0.78

0.97 0.91 0.87 0.81 0.78

0.98 0.92 0.84 0.79 0.76

0.96 0.87 0.84 0.8 0.74

Figure 3.4: Mapping quality (IQ-Score) for the Clio baseline with ambiguous metadata.
CMD always reaches IQ-Score 1.

with more imprecise evidence, as shown in Figure 3.4.

3.6.4 CMD Accuracy over Dirty Data

Our second experiment investigates the effect of imperfect data on mapping

quality. We vary the percentage πErrors of added errors from 0 to 30% in steps of five,

and the percentage πExplainable of additional explainable tuples from 0 to 100% in

steps of 25. We set πCorresp = 100% to maximize the number of potential explainable

but undesired tuples. We consider five scenarios in each case, with 800 source tuples

and 1000 tuples in the initial target instance J . The numbers of additional tuples

obtained range from zero to 300 for errors and from zero to 1800 for explainable

tuples.

In Figure 3.5, we plot IQ-score as we vary πErrors and πExplainable . Generally,

as the number of errors increases, i.e., more correct tuples are missing from the

target instance, the quality of the mapping selected by CMD decreases, as there is

57

0 5 10 15 20 25 30
πErrors

0
25

50
75

10
0

π
E

x
pl

a
in

a
bl

e
1 0.97 0.59 0.36 0.089 0 0

1 0.87 0.54 0.18 0 0 0

0.91 0.76 0.62 0.49 0.29 0.084 0

0.78 0.71 0.71 0.66 0.66 0.54 0.4

0.78 0.73 0.71 0.7 0.7 0.69 0.66

Figure 3.5: Mapping quality (IQ-Score) for CMD with dirty data.

less incentive to include candidates that would correctly explain such tuples, which

results in lower IQ-score due to lower recall. Adding explainable tuples also generally

decreases the quality of the mapping, as they provide incentives to include additional

st tgds that, while explaining those dirty tuples, generally decrease precision and thus

IQ-score. However, in the presence of significant numbers of errors, explainable tuples

increase mapping quality. This happens whenever explainable tuples cause CMD to

select st tgds in C−MG that are similar to MG, e.g., omitting a target join on an

existential variable, and when selecting those st tgds is preferred over the empty

mapping. For scenarios with over one quarter additional explainable tuples, and

even in the presence of a few (less than 10%) errors, CMD routinely finds mappings

with high IQ-scores. This confirms that the fine-grained optimization score handles

increasing noise levels gracefully.

58

360 1080 1800 2520 3240

tuples in (I, J)

0

10

20

se
co

nd
s

(a)

36 72 108 144 180
total relations in S and T

0

50
se

co
nd

s

(b)

Figure 3.6: Optimization time of CMD w.r.t. (a) size of data example and (b) schema
sizes. The dashed line is for the Clio baseline.

3.6.5 Performance of CMD

The next set of experiments evaluates the performance of our approach along

several dimensions. We focus on optimization time, i.e., the time to find an optimal

mapping after data preparation is completed. Data preparation (determining which

tuples are errors or unexplained for each st tgd in C) is slow, taking up to 150 minutes

in our largest scenarios; it would be easy to optimize this time, however that is not a

focus of our current work.

Data Size. We vary πTuplesPerTable from 10 to 100 in steps of 10 tuples to obtain data

examples of increasing size for our default schema size of 36 relations. We generate

five scenarios for each setting. Figure 3.6a plots the average optimization time in

59

CMD and average time to generate C (the Clio baseline). CMD optimization times

are comparable to Clio times even though we optimize over relatively large (3600

tuple) data examples.

Schema Size. We vary πInvocations from 1 to 10 to increase the sizes of the schemas

(and thus the number of candidate st tgds that are plausible for the schemas), which

results in source and target schemas with 18 to 180 relations total. The largest

scenario involved 150 candidate st tgds, or over 1045 possible mappings. We set

πTuplesPerTable = 50, thus obtaining data examples with 900 to 9000 tuples. We

use five scenarios per setting and, as before, plot average CMD optimization time

and average time to run Clio (Figure 3.6b). Again, CMD optimization times are

comparable to those of Clio, but for increasing schema size, the latter increases more

quickly.

3.6.6 CMD on Real Metadata and Data

The previous results show the power of CMD on benchmark datasets. Next we

consider several real world scenarios.

Amalgam. We first consider the well-known Amalgam benchmark [66], using schema

A1 as source and A3 as target. To construct a data example, we select a small subset

of the data in A1. We use ideal correspondences, so this problem tests whether CMD

selects st tgds with correct joins from the candidates generated by Clio. The final

evaluation contains 18 relations and 2,502 tuples. For this scenario, CMD achieves

IQ-score .99 and optimization time was under a minute.

60

Neuroscience. We map Allen Brain Atlas (ABA), Kyoto Encyclopedia of Genes and

Genomes (KEGG), Pharmacogenomics Knowledgebase (PharmGKB), and UniProt

(Universal Protein resource) schemas to the Semantic MediaWiki Linked Data

Environment (SMW-LDE) Ontology [67, 68]. ABA has one relation and 15 tuples;

KEGG has four relations and 56 tuples; PharmGKB has four relations and 142

tuples; and UniProt has one relation and 15 tuples. The common target schema has

31 relations and 54 foreign keys. As with Amalgam, we construct data examples

from the source instances and we use ideal correspondences. The CMD mappings for

ABA, PharmGKB and UniProt achieved perfect IQ-scores. For KEGG, CMD got a

score of .93.

CMD achieved a lower score on KEGG because it selected some candidates

that reused labeled nulls for some attributes where the gold standard exchanged

variables from the source. Our current scoring function cannot distinguish these, but

could easily be adapted to do so.

3.7 Related Work

Using Metadata. Using metadata information to guide schema mapping discovery

has a long tradition. The names of schema elements (such as attributes) can be used

to suggest attribute correspondences (the well-known schema matching problem)

and the Clio project showed how the schemas and constraints can be used to infer

mappings [5, 21]. HepTox [22] and ++Spicy [23] have extended this to richer forms

of metadata (including equality-generating-dependencies). In addition, the role of

61

data in resolving ambiguity or incompleteness in the metadata evidence has long

been recognized, both in matching [25] and in schema mapping, where the Data

Viewer [26] and Muse [27] systems use source and target data interactively to help a

user understand, refine or correct automatically generated mappings. Most systems

that combine evidence from metadata and data, do so heuristically and may fail to

suggest a good mapping under inconsistent evidence.

Using Data Examples. A complementary approach that uses data only is often

called example-driven schema-mapping design [28]. An example that is closest to

ours casts schema mapping discovery from data as a formal (and fully automated)

learning problem [32]. Given a single data example (I, J) find a mapping M that is

valid and fully explaining (and of minimal size) for (I, J). Even for full st tgds finding

optimal mappings in this framework is DP-hard [32]. Using this framework, ten Cate

et al. [33] consider the restricted class of mappings with a single atom (relation) in

the head and in the body. They provide a greedy approximation algorithm that is

guaranteed to find near optimal (valid and fully explaining) mappings of this type,

but do not discuss experimental results.

In contrast, we do not require the mapping to be valid or fully explaining,

rather we define an optimization problem that finds an optimal set of st tgds that

minimizes errors (the invalidity of a mapping) and unexplained tuples. Although

the number of errors can, in theory, be exponential in the size of the mappings (as

pointed out by Gottlob and Senellart [32]), we manage this complexity by using a set

of candidate st tgds derived from real mapping discovery systems and by using an

62

efficient approximation framework (PSL) to reason over these alternative mappings.

We also provide a novel principled way of combining evidence from mappings that

contain existentials (and hence only partially explain tuples).

Multiple Examples. The Eirene system returns the most general mapping that

fits a set of data examples, if one exists, and otherwise guides a user in refining her

data (not the mapping) to identify tuples that are causing the failure [29].

This is in contrast to Muse and the Data Viewer systems that interactively

pick data to help a user refine a mapping. Alexe et al. [57] have also studied when

a mapping can be uniquely characterized by a set of data examples. This problem

has also been cast as a learning problem, where a user labels a series of examples as

positive or negative [30]. Finally, Sarma et al. [31] consider how to learn views (or

full GAV mappings) from data alone.

Related Selection Problems. Belhajjame et al. [19] use feedback from users

on exchange solutions to estimate the precision and recall of views. They present

view selection as an optimization problem that maximizes either precision (which

is maximal for valid mappings) or recall (which is maximal for fully explaining

mappings), without taking mapping size into account. While they do not provide

runtimes for their approach, they use a powerful, general purpose search algorithm [69]

designed for constrained optimization problems. In contrast, our mapping selection

problem, though NP-hard, is of a form for which PSL efficiently finds a high quality

solution. Other work finds the top-k best matchings [70]. It is an open problem how

to extend our optimization to top-k mappings.

63

While our approach relies on a potentially noisy data example (I, J) to select

among mappings, Belhajjame et al. [19] rely on potentially noisy feedback from a

user, who annotates target tuples in a query answer as expected (with respect to an

implicit J) or unexpected, or provides additional expected tuples. User feedback has

also been used in active learning scenarios in the context of data integration, e.g., to

select consistent sets of attribute-attribute matches among many data sources [71], or

to select join associations in the context of keyword-search based data integration [72].

While those settings are quite different from the one we consider here, extending CMD

with active learning to incorporate additional feedback is an interesting direction for

future work.

Similarly, the source selection problem [73] has been modeled as a problem of

finding a set of sources that minimize the cost of data integration while maximizing

the gain (a score that is similar to recall). Dong et al. [73] use the greedy randomized

adaptive search procedure meta-heuristic to solve the source selection problem, a

heuristic which unlike PSL does not provide any approximation guarantees on the

solution.

Probabilistic Reasoning. Statistical relational techniques have been applied to a

variety of data and knowledge integration problems. Perhaps closest to our approach

is the use of Markov Logic [45] for ontology alignment [47] and ontological mapping

construction [20]. However, we consider more expressive mappings than either of

those approaches. Furthermore, by using PSL, we can easily integrate partial evidence

from st tgds with existential quantification through soft truth values. More impor-

64

tantly, in contrast to Markov Logic, PSL avoids the hard combinatorial optimization

problem and instead provides scalable inference with guarantees on solution quality.

This advantage has proven crucial also for applications of PSL in knowledge graph

identification [58] and data fusion [59, 60].

3.8 Conclusion

We introduce Collective Mapping Discovery (CMD), a new approach to schema

mapping selection that finds a set of st tgds that best explains the data in the sources

being integrated. We use both metadata and data as evidence to resolve ambiguities

and incompleteness in the sources, allowing some inconsistencies and choosing a small

set of mappings that work collectively to explain the data. To solve this problem, we

use and extend probabilistic soft logic (PSL), casting the problem as efficient joint

probabilistic inference. The declarative nature of the PSL program makes it easy to

extend CMD to include additional forms of evidence and constraints, coming from

the domain, from user feedback, or other sources.

65

Chapter 4: Handling Ambiguity with Prioritized Disjunction Rules

4.1 Introduction

In Chapter 3 we found transformations that explain best the tuples of a

relational data example. In Chapter 6, we will encounter a similar problem involving

the choice of variable assignments that best explain a correspondence. In both

cases, a key challenge is dealing with multiple alternate explanations, e.g., st tgds or

correspondences, for data. This type of ambiguity is common in relational integration

problems. In fact, even in an ideal example data, there can still be ambiguity due to

the nature of the data, e.g., multiple senses for words appearing in tuples, and we

are left unsure which transformations are correct. As we have shown, one strategy

to solve this important problem is to consider all evidence collectively to see if the

aggregate evidence prefers one alternative over others.

A natural way to represent the best alternative in probabilistic logical languages

(Section 2.2) is as an existentially-quantified variable plus one or more logical condi-

tions showing that it fits best with the data. For example, Rule (3.11) in Chapter 3

states declaratively that the best alternative single st tgd (variable F) is the one

66

that best covers a target tuple (variable T):

1 : J(T)→ ∃F. covers(F, T) ∧ in(F)

Similarly, Rule (g) in Chapter 6 states that the best alternative variable assignment

is the one that joins attributes matched by a correspondence. However, directly using

rules like those can make inference much harder. Specifically, in the language we

use – probabilistic soft logic (PSL) [6] – using a conjunction in the head of the rule

prevents us from solving inference as a convex optimization problem.

Many existing optimization methods can still be applied to this problem, but

they can’t provide guarantees of answer quality. Also, some methods do not easily

incorporate the soft values of the logical conditions we use in the rules.

I will show that rules of this sort, which we call prioritized disjunction rules

(PD), can in fact be rewritten as normal disjunctive clauses, allowing inference in

PSL to remain efficient while incorporating the rules. I will show that the new rule

type scales well even to highly complex integration problems with many alternative

explanations.

4.2 Problem

In first-order logic (with finite domains), formulas with existential quantifiers

can be rewritten by expanding the existential quantifier into a disjunction over all

groundings of its variables; however, in the context of PSL, the resulting disjunction of

conjunctions in the head of a rule is expensive and non-convex to optimize in general.

67

We call these rules prioritized disjunction rules, as they implement a choice among

groundings of an existentially quantified variable using observed soft truth values

to express preferences or priorities over the alternatives (in the case of Rule (3.11),

over st tgds to be selected). A prioritized disjunction rule is a rule:

w : b(X)→ ∃Y. ho(Y,X) ∧ hi(Y)

where b(X) is a conjunction of atoms, ho(Y,X) is an observed atom and hi(Y) is an

atom whose value will be inferred.

Example 6: For Rule (3.11) of Chapter 3, b(X) is J(T), ho(Y,X) is covers(F, T),

and hi(Y) is in(F).

The observed truth values of the ho(Y,X) atoms reflect how good a grounding of Y

is for a grounding of X, as the truth value of the head will be higher when assigning

high truth values to hi(Y) with high ho(Y,X). Our goal is to show how to efficiently

handle this practically important subclass of rules.

4.3 Approach

To efficiently support this comparison of alternatives, we introduce a k-pri-

oritization for some natural number k, restricting the truth values of ho(Y,X) to

{0/k, ..., k/k} only. This allows us to rewrite each prioritized disjunction rule into a

collection of rules, where we first expand the existential quantifier in the usual way,

and then introduce a rule for each priority level.

68

Consider first the Boolean case, i.e., k = 1. In this case, every disjunct ho(Y,X)∧

hi(Y) is either false or equivalent to hi(Y). Since ho(Y,X) is observed, for every

grounding y of Y , we can drop the entire disjunct if ho(y,X) is false and drop ho(y,X)

if it is true, leaving only hi(y) in the disjunctive head. This leaves us with a standard

PSL rule with a (possibly empty) disjunction of hi atoms in the head.

For arbitrary k, we generalize this by grouping the head elements based on the

priorities. For each grounding b(x) of the rule body b(X), we create one ground rule

for every j = 1, .., k of the following form:

w/k : b(x)→
∨

ho(x,y)≥j/k

hi(y)

That is, we have a set of rules with identical bodies whose heads are progressively

more general disjunctions of hi atoms.

w/k : b(x)→
∨

ho(x,y)∈{k/k}

hi(y)

w/k : b(x)→
∨

ho(x,y)∈{k/k,(k − 1)/k}

hi(y)

...

w/k : b(x)→
∨

ho(x,y)∈{k/k,(k − 1)/k,...,1/k}

hi(y)

To understand the idea behind this transformation, assume for the moment that all

hi(y) have fixed, Boolean truth values, and let m/k be the highest value ho(x, y) takes

69

for this x and any y with hi(y) = 1, i.e.,

m/k = max
{y|hi(y)=1}

ho(x, y)

Then, the rules for j = 1, ..,m are satisfied (because their head evaluates to 1), and

the ones for j = (m+ 1), .., k are not satisfied (because their head evaluates to 0).

More precisely, their distance to satisfaction is the truth value of b(x), and each of

these thus contributes w/k · I(b(x)) to the overall distance to satisfaction, which for

this set of ground rules is

(k −m) · w/k · I(b(x)) = w ·
(

1− max
{y|hi(y)=1}

ho(x, y)

)
· I(b(x))

If b is observed, e.g., I(b(x)) = 1 as in the case of (3.11), this expression depends

purely on the maximum value of ho.

Example 7: Consider a single grounding of Rule (3.11) for t =org(111, SAP) in J

from Figure 3.1c and the candidates θ3 and θ4 from Figure 3.1d. The expanded

ground rule is

1 : > → covers(θ3, t) ∧ in(θ3) ∨ covers(θ4, t) ∧ in(θ4)

Predicate org has arity two, so we get a 2-prioritization with the following possible

70

values for covers(·):

covers(F, t) ∈ {0/2, 1/2, 2/2}

Using values covers(θ3, t) = 2/2 and covers(θ4, t) = 1/2, we replace the initial ground

rule with

1/2 : > → in(θ3) ∨ in(θ4)

1/2 : > → in(θ3)

which completes the rewriting from a rule with existential quantification to a set of

regular PSL rules.

To summarize, we have shown an efficient transformation of a PSL rule with

existentials over disjunctions of conjunctions in the head into a (compact) set of

regular PSL rules using prioritized disjunctions. Furthermore, the soft-truth value

semantics of the disjunction is the maximum over the disjuncts — which is a useful

choice (see Section 3.5.3). While this extension was motivated by relational data

integration problems, we expect it to also be useful in other scenarios that involve

choices between variable numbers of alternatives.

4.4 Evaluation

To evaluate prioritized disjunction rules, we use the same problem setting

described in Chapter 3, and the same basic parameter settings for generated mapping

71

scenarios. The evaluation in Section 3.6 tested Rule (3.11) on a variety of mapping

scenarios generated using iBench [43]. In this chapter, we test the effectiveness and

scalability of prioritized disjunction rules on an additional, novel type of mapping

scenario with much more complex sets of alternative explanations, and having a new

parameter for varying that complexity.

4.4.1 Complex Scenario Generation

In this section, we describe the custom-made scenarios we use to test prioritized

disjunction rules. In each scenario, the source schema consists of πSchemaSize relations

S1 to Sm, all of arity πArity . The target schema consists of πSchemaSize relations T1 to

Tm, all of arity πArity , and a set of relations Rj
i of arity j, where 1 ≤ i ≤ πSchemaSize

and 1 ≤ j ≤ πArity − 1. Using these, we construct a space A of candidate st tgds,

where 1 ≤ a ≤ b ≤ πArity , as follows:

Si(X1, . . . , Xa, Ya+1, . . . , Yk)→∃Xa+1 . . . Xk.

Tj(X1 . . . Xk)∧

Rk−b
j (Xb+1 . . . Xk)

That is, we pair each source relation Si with each target relation Tj. The pair (a, b)

determines which arguments of Tj are exchanged (X1 to Xa, always at least one),

unshared existentials (Xa+1 to Xb, potentially empty) and used for the target join

with the appropriate Rl
j (Xb+1 to Xk, potentially empty, in which case Rl

j is omitted).

For instance, if k = 3, for one pair of S and T , we get the following st tgds, which

72

explain T to degree 3/3, 2/3, 1/3, 3/3, 2/3 and 3/3, respectively.

S(X,A,B)→ T (X, Y, Z) ∧R(Y, Z)

S(X,A,B)→ T (X, Y, Z) ∧R(Z)

S(X,A,B)→ T (X, Y, Z)

S(X, Y,B)→ T (X, Y, Z) ∧R(Z)

S(X, Y,B)→ T (X, Y, Z)

S(X, Y, Z)→ T (X, Y, Z)

To construct the candidates C for a particular scenario, we randomly pick from

A, for each i = 1, . . . , πSchemaSize , one of the candidates that combine Si and Ti (and

thus also some Rj
i ; we refer to this st tgd as θi) and add it to the gold standard

mappingMG. Thus, |MG| = πSchemaSize . From A\MG, for each i = 1, . . . , πSchemaSize ,

we randomly pick πPDSize − 1 of the candidates that use Ti. We obtain C by adding

these toMG; thus, |C| = πPDSize · πSchemaSize . As A contains mk(k+1)
2

st tgds using Ti,

we can scale πPDSize to at most that number (in which case C = A). A by construction

contains candidates covering the T -relations to each non-zero degree.

To construct the data example for a particular scenario, we construct separate

private and common sets of tuples. First, for each θi (using Si and Ti) in the gold

standard mapping, we create πPrivate private πArity -tuples, which we add to Ti in J .

Furthermore, if θi contains a join, we also add the corresponding sub-tuples to the

corresponding Ri-relation in J . Finally, to populate Si, in each case, we create a

73

10 30 50 70
maximum PD-head size

2.5

5.0

7.5

se
co

nd
s

Figure 4.1: Optimization time of CMD w.r.t. maximal number of candidates explaining
the same tuple. Parameter πSchemaSize is 20 (top), 10 (middle) or 5 (bottom).

source tuple that shares the exchanged arguments with the one in Ti. For instance,

for S(X,A,B) → T (X, Y, Z) ∧ R(Z), we could get tuples T (a1, b1, c1), R(c1) and

S(a1, b2, c2). Second, we generate πCommon common πArity -tuples, and we add those

to every relation Si and every relation Ti, as well as the corresponding suffixes to

every relation Rl
i. For instance, one such step could use (a13, b13, c13) to add all

Ti(a13, b13, c13), Si(a13, b13, c13), R2
i (b13, c13) and R1

i (c13). This common part of

the data example introduces confusion into the selection process.

4.4.2 Results

We vary the maximal number πPDSize of candidate st tgds that explain each

target tuple, which corresponds to the number of head atoms in prioritized disjunction

rules (see Chapter 4). This is the main parameter determining the complexity of

optimization. Our custom-made scenarios use a single primitive, and their complexity

is controlled through two parameters, the arity πArity and the schema size πSchemaSize .

The source has πSchemaSize relations of arity πArity , the target πSchemaSize ·πArity relations

of arity at most πArity . The gold standard mapping has πSchemaSize st tgds, and the

74

number of potential candidates increases quadratically with both πSchemaSize and

πArity . We set πTuplesPerTable = 25.

We consider all combinations of πSchemaSize ∈ {5, 10, 20} and πArity ∈ {5, 10, 20},

and vary πPDSize from 10 to 70 in steps of 20. We use one scenario for each combination.

In Figure 4.1, we plot the optimization time for each value of πSchemaSize , aggregating

over πArity . In all scenarios, the mapping selected by CMD has perfect IQ-score. This

result shows that optimization with prioritized disjunction rules is efficient even with

70 candidates explaining the same tuples, an order of magnitude higher than seen in

our other tests.

4.5 Conclusion

In this chapter, we introduced a novel extension to PSL called prioritized

disjunction rules, which allows for existentials over closed domains while maintaining

the convexity of inference. We demonstrate the effectiveness of this type of rule in the

mapping selection problem setting. We show that on problems with highly complex

sets of alternate explanations, it efficiently selects the correct alternatives.

75

Chapter 5: Mapping Search

5.1 Introduction

In previous chapters we described how we can derive possible transformations

from metadata, and combine them with data in a probabilistic, collective framework

to handle noise, ambiguity and partial outputs. However, ideal transformations may

not be derivable from metadata because parts of the metadata are very noisy or

even missing. Transformations found this way can have some correct portions, but

also many flaws. In practice, many sources are available only in this highly raw form,

so it is critical to develop methods that discover good transformations even in this

setting.

As we did in Chapter 3, we can leverage a holistic combination of metadata

and data whenever both are available. Then we can set up an exhaustive search over

possible transformations, repeatedly changing parts and checking whether the changes

improve the fit to the evidence. However, the space of possible st tgd mappings is

very large for three reasons: First, the body of a st tgd can have atoms for any or

all of the relations of the source schema. The same is true for the head of a st tgd

and the target schema relations, respectively. Second, logical variables can repeat

across arguments of an atom – and across multiple atoms of the body or head or

76

both – in any arrangement. Finally, recall that a mapping is a set of st tgds and – as

we found in Chapter 3 – selecting a subset from a set of given st tgds is already an

intractable problem if handled naively. Therefore, an unguided search over possible

transformations is only practical with exceptionally small schemas.

There has been significant past work – in both theory and practical systems –

on closely related problems, such as theory refinement [49]. However, most existing

work focuses on learning single target relations, e.g., clauses, and does not consider

the important effect of existential variables shared across multiple target relations.

In this chapter, we will introduce a new approach to guide a search over possible

mappings, exploiting a useful property of the objective we introduced in Chapter 3

that allows us to use it to guide both selection over subsets of st tgds and refinement

of individual st tgds. Specifically, we use a boosted search organized in stages. In

each stage, we change the makeup of the mapping – suppressing st tgds, generating

new individual st tgds, or both. We generate new st tgds using refinement operators,

guided via errors caused by flaws of the current mapping.

We evaluate this approach on a diverse collection of parameterized mapping

scenarios with varying complexity in each of the three dimensions that make search

spaces large: (1) varying atoms in the body and head of st tgd, (2) varying the

assignments of logical variables in arguments, and (3) varying the subset of st tgds

that should be selected. We show that, compared to a baseline using conventional

single-relation learning, our approach achieves over 30% higher mapping quality

over-all. We also compare to the selection-only capability introduced in Chapter 3,

showing that it improves mapping quality by over 80%. Additionally, we show that

77

our approach finds quality mappings with greater consistency than both baselines.

Finally, we test our approach on a real data problem and show that it discovers

correct st tgds even with very limited metadata.

This chapter is organized as follows: In Section 5.2, we describe the mapping

search problem. In Sections 5.3, 5.4, and 5.5 we introduce our search approach, the

refinement operators we use, and the baseline algorithms, respectively. In Sections

5.6 and 5.7, we describe our scenario generation process and our empirical evaluation

results. In Sections 5.8 and 5.9, we describe related work and some possible future

extensions of this work.

5.2 Mapping Search Problem

In this section, we describe the mapping search problem. First, we review

measures of mapping quality from earlier work. Then we introduce an improvement

to the mapping quality definition motivated by the mapping search setting. Finally,

we define the mapping search problem formally.

5.2.1 Mapping Quality

In this section, we review measures of mapping quality introduced in Chapter 3.

We use the data exchange setting to characterize the quality of mappings comprising

one or more st tgds. In this setting, we are given a data example comprising a source

instance I and a target instance J . Given a source instance and some mapping, we

can generate a target instance known as an exchange solution. To measure mapping

78

KC − J

creates(θ, t) = 0
(t /∈ Kθ)

creates(θ, t) = 0

creates(θ, t) = 1

(a)

(b)

(c)

J

covers(θ, t) = 1
(Kθ ∩ J)

covers(θ, t)
∈ (0, 1]

covers(θ, t) = 0

(d)

(e)

(f)

(h)

Figure 5.1: Illustration of covers(·) and creates(·).

quality, we compare the following:

• Tuples of J

• Tuples of the solution for I and a mapping

We use the comparison to measure two kinds of flaws: Errors are tuples in a solution

with no corresponding tuple in J , i.e., false positives. Unexplained tuples are the

second kind of error, and arise when a tuple of J has no corresponding tuple in the

solution, i.e., false negatives.

Our formal definitions for the two kinds of errors take one form when evaluating

individual st tgds, and another form when we evaluate a set of st tgds collectively.

Although a single st tgd alone may be used as a mapping, for clarity we only use

the term mapping when referring to a set of st tgds. Figure 5.1 illustrates the case

for individual st tgds. If a tuple t is an error with respect to st tgd θ, we represent

that fact as creates(θ, t) = 1 (Figure 5.1 (c)). If t is unexplained with respect to θ,

we represent that as covers(θ, t) < 0 (Figure 5.1 (e) and (f)).

Figure 5.2 illustrates the case for a mappingM. If t is an error with respect to

M, we say error(M, t) > 0 (Figure 5.2 (c)). If t is unexplained with respect to M,

79

KC − J

error(M, t) = 0
(t /∈ KM)

error(M, t) = 0

error(M, t) > 0

(a)

(b)

(c)

KM − J

J

explains(M, t) = 1
(KM ∩ J)

explains(M, t)
∈ (0, 1]

explains(M, t) = 0

(d)

(e)

(f)

(h)

Figure 5.2: Illustration of explains(·) and error(·) for selecting st tgds.

we say explains(M, t) < 0 (Figure 5.2 (e) and (f)).

In addition to errors and explains, we are also interested in a mapping that is

simple. A mapping that achieves high quality but is highly complex may be over-fit

on the data example. We measure the complexity of a mapping using function size.

5.2.1.1 Revised Covers

We revise the definition of covers for st tgds generating nulls, compared to

Chapter 3. Recall that, because st tgd can create nulls, we use logical homomorphisms

as an initial check for whether a st tgd can cover a target tuple. If a homomorphism

exists, we calculate the degree of coverage by inspecting the arguments of the

generated tuple. As before, we recognize two ways that a st tgd covers a argument:

(a) The st tgd provides a constant from I to fill the argument in the target solution.

(b) The st tgd provides a null with a label, and it places the same label on nulls in

other arguments. Shared labels on nulls are useful because they establish a relational

structure and put constraints on values that could be invented for the argument in

the solution. As before, when a label appears in only one argument, we treat that

argument as a regular null, contributing a value of one to the aggregate count of

80

nulls. At the other extreme is a argument receiving a constant, which contributes a

zero to that sum.

Our revised definition of covers is motivated by the simple observation that

if correctly reusing a null once is useful, then additional correct reuse is even more

useful. We change the value contributed by arguments with a labeled null if the label

appears in two or more arguments. Every argument now contributes a value between

zero and one to the count of nulls, where values close to zero are possible if a label

appears in may arguments. Specifically, the value is simply the reciprocal of the

number of arguments in which a null appears. Our previous definition for the null

function was piecewise and Boolean: labels appearing in just two or more arguments

had value zero, i.e., the same as a constant. The revised definition recognizes that as

a st tgd places the same label in more arguments, it places more constraints on the

nulls in those arguments, i.e., approaching the type of full constraint provided by a

constant. The reciprocal is one of many possible definitions with this characteristic;

we chose it for its simplicity.

5.2.2 Search Objective

In this section we give a formal definition for the mapping search problem.

Each mappingM is a set of st tgds of the following form: ∀~x, ~z. φ(~x, ~z)→ ∃~y ψ(~y, ~z),

where φ(~x, ~z) and ψ(~y, ~z) are conjunctions of atoms. We define refinements(C,ρ) as

the set of candidates such that θ′ ∈ refinements(C,ρ) if θ′ can be generated from some

θ ∈ C by applying a sequence of refinement operators from set ρ (see Section 5.4).

81

Our mapping search objective is the following:

Given

• schemas S, T, and a data example (I, J)

• initial set C of candidate st tgds, which may be empty

• a set of operators ρ

Find arg min
M⊆refinements(C,ρ)

∑
t∈J

[(1− explains(M, t))]

+
∑

t∈KC−J

[error(M, t)]

+ size(M) (5.1)

Intuitively, our objective is to find a set of st tgds that maximizes explained tuples, that

minimizes error tuples, and that is not very complex. This is a natural extension of

Equation (3.9), with the addition of candidates that can be generated with refinement

operators.

Monotonicity. An important property of the objective is that the value we minimize

decreases monotonically with repeated expansions of refinements(C,ρ) by applying

operators in ρ. This is true simply because adding a st tgd to the set of candidate

refinements does not place that st tgd in the mapping M. Only st tgds in M affect

the terms of the objective, and – with a guarantee of quality – a subsequent selection

step will only add a refinement to M if it further optimizes the mapping. The

objective assumes we have access to all refinements, which is a set that can be much

82

larger than practical. The monotonicity property allows us to approach the optimal

by alternating between expanding the set of available refinements and selecting the

best subset. This will be the basis for our search approach in Section 5.3.

5.3 Search Approach

In this section, we propose an approach to approximate the objective in (5.1)

with a search algorithm. As motivated by the monotonicity property of that objective,

our algorithm alternates between expanding the set of available st tgds, and selecting

an optimal subset as the mapping. At a high level, each stage of the algorithm

involves the following three steps:

1. Identify flaws of the current mapping

2. Generate additional candidate st tgds

3. Select a new subset of candidate st tgds

Step 1 uses the quality measures from Section 5.2.1 to identify target relations and

individual st tgds that are flawed. Step 2 then builds a set of new candidate st tgds,

guided by the flaws found in step 1. Focusing learning only on errors made by the

current hypothesis is sometimes called boosting and is a common technique. Step 3

then selects a new optimal mapping as a subset of the set of candidates; this step

is identical to mapping selection in Chapter 3. In summary, in each stage we can

change the makeup of the mapping: suppressing st tgds, generating new individual

st tgds, or both.

83

Symbol Meaning

I, J Given source and target instances
S,T Source and target schemas
T A relation from T
J(T) Subset (tuples) of J in T
θ A st tgd
θ(-1) Original version of θ, before refinement
Θ(-1) Set of original st tgds
C(0) Given set of candidates
C(m) Candidates from current stage
C(-1) Candidates from previous stage m− 1
M Set of st tgds forming a mapping
M(0) A mapping selected from C(0)

M(m) Mapping from current stage
M(-1) Mapping from previous stage m− 1
M(M) Mapping from final stage
M(T) Subset (st tgds) of M that fill relation T
M(-1)(T) Subset of M(-1) that fill relation T
Kθ Solution using I and θ

K
(-1)
θ Solution using I and θ(-1)

K
(-1)
θ (T) Subset (tuples) of K

(-1)
θ in T

K
(m)
M Solution using I and M(m)

K
(-1)
M Solution using I and M(-1)

K
(-1)
M (T) Subset of K

(-1)
M in T

KC Solution using I and C(m)

K
(-1)
C Solution using I and C(-1)

K
(-1)
C (T) Subset of K

(-1)
C in T

createsθ creates(θ, t)

creates
(-1)
θ creates(θ(-1), t)

coversθ covers(θ, t)

covers
(-1)
θ covers(θ(-1), t)

errorM error(θ, t)

error
(-1)
M error(θ(-1), t)

explains
(m)
M explains(M(m), t)

explains
(-1)
M explains(M(-1), t)

explains
(-1)
M−θ explains(M(-1) − θ(-1), t)

s(-1) s(θ(-1), θ), the refinement score

Table 5.1: Notation and abbreviations.

84

Algorithm 1: Search function Ssib.
Data:
Initial candidate set: C(0)

Refinement operator set: ρ
Search stages: M
Refinement iterations: U
Refinement score: s
Result:M

1 M(0) ← MappingSelection(C(0));
2 for m from 1 to M do
3 C(m) ← C(-1);
4 Select flawed relation T ∈ T;
5 Stop if total for T in Equation (5.2) is zero;

6 Based on T , select st tgd set Θ(-1);

7 for θ(-1) ∈ Θ(-1) do
8 Update weights used by score function s(-1) = s(θ(-1), θ);

9 θ ← Refine(θ(-1), C(-1), s(-1),ρ, U);

10 C(m) ← C(m) ∪ {θ};
11 end

12 M(m) ← MappingSelection(C(m));

13 end

14 return M(M);

We now define the algorithm formally. As shown in Algorithm 1, search function

Ssib starts with an initial set of candidates. We refer to the initial set as C(0) because

it is the set prior to the first stage of the search. The algorithm then expands the

candidates over M stages using set ρ of refinement operators. For each stage m, we

refer to candidates of previous stage m− 1 as C(m−1). For brevity, where the context

is clear we will drop m and shorten C(m−1) to C(-1). Similarly, we refer to previous

versions of mappings and st tgds as M(-1) and θ(-1), respectively. We summarize all

notation in Table 5.1.

85

5.3.1 Step 1.1: Select a Flawed Relation

In each stage, we focus the search on a single target relation for which the

current mapping is a poor fit. Before doing that, we first select the best available

mapping from C(-1). Function MappingSelection(C) selects an optimal subset M(-1)

of set C(-1) of candidate st tgds (line 1); for this we use CMD (see Chapter 3). To

select (line 4) a target relation T ∈ T, we prefer a relation having many tuples left

to explain or errors to correct. We refer to tuples of relation T in instance J as J(T)

and those in solution K
(-1)
M of M(-1) as K

(-1)
M (T). We find an optimal relation T as

follows:

K
(-1)
C (T)− J(T)

error(M(-1), t) = 0(
t /∈ K(-1)

M (T)
)

error(M(-1), t) = 0

error(M(-1), t) > 0

(a)

(b)

(c)

J(T)

explains(M(-1), t) = 1(
K

(-1)
M (T) ∩ J(T)

)
explains(M(-1), t)

= 1
explains(M(-1), t)

∈ (0, 1)

explains(M(-1), t) = 0

(d)

(e1)

(e2)

(f)

(g)

Figure 5.3: Illustration of explains(·) and error(·) for T ∈ T andM(-1) ∈ C(-1), as used
in Equation (5.2).

arg max
T∈T

∑
t ∈ J(T)

[
1− explains

(
M(-1), t

)]
+

∑
t∈K(-1)

M (T)−J(T)

[
error

(
M(-1), t

)]
(5.2)

86

The explains(·) term of Equation (5.2) calculates the total amount that tuples of T in

the data example remain unexplained by the previous mappingM(-1). That quantity

includes the number of completely unexplained tuples (illustrated in Figure 5.3(f))

and the amount that partially explained tuples remain unexplained (Figure 5.3(e2)).

The error(·) term is the number of error tuples of relation T made by M(-1), shown

in Figure 5.3(c). That is, we select T to maximize (c) and (g) of Figure 5.3.

A common alternative technique is to simply select each target relation in turn

and learn a rule for each. However, in some mapping problems this will not work

well. For example, suppose a target relation is formed from the union of tuples from

multiple source relations. Selecting that target relation once, or a fixed number of

times, may not generate st tgds for each of the source relations. Our approach allows

the search to repeatedly select the same relation until all its tuples are explained.

5.3.2 Step 1.2: Select Flawed ST TGDs

Based on T , we then construct set Θ(-1) of st tgds to refine (line 6), as follows.

We construct the set to include three types of st tgd:

• Existing st tgds that generate tuples of T , which may be flawed

• Existing st tgds modified to have T in their head

• A new st tgd with just T in its head

We define the set M(-1)(T) ⊆M(-1) as the set of st tgds generating tuples of T , i.e.,

with the relation T appearing in the head. We create a second set M(-1)(T)′ from

87

the remaining st tgds M(-1) −M(-1)(T). We modify this set as follows to have T

in their heads, where the notation λ{u/v} denotes the formula derived from λ by

substituting all occurrences of u with v.

ρ(θ) =
{{
φ(~x, ~z)→ ∃~y. ψ(~y, ~z) ∧ T (~w) {wj/yk} with wj ∈ ~w, yk ∈ ~y

}
∪{

φ(~x, ~z)→ ∃~y. ψ(~y, ~z) ∧ T (~w) {wj/zk} with wj ∈ ~w, zk ∈ ~z
}}

This kind of function is widely used in search algorithms, and is known as a refinement

operator. We define M(-1)(T)′ as follows:

M(-1)(T)′ =
⋃

θ∈M(-1)−M(-1)(T)

ρ(θ)

An advantage of using setM(-1)(T)′ is it allows us to gradually build highly expressive

st tgds combining multiple target relations. The full set of st tgds to refine is as

follows:

Θ(-1) =M(-1)(T) ∪M(-1)(T)′ ∪ {→ T (. . .)}

That is, we refine every st tgd currently generating tuples of T (those st tgds may

be refined to explain more T tuples, to explain T more fully, or corrected to avoid

88

T errors); we modify all other st tgds in the current mapping to generate T , then

refine them; and we start and refine new st tgds for T from scratch. This is not the

only approach to build set Θ(-1); other approaches may be more efficient. We chose

this simple approach – which includes all existing st tgds inM and one from scratch

– to provide many possible refinements to later steps. An aggressive approach like

this is possible because the selection step (line 12) scales well to large numbers of

candidates (see Sections 3.6.5 and 4.4.2).

5.3.3 Step 2.1: Refinement Objective

Generating all refinements of the st tgds in Θ(-1) would be impractical; instead,

we search for refinements that fix flaws in those st tgds. To do this, we define a

refinement objective is as follows:

Given

• schemas S, T, and a data example (I, J)

• current mapping M(-1)

• initial st tgd θ(-1)

• a set of operators ρ

Find arg max
θ∈refinements(θ(-1),ρ)

s(θ(-1), θ) (5.3)

The objective is based on the following refinement score:

89

s(θ(-1), θ) =
∑

t∈J :
(

explains
(-1)
M <1

)
∨
(

explains
(-1)
M−θ<covers

(-1)
θ

)
[covers(θ, t)]

−
∑

t ∈ Kθ − J
[creates(θ, t)] (5.4)

Intuitively, the refinement score measures the potential improvement to the overall

objective from using a refinement θ instead of the original θ(-1). In the remainder of

this section, we explain Equation (5.4) and show how we derive it from the overall

objective Equation (5.1).

The data example (I, J) is fixed and used by all stages. However, we use the

quality of the mappingM(-1) (see Section 5.2.1) from the previous stage to weight the

data example during the current stage, a common boosting technique. We achieve a

weighting over example target tuples J by omitting some tuples from the refinement

score function s(θ(-1), θ) (line 8); for brevity, we use s(-1). That is, all weights are

either zero or one. Using weights other than 0 or 1 is a potential future research

problem.

We define s(-1) over refinement θ of θ(-1) ∈M(-1) based on the potential of θ to

change the sum in Equation (5.1). To motivate this choice, consider a comparison with

approaches using theory operators [74, 75]. A theory operator γρ uses an underlying

90

rule operator ρ as follows, where Ltgd is the language of st tgds:

γρ(M(-1)) =
{
M(-1) − {θ(-1)} ∪ {θ} with

θ ∈ ρ(θ(-1)) and θ(-1) ∈M(-1)
}
∪{

M(-1) ∪ {θ} with θ ∈ Ltgd
}

A theory operator generates refinements of whole hypotheses by either replacing

an existing rule or adding a new rule. Similarly, in our approach MappingSelection

may replace an existing rule with a refinement or add a new rule from scratch.

MappingSelection has additional flexibility to select both or neither. However, score

s(-1) over refinements of the underlying operator ρ need only consider two situations:

Compare a refinement θ to the original θ(-1) ∈M(-1). Or, if the refinement was created

from scratch, compare to the empty mapping, i.e., θ(-1) = {}, having creates(·) =

covers(·) = 0 for all target tuples. In either situation, we focus on the following two

changes:

• Increased tuple explanation (Figure 5.2 (h))

• Decreased tuple errors (Figure 5.2 (c))

In the next sections, we define both kinds of changes and how we combine them in

the score.

91

coversθ ? covers
(-1)
θ

Eq. 5.5 < 0 Eq. 5.5 = 0 Eq. 5.5 > 0

> never

(a)
coversθ ≤

explains
(-1)
M ≤ 1

(b)

explains
(-1)
M <

coversθ ≤ 1

= never always never

<

(c)

explains
(-1)
M−θ <

covers
(-1)
θ

(d)

covers
(-1)
θ ≤

explains
(-1)
M−θ

never

Table 5.2: Effects of refinement on explains(·) (see Equation (5.5)).

5.3.3.1 Explains Boosting

Replacing a st tgd in M with a refinement makes the following change to the

explains(·) term of the overall objective for some tuple, where for brevity we replace

explains(M(m), t) with explains
(m)
M ; replace explains(M(-1), t) with explains

(-1)
M ; replace

explains(M(-1) − θ(-1), t) with explains
(-1)
M−θ; and use similar replacements for error(·),

covers(·), and creates(·) (see Table 5.1):

max
{

explains
(-1)
M−θ, coversθ

}
− explains

(-1)
M (5.5)

For a given tuple t, a refinement may have a lower, equal, or greater value for covers(·)

than the original st tgd. Consider the nine cases, shown in Table 5.2, combining

those three possibilities with whether (5.5) is negative, zero, or positive. On the

top row, we know coversθ > covers
(-1)
θ , so increasing (5.5) depends only on whether

coversθ surpasses explains
(-1)
M . On the bottom row, we know coversθ < covers

(-1)
θ , so

decreasing (5.5) only depends on whether covers
(-1)
θ was the maximum. That is why

92

coversθ appears in the top row and covers
(-1)
θ appears in the bottom row. Case (b)

on the top right shows that we only increase explains(·) when explains
(-1)
M < coversθ,

which implies that explains
(-1)
M < 1. We want the score to be sensitive to that case,

and we do not care about case (a). Although coversθ varies across refinements, the

explains
(-1)
M < 1 constraint is constant. Therefore, we can use it as a filter in our score

over refinements, removing cases where explains
(-1)
M = 1. Case (c) shows that reducing

covers(·) on t can only lower explains(·) if the old st tgd had the maximum value of

covers(·) for t over all st tgds in M(-1). We want to disincentivize that case, and we

do not care about case (d).

We can calculate the total change in the explains(·) term as follows, using the

two constraints from Table 5.2 (b) and (c) to remove cases we don’t care about. We

also remove the explains
(-1)
M term of (5.5), as it is constant over all refinements.

∑
t∈J :

(
explains

(-1)
M <1

)
∨
(

explains
(-1)
M−θ<covers

(-1)
θ

)
max

{
explains

(-1)
M−θ, coversθ

}
(5.6)

Equation (5.6) is the total change in explains(·) from replacing a st tgd with a

refinement, but it is not suitable for scoring refinements. This is because our search

may need multiple applications of refinement operators to increase covers(·) above

explains
(-1)
M−θ, and the function max(·) hides those incremental changes in covers(·).

93

Removing the max provides more guidance over those steps:

∑
t∈J :

(
explains

(-1)
M <1

)
∨
(

explains
(-1)
M−θ<covers

(-1)
θ

) coversθ (5.7)

5.3.3.2 Errors Boosting

The total change in the error(·) term of the overall objective from replacing a

st tgd with its refinement is the following:

∑
t∈K(-1)

θ ∪Kθ−J

[
createsθ − creates

(-1)
θ

]
(5.8)

The creates
(-1)
θ terms of (5.8) are constant across refinements of θ(-1), so we remove

them:

∑
t∈Kθ−J

createsθ (5.9)

The magnitude of change (Equation (5.8)) would be needed if we used s to compare

refinements of different original st tgds, e.g., θ
(-1)
a and θ

(-1)
b . However, we only use s to

refine a single θ(-1) at a time. Also notice that the sum over tuples t in Equation (5.9)

is no longer defined over K
(-1)
θ because createsθ terms in Equation (5.9) will only be

positive for tuples in Kθ.

94

5.3.3.3 Combined Score

We combine (5.7) and (5.9) as score s(-1) shown in Equation (5.4) and repeated

here:

s(θ(-1), θ) =
∑

t∈J :
(

explains
(-1)
M <1

)
∨
(

explains
(-1)
M−θ<covers

(-1)
θ

)
[covers(θ, t)]

−
∑

t ∈ Kθ − J
[creates(θ, t)]

The covers(·) term of Equation (5.4) is based on Equation (5.7). The creates(·) term,

based on Equation (5.9), is negated so that higher values for s are better.

The constraints over target tuples in the sums of (5.4) are equivalent to weights

of zero or one on tuples, used in a version of the score using weights. Set ~w of weights

is used in the covers(·) term:

s(-1)(θ) =
∑
t ∈ J

[wt × covers(θ, t)]

−
∑

t∈Kθ−J

[creates(θ, t)]

(5.10)

We illustrate weights ~w in Figure 5.4, which shows the following sets of target tuples:

95

(
K

(-1)
C ∪Kθ

)
− J

createsθ = 1
(w=1, avoid)

error
(-1)
M =

creates
(-1)
θ = 0

(w=0, non-issue)

error
(-1)
M =

creates
(-1)
θ = 0

createsθ = 0
(w=0, non-issue)

creates
(-1)
θ = 1

(w=1, correct)

createsθ = 1
(w=1, avoid)

error
(-1)
M > 0

(w=0, can’t correct)

(a)

(a1)

(b)

(c)

(c1)

(c2)

J

covers
(-1)
θ > explains

(-1)
M−θ

(w=1, keep)

coversθ = 1
(w=0, no benefit)

explains
(-1)
M = 1

(w=0, safe to ignore)(
K

(-1)
M ∪Kθ

)
∩ J

covers
(-1)
θ > explains

(-1)
M−θ

(w=1, keep)

coversθ = 1
(w=0, no benefit)

explains
(-1)
M = 1

(w=0, safe to ignore)

covers
(-1)
θ ∈ (0, 1)

(w=1, explain fully)

coversθ ∈ (0, 1]
(w=1, explain fully)

explains
(-1)
M ∈ (0, 1)

(w=1, explain fully)

covers
(-1)
θ = 0

(w=1, explain)

coversθ ∈ (0, 1]
(w=1, explain)

explains
(-1)
M = 0

(w=1, explain)

(d)

(d1)

(d2)

(e1)

(e11)

(e12)

(e2)

(e21)

(e22)

(f)

(f1)

(f2)

Figure 5.4: Illustration of Equation (5.10). Tuples in shaded sections have weight
one; all others have zero weight.

96

• J from the example

• K
(-1)
C from existing candidates

• Kθ from the current refinement

The diagram then subdivides each set into those associated with the original st tgd

θ(-1), or a refinement θ. The shaded sections of the figure represent tuples with weight

one, and all others have zero weight in the score. The covers(·) term in (5.4) prefers

refinements that explain more tuples. It is summed over the union of two sets of

tuples in J : (1) tuples not fully explained by M(-1) (Figure 5.4 (e2) and (f)), and

(2) tuples explained best by θ(-1) (Figure 5.4 (d1) and (e11)). Naturally, we want

refinements to explain the first set fully and leave the second explained, i.e., avoiding

refinements that leave already-explained tuples unexplained. We implement those

preferences by giving both sets of tuples weight one. The coverage of other tuples in

J is unaffected when refining θ(-1), as they are already explained by other st tgds

(Figure 5.4 (d), (d2), (e1) and (e12)). So, we exclude them from the score, i.e., they

receive a weight of zero. Notice that, although we selected θ(-1) based on relation T ,

our score for refinements is based on all relations of J , rather than J(T). This is to

ensure we take into account the multi-relational structure possible with shared nulls

across relations. By leaving already-explained tuples out of the score, we reduce the

number of homomorphism checks needed to calculate covers(·). More importantly,

we re-weight the example for boosting.

Consider an alternate score having no penalty for a refinement θ reducing

covers(·) for some tuple t, compared to θ(-1). We never remove candidates from C,

97

so MappingSelection could still explain t by selecting both θ and θ(-1) in M(m). The

errors made by the st tgds, however, would accumulate. For example, if both st tgds

make similar errors, they each contribute to the total errors. If θ corrected an error

made by θ(-1), selecting both negates that improvement, as θ(-1) will still generate

the error. The creates(·) term in (5.4) prefers refinements that correct errors made

by θ(-1) (Figure 5.4(c1)) or θ (Figure 5.4(a1, c2)).

5.3.4 Step 2.2: Refine ST TGDs

We next use a local search subroutine to refine each st tgd in Θ(-1), approximating

the objective in Equation (5.3). Function Refine(θ(-1), C(-1), s(-1),ρ, B, U) shown in

Algorithm 2, uses refinement operators ρ to generate new st tgd θ. Algorithm 1 uses

Refine(·) on lines 9 and 10 to expand the set of candidates. Function Refine(·) uses

a local search, initialized with θ(-1). To include a new refinement of a st tgd, it must

have at least as high a score as the original st tgd. The refinement must also be

well formed; specifically, we check that st tgds have at least one logical variable that

is in both the body and the head. We describe the set of refinement operators in

Section 5.4.

5.3.5 Step 3: Update Mapping

Finally, we select a new, optimal subset M(m) ⊆ C(m) (line 12) as the current

mapping. The flaws of this updated mapping will drive the search for a better

mapping in the following search stage.

98

Algorithm 2: Refine

Data: θ(-1), C(-1), s(-1),ρ, U
Result: θ

1 θ(-1).score← s(-1)(θ(-1));
2 for u from 1 to U do
3 θ(u) ← θ(-1);
4 R← {};
5 for ρ ∈ ρ do
6 for r ∈ ρ(θ(u)) do
7 add r to R if r is well formed and not previously seen;
8 end

9 end
10 for r ∈ R do
11 r.score← s(-1)(r);

12 if r.score ≥ θ(u).score then
13 θ(u) ← r;
14 end

15 end

16 end

17 return θ(U);

5.4 Refinement Operators

In this section, we describe the refinement operators that we use in our search

approach (Section 5.3.4). A refinement operator is a function that takes as input

a st tgd of the form ∀~x, ~z. φ(~x, ~z) → ∃~y ψ(~y, ~z), where φ(~x, ~z) and ψ(~y, ~z) are

conjunctions of atoms. Recall that notation λ{u/v} denotes the formula derived

from λ by substituting all occurrences of u with v. For example, θ(~x, ~y, ~z) {yj/xk}

replaces every occurrence of variable yj in st tgd θ with variable xk. As a result, non-

exchanged variable xk appears in both the body and head, and becomes a member of

the exchanged set ~z. We superficially post-process each refinement this way to reflect

that variables can move between sets ~x, ~y, and ~z as a result of refinement. In this

99

section, we first motivate our choice of refinement operators by describing informally

the types of flaws that they need to correct. We then define each operator formally.

5.4.1 Types of Mapping Flaws

Consider an extremely simple st tgd θ′ = ∀~x. φ′(~x)→ ∃~y ψ′(~y) having a unique

variable in every argument of every atom of φ′, a unique variable in every argument

of every atom of ψ′, and no exchanged variables. The following flaws may arise when

using θ′ in a mapping:

1. Every argument of φ′ is assigned a variable, allowing it to ground on every

atom of its relations in I. To avoid errors, it may be necessary to constrain one

or more arguments in φ′ to have the same value, i.e., to merge their variables.

2. A special case of flaw (1) is when it is necessary to add an atom to φ′, enabling

useful constraints on groundings and exchanging additional data.

3. θ′ has no exchanged variables and all variables in ψ′ are existential. Although

this enables homomorphisms with the potential of explaining tuples of relations

in J , it only produces nulls in those tuples, so covers(·) will be low — in fact,

with unique existential variables, it will be zero. One or more variables in φ′

may need to be merged with existential variables in ψ′ to become exchanged

variables.

4. Similar to flaw (2), ψ′ may lack atoms that could be used to explain more

tuples. It may be necessary to add one or more atoms, joining them to ψ′ by

100

merging variables.

5. All existential variables in ψ′ are unique, i.e., a different one in every argument,

but structure from shared nulls in the target instance is important, and rewarded

in our objective (see Equation (5.1)). One or more existential variables may

need to be merged to create that structure.

6. The head of ψ′ may be correct, but its body is flawed, e.g., using the wrong

source relation. Instead of gradually changing the body, or building a new

st tgd from scratch, it could be faster to replace the body entirely.

The st tgds we construct from scratch in Section 5.3.2 have similar flaws as θ′, and

the same may be true of st tgds in C(0). These flaws motivate our use of operators

in three categories: substitution operators, conjunction operators, and antecedent

operators. We describe each category in the following three sections.

5.4.2 Substitution Operators

Substitution operators are designed to address flaws 1, 3, and 5 from Sec-

tion 5.4.1. Each substitution operator works over some pair of sets of variables,

where each set is one of the three (~x, ~y, ~z) in some st tgd. The operator works by

substituting members of one set for members of the other set. We list the substitution

operators we use in Figure 5.5. For example, ρxxφ creates a refinement for every pair

of non-exchanged variables, where those variables are merged (see flaw (1)). ρzzθ is

serves a similar purpose to ρxxφ, but merges variables that are exchanged. Both of

these operators limit the groundings of refinements on I. None introduce new errors

101

ρxxφ(θ) = {θ(~x, ~y, ~z) {xj/xk} with xj ∈ ~x, xk ∈ ~x, xj 6= xk}
ρxyφ(θ) = {θ(~x, ~y, ~z) {xj/yk} with xj ∈ ~x, yk ∈ ~y}
ρxzφ(θ) = {θ(~x, ~y, ~z) {xj/zk} with xj ∈ ~x, zk ∈ ~z}
ρyxψ(θ) = {θ(~x, ~y, ~z) {yj/xk} with yj ∈ ~y, xk ∈ ~x}
ρyyψ(θ) = {θ(~x, ~y, ~z) {yj/yk} with yj ∈ ~y, yk ∈ ~y, yj 6= yk}
ρyzψ(θ) = {θ(~x, ~y, ~z) {yj/zk} with yj ∈ ~y, zk ∈ ~z}
ρzxφ(θ) = {φ(~x, ~z) {zj/xk} → ∃~y. ψ(~y, ~z) with zj ∈ ~z, xk ∈ ~x}
ρzxψ(θ) = {φ(~x, ~z)→ ∃~y. ψ(~y, ~z) {zj/xk} with zj ∈ ~z, xk ∈ ~x}
ρzyψ(θ) = {φ(~x, ~z)→ ∃~y. ψ(~y, ~z) {zj/yk} with zj ∈ ~z, yk ∈ ~y}
ρzzφ(θ) = {φ(~x, ~z) {zj/zk} → ∃~y. ψ(~y, ~z) with zj ∈ ~z, zk ∈ ~z, zj 6= zk}
ρzzψ(θ) = {φ(~x, ~z)→ ∃~y. ψ(~y, ~z) {zj/zk} with zj ∈ ~z, zk ∈ ~z, zj 6= zk}
ρzzθ(θ) = {θ(~x, ~y, ~z) {zj/zk} with zj ∈ ~z, zk ∈ ~z, zj 6= zk}

Figure 5.5: Substitution operators over st tgd θ = ∀~x, ~z. φ(~x, ~z)→ ∃~y ψ(~y, ~z).

or increase coverage of tuples in J . They can correct errors, and they can completely

remove coverage of tuples; score s(-1) penalizes the latter.

5.4.3 Conjunction Operators

Conjunction operators are designed to address flaws 2 and 4 from Section 5.4.1.

We list the conjunction operators in Figure 5.6. For example, ρwyψ creates refinements

having added head joins for every combination of target relation and existential vari-

able (see flaw (4)). Two operators – ρ--φ and ρ--ψ – are designed for the complementary

purpose of removing atoms from the body and head, respectively.

5.4.4 Antecedent Operators

Antecedent operators are designed to address flaw 6 from Section 5.4.1, which

requires that we entirely replace the antecedent (body) of the st tgd. The two

102

ρwxφ(θ) = {φ(~x, ~z) ∧R(~w) {wj/xk} → ∃~y. ψ(~y, ~z) with R ∈ S, wj ∈ ~w, xk ∈ ~x}
ρwyψ(θ) = {φ(~x, ~z)→ ∃~y. ψ(~y, ~z) ∧R(~w) {wj/yk} with R ∈ T, wj ∈ ~w, yk ∈ ~y}
ρwzφ(θ) = {φ(~x, ~z) ∧R(~w) {wj/zk} → ∃~y. ψ(~y, ~z) with R ∈ S, wj ∈ ~w, zk ∈ ~z}
ρwzψ(θ) = {φ(~x, ~z)→ ∃~y. ψ(~y, ~z) ∧R(~w) {wj/zk} with R ∈ T, wj ∈ ~w, zk ∈ ~z}

ρ--φ(θ) =

 ∧
i∈[1,|φ|],i 6=j

[φi(~x, ~z)]→ ∃~y. ψ(~y, ~z) with j ∈ [1, |φ|]


ρ--ψ(θ) =

φ(~x, ~z)→ ∃~y.
∧

i∈[1,|ψ|],i 6=j

[ψi(~x, ~z)] with j ∈ [1, |ψ|]


Figure 5.6: Conjunction operators over st tgd θ = ∀~x, ~z. φ(~x, ~z)→ ∃~y ψ(~y, ~z).

antecedent rules are as follows:

ρ-yφ(θ) = {R(~w) {wj/yk} → ∃~y. ψ(~y, ~z) with R ∈ S, wj ∈ ~w, yk ∈ ~y}

ρ-zφ(θ) = {R(~w) {wj/zk} → ∃~y. ψ(~y, ~z) with R ∈ S, wj ∈ ~w, zk ∈ ~z}

For example, ρ-yφ creates refinements for every combination of source relation and

existential variable. An important use of the antecedent operators is with the st tgds

we construct from scratch in Section 5.3.2. Those st tgds are missing a body entirely

and the antecedent operators create refinements that are well-formed.

5.5 Baseline Algorithms

Search function Ssib (Algorithm 1) uses the objective in Equation (5.1) as a

basis for both selection and iterative refinement. Our goal will be to evaluate the

103

Algorithm 3: Function Sib lacks selection.

Data:
Refinement operator set: ρ
Search stages: M
Refinement iterations: U
Refinement score: s
Result:M

1 M(0) = {};
2 for m from 1 to M do
3 M(m) ←M(-1);
4 Select relation T ∈ T;
5 Stop if total for T in Equation (5.2) is zero;

6 θ(-1) is a new st tgd with T ;

7 Update weights used by score function s(-1) = s(θ(-1), θ);

8 θ ← Refine(θ(-1),M(-1), s(-1),ρ, U);

9 M(m) ←M(m) ∪ {θ};
10 end

11 return M(M);

effectiveness of those two contributions. Therefore, we will compare Ssib with two

baseline functions: one lacks selection and the other lacks iteration.

5.5.1 Function Sib

Search function Sib lacks a selection step and is representative of conventional

single-relation learning approaches. We list Sib in Algorithm 3. Like Ssib, Sib uses

boosting, but it does not use MappingSelection(·). That is, in each stage it selects a

relation (line 4), it starts a single st tgd from scratch for that relation, and updates

weights (line 7) based on the latest mapping. Each stage, it selects a single best

refinement (line 8) and adds it to the mapping (line 9). In contrast, all members of

M(m) may change in each stage of Ssib during its selection step (line 12).

104

Algorithm 4: Search function Ss uses selection

Data:
Initial candidate set: C
Result:M

1 return MappingSelection(C);

5.5.2 Function Ss

Function Ss, shown in Algorithm 4, uses the selection approach only. It uses

no refinement operators; instead it assumes input C contains sufficient candidates.

We use CMD for selection (Chapter 3).

5.5.3 Search Inputs and Parameters

The three search functions use slightly different inputs and parameters, so we

now explain how we apply each algorithm to the same mapping problem inputs, and

how we vary the algorithm parameters in the evaluation (Section 5.7).

Functions Ssib and Ss both use selection, so use a set C(0) of candidates as

input. Function Sib lacks a selection step and instead starts from an empty mapping,

adding a new rule for the target relation selected in each stage. Two of the functions

(Ssib and Sib) are iterative and use a set ρ of refinement operators; the exception is

Ss. For both, we use the full set of operators defined in Section 5.4. The two functions

using boosting (Ssib and Sib) both use the same weighted refinement score function

s defined in Equation (5.4).

Both iterative functions stop after the same maximum number M of iterations,

or when the algorithm finds no remaining flaws at the beginning of a stage. Both

105

have both inner and outer iteration loops; they use a second parameter U for the

local search subroutine that runs the inner loop. Except where noted, to evaluate an

iterative function, we run it multiple times on the same problem while varying the

function parameter settings. We use one setting for each combination of M and U ,

as follows: We vary M from one to five in steps of two. We vary U from one to seven

in steps of two.

5.6 Scenario Generation

In Chapter 3, we use iBench [43, 76] – a system for generating diverse and

realistic integration scenarios – to evaluate the CMD mapping approach (Ss). In this

section, we go further and define a novel set of generated integration scenarios with

parameters specifically for controlling the search problem difficulty. Each problem

comprises the following:

• A pair of schemas and a data example: (S,T, I, J)

• One gold mapping: MG

• A set of st tgds: C = C(0)

All problems have the following parameters in common, except where noted:

• Source relations S = {s, s′}, each with arity ks.

• Target relations T = {t, t′}, each with arity kt.

• Arguments of s are indexed left-to-right by is. Those of s′ are indexed by is
′.

106

• Arguments of t are indexed left-to-right by it. Those of t′ are indexed by it
′.

• Universally-quantified variables {X1, . . . , Xks} for s, and {X ′1, . . . , X ′ks} for s′.

• Existentially-quantified variables {Y1, . . . , Ykt} for t, and {Y ′1 , . . . , Y ′kt} for t′.

• Source instance I contains ms = 50 tuples in each source relation.

• Target instance J contains mt = 50 tuples in each target relation.

• Constants in I are mutually exclusive across arguments of all source relations.

• Constants in J are mutually exclusive across arguments of all target relations.

The arities of relations have a direct impact on the complexity of the search problem.

Except where noted, we generate scenarios by varying arity (ks or kt or both) from

one to five in steps of two. We group our generated problems into four widely-used

classes of mappings that vary by the subset of the st tgd language they use. In the

next four sections, we define the problems in each of the four classes.

5.6.1 Single-Head Local-as-View

Single-Head Local-as-View (SH-LAV) mappings are restricted to a single source

relation S = {s} and a single target relation T = {t}. Despite these restrictions,

the space of possible mappings is large because logical variables can appear in any

arrangement in the body of the st tgd, in the head, or both.

Mapping functions should handle flawed input st tgds that make errors. One

way that errors vary is the location of incorrect arguments. In the following problem,

we set ks = 1 and vary which argument is incorrect in errors made by st tgds in C:

107

MG = {s(X1)→ t(X1, Y2, Y3, . . . , Ykt−1, Ykt)}

C = {s(X1)→ t(Y1, . . . , Yit−1, X1, Yit+1, . . . , Ykt)

with it ∈ [1, kt]} (5.11)

Problem 5.11 has kt−1 st tgds that make errors; we refer to these as bad st tgds. Each

bad st tgd has one bad argument; the other arguments have existentially quantified

variables.

The second problem set Problem 5.12 has the same gold mapping and a set

of candidates that vary by the number of copies of variable X1 in the head, which

varies the number (out of kt) of incorrect arguments:

C = {s(X1)→ t(X1, X1, . . . , X1, Yit+1, . . . , Ykt)

with it ∈ [1, kt]} (5.12)

Problem 5.12 also has kt − 1 bad st tgds; each has it − 1 bad arguments, one correct

argument, and the remainder are existential.

Mapping functions should also handle flawed st tgds that do not fully explain

tuples. In the following problem, we set ks = kt and vary the number of arguments

(out of kt) of tuples of J that are explained by st tgds in C:

108

MG = {s(X1, X2, . . . , Xks)→

t(X1, X2, . . . , Xks)}

C = {s(X1, X2, . . . , Xks)→

t(X1, X2, . . . , Xit , Yit+1, . . . , Ykt)

with it ∈ [1, j]} (5.13)

Parameter 1 ≤ j ≤ kt controls the maximum number of unexplained arguments in

candidates. If j = kt, Problem 5.13 has kt − 1 bad st tgds that vary by the number

of explained arguments. If j < kt, all st tgd are only partly explained. We generate

scenarios by varying j from three to kt in steps of two.

Mapping functions should be able to discover selection conditions with equalities.

In the following problem, we generate the source instance I so that the simple

candidate st tgd causes errors in the target. Specifically, mt = 75 and ms = 100,

where 25 of the source tuples should not be transferred to the target. To avoid the

errors, we have to discover a mapping with a selection condition setting all but one

of the ks source terms equal.

MG = {s(X1, X2, X2, . . . , X2)→ t(X1)}

C = {s(X1, X2, X3, . . . , Xks)→ t(X1) (5.14)

109

Mapping functions should be able to discover shared nulls, i.e., constraints on

invented values. The following problem is similar to Problem 5.14 because we need

to learn equality conditions over variables, except we now need to learn them over

terms in the target, not the source.

MG = {s(X1)→ t(X1, Y2, Y2, . . . , Y2)}

C = {s(X1)→ t(X1, Y2, Y3, . . . , Ykt) (5.15)

The simple candidate st tgd is able to cover all the tuples in J , as homomorphisms

will exist from each of its kt − 1 unique existential variables to tuples of J . However,

the revised covers function (Section 5.2.1.1) prefers the constraints provided by the

correct st tgd which replaces all existentials with a single existential, and therefore a

single labeled null.

5.6.2 Local-as-View

Local-as-View (LAV) mappings are restricted to a single source relation S = {s}

and can have one or more target relations. Mapping functions should be able to

learn the target relation joins that are possible with LAV mappings. In the following

problem, we must learn a correct join in order to explain tuples of the additional

relation t′.

110

MG = {s(X1, X2, . . . , Xks)→

t(Y1, X2, . . . Xks/2) ∧ t′(Y1, Xkt/2+2, . . . , Xks)}

C = {s(X1, X2, . . . Xks)→ t(Y1, X2, Y3, . . . , Ykt)} (5.16)

We set kt = ks/2, which means that learning the correct join can double the coverage

of the simple candidate st tgd.

5.6.3 Global-as-View

Global-as-View (GAV) mappings are restricted to a single target relation

T = {t}. Mapping functions should be able to learn the source relation joins that

are possible with GAV mappings. The following problem is similar to Problem 5.16

because we need to discover a correct join, except the join is over source relations,

not target relations.

MG = {s(X1, X2, . . . Xks) ∧ s′(X1, X
′
2, . . . , X

′
ks)→

t(X1, X2, X3, . . . , Xks , X
′
2, X

′
3, . . . , X

′
ks)}

C = {s(X1, X2, . . . Xks)→ t(X1, Y2, Y3, . . . , Ykt)} (5.17)

In this problem, the simple candidate st tgd covers all the tuples in J ; however, it

leaves half of the arguments filled with nulls. We set kt = 2ks − 1, which means that

111

learning the correct join can double the number of arguments that are filled with

constants instead of nulls.

5.6.4 Global-Local-as-View

Global-Local-as-View (GLAV) mappings can have multiple source and target

relations. Mapping functions should be able to learn the source and target joins that

are possible with GLAV mappings. The following problem combines the challenges

of problems 5.16 and 5.17.

MG = {s(X1, X2, . . . Xks) ∧ s′(X1, X
′
2, . . . , X

′
ks)→

t(Y1, X2, . . . , Xks) ∧ t′(Y1, X
′
2, . . . , X

′
ks)}

C = {s(X1, X2, . . . Xks)→ t(Y1, X2, Y3, . . . , Ykt)} (5.18)

In this problem kt = ks; explaining all target relations fully requires learning the

correct join over the source, the correct join over the target, and learning the correct

exchanged variables from all source relations to the correct target relations. Therefore,

this problem is the most complex in the problem set.

5.7 Evaluation

In this section, we empirically evaluate the proposed mapping search approach,

comparing it to several baseline algorithms with respect to mapping quality and

112

scalability. We use 16 generated mapping problems and 28 algorithm parameter

configurations, resulting in 448 total measures of mapping quality and running time.

Additionally we demonstrate the mapping search approach on two real data problems.

We ran our experiments on an Intel Xeon with 24 x 2.67GHz CPU and 128GB RAM.

5.7.1 Mapping Quality

We use the problems in Section 5.6 to evaluate the ability of the search and

baseline algorithms to discover high quality mappings. As we did in Chapter 3, to

measure the correctness of the mappings selected by our approach, we used the IQ-

Meter [61] evaluation measure. IQ-Meter compares the results JM of our learned

mapping to the solution JG of the gold standard mapping. IQ-Meter measures the

ability of a mapping to generate correct tuples as well as correct relational structures

via shared nulls, so it is appropriate as an evaluation measure on the mapping

problem. It calculates recall and precision of tuples and recall and precision of joins.

It also combines these four measures into a combined measure score(JM, JG) ∈ [0, 1],

where 1.0 is the best possible score for a mapping. We also measure the consistency

of mapping quality from each algorithm as the standard deviation of the quality

score.

In Figures 5.7 through 5.12 we plot the mean and standard deviation of quality

scores for the three algorithms on all the generated scenarios for all problems over

all scenario parameter settings. Our proposed search algorithm Ssib has the highest

mean quality over-all; it also has the highest quality for the tuple and join components

113

s ib sib
0.0

0.2

0.4

0.6

0.8

1.0

IQ
 S

co
re

 (m
ea

n)

Figure 5.7: Mapping quality

s ib sib
0.0

0.2

0.4

0.6

0.8

1.0

IQ
 S

co
re

 (s
td

)

Figure 5.8: Mapping quality variation

s ib sib
0.0

0.2

0.4

0.6

0.8

1.0

IQ
 T

up
le

 S
co

re
 (m

ea
n)

Figure 5.9: Tuple quality

s ib sib
0.0

0.2

0.4

0.6

0.8

1.0

IQ
 T

up
le

 S
co

re
 (s

td
)

Figure 5.10: Tuple quality variation

s ib sib
0.0

0.2

0.4

0.6

0.8

1.0

IQ
 Jo

in
 S

co
re

 (m
ea

n)

Figure 5.11: Join quality

s ib sib
0.0

0.2

0.4

0.6

0.8

1.0

IQ
 Jo

in
 S

co
re

 (s
td

)

Figure 5.12: Join quality variation

114

s ib sib
0.0

0.2

0.4

0.6

0.8

1.0

IQ
 S

co
re

 (m
ea

n)

Figure 5.13: SHLAV mapping quality

s ib sib
0.0

0.2

0.4

0.6

0.8

1.0

IQ
 S

co
re

 (m
ea

n)

Figure 5.14: LAV mapping quality

s ib sib
0.0

0.2

0.4

0.6

0.8

1.0

IQ
 S

co
re

 (m
ea

n)

Figure 5.15: GAV mapping quality

s ib sib
0.0

0.2

0.4

0.6

0.8

1.0

IQ
 S

co
re

 (m
ea

n)

Figure 5.16: GLAV mapping quality

of the IQ-Meter score. Our proposed algorithm also has higher consistency (lower

score standard deviation) than the other two algorithms.

In Figures 5.13 through 5.16 we plot the mean quality scores of the three

algorithms on the generated scenarios from the four classes: SH-LAV, LAV, GAV,

and GLAV. The proposed Ssib algorithm has the highest quality in all four classes;

in particular, in the GLAV class it was the only algorithm to find a mapping with

non-zero score.

In Figures 5.17 and 5.18 we plot mean quality scores for Sib (grey) and Ssib

115

1 3 5 7
U

0.0

0.2

0.4

0.6

0.8

1.0

IQ
 S

co
re

 (m
ea

n)

Figure 5.17: Quality while varying U

1 3 5
M

0.0

0.2

0.4

0.6

0.8

1.0

IQ
 S

co
re

 (m
ea

n)

Figure 5.18: Quality while varying M

(dark blue) while varying the algorithm parameters U and M (Section 5.5.3). Recall

that U sets the number of iterations of the local search subroutine (Algorithm 2), and

that M sets the maximum number of stages of the main loop in Ssib (Algorithm 1)

and Sib (Algorithm 3). The baseline Ss does not use either parameter, so we do not

plot its scores. As expected, both algorithms’ quality scores improve as we increase

the number of iterations in the local search, although our proposed algorithm has

higher quality at every setting of U . In contrast, only the score for Ssib increases with

M ; this is possible because Ssib has the opportunity to repeatedly refine a st tgd

over multiple stages, while Sib starts a new st tgd in each stage.

Our approach (Ssib) achieves a perfect quality score of 1.0 on all problems with

parameters U and M set as low as seven and three, respectively.

5.7.2 Scalability

In Figure 5.19 we plot the running times of the three algorithms over all

generated scenarios and over all scenario parameter settings. As expected, the Ss

116

s ib sib
101

102

103

104

Se
co

nd
s

Figure 5.19: Running times

1 3 5 7
U

102

103

Se
co

nd
s

Figure 5.20: Times while varying U

1 3 5
M

102

103

Se
co

nd
s

Figure 5.21: Times while varying M

algorithm is the fastest by far, as it does only a single selection step. Algorithms Sib

and Ssib take longer and use the same settings for maximum numbers of iterations.

On the LAV and GLAV problems, Ssib takes significantly longer than Sib; however,

on those problems Sib fails to find good mappings at all, and stops while Ssib is still

improving its mappings. On Problem 5.14, both Sib and Ssib get the same quality

score, but Ssib is able to finish significantly faster.

In Figures 5.20 and 5.21 we plot the mean running times of algorithms Sib

(grey) and Ssib (dark blue) while varying their U and M parameters, respectively.

117

Both algorithms’ running times increase with the parameters, which control the

maximum iterations of the search inner and outer loops. Algorithm Sib has lower

running times because it refines fewer st tgds each stage.

Other than the algorithm choices we’ve discussed, we did not fully optimize

the performance of any of the algorithms. In particular, we did nothing to avoid

recalculation of some data preparation for covers, or re-refinement of some st tgd.

The data preparation itself could also be made faster with straightforward indexing

over the source and target instances. Also, a major advantage of boosting is that the

set of homomorphism checks needed to calculate coverage can be reduced by filtering

the target instance to the set of tuples that are still not fully explained. Finally, other

than checking for zero score when selecting the relation to refine, we did no extra

checking for convergence or other early stopping conditions. Any of those additional

optimizations could make the algorithms even faster.

5.7.3 Results on Real Data

To complement our evaluation on generated mapping problems, we also test

our approach on problems with real data. We map Allen Brain Atlas (ABA), and

UniProt (Universal Protein resource) schemas to the Semantic MediaWiki Linked

Data Environment (SMW-LDE) Ontology [67, 68]. ABA has one relation and 15

tuples and UniProt has one relation and 15 tuples. The common target schema has 31

relations. We construct data examples from the source instances, and test the ability

of search to discover good mappings despite the lack correspondences or foreign keys.

118

On ABA the search algorithm found an ideal mapping and on UniProt it found a

nearly ideal mapping.

The only difference between our mapping and with the gold standard mapping

for UniProt was in one argument in one target relation the search placed an existential

variable instead of a universal variable. When we inspected the problem inputs, we

found that the argument in the data example happened to be entirely filled with

nulls. Therefore, the mapping found by the search actually produced the same tuples

as the gold standard. When a data example lacks enough evidence to select the

gold standard mapping, as in this case, another approach could be to leverage other

types of evidence, such as column names. However, in this case the source and

target column names (Mgi Marker Accessionid and value) seem unrelated so were

unlikely to help any mapping approach produce the gold standard.

5.8 Related Work

Automatic schema mapping discovery is in a broader class of rule learning

problems, in which each hypothesis H is a set of rules from language L and we

optimize a score function over those subsets. Other examples of rule learning are

inductive logic programming and structure learning [de Raedt et al, 2016]. Most

existing approaches either iteratively refine a single hypothesis, or work in two steps :

(1) generating a large set of candidate rules, then (2) selecting a subset. Each has

advantages and disadvantages with respect to the several criteria:

Two-step approaches may use different kinds of evidence in each step. In the

119

first step, some approaches use the syntax of hypotheses to generate candidate rules.

Some instead take a bottom-up approach, using the heuristic that repeating patterns

in the data are likely to be elements of good rules [77, 78, 79]. The score function is

then used alone in the second step. Iterative approaches leverage syntax to generate

refinements [80] and may also leverage data [81]. Iterative approaches then use the

score directly to update H.

A hypothesis is ideal if it matches a given gold standard, or is equivalent to

the gold standard with respect to the task. Assuming an ideal solution P ⊆ L exists,

finding it with two-step approaches requires P ⊆ C. If P is complex, e.g., having

many conjuncts, and bottom-up heuristics do not yield P , generating it using syntax

alone may result in more candidates than is feasible in the second step. Finding

P iteratively requires sufficient refinements, continuing past local optima, so most

approaches use search algorithms, e.g., beam search, or techniques such as random

perturbations [82]. By their design, iterative approaches can achieve highly expressive

rules more easily than two-step approaches.

The relative running times of two-step and iterative approaches vary by pa-

rameter settings. However, the trend in recent two-step systems is that optimization

is very efficient, scaling to large numbers of candidates. Additionally, systems with

memory needed to optimize over many candidates are increasingly available. Iterative

approaches do not generate candidates up front, so use less memory than two-step.

However, the work done in each iteration is not as straightforward to accelerate or

parallelize, compared to the optimization done in two-step systems.

In summary, two-step approaches leverage a wider range of evidence than

120

iterative approaches, are less likely to get stuck in local optima and are increasingly

efficient. On the other hand, iterative approaches more easily discover highly expressive

rules. Our proposed approach (Section 5.3) combines benefits of both. Like two-step,

we use a set of candidate rules — instead of refining a single hypothesis — then

efficiently find the best subset. Like iterative approaches, we use refinements to

achieve highly expressive rules. Instead of using the refinements to replace the current

hypothesis, we add them to the set of candidates, then repeat the optimization.

5.9 Conclusion and Future Work

In this chapter, we introduce a new approach to guide a search over possible

mappings, exploiting a useful property of the objective we introduced in Chapter 3

that allows us to use it to guide both selection over subsets of st tgds and refinement

of individual st tgds. Specifically, we use a boosted search organized in stages. In

each stage, we change the makeup of the mapping – suppressing st tgds, generating

new individual st tgds, or both. We generate new st tgds using refinement operators,

guided via errors caused by flaws of the current mapping. We also introduce a revised

definition for coverage, as well as a novel set of generated scenarios in four categories

of mappings. We evaluate the new search approach on generated as well as real data

sets, showing its potential to discover high quality mappings despite a variety of

metadata flaws. Future work could improve the efficiency of the algorithm further

with data indexing, data filtering, and other optimizations.

121

Chapter 6: Joint Matching and Mapping

6.1 Introduction

Metadata arises from the source and target schemas; another form of metadata

are links, called matches or correspondences, from attributes in our target schema to

attributes in the source that share the same meaning, i.e., a semantic alignment. For

example, if an attribute in the target contains ages of people, correspondences would

identify any attributes in the source that also contain ages. Correspondences are

helpful for generating possible transformations; for example, widely-used algorithms

like Clio [16] use them to derive st tgd mappings.

Unfortunately, correspondences can be noisy, which can result in incorrect

mappings. Matching systems can provide confidence levels with each correspondence,

but most existing mapping techniques cannot accommodate those confidence levels

in a principled way. A significant body of past work focuses solely on the problem of

generating correspondences, incorporating a wide variety of useful evidence. Addition-

ally, correspondences are especially helpful when we lack the kind of data example

we use in Chapters 3 and 5. An improved ability to handle the noise and uncertainty

in correspondences would be very useful, whether used alone or in combination with

approaches like those discussed in Chapters 3-5.

122

One approach is to choose a threshold on the confidence levels associated with

correspondences, and use all correspondences with at least that confidence when

generating possible st tgds. However, it can be difficult or impossible to find a single

threshold that separates correct and incorrect correspondences if confidences are

not perfectly accurate or calibrated. Some recent approaches consider a variety of

confidence thresholds when generating a mapping, but still rely on the ordering

provided by confidence to rank good correspondences above bad ones [24]. This is

understandable, because a discrete search over all subsets of correspondences would

be intractable.

However, clues to which correspondences are correct may lie in a holistic view of

both correspondences and st tgds. I consider the case that some correspondences can

be found jointly with mappings as a strategy to improve and harmonize both. In this

chapter, I propose a joint probabilistic mapping generation model that finds missing

correspondences and handles their inherent noise and uncertainty in a principled

way.

Like the model in Chapter 3, this approach builds upon probabilistic soft logic

(PSL) [6]. PSL uses first order rules to specify probabilistic models in relational

domains, and provides an efficient, generic engine for probabilistic inference in these

models [83, 53]. Compared to earlier chapters in this dissertation, we assume different

inputs; specifically, although we use data instances, we don’t assume access to a data

example with overlapping instances. This is an important case that complements

the approach described Chapters 3 and 5 and is useful for leveraging additional

types of metadata evidence. We also use a different mapping objective than the ones

123

in Chapters 3 and 5. Here, we encode a variety of characteristics of good schema

mappings in PSL, thus defining a probability distribution over possible mappings

that assigns higher probability to those satisfying these characteristics.

To evaluate our proposed approach we first show that our approach is able

to find known matches and mappings in real-world data. We then illustrate the

flexibility of the approach by evaluating different combinations of rules from our PSL

program and show how they contribute to the system’s effectiveness. Finally, we

show that our system scales well with schema size and complexity.

The rest of this chapter is organized as follows. First, we provide an overview of

the problem we are solving and a brief review of PSL. Then we present our approach

from start to end. In Section 6.4 we present the results of our experiments using the

approach.

6.2 Mapping and Matching Problem

A schema is a finite set of relation symbols, corresponding to table names

in a relational database. Each relation symbol has an associated arity n and set

of n attributes, corresponding to column names. An instance of a relation of arity

n is a finite set of n-tuples, corresponding to a database table. An instance of

a schema contains one instance for each of the schema’s relation symbols, and

corresponds to a database. A relation’s key attributes are a subset of its attributes

whose values uniquely identify each tuple in an instance. We use Datalog notation

to represent an instance of an n-ary relation r as a set of ground atoms of the

124

form r(a1, . . . , an), where the ai are constants, and a query over r as a non-ground

atom r(X1, . . . , Xn), where the Xi are logical variables. A mapping is a finite set of

source-to-target tuple generating dependencies (st tgds) [63], that is, logical rules of

the form ∀~x, ~z, . φ(~x, ~z)→ ∃~y. ψ(~z, ~y). Here, φ is a conjunction over a source schema

S, and ψ is a conjunction over a target schema T . For convenience, we will omit

quantifiers.

Recall from Chapter 3 that an instance of the target is an exchange solution

for the source schema, a target schema, and a mapping if and only if the source and

target instances together satisfy all st tgds in the mapping [17]. In that chapter,

we used exchange solutions and the notion of a data example as the basis for the

mapping objective and also the final evaluation using IQ-Meter [61]. That is, we

used an extensional approach to evaluating mappings, by focusing on their effects

on exchange solutions. In this chapter, we instead use an intensional evaluation, in

which we directly evaluate the ability of the mapping approach to predict the correct

st tgds and matches.

The advantage of this approach – and the reason why it is complementary to

Chapters 3 and 5 – is that an intensional approach does not require a data example.

For this reason, we will simply use common learning measures, such as false positives

and false negatives, to evaluate our approach.

125

6.3 Our Approach

Our proposed solution is based on PSL, a framework that allows the specification

of both hard and soft logical constraints, supports soft truth values, and provides

efficient techniques for probabilistic inference. By encoding characteristics of a good

schema mapping in PSL, finding a schema mapping becomes a probabilistic inference

task (Section 6.3.2). Before the inference step we first generate logical structures

called candidate queries, taking into account available constraints and data instances

(Section 6.3.1). The PSL program then determines how to form st tgds from these

queries, jointly inferring matches and st tgds based on both instance data and schema

information.

To discover schema mappings with PSL, we construct a program that describes

good mappings and then infer a most probable explanation (MPE), which is a most

probable assignment of truth values to the unknown atoms. One of the reasons

PSL is well suited to schema mapping discovery is that MPE inference is a fast,

convex optimization [53]. As we show (Section 6.4.3.3), our approach is therefore

very scalable. Other features we leverage include PSL’s ability to directly integrate

similarity functions into the model by treating them as the continuous truth values

of logical atoms and to reason with extensive amounts of input as evidence.

Our approach consists of three steps.

1. Generate candidate queries over the source and target schemas (Section 6.3.1).

2. Perform probabilistic inference in the PSL program in Figures 6.1 and 6.2

126

(Section 6.3.2) to find optimal soft truth values for logical atoms encoding

matches and st tgds, i.e., pairs of source and target queries as well as equalities

between logical variables in these queries. Higher truth values indicate higher

certainty of the corresponding st tgd being part of the final mapping. This

step jointly discovers matches (limited to attribute-attribute matches) and

st tgds, thus addressing the full mapping task without need to provide matches

as input, though those are exploited if available. The second step results in a

ranking of st tgds based on their truth values.

3. A user selects the final st tgds from the rankings given in the second step.

In the remainder of this section we describe in detail the steps of our approach.

6.3.1 Generating Candidate Queries

In Chapters 3 and 5, we start with a set of candidate formulas, where each

formula is a whole st tgd. In those chapters, our goal is to model the interactions

between st tgds and data instances, so st tgds and tuples are the main objects

represented in that model.

In this chapter, we focus on correspondences and their special use for connecting

the body and head of a st tgd. Therefore bodies, heads, and correspondences are the

main objects represented in this model. For that reason, the input formulas we start

with here are bodies and heads of st tgds, i.e., candidate conjunctive queries. Those

candidate queries are provided as evidence to the PSL program for schema mapping

discovery, which selects st tgds that connect source to target queries.

127

We generate candidate queries for each schema using an approach that a

simplified form of the chase algorithm [84] employed in the Clio system for mapping

discovery [16]. To generate candidate queries, we start with one query for each source

and target relation. We then repeatedly apply foreign key constraints to create

conjunctions of atoms. Each conjunction formed at each step becomes a candidate

query in the final set. To understand the benefit of this simplified method, compare

how the queries are used by Clio and by our approach. Clio uses all pairs of source and

target queries, and removes those that (i) do not cover attribute matches provided

as input or (ii) are subsumed by some other mapping that covers the same matches.

Our approach starts similarly, but pairs the queries using the PSL model. Using PSL

to pair the queries gives us the flexibility to generate lots of simple queries, then rely

on the PSL model to find an ideal pairing.

6.3.2 Probabilistic Inference in PSL

Our PSL program uses two types of predicates (Section 6.3.2.1). Closed predi-

cates, for which the truth values of ground atoms are provided as evidence, represent

information on the schemas and their instances, including degrees of similarity be-

tween elements of those. Meanwhile, open predicates, for which the truth values

of ground atoms are determined during probabilistic inference, represent attribute

matches and st tgds.

Four types of first-order rules encode dependencies between closed and open

predicates, and between different open predicates:

128

• Structural evidence rules propagate characteristics of the structure of

schemas and data instances to open atoms that specify matches and st tgds.

• Similarity evidence rules propagate degrees of similarity from elements of

schemas and data instances to open atoms that specify matches and st tgds.

• Coverage rules express the preference for complete mappings, that is, sets of

st tgds covering as much of the source and target schemas and data instances

as possible. These rules use existential quantification to determine the set

of ground atoms they range over based on the evidence. We use prioritized

disjunction rules (Chapter 4) to allow the existential quantification, which is

otherwise not allowed in the PSL language.

• Coupling rules enable joint inference by creating dependencies between atoms

of multiple open predicates.

We discuss the rules that are relevant for discovering matches in Section 6.3.2.2, and

those that use matches to discover mappings in Section 6.3.2.3.

6.3.2.1 PSL Predicates

Our PSL program uses (1) closed predicates to represent information on the

source and target schemas and instances, the queries generated in the first phase of

mapping generation, and similarity functions evaluated over the source and target,

and (2) open predicates to represent matches and st tgds. To visually distinguish

these, we underline the names of open predicates.

129

All relations in the source and target schemas as well as their attributes are

represented by the predicates sAtt(Rs, As) and tAtt(Rt, At), respectively. The key

attributes of all target relations are given by key(Rt, At). Our rules do not use key

attributes of the source, which are therefore not represented. We further use the

predicate related(R,A,R′, A′) to provide pairs of attributes (and their relations) from

the same source that are related based on structural information, that is, are either

in the same relation, or in two relations linked by a foreign key constraint.

For each query generated in the first phase of our approach (Section 6.3.1), the

predicates sQ(Qs) (for the source) and tQ(Qt) (for the target) provide a query identi-

fier. The structure of these queries is represented by the predicate var(Q,N,R,A, V),

whose arguments correspond to the query identifier, the position of a atom within

the query, the relation of that atom, an attribute of that relation, and an iden-

tifier for the logical variable corresponding to that attribute in the atom. That

is, var(Q,N,R,A, V) denotes that in the Nth conjunct of conjunctive query Q,

variable V is in the attribute A of relation R. For instance, a conjunctive source

query

q1 = r(X) ∧ s(X,X ′) ∧ r(X ′)

would be represented as follows:

sQ(q1)∧var(q1, 1, r, a1, x) ∧ var(q1, 2, s, b1, x)∧

var(q1, 2, s, b2, x
′) ∧ var(q1, 3, r, a1, x

′)

130

We further link queries to all strings denoting attributes appearing in the query via

predicate qHasAttName(Qs, S).

In addition to these purely schema-based predicates, we use similarity functions

over both schema elements (e.g., attribute names) and data instances (e.g., values of

an attribute). More specifically, for matching, similarityFunction(S) lists all available

such functions, whereas similarBy(S,Rs, As, Rt, At) evaluates the similarity function

given by its first argument on the attributes of relations specified by the remaining

arguments. These similarity functions can use schema information, such as attribute

and relation names, or compare the actual values taken by the attributes in the

data instances. Examples include similar names of attributes, similar sets of relation-

attribute name combinations, or similar sets of frequent characters present in data

instances. The predicate conditions(S,Rs, As, Rt, At) allows us to restrict the use of

these similarity functions based on the function itself as well as the arguments it is

applied to, as we discuss in more detail in Section 6.3.2.2. For mapping, we use a

single similarity-based set predicate similarAttNames/2, whose arguments are sets

of strings. It is defined as

∑
i∈{Qs.qHasAttName}

∑
j∈{Qt.qHasAttName} sp(i, j)

max(|{Qs.qHasAttName}| , |{Qt.qHasAttName}|)

where sp(i, j) is a function of the similarity of two attribute names and we use

PSL’s object-oriented syntax for sets, that is, the set {Qs.qHasAttName} contains

all strings S for which qHasAttName(Qs, S) is true. In our program, the similarity

of any two attribute names is available as similarAttName/2, so that predicate is

131

used when defining similarAttNames/2. All closed predicates not based on similarity

functions have Boolean truth values.

Our program further uses three open predicates that represent matches and

st tgds, whose truth values are to be determined by inference. Matches are represented

using match/4, whose arguments are a source relation, an attribute of that source

relation, a target relation, and an attribute of that target relation. st tgds are

represented using two predicates, tgd/2 and equals/4. An atom of the form tgd(Qs, Qt)

states that the queries with identifiers Qs and Qt (as provided by sQ/1 and tQ/1)

form the source and target side of the st tgd, respectively. For any such atom, atoms of

the form equals(Qs, Vs, Qt, Vt) determine equality between logical variables on the two

sides. For instance, given the source query q1 above and a corresponding representation

of a target query q2 = t(X ′′, X ′′′), the atoms tgd(q1, q2), equals(q1, x, q2, x
′′′) and

equals(q1, x
′, q2, x

′′) represent the st tgd r(X) ∧ s(X,X ′) ∧ r(X ′)→ t(X ′, X).

While we present match as an open predicate here, the implementation of PSL

does not make a distinction between open and closed predicates, and thus allows us

to provide the grounding of match as evidence (as we do in part of our experiments

discussed in Section 6.4), or to even mix the two cases, that is, provide some of the

matches as input, and infer the remaining ones. This has a significant advantage

for practical applications because we can directly incorporate outputs of external

matching systems as observed match atoms.

132

sAtt(Rs, As)→ ∃(Rt, At). tAtt(Rt, At) ∧match(Rs, As, Rt, At) (a)

match(Rs, As, Rt, At) ∧ similarityFunction(S)→ similarBy(S,Rs, As, Rt, At) (b)

similarityFunction(S) ∧ conditions(S,Rs, As, Rt, At) ∧ similarBy(S,Rs, As, Rt, At)

→ match(Rs, As, Rt, At) (c)

match(Rs, As, Rt, At) ∧ related(Rs, As, R
′
s, A

′
s)

→ ∃(R′
t, A

′
t). related(Rt, At, R

′
t, A

′
t) ∧match(R′

s, A
′
s, R

′
t, A

′
t) (d)

Figure 6.1: PSL rules for matching

6.3.2.2 Rules for Matching

The first part of our PSL program, Rules (a)–(d) in Figure 6.1, introduces

dependencies between the closed predicates providing the evidence and the open

predicate match encoding matches.

Rule (a) is a coverage rule, stating that for each attribute As of a relation Rs

in the source, there should be a match to some attribute At of a relation Rt in

the target. In this way, it expresses a preference for mappings that include st tgds

covering as many source attributes as possible.

Rules (b) and (c) are similarity evidence rules. By using the closed predicates

similarityFunction/1 and similarBy/5, we obtain multiple instances of these rules,

one for each similarity function provided with the evidence. Inference has to find a

trade-off between the constraints induced by all these similarities. More specifically,

Rule (b) discourages matches of attributes that are not similar, whereas Rule (c)

promotes matches between similar attributes, but only under certain conditions as

specified by the closed conditions/5-atoms. For instance, we may encourage matches

between attributes with similar names, but only if their data instances overlap.

133

tgd(Qs, Qt)→ similarAttNames({Qs.qHasAttName}, {Qt.qHasAttName}) (e)

equals(Qs, Vs, Qt, Vt)→ tgd(Qs, Qt) (f)

match(Rs, As, Rt, At)

→ ∃(Qs, Ns, Vs, Qt, Nt, Vt). sQ(Qs) ∧ var(Qs, Ns, Rs, As, Vs) ∧ tQ(Qt) (g)

∧ var(Qt, Nt, Rt, At, Vt) ∧ equals(Qs, Vs, Qt, Vt)

tgd(Qs, Qt) (h)

→ ∃(Rt, At, Ns, Rs, As, Vs, Nt, Vt). key(Rt, At) ∧ var(Qs, Ns, Rs, As, Vs)

∧ var(Qt, Nt, Rt, At, Vt) ∧ equals(Qs, Vs, Qt, Vt)

Figure 6.2: PSL rules for mapping

Without these extra conditions, the two rules together would establish an equivalence

between the truth values of similarBy/5-atoms and corresponding match/4-atoms

over the same attributes. That would be an unreasonably strict constraint in practice,

as it introduces tension between different similarity functions.

Rule (d) is a structural evidence rule that incorporates schema-based informa-

tion into the matching process by stating that if a source attribute matches to a

target attribute, related source attributes (i.e., in the same relation, or reachable via

a join of two relations) likely match to related target attributes.

If all matches are provided as part of the evidence, these rules do not influence

probabilistic inference.

6.3.2.3 Rules for Mapping

In addition to the rules for matching, our PSL program contains the rules for

mapping given by Rules (e)–(h) in Figure 6.2. These rules introduce dependencies

between the evidence, the open predicate match also affected by the matching rules,

134

and the open predicates tgd and equals.

Recall that a tgd atom pairs a query over the source schema with a query over the

target schema, and that the associated equals atoms establish which logical variables

in these queries are equated, We assume that all equalities between logical variables

within a query have been established during query generation. As a consequence,

each logical variable on the source side should be equal to at most one logical

variable on the target side (and vice versa), as equating it with more than one such

variable would make the two variables on the target side equal as well. We therefore

impose functional constraints on groundings of equals, that is, we only allow a single

grounding of equals(Qs, Vs, Qt, Vt) with non-zero truth value for any given grounding

of Qs, Vs, Qt or Qs, Qt, Vt.

Rule (e) is an evidence rule influencing the truth value of tgd atoms based

on the similarity of the names of attributes appearing in the queries as given by

similarAttNames/2. This rule combines two ideas, namely that attributes with similar

names often map onto each other, and that many mapping attributes indicate a

good st tgd, that is, one that transfers many parts of the schemas. Even though the

similarity function does not take into account that attribute mappings should typically

be one to one, in practice, it already provides valuable guidance by discouraging

st tgds whose queries have dissimilar attribute names. As in the case of the matching

rules, we could include additional rules of this type based on other similarity functions.

Rule (f) couples truth values of tgd atoms to the truth values of the corresponding

equals atoms, expressing a preference for st tgds whose body and head share variables

enabling data transfer.

135

The final two rules are coverage rules, that is, they aim at including as much

of the schemas as possible into the mapping. Rule (g) states that if we are confident

about a match between attributes, we would like it to contribute to some mapping

between conjunctive queries. Rule (h) states that for each st tgd, we want it to

map some source attribute to the key attribute of the target database, given by

key(Rt, At), so our st tgds will lead to proper tuples in the target.

The weights of all rules are set to 1.

6.4 Evaluation

Our goals are to evaluate whether our approach predicts correct mappings and

matches, and to demonstrate the scalability of the system as the size and complexity

of the data sources grow. We use STBenchmark to demonstrate scalability because

we are able to generate tasks of arbitrary size and complexity.

6.4.1 Measuring the Quality of Mappings

We evaluate the quality of the discovered mapping by comparing its st tgds

to the ideal st tgds provided with the evaluation data [41]. Recall that tgd atoms

determine which queries participate in the same st tgd, and that equals atoms

determine how variables are shared across these queries. We evaluate both aspects

as the accuracy of rankings of tgd and equals atoms by the truth values inferred by

PSL. Specifically, we calculate the area under the receiver operating characteristic

(ROC) curve (AUC) for each. To summarize the accuracy of the approach over an

136

entire benchmark we average the AUC of each task in the benchmark.

For tgd atoms discovered by our program, those that use the same pair of

queries (or the same after reordering its query atoms) as a st tgd in the gold standard

are considered true positives, and all others false positives. The latter includes st tgds

that, even though not in the gold standard, generate correct target data, which would

be considered true positives in an evaluation setting based on the quality of target

instance data generated by a mapping. For this reason we expect that our results

would be even more favorable in that evaluation setting.

We separately evaluate the quality of variable bindings of inferred st tgds over

correct pairs of queries. We rank the equals atoms associated with true positive tgd

atoms. In other words, for each atom equals(Qs, Vs, Qt, Vt) in the rankings there must

exist a tgd(Qs, Qt) in the gold standard with the same queries Qs and Qt.

6.4.2 Data Sources

The Neuroscience benchmark [67, 68] provides a real-world test setting

that requires integration of four neuroscience data sources with simple schemas

into a target Web Ontology Language (OWL) ontology.1 The STBenchmark

system [76] generates synthetic relational schemas and mappings between them based

on input parameters controlling the size of the schemas and the complexity of the

mappings, and thus allows for controlled experimentation on larger scale schemas.2

The Amalgam setting [66] considers mappings between manually generated, more

1We thank Knoblock et al. [68] for providing their data and mappings.
2http://db.disi.unitn.eu/pages/stbenchmark/

137

http://db.disi.unitn.eu/pages/stbenchmark/

complex relational schemas for different bibliographic data sources.3

6.4.2.1 Neuroscience

The four data sources (Allen Mouse Brain Atlas (ABA), KEGG, PharmGKB,

and Uniprot) in the Neuroscience setting contain a total of nine relations. Each

relation can be mapped to the target independently of all others, so we consider one

mapping discovery task per relation. For each such task, the source schema S contains

the corresponding relation only, and the source instance I(S) is the instance of this

relation. The common target schema T for all tasks is based on the OWL ontology

Wiki.owl. It contains one relation for each of the four classes Disease, Drug, Gene

and Pathway, with one key attribute corresponding to an object IRI and additional

attributes corresponding to all object and data properties of the class. For each task,

the target instance is populated with the output of Knoblock et al.’s mapping of the

corresponding relation evaluated on its source instance using Karma4. As ABA and

KEGG Pathway have been used during development, we evaluate on the tasks for

the remaining seven source relations.

The source side queries directly correspond to source relations here, that is, for

each task, the evidence contains a single query rs(X1, . . . , Xn) over the relation rs

to be mapped. The target side queries, however, are truly conjunctive. Each OWL

class in the target is a relation and has attributes comprising the data and object

properties

3We thank Miller et al. [66] and Boris Glavic for their version of this benchmark.
4https://github.com/InformationIntegrationGroup/Web-Karma-Public

138

https://github.com/InformationIntegrationGroup/Web-Karma-Public

6.4.2.2 STBenchmark

In the second setting, we generate mapping discovery tasks using STBenchmark,

which we configure to generate source schemas, target schemas and mappings with

varying size and complexity. We vary the number of relations and the number

of attributes of each relation, which determine the size of the schemas, and the

heterogeneity of the schemas, which influences the structural complexity of mappings.

For the latter, we consider copying, where attributes from a source relation can

directly be mapped onto those of a target relation, vertical partitioning (VP), where

attributes of a source relation are mapped onto attributes of multiple target relations

(which requires discovering the correct join on the target side), and denormalization

(DN), where attributes from multiple source relations are mapped onto attributes

of a single target relation (which requires discovering the correct join on the source

side). For VP and DN, a join size parameter determines the number of joins on the

complex side of the mapping.

Using the benchmark, we generate five tasks. For copying, we consider three

relations with two attributes each (COPY1) as well as five relations with five

attributes each (COPY2). For vertical partitioning, VP1 has five source relations

with 10 attributes total, and six target relations with twelve attributes total; VP2

has one source relation with eight attributes total and four target relations with 14

attributes total. The denormalization task DN1 has three source relations with a

total of seven attributes and one target relation with five attributes.

For both Neuroscience and STBenchmark, our goal is to test the mapping

139

capability and scalability, not matching. Therefore we extract Boolean-valued closed

match atoms from the benchmark data manually.

6.4.2.3 Amalgam

The Amalgam benchmark for schema integration consists of independently

modeled schemas of similar sources of bibliographic data as well as mappings between

those. While the concepts and content in the schemas are similar, their structures are

not. We consider mapping from Schema 1 to Schema 3 (task A1) with 15 relations

and 102 attributes in the source schema and five relations and 28 attributes in the

target. We also consider mapping from the DBLP schema to Schema 1 where the

source schema has seven relations and 46 attributes and the target has 15 relations

and 102 attributes (task A2).

6.4.3 Results

6.4.3.1 Effectiveness on Benchmark Tasks

Using our approach, we discover schema mappings on the benchmark tasks.

For each task we use the full program in Figures 6.1 and 6.2 as well as the functional

constraints.

• On the Neuroscience benchmark, our method discovers perfect st tgds for

all seven unseen relations, that is, rankings of both tgd and equals atoms in

the MPE state have AUCs of 1.0. Running times vary from less than a second

for source relations with few attributes to five seconds at most for larger source

140

relations with eight attributes.

• On STBenchmark, the full program again achieves perfect results on all

tasks.

• On Amalgam task A1, the the full program achieves good AUCs of 0.93 and

1.0 for tgd and equals atoms, respectively, and running-time is approximately

38 minutes. On task A2 the full mapping took just over four minutes and

achieved AUCs of 0.52 and 0.78 for tgd and equals atoms respectively.

Looking more closely at the two tasks that revealed errors, the false positives

on Amalgam task A1 included st tgds connecting queries over published authors in

the source schema to queries over unpublished authors in the target schema. The

gold standard does not include these st tgds, perhaps because the authors in the

instance data are disjoint. This suggests that combining the PSL program from this

chapter with the one in Chapter 3 – which uses the instance data to influence the

truth values of tgd atoms – may improve results further.

On Amalgam task A2, the errors are due to four st tgds in the gold standard

that require a join between relations in the source schema where no foreign key

constraints were provided for the join attributes, meaning that our query generation

did not propose the required candidate queries. The majority of false positive st tgds

discovered by our approach were fragments of these st tgds. Improving the queries

and st tgds using the refinement operators and search algorithm from Chapter 5 is a

promising approach to increase accuracy further on this task.

141

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

(a) ROC for tgd atoms on Amalgam

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

(b) ROC for equals atoms on Amalgam

Figure 6.3: ROC for tgd atoms (a) and equals atoms (b) found by the mapping pro-
gram extended with the matching rule using attribute-name similarity on Amalgam
task A1.

6.4.3.2 Effectiveness of Joint Matching and Mapping

For inferring matches and st tgds jointly, we combine the mapping program

with the matching rule (c) and two similarity functions, the first based on Levenshtein

distances between attribute names, the second comparing sets of frequent n-grams

present in the source and target data instances. For both similarity functions, we

do not impose further conditions in the rule body. We again use rule weight 1. We

inferred match atoms for Amalgam A1 only; this is because the synthetic schemas

generated by STBenchmark are not intended for matching evaluation, e.g., their

relation and attribute names are unrealistic. STBenchmark, Neuroscience, and

Amalgam A2 lack at least one of the two target data instances, which is needed for

matching rules considering instance data as evidence.

When combining the mapping program with the matching rule (c) and the

similarity function based on the attribute names on task A1, running time increases to

142

1

2

3

4

2 4 6 8 10
Parameter Setting

S
ec

on
ds

Figure 6.4: Average running time over five random STBenchmark COPY tasks
with either two relations with varying number of attributes per relation (dashed line)
or two attributes per relation and varying number of relations (solid line).

two and a half hours and the AUCs for tgd and equals are 0.95 and 0.65, respectively.

Thus, we retained the same quality of the tgd atoms here as when we used matches

extracted by hand. In Figure 6.3a the ROC curve for tgd atoms indicates that

the ranking reveals nearly all of the best (gold standard) st tgds quickly; we find

approximately 90 percent of the correct st tgds while admitting less than 10 percent

of false positives. However, some metadata attributes with identical names made

selecting correct equals atoms more difficult (Figure 6.3b).

Despite the simplicity of the matching part of the program, these results

demonstrate that jointly inferring matches and st tgds is feasible. Incorporating

further matching characteristics is a promising direction for future work.

6.4.3.3 Scalability

We use STBenchmark to generate schema mapping tasks to measure the

scalability of our approach. All running times we record are for PSL inference only,

and do not include candidate query generation, which typically takes seconds.5 We

5All running times were recorded using a 2.66 GHz Intel Core i7 with 8 GB of RAM.

143

measure scalability with respect to the size of the schema and the complexity of joins

across relations.

Figure 6.4 shows running times for different schema sizes, where we either

use two relations with a varying number of attributes each, or a varying number of

relations with two attributes each. Values are averaged over five random copying

tasks per setting. Running times grow with the total number of attributes.

The third parameter explored in these experiments is the join size, that is,

the number of atoms on one side of a st tgd that share variables. For five random

repetitions on schemas with five relations with two attributes each, join sizes from

two to five resulted in average running-times from two to 70 seconds. However, the

more substantial effect is on memory usage; memory usage was well under 0.5 GB

for all other tasks, but reached one GB for the largest join sizes in this experiment.

6.5 Conclusion and Future Work

In this chapter we introduced a new schema mapping approach that finds

matches jointly with mappings as a strategy to improve and harmonize both. We

base the approach on probabilistic soft logic, converting the problem to an MPE

inference task in a PSL program that encodes characteristics of good mappings

and matches. We demonstrated the promise of our approach with experiments on a

range of both real-world and synthetic datasets. We demonstrated the flexibility of

our approach and analyzed the contributions of rules by systematically exploring

combinations of our rules. In our analysis of results, we found specific cases in which

144

results may be improved through combination with the approaches described in

Chapters 3 and 5.

145

Chapter 7: Statistical Transformations for Source Fusion

7.1 Introduction

In previous chapters I have described approaches to overcome noise and ambi-

guity to discover the true source data structure to transform to the target schema.

However, in some important cases the source structure is inherently lacking, and

we need to synthesize missing connections between source relations to provide data

fitting the target schema. In these cases, we lack the explicit data and metadata we

would need to use a conventional transformation. This situation arises frequently

when multiple original sources are ingested into a common repository – sometimes

referred to as a data lake. When used in combination with other relational data

integration methods, such as those we introduce in earlier chapters, a new method

to handle problems involving multi-source fusion would have many practical uses.

An important strategy for this problem is to leverage side information accom-

panying the source tuples representing a level of confidence or probability associated

with the tuple. This type of side information is common in some important prac-

tical problems. A straightforward approach to fusing sources is then to fuse only

high confidence tuples from each source. However, that approach assumes statistical

independence among sources, i.e., that a target tuple formed by joining two high

146

probability source tuples is also high probability. In fact, we will see that sources

can be dependent. Furthermore, the possibility of dependence may increase with the

number of source relations we need to fuse.

Substantial past work has focused on fusing single signals (single attributes)

from multiple sources, but very little has focused on the more general relational

setting. Other past work in relational data integration assumes that single source

relations can be transformed individually, e.g., local-as-view mappings [85]; but that

doesn’t fit this problem setting.

In this chapter, we will show how – with the addition of side and background

knowledge – we can learn a statistical transformation for this source fusion problem.

Specifically, we will show the advantages of learning a joint probability distribution

over source relations – rather than assuming statistical independence – and how to

generate target tuples from the joint distribution.

We evaluate our approach on an important practical problem in the cyberse-

curity domain. Cyberattacks are a growing concern for cybersecurity analysts and

administrators of networks in governments, commercial companies, and educational

institutions. For example, the average data breach exposes tens of thousands of

records, and costs the victim organization millions of dollars to mitigate [86]. Early

detection, or prediction, of attack events can reduce these costs, but the average

breach still takes nearly 200 days to detect [86]. In this work, we use as input the

relational data sources produced by cyberattack sensors, and the relational data

integration problem is to fuse the sensor-based sources and produce consolidated

relational detection outputs.

147

7.2 Problem and Background

There has been progress to develop automated sensors for detecting cyberattack

events [87, 88, 89]. To improve the utility of the sensors, sensor fusion has the goal of

linking and fusing the output data sources generated by the sensors. In this chapter,

we use the terms source fusion and sensor fusion interchangeably because the origin

of the sources are sensors. Structured prediction has the goal of producing a set

of accurate and detailed event predictions, combining the strengths of the sensors

(Section 7.2). We use the terms event and tuple interchangeably because tuples

represent events in our evaluation. Typical transformation rules used in relational

data integration, such as st tgds, are not flexible enough to handle confidence side

information associated with source tuples. We propose a new approach to solve the

sensor fusion and structured prediction problems jointly. We do this by learning

statistical transformation rules trained over a data example, and exploiting three

insights about real cyberattack events’ timing and details – which we refer to as

roles:1 (a) roles of events are interdependent, (b) events occur in clusters, and (c)

events evolve over time (Section 7.3).

Based on these three insights about the structure of attack events, we refer

to a timeline of attacks as a cyberattack event network (CEN). We introduce the

event-relational model using statistical dependencies capturing the three insights,

enabling fusion and prediction via collective reasoning over all sensors and events

(Section 7.4).

1Attributes of events are commonly referred to as roles

148

Category Output Type Source Uses

Network IP address Recent network-based attacks Block communications with IP address
Network Network port or protocol Recent attacks Monitor activity using port or protocol
Host Hash or binary signature Detected malicious files Scan systems for hash code or signature
Host Host name Computer targeted in attack Monitor host for further attacks
Email Words in email subject Recent malicious emails Monitor emails for similar words
Email External address domain Senders of malicious emails Block emails from sender domain

Table 7.1: Example sensor output types, possible sources, and typical uses by cyber-
security analysts or network administrators.

We apply the general event-relational model to CENs; we refer to our im-

plementation using probabilistic soft logic [6] as Cyber Event Relational Fusion

(CERF) (Section 7.5). We conduct an extensive empirical evaluation of CERF using

a database with nine months of real cyberattacks against a large corporation in the

United States (US). We show how CERF fuses sensors to increase the level of detail

in predictions. We show that CERF increases accuracy of predicted events by three

percent, as measured by area under the receiver operator characteristic (AuROC)

curve, and more than doubles maximum lift for high-confidence predictions. We

show that, with as little as 10% partially observed events, we increase AuROC by an

additional four percent (Section 7.6).

In the remainder of this section, we provide background on current cyberattack

sensors, the sensor fusion problem, and techniques for structured prediction.

7.2.1 Cyberattack Sensors and Sensor Graphs

Cybersecurity analysts and network administrators have long used a variety

of cyberattack sensors to detect, prevent or mitigate attacks. In Table 7.1, we list

example sensor outputs, sources used by sensor software to produce those outputs,

and typical uses by analysts. There has been recent progress to use a wider variety of

149

SG
SG

SG

(a)

Sensor
Fusion

(b)

Structured
Prediction

(c)

CEN

(d)

(e)

Figure 7.1: Sensor fusion combines sensor graphs (SG). Structured prediction produces
a cyberattack event network (CEN). Our proposed approach (dotted) combines both.

(a)

Jan1

Jan2

gmail

aol

(b)

Jan1,
gmail,
MDJan2,

gmail,
MD

Jan1,
aol,
CA

location

domain

date

Figure 7.2: Examples of (a) a SG for email domain role; and (b) a CEN with three
events, K = 2 roles, and three similarities.

input sources, and produce a wider variety of output types [87, 88, 89]. For this work,

we assume that sensors produce an output collection every time step, and provide

confidence levels with each output. Many sensor outputs are indicators that analysts

then need to interpret; we instead explicitly predict events. Ideally, predictions are

both accurate and differentiated. Accurate predictions reveal true attacks while

minimizing false positives. Differentiated predictions identify multiple characteristics

of an attack.

Example 8: Predictions of phishing emails, a common type of attack, are differenti-

ated if they combine predicted time with details such as the sender address domain,

a word appearing in the subject line, and the work location of the recipient. Using

differentiated phishing predictions, network administrators can make precise email

filters, and search efficiently for related attacks.

150

While some sensor outputs are simple scalar time series, we focus on structured

outputs containing details that can be combined into differentiated predictions. We

refer to these dynamically-changing structures as sensor graphs (SG) (Figure 7.1a).

Even SGs typically contain only a single type of output, e.g., only IP addresses or

only hash codes, because each sensor uses just one or a few types of input data.

Therefore we assume a SG is a bipartite graph comprising nodes for each time step

and label (e.g., a specific IP address) for some output type. Edges between time steps

and labels represent sensor outputs, weighted by confidence level (Figure 7.2a).

7.2.2 Sensor Fusion

Sensor fusion (Figure 7.1b) is the task of linking and combining sensor graphs.

A challenge is that SGs from separate sensors may have no nodes in common with

the exception of time steps. Linking shared dates across SGs is a starting point, but

does not reveal how to link label nodes across SGs to form differentiated predictions.

Learning cross-sensor dependencies is one way to link labels (Section 7.4.2).

7.2.3 Structured Prediction

We represent events and their details as structured objects ; each is a K-ary tuple

(r1, . . . , rK). We refer to details of an event as its roles, as they identify participants

and objects involved. The value for each role is some constant from a predefined set

of labels.

Structured prediction is the task of predicting structured objects; in our case, we

151

predict cyberattack events from the results of sensor fusion (Figure 7.1c). Typically,

we make sets of predictions covering some time period. Furthermore, we use the

roles of events to form a network of related events, which we call cyberattack event

networks (CEN) (Figures 7.1d and 7.2b). Techniques for structured prediction are

well studied [45, 90, 91], and applied to a number of tasks, which we review briefly

here.

7.2.3.1 Predict a Single Role

Predicting even a single role of an event requires sophistication. For example,

recent multi-label classification approaches aim to leverage relationships between

labels when assigning them to a role. Relationships between labels in a single role

include pairwise similarity, organization into categories, or logical constraints [92].

For cyberattack events, we use similar relationships between labels (see Sections

7.5.3.2 and 7.5.3.3).

7.2.3.2 Predict Multiple Roles

Other tasks involve multiple roles. For example, the goal of event sequence

label learning is to predict the composition of labels over a collection of roles. Riedel

et al. do this with statistical relational learning [93]; we use a similar technique to

predict composition of cyberattack roles (see Section 7.4.2).

152

7.2.3.3 Predict Multiple Events

Predicting multiple structured objects at once – each with multiple roles – can

have advantages such as improved accuracy. For example, collective inference [60, 59,

94] and hierarchical tensor representations [95] have been used to generate accurate

recommendations with two or more roles. Like Kouki et al., we use collective inference

to predict clusters of events within time steps (see Section 7.4.3) and over time (see

Section 7.4.4).

Although sensor fusion and structured prediction have distinct goals, we will

solve them jointly (Figure 7.1e), leveraging the graphical structures of SGs and CENs.

We describe CENs in detail in Section 7.3.

7.3 Cyberattack Event Networks

In this section, we describe CENs, our motivating problem setting. We will

illustrate three key insights about real attacks using a dataset of attacks events,

which will be described fully in Section 7.6.1.1. We refer to this dataset as the ground

truth (GT) CEN.

7.3.1 Roles of Events are Interdependent

We see in real cyberattack events that their roles are interdependent. For exam-

ple, in Example 8 the email subject may have been crafted to target victims at that

location to appear more legitimate. To confirm this intuition empirically in the GT

CEN, we calculate the Kullback-Leibler divergence DKL(p||p′) where p(r1, r2, . . . , rK)

153

is the empirical joint distribution of roles in the CEN, and p′ assumes independence:

p′(r1, r2, . . . , rK) = p(r1)p(r2) · · · p(rK). This measure (total correlation [96]) for the

GT CEN is 2.1, which is over 70% higher than if role values were shuffled across events

in the training set, averaged over five trials. Although unsurprising, this confirms

the need for dependencies between roles when linking SGs to form predicted events.

In Section 7.4.2 we define a model with these dependencies (event-propositional).

7.3.2 Events Occur in Clusters

We also find that clusters of similar events tend to occur together, even in the

same time step, e.g., on the same day. We confirm this using a sample of the GT CEN,

which has over one thousand events. To produce the sample, we define an initial

set of edges between events representing similarities such as events having the same

location (see Figure 7.2b). To focus on individual time steps, we remove edges relating

events across multiple days. We combine all parallel edges, resulting in edge weights

between one and four. A weight of one means two events occur on the same day;

additional similarity results in higher weights. As shown in Figure 7.4, most events

on the same day are similar with respect to one or more measures. In Figure 7.3, we

plot a five-name snowball sample [97, 98] on 500 seed events with a force-directed

layout. Removing cross-day edges causes separate connected components for different

days.

We arbitrarily chose one role – location – to color the nodes, which reveals

that locations are distributed non-uniformly over days. For example, the component

154

(a)

(b)

Figure 7.3: Sample of a real CEN, colored by victim location.

103 104

of Edges

1

2

3

4

Ed
ge

 W
ei

gh
t

Figure 7.4: Edge weight distribution for graph in Section 7.3.2.

labeled (a) in Figure 7.3 has a high proportion of attacks in California (green), while

on other days (b) attacks in California are rare. This pattern, known as homophily

[99], is frequently seen in social networks. In Section 7.4.3, we define a model with

this dependency (time-propositional).

7.3.3 Events Evolve Over Time

Cybersecurity analysts have observed that attack events tend to occur in

clusters over time, progressing through stages. For example, according to the Cyber

Kill Chain® framework, exploitation attacks follow delivery attacks, which follow

155

0 50 100 150 200 250 300
Number of Events per Interval

0.00

0.02

0.04

0.06

(a)

(b)

Figure 7.5: Distribution of actual events per interval (grey), and assuming independent
arrivals (dashed).

reconnaissance attacks [100]. We consider a related but simpler form of evolution over

time: whether events tend to occur in clusters of consecutive time steps. We confirm

this in the GT CEN by counting events occurring in fixed intervals; we arbitrarily

chose seven days. We compare that to a Poisson distribution resulting from assuming

independent arrival times, i.e., not clustered. We plot both in Figure 7.5, which shows

that events tend to cluster in large numbers in some intervals (e.g., Figure 7.5a),

leaving few in other intervals (b). That is, if we have high confidence in some attack

occurring in a time step, it is likely that other attacks occur in surrounding time

steps. In Section 7.4.4, we define a model with this dependency (event-relational).

7.4 Event-Relational Model

In this section, we introduce the event-relational structured prediction model,

which will be a framework to encode the insights from Section 7.3. For ease of

understanding, we lead up to the event-relational model in four steps; in each step

we define a model that extends the previous. The most basic of the four is role-

propositional, which uses a single sensor as input and predicts a single role of a single

156

φ

r

s

(a)

φ1 φ2 φ3

r1 r2 r3

s

(b)

φ4 φ5 φ6

r1 r2 r3

s

(c)

φ1

e1

s

(d)

1

φ1 φ2 φ3

e1

s

(e)

1 2 3

φ4 φ5 φ6

e1

s

(f)

1,2 1,3 2,3

φ7

e2 e3

s

(g)

3 3

φ8 φ9

e3 e4 e5

s1 s2 s3

(h)

1 1 1 1

Figure 7.6: Examples of four models: Role-propositional (a). Event-propositional (b
and c). Time-propositional rewrites of previous (d-f). Time-propositional with two
events (g). Event-relational (h) with three time steps (dotted).

event. The remaining three models extend the first, and each captures one of the

three insights:

• Roles of events are interdependent ⇒ Event-Propositional

• Events occur in clusters ⇒ Time-Propositional

• Events evolve over time ⇒ Event-Relational

We define the models in the following four sections.

157

7.4.1 Baseline: Role-Propositional

A sensor produces an output vector s ∈ S that corresponds to some role of an

event represented by the random variable (RV) r, where the value for r is a label from

set L. Predicting r is a multiclass classification problem. We capture the statistical

dependency between the sensor output and r using feature function φ : L×S → R≥0,

a technique commonly used in probabilistic models [45, 90]. Our definition for φ is

problem-specific; generally, it measures incompatibility between a predicted value of

r and what we observe in sensor data. Given L and s, we pick an optimal value for r

as arg minr∈L φ (r, s). We refer to this model as role-propositional, and it represents

a baseline approach. We illustrate the model in Figure 7.6a, with shading indicating

the observed variable.

Example 9: Suppose role r represents the port targeted in a network-based at-

tack event, and the set of possible labels contains commonly used ports, e.g., L =

{22, 53, 80}. Given a sensor output reporting a high confidence of .9 for an attack

on port 22 at time step t, feature functions used in our approach would produce a

high incompatibility score for any assignment to r other than 22, which has zero

incompatibility. The optimum prediction is r = 22.

7.4.2 Extension: Event-Propositional

A limitation of the role-propositional model is it uses a single input sensor and

predicts events with a signal role, which are not well-differentiated. We will change

158

L1 L2 L3

22

53

80

TCP

UDP

DOS

Scan

UAA

Figure 7.7: Selected role values from sets (L1,L2,L3) in predictions from examples 9
(circle), 10 (dashed), and 11 (solid).

the model as follows:

• Extend s and S with partitions for additional sensor outputs

• Vector r = (r1, . . . , rK) replaces the single role r

• K sets (L1, . . . ,LK) – one for each role – replace L

• Set Φ = {φ1, . . . , φp} of feature functions replaces φ

This event-propositional model fuses K sensors and predicts K roles. In Figure 7.6b,

we illustrate an example with K = 3.

Example 10: We extend Example 9, adding sensors for network protocol and

attack class producing high-confidence outputs UDP (User Datagram Protocol) and

DOS (denial of service), respectively. The optimum with respect to φ1, φ2, and φ3 is

r = (r1, r2, r3) = (22, UDP, DOS). In Figure 7.7, we illustrate the three sets (L1,L2,L3),

and the selected roles from our prediction (dashed line).

Feature functions are flexible in the event-propositional model, and can capture

relationships between roles. For example, in Figure 7.6c, we use function φ4 : L1 ×

L2 × S → R≥0. This allows us to predict the most likely composition of an event,

which may differ from the optimal assignment according to individual sensors.

159

Example 11: Although assignment r in Example 10 is optimal with respect to

functions φ1, φ2, and φ3, that combination is improbable in this domain. Assignment

r = (22, TCP, UAA) is more probable because the Secure Shell (SSH) service running

on port 22 uses TCP (Transmission Control Protocol), and – as a remote access

service – unauthorized access attempts (UAA) against SSH are more likely than

DOS attacks. In Figure 7.7, the solid line marks our updated prediction with the

more compatible assignment.

As shown in the example, the best assignment may require balancing func-

tions encoding sensor outputs (φ1, φ2, φ3) and functions encoding compatible event

composition (φ4, φ5, φ6). The event-propositional model optimizes all functions in Φ

simultaneously, forcing assignments to consider all sensors and all types of compati-

bility collectively. See Section 7.5.4.2 for an extended example.

The feature functions in Φ may need to be weighted differently, e.g., to tune

the balance between sensors and compatibility. We train a weight vector w ∈ Rp
>0

(see Section 7.5.2.1), associate one weight from the vector w with each function, and

find optimal assignment r ∈ L1 × . . .× LK as arg minr wᵀΦ (r, s).

7.4.3 Extension: Time-Propositional

Although the event-propositional model gives the most likely composition of an

event, represented by r, it is limited to a single event. It also doesn’t indicate whether

an event will occur. We will replace the single event r with a more general binary

encoding. In the encoding, an element of vector e = (e1, . . . , eu) exists for each of u

160

possible configurations of roles in L1 × . . .× LK and ei is true iff its corresponding

configuration of roles occurs in an event. Because this models all events in a time

step, we refer to this model as time-propositional. We rewrite the event-propositional

feature functions for the binary representation; they become Φ : S × {0, 1}u → R≥0

and defined over projections of events. We illustrate rewriting in Figure 7.6d-f, in

which an edge annotated with a set γ ⊆ {1, . . . , K} refers to a feature function

defined over an event e, but using only a projection of e’s roles, i.e., πγ(e) using

relational algebra.

Example 12: Logical atoms are a convenient representation for e, so we use the K-

ary logical predicate event to represent all events, where the numberK of logical terms

representing roles varies by the type of attack. CERF also uses this representation

(Section 7.5.2). Extending Example 11, we rewrite assignment (r1, r2, r3) = (22, TCP,

UAA) as e1 = event(22, TCP, UAA). Rule φ4 in Figure 7.6c places dependencies on r1

and r2; the equivalent function in Figure 7.6f uses projection π1,2(e1) to do the same

with the 1st two roles of the event, e.g., assigning low incompatibility between 22

and TCP.

Handling multiple events is the goal of time-propositional models; we illustrate

a multi-event example in Figure 7.6g.

Example 13: As shown in Section 7.3.2, similar events tend to cluster. Suppose we

predict a phishing event e2 = event(gmail, timesheet, MD) (see Example 8). Also,

suppose we have similarities across location labels, e.g., between Maryland (MD)

and Virginia (VA) (see Section 7.5.3.2). Function φ7 could add a dependency linking

161

our confidence in e2 with confidence in an additional similar event e3 = event(gmail,

timesheet, VA).

Given s and w, we find optimal e ∈ {0, 1}u as arg mine wᵀΦ (e, s).

7.4.4 Extension: Event-Relational

To capture dependencies across time steps t1, . . . , tn, we replace s with vectors

s = (s1, . . . , sn). We refer to this model as event-relational and illustrate an example

for n = 3 in Figure 7.6h.

Example 14: Clusters of attacks tend to continue over multiple time steps (Sec-

tion 7.3.3). We extend Example 12 and assume that in step t1 event e3 occurs, which

we now represent as event(t1, gmail, timesheet, VA). Function φ8 adds a dependency

between e3 and e4, where e4 is identical except it occurs in t2.

In summary, the following four parameters (counts) characterize the size and

complexity of an event-relational model:

• K roles in each event

• u = |e| = |L1 × . . .× LK | possible events in each time step

• n time steps

• p = |Φ| feature functions

With the event-relational model, we find an optimal e as follows:

arg min
e∈{0,1}nu

wᵀΦ (e, s) (7.1)

162

Although solving Equation (7.1) exactly is NP-hard, in Section 7.5 we describe how

CERF finds an approximate solution efficiently. We have shown how the event-

relational model enables statistical dependencies including all types shown in Fig-

ure 7.6d-h, which capture each of the insights described in Section 7.3.

7.5 Cyber Event Relational Fusion

In this section, we describe CERF, our system applying the event-relational

model from Section 7.4 to CENs (Section 7.3).

7.5.1 Probabilistic Soft Logic

We use probabilistic soft logic (PSL) [6] to implement the event-relational model.

Using PSL has several advantages: (a) PSL uses logic, a natural representation for

roles, events and feature functions. (b) Solving Equation (7.1) exactly is NP-hard,

but PSL provides a high quality approximation. (c) PSL scales well to large CENs.

7.5.2 Mapping to Event-Relational Model

We use logical atoms to represent event set e (see Section 7.4.3). We use the

following mapping to produce the model in PSL:

• Roles ⇒ Logical terms (logical variables or constants)

• Events ⇒ Logical atoms

• Sensor output ⇒ Ground logical atoms

163

7.5.2.1 Inference and Learning

A PSL program defines a hinge-loss Markov random field (HL-MRF), where

weighted logical rules are feature functions Φ and atoms with soft truth values are

RVs. Maximum a posteriori (MAP) inference in the HL-MRF allows a highly efficient

approximation [6]. This is done in PSL by approximating the following, where x and

y represent observed and inferred atoms, respectively:

arg min
y∈[0,1]v

wᵀΦ (y,x)

A high quality binary solution y ∈ {0, 1}v is possible by applying conditional

probabilities rounding to the soft-valued output [6]. In CERF, x ≡ s, y ≡ e, and

v ≡ nu, establishing equivalence with our objective in Equation (7.1). We learn w

with maximum likelihood estimation [53].

7.5.2.2 Soft Truth Values

In addition to the binary solution, the soft-valued e ∈ [0, 1]nu from PSL has

advantages: We can present high-value events to analysts, and measure AuROC and

lift (Section 7.6).

7.5.3 Predicates

Logical predicates define the inputs, outputs, and latent variables of a PSL

program. We use the following three predicates:

164

• event : a CEN node; its first term is time step T ; the remaining K terms vary

by event type

• σi(R,R
′): a CEN edge – similarity of R ∈ Li and R′ ∈ Li

• si(T,R): an edge of a SG for role i

MAP inference assigns truth values of inferred event atoms. Truth values of all

observed event atoms (see Section 7.6.4) are set to 1.0.

7.5.3.1 Sensors

Truth values of si atoms are based on the confidence of the sensor for those

outputs (Section 7.6.1.3).

7.5.3.2 Similarities

All similarity σi atoms are observed; their truth values are set by external

similarity functions.

7.5.3.3 Categories

We use sets of categories over labels within roles. Binary predicate � represents

membership in a category; Ri � ` is true iff label Ri ∈ Li is a member of category

` ∈ χi, where set χi contains all categories for role i.

Categories have several benefits: (a) They add sensor information to labels. (b)

They control the number of parameters (weights) and over-fitting for template-based

165

rules (see Section 7.5.4.1). (c) They help CERF scale to larger CENs with higher

values for K by controlling the number of groundings of template-based rules.

7.5.4 CERF PSL Rules

PSL rules implement feature functions of the event-relational model. The

simplest rule is the prior ¬event(T,R1, . . . , RK), i.e., any attack is individually im-

probable. The remaining CERF rules are as follows, where rules with parameterized

weights, e.g., wTP(i), are templates :

wRP :
∧

i∈1,...,K

si(T,Ri)→ event(T,R1, . . . , RK) (RP)

wEP(i, j, `, `′) : ¬
(

event(T,R1, . . . , Ri, . . . , Rj, . . . , RK)

∧ (Ri � `) ∧ (Rj � `′)
)

(EP)

wTP(i) : event(T,R1, . . . , Ri, . . . , RK) ∧ σi(Ri, R
′
i)

∧Ri 6= R′i → event(T,R1, . . . , R
′
i, . . . , RK) (TP)

wER : event(T,R1, . . . , RK) ∧ σt(T, T ′)

∧ T 6= T ′ → event(T ′, R1, . . . , RK) (ER)

Rule (RP) is role-propositional and assumes roles are independent, combining confi-

dence levels from sensors for each role with a simple conjunction. Rule (EP) is event-

propositional; it penalizes incompatible combinations of categories (Section 7.5.3.3).

Rule (TP) is time-propositional, propagating confidence across similar events in the

166

φ1 φ2 φ3 φ4

e1 e2 e3

s1 s2

2 2,4 4 4 1 1

Figure 7.8: Fragment of a CERF model with n = 2 and examples of Rule (RP) (φ1),
Rule (EP) (φ2), Rule (TP) (φ3), and Rule (ER) (φ4).

same time step. Rule (ER) is event-relational; it is a variant of Rule (TP) that crosses

time steps.

7.5.4.1 Partial-Grounding

Rules TP and EP are templates; partial-grounding is the process of setting

constant values for each template parameter, e.g., i in wTP(i). We do partial-grounding

as follows: Create a copy of Rule (TP) for every role i ∈ 1, . . . , K to learn separate

weights for each role. Using category sets χ1, . . . , χK (Section 7.5.3.3), create a copy

of Rule (EP) for every 4-tuple in the following set:

{
(i, j, `, `′) with (i, j) ∈ [1, . . . , K]2, i 6= j, (`, `′) ∈ χi × χj

}

7.5.4.2 Collective Inference

To illustrate how rules combine for collective inference, in Figure 7.8 we present

a small, notional fragment of a CERF model. RP rule φ1 allows sensor output in s1

for the 2nd role (i.e., r2) to influence the 2nd role of e1. EP rule φ2 also influences

167

role 2 by preferring compatibility between it and the 4th role. TP rule φ3 is satisfied

if e1 clusters with another similar event e2 that varies with respect to role 4. ER rule

φ4 is satisfied if event e2 continues in time step 2. Sensor outputs used in any rule

can have a global effect on the predicted CEN via this chain of dependencies. For

example, if event e3 is unlikely according to sensor data, that can cause CERF to

change its predicted roles for event e1.

7.6 Evaluation

We evaluate CERF on a real corporate database of cyberattacks. Our goals

are to evaluate the following:

• Accuracy : measured using AuROC and lift (Section 7.6.3)

• Partially-observed events : their effect on accuracy (Section 7.6.4)

• Rules : their relative contributions to accuracy (Section 7.6.5)

• Scalability : running time of CERF (Section 7.6.6)

Predicting well-differentiated events is another goal. Sensors produce one role

each, so CERF’s output is K times more detailed. This factor of improvement

impacts the cost of solving Equation (7.1), but we show CERF scales well to K = 4

(Section 7.6.6).

168

Role (Variable) Label Set

1 Class of attack (C) L1 = {Phish, Malware}
2 Job category (J) L2 = {Acquisitions, . . . , Training}
3 Location (L) L3 = {AK, AL, . . . , WI}
4 Grade/level (G) L4 = {1, 2, 3, 4, 5, 6, 7, C}

Table 7.2: Event roles in the GT CEN

7.6.1 Data

We describe the GT CEN collected from internal organization records (Sec-

tion 7.6.1.1), and the input SGs collected from a variety of external data sources

(Section 7.6.1.3).

7.6.1.1 A Real Cyberattack Event Network

To evaluate CERF, we use a GT CEN with nine months of actual attack events

against a large US corporation. The GT is provided by the Cyberattack Automated

Unconventional Sensor Environment (CAUSE) project,2 and is available through

agreement with the US Intelligence Advanced Research Projects Activity (IARPA).

The GT focuses on significant attacks that current network defenses do not stop; it

excludes spam email, routine network scans and other low-impact events. We filter

GT further to events in which each label appears at least twenty times in the nine

months. Although this GT is not openly available, it is representative of attacks

against similar organizations in the same time period. It would be reasonable to

extend our results using a data set for a similar organization.

As described in Section 7.5, the event predicate has K + 1 arguments. The

2https://www.iarpa.gov/index.php/research-programs/cause

169

first is time step T identifying the date. We list the remaining K roles, their logical

variable names, and their label sets in Table 7.2. Role 1 identifies the class of attack:

phishing events are emails containing malicious attachments or links, and malware

events are malicious applications discovered on computer hosts. Roles 2-4 give details

about the victim of the attack. We represent each GT CEN event as a grounding of

event(T,C, J, L,G) with truth value 1. Similarities over labels are simple predefined

measures of similarity (see Section 7.5.3.2), e.g., σ3(MD, VA) = .75.

7.6.1.2 Cross Validation

We split the nine months of GT M = m1, . . . ,m9 into three sets (f1, f2, f3) by

month: fi =
{
mj ∈M | (j − 1) mod 3 + 1 = i

}
. We use the three sets for training

sensors, training CERF, and testing CERF, respectively. We define the sets this

way so each is representative of the entire period, to limit over-fitting caused by

correlations across sets or caused by training CERF on the same events used to train

its inputs (the sensors), and to have contiguous periods to train and test Rule (ER).

7.6.1.3 Sensor Graphs

We use one SG for each of the K = 4 roles. For each SG, we represent an edge

between label R and time T with si(T,R). For example, the truth value of ground

atom s2(Jan1, Acquisitions) represents our confidence that employees with job

category Acquisitions will be attacked on Jan1. To generate the SGs, we train

discriminative, multi-output classifiers on projections of f1, conditioned on features

170

extracted from the following original data sources: Twitter; the Global Database of

Events, Language, and Tone (GDELT)3 [101]; Open Threat Exchange; Wikidata;

and Global Vectors for Word Representation (GloVe) [102]. The sensors produce SG

outputs for day T = t using evidence from t− 7, i.e., seven-day forecasts. CERF uses

any time step given in a SG, whether past, present, or future. We refer to Okutan et

al. for further details about how we use these sources [88, 103].

7.6.2 Systems

Our final CERF implementation used in the evaluation uses a subset of the

possible partially-ground rules: We ground Rule (EP) on the following pairs of terms:

(T, L), (C,L), (J,G), and (L,G), which we found balances accuracy and efficiency.

We use day of week as categories for dates and treat all other labels as singleton

categories. The final model has 518 rules with weights trained on f2.

We compare CERF with a baseline assuming roles are distributed independently

within events. It uses Rule (RP), plus the simple prior, and we train it on f2. Due

to the sparseness of the t-norm used in PSL conjunctions, we actually do this join

outside PSL as a normal product, then load the results into PSL.

7.6.3 AuROC and Lift

We calculate AuROC by comparing soft truth values from CERF and the

baseline with true events in f3. AuROC is .76 for the baseline, and .78 for CERF,

confirming CERF’s over-all improvement to accuracy, but we are especially interested

3https://www.gdeltproject.org

171

0.00 0.02 0.04 0.06 0.08 0.10
Percentage of sample

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Lif
t

Figure 7.9: Lift of CERF (blue, top) and the baseline (grey).

in the rate of false positives among high-confidence predictions, as analysts are only

able to review a small number of predictions every day. Lift is a better measure than

AuROC for this. In Figure 7.9 we show the lift of CERF (blue, top) compared to the

baseline (grey). Applying a threshold on truth value predicts a sample of the whole

population of some size ≤ nu (horizontal axis of Figure 7.9). The lift of a detector is

the ratio of its precision in that sample to expected precision (percent of the total

population that is positive). For high-confidence predictions, CERF has up to double

the lift of the baseline, indicating that analysts using CERF recommendations will

have fewer false positives, compared to using sensors alone.

7.6.4 Partially-Observed Events

Analysts learn of some attacks as they occur. To measure our ability to leverage

these partially-observed events, we remove a random sample of events from test set

f3 (so later accuracy measurements ignore them) and add them to the inputs of each

model with truth value 1.0 (see Section 7.5.3), without retraining the models. In

Figure 7.10, we measure AuROC for both systems as we vary the size (as a percentage

172

0.0 5.0 10.0 15.0 20.0
% of GT Events Randomly Selected as Observed Inputs at Test Time

0.75

0.80

0.85

Au
RO

C

Figure 7.10: AuROC (95% CI) of CERF (blue, top) and the baseline (grey) as partial
observation varies from zero to 20%.

RP RP+EP RP+TP RP+ER RP+EP+TP+ER
0.70

0.75

0.80

0.85

Au
RO

C

10% Observed
0% Observed

Figure 7.11: AuROC of CERF (RP+EP+TP+ER), the baseline Rule (RP), and rules
EP, TP, and ER.

of f3) of the random sample. For each setting, we repeat with five different random

sets of observed events. For zero observed events, we do not measure repeatedly as

results are constant. The baseline lacks rules crossing events, so its accuracy changes

little with observed events. CERF uses its event-crossing rules (TP, ER) to increase

accuracy with the size of the observed set. This suggests that when some attacks are

known, CERF can rapidly alert analysts to other likely attacks.

7.6.5 Rule Contributions

Rule (RP) is the baseline and necessary to make predictions; without it, the rules

could be trivially satisfied by predicting no events. To understand the contributions

of the remaining three rules, we enable each in combination with RP. We use two

173

settings for partially-observed events: one at 10% (results averaged over five random

sets), and another with 0%. We plot AuROC in Figure 7.11. Compared to the baseline,

Rule (EP) is more accurate, but it is insensitive to observed events – as expected,

because EP focuses on event composition. For both cross-event rules (TP and ER),

without observed events their accuracy is similar to the baseline. This suggests that

the benefits of the current similarity measures are small when no events are observed.

However, with observed events their accuracy increases substantially – especially

with TP. CERF (RP+EP+TP+ER) combines all four types of rules and inherits their

strengths.

7.6.6 Scalability

Increasing K, u, or n increases the cost of solving Equation (7.1) (see Sec-

tion 7.4.4), but for the GT CEN with K = 4, u = 5600, and n = 269 (over 1.5M RVs),

CERF learns the model and infers events in just 69 and 10 minutes, respectively. Cost

also varies by which of the p = 518 rules are enabled. In Figure 7.12 we plot running

times with different subsets of rules. Rule (EP) contributes the longest running time

because it acts as a template with more partial-groundings than the other rules

(Section 7.5.4.1). We ran all experiments on a machine with 16 2.67GHz Xeon cores

and 256GB RAM.

174

RP RP+EP RP+TP RP+ER RP+EP+TP+ER
0

20

40

60

M
in

ut
es

Train
Test

Figure 7.12: Running time of CERF (RP+EP+TP+ER), the baseline Rule (RP), and
the three remaining rules.

7.7 Conclusion

Fusing multiple relational sources is a challenge that arises in data integration,

yet conventional transformations are ill-suited for the problem. We introduce the new

event-relational model to solve the source fusion and structured prediction problems.

We apply the model to the problem of predicting cyberattack event networks. We

evaluate CERF, the resulting system, on a CEN with nine months of real cyberattacks

against a US corporation. We confirm CERF predicts events more accurately than

sensors alone. Results suggest high utility for cybersecurity analysts, especially if

some actual attacks are already known. We anticipate expanding or refining the

sensors, similarity functions, and categories used in the model would increase accuracy

further.

175

Chapter 8: Conclusion and Future Work

In this dissertation, I introduce new relational data integration approaches

employing collective, probabilistic reasoning to handle inputs that can be diverse,

noisy, and ambiguous. I focus on the problem of learning the heterogeneous structures

of data sources – a necessary step before many data science tasks. The difficulty

and urgency of this task is growing due the vast number of sources, the rapidness of

changes to sources, the complexity of sources, and the richness and variety of target

applications to which sources must be mapped.

I employ state-of-the-art techniques from two fields: (a) from the data in-

tegration field, I use well-developed methods for schema matching, mapping, and

data exchange; and (b) from the machine learning field, I use a recently-developed

framework for probabilistic learning – probabilistic soft logic (PSL) – which has the

scalability and representational power to work on demanding data integration prob-

lems. As key contributions, I introduce new approaches to seven specific challenges

in relational data integration:

1. Combining metadata and data to mitigate noise in metadata

2. Probabilistic inference for handling noise in data examples

176

3. Homomorphism-based optimization to handle partial outputs correctly

4. Collective, prioritized disjunction rules to handle ambiguity in data examples

5. Boosted search to correct flaws in transformations derived from metadata

6. Joint matching and mapping allowing uncertainty in correspondences

7. Statistical transformations for problems involving multi-source fusion

To evaluate the new approaches, I use an extensive and novel set of generated data

integration problems. I also demonstrate the utility of the approaches on a variety of

important, real data domains.

8.1 Open Challenges and Future Work

The broader problem of relational data integration is still far from solved. In

the following sections, I discuss five open challenges for relational data integration,

specific limitations in my contributed approaches, and promising directions for future

work to address those limitations.

8.1.1 Input Types

In Chapter 3, I show how to combine a data example with metadata to select a

mapping optimally. A data example is possible when source and target schemas share

the same subject domain and we have instances for both schemas describing the same

objects and events in that domain. These types of instances can be constructed or

found occurring naturally, e.g., structured data on the web [104]. A related approach in

177

the machine translation field is the use of parallel or strongly comparable corpora [105,

106]. In Chapter 6 I show how to select a mapping by reasoning jointly with metadata

matches, which does not require the same kind of comparable data. Combining the

approaches in Chapters 3 and 6 would be possible by combining their sets of PSL

rules, and could be a basis for extending the benefits of both approaches to data

instances that are a mixture of strongly and weakly comparable.

I focus on relational data because it is common in data management and

analysis systems. Nested data representations are also common – especially for data

interchange. Extending the mapping approaches in Chapters 3 and 5 for nested

schemas would increase the number and variety of sources that could be used. To

do this, a key problem is to create new refinement operators (see Section 5.4) for

nested data. The mapping objectives should also be adapted; fortunately, many of

the underlying algorithms – such as the chase – have already been adapted by others

to nested data.

8.1.2 Transformation Languages

In Chapters 3, 5, and 6, I use st tgd mappings, which allow rich constraints

over source data that should be transformed to the target instance. Putting the same

st tgd logical variable in two arguments of the same relation, or in multiple relations,

restricts it to the source tuples satisfying those constraints. Learning st tgds with

the correct constraints avoids errors in target solutions. Even finer-grained source

constraints are possible if we extend the mapping objective and refinement operators

178

for mappings constraining variables to specific constant values and using constraints

other than equality, such as arithmetic relations [33].

The st tgd language can also be extended to use custom functions in arguments

of target relations. The st tgd mappings I use can generate target tuples with

constants or with labeled nulls. A custom function is more flexible because it can

apply a transformation on a constant before placing it in a target tuple, or combine

multiple source constants into a new constant in place of a labeled null [13]. Adapting

the mapping objectives from Chapters 3 and 5 for custom functions, or for additional

source constraints, is made easier because – as with nested representations – many

of the underlying algorithms have already been adapted by others for mappings

with those features. A more interesting problem is to adapt refinement operators to

generate refinements with those functions, and to incorporate new heuristics into

the refinement process to handle the larger space of mappings with the extensions.

In Chapter 7 I demonstrate using statistical transformations in the probabilistic

logical language PSL instead of logical st tgds, which have discrete truth values. A

natural extension of this work is to adapt data exchange systems to use mappings

with both kinds of rules.

8.1.3 Search

The search approach in Chapter 5 uses refinement operators to explore the

space of possible st tgd mappings. With repeated applications of refinement operators,

the number of candidate st tgds grows, but avoids an exponential blow up through

179

operator design and validity checks. However, optimizing running times for search

over very large schemas could make the approach even more practical. There are

a variety of common search techniques that could be used for this. For example,

refinement operators can consider type information, foreign keys, and correspondences

when selecting variables to join.

The search approach running time can also be optimized in the step in which we

calculate the mapping objective for a specific set of st tgds. That step, which includes

queries over the source and target data instances, is currently the most expensive

step in the search approach. A number of simple optimizations could significantly

speed it up. For example, indexes over data instances could speed up queries. Also,

boosting focuses the search on successively smaller subsets of the target instance in

each stage, and the queries could be optimized to run only over that subset.

The search accommodates a wide variety of inputs, and handles flaws in st tgds;

this is especially true for flaws causing errors that could be fixed by adding a constraint

to a st tgd, e.g., joining two variables (see Section 5.4.1). However, errors caused by

st tgds that are already over-constrained are more challenging to fix. For example, if

an expert-provided st tgd already incorrectly places source data into the wrong target

relation argument, that flaw prevents the st tgd from having any homomorphisms

to the target instance. Searching for which argument is incorrect is inefficient. An

interesting problem is to develop a way of measuring errors that guides the search

to the individual arguments with incorrect variables, similar to the way we already

guide the search to explain arguments of tuples.

180

8.1.4 External Interaction

In the mapping approaches from Chapters 3 and 5, expert users can improve

mappings by suggesting candidate st tgds and by providing data examples. Other

forms of user interaction may be easier or more effective. For example, some ap-

proaches allow users to incrementally refine data examples with feedback from the

mapping system [18], and others allow users to annotate tuples [107]. New approaches

combining those user interaction methods with the mapping approaches in this dis-

sertation could combine the benefits of both and improve the practical benefits for

users.

8.1.5 Resources

In Chapters 3 and 6, I use iBench [43, 76] – a system for generating diverse and

realistic integration scenarios – to evaluate our mapping approaches. In Chapter 5,

I use a novel set of generated mapping scenarios with parameters for controlling

the search problem difficulty. Integrating the new scenarios as primitives in a full

featured scenario generation system, like iBench, would have the benefit of generating

even more realistic and challenging scenarios. It would also help to encourage reuse of

problem sets within the community for effective comparisons of integration systems.

Evaluation on generated integration scenarios ensures an evaluation has good

coverage over important mapping types with varying levels of difficulty. It is equally

important to evaluate the same approaches on a variety of real data problems,

such as the Amalgam and Neuroscience data sets used in Chapters 3, 5, and 6.

181

Expanding the set of publicly available benchmark integration data sets is important

to improve mapping approaches and for effective comparisons of integration systems.

It is especially important to share data sets having data instances for both the source

and target, where those instances can be strongly comparable, weakly comparable,

or a mixture of the two.

To summarize, while the broader problem of relational data integration is far

from solved, my dissertation has presented new approaches for seven key challenges

in this important problem area. While there is much more work to be done, I have

shown how collective, probabilistic reasoning can help address these challenges by

handling inputs that are diverse, noisy, and ambiguous.

182

Bibliography

[1] X. L. Dong and D. Srivastava. Big data integration. Synthesis Lectures on
Data Management, 7(1):1–198, February 2015. issn: 2153-5418. doi: 10.2200/
S00578ED1V01Y201404DTM040.

[2] M. J. Cafarella, A. Halevy, and J. Madhavan. Structured data on the web.
Communications of the ACM, 54(2):72–79, 2011.

[3] Y. Velegrakis, R. J. Miller, and L. Popa. Mapping adaptation under evolving
schemas. In Proceedings of the VLDB Endowment (PVLDB), pages 584–595.
VLDB Endowment, 2003.

[4] M. Q. Stearns, C. Price, K. A. Spackman, and A. Y. Wang. SNOMED clinical
terms: overview of the development process and project status. In Proceedings
of the AMIA Symposium, page 662. American Medical Informatics Association,
2001.

[5] R. J. Miller, L. M. Haas, and M. A. Hernandez. Schema mapping as query
discovery. In Proceedings of the International Conference on Very Large Data
Bases (VLDB), 2000.

[6] S. H. Bach, M. Broecheler, B. Huang, and L. Getoor. Hinge-loss Markov ran-
dom fields and probabilistic soft logic. Journal of Machine Learning Research
(JMLR), 18:1–67, 2017.

[7] A. Kimmig, A. Memory, R. J. Miller, and L. Getoor. A collective, probabilistic
approach to schema mapping. In IEEE Proceedings of the International
Conference on Data Engineering (ICDE), 2017.

[8] A. Kimmig, A. Memory, R. J. Miller, and L. Getoor. A collective, probabilistic
approach to schema mapping: appendix. ArXiv:1702.03447 [cs.DB], 2017.

[9] A. Kimmig, A. Memory, R. J. Miller, and L. Getoor. A collective, proba-
bilistic approach to schema mapping using diverse noisy evidence. In IEEE
Transactions on Knowledge and Data Engineering (TKDE), 2018.

[10] A. Memory and W. G. Mueller. Sensor fusion and structured prediction for
cyberattack event networks. In 15th International Workshop on Mining and
Learning with Graphs (MLG), 2019.

[11] E. Rahm and P. A. Bernstein. A survey of approaches to automatic schema
matching. VLDB Journal, 10(4):334–350, 2001.

183

https://doi.org/10.2200/S00578ED1V01Y201404DTM040
https://doi.org/10.2200/S00578ED1V01Y201404DTM040

[12] H. H. Do and E. Rahm. COMA: a system for flexible combination of schema
matching approaches. In Proceedings of the International Conference on Very
Large Data Bases (VLDB), 2002.

[13] R. Dhamanka, Y. Lee, A. Doan, A. Halevy, and P. Domingos. iMAP: discover-
ing complex semantic matches between database schemas. In ACM SIGMOD
International Conference on the Management of Data, pages 383–394, 2004.

[14] F. M. Suchanek, S. Abiteboul, and P. Senellart. PARIS: probabilistic alignment
of relations, instances, and schema. Proceedings of the VLDB Endowment
(PVLDB), 5(3):157–168, 2011.

[15] W. Hu, J. Chen, H. Zhang, and Y. Qu. Learning complex mappings between
ontologies. In The Semantic Web, pages 350–357. Springer, 2012.

[16] R. J. Miller, M. A. Hernandez, L. M. Haas, L. L. Yan, C. T. H. Ho, R. Fagin,
and L. Popa. The Clio project: managing heterogeneity. SIGMOD Record,
30(1):78–83, 2001.

[17] A. Bonifati, G. Mecca, P. Papotti, and Y. Velegrakis. Discovery and correctness
of schema mapping transformations. Schema Matching and Mapping :111–147,
2011.

[18] B. Alexe, B. ten Cate, P. G. Kolaitis, and W.-C. Tan. Designing and refin-
ing schema mappings via data examples. In ACM SIGMOD International
Conference on the Management of Data, 2011.

[19] K. Belhajjame, N. W. Paton, S. Embury, A. A. Fernandes, and C. Hedeler.
Incrementally improving dataspaces based on user feedback. Information
Systems, 2013.

[20] C. Zhang, R. Hoffmann, and D. S. Weld. Ontological smoothing for rela-
tion extraction with minimal supervision. In AAAI Conference on Artificial
Intelligence, 2012.

[21] L. Popa, Y. Velegrakis, R. J. Miller, M. A. Hernández, and R. Fagin. Translat-
ing web data. In Proceedings of the International Conference on Very Large
Data Bases (VLDB), pages 598–609, August 2002.

[22] A. Bonifati, E. Q. Chang, T. Ho, V. S. Lakshmanan, and R. Pottinger. HePToX:
marrying XML and heterogeneity in your P2P databases. In Proceedings of
the International Conference on Very Large Data Bases (VLDB), 2005.

[23] B. Marnette, G. Mecca, P. Papotti, S. Raunich, and D. Santoro. ++Spicy: an
open source tool for second-generation schema mapping and data exchange.
Proceedings of the VLDB Endowment (PVLDB), 4(12):1438–1441, 2011.

[24] A. Bonifati, G. Mecca, A. Pappalardo, S. Raunich, and G. Summa. Schema
mapping verification: the Spicy way. In International Conference on Extending
Database Technology (EDBT), pages 85–96, 2008.

[25] J. Kang and J. F. Naughton. On schema matching with opaque column
names and data values. In ACM SIGMOD International Conference on the
Management of Data, pages 205–216, 2003.

184

[26] L.-L. Yan, R. J. Miller, L. Haas, and R. Fagin. Data-Driven Understanding
and Refinement of Schema Mappings. SIGMOD Record, 30(2):485–496, 2001.

[27] B. Alexe, L. Chiticariu, R. J. Miller, and W.-C. Tan. Muse: mapping under-
standing and design by example. In IEEE Proceedings of the International
Conference on Data Engineering (ICDE), 2008.

[28] B. ten Cate, P. G. Kolaitis, and W. C. Tan. Schema mappings and data
examples. In International Conference on Extending Database Technology
(EDBT), 2013.

[29] B. Alexe, B. ten Cate, P. G. Kolaitis, and W.-C. Tan. EIRENE: interactive
design and refinement of schema mappings via data examples. Proceedings of
the VLDB Endowment (PVLDB), 4(12):1414–1417, 2011.

[30] B. ten Cate, V. Dalmau, and P. G. Kolaitis. Learning schema mappings. ACM
Transactions on Database Systems (TODS), 38(4):28, 2013.

[31] A. D. Sarma, A. G. Parameswaran, H. Garcia-Molina, and J. Widom. Syn-
thesizing view definitions from data. In Proceedings of the International
Conference on Database Theory (ICDT), 2010.

[32] G. Gottlob and P. Senellart. Schema mapping discovery from data instances.
Journal of the ACM (JACM), 57(2):6, 2010.

[33] B. ten Cate, P. G. Kolaitis, K. Qian, and W.-C. Tan. Approximation algo-
rithms for schema-mapping discovery from data examples. In Proceedings of
the 9th Alberto Mendelzon International Workshop on Foundations of Data
Management, page 24, 2015.

[34] P. G. Kolaitis. Schema mappings, data exchange, and metadata management.
In Proceedings of the Symposium on Principles of Database Systems (PODS),
pages 61–75, 2005.

[35] A. Doan, A. Halevy, and Z. Ives. Principles of Data Integration. Elsevier,
2012.

[36] M. Arenas, J. Pérez, J. L. Reutter, and C. Riveros. Foundations of schema
mapping management. In Proceedings of the Symposium on Principles of
Database Systems (PODS), pages 227–238. ACM, 2010.

[37] R. Fagin, P. G. Kolaitis, L. Popa, and W.-C. Tan. Reverse data exchange:
coping with nulls. ACM Transactions on Database Systems (TODS), 36(2):11,
2011.

[38] P. C. Arocena, B. Glavic, and R. J. Miller. Value invention in data exchange.
In ACM SIGMOD International Conference on the Management of Data,
pages 157–168. ACM, 2013.

[39] G. Mecca, P. Papotti, and S. Raunich. Core schema mappings. In ACM
SIGMOD International Conference on the Management of Data, pages 655–
668. ACM, 2009.

185

[40] F. Geerts, G. Mecca, P. Papotti, and D. Santoro. The LLUNATIC data-
cleaning framework. Proceedings of the VLDB Endowment (PVLDB), 6(9):625–
636, 2013.

[41] Z. Bellahsene, A. Bonifati, F. Duchateau, and Y. Velegrakis. On evaluating
schema matching and mapping. In Schema matching and mapping, pages 253–
291. Springer, 2011.

[42] G. Mecca, P. Papotti, S. Raunich, and D. Santoro. What is the IQ of your
data transformation system? In Proceedings of the International Conference
on Information and Knowledge Management (CIKM), pages 872–881, 2012.

[43] P. C. Arocena, B. Glavic, R. Ciucanu, and R. J. Miller. The iBench integra-
tion metadata generator. Proceedings of the VLDB Endowment (PVLDB),
9(3):108–119, 2015.

[44] D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and
Techniques. MIT Press, 2009.

[45] M. Richardson and P. Domingos. Markov logic networks. Machine Learning,
62(1-2):107–136, 2006.

[46] H. Poon and P. Domingos. Joint unsupervised coreference resolution with
Markov logic. In Proceedings of the Conference on Empirical Methods in
Natural Language Processing, pages 650–659. Association for Computational
Linguistics, 2008.

[47] M. Niepert, C. Meilicke, and H. Stuckenschmidt. A probabilistic-logical frame-
work for ontology matching. In AAAI Conference on Artificial Intelligence,
2010.

[48] J. Pujara, H. Miao, L. Getoor, and W. W. Cohen. Using semantics and
statistics to turn data into knowledge. AI Magazine, 36(1):65–74, 2015.

[49] L. De Raedt. Logical and Relational Learning. Springer-Verlag New York Inc,
2008.

[50] J. Lee, R. Marinescu, and R. Dechter. Applying marginal MAP search to prob-
abilistic conformant planning: initial results. In AAAI Workshop: Statistical
Relational Artificial Intelligence, 2014.

[51] J. C. Beck and M. S. Fox. A generic framework for constraint-directed search
and scheduling. AI Magazine, 19(4):103, 1998.

[52] S. H. Bach, B. Huang, and L. Getoor. Unifying local consistency and MAX SAT
relaxations for scalable inference with rounding guarantees. In Proceedings of
the Eighteenth International Conference on Artificial Intelligence and Statistics,
pages 46–55, 2015.

[53] S. H. Bach, B. Huang, B. London, and L. Getoor. Hinge-loss Markov random
fields: convex inference for structured prediction. In Conference on Uncertainty
in Artificial Intelligence (UAI), page 32, 2013.

186

[54] B. ten Cate and P. G. Kolaitis. Structural characterizations of schema-mapping
languages. Communications of the ACM, 53(1):101–110, 2010.

[55] H. Elmeleegy, A. K. Elmagarmid, and J. Lee. Leveraging query logs for schema
mapping generation in U-MAP. In ACM SIGMOD International Conference
on the Management of Data, 2011.

[56] L. Qian, M. J. Cafarella, and H. Jagadish. Sample-driven schema mapping. In
ACM SIGMOD International Conference on the Management of Data, 2012.

[57] B. Alexe, B. ten Cate, P. G. Kolaitis, and W.-C. Tan. Characterizing schema
mappings via data examples. ACM Transactions on Database Systems (TODS),
36(4):23, 2011.

[58] J. Pujara, H. Miao, L. Getoor, and W. Cohen. Knowledge graph identification.
In International Semantic Web Conference (ISWC), 2013.

[59] S. Fakhraei, B. Huang, L. Raschid, and L. Getoor. Network-based drug-target
interaction prediction with probabilistic soft logic. IEEE/ACM Transactions
on Computational Biology and Bioinformatics (TCBB), 11(5):775–787, 2014.

[60] P. Kouki, S. Fakhraei, J. Foulds, M. Eirinaki, and L. Getoor. HyPER: a flexible
and extensible probabilistic framework for hybrid recommender systems. In
Proceedings of the ACM Conference on Recommender Systems (RecSys),
pages 99–106. ACM, 2015.

[61] G. Mecca, P. Papotti, and D. Santoro. IQ-METER - an evaluation tool
for data-transformation systems. In IEEE Proceedings of the International
Conference on Data Engineering (ICDE), 2014.

[62] R. Fagin, L. M. Haas, M. Hernández, R. J. Miller, L. Popa, and Y. Velegrakis.
Clio: schema mapping creation and data exchange. In Conceptual Modeling:
Foundations and Applications, pages 198–236. Springer, 2009.

[63] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data exchange: semantics
and query answering. Theoretical Computer Science, 336(1):89–124, 2005.

[64] L. Getoor and B. Taskar, editors. An Introduction to Statistical Relational
Learning. MIT Press, 2007.

[65] D. Barbosa, A. O. Mendelzon, J. Keenleyside, and K. A. Lyons. ToXgene:
a template-based data generator for XML. In ACM SIGMOD International
Conference on the Management of Data, 2002.

[66] R. J. Miller, D. Fisla, M. Huang, D. Kymlicka, F. Ku, and V. Lee. The
Amalgam schema and data integration test suite, 2001.

[67] C. Becker, C. Bizer, M. Erdmann, and M. Greaves. Extending SMW+ with a
linked data integration framework. In International Semantic Web Conference
(ISWC), 2011.

187

[68] C. Knoblock, P. Szekely, J. Ambite, A. Goel, S. Gupta, K. Lerman, M. Muslea,
M. Taheriyan, and P. Mallick. Semi-automatically mapping structured sources
into the semantic web. In The Semantic Web: Research and Applications.
Volume 7295, Lecture Notes in Computer Science, pages 375–390. Springer,
2012. isbn: 978-3-642-30283-1.

[69] C. Audet and J. E. Dennis Jr. Mesh adaptive direct search algorithms for
constrained optimization. SIAM Journal on Optimization, 17(1):188–217,
2006.

[70] A. Gal. Managing uncertainty in schema matching with top-K schema map-
pings. Journal on Data Semantics VI: Special Issue on Emergent Seman-
tics :90–114, 2006.

[71] N. Q. V. Hung, N. T. Tam, Z. Miklós, K. Aberer, A. Gal, and M. Weidlich. Pay-
as-you-go reconciliation in schema matching networks. In IEEE Proceedings
of the International Conference on Data Engineering (ICDE), 2014.

[72] Z. Yan, N. Zheng, Z. G. Ives, P. P. Talukdar, and C. Yu. Actively solicit-
ing feedback for query answers in keyword search-based data integration.
Proceedings of the VLDB Endowment (PVLDB), 6(3):205–216, 2013.

[73] X. L. Dong, B. Saha, and D. Srivastava. Less is more: selecting sources wisely
for integration. Proceedings of the VLDB Endowment (PVLDB), 6(2):37–48,
2012.

[74] L. Badea. A refinement operator for theories. In International Conference on
Inductive Logic Programming, pages 1–14. Springer, 2001.

[75] B. L. Richards and R. J. Mooney. Automated refinement of first-order horn-
clause domain theories. Machine Learning, 19(2):95–131, 1995.

[76] B. Alexe, W.-C. Tan, and Y. Velegrakis. STBenchmark: towards a bench-
mark for mapping systems. Proceedings of the VLDB Endowment (PVLDB),
1(1):230–244, 2008.

[77] L. Mihalkova and R. J. Mooney. Bottom-up learning of Markov logic network
structure. In Proceedings of the International Conference on Machine Learning
(ICML), pages 625–632. ACM, 2007.

[78] S. Kok and P. Domingos. Learning Markov logic networks using structural
motifs. In Proceedings of the International Conference on Machine Learning
(ICML), pages 551–558, 2010.

[79] T. N. Huynh and R. J. Mooney. Online structure learning for Markov logic
networks. In Joint European Conference on Machine Learning and Knowledge
Discovery in Databases, pages 81–96. Springer, 2011.

[80] S. Kok and P. Domingos. Learning the structure of Markov logic networks.
In Proceedings of the International Conference on Machine Learning (ICML),
pages 441–448, 2005.

188

[81] T. Khot, S. Natarajan, K. Kersting, and J. Shavlik. Learning Markov logic
networks via functional gradient boosting. In 2011 IEEE 11th International
Conference on Data Mining (ICDM), pages 320–329. IEEE, 2011.

[82] M. Biba, S. Ferilli, and F. Esposito. Discriminative structure learning of Markov
logic networks. In International Conference on Inductive Logic Programming,
pages 59–76. Springer, 2008.

[83] S. H. Bach, M. Broecheler, L. Getoor, and P. D. O’Leary. Scaling MPE
inference for constrained continuous Markov random fields with consensus
optimization. In Advances in Neural Information Processing Systems (NIPS),
2012.

[84] D. Maier, A. O. Mendelzon, and Y. Sagiv. Testing implications of data
dependencies. ACM Transactions on Database Systems (TODS), 4(4):455–
469, 1979.

[85] A. Cali, D. Calvanese, G. De Giacomo, and M. Lenzerini. On the expressive
power of data integration systems. In International Conference on Conceptual
Modeling, pages 338–350. Springer, 2002.

[86] Ponemon Institute. 2018 Cost of a Data Breach Study: Global Overview.
Technical report, Ponemon Institute LLC, 2018.

[87] S. Zong, A. Ritter, G. Mueller, and E. Wright. Analyzing the perceived
severity of cybersecurity threats reported on social media. arXiv preprint
arXiv:1902.10680, 2019.

[88] A. Okutan, S. J. Yang, and K. McConky. Predicting cyber attacks with
Bayesian networks using unconventional signals. In Proceedings of the 12th
Annual Conference on Cyber and Information Security Research, page 13.
ACM, 2017.

[89] A. Dalton, B. Dorr, L. Liang, and K. Hollingshead. Improving cyber-attack pre-
dictions through information foraging. In 2017 IEEE International Conference
on Big Data (Big Data), pages 4642–4647. IEEE, 2017.

[90] J. D. Lafferty, A. McCallum, and F. C. N. Pereira. Conditional random fields:
probabilistic models for segmenting and labeling sequence data. In Proceedings
of the International Conference on Machine Learning (ICML), pages 282–289,
San Francisco, CA, USA, 2001.

[91] I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large margin meth-
ods for structured and interdependent output variables. Journal of Machine
Learning Research (JMLR), 6(Sep):1453–1484, 2005.

[92] F. Mirzazadeh, S. Ravanbakhsh, N. Ding, and D. Schuurmans. Embedding
inference for structured multilabel prediction. In Advances in Neural Infor-
mation Processing Systems, pages 3555–3563, 2015.

189

[93] S. Riedel, H.-W. Chun, T. Takagi, and J. Tsujii. A Markov logic approach to
bio-molecular event extraction. In Proceedings of the Workshop on Current
Trends in Biomedical Natural Language Processing: Shared Task, pages 41–49.
Association for Computational Linguistics, 2009.

[94] A. Memory, A. Kimmig, S. H. Bach, L. Raschid, and L. Getoor. Graph
summarization in annotated data using probabilistic soft logic. In Proceedings
of the 8th International Conference on Uncertainty Reasoning for the Semantic
Web-Volume 900, pages 75–86. CEUR-WS, 2012.

[95] Q. Liu, S. Wu, and L. Wang. Collaborative prediction for multi-entity inter-
action with hierarchical representation. In Proceedings of the International
Conference on Information and Knowledge Management (CIKM), pages 613–
622. ACM, 2015.

[96] S. Watanabe. Information theoretical analysis of multivariate correlation.
IBM Journal of research and development, 4(1):66–82, 1960.

[97] L. A. Goodman. Snowball sampling. The annals of mathematical statistics,
32(1):148–170, 1961.

[98] P. Hu and W. C. Lau. A survey and taxonomy of graph sampling. arXiv
preprint arXiv:1308.5865, 2013.

[99] K. Zhang and K. Pelechrinis. Understanding spatial homophily: the case of
peer influence and social selection. In Proceedings of the 23rd International
Conference on World Wide Web, WWW ’14, pages 271–282, New York, NY,
USA. ACM, 2014.

[100] E. M. Hutchins, M. J. Cloppert, and R. M. Amin. Intelligence-driven computer
network defense informed by analysis of adversary campaigns and intrusion kill
chains. Leading Issues in Information Warfare & Security Research, 1(1):80,
2011.

[101] K. Leetaru and P. A. Schrodt. GDELT: global data on events, location, and
tone. ISA Annual Convention, 2013.

[102] J. Pennington, R. Socher, and C. D. Manning. GloVe: global vectors for
word representation. In Empirical Methods in Natural Language Processing
(EMNLP), pages 1532–1543, 2014.

[103] A. Okutan, S. J. Yang, and K. McConky. Forecasting cyber attacks with
imbalanced data sets and different time granularities. arXiv preprint arXiv:
1803.09560, 2018.

[104] N. Dalvi, A. Machanavajjhala, and B. Pang. An analysis of structured data
on the web. Proceedings of the VLDB Endowment (PVLDB), 5(7):680–691,
2012.

[105] D. S. Munteanu and D. Marcu. Improving machine translation performance
by exploiting non-parallel corpora. Computational Linguistics, 31(4):477–504,
2005.

190

[106] J. R. Smith, C. Quirk, and K. Toutanova. Extracting parallel sentences from
comparable corpora using document level alignment. In Human Language
Technologies: The 2010 Annual Conference of the North American Chapter
of the Association for Computational Linguistics, pages 403–411. Association
for Computational Linguistics, 2010.

[107] K. Belhajjame, N. W. Paton, S. M. Embury, A. A. A. Fernandes, and C.
Hedeler. Feedback-based annotation, selection and refinement of schema
mappings for dataspaces. In International Conference on Extending Database
Technology (EDBT), pages 573–584, 2010.

191

	Acknowledgements
	Table of Contents
	List of Figures
	Introduction
	Challenges
	Structure of Dissertation
	Summary of Contributions

	Related Work
	Data Integration
	Schema Matching and Mapping
	Data Exchange and Metadata Management

	Structured Prediction
	Probabilistic Soft Logic

	Mappings from Metadata and Data
	Introduction
	Motivating Example
	Mappings with Full Outputs
	Mapping Selection Inputs
	Characterizing the Input Quality
	Collective Selection over Full Mappings
	Mapping Selection is NP-hard

	Mappings with Partial Outputs
	Incomplete Errors
	Partially Explained Tuples
	Example of Selection over ST TGDs

	Probabilistic Mapping Selection
	Probabilistic Soft Logic
	Mapping Selection in PSL
	Objective Equivalence
	Collective Mapping Discovery

	Evaluation
	Scenario Generation
	Evaluation of Solution Quality
	CMD Accuracy over Ambiguous Metadata
	CMD Accuracy over Dirty Data
	Performance of CMD
	CMD on Real Metadata and Data

	Related Work
	Conclusion

	Handling Ambiguity with Prioritized Disjunction Rules
	Introduction
	Problem
	Approach
	Evaluation
	Complex Scenario Generation
	Results

	Conclusion

	Mapping Search
	Introduction
	Mapping Search Problem
	Mapping Quality
	Search Objective

	Search Approach
	Step 1.1: Select a Flawed Relation
	Step 1.2: Select Flawed ST TGDs
	Step 2.1: Refinement Objective
	Step 2.2: Refine ST TGDs
	Step 3: Update Mapping

	Refinement Operators
	Types of Mapping Flaws
	Substitution Operators
	Conjunction Operators
	Antecedent Operators

	Baseline Algorithms
	Function alg-ib
	Function alg-s
	Search Inputs and Parameters

	Scenario Generation
	Single-Head Local-as-View
	Local-as-View
	Global-as-View
	Global-Local-as-View

	Evaluation
	Mapping Quality
	Scalability
	Results on Real Data

	Related Work
	Conclusion and Future Work

	Joint Matching and Mapping
	Introduction
	Mapping and Matching Problem
	Our Approach
	Generating Candidate Queries
	Probabilistic Inference in PSL

	Evaluation
	Measuring the Quality of Mappings
	Data Sources
	Results

	Conclusion and Future Work

	Statistical Transformations for Source Fusion
	Introduction
	Problem and Background
	Cyberattack Sensors and Sensor Graphs
	Sensor Fusion
	Structured Prediction

	Cyberattack Event Networks
	Roles of Events are Interdependent
	Events Occur in Clusters
	Events Evolve Over Time

	Event-Relational Model
	Baseline: Role-Propositional
	Extension: Event-Propositional
	Extension: Time-Propositional
	Extension: Event-Relational

	Cyber Event Relational Fusion
	Probabilistic Soft Logic
	Mapping to Event-Relational Model
	Predicates
	CERF PSL Rules

	Evaluation
	Data
	Systems
	AuROC and Lift
	Partially-Observed Events
	Rule Contributions
	Scalability

	Conclusion

	Conclusion and Future Work
	Open Challenges and Future Work
	Input Types
	Transformation Languages
	Search
	External Interaction
	Resources

	Bibliography

