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Image segmentation is a fundamental problem of low level computer vision and
is also used as a preprocessing step for a number of higher level tasks (e.g. object
detection and recognition, action classification, optical flow and stereo computation
etc). In this dissertation we study the image segmentation problem focusing on the
task of segmentation into surfaces.

First we present our unifying framework through which mean shift, bilateral
filtering and anisotropic diffusion can be described. Three new methods are also
described and implemented and the most prominent of them, called Color Mean
Shift (CMS), is extensively tested and compared against the existing methods. We
experimentally show that CMS outperforms the other methods i.e., creates more

uniform regions and retains equally well the edges between segments.



Next we argue that color based segmentation should be a two stage process;
edge preserving filtering, followed by pixel clustering. We create novel segmentation
algorithms by coupling the previously described filtering methods with standard
grouping techniques. We compare all the segmentation methods with current state of
the art grouping methods and show that they produce better results on the Berkeley
and Weizmann segmentation datasets. A number of other interesting conclusions
are also drawn from the comparison.

Then we focus on surface normal estimation techniques. We present two novel
methods to estimate the parameters of a planar surface viewed by a moving robot
when the odometry is known. We also present a way of combining them and in-
tegrate the measurements over time using an extended Kalman filter. We test the
estimation accuracy by demonstrating the ability of the system to navigate in an
indoor environment using exclusively vision.

We conclude this dissertation with a discussion on how color based segmenta-
tion can be integrated into a structure from motion framework that computes planar

surfaces using homographies.
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Chapter 1

Overview
In this dissertation we study the image segmentation problem focusing on the task
of segmentation into surfaces. Arguably image segmentation is the most important
low level vision task. Besides being by itself a very interesting signal processing
problem, its importance also arises from the number of vision applications that
require some sort of segmentation of the image. Object detection and recognition,
face recognition, action classification, video and medical image analysis are a few
of the domains that require a prior identification of “homogeneous” image regions.
Moreover, other low level tasks, such as stereo and optical flow computation, greatly
benefit from a good segmentation algorithm |1, 2.

A great number of researchers have extensively studied different variations of
the segmentation problem with more or less success. As Borra and Shankar [3]
suggest, the proper segmentation is task and domain specific. Hence, besides their
difficulty as a high dimensional pixel grouping problems, most variations of the
segmentation problem are also ill-defined. For example, when the goal is object
recognition, image segmentation’s purpose is to identify (and group together) image
regions that correspond to objects. Since an object is not a well defined entity,
this definition of image segmentation is also ill-defined. Furthermore, “correct” seg-

mentations of an image may exist at different levels of detail, thus researchers have



(a) Coffee mug (b) Chair (c) Board game

Figure 1.1: Images of objects that are hard to segment into surfaces.

worked on “hierarchical” segmentation schemes [4, 5, 6].

We prefer a geometric based definition of segmentation that avoids most am-
biguity problems mentioned above. More specifically, we use the surface normal
of individual pixels as the criterion for grouping them together. According to this
definition, areas with smooth surface normals should belong to the same segment,
and segment boundaries should correspond to normal discontinuities, caused either
by distance or orientation discontinuities.

This definition of the segmentation is straightforward in theory, but it presents
many challenges on the algorithmic and implementation levels. In practice, it is
impossible to compute the surface normal of an individual pixel unless a smoothness
assumption about the region around the pixel is made. This leads to the well
known chicken-and-egg problem, where one needs to assume that the area around
a pixel possesses the same properties (similar surface normal in this case) as the

pixel in order to compute those properties and check whether the properties of the



pixels around it actually have the same properties. In general, it is known that
surface normal estimation belongs to the general category of structure from motion
problems, that are harder than stereo and optical flow computation, since one seeks
to estimate 3 dimensional quantities instead of 2D image properties. A very common
assumption that we also adopt in this work is the planarity assumption, namely we
assume that objects consist of planar surfaces.

Apparently there are important unresolved issues when surfaces are not pla-
nar, as in the case of the coffee mug or the chair of Fig. 1.1. It is not clear how
a “proper” segmentation into surfaces algorithm should handle the smooth surface
normal change. One might argue that the coffee mug should be considered as a
single entity. What about the chair then? A division into two surfaces, one sup-
porting the back and the other where one sits, perpendicular to each other seems a
better solution than a single surface. In a sense the resolution of the surface normal
estimation ultimately defines the segmentation. Even in cases when there is a clear
surface normal discontinuity, such as the individual surfaces of the “mastermind”
board game (Fig. 1.1), there are computational problems. In this particular exam-
ple the edge between the two areas is much weaker than the texture edges on each
individual segment. As a consequence any gradient based segmentation algorithm
would fail to identify the edge. In general segmentation into planar surfaces is a
very hard problem.

This dissertation does not claim to provide a complete solution to the seg-
mentation into planar surfaces problem. A careful study of some parts of the whole

system is performed, instead, and a number of improvements over current methods



are proposed. More specifically, we consider the subproblems of color based seg-
mentation and surface normal estimation in isolation, and their interaction. Our
two basic theses are that a) color-based segmentation should be treated as a filtering
step followed by a grouping process and b) combination of curve based, region based
and point based cues is important for surface estimation (and low level computer
vision in general). In the next paragraphs we further develop these ideas and briefly
describe the content of each chapter of this thesis.

We start, in chapter 2, by describing a framework through which mean shift,
bilateral filtering and anisotropic diffusion can be described. The simplicity of the
framework brings forth the similarities and differences of these methods resulting
in a better understanding on how they operate on images. Furthermore, three new
methods are described and implemented and the most prominent of them, called
Color Mean Shift, is extensively tested and compared with the existing methods.
Using a number of images and different performance criteria we conclude that Color
Mean Shift outperforms the existing methods i.e., creates more uniform regions and
retains equally well (or better) the edges between segments, while it is slightly slower
than the existing methods.

Chapter 3 describes and experimentally verifies the thesis that color based
segmentation should be a two stage process, namely an edge preserving filtering fol-
lowed by a clustering of the image pixels. We create novel segmentation algorithms
by coupling the filtering methods of the previous chapter with four clustering meth-
ods; connected components grouping with constant threshold in 3D or 5D space,
grouping using region adjacency graphs; and the popular grouping using adaptive

4



threshold algorithm by Felzenszwalb and Huttenlocher [7]. Then, we use the Berke-
ley database to compare the segmentation results with those obtained from human
subjects. We use a simple measure based on edge overlap as well as four popu-
lar measures to compare the quality of the segmentation. Extensive experimental
comparison verifies that the two stage segmentation produces better results than
any clustering algorithm in isolation. In addition, the results attests that the two
stages are interconnected i.e., for best segmentation results the combination of filter-
ing and grouping algorithms should considered together. Studying and improving
an individual part (either filtering or grouping) does not guarantee better results.
Appendix A presents more segmentation results using a different dataset obtained
from the Weizmann Institute [8].

In the next chapter (4) we switch topic and focus on the surface normal estima-
tion problem. More specifically, we describe how image cues can be combined with
odometry (or inertial sensor) measurements to estimate the surface normal of image
regions and perform visual navigation on a challenging indoor environment. We
present one way to combine three different methods based on image points, straight
lines and whole image regions and estimate the surface normal and distance of the
walls more accurately and robustly. Besides the description of two novel methods
for surface normal estimation based on straight lines and regions, this chapter also
provides an paradigm on how an actual visual system can benefit from knowledge
of the camera motion. In this case the odometry of the robot empowers us to a)
decouple motion and structure and hence compute the surface normal using feature

points by solving a linear system, b) estimate the surface normal by considering



the stretch of the whole region. In addition, we propose one way to integrate the
measurements of the surface normal over time using an extended Kalman filter.
The whole approach is implemented and tested on a mobile robot. In a number
of experiments we demonstrate the ability of the system to navigate in an indoor
environment using exclusively vision. The quality of visual navigation is used to
evaluate the surface normal estimation with the individual methods and their com-
bination. In all the experiments the combination of the three methods produces
much better navigation results than each individual method in isolation. The inte-
gration of the surface normal measurements over time further improves the quality
of the navigation.

Appendix B directly relates to chapter 4. The stretch filter that we develop
was motivated by one of the surface normal estimation methods of that chapter,
namely the harmonic shape from texture method. In a nutshell according to our
method the surface normal and distance are encoded in the image stretch and shift of
a planar region between two successive camera frames, thus by measuring the latter
image quantities one can estimate the surface values. In this chapter we describe
a direct way to estimate the stretch of a 2D signal using a properly created single
filter. We analytically develop this filter and present results of applying it to real
signals. We show that this method is a real-time alternative solution for measuring
local signal transformations. Experimentally, this method can accurately measure
stretch, however, it is very sensitive to shift.

Appendix D describes the process of calibrating the camera with respect to

the Pan and Tilt Unit. This is a necessary procedure in order to use PTU based



measurements for the camera motion in structure from motion algorithms such as
the ones used in chapter 4. First, we define what we mean by the term “calibration”.
Then, we formulate the calibration process as an optimization problem and describe
its solution. Finally, we present the calibration results we obtained in our setting,
namely a quad camera frame mounted on a PTU-46-17P70T pan and tilt unit by
Directed Perception.

We conclude this dissertation, in chapter 5, by presenting a framework that
incorporates color based segmentation into structure from motion algorithms. We
focus on the problem of estimating the homography i.e., the transformation of the
locations of points belonging to a 3D planar surface between two frames. We extend
current approaches by obtaining an initial grouping of the feature points using our
color based segmentation algorithm. Then, we compute the homographies using
robust existing techniques and we further adjust the parameters of the segmentation
based on the geometry of the scene. The latter step corresponds to the merging
region step of traditional plane estimation algorithms. We also propose a splitting
mechanism in regions where the reprojection error of feature points is large, based
on color segmentation. Finally we briefly touch the problem of active segmentation
into planar surfaces, but providing a lemma that can be used to predict the quality
of the homography estimation. All the proofs for the lemmas used in this chapter

are presented on Appendix C.



Chapter 2
A Framework for Filtering Algorithms

2.1 Introduction

This chapter and the next considers the problem of image segmentation, based only
on the intensity values of an image. Color based segmentation is a fundamental
and well studied problem in computer vision and many algorithms exist in the
literature. The simplicity of this problem! as well as its direct connection to surface
based segmentation make it an appropriate candidate for a starting point in our
discussion.

We perceive segmentation as a two-step process; a smoothing step followed by
a grouping step. The smoothing step attempts to bring closer intensities of neigh-
boring pixels that belong to the same segment, while preserving (or even enhancing)
the intensity difference across segment boundaries. The grouping step attempts to
decide whether two neighboring pixels belong to the same segment or not. Arguably
both steps are equally important, even though current methods only concentrate on
one step of the process. Furthermore, their combination affects the final result.

First we study a number of smoothing techniques; the original mean shift [9]

and its modified version|10, 11]?, bilateral filtering [12],[13], local mode filtering [14]

!Here we refer to the simplicity of the formulation of color based segmentation, namely group
pixels with similar color properties together. We do not imply, though, that this problem is easy
to solve or has been solved so far.

2In the recent papers, the original “mean shift” approach is called “blurring mean shift”. We



and anisotropic diffusion [15]. We present all the above techniques as variations
of a general optimization problem. Using such a formulation the similarities and
differences between them are made clear. This framework also provides a natural
way to classify them using two criteria. Using the classification criteria we propose
three novel methods. Two of them (color mean shift and spatial mean shift) are
variations of the mean shift filtering and the third one is an extension of bilateral
filtering. Filtering experiments show that color mean shift actually outperforms

mode finding in smoothing the images while preserving the edges.

2.1.1 Related Work

In this section we present related work on mean shift, since this is the main focus and
motivation for the whole chapter. Following the success of Comaniciu and Meer’s
version of mean shift [11] the same basic algorithm for non parametric clustering has
been used for object tracking [16], 3D reconstruction [17], image filtering [11], texture
classification [18] and video segmentation [19] among other problems. The relatively
high computational cost of a naive implementation of the method combined with the
need for fast image processing led researchers to propose fast approximate variations
of it. Most notably, two solutions for finding pairs of points within a radius have
been proposed; the Improved Fast Gauss Transform based mean shift [20] for Normal
kernels and the Locality Sensitive Hashing based mean shift |18].

Cheng [10] was the first to recognize the equivalence of mean shift to a step-

use a different name for the mean shift variant used in computer vision, namely “mode finding”.
So in the rest of this chapter the term Mode Finding (MF) refers to Comaniciu and Meer’s
version of mean shift.



varying gradient ascent optimization problem, and much later Fashing and Tomashi
|21] showed that it is equivalent to Newton’s method with piecewise constant kernels,
and is a quadratic bound maximization for all other kernels. Yuan and Li [22]| prove
that mean shift is a half quadratic optimization for density mode detection when the
profiles of the kernel functions are convex. Finally, Carreira-Perpinan [23| proves
that it is equivalent to an EM algorithm when the kernel is Normal.

At the same time a number of extensions of the basic algorithm have been
proposed. Shen et al. [24] and Yuan and Li [22| propose multi scale extensions to the
original algorithm for detecting density modes at different resolutions. Extensions

to general metric spaces were also developed |25, 26, 27, 28|.

2.1.2 Notational Preliminaries

We represent the color image as a mapping S from the 2D space of the pixel coor-
dinates to the 3D space of the intensity values (for color images). x; is a 2D vector
representing the spatial coordinates of pixel i (: = 1...N) and S(x;) is a vector
that represents the three color channels. To simplify the notation we denote the
intensities for a pixel x; with a subscript, so S(x;) = S;. We also denote the set of
all pixels as X and the whole image S(X). The cardinality of X is N.

In the following sections we use bold letters to represent vectors and the nota-
tion [x;,S;]” to indicate a concatenation of vectors. When we want to indicate the
evolution of a vector over time we use superscripts, e.g. [x?, S?] indicates the initial

values of pixel x; having intensity S,.

10



2.1.3 Kernel Functions

Definition(Kernel Function):Let X be a d-dimensional Euclidean space and x €

X. We denote with x; the i component of x. The L, norm of x is a non-negative

number ||x|| such that ||x||2 = 3%, 2. A function K : X — R is a kernel if and

i=1%"i"

only if there exists another function &k : [0--- 4 oo] — R such that

K(x) = k(||x[|*)
and
1. k is non negative

2. k is non increasing i.e.,

k(a) > k(b), if a<b

3. k is piecewise continuous and

“+oo
/ k(a)da < +o0
0

Function k(z) is called the profile of the kernel K(x).

Often the kernel function is normalized i.e.,

/X K(x)dx = 1.

(2.1)

(2.2)

(2.3)

(2.4)

Even though kernel functions are mostly used for kernel density estimation,

11



we use them in order to define optimization problems that we subsequently solve

using standard gradient descent methods. Thus, we are not only interested in the

kernel function K (x) but also on its partial derivatives 6[;_}(?). Next we define two

kernel functions that we use; the Epanechnikov and the Gaussian kernel.

2.1.3.1 Epanechnikov kernel

The Epanechnikov kernel [29] has the analytic form

cp(l —xTx) xTx<1
Kg(x) = (2.5)

0 otherwise

d+2_ d+2

where cp = WP( 5

) is the normalization constant. Fig. 2.1(a) presents this
kernel in the 1 — D case. The partial derivative of Kp(x) with respect to element

x; of vector x is

aKE(X) B —2-cg-r; —-l<ax;<l1 (2 6)
81‘2' a '
and is depicted in Fig. 2.1(b).
2.1.3.2  Multivariate Normal (Gaussian) kernel
The multivariate Normal kernel with variance 1 has the analytic form
_d 1 T
Kn(x) = (27) zexp(—ix X). (2.7)

12



1D Epanechnikov kernel Derivative of the Epanechnikov kernel

15F

(a) 1-D Epanechnikov Kernel (b) Derivative of 1-D Epanechnikov Kernel

Figure 2.1: 1 — D Epanechnikov kernel.

In Fig. 2.2(a) a 1 — D Normal kernel is displayed.

The partial derivative of Kg(x) with respect to element x; of vector x is

OKy(x) e — 5T — —
Txi——xi-(Qﬂ) exp( 5% ) = —x; - Ky(x) (2.8)

and is depicted in Fig. 2.2(b).
The Normal kernel is often symmetrically truncated to obtain a kernel with

finite support.

2.2 Image Filtering

In the following subsections we define a number of image filtering techniques as
optimization problems. In previous formulations these methods were defined as

the result of applying an algorithm to an image. Using our formulation we aim to
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1D Normal kernel Derivative of the Normal kernel
T
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(a) 1-D normal kernel (b) Derivative of 1-D normal kernel

Figure 2.2: 1 — D Normal kernel.

achieve two goals; to simplify the methods (since we only need a single equation
to describe it) and to describe all the methods in a uniform way. Note that some
methods (i.e. mean shift and mode finding) are defined for any kernel function,
while others (i.e., bilateral filtering, local mode filtering and anisotropic diffusion)

are only defined with respect to the Normal kernel Ky (x).

2.2.1 Mean Shift (MS)

The original mean shift formulation |9] (applied to a color image) treats the image as
a set of 5— D points (i.e., 2 dimensions for the spatial coordinates and 3 dimensions
for the color values). Each point is iteratively moved proportionally to the weighted

average of its neighboring points. At the end, clusters of points are formed. We

14



define mean shift to be the gradient descent solution of the optimization problem

- K 1) i 7S' ) 2.
arg[g’lsn] Z (xi, Si] — [x5,S5]) (2.9)

Wherez defines the summation over all pairs of pixels in the image. Note that this
Z‘ij

problem has a global maximum when all the pixels “collapse” into a single point. We

seek a local minimum instead. That’s why we initialize the features [x;,s;| with the

original position and color of the pixels of the image and perform gradient descent

iterations till we reach the local minimum.

2.2.2  Mode Finding (MF)

The modified mean shift formulation proposed by Comaniciu and Meer [11] (hence-
forth called “mode finding”) can also be expressed as a gradient descent solution of

the optimization problem

‘

arg mln—ZK xi, Si] — [x7,8%]) (2.10)

[xlv z

There is a subtle difference between mode finding and mean shift, that sig-
nificantly affects the performance. In the former formulation each current point is
compared against the original set of 5 — D points [x(;, S‘;], while in the latter case
the point is compared against the set of points from the previous iteration [x;, S;].
In a recent paper [30] S. Rao et al. study those two variations from an information

theoretic perspective and conclude that mean shift is not stable and hence should

15



not be used for clustering.

Fig. 2.3 presents the results of both methods in a smoothly varying intensity
image. Notice that the gradient of the kernel function is zero everywhere but in
the boundaries. Thus, mode finding filtering only changes the intensity on the
boundaries (that change is not very visible in Fig. 2.3). Mean shift, on the other
hand, produces artificial segments of uniform intensity. Intuitively, each iteration of
the process results in more clustered data which in turn results in better clustering
results for the next iteration. On the downside, a fast mean shift implementation is
challenging due to the fact that the feature points and the comparison points do not
lie on a regular spatial grid anymore. Thus in a naive implementation one would

have to compare the current feature [x;, S;] against all the remaining feature points.

2.2.3 Spatial Mean-Shift (SMS)

One of our proposed methods that lies between mean shift and mode finding, spa-
tial mean shift performs mean shift in the spatial dimensions and mode finding in
the color dimensions. SMS can be viewed as the gradient descent solution of the

optimization problem
arg min — g K([x;,S;] — [x;,89)). 2.11
g[Xi’Si] — ([ ] [ J y]) ( )

Spatial mean shift suffers from the same computational problems as mean shift, so
it is mentioned here for the sake of completeness. We exclude the results of both

mean shift and spatial mean shift in our filtering and segmentation experiments.
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2.2.4  Color Mean-Shift (CMS)

Color mean shift is our proposed method that alleviates the computational problem
of mean shift by using the original spatial location of the points for comparison,
while it uses the updated intensity values of the previous iteration for improved
clustering ability. In a sense, mean shift is performed on the color dimensions and
mode finding on the spatial dimensions (that is the reason for naming the method
“color mean shift”). Asabove, CMS can be expressed as the gradient descent solution

of the optimization problem

arg min — > K([x;,Si] - [x9.8;]). (2.12)
W~ 7,,]

2.2.5 Local Mode Filtering (LMF)

Local mode filtering [14] was introduced as a method to find the local mode in the
range domain of each pixel of the image. A generalization of the spatial Gaussian
filtering to a spatial and range Gaussian filter is used to iterate to the local mode (on
the 3 — D color domain). On each iteration the intensity of each pixel is replaced
by a weighted average of its neighbors. From an optimization point of view the

problem can be expressed as

argnéiin—ZKN([xi,Si] — [x2,8%)). (2.13)

Z‘?j
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2.2.5.1 Bilateral Filtering (BF)

In bilateral filtering [12[,[13]| the intensity of each pixel is replaced by a weighted
average of its neighbors. The weight assigned to each neighbor decreases with both
the distance in the image plane (spatial domain) and the distance on the intensity

axes (range domain). Formally the intensity at each pixel S; takes the value

205 SiEN([xi; Si] - [x5, S7])
Zj KN([XZ'> S,] - [X?’ Sg]) '

S; (2.14)

Bilateral filtering can be considered as the first iteration of local mode filtering with

a specific step size (Sec. 2.2.7).

2.2.5.2 Joined Bilateral filtering

In this variation of the bilateral filtering both the intensity and position of each pixel
is replaced by a weighted average of its neighbors. Formally, the new coordinates

and color of each pixel are

>, Sil K ([xi, Si] — [x7, SY])
Zj KN([XZ" SZ] - [Xg’ S?])

(i, Si] = (2.15)

Analogous to bilateral filtering this method can be considered as the first

iteration of mode finding with a specific step size.
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2.2.6  Anisotropic Diffusion (AD)

Anisotropic diffusion is a non-linear process introduced by Perona and Malik [15]
for edge preserving smoothing. In the original formulation a diffusion process with a
monotonically decreasing diffusion function of the image gradient magnitude is used
to smooth the image while preserving strong edges. Since then other functions have
been proposed and the equivalence of this technique to robust statistics has been
established [31]. In [14] the connection with local mode filtering was also made. Here

we provide an alternative view of the diffusion process as an optimization problem

argrréiin—ZKN([xi,Si] — [x;,8]). (2.16)

i3
The difference between this method and local mode filtering is analogous to the
difference between the original mean shift and mode finding. Namely in local mode
filtering the current point is compared against the original image pixels [x?,S?],

while in anisotropic diffusion the comparison is against the intensity value of the

pixels in the previous iteration [x;, S;].

2.2.7 Optimization steps sizes

From the above optimization problems mean shift, spatial mean shift, color mean
shift and anisotropic diffusion are joint optimization problems i.e., the whole image
needs to be optimized simultaneously. In mode finding and local mode filtering,
on the other hand, each pixel can be optimized independently from the rest of the

image. Next we present two claims concerning the step size of these optimization
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) Mode Finding b) Spatial Mean Shift ) Color Mean Shift

) Mean Shlft ) Local Mode Filtering f) Anisotropic Diffusion

Figure 2.3: All the described algorithms applied on a smoothly varying image. All
the filtering algorithms were executed with spatial resolution hs = 21 and range
resolution h, = 10 and used a Normal kernel.

problems.

Claim 2.1. Local mode filtering (and mode finding with a Gaussian kernel) can be
considered as gradient descend methods for solving the corresponding optimization
problem (Eqgs. 2.13 and 2.10 respectively) with a step size at iteration t of

. 1
TS R ST B S

(2.17)

Proof. A proof for local mode filtering follows. Each pixel p; is optimized separately.

So if we replace the step size v; in the general gradient descent algorithm we get

St — st — ’yfVZKN([Xi,SE]—[Xj,S?]) (2.18)

SIT =8 — 1Y VEn([xi, 8] — [x;,8]) (2.19)

J
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Sit=Si— Z Ky ([xi,8i] — [x;,85])[S] — S]] (2.20)

7 7
J

SIH =8I+ () Kn([xi, S]] —[stg]))sf—ﬁZKN([Xia Si]—[x;,S)1)S} (2.21)

J J

oo Bv([xi, Si] = [x5, S71)S)
A row (o ey (222)

that is exactly the intensity values for pixel x; at the next iteration t + 1. O

To prove the claim for mode finding with a Gaussian kernel one only needs to
replace the occurrence of Sf, S/, 8% with [x!, SI], [x{™", S{™"], [x0, 8Y] respectively,
because the optimization is performed on the 5 — D domain.

Claim 2.2. Mode finding with an Epanechnikov kernel can be considered as a gradi-
ent descend method for solving the corresponding optimization problem (Eq. 2.10)

with a step size at iteration ¢ of

1

Vi = —
265 25 It 8t~ [x,80] 1 <1 L

K3

(2.23)

As a consequence the result after one iteration of the gradient descent is

0 QO
i, gevt] = 2l st 5
(3 ) (2 *

(2.24)
25 it 1] - 8] <1 |

Table 2.1 summarizes the optimization step sizes for each method along with
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the results after one iteration. Note that in the case of mean shift and anisotropic
diffusion we are using the block gradient descent method and optimize one pixel

vector at a time?>.

2.3 Classification framework

Careful examination of the previous defined optimization problems reveal that there
are only two differences in their objective functions; the presence of [x;,S;] or [S]
as the optimization argument; and the comparison against the points in the original
image [x9,S9] or the points on the previous iteration [x;,S;]. Finally two of the
methods (bilateral filtering and joined bilateral filtering) are an one-iteration meth-
ods, while all the other methods perform multiple iterations till convergence. Next
we explain in details these differences, and define a classification of the methods

based on these criteria.

2.3.1 arg min vs arg min
g[Xi,Si] v & S;

In the first case the optimization problem is defined over the joint spatial and range
domain (5 — D), i.e. both the position of the pixels as well as their intensities
change in each iteration. In the second case, where the optimization is over the
range domain (3 — D), only the intensities of the pixels change while their position
remain the same. This is not to be confused with the use of [x;,S;] in the objective

function. While the position of the pixel is always considered in the computation

3We use the symbols x;, S; to denote the current value of pixel p;. These might be the values
of pixel p; at iteration ¢ or ¢ 4+ 1 depending on whether p; is processed after or before p;.
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Method Step Size Single iteration result
0 QO
Mode Finding with K o= 1 [xiT1, 8] = 25 8-l 891 <1 %5 5]
b Zem X st - s l<1 b o 2t ! -x0,89) | <1 1
t Qt 0 Q0 0 Q0
Mode Finding with Ky A= — ! [xiT1 8+l = Zj Bl 51 - [Xj’ Sjmxj’ Sj]
' Zj KN([Xf,Sﬂ - [X?’S?]) ’ ’ Zj KN([XI;’SI;] - [X?7S?])
Mean Shift with Kp i ! XU 80 = 221 811y 8,111 55
b AeB Xt st — ;.8 i<t b o 2 8t s, 851 <1 L
, 1 2 En((xt 8] - x5, 85])[x;, S5

Mean Shift with Ky

Spatial Mean Shift with Kg

Spatial Mean Shift with K

Color Mean Shift with Kg

Color Mean Shift with Ky

Local Mode Filtering with K

Anisotropic Diffusion with K

T T RN (KL ST - .S

1
V=

2CE 2 j,|xt 81— ;.80 <1 |

i

_ 1
1T TS K (XL ST - x5, 80)

N !
2€E 2 |xt 8- 0.8, )l [<1 L
N 1
‘ Zj KN([vasﬂ - [X?7Sj])
o 1
b X Kn([x, S - [x9,89)
t 1

T A R (KL ST - %85

it gttt —
S = e R (ST~ [%,5,)

2t 11— by S0l <1 5 S5

i

t+1 Qi+l _
ST =

[x;

25114, 84— xSl <1 L

i

t+1 St+1] . Zj KN([Xlz?v Sf] - [Xj7 Sg])[xﬁsg]
PR X En((x, ST - x5, 89))

2 80—, 11 <1 %5 S5

[x

xSt = = -
Al 8-S, )| <1

[th+1 St'_l’_l] _ Zj KN([ng Sﬂ - [X?7Sj])[xgv S]]

> Kn([x,SH - [x),S,])
> Kn([xf, St — [x7,89])S)
> K ([}, 87 — [x9,89])
gl _ > Kn([x} 8] — [x5,8,])8;
' > Kn (x5, Si] — [x5,85])

t+1 _
St =

Table 2.1: Step sizes and iteration results for the different filtering methods with different kernels.



Color Mean Shift

Input:
set of pixels x? with intensities S?
a function g
Output:
feature vector [x;, S;]
Algorithm:
initialize feature points [x;, S;] < [x?, S?]
repeat until convergence

for all features [x;, S;]
Q. > ,1%5,8519(l1x:,8:]—[x9,8;111?)
[xi, Si] >, 91581 <01

Mode Finding

Input:
set of pixels x? with intensities S?
a function g
Output:
feature vector |x;, S;]
Algorithm:
initialize feature points [x;, S;] < [x?, SY]
for all features [x;, S;]

repeat until convergence
Q. > 1x5.8,519(l1xi,8:] = [x$.89I1?)
[xi. Si] 5, 9(IIxi, 81— <0, S0)

Figure 2.4: The algorithms that we use in the experiments. Note that g(x) =
[z < 1] (indicator function in Iverson notation) for the Epanechnikov kernel and
g(x) = exp(—z/2) for the Normal kernel. Local mode filtering is performed in a
similar way as mode finding and mean shift, anisotropic diffusion are performed in
a similar way as color mean shift.
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of the objective function, that position might change or not (depending on the
method).

At this point we should also make clear that the optimization is defined for the
whole image, that is the values of all the pixels change. For the sake of simplicity

we don’t make this explicit when we write down the optimization equation.

232 [x,89] vs [x;,8;]

With a subscript we denote the value of the pixels at a specific iteration, so [x?, S?]
is the value of pixel x; at the very beginning, i.e. in the original image. The lack
of a superscript denotes the current value of pixels, i.e. the value of the pixel at
a previous iteration. Two pairs of algorithms (mean shift/mode finding and local
mode filtering /anisotropic diffusion) only differ in whether we compare the current
value of a pixel against the original image or the image obtained in the previous
iteration. As we will demonstrate in the experiments, the results vary significantly
because of that (also see [30] for a theoretical analysis and justification).
Furthermore, there are two valid hybrid combinations that have not been

proposed before.

o [x!

i S;] : In this case the comparison is performed against the original position

of the pixels and the previously computed range image.

o [x;, S?] : In this case the position of the pixels in the previous iteration is used

along with their original intensity values.

Apparently the previous cases only make a difference when the optimization is de-
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fined over the joint spatial /range domain. Otherwise the position of the pixels never

changes, thus [z;] = [)].

2.3.3 A taxonomy of filtering methods

Fig. 2.5 presents the various methods and where they fit with respect to the previous
criteria. The three new methods are spatial mean shift, color mean shift and joined

bilateral filtering.

2.4 Filtering experiments

Following the example of Comaniciu and Meer [11], we normalize the spatial and
color coordinates of each pixel vector by dividing by the spatial (hs) and color (h.)
resolution. Thus, the original feature vector [x;,S;] is transformed to [3%, 2—;] (not
included in the optimization equations for simplicity reasons). Then, we perform
the optimization; one pixel at a time in the case of mode finding (Fig. 2.4, top
right), or one iteration of the whole feature set at a time in the mean shift and color

mean shift cases (Fig. 2.4, top left). Fig. 2.6 displays the original images that we

use for all the experiments in the rest of the section.

2.4.1 Epanechnikov vs Normal Kernel

First we present some filtering results when using different kernels; namely the
Epanechnikov and Normal kernel (Figs. 2.7,2.8). Each column of the figures de-

picts the filtering result with a different algorithm; MF, LMF, CMS and AD stand
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(a) Hand (b) Workers

(c) Woman (d) Houses

Figure 2.6: The original images we use for the filtering experiments. The first
image is taken from Comaniciu and Meer’s mean shift segmentation paper, while
the remaining are training images of the Berkeley segmentation database collection.
Their sizes are 303 x 243 and 481 x 321 pixels respectively.
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for mode filtering, local mode filtering, color mean shift and anisotropic diffusion
respectively. In all cases the Normal kernel produces smoother results, while pre-
serving edge discontinuities. As a matter of fact the color resolution h, is the one
that defines the gradient magnitude above which there is an edge (to be preserved).
So for the “hand” image, a color range of h, = 19 results in smoothing most of the
texture on the background, while a value of h, = 10 retains most the texture (in
RGB color space with a Normal kernel).

In all the images mode finding and local mode filtering produced very similar
results. Furthermore color mean shift and anisotropic diffusion gave similar results.
Color mean shift seems to produce more crisp edges while anisotropic diffusion
smooths some of the edges. Overall, color mean shift and anisotropic diffusion
produce more uniform regions (e.g. suppresses the skin color variation on the “hand”
image) and more crisp boundaries between segments compared to mode finding and
local mode filtering. The latter is particularly important for the segmentation step.
We further investigate this phenomenon in subsection 2.4.3.

For the remaining filtering experiments we use a Normal kernel.

2.4.2 RGB vs Luv Color Space

In Figs. 2.9, 2.10 we present the results when filtering in the RGB and Luv color
space. In general, filtering in Luv color space produces smoother images. This
is due to two facts. The euclidean distance between two Luv values is percep-

tually meaningful, i.e. it is proportional to the distance of the colors as per-
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(a) MF with Epanech-(b) LMF with Epanech-(c) CMS with Epanech-(d) AD with Epanech-
nikov kernel mkov kernel mkov kernel IllkOV kernel

) MF with Normal ker-(f) LMF with Normal(g) CMS with Normal(h) AD with Normal ker-
nel kernel kernel nel

(i) MF with Epanech-(j) LMF with Epanech-(k) CMS with Epanech-(1) AD with Epanech-
nikov kernel nikov kernel nikov kernel nikov kernel

(m) MF with Normal(n) LMF with Normal(o) CMS with Normal(p) AD with Normal ker-
kernel kernel kernel nel

Figure 2.7: Epanechnikov vs Normal kernel experiment. We use h; = 5 (resulting
in a window of 11 x 11 pixels) and h, = 19. All the images are processed in RGB
color space.
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(a) MF with Epanech-(b) LMF with Epanech-(c) CMS with Epanech-(d) AD with Epanech-
nikov kernel nikov kernel nikov kernel nikov kernel

(e) MF with Normal ker-(f) LMF with Normal(g) CMS with Normal(h) AD with Normal ker-
nel kernel kernel nel

(i) MF with Epanech-(j) LMF with Epanech-(k) CMS with Epanech-(1) AD with Epanech-
nikov kernel nikov kernel nikov kernel nikov kernel

1

(m) MF with Normal(n) LMF with Normal(o) CMS with Normal(p) AD with Normal ker-
kernel kernel kernel nel

Figure 2.8: Epanechnikov vs Normal kernel experiment. We use h; = 5 (resulting
in a window of 11 x 11 pixels) and h, = 19. All the images are processed in RGB
color space.
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ceived by a human observer. This is not true in RGB, where very similar col-
ors might be located far away and vice versa. Furthermore the range of val-
ues for each component (L, u, v) is different (for example in our implementation
Le0...100], uw € [-100...180], v € [-135...110].), while each of the Red, Green
and Blue components have values from 0 to 255.

In these experiments, mode finding and local mode filtering seem to produce
almost identical images, while color mean shift preserves the boundaries better than
anisotropic diffusion. Both latter methods smooth the image considerably more

than the former ones.

2.4.3 Color uniformity of regions after filtering

Next we compare the ability of the filtering algorithms to suppress texture and
produce uniform regions. State of the art approaches to locate and classify texture
use filter responses [32|, |33] clustered in an K nearest neighbors framework. We
measure, instead, the uniformity of the regions using zero (i.e. color histogram)
and first order (i.e. gradient magnitude histogram) statistics on the color space.
We compute the magnitude of the image gradient for each color channel on every
image point using a 3 x 3 Sobel filter. In Figs. 2.11, 2.12, 2.13, 2.14 we display the
histograms of the color and gradient distributions for the original images as well as
the filtered ones with a Normal kernel in Luv color space. The difference between
the filtering results is most obvious in the “hand” image. In color mean shift filtered

image the vast majority of gradient magnitudes are close to zero. A comparable
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(a) MF on RGB color(b) LMF on RGB color(c) CMS on RGB color(d) AD on RGB color
space space space space

() MF on LUV color(f) LMF on LUV color(g) CMS on LUV color(h) AD on LUV color
space space space space

space space space space

(m) MF on LUV color(n) LMF on LUV color(o) CMS on LUV color(p) AD on LUV color
space space space space

Figure 2.9: RGB vs Luv color space experiments (1/2). We use hy = 5 (resulting in
a window of 11 x 11 pixels) and h, = 5. All the images are processed with a Normal
kernel.
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(a) MF on RGB color(b) LMF on RGB color(c) CMS on RGB color(d) AD on RGB color
space space space space

(¢) MF on LUV color(f) LMF on LUV color(g) CMS on LUV color(h) AD on LUV color
space space space space

(i) MF on RGB color(j) LMF on RGB color(k) CMS on RGB color(l) AD on RGB color
space space space space

(m) MF on LUV color(n) LMF on LUV color(o) CMS on LUV color(p) AD on LUV color
space space space space

Figure 2.10: RGB vs Luv color space experiments (2/2). We use hy = 5 (resulting
in a window of 11 x 11 pixels) and h, = 5. All the images are processed with a
Normal kernel.
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number of magnitudes are close to zero in anisotropic diffusion image as well. In
mode finding and local mode filtered image half as many pixels and in the original
image 3% as many pixels have gradient close to zero. In the same figures, we display
the joint color histogram for the five images. As expected, in the color mean shift
image the pixels are clustered to fewer color bins compared to the other images.

In Table 2.2 we display the entropy measure for the color distribution and
the gradient magnitude for each method with the different kernels and color spaces
(and constant spatial and color resolutions h, = 5, h, = 5). The entropy definition*
measures how “random” an image is. Thus, an image created by sampling each
pixel’s color value from a uniform random distribution is expected to have a large
entropy value, while a single uniform color image has an entropy of 0. In general
lower entropy values indicate more uniform colored images, i.e. images with less
number of segments of more uniform color. From the results of Table 2.2 one can

reach the following conclusions.

e Color mean shift produces the least variation on the color and gradient his-
togram, followed by anisotropic diffusion, mode finding and local mode filter-

ing.

e Within a filtering method the differences between the different kernels and
color spaces are small for the color entropy measures but quite significant for
the gradient measures. The least entropy measures for the gradient magnitude

are obtained when we use Normal kernel and perform the processing in the

4If X is a discrete random variable with possible values {z1, ..., 2, } then the entropy is defined
as H(X) ==Y, p(z;)logy p(x;), where b is the base of the logarithm (in our case we use b = 2).
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0y

Table 2.2: Entropy measures for the color and gradient histograms for the four images after performing the filtering with
different methods and different kernels in the two color spaces. The first number is the entropy for the color and the second for

the gradient histogram. The lower the values the smaller the variation.

‘ Hand Image ‘ Mode finding ‘ Local Mode filtering ‘ Color Mean Shift ‘ Anisotropic Diffusion ‘
Epanechnikov, RGB | 6.14,12.97 6.14,12.97 6.14,12.97 6.14,12.97
Epanechnikov, Luv 7.02,12.91 7.02,12.91 7.42,12.82 7.50,12.83

Normal, RGB 7.15,12.68 7.32,12.59 8.91,11.89 9.32,11.94
Normal, Luv 10.47,10.85 11.20,11.02 9.84,8.87 10.93,9.16

‘ Workers Image ‘ Mode finding ‘ Local Mode filtering ‘ Color Mean Shift ‘ Anisotropic Diffusion
Epanechnikov, RGB | 13.95,9.59 14.64,9.59 12.34,9.21 13.31,9.35
Epanechnikov, Luv 13.72,8.78 14.70,8.75 12.51,8.16 13.59,8.21

Normal, RGB 12.46,8.47 14.16, 8.48 10.82,7.85 12.61,8.14
Normal, Luv 12.74,7.05 14.31,7.16 11.80,6.17 13.16,6.28

‘ Woman Image ‘ Mode finding ‘ Local Mode filtering ‘ Color Mean Shift ‘ Anisotropic Diffusion
Epanechnikov, RGB | 14.25,8.49 14.58,8.43 13.12,8.43 13.79,8.39
Epanechnikov, Luv 13.67,7.30 14.37,7.15 12.37,6.13 13.24,6.07

Normal, RGB 13.26,7.72 14.16,7.41 11.58,7.51 12.81,7.35
Normal, Luv 13.08,5.18 13.92,5.11 12.07,4.23 12.86,4.30
Houses Image ‘ Mode finding ‘ Local Mode filtering ‘ Color Mean Shift ‘ Anisotropic Diffusion
Epanechnikov, RGB | 14.27,9.12 14.59,9.07 13.07,9.04 13.70,8.98
Epanechnikov, Luv 13.39,7.75 14.17,7.60 11.71,6.29 12.78,6.46
Normal, RGB 13.05,8.53 14.10, 8.22 10.94,8.08 12.53,8.12
Normal, Luv 12.72,5.57 13.62,5.67 11.48,4.36 12.56,4.71




Luv color space.

e When processed with the Epanechnikov kernel in the RGB color space all the
methods produce very similar results. The difference between the methods is
emphasized when the processing involves a Normal kernel and the Luv color

space.

e In the case of the hand image the color resolution that we use (h, = 5) is too
small to eliminate the textured background and the color variation inside the

hand (as it is shown in Fig. 2.9). That is why we obtain these results.

Overall these facts allow us to claim that color mean shift produces the most uniform
regions, followed by anisotropic diffusion. Mode finding and local mode filtering
produce very similar results. A natural question to ask is whether the above results
are due to over smoothing. From the sample filtering results presented above this
does not seem to be the case. The only way to verify that though is to perform the
segmentation and then compare the results against human segmented images. In
Sec. 3.4 we present these experiments. As we discuss there the segmentation results
for color mean shift are better than the ones for the other filtering methods, thus
we can safely conclude that color mean shift produces more uniform regions without

over smoothing the original image.

2.4.4 Filtering speed comparison

An objective comparison of the filtering speed of the different methods is not a
simple task. Besides the implementation details that greatly affect the speed, there
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is also a number of algorithmic parameters that can significantly speedup or slow
down the convergence of the optimization procedure. We start our comparison
by evaluating the role of these parameters and then we discuss whether general
speed up techniques that have been proposed in the literature can be applied to
the different methods or not. For fairness sake, we use our own implementation of
all the filtering methods that consists of Matlab files for the image handling and
the general input/output interface, while the optimization code is written in C. We
perform all the experiments on a desktop computer with an Intel Core2 Quad CPU

Q3G H?Z".

2.4.4.1 Image size

The number of pixels directly affect the filtering speed. In theory the complexity of
the algorithm increases linearly with the number of pixels, since each pixel represents
a feature vector that needs to be processed. The theoretical prediction is verified in

practice as Fig. 2.15 shows.

2.4.4.2  Spatial resolution (hy)

Theoretically, all the filtering methods (but Mean Shift and Spatial Mean Shift)
depend quadratically on the spatial bandwidth. In practice, other parameters, ex-
plained below, make the dependence less than quadratic. Fig. 2.16 displays the
filtering speed with respect to the spatial resolution for the methods, when all the

other parameters are the same.

5Due to Matlab’s limitation only one core is used in the experiments.
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Figure 2.15: The filtering speed as a function of the image size (i.e., number of pixels)
for all four methods. We use the "workers" image (whose original size is 321 x 481
pixels) and perform the filtering on the RGB color space with an Epanechnikov
kernel with spatial and color resolutions hy, = 5, h, = 15 respectively. We also limit
the number of iterations to 20 and the convergence threshold is 0.001. We perform
the filtering 5 times for each image size and only plot the median value.
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Figure 2.16: The filtering speed as a function of the spatial resolution (hs) for all
four methods. We use the "workers" image (321 x 481 pixels) and perform the
filtering on the RGB color space with an Epanechnikov kernel (continuous line) or
Normal kernel (dotted line). We also limit the number of iterations to 20 and stop
the optimization for pixels that move less than 0.001 between two iterations. We
perform the filtering 5 times for each value of hs; and only plot the median value.
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2.4.4.3 Epanechnikov vs Normal kernel

For each pair of pixels, computation of the weight using the Epanechnikov kernel only
requires a comparison, while the calculation of an exponential number is necessary
for the case of the Normal kernel. As a result the former operation is much cheaper
than the latter and thus filtering with an Epanechnikov kernel is faster compared to
filtering with a Normal kernel as is shown in Fig. 2.16. Other researchers (e.g. [34])
have proposed the use of lookup tables to approximately compute the exponents
much faster.

At this point we should note that the overall speed of the segmentation process
is also affected by the quality of the result of the filtering process. We experimentally
found, that using a normal kernel produced better results and as a consequence sped
up the grouping step. Overall the use of a Normal kernel still resulted in slower

segmentation times, but the time difference was not as large as Fig. 2.16 shows.

2.4.4.4 Convergence threshold

As described above, on each iteration of the optimization procedure each pixel vector
is compared against its neighbors and shifted. If this shift is less than a predefined
value (denoted convergence threshold) then we ignore that pixel in subsequent iter-
ations of the optimization procedure. Intuitively the convergence threshold denotes
how close to the “true” solution the optimization should reach before termination.
At this point we would like to emphasize that for the mode finding and the local

mode filtering methods the shift of each pixel is a monotonically decreasing function
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Figure 2.17: The filtering speed as a function of the convergence threshold for all
four methods. We use the "workers" image (321 x 481 pixels) and perform the
filtering on the RGB color space with an Epanechnikov kernel with spatial and
color resolution hg = 5, h,, = 15 respectively. We also limit the number of iterations

to 50. We perform the filtering 5 times for each value of the convergence threshold
and only plot the median value. Notice that the X-axis is on logarithmic scale.

of the iteration number, while for color mean shift and anisotropic diffusion it is not.
Fig. 2.17 displays the filtering speed with respect to the convergence threshold. As
expected the higher the threshold the faster the filtering. Especially for thresholds
less than 0.1 the filtering time decreases almost exponentially. According to this
graph and all the previous ones, local mode filtering is the fastest filtering operation
followed by anisotropic diffusion, and then mode finding, while color mean shift is
slightly slower. This is expected due to the extra number of calculations needed
to estimate the 5D feature vector instead of the 3D feature vector in the other

methods.
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2.4.4.5 Feature vector displacement per iteration

Related to the previous parameter, here we evaluate the convergence speed of the
filtering algorithms, namely how many iterations are requited for all the pixels to
reach the convergence threshold. In Fig. 2.18 we plot the histogram of the dis-
placement of the feature vectors on a single iteration. Although it is hard to make
any definite conclusions one observes that in the first three iterations color mean
shift displaces pixels more than any other method. Overall, local mode filtering
and anisotropic diffusion converge (i.e. all the pixels are displaced less than 0.2)
in 17, 20 iterations respectively. Mode finding and color mean shift converge much
slower requiring 40 and 39 iterations respectively. Similar behavior was observed in
all the examples that we used for testing. This leads us to believe that color mean

shift converges as least as fast as mode finding.

2.4.4.6 Filtering speed conclusions

As we said before we use our own implementation of all the filtering methods, that
is a straightforward translation of Table 2.1 to Matlab and C code, to perform the
speed experiments. A number of methods can be used to perform the filtering faster.

In the core of all the filtering algorithms the pairwise distance between feature
points needs to be computed for all pairs of points. As suggested in |[11] employing
data structures and algorithms for multidimensional range searching can speed up
the filtering. This technique can be used in all the filtering methods and is expected

to significantly improve the speed of slow methods such as mean shift and spatial
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Figure 2.18: The histograms of vector displacements for a number of iterations for all
four filtering methods. We use the "workers" image (321 x 481 pixels) and perform
the filtering on the RGB color space with an Epanechnikov kernel with spatial and
color resolutions hy, = 5, h, = 15 respectively. We also limit the number of iterations

to 40.
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mean shift.

In mode finding the trajectory of most feature points lay along the path of
other feature points. Christoudias et al. in 35| report a speed up of about five times
relative to the original algorithm when they “merge” the feature points together.
This trick can directly be used in local mode filtering. A variation of the same
concept could also be used to speed up the filtering in all the other methods.

Paris and Durant in [5] suggest a fast method to find the local modes of the
5 — D features points coming from large color images. Contrary to the title of their
work their method is based on directly estimating the kernel density on a sparse
5 — D grid. Even though this idea is appealing and alleviates the computational
problem associated with increasing the spatial kernel resolution hg, it is not clear
how it can be used to speed up any of the filtering methods.

In the same paper (|5]) extra computational reduction is achieved by reducing
the dimensionality of the feature space from 5 — D to 4 — D (or 3 — D). Principal
component analysis is used to perform the reduction and the authors report that a
reduction to 4 — D results in almost no loss of filtering quality, while the filtering is
performed 5 times faster. This is to be expected for their method, since they sample
the whole feature space. The algorithms that we study, though, would benefit little
(if at all) from such a technique since the additional cost of performing the PCA
would offset the gain of performing the filtering in less dimensions.

The introduction of the multicore CPUs and, especially, GPUs has provided
new way to improve the execution speed of algorithms through a parallel implemen-

tation. From Table 2.1 and Fig. 2.4 it is clear that the filtering of each feature point
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can be performed in parallel. We expect that a careful implementation of any of
the four algorithms (i.e. mode finding, color mean shift, local mode filtering and
anisotropic diffusion) on a modern GPU will run in real time for VGA or larger

images.

2.5  Conclusions

In this chapter we presented a unifying framework under which we can express
different filtering algorithms. Using the new understanding of filtering, we developed
three new edge preserving filtering methods, that we named Color Mean Shift,
Spatial Mean Shift and Joined Bilateral Filtering. The first one exhibits similar
clustering characteristics with the original Mean Shift method while being almost
as computationally efficient as the Mode Finding method, so it was included in
our filtering comparison. We performed a comparison of four different methods
(Mode Finding, Color Mean Shift, Local Mode Filtering and Anisotropic diffusion)
on a number of images with different configurations for the color space and the
kernel function. Overall we noticed that Color Mean Shift outperforms (i.e. creates
more uniform segments with better boundary separation) than the other methods
with the drawback of being slightly slower. Table 2.3 synopsizes the results of the

experimental comparison for performing edge preserving filtering.
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Table 2.3: Synopsis of the filtering results

Normal kernel gives smoother filtering results compared to Epanechnikov ker-
nel

Luv color space produces smoother filtering results compared to RGB color
space.

Mode finding and local mode finding produce similar filtering results. Mode
finding performs slightly better filtering.

Color mean shift and anisotropic diffusion produce similar filtering results.
Color mean shift preserves the edges better than anisotropic diffusion.

3 — D filtering (i.e. local mode filtering) is almost equivalent to 5 — D filtering
(i.e. mode finding) when the original image is used for the comparison. When
the image obtained in the previous iteration is used then 5 — D filtering (i.e.
color mean shift) preserves edges better than 3 — D filtering (i.e. anisotropic
diffusion).

Whether we use the original image for comparison or not affects the filtering
more than whether we perform it in 3 — D or 5 — D.

Local mode filtering is the fastest; mode finding and local mode filtering are
a little bit slower; color mean shift is even slower. All the methods are fast
enough to perform the filtering in real time for a reasonably large image when
implemented in GPUs.
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Chapter 3
Color Based Segmentation as a Two Stage Process

3.1 Introduction

The edge preserving filtering framework, that we presented in the previous chapter, is
the first component of a color-based segmentation system. In this chapter we present
the other component, namely clustering algorithms for pixels (or feature points) on
3D (or 5D) space. First, we briefly describe the grouping algorithms that we use in
the segmentation experiments; a greedy connected components method with a fixed
threshold, its variant using Region Adjacency Graph [35] and its extension using an
adaptive threshold [7].

Then, we experimentally compare all the combinations of filtering and group-
ing techniques using the Berkeley dataset [36]. In our comparison we focus on three
criteria; correctness, robustness with respect to the parameters and robustness with
respect to image selection. We use both boundary and region based measures for
comparison. More specifically, we consider the percentage of edges retrieved and
the edge distance between segmentations as the boundary based criteria. We also
compute the Global Consistency Error[36], the Rand Index|37] and the Variation of

Information |38],|39] region based measures.
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3.2 Grouping methods

A variety of grouping methods exist in the literature for image segmentation. As
a matter of fact almost all the color based image segmentation methods are group-
ing methods. Next, we describe the three methods that we have chosen to use
in the segmentation experiments. The first method is a simple connected compo-
nents algorithm with a global threshold, while the other two methods are extensions
of that algorithm. All methods are simple, namely they don’t require the use of
complicated tuning parameters and they are used widely for image segmentation.
Another advantage is that they are fast so they can be used for (almost) real time

segmentation.

3.2.1 Greedy Connected Components grouping (CC3D and CC5D)

This is the same strategy that Comaniciu and Meer implicitly use in their image
segmentation algorithm [11]. The method is a good starting point for our compar-
ison; its simplicity allows us to compare the smoothing algorithms for the task of
segmentation without worrying that the result has been “changed” by the grouping
algorithm. Thus, the quality of the segmentation is directly related to the quality
of the filtering.

In a nutshell, the algorithm groups neighboring pixels together if and only if
their Euclidean distance is within a user defined threshold. Note that there is a
3—D and a 5 — D variant of this algorithm since pixel x; is represented by either a

3 — D vector (S;) or a 5 — D vector ([x;,S;]) (Fig. 3.1). In our implementation we
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use an union-find data structure to perform the merging so the complexity of the
algorithm is almost linear on the number of pixels.

The biggest problem with this simple grouping method is the “segment diffu-
sion” problem, when two quite different segments are merged together because there
is a single weak (blurry) edge between them (e.g. the clouds and the sky are merged
into a single segment in the first images of the top row of Fig. 3.2). In order to
reduce the impact of this problem we reduce the grouping threshold (¢ in Fig. 3.1,

top row) to 0.5.

3.2.2  Grouping using Region Adjacency Graphs (GRAG)

This is the grouping method proposed in [35] and used in the EDISON segmentation
system. Conceptually this method is similar to the connected components method
(i.e. a hard threshold of t = h,./2 is used), but the use of region adjacency graphs
produces slightly different segmentation results. We should note that the above

methods are invariant to the merging order of the pixels.

3.2.3 Grouping with an Adaptive Threshold (GAT)

Felzenszwalb and Huttenlocher in |7] present a variation of the connected component
algorithm where an adaptive threshold for merging segments is used. Each segment
C; keeps track of the maximum distance between two pixels belonging to it'(denoted
Int(C;)) and two segments C;, C; are merged only if the minimum distance between

the pixels belonging to their common boundary is smaller than the internal distance

1Only the edges belonging to the minimum spanning tree of the segment are considered
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Int(C;), Int(C;). The method is described in Fig. 3.1. This algorithm is also linear
on the number of pixels.

In the experiments, unless otherwise noted, we use the values of 0.5, 500 for
o, k respectively for the grouping parameters. This are the values suggested by the

authors in [7].

3.3 Segmentation as filtering+grouping

The notion of segmentation consisting of a filtering followed by a grouping step is
not new, but it is underemphasized in the literature. Most image segmentation (i.e.
grouping) algorithms operate on the original image, while the filtering algorithms
are usually applied to the problems of edge preserving smoothing or noise removal.
Comaniciu and Meer [11] talk about segmentation consisting of a filtering and a
fusion step, but they focus on the filtering step and they use the simple connected
component algorithm of Fig. 3.1 top left, to obtain the final segments. Subsequent
work from the same group [35| focuses on how to bring edge information into the
filtering and grouping step, but they still use a similar connected components algo-
rithm. Close to our philosophy is the work of Unnikrisnan et al. [40]| where they
combine the filtering algorithm of [35] with the grouping algorithm of [7]. Their
focus, thought, is to introduce a new measure called Normalized Probabilistic Rand
to compare the quality of segmentation.

One of the main points of this chapter is that both steps are important to

obtain good segmentation results. In Fig. 3.2, for example, we present the seg-
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X;,X; have different labels
merge the labels of

Input:
set of pixels x; with intensities S,
a grouping threshold ¢
Output:
a set of labels (label [; for x;)
Algorithm:
for all pixels x;
assign label [;
repeat until convergence
for all pixels x;
for all pixels x;
if ||[xi, S;] — [x;,S,]|| <t and
X;,X; have different labels
merge the labels of

x; and x; (I; =) x; and x; (I; = 1)

Grouping with an Adaptive Threshold (GAT)

Input:
An image as a graph G = (V| E) with n vertices and m edges
Output:
A segmentation of V' into components S = (CY, ...
Algorithm:
sort F into m = (o1, ...,0,) by non decreasing edge weight
in the initial segmentation S° each vertex v; is its own segment
for ¢ = 1,...,m construct S¢ given S9! as follows
let v;, v; be the vertices connected by the ¢ edge o, = (v;,v;)
let pixels v;, v; belong to components C;, C; with
|Ci], |C;| number of elements respectively
let Int(C;), Int(C;) be the maximum edge weights of the
minimum spanning tree of components C;, C; respectively
let e, be the weight of edge o,
if v;, v; belong to different components C;, C; and
e, < min{Int(C;) + \Tkw Int(C;) + ‘Ciﬂ}
merge C;, C}
return S = S

Cr)

Figure 3.1: The grouping algorithms that we use in the segmentation experiments.
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(a) MF+CC3D (b) CMS+CC3D (c) LMF+CC3D (d) AD+CC3D

(e) CMS+CC3D (f) CMS+CC5D (g) CMS+GRAG (h) CMS+GAT

Figure 3.2: On the first row we present the segmentation results when we use the
same grouping method (CC3D) coupled with different filtering methods. On the
second row we present the segmentation results when we use the same filtering
method (Color mean shift) followed by a different grouping method.In the images
each segment is represented by a different color. The filtering is performed on the
RGB color space with an Epanechnikov kernel with spatial and color resolution
hs = 5, h,, = 4 respectively.

mentation results we obtained using different combinations of filtering and grouping
methods. On the top row we use the same grouping method, namely CC3D, along
with the four different grouping algorithms. It is clear that depending on the filter-
ing method the sky is merged with the grass or not. On the second row the filtering
method is kept constant (color mean shift) while the grouping method changes. Here
the results significantly depend on the method, with the adaptive threshold method
producing the most intuitive segments. In the next section we experimentally study
the problem of color based segmentation by comparing different combinations of
filtering and grouping algorithms. More specifically we couple each of the four fil-
tering algorithms that we studied above with the four grouping algorithms that we

introduced in the previous section to obtain a new segmentation method.
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3.4 Segmentation Comparison

There is little effort to classify image segmentation algorithms and compare their
characteristics due to two main factors. The multiplicity of methods each having
a number of parameters make the comparison extremely tedious. Moreover, the
“right” segmentation is hard to define, since there are many levels of detail in an
image and therefore multiple different meaningful segmentations. S. Paris [5] for
example, creates a hierarchical structure of segmentations where starting from a
large number of segments, regions are merged together to create more coarse seg-
mentations. Furthermore, in complex scenes the evaluation of a given segmentation
mostly relies on subjective criteria. Borra and Shankar 3], for example, go as far as
suggesting that the proper segmentation is task and domain specific. The difficulty
of formally defining the quality of a segmentation explains the lack of segmentation
databases for natural images.

The most complete attempt at comparing segmentation algorithms is pre-
sented on the Berkeley database and segmentation website [36]. Here a large set of
images along with human created segmentations were made available for segmenta-
tion evaluation. This is the testbed we use in this chapter for the evaluation of the
different segmentation methods?. More specifically we use the 200 training images
along with the 1087 human created segmentations. Next, we first describe the differ-
ent measures that we use for the comparison, and then we present the segmentation

results.

2In Appendix A we also present segmentation results using the Weizmann Institute dataset [8].

28



3.4.1 Comparison measures

A number of measures have been proposed in the literature in order to compare two
different segmentations of the same image. In general the segmentation measures
can be classified in two categories; region based or boundary based. The first group
includes measures that consider the overlap of the segments in the two segmenta-
tions, while in second consists of measures that count the overlap or the distance
of the boundaries. From the measures that we use, the Global Consistency Error
[36], the Variation of Information [38],|39] and the Probabilistic Rand index |37| are
region based; Edge Percentage and Boundary Displacement Error [41]| are boundary

based.

Edge Percentage (EP) This is the simplest measure. We count the number of seg-
mentation boundaries that coincide with the human annotated edges and di-
vide by the total number of edges. In simple terms we compute the percentage
of edges that the automatic segmentation is able to detect. In order to re-
duce the edge displacement problem we smooth both the computer generated
boundary map and the human edge map with a small Normal kernel (3 x 3 in
the experiments) and compute the sum of the piecewise dot product between
the two maps®. This measure is not symmetric. Obviously the higher the

value the more similar the two segmentations are.

Boundary Displacement Error (BDE) This quantity measures the average displace-

ment error of the boundary pixels between two segmented images. Particularly,

3As a result the measure is not the edge percentage, so the Y-axis of the graphs should not be
interpreted as such. Only the relative value for the two methods should be considered.
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it defines the error of one boundary pixel in one segmentation as the distance
between the pixel and the closest pixel in the other segmentation. BDE is
not symmetric, thus we use it to measure the average distance of the human
segmentation to the computer generated one. Intuitively, the lower the BDE
value the more similar the two segmentations are. A BDE measure of 0 indi-
cates that all the boundaries of the human segmentation are covered by the

boundaries of the computer one, but not vice versa.

Global Consistency Error (GCE) This measure calculates the extent to which one
segmentation can be viewed as a refinement of the other. Segmentations which
are related in this manner are considered to be consistent, since they could rep-
resent the same natural image segmented at different scales. More specifically,
a local error measure for each pixel is defined as the cardinality of the set differ-
ence between the two segments the pixel belongs to on the two segmentations,
divided by the segment size. Then, the Global Consistency Error is defined as
the average local error measure. This measure is symmetric and the lower the
value the more similar the two segmentations. The two extreme segmentation
cases, namely each pixel belonging to a separate segment and the whole image
being a single segment both produce a zero value GCE. Thus, this measure
is only suited for comparison of segmentations with approximately the same

number of segments. In general the GCE range is [0...1].

Variation of Information (VI) This is an information theoretic criterion for compar-

ing two groupings of the same data set. VI measures the amount of information
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lost and gained in changing from the first to the second clustering. VI is pos-
itive, symmetric and obeys the triangle inequality (thus it is a metric on the
space of groupings). Briefly, VI defines the distance between two segmenta-
tions as the average conditional entropy of one segmentation given the other,
and thus roughly measures the amount of randomness in one segmentation
which cannot be explained by the other. Being a distance metric the mini-
mum value of VI is 0 while the maximum depends on the image size. The

lower the value of VI the better the match between the two segmentations.

Probabilistic Rand Index (PR) This measure counts the fraction of pairs of pixels
whose labellings are consistent between the computed segmentation and the
ground truth, averaging across multiple ground truth segmentations to account
for scale variation in human perception. PR is a measure of similarity and as
such a value of 0 indicates no similarity, while a value of 1 indicates the highest

similarity.

3.4.2  Results for varying color resolution h,

To produce the first set of segmentation figures we only vary the value of the color
resolution h, of the filtering methods. More specifically, we let h, to obtain values
from 0.6 to 20 on increments of 0.3. We keep the remaining filtering parameters
constant i.e., the maximum number of iterations for convergence is set to 20 and the
convergence threshold to 0.1. We also use a spatial resolution of hy = 5, resulting

on a 11 x 11 smoothing window around each pixel. Furthermore, we utilize constant
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parameters for the grouping methods. More specifically the grouping threshold
(parameter t of Fig. 2.4) is set to 1 and 0.5 for the CC5D and CC3D grouping
algorithms respectively. In the case of GRAG we use the fusion function of the
EDISON toolbox provided by Christoudias et al.[35]. We use the excellent C++
code provided by Felzenszwalb and Huttenlocher |7| with parameters o = 0.5 and
k = 500 as suggested in their paper to implement the grouping with the adaptive
threshold (GAD). In all the grouping methods the minimum number of pixels per
region in set to 1.

We computed the comparison measures for each image of the database and
further aggregated the results for the whole database using the median value?. These
values are plotted on the Y-axis of each figure. On the X-axis we plot the average
segment size, instead of the color resolution A,. Thus all the plots below show the
implicit curve of one comparison measure with respect to the average segment size.
The motivation behind this choice is the following; a major goal of a segmentation
algorithm is to create as large segments as possible without merging areas belonging
to different objects. Some of the measures above (i.e. Edge Percentage, Boundary
Displacement Error and Global Consistency Error) produce degenerate (and perfect)
results when each pixel belongs to its own segment. Thus only those measures in
conjunction with the segment size indicate whether a segmentation is good and
useful or not. For the computation of the Boundary Displacement Error, the Global

Consistency Error, the Variation of Information and the Probabilistic Rand Index

4Since the comparison measures vary significantly for different images we choose the median
value as opposed to the mean value because it is more robust to outliers.
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we use the code provided by J. Wright and A. Yang [42].

In the filtering experiments (Sec. 2.4) we observed that the selection of the
color space and the filtering kernel greatly affects the amount of smoothing per-
formed for a given color resolution. Hence, for the segmentation experiments we
choose to perform the filtering over an extended range of color resolution. As a
result, depending on the color space and kernel function, different ranges of color
resolutions lead to oversegmentations and undersegmentations. We want to compare
the “reasonable” segmentations, thus in the figures below we limit the maximum av-
erage segment size to 200, 500 or 1000 pixels (depending on the color space and
kernel function used). Values above the corresponding threshold in each case clearly
indicate a heavily undersegmented image (i.e. consisting of too few segments), as
the value of all the measures verify.

In the previous sections we presented 4 different grouping methods and 4
different filtering methods. Considering that filtering can be performed in either
RGB or Luv color space with Epanechnikov or Normal kernel, the total number of
combinations is 2 x 2 x4 x4 = 64. Since, presenting the results of all 64 variations in
a single graph would result in illegible figures, initially we group together the results
for a specific selection of color space and kernel function and present these results
on a single figure. Moreover, we produce a single graph for each of the 5 measures
for a total of 20 figures.

While dividing the total number of curves by 4 simplifies the display, still
plotting 16 curves on the same figure is hard. Instead of introducing a different

color for each curve we follow the color convention of the filtering graphs. The
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Table 3.1: Color convention for the segmentation plots

Color of

Line Circle
.. Connected Components in 3D
Blue Mode Finding (MF) (CC3D)
. Connected Components in 5D
Green Color Mean Shift (CMS) (CC5D)
Orance Local Mode Finding Grouping using Region
& (LMF) Adjacency Graphs (GRAG)
Brown Anisotropic Diffusion Grouping with an Adaptive

(AD)

Threshold (GAT)

color of the line indicates the filtering method, while the color inside the point

circles indicates the grouping method that is used. Table 3.1 displays all the color

combinations.
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EP vs average segment size for filtering in RGB color space with Epanechnikov kernel

1 | | MF+CC3d
0.9/ MF+CC5d
| —+ MF+GRAG
0.8 —+ MF+GAT
071 CMS+CC3d
CMS+CC5d
0.6 CMS+GRAG
- CMS+GAT
LMF+CC3d
04 LMF+CC5d
LMF+GRAG
03 LMF+GAT
0. AD+CC3d
AD+CC5d
0.1 AD+GRAG
) | | AD+GAT
0 50 100 150 200

Figure 3.3: Edge Percentage vs average segment size plots when filtering is performed in the RGB color space with an Epanech-
nikov kernel.
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BDE vs average segment size for filtering in RGB color space with Epanechnikov kernel

! | | MF+CC3d
MF+CC5d
6 — MF+GRAG
g —— MF+GAT
CMS+CC3d
CMS+CC5d
CMS+GRAG
CMS+GAT
LMF+CC3d
LMF+CC5d
LMF+GRAG
LMF+GAT
AD+CC3d
AD+CC5d
AD+GRAG
AD+GAT

0 50 100 150 200

Figure 3.4: Boundary Displacement Error vs average segment size plots when filtering is performed in the RGB color space
with an Epanechnikov kernel.
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GCE vs average segment size for filtering in RGB color space with Epanechnikov kernel

0.25 | | MF+CC3d
—— MF+CC5d
—~— MF+GRAG
~+ MF+GAT
CMS+CC3d
CMS+CC5d
CMS+GRAG
CMS+GAT
LMF+CC3d
LMF+CC5d
LMF+GRAG
LMF+GAT
AD+CC3d
AD+CC5d
AD+GRAG

| AD+GAT
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Figure 3.5: Global Consistency Error vs average segment size plots when filtering is performed in the RGB color space with an
Epanechnikov kernel.
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VI vs average segment size for filtering in RGB color space with Epanechnikov kernel

147 | | MF+CC3d
MF+CC5d
~~ MF+GRAG
—— MF+GAT
CMS+CC3d
CMS+CC5d
CMS+GRAG
CMS+GAT
LMF+CC3d
LMF+CC5d
LMF+GRAG
LMF+GAT
AD+CC3d
AD+CC5d
AD+GRAG
AD+GAT
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1278

10}

Figure 3.6: Variation of Information vs average segment size plots when filtering is performed in the RGB color space with an
Epanechnikov kernel.
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PR vs average segment size for filtering in RGB color space with Epanechnikov kernel

1 | | MF+CC3d
MF+CC5d
0.9f —— MF+GRAG
. — MF+GAT
CMS+CC3d
CMS+CC5d
CMS+GRAG
CMS+GAT
LMF+CC3d
LMF+CC5d
LMF+GRAG
LMF+GAT
AD+CC3d
AD+CC5d
AD+GRAG

| AD+GAT
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Figure 3.7: Probabilistic Rand Index vs average segment size plots when filtering is performed in the RGB color space with an
Epanechnikov kernel.
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EP vs average segment size for filtering in RGB color space with Gaussian kernel
1 T T T

i MF+CC3d
0.9 MF+CC5d
i -~ MF+GRAG
0.813 — MF+GAT
07% CMS+CC3d
i CMS+CC5d
0.6 CMS+GRAG
05 iy CMS+GAT
LMF+CC3d
04 LMF+CC5d
LMF+GRAG
03 LMF+GAT
0. AD+CC3d
AD+CC5d
0.1 AD+GRAG
) | | | AD+GAT
0 100 200 300 400 500

Figure 3.8: Edge Percentage vs average segment size plots when filtering is performed in the RGB color space with a Normal
kernel.
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BDE vs average segment size for filtering in RGB color space with Gaussian kernel

0 | | | MF+CC3d
gl - MF+CC5d
—— MF+GRAG
7t | MF+GAT
i CMS+CC3d
6 CMS+CC5d
CMS+GRAG
S CMS+GAT
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LMF+GAT
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AD+CC5d
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0?’ | | | AD+GAT
0 100 200 300 400 500

Figure 3.9: Boundary Displacement Error vs average segment size plots when filtering is performed in the RGB color space
with a Normal kernel.
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GCE vs average segment size for filtering in RGB color space with Gaussian kernel

0.25 | | | MF+CC3d
~~ MF+CC5d
— MF+GRAG
— MF+GAT
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Figure 3.10: Global Consistency Error vs average segment size plots when filtering is performed in the RGB color space with a
Normal kernel.
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VI vs average segment size for filtering in RGB color space with Gaussian kernel
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Figure 3.11: Variation of Information vs average segment size plots when filtering is performed in the RGB color space with a
Normal kernel.
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PR vs average segment size for filtering in RGB color space with Gaussian kernel
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Figure 3.12: Probabilistic Rand Index vs average segment size plots when filtering is performed in the RGB color space with a
Normal kernel.
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EP vs average segment size for filtering in Luv color space with Epanechnikov kernel
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Figure 3.13: Edge Percentage vs average segment size plots when filtering is performed in the Luv color space with an Epanech-
nikov kernel.
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BDE vs average segment size for filtering in Luv color space with Epanechnikov kernel
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Figure 3.14: Boundary Displacement Error vs average segment size plots when filtering is performed in the Luv color space
with an Epanechnikov kernel.
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GCE vs average segment size for filtering in Luv color space with Epanechnikov kernel
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Figure 3.15: Global Consistency Error vs average segment size plots when filtering is performed in the Luv color space with an
Epanechnikov kernel.
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VI vs average segment size for filtering in Luv color space with Epanechnikov kernel
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Figure 3.16: Variation of Information vs average segment size plots when filtering is performed in the Luv color space with an
Epanechnikov kernel.
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PR vs average segment size for filtering in Luv color space with Epanechnikov kernel
1 T T T
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Figure 3.17: Probabilistic Rand Index vs average segment size plots when filtering is performed in the Luv color space with an
Epanechnikov kernel.
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EP vs average segment size for filtering in Luv color space with Gaussian kernel

0.9 | | | - MF+CC3d
osl ~~ MF+CC5d
— MF+GRAG
0.74 — MF+GAT
; CMS+CC3d
0.67] CMS+CC5d
i CMS+GRAG
0.5 CMS+GAT
04 ?; LMF+CC3d
A LMF+CC5d
0.3 LMF+GRAG
LMF+GAT
0.2 AD+CC3d
AD+CC5d
0.1 AD+GRAG
) AD+GAT
800 1000

Figure 3.18: Edge Percentage vs average segment size plots when filtering is performed in the Luv color space with a Normal
kernel.
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BDE vs average segment size for filtering in Luv color space with Gaussian kernel
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Figure 3.19: Boundary Displacement Error vs average segment size plots when filtering is performed in the Luv color space
with a Normal kernel.
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GCE vs average segment size for filtering in Luv color space with Gaussian kernel

0.25 | | | MF+CC3d
—— MF+CC5d
—~— MF+GRAG
~+ MF+GAT
CMS+CC3d
CMS+CC5d
CMS+GRAG
CMS+GAT
LMF+CC3d
LMF+CC5d
LMF+GRAG
LMF+GAT
AD+CC3d
AD+CC5d
AD+GRAG
AD+GAT

0 200 400 600 800 1000

0.2
045k 1)\

0.1

0.05[f

Figure 3.20: Global Consistency Error vs average segment size plots when filtering is performed in the Luv color space with a
Normal kernel.
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VI vs average segment size for filtering in Luv color space with Gaussian kernel
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Figure 3.21: Variation of Information vs average segment size plots when filtering is performed in the Luv color space with a
Normal kernel.
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PR vs average segment size for filtering in Luv color space with Gaussian kernel
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Figure 3.22: Probabilistic Rand Index vs average segment size plots when filtering is performed in the Luv color space with a
Normal kernel.



In the figures above all the plots display the average values over the whole
database of segmentations. Before proceeding with the analysis of the results we
want to emphasize that there is a high variability in the results for individual images.
The grouping method of the adaptive threshold (GAT) exhibits the lowest inter-
image variability no matter which filtering method it is coupled with. All the other
grouping methods are highly sensitive on the image to be segmented. The same
observation was mentioned by Unnikrishnan et al. in [40] where they compared
Comaniciu and Meer mean shift method against the segmentation based on GAT.

All the segmentation methods based on GAT grouping are non monotonic.
While all other segmentation methods produce curves that are either piecewise
monotonically decreasing or increasing (depending on the measure), the curves of
GAT methods manifest an unpredictable non monotonic behavior. This is best dis-
played in Figs. 3.17, 3.22. The curve for the LMF+GAT method, for example, in
Fig. 3.22 not only is non decreasing, indicating that successive values of the color
bandwidth might produce either better or worse results, but also it might lead to
smaller or larger average segment sizes. The cause of this behavior is the adaptive
threshold used for grouping. It is well documented that the merging of two regions
in GAT grouping is decided based on the inter-region and intra-region edge distri-
bution. Since anisotropic filtering smooths some edges while keeps other intact, if
the inter region edges between two regions are smoothed more that the intra-region
edges, then GAT will merge the two regions. In the opposite case, GAT will not
merge the two regions. Thus, the overall segmentation is not guaranteed to be

“consistent” for successive filtering values.
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On average the segmentation methods based on GAT grouping outperform all
the other segmentation methods. More specifically, they display the most similarity
with the human segmentations while the average segment size is larger than the
other segmentation methods. For example, all the GAT based methods in Fig. 3.17
form a cluster with significantly larger Probabilistic Rand Index values that the rest
of the methods. Still, it is not clear which combination of filtering method should
be used with the GAT algorithm to obtain the best results. We will investigate this
topic further in the next section.

On average the segmentation methods based on GAT grouping exhibit the
least variation of the average segment size i.e., in a sense they are the most stable
to color resolution changes. For filtering in Luv color space with an Epanechnikov
kernel, for example, all the other methods produce average segments varying from 2
to ~ 400 pixels, while GAT methods give results from ~ 140 to ~ 270 pixels. This
is related to the use of the constant value & = 500 for the GAT algorithm.

The segmentation methods based on CC3D and CC5D grouping exhibit very
similar performance, with the CC3D ones producing slightly better segmentation
results. This indicates that there is an advantage performing the grouping in the
color dimensions only, opposed to the case of filtering where 5D filtering gives better
results. The GRAG based methods in some settings (i.e., color space and kernel
function combinations) outperform the CC3D and CC5D methods, while in other
settings perform equally well or even worse.

The Global Consistency Error (GCE) graphs prove once more what is theoret-

ically predicted i.e., this measure only makes sense when the number of segments in
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the human and computer segmentation is comparable. In our setting this require-
ment is only satisfied for a small range of color segmentations, hence these graphs
are misleading. That is why we obtain a value close to 0 for very small and very
large color resolutions.

The graphs of the Variation of Information (VI) measure are the least dis-
criminative, because all the plots converge very rapidly to a value of ~ 3. In the
subsequent comparisons we will not use the Variation of Information (VI), Edge
Percentage (EP) and Global Consistency Error (GCE) graphs.

The graphs of the Probabilistic Rand Index (PR) and Boundary Displacement
Error (BDE) measures are the most discriminative. So in the next sections we will
use these for comparing the different segmentation methods.

Color Mean Shift (CMS) based segmentation methods outperform all the other
filtering methods when coupled with the same grouping methods. This indicates that
the better filtering results produces by CMS lead to better segmentation results.

We previously mentioned (Sec. 2.4) that filtering in Luv color space produces
smoother images, for a given color resolution, compared to filtering in RGB. As a
consequence the average segment size is an order of magnitude larger as a careful
examination of the X axis of the plots reveals. The kernel selection also affects the
average segment size. Use of a Normal kernel leads to larger segments compared to

Epanechnikov kernel, as expected.

87



120 120 3001 41300

#~ CMS+CC3D RGB Epanechnikov

_-‘-wo 250+ F 250

S sof 80 200} 200
@ @

§ g P

£ £ y

2 60 &0 & 150 o {150
@ a3 r

(o} (o} ¥

g g ’

S 40F $ j00- o J
z 40 40 Z 100 o 100

20+ 20 50
of ssensneeese®®® , ,
0 500 1000 1500 1000 1500
k k
(a) RGB, Epanechnikov (b) RGB, Normal
7000 7000 16 x10 16
6000 I\l 6000 147 14
12r 12
- g 5000+ ¢ 5000 g
z 2 10 10
g 4000+ 4000 g
4 IS} 8
3 3
& 3000 {s000 S
I <
) s 6r 6
2 . z
2000 o 2000
4+ 4
1000+ 1000 2 J )
PRI . 0 bessesssmssssscnnnses AR e ro°
0 500 1000 1500 0 500 1000 1500
k 3
(c) Luv, Epanechnikov (d) Luv, Normal

Figure 3.23: In red and green, we plot the average segment size as a function of the
segmentation parameter k in the case of GAT or color resolution h, in the case of
CC3D, respectively.

3.4.3 Adjusting the threshold parameter (k) of the GAT grouping method

So far we used the Grouping with an Adaptive Threshold method of Felzenszwalb
and Huttenlocher |7] with a fixed value for the threshold parameter k = 500. As we
showed in the previous section this leads to small variability in the average segment
size not matter how much we smooth the image in advance. In this section we
explore the idea of changing the grouping parameter k according to the filtering

value.
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First, in Fig. 3.23 we plot the average segment size with respect to the value
of k. In the same graphs we display the average segment size obtained with a
combination of CMS and CC3D methods for different values of color resolution and
for different color space and kernel function settings. All the results are computed
for the whole database of images. As we observe in the plots, the average segment
size increase is much smoother for the GAT method compared to all the other
segmentation methods, especially these that perform the filtering in the Luv color
space.

In Figs. 3.24, 3.25 we display the implicit BDE and Rand Index values for the
GAT method with respect to the average segment size, respectively. We compare
the results with the CMS+CC3D segmentation method for different color space and
kernel combinations. One can easily verify that the GAT method performs slightly
worse, under the BDE measure, than the CMS-+CC3D method, if the filtering is
performed in the Luv color space with a Normal kernel. Considering the PR mea-
sure, the GAT method performs worse for small values of average segment size, but
outperforms the CMS+CC3D method for larger values of average segment size.

Depending on the specific image and application, a different kind of segmen-
tation (i.e., different number of segments) is desirable. For example, state of the art
stereo algorithms [1], [2] initially perform a color-based segmentation of the image
into regions with (hopefully) consistent disparities. In order to minimize the risk
of grouping pixels belonging to different objects together, they perform an over-
segmentation into many small segments. Shape-based object recognition, on the
other hand, requires a coarser segmentation of the image; one where all the internal
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Figure 3.24: Boundary Displacement Error vs average segment size plots for the Color Mean Shift (CMS) and Connected
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Figure 3.25: Probabilistic RAND vs average segment size plots for the Color Mean Shift (CMS) and Connected Component in
3D (CC3D) combination and the GAT only segmentation methods.



parts of an object belong to the same segment. As a consequence, it is extremely
important to have a way to adjust the “granularity” of the segmentation. For all the
grouping methods, but GAT, the color resolution h, used for filtering can also be
used as a segmentation threshold. As we previously discussed GAT does not use a
“hard” threshold; the parameter k is used instead to control the granularity of the
segmentation. From Figs. 3.23, 3.25, we observe that values of k between 170 and
1050 produce the best results, i.e. PR indices of more than 0.8 for a range of average
segment size from 35 to 100 pixels. Apparently there are many ways to combine the
filtering parameter h, with the grouping parameter k. In the following experiments

we use a linear relation between h, and k°, namely

J = 45.83 % h, + 142.5. (3.1)

In Figs. 3.26, 3.27, 3.28 and 3.29 we compare the results we obtained with the
combination of all the filtering methods with the GAT grouping method. For the
GAT method we display the results we obtained when we used a constant parameter
k = 500, and when we changed the grouping parameter according to Eq. 3.1. For
comparison purposes we also display the results when we used GAT grouping directly

on the original images (i.e., without any filtering).

®We obtained the coefficients of the linear system by solving the system of (k, h,.) for values
(170, 0.6) and (1050, 19.8).

92



BDE vs average segment size for filtering in RGB color space with Epanechnikov kernel

3 ‘ ‘ ‘ ‘ : : ‘ ‘
250 |
MF+ GAT variable k
25 CMS+ GAT variable k
LMF+ GAT variable k
1.5 —*— AD+ GAT variable k
—— MF+ GAT constant k
1r CMS+ GAT constant k
LMF+ GAT constant k
057 —— AD+ GAT constant k
— GAT only variable k
o ‘ ‘ ‘ ‘ ‘ ‘ : : :

0 20 40 60 80 100 120 140 160 180

BDE vs average segment size for filtering in Luv color space with Epanechnikov kernel

4.5 T T T T T T T

o 7 |

3
3.5¢ ;;?:

1,

MF+ GAT variable k
CMS+ GAT variable k
LMF+ GAT variable k
—— AD+ GAT variable k
MF+ GAT constantk
CMS+ GAT constantk
LMF+ GAT constant k
*— AD+ GAT constantk

—— GAT only variable k

0 \ : \ :
0 50 100 150 200 250 300 350 400

Figure 3.26: BDE vs average segment size plots for the GAT grouping method
preceeded by the various filtering methods or not. We display the results for when
we use a variable and a constant (kK = 500) grouping parameter. We also display
the plot when we use the GAT grouping method without filtering. In the top and
bottom plots the filtering is performed on the RGB and Luv color space with an
Epanechnikov kernel respectively.
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BDE vs average segment size for filtering in RGB color space with Gaussian kernel
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Figure 3.27: BDE vs average segment size plots for the GAT grouping method
preceeded by the various filtering methods or not. We display the results for when
we use a variable and a constant (kK = 500) grouping parameter. We also display
the plot when we use the GAT grouping method without filtering. In the top and
bottom plots the filtering is performed on the RGB and Luv color space with a
Normal kernel respectively.
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PR vs average segment size for filtering in RGB color space with Epanechnikov kernel
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Figure 3.28: PR vs average segment size plots for the GAT grouping method pre-
ceeded by the various filtering methods or not. We display the results for when
we use a variable and a constant (kK = 500) grouping parameter. We also display
the plot when we use the GAT grouping method without filtering. In the top and
bottom plots the filtering is performed on the RGB and Luv color space with an
Epanechnikov kernel respectively.
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PR vs average segment size
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Figure 3.29: PR vs average segment size plots for the GAT grouping method pre-
ceeded by the various filtering methods or not. We display the results for when we
use a variable and a constant (k = 500) grouping parameter. We also display the
plot when we use the GAT grouping method without filtering. In the top and bot-
on the RGB and Luv color space with a Normal

tom plots the filtering is performed
kernel respectively.
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The first thing to notice is that the plots of the filtering+GAT grouping with
a variable grouping parameter k are more “spread out” on the X-axis, meaning that
they present more variability on the average segment size. This is expected since
k directly affects the granularity of the segmentation. What is also expected is
that filtering (in the Luv color space)-+GAT grouping plots leads to larger segment
sizes, compared to GAT segmentations without filtering. When the filtering was
performed on the RGB color space there was little difference on the image size.

The second and most important observation from these figures is that Mode
Finding coupled with GAT grouping with a variable k outperforms all other combi-
nations. The second best combination is Local Mode Filtering with GAT grouping
with a variable k, while both the Color Mean Shift and the Anisotropic Diffusion
methods perform slightly worse. In the case of GAT grouping with a constant
k = 500 all the filtering methods performed equally bad. Finally the GAT grouping
with varying k& without any filtering consistently performs worse than when we use
LMF or MF filtering.

At a first glance, the outcome of these experiments might seem contradicting;
the less filtering one performs the better the results are, while no filtering at all still
gives bad results. There is a very intuitive explanation of this phenomenon, though,
if the details of the grouping algorithm are considered. GAT adjusts the threshold
for merging regions based on the inter-region and intra-region variability. As we
showed in Sec 2.4.3 CMS and AD filtering methods produce much more uniform
regions, compared to MF and LMF. As a consequence there is little intra-region
variability and the merging process is disrupted.
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The previous graphs makes one wonder how the segmentation results would
be if we use Bilateral Filtering (BF) instead of MF or LMF. In essence, Bilateral
Filtering is equivalent to LMF with the maximum number of iterations for the
optimization problem limited to 1. The next figures show the results of BF coupled

with GAT (with varying k).
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BDE vs average segment size for filtering in RGB color space with Epanechnikov kernel
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BDE vs average segment size for filtering in Luv color space with Epanechnikov kernel
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Figure 3.30: BDE vs average segment size plots for Bilateral Filtering+GAT with
varying k. For comparison we also present the results of MF+GAT, AD+GAT and
GAT only. In the top and bottom plot the filtering is performed on the RGB and
Luv color space respectively. In all the methods an Epanechnikov kernel is used.
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BDE vs average segment size for filtering in RGB color space with Gaussian kernel
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Figure 3.31: BDE vs average segment size plots for Bilateral Filtering+GAT with
varying k. For comparison we also present the results of MF+GAT, AD+GAT and
GAT only. In the top and bottom plot the filtering is performed on the RGB and
Luv color space respectively. In all the methods a Normal kernel is used.
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PR vs average segment size for filtering in RGB color space with Epanechnikov kernel

0.86 T T T . . :
0.84 A *ﬁ . 1
AL

0.82 b

0.8r b

0.78 1
—*— MF+ GAT variable k|

0.761 —— AD+ GAT variable k B
BF+ GAT variable k
—— GAT only variable k

0.74 . ; ; : . .
0 20 40 60 80 100 120

PR vs average segment size for filtering in Luv color space with Epanechnikov kernel

0.86 w \ ‘ ‘
0.84r ]{‘Qﬁ ‘\{?‘f\ SN J
Yohiry
0.82r ! | ‘ J
é)\f\?
Y
08f RN 1
\
WA
L V \ |
0.78 \
~* MF+ GAT variable k \/\
0.76 —— AD+ GAT variable k \( B
BF+ GAT variable k }X .
—— GAT only variable k /
0.74 : : : :
0 50 100 150 200

Figure 3.32: PR vs average segment size plots for Bilateral Filtering+GAT with
varying k. For comparison we also present the results of MF+GAT, AD+GAT and
GAT only. In the top and bottom plot the filtering is performed on the RGB and
Luv color space respectively. In all the methods an Epanechnikov kernel is used.
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PR vs average segment size for filtering in RGB color space with Gaussian kernel
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Figure 3.33: PR vs average segment size plots for Bilateral Filtering+GAT with
varying k. For comparison we also present the results of MF+GAT, AD+GAT and
GAT only. In the top and bottom plot the filtering is performed on the RGB and
Luv color space respectively. In all the methods a Normal kernel is used.
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In most cases BF performs slightly worse than MF and better than LMF.
Especially when the filtering is performed on Luv with a Normal kernel, BF is
equally good (or better) than MF. Furthermore it is multiple times faster than MF,
making it the method of choice if speed is an issue. It would be interesting, as future
work, to further study the interaction between the grouping parameter k£ and the

color resolution h, of the filtering methods.

3.4.4 Compare segmentations for filtering+grouping and grouping only
methods

In the previous section we presented the results obtained with the GAT method only
and compared them to the ones when the images are filtered first. In this section
we present the results of grouping with and without filtering for the remaining
three methods. In order to improve the quality of the figures we omit the plots
for the anisotropic diffusion and local mode filtering methods. Still the number of
combinations of filtering and grouping methods is too high (24) to display in a single
plot. We create a figure for each combination of the color space and kernel function
we use for filtering.

It is clear from these figures (and the ones on the previous section) that the
grouping methods alone perform much worse than the combinations of filtering and
grouping methods. Thus, our claim that segmentation should be considered as the

coupling of a filtering method with a grouping method is experimentally proved.
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BDE vs average segment size for filtering in RGB color space with Epanechnikov kernel
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Figure 3.34: BDE vs average segment size plots for grouping only methods and filtering+grouping methods. In these plots the
filtering is performed in the RGB color space with an Epanechnikov kernel.
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PR vs average segment size for filtering in RGB color space with Epanechnikov kernel

1 T T
MF+CC3d
0.9F
— MF+CC5d
0.8 — MF+GRAG
0.7 CMS+CC3d
0.6 CMS+CC5d
05 CMS+GRAG
0.4 CC3d only
—°— CCbd only
0.3
—— GRAG only
0.2 | 1
0 50 100 150 200

Figure 3.35: PR vs average segment size plots for grouping only methods and filtering+grouping methods. In these plots the
filtering is performed in the RGB color space with an Epanechnikov kernel.
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BDE vs average segment size for filtering in RGB color space with Gaussian kernel
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Figure 3.36: BDE vs average segment size plots for grouping only methods and filtering+grouping methods. In these plots the
filtering is performed in the RGB color space with a Normal kernel.
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PR vs average segment size for filtering in RGB color space with Gaussian kernel
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Figure 3.37: PR vs average segment size plots for grouping only methods and filtering+grouping methods. In these plots the
filtering is performed in the RGB color space with a Gaussian kernel.
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BDE vs average segment size for filtering in Luv color space with Epanechnikov kernel
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Figure 3.38: BDE vs average segment size plots for grouping only methods and filtering+grouping methods. In these plots the
filtering is performed in the Luv color space with an Epanechnikov kernel.
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PR vs average segment size for filtering in Luv color space with Epanechnikov kernel
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Figure 3.39: PR vs average segment size plots for grouping only methods and filtering+grouping methods. In these plots the
filtering is performed in the Luv color space with an Epanechnikov kernel.
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BDE vs average segment size for filtering in Luv color space with Gaussian kernel
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Figure 3.40: BDE vs average segment size plots for grouping only methods and filtering+grouping methods. In these plots the
filtering is performed in the Luv color space with a Normal kernel.
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PR vs average segment size for filtering in Luv color space with Gaussian kernel

1 T T T T
MF+CC3d
0.9F
—— MF+CC5d
0-85% —+ MF+GRAG
0.7 CMS+CC3d
0.6 CMS+CC5d
05 CMS+GRAG
0.4 » CC3d only
—°— CCbd only
0.3
—— GRAG only
0.2 | | | |
0 50 100 150 200 250 300

Figure 3.41: PR vs average segment size plots for grouping only methods and filtering+grouping methods. In these plots the
filtering is performed in the Luv color space with a Normal kernel.



3.4.5 Compare segmentations for different color spaces and kernel func-
tions

Thus far, almost all the graphs presented the results of various filtering and group-
ing methods for a specific color space and kernel function. Only Figs. 3.24, 3.25
presented a comparison of a single filtering and grouping method (namely CMS and
CC3D) for different color spaces and kernel functions. In this section we try to ad-
dress the question which color space and kernel function produces the best segmen-
tation results. We only consider three methods (that performed best in the previous
experiments), namely MF+GAT with variable &, CMS+CC3D, MF-+CC3D.

From Figs 3.42, 3.43 it is clear that the best performing method is the combina-
tion of Mode Finding with Grouping with Adaptive Threshold when we use variable
k. The next best method is Color Mean Shift with CC3D, while Mode Finding with
CC3D performs rather poorly. Furthermore, using the Luv color space seems to be
a better option for performing the filtering compared to RGB. Finally, the Normal
function produces better results compared to the Epanechnikov kernel function. The
difference in the quality of the segmentation (for different color spaces and kernel
functions) is not so great in the case of GAT filtering, but it is quite significant when

CC3D is used for grouping.

3.4.6 Compare segmentations for different images

In all the previous experiments so far, we presented the cumulative results for the

entire database of the 200 images and the 1087 human created segmentations. One

112



€1l

BDE vs average segment size on different color spaces and kernel functions
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Figure 3.42: BDE vs average segment size plots for three segmentation methods with different color spaces and kernel functions.
In the legend "G","E" stand for "Gaussian/Normal" and "Epanechnikov" kernel functions respectively.
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PR vs average segment size on different color spaces and kernel functions
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Figure 3.43: PR vs average segment size plots for three segmentation methods with different color spaces and kernel functions.
In the legend "G","E" stand for "Gaussian/Normal" and "Epanechnikov" kernel functions respectively.



desired characteristic of any segmentation algorithm is to perform consistently well
in a wide range of images. In the previous section we presented the best segmentation
algorithms according to the BDE and the PR measures for the whole database of
images. In this section we present how these algorithms perform on individual
images of this database. For that purpose we display the results on 10 randomly
selected images (i.e., 10 segmentations).

The first thing to observe is that MF+GAT is non monotonic on either axis
i.e., the average segment size and the comparison measure (BDE or PR) might
increase or decrease on the next measurement point. As a consequence the results
for all the MF+GAT graphs are quite “chaotic”, especially the results when filtering
is performed on Luv space with a Normal kernel present a large variation. A careful
study of the plots on the different color spaces and kernel functions shows that
actually for the same range of average segment sizes filtering on Luv with a Normal
kernel is less “chaotic” than the other combinations.

For the other methods (i.e. CMS+CC3D and MF+CC3D) filtering on Luv
space with a Normal kernel produces less smooth graphs compared to other color
spaces and kernel functions combinations. This is mainly because the results in this
combination are good up to a higher average segment value and then they degrade
rapidly.

Overall, when segmenting the same image with different segmentation pa-
rameters, MF4+GAT presents a lower variation in the quality of the segmentation.
This means the MF+GAT combination is less sensitive to the selection of the seg-

mentation parameters. CMS+GAT performs slightly better than MF+GAT in the
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BDE vs average segment size for MF+GAT on Luv/Gaussian
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Figure 3.44: BDE and PR vs average segment size plots for individual images of
the database segmented with the MF+GAT combination. Filtering is performed in
Luv space with a Normal kernel.
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BDE vs average segment size for MF+GAT on Luv/Epanechnikov

6 ‘ ‘ T ‘ ‘ ‘ ‘
5t J
4r —— Image #:20
*—Image #:120
3l —* Image #:220
—*— Image #:320
—*Image #:420
oF Image #:520
—* Image #:620
— Image #:720
1 Image #:820
—* Image #:920
—* Image #:1020
0 ‘ ‘ ‘ ‘ ‘
0 50 100 150 200 250 300 350
PR vs average segment size for MF+GAT on Luv/Epanechnikov
1 ‘ ‘ T ‘ ‘
—*— Image #:20
09 ——Image #:120
* Image #:220
—*— Image #:320
0.8r
—Image #:420
| Image #:520
0.7 —*—Image #:620
* Image #:720
0.6 Image #:820
—*— Image #:920
0.5¢ —*— Image #:1020
04r 1
0.3r 1
0.0 ‘ ‘ ‘ ‘ ‘ ‘ s
0 50 100 150 200 250 300 350

Figure 3.45: BDE and PR vs average segment size plots for individual images of
the database segmented with the MF+GAT combination. Filtering is performed in
Luv space with an Epanechnikov kernel.
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BDE vs average segment size for MF+GAT on RGB/Gaussian
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Figure 3.46: BDE and PR vs average segment size plots for individual images of
the database segmented with the MF+GAT combination. Filtering is performed in
RGB space with a Normal kernel.
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BDE vs average segment size for CMS+CC3D on Luv/Gaussian
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Figure 3.47: BDE and PR vs average segment size plots for individual images of the
database segmented with the CMS+CC3D combination. Filtering is performed in
Luv space with a Normal kernel.
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BDE vs average segment size for CMS+CC3D on Luv/Epanechnikov
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Figure 3.48: BDE and PR vs average segment size plots for individual images of the
database segmented with the CMS+CC3D combination. Filtering is performed in
Luv space with an Epanechnikov kernel.
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BDE vs average segment size for CMS+CC3D on RGB/Gaussian
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Figure 3.49: BDE and PR vs average segment size plots for individual images of the
database segmented with the CMS+CC3D combination. Filtering is performed in
RGB space with a Normal kernel.
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Figure 3.50: BDE and PR vs average segment size plots for individual images of
the database segmented with the MF+CC3D combination. Filtering is performed
in Luv space with a Normal kernel.
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Figure 3.51: BDE and PR vs average segment size plots for individual images of
the database segmented with the MF+CC3D combination. Filtering is performed
in Luv space with an Epanechnikov kernel.
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BDE vs average segment size for MF+CC3D on RGB/Gaussian
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Figure 3.52: BDE and PR vs average segment size plots for individual images of
the database segmented with the MF+CC3D combination. Filtering is performed
in RGB space with a Normal kernel.
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intra-image segmentation quality.
Between different images, MF+GAT also produces the most consistent results
in terms of the quality of segmentation. In this case also, CMS+GAT slightly

outperforms MF+CC3D.

3.5 Conclusions

In this chapter we presented our position that the problem of color based segmen-
tation should be subdivided into a filtering and a grouping component, and created
a number of new segmentation algorithms by combining existing (and new) filter-
ing and grouping methods. We evaluated all the methods extensively, using the
Berkeley segmentation dataset and made a number of useful observations. Table
3.2 synopsizes the results of the experimental comparison for performing edge pre-
serving filtering and color based segmentation respectively.

There are two main results that we want to emphasize here. In all the exper-
iments, processing the image with an edge preserving filter before using a grouping
method produced significantly better results. Thus it is beneficial to consider the
segmentation process to be a combination of a filtering and a grouping step.

Second, depending on the grouping method that is used, a different filtering
process produces best results. For grouping with a hard threshold (i.e. CC3D,
CC5D and GRAG methods) Color Mean Shift filtering worked best. When grouping
with an adaptive threshold (i.e. GAT method) Mode Finding proved to be the best

method. As a conclusion, when considering the problem of color based segmentation,
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one should study the combination of the filtering and the grouping method to obtain
the best results. Studying only one component in isolation is not sufficient.

Our overall comparison showed that for the Berkeley dataset the best method
to use is a combination of Mode Finding with Grouping with Adaptive Threshold
(with variable k). Furthermore the results are better when the filtering is performed
in Luv color space with a Normal kernel.

There are many interesting directions for future research. Next we present
some of them.

As we saw before, the kernel function significantly affects both the filtering and
the segmentation results. A more systematic study of this relation, especially why
the Normal kernel function produces better results, is an interesting question. Even
more so, if one can devise other kernel functions that give even better results. A
related question is how one can adjust the kernel function to consider the boundary
edge characteristics. Recent work in learning boundary edges (and separating them
from texture edges) showed promising results, but it is still an open question how
kernel density estimation methods can benefit from such a learning approach.

The previous experiments also proved that different color spaces critically af-
fect the segmentation result. We tested the Luv and RGB color space mainly because
these are the color spaces suggested in previous mean shift segmentation papers.
This does not exclude the possibility of other color spaces being more beneficial
to the segmentation of images. We would be surprised if linear transformations
(such as RGB to YUV) would produce significantly different results, but there are
unlimited possibilities for non-linear transformations.
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Table 3.2: Synopsis of the filtering results

All segmentation methods are very sensitive to image variations. The methods
based on Grouping with an Adaptive Threshold (GAT) are the least sensitive to
inter image variation. They also exhibit the least sensitivity to the segmentation
parameters (h,, k) when segmenting the same image.

Segmentation methods based on GAT grouping are not monotonic.

Segmentation methods based on GAT grouping outperform , on average, all the
other segmentation methods.

Segmentation methods based on GAT grouping are the most stable to color resolu-
tion changes i.e., exhibit less variation of the average segment size.

Segmentation methods based on CC3D and CCHD grouping have very similar per-
formance, with the CC3D ones producing slightly better segmentation results. The
GRAG methods produce better, same or worse depending on the color space and
kernel function combination.

All the graphs of the Global Consistency Error (GCE) measure are misleading be-
cause the two segmentations have different number of segments. GCE graphs are
misleading since only for a few values for color resolution the number of segments
on both segmentations is comparable. That’s why we obtain a value close to 0 for
very small and very large color resolutions.

The graphs of the Variation of Information (VI) measure are the least discriminative.

The graphs of the Probabilistic Rand Index (PR) and Boundary Displacement Error
(BDE) measures are the most discriminative.

Segmentations obtained by grouping methods alone have much lower quality than
the ones obtained using a combination of a filtering and a grouping method.

Color Mean Shift (CMS) based segmentation methods outperform all the other fil-
tering methods when they are combined with CC3D or CC5D or GRAG grouping
methods.

When using GAT grouping with varying parameter k¥ Mode Finding (MF) produces
the best results.

Filtering in Luv produces much larger segments than filtering in RGB for a given
color resolution h,. Filtering with a Normal kernel results in larger segments com-
pared to using a Epanechnikov kernel.

The selection of the kernel function seems to be very important for the segmenta-
tion results. More specifically, we obtained the best segmentation results when the
filtering was performed with a Normal kernel in the Luv color space. The second
best configuration is a Normal kernel with an RGB color space, while the results
obtained with an Epanechnikov kernel in either RGB or Luv color spaces are much
worse.
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In this thesis we mostly focused on the filtering part of the segmentation
process. For the grouping part we selected a few, simple and fast methods. In
the computer vision literature there is a large variety of methods that are used for
image clustering. Energy minimization methods (e.g. graph cuts), eigenvector based
methods (e.g. normalized cuts) and soft assignment methods based on algebraic
multigrid are also legitimate candidates for the grouping part. It is interesting to
see the quality of the segmentation using these clustering methods.

Further study is required on the optimal combination of the filtering param-
eters (namely the color resolution h,) with the segmentation parameters (e.g. in
the case of GAT k). Their relation that produces the best segmentation results for
different image sizes is yet to be determined.

Finally, in all the experiments we use the implicit plot of the quality measure
over the average segment size as an indication for the quality of the segmentation.
Our goal is to use color segmentation to generate hypotheses for planar surfaces and
as such the larger the segment the better we can verify whether it has a consistent
surface normal or not. A wide variety of applications exist that use color segmen-
tation as a first step and in some of them other characteristics (than segment size)
might be more important. For example, stereo methods are more worried whether
a segment crosses occlusion boundaries or not. It would be interesting to see how

the segmentation algorithms that we presented above fare under different measures.
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Chapter 4
Combining Cues for Surface Normal Estimation

4.1 Introduction

In this chapter we switch our attention from the problem of color based segmenta-
tion to the problem of surface normal estimation. It is widely accepted that changes
(over multiple frames) on the boundaries and the texture of an image region provide
complimentary information about the shape and the 3D position of the correspond-
ing object. Thus, combining methods based on boundary extraction with ones on
textured regions results in more robust and accurate estimation. Especially, for rel-
atively simple environments, such as corridors, it is often the case that only one type
of cue will be present and thus only one type of method will provide reliable mea-
surements. Furthermore, in such environments the predominant shape of objects is
planar and the object boundaries are usually lines.

Motivated by the above observations, this chapter proposes two methods to es-
timate the 3D position of planar objects; the first considers the change of the texture
and the second the change of image lines. More specifically, the main contributions

of the chapter are:

e We present a novel image line constraint for estimating the 3D orientation of

planes (Sec. 4.3).
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e We describe a novel technique to compute the 3D shape from the change of

texture for planar objects based on harmonic analysis (Sec. 4.4).

e We present experimental results on how accurate the two methods perform
in real indoor environments. The integration of the two methods with the
odometry readings from the robot’s wheels using an extended Kalman filter,

outperforms the results obtained by each method in isolation (Sec. 4.6).

e We experimentally show that the proposed method allows for navigation in
environments where little texture is present using a simple motion control

policy (Sec. 4.8).

4.1.1 Related Work

The computer vision community has long studied the structure from motion (SfM)
problem ([43],[44]) and recently focused on large-scale 3D reconstruction (e.g. [45]).
Following the success of Simultaneous Localization and Mapping (SLAM) using
range (especially laser) sensors ([46]), the robotics community has migrated the
existing methods to work with data from cameras. Usually, the environment is
represented with a set of image feature points, whose pose is tracked over multiple
frames ([47]). Often, image features are more informative than range data, but the
estimation of their 3D position is much less accurate. Straight lines are common
in man-made environments and are arguably more reliable features than points,
thus they have been used before in structure from motion (48], [49]) and SLAM

(150]). Our method is about computing 3D structure information in a simplified SfM
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situation, but very robustly. We use a formulation of line constraints that separates
slant from distance estimation. Thus, it is different from the ones classically used
in SfM.

On the other end of the spectrum there are methods belonging to the mapless
visual navigation category ([51|), where no prior knowledge about the environment
is assumed and no spatial representation of it, is created. Most of that work is in-
spired by biological systems. A survey of such methods implementing the centering
behavior can be found in [52]. More specifically, systems capable of avoiding walls
and navigating in indoors environments using direct flow-based visual information
obtained from a single wide-FOV camera facing forwards (53|, |54], [55]), multiple
cameras facing sideways (|56], [57|) or panoramic cameras (|58]), have been imple-
mented. Our approach is also different from the aforementioned, because we first
estimate an intermediate state of the environment (in terms of surface normals) and
we use this for navigation.

The general method for estimating the stretch and shift of a signal using the
log of the magnitude of the Fourier transform, known as Cepstral analysis, was first
introduced by Bogert et al. [59] and was made widely known by Oppenheim and
Schafer |60]. It is commonly used in speech processing |61] to separate different
parts of the speech signal.

Frequency based techniques exploiting the phase shift theorem have been used
in computer vision for image registration (in conjunction with the log-polar trans-
form of an image), e.g. [62], [63], [64] and optical flow computation (|65]). Phase

correlation, however, has not been used for shape estimation.
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4.2 Problem Statement and terminology

Due to the completely different topic of this chapter we need to redefine our notation
and terminology. Hence, in this section we introduce some common symbols that
are used in the rest of the chapter and present the problem that we tackle in the
following three sections. For simplicity and improved readability reasons, all the
equations in Sec. 4.3,4.4 and 4.5 are expressed in the camera coordinate system
(where the images were acquired). In Sec. 4.6 and 4.7 we transfer the estimates
in the robot-centric coordinate system (Fig. 4.5). Vectors are denoted with an
overhead arrow and matrices with bold letters.

We denote with ?, R the translation and rotation between two frames re-

. e . . R,
spectively, with N = («,3,7)" a plane in the 3D world and with 7" = = the

— — —
plane normal. Also P = (X,Y,Z)T is a 3D point. When P belongs to N then
- —

P-N=1&aX + Y +~Z = 1. The image plane is assumed to lie on the plane
I:Z = f, where f is the focal length of the camera. Then, the projection of P on
Iis P = (2,9, )T = £(X,Y, Z)". The inverse depth at P amounts to

1 T

— =

Y
7 7 + 6%+ (4.1)

f

Given the translation and rotation of the camera between two images we seek

H
to estimate the plane parameters N = (o, 3,7)7.
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4.3 Orientation and Distance from lines

Here we describe a constraint for recovering the orientation of a world plane from
image lines. The constraint can be used in two ways: first as a multiple view
constraint, where we use the images of a single line in 3D in two views |66]; second
as a single view constraint where we use the images of two parallel lines in 3D in

one view.

4.3.1 Single Line in Multiple Frames

As shown in Fig. 4.1, consider two views with camera centers O; and O,, which

are related by a rotation R and a translation T. A 3D line £ lies on the plane

N

with surface normal 7 = - L is projected in the two views as [; and [o. Let lnzl

be the representation of /; in the first camera coordinate system as a unit vector
perpendicular to the plane through £ and O;. Similarly, let I be the representation
of I in the second camera coordinate system as a unit vector perpendicular to the
plane through £ and O,. The two planes perpendicular to l,zl and l;z intersect in

L!. Expressing this relation in the first camera coordinate system, we have

L L x R 1o, (4.2)

and since 7 is perpendicular to £, we have

!The necessary and sufficient condition for the two planes to be different is that the translation
N
T is not parallel to the line L.
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(I X R o) -7 = 0. (4.3)

Practically, we want to avoid computing the correspondence of two lines in two

frames, so we adopt the continuous representation of Eq. 4.3 as

(b x (h =& x1y))-7=0, (4.4)

where [; denotes [,,1, & is the angular velocity of the robot and l'l is the temporal
derivative of the line that can be computed from the normal flow.

This is the linear equation we use to estimate 77. Notice, this constraint (which
intuitively is known as orientation disparity in visual psychology) allows us to esti-
mate the surface normal (that is the shape) of the plane in view, using only rotation
information. At this point we should also note that no distance information is

encoded to vector 77, which is of unit length.

4.3.2 Two or More Lines in the Same Frame

We can use the constraint in Eq. 4.4 also from one view. Imagine that two views
are related by a translation only, or similarly consider two parallel lines in one view.
Given two lines [; and [5 that are projected from two parallel lines, £, and L, in
the 3D scene, we recover the orientation of £, and £, using Eq. 4.2 (Fig. 4.2).
Assuming £, and L, lie on the same wall, which is perpendicular to the ground,

as its surface normal, we then recover the surface normal of the wall
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(a) Line constraint in multiple views

Figure 4.1: A single line is projected to two images from different viewpoints.
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from

-

(Lt X Lz) 71 = 0. (4.5)

If we have more than two lines that are generated by parallel 3D lines, we can
average results from Eq. 4.5.

The constraints discussed above provide better information than vanishing
point. From two or more 3D lines, a general plane can be reconstructed. In our
case, the plane is perpendicular to the ground plane, thus the surface normal can

be described by only one parameter, i.e. ¢ (because N = (a,0,7)7). In general, the

o
v

robot can move based on the position with respect to the line.

(a) Line constraint in a single view

Figure 4.2: Two 3D lines, belonging to the same plane, are projected to two image
lines.
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4.3.3 Distance estimation

After we have computed the slant of the plane, we can also estimate its distance.

For this we need the translation 7. The distance d, of the line £ from the camera

amounts to [67]

H
(L-T)

de = —
(b + (I x9)T(ly x Lyg)

H
with L 4 a unit vector parallel to £, computed as

l1X(i1+l1Xﬁ)

H
L,= .
|l1 X (ll —l—ll X w)|

and the distance d of the plane from the camera is computed as

4.3.4 Implementation details

(4.6)

(4.8)

To obtain accurate measurements of lines, we modified P. Kovesi’'s Matlab code?.

The unoptimized Matlab version of the slant estimation code based on lines runs

in ~ 1.5 seconds per iteration on our test bed (a 1.5 GHz Pentium M laptop with

768MB RAM).

In Fig. 4.3 we present three representative frames obtained from the front

camera. Note that we did not introduce any artificial landmarks, thus only objects

existing in the environment, like doors and door frames are present. To find “good"

http:/ /www.csse.uwa.edu.au/ pk/research /matlabfns
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lines to track, we further assume that the longest lines present in the scene are the
ones on the boundary between the floor and the walls. Thus, using a threshold
on the line length we are able to remove all other lines. In Figs. 4.6 and 4.7 we
present the distance and slant estimates which we obtained using the line constraint
for a test sequence of 20 frames. We observe that the slant is estimated with good

accuracy, while the distance estimation is not very accurate.

4.4 Harmonic shape from texture for planar surfaces

4.4.1 Theory

In this section we assume that the camera is parallel, and the wall perpendicular to

the ground. Thus N further simplifies to (a, 0,7)T and Eq. 4.1 becomes

Z—at g v (4.9)

Consider that we acquire two images I; and I, and that we know (from the odometry

readings) the translation T = (T,,0,T.)T and rotation R relating I; and I. The

(a) First image (b) Second image (¢) Third image

Figure 4.3: Three frames of our line testing sequence, with the detected lines drawn
in yellow color. In all cases the lines are well localized.
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Algorithm 4.1 Match Epipolar Lines
Input:
p : Image point in first image
T, R : Translation/Rotation
K : Camera matrix
D : Reference distance, randomly chosen
Output:
[p1,p2] : Set of corresponding points in first and second image along the epipolar
lines
Algorithm:
Compute Essential Matrix : E = [T, R
Compute Fundamental Matrix : F =K TEK™!
Compute Epipolar Line in Second Image : [y = Fp
Compute Corresponding Epipolar line in first image using D

first step is to locate corresponding epipolar lines on the two images (Fig. 4.4) using

the procedure described in Alg. 4.1.

Figure 4.4: The epipolar lines for two frames. The translation vector is T =
[—0.011 0 0.011]7 meters and there was no rotation.

Interpolating the image intensity values along the epipolar lines, it is possible
to rectify the two images, thus obtaining images I and I?, where the epipolar lines

are collinear and parallel to the horizontal axis

/

T
Yo,y I8(z,y) = IF(z + — V) (4.10)
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where the new translation vector is 7" = \/W and the new plane parame-
ters are (o/,0,7)" = Rrpcr(a,0,v)T with Rppor being the rectification (rotation)
matrix.

Combining Eqgs. 4.9 and 4.10 and dropping for simplicity the prime notation

we obtain

Va,y LH(z,y) = I[((1+ aT)z +~T,y), (4.11)

Table 4.1: Phase Correlation Concept

e Let 2D signals s; and sy be related by a translation (xg,yo) only, i.e.
s2(x,y) = s1(x — To, y — Yo)

e Their corresponding Fourier transforms are related by a phase shift which
encodes the translation, i.e.

Sy(u,v) = e~ 2miluzotvy0) S, (3 )

e The phase shift can be extracted from the Normalized Cross-power Spectrum
of the two signals, which is defined as

_ Si(u, v)S5 (u,v)
|S1(u, v)S3 (u, v)]

2mi(uzo+vyo)

=€

e Thus, the inverse Fourier transform of NCS is a delta function around the
translation point (—zo, —yo)

f_l{NCS}([L',y) = 5(ZB + To, Y + yO)

We can estimate o and 7 using phase correlation (Table 4.1) between the
signals along the set of two epipolar lines in two steps [52|. First, we estimate «
using phase correlation on the magnitude of the Fourier transform of the two signals

in logarithmic coordinates (Eq. 4.16). Then, we warp the signals, using the estimate
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for a, so that only the translation component is present. Finally, we estimate v using
phase correlation on the warped signals (Eq. 4.18). The complete algorithm along
with the equations are presented in Alg. 4.2.

While the algorithm presented here, solves for two (a, ) of the three plane
parameters, it is possible to obtain all three parameters by performing a geometric

transformation on the variables and exploiting 2D phase correlation.

4.4.2 TImplementation details

In Figs. 4.6 and 4.7 we present the results of applying this method to a series of
images obtained by the left side camera of our robot. In this experiment, we used 81
epipolar lines. The red crosses denote the distance and slant estimates for each pair
of frames. While slant estimation is quite accurate, still the line method provided
superior results. On the other hand, this method outperformed both the line based
technique and the normal flow based technique (described in Section 4.5) in the
distance estimation.

Another advantage of the method is its computational simplicity. Thus, the
unoptimized Matlab code runs in ~ 1.5 seconds for an image of 81 x 1024 pixels
(i.e., 81 epipolar lines of 1024 pixels each), with most of the time spent on warping

the 2 signals in order to compute Eq. 4.17.
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Algorithm 4.2 Estimate Plane Parameters «a,y

Input:
IR IEF : Image signals along Epipolar Lines
T :Translation

Output:
a, 7 : Plane parameters

Algorithm:

e Signals along the epipolar line y

Vo, IF(z,y) =11+ o)z ++T,y) (4.12)
e Compute the Fourier Transform (Z7, ZJ) of If, I}t
oL, R u
e oy A H g v)
e { IR = Y Lol 4.13
F. 7y{ 2 }(U,U) |1 +OéT| ( )
e Consider the Magnitude of Z¥, ZF and logarithmically transform (u,v)
TE(logu — log(1 + aT),v)|
(1 _ ’ 4.14
| 2(ogu,v)| |].+CYT| ( )
e Compute the Normalized Cross-power Spectrum (NCS;) of |Zf|, |ZF|
NCSl (n’ w) — 627rinlog(1—i—ozT) (415)
e Compute « taking the Inverse Fourier transform of NC'S;
6u—argmaw(]—'*1{NC,S'1}) -1
= 4.16
0 . (4.16)
e Take the Normalized Cross-power Spectrum NCS; of Z{' (7%, v), I3 (u, v)
from Eq. 4.13
. 4T
NCSy(u,v) = e~ 2miTtar (4.17)
e Compute

(1 + aT)argmaz(FH{NCSy})
T

v=— (4.18)
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4.5 Plane parameters from normal flow

4.5.1 Theory

As described before, N = (o, B,7)" denotes a plane in the 3D world and P =

(X,Y, Z)T a point on that plane (1_D> N = 1) and Eq. 4.1 is valid. When the camera

T and translational

H
moves with instantaneous rotational velocity = (Q,,Q,, .,
. — T . . . . - — =g -
velocity t = (t,,t,,t,)" the relative motion of the point is V(P)=—t — Q x P.

The corresponding motion of the image point P is

dx
i 1 t.x — tx.f

= —= + 4.19
"7 (4.19)
dt tzy - tyf
Yl mey}ﬂyzz (4.20)

_sz+wa+%+szz

Substituting equations (4.1) and (4.20) into the image brightness consistency con-
straint
ol drx Ol dy OI

%'E+a_y'dt+§_0’ (4.21)

we obtain an equation bilinear in the motion parameters and the plane parameters.

Note that I(x,y,t) represents the image intensity at point (x,y) and time ¢. In our

case we have restricted motion (i.e. €, = €2, = 0 and ¢, = 0), so we can further
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simplify the equation

Az y f)(a B8)" = B ,where

B = L.fQ, + - (Ia* + Ixy) — T,

According to Eq. 4.22, knowing the motion parameters, the camera intrinsic
parameters (i.e., focal length and principal point) and the image intensity deriva-
tives, plane estimation amounts to solving a linear system of equations for the

parameters (a, 3, 7).

4.5.2 Implementation

To calculate the normal flow we used the gradient based method of Lucas and
Kanade ([68]) using the filtering and differentiation kernels proposed by Simoncelli
(|69]) on 5 consecutive frames. For performance reasons, we first reduced the size of
the image by one quarter, so we are computing the gradients on a 256 x 192 array
(as opposed to the whole 1024 x 768 original images). The image size reduction
has the additional advantage of reducing the pixel displacement between successive
frames, thus resulting in more accurate results for plane estimation. The unopti-
mized Matlab version of the code runs in ~ 0.4 seconds on our testbed, with most
of the time spent in computing the spatial and temporal gradients.

In Figs. 4.6 and 4.7 we also display the results of running the normal flow

based plane estimation algorithm in the same test sequence used for the previous
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methods. It is clear that this method is less accurate in distance and slant estimation
compared to the texture and the line method, respectively for that specific image

sequence. This is due to the lack of good image features to track in our environment.

4.6 Extended Kalman Filter

Integration of the individual measurements over time is performed using an ex-
tended Kalman filter (EKF). First, let us define a robot-centric coordinate system
OrXRrYrZpg as follows (Fig. 4.5); the center Op coincides with the midpoint of the
two front wheels of the robot, the Xy axis points to the left wheel of the robot, the
YR axis points upwards and the Zg axis forward.

As state variables for the Kalman filter we use the distance/slant/tilt parametriza-
tion of the plane, S(t) = [d,0, #]T. If we denote 7 xz the projection of 7 on the
Y = 0 plane, then we define the slant 6 to be the angle between the Zi axis and
T xz, as shown in Fig. 4.5. Tilt ¢ is the angle between the Y component of n and
the X Z plane. Thus the transformation between the two different parametrization

is

d = ——L

Vo242
0 = arctan (%)
_gb = arccos(g) |

Assuming that the control vector U(t) consists of the instantaneous transla-
tional and rotational velocities of the robot (v(t),w(t)) respectively and At denotes

a time interval, the evolution of the system over time can be described as
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Yr

wall L

Zr ' Nxz

(a) Robot Sketch

Figure 4.5: The distance and angle 6 between the robot and the wall are defined
with respect to a coordinate system attached to the robot. The surface normal
projected on the X — Z plane (nxyz) is also displayed.
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S(t+ At) = F(S(t), U(t)) &

d(t+ At) = d(t)+ v(t) cosO(t) At + ey
Ot +At) = 0(t) — w(t)At + €1 : (4.23)

Pt +At) = ot) +es

where we use the assumption that cosf(t) ~ cos@(t + At), i.e. the rotational ve-
locity w(t) is small and approximately constant over At and the discretization step
At is also small. Furthermore, we denote with €;; the errors in the state prediction
(with covariance Q).

Our measurement vectors (Z;, Zs, Z3) consist of the plane parameters calcu-
lated using the different methods described in Sections 4.3, 4.4 and 4.5 respectively,
converted to the distance/slant/tilt parametrization. We consider the combined
measurement to be a weighted linear combination of the individual measurements
ie., Z(t) =32, CiZ;, where the weights C; encode the (inverse) uncertainty of the
estimates using different methods, which we derived as follows.

The line module bases the accuracy of the plane estimation on how well it
detects and localizes the line. The harmonic texture module is using the magnitude
of the Inverse Fourier transform of the Normalized Cross-power Spectrum (Egs.
4.16, 4.18) and the normal flow module is using the condition number of the linear
system (Eq. 4.22).

The system evolution (Eq. 4.23) is not linear with respect to the state vector

S(t) and the control vector U(t). That’s why we need to use an extended Kalman
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filter and linearize the equations by considering the Jacobian matrix as shown in

Table 4.2.

Table 4.2: extended Kalman Filter Equations

Jacobian of system evolution with respect to the state vector S(t)

1 —o(t)sinf(t)At 0
A =10 1 0 (4.24)
0 0 1

Jacobian of system evolution with respect to the control vector U ()

cosO(t) At 0  w(t)cosb(t)
Wi(t) = 0 —At —w(t) (4.25)
0 0 0

State prediction equations (Mean S and Covariance f’)

~ —

d(t+ At) = d(t) +ov(t) cosO(t)At
Ot +At) = 6(t) — w(t)At : (4.26)
ot +At) = ¢(t)

Pt + At) = A@P()A(H)T + W(H)Q(H)W (1) (4.27)

Kalman Gain K
K;(t) = P(t)(P(t) + R(t))™ (4.28)
Measurement update equations (Mean S and Covariance P)
S(t + At) = S(t + At) + K(t)(Z(t + At) — S(t + At)) (4.29)

P(t+ At) = (I - K(t))P(t + At) (4.30)

4.6.1 Results

Figs. 4.6 and 4.7 depict the results when we combined the line, texture and normal
flow methods, respectively with the odometry measurements using the EKF. More

specifically, in these figures, black circles denote the prediction about the current
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state using only the previous state and dead reckoning information (Eq. 4.26), while
blue pluses denote the final prediction of the state after the measurements from
each individual module are also considered (Eq. 4.29). It is clear that integration of
measurements over time significantly improves the accuracy and robustness of the

method.

4.7 Motion Control

An important part of any navigation system is the motion control subsystem. In
this particular setting the goal is to move along the corridor avoiding the obstacles
that might lie ahead of us. The motion control strategy described below refers
to the “wall-following" behavior. Using the same policy one could implement the
“centering" behavior.

Let’s define the input to the motion control algorithm to be the state vector
of the Kalman filter, that denotes the position of the left wall with respect to the
robot. Ideally, we want the robot to remain at a constant distance (denoted with
D¢) from the wall, thus following the line Lo as shown in Fig. 4.8. In practice, the
robot’s trajectory is restricted by motion dynamics as well as the constraint that
the rotational and translational velocities should remain constant, while the camera
is recording the frames. As a consequence, the system is only allowed to perform
small motion changes between two successive frames, thus it is hard to follow the
virtual line. Instead, a point P along the line Lo is picked and the robot’s motion

is regulated accordingly, so that it approaches P. Next we describe how to do this.
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Figure 4.6: The distance results of one test run. We display the estimates of each
module with a cross, the extended Kalman filter prediction (Eq. ) with a circle and
the final estimate after integration with the measurement (Eq. ) with a plus sign.
In some frames no reliable estimate could be obtained using the harmonic texture
method(second column). In these cases, we display the red cross on the bottom of
the corresponding figure. Also note the first EKF update is based solely on image

estimates.
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Figure 4.7: The slant results of one test run. We
module with a cross, the extended Kalman filter prediction (Eq. ) with a circle and
the final estimate after integration with the measurement (Eq. ) with a plus sign.
In some frames no reliable estimate could be obtained using the harmonic texture
method(second column). In these cases, we display the red cross on the bottom of
the corresponding figure. Also note the first EKF update is based solely on image
estimates.
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Let’s assume that point P is yp meters away from the robot along the line Lo
and forms an angle ¢ as shown in Fig. 4.8. Furthermore, the robot is situated zp
units away from Lo and is moving with instantaneous translational and rotational
speed v(t),w(t) respectively. Note that the translational velocity is always along the
direction of the Z-axis of the robot and the rotational velocity is around the Y-axis.

Then, we have:

v = arctan(y—P) (4.31)
Tp
E = 0—1m—4 (4.32)

The line segment Lgp has length D = /2% + y%. An approximation of the time

[

Figure 4.8: The robot R is moving with translational and rotational velocities
v(t), w(t) respectively, while it is located zp units away from the virtual line Lc.
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that is required by the robot to reach point P is At = %. The new rotational

velocity (w(t + At)) of the robot should be:

§ — 1 — arctan ¥&
Tp

VTp+ Y

= u(t) (4.33)

w(t+ At) = é

4.8 Experiments

We have used the robotic platform ER1 from Evolution Robotics. On top of it, we
have placed a front and two side Firewire cameras (SONY XCD-X700). The side
cameras form angles (~ 45° ~ —45°) with the front camera as shown in Fig. 4.9.
In the following experiments we used the left side camera and the front camera. We
run the texture based as well as the normal flow based code on the left side camera
and the line-based code on the front camera.

The goal of the experiments is to convey two messages;

e The accuracy and robustness of the system significantly increases with the

integration of individual measurements from different subsystems over time.

e When using all the methods the robot is able to move along a mostly texture-

less corridor.

4.8.1 Constant Distance Experiment

The goal of this first experiment was for the robot to move a distance of 20 meters
along a corridor without hitting the side walls. The corridor had a width of 1.8 me-
ters, so we instructed the robot to try to maintain a distance of 0.9 meters from the
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(a) Photo of robot

Figure 4.9: The ERI1 robot equipped with 3 Firewire cameras. The height of the
robot is ~ 70 cm. In the background, part of the corridor, where we conducted
some experiments, is shown. All the walls and doors are textureless and there exist
significant specular highlights on both the walls and the floor caused by the light
sources.
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left, while moving with velocity 5 cm/sec. The initial orientation of the robot with
respect to the wall varied from 0° (parallel to the wall) to —20° (moving away from
the left wall) and +20° (moving towards the wall). We made multiple runs each
time activating a different submodule with and without integrating the measure-
ments with dead reckoning using the EKF. Finally, we performed the experiment
using all the submodules together. The results are presented in Fig. 4.10. It is clear
that each individual module in isolation performs poorly (with the exception of the
line module). Integrating the measurements of a single module over time (using
the EKF) greatly improves the robustness of the method. Finally, combining the

measurements from different submodules, provides the most robust setting.

—+— flow—only
~(- - line—only
—X— - texture—only
——+— flow+EKF
—— line+EKF
—X— texture+EKF
—¥— All modules

0.5

Success Rate

1
=20 -10 0 10 20
Initial orientation (degrees)

Figure 4.10: Percentage of times that the robot was able to move than 20 meters
without hitting the side walls.
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4.8.2 Average Distance Experiment

In this experiment we let the robot move on the corridor (still trying to maintain a
distance of 0.9 meters from the left wall) with velocity 5 cm/sec, and measured the
average distance traversed before the hitting the wall. We performed the experiment
multiple times activating a different module or combinations of modules. The re-
sults, namely the average distance for each combination, are presented in Fig. 4.11.
Again, we observed that a single module performs very poorly (with the exception
of the line module), while combining modules together and integrating the estimates
over time greatly improves the result. When the average distance is larger than 20
meters, it indicates that the robot is approaching the end of the corridor and thus

we had to terminate the specific run.

25r-
20k I line-only _
B line+EKF
Q) [ texture—only
£ [ texture+EKF
E 151 I flow—only
3 I flow+EKF
§ [ JAllmodules
%)
2
© 10+
)
g
<
5 -
0

Different modules

Figure 4.11: Average distance that the robot was able to move using measurements
from a single or multiple modules.
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4.9 Conclusions

In this chapter we presented two new methods for computing the 3D structure of
a piece-wise planar scene from video. We also used an existing method for 3D
shape estimation based on normal flow. The three methods base their estimation
on complementary information. More specifically, while the normal flow technique
considers individual features (i.e. sharp intensity changes) within the object, the
texture method considers the whole area within it. The line method, on the other
hand, uses the boundaries of an object. Depending on the case, we expect at least
one of the methods to provide accurate measurements. For example, when we
observe a mostly uniformed colored object, we anticipate that the line method will
be able to accurately track the boundary of it and produce accurate results, while
the remaining two modules will fail. On the other hand, when the object is highly
textured, the line method might not be able to locate the boundaries accurately, but
the two other methods will produce good results. For that reason, we emphasize
that the integration of all three modules is the right approach, if one wants to build
a robust system. For similar reasons, integration of the individual measurements
over time is equally important. In this paper, we use odometry measurements from
the wheel encoders, but we might as well estimate the motion from the video (visual
odometry, also known as ego-motion estimation [70],[71],[72]) or using other sensors.
We present, experiments in the context of visual navigation on indoor environments
and verify that the combined usage of all three modules produces a more robust

system.
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This chapter is complementary to the previous chapter on color based seg-
mentation in a sense that one basic assumption for estimating the structure is that
we have solved the segmentation problem and thus we know the boundaries of the
planar surfaces. In order for the robot to navigate in more complex environments,
we need to incorporate a scene segmentation scheme into this framework. In later

chapters we argue how this integration can be performed.

158



Chapter 5
Towards Surface Segmentation

5.1 Introduction

In the previous chapters we focused on color based image segmentation (chapters
2 and 3) and on surface normal estimation (chapter 4). Both problems constitute
two important components of a system that performs segmentation into surfaces. In
this chapter we conclude our thesis by discussing how these two components can be
combined!. We also touch on the topic of actively controlling the image acquisition
process to facilitate the segmentation.

We use the term surface segmentation (or segmentation into surfaces) to de-
note the geometry inspired segmentation where adjacent pixels with similar surface
vectors are grouped together. The term surface vector is used to denote both the
surface orientation (i.e. surface normal) and its distance from the focal point. In
that definition region boundaries are identified as discontinuities in surface vectors,
caused either by a discontinuity in the distance (i.e. occlusion) or by a discontinuity
in the orientation.

We have chosen the above definition because it turns segmentation into a

well defined problem. Generally, most definitions of image segmentation are object

!Since we are interested in segmentation into surfaces (and not on visual guided navigation as
in chapter 4) we choose to estimate the plane induced homographies of sets of points in two views.
This is arguably a relatively “easier” problem than the full 3D reconstruction of a scene.
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Figure 5.1: An image of an office chair. Notice that there is a smooth normal
transition from the pixels belonging to the back of the chair to the pixels belonging
to the bottom of it.

oriented and thus ambiguous and ill-defined. The ambiguity is partially due to the
fact that multiple meaningful segmentations exist for the same image at different
levels of details. A person, for example, can consider a laptop computer as a single
object, or further segment it into the LCD display and the keyboard. Further
subdivision of the keyboard to its keys is also valid. That is one of the reasons for
researchers to suggest that the proper segmentation is task and domain specific [3].
One way to deal with the ambiguity is to accept multiple segmentations as valid.
This is the path chosen by Martin et al. |[36] and Alpert et al. [8]. When building
their image segmentation database they included multiple possible segmentations
of the same image, each one produced by a different person. The major cause of
the ambiguity though is that the concept of an “object” is by itself ill-defined and
subjective. Hence, image regions corresponding to objects are by default subjective
as well. The use of a well defined geometric feature, such as the surface vector,
makes the segmentation a better defined problem.

Unfortunately, the issues associated with different segmentations at different
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image resolutions are not eliminated even with that definition. It is absolutely
natural and often happens in practice that the computation of the surface normals
at different image resolutions might lead to different segmentations. Borrowing an
example from the introductory chapter, the surface normal based segmentation of
the office chair of Fig. 5.1 might lead to two separate segments, one for the back
and one for the bottom of the chair, or to one segment containing both the back
and the bottom of the chair, depending on how coarse or fine is the computation of
the surface vectors.

Furthermore, the computation of the surface vectors itself is hard and not
very accurate. One needs to hypothesize a model for the surface of the surrounding
area of a pixel in order to measure its surface vector. This fact leads to a chicken
and egg problem because in order to segment based on surface vectors one needs to
assume that the surface vectors in the surrounding area are similar i.e., to assume
that the surrounding area belongs to the same segment. Apparently this model
breaks in areas near surface normal discontinuities. In the following sections we
assume that the 3D world consists of planar patches and hence, the surface normals
within a patch are constant. As we will show below, even in this case the accurate
computation of the surface normals is not trivial and in most cases not even possible.

The keyword “active” in this context refers to the idea that the camera mo-
tion can be controlled (up to a certain degree) by the process that performs the
segmentation. We motivate the discussion of this problem by the setting of Fig.
5.2 where the cameras position and orientation can be changed in two ways; a) by
moving the whole mobile platform and b) by moving the Pan and Tilt unit. The
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Figure 5.2: Our mobile robot. We used the Erratic mobile platform as the basis and
installed on top a laser and sonar range sensors, a Pan and Tilt unit and a quad
stereo system.

motion of the whole robot leads to a large translational and rotational motion of
the cameras (with high uncertainty as reported by the wheel encoders). The motion
of the PTU, on the other hand, causes small translational and rotational motion to
the cameras that can be estimated with high accuracy. Overall, the system allows
for an almost unrestricted control of the cameras position and orientation. In this
case an interesting question is how specific motions and poses of the camera can
simplify the estimation of surface vectors and subsequently surface segmentation.
In the following section we summarize related work on structure from motion
and active vision. Then, we present the related theory on homography estimation
from two images along with one lemma that can be used to predict the quality of
this estimation. Sec. 5.4 touches on the problem of merging image regions with
similar homographies and splitting regions with many outliers. We argue that the
color based segmentation framework that we presented on chapters 2 and 3 can be

used to guide the merging and splitting process. Finally, we briefly illustrate our
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idea on how an active camera control system can be constructed.

5.2 Related Work

The structure from motion problem is a prominent research area in computer vision
and as such has been studied extensively. In the most common formulation the goal
is to compute the structure of the scene (i.e., the distance of every pixel from the
focal point) and the motion of the camera (or the motion of the scene objects if
they are moving independently). Since the early 80’s where the existence of the
solution has been established [73, 74, 70, 75|, a great number of researchers have
tried to devise algorithms that work well under realistic situations were noise is
present. Any computer vision textbook, such as [76], contains a description of the
basic algorithms along with the related bibliography. In the recent years bundle
adjustment i.e., a collection of optimization methods from the photogrammetry
and geodesic literature tailored to solve the structure from motion problem, was
imported in computer vision |77|. These methods that are used to refine an initial
estimate for the structure of the scene and the motion of the camera are shown
to produce real-time, high quality scene reconstructions [78]?. On a parallel track
a number of theoretical studies on the structure from motion problem have been
conducted [79, 80, 81, 82, 83, 84, 85]. Their goal is to understand and describe the

inherent ambiguity in recovering structure and motion, discover the configurations

2Since bundle adjustment techniques optimize over a non convex domain they suffer from the
same convergence problems as all other non-convex methods. Thus, the initial estimate feeded to
the system should be close to the global minimum, otherwise the methods will converge to a local
minimum different from the true solution.
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that makes this recovery ill-conditioned and perform error analyses for different
types of noisy input.

In the following sections we concentrate on a slightly different formulation of
the problem. Instead of solving for the structure and motion of individual pixels
we assume the image to be piecewise planar and focus on the recovery of the ho-
mographies induced by the planar patches in two views. Methods for computing
homographies have been extensively covered by Hartley and Zisserman in their book
[43]. Since then, a number of studies have been performed on how to identify planar
patches on a scene from the homography computation of individual image feature
points and merge them together |86, 87, 88, 89, 90, 91, 92, 93]. With respect to
previous work our proposed approach presented below also takes into account the
results of color based segmentation at different levels of detail in order to group
feature points together. The rational is similar to the one used by state of the art
stereo algorithms [94, 1, 2|; namely color based segmentation is an additional cue
that can be used to guide the grouping of feature points before computing the ho-
mographies. At this point we should mention that a few other problems require
the computation of 2D homographies (for a presentation of these problems refer to
[43]) and our covariance estimation theory (i.e., Lemma 5.2) is actually similar to
the method suggested in [95] for measuring the 3D properties of objects from 2D
images.

All the previous approaches follow the “vision as a recovering process” paradigm
of Marr [96]. In the late 80’s a different paradigm under the name of Active [97, 98|,
Animate [99] and Purposive vision [100] has been introduced. Under this doctrine,
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image understanding and computer vision should also study the process of selective
acquisition of data in space and time. More specifically, depending on the goal of
the visual system a proper strategy for controlling the image acquisition process can
significantly improve the results of the visual computation or even make ill-defined
problems (e.g. structure from motion) well defined. Since its conception a series
of studies following this paradigm have been published, some of them discussing
the visual capabilities that an “intelligent” system should have [101, 102, 103, 104],
while others focusing on the optimal camera motion strategy for specific tasks e.g.
[105, 106]. Still, the amount of work following this model is relatively small. Of
course there are theoretical problems related to designing the proper visual tasks
and camera control strategies, but we believe that the main issues holding back this
paradigm had been of a practical nature thus far. The image acquisition hardware (
mobile platforms, cameras with pan and tilt capabilities, mechanical arms etc) was
either too expensive, too sensitive or too bulky to allow the construction of a real
active visual system. Most importantly the computers were not fast enough to allow
real time image processing. In the recent years with the introduction of multicore
CPUs and GPUs, this situation has been reversed, so we expect this paradigm to

gain momentum once more in the next years.

5.3 Homography estimation of planar surfaces

Let us assume that we can detect a set of m image points belonging to a single

world plane and track them over two frames. We denote the homogeneous, image
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coordinates of a point on the first and second frame with x; = (z;, v;, 1)7, x} =

i
(2}, yi, 1)T respectively. In the remaining chapter we will use the bold notation
for vectors only. All the points belong to the same plane, thus there exist a 3 x 3
matrix H, know as homography matrix, that corresponds the coordinates of the
point in the first and second plane, namely x’ = Hx. The ' = sign here does not
denote equality. The vectors x’ and Hx have the same direction, but may differ in
magnitude by a non-zero scale factor. This can be expressed in terms of the vector
cross product as x’ x Hx = 0. The homography matrix is unique up to a scale and
thus has 8 degrees of freedom. Each point contributes two equations thus at least
4 points are needed to compute H. If n > 4, the matrix is overdetermined and H
is computed by a suitable minimization scheme. Two are the dominant estimation
methods, the homogeneous solution of minimizing the algebraic distance and the
non-linear solution of minimizing the geometric distance.

The first method uses the SVD decomposition to solve a homogeneous linear
system. It has the advantage over the second method of being fast and convex
(thus the minimization finds a global minimum). On the other hand, the objective
function is not geometrically meaningful, and thus the result might be bad.

The second method uses an objective function that computes the sum of the
Euclidean distances between the measured and mapped points. This quantity is
meaningful and corresponds to the measurement error. On the other hand, the
minimization is not convex and there is no closed form solution. Thus, iterative
methods should be employed to solve the system. Depending on the initialization

the method can be slow and converge to a local minimum. In practice, the first
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method is used first to compute a good initial estimate of H that is further refined
using the second method.

In the following analysis we use the first method because it allows us to com-
pute the covariance of the estimated homography H. Here is a brief description
of the method. For more details about both methods the interested reader should

consult Hartley and Zisserman’s book [43].

First, we write the homography matrix H in vector form as

h = (h117 h127 h'137 h’217 h’227 h’237 h317 h327 h33>T'

With the proper algebraic manipulation of the homography equation x’ x Hx = 0

we get a linear homogeneous equation for the computation of the homography vector

Ah =0, (5.1)
where
0 0 0 = w1 —vz —viu -
1 Y1 1 0 0 0 -2l —2lyy —2f
—yirr —yiy —yp ey w2y 0 0 0
A=[ : : : : : : : ol (52)
0 0 0 —zn —Un —1 YT  YhUn Yl
T, Un 1 0 0 0 -2z, -2y, —z,
—Z/;an _yéyn _y;L I;In TpYn T, 0 0 0



In the previous equation the third (and the sixth, the ninth etc) row is linearly
dependent to the previous two rows so we can skip them and obtain a smaller

equivalent matrix

0 00 =z yi 1 —yor —viymi —¥,

rr y1 10 0 0 -2z —xlyr —of

0 0 0 -z, =Y -1 Yxn Yyn Y,

Tn Yo 1 0 0 0 —alz, —2ly, —x,

Eq. 5.1 as an optimization problem is expressed as

arg m&nHAhH, s.t. (5.4)
||Ih][ =1 (5.5)
The constraint ||h|| = 1 is necessary to avoid the obvious solution h = 0. We

use the following lemma to solve the problem.

Lemma 5.1. The solution to a homogeneous minimization problem arg m}én||AhH

subject to ||h|| = 1 is the eigenvector of the least eigenvalue of AT A.
Proof. Refer to [43|, Appendix 3. O

The computation of the homography using the previous lemma is the first step.
The second step is to compute an estimate on how accurate the computed homogra-

phy is. Feature detection and localization, point mismatching, spatial quantization
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and camera distortion errors directly affect the accuracy of the homography estima-
tion. With the careful calibration of the camera the last error can be minimized.
Robust point matching using RANSAC can solve the problem of point mismatch-
ing. Still the error in the precise detection and localization of the features cannot be
avoided. These errors in the image coordinates of the points are usually modelled
as random variables. Then the question is how these errors affect the computation
of the homography vector h.

The next lemma provides a way to compute the covariance of the estimated
homography h with respect to the noise in the image coordinates of the detected

features.

Lemma 5.2. If we model the error in the localization of the feature points as in-
dependent Gaussian random variables with variance o2, o'* for the features on the

first and second frame respectively, the 9 X 9 covariance matriz of the homography

18
Cyn = JSJ" (5.6)
,where
0 0 0 xT
S A i 6.7)
0 0 ... i xd

,with x; the eigenvector corresponding to the it" smaller eigenvalue )\; of matriz
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AT A. Matriz S is

S = y (r3,T2i ff + Yo Toim1 f{ + toToin1 f{7 + 13 1Toi f°) (5.8)
i=1
with r; the i row of matriz A and
fe= o*[hT+ ha — 22} (hihy + hohg)] + 20" (xshrhg + z3yshrhs + yihghg)
+(o%2? + 220 )2 + (02 + y2o 2)h2 + o 2R3
fo = 0*h2 + h? — 2y, (hshs + hshg)] + 20" (x;hrhg + ziyihrhs + yshshy)

+(02y;2 + z20™)h2 + (U2y;2 + 920" h: + o hl

1= r50= o?[(hy — Zih7)(hy — yihe) + (ho — ihs) (hs — yihs)).

Proof. A sketch of the proof is provided on appendix C. O

As expected the actual values of the homography matrix also affects the covari-
ance matrix. Configurations that are almost ill defined as for example four points
forming a straight line produce a large covariance matrix.

If we represent with X, = (z%, 4!, Z.

)T the projection of point x; on the second
image using the homography H i.e., X, = Hx;, then the algebraic error of the

projection of the feature point of the first image into the second image is given by

the formula
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The corresponding geometric error is given by the formula

dgeom (X, X;) = \/( - )P+ (?z—f -4y, (5.10)

After estimating the homography matrix it is possible to separate the points
that belong to the plane based on their reprojection error.
Finally the following lemma relates the plane induced homography with the

camera parameters and the surface normal.

Lemma 5.3. Given the projection matrices for the two views of a camera with

intrinsic parameters K
P=K-[I]0] P'=K-[R|T| (5.11)

where R, T represent the rotation and translation between the two views respectively
and a plane defined by 7* - X = 0 with # = (vT, 1)T (v is the surface normal), then

the homography induced by the plane is X' = H - x with
H=K-(R-T-v") K" (5.12)

Proof. Appendix C. O
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5.4 Merging and Splitting Image Segments

Two perspective views of a planar 3D surface are related by a homography. As we
mentioned before there is a significant amount of work focusing on how to compute
planar homographies and merge them together. The results of the state of the art
algorithms are quite impressive, e.g. in [93| multiple planes belonging to different
objects are detected on both indoor and outdoor image sequences. Still we think that
one part of the plane identification process that has not received enough attention
is how to select the groups of feature points used to compute the homography from.
Over the years heuristics based on the proximity of the feature points and overall
shape of the convex hull they form, have been used |93], but the usual approach is to
try many quartets of feature points. As a result, the plane identification algorithms
are usually quite slow (e.g. Amintabar and Boufama in [93| report a running time
of 3.5 seconds for their optimized C code on 90 features). Here, we propose to use
the results on color based segmentation to guide that process.

Fig. 5.3 synopsizes our approach. Starting from an image sequence we ini-
tiate two parallel computations. On one hand, we apply the KLT feature tracker
|68, 107, 108] to detect and track a number of feature points. In order to eliminate
spurious features we only take into account features that were tracked over multiple
frames. On the other hand, color based segmentation using our MF+GAT algo-
rithm (Sec. 3.4.3) at different granularities is performed. We combine the results
of the two previous steps by grouping together features belonging to the same color

segments. Using a robust estimation technique (RANSAC [109, 43]) we estimate
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Obtain Images

feature detection | color segmentation |
and tracking

—~—

associate features
to color segments
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compute homographies
on grouped features

\

find segments with
similar homographies

merge regions

| compute outlier features |

split regions

| refine segmentation |

Figure 5.3: Our proposed scheme to address the 3D plane estimation problem on
static image sequences by combining feature based homography estimation with
color based segmentation.
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the homography associated with each color segment. Only the features that belong
to the same image segment are used to compute its homography. Then, we run two
parallel processes; a) for computing the outlier features and b) to find the segments
with similar homographies. The former process is used to subdivide a color region,
while the latter to merge regions together. Based on the results of both processes
we can perform a more informed guess which is the correct local color resolution of
our color based segmentation algorithm further refining the color segmentation with
shape information.

In Fig. 5.4 we demonstrate the merging part of the algorithm. We obtained
a sequence of 5 images using the cameras mounted on the robot. Then, we use a
KLT tracker to detect 200 feature point on the first image and track them over all
5 frames. Only 98 features are consistently tracked in all frames and we display
all of them in Fig. 5.4c. In parallel we run our segmentation code to obtain an
initial grouping of image regions (Fig. 5.4c). The two groups of feature points that
reliably produce very similar homographies are displayed in Fig. 5.4e. Based on
these homographies we rerun the segmentation code with different parameters until
the two regions are merged together (Fig. 5.4d).

A similar experiment in displayed in Fig. 5.5, where splitting a region into
multiple ones is required. As above, we use a KLT tracker to detect 200 feature
points and track them over a series of 5 frames. At the end of the process 102
features are tracked (Fig. 5.5¢). We also apply our segmentation algorithm with
the same parameters (i.e. h, = 10) and obtain the segments shown in Fig. 5.5c.
We estimate the homography for each color segment and compute the reprojection
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(b) The fifth image of the sequence.

Z

(c) MF+GAT segmentation (h, = 10) with fea-(d) MF+GAT segmentation (h, = 30 ) with fea-
ture points (black dots). ture points (black dots).

P

(e) The segments whose feature points are drawn
with white and black dots have similar homogra-
phies and thus should be merged together.

Figure 5.4: An example on how homographies and color segmentation can be com-
bined to obtain better results by region merging.
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(a) The first image of the sequence. (b) The fifth image of the sequence.

(c) MF+GAT segmentation (h, = 10 ) with fea-(d) MF+GAT segmentation (h, = 7 ) with fea-
ture points (black dots). ture points (black dots).

(e) The feature points belonging to the same
segment drawn according to their corresponding
reprojection error. The brighter the color the
higher the error.

Figure 5.5: An example on how homographies and color segmentation can be com-
bined to obtain better results by region splitting.
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error of each point. In Fig. 5.5e we display the results for the segment corresponding
to the green box. According to our color code the brighter (whiter) a feature the
higher the reprojection error for that point is. As expected, the group of features
on the top (that belong to a different surface of the box) uniformly exhibit high
reprojection errors. The same behavior is exhibited by the features on the right
face of the box. This is an indication that we need to further subdivide that region.
Fig. 5.5d displays one possible subdivision obtained by running our segmentation
algorithm with a different color resolution parameter (h, = 7).

Both examples above should be considered as a proof of concept. We have not
reached the point yet, where a segmentation into surfaces is consistently and robustly
working in all image sequences. There are some theoretical questions to be addressed
and a lot of engineering effort to be made to reach that milestone. For example,
it is not clear how to measure the difference between two homographies, or what
is the threshold above which a point is considered an outlier. Furthermore, when
it comes to our proposed scheme there are additional issues to be addressed. The
computation of the color resolution (h,) to be used for the finer (or coarser) grained
segmentation and the verification that the segmentation is the “right” one and thus
the procedure should terminate, are two interesting research topics. Moreover, this
scheme should be extended to areas where there are not enough feature points. In
such cases, methods based on the transformation of the whole region (similar to the
warping method proposed in Sec. 4.4) or on the transformation on the boundaries
(Sec. 4.3, also see literature about the Iterative Closest Point algorithm [110, 111])
can be used.
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5.5 Towards an active approach to image segmentation

We want to conclude this dissertation with a discussion about active vision. We have
already showed in chapter 4 that knowledge of the camera motion can facilitate
the estimation of surface vectors by turning a non convex, complex optimization
problem into a convex linear problem (Sec. 4.5) and by allowing us to create novel
algorithms for surface estimation (Sec. 4.4). We believe that the process of surface
segmentation can be further simplified and made more accurate by the appropriate
camera motion. The homography based segmentation as described on the previous
section, and shown in Fig. 5.3, is a passive approach, because the image acquisition
process is independent of the segmentation results.

In Fig. 5.6 we modify the approach by connecting the image acquisition mod-
ule with the segmentation results on a feedback loop. More specifically, the trans-
formation of the passive approach into an active one involves two stages; prediction
and optimization. The former stage incorporates the a priori evaluation of the ex-
pected quality of the segmentation when the camera performs a specific motion using
some objective criterion. Note that as the name suggests, the system should be able
to predict the quality without the camera actually performing that motion. The
latter stage refers to the process of selecting a camera motion that maximizes the
estimated expected quality of the segmentation.

In the context of homography-based plane finding, we argue that the inter-
mediate goal is the accurate estimation of the homographies. Hence, we think that

lemma 5.2 is a good starting point to predict the quality of the homography esti-
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Obtain Images

feature detection | color segmentation
and tracking

associate features
to celor segments
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compute homographies
on grouped features
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compute outlier | | find segments with
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Figure 5.6: Our updated proposed scheme to address the 3D plane estimation prob-
lem by combining feature based homography estimation with color based segmenta-
tion. A feedback loop for selecting the next best camera position is added, making
the whole scheme "active".
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mation without actually computing the homographies. In order to build a system,
however, a number of related problems needs to be addressed. In our opinion the
most important ones are, how to construct the objective function from the covari-
ance matrix of the elements of the homography matrix, and how to find the camera

motion that optimizes that objective function.
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Appendix A
Segmentation Results for the Weizmann dataset

A.1 The Weizmann Institute dataset

The Weizmann Institute dataset is a new database of images created for the purpose
of separating an image into background and foreground regions. As such each image
contains a single dominant object, that should be classified as foreground, while the
rest of the image is considered as background. In total, the database contains
100 images and 300 human segmentations. There are three significant differences
between this dataset and the Berkeley one.

First, all the images are grayscale and not color. As a consequence we per-
form the filtering on the 3D space (i.e., 2 dimensions for spatial coordinates and 1
dimension for the grayscale intensity values).

The texture variation on these images is significantly less compared to the
texture variation on the Berkeley images. This is partially due to the fact that there
are fewer images of natural scenes, and mainly because it is harder to encode texture
variation on a grayscale image.

In each image only two segments are labeled, the foreground object versus
the rest of the image that is considered background. Thus, there are fewer edges
labeled in the human segmentations, namely only the edges on the boundary of the

foreground object. All the significant edges inside the object as well as the edges of

181



the background are ignored.
Overall, for all the above reasons, this dataset is less challenging than the

Berkeley one. This fact is experimentally proven by the results of the segmentations.

A.2 Experiments

As with the Berkeley dataset we apply all possible combinations of filtering (using
the Normal and Epanechnikov kernel) and grouping methods and display the cu-
mulative results for the whole database. To reduce the number of figures we only
display the Probabilistic Rand index and the Boundary Displacement Error results.
Compared to the parameters we used in the Berkeley dataset we use a much larger
range of color resolutions, namely h, = 0.5...40 on increments of 0.5. First we
present the results when we use CC3D, CC5D and GRAG grouping methods.

The figures with the BDE measure report that Color Mean Shift (CMS) out-
performs the other methods not matter if the filtering is performed with a Normal
or an Epanechnikov kernel. These plots are similar to the ones for the Berkeley
dataset. What come as a surprise are the plots for the Probabilistic Rand index.
Not only they show that the segmentations become better as the average segment
size increases, asymptotically reaching the value of 1 (which is ideal), they also
present the methods that performed poorly on the previous dataset, e.g. Local
Mode filtering with GRAG grouping, (and on the current dataset considering the
BDE measure) to outperform all the other methods. After checking the results for

the individual images we realized that the suspiciously good values for the PR index
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Figure A.1: BDE vs average segment size plots for the Weizmann dataset when filtering is performed with an Epanechnikov
kernel.
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PR vs average segment size for Epanechnikov kernel (more is better)
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Figure A.2: PR vs average segment size plots for the Weizmann dataset when filtering is performed with an Epanechnikov
kernel.
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BDE vs average segment size for Gaussian kernel (less is better)
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Figure A.3: BDE vs average segment size plots for the Weizmann dataset when filtering is performed with a Normal kernel.
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PR vs average segment size for Gaussian kernel (more is better)
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Figure A.4: PR vs average segment size plots for the Weizmann dataset when filtering is performed with a Normal kernel.



(a) Original Image (b) Human Segmentation

(¢) MF+CC3D (h, = 40), PR=0.37  (d) MF+CC3D (h, = 80), PR=0.95

PR vs average segment size for Gaussian kernel (more is better)
. . : T

07t —e—MF+CC3d |
, —o— MF+CC5d
o6 p —+— MF+GRAG |
05l -+ CMS+CCad |
CMS+CC5d
04 - CMS+GRAGH
e LMF+CC3d
031 —o— LMF+CC5d |
0.2r —+— LMF+GRAG |
—o— AD+CC3d
01 —o— AD+CC5d
. ‘ ‘ ‘ | —>—AD+GRAG
0 100 200 300 400 500 600

(e) PR measure vs average image size

Figure A.5: A single image of the Weizmann dataset along with the human and
computer generated segmentation for two different color resolutions (h, = 40, 80)
and their corresponding Probabilistic Rand values (0.37, 0.95). Notice that the
second segmentation produces a much higher PR value even if it is much worse
than the first segmentation. This is a problem of the PR measure when applied
to foreground /background segmentation images. In this example a segmentation of
the whole image into a single region produces a PR value of 0.97.
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are due to the nature of the human segmentations. More specifically, with only one
foreground and one background region, the PR index for a segmentation of the whole
image into a single region is very high. For example Fig. A.5 shows the results for
the first image of the database and the first segmentation. One reasonable computer
segmentation (Fig. A.5c) has the PR value of 0.37. The much worse segmentation
of Fig. A.5d produces a PR value of 0.95. Finally, the segmentation into a single
segment produces a PR index of 0.97, that is very close to the absolute best value of
1. Thus, we conclude that PR is not a good index of the quality of the segmentation
for that specific database.

Notice that this problem was not present in the Berkeley dataset. Looking at
any of the PR figures (e.g. Fig. 3.7), one sees the parabolic like shape of all the
plots that indicates that for both very small and very large segment sizes the PR
values are bad (as expected).

In Fig. A.6 we plot on the same graph the segmentation results of the
two prominent filtering methods (i.e., Mode Finding and Color Mean Shift) using
Epanechnikov and Normal kernels coupled with the CC3D grouping method. Com-
paring the segmentation results along regular average segment size intervals (i.e.
from ~ 100 pixels to ~ 800 pixels in intervals of 50) we get the following numbers.
For the Color Mean Shift method the Normal kernel results are on average ~ 31%
better than the Epanechnikov results, while Mode Finding with a Normal kernel
produced ~ 33% better results on average than the Epanechnikov based method.

Using the same numbers we were able to quantify how better the segmentation
results for Color Mean Shift were compared to the Mode Finding ones. When using
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BDE vs average segment size for CC3D grouping methods (less is better)
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Figure A.6: BDE vs average segment size plots for the Weizmann dataset. The goal is to compare the performance when we
use different filtering kernels. In this plots we use the Mode Finding and Color Mean Shift filtering methods along with the
CC3D grouping methods. The dotted and solid line plots denote filtering with a Normal and Epanechnikov kernel respectively.
The Normal kernel clearly outperforms the Epanechnikov kernel. Similar results were obtained with different combinations of
filtering and grouping methods.



a Normal kernel CMS produced ~ 8% better results, while for the Epanechnikov
kernel the value was slightly higher at ~ 9.4% compared to Mode Finding. We
observed similar increases in the performance when we used the other grouping
methods as well.

Next we move our attention to the grouping method with an adaptive threshold
(GAT). In Sec. 3.4.3 we presented one way to linearly adjust the segmentation
parameter k according to the filtering parameter h, (Eq. 3.1). Figs. A.7, A8
and A.9 present the segmentation results of applying this method to the Weizmann
Institute dataset. More specifically, Figs. A.7, A.8 present the results when the
filtering is done with an Epanechnikov and a Normal kernel respectively, while in
Fig. A.9 we compare the best performing methods.

The results for all the filtering methods with an Epanechnikov kernel are con-
sistently better compared to using the GAT method without any filtering. In the
cases of filtering with a Normal kernel, for a range of average segment sizes up to
~ 150 pixels all the methods outperform the non filtering alternative. For larger av-
erage segment sizes Color Mean Shift and Anisotropic Diffusion perform much worse
that GAT only, while Mode Finding and Local Mode Filtering performs equally
well. Overall, GAT coupled with Local Mode Filtering with a Normal kernel seems
to perform best for segment sizes up to ~ 150 pixels and Mode Finding with an
Epanechnikov kernel is the best performing method for larger segment sizes.

On the last figure (Fig. A.10) of this appendix we compare the best segmenta-
tion methods using CC3D and GAT with varying £ for the grouping step. It is clear

that grouping with an adaptive threshold outperforms the simple connected compo-
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BDE vs average segment size for Epanechnikov kernel (less is better)
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Figure A.7: BDE vs average segment size plot for the GAT grouping method with variable k£ preceeded by the filtering methods
with an Epanechnikov kernel. We also display the plot when we use the GAT grouping method without any filtering method
(back curve).
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BDE vs average segment size for Normal kernel (less is better)
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Figure A.8: BDE vs average segment size plot for the GAT grouping method with variable £ preceeded by the filtering methods
with a Normal kernel. We also display the plot when we use the GAT grouping method without any filtering method (back
curve).
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BDE vs average segment size for various methods (less is better)
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Figure A.9: BDE vs average segment size plot for the GAT grouping method with variable £ preceeded by selected filtering
methods. We also display the plot when we use the GAT grouping method without any filtering method (back curve).
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BDE vs average segment size for best methods (less is better)
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Figure A.10: BDE vs average segment size plot for the best methods using a hard and an adaptive threshold for grouping. GAT
based grouping methods outperform the CC3D based methods.



Table A.1: Conclusions summary

e CMS outperforms all the other filtering methods when grouped with CC3D,
CC5D or GRAG (Figs. A.2, A4, A.6).

e Normal kernel outperforms Epanechnikov kernel filtering (Figs. A.6).

e Segmentation methods based on filtering and grouping outperform methods
based on grouping only (Figs. A.7, A.8).

e MF and LMF filtering combined with GAT with varying k grouping perform
better than CMS and AD filtering (Figs. A.7, A.8).

e GAT based methods outperform CC3D, CC5D and GRAG based methods
(Fig. A.10).

nents based grouping methods. All the result of the experiments on the Weizmann

Institute dataset are summarized in Table A.1.
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Appendix B
Stretch Filter

B.1 Introduction

We proved in a previous chapter that the surface normal parameters, namely the
slant of a plane, is encoded in the stretch between two epipolar lines (Eq. 4.12). This
is one example of a general problem where, one is given two signals, one of them being
a transformed version of the other, and the goal is to recover this transformation. As
we described earlier (Alg. 4.2), assuming one wants to estimate the zero (shift) and
first order (stretch) component of the transformation, a general method is to use
the log of the magnitude of the Fourier transform. This technique, which is known
as Cepstral analysis, was first introduced by Bogert et al. [59] and was made widely
known by Oppenheim and Schafer [60]. It is commonly used in speech processing
[61] to separate different parts of the speech signal. Cepstral analysis requires an
explicit FTT on both signals with complexity O(N log(N)).

Phase-difference based techniques exploiting the phase shift theorem have also
been used in computer vision. In most cases the assumption is that one signal is sim-
ply shifted relative to another, thus only the zero order component is estimated. In
this case, a very robust way to recover the amount of shift is through measurements
of the change of phase in different frequencies. In a classic paper on stereo, Sanger

[112] convolved each scan line of two images with Gabor filters. Similar work at the
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same time period was performed by Jenkin and Jepson [113|. Fleet and Jepson in
[114] and [115] studied the stability of the previous techniques in the presence of
phase singularities and identified patterns on the phase domain where the previous
methods fail.

For 2D signals, Srinivasa et al. [62] recover the global relative translation,
uniform scale and image rotation (i.e., 4 parameters) of two images by analyzing
the changes in various Fourier components. It is straightforward to use the Fourier
Shift property to recover translations. However, they pursue a different strategy
to recover different components. Specifically, they show that by performing a log-
polar transformation on each image, rotation and scaling can be transformed into
translations. Local phase-based techniques have also been developed for optical flow
estimation. Fleet and Jepson’s method [65] use Gabor filters to locally compute the
phase of two 2D signals, and estimate the local shift (i.e., optical flow) of the two
signals. While, their technique is shown to outperform most other methods in terms
of accuracy and robustness (|116]), it still assumes that all the components of the
transformation higher than zero order are zero.

Recent stereo approaches recognize the importance of higher order components
of the transformation and try to estimate them. For example, Ogale and Aloimonos
in [117] attempt to recover both the shift and the stretch of the transformation by
trying many possible warpings of the image, in order to compensate for the stretch
component, and choosing the one leading to best matches.

In this chapter, we present an approach similar to Sanger’s, but instead of

measuring the translation, we directly recover the “stretch” (a linear factor) of two
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signals. Related to our approach are the “scale representation" by L. Cohen [118|
and the Mellin transform. Both of these methods decompose the signal using a
set of basis functions. The stretch is encoded as a phase shift in these representa-
tions. Conversely, our method uses only a single filter to estimate the stretch. More

explicitly, our main contributions are:

e We analytically create a filter that is able to directly measure the local stretch

of two signals (Sec. B.3).

e We present experimental results where we apply this filter to shifted and

stretched real signals (Sec. B.4).

Overall our method is much faster then the other approaches, since it only requires
the application of a single filter at one point in each image. This computational

advantage is offset to an increased sensitivity to errors in shift estimation.

B.2 Gabor Function and notation preliminaries

According to its definition, a Gabor filter consists of a Gaussian function of spatial

bandwidth o, that modulates a complex sinusoid of frequency w.

1
\V2ro

ac2 .
e—ﬁe%rzwx (B].)

G(r,w,0) =

We consider the spatial bandwidth (o) to be fixed with respect to the frequency (w)

o=—, (B.2)
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where c is a constant (e.g. Sanger uses ¢ =1 [112]) . As a consequence, the Gabor
function only has two parameters, namely z and w.

We use a calligraphic font for the Fourier transform (F,) of a signal (or a
filter). In order to avoid any confusion, we denote with a subscript the integration

variable when needed.

B.3 Estimating the stretch

Suppose that one is given two signals I1(x) and I5(z), where I is a “stretched version
of ]1.

Ve € R, Iy(x) = I (ax) (B.3)

In this paper we describe a way to estimate the unknown stretch parameter a. Our

approach is based on two observations:

e Convolving the first signal (/;) with a Gabor filter of frequency w is equiva-

lent to convolving the second signal (1) with a Gabor filter of frequency aw

(Theorem B.1).

e Considering the log-frequency domain of the Gabor filters the multiplication is
transformed into addition (i.e., stretch is transformed into shift) and thus can
be estimated using the phase shift property of the Fourier transform (Theorem

B.2).

In the remaining section we formally present our approach in incremental steps using

two theorems. Note that the final result is a single filter on the spatial domain, even
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thought we are using the frequency domain in our proofs.

Theorem B.1. If the two stretched signals (I1,13) are as in Eq. B.3, then

VYw, [I1(x) x G(z,w)](0) = [I2(x) x G(z, aw)](0)

(B.4)

Proof. According to the definition of a Gabor filter (Eq. B.1) and its standard

deviation (Eq. B.2) we get

1 22 ,
Gz, aw) = e 2072 2T
Y / )
210
, c Ow
0 =0qw = =
w «
Thus,
«

_aczaz i
e 27 Y = oG (ax,w).

G(z,aw) =

2ro

From the definition of convolution we have

[[1(z) * G(z,w)](0) = /Il(x)G(—:B,w)dx.

xT

Similarly,

[Ir(x) * G(z, aw)](0) /Ig(:)s)G(—at, aw)dx

xT

/ L (02)G (7, aw)dz

T
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Setting y = ax, then dy = adxz,

Iy(x) * Gz, aw)](0) = / Lw)6(-Y 00

Using Eq.B.5 we have

Iy(z) * G, aw)](0) = / 1(y)G(—y, w)dy

O

Based on Theorem B.1 the response of the convolution of I, I; with the Gabor

filter is a function of the frequency w, that is

By (w) = [L(z) * G(x,w)](0) =

[Ir(z) * G(z, aw)](0) = Re(aw).

If we consider the log frequency v instead of the frequency w

Y =e" < w=log,

then Eq. B.8 is transformed to

Ri(¢) = Ro(¢ + log ).
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In principle, we could estimate the shift (in the log-frequency domain 1)) by trans-

forming it into a phase shift using the Fourier transform

Rl(u) = fw{Rl} = 62m‘10gauR2(u) (Bll)

and measuring the difference in the phase of Ry and R, for any specific frequency
u'. While this is a valid approach, it is rather computationally expensive. For
every point of the two signals one has to compute the frequency response R;, R
(by convolving with Gabor filters of different frequencies) and then take the Fourier

transform of those responses. The following theorem provides an alternative solution

that amounts to convolving the two signals with a single filter.

Theorem B.2. There exist filters H(x,u) whose convolution with I, Iy directly

encodes the stretch as

1 (2) % H(z,u)](0) = 27189 [, (2) x H(z,u)](0). (B.12)

Specifically, the filters have the analytic form

H(x,u) :/G(:B, e )e AWy, (B.13)

where u,w are free parameters that define the form of the filter.

'We have noticed that the following issue is often at first confusing to readers. We use two
different frequency domains. Symbols w (and ) denote the frequency in the “traditional” sense,
while symbol u denotes the Fourier transform of ¢, so in some sense is the “frequency of the
frequency domain”.

202



Proof. From Eqgs. B.8, B.9 and B.10 we have
Ry(e¥) = Ry(e” + log o)
If we consider the Fourier transform of R;(e*) with respect to w, then

Ri(u) = /w R (69
_ /w e~ 2mis / L(2)G(~x, ) da]dw
_ / L) /w G—z, e)e 2 4] dz
_ / L (2) H(~x, u)dz

xT

= [L(z) » H(z,u)](0).
Similarly for Ry(e¥) we get
Ro(u) = [Ir(x) x H(xz,u)](0).
From the phase shift property of the Fourier transform we get
R (1) = 2TilosauR, ()
and thus

(1 () x H(z,u)](0) = ™8 [,(2) x H(2,u)](0).
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Algorithm B.1 Stretch estimation with a single filter.

Input
I, I :  Input Signals
T : A single point along the X axis
Output
« . The stretch between the two signals around point z
Algorithm

Create the filter H(z,u) = [* G(z,e*)e ™" dw

Convolve the two signals [y, Iy with H(x,u) around z

Compute the difference in phase of the two measurements A¢
« R _ Ad

Compute the “log-frequency shift” Ay = ==

Compute the stretch o = e®¥

The algorithm is a straightforward implementation of the theory and is pre-
sented in Alg. B.1. Notice that we use a bounded integral in order to estimate the
filter H, with lower and upper bounds on the frequency variable wy, ws, respectively.
Also notice that we precompute a single filter and we use the same filter in both
signals Iy, I.

The computation of stretch around a point xy involves the convolution of the
two signals, a computation of a phase difference, a division and an exponentiation,

thus if the size of the filter is M the complexity of the algorithm is O(M).
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B.3.1 How Parameter u affects H

Symbol u is used to denote the frequency domain produced by considering the
Fourier transform of the Gabor filters with respect to their frequencies (w). Thus,
intuitively a filter H with small u frequency is “smoother” than one with high w.

Fig. B.1 shows two different filters for v = 0.25 and v = 1.
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Figure B.1: Dependence of H(z,u) on w. In the first column H(x,0.25) is displayed
while in the second column H(z,1). The first filter is "smoother" than the second
one.
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B.4 Experiments

B.4.1 Stretch without Shift Experiments

On this first set of experiments, the original signal (I;) is the horizontal lines of
various textures |119] (Fig. B.2). We randomly selected 200 scan lines and stretched
each one of them around its center in order to produce a second signal (Fig. B.3, first
and second row). Then we convolved both signals with a single filter of frequency
u = 0.25 as shown in Fig. B.3 (third row). Following the steps described in Alg. B.1
we estimated the stretch. We experimentally found that frequencies in the range
u = [0.25...0.5] worked well. The higher the frequency, the better the results for
stretches closer to 1 and the worse for stretches closer to 0. For the lower and upper
bounds of integral H (Eq. B.13) we used the values —3.5 and —1, respectively.

In Fig. B.4 we present the results as a function of the stretch o. Each graph
corresponds to an image from Fig. B.2. For each stretch value we pick 200 random
points and synthetically stretch the signal about each. We plot both the median
value and the 99% confidence interval for the estimated stretches. The results are
good considering the following facts. First, we are using a single filter to estimate
the stretch. Second, the size of the filter is ~ 20 pixels. Third, we have discrete
signals, thus for a stretch of a = 0.5 only 10 pixels are common in the original and
the stretched image. Fourth, for practical purposes, we are usually interested in
stretches close to one (e.g. @ = [0.9...1.1]) in which case the estimated stretch is
quite accurate. Thus, in Fig. B.5 we display the results on that range of stretches.

In all cases the estimated stretch is very close to the real stretch between the two
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(a) Cross tiles (b) Roman tiles

(c) Peddles (d) Brick wall

Figure B.2: Texture images for stretch experiments.

208



(a) Original image (b) Stretched image (o = 0.5)

Image intensity along the scanline on the first image Image intensity along the scanline on the second image
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(e) The stretch filter H we use

Figure B.3: An example of an original and stretched image along a scanline, along
with the filter H that is used throughout the experiments.
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Figure B.4: The estimation results for various amounts of stretch of the image.

210



1.02 | —real stretch i 1.02 | —real stretch
— est. stretch(99% confidence int.) — est. stretch(99% confidence int.)
1 1
0.98 0.98
S S
©0.96 ©0.96
0 %]
= el
Q Q
E 0.94 g 0.94
@ 0.92 [ 0.92
0.9 0.9
0.88 . : : 0.88 .
0.9 0.95 1 0.9 0.95 1
real stretch real stretch
(a) Cross tiles (b) Roman tiles
1.02 | — real stretch i 1.02 | —real stretch
— est. stretch(99% confidence int.) — est. stretch(99% confidence int.)
1 1t
0.98 0.98
< =
£ 2
£0.96 20.96
0 2]
° e}
Q Q
é 0.94 g 0.94
9 0.92 @ 0.92
0.9 0.9
0.88 . 0.88 . -
0.9 0.95 1 0.9 0.95 1
real stretch real stretch
(c) Peddles (d) Brick wall

Figure B.5: Estimation results for various amounts of stretch when « is close to 1.

signals.

B.4.2 Stretch Estimation in the Presence of Translation

In real applications, the most common case is for the two signals to be both shifted
and stretched i.e., is(x) = i1(ax + B). In such cases, estimation of the stretch
() is affected by the shift () and vice versa. In the following experiments, we
empirically investigate the sensitivity of the stretch estimation in the presence of

translation between the two signals. Fig. B.6 we display the error in the stretch
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Figure B.6: Stretch estimation results with a single filter when there is a shift error.
Each figure corresponds to a different actual stretch value.The error curve produced
when the two signals are not perfectly aligned does not depend much on the actual
stretch value.
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estimates, when the two signals are stretched and shifted, as a function of the shift.
As expected (due to the small size of the filters), this approach is very sensitive to

shifts. Furthermore, the error in the stretch estimation increases with the shift.

B.5 Conclusions

In this chapter we presented a filter that retrieves the local stretch of two signals.
We also presented experiments that indicate that this approach produces very good
results, but is also very sensitive to the shift between the two signals. Two simple
improvements that will decrease the sensitivity to the shift error and increase the

accuracy of the estimation are

e use the stretch results from multiple filters. We noticed that filters with differ-
ent u values exhibit different sensitivity to shift errors and can work accurately
for different ranges of stretches. The smaller the value of v the more sensitive
the filter is to shift noise, but at the same time the more accurate the results
are for a larger range of stretches. Thus a carefully constructed band of stretch

filters could provide high noise tolerance and high stretch sensitivity.

e compute the stretch from more signal points. It is experimentally established
that frequency based approaches for registering two signals require as much
data points as possible. In the previous experiments the filter size was around
20 pixels. A larger filter would be much less sensitive to shifts. Furthermore
since we work with images considering multiple scan lines in the computation

of stretch would further improve the robustness and accuracy of the results.
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If both improvements are carefully implemented then this method can potentially
provide a real-time alternative for stretch estimation and could be used in real

systems.
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Appendix C

Towards Surface Segmentation Proofs
Lemma C.1. If we model the error in the localization of the feature points as in-
dependent Gaussian random variables with variance o2, o'? for the features on the

first and second frame respectively, the 9 X 9 covariance matriz of the homography

18
Cp=JSJT (C.1)
,where
0 0 0 xF
Tl m w0 % (c2)
0 0 ... i X

,with x; the eigenvector corresponding to the it eigenvalue \; of matriz AT A. Matrix

S is

n

S = (rraiff + 1 To 1 f7 4 Thra 1 S+ Th Tof) (C.3)
i=1
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with r; the i row of matriz A and

ff= o*[hT+ h3 — 22} (hihy + hohg)] + 20" (xshrhg + z3yshrhs + yihghg)
+(O’2:L';~2 + x?alz)hg + (02:1:;2 + y,~20'2)h§ + 0/2h§
fo = o*h2 + h? — 2y, (hshs + hshg)] + 20" (x;hrhg + ziyihrhs + yshshy)

+(02y;2 + z20™)h2 + (U2y;2 + 920 hi + o hl

[=f= o[(hy — ih7)(ha — yihz) + (ho — @ihs)(hs — yihs)]

Proof. This proof is based on eigenvector perturbation theory and is similar to proofs
given in |95, 120]. Next we provide a detailed outline of the proof, but omit the final
cumbersome algebraic computations.

First a note on notation. We use the subscript zero :o to denote the initial
measurement and the symbol ¢ for the perturbation matrix or vector.

Let us denote with By the 9 x 9 matrix of the product of the original mea-
surements Al Ag. The perturbed matrix A = Ay + JA introduces a perturbed
matrix B = ATA = (Ag + 6A)T(Ag + 6A) = AT Ay + AL6A + §AT Ay + §ATSA ~
AT Ag+ AL A+ 0 AT Ag. As you notice we only keep the linear error terms and drop

the higher order error terms. Hence

B =By+6B (C.4)

, where

5B = 6ATA + ATSA. (C.5)
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Let us denote with );, x; the " eigenvalue and eigenvector respectively of
matrix B (i = 1...9). Our goal is to find an analytic expression for the i’ eigen-
vector x; and eigenvalue \; with respect to the perturbation matrix 6B and the
eigenvectors and eigenvalues of the initial matrix By (xo;, Ao;). If we express the

new measurements as

X; = Xo; + 0X; (C.7)

one needs to compute the differences d);, 0x;.

From the definition of the eigenvalues and eigenvectors we have

BOXOi = )\OiXOi (CS)

The same equation is valid for the new eigenvalues and eigenvectors i.e.,

(BO + (SB)(XOZ + 5Xz) = (>\Oz + 5)\1)()(0@ + (SXZ) = (CIO)

BOXOi —+ Bo(SXZ‘ —+ (SBXOZ‘ + 5B5Xl = >\0iX0i —+ )\Oiéxi + 5)\iX0i + 6>\26X2 (Cl].)
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From Eq. C.8 and ignoring the second order terms we simplify Eq. C.11 as

BO(SXi + (SBXO,' = )\Oi(SXZ' + 5)\2'X0,'. (012)

The eigenvectors of the original matrix By form a coordinate system for the

9D space so we can express the eigenvector change 0x; as a linear combination of

X0i i.e.,
9

5Xi = Z €ijX0j- (013)

J=1

Combining Eqs. C.12, C.13 we obtain

9 9
BQ Z €i5X0j + (SBX()Z' = )\Oi Z €i5X0j + 5)\2'X02', (014)
j=1 j=1
9 9
Z Eij)\OjXOj + 5BX02‘ = )\02‘ Z €ijX0j + (5)\2‘)(02'. (015)
j=1 j=1

Left multiply Eq. C.15 with x; and considering the orthogonality of xy; i.e.,

1, 1=y
X(J);X()j = (016)
0, i#J
we get
€iiN0iX g X0i + X0 BX0i = Noi€iiXiyXoi + OAXp;Xoi = (C.17)
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S\ = x40 Bxy;. (C.18)

Left multiply Eq. C.15 with xf,, k # i we get

Xp), ji €15 M0jX0j + X0 BX0i = MoiXyy, jé €%0; + XopdNiXoi = (C.19)
Xop €k AopXor + Xop0 BXo; = Aoi€inXopXor = (C.20)
€irdon + X0 BXo; = Nos€ir = (C.21)
o = XX (C.22)
Aoi — Aok

In order to compute the remaining coefficients ¢; we use the orthogonality of

the eigenvectors i.e.,

x;x; = 1= (C.23)

Xo; + 5Xi T Xo; + 5Xi =1= C.24
( ) ( ) (C.24)
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X%;-Xo,' + xOTZ-cSXZ- + 5xiTx0i + 5XZT5XZ' =1 (C.25)

Ignoring the second order term 5XZT5XZ' and given the fact that X%;XQZ' =1 we

get

Xp:0%; + 0%7 Xo; = 0 (C.26)
From Eq. C.13 and left multiplying with xZ, we get
9
Xg;- Z €ijX0j + (Z EinOj)TXOZ' =0= (027)
j=1 j=1

In synopsis a perturbed matrix B by d B causes a change in the eigenvalue \;

by

and a corresponding change in the eigenvector x; by

9 T
X ‘5BX0i
0x; = 0T Y % C.30
jgj:#i()\Oi - )‘Oj) N ( )

Since the homography is the eigenvector corresponding to the least eigenvalue

(i.e.,h = xq;), if we rewrite the sum of Eq. C.30 in matrix form we get
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0 o ... 0 Xo1

7>\01i S, 0 X1
oh = [ Xo1 Xp2 ... Xpo ][ ][ ]5Bh (031)

We want to express the change in the homography as a linear combination of
the elements of matrix 0 B. If we denote the identity matrix of size 9 x 9 as Iy and

the individual elements of vector h as hy, ho, ..., hg then

OBh=[ Iy holy --- hely 10D (C.32)

, where db is a column vector produced by 0B as follows

6b=1[6B,, 6By ... 6By 0Bi» ... 6Bey ... 6By ... 6By | - (C.33)

Next we need to express the perturbation vector db with respect to the per-
turbation vector da. As above we get da by concatenating the columns of matrix
SAT. From Eq. C.5 by denoting with 6b;, 0B;;, da;;, a;; the elements of the i
row and j column of matrices 6b, 6B, 6A, A respectively with a little algebra we

obtain the following expression

2n

Sbogj-1y4i = 0Bij = > _(aridar; + daxiar;) (C.34)

k=1
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that is linear on the perturbation vector da i.e.,

b = Gda (C.35)

for a properly constructed 81 x (2n - 9) matrix G.
The last step is to compute the covariance matrix for matrix A. The homog-

raphy estimation matrix A is

/

0 0 0 x Y1 1 —viz =y —u
r1 oy 1 0 0 0 —Zl'/lll'l —1'/1'3/1 —Iy
A=+ =+ ¢ P : : Lo (C.36)
0 0 0 —zn —vyn —1 Yxn Yun Y,

Tn Yo 1 0 0 0 —zlx, —2,y, —x

If we assume that the components of the image vectors x; = (x;, v;, 1)7, x, =

(3

(2%, v}, )T have errors (dz;, dy;, 6%, dy) then we get the perturbation matrix

0 0 0 émp dyr 0 —(210y; +y10x1)  —(yidyy +y10y1)  —dyy

oxy dy; 0 O 0 0 —(xi0x) +2\0x1) —(yidx) +2\dy1) —dz}

ox, oy, 0 O 0 0 —(xp,0x), +al0x,) —(ynoxl, + ) 0y,) —dz!
(C.37)
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If we model these errors as independent, random variables following Gaussian dis-

2 o for the first and second im-

tributions with zero mean value and variance o
age respectively we can compute the covariance matrix of §A7. As we mentioned
above we create the vector da by concatenating the columns of JAT. Vector da
has 18n entries, thus the covariance matrix of JA” has a size of 18n x 18n. Since
the variables are independent, the covariance matrix C, has a block diagonal form
Ca = diag{F1, FEs,..., E,} with the 18 x 18 diagonal elements being displayed on
Fig. C.1.

From Eqgs. C.31, C.32 and C.35 we get that the perturbation of the homog-

raphy vector dh is a linear combination of the perturbation of the input vector da

ie.,
0 0 . 0 X2
=l x0p s T "l X [ hady holy - holy JGoa.
0 0 Ami)\og 09
(C.39)
If we compact the notation by using the matrix J
0 0 0 X3
J=1x0, X0p ... Xoo ll ! ﬁl/\oz ’ ][X? ], (C.40)
0 0 Ami)\og 09
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the covariance matrix CY, is given by

Ch = J[ hllg hg]g s hg]g ]GC&GT[ hllg hg[g s hg[g ]TJT (041)

With the proper algebraic manipulation we get the final result. O
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Lemma C.2. Given the projection matrices for the two views of a camera with

intrinsic parameters K

P=K-[I|0] P =K-[R|t] (C.42)

where R, t represent the rotation and translation between the two views respectively
and a plane defined by 71 - X = 0 with m = (v*, 1)T (v is the surface normal), then

the homography induced by the plane is X' = H - x with

H=K-R-t-v") K (C.43)

Proof. The general idea is to compute the world point with respect to the image
point of the first and second frame and equate the two expressions. Let us as-
sume that there is a plane 7 with surface normal N = (7 1) in homogeneous
coordinates'. By definition any world point X belonging to that plane satisfies the
equation

NTX = 0. (C.44)

Let x, X' denote the projection of the world point on the first and second frame
respectively. If P = K-[I|0] and P’ = K- [R | t] are the projection matrices for the
two camera views then x = P - X and x’ = P’ - X respectively. If we parameterize
the world point X = (yT, p)T then we get that x = K- [I|0]- (yT, p)T =K -y.

Thus the world point X belongs to the ray parameterized by p X = ((K~1-x)T, p)7.

!'We assume that the plane does not pass through the center of the camera of the first frame at
(0, 0, 0, 1)T that’s why we are allowed to assume that 74 = 1.
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Using Eq. C.44 we compute p = —vTK~'x, thus

X = (K 'x)?, v"K'x)" (C.45)

From the projection of X to the second view we get

X =K-[R|t] - (K '), /"K'x)" = KR - tv)) K 'x (C.46)
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Appendix D

PTU-Camera calibration

In this chapter we describe the procedure of calibrating the Pan and Tilt Unit (PTU)
with the cameras. Fig. D.1 displays the setting that we use in our experiments. An
array of cameras is attached on top of a Pan and Tilt Unit (PTU). The PTU has two
degrees of freedom namely rotation around the horizontal (pan) and vertical (tilt)
plane. In the experiments we use a single camera (located on the top right corner
of the array). Before performing any experiment we have to calibrate the camera

with respect to the PTU. The next section describes that procedure in details.

D.1 Acquiring calibration data

We captured images of a checkerboard pattern for different pan and tilt angles.
We selected 11 different pan and tilt angles and calibrated for the pan and the tilt
independently. We captured 10 images for each angle for a total of 220 images. Figs.
D.2, D.3 display some of these images.

We used the camera calibration toolbox created by Bouguet [121] to compute
the intrinsic parameters first. Then, selecting the 0° pan, 0° tilt set of images as
baseline, we computed the extrinsic parameters for each different pan/tilt combina-

tion with respect to the baseline. Table D.1 displays the rotation and translation of
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Figure D.1: The Pan and Tilt Unit (PTU) and the cameras attached to it.
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Figure D.2: Calibration images for different pan values. Each column represents a
different pan angle (—5°, —3°,0°,3",5") and each row a different placement of the
calibration grid.
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Figure D.3: Calibration images for different tilt values. Each column represents a
different tilt angle (—5°,—3",0°,3",5") and each row a different placement of the
calibration grid.

231



C/
0] ' ""LO
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rotation axis for the PTU

Figure D.4: The camera and PTU coordinate systems.

the camera that corresponds to pan and tilt rotations of the PTU!. More specifically
the translation vector displays the new position of the camera center with respect
to the coordinate system of the camera at 0° pan and 0 tilt.

In Fig. D.4(a) we draw the camera coordinate system that we use in the rest

of this section.

D.2 Calibrating the camera with respect to the PTU

Our goal is to analytically compute an estimate for the rotation and translation of
the camera as we rotate and translate the PTU (Fig. D.4(a)). More specifically we

need to estimate

1. the two axes of rotation (ry,r,) and the corresponding vectors (vy, v,) between
the center of the two rotation axes and the focal point of the camera that cause

the translation of the camera center

!The numerical errors are approximately three times the standard deviations
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Table D.1: Rotation and translation of the camera with respect to the baseline position (0° tilt, 0" pan).

Pan (¢) Rotation Vector (wg) Rotation Angle Translation Vector (t)
-5 —0.022+£0.086 —0.998+0.131  0.053£0.006 | 5.07° £0.69° | —1.349+£0.198 0.215+0.134  5.422 + 1.460
—4° —0.014+£0.093 —0.998 +0.142  0.053£0.006 | 4.32° £0.64° | —0.442+0.160 0.057£0.119  2.975+ 1.348
-3° —0.004+0.109 —0.999+0.166  0.053+0.007 | 3.32° £0.57° | —0.358 £0.126  0.087 £0.105  2.173+ 1.211
—92° —0.046 £0.167 —0.998 +0.255 0.053+£0.010 | 2.12° £0.58° | —0.490£0.107 0.082+0.104  1.771 +£1.192
-1 —0.086 £0.348 —0.995+0.535 0.054+0.020 | 1.03° £0.61° | —0.259+£0.092 0.055+0.102  1.057 & 1.184
1 0.125+0.320  0.991 +0.487 —0.049+0.018 | 1.18° +£0.64° 0.3214+0.080 —0.045+0.104 —0.953 & 1.232
2° 0.027+0.194  0.9984+0.295 —0.052+0.011 | 2.05° £0.64° 0.567+0.086  —0.099 £0.112 —2.783 4 1.322
3° 0.022+0.153  0.998+0.233  —0.053+0.009 | 2.95° +£0.73° 0.956+0.111 —0.226 £0.131 —5.010 & 1.522
4° 0.002+0.117  0.9994+0.181  —0.053+0.007 | 4.02° £0.75° 1.176 £0.135  —0.23940.140 —6.073 + 1.602
5° 0.029+0.091  0.9984+0.142  —0.053+0.006 | 5.12° £0.76° 1.287 £ 0.157 —0.1574+0.140 —7.203 + 1.594
Tilt (6) Rotation Vector (wp) Rotation Angle Translation Vector (t)
-5 0.997+0.190 —0.078+£0.239 0.014+£0.012 | 4.86° £1.11° 0.946 £ 0.265 —1.258 £0.328 —12.655 + 2.252
—4° 0.996 +£0.177  —0.090+0.220  0.015+£0.010 | 3.89° £0.83° 0.667+0.178 —1.236 £0.213 —10.310 + 1.684
—3° 0.9954+0.186 —0.102+0.236  0.015+£0.009 | 2.92° £0.67° 0.679+0.127 —0.739£0.142 —7.654 4 1.330
—9° 0.9814+0.229 —0.193+0.290  0.009 £0.010 | 2.09° £0.63° 0.379+0.104 —0.579+0.104 —5.296 4 1.180
-1’ 0.998 +0.452 —0.058£0.562 0.018 £0.018 | 0.98° +£0.57° 0.155+0.088  —0.331+£0.084 —2.622 4 1.098
1 —0.991+0.499 0.135+0.623 —0.017+0.017 | 0.90° £0.60° | —0.190+0.094  0.428 +0.077 2.835 4+ 1.123
2° —0.987+£0.239  0.160+0.315 —0.0124+0.008 | 2.05° £0.64° | —0.361+0.116  0.875 %+ 0.093 5.323 & 1.229
3° —0.999 £0.158 —0.035+0.220 —0.0194+0.006 | 3.06° £0.57° | —0.372+£0.140  1.296 + 0.110 8.403 & 1.221
4° —0.999 £0.123 —0.051+£0.177 —0.01840.005 | 3.99° £0.58° | —0.513+£0.169 1.847+0.136  11.477 4 1.240
5° —0.996 +0.096 —0.091+0.139 —0.020+0.005 | 5.01° £0.58° | —0.690+0.187  2.491+0.157  14.089 + 1.210




2. the two axes of rotation (wp,w,) that rotate the coordinate system attached

to the camera center.

In the following subsections we describe both procedures. Note that we use the
symbols wy, wy for the rotation of the whole camera coordinate system, while the
symbols 4, 7y for the rotation axes of the PTU unit. Also we denote with ¢, 6 the pan
and tilt angles of the PTU, while with 1, £ the angles we use for the parametrization

of the rotation axes ry, ry.

D.2.1 Estimating the translation of the camera center

Let us denote with O X¢Y ¢ Z¢ the coordinate system attached to the camera at the
0° pan and 0° tilt position. The translation measurements of Table D.1 correspond to
the position of the camera center when we pan or tilt the camera at a given angle.
We denote that position with O in Fig. D.4(b). We consider the coordinate
system of the PTU OVXUYVZV to be a translated version of O°X¢Y“Z¢ by w.
Hence, for any point P the relation of its coordinates in the two coordinate systems
is PV = PY +v. Then, we apply the rotation around axis r, so the camera center
moves from O¢ to O,. Denoting the rotation matrix (corresponding to the rotation

axis r) with R(r) we have the following equations

OC/ = v+t
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The above equations leads us to the bilinear system with respect to the rotation

matrix R and the vector v

(R(r) — I)v = t. (D.1)

Using the translation of the camera center (t;) for different angles (6;) of Table
D.1, we need to estimate both the rotation axis r (2 parameters) and the vector v

(3 parameters). Using the Rodrigues formula to express the rotation around an axis

R = (1 —cosf)r-r" + cos I + sin 6Q, (D.2)
0 —Ts T2
, where Qo = r, 0 —y, |, we set up the following optimization problem
—T9 1 0
arg minz [[((1 — cos ;) (rr” —T) + sin 6;Q;)v — ]| (D.3)
s.t. lr]| = 1. (D.4)

The above optimization problem is non-convex with respect to r,v. Since the

rotation axis r has only 2 degrees of freedom we use spherical coordinates (1, §) to
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Figure D.5: Match cost for pan (left) and tilt (right) rotation.

parameterize r

ry = cosysiné
ry = sinysiné
r3 = cosé

and then solve the convex optimization problem with respect to v. Fig. D.5
displays the minimum cost that we obtained for different angles ¢, &. We display

the solution to the optimization for pan and tilt angles in Table D.2.

D.2.2 Estimating the rotation of the camera coordinate system (w)

The rotation axis measurements are displayed on the second column of Table D.1.
Notice that the first five rotation vectors are approximately the opposite of the
last five. This is expected since the angle of the rotation is reversed. Since the
vectors are consistent, instead of formulating and solving a complex non-convex
optimization problem, we estimate the rotation axis with a simple average operation.

More specifically, we compute the average value for the two variables and use the
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Table D.2: Calibration Results

PTU Pan PTU Tilt
rotation axis r —0.052 0.997 —0.052 -0.940 0.324 —0.105
vector v 46.554 312.956 —3.629 || —221.493 —86.002 —2.419
matching cost 9.12 4.10
rotation vector w | 0.053 0.997 —0.053 —0.994 0.110 —0.016

contraint that the norm of the rotation vector is one to obtain the value for the

third coordinate. The results for both pan and tilt are displayed in Table D.2.

D.3 Computing the external parameters for any PTU rotation

To synopsize the calibration process, here are the equations that provide the camera

translation T and rotation R, as a function of the pan and tilt of the PTU. We

denote with ¢, 0 the pan and tilt angle of the PTU respectively.

~0.997 —0.052 0.003

T(¢) = ((1—cos¢)-[ —0.052 —0.006 —0.052 I+
0.003 —0.052 —0.997

0 0.052  0.997 46.554

sing-[ —0.052 0  0.052 1) 312.956 ]

~0.997 —0.052 0 —3.629
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0.003  0.053 —0.003
Ru, () = [ 0053 0994 —0.053]+[—0.053
—0.003 —0.053 0.003
0  0.053
[ —0.053 0
—0.997 0.053
—0.116
T@) = ((1—cosf)-[ —0.304
0.099
0 0.105
sinf-[ —0105 0
—0.323 —0.940
0.988 —0.110 0.016
R., () = [ —0.110 0.012
0.016 —0.002 0.000

0.997

—0.053 0.003

0.006 0.053 ] - cos o+

0.003  0.053 0.997
0.997
—0.053 | -sin¢g
0
(D.6)
—0.304  0.099
—0.896 —0.034 |+
~0.033 —0.989
(D.7)
0.323 —921.493

0.940 1) [ —86.002 |

0 —2.419

0.012 0.110 -0.016

—0.002 1 +[ 0110 0988 0.002 ]-cos0+

—0.016 0.002 1

0 0.016 0.110

[ —0.016 0

—0.110
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