
ABSTRACT
Title of dissertation: TOWARDS SEGMENTATIONINTO SURFACESKonstantinos Bitsakos,Dotor of Philosophy, 2010Dissertation direted by: Professor Yiannis AloimonosDepartment of Computer SieneImage segmentation is a fundamental problem of low level omputer vision andis also used as a preproessing step for a number of higher level tasks (e.g. objetdetetion and reognition, ation lassi�ation, optial �ow and stereo omputationet). In this dissertation we study the image segmentation problem fousing on thetask of segmentation into surfaes.First we present our unifying framework through whih mean shift, bilateral�ltering and anisotropi di�usion an be desribed. Three new methods are alsodesribed and implemented and the most prominent of them, alled Color MeanShift (CMS), is extensively tested and ompared against the existing methods. Weexperimentally show that CMS outperforms the other methods i.e., reates moreuniform regions and retains equally well the edges between segments.



Next we argue that olor based segmentation should be a two stage proess;edge preserving �ltering, followed by pixel lustering. We reate novel segmentationalgorithms by oupling the previously desribed �ltering methods with standardgrouping tehniques. We ompare all the segmentation methods with urrent state ofthe art grouping methods and show that they produe better results on the Berkeleyand Weizmann segmentation datasets. A number of other interesting onlusionsare also drawn from the omparison.Then we fous on surfae normal estimation tehniques. We present two novelmethods to estimate the parameters of a planar surfae viewed by a moving robotwhen the odometry is known. We also present a way of ombining them and in-tegrate the measurements over time using an extended Kalman �lter. We test theestimation auray by demonstrating the ability of the system to navigate in anindoor environment using exlusively vision.We onlude this dissertation with a disussion on how olor based segmenta-tion an be integrated into a struture from motion framework that omputes planarsurfaes using homographies.



Towards segmentation into surfaesbyKonstantinos BitsakosDissertation submitted to the Faulty of the Graduate Shool of theUniversity of Maryland, College Park in partial ful�llmentof the requirements for the degree ofDotor of Philosophy2010
Advisory Committee:Professor Yiannis Aloimonos, Chair/AdvisorProfessor David JaobsProfessor Amitabh VarshneyDr. Cornelia FermüllerProfessor Jaydev P. Desai, Dean's Representative



© Copyright byKonstantinos Bitsakos2010



DediationTo my family and friends.

ii



ContentsList of Tables viList of Figures vii1 Overview 12 A Framework for Filtering Algorithms 82.1 Introdution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82.1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 92.1.2 Notational Preliminaries . . . . . . . . . . . . . . . . . . . . . 102.1.3 Kernel Funtions . . . . . . . . . . . . . . . . . . . . . . . . . 112.1.3.1 Epanehnikov kernel . . . . . . . . . . . . . . . . . . 122.1.3.2 Multivariate Normal (Gaussian) kernel . . . . . . . . 122.2 Image Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132.2.1 Mean Shift (MS) . . . . . . . . . . . . . . . . . . . . . . . . . 142.2.2 Mode Finding (MF) . . . . . . . . . . . . . . . . . . . . . . . 152.2.3 Spatial Mean-Shift (SMS) . . . . . . . . . . . . . . . . . . . . 162.2.4 Color Mean-Shift (CMS) . . . . . . . . . . . . . . . . . . . . . 172.2.5 Loal Mode Filtering (LMF) . . . . . . . . . . . . . . . . . . . 172.2.5.1 Bilateral Filtering (BF) . . . . . . . . . . . . . . . . 182.2.5.2 Joined Bilateral �ltering . . . . . . . . . . . . . . . . 182.2.6 Anisotropi Di�usion (AD) . . . . . . . . . . . . . . . . . . . . 192.2.7 Optimization steps sizes . . . . . . . . . . . . . . . . . . . . . 192.3 Classi�ation framework . . . . . . . . . . . . . . . . . . . . . . . . . 222.3.1 arg min
[xi,Si]

vs arg min
Si

. . . . . . . . . . . . . . . . . . . . . . . . 222.3.2 [x0
j ,S

0
j ] vs [xj ,Sj] . . . . . . . . . . . . . . . . . . . . . . . . . 252.3.3 A taxonomy of �ltering methods . . . . . . . . . . . . . . . . . 262.4 Filtering experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 262.4.1 Epanehnikov vs Normal Kernel . . . . . . . . . . . . . . . . 262.4.2 RGB vs Luv Color Spae . . . . . . . . . . . . . . . . . . . . . 292.4.3 Color uniformity of regions after �ltering . . . . . . . . . . . . 322.4.4 Filtering speed omparison . . . . . . . . . . . . . . . . . . . . 412.4.4.1 Image size . . . . . . . . . . . . . . . . . . . . . . . . 422.4.4.2 Spatial resolution (hs) . . . . . . . . . . . . . . . . . 422.4.4.3 Epanehnikov vs Normal kernel . . . . . . . . . . . . 452.4.4.4 Convergene threshold . . . . . . . . . . . . . . . . . 452.4.4.5 Feature vetor displaement per iteration . . . . . . . 472.4.4.6 Filtering speed onlusions . . . . . . . . . . . . . . . 472.5 Conlusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

iii



3 Color Based Segmentation as a Two Stage Proess 523.1 Introdution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523.2 Grouping methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 533.2.1 Greedy Conneted Components grouping (CC3D and CC5D) . 533.2.2 Grouping using Region Adjaeny Graphs (GRAG) . . . . . . 543.2.3 Grouping with an Adaptive Threshold (GAT) . . . . . . . . . 543.3 Segmentation as �ltering+grouping . . . . . . . . . . . . . . . . . . . 553.4 Segmentation Comparison . . . . . . . . . . . . . . . . . . . . . . . . 583.4.1 Comparison measures . . . . . . . . . . . . . . . . . . . . . . . 593.4.2 Results for varying olor resolution hr . . . . . . . . . . . . . . 613.4.3 Adjusting the threshold parameter (k) of the GAT groupingmethod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 883.4.4 Compare segmentations for �ltering+grouping and groupingonly methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 1033.4.5 Compare segmentations for di�erent olor spaes and kernelfuntions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1123.4.6 Compare segmentations for di�erent images . . . . . . . . . . 1123.5 Conlusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1254 Combining Cues for Surfae Normal Estimation 1294.1 Introdution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1294.1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 1304.2 Problem Statement and terminology . . . . . . . . . . . . . . . . . . 1324.3 Orientation and Distane from lines . . . . . . . . . . . . . . . . . . . 1334.3.1 Single Line in Multiple Frames . . . . . . . . . . . . . . . . . 1334.3.2 Two or More Lines in the Same Frame . . . . . . . . . . . . . 1344.3.3 Distane estimation . . . . . . . . . . . . . . . . . . . . . . . . 1374.3.4 Implementation details . . . . . . . . . . . . . . . . . . . . . . 1374.4 Harmoni shape from texture for planar surfaes . . . . . . . . . . . . 1384.4.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1384.4.2 Implementation details . . . . . . . . . . . . . . . . . . . . . . 1414.5 Plane parameters from normal �ow . . . . . . . . . . . . . . . . . . . 1434.5.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1434.5.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 1444.6 Extended Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . 1454.6.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1484.7 Motion Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1494.8 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1534.8.1 Constant Distane Experiment . . . . . . . . . . . . . . . . . 1534.8.2 Average Distane Experiment . . . . . . . . . . . . . . . . . . 1564.9 Conlusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
iv



5 Towards Surfae Segmentation 1595.1 Introdution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1595.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1635.3 Homography estimation of planar surfaes . . . . . . . . . . . . . . . 1655.4 Merging and Splitting Image Segments . . . . . . . . . . . . . . . . . 1725.5 Towards an ative approah to image segmentation . . . . . . . . . . 178A Segmentation Results for the Weizmann dataset 181A.1 The Weizmann Institute dataset . . . . . . . . . . . . . . . . . . . . . 181A.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182B Streth Filter 196B.1 Introdution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196B.2 Gabor Funtion and notation preliminaries . . . . . . . . . . . . . . . 198B.3 Estimating the streth . . . . . . . . . . . . . . . . . . . . . . . . . . 199B.3.1 How Parameter u a�ets H . . . . . . . . . . . . . . . . . . . 205B.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207B.4.1 Streth without Shift Experiments . . . . . . . . . . . . . . . 207B.4.2 Streth Estimation in the Presene of Translation . . . . . . . 211B.5 Conlusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213C Towards Surfae Segmentation Proofs 215D PTU-Camera alibration 228D.1 Aquiring alibration data . . . . . . . . . . . . . . . . . . . . . . . . 228D.2 Calibrating the amera with respet to the PTU . . . . . . . . . . . . 232D.2.1 Estimating the translation of the amera enter . . . . . . . . 234D.2.2 Estimating the rotation of the amera oordinate system (ω) . 236D.3 Computing the external parameters for any PTU rotation . . . . . . 237Bibliography 239

v



List of Tables2.1 Filtering methods step sizes . . . . . . . . . . . . . . . . . . . . . . . 232.2 Entropy measures for the �ltering methods . . . . . . . . . . . . . . . 402.3 Synopsis of the �ltering results . . . . . . . . . . . . . . . . . . . . . . 513.1 Color onvention for segmentation plots. . . . . . . . . . . . . . . . . 643.2 Synopsis of the segmentation results . . . . . . . . . . . . . . . . . . . 1274.1 Phase Correlation Conept . . . . . . . . . . . . . . . . . . . . . . . . 1404.2 extended Kalman Filter Equations . . . . . . . . . . . . . . . . . . . 148A.1 Summary of the segmentation results on the Weizmann dataset . . . 195D.1 Camera rotation/translation . . . . . . . . . . . . . . . . . . . . . . . 233D.2 Calibration Results for PTU and amera . . . . . . . . . . . . . . . . 237

vi



List of Figures1.1 Hard to segment objets . . . . . . . . . . . . . . . . . . . . . . . . . 22.1 1−D Epanehnikov kernel. . . . . . . . . . . . . . . . . . . . . . . . 132.2 1−D Normal kernel. . . . . . . . . . . . . . . . . . . . . . . . . . . 142.3 Filtering algorithms on smoothly varying image . . . . . . . . . . . . 202.4 Desription of �ltering algorithms. . . . . . . . . . . . . . . . . . . . . 242.5 Classi�ation of various �ltering methods. . . . . . . . . . . . . . . . 272.6 Original images for �ltering experiments . . . . . . . . . . . . . . . . 282.7 Epanehnikov vs Normal kernel �ltering experiments (1/2) . . . . . . 302.8 Epanehnikov vs Normal kernel �ltering experiments (2/2) . . . . . . 312.9 RGB vs Luv olor spae �ltering experiments (1/2) . . . . . . . . . . 332.10 RGB vs Luv olor experiments (2/2) . . . . . . . . . . . . . . . . . . 342.11 Color and Gradient histograms for the "Hand" image . . . . . . . . . 352.12 Color and Gradient histograms for the "Workers" image . . . . . . . 362.13 Color and Gradient histograms for the "Woman" image . . . . . . . . 372.14 Color and Gradient histograms for the "Houses" image . . . . . . . . 382.15 Filtering speed vs image size . . . . . . . . . . . . . . . . . . . . . . . 432.16 Filtering speed vs spatial resolution (hs) . . . . . . . . . . . . . . . . 442.17 Filtering speed vs onvergene threshold . . . . . . . . . . . . . . . . 462.18 Histogram of vetor displaement per iteration . . . . . . . . . . . . . 483.1 Desription of the grouping algorithms. . . . . . . . . . . . . . . . . . 563.2 Segmentation results for di�erent �ltering and grouping methods . . . 573.3 Edge Perentage segmentation plots for �ltering in RGB with anEpanehnikov kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . 653.4 Boundary Displaement Error segmentation plots for �ltering in RGBwith an Epanehnikov kernel . . . . . . . . . . . . . . . . . . . . . . . 663.5 Global Consisteny Error segmentation plots for �ltering in RGB withan Epanehnikov kernel . . . . . . . . . . . . . . . . . . . . . . . . . . 673.6 Variation of Information segmentation plots for �ltering in RGB withan Epanehnikov kernel . . . . . . . . . . . . . . . . . . . . . . . . . . 683.7 Probabilisti Rand Index segmentation plots for �ltering in RGB withan Epanehnikov kernel . . . . . . . . . . . . . . . . . . . . . . . . . . 693.8 Edge Perentage segmentation plots for �ltering in RGB with a Nor-mal kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 703.9 Boundary Displaement Error segmentation plots for �ltering in RGBwith a Normal kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . 713.10 Global Consisteny Error segmentation plots for �ltering in RGB witha Normal kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 723.11 Variation of Information segmentation plots for �ltering in RGB witha Normal kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 733.12 Probabilisti Rand Index segmentation plots for �ltering in RGB witha Normal kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74vii



3.13 Edge Perentage segmentation plots for �ltering in Luv with an Epaneh-nikov kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 753.14 Boundary Displaement Error segmentation plots for �ltering in Luvwith an Epanehnikov kernel . . . . . . . . . . . . . . . . . . . . . . . 763.15 Global Consisteny Error segmentation plots for �ltering in Luv withan Epanehnikov kernel . . . . . . . . . . . . . . . . . . . . . . . . . . 773.16 Variation of Information segmentation plots for �ltering in Luv withan Epanehnikov kernel . . . . . . . . . . . . . . . . . . . . . . . . . . 783.17 Probabilisti Rand Index segmentation plots for �ltering in Luv withan Epanehnikov kernel . . . . . . . . . . . . . . . . . . . . . . . . . . 793.18 Edge Perentage segmentation plots for �ltering in Luv with a Normalkernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 803.19 Boundary Displaement Error segmentation plots for �ltering in Luvwith a Normal kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . 813.20 Global Consisteny Error segmentation plots for �ltering in Luv witha Normal kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 823.21 Variation of Information segmentation plots for �ltering in Luv witha Normal kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 833.22 Probabilisti Rand Index segmentation plots for �ltering in Luv witha Normal kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 843.23 Average segment size vs segmentation parameters . . . . . . . . . . . 883.24 Impliit Boundary Displaement Error plots for GAT and CMS+CC3Dmethods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 903.25 Impliit Probabilisti RAND plots for GAT and CMS+CC3D methods 913.26 BDE based omparison for the GAT grouping method with and with-out �ltering.(1/2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 933.27 BDE based omparison for the GAT grouping method with and with-out �ltering.(2/2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 943.28 PR based omparison for the GAT grouping method with and without�ltering.(1/2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 953.29 PR based omparison for the GAT grouping method with and without�ltering.(2/2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 963.30 BDE based omparison for Bilateral Filtering + GAT.(1/2) . . . . . . 993.31 BDE based omparison for Bilateral Filtering + GAT.(2/2) . . . . . . 1003.32 PR based omparison for Bilateral Filtering + GAT.(1/2) . . . . . . 1013.33 PR based omparison for Bilateral Filtering + GAT.(2/2) . . . . . . 1023.34 BDE based omparison for grouping only vs �ltering in RGB with anEpanehnikov kernel followed by grouping methods . . . . . . . . . . 1043.35 PR based omparison for grouping only vs �ltering in RGB with anEpanehnikov kernel followed by grouping methods . . . . . . . . . . 1053.36 BDE based omparison for grouping only vs �ltering in RGB with aNormal kernel followed by grouping methods . . . . . . . . . . . . . . 1063.37 PR based omparison for grouping only vs �ltering in RGB with aNormal kernel followed by grouping methods . . . . . . . . . . . . . . 107viii



3.38 BDE based omparison for grouping only vs �ltering in Luv with anEpanehnikov kernel followed by grouping methods . . . . . . . . . . 1083.39 PR based omparison for grouping only vs �ltering in Luv with anEpanehnikov kernel followed by grouping methods . . . . . . . . . . 1093.40 BDE based omparison for grouping only vs �ltering in Luv with aNormal kernel followed by grouping methods . . . . . . . . . . . . . . 1103.41 PR based omparison for grouping only and �ltering in Luv with aNormal kernel followed by grouping methods . . . . . . . . . . . . . . 1113.42 BDE based omparison for di�erent olor spaes and kernel funtions 1133.43 PR based omparison for di�erent olor spaes and kernel funtions . 1143.44 BDE and PR based omparison for segmentation of individual imagesusing MF+GAT in Luv spae with a Normal kernel . . . . . . . . . . 1163.45 BDE and PR based omparison for segmentation of individual imagesusing MF+GAT in Luv spae with an Epanehnikov kernel . . . . . . 1173.46 BDE and PR based omparison for segmentation of individual imagesusing MF+GAT in RGB spae with a Normal kernel . . . . . . . . . 1183.47 BDE and PR based omparison for segmentation of individual imagesusing CMS+CC3D in Luv spae with a Normal kernel . . . . . . . . 1193.48 BDE and PR based omparison for segmentation of individual imagesusing CMS+CC3D in Luv spae with an Epanehnikov kernel . . . . 1203.49 BDE and PR based omparison for segmentation of individual imagesusing CMS+CC3D in RGB spae with a Normal kernel . . . . . . . . 1213.50 BDE and PR based omparison for segmentation of individual imagesusing MF+CC3D in Luv spae with a Normal kernel . . . . . . . . . 1223.51 BDE and PR based omparison for segmentation of individual imagesusing MF+CC3D in Luv spae with an Epanehnikov kernel . . . . . 1233.52 BDE and PR based omparison for segmentation of individual imagesusing MF+CC3D in RGB spae with a Normal kernel . . . . . . . . . 1244.1 Single line and multiple frames line onstraint for surfae orientationestimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1354.2 Multiple lines and single frame line onstraint for surfae orientationestimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1364.3 Line detetion on orridor images . . . . . . . . . . . . . . . . . . . . 1384.4 Epipolar lines example . . . . . . . . . . . . . . . . . . . . . . . . . . 1394.5 Wall estimation sketh . . . . . . . . . . . . . . . . . . . . . . . . . . 1464.6 Individual module distane results . . . . . . . . . . . . . . . . . . . . 1504.7 Individual module slant results . . . . . . . . . . . . . . . . . . . . . 1514.8 Motion ontrol sketh . . . . . . . . . . . . . . . . . . . . . . . . . . . 1524.9 ER1 robot image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1544.10 Constant distane navigation experiment . . . . . . . . . . . . . . . . 1554.11 Average distane navigation experiment . . . . . . . . . . . . . . . . . 1565.1 O�e hair image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1605.2 Our mobile robot platform . . . . . . . . . . . . . . . . . . . . . . . . 162ix



5.3 Passive 3D plane estimation sheme based on olor segmentation . . . 1735.4 Homography based region merging example . . . . . . . . . . . . . . 1755.5 Homography based region splitting example . . . . . . . . . . . . . . 1765.6 Ative 3D plane estimation sheme based on olor segmentation . . . 179A.1 BDE segmentation plots for �ltering with an Epanehnikov kernel . . 183A.2 PR segmentation plots for �ltering with an Epanehnikov kernel . . . 184A.3 BDE segmentation plots for �ltering with a Normal kernel . . . . . . 185A.4 PR segmentation plots for �ltering with a Normal kernel . . . . . . . 186A.5 PR measure for a single image (Weizmann dataset) . . . . . . . . . . 187A.6 BDE segmentation plots for omparison of di�erent �ltering kernels . 189A.7 BDE based omparison for the GAT grouping method with and with-out �ltering on the Weizmann dataset.(1/3) . . . . . . . . . . . . . . 191A.8 BDE based omparison for the GAT grouping method with and with-out �ltering on the Weizmann dataset.(2/3) . . . . . . . . . . . . . . 192A.9 BDE based omparison for the GAT grouping method with and with-out �ltering on the Weizmann dataset.(3/3) . . . . . . . . . . . . . . 193A.10 BDE based omparison for the best methods on the Weizmann dataset.194B.1 Examples of streth �lters for di�erent u's . . . . . . . . . . . . . . . 206B.2 Texture images for streth experiments. . . . . . . . . . . . . . . . . . 208B.3 Streth with no shift experiments . . . . . . . . . . . . . . . . . . . . 209B.4 Streth estimation results for large streth values . . . . . . . . . . . 210B.5 Streth estimation results when streth is lose to 1 . . . . . . . . . . 211B.6 Streth estimation vs shift error . . . . . . . . . . . . . . . . . . . . . 212C.1 Covariane matrix for δa . . . . . . . . . . . . . . . . . . . . . . . . . 224D.1 PTU and amera image . . . . . . . . . . . . . . . . . . . . . . . . . 229D.2 Calibration images for pan . . . . . . . . . . . . . . . . . . . . . . . . 230D.3 Calibration images for tilt . . . . . . . . . . . . . . . . . . . . . . . . 231D.4 Camera and PTU skethes . . . . . . . . . . . . . . . . . . . . . . . . 232D.5 Math ost for di�erent rotation axis . . . . . . . . . . . . . . . . . . 236

x



Chapter 1OverviewIn this dissertation we study the image segmentation problem fousing on the taskof segmentation into surfaes. Arguably image segmentation is the most importantlow level vision task. Besides being by itself a very interesting signal proessingproblem, its importane also arises from the number of vision appliations thatrequire some sort of segmentation of the image. Objet detetion and reognition,fae reognition, ation lassi�ation, video and medial image analysis are a fewof the domains that require a prior identi�ation of �homogeneous� image regions.Moreover, other low level tasks, suh as stereo and optial �ow omputation, greatlybene�t from a good segmentation algorithm [1, 2℄.A great number of researhers have extensively studied di�erent variations ofthe segmentation problem with more or less suess. As Borra and Shankar [3℄suggest, the proper segmentation is task and domain spei�. Hene, besides theirdi�ulty as a high dimensional pixel grouping problems, most variations of thesegmentation problem are also ill-de�ned. For example, when the goal is objetreognition, image segmentation's purpose is to identify (and group together) imageregions that orrespond to objets. Sine an objet is not a well de�ned entity,this de�nition of image segmentation is also ill-de�ned. Furthermore, �orret� seg-mentations of an image may exist at di�erent levels of detail, thus researhers have1



(a) Co�ee mug (b) Chair () Board gameFigure 1.1: Images of objets that are hard to segment into surfaes.worked on �hierarhial� segmentation shemes [4, 5, 6℄.We prefer a geometri based de�nition of segmentation that avoids most am-biguity problems mentioned above. More spei�ally, we use the surfae normalof individual pixels as the riterion for grouping them together. Aording to thisde�nition, areas with smooth surfae normals should belong to the same segment,and segment boundaries should orrespond to normal disontinuities, aused eitherby distane or orientation disontinuities.This de�nition of the segmentation is straightforward in theory, but it presentsmany hallenges on the algorithmi and implementation levels. In pratie, it isimpossible to ompute the surfae normal of an individual pixel unless a smoothnessassumption about the region around the pixel is made. This leads to the wellknown hiken-and-egg problem, where one needs to assume that the area arounda pixel possesses the same properties (similar surfae normal in this ase) as thepixel in order to ompute those properties and hek whether the properties of the2



pixels around it atually have the same properties. In general, it is known thatsurfae normal estimation belongs to the general ategory of struture from motionproblems, that are harder than stereo and optial �ow omputation, sine one seeksto estimate 3 dimensional quantities instead of 2D image properties. A very ommonassumption that we also adopt in this work is the planarity assumption, namely weassume that objets onsist of planar surfaes.Apparently there are important unresolved issues when surfaes are not pla-nar, as in the ase of the o�ee mug or the hair of Fig. 1.1. It is not lear howa �proper� segmentation into surfaes algorithm should handle the smooth surfaenormal hange. One might argue that the o�ee mug should be onsidered as asingle entity. What about the hair then? A division into two surfaes, one sup-porting the bak and the other where one sits, perpendiular to eah other seems abetter solution than a single surfae. In a sense the resolution of the surfae normalestimation ultimately de�nes the segmentation. Even in ases when there is a learsurfae normal disontinuity, suh as the individual surfaes of the �mastermind�board game (Fig. 1.1), there are omputational problems. In this partiular exam-ple the edge between the two areas is muh weaker than the texture edges on eahindividual segment. As a onsequene any gradient based segmentation algorithmwould fail to identify the edge. In general segmentation into planar surfaes is avery hard problem.This dissertation does not laim to provide a omplete solution to the seg-mentation into planar surfaes problem. A areful study of some parts of the wholesystem is performed, instead, and a number of improvements over urrent methods3



are proposed. More spei�ally, we onsider the subproblems of olor based seg-mentation and surfae normal estimation in isolation, and their interation. Ourtwo basi theses are that a) olor-based segmentation should be treated as a �lteringstep followed by a grouping proess and b) ombination of urve based, region basedand point based ues is important for surfae estimation (and low level omputervision in general). In the next paragraphs we further develop these ideas and brie�ydesribe the ontent of eah hapter of this thesis.We start, in hapter 2, by desribing a framework through whih mean shift,bilateral �ltering and anisotropi di�usion an be desribed. The simpliity of theframework brings forth the similarities and di�erenes of these methods resultingin a better understanding on how they operate on images. Furthermore, three newmethods are desribed and implemented and the most prominent of them, alledColor Mean Shift, is extensively tested and ompared with the existing methods.Using a number of images and di�erent performane riteria we onlude that ColorMean Shift outperforms the existing methods i.e., reates more uniform regions andretains equally well (or better) the edges between segments, while it is slightly slowerthan the existing methods.Chapter 3 desribes and experimentally veri�es the thesis that olor basedsegmentation should be a two stage proess, namely an edge preserving �ltering fol-lowed by a lustering of the image pixels. We reate novel segmentation algorithmsby oupling the �ltering methods of the previous hapter with four lustering meth-ods; onneted omponents grouping with onstant threshold in 3D or 5D spae,grouping using region adjaeny graphs; and the popular grouping using adaptive4



threshold algorithm by Felzenszwalb and Huttenloher [7℄. Then, we use the Berke-ley database to ompare the segmentation results with those obtained from humansubjets. We use a simple measure based on edge overlap as well as four popu-lar measures to ompare the quality of the segmentation. Extensive experimentalomparison veri�es that the two stage segmentation produes better results thanany lustering algorithm in isolation. In addition, the results attests that the twostages are interonneted i.e., for best segmentation results the ombination of �lter-ing and grouping algorithms should onsidered together. Studying and improvingan individual part (either �ltering or grouping) does not guarantee better results.Appendix A presents more segmentation results using a di�erent dataset obtainedfrom the Weizmann Institute [8℄.In the next hapter (4) we swith topi and fous on the surfae normal estima-tion problem. More spei�ally, we desribe how image ues an be ombined withodometry (or inertial sensor) measurements to estimate the surfae normal of imageregions and perform visual navigation on a hallenging indoor environment. Wepresent one way to ombine three di�erent methods based on image points, straightlines and whole image regions and estimate the surfae normal and distane of thewalls more aurately and robustly. Besides the desription of two novel methodsfor surfae normal estimation based on straight lines and regions, this hapter alsoprovides an paradigm on how an atual visual system an bene�t from knowledgeof the amera motion. In this ase the odometry of the robot empowers us to a)deouple motion and struture and hene ompute the surfae normal using featurepoints by solving a linear system, b) estimate the surfae normal by onsidering5



the streth of the whole region. In addition, we propose one way to integrate themeasurements of the surfae normal over time using an extended Kalman �lter.The whole approah is implemented and tested on a mobile robot. In a numberof experiments we demonstrate the ability of the system to navigate in an indoorenvironment using exlusively vision. The quality of visual navigation is used toevaluate the surfae normal estimation with the individual methods and their om-bination. In all the experiments the ombination of the three methods produesmuh better navigation results than eah individual method in isolation. The inte-gration of the surfae normal measurements over time further improves the qualityof the navigation.Appendix B diretly relates to hapter 4. The streth �lter that we developwas motivated by one of the surfae normal estimation methods of that hapter,namely the harmoni shape from texture method. In a nutshell aording to ourmethod the surfae normal and distane are enoded in the image streth and shift ofa planar region between two suessive amera frames, thus by measuring the latterimage quantities one an estimate the surfae values. In this hapter we desribea diret way to estimate the streth of a 2D signal using a properly reated single�lter. We analytially develop this �lter and present results of applying it to realsignals. We show that this method is a real-time alternative solution for measuringloal signal transformations. Experimentally, this method an aurately measurestreth, however, it is very sensitive to shift.Appendix D desribes the proess of alibrating the amera with respet tothe Pan and Tilt Unit. This is a neessary proedure in order to use PTU based6



measurements for the amera motion in struture from motion algorithms suh asthe ones used in hapter 4. First, we de�ne what we mean by the term �alibration�.Then, we formulate the alibration proess as an optimization problem and desribeits solution. Finally, we present the alibration results we obtained in our setting,namely a quad amera frame mounted on a PTU-46-17P70T pan and tilt unit byDireted Pereption.We onlude this dissertation, in hapter 5, by presenting a framework thatinorporates olor based segmentation into struture from motion algorithms. Wefous on the problem of estimating the homography i.e., the transformation of theloations of points belonging to a 3D planar surfae between two frames. We extendurrent approahes by obtaining an initial grouping of the feature points using ourolor based segmentation algorithm. Then, we ompute the homographies usingrobust existing tehniques and we further adjust the parameters of the segmentationbased on the geometry of the sene. The latter step orresponds to the mergingregion step of traditional plane estimation algorithms. We also propose a splittingmehanism in regions where the reprojetion error of feature points is large, basedon olor segmentation. Finally we brie�y touh the problem of ative segmentationinto planar surfaes, but providing a lemma that an be used to predit the qualityof the homography estimation. All the proofs for the lemmas used in this hapterare presented on Appendix C.
7



Chapter 2A Framework for Filtering Algorithms2.1 IntrodutionThis hapter and the next onsiders the problem of image segmentation, based onlyon the intensity values of an image. Color based segmentation is a fundamentaland well studied problem in omputer vision and many algorithms exist in theliterature. The simpliity of this problem1 as well as its diret onnetion to surfaebased segmentation make it an appropriate andidate for a starting point in ourdisussion.We pereive segmentation as a two-step proess; a smoothing step followed bya grouping step. The smoothing step attempts to bring loser intensities of neigh-boring pixels that belong to the same segment, while preserving (or even enhaning)the intensity di�erene aross segment boundaries. The grouping step attempts todeide whether two neighboring pixels belong to the same segment or not. Arguablyboth steps are equally important, even though urrent methods only onentrate onone step of the proess. Furthermore, their ombination a�ets the �nal result.First we study a number of smoothing tehniques; the original mean shift [9℄and its modi�ed version[10, 11℄2, bilateral �ltering [12℄,[13℄, loal mode �ltering [14℄1Here we refer to the simpliity of the formulation of olor based segmentation, namely grouppixels with similar olor properties together. We do not imply, though, that this problem is easyto solve or has been solved so far.2In the reent papers, the original �mean shift� approah is alled �blurring mean shift�. We8



and anisotropi di�usion [15℄. We present all the above tehniques as variationsof a general optimization problem. Using suh a formulation the similarities anddi�erenes between them are made lear. This framework also provides a naturalway to lassify them using two riteria. Using the lassi�ation riteria we proposethree novel methods. Two of them (olor mean shift and spatial mean shift) arevariations of the mean shift �ltering and the third one is an extension of bilateral�ltering. Filtering experiments show that olor mean shift atually outperformsmode �nding in smoothing the images while preserving the edges.2.1.1 Related WorkIn this setion we present related work on mean shift, sine this is the main fous andmotivation for the whole hapter. Following the suess of Comaniiu and Meer'sversion of mean shift [11℄ the same basi algorithm for non parametri lustering hasbeen used for objet traking [16℄, 3D reonstrution [17℄, image �ltering [11℄, texturelassi�ation [18℄ and video segmentation [19℄ among other problems. The relativelyhigh omputational ost of a naive implementation of the method ombined with theneed for fast image proessing led researhers to propose fast approximate variationsof it. Most notably, two solutions for �nding pairs of points within a radius havebeen proposed; the Improved Fast Gauss Transform based mean shift [20℄ for Normalkernels and the Loality Sensitive Hashing based mean shift [18℄.Cheng [10℄ was the �rst to reognize the equivalene of mean shift to a step-use a di�erent name for the mean shift variant used in omputer vision, namely �mode �nding�.So in the rest of this hapter the term Mode Finding (MF) refers to Comaniiu and Meer'sversion of mean shift. 9



varying gradient asent optimization problem, and muh later Fashing and Tomashi[21℄ showed that it is equivalent to Newton's method with pieewise onstant kernels,and is a quadrati bound maximization for all other kernels. Yuan and Li [22℄ provethat mean shift is a half quadrati optimization for density mode detetion when thepro�les of the kernel funtions are onvex. Finally, Carreira-Perpinan [23℄ provesthat it is equivalent to an EM algorithm when the kernel is Normal.At the same time a number of extensions of the basi algorithm have beenproposed. Shen et al. [24℄ and Yuan and Li [22℄ propose multi sale extensions to theoriginal algorithm for deteting density modes at di�erent resolutions. Extensionsto general metri spaes were also developed [25, 26, 27, 28℄.2.1.2 Notational PreliminariesWe represent the olor image as a mapping S from the 2D spae of the pixel oor-dinates to the 3D spae of the intensity values (for olor images). xi is a 2D vetorrepresenting the spatial oordinates of pixel i (i = 1 . . .N) and S(xi) is a vetorthat represents the three olor hannels. To simplify the notation we denote theintensities for a pixel xi with a subsript, so S(xi) = Si. We also denote the set ofall pixels as X and the whole image S (X). The ardinality of X is N .In the following setions we use bold letters to represent vetors and the nota-tion [xi,Si]
T to indiate a onatenation of vetors. When we want to indiate theevolution of a vetor over time we use supersripts, e.g. [x0

i ,S
0
i ] indiates the initialvalues of pixel xi having intensity Si. 10



2.1.3 Kernel FuntionsDe�nition(Kernel Funtion):Let X be a d-dimensional Eulidean spae and x ∈

X. We denote with xi the ith omponent of x. The L2 norm of x is a non-negativenumber ||x|| suh that ||x||2 =
∑d

i=1 x
2
i . A funtion K : X → R is a kernel if andonly if there exists another funtion k : [0 · · ·+∞]→ R suh that

K(x) = k(||x||2) (2.1)and1. k is non negative2. k is non inreasing i.e.,
k(a) ≥ k(b), if a < b (2.2)3. k is pieewise ontinuous and̂

+∞

0

k(a)da < +∞ (2.3)Funtion k(x) is alled the pro�le of the kernel K(x).Often the kernel funtion is normalized i.e.,
ˆ

X

K(x)dx = 1. (2.4)Even though kernel funtions are mostly used for kernel density estimation,11



we use them in order to de�ne optimization problems that we subsequently solveusing standard gradient desent methods. Thus, we are not only interested in thekernel funtion K(x) but also on its partial derivatives ∂K(x)
∂x

. Next we de�ne twokernel funtions that we use; the Epanehnikov and the Gaussian kernel.2.1.3.1 Epanehnikov kernelThe Epanehnikov kernel [29℄ has the analyti form
KE(x) =



















cE(1− xTx) xTx ≤ 1

0 otherwise

(2.5)
where cE =

d+ 2

2πd/2
Γ(
d+ 2

2
) is the normalization onstant. Fig. 2.1(a) presents thiskernel in the 1 − D ase. The partial derivative of KE(x) with respet to element

xi of vetor x is
∂KE(x)

∂xi
=



















−2 · cE · xi −1 < xi < 1

0 |xi| > 1

(2.6)and is depited in Fig. 2.1(b).2.1.3.2 Multivariate Normal (Gaussian) kernelThe multivariate Normal kernel with variane 1 has the analyti form
KN (x) = (2π)−

d
2 exp(−1

2
xTx). (2.7)
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(b) Derivative of 1-D Epanehnikov KernelFigure 2.1: 1−D Epanehnikov kernel.In Fig. 2.2(a) a 1−D Normal kernel is displayed.The partial derivative of KE(x) with respet to element xi of vetor x is
∂KN (x)

∂xi
= −xi · (2π)−

d
2 exp(−1

2
xTx) = −xi ·KN (x) (2.8)and is depited in Fig. 2.2(b).The Normal kernel is often symmetrially trunated to obtain a kernel with�nite support.2.2 Image FilteringIn the following subsetions we de�ne a number of image �ltering tehniques asoptimization problems. In previous formulations these methods were de�ned asthe result of applying an algorithm to an image. Using our formulation we aim to13
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(b) Derivative of 1-D normal kernelFigure 2.2: 1−D Normal kernel.ahieve two goals; to simplify the methods (sine we only need a single equationto desribe it) and to desribe all the methods in a uniform way. Note that somemethods (i.e. mean shift and mode �nding) are de�ned for any kernel funtion,while others (i.e., bilateral �ltering, loal mode �ltering and anisotropi di�usion)are only de�ned with respet to the Normal kernel KN(x).2.2.1 Mean Shift (MS)The original mean shift formulation [9℄ (applied to a olor image) treats the image asa set of 5−D points (i.e., 2 dimensions for the spatial oordinates and 3 dimensionsfor the olor values). Eah point is iteratively moved proportionally to the weightedaverage of its neighboring points. At the end, lusters of points are formed. We
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de�ne mean shift to be the gradient desent solution of the optimization problem
arg min

[xi,Si]
−

∑

i,j

K([xi,Si]− [xj ,Sj]), (2.9)where∑
i,j

de�nes the summation over all pairs of pixels in the image. Note that thisproblem has a global maximum when all the pixels �ollapse� into a single point. Weseek a loal minimum instead. That's why we initialize the features [xi, si] with theoriginal position and olor of the pixels of the image and perform gradient desentiterations till we reah the loal minimum.2.2.2 Mode Finding (MF)The modi�ed mean shift formulation proposed by Comaniiu and Meer [11℄ (hene-forth alled �mode �nding�) an also be expressed as a gradient desent solution ofthe optimization problem`
arg min

[xi,Si]
−

∑

i,j

K([xi,Si]− [x0
j ,S

0
j ]) (2.10)There is a subtle di�erene between mode �nding and mean shift, that sig-ni�antly a�ets the performane. In the former formulation eah urrent point isompared against the original set of 5 − D points [x0

j ,S
0
j ], while in the latter asethe point is ompared against the set of points from the previous iteration [xj,Sj ].In a reent paper [30℄ S. Rao et al. study those two variations from an informationtheoreti perspetive and onlude that mean shift is not stable and hene should15



not be used for lustering.Fig. 2.3 presents the results of both methods in a smoothly varying intensityimage. Notie that the gradient of the kernel funtion is zero everywhere but inthe boundaries. Thus, mode �nding �ltering only hanges the intensity on theboundaries (that hange is not very visible in Fig. 2.3). Mean shift, on the otherhand, produes arti�ial segments of uniform intensity. Intuitively, eah iteration ofthe proess results in more lustered data whih in turn results in better lusteringresults for the next iteration. On the downside, a fast mean shift implementation ishallenging due to the fat that the feature points and the omparison points do notlie on a regular spatial grid anymore. Thus in a naive implementation one wouldhave to ompare the urrent feature [xi,Si] against all the remaining feature points.2.2.3 Spatial Mean-Shift (SMS)One of our proposed methods that lies between mean shift and mode �nding, spa-tial mean shift performs mean shift in the spatial dimensions and mode �nding inthe olor dimensions. SMS an be viewed as the gradient desent solution of theoptimization problem
arg min

[xi,Si]
−

∑

i,j

K([xi,Si]− [xj ,S
0
j ]). (2.11)Spatial mean shift su�ers from the same omputational problems as mean shift, soit is mentioned here for the sake of ompleteness. We exlude the results of bothmean shift and spatial mean shift in our �ltering and segmentation experiments.16



2.2.4 Color Mean-Shift (CMS)Color mean shift is our proposed method that alleviates the omputational problemof mean shift by using the original spatial loation of the points for omparison,while it uses the updated intensity values of the previous iteration for improvedlustering ability. In a sense, mean shift is performed on the olor dimensions andmode �nding on the spatial dimensions (that is the reason for naming the method�olor mean shift�). As above, CMS an be expressed as the gradient desent solutionof the optimization problem
arg min

[xi,Si]
−

∑

i,j

K([xi,Si]− [x0
j ,Sj ]). (2.12)2.2.5 Loal Mode Filtering (LMF)Loal mode �ltering [14℄ was introdued as a method to �nd the loal mode in therange domain of eah pixel of the image. A generalization of the spatial Gaussian�ltering to a spatial and range Gaussian �lter is used to iterate to the loal mode (onthe 3 − D olor domain). On eah iteration the intensity of eah pixel is replaedby a weighted average of its neighbors. From an optimization point of view theproblem an be expressed as

arg min
Si

−
∑

i,j

KN([xi,Si]− [x0
j ,S

0
j ]). (2.13)
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2.2.5.1 Bilateral Filtering (BF)In bilateral �ltering [12℄,[13℄ the intensity of eah pixel is replaed by a weightedaverage of its neighbors. The weight assigned to eah neighbor dereases with boththe distane in the image plane (spatial domain) and the distane on the intensityaxes (range domain). Formally the intensity at eah pixel Si takes the value
Si =

∑

j SjKN([xi,Si]− [x0
j ,S

0
j ])

∑

j KN([xi,Si]− [x0
j ,S

0
j ])

. (2.14)Bilateral �ltering an be onsidered as the �rst iteration of loal mode �ltering witha spei� step size (Se. 2.2.7).2.2.5.2 Joined Bilateral �lteringIn this variation of the bilateral �ltering both the intensity and position of eah pixelis replaed by a weighted average of its neighbors. Formally, the new oordinatesand olor of eah pixel are
[xi,Si] =

∑

j[xi,Si]KN([xi,Si]− [x0
j ,S

0
j ])

∑

jKN([xi,Si]− [x0
j ,S

0
j ])

. (2.15)Analogous to bilateral �ltering this method an be onsidered as the �rstiteration of mode �nding with a spei� step size.
18



2.2.6 Anisotropi Di�usion (AD)Anisotropi di�usion is a non-linear proess introdued by Perona and Malik [15℄for edge preserving smoothing. In the original formulation a di�usion proess with amonotonially dereasing di�usion funtion of the image gradient magnitude is usedto smooth the image while preserving strong edges. Sine then other funtions havebeen proposed and the equivalene of this tehnique to robust statistis has beenestablished [31℄. In [14℄ the onnetion with loal mode �ltering was also made. Herewe provide an alternative view of the di�usion proess as an optimization problem
arg min

Si

−
∑

i,j

KN([xi,Si]− [xj,Sj ]). (2.16)The di�erene between this method and loal mode �ltering is analogous to thedi�erene between the original mean shift and mode �nding. Namely in loal mode�ltering the urrent point is ompared against the original image pixels [x0
j ,S

0
j ],while in anisotropi di�usion the omparison is against the intensity value of thepixels in the previous iteration [xj ,Sj ].2.2.7 Optimization steps sizesFrom the above optimization problems mean shift, spatial mean shift, olor meanshift and anisotropi di�usion are joint optimization problems i.e., the whole imageneeds to be optimized simultaneously. In mode �nding and loal mode �ltering,on the other hand, eah pixel an be optimized independently from the rest of theimage. Next we present two laims onerning the step size of these optimization19



(a) Mode Finding (b) Spatial Mean Shift () Color Mean Shift
(d) Mean Shift (e) Loal Mode Filtering (f) Anisotropi Di�usionFigure 2.3: All the desribed algorithms applied on a smoothly varying image. Allthe �ltering algorithms were exeuted with spatial resolution hs = 21 and rangeresolution hr = 10 and used a Normal kernel.problems.Claim 2.1. Loal mode �ltering (and mode �nding with a Gaussian kernel) an beonsidered as gradient desend methods for solving the orresponding optimizationproblem (Eqs. 2.13 and 2.10 respetively) with a step size at iteration t of

γti = − 1
∑

jKN([xi,Sti]− [xj,S0
j ])
. (2.17)Proof. A proof for loal mode �ltering follows. Eah pixel pi is optimized separately.So if we replae the step size γi in the general gradient desent algorithm we get

St+1
i = Sti − γti∇

∑

j

KN([xi,S
t
i]− [xj ,S

0
j ]) (2.18)

St+1
i = Sti − γti

∑

j

∇KN([xi,S
t
i]− [xj ,S

0
j ]) (2.19)

20



St+1
i = Sti − γti

∑

j

KN([xi,S
t
i]− [xj ,S

0
j ])[S

0
j − Sti] (2.20)

St+1
i = Sti+(γti

∑

j

KN([xi,Si]− [xj ,S
0
j ]))S

t
i−γti

∑

j

KN([xi,S
t
i]− [xj ,S

0
j ])S

t
i (2.21)

St+1
i =

∑

jKN([xi,S
t
i]− [xj ,S

0
j ])S

0
j

∑

jKN([xi,Sti]− [xj,S0
j ])

(2.22)that is exatly the intensity values for pixel xi at the next iteration t+ 1.To prove the laim for mode �nding with a Gaussian kernel one only needs toreplae the ourrene of Sti, St+1
i ,S0

j with [xti,S
t
i], [xt+1

i ,St+1
i ], [x0

j ,S
0
j ] respetively,beause the optimization is performed on the 5−D domain.Claim 2.2. Mode �nding with an Epanehnikov kernel an be onsidered as a gradi-ent desend method for solving the orresponding optimization problem (Eq. 2.10)with a step size at iteration t of

γti = − 1

2cE
∑

j,||[xt
i,S

t
i]−[x0

j ,S
0
j ]||<1 1

(2.23)As a onsequene the result after one iteration of the gradient desent is
[xt+1
i ,St+1

i ] =

∑

j,||[xt
i,S

t
i]−[x0

j ,S
0
j ]||<1[x

0
j ,S

0
j ]

∑

j,||[xt
i,S

t
i]−[x0

j ,S
0
j ]||<1 1

. (2.24)Table 2.1 summarizes the optimization step sizes for eah method along with21



the results after one iteration. Note that in the ase of mean shift and anisotropidi�usion we are using the blok gradient desent method and optimize one pixelvetor at a time3.2.3 Classi�ation frameworkCareful examination of the previous de�ned optimization problems reveal that thereare only two di�erenes in their objetive funtions; the presene of [xi,Si] or [Si]as the optimization argument; and the omparison against the points in the originalimage [x0
j ,S

0
j ] or the points on the previous iteration [xj,Sj ]. Finally two of themethods (bilateral �ltering and joined bilateral �ltering) are an one-iteration meth-ods, while all the other methods perform multiple iterations till onvergene. Nextwe explain in details these di�erenes, and de�ne a lassi�ation of the methodsbased on these riteria.2.3.1 arg min
[xi,Si]

vs arg min
SiIn the �rst ase the optimization problem is de�ned over the joint spatial and rangedomain (5 − D), i.e. both the position of the pixels as well as their intensitieshange in eah iteration. In the seond ase, where the optimization is over therange domain (3−D), only the intensities of the pixels hange while their positionremain the same. This is not to be onfused with the use of [xi,Si] in the objetivefuntion. While the position of the pixel is always onsidered in the omputation3We use the symbols xj , Sj to denote the urrent value of pixel pj . These might be the valuesof pixel pj at iteration t or t+ 1 depending on whether pj is proessed after or before pi.22
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Color Mean ShiftInput:set of pixels x0
i with intensities S0

ia funtion gOutput:feature vetor [xi,Si]Algorithm:initialize feature points [xi,Si]← [x0
i ,S

0
i ]repeat until onvergenefor all features [xi,Si]

[xi,Si]←
P

j [xj ,Sj ]g(||[xi,Si]−[x0
j ,Sj ]||2)

P

j g(||[xi,Si]−[x0
j ,Sj ]||2)Mode FindingInput:set of pixels x0

i with intensities S0
ia funtion gOutput:feature vetor [xi,Si]Algorithm:initialize feature points [xi,Si]← [x0

i ,S
0
i ]for all features [xi,Si]repeat until onvergene

[xi,Si]←
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j [xj ,Sj ]g(||[xi,Si]−[x0
j ,S

0
j ]||2)

P

j g(||[xi,Si]−[x0
j ,S

0
j ]||2)Figure 2.4: The algorithms that we use in the experiments. Note that g(x) =

[x ≤ 1] (indiator funtion in Iverson notation) for the Epanehnikov kernel and
g(x) = exp(−x/2) for the Normal kernel. Loal mode �ltering is performed in asimilar way as mode �nding and mean shift, anisotropi di�usion are performed ina similar way as olor mean shift.
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of the objetive funtion, that position might hange or not (depending on themethod).At this point we should also make lear that the optimization is de�ned for thewhole image, that is the values of all the pixels hange. For the sake of simpliitywe don't make this expliit when we write down the optimization equation.2.3.2 [x0
j ,S

0
j ] vs [xj,Sj]With a subsript we denote the value of the pixels at a spei� iteration, so [x0

j ,S
0
j ]is the value of pixel xj at the very beginning, i.e. in the original image. The lakof a supersript denotes the urrent value of pixels, i.e. the value of the pixel ata previous iteration. Two pairs of algorithms (mean shift/mode �nding and loalmode �ltering/anisotropi di�usion) only di�er in whether we ompare the urrentvalue of a pixel against the original image or the image obtained in the previousiteration. As we will demonstrate in the experiments, the results vary signi�antlybeause of that (also see [30℄ for a theoretial analysis and justi�ation).Furthermore, there are two valid hybrid ombinations that have not beenproposed before.

• [x0
j ,Sj] : In this ase the omparison is performed against the original positionof the pixels and the previously omputed range image.

• [xj ,S
0
j ] : In this ase the position of the pixels in the previous iteration is usedalong with their original intensity values.Apparently the previous ases only make a di�erene when the optimization is de-25



�ned over the joint spatial/range domain. Otherwise the position of the pixels neverhanges, thus [xj ] ≡ [x0
j ].2.3.3 A taxonomy of �ltering methodsFig. 2.5 presents the various methods and where they �t with respet to the previousriteria. The three new methods are spatial mean shift, olor mean shift and joinedbilateral �ltering.2.4 Filtering experimentsFollowing the example of Comaniiu and Meer [11℄, we normalize the spatial andolor oordinates of eah pixel vetor by dividing by the spatial (hs) and olor (hc)resolution. Thus, the original feature vetor [xi,Si] is transformed to [xi

hs
, Si

hr
] (notinluded in the optimization equations for simpliity reasons). Then, we performthe optimization; one pixel at a time in the ase of mode �nding (Fig. 2.4, topright), or one iteration of the whole feature set at a time in the mean shift and olormean shift ases (Fig. 2.4, top left). Fig. 2.6 displays the original images that weuse for all the experiments in the rest of the setion.2.4.1 Epanehnikov vs Normal KernelFirst we present some �ltering results when using di�erent kernels; namely theEpanehnikov and Normal kernel (Figs. 2.7,2.8). Eah olumn of the �gures de-pits the �ltering result with a di�erent algorithm; MF, LMF, CMS and AD stand26
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(a) Hand (b) Workers

() Woman (d) HousesFigure 2.6: The original images we use for the �ltering experiments. The �rstimage is taken from Comaniiu and Meer's mean shift segmentation paper, whilethe remaining are training images of the Berkeley segmentation database olletion.Their sizes are 303× 243 and 481× 321 pixels respetively.
28



for mode �ltering, loal mode �ltering, olor mean shift and anisotropi di�usionrespetively. In all ases the Normal kernel produes smoother results, while pre-serving edge disontinuities. As a matter of fat the olor resolution hr is the onethat de�nes the gradient magnitude above whih there is an edge (to be preserved).So for the �hand� image, a olor range of hr = 19 results in smoothing most of thetexture on the bakground, while a value of hr = 10 retains most the texture (inRGB olor spae with a Normal kernel).In all the images mode �nding and loal mode �ltering produed very similarresults. Furthermore olor mean shift and anisotropi di�usion gave similar results.Color mean shift seems to produe more risp edges while anisotropi di�usionsmooths some of the edges. Overall, olor mean shift and anisotropi di�usionprodue more uniform regions (e.g. suppresses the skin olor variation on the �hand�image) and more risp boundaries between segments ompared to mode �nding andloal mode �ltering. The latter is partiularly important for the segmentation step.We further investigate this phenomenon in subsetion 2.4.3.For the remaining �ltering experiments we use a Normal kernel.2.4.2 RGB vs Luv Color SpaeIn Figs. 2.9, 2.10 we present the results when �ltering in the RGB and Luv olorspae. In general, �ltering in Luv olor spae produes smoother images. Thisis due to two fats. The eulidean distane between two Luv values is perep-tually meaningful, i.e. it is proportional to the distane of the olors as per-29



(a) MF with Epaneh-nikov kernel (b) LMF with Epaneh-nikov kernel () CMS with Epaneh-nikov kernel (d) AD with Epaneh-nikov kernel
(e) MF with Normal ker-nel (f) LMF with Normalkernel (g) CMS with Normalkernel (h) AD with Normal ker-nel
(i) MF with Epaneh-nikov kernel (j) LMF with Epaneh-nikov kernel (k) CMS with Epaneh-nikov kernel (l) AD with Epaneh-nikov kernel
(m) MF with Normalkernel (n) LMF with Normalkernel (o) CMS with Normalkernel (p) AD with Normal ker-nelFigure 2.7: Epanehnikov vs Normal kernel experiment. We use hs = 5 (resultingin a window of 11 × 11 pixels) and hr = 19. All the images are proessed in RGBolor spae.
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(a) MF with Epaneh-nikov kernel (b) LMF with Epaneh-nikov kernel () CMS with Epaneh-nikov kernel (d) AD with Epaneh-nikov kernel
(e) MF with Normal ker-nel (f) LMF with Normalkernel (g) CMS with Normalkernel (h) AD with Normal ker-nel
(i) MF with Epaneh-nikov kernel (j) LMF with Epaneh-nikov kernel (k) CMS with Epaneh-nikov kernel (l) AD with Epaneh-nikov kernel
(m) MF with Normalkernel (n) LMF with Normalkernel (o) CMS with Normalkernel (p) AD with Normal ker-nelFigure 2.8: Epanehnikov vs Normal kernel experiment. We use hs = 5 (resultingin a window of 11 × 11 pixels) and hr = 19. All the images are proessed in RGBolor spae.

31



eived by a human observer. This is not true in RGB, where very similar ol-ors might be loated far away and vie versa. Furthermore the range of val-ues for eah omponent (L, u, v) is di�erent (for example in our implementation
L ∈ [0 . . . 100], u ∈ [−100 . . . 180], v ∈ [−135 . . . 110].), while eah of the Red, Greenand Blue omponents have values from 0 to 255.In these experiments, mode �nding and loal mode �ltering seem to produealmost idential images, while olor mean shift preserves the boundaries better thananisotropi di�usion. Both latter methods smooth the image onsiderably morethan the former ones.2.4.3 Color uniformity of regions after �lteringNext we ompare the ability of the �ltering algorithms to suppress texture andprodue uniform regions. State of the art approahes to loate and lassify textureuse �lter responses [32℄, [33℄ lustered in an K nearest neighbors framework. Wemeasure, instead, the uniformity of the regions using zero (i.e. olor histogram)and �rst order (i.e. gradient magnitude histogram) statistis on the olor spae.We ompute the magnitude of the image gradient for eah olor hannel on everyimage point using a 3× 3 Sobel �lter. In Figs. 2.11, 2.12, 2.13, 2.14 we display thehistograms of the olor and gradient distributions for the original images as well asthe �ltered ones with a Normal kernel in Luv olor spae. The di�erene betweenthe �ltering results is most obvious in the �hand� image. In olor mean shift �lteredimage the vast majority of gradient magnitudes are lose to zero. A omparable32



(a) MF on RGB olorspae (b) LMF on RGB olorspae () CMS on RGB olorspae (d) AD on RGB olorspae
(e) MF on LUV olorspae (f) LMF on LUV olorspae (g) CMS on LUV olorspae (h) AD on LUV olorspae
(i) MF on RGB olorspae (j) LMF on RGB olorspae (k) CMS on RGB olorspae (l) AD on RGB olorspae
(m) MF on LUV olorspae (n) LMF on LUV olorspae (o) CMS on LUV olorspae (p) AD on LUV olorspaeFigure 2.9: RGB vs Luv olor spae experiments (1/2). We use hs = 5 (resulting ina window of 11×11 pixels) and hr = 5. All the images are proessed with a Normalkernel.
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(a) MF on RGB olorspae (b) LMF on RGB olorspae () CMS on RGB olorspae (d) AD on RGB olorspae
(e) MF on LUV olorspae (f) LMF on LUV olorspae (g) CMS on LUV olorspae (h) AD on LUV olorspae
(i) MF on RGB olorspae (j) LMF on RGB olorspae (k) CMS on RGB olorspae (l) AD on RGB olorspae
(m) MF on LUV olorspae (n) LMF on LUV olorspae (o) CMS on LUV olorspae (p) AD on LUV olorspaeFigure 2.10: RGB vs Luv olor spae experiments (2/2). We use hs = 5 (resultingin a window of 11 × 11 pixels) and hr = 5. All the images are proessed with aNormal kernel.
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Figure 2.11: Histograms for the original hand image and the proessed results ofFig. 2.9 seond row. Notie that in all �gures the Y axis is in logarithmi sale.The olor mean shift �ltered image uses the least number of olor bins and exhibitsless gradient variation ompared to all the other methods and the original image.
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Figure 2.12: Histograms for the original workers image and the proessed results ofFig. 2.9 fourth row. Notie that in all �gures the Y axis is in logarithmi sale.
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Figure 2.13: Histograms for the original woman image and the proessed results ofFig. 2.10 seond row. Notie that in all �gures the Y axis is in logarithmi sale.
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Figure 2.14: Histograms for the original houses image and the proessed results ofFig. 2.10 fourth row. Notie that in all �gures the Y axis is in logarithmi sale.
38



number of magnitudes are lose to zero in anisotropi di�usion image as well. Inmode �nding and loal mode �ltered image half as many pixels and in the originalimage 3% as many pixels have gradient lose to zero. In the same �gures, we displaythe joint olor histogram for the �ve images. As expeted, in the olor mean shiftimage the pixels are lustered to fewer olor bins ompared to the other images.In Table 2.2 we display the entropy measure for the olor distribution andthe gradient magnitude for eah method with the di�erent kernels and olor spaes(and onstant spatial and olor resolutions hs = 5, hr = 5). The entropy de�nition4measures how �random� an image is. Thus, an image reated by sampling eahpixel's olor value from a uniform random distribution is expeted to have a largeentropy value, while a single uniform olor image has an entropy of 0. In generallower entropy values indiate more uniform olored images, i.e. images with lessnumber of segments of more uniform olor. From the results of Table 2.2 one anreah the following onlusions.
• Color mean shift produes the least variation on the olor and gradient his-togram, followed by anisotropi di�usion, mode �nding and loal mode �lter-ing.
• Within a �ltering method the di�erenes between the di�erent kernels andolor spaes are small for the olor entropy measures but quite signi�ant forthe gradient measures. The least entropy measures for the gradient magnitudeare obtained when we use Normal kernel and perform the proessing in the4If X is a disrete random variable with possible values {x1, . . . , xn} then the entropy is de�nedas H(X) = −

∑n

i=1
p(xi) logb p(xi), where b is the base of the logarithm (in our ase we use b = 2).39



Table 2.2: Entropy measures for the olor and gradient histograms for the four images after performing the �ltering withdi�erent methods and di�erent kernels in the two olor spaes. The �rst number is the entropy for the olor and the seond forthe gradient histogram. The lower the values the smaller the variation.Hand Image Mode �nding Loal Mode �ltering Color Mean Shift Anisotropi Di�usionEpanehnikov, RGB 6.14, 12.97 6.14, 12.97 6.14, 12.97 6.14, 12.97Epanehnikov, Luv 7.02, 12.91 7.02, 12.91 7.42, 12.82 7.50, 12.83Normal, RGB 7.15, 12.68 7.32, 12.59 8.91, 11.89 9.32, 11.94Normal, Luv 10.47, 10.85 11.20, 11.02 9.84, 8.87 10.93, 9.16Workers Image Mode �nding Loal Mode �ltering Color Mean Shift Anisotropi Di�usionEpanehnikov, RGB 13.95, 9.59 14.64, 9.59 12.34, 9.21 13.31, 9.35Epanehnikov, Luv 13.72, 8.78 14.70, 8.75 12.51, 8.16 13.59, 8.21Normal, RGB 12.46, 8.47 14.16, 8.48 10.82, 7.85 12.61, 8.14Normal, Luv 12.74, 7.05 14.31, 7.16 11.80, 6.17 13.16, 6.28Woman Image Mode �nding Loal Mode �ltering Color Mean Shift Anisotropi Di�usionEpanehnikov, RGB 14.25, 8.49 14.58, 8.43 13.12, 8.43 13.79, 8.39Epanehnikov, Luv 13.67, 7.30 14.37, 7.15 12.37, 6.13 13.24, 6.07Normal, RGB 13.26, 7.72 14.16, 7.41 11.58, 7.51 12.81, 7.35Normal, Luv 13.08, 5.18 13.92, 5.11 12.07, 4.23 12.86, 4.30Houses Image Mode �nding Loal Mode �ltering Color Mean Shift Anisotropi Di�usionEpanehnikov, RGB 14.27, 9.12 14.59, 9.07 13.07, 9.04 13.70, 8.98Epanehnikov, Luv 13.39, 7.75 14.17, 7.60 11.71, 6.29 12.78, 6.46Normal, RGB 13.05, 8.53 14.10, 8.22 10.94, 8.08 12.53, 8.12Normal, Luv 12.72, 5.57 13.62, 5.67 11.48, 4.36 12.56, 4.71
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Luv olor spae.
• When proessed with the Epanehnikov kernel in the RGB olor spae all themethods produe very similar results. The di�erene between the methods isemphasized when the proessing involves a Normal kernel and the Luv olorspae.
• In the ase of the hand image the olor resolution that we use (hr = 5) is toosmall to eliminate the textured bakground and the olor variation inside thehand (as it is shown in Fig. 2.9). That is why we obtain these results.Overall these fats allow us to laim that olor mean shift produes the most uniformregions, followed by anisotropi di�usion. Mode �nding and loal mode �lteringprodue very similar results. A natural question to ask is whether the above resultsare due to over smoothing. From the sample �ltering results presented above thisdoes not seem to be the ase. The only way to verify that though is to perform thesegmentation and then ompare the results against human segmented images. InSe. 3.4 we present these experiments. As we disuss there the segmentation resultsfor olor mean shift are better than the ones for the other �ltering methods, thuswe an safely onlude that olor mean shift produes more uniform regions withoutover smoothing the original image.2.4.4 Filtering speed omparisonAn objetive omparison of the �ltering speed of the di�erent methods is not asimple task. Besides the implementation details that greatly a�et the speed, there41



is also a number of algorithmi parameters that an signi�antly speedup or slowdown the onvergene of the optimization proedure. We start our omparisonby evaluating the role of these parameters and then we disuss whether generalspeed up tehniques that have been proposed in the literature an be applied tothe di�erent methods or not. For fairness sake, we use our own implementation ofall the �ltering methods that onsists of Matlab �les for the image handling andthe general input/output interfae, while the optimization ode is written in C. Weperform all the experiments on a desktop omputer with an Intel Core2 Quad CPU
@3GHz5.2.4.4.1 Image sizeThe number of pixels diretly a�et the �ltering speed. In theory the omplexity ofthe algorithm inreases linearly with the number of pixels, sine eah pixel representsa feature vetor that needs to be proessed. The theoretial predition is veri�ed inpratie as Fig. 2.15 shows.2.4.4.2 Spatial resolution (hs)Theoretially, all the �ltering methods (but Mean Shift and Spatial Mean Shift)depend quadratially on the spatial bandwidth. In pratie, other parameters, ex-plained below, make the dependene less than quadrati. Fig. 2.16 displays the�ltering speed with respet to the spatial resolution for the methods, when all theother parameters are the same.5Due to Matlab's limitation only one ore is used in the experiments.42



Figure 2.15: The �ltering speed as a funtion of the image size (i.e., number of pixels)for all four methods. We use the "workers" image (whose original size is 321× 481pixels) and perform the �ltering on the RGB olor spae with an Epanehnikovkernel with spatial and olor resolutions hs = 5, hr = 15 respetively. We also limitthe number of iterations to 20 and the onvergene threshold is 0.001. We performthe �ltering 5 times for eah image size and only plot the median value.
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Figure 2.16: The �ltering speed as a funtion of the spatial resolution (hs) for allfour methods. We use the "workers" image (321 × 481 pixels) and perform the�ltering on the RGB olor spae with an Epanehnikov kernel (ontinuous line) orNormal kernel (dotted line). We also limit the number of iterations to 20 and stopthe optimization for pixels that move less than 0.001 between two iterations. Weperform the �ltering 5 times for eah value of hs and only plot the median value.
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2.4.4.3 Epanehnikov vs Normal kernelFor eah pair of pixels, omputation of the weight using the Epanehnikov kernel onlyrequires a omparison, while the alulation of an exponential number is neessaryfor the ase of the Normal kernel. As a result the former operation is muh heaperthan the latter and thus �ltering with an Epanehnikov kernel is faster ompared to�ltering with a Normal kernel as is shown in Fig. 2.16. Other researhers (e.g. [34℄)have proposed the use of lookup tables to approximately ompute the exponentsmuh faster.At this point we should note that the overall speed of the segmentation proessis also a�eted by the quality of the result of the �ltering proess. We experimentallyfound, that using a normal kernel produed better results and as a onsequene spedup the grouping step. Overall the use of a Normal kernel still resulted in slowersegmentation times, but the time di�erene was not as large as Fig. 2.16 shows.2.4.4.4 Convergene thresholdAs desribed above, on eah iteration of the optimization proedure eah pixel vetoris ompared against its neighbors and shifted. If this shift is less than a prede�nedvalue (denoted onvergene threshold) then we ignore that pixel in subsequent iter-ations of the optimization proedure. Intuitively the onvergene threshold denoteshow lose to the �true� solution the optimization should reah before termination.At this point we would like to emphasize that for the mode �nding and the loalmode �ltering methods the shift of eah pixel is a monotonially dereasing funtion45



Figure 2.17: The �ltering speed as a funtion of the onvergene threshold for allfour methods. We use the "workers" image (321 × 481 pixels) and perform the�ltering on the RGB olor spae with an Epanehnikov kernel with spatial andolor resolution hs = 5, hr = 15 respetively. We also limit the number of iterationsto 50. We perform the �ltering 5 times for eah value of the onvergene thresholdand only plot the median value. Notie that the X-axis is on logarithmi sale.of the iteration number, while for olor mean shift and anisotropi di�usion it is not.Fig. 2.17 displays the �ltering speed with respet to the onvergene threshold. Asexpeted the higher the threshold the faster the �ltering. Espeially for thresholdsless than 0.1 the �ltering time dereases almost exponentially. Aording to thisgraph and all the previous ones, loal mode �ltering is the fastest �ltering operationfollowed by anisotropi di�usion, and then mode �nding, while olor mean shift isslightly slower. This is expeted due to the extra number of alulations neededto estimate the 5D feature vetor instead of the 3D feature vetor in the othermethods. 46



2.4.4.5 Feature vetor displaement per iterationRelated to the previous parameter, here we evaluate the onvergene speed of the�ltering algorithms, namely how many iterations are requited for all the pixels toreah the onvergene threshold. In Fig. 2.18 we plot the histogram of the dis-plaement of the feature vetors on a single iteration. Although it is hard to makeany de�nite onlusions one observes that in the �rst three iterations olor meanshift displaes pixels more than any other method. Overall, loal mode �lteringand anisotropi di�usion onverge (i.e. all the pixels are displaed less than 0.2)in 17, 20 iterations respetively. Mode �nding and olor mean shift onverge muhslower requiring 40 and 39 iterations respetively. Similar behavior was observed inall the examples that we used for testing. This leads us to believe that olor meanshift onverges as least as fast as mode �nding.2.4.4.6 Filtering speed onlusionsAs we said before we use our own implementation of all the �ltering methods, thatis a straightforward translation of Table 2.1 to Matlab and C ode, to perform thespeed experiments. A number of methods an be used to perform the �ltering faster.In the ore of all the �ltering algorithms the pairwise distane between featurepoints needs to be omputed for all pairs of points. As suggested in [11℄ employingdata strutures and algorithms for multidimensional range searhing an speed upthe �ltering. This tehnique an be used in all the �ltering methods and is expetedto signi�antly improve the speed of slow methods suh as mean shift and spatial47



(a) Iteration 1 (b) Iteration 2 () Iteration 3
(d) Iteration 10 (e) Iteration 20 (f) Iteration 30Figure 2.18: The histograms of vetor displaements for a number of iterations for allfour �ltering methods. We use the "workers" image (321× 481 pixels) and performthe �ltering on the RGB olor spae with an Epanehnikov kernel with spatial andolor resolutions hs = 5, hr = 15 respetively. We also limit the number of iterationsto 40.
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mean shift.In mode �nding the trajetory of most feature points lay along the path ofother feature points. Christoudias et al. in [35℄ report a speed up of about �ve timesrelative to the original algorithm when they �merge� the feature points together.This trik an diretly be used in loal mode �ltering. A variation of the sameonept ould also be used to speed up the �ltering in all the other methods.Paris and Durant in [5℄ suggest a fast method to �nd the loal modes of the
5−D features points oming from large olor images. Contrary to the title of theirwork their method is based on diretly estimating the kernel density on a sparse
5 − D grid. Even though this idea is appealing and alleviates the omputationalproblem assoiated with inreasing the spatial kernel resolution hs, it is not learhow it an be used to speed up any of the �ltering methods.In the same paper ([5℄) extra omputational redution is ahieved by reduingthe dimensionality of the feature spae from 5−D to 4−D (or 3−D). Prinipalomponent analysis is used to perform the redution and the authors report that aredution to 4−D results in almost no loss of �ltering quality, while the �ltering isperformed 5 times faster. This is to be expeted for their method, sine they samplethe whole feature spae. The algorithms that we study, though, would bene�t little(if at all) from suh a tehnique sine the additional ost of performing the PCAwould o�set the gain of performing the �ltering in less dimensions.The introdution of the multiore CPUs and, espeially, GPUs has providednew way to improve the exeution speed of algorithms through a parallel implemen-tation. From Table 2.1 and Fig. 2.4 it is lear that the �ltering of eah feature point49



an be performed in parallel. We expet that a areful implementation of any ofthe four algorithms (i.e. mode �nding, olor mean shift, loal mode �ltering andanisotropi di�usion) on a modern GPU will run in real time for VGA or largerimages.2.5 ConlusionsIn this hapter we presented a unifying framework under whih we an expressdi�erent �ltering algorithms. Using the new understanding of �ltering, we developedthree new edge preserving �ltering methods, that we named Color Mean Shift,Spatial Mean Shift and Joined Bilateral Filtering. The �rst one exhibits similarlustering harateristis with the original Mean Shift method while being almostas omputationally e�ient as the Mode Finding method, so it was inluded inour �ltering omparison. We performed a omparison of four di�erent methods(Mode Finding, Color Mean Shift, Loal Mode Filtering and Anisotropi di�usion)on a number of images with di�erent on�gurations for the olor spae and thekernel funtion. Overall we notied that Color Mean Shift outperforms (i.e. reatesmore uniform segments with better boundary separation) than the other methodswith the drawbak of being slightly slower. Table 2.3 synopsizes the results of theexperimental omparison for performing edge preserving �ltering.
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Table 2.3: Synopsis of the �ltering results
• Normal kernel gives smoother �ltering results ompared to Epanehnikov ker-nel
• Luv olor spae produes smoother �ltering results ompared to RGB olorspae.
• Mode �nding and loal mode �nding produe similar �ltering results. Mode�nding performs slightly better �ltering.
• Color mean shift and anisotropi di�usion produe similar �ltering results.Color mean shift preserves the edges better than anisotropi di�usion.
• 3−D �ltering (i.e. loal mode �ltering) is almost equivalent to 5−D �ltering(i.e. mode �nding) when the original image is used for the omparison. Whenthe image obtained in the previous iteration is used then 5−D �ltering (i.e.olor mean shift) preserves edges better than 3−D �ltering (i.e. anisotropidi�usion).
• Whether we use the original image for omparison or not a�ets the �lteringmore than whether we perform it in 3−D or 5−D.
• Loal mode �ltering is the fastest; mode �nding and loal mode �ltering area little bit slower; olor mean shift is even slower. All the methods are fastenough to perform the �ltering in real time for a reasonably large image whenimplemented in GPUs.
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Chapter 3Color Based Segmentation as a Two Stage Proess3.1 IntrodutionThe edge preserving �ltering framework, that we presented in the previous hapter, isthe �rst omponent of a olor-based segmentation system. In this hapter we presentthe other omponent, namely lustering algorithms for pixels (or feature points) on3D (or 5D) spae. First, we brie�y desribe the grouping algorithms that we use inthe segmentation experiments; a greedy onneted omponents method with a �xedthreshold, its variant using Region Adjaeny Graph [35℄ and its extension using anadaptive threshold [7℄.Then, we experimentally ompare all the ombinations of �ltering and group-ing tehniques using the Berkeley dataset [36℄. In our omparison we fous on threeriteria; orretness, robustness with respet to the parameters and robustness withrespet to image seletion. We use both boundary and region based measures foromparison. More spei�ally, we onsider the perentage of edges retrieved andthe edge distane between segmentations as the boundary based riteria. We alsoompute the Global Consisteny Error[36℄, the Rand Index[37℄ and the Variation ofInformation [38℄,[39℄ region based measures.
52



3.2 Grouping methodsA variety of grouping methods exist in the literature for image segmentation. Asa matter of fat almost all the olor based image segmentation methods are group-ing methods. Next, we desribe the three methods that we have hosen to usein the segmentation experiments. The �rst method is a simple onneted ompo-nents algorithm with a global threshold, while the other two methods are extensionsof that algorithm. All methods are simple, namely they don't require the use ofompliated tuning parameters and they are used widely for image segmentation.Another advantage is that they are fast so they an be used for (almost) real timesegmentation.3.2.1 Greedy Conneted Components grouping (CC3D and CC5D)This is the same strategy that Comaniiu and Meer impliitly use in their imagesegmentation algorithm [11℄. The method is a good starting point for our ompar-ison; its simpliity allows us to ompare the smoothing algorithms for the task ofsegmentation without worrying that the result has been �hanged� by the groupingalgorithm. Thus, the quality of the segmentation is diretly related to the qualityof the �ltering.In a nutshell, the algorithm groups neighboring pixels together if and only iftheir Eulidean distane is within a user de�ned threshold. Note that there is a
3−D and a 5−D variant of this algorithm sine pixel xi is represented by either a
3−D vetor (Si) or a 5−D vetor ([xi,Si]) (Fig. 3.1). In our implementation we53



use an union-�nd data struture to perform the merging so the omplexity of thealgorithm is almost linear on the number of pixels.The biggest problem with this simple grouping method is the �segment di�u-sion� problem, when two quite di�erent segments are merged together beause thereis a single weak (blurry) edge between them (e.g. the louds and the sky are mergedinto a single segment in the �rst images of the top row of Fig. 3.2). In order toredue the impat of this problem we redue the grouping threshold (t in Fig. 3.1,top row) to 0.5.3.2.2 Grouping using Region Adjaeny Graphs (GRAG)This is the grouping method proposed in [35℄ and used in the EDISON segmentationsystem. Coneptually this method is similar to the onneted omponents method(i.e. a hard threshold of t = hr/2 is used), but the use of region adjaeny graphsprodues slightly di�erent segmentation results. We should note that the abovemethods are invariant to the merging order of the pixels.3.2.3 Grouping with an Adaptive Threshold (GAT)Felzenszwalb and Huttenloher in [7℄ present a variation of the onneted omponentalgorithm where an adaptive threshold for merging segments is used. Eah segment
Ci keeps trak of the maximum distane between two pixels belonging to it1(denoted
Int(Ci)) and two segments Ci, Cj are merged only if the minimum distane betweenthe pixels belonging to their ommon boundary is smaller than the internal distane1Only the edges belonging to the minimum spanning tree of the segment are onsidered54



Int(Ci), Int(Cj). The method is desribed in Fig. 3.1. This algorithm is also linearon the number of pixels.In the experiments, unless otherwise noted, we use the values of 0.5, 500 for
σ, k respetively for the grouping parameters. This are the values suggested by theauthors in [7℄.3.3 Segmentation as �ltering+groupingThe notion of segmentation onsisting of a �ltering followed by a grouping step isnot new, but it is underemphasized in the literature. Most image segmentation (i.e.grouping) algorithms operate on the original image, while the �ltering algorithmsare usually applied to the problems of edge preserving smoothing or noise removal.Comaniiu and Meer [11℄ talk about segmentation onsisting of a �ltering and afusion step, but they fous on the �ltering step and they use the simple onnetedomponent algorithm of Fig. 3.1 top left, to obtain the �nal segments. Subsequentwork from the same group [35℄ fouses on how to bring edge information into the�ltering and grouping step, but they still use a similar onneted omponents algo-rithm. Close to our philosophy is the work of Unnikrisnan et al. [40℄ where theyombine the �ltering algorithm of [35℄ with the grouping algorithm of [7℄. Theirfous, thought, is to introdue a new measure alled Normalized Probabilisti Randto ompare the quality of segmentation.One of the main points of this hapter is that both steps are important toobtain good segmentation results. In Fig. 3.2, for example, we present the seg-55



Conneted Components 3D(CC3D)Input:set of pixels xi with intensities Sia grouping threshold tOutput:a set of labels (label li for xi)Algorithm:for all pixels xiassign label lirepeat until onvergenefor all pixels xifor all pixels xjif ||Si − Sj || < t and
xi,xj have di�erent labelsmerge the labels of

xi and xj (li ≡ lj)

Conneted Components 5D(CC5D)Input:set of pixels xi with intensities Sia grouping threshold tOutput:a set of labels (label li for xi)Algorithm:for all pixels xiassign label lirepeat until onvergenefor all pixels xifor all pixels xjif ||[xi,Si]− [xj,Sj ]|| < t and
xi,xj have di�erent labelsmerge the labels of

xi and xj (li ≡ lj)Grouping with an Adaptive Threshold (GAT)Input:An image as a graph G = (V,E) with n verties and m edgesOutput:A segmentation of V into omponents S = (C1, ...Cr)Algorithm:sort E into π = (o1, . . . , om) by non dereasing edge weightin the initial segmentation S0 eah vertex vi is its own segmentfor q = 1, . . . , m onstrut Sq given Sq−1 as followslet vi, vj be the verties onneted by the qth edge oq = (vi, vj)let pixels vi, vj belong to omponents Ci, Cj with
|Ci|, |Cj| number of elements respetivelylet Int(Ci), Int(Cj) be the maximum edge weights of theminimum spanning tree of omponents Ci, Cj respetivelylet eq be the weight of edge oqif vi, vj belong to di�erent omponents Ci, Cj and
eq < min{Int(Ci) + k

|Ci|
, Int(Cj) + k

|Cj |
}merge Ci, Cjreturn S = SmFigure 3.1: The grouping algorithms that we use in the segmentation experiments.56



(a) MF+CC3D (b) CMS+CC3D () LMF+CC3D (d) AD+CC3D
(e) CMS+CC3D (f) CMS+CC5D (g) CMS+GRAG (h) CMS+GATFigure 3.2: On the �rst row we present the segmentation results when we use thesame grouping method (CC3D) oupled with di�erent �ltering methods. On theseond row we present the segmentation results when we use the same �lteringmethod (Color mean shift) followed by a di�erent grouping method.In the imageseah segment is represented by a di�erent olor. The �ltering is performed on theRGB olor spae with an Epanehnikov kernel with spatial and olor resolution

hs = 5, hr = 4 respetively.mentation results we obtained using di�erent ombinations of �ltering and groupingmethods. On the top row we use the same grouping method, namely CC3D, alongwith the four di�erent grouping algorithms. It is lear that depending on the �lter-ing method the sky is merged with the grass or not. On the seond row the �lteringmethod is kept onstant (olor mean shift) while the grouping method hanges. Herethe results signi�antly depend on the method, with the adaptive threshold methodproduing the most intuitive segments. In the next setion we experimentally studythe problem of olor based segmentation by omparing di�erent ombinations of�ltering and grouping algorithms. More spei�ally we ouple eah of the four �l-tering algorithms that we studied above with the four grouping algorithms that weintrodued in the previous setion to obtain a new segmentation method.57



3.4 Segmentation ComparisonThere is little e�ort to lassify image segmentation algorithms and ompare theirharateristis due to two main fators. The multipliity of methods eah havinga number of parameters make the omparison extremely tedious. Moreover, the�right� segmentation is hard to de�ne, sine there are many levels of detail in animage and therefore multiple di�erent meaningful segmentations. S. Paris [5℄ forexample, reates a hierarhial struture of segmentations where starting from alarge number of segments, regions are merged together to reate more oarse seg-mentations. Furthermore, in omplex senes the evaluation of a given segmentationmostly relies on subjetive riteria. Borra and Shankar [3℄, for example, go as far assuggesting that the proper segmentation is task and domain spei�. The di�ultyof formally de�ning the quality of a segmentation explains the lak of segmentationdatabases for natural images.The most omplete attempt at omparing segmentation algorithms is pre-sented on the Berkeley database and segmentation website [36℄. Here a large set ofimages along with human reated segmentations were made available for segmenta-tion evaluation. This is the testbed we use in this hapter for the evaluation of thedi�erent segmentation methods2. More spei�ally we use the 200 training imagesalong with the 1087 human reated segmentations. Next, we �rst desribe the di�er-ent measures that we use for the omparison, and then we present the segmentationresults.2In Appendix A we also present segmentation results using the Weizmann Institute dataset [8℄.58



3.4.1 Comparison measuresA number of measures have been proposed in the literature in order to ompare twodi�erent segmentations of the same image. In general the segmentation measuresan be lassi�ed in two ategories; region based or boundary based. The �rst groupinludes measures that onsider the overlap of the segments in the two segmenta-tions, while in seond onsists of measures that ount the overlap or the distaneof the boundaries. From the measures that we use, the Global Consisteny Error[36℄, the Variation of Information [38℄,[39℄ and the Probabilisti Rand index [37℄ areregion based; Edge Perentage and Boundary Displaement Error [41℄ are boundarybased.Edge Perentage (EP) This is the simplest measure. We ount the number of seg-mentation boundaries that oinide with the human annotated edges and di-vide by the total number of edges. In simple terms we ompute the perentageof edges that the automati segmentation is able to detet. In order to re-due the edge displaement problem we smooth both the omputer generatedboundary map and the human edge map with a small Normal kernel (3× 3 inthe experiments) and ompute the sum of the pieewise dot produt betweenthe two maps3. This measure is not symmetri. Obviously the higher thevalue the more similar the two segmentations are.Boundary Displaement Error (BDE) This quantity measures the average displae-ment error of the boundary pixels between two segmented images. Partiularly,3As a result the measure is not the edge perentage, so the Y-axis of the graphs should not beinterpreted as suh. Only the relative value for the two methods should be onsidered.59



it de�nes the error of one boundary pixel in one segmentation as the distanebetween the pixel and the losest pixel in the other segmentation. BDE isnot symmetri, thus we use it to measure the average distane of the humansegmentation to the omputer generated one. Intuitively, the lower the BDEvalue the more similar the two segmentations are. A BDE measure of 0 indi-ates that all the boundaries of the human segmentation are overed by theboundaries of the omputer one, but not vie versa.Global Consisteny Error (GCE) This measure alulates the extent to whih onesegmentation an be viewed as a re�nement of the other. Segmentations whihare related in this manner are onsidered to be onsistent, sine they ould rep-resent the same natural image segmented at di�erent sales. More spei�ally,a loal error measure for eah pixel is de�ned as the ardinality of the set di�er-ene between the two segments the pixel belongs to on the two segmentations,divided by the segment size. Then, the Global Consisteny Error is de�ned asthe average loal error measure. This measure is symmetri and the lower thevalue the more similar the two segmentations. The two extreme segmentationases, namely eah pixel belonging to a separate segment and the whole imagebeing a single segment both produe a zero value GCE. Thus, this measureis only suited for omparison of segmentations with approximately the samenumber of segments. In general the GCE range is [0 . . . 1].Variation of Information (VI) This is an information theoreti riterion for ompar-ing two groupings of the same data set. VI measures the amount of information60



lost and gained in hanging from the �rst to the seond lustering. VI is pos-itive, symmetri and obeys the triangle inequality (thus it is a metri on thespae of groupings). Brie�y, VI de�nes the distane between two segmenta-tions as the average onditional entropy of one segmentation given the other,and thus roughly measures the amount of randomness in one segmentationwhih annot be explained by the other. Being a distane metri the mini-mum value of VI is 0 while the maximum depends on the image size. Thelower the value of VI the better the math between the two segmentations.Probabilisti Rand Index (PR) This measure ounts the fration of pairs of pixelswhose labellings are onsistent between the omputed segmentation and theground truth, averaging aross multiple ground truth segmentations to aountfor sale variation in human pereption. PR is a measure of similarity and assuh a value of 0 indiates no similarity, while a value of 1 indiates the highestsimilarity.3.4.2 Results for varying olor resolution hrTo produe the �rst set of segmentation �gures we only vary the value of the olorresolution hr of the �ltering methods. More spei�ally, we let hr to obtain valuesfrom 0.6 to 20 on inrements of 0.3. We keep the remaining �ltering parametersonstant i.e., the maximum number of iterations for onvergene is set to 20 and theonvergene threshold to 0.1. We also use a spatial resolution of hs = 5, resultingon a 11×11 smoothing window around eah pixel. Furthermore, we utilize onstant61



parameters for the grouping methods. More spei�ally the grouping threshold(parameter t of Fig. 2.4) is set to 1 and 0.5 for the CC5D and CC3D groupingalgorithms respetively. In the ase of GRAG we use the fusion funtion of theEDISON toolbox provided by Christoudias et al.[35℄. We use the exellent C++ode provided by Felzenszwalb and Huttenloher [7℄ with parameters σ = 0.5 and
k = 500 as suggested in their paper to implement the grouping with the adaptivethreshold (GAD). In all the grouping methods the minimum number of pixels perregion in set to 1.We omputed the omparison measures for eah image of the database andfurther aggregated the results for the whole database using the median value4. Thesevalues are plotted on the Y-axis of eah �gure. On the X-axis we plot the averagesegment size, instead of the olor resolution hr. Thus all the plots below show theimpliit urve of one omparison measure with respet to the average segment size.The motivation behind this hoie is the following; a major goal of a segmentationalgorithm is to reate as large segments as possible without merging areas belongingto di�erent objets. Some of the measures above (i.e. Edge Perentage, BoundaryDisplaement Error and Global Consisteny Error) produe degenerate (and perfet)results when eah pixel belongs to its own segment. Thus only those measures inonjuntion with the segment size indiate whether a segmentation is good anduseful or not. For the omputation of the Boundary Displaement Error, the GlobalConsisteny Error, the Variation of Information and the Probabilisti Rand Index4Sine the omparison measures vary signi�antly for di�erent images we hoose the medianvalue as opposed to the mean value beause it is more robust to outliers.62



we use the ode provided by J. Wright and A. Yang [42℄.In the �ltering experiments (Se. 2.4) we observed that the seletion of theolor spae and the �ltering kernel greatly a�ets the amount of smoothing per-formed for a given olor resolution. Hene, for the segmentation experiments wehoose to perform the �ltering over an extended range of olor resolution. As aresult, depending on the olor spae and kernel funtion, di�erent ranges of olorresolutions lead to oversegmentations and undersegmentations. We want to omparethe �reasonable� segmentations, thus in the �gures below we limit the maximum av-erage segment size to 200, 500 or 1000 pixels (depending on the olor spae andkernel funtion used). Values above the orresponding threshold in eah ase learlyindiate a heavily undersegmented image (i.e. onsisting of too few segments), asthe value of all the measures verify.In the previous setions we presented 4 di�erent grouping methods and 4di�erent �ltering methods. Considering that �ltering an be performed in eitherRGB or Luv olor spae with Epanehnikov or Normal kernel, the total number ofombinations is 2×2×4×4 = 64. Sine, presenting the results of all 64 variations ina single graph would result in illegible �gures, initially we group together the resultsfor a spei� seletion of olor spae and kernel funtion and present these resultson a single �gure. Moreover, we produe a single graph for eah of the 5 measuresfor a total of 20 �gures.While dividing the total number of urves by 4 simpli�es the display, stillplotting 16 urves on the same �gure is hard. Instead of introduing a di�erentolor for eah urve we follow the olor onvention of the �ltering graphs. The63



Table 3.1: Color onvention for the segmentation plotsColor of Line CirleBlue Mode Finding (MF) Conneted Components in 3D(CC3D)Green Color Mean Shift (CMS) Conneted Components in 5D(CC5D)Orange Loal Mode Finding(LMF) Grouping using RegionAdjaeny Graphs (GRAG)Brown Anisotropi Di�usion(AD) Grouping with an AdaptiveThreshold (GAT)olor of the line indiates the �ltering method, while the olor inside the pointirles indiates the grouping method that is used. Table 3.1 displays all the olorombinations.
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Figure 3.3: Edge Perentage vs average segment size plots when �ltering is performed in the RGB olor spae with an Epaneh-nikov kernel.
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Figure 3.4: Boundary Displaement Error vs average segment size plots when �ltering is performed in the RGB olor spaewith an Epanehnikov kernel.
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Figure 3.5: Global Consisteny Error vs average segment size plots when �ltering is performed in the RGB olor spae with anEpanehnikov kernel.
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Figure 3.6: Variation of Information vs average segment size plots when �ltering is performed in the RGB olor spae with anEpanehnikov kernel.
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Figure 3.7: Probabilisti Rand Index vs average segment size plots when �ltering is performed in the RGB olor spae with anEpanehnikov kernel.
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Figure 3.8: Edge Perentage vs average segment size plots when �ltering is performed in the RGB olor spae with a Normalkernel.
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Figure 3.9: Boundary Displaement Error vs average segment size plots when �ltering is performed in the RGB olor spaewith a Normal kernel.
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Figure 3.10: Global Consisteny Error vs average segment size plots when �ltering is performed in the RGB olor spae with aNormal kernel.
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Figure 3.11: Variation of Information vs average segment size plots when �ltering is performed in the RGB olor spae with aNormal kernel.
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Figure 3.12: Probabilisti Rand Index vs average segment size plots when �ltering is performed in the RGB olor spae with aNormal kernel.
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Figure 3.13: Edge Perentage vs average segment size plots when �ltering is performed in the Luv olor spae with an Epaneh-nikov kernel.
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Figure 3.14: Boundary Displaement Error vs average segment size plots when �ltering is performed in the Luv olor spaewith an Epanehnikov kernel.
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Figure 3.15: Global Consisteny Error vs average segment size plots when �ltering is performed in the Luv olor spae with anEpanehnikov kernel.
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Figure 3.16: Variation of Information vs average segment size plots when �ltering is performed in the Luv olor spae with anEpanehnikov kernel.
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Figure 3.17: Probabilisti Rand Index vs average segment size plots when �ltering is performed in the Luv olor spae with anEpanehnikov kernel.
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Figure 3.18: Edge Perentage vs average segment size plots when �ltering is performed in the Luv olor spae with a Normalkernel.
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Figure 3.19: Boundary Displaement Error vs average segment size plots when �ltering is performed in the Luv olor spaewith a Normal kernel.
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Figure 3.20: Global Consisteny Error vs average segment size plots when �ltering is performed in the Luv olor spae with aNormal kernel.
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Figure 3.21: Variation of Information vs average segment size plots when �ltering is performed in the Luv olor spae with aNormal kernel.
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Figure 3.22: Probabilisti Rand Index vs average segment size plots when �ltering is performed in the Luv olor spae with aNormal kernel.
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In the �gures above all the plots display the average values over the wholedatabase of segmentations. Before proeeding with the analysis of the results wewant to emphasize that there is a high variability in the results for individual images.The grouping method of the adaptive threshold (GAT) exhibits the lowest inter-image variability no matter whih �ltering method it is oupled with. All the othergrouping methods are highly sensitive on the image to be segmented. The sameobservation was mentioned by Unnikrishnan et al. in [40℄ where they omparedComaniiu and Meer mean shift method against the segmentation based on GAT.All the segmentation methods based on GAT grouping are non monotoni.While all other segmentation methods produe urves that are either pieewisemonotonially dereasing or inreasing (depending on the measure), the urves ofGAT methods manifest an unpreditable non monotoni behavior. This is best dis-played in Figs. 3.17, 3.22. The urve for the LMF+GAT method, for example, inFig. 3.22 not only is non dereasing, indiating that suessive values of the olorbandwidth might produe either better or worse results, but also it might lead tosmaller or larger average segment sizes. The ause of this behavior is the adaptivethreshold used for grouping. It is well doumented that the merging of two regionsin GAT grouping is deided based on the inter-region and intra-region edge distri-bution. Sine anisotropi �ltering smooths some edges while keeps other intat, ifthe inter region edges between two regions are smoothed more that the intra-regionedges, then GAT will merge the two regions. In the opposite ase, GAT will notmerge the two regions. Thus, the overall segmentation is not guaranteed to be�onsistent� for suessive �ltering values.85



On average the segmentation methods based on GAT grouping outperform allthe other segmentation methods. More spei�ally, they display the most similaritywith the human segmentations while the average segment size is larger than theother segmentation methods. For example, all the GAT based methods in Fig. 3.17form a luster with signi�antly larger Probabilisti Rand Index values that the restof the methods. Still, it is not lear whih ombination of �ltering method shouldbe used with the GAT algorithm to obtain the best results. We will investigate thistopi further in the next setion.On average the segmentation methods based on GAT grouping exhibit theleast variation of the average segment size i.e., in a sense they are the most stableto olor resolution hanges. For �ltering in Luv olor spae with an Epanehnikovkernel, for example, all the other methods produe average segments varying from 2to ∼ 400 pixels, while GAT methods give results from ∼ 140 to ∼ 270 pixels. Thisis related to the use of the onstant value k = 500 for the GAT algorithm.The segmentation methods based on CC3D and CC5D grouping exhibit verysimilar performane, with the CC3D ones produing slightly better segmentationresults. This indiates that there is an advantage performing the grouping in theolor dimensions only, opposed to the ase of �ltering where 5D �ltering gives betterresults. The GRAG based methods in some settings (i.e., olor spae and kernelfuntion ombinations) outperform the CC3D and CC5D methods, while in othersettings perform equally well or even worse.The Global Consisteny Error (GCE) graphs prove one more what is theoret-ially predited i.e., this measure only makes sense when the number of segments in86



the human and omputer segmentation is omparable. In our setting this require-ment is only satis�ed for a small range of olor segmentations, hene these graphsare misleading. That is why we obtain a value lose to 0 for very small and verylarge olor resolutions.The graphs of the Variation of Information (VI) measure are the least dis-riminative, beause all the plots onverge very rapidly to a value of ∼ 3. In thesubsequent omparisons we will not use the Variation of Information (VI), EdgePerentage (EP) and Global Consisteny Error (GCE) graphs.The graphs of the Probabilisti Rand Index (PR) and Boundary DisplaementError (BDE) measures are the most disriminative. So in the next setions we willuse these for omparing the di�erent segmentation methods.Color Mean Shift (CMS) based segmentation methods outperform all the other�ltering methods when oupled with the same grouping methods. This indiates thatthe better �ltering results produes by CMS lead to better segmentation results.We previously mentioned (Se. 2.4) that �ltering in Luv olor spae produessmoother images, for a given olor resolution, ompared to �ltering in RGB. As aonsequene the average segment size is an order of magnitude larger as a arefulexamination of the X axis of the plots reveals. The kernel seletion also a�ets theaverage segment size. Use of a Normal kernel leads to larger segments ompared toEpanehnikov kernel, as expeted.
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(a) RGB, Epanehnikov (b) RGB, Normal

() Luv, Epanehnikov (d) Luv, NormalFigure 3.23: In red and green, we plot the average segment size as a funtion of thesegmentation parameter k in the ase of GAT or olor resolution hr in the ase ofCC3D, respetively.3.4.3 Adjusting the threshold parameter (k) of the GAT grouping methodSo far we used the Grouping with an Adaptive Threshold method of Felzenszwalband Huttenloher [7℄ with a �xed value for the threshold parameter k = 500. As weshowed in the previous setion this leads to small variability in the average segmentsize not matter how muh we smooth the image in advane. In this setion weexplore the idea of hanging the grouping parameter k aording to the �lteringvalue. 88



First, in Fig. 3.23 we plot the average segment size with respet to the valueof k. In the same graphs we display the average segment size obtained with aombination of CMS and CC3D methods for di�erent values of olor resolution andfor di�erent olor spae and kernel funtion settings. All the results are omputedfor the whole database of images. As we observe in the plots, the average segmentsize inrease is muh smoother for the GAT method ompared to all the othersegmentation methods, espeially these that perform the �ltering in the Luv olorspae.In Figs. 3.24, 3.25 we display the impliit BDE and Rand Index values for theGAT method with respet to the average segment size, respetively. We omparethe results with the CMS+CC3D segmentation method for di�erent olor spae andkernel ombinations. One an easily verify that the GAT method performs slightlyworse, under the BDE measure, than the CMS+CC3D method, if the �ltering isperformed in the Luv olor spae with a Normal kernel. Considering the PR mea-sure, the GAT method performs worse for small values of average segment size, butoutperforms the CMS+CC3D method for larger values of average segment size.Depending on the spei� image and appliation, a di�erent kind of segmen-tation (i.e., di�erent number of segments) is desirable. For example, state of the artstereo algorithms [1℄, [2℄ initially perform a olor-based segmentation of the imageinto regions with (hopefully) onsistent disparities. In order to minimize the riskof grouping pixels belonging to di�erent objets together, they perform an over-segmentation into many small segments. Shape-based objet reognition, on theother hand, requires a oarser segmentation of the image; one where all the internal89



Figure 3.24: Boundary Displaement Error vs average segment size plots for the Color Mean Shift (CMS) and ConnetedComponent in 3D (CC3D) ombination and the GAT only segmentation methods.
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Figure 3.25: Probabilisti RAND vs average segment size plots for the Color Mean Shift (CMS) and Conneted Component in3D (CC3D) ombination and the GAT only segmentation methods.
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parts of an objet belong to the same segment. As a onsequene, it is extremelyimportant to have a way to adjust the �granularity� of the segmentation. For all thegrouping methods, but GAT, the olor resolution hr used for �ltering an also beused as a segmentation threshold. As we previously disussed GAT does not use a�hard� threshold; the parameter k is used instead to ontrol the granularity of thesegmentation. From Figs. 3.23, 3.25, we observe that values of k between 170 and
1050 produe the best results, i.e. PR indies of more than 0.8 for a range of averagesegment size from 35 to 100 pixels. Apparently there are many ways to ombine the�ltering parameter hr with the grouping parameter k. In the following experimentswe use a linear relation between hr and k5, namely

k = 45.83 ∗ hr + 142.5. (3.1)In Figs. 3.26, 3.27, 3.28 and 3.29 we ompare the results we obtained with theombination of all the �ltering methods with the GAT grouping method. For theGAT method we display the results we obtained when we used a onstant parameter
k = 500, and when we hanged the grouping parameter aording to Eq. 3.1. Foromparison purposes we also display the results when we used GAT grouping diretlyon the original images (i.e., without any �ltering).

5We obtained the oe�ients of the linear system by solving the system of (k, hr) for values(170, 0.6) and (1050, 19.8). 92



Figure 3.26: BDE vs average segment size plots for the GAT grouping methodpreeeded by the various �ltering methods or not. We display the results for whenwe use a variable and a onstant (k = 500) grouping parameter. We also displaythe plot when we use the GAT grouping method without �ltering. In the top andbottom plots the �ltering is performed on the RGB and Luv olor spae with anEpanehnikov kernel respetively. 93



Figure 3.27: BDE vs average segment size plots for the GAT grouping methodpreeeded by the various �ltering methods or not. We display the results for whenwe use a variable and a onstant (k = 500) grouping parameter. We also displaythe plot when we use the GAT grouping method without �ltering. In the top andbottom plots the �ltering is performed on the RGB and Luv olor spae with aNormal kernel respetively. 94



Figure 3.28: PR vs average segment size plots for the GAT grouping method pre-eeded by the various �ltering methods or not. We display the results for whenwe use a variable and a onstant (k = 500) grouping parameter. We also displaythe plot when we use the GAT grouping method without �ltering. In the top andbottom plots the �ltering is performed on the RGB and Luv olor spae with anEpanehnikov kernel respetively. 95



Figure 3.29: PR vs average segment size plots for the GAT grouping method pre-eeded by the various �ltering methods or not. We display the results for when weuse a variable and a onstant (k = 500) grouping parameter. We also display theplot when we use the GAT grouping method without �ltering. In the top and bot-tom plots the �ltering is performed on the RGB and Luv olor spae with a Normalkernel respetively. 96



The �rst thing to notie is that the plots of the �ltering+GAT grouping witha variable grouping parameter k are more �spread out� on the X-axis, meaning thatthey present more variability on the average segment size. This is expeted sine
k diretly a�ets the granularity of the segmentation. What is also expeted isthat �ltering (in the Luv olor spae)+GAT grouping plots leads to larger segmentsizes, ompared to GAT segmentations without �ltering. When the �ltering wasperformed on the RGB olor spae there was little di�erene on the image size.The seond and most important observation from these �gures is that ModeFinding oupled with GAT grouping with a variable k outperforms all other ombi-nations. The seond best ombination is Loal Mode Filtering with GAT groupingwith a variable k, while both the Color Mean Shift and the Anisotropi Di�usionmethods perform slightly worse. In the ase of GAT grouping with a onstant
k = 500 all the �ltering methods performed equally bad. Finally the GAT groupingwith varying k without any �ltering onsistently performs worse than when we useLMF or MF �ltering.At a �rst glane, the outome of these experiments might seem ontraditing;the less �ltering one performs the better the results are, while no �ltering at all stillgives bad results. There is a very intuitive explanation of this phenomenon, though,if the details of the grouping algorithm are onsidered. GAT adjusts the thresholdfor merging regions based on the inter-region and intra-region variability. As weshowed in Se 2.4.3 CMS and AD �ltering methods produe muh more uniformregions, ompared to MF and LMF. As a onsequene there is little intra-regionvariability and the merging proess is disrupted.97



The previous graphs makes one wonder how the segmentation results wouldbe if we use Bilateral Filtering (BF) instead of MF or LMF. In essene, BilateralFiltering is equivalent to LMF with the maximum number of iterations for theoptimization problem limited to 1. The next �gures show the results of BF oupledwith GAT (with varying k).
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Figure 3.30: BDE vs average segment size plots for Bilateral Filtering+GAT withvarying k. For omparison we also present the results of MF+GAT, AD+GAT andGAT only. In the top and bottom plot the �ltering is performed on the RGB andLuv olor spae respetively. In all the methods an Epanehnikov kernel is used.
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Figure 3.31: BDE vs average segment size plots for Bilateral Filtering+GAT withvarying k. For omparison we also present the results of MF+GAT, AD+GAT andGAT only. In the top and bottom plot the �ltering is performed on the RGB andLuv olor spae respetively. In all the methods a Normal kernel is used.
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Figure 3.32: PR vs average segment size plots for Bilateral Filtering+GAT withvarying k. For omparison we also present the results of MF+GAT, AD+GAT andGAT only. In the top and bottom plot the �ltering is performed on the RGB andLuv olor spae respetively. In all the methods an Epanehnikov kernel is used.
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Figure 3.33: PR vs average segment size plots for Bilateral Filtering+GAT withvarying k. For omparison we also present the results of MF+GAT, AD+GAT andGAT only. In the top and bottom plot the �ltering is performed on the RGB andLuv olor spae respetively. In all the methods a Normal kernel is used.
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In most ases BF performs slightly worse than MF and better than LMF.Espeially when the �ltering is performed on Luv with a Normal kernel, BF isequally good (or better) than MF. Furthermore it is multiple times faster than MF,making it the method of hoie if speed is an issue. It would be interesting, as futurework, to further study the interation between the grouping parameter k and theolor resolution hr of the �ltering methods.3.4.4 Compare segmentations for �ltering+grouping and grouping onlymethodsIn the previous setion we presented the results obtained with the GAT method onlyand ompared them to the ones when the images are �ltered �rst. In this setionwe present the results of grouping with and without �ltering for the remainingthree methods. In order to improve the quality of the �gures we omit the plotsfor the anisotropi di�usion and loal mode �ltering methods. Still the number ofombinations of �ltering and grouping methods is too high (24) to display in a singleplot. We reate a �gure for eah ombination of the olor spae and kernel funtionwe use for �ltering.It is lear from these �gures (and the ones on the previous setion) that thegrouping methods alone perform muh worse than the ombinations of �ltering andgrouping methods. Thus, our laim that segmentation should be onsidered as theoupling of a �ltering method with a grouping method is experimentally proved.
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Figure 3.34: BDE vs average segment size plots for grouping only methods and �ltering+grouping methods. In these plots the�ltering is performed in the RGB olor spae with an Epanehnikov kernel.
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Figure 3.35: PR vs average segment size plots for grouping only methods and �ltering+grouping methods. In these plots the�ltering is performed in the RGB olor spae with an Epanehnikov kernel.
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Figure 3.36: BDE vs average segment size plots for grouping only methods and �ltering+grouping methods. In these plots the�ltering is performed in the RGB olor spae with a Normal kernel.
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Figure 3.37: PR vs average segment size plots for grouping only methods and �ltering+grouping methods. In these plots the�ltering is performed in the RGB olor spae with a Gaussian kernel.
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Figure 3.38: BDE vs average segment size plots for grouping only methods and �ltering+grouping methods. In these plots the�ltering is performed in the Luv olor spae with an Epanehnikov kernel.
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Figure 3.39: PR vs average segment size plots for grouping only methods and �ltering+grouping methods. In these plots the�ltering is performed in the Luv olor spae with an Epanehnikov kernel.
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Figure 3.40: BDE vs average segment size plots for grouping only methods and �ltering+grouping methods. In these plots the�ltering is performed in the Luv olor spae with a Normal kernel.
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Figure 3.41: PR vs average segment size plots for grouping only methods and �ltering+grouping methods. In these plots the�ltering is performed in the Luv olor spae with a Normal kernel.
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3.4.5 Compare segmentations for di�erent olor spaes and kernel fun-tionsThus far, almost all the graphs presented the results of various �ltering and group-ing methods for a spei� olor spae and kernel funtion. Only Figs. 3.24, 3.25presented a omparison of a single �ltering and grouping method (namely CMS andCC3D) for di�erent olor spaes and kernel funtions. In this setion we try to ad-dress the question whih olor spae and kernel funtion produes the best segmen-tation results. We only onsider three methods (that performed best in the previousexperiments), namely MF+GAT with variable k, CMS+CC3D, MF+CC3D.From Figs 3.42, 3.43 it is lear that the best performing method is the ombina-tion of Mode Finding with Grouping with Adaptive Threshold when we use variable
k. The next best method is Color Mean Shift with CC3D, while Mode Finding withCC3D performs rather poorly. Furthermore, using the Luv olor spae seems to bea better option for performing the �ltering ompared to RGB. Finally, the Normalfuntion produes better results ompared to the Epanehnikov kernel funtion. Thedi�erene in the quality of the segmentation (for di�erent olor spaes and kernelfuntions) is not so great in the ase of GAT �ltering, but it is quite signi�ant whenCC3D is used for grouping.3.4.6 Compare segmentations for di�erent imagesIn all the previous experiments so far, we presented the umulative results for theentire database of the 200 images and the 1087 human reated segmentations. One112



Figure 3.42: BDE vs average segment size plots for three segmentation methods with di�erent olor spaes and kernel funtions.In the legend "G","E" stand for "Gaussian/Normal" and "Epanehnikov" kernel funtions respetively.
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Figure 3.43: PR vs average segment size plots for three segmentation methods with di�erent olor spaes and kernel funtions.In the legend "G","E" stand for "Gaussian/Normal" and "Epanehnikov" kernel funtions respetively.
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desired harateristi of any segmentation algorithm is to perform onsistently wellin a wide range of images. In the previous setion we presented the best segmentationalgorithms aording to the BDE and the PR measures for the whole database ofimages. In this setion we present how these algorithms perform on individualimages of this database. For that purpose we display the results on 10 randomlyseleted images (i.e., 10 segmentations).The �rst thing to observe is that MF+GAT is non monotoni on either axisi.e., the average segment size and the omparison measure (BDE or PR) mightinrease or derease on the next measurement point. As a onsequene the resultsfor all the MF+GAT graphs are quite �haoti�, espeially the results when �lteringis performed on Luv spae with a Normal kernel present a large variation. A arefulstudy of the plots on the di�erent olor spaes and kernel funtions shows thatatually for the same range of average segment sizes �ltering on Luv with a Normalkernel is less �haoti� than the other ombinations.For the other methods (i.e. CMS+CC3D and MF+CC3D) �ltering on Luvspae with a Normal kernel produes less smooth graphs ompared to other olorspaes and kernel funtions ombinations. This is mainly beause the results in thisombination are good up to a higher average segment value and then they degraderapidly.Overall, when segmenting the same image with di�erent segmentation pa-rameters, MF+GAT presents a lower variation in the quality of the segmentation.This means the MF+GAT ombination is less sensitive to the seletion of the seg-mentation parameters. CMS+GAT performs slightly better than MF+GAT in the115



Figure 3.44: BDE and PR vs average segment size plots for individual images ofthe database segmented with the MF+GAT ombination. Filtering is performed inLuv spae with a Normal kernel.
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Figure 3.45: BDE and PR vs average segment size plots for individual images ofthe database segmented with the MF+GAT ombination. Filtering is performed inLuv spae with an Epanehnikov kernel.
117



Figure 3.46: BDE and PR vs average segment size plots for individual images ofthe database segmented with the MF+GAT ombination. Filtering is performed inRGB spae with a Normal kernel.
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Figure 3.47: BDE and PR vs average segment size plots for individual images of thedatabase segmented with the CMS+CC3D ombination. Filtering is performed inLuv spae with a Normal kernel.
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Figure 3.48: BDE and PR vs average segment size plots for individual images of thedatabase segmented with the CMS+CC3D ombination. Filtering is performed inLuv spae with an Epanehnikov kernel.
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Figure 3.49: BDE and PR vs average segment size plots for individual images of thedatabase segmented with the CMS+CC3D ombination. Filtering is performed inRGB spae with a Normal kernel.
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Figure 3.50: BDE and PR vs average segment size plots for individual images ofthe database segmented with the MF+CC3D ombination. Filtering is performedin Luv spae with a Normal kernel.
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Figure 3.51: BDE and PR vs average segment size plots for individual images ofthe database segmented with the MF+CC3D ombination. Filtering is performedin Luv spae with an Epanehnikov kernel.
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Figure 3.52: BDE and PR vs average segment size plots for individual images ofthe database segmented with the MF+CC3D ombination. Filtering is performedin RGB spae with a Normal kernel.
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intra-image segmentation quality.Between di�erent images, MF+GAT also produes the most onsistent resultsin terms of the quality of segmentation. In this ase also, CMS+GAT slightlyoutperforms MF+CC3D.3.5 ConlusionsIn this hapter we presented our position that the problem of olor based segmen-tation should be subdivided into a �ltering and a grouping omponent, and reateda number of new segmentation algorithms by ombining existing (and new) �lter-ing and grouping methods. We evaluated all the methods extensively, using theBerkeley segmentation dataset and made a number of useful observations. Table3.2 synopsizes the results of the experimental omparison for performing edge pre-serving �ltering and olor based segmentation respetively.There are two main results that we want to emphasize here. In all the exper-iments, proessing the image with an edge preserving �lter before using a groupingmethod produed signi�antly better results. Thus it is bene�ial to onsider thesegmentation proess to be a ombination of a �ltering and a grouping step.Seond, depending on the grouping method that is used, a di�erent �lteringproess produes best results. For grouping with a hard threshold (i.e. CC3D,CC5D and GRAG methods) Color Mean Shift �ltering worked best. When groupingwith an adaptive threshold (i.e. GAT method) Mode Finding proved to be the bestmethod. As a onlusion, when onsidering the problem of olor based segmentation,125



one should study the ombination of the �ltering and the grouping method to obtainthe best results. Studying only one omponent in isolation is not su�ient.Our overall omparison showed that for the Berkeley dataset the best methodto use is a ombination of Mode Finding with Grouping with Adaptive Threshold(with variable k). Furthermore the results are better when the �ltering is performedin Luv olor spae with a Normal kernel.There are many interesting diretions for future researh. Next we presentsome of them.As we saw before, the kernel funtion signi�antly a�ets both the �ltering andthe segmentation results. A more systemati study of this relation, espeially whythe Normal kernel funtion produes better results, is an interesting question. Evenmore so, if one an devise other kernel funtions that give even better results. Arelated question is how one an adjust the kernel funtion to onsider the boundaryedge harateristis. Reent work in learning boundary edges (and separating themfrom texture edges) showed promising results, but it is still an open question howkernel density estimation methods an bene�t from suh a learning approah.The previous experiments also proved that di�erent olor spaes ritially af-fet the segmentation result. We tested the Luv and RGB olor spae mainly beausethese are the olor spaes suggested in previous mean shift segmentation papers.This does not exlude the possibility of other olor spaes being more bene�ialto the segmentation of images. We would be surprised if linear transformations(suh as RGB to YUV) would produe signi�antly di�erent results, but there areunlimited possibilities for non-linear transformations.126



Table 3.2: Synopsis of the �ltering results
• All segmentation methods are very sensitive to image variations. The methodsbased on Grouping with an Adaptive Threshold (GAT) are the least sensitive tointer image variation. They also exhibit the least sensitivity to the segmentationparameters (hr, k) when segmenting the same image.
• Segmentation methods based on GAT grouping are not monotoni.
• Segmentation methods based on GAT grouping outperform , on average, all theother segmentation methods.
• Segmentation methods based on GAT grouping are the most stable to olor resolu-tion hanges i.e., exhibit less variation of the average segment size.
• Segmentation methods based on CC3D and CC5D grouping have very similar per-formane, with the CC3D ones produing slightly better segmentation results. TheGRAG methods produe better, same or worse depending on the olor spae andkernel funtion ombination.
• All the graphs of the Global Consisteny Error (GCE) measure are misleading be-ause the two segmentations have di�erent number of segments. GCE graphs aremisleading sine only for a few values for olor resolution the number of segmentson both segmentations is omparable. That's why we obtain a value lose to 0 forvery small and very large olor resolutions.
• The graphs of the Variation of Information (VI) measure are the least disriminative.
• The graphs of the Probabilisti Rand Index (PR) and Boundary Displaement Error(BDE) measures are the most disriminative.
• Segmentations obtained by grouping methods alone have muh lower quality thanthe ones obtained using a ombination of a �ltering and a grouping method.
• Color Mean Shift (CMS) based segmentation methods outperform all the other �l-tering methods when they are ombined with CC3D or CC5D or GRAG groupingmethods.
• When using GAT grouping with varying parameter k Mode Finding (MF) produesthe best results.
• Filtering in Luv produes muh larger segments than �ltering in RGB for a givenolor resolution hr. Filtering with a Normal kernel results in larger segments om-pared to using a Epanehnikov kernel.
• The seletion of the kernel funtion seems to be very important for the segmenta-tion results. More spei�ally, we obtained the best segmentation results when the�ltering was performed with a Normal kernel in the Luv olor spae. The seondbest on�guration is a Normal kernel with an RGB olor spae, while the resultsobtained with an Epanehnikov kernel in either RGB or Luv olor spaes are muhworse. 127



In this thesis we mostly foused on the �ltering part of the segmentationproess. For the grouping part we seleted a few, simple and fast methods. Inthe omputer vision literature there is a large variety of methods that are used forimage lustering. Energy minimizationmethods (e.g. graph uts), eigenvetor basedmethods (e.g. normalized uts) and soft assignment methods based on algebraimultigrid are also legitimate andidates for the grouping part. It is interesting tosee the quality of the segmentation using these lustering methods.Further study is required on the optimal ombination of the �ltering param-eters (namely the olor resolution hr) with the segmentation parameters (e.g. inthe ase of GAT k). Their relation that produes the best segmentation results fordi�erent image sizes is yet to be determined.Finally, in all the experiments we use the impliit plot of the quality measureover the average segment size as an indiation for the quality of the segmentation.Our goal is to use olor segmentation to generate hypotheses for planar surfaes andas suh the larger the segment the better we an verify whether it has a onsistentsurfae normal or not. A wide variety of appliations exist that use olor segmen-tation as a �rst step and in some of them other harateristis (than segment size)might be more important. For example, stereo methods are more worried whethera segment rosses olusion boundaries or not. It would be interesting to see howthe segmentation algorithms that we presented above fare under di�erent measures.
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Chapter 4Combining Cues for Surfae Normal Estimation4.1 IntrodutionIn this hapter we swith our attention from the problem of olor based segmenta-tion to the problem of surfae normal estimation. It is widely aepted that hanges(over multiple frames) on the boundaries and the texture of an image region provideomplimentary information about the shape and the 3D position of the orrespond-ing objet. Thus, ombining methods based on boundary extration with ones ontextured regions results in more robust and aurate estimation. Espeially, for rel-atively simple environments, suh as orridors, it is often the ase that only one typeof ue will be present and thus only one type of method will provide reliable mea-surements. Furthermore, in suh environments the predominant shape of objets isplanar and the objet boundaries are usually lines.Motivated by the above observations, this hapter proposes two methods to es-timate the 3D position of planar objets; the �rst onsiders the hange of the textureand the seond the hange of image lines. More spei�ally, the main ontributionsof the hapter are:
• We present a novel image line onstraint for estimating the 3D orientation ofplanes (Se. 4.3). 129



• We desribe a novel tehnique to ompute the 3D shape from the hange oftexture for planar objets based on harmoni analysis (Se. 4.4).
• We present experimental results on how aurate the two methods performin real indoor environments. The integration of the two methods with theodometry readings from the robot's wheels using an extended Kalman �lter,outperforms the results obtained by eah method in isolation (Se. 4.6).
• We experimentally show that the proposed method allows for navigation inenvironments where little texture is present using a simple motion ontrolpoliy (Se. 4.8).4.1.1 Related WorkThe omputer vision ommunity has long studied the struture from motion (SfM)problem ([43℄,[44℄) and reently foused on large-sale 3D reonstrution (e.g. [45℄).Following the suess of Simultaneous Loalization and Mapping (SLAM) usingrange (espeially laser) sensors ([46℄), the robotis ommunity has migrated theexisting methods to work with data from ameras. Usually, the environment isrepresented with a set of image feature points, whose pose is traked over multipleframes ([47℄). Often, image features are more informative than range data, but theestimation of their 3D position is muh less aurate. Straight lines are ommonin man-made environments and are arguably more reliable features than points,thus they have been used before in struture from motion ([48℄, [49℄) and SLAM([50℄). Our method is about omputing 3D struture information in a simpli�ed SfM130



situation, but very robustly. We use a formulation of line onstraints that separatesslant from distane estimation. Thus, it is di�erent from the ones lassially usedin SfM.On the other end of the spetrum there are methods belonging to the maplessvisual navigation ategory ([51℄), where no prior knowledge about the environmentis assumed and no spatial representation of it, is reated. Most of that work is in-spired by biologial systems. A survey of suh methods implementing the enteringbehavior an be found in [52℄. More spei�ally, systems apable of avoiding wallsand navigating in indoors environments using diret �ow-based visual informationobtained from a single wide-FOV amera faing forwards ([53℄, [54℄, [55℄), multipleameras faing sideways ([56℄, [57℄) or panorami ameras ([58℄), have been imple-mented. Our approah is also di�erent from the aforementioned, beause we �rstestimate an intermediate state of the environment (in terms of surfae normals) andwe use this for navigation.The general method for estimating the streth and shift of a signal using thelog of the magnitude of the Fourier transform, known as Cepstral analysis, was �rstintrodued by Bogert et al. [59℄ and was made widely known by Oppenheim andShafer [60℄. It is ommonly used in speeh proessing [61℄ to separate di�erentparts of the speeh signal.Frequeny based tehniques exploiting the phase shift theorem have been usedin omputer vision for image registration (in onjuntion with the log-polar trans-form of an image), e.g. [62℄, [63℄, [64℄ and optial �ow omputation ([65℄). Phaseorrelation, however, has not been used for shape estimation.131



4.2 Problem Statement and terminologyDue to the ompletely di�erent topi of this hapter we need to rede�ne our notationand terminology. Hene, in this setion we introdue some ommon symbols thatare used in the rest of the hapter and present the problem that we takle in thefollowing three setions. For simpliity and improved readability reasons, all theequations in Se. 4.3,4.4 and 4.5 are expressed in the amera oordinate system(where the images were aquired). In Se. 4.6 and 4.7 we transfer the estimatesin the robot-entri oordinate system (Fig. 4.5). Vetors are denoted with anoverhead arrow and matries with bold letters.We denote with −→T , R the translation and rotation between two frames re-spetively, with −→N = (α, β, γ)T a plane in the 3D world and with −→n =
−→
N

|
−→
N |
, theplane normal. Also −→P = (X, Y, Z)T is a 3D point. When −→P belongs to −→N then

−→
P · −→N = 1⇔ αX + βY + γZ = 1. The image plane is assumed to lie on the plane
I : Z = f , where f is the foal length of the amera. Then, the projetion of −→P on
I is −→p = (x, y, f)T = f

Z
(X, Y, Z)T . The inverse depth at −→P amounts to

1

Z
= α

x

f
+ β

y

f
+ γ (4.1)Given the translation and rotation of the amera between two images we seekto estimate the plane parameters −→N = (α, β, γ)T .
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4.3 Orientation and Distane from linesHere we desribe a onstraint for reovering the orientation of a world plane fromimage lines. The onstraint an be used in two ways: �rst as a multiple viewonstraint, where we use the images of a single line in 3D in two views [66℄; seondas a single view onstraint where we use the images of two parallel lines in 3D inone view.4.3.1 Single Line in Multiple FramesAs shown in Fig. 4.1, onsider two views with amera enters O1 and O2, whihare related by a rotation R and a translation −→T . A 3D line L lies on the planewith surfae normal ~n =
~N

|N |
. L is projeted in the two views as l1 and l2. Let ~lm1be the representation of l1 in the �rst amera oordinate system as a unit vetorperpendiular to the plane through L and O1. Similarly, let ~lm2 be the representationof l2 in the seond amera oordinate system as a unit vetor perpendiular to theplane through L and O2. The two planes perpendiular to ~lm1 and ~lm2 interset in

L1. Expressing this relation in the �rst amera oordinate system, we have
L ‖ ~lm1 ×RT ~lm2, (4.2)and sine ~n is perpendiular to L, we have1The neessary and su�ient ondition for the two planes to be di�erent is that the translation−→

T is not parallel to the line L.
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( ~lm1 ×RT ~lm2) · ~n = 0. (4.3)Pratially, we want to avoid omputing the orrespondene of two lines in twoframes, so we adopt the ontinuous representation of Eq. 4.3 as
(l1 × (l̇1 − ~ω × l1)) · ~n = 0, (4.4)where l1 denotes lm1, ~ω is the angular veloity of the robot and l̇1 is the temporalderivative of the line that an be omputed from the normal �ow.This is the linear equation we use to estimate ~n. Notie, this onstraint (whihintuitively is known as orientation disparity in visual psyhology) allows us to esti-mate the surfae normal (that is the shape) of the plane in view, using only rotationinformation. At this point we should also note that no distane information isenoded to vetor ~n, whih is of unit length.4.3.2 Two or More Lines in the Same FrameWe an use the onstraint in Eq. 4.4 also from one view. Imagine that two viewsare related by a translation only, or similarly onsider two parallel lines in one view.Given two lines l1 and l2 that are projeted from two parallel lines, L1 and L2, inthe 3D sene, we reover the orientation of L1 and L2 using Eq. 4.2 (Fig. 4.2).Assuming L1 and L2 lie on the same wall, whih is perpendiular to the ground,and ~n =

~N
|N |

as its surfae normal, we then reover the surfae normal of the wall134



O1

O2

(a) Line onstraint in multiple viewsFigure 4.1: A single line is projeted to two images from di�erent viewpoints.
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from
( ~lm1 × ~lm2) · ~n = 0. (4.5)If we have more than two lines that are generated by parallel 3D lines, we anaverage results from Eq. 4.5.The onstraints disussed above provide better information than vanishingpoint. From two or more 3D lines, a general plane an be reonstruted. In ourase, the plane is perpendiular to the ground plane, thus the surfae normal anbe desribed by only one parameter, i.e. α

γ
(beause ~N = (α, 0, γ)T ). In general, therobot an move based on the position with respet to the line.

(a) Line onstraint in a single viewFigure 4.2: Two 3D lines, belonging to the same plane, are projeted to two imagelines. 136



4.3.3 Distane estimationAfter we have omputed the slant of the plane, we an also estimate its distane.For this we need the translation T . The distane dL of the line L from the ameraamounts to [67℄
dL =

(l1 ·
−→
T )

(l̇1 + (l1 × ~ω))T (l1 ×
−→
L d)

, (4.6)with −→L d a unit vetor parallel to L, omputed as
−→
L d =

l1 × (l̇1 + l1 × ~ω)

|l1 × (l̇1 + l1 × ω)|
(4.7)and the distane d of the plane from the amera is omputed as

d = dL
−→n · (l1 ×

−→
L d) (4.8)4.3.4 Implementation detailsTo obtain aurate measurements of lines, we modi�ed P. Kovesi's Matlab ode2.The unoptimized Matlab version of the slant estimation ode based on lines runsin ∼ 1.5 seonds per iteration on our test bed (a 1.5 GHz Pentium M laptop with768MB RAM).In Fig. 4.3 we present three representative frames obtained from the frontamera. Note that we did not introdue any arti�ial landmarks, thus only objetsexisting in the environment, like doors and door frames are present. To �nd �good"2http://www.sse.uwa.edu.au/�pk/researh/matlabfns137



lines to trak, we further assume that the longest lines present in the sene are theones on the boundary between the �oor and the walls. Thus, using a thresholdon the line length we are able to remove all other lines. In Figs. 4.6 and 4.7 wepresent the distane and slant estimates whih we obtained using the line onstraintfor a test sequene of 20 frames. We observe that the slant is estimated with goodauray, while the distane estimation is not very aurate.4.4 Harmoni shape from texture for planar surfaes4.4.1 TheoryIn this setion we assume that the amera is parallel, and the wall perpendiular tothe ground. Thus −→N further simpli�es to (α, 0, γ)T and Eq. 4.1 beomes
1

Z
= α

x

f
+ γ (4.9)Consider that we aquire two images I1 and I2 and that we know (from the odometryreadings) the translation −→T = (Tx, 0, Tz)

T and rotation R relating I1 and I2. The
(a) First image (b) Seond image () Third imageFigure 4.3: Three frames of our line testing sequene, with the deteted lines drawnin yellow olor. In all ases the lines are well loalized.138



Algorithm 4.1 Math Epipolar LinesInput:
p : Image point in �rst image
T,R : Translation/Rotation
K : Camera matrix
D : Referene distane, randomly hosenOutput:
[p1, p2] : Set of orresponding points in �rst and seond image along the epipolarlinesAlgorithm:Compute Essential Matrix : E = [T ]xRCompute Fundamental Matrix : F = K−TEK−1Compute Epipolar Line in Seond Image : l2 = FpCompute Corresponding Epipolar line in �rst image using D�rst step is to loate orresponding epipolar lines on the two images (Fig. 4.4) usingthe proedure desribed in Alg. 4.1.

Figure 4.4: The epipolar lines for two frames. The translation vetor is T =
[−0.011 0 0.011]T meters and there was no rotation.Interpolating the image intensity values along the epipolar lines, it is possibleto retify the two images, thus obtaining images IR1 and IR2 , where the epipolar linesare ollinear and parallel to the horizontal axis

∀x, y IR2 (x, y) = IR1 (x+
T ′

Z
, y) (4.10)139



where the new translation vetor is T ′ =
√

T 2
x + T 2

z and the new plane parame-ters are (α′, 0, γ′)T = RRECT (α, 0, γ)T with RRECT being the reti�ation (rotation)matrix.Combining Eqs. 4.9 and 4.10 and dropping for simpliity the prime notationwe obtain
∀x, y IR2 (x, y) = IR1 ((1 + αT )x+ γT, y), (4.11)Table 4.1: Phase Correlation Conept

• Let 2D signals s1 and s2 be related by a translation (x0, y0) only, i.e.
s2(x, y) = s1(x− x0, y − y0)

• Their orresponding Fourier transforms are related by a phase shift whihenodes the translation, i.e.
S2(u, v) = e−2πi(ux0+vy0)S1(u, v)

• The phase shift an be extrated from the Normalized Cross-power Spetrumof the two signals, whih is de�ned as
NCS =

S1(u, v)S∗
2(u, v)

|S1(u, v)S∗
2(u, v)|

= e2πi(ux0+vy0)

• Thus, the inverse Fourier transform of NCS is a delta funtion around thetranslation point (−x0,−y0)
F−1{NCS}(x, y) = δ(x+ x0, y + y0)We an estimate α and γ using phase orrelation (Table 4.1) between thesignals along the set of two epipolar lines in two steps [52℄. First, we estimate αusing phase orrelation on the magnitude of the Fourier transform of the two signalsin logarithmi oordinates (Eq. 4.16). Then, we warp the signals, using the estimate140



for α, so that only the translation omponent is present. Finally, we estimate γ usingphase orrelation on the warped signals (Eq. 4.18). The omplete algorithm alongwith the equations are presented in Alg. 4.2.While the algorithm presented here, solves for two (α, γ) of the three planeparameters, it is possible to obtain all three parameters by performing a geometritransformation on the variables and exploiting 2D phase orrelation.4.4.2 Implementation detailsIn Figs. 4.6 and 4.7 we present the results of applying this method to a series ofimages obtained by the left side amera of our robot. In this experiment, we used 81epipolar lines. The red rosses denote the distane and slant estimates for eah pairof frames. While slant estimation is quite aurate, still the line method providedsuperior results. On the other hand, this method outperformed both the line basedtehnique and the normal �ow based tehnique (desribed in Setion 4.5) in thedistane estimation.Another advantage of the method is its omputational simpliity. Thus, theunoptimized Matlab ode runs in ∼ 1.5 seonds for an image of 81 × 1024 pixels(i.e., 81 epipolar lines of 1024 pixels eah), with most of the time spent on warpingthe 2 signals in order to ompute Eq. 4.17.
141



Algorithm 4.2 Estimate Plane Parameters α, γInput:
IR1 , I

R
2 : Image signals along Epipolar Lines

T :TranslationOutput:
α, γ : Plane parametersAlgorithm:
• Signals along the epipolar line y

∀x, IR2 (x, y) = IR1 ((1 + αT )x+ γT, y) (4.12)
• Compute the Fourier Transform (IR1 , IR2 ) of IR1 , IR2

Fx,y{IR2 }(u, v) =
e2πi

γT
1+αT

uFx,y{IR1 }( u
1+αT

, v)

|1 + αT | (4.13)
• Consider the Magnitude of IR1 , IR2 and logarithmially transform (u, v)

|IR2 (log u, v)| = |I
R
1 (log u− log(1 + αT ), v)|

|1 + αT | (4.14)
• Compute the Normalized Cross-power Spetrum (NCS1) of |IR1 |, |IR2 |

NCS1(η, w) = e2πiη log(1+αT ) (4.15)
• Compute α taking the Inverse Fourier transform of NCS1

α =
eu−argmax(F

−1{NCS1}) − 1

T
(4.16)

• Take the Normalized Cross-power Spetrum NCS2 of IR1 ( u
1+αT

, v), IR2 (u, v)from Eq. 4.13
NCS2(u, v) = e−2πi γT

1+αT
u (4.17)

• Compute γ
γ = −(1 + αT )argmax(F−1{NCS2})

T
(4.18)

142



4.5 Plane parameters from normal �ow4.5.1 TheoryAs desribed before, −→N = (α, β, γ)T denotes a plane in the 3D world and −→P =

(X, Y, Z)T a point on that plane (−→P ·−→N = 1) and Eq. 4.1 is valid. When the ameramoves with instantaneous rotational veloity −→Ω = (Ωx,Ωy,Ωz)
T and translationalveloity −→t = (tx, ty, tz)

T the relative motion of the point is V (
−→
P ) = −−→t −−→Ω ×−→P .The orresponding motion of the image point −→p is









dx
dt

dy
dt









=
1

Z









tzx− txf

tzy − tyf









+ (4.19)








Ωzy − Ωyf + Ωxxy−Ωyx2

f

−Ωzx+ Ωxf + −Ωyxy+Ωxy2

f









. (4.20)Substituting equations (4.1) and (4.20) into the image brightness onsisteny on-straint
∂I

∂x
· dx
dt

+
∂I

∂y
· dy
dt

+
∂I

∂t
= 0, (4.21)we obtain an equation bilinear in the motion parameters and the plane parameters.Note that I(x, y, t) represents the image intensity at point (x, y) and time t. In ourase we have restrited motion (i.e. Ωx = Ωz = 0 and ty = 0), so we an further
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simplify the equation
A(x y f)(α β γ)T = B ,where
A = Ix

f
(xtz − ftx) + Iy

f
ytz,

B = IxfΩy + Ωy

f
(Ixx

2 + Iyxy)− It

. (4.22)
Aording to Eq. 4.22, knowing the motion parameters, the amera intrinsiparameters (i.e., foal length and prinipal point) and the image intensity deriva-tives, plane estimation amounts to solving a linear system of equations for theparameters (α, β, γ).4.5.2 ImplementationTo alulate the normal �ow we used the gradient based method of Luas andKanade ([68℄) using the �ltering and di�erentiation kernels proposed by Simonelli([69℄) on 5 onseutive frames. For performane reasons, we �rst redued the size ofthe image by one quarter, so we are omputing the gradients on a 256× 192 array(as opposed to the whole 1024 × 768 original images). The image size redutionhas the additional advantage of reduing the pixel displaement between suessiveframes, thus resulting in more aurate results for plane estimation. The unopti-mized Matlab version of the ode runs in ∼ 0.4 seonds on our testbed, with mostof the time spent in omputing the spatial and temporal gradients.In Figs. 4.6 and 4.7 we also display the results of running the normal �owbased plane estimation algorithm in the same test sequene used for the previous144



methods. It is lear that this method is less aurate in distane and slant estimationompared to the texture and the line method, respetively for that spei� imagesequene. This is due to the lak of good image features to trak in our environment.4.6 Extended Kalman FilterIntegration of the individual measurements over time is performed using an ex-tended Kalman �lter (EKF). First, let us de�ne a robot-entri oordinate system
ORXRYRZR as follows (Fig. 4.5); the enter OR oinides with the midpoint of thetwo front wheels of the robot, the XR axis points to the left wheel of the robot, the
YR axis points upwards and the ZR axis forward.As state variables for the Kalman �lter we use the distane/slant/tilt parametriza-tion of the plane, S(t) = [d, θ, φ]T . If we denote −→n XZ the projetion of −→n on the
Y = 0 plane, then we de�ne the slant θ to be the angle between the ZR axis and
−→n XZ , as shown in Fig. 4.5. Tilt φ is the angle between the Y omponent of n andthe XZ plane. Thus the transformation between the two di�erent parametrizationis

















d = 1√
α2+β2+γ2

θ = arctan (α
γ
)

φ = arccos (β
d
)















Assuming that the ontrol vetor U(t) onsists of the instantaneous transla-tional and rotational veloities of the robot (v(t), ω(t)) respetively and ∆t denotesa time interval, the evolution of the system over time an be desribed as145



d

Wall

PSfrag replaements
θ

θ

XR

XR

YR

ZR

ZR

φ
nXZ

n

n

XL

ZL

(a) Robot SkethFigure 4.5: The distane and angle θ between the robot and the wall are de�nedwith respet to a oordinate system attahed to the robot. The surfae normalprojeted on the X − Z plane (nXZ) is also displayed.
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S(t+ ∆t) = F(S(t),U(t))⇔
















d(t+ ∆t) = d(t) + v(t) cos θ(t)∆t+ ǫ11

θ(t+ ∆t) = θ(t)− ω(t)∆t+ ǫ12

φ(t+ ∆t) = φ(t) + ǫ13

















, (4.23)
where we use the assumption that cos θ(t) ≃ cos θ(t+ ∆t), i.e. the rotational ve-loity ω(t) is small and approximately onstant over ∆t and the disretization step
∆t is also small. Furthermore, we denote with ǫ1i the errors in the state predition(with ovariane Q).Our measurement vetors (Z1, Z2, Z3) onsist of the plane parameters alu-lated using the di�erent methods desribed in Setions 4.3, 4.4 and 4.5 respetively,onverted to the distane/slant/tilt parametrization. We onsider the ombinedmeasurement to be a weighted linear ombination of the individual measurementsi.e., Z(t) =

∑3
i=1CiZi, where the weights Ci enode the (inverse) unertainty of theestimates using di�erent methods, whih we derived as follows.The line module bases the auray of the plane estimation on how well itdetets and loalizes the line. The harmoni texture module is using the magnitudeof the Inverse Fourier transform of the Normalized Cross-power Spetrum (Eqs.4.16, 4.18) and the normal �ow module is using the ondition number of the linearsystem (Eq. 4.22).The system evolution (Eq. 4.23) is not linear with respet to the state vetor

S(t) and the ontrol vetor U(t). That's why we need to use an extended Kalman147



�lter and linearize the equations by onsidering the Jaobian matrix as shown inTable 4.2. Table 4.2: extended Kalman Filter EquationsJaobian of system evolution with respet to the state vetor S(t)

A(t) =





1 −v(t) sin θ(t)∆t 0
0 1 0
0 0 1



 (4.24)Jaobian of system evolution with respet to the ontrol vetor U(t)

W(t) =





cos θ(t)∆t 0 v(t) cos θ(t)
0 −∆t −ω(t)
0 0 0



 (4.25)State predition equations (Mean Ŝ and Covariane P̂)




d̂(t+ ∆t) = d̄(t) + v̄(t) cos θ̄(t)∆̄t

θ̂(t+ ∆t) = θ̄(t)− ω̄(t)∆̄t

φ̂(t+ ∆t) = φ̄(t)



 . (4.26)
P̂(t+ ∆t) = A(t)P̄(t)A(t)T + W(t)Q(t)W(t)T (4.27)Kalman Gain K

Ki(t) = P̂(t)(P̂(t) + R(t))−1 (4.28)Measurement update equations (Mean S̄ and Covariane P̄)
S̄(t+ ∆t) = Ŝ(t+ ∆t) + K(t)(Z(t+ ∆t)− Ŝ(t+ ∆t)) (4.29)

P̄(t+ ∆t) = (I−K(t))P̂(t+ ∆t) (4.30)
4.6.1 ResultsFigs. 4.6 and 4.7 depit the results when we ombined the line, texture and normal�ow methods, respetively with the odometry measurements using the EKF. Morespei�ally, in these �gures, blak irles denote the predition about the urrent148



state using only the previous state and dead rekoning information (Eq. 4.26), whileblue pluses denote the �nal predition of the state after the measurements fromeah individual module are also onsidered (Eq. 4.29). It is lear that integration ofmeasurements over time signi�antly improves the auray and robustness of themethod.4.7 Motion ControlAn important part of any navigation system is the motion ontrol subsystem. Inthis partiular setting the goal is to move along the orridor avoiding the obstalesthat might lie ahead of us. The motion ontrol strategy desribed below refersto the �wall-following" behavior. Using the same poliy one ould implement the�entering" behavior.Let's de�ne the input to the motion ontrol algorithm to be the state vetorof the Kalman �lter, that denotes the position of the left wall with respet to therobot. Ideally, we want the robot to remain at a onstant distane (denoted with
DC) from the wall, thus following the line LC as shown in Fig. 4.8. In pratie, therobot's trajetory is restrited by motion dynamis as well as the onstraint thatthe rotational and translational veloities should remain onstant, while the amerais reording the frames. As a onsequene, the system is only allowed to performsmall motion hanges between two suessive frames, thus it is hard to follow thevirtual line. Instead, a point P along the line LC is piked and the robot's motionis regulated aordingly, so that it approahes P. Next we desribe how to do this.149
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Let's assume that point P is yP meters away from the robot along the line LCand forms an angle ψ as shown in Fig. 4.8. Furthermore, the robot is situated xPunits away from LC and is moving with instantaneous translational and rotationalspeed v(t), ω(t) respetively. Note that the translational veloity is always along thediretion of the Z-axis of the robot and the rotational veloity is around the Y -axis.Then, we have:
ψ = arctan(

yP
xP

) (4.31)
ξ = θ − π − ψ (4.32)The line segment LRP has length D =

√

x2
P + y2

P . An approximation of the time

Figure 4.8: The robot R is moving with translational and rotational veloities
v(t), ω(t) respetively, while it is loated xP units away from the virtual line LC .
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that is required by the robot to reah point P is ∆t = D
v(t)

. The new rotationalveloity (ω(t+ ∆t)) of the robot should be:
ω(t+ ∆t) =

ξ

∆t
= v(t)

θ − π − arctan yP

xP
√

x2
P + y2

P

(4.33)4.8 ExperimentsWe have used the roboti platform ER1 from Evolution Robotis. On top of it, wehave plaed a front and two side Firewire ameras (SONY XCD-X700). The sideameras form angles (∼ 45o,∼ −45o) with the front amera as shown in Fig. 4.9.In the following experiments we used the left side amera and the front amera. Werun the texture based as well as the normal �ow based ode on the left side ameraand the line-based ode on the front amera.The goal of the experiments is to onvey two messages;
• The auray and robustness of the system signi�antly inreases with theintegration of individual measurements from di�erent subsystems over time.
• When using all the methods the robot is able to move along a mostly texture-less orridor.4.8.1 Constant Distane ExperimentThe goal of this �rst experiment was for the robot to move a distane of 20 metersalong a orridor without hitting the side walls. The orridor had a width of 1.8 me-ters, so we instruted the robot to try to maintain a distane of 0.9 meters from the153



(a) Photo of robotFigure 4.9: The ER1 robot equipped with 3 Firewire ameras. The height of therobot is ∼ 70 m. In the bakground, part of the orridor, where we ondutedsome experiments, is shown. All the walls and doors are textureless and there existsigni�ant speular highlights on both the walls and the �oor aused by the lightsoures.
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left, while moving with veloity 5 m/se. The initial orientation of the robot withrespet to the wall varied from 0o (parallel to the wall) to −20o (moving away fromthe left wall) and +20o (moving towards the wall). We made multiple runs eahtime ativating a di�erent submodule with and without integrating the measure-ments with dead rekoning using the EKF. Finally, we performed the experimentusing all the submodules together. The results are presented in Fig. 4.10. It is learthat eah individual module in isolation performs poorly (with the exeption of theline module). Integrating the measurements of a single module over time (usingthe EKF) greatly improves the robustness of the method. Finally, ombining themeasurements from di�erent submodules, provides the most robust setting.
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Figure 4.10: Perentage of times that the robot was able to move than 20 meterswithout hitting the side walls.
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4.8.2 Average Distane ExperimentIn this experiment we let the robot move on the orridor (still trying to maintain adistane of 0.9 meters from the left wall) with veloity 5 m/se, and measured theaverage distane traversed before the hitting the wall. We performed the experimentmultiple times ativating a di�erent module or ombinations of modules. The re-sults, namely the average distane for eah ombination, are presented in Fig. 4.11.Again, we observed that a single module performs very poorly (with the exeptionof the line module), while ombining modules together and integrating the estimatesover time greatly improves the result. When the average distane is larger than 20meters, it indiates that the robot is approahing the end of the orridor and thuswe had to terminate the spei� run.
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4.9 ConlusionsIn this hapter we presented two new methods for omputing the 3D struture ofa piee-wise planar sene from video. We also used an existing method for 3Dshape estimation based on normal �ow. The three methods base their estimationon omplementary information. More spei�ally, while the normal �ow tehniqueonsiders individual features (i.e. sharp intensity hanges) within the objet, thetexture method onsiders the whole area within it. The line method, on the otherhand, uses the boundaries of an objet. Depending on the ase, we expet at leastone of the methods to provide aurate measurements. For example, when weobserve a mostly uniformed olored objet, we antiipate that the line method willbe able to aurately trak the boundary of it and produe aurate results, whilethe remaining two modules will fail. On the other hand, when the objet is highlytextured, the line method might not be able to loate the boundaries aurately, butthe two other methods will produe good results. For that reason, we emphasizethat the integration of all three modules is the right approah, if one wants to builda robust system. For similar reasons, integration of the individual measurementsover time is equally important. In this paper, we use odometry measurements fromthe wheel enoders, but we might as well estimate the motion from the video (visualodometry, also known as ego-motion estimation [70℄,[71℄,[72℄) or using other sensors.We present experiments in the ontext of visual navigation on indoor environmentsand verify that the ombined usage of all three modules produes a more robustsystem. 157



This hapter is omplementary to the previous hapter on olor based seg-mentation in a sense that one basi assumption for estimating the struture is thatwe have solved the segmentation problem and thus we know the boundaries of theplanar surfaes. In order for the robot to navigate in more omplex environments,we need to inorporate a sene segmentation sheme into this framework. In laterhapters we argue how this integration an be performed.
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Chapter 5Towards Surfae Segmentation5.1 IntrodutionIn the previous hapters we foused on olor based image segmentation (hapters2 and 3) and on surfae normal estimation (hapter 4). Both problems onstitutetwo important omponents of a system that performs segmentation into surfaes. Inthis hapter we onlude our thesis by disussing how these two omponents an beombined1. We also touh on the topi of atively ontrolling the image aquisitionproess to failitate the segmentation.We use the term surfae segmentation (or segmentation into surfaes) to de-note the geometry inspired segmentation where adjaent pixels with similar surfaevetors are grouped together. The term surfae vetor is used to denote both thesurfae orientation (i.e. surfae normal) and its distane from the foal point. Inthat de�nition region boundaries are identi�ed as disontinuities in surfae vetors,aused either by a disontinuity in the distane (i.e. olusion) or by a disontinuityin the orientation.We have hosen the above de�nition beause it turns segmentation into awell de�ned problem. Generally, most de�nitions of image segmentation are objet1Sine we are interested in segmentation into surfaes (and not on visual guided navigation asin hapter 4) we hoose to estimate the plane indued homographies of sets of points in two views.This is arguably a relatively �easier� problem than the full 3D reonstrution of a sene.159



Figure 5.1: An image of an o�e hair. Notie that there is a smooth normaltransition from the pixels belonging to the bak of the hair to the pixels belongingto the bottom of it.oriented and thus ambiguous and ill-de�ned. The ambiguity is partially due to thefat that multiple meaningful segmentations exist for the same image at di�erentlevels of details. A person, for example, an onsider a laptop omputer as a singleobjet, or further segment it into the LCD display and the keyboard. Furthersubdivision of the keyboard to its keys is also valid. That is one of the reasons forresearhers to suggest that the proper segmentation is task and domain spei� [3℄.One way to deal with the ambiguity is to aept multiple segmentations as valid.This is the path hosen by Martin et al. [36℄ and Alpert et al. [8℄. When buildingtheir image segmentation database they inluded multiple possible segmentationsof the same image, eah one produed by a di�erent person. The major ause ofthe ambiguity though is that the onept of an �objet� is by itself ill-de�ned andsubjetive. Hene, image regions orresponding to objets are by default subjetiveas well. The use of a well de�ned geometri feature, suh as the surfae vetor,makes the segmentation a better de�ned problem.Unfortunately, the issues assoiated with di�erent segmentations at di�erent160



image resolutions are not eliminated even with that de�nition. It is absolutelynatural and often happens in pratie that the omputation of the surfae normalsat di�erent image resolutions might lead to di�erent segmentations. Borrowing anexample from the introdutory hapter, the surfae normal based segmentation ofthe o�e hair of Fig. 5.1 might lead to two separate segments, one for the bakand one for the bottom of the hair, or to one segment ontaining both the bakand the bottom of the hair, depending on how oarse or �ne is the omputation ofthe surfae vetors.Furthermore, the omputation of the surfae vetors itself is hard and notvery aurate. One needs to hypothesize a model for the surfae of the surroundingarea of a pixel in order to measure its surfae vetor. This fat leads to a hikenand egg problem beause in order to segment based on surfae vetors one needs toassume that the surfae vetors in the surrounding area are similar i.e., to assumethat the surrounding area belongs to the same segment. Apparently this modelbreaks in areas near surfae normal disontinuities. In the following setions weassume that the 3D world onsists of planar pathes and hene, the surfae normalswithin a path are onstant. As we will show below, even in this ase the aurateomputation of the surfae normals is not trivial and in most ases not even possible.The keyword �ative� in this ontext refers to the idea that the amera mo-tion an be ontrolled (up to a ertain degree) by the proess that performs thesegmentation. We motivate the disussion of this problem by the setting of Fig.5.2 where the ameras position and orientation an be hanged in two ways; a) bymoving the whole mobile platform and b) by moving the Pan and Tilt unit. The161



Figure 5.2: Our mobile robot. We used the Errati mobile platform as the basis andinstalled on top a laser and sonar range sensors, a Pan and Tilt unit and a quadstereo system.motion of the whole robot leads to a large translational and rotational motion ofthe ameras (with high unertainty as reported by the wheel enoders). The motionof the PTU, on the other hand, auses small translational and rotational motion tothe ameras that an be estimated with high auray. Overall, the system allowsfor an almost unrestrited ontrol of the ameras position and orientation. In thisase an interesting question is how spei� motions and poses of the amera ansimplify the estimation of surfae vetors and subsequently surfae segmentation.In the following setion we summarize related work on struture from motionand ative vision. Then, we present the related theory on homography estimationfrom two images along with one lemma that an be used to predit the quality ofthis estimation. Se. 5.4 touhes on the problem of merging image regions withsimilar homographies and splitting regions with many outliers. We argue that theolor based segmentation framework that we presented on hapters 2 and 3 an beused to guide the merging and splitting proess. Finally, we brie�y illustrate our162



idea on how an ative amera ontrol system an be onstruted.5.2 Related WorkThe struture from motion problem is a prominent researh area in omputer visionand as suh has been studied extensively. In the most ommon formulation the goalis to ompute the struture of the sene (i.e., the distane of every pixel from thefoal point) and the motion of the amera (or the motion of the sene objets ifthey are moving independently). Sine the early 80's where the existene of thesolution has been established [73, 74, 70, 75℄, a great number of researhers havetried to devise algorithms that work well under realisti situations were noise ispresent. Any omputer vision textbook, suh as [76℄, ontains a desription of thebasi algorithms along with the related bibliography. In the reent years bundleadjustment i.e., a olletion of optimization methods from the photogrammetryand geodesi literature tailored to solve the struture from motion problem, wasimported in omputer vision [77℄. These methods that are used to re�ne an initialestimate for the struture of the sene and the motion of the amera are shownto produe real-time, high quality sene reonstrutions [78℄2. On a parallel traka number of theoretial studies on the struture from motion problem have beenonduted [79, 80, 81, 82, 83, 84, 85℄. Their goal is to understand and desribe theinherent ambiguity in reovering struture and motion, disover the on�gurations2Sine bundle adjustment tehniques optimize over a non onvex domain they su�er from thesame onvergene problems as all other non-onvex methods. Thus, the initial estimate feeded tothe system should be lose to the global minimum, otherwise the methods will onverge to a loalminimum di�erent from the true solution. 163



that makes this reovery ill-onditioned and perform error analyses for di�erenttypes of noisy input.In the following setions we onentrate on a slightly di�erent formulation ofthe problem. Instead of solving for the struture and motion of individual pixelswe assume the image to be pieewise planar and fous on the reovery of the ho-mographies indued by the planar pathes in two views. Methods for omputinghomographies have been extensively overed by Hartley and Zisserman in their book[43℄. Sine then, a number of studies have been performed on how to identify planarpathes on a sene from the homography omputation of individual image featurepoints and merge them together [86, 87, 88, 89, 90, 91, 92, 93℄. With respet toprevious work our proposed approah presented below also takes into aount theresults of olor based segmentation at di�erent levels of detail in order to groupfeature points together. The rational is similar to the one used by state of the artstereo algorithms [94, 1, 2℄; namely olor based segmentation is an additional uethat an be used to guide the grouping of feature points before omputing the ho-mographies. At this point we should mention that a few other problems requirethe omputation of 2D homographies (for a presentation of these problems refer to[43℄) and our ovariane estimation theory (i.e., Lemma 5.2) is atually similar tothe method suggested in [95℄ for measuring the 3D properties of objets from 2Dimages.All the previous approahes follow the �vision as a reovering proess� paradigmof Marr [96℄. In the late 80's a di�erent paradigm under the name of Ative [97, 98℄,Animate [99℄ and Purposive vision [100℄ has been introdued. Under this dotrine,164



image understanding and omputer vision should also study the proess of seletiveaquisition of data in spae and time. More spei�ally, depending on the goal ofthe visual system a proper strategy for ontrolling the image aquisition proess ansigni�antly improve the results of the visual omputation or even make ill-de�nedproblems (e.g. struture from motion) well de�ned. Sine its oneption a seriesof studies following this paradigm have been published, some of them disussingthe visual apabilities that an �intelligent� system should have [101, 102, 103, 104℄,while others fousing on the optimal amera motion strategy for spei� tasks e.g.[105, 106℄. Still, the amount of work following this model is relatively small. Ofourse there are theoretial problems related to designing the proper visual tasksand amera ontrol strategies, but we believe that the main issues holding bak thisparadigm had been of a pratial nature thus far. The image aquisition hardware (mobile platforms, ameras with pan and tilt apabilities, mehanial arms et) waseither too expensive, too sensitive or too bulky to allow the onstrution of a realative visual system. Most importantly the omputers were not fast enough to allowreal time image proessing. In the reent years with the introdution of multioreCPUs and GPUs, this situation has been reversed, so we expet this paradigm togain momentum one more in the next years.5.3 Homography estimation of planar surfaesLet us assume that we an detet a set of n image points belonging to a singleworld plane and trak them over two frames. We denote the homogeneous, image165



oordinates of a point on the �rst and seond frame with xi = (xi, yi, 1)T , x′
i =

(x′i, y
′
i, 1)T respetively. In the remaining hapter we will use the bold notationfor vetors only. All the points belong to the same plane, thus there exist a 3 × 3matrix H , know as homography matrix, that orresponds the oordinates of thepoint in the �rst and seond plane, namely x′ = Hx. The ′ =′ sign here does notdenote equality. The vetors x′ and Hx have the same diretion, but may di�er inmagnitude by a non-zero sale fator. This an be expressed in terms of the vetorross produt as x′ ×Hx = 0. The homography matrix is unique up to a sale andthus has 8 degrees of freedom. Eah point ontributes two equations thus at least

4 points are needed to ompute H . If n > 4, the matrix is overdetermined and His omputed by a suitable minimization sheme. Two are the dominant estimationmethods, the homogeneous solution of minimizing the algebrai distane and thenon-linear solution of minimizing the geometri distane.The �rst method uses the SVD deomposition to solve a homogeneous linearsystem. It has the advantage over the seond method of being fast and onvex(thus the minimization �nds a global minimum). On the other hand, the objetivefuntion is not geometrially meaningful, and thus the result might be bad.The seond method uses an objetive funtion that omputes the sum of theEulidean distanes between the measured and mapped points. This quantity ismeaningful and orresponds to the measurement error. On the other hand, theminimization is not onvex and there is no losed form solution. Thus, iterativemethods should be employed to solve the system. Depending on the initializationthe method an be slow and onverge to a loal minimum. In pratie, the �rst166



method is used �rst to ompute a good initial estimate of H that is further re�nedusing the seond method.In the following analysis we use the �rst method beause it allows us to om-pute the ovariane of the estimated homography H . Here is a brief desriptionof the method. For more details about both methods the interested reader shouldonsult Hartley and Zisserman's book [43℄.First, we write the homography matrix H in vetor form as
h = (h11, h12, h13, h21, h22, h23, h31, h32, h33)

T .With the proper algebrai manipulation of the homography equation x′ ×Hx = 0we get a linear homogeneous equation for the omputation of the homography vetor
Ah = 0, (5.1)where

A = [

0 0 0 x1 y1 1 −y′1x1 −y′1y1 −y′1

x1 y1 1 0 0 0 −x′1x1 −x′1y1 −x′1

−y′1x1 −y′1y1 −y′1 x′1x1 x′1y1 x′1 0 0 0... ... ... ... ... ... ... ... ...
0 0 0 −xn −yn −1 y′nxn y′nyn y′n

xn yn 1 0 0 0 −x′nxn −x′nyn −x′n

−y′nxn −y′nyn −y′n x′nxn x′nyn x′n 0 0 0

]. (5.2)
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In the previous equation the third (and the sixth, the ninth et) row is linearlydependent to the previous two rows so we an skip them and obtain a smallerequivalent matrix
A = [

0 0 0 x1 y1 1 −y′1x1 −y′1y1 −y′1

x1 y1 1 0 0 0 −x′1x1 −x′1y1 −x′1... ... ... ... ... ... ... ... ...
0 0 0 −xn −yn −1 y′nxn y′nyn y′n

xn yn 1 0 0 0 −x′nxn −x′nyn −x′n

]. (5.3)
Eq. 5.1 as an optimization problem is expressed as

arg min
h

||Ah||, s.t. (5.4)
||h|| = 1 (5.5)The onstraint ||h|| = 1 is neessary to avoid the obvious solution h = 0. Weuse the following lemma to solve the problem.Lemma 5.1. The solution to a homogeneous minimization problem arg min

X

||Ah||subjet to ||h|| = 1 is the eigenvetor of the least eigenvalue of ATA.Proof. Refer to [43℄, Appendix 3.The omputation of the homography using the previous lemma is the �rst step.The seond step is to ompute an estimate on how aurate the omputed homogra-phy is. Feature detetion and loalization, point mismathing, spatial quantization168



and amera distortion errors diretly a�et the auray of the homography estima-tion. With the areful alibration of the amera the last error an be minimized.Robust point mathing using RANSAC an solve the problem of point mismath-ing. Still the error in the preise detetion and loalization of the features annot beavoided. These errors in the image oordinates of the points are usually modelledas random variables. Then the question is how these errors a�et the omputationof the homography vetor h.The next lemma provides a way to ompute the ovariane of the estimatedhomography h with respet to the noise in the image oordinates of the detetedfeatures.Lemma 5.2. If we model the error in the loalization of the feature points as in-dependent Gaussian random variables with variane σ2, σ′2 for the features on the�rst and seond frame respetively, the 9 × 9 ovariane matrix of the homographyis
Ch = JSJT (5.6),where

J = [ x1 x2 . . . x9
][

0 0 . . . 0

0 1
λ1−λ2

. . . 0... ... . . . ...
0 0 . . . 1

λ1−λ9

][

xT1

xT2...
xT9

] (5.7)
,with xi the eigenvetor orresponding to the ith smaller eigenvalue λi of matrix169



ATA. Matrix S is
S =

n
∑

i=1

(rT2ir2if
e
i + rT2i−1r2i−1f

o
i + rT2ir2i−1f

eo
i + rT2i−1r2if

oe
i ) (5.8)with ri the ith row of matrix A and

f ei = σ2[h2
1 + h2

2 − 2x′i(h1h7 + h2h8)] + 2σ′2(xih7h9 + xiyih7h8 + yih8h9)

+(σ2x
′2
i + x2

iσ
′2)h2

7 + (σ2x
′2
i + y2

i σ
′2)h2

8 + σ
′2h2

9

f oi = σ2[h2
4 + h2

5 − 2y
′

i(h4h7 + h5h8)] + 2σ′2(xih7h9 + xiyih7h8 + yih8h9)

+(σ2y
′2
i + x2

iσ
′2)h2

7 + (σ2y
′2
i + y2

i σ
′2)h2

8 + σ′2h2
9

f oei = f eoi = σ2[(h1 − x′ih7)(h4 − y′ih7) + (h2 − x′ih8)(h5 − y′ih8)].Proof. A sketh of the proof is provided on appendix C.As expeted the atual values of the homography matrix also a�ets the ovari-ane matrix. Con�gurations that are almost ill de�ned as for example four pointsforming a straight line produe a large ovariane matrix.If we represent with x̄′
i = (x̄′i, ȳ

′
i, z̄

′
i)
T the projetion of point xi on the seondimage using the homography H i.e., x̄′

i = Hxi, then the algebrai error of theprojetion of the feature point of the �rst image into the seond image is given bythe formula
dalg(x̄i

′,x′
i) =

√

(x̄i′ − x′i)2 + (ȳi′ − y′i)2 + (z̄i′ − z′i)2. (5.9)
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The orresponding geometri error is given by the formula
dgeom(x̄′

i,x
′
i) =

√

(
x̄′i
z̄′i
− x′i
z′i

)2 + (
ȳ′i
z̄′i
− y′i
z′i

)2. (5.10)After estimating the homography matrix it is possible to separate the pointsthat belong to the plane based on their reprojetion error.Finally the following lemma relates the plane indued homography with theamera parameters and the surfae normal.Lemma 5.3. Given the projetion matries for the two views of a amera withintrinsi parameters K
P = K · [I | 0] P ′ = K · [R |T] (5.11)where R, T represent the rotation and translation between the two views respetivelyand a plane de�ned by πT ·X = 0 with π = (νT , 1)T (ν is the surfae normal), thenthe homography indued by the plane is x′ = H · x with

H = K · (R−T · νT ) ·K−1. (5.12)Proof. Appendix C.
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5.4 Merging and Splitting Image SegmentsTwo perspetive views of a planar 3D surfae are related by a homography. As wementioned before there is a signi�ant amount of work fousing on how to omputeplanar homographies and merge them together. The results of the state of the artalgorithms are quite impressive, e.g. in [93℄ multiple planes belonging to di�erentobjets are deteted on both indoor and outdoor image sequenes. Still we think thatone part of the plane identi�ation proess that has not reeived enough attentionis how to selet the groups of feature points used to ompute the homography from.Over the years heuristis based on the proximity of the feature points and overallshape of the onvex hull they form, have been used [93℄, but the usual approah is totry many quartets of feature points. As a result, the plane identi�ation algorithmsare usually quite slow (e.g. Amintabar and Boufama in [93℄ report a running timeof 3.5 seonds for their optimized C ode on 90 features). Here, we propose to usethe results on olor based segmentation to guide that proess.Fig. 5.3 synopsizes our approah. Starting from an image sequene we ini-tiate two parallel omputations. On one hand, we apply the KLT feature traker[68, 107, 108℄ to detet and trak a number of feature points. In order to eliminatespurious features we only take into aount features that were traked over multipleframes. On the other hand, olor based segmentation using our MF+GAT algo-rithm (Se. 3.4.3) at di�erent granularities is performed. We ombine the resultsof the two previous steps by grouping together features belonging to the same olorsegments. Using a robust estimation tehnique (RANSAC [109, 43℄) we estimate172



Figure 5.3: Our proposed sheme to address the 3D plane estimation problem onstati image sequenes by ombining feature based homography estimation witholor based segmentation.
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the homography assoiated with eah olor segment. Only the features that belongto the same image segment are used to ompute its homography. Then, we run twoparallel proesses; a) for omputing the outlier features and b) to �nd the segmentswith similar homographies. The former proess is used to subdivide a olor region,while the latter to merge regions together. Based on the results of both proesseswe an perform a more informed guess whih is the orret loal olor resolution ofour olor based segmentation algorithm further re�ning the olor segmentation withshape information.In Fig. 5.4 we demonstrate the merging part of the algorithm. We obtaineda sequene of 5 images using the ameras mounted on the robot. Then, we use aKLT traker to detet 200 feature point on the �rst image and trak them over all
5 frames. Only 98 features are onsistently traked in all frames and we displayall of them in Fig. 5.4. In parallel we run our segmentation ode to obtain aninitial grouping of image regions (Fig. 5.4). The two groups of feature points thatreliably produe very similar homographies are displayed in Fig. 5.4e. Based onthese homographies we rerun the segmentation ode with di�erent parameters untilthe two regions are merged together (Fig. 5.4d).A similar experiment in displayed in Fig. 5.5, where splitting a region intomultiple ones is required. As above, we use a KLT traker to detet 200 featurepoints and trak them over a series of 5 frames. At the end of the proess 102features are traked (Fig. 5.5). We also apply our segmentation algorithm withthe same parameters (i.e. hr = 10) and obtain the segments shown in Fig. 5.5.We estimate the homography for eah olor segment and ompute the reprojetion174



(a) The �rst image of the sequene. (b) The �fth image of the sequene.

() MF+GAT segmentation (hr = 10) with fea-ture points (blak dots). (d) MF+GAT segmentation (hr = 30 ) with fea-ture points (blak dots).

(e) The segments whose feature points are drawnwith white and blak dots have similar homogra-phies and thus should be merged together.Figure 5.4: An example on how homographies and olor segmentation an be om-bined to obtain better results by region merging.175



(a) The �rst image of the sequene. (b) The �fth image of the sequene.

() MF+GAT segmentation (hr = 10 ) with fea-ture points (blak dots). (d) MF+GAT segmentation (hr = 7 ) with fea-ture points (blak dots).

(e) The feature points belonging to the samesegment drawn aording to their orrespondingreprojetion error. The brighter the olor thehigher the error.Figure 5.5: An example on how homographies and olor segmentation an be om-bined to obtain better results by region splitting.176



error of eah point. In Fig. 5.5e we display the results for the segment orrespondingto the green box. Aording to our olor ode the brighter (whiter) a feature thehigher the reprojetion error for that point is. As expeted, the group of featureson the top (that belong to a di�erent surfae of the box) uniformly exhibit highreprojetion errors. The same behavior is exhibited by the features on the rightfae of the box. This is an indiation that we need to further subdivide that region.Fig. 5.5d displays one possible subdivision obtained by running our segmentationalgorithm with a di�erent olor resolution parameter (hr = 7).Both examples above should be onsidered as a proof of onept. We have notreahed the point yet, where a segmentation into surfaes is onsistently and robustlyworking in all image sequenes. There are some theoretial questions to be addressedand a lot of engineering e�ort to be made to reah that milestone. For example,it is not lear how to measure the di�erene between two homographies, or whatis the threshold above whih a point is onsidered an outlier. Furthermore, whenit omes to our proposed sheme there are additional issues to be addressed. Theomputation of the olor resolution (hr) to be used for the �ner (or oarser) grainedsegmentation and the veri�ation that the segmentation is the �right� one and thusthe proedure should terminate, are two interesting researh topis. Moreover, thissheme should be extended to areas where there are not enough feature points. Insuh ases, methods based on the transformation of the whole region (similar to thewarping method proposed in Se. 4.4) or on the transformation on the boundaries(Se. 4.3, also see literature about the Iterative Closest Point algorithm [110, 111℄)an be used. 177



5.5 Towards an ative approah to image segmentationWe want to onlude this dissertation with a disussion about ative vision. We havealready showed in hapter 4 that knowledge of the amera motion an failitatethe estimation of surfae vetors by turning a non onvex, omplex optimizationproblem into a onvex linear problem (Se. 4.5) and by allowing us to reate novelalgorithms for surfae estimation (Se. 4.4). We believe that the proess of surfaesegmentation an be further simpli�ed and made more aurate by the appropriateamera motion. The homography based segmentation as desribed on the previoussetion, and shown in Fig. 5.3, is a passive approah, beause the image aquisitionproess is independent of the segmentation results.In Fig. 5.6 we modify the approah by onneting the image aquisition mod-ule with the segmentation results on a feedbak loop. More spei�ally, the trans-formation of the passive approah into an ative one involves two stages; preditionand optimization. The former stage inorporates the a priori evaluation of the ex-peted quality of the segmentation when the amera performs a spei� motion usingsome objetive riterion. Note that as the name suggests, the system should be ableto predit the quality without the amera atually performing that motion. Thelatter stage refers to the proess of seleting a amera motion that maximizes theestimated expeted quality of the segmentation.In the ontext of homography-based plane �nding, we argue that the inter-mediate goal is the aurate estimation of the homographies. Hene, we think thatlemma 5.2 is a good starting point to predit the quality of the homography esti-178



Figure 5.6: Our updated proposed sheme to address the 3D plane estimation prob-lem by ombining feature based homography estimation with olor based segmenta-tion. A feedbak loop for seleting the next best amera position is added, makingthe whole sheme "ative".
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mation without atually omputing the homographies. In order to build a system,however, a number of related problems needs to be addressed. In our opinion themost important ones are, how to onstrut the objetive funtion from the ovari-ane matrix of the elements of the homography matrix, and how to �nd the ameramotion that optimizes that objetive funtion.
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Appendix ASegmentation Results for the Weizmann datasetA.1 The Weizmann Institute datasetThe Weizmann Institute dataset is a new database of images reated for the purposeof separating an image into bakground and foreground regions. As suh eah imageontains a single dominant objet, that should be lassi�ed as foreground, while therest of the image is onsidered as bakground. In total, the database ontains
100 images and 300 human segmentations. There are three signi�ant di�erenesbetween this dataset and the Berkeley one.First, all the images are graysale and not olor. As a onsequene we per-form the �ltering on the 3D spae (i.e., 2 dimensions for spatial oordinates and 1dimension for the graysale intensity values).The texture variation on these images is signi�antly less ompared to thetexture variation on the Berkeley images. This is partially due to the fat that thereare fewer images of natural senes, and mainly beause it is harder to enode texturevariation on a graysale image.In eah image only two segments are labeled, the foreground objet versusthe rest of the image that is onsidered bakground. Thus, there are fewer edgeslabeled in the human segmentations, namely only the edges on the boundary of theforeground objet. All the signi�ant edges inside the objet as well as the edges of181



the bakground are ignored.Overall, for all the above reasons, this dataset is less hallenging than theBerkeley one. This fat is experimentally proven by the results of the segmentations.A.2 ExperimentsAs with the Berkeley dataset we apply all possible ombinations of �ltering (usingthe Normal and Epanehnikov kernel) and grouping methods and display the u-mulative results for the whole database. To redue the number of �gures we onlydisplay the Probabilisti Rand index and the Boundary Displaement Error results.Compared to the parameters we used in the Berkeley dataset we use a muh largerrange of olor resolutions, namely hr = 0.5 . . . 40 on inrements of 0.5. First wepresent the results when we use CC3D, CC5D and GRAG grouping methods.The �gures with the BDE measure report that Color Mean Shift (CMS) out-performs the other methods not matter if the �ltering is performed with a Normalor an Epanehnikov kernel. These plots are similar to the ones for the Berkeleydataset. What ome as a surprise are the plots for the Probabilisti Rand index.Not only they show that the segmentations beome better as the average segmentsize inreases, asymptotially reahing the value of 1 (whih is ideal), they alsopresent the methods that performed poorly on the previous dataset, e.g. LoalMode �ltering with GRAG grouping, (and on the urrent dataset onsidering theBDE measure) to outperform all the other methods. After heking the results forthe individual images we realized that the suspiiously good values for the PR index182



Figure A.1: BDE vs average segment size plots for the Weizmann dataset when �ltering is performed with an Epanehnikovkernel.
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Figure A.2: PR vs average segment size plots for the Weizmann dataset when �ltering is performed with an Epanehnikovkernel.
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Figure A.3: BDE vs average segment size plots for the Weizmann dataset when �ltering is performed with a Normal kernel.
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Figure A.4: PR vs average segment size plots for the Weizmann dataset when �ltering is performed with a Normal kernel.
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(a) Original Image (b) Human Segmentation

() MF+CC3D (hr = 40), PR=0.37 (d) MF+CC3D (hr = 80), PR=0.95

(e) PR measure vs average image sizeFigure A.5: A single image of the Weizmann dataset along with the human andomputer generated segmentation for two di�erent olor resolutions (hr = 40, 80)and their orresponding Probabilisti Rand values (0.37, 0.95). Notie that theseond segmentation produes a muh higher PR value even if it is muh worsethan the �rst segmentation. This is a problem of the PR measure when appliedto foreground/bakground segmentation images. In this example a segmentation ofthe whole image into a single region produes a PR value of 0.97.187



are due to the nature of the human segmentations. More spei�ally, with only oneforeground and one bakground region, the PR index for a segmentation of the wholeimage into a single region is very high. For example Fig. A.5 shows the results forthe �rst image of the database and the �rst segmentation. One reasonable omputersegmentation (Fig. A.5) has the PR value of 0.37. The muh worse segmentationof Fig. A.5d produes a PR value of 0.95. Finally, the segmentation into a singlesegment produes a PR index of 0.97, that is very lose to the absolute best value of
1. Thus, we onlude that PR is not a good index of the quality of the segmentationfor that spei� database.Notie that this problem was not present in the Berkeley dataset. Looking atany of the PR �gures (e.g. Fig. 3.7), one sees the paraboli like shape of all theplots that indiates that for both very small and very large segment sizes the PRvalues are bad (as expeted).In Fig. A.6 we plot on the same graph the segmentation results of thetwo prominent �ltering methods (i.e., Mode Finding and Color Mean Shift) usingEpanehnikov and Normal kernels oupled with the CC3D grouping method. Com-paring the segmentation results along regular average segment size intervals (i.e.from ∼ 100 pixels to ∼ 800 pixels in intervals of 50) we get the following numbers.For the Color Mean Shift method the Normal kernel results are on average ∼ 31%better than the Epanehnikov results, while Mode Finding with a Normal kernelprodued ∼ 33% better results on average than the Epanehnikov based method.Using the same numbers we were able to quantify how better the segmentationresults for Color Mean Shift were ompared to the Mode Finding ones. When using188



Figure A.6: BDE vs average segment size plots for the Weizmann dataset. The goal is to ompare the performane when weuse di�erent �ltering kernels. In this plots we use the Mode Finding and Color Mean Shift �ltering methods along with theCC3D grouping methods. The dotted and solid line plots denote �ltering with a Normal and Epanehnikov kernel respetively.The Normal kernel learly outperforms the Epanehnikov kernel. Similar results were obtained with di�erent ombinations of�ltering and grouping methods.
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a Normal kernel CMS produed ∼ 8% better results, while for the Epanehnikovkernel the value was slightly higher at ∼ 9.4% ompared to Mode Finding. Weobserved similar inreases in the performane when we used the other groupingmethods as well.Next we move our attention to the grouping method with an adaptive threshold(GAT). In Se. 3.4.3 we presented one way to linearly adjust the segmentationparameter k aording to the �ltering parameter hr (Eq. 3.1). Figs. A.7, A.8and A.9 present the segmentation results of applying this method to the WeizmannInstitute dataset. More spei�ally, Figs. A.7, A.8 present the results when the�ltering is done with an Epanehnikov and a Normal kernel respetively, while inFig. A.9 we ompare the best performing methods.The results for all the �ltering methods with an Epanehnikov kernel are on-sistently better ompared to using the GAT method without any �ltering. In theases of �ltering with a Normal kernel, for a range of average segment sizes up to
∼ 150 pixels all the methods outperform the non �ltering alternative. For larger av-erage segment sizes Color Mean Shift and Anisotropi Di�usion perform muh worsethat GAT only, while Mode Finding and Loal Mode Filtering performs equallywell. Overall, GAT oupled with Loal Mode Filtering with a Normal kernel seemsto perform best for segment sizes up to ∼ 150 pixels and Mode Finding with anEpanehnikov kernel is the best performing method for larger segment sizes.On the last �gure (Fig. A.10) of this appendix we ompare the best segmenta-tion methods using CC3D and GAT with varying k for the grouping step. It is learthat grouping with an adaptive threshold outperforms the simple onneted ompo-190



Figure A.7: BDE vs average segment size plot for the GAT grouping method with variable k preeeded by the �ltering methodswith an Epanehnikov kernel. We also display the plot when we use the GAT grouping method without any �ltering method(bak urve).
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Figure A.8: BDE vs average segment size plot for the GAT grouping method with variable k preeeded by the �ltering methodswith a Normal kernel. We also display the plot when we use the GAT grouping method without any �ltering method (bakurve).
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Figure A.9: BDE vs average segment size plot for the GAT grouping method with variable k preeeded by seleted �lteringmethods. We also display the plot when we use the GAT grouping method without any �ltering method (bak urve).
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Figure A.10: BDE vs average segment size plot for the best methods using a hard and an adaptive threshold for grouping. GATbased grouping methods outperform the CC3D based methods.
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Table A.1: Conlusions summary
• CMS outperforms all the other �ltering methods when grouped with CC3D,CC5D or GRAG (Figs. A.2, A.4, A.6).
• Normal kernel outperforms Epanehnikov kernel �ltering (Figs. A.6).
• Segmentation methods based on �ltering and grouping outperform methodsbased on grouping only (Figs. A.7, A.8).
• MF and LMF �ltering ombined with GAT with varying k grouping performbetter than CMS and AD �ltering (Figs. A.7, A.8).
• GAT based methods outperform CC3D, CC5D and GRAG based methods(Fig. A.10).nents based grouping methods. All the result of the experiments on the WeizmannInstitute dataset are summarized in Table A.1.
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Appendix BStreth FilterB.1 IntrodutionWe proved in a previous hapter that the surfae normal parameters, namely theslant of a plane, is enoded in the streth between two epipolar lines (Eq. 4.12). Thisis one example of a general problem where, one is given two signals, one of them beinga transformed version of the other, and the goal is to reover this transformation. Aswe desribed earlier (Alg. 4.2), assuming one wants to estimate the zero (shift) and�rst order (streth) omponent of the transformation, a general method is to usethe log of the magnitude of the Fourier transform. This tehnique, whih is knownas Cepstral analysis, was �rst introdued by Bogert et al. [59℄ and was made widelyknown by Oppenheim and Shafer [60℄. It is ommonly used in speeh proessing[61℄ to separate di�erent parts of the speeh signal. Cepstral analysis requires anexpliit FTT on both signals with omplexity O(N log(N)).Phase-di�erene based tehniques exploiting the phase shift theorem have alsobeen used in omputer vision. In most ases the assumption is that one signal is sim-ply shifted relative to another, thus only the zero order omponent is estimated. Inthis ase, a very robust way to reover the amount of shift is through measurementsof the hange of phase in di�erent frequenies. In a lassi paper on stereo, Sanger[112℄ onvolved eah san line of two images with Gabor �lters. Similar work at the196



same time period was performed by Jenkin and Jepson [113℄. Fleet and Jepson in[114℄ and [115℄ studied the stability of the previous tehniques in the presene ofphase singularities and identi�ed patterns on the phase domain where the previousmethods fail.For 2D signals, Srinivasa et al. [62℄ reover the global relative translation,uniform sale and image rotation (i.e., 4 parameters) of two images by analyzingthe hanges in various Fourier omponents. It is straightforward to use the FourierShift property to reover translations. However, they pursue a di�erent strategyto reover di�erent omponents. Spei�ally, they show that by performing a log-polar transformation on eah image, rotation and saling an be transformed intotranslations. Loal phase-based tehniques have also been developed for optial �owestimation. Fleet and Jepson's method [65℄ use Gabor �lters to loally ompute thephase of two 2D signals, and estimate the loal shift (i.e., optial �ow) of the twosignals. While, their tehnique is shown to outperform most other methods in termsof auray and robustness ([116℄), it still assumes that all the omponents of thetransformation higher than zero order are zero.Reent stereo approahes reognize the importane of higher order omponentsof the transformation and try to estimate them. For example, Ogale and Aloimonosin [117℄ attempt to reover both the shift and the streth of the transformation bytrying many possible warpings of the image, in order to ompensate for the strethomponent, and hoosing the one leading to best mathes.In this hapter, we present an approah similar to Sanger's, but instead ofmeasuring the translation, we diretly reover the �streth� (a linear fator) of two197



signals. Related to our approah are the �sale representation" by L. Cohen [118℄and the Mellin transform. Both of these methods deompose the signal using aset of basis funtions. The streth is enoded as a phase shift in these representa-tions. Conversely, our method uses only a single �lter to estimate the streth. Moreexpliitly, our main ontributions are:
• We analytially reate a �lter that is able to diretly measure the loal strethof two signals (Se. B.3).
• We present experimental results where we apply this �lter to shifted andstrethed real signals (Se. B.4).Overall our method is muh faster then the other approahes, sine it only requiresthe appliation of a single �lter at one point in eah image. This omputationaladvantage is o�set to an inreased sensitivity to errors in shift estimation.B.2 Gabor Funtion and notation preliminariesAording to its de�nition, a Gabor �lter onsists of a Gaussian funtion of spatialbandwidth σ, that modulates a omplex sinusoid of frequeny ω.

G(x, ω, σ) =
1√
2πσ

e−
x2

2σ2 e2πiωx (B.1)We onsider the spatial bandwidth (σ) to be �xed with respet to the frequeny (ω)
σ =

c

ω
, (B.2)198



where c is a onstant (e.g. Sanger uses c = 1 [112℄) . As a onsequene, the Gaborfuntion only has two parameters, namely x and ω.We use a alligraphi font for the Fourier transform (Fω) of a signal (or a�lter). In order to avoid any onfusion, we denote with a subsript the integrationvariable when needed.B.3 Estimating the strethSuppose that one is given two signals I1(x) and I2(x), where I2 is a �strethed versionof I1.
∀x ∈ R, I2(x) = I1(αx) (B.3)In this paper we desribe a way to estimate the unknown streth parameter α. Ourapproah is based on two observations:

• Convolving the �rst signal (I1) with a Gabor �lter of frequeny ω is equiva-lent to onvolving the seond signal (I2) with a Gabor �lter of frequeny αω(Theorem B.1).
• Considering the log-frequeny domain of the Gabor �lters the multipliation istransformed into addition (i.e., streth is transformed into shift) and thus anbe estimated using the phase shift property of the Fourier transform (TheoremB.2).In the remaining setion we formally present our approah in inremental steps usingtwo theorems. Note that the �nal result is a single �lter on the spatial domain, even199



thought we are using the frequeny domain in our proofs.Theorem B.1. If the two strethed signals (I1, I2) are as in Eq. B.3, then
∀ω, [I1(x) ⋆ G(x, ω)](0) = [I2(x) ⋆ G(x, αω)](0) (B.4)Proof. Aording to the de�nition of a Gabor �lter (Eq. B.1) and its standarddeviation (Eq. B.2) we get

G(x, αω) =
1√
2πσ′

e−
x2

2σ′2 e2πiαωx,

σ′ = σαω =
c

αω
=
σω
αThus,

G(x, αω) =
α√
2πσ

e−
x2α2

2σ2 e2πiωαx = αG(αx, ω). (B.5)From the de�nition of onvolution we have
[I1(x) ⋆ G(x, ω)](0) =

ˆ

x

I1(x)G(−x, ω)dx. (B.6)Similarly,
[I2(x) ⋆ G(x, αω)](0) =

ˆ

x

I2(x)G(−x, αω)dx

=

ˆ

x

I1(αx)G(−x, αω)dx (B.7)
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Setting y = αx, then dy = αdx,
[I2(x) ⋆ G(x, αω)](0) =

ˆ

y

I1(y)G(− y
α
, αω)

dy

α
.Using Eq.B.5 we have

[I2(x) ⋆ G(x, αω)](0) =

ˆ

y

I1(y)G(−y, ω)dy

= [I1(x) ⋆ G(x, ω)](0).

Based on Theorem B.1 the response of the onvolution of I1, I2 with the Gabor�lter is a funtion of the frequeny ω, that is
R1(ω) = [I1(x) ⋆ G(x, ω)](0) =

[I2(x) ⋆ G(x, αω)](0) = R2(αω). (B.8)If we onsider the log frequeny ψ instead of the frequeny ω
ψ = eω ⇔ ω = logψ, (B.9)then Eq. B.8 is transformed to
R1(ψ) = R2(ψ + logα). (B.10)201



In priniple, we ould estimate the shift (in the log-frequeny domain ψ) by trans-forming it into a phase shift using the Fourier transform
R1(u) = Fψ{R1} = e2πi logαuR2(u) (B.11)and measuring the di�erene in the phase of R1 and R2 for any spei� frequeny

u1. While this is a valid approah, it is rather omputationally expensive. Forevery point of the two signals one has to ompute the frequeny response R1, R2(by onvolving with Gabor �lters of di�erent frequenies) and then take the Fouriertransform of those responses. The following theorem provides an alternative solutionthat amounts to onvolving the two signals with a single �lter.Theorem B.2. There exist �lters H(x, u) whose onvolution with I1, I2 diretlyenodes the streth as
[I1(x) ⋆ H(x, u)](0) = e2πi logαu[I2(x) ⋆ H(x, u)](0). (B.12)Spei�ally, the �lters have the analyti form

H(x, u) =

ˆ

ω

G(x, eω)e−2πiωudω, (B.13)where u, ω are free parameters that de�ne the form of the �lter.1We have notied that the following issue is often at �rst onfusing to readers. We use twodi�erent frequeny domains. Symbols ω (and ψ) denote the frequeny in the �traditional� sense,while symbol u denotes the Fourier transform of ψ, so in some sense is the �frequeny of thefrequeny domain". 202



Proof. From Eqs. B.8, B.9 and B.10 we have
R1(e

ω) = R2(e
ω + logα)If we onsider the Fourier transform of R1(e
ω) with respet to ω, then

R1(u) =

ˆ

ω

e−2πiωuR1(e
ω)dω

=

ˆ

ω

e−2πiωu[

ˆ

x

I1(x)G(−x, eω)dx]dω

=

ˆ

x

I1(x)[

ˆ

ω

G(−x, eω)e−2πiωudω]dx

=

ˆ

x

I1(x)H(−x, u)dx

= [I1(x) ⋆ H(x, u)](0).Similarly for R2(e
ω) we get

R2(u) = [I2(x) ⋆ H(x, u)](0).From the phase shift property of the Fourier transform we get
R1(u) = e2πi logαuR2(u)and thus

[I1(x) ⋆ H(x, u)](0) = e2πi logαu[I2(x) ⋆ H(x, u)](0).
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Algorithm B.1 Streth estimation with a single �lter.Input :
I1, I2 : Input Signals
x0 : A single point along the X axisOutput
α : The streth between the two signals around point x0AlgorithmCreate the �lter H(x, u) =

´ ω2

ω1
G(x, eω)e−2πiωudωConvolve the two signals I1, I2 with H(x, u) around x0Compute the di�erene in phase of the two measurements ∆θCompute the �log-frequeny shift� ∆ψ = ∆θ

2πuCompute the streth α = e∆ψThe algorithm is a straightforward implementation of the theory and is pre-sented in Alg. B.1. Notie that we use a bounded integral in order to estimate the�lter H , with lower and upper bounds on the frequeny variable ω1, ω2, respetively.Also notie that we preompute a single �lter and we use the same �lter in bothsignals I1, I2.The omputation of streth around a point x0 involves the onvolution of thetwo signals, a omputation of a phase di�erene, a division and an exponentiation,thus if the size of the �lter is M the omplexity of the algorithm is O(M).

204



B.3.1 How Parameter u a�ets HSymbol u is used to denote the frequeny domain produed by onsidering theFourier transform of the Gabor �lters with respet to their frequenies (ω). Thus,intuitively a �lter H with small u frequeny is �smoother� than one with high u.Fig. B.1 shows two di�erent �lters for u = 0.25 and u = 1.
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B.4 ExperimentsB.4.1 Streth without Shift ExperimentsOn this �rst set of experiments, the original signal (I1) is the horizontal lines ofvarious textures [119℄ (Fig. B.2). We randomly seleted 200 san lines and strethedeah one of them around its enter in order to produe a seond signal (Fig. B.3, �rstand seond row). Then we onvolved both signals with a single �lter of frequeny
u = 0.25 as shown in Fig. B.3 (third row). Following the steps desribed in Alg. B.1we estimated the streth. We experimentally found that frequenies in the range
u = [0.25 . . . 0.5] worked well. The higher the frequeny, the better the results forstrethes loser to 1 and the worse for strethes loser to 0. For the lower and upperbounds of integral H (Eq. B.13) we used the values −3.5 and −1, respetively.In Fig. B.4 we present the results as a funtion of the streth α. Eah graphorresponds to an image from Fig. B.2. For eah streth value we pik 200 randompoints and synthetially streth the signal about eah. We plot both the medianvalue and the 99% on�dene interval for the estimated strethes. The results aregood onsidering the following fats. First, we are using a single �lter to estimatethe streth. Seond, the size of the �lter is ∼ 20 pixels. Third, we have disretesignals, thus for a streth of α = 0.5 only 10 pixels are ommon in the original andthe strethed image. Fourth, for pratial purposes, we are usually interested instrethes lose to one (e.g. α = [0.9 . . . 1.1]) in whih ase the estimated streth isquite aurate. Thus, in Fig. B.5 we display the results on that range of strethes.In all ases the estimated streth is very lose to the real streth between the two207



(a) Cross tiles (b) Roman tiles

() Peddles (d) Brik wallFigure B.2: Texture images for streth experiments.
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(a) Original image (b) Strethed image (α = 0.5)
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(d) 1D streth signal along the same san line
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Figure B.6: Streth estimation results with a single �lter when there is a shift error.Eah �gure orresponds to a di�erent atual streth value.The error urve produedwhen the two signals are not perfetly aligned does not depend muh on the atualstreth value.
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estimates, when the two signals are strethed and shifted, as a funtion of the shift.As expeted (due to the small size of the �lters), this approah is very sensitive toshifts. Furthermore, the error in the streth estimation inreases with the shift.B.5 ConlusionsIn this hapter we presented a �lter that retrieves the loal streth of two signals.We also presented experiments that indiate that this approah produes very goodresults, but is also very sensitive to the shift between the two signals. Two simpleimprovements that will derease the sensitivity to the shift error and inrease theauray of the estimation are
• use the streth results from multiple �lters. We notied that �lters with di�er-ent u values exhibit di�erent sensitivity to shift errors and an work auratelyfor di�erent ranges of strethes. The smaller the value of u the more sensitivethe �lter is to shift noise, but at the same time the more aurate the resultsare for a larger range of strethes. Thus a arefully onstruted band of streth�lters ould provide high noise tolerane and high streth sensitivity.
• ompute the streth from more signal points. It is experimentally establishedthat frequeny based approahes for registering two signals require as muhdata points as possible. In the previous experiments the �lter size was around

20 pixels. A larger �lter would be muh less sensitive to shifts. Furthermoresine we work with images onsidering multiple san lines in the omputationof streth would further improve the robustness and auray of the results.213



If both improvements are arefully implemented then this method an potentiallyprovide a real-time alternative for streth estimation and ould be used in realsystems.
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Appendix CTowards Surfae Segmentation ProofsLemma C.1. If we model the error in the loalization of the feature points as in-dependent Gaussian random variables with variane σ2, σ′2 for the features on the�rst and seond frame respetively, the 9 × 9 ovariane matrix of the homographyis
Ch = JSJT (C.1),where

J = [ x1 x2 . . . x9
][

0 0 . . . 0

0 1
λ1−λ2

. . . 0... ... . . . ...
0 0 . . . 1

λ1−λ9

][

xT1

xT2...
xT9

] (C.2)
,with xi the eigenvetor orresponding to the ith eigenvalue λi of matrix ATA. Matrix
S is

S =
n

∑

i=1

(rT2ir2if
e
i + rT2i−1r2i−1f

o
i + rT2ir2i−1f

eo
i + rT2i−1r2if

oe
i ) (C.3)
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with ri the ith row of matrix A and
f ei = σ2[h2

1 + h2
2 − 2x′i(h1h7 + h2h8)] + 2σ′2(xih7h9 + xiyih7h8 + yih8h9)

+(σ2x
′2
i + x2

iσ
′2)h2

7 + (σ2x
′2
i + y2

i σ
′2)h2

8 + σ
′2h2

9

f oi = σ2[h2
4 + h2

5 − 2y
′

i(h4h7 + h5h8)] + 2σ′2(xih7h9 + xiyih7h8 + yih8h9)

+(σ2y
′2
i + x2

iσ
′2)h2

7 + (σ2y
′2
i + y2

i σ
′2)h2

8 + σ′2h2
9

f oei = f eoi = σ2[(h1 − x′ih7)(h4 − y′ih7) + (h2 − x′ih8)(h5 − y′ih8)]Proof. This proof is based on eigenvetor perturbation theory and is similar to proofsgiven in [95, 120℄. Next we provide a detailed outline of the proof, but omit the �nalumbersome algebrai omputations.First a note on notation. We use the subsript zero :0 to denote the initialmeasurement and the symbol δ for the perturbation matrix or vetor.Let us denote with B0 the 9 × 9 matrix of the produt of the original mea-surements AT0A0. The perturbed matrix A = A0 + δA introdues a perturbedmatrix B = ATA = (A0 + δA)T (A0 + δA) = AT0A0 + AT0 δA + δATA0 + δAT δA ≃

AT0A0 +AT0 δA+ δATA0. As you notie we only keep the linear error terms and dropthe higher order error terms. Hene
B = B0 + δB (C.4), where

δB = δATA+ AT δA. (C.5)216



Let us denote with λi, xi the ith eigenvalue and eigenvetor respetively ofmatrix B (i = 1 . . . 9). Our goal is to �nd an analyti expression for the ith eigen-vetor xi and eigenvalue λi with respet to the perturbation matrix δB and theeigenvetors and eigenvalues of the initial matrix B0 (x0i, λ0i). If we express thenew measurements as
λi = λ0i + δλi, (C.6)
xi = x0i + δxi (C.7)one needs to ompute the di�erenes δλi, δxi.From the de�nition of the eigenvalues and eigenvetors we have
B0x0i = λ0ix0i (C.8)The same equation is valid for the new eigenvalues and eigenvetors i.e.,
Bxi = λixi ⇒ (C.9)

(B0 + δB)(x0i + δxi) = (λ0i + δλi)(x0i + δxi)⇒ (C.10)
B0x0i +B0δxi + δBx0i + δBδxi = λ0ix0i + λ0iδxi + δλix0i + δλiδxi. (C.11)217



From Eq. C.8 and ignoring the seond order terms we simplify Eq. C.11 as
B0δxi + δBx0i = λ0iδxi + δλix0i. (C.12)The eigenvetors of the original matrix B0 form a oordinate system for the

9D spae so we an express the eigenvetor hange δxi as a linear ombination of
x0i i.e.,

δxi =
9

∑

j=1

ǫijx0j . (C.13)Combining Eqs. C.12, C.13 we obtain
B0

9
∑

j=1

ǫijx0j + δBx0i = λ0i

9
∑

j=1

ǫijx0j + δλix0i, (C.14)
9

∑

j=1

ǫijλ0jx0j + δBx0i = λ0i

9
∑

j=1

ǫijx0j + δλix0i. (C.15)Left multiply Eq. C.15 with xT0i and onsidering the orthogonality of x0i i.e.,
xT0ix0j =



















1, i = j

0, i 6= j

(C.16)we get
ǫiiλ0ix

T
0ix0i + xT0iδBx0i = λ0iǫiix

T
0ix0i + δλix

T
0ix0i ⇒ (C.17)
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δλi = xT0iδBx0i. (C.18)Left multiply Eq. C.15 with xT0k, k 6= i we get
xT0k

9
∑

j=1

ǫijλ0jx0j + xT0kδBx0i = λ0ix
T
0k

9
∑

j=1

ǫijx0j + xT0kδλix0i ⇒ (C.19)
xT0kǫikλ0kx0k + xT0kδBx0i = λ0iǫikx

T
0kx0k ⇒ (C.20)

ǫikλ0k + xT0kδBx0i = λ0iǫik ⇒ (C.21)
ǫik =

xT0kδBx0i

λ0i − λ0k
, k 6= i. (C.22)In order to ompute the remaining oe�ients ǫii we use the orthogonality ofthe eigenvetors i.e.,

xTi xi = 1⇒ (C.23)
(x0i + δxi)

T (x0i + δxi) = 1⇒ (C.24)
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xT0ix0i + xT0iδxi + δxTi x0i + δxTi δxi = 1 (C.25)Ignoring the seond order term δxTi δxi and given the fat that xT0ix0i = 1 weget
xT0iδxi + δxTi x0i = 0 (C.26)From Eq. C.13 and left multiplying with xT0i we get

xT0i

9
∑

j=1

ǫijx0j + (

9
∑

j=1

ǫijx0j)
Tx0i = 0⇒ (C.27)

ǫii = 0. (C.28)In synopsis a perturbed matrix B by δB auses a hange in the eigenvalue λiby
δλi = xT0iδBx0i (C.29)and a orresponding hange in the eigenvetor xi by

δxi =
9

∑

j=1,j 6=i

(
xT0jδBx0i

λ0i − λ0j

)x0j . (C.30)Sine the homography is the eigenvetor orresponding to the least eigenvalue(i.e.,h ≡ x01), if we rewrite the sum of Eq. C.30 in matrix form we get
220



δh = [ x01 x02 . . . x09
][

0 0 . . . 0

0 1
λ01−λ02

. . . 0

. . . . . .
. . . . . .

0 0 . . . 1
λ01−λ09

][

xT01

xT02...
xT09

]δBh (C.31)
We want to express the hange in the homography as a linear ombination ofthe elements of matrix δB. If we denote the identity matrix of size 9× 9 as I9 andthe individual elements of vetor h as h1, h2, . . . , h9 then

δBh ≡ [ h1I9 h2I9 · · · h9I9 ]δb (C.32), where δb is a olumn vetor produed by δB as follows
δb = [ δB11 δB21 . . . δB91 δB12 . . . δB92 . . . δB91 . . . δB99

]T . (C.33)Next we need to express the perturbation vetor δb with respet to the per-turbation vetor δa. As above we get δa by onatenating the olumns of matrix
δAT . From Eq. C.5 by denoting with δbi, δBij , δaij , aij the elements of the ithrow and jth olumn of matries δb, δB, δA, A respetively with a little algebra weobtain the following expression

δb9(j−1)+i = δBij =
2n
∑

k=1

(akiδakj + δakiakj) (C.34)221



that is linear on the perturbation vetor δa i.e.,
δb = Gδa (C.35)for a properly onstruted 81× (2n · 9) matrix G.The last step is to ompute the ovariane matrix for matrix A. The homog-raphy estimation matrix A is

A = [

0 0 0 x1 y1 1 −y′1x1 −y′1y1 −y′1

x1 y1 1 0 0 0 −x′1x1 −x′1y1 −x′1... ... ... ... ... ... ... ... ...
0 0 0 −xn −yn −1 y′nxn y′nyn y′n

xn yn 1 0 0 0 −x′nxn −x′nyn −x′n

]. (C.36)
If we assume that the omponents of the image vetors xi = (xi, yi, 1)T , x′

i =

(x′i, y
′
i, 1)T have errors (δxi, δyi, δx′i, δy′i) then we get the perturbation matrix

δAT = [

0 0 0 δx1 δy1 0 −(x1δy
′
1 + y′1δx1) −(y1δy

′
1 + y′1δy1) −δy′1

δx1 δy1 0 0 0 0 −(x1δx
′
1 + x′1δx1) −(y1δx

′
1 + x′1δy1) −δx′1... ... ... ... ... ... ... ... ...

0 0 0 δxn δyn 0 −(xnδy
′
n + y′nδxn) −(ynδy

′
n + y′nδyn) −δy′n

δxn δyn 0 0 0 0 −(xnδx
′
n + x′nδxn) −(ynδx

′
n + x′nδyn) −δx′n

]T .

(C.37)222



If we model these errors as independent, random variables following Gaussian dis-tributions with zero mean value and variane σ2, σ′2 for the �rst and seond im-age respetively we an ompute the ovariane matrix of δAT . As we mentionedabove we reate the vetor δa by onatenating the olumns of δAT . Vetor δahas 18n entries, thus the ovariane matrix of δAT has a size of 18n × 18n. Sinethe variables are independent, the ovariane matrix Ca has a blok diagonal form
Ca = diag{E1, E2, . . . , En} with the 18× 18 diagonal elements being displayed onFig. C.1.From Eqs. C.31, C.32 and C.35 we get that the perturbation of the homog-raphy vetor δh is a linear ombination of the perturbation of the input vetor δai.e.,
δh =[ x01 x02 . . . x09

][

0 0 . . . 0

0 1
λ01−λ02

. . . 0

. . . . . .
. . . . . .

0 0 . . . 1
λ01−λ09

][

xT01

xT02...
xT09

][ h1I9 h2I9 · · · h9I9 ]Gδa.

(C.39)If we ompat the notation by using the matrix J
J = [ x01 x02 . . . x09

][

0 0 . . . 0

0 1
λ01−λ02

. . . 0

. . . . . .
. . . . . .

0 0 . . . 1
λ01−λ09

][

xT01

xT02...
xT09

], (C.40)
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Figure C.1: Blok i of the ovariane matrix for δa
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the ovariane matrix Ch is given by
Ch = J [ h1I9 h2I9 · · · h9I9 ]GCaG

T [ h1I9 h2I9 · · · h9I9 ]TJT (C.41)With the proper algebrai manipulation we get the �nal result.
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Lemma C.2. Given the projetion matries for the two views of a amera withintrinsi parameters K

P = K · [I | 0] P′ = K · [R | t] (C.42)where R, t represent the rotation and translation between the two views respetivelyand a plane de�ned by πT ·X = 0 with π = (νT , 1)T (ν is the surfae normal), thenthe homography indued by the plane is x′ = H · x with
H = K · (R− t · νT ) ·K−1. (C.43)Proof. The general idea is to ompute the world point with respet to the imagepoint of the �rst and seond frame and equate the two expressions. Let us as-sume that there is a plane π with surfae normal N = (νT , 1)T in homogeneousoordinates1. By de�nition any world point X belonging to that plane satis�es theequation

NTX = 0. (C.44)Let x, x′ denote the projetion of the world point on the �rst and seond framerespetively. If P = K·[I | 0] and P′ = K · [R | t] are the projetion matries for thetwo amera views then x = P ·X and x′ = P′ ·X respetively. If we parameterizethe world point X = (yT, ρ)T then we get that x = K · [I | 0] · (yT, ρ)T = K · y.Thus the world point X belongs to the ray parameterized by ρ X = ((K−1 ·x)T , ρ)T .1We assume that the plane does not pass through the enter of the amera of the �rst frame at
(0, 0, 0, 1)T that's why we are allowed to assume that π4 = 1.226



Using Eq. C.44 we ompute ρ = −νTK−1x, thus
X = ((K−1x)T , νTK−1x)T (C.45)From the projetion of X to the seond view we get

x′ = K · [R | t] · ((K−1x)T , νTK−1x)T = K(R− tνT )K−1x (C.46)
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Appendix DPTU-Camera alibrationIn this hapter we desribe the proedure of alibrating the Pan and Tilt Unit (PTU)with the ameras. Fig. D.1 displays the setting that we use in our experiments. Anarray of ameras is attahed on top of a Pan and Tilt Unit (PTU). The PTU has twodegrees of freedom namely rotation around the horizontal (pan) and vertial (tilt)plane. In the experiments we use a single amera (loated on the top right ornerof the array). Before performing any experiment we have to alibrate the amerawith respet to the PTU. The next setion desribes that proedure in details.D.1 Aquiring alibration dataWe aptured images of a hekerboard pattern for di�erent pan and tilt angles.We seleted 11 di�erent pan and tilt angles and alibrated for the pan and the tiltindependently. We aptured 10 images for eah angle for a total of 220 images. Figs.D.2, D.3 display some of these images.We used the amera alibration toolbox reated by Bouguet [121℄ to omputethe intrinsi parameters �rst. Then, seleting the 0
◦ pan, 0

◦ tilt set of images asbaseline, we omputed the extrinsi parameters for eah di�erent pan/tilt ombina-tion with respet to the baseline. Table D.1 displays the rotation and translation of
228



Figure D.1: The Pan and Tilt Unit (PTU) and the ameras attahed to it.
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Figure D.2: Calibration images for di�erent pan values. Eah olumn represents adi�erent pan angle (−5
◦

,−3
◦

, 0
◦

, 3
◦

, 5
◦) and eah row a di�erent plaement of thealibration grid. 230



Figure D.3: Calibration images for di�erent tilt values. Eah olumn represents adi�erent tilt angle (−5
◦

,−3
◦

, 0
◦

, 3
◦

, 5
◦) and eah row a di�erent plaement of thealibration grid. 231
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(b) The amera and PTU oordinate systemsFigure D.4: The amera and PTU oordinate systems.the amera that orresponds to pan and tilt rotations of the PTU1. More spei�allythe translation vetor displays the new position of the amera enter with respetto the oordinate system of the amera at 0
◦ pan and 0

◦ tilt.In Fig. D.4(a) we draw the amera oordinate system that we use in the restof this setion.D.2 Calibrating the amera with respet to the PTUOur goal is to analytially ompute an estimate for the rotation and translation ofthe amera as we rotate and translate the PTU (Fig. D.4(a)). More spei�ally weneed to estimate1. the two axes of rotation (rθ, rφ) and the orresponding vetors (vθ,vφ) betweenthe enter of the two rotation axes and the foal point of the amera that ausethe translation of the amera enter1The numerial errors are approximately three times the standard deviations232



Table D.1: Rotation and translation of the amera with respet to the baseline position (0◦ tilt, 0
◦ pan).Pan (φ) Rotation Vetor (ωφ) Rotation Angle Translation Vetor (t)

−5
◦ −0.022± 0.086 −0.998± 0.131 0.053± 0.006 5.07

◦ ± 0.69
◦ −1.349± 0.198 0.215± 0.134 5.422± 1.460

−4
◦ −0.014± 0.093 −0.998± 0.142 0.053± 0.006 4.32

◦ ± 0.64
◦ −0.442± 0.160 0.057± 0.119 2.975± 1.348

−3
◦ −0.004± 0.109 −0.999± 0.166 0.053± 0.007 3.32

◦ ± 0.57
◦ −0.358± 0.126 0.087± 0.105 2.173± 1.211

−2
◦ −0.046± 0.167 −0.998± 0.255 0.053± 0.010 2.12

◦ ± 0.58
◦ −0.490± 0.107 0.082± 0.104 1.771± 1.192

−1
◦ −0.086± 0.348 −0.995± 0.535 0.054± 0.020 1.03

◦ ± 0.61
◦ −0.259± 0.092 0.055± 0.102 1.057± 1.184

1
◦

0.125± 0.320 0.991± 0.487 −0.049± 0.018 1.18
◦ ± 0.64

◦

0.321± 0.080 −0.045± 0.104 −0.953± 1.232

2
◦

0.027± 0.194 0.998± 0.295 −0.052± 0.011 2.05
◦ ± 0.64

◦

0.567± 0.086 −0.099± 0.112 −2.783± 1.322

3
◦

0.022± 0.153 0.998± 0.233 −0.053± 0.009 2.95
◦ ± 0.73

◦

0.956± 0.111 −0.226± 0.131 −5.010± 1.522

4
◦

0.002± 0.117 0.999± 0.181 −0.053± 0.007 4.02
◦ ± 0.75

◦

1.176± 0.135 −0.239± 0.140 −6.073± 1.602

5
◦

0.029± 0.091 0.998± 0.142 −0.053± 0.006 5.12
◦ ± 0.76

◦

1.287± 0.157 −0.157± 0.140 −7.203± 1.594Tilt (θ) Rotation Vetor (ωθ) Rotation Angle Translation Vetor (t)

−5
◦

0.997± 0.190 −0.078± 0.239 0.014± 0.012 4.86
◦ ± 1.11

◦

0.946± 0.265 −1.258± 0.328 −12.655± 2.252

−4
◦

0.996± 0.177 −0.090± 0.220 0.015± 0.010 3.89
◦ ± 0.83

◦

0.667± 0.178 −1.236± 0.213 −10.310± 1.684

−3
◦

0.995± 0.186 −0.102± 0.236 0.015± 0.009 2.92
◦ ± 0.67

◦

0.679± 0.127 −0.739± 0.142 −7.654± 1.330

−2
◦

0.981± 0.229 −0.193± 0.290 0.009± 0.010 2.09
◦ ± 0.63

◦

0.379± 0.104 −0.579± 0.104 −5.296± 1.180

−1
◦

0.998± 0.452 −0.058± 0.562 0.018± 0.018 0.98
◦ ± 0.57

◦

0.155± 0.088 −0.331± 0.084 −2.622± 1.098

1
◦ −0.991± 0.499 0.135± 0.623 −0.017± 0.017 0.90

◦ ± 0.60
◦ −0.190± 0.094 0.428± 0.077 2.835± 1.123

2
◦ −0.987± 0.239 0.160± 0.315 −0.012± 0.008 2.05

◦ ± 0.64
◦ −0.361± 0.116 0.875± 0.093 5.323± 1.229

3
◦ −0.999± 0.158 −0.035± 0.220 −0.019± 0.006 3.06

◦ ± 0.57
◦ −0.372± 0.140 1.296± 0.110 8.403± 1.221

4
◦ −0.999± 0.123 −0.051± 0.177 −0.018± 0.005 3.99

◦ ± 0.58
◦ −0.513± 0.169 1.847± 0.136 11.477± 1.240

5
◦ −0.996± 0.096 −0.091± 0.139 −0.020± 0.005 5.01

◦ ± 0.58
◦ −0.690± 0.187 2.491± 0.157 14.089± 1.210
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2. the two axes of rotation (ωθ, ωφ) that rotate the oordinate system attahedto the amera enter.In the following subsetions we desribe both proedures. Note that we use thesymbols ωφ, ωθ for the rotation of the whole amera oordinate system, while thesymbols rφ, rθ for the rotation axes of the PTU unit. Also we denote with φ, θ the panand tilt angles of the PTU, while with ψ, ξ the angles we use for the parametrizationof the rotation axes rφ, rθ.D.2.1 Estimating the translation of the amera enterLet us denote withOCXCY CZC the oordinate system attahed to the amera at the
0
◦ pan and 0

◦ tilt position. The translation measurements of Table D.1 orrespond tothe position of the amera enter when we pan or tilt the amera at a given angle.We denote that position with OC′ in Fig. D.4(b). We onsider the oordinatesystem of the PTU OUXUY UZU to be a translated version of OCXCY CZC by v.Hene, for any point P the relation of its oordinates in the two oordinate systemsis PU = PC + v. Then, we apply the rotation around axis r, so the amera entermoves from OC to OC′. Denoting the rotation matrix (orresponding to the rotationaxis r) with R(r) we have the following equations
OC′ = R(r) · v

OC′ = v + t.234



The above equations leads us to the bilinear system with respet to the rotationmatrix R and the vetor v

(R(r)− I)v = t. (D.1)Using the translation of the amera enter (ti) for di�erent angles (θi) of TableD.1, we need to estimate both the rotation axis r (2 parameters) and the vetor v(3 parameters). Using the Rodrigues formula to express the rotation around an axis
R = (1− cos θ)r · rT + cos θI + sin θQr (D.2)

, where Qr = [

0 −r3 r2

r3 0 −r1

−r2 r1 0

], we set up the following optimization problem
arg min

r,v

∑

i

||((1− cos θi)(rr
T − I) + sin θiQr)v − ti|| (D.3)

s.t. ||r|| = 1. (D.4)The above optimization problem is non-onvex with respet to r,v. Sine therotation axis r has only 2 degrees of freedom we use spherial oordinates (ψ, ξ) to
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Figure D.5: Math ost for pan (left) and tilt (right) rotation.parameterize r

r1 = cosψ sin ξ

r2 = sinψ sin ξ

r3 = cos ξand then solve the onvex optimization problem with respet to v. Fig. D.5displays the minimum ost that we obtained for di�erent angles ψ, ξ. We displaythe solution to the optimization for pan and tilt angles in Table D.2.D.2.2 Estimating the rotation of the amera oordinate system (ω)The rotation axis measurements are displayed on the seond olumn of Table D.1.Notie that the �rst �ve rotation vetors are approximately the opposite of thelast �ve. This is expeted sine the angle of the rotation is reversed. Sine thevetors are onsistent, instead of formulating and solving a omplex non-onvexoptimization problem, we estimate the rotation axis with a simple average operation.More spei�ally, we ompute the average value for the two variables and use the236



Table D.2: Calibration ResultsPTU Pan PTU Tiltrotation axis r −0.052 0.997 −0.052 -0.940 0.324 −0.105vetor v 46.554 312.956 −3.629 −221.493 −86.002 −2.419mathing ost 9.12 4.10rotation vetor ω 0.053 0.997 −0.053 −0.994 0.110 −0.016ontraint that the norm of the rotation vetor is one to obtain the value for thethird oordinate. The results for both pan and tilt are displayed in Table D.2.D.3 Computing the external parameters for any PTU rotationTo synopsize the alibration proess, here are the equations that provide the ameratranslation T and rotation Rω as a funtion of the pan and tilt of the PTU. Wedenote with φ, θ the pan and tilt angle of the PTU respetively.
T(φ) = ((1− cos φ) · [

−0.997 −0.052 0.003

−0.052 −0.006 −0.052

0.003 −0.052 −0.997

]+

sinφ · [

0 0.052 0.997

−0.052 0 0.052

−0.997 −0.052 0

]) · [

46.554

312.956

−3.629

]

(D.5)
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Rωφ
(φ) = [

0.003 0.053 −0.003

0.053 0.994 −0.053

−0.003 −0.053 0.003

] + [

0.997 −0.053 0.003

−0.053 0.006 0.053

0.003 0.053 0.997

] · cos φ+

[

0 0.053 0.997

−0.053 0 −0.053

−0.997 0.053 0

] · sin φ (D.6)
T(θ) = ((1− cos θ) · [

−0.116 −0.304 0.099

−0.304 −0.896 −0.034

0.099 −0.033 −0.989

]+

sin θ · [

0 0.105 0.323

−0.105 0 0.940

−0.323 −0.940 0

]) · [

−221.493

−86.002

−2.419

]

(D.7)

Rωθ
(θ) = [

0.988 −0.110 0.016

−0.110 0.012 −0.002

0.016 −0.002 0.000

] + [

0.012 0.110 −0.016

0.110 0.988 0.002

−0.016 0.002 1

] · cos θ+

[

0 0.016 0.110

−0.016 0 0.994

−0.110 −0.994 0

] · sin θ (D.8)238
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