
ABSTRACT
Title of dissertation: TOWARDS SEGMENTATIONINTO SURFACESKonstantinos Bitsakos,Do
tor of Philosophy, 2010Dissertation dire
ted by: Professor Yiannis AloimonosDepartment of Computer S
ien
eImage segmentation is a fundamental problem of low level 
omputer vision andis also used as a prepro
essing step for a number of higher level tasks (e.g. obje
tdete
tion and re
ognition, a
tion 
lassi�
ation, opti
al �ow and stereo 
omputationet
). In this dissertation we study the image segmentation problem fo
using on thetask of segmentation into surfa
es.First we present our unifying framework through whi
h mean shift, bilateral�ltering and anisotropi
 di�usion 
an be des
ribed. Three new methods are alsodes
ribed and implemented and the most prominent of them, 
alled Color MeanShift (CMS), is extensively tested and 
ompared against the existing methods. Weexperimentally show that CMS outperforms the other methods i.e., 
reates moreuniform regions and retains equally well the edges between segments.



Next we argue that 
olor based segmentation should be a two stage pro
ess;edge preserving �ltering, followed by pixel 
lustering. We 
reate novel segmentationalgorithms by 
oupling the previously des
ribed �ltering methods with standardgrouping te
hniques. We 
ompare all the segmentation methods with 
urrent state ofthe art grouping methods and show that they produ
e better results on the Berkeleyand Weizmann segmentation datasets. A number of other interesting 
on
lusionsare also drawn from the 
omparison.Then we fo
us on surfa
e normal estimation te
hniques. We present two novelmethods to estimate the parameters of a planar surfa
e viewed by a moving robotwhen the odometry is known. We also present a way of 
ombining them and in-tegrate the measurements over time using an extended Kalman �lter. We test theestimation a

ura
y by demonstrating the ability of the system to navigate in anindoor environment using ex
lusively vision.We 
on
lude this dissertation with a dis
ussion on how 
olor based segmenta-tion 
an be integrated into a stru
ture from motion framework that 
omputes planarsurfa
es using homographies.
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Chapter 1OverviewIn this dissertation we study the image segmentation problem fo
using on the taskof segmentation into surfa
es. Arguably image segmentation is the most importantlow level vision task. Besides being by itself a very interesting signal pro
essingproblem, its importan
e also arises from the number of vision appli
ations thatrequire some sort of segmentation of the image. Obje
t dete
tion and re
ognition,fa
e re
ognition, a
tion 
lassi�
ation, video and medi
al image analysis are a fewof the domains that require a prior identi�
ation of �homogeneous� image regions.Moreover, other low level tasks, su
h as stereo and opti
al �ow 
omputation, greatlybene�t from a good segmentation algorithm [1, 2℄.A great number of resear
hers have extensively studied di�erent variations ofthe segmentation problem with more or less su

ess. As Borra and Shankar [3℄suggest, the proper segmentation is task and domain spe
i�
. Hen
e, besides theirdi�
ulty as a high dimensional pixel grouping problems, most variations of thesegmentation problem are also ill-de�ned. For example, when the goal is obje
tre
ognition, image segmentation's purpose is to identify (and group together) imageregions that 
orrespond to obje
ts. Sin
e an obje
t is not a well de�ned entity,this de�nition of image segmentation is also ill-de�ned. Furthermore, �
orre
t� seg-mentations of an image may exist at di�erent levels of detail, thus resear
hers have1



(a) Co�ee mug (b) Chair (
) Board gameFigure 1.1: Images of obje
ts that are hard to segment into surfa
es.worked on �hierar
hi
al� segmentation s
hemes [4, 5, 6℄.We prefer a geometri
 based de�nition of segmentation that avoids most am-biguity problems mentioned above. More spe
i�
ally, we use the surfa
e normalof individual pixels as the 
riterion for grouping them together. A

ording to thisde�nition, areas with smooth surfa
e normals should belong to the same segment,and segment boundaries should 
orrespond to normal dis
ontinuities, 
aused eitherby distan
e or orientation dis
ontinuities.This de�nition of the segmentation is straightforward in theory, but it presentsmany 
hallenges on the algorithmi
 and implementation levels. In pra
ti
e, it isimpossible to 
ompute the surfa
e normal of an individual pixel unless a smoothnessassumption about the region around the pixel is made. This leads to the wellknown 
hi
ken-and-egg problem, where one needs to assume that the area arounda pixel possesses the same properties (similar surfa
e normal in this 
ase) as thepixel in order to 
ompute those properties and 
he
k whether the properties of the2



pixels around it a
tually have the same properties. In general, it is known thatsurfa
e normal estimation belongs to the general 
ategory of stru
ture from motionproblems, that are harder than stereo and opti
al �ow 
omputation, sin
e one seeksto estimate 3 dimensional quantities instead of 2D image properties. A very 
ommonassumption that we also adopt in this work is the planarity assumption, namely weassume that obje
ts 
onsist of planar surfa
es.Apparently there are important unresolved issues when surfa
es are not pla-nar, as in the 
ase of the 
o�ee mug or the 
hair of Fig. 1.1. It is not 
lear howa �proper� segmentation into surfa
es algorithm should handle the smooth surfa
enormal 
hange. One might argue that the 
o�ee mug should be 
onsidered as asingle entity. What about the 
hair then? A division into two surfa
es, one sup-porting the ba
k and the other where one sits, perpendi
ular to ea
h other seems abetter solution than a single surfa
e. In a sense the resolution of the surfa
e normalestimation ultimately de�nes the segmentation. Even in 
ases when there is a 
learsurfa
e normal dis
ontinuity, su
h as the individual surfa
es of the �mastermind�board game (Fig. 1.1), there are 
omputational problems. In this parti
ular exam-ple the edge between the two areas is mu
h weaker than the texture edges on ea
hindividual segment. As a 
onsequen
e any gradient based segmentation algorithmwould fail to identify the edge. In general segmentation into planar surfa
es is avery hard problem.This dissertation does not 
laim to provide a 
omplete solution to the seg-mentation into planar surfa
es problem. A 
areful study of some parts of the wholesystem is performed, instead, and a number of improvements over 
urrent methods3



are proposed. More spe
i�
ally, we 
onsider the subproblems of 
olor based seg-mentation and surfa
e normal estimation in isolation, and their intera
tion. Ourtwo basi
 theses are that a) 
olor-based segmentation should be treated as a �lteringstep followed by a grouping pro
ess and b) 
ombination of 
urve based, region basedand point based 
ues is important for surfa
e estimation (and low level 
omputervision in general). In the next paragraphs we further develop these ideas and brie�ydes
ribe the 
ontent of ea
h 
hapter of this thesis.We start, in 
hapter 2, by des
ribing a framework through whi
h mean shift,bilateral �ltering and anisotropi
 di�usion 
an be des
ribed. The simpli
ity of theframework brings forth the similarities and di�eren
es of these methods resultingin a better understanding on how they operate on images. Furthermore, three newmethods are des
ribed and implemented and the most prominent of them, 
alledColor Mean Shift, is extensively tested and 
ompared with the existing methods.Using a number of images and di�erent performan
e 
riteria we 
on
lude that ColorMean Shift outperforms the existing methods i.e., 
reates more uniform regions andretains equally well (or better) the edges between segments, while it is slightly slowerthan the existing methods.Chapter 3 des
ribes and experimentally veri�es the thesis that 
olor basedsegmentation should be a two stage pro
ess, namely an edge preserving �ltering fol-lowed by a 
lustering of the image pixels. We 
reate novel segmentation algorithmsby 
oupling the �ltering methods of the previous 
hapter with four 
lustering meth-ods; 
onne
ted 
omponents grouping with 
onstant threshold in 3D or 5D spa
e,grouping using region adja
en
y graphs; and the popular grouping using adaptive4



threshold algorithm by Felzenszwalb and Huttenlo
her [7℄. Then, we use the Berke-ley database to 
ompare the segmentation results with those obtained from humansubje
ts. We use a simple measure based on edge overlap as well as four popu-lar measures to 
ompare the quality of the segmentation. Extensive experimental
omparison veri�es that the two stage segmentation produ
es better results thanany 
lustering algorithm in isolation. In addition, the results attests that the twostages are inter
onne
ted i.e., for best segmentation results the 
ombination of �lter-ing and grouping algorithms should 
onsidered together. Studying and improvingan individual part (either �ltering or grouping) does not guarantee better results.Appendix A presents more segmentation results using a di�erent dataset obtainedfrom the Weizmann Institute [8℄.In the next 
hapter (4) we swit
h topi
 and fo
us on the surfa
e normal estima-tion problem. More spe
i�
ally, we des
ribe how image 
ues 
an be 
ombined withodometry (or inertial sensor) measurements to estimate the surfa
e normal of imageregions and perform visual navigation on a 
hallenging indoor environment. Wepresent one way to 
ombine three di�erent methods based on image points, straightlines and whole image regions and estimate the surfa
e normal and distan
e of thewalls more a

urately and robustly. Besides the des
ription of two novel methodsfor surfa
e normal estimation based on straight lines and regions, this 
hapter alsoprovides an paradigm on how an a
tual visual system 
an bene�t from knowledgeof the 
amera motion. In this 
ase the odometry of the robot empowers us to a)de
ouple motion and stru
ture and hen
e 
ompute the surfa
e normal using featurepoints by solving a linear system, b) estimate the surfa
e normal by 
onsidering5



the stret
h of the whole region. In addition, we propose one way to integrate themeasurements of the surfa
e normal over time using an extended Kalman �lter.The whole approa
h is implemented and tested on a mobile robot. In a numberof experiments we demonstrate the ability of the system to navigate in an indoorenvironment using ex
lusively vision. The quality of visual navigation is used toevaluate the surfa
e normal estimation with the individual methods and their 
om-bination. In all the experiments the 
ombination of the three methods produ
esmu
h better navigation results than ea
h individual method in isolation. The inte-gration of the surfa
e normal measurements over time further improves the qualityof the navigation.Appendix B dire
tly relates to 
hapter 4. The stret
h �lter that we developwas motivated by one of the surfa
e normal estimation methods of that 
hapter,namely the harmoni
 shape from texture method. In a nutshell a

ording to ourmethod the surfa
e normal and distan
e are en
oded in the image stret
h and shift ofa planar region between two su

essive 
amera frames, thus by measuring the latterimage quantities one 
an estimate the surfa
e values. In this 
hapter we des
ribea dire
t way to estimate the stret
h of a 2D signal using a properly 
reated single�lter. We analyti
ally develop this �lter and present results of applying it to realsignals. We show that this method is a real-time alternative solution for measuringlo
al signal transformations. Experimentally, this method 
an a

urately measurestret
h, however, it is very sensitive to shift.Appendix D des
ribes the pro
ess of 
alibrating the 
amera with respe
t tothe Pan and Tilt Unit. This is a ne
essary pro
edure in order to use PTU based6



measurements for the 
amera motion in stru
ture from motion algorithms su
h asthe ones used in 
hapter 4. First, we de�ne what we mean by the term �
alibration�.Then, we formulate the 
alibration pro
ess as an optimization problem and des
ribeits solution. Finally, we present the 
alibration results we obtained in our setting,namely a quad 
amera frame mounted on a PTU-46-17P70T pan and tilt unit byDire
ted Per
eption.We 
on
lude this dissertation, in 
hapter 5, by presenting a framework thatin
orporates 
olor based segmentation into stru
ture from motion algorithms. Wefo
us on the problem of estimating the homography i.e., the transformation of thelo
ations of points belonging to a 3D planar surfa
e between two frames. We extend
urrent approa
hes by obtaining an initial grouping of the feature points using our
olor based segmentation algorithm. Then, we 
ompute the homographies usingrobust existing te
hniques and we further adjust the parameters of the segmentationbased on the geometry of the s
ene. The latter step 
orresponds to the mergingregion step of traditional plane estimation algorithms. We also propose a splittingme
hanism in regions where the reproje
tion error of feature points is large, basedon 
olor segmentation. Finally we brie�y tou
h the problem of a
tive segmentationinto planar surfa
es, but providing a lemma that 
an be used to predi
t the qualityof the homography estimation. All the proofs for the lemmas used in this 
hapterare presented on Appendix C.
7



Chapter 2A Framework for Filtering Algorithms2.1 Introdu
tionThis 
hapter and the next 
onsiders the problem of image segmentation, based onlyon the intensity values of an image. Color based segmentation is a fundamentaland well studied problem in 
omputer vision and many algorithms exist in theliterature. The simpli
ity of this problem1 as well as its dire
t 
onne
tion to surfa
ebased segmentation make it an appropriate 
andidate for a starting point in ourdis
ussion.We per
eive segmentation as a two-step pro
ess; a smoothing step followed bya grouping step. The smoothing step attempts to bring 
loser intensities of neigh-boring pixels that belong to the same segment, while preserving (or even enhan
ing)the intensity di�eren
e a
ross segment boundaries. The grouping step attempts tode
ide whether two neighboring pixels belong to the same segment or not. Arguablyboth steps are equally important, even though 
urrent methods only 
on
entrate onone step of the pro
ess. Furthermore, their 
ombination a�e
ts the �nal result.First we study a number of smoothing te
hniques; the original mean shift [9℄and its modi�ed version[10, 11℄2, bilateral �ltering [12℄,[13℄, lo
al mode �ltering [14℄1Here we refer to the simpli
ity of the formulation of 
olor based segmentation, namely grouppixels with similar 
olor properties together. We do not imply, though, that this problem is easyto solve or has been solved so far.2In the re
ent papers, the original �mean shift� approa
h is 
alled �blurring mean shift�. We8



and anisotropi
 di�usion [15℄. We present all the above te
hniques as variationsof a general optimization problem. Using su
h a formulation the similarities anddi�eren
es between them are made 
lear. This framework also provides a naturalway to 
lassify them using two 
riteria. Using the 
lassi�
ation 
riteria we proposethree novel methods. Two of them (
olor mean shift and spatial mean shift) arevariations of the mean shift �ltering and the third one is an extension of bilateral�ltering. Filtering experiments show that 
olor mean shift a
tually outperformsmode �nding in smoothing the images while preserving the edges.2.1.1 Related WorkIn this se
tion we present related work on mean shift, sin
e this is the main fo
us andmotivation for the whole 
hapter. Following the su

ess of Comani
iu and Meer'sversion of mean shift [11℄ the same basi
 algorithm for non parametri
 
lustering hasbeen used for obje
t tra
king [16℄, 3D re
onstru
tion [17℄, image �ltering [11℄, texture
lassi�
ation [18℄ and video segmentation [19℄ among other problems. The relativelyhigh 
omputational 
ost of a naive implementation of the method 
ombined with theneed for fast image pro
essing led resear
hers to propose fast approximate variationsof it. Most notably, two solutions for �nding pairs of points within a radius havebeen proposed; the Improved Fast Gauss Transform based mean shift [20℄ for Normalkernels and the Lo
ality Sensitive Hashing based mean shift [18℄.Cheng [10℄ was the �rst to re
ognize the equivalen
e of mean shift to a step-use a di�erent name for the mean shift variant used in 
omputer vision, namely �mode �nding�.So in the rest of this 
hapter the term Mode Finding (MF) refers to Comani
iu and Meer'sversion of mean shift. 9



varying gradient as
ent optimization problem, and mu
h later Fashing and Tomashi[21℄ showed that it is equivalent to Newton's method with pie
ewise 
onstant kernels,and is a quadrati
 bound maximization for all other kernels. Yuan and Li [22℄ provethat mean shift is a half quadrati
 optimization for density mode dete
tion when thepro�les of the kernel fun
tions are 
onvex. Finally, Carreira-Perpinan [23℄ provesthat it is equivalent to an EM algorithm when the kernel is Normal.At the same time a number of extensions of the basi
 algorithm have beenproposed. Shen et al. [24℄ and Yuan and Li [22℄ propose multi s
ale extensions to theoriginal algorithm for dete
ting density modes at di�erent resolutions. Extensionsto general metri
 spa
es were also developed [25, 26, 27, 28℄.2.1.2 Notational PreliminariesWe represent the 
olor image as a mapping S from the 2D spa
e of the pixel 
oor-dinates to the 3D spa
e of the intensity values (for 
olor images). xi is a 2D ve
torrepresenting the spatial 
oordinates of pixel i (i = 1 . . .N) and S(xi) is a ve
torthat represents the three 
olor 
hannels. To simplify the notation we denote theintensities for a pixel xi with a subs
ript, so S(xi) = Si. We also denote the set ofall pixels as X and the whole image S (X). The 
ardinality of X is N .In the following se
tions we use bold letters to represent ve
tors and the nota-tion [xi,Si]
T to indi
ate a 
on
atenation of ve
tors. When we want to indi
ate theevolution of a ve
tor over time we use supers
ripts, e.g. [x0

i ,S
0
i ] indi
ates the initialvalues of pixel xi having intensity Si. 10



2.1.3 Kernel Fun
tionsDe�nition(Kernel Fun
tion):Let X be a d-dimensional Eu
lidean spa
e and x ∈

X. We denote with xi the ith 
omponent of x. The L2 norm of x is a non-negativenumber ||x|| su
h that ||x||2 =
∑d

i=1 x
2
i . A fun
tion K : X → R is a kernel if andonly if there exists another fun
tion k : [0 · · ·+∞]→ R su
h that

K(x) = k(||x||2) (2.1)and1. k is non negative2. k is non in
reasing i.e.,
k(a) ≥ k(b), if a < b (2.2)3. k is pie
ewise 
ontinuous and̂

+∞

0

k(a)da < +∞ (2.3)Fun
tion k(x) is 
alled the pro�le of the kernel K(x).Often the kernel fun
tion is normalized i.e.,
ˆ

X

K(x)dx = 1. (2.4)Even though kernel fun
tions are mostly used for kernel density estimation,11



we use them in order to de�ne optimization problems that we subsequently solveusing standard gradient des
ent methods. Thus, we are not only interested in thekernel fun
tion K(x) but also on its partial derivatives ∂K(x)
∂x

. Next we de�ne twokernel fun
tions that we use; the Epane
hnikov and the Gaussian kernel.2.1.3.1 Epane
hnikov kernelThe Epane
hnikov kernel [29℄ has the analyti
 form
KE(x) =



















cE(1− xTx) xTx ≤ 1

0 otherwise

(2.5)
where cE =

d+ 2

2πd/2
Γ(
d+ 2

2
) is the normalization 
onstant. Fig. 2.1(a) presents thiskernel in the 1 − D 
ase. The partial derivative of KE(x) with respe
t to element

xi of ve
tor x is
∂KE(x)

∂xi
=



















−2 · cE · xi −1 < xi < 1

0 |xi| > 1

(2.6)and is depi
ted in Fig. 2.1(b).2.1.3.2 Multivariate Normal (Gaussian) kernelThe multivariate Normal kernel with varian
e 1 has the analyti
 form
KN (x) = (2π)−

d
2 exp(−1

2
xTx). (2.7)
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(b) Derivative of 1-D Epane
hnikov KernelFigure 2.1: 1−D Epane
hnikov kernel.In Fig. 2.2(a) a 1−D Normal kernel is displayed.The partial derivative of KE(x) with respe
t to element xi of ve
tor x is
∂KN (x)

∂xi
= −xi · (2π)−

d
2 exp(−1

2
xTx) = −xi ·KN (x) (2.8)and is depi
ted in Fig. 2.2(b).The Normal kernel is often symmetri
ally trun
ated to obtain a kernel with�nite support.2.2 Image FilteringIn the following subse
tions we de�ne a number of image �ltering te
hniques asoptimization problems. In previous formulations these methods were de�ned asthe result of applying an algorithm to an image. Using our formulation we aim to13
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(b) Derivative of 1-D normal kernelFigure 2.2: 1−D Normal kernel.a
hieve two goals; to simplify the methods (sin
e we only need a single equationto des
ribe it) and to des
ribe all the methods in a uniform way. Note that somemethods (i.e. mean shift and mode �nding) are de�ned for any kernel fun
tion,while others (i.e., bilateral �ltering, lo
al mode �ltering and anisotropi
 di�usion)are only de�ned with respe
t to the Normal kernel KN(x).2.2.1 Mean Shift (MS)The original mean shift formulation [9℄ (applied to a 
olor image) treats the image asa set of 5−D points (i.e., 2 dimensions for the spatial 
oordinates and 3 dimensionsfor the 
olor values). Ea
h point is iteratively moved proportionally to the weightedaverage of its neighboring points. At the end, 
lusters of points are formed. We
14



de�ne mean shift to be the gradient des
ent solution of the optimization problem
arg min

[xi,Si]
−

∑

i,j

K([xi,Si]− [xj ,Sj]), (2.9)where∑
i,j

de�nes the summation over all pairs of pixels in the image. Note that thisproblem has a global maximum when all the pixels �
ollapse� into a single point. Weseek a lo
al minimum instead. That's why we initialize the features [xi, si] with theoriginal position and 
olor of the pixels of the image and perform gradient des
entiterations till we rea
h the lo
al minimum.2.2.2 Mode Finding (MF)The modi�ed mean shift formulation proposed by Comani
iu and Meer [11℄ (hen
e-forth 
alled �mode �nding�) 
an also be expressed as a gradient des
ent solution ofthe optimization problem`
arg min

[xi,Si]
−

∑

i,j

K([xi,Si]− [x0
j ,S

0
j ]) (2.10)There is a subtle di�eren
e between mode �nding and mean shift, that sig-ni�
antly a�e
ts the performan
e. In the former formulation ea
h 
urrent point is
ompared against the original set of 5 − D points [x0

j ,S
0
j ], while in the latter 
asethe point is 
ompared against the set of points from the previous iteration [xj,Sj ].In a re
ent paper [30℄ S. Rao et al. study those two variations from an informationtheoreti
 perspe
tive and 
on
lude that mean shift is not stable and hen
e should15



not be used for 
lustering.Fig. 2.3 presents the results of both methods in a smoothly varying intensityimage. Noti
e that the gradient of the kernel fun
tion is zero everywhere but inthe boundaries. Thus, mode �nding �ltering only 
hanges the intensity on theboundaries (that 
hange is not very visible in Fig. 2.3). Mean shift, on the otherhand, produ
es arti�
ial segments of uniform intensity. Intuitively, ea
h iteration ofthe pro
ess results in more 
lustered data whi
h in turn results in better 
lusteringresults for the next iteration. On the downside, a fast mean shift implementation is
hallenging due to the fa
t that the feature points and the 
omparison points do notlie on a regular spatial grid anymore. Thus in a naive implementation one wouldhave to 
ompare the 
urrent feature [xi,Si] against all the remaining feature points.2.2.3 Spatial Mean-Shift (SMS)One of our proposed methods that lies between mean shift and mode �nding, spa-tial mean shift performs mean shift in the spatial dimensions and mode �nding inthe 
olor dimensions. SMS 
an be viewed as the gradient des
ent solution of theoptimization problem
arg min

[xi,Si]
−

∑

i,j

K([xi,Si]− [xj ,S
0
j ]). (2.11)Spatial mean shift su�ers from the same 
omputational problems as mean shift, soit is mentioned here for the sake of 
ompleteness. We ex
lude the results of bothmean shift and spatial mean shift in our �ltering and segmentation experiments.16



2.2.4 Color Mean-Shift (CMS)Color mean shift is our proposed method that alleviates the 
omputational problemof mean shift by using the original spatial lo
ation of the points for 
omparison,while it uses the updated intensity values of the previous iteration for improved
lustering ability. In a sense, mean shift is performed on the 
olor dimensions andmode �nding on the spatial dimensions (that is the reason for naming the method�
olor mean shift�). As above, CMS 
an be expressed as the gradient des
ent solutionof the optimization problem
arg min

[xi,Si]
−

∑

i,j

K([xi,Si]− [x0
j ,Sj ]). (2.12)2.2.5 Lo
al Mode Filtering (LMF)Lo
al mode �ltering [14℄ was introdu
ed as a method to �nd the lo
al mode in therange domain of ea
h pixel of the image. A generalization of the spatial Gaussian�ltering to a spatial and range Gaussian �lter is used to iterate to the lo
al mode (onthe 3 − D 
olor domain). On ea
h iteration the intensity of ea
h pixel is repla
edby a weighted average of its neighbors. From an optimization point of view theproblem 
an be expressed as

arg min
Si

−
∑

i,j

KN([xi,Si]− [x0
j ,S

0
j ]). (2.13)
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2.2.5.1 Bilateral Filtering (BF)In bilateral �ltering [12℄,[13℄ the intensity of ea
h pixel is repla
ed by a weightedaverage of its neighbors. The weight assigned to ea
h neighbor de
reases with boththe distan
e in the image plane (spatial domain) and the distan
e on the intensityaxes (range domain). Formally the intensity at ea
h pixel Si takes the value
Si =

∑

j SjKN([xi,Si]− [x0
j ,S

0
j ])

∑

j KN([xi,Si]− [x0
j ,S

0
j ])

. (2.14)Bilateral �ltering 
an be 
onsidered as the �rst iteration of lo
al mode �ltering witha spe
i�
 step size (Se
. 2.2.7).2.2.5.2 Joined Bilateral �lteringIn this variation of the bilateral �ltering both the intensity and position of ea
h pixelis repla
ed by a weighted average of its neighbors. Formally, the new 
oordinatesand 
olor of ea
h pixel are
[xi,Si] =

∑

j[xi,Si]KN([xi,Si]− [x0
j ,S

0
j ])

∑

jKN([xi,Si]− [x0
j ,S

0
j ])

. (2.15)Analogous to bilateral �ltering this method 
an be 
onsidered as the �rstiteration of mode �nding with a spe
i�
 step size.
18



2.2.6 Anisotropi
 Di�usion (AD)Anisotropi
 di�usion is a non-linear pro
ess introdu
ed by Perona and Malik [15℄for edge preserving smoothing. In the original formulation a di�usion pro
ess with amonotoni
ally de
reasing di�usion fun
tion of the image gradient magnitude is usedto smooth the image while preserving strong edges. Sin
e then other fun
tions havebeen proposed and the equivalen
e of this te
hnique to robust statisti
s has beenestablished [31℄. In [14℄ the 
onne
tion with lo
al mode �ltering was also made. Herewe provide an alternative view of the di�usion pro
ess as an optimization problem
arg min

Si

−
∑

i,j

KN([xi,Si]− [xj,Sj ]). (2.16)The di�eren
e between this method and lo
al mode �ltering is analogous to thedi�eren
e between the original mean shift and mode �nding. Namely in lo
al mode�ltering the 
urrent point is 
ompared against the original image pixels [x0
j ,S

0
j ],while in anisotropi
 di�usion the 
omparison is against the intensity value of thepixels in the previous iteration [xj ,Sj ].2.2.7 Optimization steps sizesFrom the above optimization problems mean shift, spatial mean shift, 
olor meanshift and anisotropi
 di�usion are joint optimization problems i.e., the whole imageneeds to be optimized simultaneously. In mode �nding and lo
al mode �ltering,on the other hand, ea
h pixel 
an be optimized independently from the rest of theimage. Next we present two 
laims 
on
erning the step size of these optimization19



(a) Mode Finding (b) Spatial Mean Shift (
) Color Mean Shift
(d) Mean Shift (e) Lo
al Mode Filtering (f) Anisotropi
 Di�usionFigure 2.3: All the des
ribed algorithms applied on a smoothly varying image. Allthe �ltering algorithms were exe
uted with spatial resolution hs = 21 and rangeresolution hr = 10 and used a Normal kernel.problems.Claim 2.1. Lo
al mode �ltering (and mode �nding with a Gaussian kernel) 
an be
onsidered as gradient des
end methods for solving the 
orresponding optimizationproblem (Eqs. 2.13 and 2.10 respe
tively) with a step size at iteration t of

γti = − 1
∑

jKN([xi,Sti]− [xj,S0
j ])
. (2.17)Proof. A proof for lo
al mode �ltering follows. Ea
h pixel pi is optimized separately.So if we repla
e the step size γi in the general gradient des
ent algorithm we get

St+1
i = Sti − γti∇

∑

j

KN([xi,S
t
i]− [xj ,S

0
j ]) (2.18)

St+1
i = Sti − γti

∑

j

∇KN([xi,S
t
i]− [xj ,S

0
j ]) (2.19)
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St+1
i = Sti − γti

∑

j

KN([xi,S
t
i]− [xj ,S

0
j ])[S

0
j − Sti] (2.20)

St+1
i = Sti+(γti

∑

j

KN([xi,Si]− [xj ,S
0
j ]))S

t
i−γti

∑

j

KN([xi,S
t
i]− [xj ,S

0
j ])S

t
i (2.21)

St+1
i =

∑

jKN([xi,S
t
i]− [xj ,S

0
j ])S

0
j

∑

jKN([xi,Sti]− [xj,S0
j ])

(2.22)that is exa
tly the intensity values for pixel xi at the next iteration t+ 1.To prove the 
laim for mode �nding with a Gaussian kernel one only needs torepla
e the o

urren
e of Sti, St+1
i ,S0

j with [xti,S
t
i], [xt+1

i ,St+1
i ], [x0

j ,S
0
j ] respe
tively,be
ause the optimization is performed on the 5−D domain.Claim 2.2. Mode �nding with an Epane
hnikov kernel 
an be 
onsidered as a gradi-ent des
end method for solving the 
orresponding optimization problem (Eq. 2.10)with a step size at iteration t of

γti = − 1

2cE
∑

j,||[xt
i,S

t
i]−[x0

j ,S
0
j ]||<1 1

(2.23)As a 
onsequen
e the result after one iteration of the gradient des
ent is
[xt+1
i ,St+1

i ] =

∑

j,||[xt
i,S

t
i]−[x0

j ,S
0
j ]||<1[x

0
j ,S

0
j ]

∑

j,||[xt
i,S

t
i]−[x0

j ,S
0
j ]||<1 1

. (2.24)Table 2.1 summarizes the optimization step sizes for ea
h method along with21



the results after one iteration. Note that in the 
ase of mean shift and anisotropi
di�usion we are using the blo
k gradient des
ent method and optimize one pixelve
tor at a time3.2.3 Classi�
ation frameworkCareful examination of the previous de�ned optimization problems reveal that thereare only two di�eren
es in their obje
tive fun
tions; the presen
e of [xi,Si] or [Si]as the optimization argument; and the 
omparison against the points in the originalimage [x0
j ,S

0
j ] or the points on the previous iteration [xj,Sj ]. Finally two of themethods (bilateral �ltering and joined bilateral �ltering) are an one-iteration meth-ods, while all the other methods perform multiple iterations till 
onvergen
e. Nextwe explain in details these di�eren
es, and de�ne a 
lassi�
ation of the methodsbased on these 
riteria.2.3.1 arg min
[xi,Si]

vs arg min
SiIn the �rst 
ase the optimization problem is de�ned over the joint spatial and rangedomain (5 − D), i.e. both the position of the pixels as well as their intensities
hange in ea
h iteration. In the se
ond 
ase, where the optimization is over therange domain (3−D), only the intensities of the pixels 
hange while their positionremain the same. This is not to be 
onfused with the use of [xi,Si] in the obje
tivefun
tion. While the position of the pixel is always 
onsidered in the 
omputation3We use the symbols xj , Sj to denote the 
urrent value of pixel pj . These might be the valuesof pixel pj at iteration t or t+ 1 depending on whether pj is pro
essed after or before pi.22



Method Step Size Single iteration resultMode Finding with KE γti = − 1

2cE
∑

j,||[xt
i,S

t
i]−[x0

j ,S
0
j ]||<1 1

[xt+1
i ,St+1

i ] =

∑

j,||[xt
i,S

t
i]−[x0

j ,S
0
j ]||<1[x

0
j ,S

0
j ]

∑

j,||[xt
i,S

t
i]−[x0

j ,S
0
j ]||<1 1Mode Finding with KN γti = − 1

∑

j KN ([xti,S
t
i]− [x0

j ,S
0
j ])

[xt+1
i ,St+1

i ] =

∑

j KN ([xti,S
t
i]− [x0

j ,S
0
j ])[x

0
j ,S

0
j ]

∑

jKN ([xti,S
t
i]− [x0

j ,S
0
j ])Mean Shift with KE γti = − 1

4cE
∑

j,||[xt
i,S

t
i]−[xj ,Sj ]||<1 1

[xt+1
i ,St+1

i ] =

∑

j,||[xt
i,S

t
i]−[xj ,Sj ]||<1[xj ,Sj ]

∑

j,||[xt
i,S

t
i]−[xj,Sj ]||<1 1Mean Shift with KN γti = − 1

2
∑

jKN ([xti,S
t
i]− [xj,Sj ])

[xt+1
i ,St+1

i ] =

∑

j KN ([xti,S
t
i]− [xj ,Sj ])[xj ,Sj ]

∑

j KN ([xti,S
t
i]− [xj ,Sj ])Spatial Mean Shift with KE γti = − 1

2cE
∑

j,||[xt
i,S

t
i]−[xj ,S0

j ]||<1 1
[xt+1
i ,St+1

i ] =

∑

j,||[xt
i,S

t
i]−[xj,S0

j ]||<1[xj ,S
0
j ]

∑

j,||[xt
i,S

t
i]−[xj,S0

j ]||<1 1Spatial Mean Shift with KN γti = − 1
∑

jKN ([xti,S
t
i]− [xj ,S0

j ])
[xt+1
i ,St+1

i ] =

∑

j KN ([xti,S
t
i]− [xj ,S

0
j ])[xj ,S

0
j ]

∑

j KN ([xti,S
t
i]− [xj ,S0

j ])Color Mean Shift with KE γti = − 1

2cE
∑

j,||[xt
i,S

t
i]−[x0

j ,Sj ]||<1 1
[xt+1
i ,St+1

i ] =

∑

j,||[xt
i,S

t
i]−[x0

j ,Sj ]||<1[x
0
j ,Sj ]

∑

j,||[xt
i,S

t
i]−[x0

j ,Sj ]||<1 1Color Mean Shift with KN γti = − 1
∑

jKN ([xti,S
t
i]− [x0

j ,Sj ])
[xt+1
i ,St+1

i ] =

∑

j KN ([xti,S
t
i]− [x0

j ,Sj ])[x
0
j ,Sj ]

∑

j KN ([xti,S
t
i]− [x0

j ,Sj ])Lo
al Mode Filtering with KN γti = − 1
∑

j KN ([xti,S
t
i]− [x0

j ,S
0
j ])

S
t+1
i =

∑

jKN ([xti,S
t
i]− [x0

j ,S
0
j ])S

0
j

∑

jKN ([xti,S
t
i]− [x0

j ,S
0
j ])Anisotropi
 Di�usion with KN γti = − 1

2
∑

jKN ([xti,S
t
i]− [xj,Sj ])

S
t+1
i =

∑

j KN ([xti,S
t
i]− [xj ,Sj ])Sj

∑

jKN ([xti,S
t
i]− [xj,Sj ])Table 2.1: Step sizes and iteration results for the di�erent �ltering methods with di�erent kernels.
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Color Mean ShiftInput:set of pixels x0
i with intensities S0

ia fun
tion gOutput:feature ve
tor [xi,Si]Algorithm:initialize feature points [xi,Si]← [x0
i ,S

0
i ]repeat until 
onvergen
efor all features [xi,Si]

[xi,Si]←
P

j [xj ,Sj ]g(||[xi,Si]−[x0
j ,Sj ]||2)

P

j g(||[xi,Si]−[x0
j ,Sj ]||2)Mode FindingInput:set of pixels x0

i with intensities S0
ia fun
tion gOutput:feature ve
tor [xi,Si]Algorithm:initialize feature points [xi,Si]← [x0

i ,S
0
i ]for all features [xi,Si]repeat until 
onvergen
e

[xi,Si]←
P

j [xj ,Sj ]g(||[xi,Si]−[x0
j ,S

0
j ]||2)

P

j g(||[xi,Si]−[x0
j ,S

0
j ]||2)Figure 2.4: The algorithms that we use in the experiments. Note that g(x) =

[x ≤ 1] (indi
ator fun
tion in Iverson notation) for the Epane
hnikov kernel and
g(x) = exp(−x/2) for the Normal kernel. Lo
al mode �ltering is performed in asimilar way as mode �nding and mean shift, anisotropi
 di�usion are performed ina similar way as 
olor mean shift.
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of the obje
tive fun
tion, that position might 
hange or not (depending on themethod).At this point we should also make 
lear that the optimization is de�ned for thewhole image, that is the values of all the pixels 
hange. For the sake of simpli
itywe don't make this expli
it when we write down the optimization equation.2.3.2 [x0
j ,S

0
j ] vs [xj,Sj]With a subs
ript we denote the value of the pixels at a spe
i�
 iteration, so [x0

j ,S
0
j ]is the value of pixel xj at the very beginning, i.e. in the original image. The la
kof a supers
ript denotes the 
urrent value of pixels, i.e. the value of the pixel ata previous iteration. Two pairs of algorithms (mean shift/mode �nding and lo
almode �ltering/anisotropi
 di�usion) only di�er in whether we 
ompare the 
urrentvalue of a pixel against the original image or the image obtained in the previousiteration. As we will demonstrate in the experiments, the results vary signi�
antlybe
ause of that (also see [30℄ for a theoreti
al analysis and justi�
ation).Furthermore, there are two valid hybrid 
ombinations that have not beenproposed before.

• [x0
j ,Sj] : In this 
ase the 
omparison is performed against the original positionof the pixels and the previously 
omputed range image.

• [xj ,S
0
j ] : In this 
ase the position of the pixels in the previous iteration is usedalong with their original intensity values.Apparently the previous 
ases only make a di�eren
e when the optimization is de-25



�ned over the joint spatial/range domain. Otherwise the position of the pixels never
hanges, thus [xj ] ≡ [x0
j ].2.3.3 A taxonomy of �ltering methodsFig. 2.5 presents the various methods and where they �t with respe
t to the previous
riteria. The three new methods are spatial mean shift, 
olor mean shift and joinedbilateral �ltering.2.4 Filtering experimentsFollowing the example of Comani
iu and Meer [11℄, we normalize the spatial and
olor 
oordinates of ea
h pixel ve
tor by dividing by the spatial (hs) and 
olor (hc)resolution. Thus, the original feature ve
tor [xi,Si] is transformed to [xi

hs
, Si

hr
] (notin
luded in the optimization equations for simpli
ity reasons). Then, we performthe optimization; one pixel at a time in the 
ase of mode �nding (Fig. 2.4, topright), or one iteration of the whole feature set at a time in the mean shift and 
olormean shift 
ases (Fig. 2.4, top left). Fig. 2.6 displays the original images that weuse for all the experiments in the rest of the se
tion.2.4.1 Epane
hnikov vs Normal KernelFirst we present some �ltering results when using di�erent kernels; namely theEpane
hnikov and Normal kernel (Figs. 2.7,2.8). Ea
h 
olumn of the �gures de-pi
ts the �ltering result with a di�erent algorithm; MF, LMF, CMS and AD stand26
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Figure 2.5: Classi�
ation of various �ltering methods.
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(a) Hand (b) Workers

(
) Woman (d) HousesFigure 2.6: The original images we use for the �ltering experiments. The �rstimage is taken from Comani
iu and Meer's mean shift segmentation paper, whilethe remaining are training images of the Berkeley segmentation database 
olle
tion.Their sizes are 303× 243 and 481× 321 pixels respe
tively.
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for mode �ltering, lo
al mode �ltering, 
olor mean shift and anisotropi
 di�usionrespe
tively. In all 
ases the Normal kernel produ
es smoother results, while pre-serving edge dis
ontinuities. As a matter of fa
t the 
olor resolution hr is the onethat de�nes the gradient magnitude above whi
h there is an edge (to be preserved).So for the �hand� image, a 
olor range of hr = 19 results in smoothing most of thetexture on the ba
kground, while a value of hr = 10 retains most the texture (inRGB 
olor spa
e with a Normal kernel).In all the images mode �nding and lo
al mode �ltering produ
ed very similarresults. Furthermore 
olor mean shift and anisotropi
 di�usion gave similar results.Color mean shift seems to produ
e more 
risp edges while anisotropi
 di�usionsmooths some of the edges. Overall, 
olor mean shift and anisotropi
 di�usionprodu
e more uniform regions (e.g. suppresses the skin 
olor variation on the �hand�image) and more 
risp boundaries between segments 
ompared to mode �nding andlo
al mode �ltering. The latter is parti
ularly important for the segmentation step.We further investigate this phenomenon in subse
tion 2.4.3.For the remaining �ltering experiments we use a Normal kernel.2.4.2 RGB vs Luv Color Spa
eIn Figs. 2.9, 2.10 we present the results when �ltering in the RGB and Luv 
olorspa
e. In general, �ltering in Luv 
olor spa
e produ
es smoother images. Thisis due to two fa
ts. The eu
lidean distan
e between two Luv values is per
ep-tually meaningful, i.e. it is proportional to the distan
e of the 
olors as per-29



(a) MF with Epane
h-nikov kernel (b) LMF with Epane
h-nikov kernel (
) CMS with Epane
h-nikov kernel (d) AD with Epane
h-nikov kernel
(e) MF with Normal ker-nel (f) LMF with Normalkernel (g) CMS with Normalkernel (h) AD with Normal ker-nel
(i) MF with Epane
h-nikov kernel (j) LMF with Epane
h-nikov kernel (k) CMS with Epane
h-nikov kernel (l) AD with Epane
h-nikov kernel
(m) MF with Normalkernel (n) LMF with Normalkernel (o) CMS with Normalkernel (p) AD with Normal ker-nelFigure 2.7: Epane
hnikov vs Normal kernel experiment. We use hs = 5 (resultingin a window of 11 × 11 pixels) and hr = 19. All the images are pro
essed in RGB
olor spa
e.
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(a) MF with Epane
h-nikov kernel (b) LMF with Epane
h-nikov kernel (
) CMS with Epane
h-nikov kernel (d) AD with Epane
h-nikov kernel
(e) MF with Normal ker-nel (f) LMF with Normalkernel (g) CMS with Normalkernel (h) AD with Normal ker-nel
(i) MF with Epane
h-nikov kernel (j) LMF with Epane
h-nikov kernel (k) CMS with Epane
h-nikov kernel (l) AD with Epane
h-nikov kernel
(m) MF with Normalkernel (n) LMF with Normalkernel (o) CMS with Normalkernel (p) AD with Normal ker-nelFigure 2.8: Epane
hnikov vs Normal kernel experiment. We use hs = 5 (resultingin a window of 11 × 11 pixels) and hr = 19. All the images are pro
essed in RGB
olor spa
e.
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eived by a human observer. This is not true in RGB, where very similar 
ol-ors might be lo
ated far away and vi
e versa. Furthermore the range of val-ues for ea
h 
omponent (L, u, v) is di�erent (for example in our implementation
L ∈ [0 . . . 100], u ∈ [−100 . . . 180], v ∈ [−135 . . . 110].), while ea
h of the Red, Greenand Blue 
omponents have values from 0 to 255.In these experiments, mode �nding and lo
al mode �ltering seem to produ
ealmost identi
al images, while 
olor mean shift preserves the boundaries better thananisotropi
 di�usion. Both latter methods smooth the image 
onsiderably morethan the former ones.2.4.3 Color uniformity of regions after �lteringNext we 
ompare the ability of the �ltering algorithms to suppress texture andprodu
e uniform regions. State of the art approa
hes to lo
ate and 
lassify textureuse �lter responses [32℄, [33℄ 
lustered in an K nearest neighbors framework. Wemeasure, instead, the uniformity of the regions using zero (i.e. 
olor histogram)and �rst order (i.e. gradient magnitude histogram) statisti
s on the 
olor spa
e.We 
ompute the magnitude of the image gradient for ea
h 
olor 
hannel on everyimage point using a 3× 3 Sobel �lter. In Figs. 2.11, 2.12, 2.13, 2.14 we display thehistograms of the 
olor and gradient distributions for the original images as well asthe �ltered ones with a Normal kernel in Luv 
olor spa
e. The di�eren
e betweenthe �ltering results is most obvious in the �hand� image. In 
olor mean shift �lteredimage the vast majority of gradient magnitudes are 
lose to zero. A 
omparable32



(a) MF on RGB 
olorspa
e (b) LMF on RGB 
olorspa
e (
) CMS on RGB 
olorspa
e (d) AD on RGB 
olorspa
e
(e) MF on LUV 
olorspa
e (f) LMF on LUV 
olorspa
e (g) CMS on LUV 
olorspa
e (h) AD on LUV 
olorspa
e
(i) MF on RGB 
olorspa
e (j) LMF on RGB 
olorspa
e (k) CMS on RGB 
olorspa
e (l) AD on RGB 
olorspa
e
(m) MF on LUV 
olorspa
e (n) LMF on LUV 
olorspa
e (o) CMS on LUV 
olorspa
e (p) AD on LUV 
olorspa
eFigure 2.9: RGB vs Luv 
olor spa
e experiments (1/2). We use hs = 5 (resulting ina window of 11×11 pixels) and hr = 5. All the images are pro
essed with a Normalkernel.
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(a) MF on RGB 
olorspa
e (b) LMF on RGB 
olorspa
e (
) CMS on RGB 
olorspa
e (d) AD on RGB 
olorspa
e
(e) MF on LUV 
olorspa
e (f) LMF on LUV 
olorspa
e (g) CMS on LUV 
olorspa
e (h) AD on LUV 
olorspa
e
(i) MF on RGB 
olorspa
e (j) LMF on RGB 
olorspa
e (k) CMS on RGB 
olorspa
e (l) AD on RGB 
olorspa
e
(m) MF on LUV 
olorspa
e (n) LMF on LUV 
olorspa
e (o) CMS on LUV 
olorspa
e (p) AD on LUV 
olorspa
eFigure 2.10: RGB vs Luv 
olor spa
e experiments (2/2). We use hs = 5 (resultingin a window of 11 × 11 pixels) and hr = 5. All the images are pro
essed with aNormal kernel.
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Figure 2.11: Histograms for the original hand image and the pro
essed results ofFig. 2.9 se
ond row. Noti
e that in all �gures the Y axis is in logarithmi
 s
ale.The 
olor mean shift �ltered image uses the least number of 
olor bins and exhibitsless gradient variation 
ompared to all the other methods and the original image.
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Figure 2.12: Histograms for the original workers image and the pro
essed results ofFig. 2.9 fourth row. Noti
e that in all �gures the Y axis is in logarithmi
 s
ale.
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Figure 2.13: Histograms for the original woman image and the pro
essed results ofFig. 2.10 se
ond row. Noti
e that in all �gures the Y axis is in logarithmi
 s
ale.
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Figure 2.14: Histograms for the original houses image and the pro
essed results ofFig. 2.10 fourth row. Noti
e that in all �gures the Y axis is in logarithmi
 s
ale.
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number of magnitudes are 
lose to zero in anisotropi
 di�usion image as well. Inmode �nding and lo
al mode �ltered image half as many pixels and in the originalimage 3% as many pixels have gradient 
lose to zero. In the same �gures, we displaythe joint 
olor histogram for the �ve images. As expe
ted, in the 
olor mean shiftimage the pixels are 
lustered to fewer 
olor bins 
ompared to the other images.In Table 2.2 we display the entropy measure for the 
olor distribution andthe gradient magnitude for ea
h method with the di�erent kernels and 
olor spa
es(and 
onstant spatial and 
olor resolutions hs = 5, hr = 5). The entropy de�nition4measures how �random� an image is. Thus, an image 
reated by sampling ea
hpixel's 
olor value from a uniform random distribution is expe
ted to have a largeentropy value, while a single uniform 
olor image has an entropy of 0. In generallower entropy values indi
ate more uniform 
olored images, i.e. images with lessnumber of segments of more uniform 
olor. From the results of Table 2.2 one 
anrea
h the following 
on
lusions.
• Color mean shift produ
es the least variation on the 
olor and gradient his-togram, followed by anisotropi
 di�usion, mode �nding and lo
al mode �lter-ing.
• Within a �ltering method the di�eren
es between the di�erent kernels and
olor spa
es are small for the 
olor entropy measures but quite signi�
ant forthe gradient measures. The least entropy measures for the gradient magnitudeare obtained when we use Normal kernel and perform the pro
essing in the4If X is a dis
rete random variable with possible values {x1, . . . , xn} then the entropy is de�nedas H(X) = −

∑n

i=1
p(xi) logb p(xi), where b is the base of the logarithm (in our 
ase we use b = 2).39



Table 2.2: Entropy measures for the 
olor and gradient histograms for the four images after performing the �ltering withdi�erent methods and di�erent kernels in the two 
olor spa
es. The �rst number is the entropy for the 
olor and the se
ond forthe gradient histogram. The lower the values the smaller the variation.Hand Image Mode �nding Lo
al Mode �ltering Color Mean Shift Anisotropi
 Di�usionEpane
hnikov, RGB 6.14, 12.97 6.14, 12.97 6.14, 12.97 6.14, 12.97Epane
hnikov, Luv 7.02, 12.91 7.02, 12.91 7.42, 12.82 7.50, 12.83Normal, RGB 7.15, 12.68 7.32, 12.59 8.91, 11.89 9.32, 11.94Normal, Luv 10.47, 10.85 11.20, 11.02 9.84, 8.87 10.93, 9.16Workers Image Mode �nding Lo
al Mode �ltering Color Mean Shift Anisotropi
 Di�usionEpane
hnikov, RGB 13.95, 9.59 14.64, 9.59 12.34, 9.21 13.31, 9.35Epane
hnikov, Luv 13.72, 8.78 14.70, 8.75 12.51, 8.16 13.59, 8.21Normal, RGB 12.46, 8.47 14.16, 8.48 10.82, 7.85 12.61, 8.14Normal, Luv 12.74, 7.05 14.31, 7.16 11.80, 6.17 13.16, 6.28Woman Image Mode �nding Lo
al Mode �ltering Color Mean Shift Anisotropi
 Di�usionEpane
hnikov, RGB 14.25, 8.49 14.58, 8.43 13.12, 8.43 13.79, 8.39Epane
hnikov, Luv 13.67, 7.30 14.37, 7.15 12.37, 6.13 13.24, 6.07Normal, RGB 13.26, 7.72 14.16, 7.41 11.58, 7.51 12.81, 7.35Normal, Luv 13.08, 5.18 13.92, 5.11 12.07, 4.23 12.86, 4.30Houses Image Mode �nding Lo
al Mode �ltering Color Mean Shift Anisotropi
 Di�usionEpane
hnikov, RGB 14.27, 9.12 14.59, 9.07 13.07, 9.04 13.70, 8.98Epane
hnikov, Luv 13.39, 7.75 14.17, 7.60 11.71, 6.29 12.78, 6.46Normal, RGB 13.05, 8.53 14.10, 8.22 10.94, 8.08 12.53, 8.12Normal, Luv 12.72, 5.57 13.62, 5.67 11.48, 4.36 12.56, 4.71
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Luv 
olor spa
e.
• When pro
essed with the Epane
hnikov kernel in the RGB 
olor spa
e all themethods produ
e very similar results. The di�eren
e between the methods isemphasized when the pro
essing involves a Normal kernel and the Luv 
olorspa
e.
• In the 
ase of the hand image the 
olor resolution that we use (hr = 5) is toosmall to eliminate the textured ba
kground and the 
olor variation inside thehand (as it is shown in Fig. 2.9). That is why we obtain these results.Overall these fa
ts allow us to 
laim that 
olor mean shift produ
es the most uniformregions, followed by anisotropi
 di�usion. Mode �nding and lo
al mode �lteringprodu
e very similar results. A natural question to ask is whether the above resultsare due to over smoothing. From the sample �ltering results presented above thisdoes not seem to be the 
ase. The only way to verify that though is to perform thesegmentation and then 
ompare the results against human segmented images. InSe
. 3.4 we present these experiments. As we dis
uss there the segmentation resultsfor 
olor mean shift are better than the ones for the other �ltering methods, thuswe 
an safely 
on
lude that 
olor mean shift produ
es more uniform regions withoutover smoothing the original image.2.4.4 Filtering speed 
omparisonAn obje
tive 
omparison of the �ltering speed of the di�erent methods is not asimple task. Besides the implementation details that greatly a�e
t the speed, there41



is also a number of algorithmi
 parameters that 
an signi�
antly speedup or slowdown the 
onvergen
e of the optimization pro
edure. We start our 
omparisonby evaluating the role of these parameters and then we dis
uss whether generalspeed up te
hniques that have been proposed in the literature 
an be applied tothe di�erent methods or not. For fairness sake, we use our own implementation ofall the �ltering methods that 
onsists of Matlab �les for the image handling andthe general input/output interfa
e, while the optimization 
ode is written in C. Weperform all the experiments on a desktop 
omputer with an Intel Core2 Quad CPU
@3GHz5.2.4.4.1 Image sizeThe number of pixels dire
tly a�e
t the �ltering speed. In theory the 
omplexity ofthe algorithm in
reases linearly with the number of pixels, sin
e ea
h pixel representsa feature ve
tor that needs to be pro
essed. The theoreti
al predi
tion is veri�ed inpra
ti
e as Fig. 2.15 shows.2.4.4.2 Spatial resolution (hs)Theoreti
ally, all the �ltering methods (but Mean Shift and Spatial Mean Shift)depend quadrati
ally on the spatial bandwidth. In pra
ti
e, other parameters, ex-plained below, make the dependen
e less than quadrati
. Fig. 2.16 displays the�ltering speed with respe
t to the spatial resolution for the methods, when all theother parameters are the same.5Due to Matlab's limitation only one 
ore is used in the experiments.42



Figure 2.15: The �ltering speed as a fun
tion of the image size (i.e., number of pixels)for all four methods. We use the "workers" image (whose original size is 321× 481pixels) and perform the �ltering on the RGB 
olor spa
e with an Epane
hnikovkernel with spatial and 
olor resolutions hs = 5, hr = 15 respe
tively. We also limitthe number of iterations to 20 and the 
onvergen
e threshold is 0.001. We performthe �ltering 5 times for ea
h image size and only plot the median value.
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Figure 2.16: The �ltering speed as a fun
tion of the spatial resolution (hs) for allfour methods. We use the "workers" image (321 × 481 pixels) and perform the�ltering on the RGB 
olor spa
e with an Epane
hnikov kernel (
ontinuous line) orNormal kernel (dotted line). We also limit the number of iterations to 20 and stopthe optimization for pixels that move less than 0.001 between two iterations. Weperform the �ltering 5 times for ea
h value of hs and only plot the median value.
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2.4.4.3 Epane
hnikov vs Normal kernelFor ea
h pair of pixels, 
omputation of the weight using the Epane
hnikov kernel onlyrequires a 
omparison, while the 
al
ulation of an exponential number is ne
essaryfor the 
ase of the Normal kernel. As a result the former operation is mu
h 
heaperthan the latter and thus �ltering with an Epane
hnikov kernel is faster 
ompared to�ltering with a Normal kernel as is shown in Fig. 2.16. Other resear
hers (e.g. [34℄)have proposed the use of lookup tables to approximately 
ompute the exponentsmu
h faster.At this point we should note that the overall speed of the segmentation pro
essis also a�e
ted by the quality of the result of the �ltering pro
ess. We experimentallyfound, that using a normal kernel produ
ed better results and as a 
onsequen
e spedup the grouping step. Overall the use of a Normal kernel still resulted in slowersegmentation times, but the time di�eren
e was not as large as Fig. 2.16 shows.2.4.4.4 Convergen
e thresholdAs des
ribed above, on ea
h iteration of the optimization pro
edure ea
h pixel ve
toris 
ompared against its neighbors and shifted. If this shift is less than a prede�nedvalue (denoted 
onvergen
e threshold) then we ignore that pixel in subsequent iter-ations of the optimization pro
edure. Intuitively the 
onvergen
e threshold denoteshow 
lose to the �true� solution the optimization should rea
h before termination.At this point we would like to emphasize that for the mode �nding and the lo
almode �ltering methods the shift of ea
h pixel is a monotoni
ally de
reasing fun
tion45



Figure 2.17: The �ltering speed as a fun
tion of the 
onvergen
e threshold for allfour methods. We use the "workers" image (321 × 481 pixels) and perform the�ltering on the RGB 
olor spa
e with an Epane
hnikov kernel with spatial and
olor resolution hs = 5, hr = 15 respe
tively. We also limit the number of iterationsto 50. We perform the �ltering 5 times for ea
h value of the 
onvergen
e thresholdand only plot the median value. Noti
e that the X-axis is on logarithmi
 s
ale.of the iteration number, while for 
olor mean shift and anisotropi
 di�usion it is not.Fig. 2.17 displays the �ltering speed with respe
t to the 
onvergen
e threshold. Asexpe
ted the higher the threshold the faster the �ltering. Espe
ially for thresholdsless than 0.1 the �ltering time de
reases almost exponentially. A

ording to thisgraph and all the previous ones, lo
al mode �ltering is the fastest �ltering operationfollowed by anisotropi
 di�usion, and then mode �nding, while 
olor mean shift isslightly slower. This is expe
ted due to the extra number of 
al
ulations neededto estimate the 5D feature ve
tor instead of the 3D feature ve
tor in the othermethods. 46



2.4.4.5 Feature ve
tor displa
ement per iterationRelated to the previous parameter, here we evaluate the 
onvergen
e speed of the�ltering algorithms, namely how many iterations are requited for all the pixels torea
h the 
onvergen
e threshold. In Fig. 2.18 we plot the histogram of the dis-pla
ement of the feature ve
tors on a single iteration. Although it is hard to makeany de�nite 
on
lusions one observes that in the �rst three iterations 
olor meanshift displa
es pixels more than any other method. Overall, lo
al mode �lteringand anisotropi
 di�usion 
onverge (i.e. all the pixels are displa
ed less than 0.2)in 17, 20 iterations respe
tively. Mode �nding and 
olor mean shift 
onverge mu
hslower requiring 40 and 39 iterations respe
tively. Similar behavior was observed inall the examples that we used for testing. This leads us to believe that 
olor meanshift 
onverges as least as fast as mode �nding.2.4.4.6 Filtering speed 
on
lusionsAs we said before we use our own implementation of all the �ltering methods, thatis a straightforward translation of Table 2.1 to Matlab and C 
ode, to perform thespeed experiments. A number of methods 
an be used to perform the �ltering faster.In the 
ore of all the �ltering algorithms the pairwise distan
e between featurepoints needs to be 
omputed for all pairs of points. As suggested in [11℄ employingdata stru
tures and algorithms for multidimensional range sear
hing 
an speed upthe �ltering. This te
hnique 
an be used in all the �ltering methods and is expe
tedto signi�
antly improve the speed of slow methods su
h as mean shift and spatial47



(a) Iteration 1 (b) Iteration 2 (
) Iteration 3
(d) Iteration 10 (e) Iteration 20 (f) Iteration 30Figure 2.18: The histograms of ve
tor displa
ements for a number of iterations for allfour �ltering methods. We use the "workers" image (321× 481 pixels) and performthe �ltering on the RGB 
olor spa
e with an Epane
hnikov kernel with spatial and
olor resolutions hs = 5, hr = 15 respe
tively. We also limit the number of iterationsto 40.
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mean shift.In mode �nding the traje
tory of most feature points lay along the path ofother feature points. Christoudias et al. in [35℄ report a speed up of about �ve timesrelative to the original algorithm when they �merge� the feature points together.This tri
k 
an dire
tly be used in lo
al mode �ltering. A variation of the same
on
ept 
ould also be used to speed up the �ltering in all the other methods.Paris and Durant in [5℄ suggest a fast method to �nd the lo
al modes of the
5−D features points 
oming from large 
olor images. Contrary to the title of theirwork their method is based on dire
tly estimating the kernel density on a sparse
5 − D grid. Even though this idea is appealing and alleviates the 
omputationalproblem asso
iated with in
reasing the spatial kernel resolution hs, it is not 
learhow it 
an be used to speed up any of the �ltering methods.In the same paper ([5℄) extra 
omputational redu
tion is a
hieved by redu
ingthe dimensionality of the feature spa
e from 5−D to 4−D (or 3−D). Prin
ipal
omponent analysis is used to perform the redu
tion and the authors report that aredu
tion to 4−D results in almost no loss of �ltering quality, while the �ltering isperformed 5 times faster. This is to be expe
ted for their method, sin
e they samplethe whole feature spa
e. The algorithms that we study, though, would bene�t little(if at all) from su
h a te
hnique sin
e the additional 
ost of performing the PCAwould o�set the gain of performing the �ltering in less dimensions.The introdu
tion of the multi
ore CPUs and, espe
ially, GPUs has providednew way to improve the exe
ution speed of algorithms through a parallel implemen-tation. From Table 2.1 and Fig. 2.4 it is 
lear that the �ltering of ea
h feature point49




an be performed in parallel. We expe
t that a 
areful implementation of any ofthe four algorithms (i.e. mode �nding, 
olor mean shift, lo
al mode �ltering andanisotropi
 di�usion) on a modern GPU will run in real time for VGA or largerimages.2.5 Con
lusionsIn this 
hapter we presented a unifying framework under whi
h we 
an expressdi�erent �ltering algorithms. Using the new understanding of �ltering, we developedthree new edge preserving �ltering methods, that we named Color Mean Shift,Spatial Mean Shift and Joined Bilateral Filtering. The �rst one exhibits similar
lustering 
hara
teristi
s with the original Mean Shift method while being almostas 
omputationally e�
ient as the Mode Finding method, so it was in
luded inour �ltering 
omparison. We performed a 
omparison of four di�erent methods(Mode Finding, Color Mean Shift, Lo
al Mode Filtering and Anisotropi
 di�usion)on a number of images with di�erent 
on�gurations for the 
olor spa
e and thekernel fun
tion. Overall we noti
ed that Color Mean Shift outperforms (i.e. 
reatesmore uniform segments with better boundary separation) than the other methodswith the drawba
k of being slightly slower. Table 2.3 synopsizes the results of theexperimental 
omparison for performing edge preserving �ltering.
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Table 2.3: Synopsis of the �ltering results
• Normal kernel gives smoother �ltering results 
ompared to Epane
hnikov ker-nel
• Luv 
olor spa
e produ
es smoother �ltering results 
ompared to RGB 
olorspa
e.
• Mode �nding and lo
al mode �nding produ
e similar �ltering results. Mode�nding performs slightly better �ltering.
• Color mean shift and anisotropi
 di�usion produ
e similar �ltering results.Color mean shift preserves the edges better than anisotropi
 di�usion.
• 3−D �ltering (i.e. lo
al mode �ltering) is almost equivalent to 5−D �ltering(i.e. mode �nding) when the original image is used for the 
omparison. Whenthe image obtained in the previous iteration is used then 5−D �ltering (i.e.
olor mean shift) preserves edges better than 3−D �ltering (i.e. anisotropi
di�usion).
• Whether we use the original image for 
omparison or not a�e
ts the �lteringmore than whether we perform it in 3−D or 5−D.
• Lo
al mode �ltering is the fastest; mode �nding and lo
al mode �ltering area little bit slower; 
olor mean shift is even slower. All the methods are fastenough to perform the �ltering in real time for a reasonably large image whenimplemented in GPUs.
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Chapter 3Color Based Segmentation as a Two Stage Pro
ess3.1 Introdu
tionThe edge preserving �ltering framework, that we presented in the previous 
hapter, isthe �rst 
omponent of a 
olor-based segmentation system. In this 
hapter we presentthe other 
omponent, namely 
lustering algorithms for pixels (or feature points) on3D (or 5D) spa
e. First, we brie�y des
ribe the grouping algorithms that we use inthe segmentation experiments; a greedy 
onne
ted 
omponents method with a �xedthreshold, its variant using Region Adja
en
y Graph [35℄ and its extension using anadaptive threshold [7℄.Then, we experimentally 
ompare all the 
ombinations of �ltering and group-ing te
hniques using the Berkeley dataset [36℄. In our 
omparison we fo
us on three
riteria; 
orre
tness, robustness with respe
t to the parameters and robustness withrespe
t to image sele
tion. We use both boundary and region based measures for
omparison. More spe
i�
ally, we 
onsider the per
entage of edges retrieved andthe edge distan
e between segmentations as the boundary based 
riteria. We also
ompute the Global Consisten
y Error[36℄, the Rand Index[37℄ and the Variation ofInformation [38℄,[39℄ region based measures.
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3.2 Grouping methodsA variety of grouping methods exist in the literature for image segmentation. Asa matter of fa
t almost all the 
olor based image segmentation methods are group-ing methods. Next, we des
ribe the three methods that we have 
hosen to usein the segmentation experiments. The �rst method is a simple 
onne
ted 
ompo-nents algorithm with a global threshold, while the other two methods are extensionsof that algorithm. All methods are simple, namely they don't require the use of
ompli
ated tuning parameters and they are used widely for image segmentation.Another advantage is that they are fast so they 
an be used for (almost) real timesegmentation.3.2.1 Greedy Conne
ted Components grouping (CC3D and CC5D)This is the same strategy that Comani
iu and Meer impli
itly use in their imagesegmentation algorithm [11℄. The method is a good starting point for our 
ompar-ison; its simpli
ity allows us to 
ompare the smoothing algorithms for the task ofsegmentation without worrying that the result has been �
hanged� by the groupingalgorithm. Thus, the quality of the segmentation is dire
tly related to the qualityof the �ltering.In a nutshell, the algorithm groups neighboring pixels together if and only iftheir Eu
lidean distan
e is within a user de�ned threshold. Note that there is a
3−D and a 5−D variant of this algorithm sin
e pixel xi is represented by either a
3−D ve
tor (Si) or a 5−D ve
tor ([xi,Si]) (Fig. 3.1). In our implementation we53



use an union-�nd data stru
ture to perform the merging so the 
omplexity of thealgorithm is almost linear on the number of pixels.The biggest problem with this simple grouping method is the �segment di�u-sion� problem, when two quite di�erent segments are merged together be
ause thereis a single weak (blurry) edge between them (e.g. the 
louds and the sky are mergedinto a single segment in the �rst images of the top row of Fig. 3.2). In order toredu
e the impa
t of this problem we redu
e the grouping threshold (t in Fig. 3.1,top row) to 0.5.3.2.2 Grouping using Region Adja
en
y Graphs (GRAG)This is the grouping method proposed in [35℄ and used in the EDISON segmentationsystem. Con
eptually this method is similar to the 
onne
ted 
omponents method(i.e. a hard threshold of t = hr/2 is used), but the use of region adja
en
y graphsprodu
es slightly di�erent segmentation results. We should note that the abovemethods are invariant to the merging order of the pixels.3.2.3 Grouping with an Adaptive Threshold (GAT)Felzenszwalb and Huttenlo
her in [7℄ present a variation of the 
onne
ted 
omponentalgorithm where an adaptive threshold for merging segments is used. Ea
h segment
Ci keeps tra
k of the maximum distan
e between two pixels belonging to it1(denoted
Int(Ci)) and two segments Ci, Cj are merged only if the minimum distan
e betweenthe pixels belonging to their 
ommon boundary is smaller than the internal distan
e1Only the edges belonging to the minimum spanning tree of the segment are 
onsidered54



Int(Ci), Int(Cj). The method is des
ribed in Fig. 3.1. This algorithm is also linearon the number of pixels.In the experiments, unless otherwise noted, we use the values of 0.5, 500 for
σ, k respe
tively for the grouping parameters. This are the values suggested by theauthors in [7℄.3.3 Segmentation as �ltering+groupingThe notion of segmentation 
onsisting of a �ltering followed by a grouping step isnot new, but it is underemphasized in the literature. Most image segmentation (i.e.grouping) algorithms operate on the original image, while the �ltering algorithmsare usually applied to the problems of edge preserving smoothing or noise removal.Comani
iu and Meer [11℄ talk about segmentation 
onsisting of a �ltering and afusion step, but they fo
us on the �ltering step and they use the simple 
onne
ted
omponent algorithm of Fig. 3.1 top left, to obtain the �nal segments. Subsequentwork from the same group [35℄ fo
uses on how to bring edge information into the�ltering and grouping step, but they still use a similar 
onne
ted 
omponents algo-rithm. Close to our philosophy is the work of Unnikrisnan et al. [40℄ where they
ombine the �ltering algorithm of [35℄ with the grouping algorithm of [7℄. Theirfo
us, thought, is to introdu
e a new measure 
alled Normalized Probabilisti
 Randto 
ompare the quality of segmentation.One of the main points of this 
hapter is that both steps are important toobtain good segmentation results. In Fig. 3.2, for example, we present the seg-55



Conne
ted Components 3D(CC3D)Input:set of pixels xi with intensities Sia grouping threshold tOutput:a set of labels (label li for xi)Algorithm:for all pixels xiassign label lirepeat until 
onvergen
efor all pixels xifor all pixels xjif ||Si − Sj || < t and
xi,xj have di�erent labelsmerge the labels of

xi and xj (li ≡ lj)

Conne
ted Components 5D(CC5D)Input:set of pixels xi with intensities Sia grouping threshold tOutput:a set of labels (label li for xi)Algorithm:for all pixels xiassign label lirepeat until 
onvergen
efor all pixels xifor all pixels xjif ||[xi,Si]− [xj,Sj ]|| < t and
xi,xj have di�erent labelsmerge the labels of

xi and xj (li ≡ lj)Grouping with an Adaptive Threshold (GAT)Input:An image as a graph G = (V,E) with n verti
es and m edgesOutput:A segmentation of V into 
omponents S = (C1, ...Cr)Algorithm:sort E into π = (o1, . . . , om) by non de
reasing edge weightin the initial segmentation S0 ea
h vertex vi is its own segmentfor q = 1, . . . , m 
onstru
t Sq given Sq−1 as followslet vi, vj be the verti
es 
onne
ted by the qth edge oq = (vi, vj)let pixels vi, vj belong to 
omponents Ci, Cj with
|Ci|, |Cj| number of elements respe
tivelylet Int(Ci), Int(Cj) be the maximum edge weights of theminimum spanning tree of 
omponents Ci, Cj respe
tivelylet eq be the weight of edge oqif vi, vj belong to di�erent 
omponents Ci, Cj and
eq < min{Int(Ci) + k

|Ci|
, Int(Cj) + k

|Cj |
}merge Ci, Cjreturn S = SmFigure 3.1: The grouping algorithms that we use in the segmentation experiments.56



(a) MF+CC3D (b) CMS+CC3D (
) LMF+CC3D (d) AD+CC3D
(e) CMS+CC3D (f) CMS+CC5D (g) CMS+GRAG (h) CMS+GATFigure 3.2: On the �rst row we present the segmentation results when we use thesame grouping method (CC3D) 
oupled with di�erent �ltering methods. On these
ond row we present the segmentation results when we use the same �lteringmethod (Color mean shift) followed by a di�erent grouping method.In the imagesea
h segment is represented by a di�erent 
olor. The �ltering is performed on theRGB 
olor spa
e with an Epane
hnikov kernel with spatial and 
olor resolution

hs = 5, hr = 4 respe
tively.mentation results we obtained using di�erent 
ombinations of �ltering and groupingmethods. On the top row we use the same grouping method, namely CC3D, alongwith the four di�erent grouping algorithms. It is 
lear that depending on the �lter-ing method the sky is merged with the grass or not. On the se
ond row the �lteringmethod is kept 
onstant (
olor mean shift) while the grouping method 
hanges. Herethe results signi�
antly depend on the method, with the adaptive threshold methodprodu
ing the most intuitive segments. In the next se
tion we experimentally studythe problem of 
olor based segmentation by 
omparing di�erent 
ombinations of�ltering and grouping algorithms. More spe
i�
ally we 
ouple ea
h of the four �l-tering algorithms that we studied above with the four grouping algorithms that weintrodu
ed in the previous se
tion to obtain a new segmentation method.57



3.4 Segmentation ComparisonThere is little e�ort to 
lassify image segmentation algorithms and 
ompare their
hara
teristi
s due to two main fa
tors. The multipli
ity of methods ea
h havinga number of parameters make the 
omparison extremely tedious. Moreover, the�right� segmentation is hard to de�ne, sin
e there are many levels of detail in animage and therefore multiple di�erent meaningful segmentations. S. Paris [5℄ forexample, 
reates a hierar
hi
al stru
ture of segmentations where starting from alarge number of segments, regions are merged together to 
reate more 
oarse seg-mentations. Furthermore, in 
omplex s
enes the evaluation of a given segmentationmostly relies on subje
tive 
riteria. Borra and Shankar [3℄, for example, go as far assuggesting that the proper segmentation is task and domain spe
i�
. The di�
ultyof formally de�ning the quality of a segmentation explains the la
k of segmentationdatabases for natural images.The most 
omplete attempt at 
omparing segmentation algorithms is pre-sented on the Berkeley database and segmentation website [36℄. Here a large set ofimages along with human 
reated segmentations were made available for segmenta-tion evaluation. This is the testbed we use in this 
hapter for the evaluation of thedi�erent segmentation methods2. More spe
i�
ally we use the 200 training imagesalong with the 1087 human 
reated segmentations. Next, we �rst des
ribe the di�er-ent measures that we use for the 
omparison, and then we present the segmentationresults.2In Appendix A we also present segmentation results using the Weizmann Institute dataset [8℄.58



3.4.1 Comparison measuresA number of measures have been proposed in the literature in order to 
ompare twodi�erent segmentations of the same image. In general the segmentation measures
an be 
lassi�ed in two 
ategories; region based or boundary based. The �rst groupin
ludes measures that 
onsider the overlap of the segments in the two segmenta-tions, while in se
ond 
onsists of measures that 
ount the overlap or the distan
eof the boundaries. From the measures that we use, the Global Consisten
y Error[36℄, the Variation of Information [38℄,[39℄ and the Probabilisti
 Rand index [37℄ areregion based; Edge Per
entage and Boundary Displa
ement Error [41℄ are boundarybased.Edge Per
entage (EP) This is the simplest measure. We 
ount the number of seg-mentation boundaries that 
oin
ide with the human annotated edges and di-vide by the total number of edges. In simple terms we 
ompute the per
entageof edges that the automati
 segmentation is able to dete
t. In order to re-du
e the edge displa
ement problem we smooth both the 
omputer generatedboundary map and the human edge map with a small Normal kernel (3× 3 inthe experiments) and 
ompute the sum of the pie
ewise dot produ
t betweenthe two maps3. This measure is not symmetri
. Obviously the higher thevalue the more similar the two segmentations are.Boundary Displa
ement Error (BDE) This quantity measures the average displa
e-ment error of the boundary pixels between two segmented images. Parti
ularly,3As a result the measure is not the edge per
entage, so the Y-axis of the graphs should not beinterpreted as su
h. Only the relative value for the two methods should be 
onsidered.59



it de�nes the error of one boundary pixel in one segmentation as the distan
ebetween the pixel and the 
losest pixel in the other segmentation. BDE isnot symmetri
, thus we use it to measure the average distan
e of the humansegmentation to the 
omputer generated one. Intuitively, the lower the BDEvalue the more similar the two segmentations are. A BDE measure of 0 indi-
ates that all the boundaries of the human segmentation are 
overed by theboundaries of the 
omputer one, but not vi
e versa.Global Consisten
y Error (GCE) This measure 
al
ulates the extent to whi
h onesegmentation 
an be viewed as a re�nement of the other. Segmentations whi
hare related in this manner are 
onsidered to be 
onsistent, sin
e they 
ould rep-resent the same natural image segmented at di�erent s
ales. More spe
i�
ally,a lo
al error measure for ea
h pixel is de�ned as the 
ardinality of the set di�er-en
e between the two segments the pixel belongs to on the two segmentations,divided by the segment size. Then, the Global Consisten
y Error is de�ned asthe average lo
al error measure. This measure is symmetri
 and the lower thevalue the more similar the two segmentations. The two extreme segmentation
ases, namely ea
h pixel belonging to a separate segment and the whole imagebeing a single segment both produ
e a zero value GCE. Thus, this measureis only suited for 
omparison of segmentations with approximately the samenumber of segments. In general the GCE range is [0 . . . 1].Variation of Information (VI) This is an information theoreti
 
riterion for 
ompar-ing two groupings of the same data set. VI measures the amount of information60



lost and gained in 
hanging from the �rst to the se
ond 
lustering. VI is pos-itive, symmetri
 and obeys the triangle inequality (thus it is a metri
 on thespa
e of groupings). Brie�y, VI de�nes the distan
e between two segmenta-tions as the average 
onditional entropy of one segmentation given the other,and thus roughly measures the amount of randomness in one segmentationwhi
h 
annot be explained by the other. Being a distan
e metri
 the mini-mum value of VI is 0 while the maximum depends on the image size. Thelower the value of VI the better the mat
h between the two segmentations.Probabilisti
 Rand Index (PR) This measure 
ounts the fra
tion of pairs of pixelswhose labellings are 
onsistent between the 
omputed segmentation and theground truth, averaging a
ross multiple ground truth segmentations to a

ountfor s
ale variation in human per
eption. PR is a measure of similarity and assu
h a value of 0 indi
ates no similarity, while a value of 1 indi
ates the highestsimilarity.3.4.2 Results for varying 
olor resolution hrTo produ
e the �rst set of segmentation �gures we only vary the value of the 
olorresolution hr of the �ltering methods. More spe
i�
ally, we let hr to obtain valuesfrom 0.6 to 20 on in
rements of 0.3. We keep the remaining �ltering parameters
onstant i.e., the maximum number of iterations for 
onvergen
e is set to 20 and the
onvergen
e threshold to 0.1. We also use a spatial resolution of hs = 5, resultingon a 11×11 smoothing window around ea
h pixel. Furthermore, we utilize 
onstant61



parameters for the grouping methods. More spe
i�
ally the grouping threshold(parameter t of Fig. 2.4) is set to 1 and 0.5 for the CC5D and CC3D groupingalgorithms respe
tively. In the 
ase of GRAG we use the fusion fun
tion of theEDISON toolbox provided by Christoudias et al.[35℄. We use the ex
ellent C++
ode provided by Felzenszwalb and Huttenlo
her [7℄ with parameters σ = 0.5 and
k = 500 as suggested in their paper to implement the grouping with the adaptivethreshold (GAD). In all the grouping methods the minimum number of pixels perregion in set to 1.We 
omputed the 
omparison measures for ea
h image of the database andfurther aggregated the results for the whole database using the median value4. Thesevalues are plotted on the Y-axis of ea
h �gure. On the X-axis we plot the averagesegment size, instead of the 
olor resolution hr. Thus all the plots below show theimpli
it 
urve of one 
omparison measure with respe
t to the average segment size.The motivation behind this 
hoi
e is the following; a major goal of a segmentationalgorithm is to 
reate as large segments as possible without merging areas belongingto di�erent obje
ts. Some of the measures above (i.e. Edge Per
entage, BoundaryDispla
ement Error and Global Consisten
y Error) produ
e degenerate (and perfe
t)results when ea
h pixel belongs to its own segment. Thus only those measures in
onjun
tion with the segment size indi
ate whether a segmentation is good anduseful or not. For the 
omputation of the Boundary Displa
ement Error, the GlobalConsisten
y Error, the Variation of Information and the Probabilisti
 Rand Index4Sin
e the 
omparison measures vary signi�
antly for di�erent images we 
hoose the medianvalue as opposed to the mean value be
ause it is more robust to outliers.62



we use the 
ode provided by J. Wright and A. Yang [42℄.In the �ltering experiments (Se
. 2.4) we observed that the sele
tion of the
olor spa
e and the �ltering kernel greatly a�e
ts the amount of smoothing per-formed for a given 
olor resolution. Hen
e, for the segmentation experiments we
hoose to perform the �ltering over an extended range of 
olor resolution. As aresult, depending on the 
olor spa
e and kernel fun
tion, di�erent ranges of 
olorresolutions lead to oversegmentations and undersegmentations. We want to 
omparethe �reasonable� segmentations, thus in the �gures below we limit the maximum av-erage segment size to 200, 500 or 1000 pixels (depending on the 
olor spa
e andkernel fun
tion used). Values above the 
orresponding threshold in ea
h 
ase 
learlyindi
ate a heavily undersegmented image (i.e. 
onsisting of too few segments), asthe value of all the measures verify.In the previous se
tions we presented 4 di�erent grouping methods and 4di�erent �ltering methods. Considering that �ltering 
an be performed in eitherRGB or Luv 
olor spa
e with Epane
hnikov or Normal kernel, the total number of
ombinations is 2×2×4×4 = 64. Sin
e, presenting the results of all 64 variations ina single graph would result in illegible �gures, initially we group together the resultsfor a spe
i�
 sele
tion of 
olor spa
e and kernel fun
tion and present these resultson a single �gure. Moreover, we produ
e a single graph for ea
h of the 5 measuresfor a total of 20 �gures.While dividing the total number of 
urves by 4 simpli�es the display, stillplotting 16 
urves on the same �gure is hard. Instead of introdu
ing a di�erent
olor for ea
h 
urve we follow the 
olor 
onvention of the �ltering graphs. The63



Table 3.1: Color 
onvention for the segmentation plotsColor of Line Cir
leBlue Mode Finding (MF) Conne
ted Components in 3D(CC3D)Green Color Mean Shift (CMS) Conne
ted Components in 5D(CC5D)Orange Lo
al Mode Finding(LMF) Grouping using RegionAdja
en
y Graphs (GRAG)Brown Anisotropi
 Di�usion(AD) Grouping with an AdaptiveThreshold (GAT)
olor of the line indi
ates the �ltering method, while the 
olor inside the point
ir
les indi
ates the grouping method that is used. Table 3.1 displays all the 
olor
ombinations.
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Figure 3.3: Edge Per
entage vs average segment size plots when �ltering is performed in the RGB 
olor spa
e with an Epane
h-nikov kernel.
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Figure 3.4: Boundary Displa
ement Error vs average segment size plots when �ltering is performed in the RGB 
olor spa
ewith an Epane
hnikov kernel.
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Figure 3.5: Global Consisten
y Error vs average segment size plots when �ltering is performed in the RGB 
olor spa
e with anEpane
hnikov kernel.
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Figure 3.6: Variation of Information vs average segment size plots when �ltering is performed in the RGB 
olor spa
e with anEpane
hnikov kernel.
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Figure 3.7: Probabilisti
 Rand Index vs average segment size plots when �ltering is performed in the RGB 
olor spa
e with anEpane
hnikov kernel.
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Figure 3.8: Edge Per
entage vs average segment size plots when �ltering is performed in the RGB 
olor spa
e with a Normalkernel.
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Figure 3.9: Boundary Displa
ement Error vs average segment size plots when �ltering is performed in the RGB 
olor spa
ewith a Normal kernel.
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Figure 3.10: Global Consisten
y Error vs average segment size plots when �ltering is performed in the RGB 
olor spa
e with aNormal kernel.
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Figure 3.11: Variation of Information vs average segment size plots when �ltering is performed in the RGB 
olor spa
e with aNormal kernel.
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Figure 3.12: Probabilisti
 Rand Index vs average segment size plots when �ltering is performed in the RGB 
olor spa
e with aNormal kernel.
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Figure 3.13: Edge Per
entage vs average segment size plots when �ltering is performed in the Luv 
olor spa
e with an Epane
h-nikov kernel.
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Figure 3.14: Boundary Displa
ement Error vs average segment size plots when �ltering is performed in the Luv 
olor spa
ewith an Epane
hnikov kernel.
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Figure 3.15: Global Consisten
y Error vs average segment size plots when �ltering is performed in the Luv 
olor spa
e with anEpane
hnikov kernel.
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Figure 3.16: Variation of Information vs average segment size plots when �ltering is performed in the Luv 
olor spa
e with anEpane
hnikov kernel.
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Figure 3.17: Probabilisti
 Rand Index vs average segment size plots when �ltering is performed in the Luv 
olor spa
e with anEpane
hnikov kernel.
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Figure 3.18: Edge Per
entage vs average segment size plots when �ltering is performed in the Luv 
olor spa
e with a Normalkernel.
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Figure 3.19: Boundary Displa
ement Error vs average segment size plots when �ltering is performed in the Luv 
olor spa
ewith a Normal kernel.
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Figure 3.20: Global Consisten
y Error vs average segment size plots when �ltering is performed in the Luv 
olor spa
e with aNormal kernel.
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Figure 3.21: Variation of Information vs average segment size plots when �ltering is performed in the Luv 
olor spa
e with aNormal kernel.
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Figure 3.22: Probabilisti
 Rand Index vs average segment size plots when �ltering is performed in the Luv 
olor spa
e with aNormal kernel.
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In the �gures above all the plots display the average values over the wholedatabase of segmentations. Before pro
eeding with the analysis of the results wewant to emphasize that there is a high variability in the results for individual images.The grouping method of the adaptive threshold (GAT) exhibits the lowest inter-image variability no matter whi
h �ltering method it is 
oupled with. All the othergrouping methods are highly sensitive on the image to be segmented. The sameobservation was mentioned by Unnikrishnan et al. in [40℄ where they 
omparedComani
iu and Meer mean shift method against the segmentation based on GAT.All the segmentation methods based on GAT grouping are non monotoni
.While all other segmentation methods produ
e 
urves that are either pie
ewisemonotoni
ally de
reasing or in
reasing (depending on the measure), the 
urves ofGAT methods manifest an unpredi
table non monotoni
 behavior. This is best dis-played in Figs. 3.17, 3.22. The 
urve for the LMF+GAT method, for example, inFig. 3.22 not only is non de
reasing, indi
ating that su

essive values of the 
olorbandwidth might produ
e either better or worse results, but also it might lead tosmaller or larger average segment sizes. The 
ause of this behavior is the adaptivethreshold used for grouping. It is well do
umented that the merging of two regionsin GAT grouping is de
ided based on the inter-region and intra-region edge distri-bution. Sin
e anisotropi
 �ltering smooths some edges while keeps other inta
t, ifthe inter region edges between two regions are smoothed more that the intra-regionedges, then GAT will merge the two regions. In the opposite 
ase, GAT will notmerge the two regions. Thus, the overall segmentation is not guaranteed to be�
onsistent� for su

essive �ltering values.85



On average the segmentation methods based on GAT grouping outperform allthe other segmentation methods. More spe
i�
ally, they display the most similaritywith the human segmentations while the average segment size is larger than theother segmentation methods. For example, all the GAT based methods in Fig. 3.17form a 
luster with signi�
antly larger Probabilisti
 Rand Index values that the restof the methods. Still, it is not 
lear whi
h 
ombination of �ltering method shouldbe used with the GAT algorithm to obtain the best results. We will investigate thistopi
 further in the next se
tion.On average the segmentation methods based on GAT grouping exhibit theleast variation of the average segment size i.e., in a sense they are the most stableto 
olor resolution 
hanges. For �ltering in Luv 
olor spa
e with an Epane
hnikovkernel, for example, all the other methods produ
e average segments varying from 2to ∼ 400 pixels, while GAT methods give results from ∼ 140 to ∼ 270 pixels. Thisis related to the use of the 
onstant value k = 500 for the GAT algorithm.The segmentation methods based on CC3D and CC5D grouping exhibit verysimilar performan
e, with the CC3D ones produ
ing slightly better segmentationresults. This indi
ates that there is an advantage performing the grouping in the
olor dimensions only, opposed to the 
ase of �ltering where 5D �ltering gives betterresults. The GRAG based methods in some settings (i.e., 
olor spa
e and kernelfun
tion 
ombinations) outperform the CC3D and CC5D methods, while in othersettings perform equally well or even worse.The Global Consisten
y Error (GCE) graphs prove on
e more what is theoret-i
ally predi
ted i.e., this measure only makes sense when the number of segments in86



the human and 
omputer segmentation is 
omparable. In our setting this require-ment is only satis�ed for a small range of 
olor segmentations, hen
e these graphsare misleading. That is why we obtain a value 
lose to 0 for very small and verylarge 
olor resolutions.The graphs of the Variation of Information (VI) measure are the least dis-
riminative, be
ause all the plots 
onverge very rapidly to a value of ∼ 3. In thesubsequent 
omparisons we will not use the Variation of Information (VI), EdgePer
entage (EP) and Global Consisten
y Error (GCE) graphs.The graphs of the Probabilisti
 Rand Index (PR) and Boundary Displa
ementError (BDE) measures are the most dis
riminative. So in the next se
tions we willuse these for 
omparing the di�erent segmentation methods.Color Mean Shift (CMS) based segmentation methods outperform all the other�ltering methods when 
oupled with the same grouping methods. This indi
ates thatthe better �ltering results produ
es by CMS lead to better segmentation results.We previously mentioned (Se
. 2.4) that �ltering in Luv 
olor spa
e produ
essmoother images, for a given 
olor resolution, 
ompared to �ltering in RGB. As a
onsequen
e the average segment size is an order of magnitude larger as a 
arefulexamination of the X axis of the plots reveals. The kernel sele
tion also a�e
ts theaverage segment size. Use of a Normal kernel leads to larger segments 
ompared toEpane
hnikov kernel, as expe
ted.
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(a) RGB, Epane
hnikov (b) RGB, Normal

(
) Luv, Epane
hnikov (d) Luv, NormalFigure 3.23: In red and green, we plot the average segment size as a fun
tion of thesegmentation parameter k in the 
ase of GAT or 
olor resolution hr in the 
ase ofCC3D, respe
tively.3.4.3 Adjusting the threshold parameter (k) of the GAT grouping methodSo far we used the Grouping with an Adaptive Threshold method of Felzenszwalband Huttenlo
her [7℄ with a �xed value for the threshold parameter k = 500. As weshowed in the previous se
tion this leads to small variability in the average segmentsize not matter how mu
h we smooth the image in advan
e. In this se
tion weexplore the idea of 
hanging the grouping parameter k a

ording to the �lteringvalue. 88



First, in Fig. 3.23 we plot the average segment size with respe
t to the valueof k. In the same graphs we display the average segment size obtained with a
ombination of CMS and CC3D methods for di�erent values of 
olor resolution andfor di�erent 
olor spa
e and kernel fun
tion settings. All the results are 
omputedfor the whole database of images. As we observe in the plots, the average segmentsize in
rease is mu
h smoother for the GAT method 
ompared to all the othersegmentation methods, espe
ially these that perform the �ltering in the Luv 
olorspa
e.In Figs. 3.24, 3.25 we display the impli
it BDE and Rand Index values for theGAT method with respe
t to the average segment size, respe
tively. We 
omparethe results with the CMS+CC3D segmentation method for di�erent 
olor spa
e andkernel 
ombinations. One 
an easily verify that the GAT method performs slightlyworse, under the BDE measure, than the CMS+CC3D method, if the �ltering isperformed in the Luv 
olor spa
e with a Normal kernel. Considering the PR mea-sure, the GAT method performs worse for small values of average segment size, butoutperforms the CMS+CC3D method for larger values of average segment size.Depending on the spe
i�
 image and appli
ation, a di�erent kind of segmen-tation (i.e., di�erent number of segments) is desirable. For example, state of the artstereo algorithms [1℄, [2℄ initially perform a 
olor-based segmentation of the imageinto regions with (hopefully) 
onsistent disparities. In order to minimize the riskof grouping pixels belonging to di�erent obje
ts together, they perform an over-segmentation into many small segments. Shape-based obje
t re
ognition, on theother hand, requires a 
oarser segmentation of the image; one where all the internal89



Figure 3.24: Boundary Displa
ement Error vs average segment size plots for the Color Mean Shift (CMS) and Conne
tedComponent in 3D (CC3D) 
ombination and the GAT only segmentation methods.
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Figure 3.25: Probabilisti
 RAND vs average segment size plots for the Color Mean Shift (CMS) and Conne
ted Component in3D (CC3D) 
ombination and the GAT only segmentation methods.
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parts of an obje
t belong to the same segment. As a 
onsequen
e, it is extremelyimportant to have a way to adjust the �granularity� of the segmentation. For all thegrouping methods, but GAT, the 
olor resolution hr used for �ltering 
an also beused as a segmentation threshold. As we previously dis
ussed GAT does not use a�hard� threshold; the parameter k is used instead to 
ontrol the granularity of thesegmentation. From Figs. 3.23, 3.25, we observe that values of k between 170 and
1050 produ
e the best results, i.e. PR indi
es of more than 0.8 for a range of averagesegment size from 35 to 100 pixels. Apparently there are many ways to 
ombine the�ltering parameter hr with the grouping parameter k. In the following experimentswe use a linear relation between hr and k5, namely

k = 45.83 ∗ hr + 142.5. (3.1)In Figs. 3.26, 3.27, 3.28 and 3.29 we 
ompare the results we obtained with the
ombination of all the �ltering methods with the GAT grouping method. For theGAT method we display the results we obtained when we used a 
onstant parameter
k = 500, and when we 
hanged the grouping parameter a

ording to Eq. 3.1. For
omparison purposes we also display the results when we used GAT grouping dire
tlyon the original images (i.e., without any �ltering).

5We obtained the 
oe�
ients of the linear system by solving the system of (k, hr) for values(170, 0.6) and (1050, 19.8). 92



Figure 3.26: BDE vs average segment size plots for the GAT grouping methodpre
eeded by the various �ltering methods or not. We display the results for whenwe use a variable and a 
onstant (k = 500) grouping parameter. We also displaythe plot when we use the GAT grouping method without �ltering. In the top andbottom plots the �ltering is performed on the RGB and Luv 
olor spa
e with anEpane
hnikov kernel respe
tively. 93



Figure 3.27: BDE vs average segment size plots for the GAT grouping methodpre
eeded by the various �ltering methods or not. We display the results for whenwe use a variable and a 
onstant (k = 500) grouping parameter. We also displaythe plot when we use the GAT grouping method without �ltering. In the top andbottom plots the �ltering is performed on the RGB and Luv 
olor spa
e with aNormal kernel respe
tively. 94



Figure 3.28: PR vs average segment size plots for the GAT grouping method pre-
eeded by the various �ltering methods or not. We display the results for whenwe use a variable and a 
onstant (k = 500) grouping parameter. We also displaythe plot when we use the GAT grouping method without �ltering. In the top andbottom plots the �ltering is performed on the RGB and Luv 
olor spa
e with anEpane
hnikov kernel respe
tively. 95



Figure 3.29: PR vs average segment size plots for the GAT grouping method pre-
eeded by the various �ltering methods or not. We display the results for when weuse a variable and a 
onstant (k = 500) grouping parameter. We also display theplot when we use the GAT grouping method without �ltering. In the top and bot-tom plots the �ltering is performed on the RGB and Luv 
olor spa
e with a Normalkernel respe
tively. 96



The �rst thing to noti
e is that the plots of the �ltering+GAT grouping witha variable grouping parameter k are more �spread out� on the X-axis, meaning thatthey present more variability on the average segment size. This is expe
ted sin
e
k dire
tly a�e
ts the granularity of the segmentation. What is also expe
ted isthat �ltering (in the Luv 
olor spa
e)+GAT grouping plots leads to larger segmentsizes, 
ompared to GAT segmentations without �ltering. When the �ltering wasperformed on the RGB 
olor spa
e there was little di�eren
e on the image size.The se
ond and most important observation from these �gures is that ModeFinding 
oupled with GAT grouping with a variable k outperforms all other 
ombi-nations. The se
ond best 
ombination is Lo
al Mode Filtering with GAT groupingwith a variable k, while both the Color Mean Shift and the Anisotropi
 Di�usionmethods perform slightly worse. In the 
ase of GAT grouping with a 
onstant
k = 500 all the �ltering methods performed equally bad. Finally the GAT groupingwith varying k without any �ltering 
onsistently performs worse than when we useLMF or MF �ltering.At a �rst glan
e, the out
ome of these experiments might seem 
ontradi
ting;the less �ltering one performs the better the results are, while no �ltering at all stillgives bad results. There is a very intuitive explanation of this phenomenon, though,if the details of the grouping algorithm are 
onsidered. GAT adjusts the thresholdfor merging regions based on the inter-region and intra-region variability. As weshowed in Se
 2.4.3 CMS and AD �ltering methods produ
e mu
h more uniformregions, 
ompared to MF and LMF. As a 
onsequen
e there is little intra-regionvariability and the merging pro
ess is disrupted.97



The previous graphs makes one wonder how the segmentation results wouldbe if we use Bilateral Filtering (BF) instead of MF or LMF. In essen
e, BilateralFiltering is equivalent to LMF with the maximum number of iterations for theoptimization problem limited to 1. The next �gures show the results of BF 
oupledwith GAT (with varying k).
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Figure 3.30: BDE vs average segment size plots for Bilateral Filtering+GAT withvarying k. For 
omparison we also present the results of MF+GAT, AD+GAT andGAT only. In the top and bottom plot the �ltering is performed on the RGB andLuv 
olor spa
e respe
tively. In all the methods an Epane
hnikov kernel is used.
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Figure 3.31: BDE vs average segment size plots for Bilateral Filtering+GAT withvarying k. For 
omparison we also present the results of MF+GAT, AD+GAT andGAT only. In the top and bottom plot the �ltering is performed on the RGB andLuv 
olor spa
e respe
tively. In all the methods a Normal kernel is used.
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Figure 3.32: PR vs average segment size plots for Bilateral Filtering+GAT withvarying k. For 
omparison we also present the results of MF+GAT, AD+GAT andGAT only. In the top and bottom plot the �ltering is performed on the RGB andLuv 
olor spa
e respe
tively. In all the methods an Epane
hnikov kernel is used.
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Figure 3.33: PR vs average segment size plots for Bilateral Filtering+GAT withvarying k. For 
omparison we also present the results of MF+GAT, AD+GAT andGAT only. In the top and bottom plot the �ltering is performed on the RGB andLuv 
olor spa
e respe
tively. In all the methods a Normal kernel is used.
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In most 
ases BF performs slightly worse than MF and better than LMF.Espe
ially when the �ltering is performed on Luv with a Normal kernel, BF isequally good (or better) than MF. Furthermore it is multiple times faster than MF,making it the method of 
hoi
e if speed is an issue. It would be interesting, as futurework, to further study the intera
tion between the grouping parameter k and the
olor resolution hr of the �ltering methods.3.4.4 Compare segmentations for �ltering+grouping and grouping onlymethodsIn the previous se
tion we presented the results obtained with the GAT method onlyand 
ompared them to the ones when the images are �ltered �rst. In this se
tionwe present the results of grouping with and without �ltering for the remainingthree methods. In order to improve the quality of the �gures we omit the plotsfor the anisotropi
 di�usion and lo
al mode �ltering methods. Still the number of
ombinations of �ltering and grouping methods is too high (24) to display in a singleplot. We 
reate a �gure for ea
h 
ombination of the 
olor spa
e and kernel fun
tionwe use for �ltering.It is 
lear from these �gures (and the ones on the previous se
tion) that thegrouping methods alone perform mu
h worse than the 
ombinations of �ltering andgrouping methods. Thus, our 
laim that segmentation should be 
onsidered as the
oupling of a �ltering method with a grouping method is experimentally proved.
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Figure 3.34: BDE vs average segment size plots for grouping only methods and �ltering+grouping methods. In these plots the�ltering is performed in the RGB 
olor spa
e with an Epane
hnikov kernel.
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Figure 3.35: PR vs average segment size plots for grouping only methods and �ltering+grouping methods. In these plots the�ltering is performed in the RGB 
olor spa
e with an Epane
hnikov kernel.
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Figure 3.36: BDE vs average segment size plots for grouping only methods and �ltering+grouping methods. In these plots the�ltering is performed in the RGB 
olor spa
e with a Normal kernel.
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Figure 3.37: PR vs average segment size plots for grouping only methods and �ltering+grouping methods. In these plots the�ltering is performed in the RGB 
olor spa
e with a Gaussian kernel.
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Figure 3.38: BDE vs average segment size plots for grouping only methods and �ltering+grouping methods. In these plots the�ltering is performed in the Luv 
olor spa
e with an Epane
hnikov kernel.
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Figure 3.39: PR vs average segment size plots for grouping only methods and �ltering+grouping methods. In these plots the�ltering is performed in the Luv 
olor spa
e with an Epane
hnikov kernel.
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Figure 3.40: BDE vs average segment size plots for grouping only methods and �ltering+grouping methods. In these plots the�ltering is performed in the Luv 
olor spa
e with a Normal kernel.
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Figure 3.41: PR vs average segment size plots for grouping only methods and �ltering+grouping methods. In these plots the�ltering is performed in the Luv 
olor spa
e with a Normal kernel.
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3.4.5 Compare segmentations for di�erent 
olor spa
es and kernel fun
-tionsThus far, almost all the graphs presented the results of various �ltering and group-ing methods for a spe
i�
 
olor spa
e and kernel fun
tion. Only Figs. 3.24, 3.25presented a 
omparison of a single �ltering and grouping method (namely CMS andCC3D) for di�erent 
olor spa
es and kernel fun
tions. In this se
tion we try to ad-dress the question whi
h 
olor spa
e and kernel fun
tion produ
es the best segmen-tation results. We only 
onsider three methods (that performed best in the previousexperiments), namely MF+GAT with variable k, CMS+CC3D, MF+CC3D.From Figs 3.42, 3.43 it is 
lear that the best performing method is the 
ombina-tion of Mode Finding with Grouping with Adaptive Threshold when we use variable
k. The next best method is Color Mean Shift with CC3D, while Mode Finding withCC3D performs rather poorly. Furthermore, using the Luv 
olor spa
e seems to bea better option for performing the �ltering 
ompared to RGB. Finally, the Normalfun
tion produ
es better results 
ompared to the Epane
hnikov kernel fun
tion. Thedi�eren
e in the quality of the segmentation (for di�erent 
olor spa
es and kernelfun
tions) is not so great in the 
ase of GAT �ltering, but it is quite signi�
ant whenCC3D is used for grouping.3.4.6 Compare segmentations for di�erent imagesIn all the previous experiments so far, we presented the 
umulative results for theentire database of the 200 images and the 1087 human 
reated segmentations. One112



Figure 3.42: BDE vs average segment size plots for three segmentation methods with di�erent 
olor spa
es and kernel fun
tions.In the legend "G","E" stand for "Gaussian/Normal" and "Epane
hnikov" kernel fun
tions respe
tively.
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Figure 3.43: PR vs average segment size plots for three segmentation methods with di�erent 
olor spa
es and kernel fun
tions.In the legend "G","E" stand for "Gaussian/Normal" and "Epane
hnikov" kernel fun
tions respe
tively.
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desired 
hara
teristi
 of any segmentation algorithm is to perform 
onsistently wellin a wide range of images. In the previous se
tion we presented the best segmentationalgorithms a

ording to the BDE and the PR measures for the whole database ofimages. In this se
tion we present how these algorithms perform on individualimages of this database. For that purpose we display the results on 10 randomlysele
ted images (i.e., 10 segmentations).The �rst thing to observe is that MF+GAT is non monotoni
 on either axisi.e., the average segment size and the 
omparison measure (BDE or PR) mightin
rease or de
rease on the next measurement point. As a 
onsequen
e the resultsfor all the MF+GAT graphs are quite �
haoti
�, espe
ially the results when �lteringis performed on Luv spa
e with a Normal kernel present a large variation. A 
arefulstudy of the plots on the di�erent 
olor spa
es and kernel fun
tions shows thata
tually for the same range of average segment sizes �ltering on Luv with a Normalkernel is less �
haoti
� than the other 
ombinations.For the other methods (i.e. CMS+CC3D and MF+CC3D) �ltering on Luvspa
e with a Normal kernel produ
es less smooth graphs 
ompared to other 
olorspa
es and kernel fun
tions 
ombinations. This is mainly be
ause the results in this
ombination are good up to a higher average segment value and then they degraderapidly.Overall, when segmenting the same image with di�erent segmentation pa-rameters, MF+GAT presents a lower variation in the quality of the segmentation.This means the MF+GAT 
ombination is less sensitive to the sele
tion of the seg-mentation parameters. CMS+GAT performs slightly better than MF+GAT in the115



Figure 3.44: BDE and PR vs average segment size plots for individual images ofthe database segmented with the MF+GAT 
ombination. Filtering is performed inLuv spa
e with a Normal kernel.
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Figure 3.45: BDE and PR vs average segment size plots for individual images ofthe database segmented with the MF+GAT 
ombination. Filtering is performed inLuv spa
e with an Epane
hnikov kernel.
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Figure 3.46: BDE and PR vs average segment size plots for individual images ofthe database segmented with the MF+GAT 
ombination. Filtering is performed inRGB spa
e with a Normal kernel.
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Figure 3.47: BDE and PR vs average segment size plots for individual images of thedatabase segmented with the CMS+CC3D 
ombination. Filtering is performed inLuv spa
e with a Normal kernel.
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Figure 3.48: BDE and PR vs average segment size plots for individual images of thedatabase segmented with the CMS+CC3D 
ombination. Filtering is performed inLuv spa
e with an Epane
hnikov kernel.
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Figure 3.49: BDE and PR vs average segment size plots for individual images of thedatabase segmented with the CMS+CC3D 
ombination. Filtering is performed inRGB spa
e with a Normal kernel.
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Figure 3.50: BDE and PR vs average segment size plots for individual images ofthe database segmented with the MF+CC3D 
ombination. Filtering is performedin Luv spa
e with a Normal kernel.
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Figure 3.51: BDE and PR vs average segment size plots for individual images ofthe database segmented with the MF+CC3D 
ombination. Filtering is performedin Luv spa
e with an Epane
hnikov kernel.
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Figure 3.52: BDE and PR vs average segment size plots for individual images ofthe database segmented with the MF+CC3D 
ombination. Filtering is performedin RGB spa
e with a Normal kernel.
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intra-image segmentation quality.Between di�erent images, MF+GAT also produ
es the most 
onsistent resultsin terms of the quality of segmentation. In this 
ase also, CMS+GAT slightlyoutperforms MF+CC3D.3.5 Con
lusionsIn this 
hapter we presented our position that the problem of 
olor based segmen-tation should be subdivided into a �ltering and a grouping 
omponent, and 
reateda number of new segmentation algorithms by 
ombining existing (and new) �lter-ing and grouping methods. We evaluated all the methods extensively, using theBerkeley segmentation dataset and made a number of useful observations. Table3.2 synopsizes the results of the experimental 
omparison for performing edge pre-serving �ltering and 
olor based segmentation respe
tively.There are two main results that we want to emphasize here. In all the exper-iments, pro
essing the image with an edge preserving �lter before using a groupingmethod produ
ed signi�
antly better results. Thus it is bene�
ial to 
onsider thesegmentation pro
ess to be a 
ombination of a �ltering and a grouping step.Se
ond, depending on the grouping method that is used, a di�erent �lteringpro
ess produ
es best results. For grouping with a hard threshold (i.e. CC3D,CC5D and GRAG methods) Color Mean Shift �ltering worked best. When groupingwith an adaptive threshold (i.e. GAT method) Mode Finding proved to be the bestmethod. As a 
on
lusion, when 
onsidering the problem of 
olor based segmentation,125



one should study the 
ombination of the �ltering and the grouping method to obtainthe best results. Studying only one 
omponent in isolation is not su�
ient.Our overall 
omparison showed that for the Berkeley dataset the best methodto use is a 
ombination of Mode Finding with Grouping with Adaptive Threshold(with variable k). Furthermore the results are better when the �ltering is performedin Luv 
olor spa
e with a Normal kernel.There are many interesting dire
tions for future resear
h. Next we presentsome of them.As we saw before, the kernel fun
tion signi�
antly a�e
ts both the �ltering andthe segmentation results. A more systemati
 study of this relation, espe
ially whythe Normal kernel fun
tion produ
es better results, is an interesting question. Evenmore so, if one 
an devise other kernel fun
tions that give even better results. Arelated question is how one 
an adjust the kernel fun
tion to 
onsider the boundaryedge 
hara
teristi
s. Re
ent work in learning boundary edges (and separating themfrom texture edges) showed promising results, but it is still an open question howkernel density estimation methods 
an bene�t from su
h a learning approa
h.The previous experiments also proved that di�erent 
olor spa
es 
riti
ally af-fe
t the segmentation result. We tested the Luv and RGB 
olor spa
e mainly be
ausethese are the 
olor spa
es suggested in previous mean shift segmentation papers.This does not ex
lude the possibility of other 
olor spa
es being more bene�
ialto the segmentation of images. We would be surprised if linear transformations(su
h as RGB to YUV) would produ
e signi�
antly di�erent results, but there areunlimited possibilities for non-linear transformations.126



Table 3.2: Synopsis of the �ltering results
• All segmentation methods are very sensitive to image variations. The methodsbased on Grouping with an Adaptive Threshold (GAT) are the least sensitive tointer image variation. They also exhibit the least sensitivity to the segmentationparameters (hr, k) when segmenting the same image.
• Segmentation methods based on GAT grouping are not monotoni
.
• Segmentation methods based on GAT grouping outperform , on average, all theother segmentation methods.
• Segmentation methods based on GAT grouping are the most stable to 
olor resolu-tion 
hanges i.e., exhibit less variation of the average segment size.
• Segmentation methods based on CC3D and CC5D grouping have very similar per-forman
e, with the CC3D ones produ
ing slightly better segmentation results. TheGRAG methods produ
e better, same or worse depending on the 
olor spa
e andkernel fun
tion 
ombination.
• All the graphs of the Global Consisten
y Error (GCE) measure are misleading be-
ause the two segmentations have di�erent number of segments. GCE graphs aremisleading sin
e only for a few values for 
olor resolution the number of segmentson both segmentations is 
omparable. That's why we obtain a value 
lose to 0 forvery small and very large 
olor resolutions.
• The graphs of the Variation of Information (VI) measure are the least dis
riminative.
• The graphs of the Probabilisti
 Rand Index (PR) and Boundary Displa
ement Error(BDE) measures are the most dis
riminative.
• Segmentations obtained by grouping methods alone have mu
h lower quality thanthe ones obtained using a 
ombination of a �ltering and a grouping method.
• Color Mean Shift (CMS) based segmentation methods outperform all the other �l-tering methods when they are 
ombined with CC3D or CC5D or GRAG groupingmethods.
• When using GAT grouping with varying parameter k Mode Finding (MF) produ
esthe best results.
• Filtering in Luv produ
es mu
h larger segments than �ltering in RGB for a given
olor resolution hr. Filtering with a Normal kernel results in larger segments 
om-pared to using a Epane
hnikov kernel.
• The sele
tion of the kernel fun
tion seems to be very important for the segmenta-tion results. More spe
i�
ally, we obtained the best segmentation results when the�ltering was performed with a Normal kernel in the Luv 
olor spa
e. The se
ondbest 
on�guration is a Normal kernel with an RGB 
olor spa
e, while the resultsobtained with an Epane
hnikov kernel in either RGB or Luv 
olor spa
es are mu
hworse. 127



In this thesis we mostly fo
used on the �ltering part of the segmentationpro
ess. For the grouping part we sele
ted a few, simple and fast methods. Inthe 
omputer vision literature there is a large variety of methods that are used forimage 
lustering. Energy minimizationmethods (e.g. graph 
uts), eigenve
tor basedmethods (e.g. normalized 
uts) and soft assignment methods based on algebrai
multigrid are also legitimate 
andidates for the grouping part. It is interesting tosee the quality of the segmentation using these 
lustering methods.Further study is required on the optimal 
ombination of the �ltering param-eters (namely the 
olor resolution hr) with the segmentation parameters (e.g. inthe 
ase of GAT k). Their relation that produ
es the best segmentation results fordi�erent image sizes is yet to be determined.Finally, in all the experiments we use the impli
it plot of the quality measureover the average segment size as an indi
ation for the quality of the segmentation.Our goal is to use 
olor segmentation to generate hypotheses for planar surfa
es andas su
h the larger the segment the better we 
an verify whether it has a 
onsistentsurfa
e normal or not. A wide variety of appli
ations exist that use 
olor segmen-tation as a �rst step and in some of them other 
hara
teristi
s (than segment size)might be more important. For example, stereo methods are more worried whethera segment 
rosses o

lusion boundaries or not. It would be interesting to see howthe segmentation algorithms that we presented above fare under di�erent measures.
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Chapter 4Combining Cues for Surfa
e Normal Estimation4.1 Introdu
tionIn this 
hapter we swit
h our attention from the problem of 
olor based segmenta-tion to the problem of surfa
e normal estimation. It is widely a

epted that 
hanges(over multiple frames) on the boundaries and the texture of an image region provide
omplimentary information about the shape and the 3D position of the 
orrespond-ing obje
t. Thus, 
ombining methods based on boundary extra
tion with ones ontextured regions results in more robust and a

urate estimation. Espe
ially, for rel-atively simple environments, su
h as 
orridors, it is often the 
ase that only one typeof 
ue will be present and thus only one type of method will provide reliable mea-surements. Furthermore, in su
h environments the predominant shape of obje
ts isplanar and the obje
t boundaries are usually lines.Motivated by the above observations, this 
hapter proposes two methods to es-timate the 3D position of planar obje
ts; the �rst 
onsiders the 
hange of the textureand the se
ond the 
hange of image lines. More spe
i�
ally, the main 
ontributionsof the 
hapter are:
• We present a novel image line 
onstraint for estimating the 3D orientation ofplanes (Se
. 4.3). 129



• We des
ribe a novel te
hnique to 
ompute the 3D shape from the 
hange oftexture for planar obje
ts based on harmoni
 analysis (Se
. 4.4).
• We present experimental results on how a

urate the two methods performin real indoor environments. The integration of the two methods with theodometry readings from the robot's wheels using an extended Kalman �lter,outperforms the results obtained by ea
h method in isolation (Se
. 4.6).
• We experimentally show that the proposed method allows for navigation inenvironments where little texture is present using a simple motion 
ontrolpoli
y (Se
. 4.8).4.1.1 Related WorkThe 
omputer vision 
ommunity has long studied the stru
ture from motion (SfM)problem ([43℄,[44℄) and re
ently fo
used on large-s
ale 3D re
onstru
tion (e.g. [45℄).Following the su

ess of Simultaneous Lo
alization and Mapping (SLAM) usingrange (espe
ially laser) sensors ([46℄), the roboti
s 
ommunity has migrated theexisting methods to work with data from 
ameras. Usually, the environment isrepresented with a set of image feature points, whose pose is tra
ked over multipleframes ([47℄). Often, image features are more informative than range data, but theestimation of their 3D position is mu
h less a

urate. Straight lines are 
ommonin man-made environments and are arguably more reliable features than points,thus they have been used before in stru
ture from motion ([48℄, [49℄) and SLAM([50℄). Our method is about 
omputing 3D stru
ture information in a simpli�ed SfM130



situation, but very robustly. We use a formulation of line 
onstraints that separatesslant from distan
e estimation. Thus, it is di�erent from the ones 
lassi
ally usedin SfM.On the other end of the spe
trum there are methods belonging to the maplessvisual navigation 
ategory ([51℄), where no prior knowledge about the environmentis assumed and no spatial representation of it, is 
reated. Most of that work is in-spired by biologi
al systems. A survey of su
h methods implementing the 
enteringbehavior 
an be found in [52℄. More spe
i�
ally, systems 
apable of avoiding wallsand navigating in indoors environments using dire
t �ow-based visual informationobtained from a single wide-FOV 
amera fa
ing forwards ([53℄, [54℄, [55℄), multiple
ameras fa
ing sideways ([56℄, [57℄) or panorami
 
ameras ([58℄), have been imple-mented. Our approa
h is also di�erent from the aforementioned, be
ause we �rstestimate an intermediate state of the environment (in terms of surfa
e normals) andwe use this for navigation.The general method for estimating the stret
h and shift of a signal using thelog of the magnitude of the Fourier transform, known as Cepstral analysis, was �rstintrodu
ed by Bogert et al. [59℄ and was made widely known by Oppenheim andS
hafer [60℄. It is 
ommonly used in spee
h pro
essing [61℄ to separate di�erentparts of the spee
h signal.Frequen
y based te
hniques exploiting the phase shift theorem have been usedin 
omputer vision for image registration (in 
onjun
tion with the log-polar trans-form of an image), e.g. [62℄, [63℄, [64℄ and opti
al �ow 
omputation ([65℄). Phase
orrelation, however, has not been used for shape estimation.131



4.2 Problem Statement and terminologyDue to the 
ompletely di�erent topi
 of this 
hapter we need to rede�ne our notationand terminology. Hen
e, in this se
tion we introdu
e some 
ommon symbols thatare used in the rest of the 
hapter and present the problem that we ta
kle in thefollowing three se
tions. For simpli
ity and improved readability reasons, all theequations in Se
. 4.3,4.4 and 4.5 are expressed in the 
amera 
oordinate system(where the images were a
quired). In Se
. 4.6 and 4.7 we transfer the estimatesin the robot-
entri
 
oordinate system (Fig. 4.5). Ve
tors are denoted with anoverhead arrow and matri
es with bold letters.We denote with −→T , R the translation and rotation between two frames re-spe
tively, with −→N = (α, β, γ)T a plane in the 3D world and with −→n =
−→
N

|
−→
N |
, theplane normal. Also −→P = (X, Y, Z)T is a 3D point. When −→P belongs to −→N then

−→
P · −→N = 1⇔ αX + βY + γZ = 1. The image plane is assumed to lie on the plane
I : Z = f , where f is the fo
al length of the 
amera. Then, the proje
tion of −→P on
I is −→p = (x, y, f)T = f

Z
(X, Y, Z)T . The inverse depth at −→P amounts to

1

Z
= α

x

f
+ β

y

f
+ γ (4.1)Given the translation and rotation of the 
amera between two images we seekto estimate the plane parameters −→N = (α, β, γ)T .
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4.3 Orientation and Distan
e from linesHere we des
ribe a 
onstraint for re
overing the orientation of a world plane fromimage lines. The 
onstraint 
an be used in two ways: �rst as a multiple view
onstraint, where we use the images of a single line in 3D in two views [66℄; se
ondas a single view 
onstraint where we use the images of two parallel lines in 3D inone view.4.3.1 Single Line in Multiple FramesAs shown in Fig. 4.1, 
onsider two views with 
amera 
enters O1 and O2, whi
hare related by a rotation R and a translation −→T . A 3D line L lies on the planewith surfa
e normal ~n =
~N

|N |
. L is proje
ted in the two views as l1 and l2. Let ~lm1be the representation of l1 in the �rst 
amera 
oordinate system as a unit ve
torperpendi
ular to the plane through L and O1. Similarly, let ~lm2 be the representationof l2 in the se
ond 
amera 
oordinate system as a unit ve
tor perpendi
ular to theplane through L and O2. The two planes perpendi
ular to ~lm1 and ~lm2 interse
t in

L1. Expressing this relation in the �rst 
amera 
oordinate system, we have
L ‖ ~lm1 ×RT ~lm2, (4.2)and sin
e ~n is perpendi
ular to L, we have1The ne
essary and su�
ient 
ondition for the two planes to be di�erent is that the translation−→

T is not parallel to the line L.
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( ~lm1 ×RT ~lm2) · ~n = 0. (4.3)Pra
ti
ally, we want to avoid 
omputing the 
orresponden
e of two lines in twoframes, so we adopt the 
ontinuous representation of Eq. 4.3 as
(l1 × (l̇1 − ~ω × l1)) · ~n = 0, (4.4)where l1 denotes lm1, ~ω is the angular velo
ity of the robot and l̇1 is the temporalderivative of the line that 
an be 
omputed from the normal �ow.This is the linear equation we use to estimate ~n. Noti
e, this 
onstraint (whi
hintuitively is known as orientation disparity in visual psy
hology) allows us to esti-mate the surfa
e normal (that is the shape) of the plane in view, using only rotationinformation. At this point we should also note that no distan
e information isen
oded to ve
tor ~n, whi
h is of unit length.4.3.2 Two or More Lines in the Same FrameWe 
an use the 
onstraint in Eq. 4.4 also from one view. Imagine that two viewsare related by a translation only, or similarly 
onsider two parallel lines in one view.Given two lines l1 and l2 that are proje
ted from two parallel lines, L1 and L2, inthe 3D s
ene, we re
over the orientation of L1 and L2 using Eq. 4.2 (Fig. 4.2).Assuming L1 and L2 lie on the same wall, whi
h is perpendi
ular to the ground,and ~n =

~N
|N |

as its surfa
e normal, we then re
over the surfa
e normal of the wall134



O1

O2

(a) Line 
onstraint in multiple viewsFigure 4.1: A single line is proje
ted to two images from di�erent viewpoints.
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from
( ~lm1 × ~lm2) · ~n = 0. (4.5)If we have more than two lines that are generated by parallel 3D lines, we 
anaverage results from Eq. 4.5.The 
onstraints dis
ussed above provide better information than vanishingpoint. From two or more 3D lines, a general plane 
an be re
onstru
ted. In our
ase, the plane is perpendi
ular to the ground plane, thus the surfa
e normal 
anbe des
ribed by only one parameter, i.e. α

γ
(be
ause ~N = (α, 0, γ)T ). In general, therobot 
an move based on the position with respe
t to the line.

(a) Line 
onstraint in a single viewFigure 4.2: Two 3D lines, belonging to the same plane, are proje
ted to two imagelines. 136



4.3.3 Distan
e estimationAfter we have 
omputed the slant of the plane, we 
an also estimate its distan
e.For this we need the translation T . The distan
e dL of the line L from the 
ameraamounts to [67℄
dL =

(l1 ·
−→
T )

(l̇1 + (l1 × ~ω))T (l1 ×
−→
L d)

, (4.6)with −→L d a unit ve
tor parallel to L, 
omputed as
−→
L d =

l1 × (l̇1 + l1 × ~ω)

|l1 × (l̇1 + l1 × ω)|
(4.7)and the distan
e d of the plane from the 
amera is 
omputed as

d = dL
−→n · (l1 ×

−→
L d) (4.8)4.3.4 Implementation detailsTo obtain a

urate measurements of lines, we modi�ed P. Kovesi's Matlab 
ode2.The unoptimized Matlab version of the slant estimation 
ode based on lines runsin ∼ 1.5 se
onds per iteration on our test bed (a 1.5 GHz Pentium M laptop with768MB RAM).In Fig. 4.3 we present three representative frames obtained from the front
amera. Note that we did not introdu
e any arti�
ial landmarks, thus only obje
tsexisting in the environment, like doors and door frames are present. To �nd �good"2http://www.
sse.uwa.edu.au/�pk/resear
h/matlabfns137



lines to tra
k, we further assume that the longest lines present in the s
ene are theones on the boundary between the �oor and the walls. Thus, using a thresholdon the line length we are able to remove all other lines. In Figs. 4.6 and 4.7 wepresent the distan
e and slant estimates whi
h we obtained using the line 
onstraintfor a test sequen
e of 20 frames. We observe that the slant is estimated with gooda

ura
y, while the distan
e estimation is not very a

urate.4.4 Harmoni
 shape from texture for planar surfa
es4.4.1 TheoryIn this se
tion we assume that the 
amera is parallel, and the wall perpendi
ular tothe ground. Thus −→N further simpli�es to (α, 0, γ)T and Eq. 4.1 be
omes
1

Z
= α

x

f
+ γ (4.9)Consider that we a
quire two images I1 and I2 and that we know (from the odometryreadings) the translation −→T = (Tx, 0, Tz)

T and rotation R relating I1 and I2. The
(a) First image (b) Se
ond image (
) Third imageFigure 4.3: Three frames of our line testing sequen
e, with the dete
ted lines drawnin yellow 
olor. In all 
ases the lines are well lo
alized.138



Algorithm 4.1 Mat
h Epipolar LinesInput:
p : Image point in �rst image
T,R : Translation/Rotation
K : Camera matrix
D : Referen
e distan
e, randomly 
hosenOutput:
[p1, p2] : Set of 
orresponding points in �rst and se
ond image along the epipolarlinesAlgorithm:Compute Essential Matrix : E = [T ]xRCompute Fundamental Matrix : F = K−TEK−1Compute Epipolar Line in Se
ond Image : l2 = FpCompute Corresponding Epipolar line in �rst image using D�rst step is to lo
ate 
orresponding epipolar lines on the two images (Fig. 4.4) usingthe pro
edure des
ribed in Alg. 4.1.

Figure 4.4: The epipolar lines for two frames. The translation ve
tor is T =
[−0.011 0 0.011]T meters and there was no rotation.Interpolating the image intensity values along the epipolar lines, it is possibleto re
tify the two images, thus obtaining images IR1 and IR2 , where the epipolar linesare 
ollinear and parallel to the horizontal axis

∀x, y IR2 (x, y) = IR1 (x+
T ′

Z
, y) (4.10)139



where the new translation ve
tor is T ′ =
√

T 2
x + T 2

z and the new plane parame-ters are (α′, 0, γ′)T = RRECT (α, 0, γ)T with RRECT being the re
ti�
ation (rotation)matrix.Combining Eqs. 4.9 and 4.10 and dropping for simpli
ity the prime notationwe obtain
∀x, y IR2 (x, y) = IR1 ((1 + αT )x+ γT, y), (4.11)Table 4.1: Phase Correlation Con
ept

• Let 2D signals s1 and s2 be related by a translation (x0, y0) only, i.e.
s2(x, y) = s1(x− x0, y − y0)

• Their 
orresponding Fourier transforms are related by a phase shift whi
hen
odes the translation, i.e.
S2(u, v) = e−2πi(ux0+vy0)S1(u, v)

• The phase shift 
an be extra
ted from the Normalized Cross-power Spe
trumof the two signals, whi
h is de�ned as
NCS =

S1(u, v)S∗
2(u, v)

|S1(u, v)S∗
2(u, v)|

= e2πi(ux0+vy0)

• Thus, the inverse Fourier transform of NCS is a delta fun
tion around thetranslation point (−x0,−y0)
F−1{NCS}(x, y) = δ(x+ x0, y + y0)We 
an estimate α and γ using phase 
orrelation (Table 4.1) between thesignals along the set of two epipolar lines in two steps [52℄. First, we estimate αusing phase 
orrelation on the magnitude of the Fourier transform of the two signalsin logarithmi
 
oordinates (Eq. 4.16). Then, we warp the signals, using the estimate140



for α, so that only the translation 
omponent is present. Finally, we estimate γ usingphase 
orrelation on the warped signals (Eq. 4.18). The 
omplete algorithm alongwith the equations are presented in Alg. 4.2.While the algorithm presented here, solves for two (α, γ) of the three planeparameters, it is possible to obtain all three parameters by performing a geometri
transformation on the variables and exploiting 2D phase 
orrelation.4.4.2 Implementation detailsIn Figs. 4.6 and 4.7 we present the results of applying this method to a series ofimages obtained by the left side 
amera of our robot. In this experiment, we used 81epipolar lines. The red 
rosses denote the distan
e and slant estimates for ea
h pairof frames. While slant estimation is quite a

urate, still the line method providedsuperior results. On the other hand, this method outperformed both the line basedte
hnique and the normal �ow based te
hnique (des
ribed in Se
tion 4.5) in thedistan
e estimation.Another advantage of the method is its 
omputational simpli
ity. Thus, theunoptimized Matlab 
ode runs in ∼ 1.5 se
onds for an image of 81 × 1024 pixels(i.e., 81 epipolar lines of 1024 pixels ea
h), with most of the time spent on warpingthe 2 signals in order to 
ompute Eq. 4.17.
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Algorithm 4.2 Estimate Plane Parameters α, γInput:
IR1 , I

R
2 : Image signals along Epipolar Lines

T :TranslationOutput:
α, γ : Plane parametersAlgorithm:
• Signals along the epipolar line y

∀x, IR2 (x, y) = IR1 ((1 + αT )x+ γT, y) (4.12)
• Compute the Fourier Transform (IR1 , IR2 ) of IR1 , IR2

Fx,y{IR2 }(u, v) =
e2πi

γT
1+αT

uFx,y{IR1 }( u
1+αT

, v)

|1 + αT | (4.13)
• Consider the Magnitude of IR1 , IR2 and logarithmi
ally transform (u, v)

|IR2 (log u, v)| = |I
R
1 (log u− log(1 + αT ), v)|

|1 + αT | (4.14)
• Compute the Normalized Cross-power Spe
trum (NCS1) of |IR1 |, |IR2 |

NCS1(η, w) = e2πiη log(1+αT ) (4.15)
• Compute α taking the Inverse Fourier transform of NCS1

α =
eu−argmax(F

−1{NCS1}) − 1

T
(4.16)

• Take the Normalized Cross-power Spe
trum NCS2 of IR1 ( u
1+αT

, v), IR2 (u, v)from Eq. 4.13
NCS2(u, v) = e−2πi γT

1+αT
u (4.17)

• Compute γ
γ = −(1 + αT )argmax(F−1{NCS2})

T
(4.18)

142



4.5 Plane parameters from normal �ow4.5.1 TheoryAs des
ribed before, −→N = (α, β, γ)T denotes a plane in the 3D world and −→P =

(X, Y, Z)T a point on that plane (−→P ·−→N = 1) and Eq. 4.1 is valid. When the 
ameramoves with instantaneous rotational velo
ity −→Ω = (Ωx,Ωy,Ωz)
T and translationalvelo
ity −→t = (tx, ty, tz)

T the relative motion of the point is V (
−→
P ) = −−→t −−→Ω ×−→P .The 
orresponding motion of the image point −→p is









dx
dt

dy
dt









=
1

Z









tzx− txf

tzy − tyf









+ (4.19)








Ωzy − Ωyf + Ωxxy−Ωyx2

f

−Ωzx+ Ωxf + −Ωyxy+Ωxy2

f









. (4.20)Substituting equations (4.1) and (4.20) into the image brightness 
onsisten
y 
on-straint
∂I

∂x
· dx
dt

+
∂I

∂y
· dy
dt

+
∂I

∂t
= 0, (4.21)we obtain an equation bilinear in the motion parameters and the plane parameters.Note that I(x, y, t) represents the image intensity at point (x, y) and time t. In our
ase we have restri
ted motion (i.e. Ωx = Ωz = 0 and ty = 0), so we 
an further
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simplify the equation
A(x y f)(α β γ)T = B ,where
A = Ix

f
(xtz − ftx) + Iy

f
ytz,

B = IxfΩy + Ωy

f
(Ixx

2 + Iyxy)− It

. (4.22)
A

ording to Eq. 4.22, knowing the motion parameters, the 
amera intrinsi
parameters (i.e., fo
al length and prin
ipal point) and the image intensity deriva-tives, plane estimation amounts to solving a linear system of equations for theparameters (α, β, γ).4.5.2 ImplementationTo 
al
ulate the normal �ow we used the gradient based method of Lu
as andKanade ([68℄) using the �ltering and di�erentiation kernels proposed by Simon
elli([69℄) on 5 
onse
utive frames. For performan
e reasons, we �rst redu
ed the size ofthe image by one quarter, so we are 
omputing the gradients on a 256× 192 array(as opposed to the whole 1024 × 768 original images). The image size redu
tionhas the additional advantage of redu
ing the pixel displa
ement between su

essiveframes, thus resulting in more a

urate results for plane estimation. The unopti-mized Matlab version of the 
ode runs in ∼ 0.4 se
onds on our testbed, with mostof the time spent in 
omputing the spatial and temporal gradients.In Figs. 4.6 and 4.7 we also display the results of running the normal �owbased plane estimation algorithm in the same test sequen
e used for the previous144



methods. It is 
lear that this method is less a

urate in distan
e and slant estimation
ompared to the texture and the line method, respe
tively for that spe
i�
 imagesequen
e. This is due to the la
k of good image features to tra
k in our environment.4.6 Extended Kalman FilterIntegration of the individual measurements over time is performed using an ex-tended Kalman �lter (EKF). First, let us de�ne a robot-
entri
 
oordinate system
ORXRYRZR as follows (Fig. 4.5); the 
enter OR 
oin
ides with the midpoint of thetwo front wheels of the robot, the XR axis points to the left wheel of the robot, the
YR axis points upwards and the ZR axis forward.As state variables for the Kalman �lter we use the distan
e/slant/tilt parametriza-tion of the plane, S(t) = [d, θ, φ]T . If we denote −→n XZ the proje
tion of −→n on the
Y = 0 plane, then we de�ne the slant θ to be the angle between the ZR axis and
−→n XZ , as shown in Fig. 4.5. Tilt φ is the angle between the Y 
omponent of n andthe XZ plane. Thus the transformation between the two di�erent parametrizationis

















d = 1√
α2+β2+γ2

θ = arctan (α
γ
)

φ = arccos (β
d
)















Assuming that the 
ontrol ve
tor U(t) 
onsists of the instantaneous transla-tional and rotational velo
ities of the robot (v(t), ω(t)) respe
tively and ∆t denotesa time interval, the evolution of the system over time 
an be des
ribed as145
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S(t+ ∆t) = F(S(t),U(t))⇔
















d(t+ ∆t) = d(t) + v(t) cos θ(t)∆t+ ǫ11

θ(t+ ∆t) = θ(t)− ω(t)∆t+ ǫ12

φ(t+ ∆t) = φ(t) + ǫ13

















, (4.23)
where we use the assumption that cos θ(t) ≃ cos θ(t+ ∆t), i.e. the rotational ve-lo
ity ω(t) is small and approximately 
onstant over ∆t and the dis
retization step
∆t is also small. Furthermore, we denote with ǫ1i the errors in the state predi
tion(with 
ovarian
e Q).Our measurement ve
tors (Z1, Z2, Z3) 
onsist of the plane parameters 
al
u-lated using the di�erent methods des
ribed in Se
tions 4.3, 4.4 and 4.5 respe
tively,
onverted to the distan
e/slant/tilt parametrization. We 
onsider the 
ombinedmeasurement to be a weighted linear 
ombination of the individual measurementsi.e., Z(t) =

∑3
i=1CiZi, where the weights Ci en
ode the (inverse) un
ertainty of theestimates using di�erent methods, whi
h we derived as follows.The line module bases the a

ura
y of the plane estimation on how well itdete
ts and lo
alizes the line. The harmoni
 texture module is using the magnitudeof the Inverse Fourier transform of the Normalized Cross-power Spe
trum (Eqs.4.16, 4.18) and the normal �ow module is using the 
ondition number of the linearsystem (Eq. 4.22).The system evolution (Eq. 4.23) is not linear with respe
t to the state ve
tor

S(t) and the 
ontrol ve
tor U(t). That's why we need to use an extended Kalman147



�lter and linearize the equations by 
onsidering the Ja
obian matrix as shown inTable 4.2. Table 4.2: extended Kalman Filter EquationsJa
obian of system evolution with respe
t to the state ve
tor S(t)

A(t) =





1 −v(t) sin θ(t)∆t 0
0 1 0
0 0 1



 (4.24)Ja
obian of system evolution with respe
t to the 
ontrol ve
tor U(t)

W(t) =





cos θ(t)∆t 0 v(t) cos θ(t)
0 −∆t −ω(t)
0 0 0



 (4.25)State predi
tion equations (Mean Ŝ and Covarian
e P̂)




d̂(t+ ∆t) = d̄(t) + v̄(t) cos θ̄(t)∆̄t

θ̂(t+ ∆t) = θ̄(t)− ω̄(t)∆̄t

φ̂(t+ ∆t) = φ̄(t)



 . (4.26)
P̂(t+ ∆t) = A(t)P̄(t)A(t)T + W(t)Q(t)W(t)T (4.27)Kalman Gain K

Ki(t) = P̂(t)(P̂(t) + R(t))−1 (4.28)Measurement update equations (Mean S̄ and Covarian
e P̄)
S̄(t+ ∆t) = Ŝ(t+ ∆t) + K(t)(Z(t+ ∆t)− Ŝ(t+ ∆t)) (4.29)

P̄(t+ ∆t) = (I−K(t))P̂(t+ ∆t) (4.30)
4.6.1 ResultsFigs. 4.6 and 4.7 depi
t the results when we 
ombined the line, texture and normal�ow methods, respe
tively with the odometry measurements using the EKF. Morespe
i�
ally, in these �gures, bla
k 
ir
les denote the predi
tion about the 
urrent148



state using only the previous state and dead re
koning information (Eq. 4.26), whileblue pluses denote the �nal predi
tion of the state after the measurements fromea
h individual module are also 
onsidered (Eq. 4.29). It is 
lear that integration ofmeasurements over time signi�
antly improves the a

ura
y and robustness of themethod.4.7 Motion ControlAn important part of any navigation system is the motion 
ontrol subsystem. Inthis parti
ular setting the goal is to move along the 
orridor avoiding the obsta
lesthat might lie ahead of us. The motion 
ontrol strategy des
ribed below refersto the �wall-following" behavior. Using the same poli
y one 
ould implement the�
entering" behavior.Let's de�ne the input to the motion 
ontrol algorithm to be the state ve
torof the Kalman �lter, that denotes the position of the left wall with respe
t to therobot. Ideally, we want the robot to remain at a 
onstant distan
e (denoted with
DC) from the wall, thus following the line LC as shown in Fig. 4.8. In pra
ti
e, therobot's traje
tory is restri
ted by motion dynami
s as well as the 
onstraint thatthe rotational and translational velo
ities should remain 
onstant, while the 
amerais re
ording the frames. As a 
onsequen
e, the system is only allowed to performsmall motion 
hanges between two su

essive frames, thus it is hard to follow thevirtual line. Instead, a point P along the line LC is pi
ked and the robot's motionis regulated a

ordingly, so that it approa
hes P. Next we des
ribe how to do this.149
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le andthe �nal estimate after integration with the measurement (Eq. ) with a plus sign.In some frames no reliable estimate 
ould be obtained using the harmoni
 texturemethod(se
ond 
olumn). In these 
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ross on the bottom ofthe 
orresponding �gure. Also note the �rst EKF update is based solely on imageestimates. 150
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Let's assume that point P is yP meters away from the robot along the line LCand forms an angle ψ as shown in Fig. 4.8. Furthermore, the robot is situated xPunits away from LC and is moving with instantaneous translational and rotationalspeed v(t), ω(t) respe
tively. Note that the translational velo
ity is always along thedire
tion of the Z-axis of the robot and the rotational velo
ity is around the Y -axis.Then, we have:
ψ = arctan(

yP
xP

) (4.31)
ξ = θ − π − ψ (4.32)The line segment LRP has length D =

√

x2
P + y2

P . An approximation of the time

Figure 4.8: The robot R is moving with translational and rotational velo
ities
v(t), ω(t) respe
tively, while it is lo
ated xP units away from the virtual line LC .
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that is required by the robot to rea
h point P is ∆t = D
v(t)

. The new rotationalvelo
ity (ω(t+ ∆t)) of the robot should be:
ω(t+ ∆t) =

ξ

∆t
= v(t)

θ − π − arctan yP

xP
√

x2
P + y2

P

(4.33)4.8 ExperimentsWe have used the roboti
 platform ER1 from Evolution Roboti
s. On top of it, wehave pla
ed a front and two side Firewire 
ameras (SONY XCD-X700). The side
ameras form angles (∼ 45o,∼ −45o) with the front 
amera as shown in Fig. 4.9.In the following experiments we used the left side 
amera and the front 
amera. Werun the texture based as well as the normal �ow based 
ode on the left side 
ameraand the line-based 
ode on the front 
amera.The goal of the experiments is to 
onvey two messages;
• The a

ura
y and robustness of the system signi�
antly in
reases with theintegration of individual measurements from di�erent subsystems over time.
• When using all the methods the robot is able to move along a mostly texture-less 
orridor.4.8.1 Constant Distan
e ExperimentThe goal of this �rst experiment was for the robot to move a distan
e of 20 metersalong a 
orridor without hitting the side walls. The 
orridor had a width of 1.8 me-ters, so we instru
ted the robot to try to maintain a distan
e of 0.9 meters from the153



(a) Photo of robotFigure 4.9: The ER1 robot equipped with 3 Firewire 
ameras. The height of therobot is ∼ 70 
m. In the ba
kground, part of the 
orridor, where we 
ondu
tedsome experiments, is shown. All the walls and doors are textureless and there existsigni�
ant spe
ular highlights on both the walls and the �oor 
aused by the lightsour
es.
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left, while moving with velo
ity 5 
m/se
. The initial orientation of the robot withrespe
t to the wall varied from 0o (parallel to the wall) to −20o (moving away fromthe left wall) and +20o (moving towards the wall). We made multiple runs ea
htime a
tivating a di�erent submodule with and without integrating the measure-ments with dead re
koning using the EKF. Finally, we performed the experimentusing all the submodules together. The results are presented in Fig. 4.10. It is 
learthat ea
h individual module in isolation performs poorly (with the ex
eption of theline module). Integrating the measurements of a single module over time (usingthe EKF) greatly improves the robustness of the method. Finally, 
ombining themeasurements from di�erent submodules, provides the most robust setting.
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Figure 4.10: Per
entage of times that the robot was able to move than 20 meterswithout hitting the side walls.
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4.8.2 Average Distan
e ExperimentIn this experiment we let the robot move on the 
orridor (still trying to maintain adistan
e of 0.9 meters from the left wall) with velo
ity 5 
m/se
, and measured theaverage distan
e traversed before the hitting the wall. We performed the experimentmultiple times a
tivating a di�erent module or 
ombinations of modules. The re-sults, namely the average distan
e for ea
h 
ombination, are presented in Fig. 4.11.Again, we observed that a single module performs very poorly (with the ex
eptionof the line module), while 
ombining modules together and integrating the estimatesover time greatly improves the result. When the average distan
e is larger than 20meters, it indi
ates that the robot is approa
hing the end of the 
orridor and thuswe had to terminate the spe
i�
 run.
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Figure 4.11: Average distan
e that the robot was able to move using measurementsfrom a single or multiple modules. 156



4.9 Con
lusionsIn this 
hapter we presented two new methods for 
omputing the 3D stru
ture ofa pie
e-wise planar s
ene from video. We also used an existing method for 3Dshape estimation based on normal �ow. The three methods base their estimationon 
omplementary information. More spe
i�
ally, while the normal �ow te
hnique
onsiders individual features (i.e. sharp intensity 
hanges) within the obje
t, thetexture method 
onsiders the whole area within it. The line method, on the otherhand, uses the boundaries of an obje
t. Depending on the 
ase, we expe
t at leastone of the methods to provide a

urate measurements. For example, when weobserve a mostly uniformed 
olored obje
t, we anti
ipate that the line method willbe able to a

urately tra
k the boundary of it and produ
e a

urate results, whilethe remaining two modules will fail. On the other hand, when the obje
t is highlytextured, the line method might not be able to lo
ate the boundaries a

urately, butthe two other methods will produ
e good results. For that reason, we emphasizethat the integration of all three modules is the right approa
h, if one wants to builda robust system. For similar reasons, integration of the individual measurementsover time is equally important. In this paper, we use odometry measurements fromthe wheel en
oders, but we might as well estimate the motion from the video (visualodometry, also known as ego-motion estimation [70℄,[71℄,[72℄) or using other sensors.We present experiments in the 
ontext of visual navigation on indoor environmentsand verify that the 
ombined usage of all three modules produ
es a more robustsystem. 157



This 
hapter is 
omplementary to the previous 
hapter on 
olor based seg-mentation in a sense that one basi
 assumption for estimating the stru
ture is thatwe have solved the segmentation problem and thus we know the boundaries of theplanar surfa
es. In order for the robot to navigate in more 
omplex environments,we need to in
orporate a s
ene segmentation s
heme into this framework. In later
hapters we argue how this integration 
an be performed.
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Chapter 5Towards Surfa
e Segmentation5.1 Introdu
tionIn the previous 
hapters we fo
used on 
olor based image segmentation (
hapters2 and 3) and on surfa
e normal estimation (
hapter 4). Both problems 
onstitutetwo important 
omponents of a system that performs segmentation into surfa
es. Inthis 
hapter we 
on
lude our thesis by dis
ussing how these two 
omponents 
an be
ombined1. We also tou
h on the topi
 of a
tively 
ontrolling the image a
quisitionpro
ess to fa
ilitate the segmentation.We use the term surfa
e segmentation (or segmentation into surfa
es) to de-note the geometry inspired segmentation where adja
ent pixels with similar surfa
eve
tors are grouped together. The term surfa
e ve
tor is used to denote both thesurfa
e orientation (i.e. surfa
e normal) and its distan
e from the fo
al point. Inthat de�nition region boundaries are identi�ed as dis
ontinuities in surfa
e ve
tors,
aused either by a dis
ontinuity in the distan
e (i.e. o

lusion) or by a dis
ontinuityin the orientation.We have 
hosen the above de�nition be
ause it turns segmentation into awell de�ned problem. Generally, most de�nitions of image segmentation are obje
t1Sin
e we are interested in segmentation into surfa
es (and not on visual guided navigation asin 
hapter 4) we 
hoose to estimate the plane indu
ed homographies of sets of points in two views.This is arguably a relatively �easier� problem than the full 3D re
onstru
tion of a s
ene.159



Figure 5.1: An image of an o�
e 
hair. Noti
e that there is a smooth normaltransition from the pixels belonging to the ba
k of the 
hair to the pixels belongingto the bottom of it.oriented and thus ambiguous and ill-de�ned. The ambiguity is partially due to thefa
t that multiple meaningful segmentations exist for the same image at di�erentlevels of details. A person, for example, 
an 
onsider a laptop 
omputer as a singleobje
t, or further segment it into the LCD display and the keyboard. Furthersubdivision of the keyboard to its keys is also valid. That is one of the reasons forresear
hers to suggest that the proper segmentation is task and domain spe
i�
 [3℄.One way to deal with the ambiguity is to a

ept multiple segmentations as valid.This is the path 
hosen by Martin et al. [36℄ and Alpert et al. [8℄. When buildingtheir image segmentation database they in
luded multiple possible segmentationsof the same image, ea
h one produ
ed by a di�erent person. The major 
ause ofthe ambiguity though is that the 
on
ept of an �obje
t� is by itself ill-de�ned andsubje
tive. Hen
e, image regions 
orresponding to obje
ts are by default subje
tiveas well. The use of a well de�ned geometri
 feature, su
h as the surfa
e ve
tor,makes the segmentation a better de�ned problem.Unfortunately, the issues asso
iated with di�erent segmentations at di�erent160



image resolutions are not eliminated even with that de�nition. It is absolutelynatural and often happens in pra
ti
e that the 
omputation of the surfa
e normalsat di�erent image resolutions might lead to di�erent segmentations. Borrowing anexample from the introdu
tory 
hapter, the surfa
e normal based segmentation ofthe o�
e 
hair of Fig. 5.1 might lead to two separate segments, one for the ba
kand one for the bottom of the 
hair, or to one segment 
ontaining both the ba
kand the bottom of the 
hair, depending on how 
oarse or �ne is the 
omputation ofthe surfa
e ve
tors.Furthermore, the 
omputation of the surfa
e ve
tors itself is hard and notvery a

urate. One needs to hypothesize a model for the surfa
e of the surroundingarea of a pixel in order to measure its surfa
e ve
tor. This fa
t leads to a 
hi
kenand egg problem be
ause in order to segment based on surfa
e ve
tors one needs toassume that the surfa
e ve
tors in the surrounding area are similar i.e., to assumethat the surrounding area belongs to the same segment. Apparently this modelbreaks in areas near surfa
e normal dis
ontinuities. In the following se
tions weassume that the 3D world 
onsists of planar pat
hes and hen
e, the surfa
e normalswithin a pat
h are 
onstant. As we will show below, even in this 
ase the a

urate
omputation of the surfa
e normals is not trivial and in most 
ases not even possible.The keyword �a
tive� in this 
ontext refers to the idea that the 
amera mo-tion 
an be 
ontrolled (up to a 
ertain degree) by the pro
ess that performs thesegmentation. We motivate the dis
ussion of this problem by the setting of Fig.5.2 where the 
ameras position and orientation 
an be 
hanged in two ways; a) bymoving the whole mobile platform and b) by moving the Pan and Tilt unit. The161



Figure 5.2: Our mobile robot. We used the Errati
 mobile platform as the basis andinstalled on top a laser and sonar range sensors, a Pan and Tilt unit and a quadstereo system.motion of the whole robot leads to a large translational and rotational motion ofthe 
ameras (with high un
ertainty as reported by the wheel en
oders). The motionof the PTU, on the other hand, 
auses small translational and rotational motion tothe 
ameras that 
an be estimated with high a

ura
y. Overall, the system allowsfor an almost unrestri
ted 
ontrol of the 
ameras position and orientation. In this
ase an interesting question is how spe
i�
 motions and poses of the 
amera 
ansimplify the estimation of surfa
e ve
tors and subsequently surfa
e segmentation.In the following se
tion we summarize related work on stru
ture from motionand a
tive vision. Then, we present the related theory on homography estimationfrom two images along with one lemma that 
an be used to predi
t the quality ofthis estimation. Se
. 5.4 tou
hes on the problem of merging image regions withsimilar homographies and splitting regions with many outliers. We argue that the
olor based segmentation framework that we presented on 
hapters 2 and 3 
an beused to guide the merging and splitting pro
ess. Finally, we brie�y illustrate our162



idea on how an a
tive 
amera 
ontrol system 
an be 
onstru
ted.5.2 Related WorkThe stru
ture from motion problem is a prominent resear
h area in 
omputer visionand as su
h has been studied extensively. In the most 
ommon formulation the goalis to 
ompute the stru
ture of the s
ene (i.e., the distan
e of every pixel from thefo
al point) and the motion of the 
amera (or the motion of the s
ene obje
ts ifthey are moving independently). Sin
e the early 80's where the existen
e of thesolution has been established [73, 74, 70, 75℄, a great number of resear
hers havetried to devise algorithms that work well under realisti
 situations were noise ispresent. Any 
omputer vision textbook, su
h as [76℄, 
ontains a des
ription of thebasi
 algorithms along with the related bibliography. In the re
ent years bundleadjustment i.e., a 
olle
tion of optimization methods from the photogrammetryand geodesi
 literature tailored to solve the stru
ture from motion problem, wasimported in 
omputer vision [77℄. These methods that are used to re�ne an initialestimate for the stru
ture of the s
ene and the motion of the 
amera are shownto produ
e real-time, high quality s
ene re
onstru
tions [78℄2. On a parallel tra
ka number of theoreti
al studies on the stru
ture from motion problem have been
ondu
ted [79, 80, 81, 82, 83, 84, 85℄. Their goal is to understand and des
ribe theinherent ambiguity in re
overing stru
ture and motion, dis
over the 
on�gurations2Sin
e bundle adjustment te
hniques optimize over a non 
onvex domain they su�er from thesame 
onvergen
e problems as all other non-
onvex methods. Thus, the initial estimate feeded tothe system should be 
lose to the global minimum, otherwise the methods will 
onverge to a lo
alminimum di�erent from the true solution. 163



that makes this re
overy ill-
onditioned and perform error analyses for di�erenttypes of noisy input.In the following se
tions we 
on
entrate on a slightly di�erent formulation ofthe problem. Instead of solving for the stru
ture and motion of individual pixelswe assume the image to be pie
ewise planar and fo
us on the re
overy of the ho-mographies indu
ed by the planar pat
hes in two views. Methods for 
omputinghomographies have been extensively 
overed by Hartley and Zisserman in their book[43℄. Sin
e then, a number of studies have been performed on how to identify planarpat
hes on a s
ene from the homography 
omputation of individual image featurepoints and merge them together [86, 87, 88, 89, 90, 91, 92, 93℄. With respe
t toprevious work our proposed approa
h presented below also takes into a

ount theresults of 
olor based segmentation at di�erent levels of detail in order to groupfeature points together. The rational is similar to the one used by state of the artstereo algorithms [94, 1, 2℄; namely 
olor based segmentation is an additional 
uethat 
an be used to guide the grouping of feature points before 
omputing the ho-mographies. At this point we should mention that a few other problems requirethe 
omputation of 2D homographies (for a presentation of these problems refer to[43℄) and our 
ovarian
e estimation theory (i.e., Lemma 5.2) is a
tually similar tothe method suggested in [95℄ for measuring the 3D properties of obje
ts from 2Dimages.All the previous approa
hes follow the �vision as a re
overing pro
ess� paradigmof Marr [96℄. In the late 80's a di�erent paradigm under the name of A
tive [97, 98℄,Animate [99℄ and Purposive vision [100℄ has been introdu
ed. Under this do
trine,164



image understanding and 
omputer vision should also study the pro
ess of sele
tivea
quisition of data in spa
e and time. More spe
i�
ally, depending on the goal ofthe visual system a proper strategy for 
ontrolling the image a
quisition pro
ess 
ansigni�
antly improve the results of the visual 
omputation or even make ill-de�nedproblems (e.g. stru
ture from motion) well de�ned. Sin
e its 
on
eption a seriesof studies following this paradigm have been published, some of them dis
ussingthe visual 
apabilities that an �intelligent� system should have [101, 102, 103, 104℄,while others fo
using on the optimal 
amera motion strategy for spe
i�
 tasks e.g.[105, 106℄. Still, the amount of work following this model is relatively small. Of
ourse there are theoreti
al problems related to designing the proper visual tasksand 
amera 
ontrol strategies, but we believe that the main issues holding ba
k thisparadigm had been of a pra
ti
al nature thus far. The image a
quisition hardware (mobile platforms, 
ameras with pan and tilt 
apabilities, me
hani
al arms et
) waseither too expensive, too sensitive or too bulky to allow the 
onstru
tion of a reala
tive visual system. Most importantly the 
omputers were not fast enough to allowreal time image pro
essing. In the re
ent years with the introdu
tion of multi
oreCPUs and GPUs, this situation has been reversed, so we expe
t this paradigm togain momentum on
e more in the next years.5.3 Homography estimation of planar surfa
esLet us assume that we 
an dete
t a set of n image points belonging to a singleworld plane and tra
k them over two frames. We denote the homogeneous, image165




oordinates of a point on the �rst and se
ond frame with xi = (xi, yi, 1)T , x′
i =

(x′i, y
′
i, 1)T respe
tively. In the remaining 
hapter we will use the bold notationfor ve
tors only. All the points belong to the same plane, thus there exist a 3 × 3matrix H , know as homography matrix, that 
orresponds the 
oordinates of thepoint in the �rst and se
ond plane, namely x′ = Hx. The ′ =′ sign here does notdenote equality. The ve
tors x′ and Hx have the same dire
tion, but may di�er inmagnitude by a non-zero s
ale fa
tor. This 
an be expressed in terms of the ve
tor
ross produ
t as x′ ×Hx = 0. The homography matrix is unique up to a s
ale andthus has 8 degrees of freedom. Ea
h point 
ontributes two equations thus at least

4 points are needed to 
ompute H . If n > 4, the matrix is overdetermined and His 
omputed by a suitable minimization s
heme. Two are the dominant estimationmethods, the homogeneous solution of minimizing the algebrai
 distan
e and thenon-linear solution of minimizing the geometri
 distan
e.The �rst method uses the SVD de
omposition to solve a homogeneous linearsystem. It has the advantage over the se
ond method of being fast and 
onvex(thus the minimization �nds a global minimum). On the other hand, the obje
tivefun
tion is not geometri
ally meaningful, and thus the result might be bad.The se
ond method uses an obje
tive fun
tion that 
omputes the sum of theEu
lidean distan
es between the measured and mapped points. This quantity ismeaningful and 
orresponds to the measurement error. On the other hand, theminimization is not 
onvex and there is no 
losed form solution. Thus, iterativemethods should be employed to solve the system. Depending on the initializationthe method 
an be slow and 
onverge to a lo
al minimum. In pra
ti
e, the �rst166



method is used �rst to 
ompute a good initial estimate of H that is further re�nedusing the se
ond method.In the following analysis we use the �rst method be
ause it allows us to 
om-pute the 
ovarian
e of the estimated homography H . Here is a brief des
riptionof the method. For more details about both methods the interested reader should
onsult Hartley and Zisserman's book [43℄.First, we write the homography matrix H in ve
tor form as
h = (h11, h12, h13, h21, h22, h23, h31, h32, h33)

T .With the proper algebrai
 manipulation of the homography equation x′ ×Hx = 0we get a linear homogeneous equation for the 
omputation of the homography ve
tor
Ah = 0, (5.1)where

A = [

0 0 0 x1 y1 1 −y′1x1 −y′1y1 −y′1

x1 y1 1 0 0 0 −x′1x1 −x′1y1 −x′1

−y′1x1 −y′1y1 −y′1 x′1x1 x′1y1 x′1 0 0 0... ... ... ... ... ... ... ... ...
0 0 0 −xn −yn −1 y′nxn y′nyn y′n

xn yn 1 0 0 0 −x′nxn −x′nyn −x′n

−y′nxn −y′nyn −y′n x′nxn x′nyn x′n 0 0 0

]. (5.2)
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In the previous equation the third (and the sixth, the ninth et
) row is linearlydependent to the previous two rows so we 
an skip them and obtain a smallerequivalent matrix
A = [

0 0 0 x1 y1 1 −y′1x1 −y′1y1 −y′1

x1 y1 1 0 0 0 −x′1x1 −x′1y1 −x′1... ... ... ... ... ... ... ... ...
0 0 0 −xn −yn −1 y′nxn y′nyn y′n

xn yn 1 0 0 0 −x′nxn −x′nyn −x′n

]. (5.3)
Eq. 5.1 as an optimization problem is expressed as

arg min
h

||Ah||, s.t. (5.4)
||h|| = 1 (5.5)The 
onstraint ||h|| = 1 is ne
essary to avoid the obvious solution h = 0. Weuse the following lemma to solve the problem.Lemma 5.1. The solution to a homogeneous minimization problem arg min

X

||Ah||subje
t to ||h|| = 1 is the eigenve
tor of the least eigenvalue of ATA.Proof. Refer to [43℄, Appendix 3.The 
omputation of the homography using the previous lemma is the �rst step.The se
ond step is to 
ompute an estimate on how a

urate the 
omputed homogra-phy is. Feature dete
tion and lo
alization, point mismat
hing, spatial quantization168



and 
amera distortion errors dire
tly a�e
t the a

ura
y of the homography estima-tion. With the 
areful 
alibration of the 
amera the last error 
an be minimized.Robust point mat
hing using RANSAC 
an solve the problem of point mismat
h-ing. Still the error in the pre
ise dete
tion and lo
alization of the features 
annot beavoided. These errors in the image 
oordinates of the points are usually modelledas random variables. Then the question is how these errors a�e
t the 
omputationof the homography ve
tor h.The next lemma provides a way to 
ompute the 
ovarian
e of the estimatedhomography h with respe
t to the noise in the image 
oordinates of the dete
tedfeatures.Lemma 5.2. If we model the error in the lo
alization of the feature points as in-dependent Gaussian random variables with varian
e σ2, σ′2 for the features on the�rst and se
ond frame respe
tively, the 9 × 9 
ovarian
e matrix of the homographyis
Ch = JSJT (5.6),where

J = [ x1 x2 . . . x9
][

0 0 . . . 0

0 1
λ1−λ2

. . . 0... ... . . . ...
0 0 . . . 1

λ1−λ9

][

xT1

xT2...
xT9

] (5.7)
,with xi the eigenve
tor 
orresponding to the ith smaller eigenvalue λi of matrix169



ATA. Matrix S is
S =

n
∑

i=1

(rT2ir2if
e
i + rT2i−1r2i−1f

o
i + rT2ir2i−1f

eo
i + rT2i−1r2if

oe
i ) (5.8)with ri the ith row of matrix A and

f ei = σ2[h2
1 + h2

2 − 2x′i(h1h7 + h2h8)] + 2σ′2(xih7h9 + xiyih7h8 + yih8h9)

+(σ2x
′2
i + x2

iσ
′2)h2

7 + (σ2x
′2
i + y2

i σ
′2)h2

8 + σ
′2h2

9

f oi = σ2[h2
4 + h2

5 − 2y
′

i(h4h7 + h5h8)] + 2σ′2(xih7h9 + xiyih7h8 + yih8h9)

+(σ2y
′2
i + x2

iσ
′2)h2

7 + (σ2y
′2
i + y2

i σ
′2)h2

8 + σ′2h2
9

f oei = f eoi = σ2[(h1 − x′ih7)(h4 − y′ih7) + (h2 − x′ih8)(h5 − y′ih8)].Proof. A sket
h of the proof is provided on appendix C.As expe
ted the a
tual values of the homography matrix also a�e
ts the 
ovari-an
e matrix. Con�gurations that are almost ill de�ned as for example four pointsforming a straight line produ
e a large 
ovarian
e matrix.If we represent with x̄′
i = (x̄′i, ȳ

′
i, z̄

′
i)
T the proje
tion of point xi on the se
ondimage using the homography H i.e., x̄′

i = Hxi, then the algebrai
 error of theproje
tion of the feature point of the �rst image into the se
ond image is given bythe formula
dalg(x̄i

′,x′
i) =

√

(x̄i′ − x′i)2 + (ȳi′ − y′i)2 + (z̄i′ − z′i)2. (5.9)
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The 
orresponding geometri
 error is given by the formula
dgeom(x̄′

i,x
′
i) =

√

(
x̄′i
z̄′i
− x′i
z′i

)2 + (
ȳ′i
z̄′i
− y′i
z′i

)2. (5.10)After estimating the homography matrix it is possible to separate the pointsthat belong to the plane based on their reproje
tion error.Finally the following lemma relates the plane indu
ed homography with the
amera parameters and the surfa
e normal.Lemma 5.3. Given the proje
tion matri
es for the two views of a 
amera withintrinsi
 parameters K
P = K · [I | 0] P ′ = K · [R |T] (5.11)where R, T represent the rotation and translation between the two views respe
tivelyand a plane de�ned by πT ·X = 0 with π = (νT , 1)T (ν is the surfa
e normal), thenthe homography indu
ed by the plane is x′ = H · x with

H = K · (R−T · νT ) ·K−1. (5.12)Proof. Appendix C.
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5.4 Merging and Splitting Image SegmentsTwo perspe
tive views of a planar 3D surfa
e are related by a homography. As wementioned before there is a signi�
ant amount of work fo
using on how to 
omputeplanar homographies and merge them together. The results of the state of the artalgorithms are quite impressive, e.g. in [93℄ multiple planes belonging to di�erentobje
ts are dete
ted on both indoor and outdoor image sequen
es. Still we think thatone part of the plane identi�
ation pro
ess that has not re
eived enough attentionis how to sele
t the groups of feature points used to 
ompute the homography from.Over the years heuristi
s based on the proximity of the feature points and overallshape of the 
onvex hull they form, have been used [93℄, but the usual approa
h is totry many quartets of feature points. As a result, the plane identi�
ation algorithmsare usually quite slow (e.g. Amintabar and Boufama in [93℄ report a running timeof 3.5 se
onds for their optimized C 
ode on 90 features). Here, we propose to usethe results on 
olor based segmentation to guide that pro
ess.Fig. 5.3 synopsizes our approa
h. Starting from an image sequen
e we ini-tiate two parallel 
omputations. On one hand, we apply the KLT feature tra
ker[68, 107, 108℄ to dete
t and tra
k a number of feature points. In order to eliminatespurious features we only take into a

ount features that were tra
ked over multipleframes. On the other hand, 
olor based segmentation using our MF+GAT algo-rithm (Se
. 3.4.3) at di�erent granularities is performed. We 
ombine the resultsof the two previous steps by grouping together features belonging to the same 
olorsegments. Using a robust estimation te
hnique (RANSAC [109, 43℄) we estimate172



Figure 5.3: Our proposed s
heme to address the 3D plane estimation problem onstati
 image sequen
es by 
ombining feature based homography estimation with
olor based segmentation.
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the homography asso
iated with ea
h 
olor segment. Only the features that belongto the same image segment are used to 
ompute its homography. Then, we run twoparallel pro
esses; a) for 
omputing the outlier features and b) to �nd the segmentswith similar homographies. The former pro
ess is used to subdivide a 
olor region,while the latter to merge regions together. Based on the results of both pro
esseswe 
an perform a more informed guess whi
h is the 
orre
t lo
al 
olor resolution ofour 
olor based segmentation algorithm further re�ning the 
olor segmentation withshape information.In Fig. 5.4 we demonstrate the merging part of the algorithm. We obtaineda sequen
e of 5 images using the 
ameras mounted on the robot. Then, we use aKLT tra
ker to dete
t 200 feature point on the �rst image and tra
k them over all
5 frames. Only 98 features are 
onsistently tra
ked in all frames and we displayall of them in Fig. 5.4
. In parallel we run our segmentation 
ode to obtain aninitial grouping of image regions (Fig. 5.4
). The two groups of feature points thatreliably produ
e very similar homographies are displayed in Fig. 5.4e. Based onthese homographies we rerun the segmentation 
ode with di�erent parameters untilthe two regions are merged together (Fig. 5.4d).A similar experiment in displayed in Fig. 5.5, where splitting a region intomultiple ones is required. As above, we use a KLT tra
ker to dete
t 200 featurepoints and tra
k them over a series of 5 frames. At the end of the pro
ess 102features are tra
ked (Fig. 5.5
). We also apply our segmentation algorithm withthe same parameters (i.e. hr = 10) and obtain the segments shown in Fig. 5.5
.We estimate the homography for ea
h 
olor segment and 
ompute the reproje
tion174



(a) The �rst image of the sequen
e. (b) The �fth image of the sequen
e.

(
) MF+GAT segmentation (hr = 10) with fea-ture points (bla
k dots). (d) MF+GAT segmentation (hr = 30 ) with fea-ture points (bla
k dots).

(e) The segments whose feature points are drawnwith white and bla
k dots have similar homogra-phies and thus should be merged together.Figure 5.4: An example on how homographies and 
olor segmentation 
an be 
om-bined to obtain better results by region merging.175



(a) The �rst image of the sequen
e. (b) The �fth image of the sequen
e.

(
) MF+GAT segmentation (hr = 10 ) with fea-ture points (bla
k dots). (d) MF+GAT segmentation (hr = 7 ) with fea-ture points (bla
k dots).

(e) The feature points belonging to the samesegment drawn a

ording to their 
orrespondingreproje
tion error. The brighter the 
olor thehigher the error.Figure 5.5: An example on how homographies and 
olor segmentation 
an be 
om-bined to obtain better results by region splitting.176



error of ea
h point. In Fig. 5.5e we display the results for the segment 
orrespondingto the green box. A

ording to our 
olor 
ode the brighter (whiter) a feature thehigher the reproje
tion error for that point is. As expe
ted, the group of featureson the top (that belong to a di�erent surfa
e of the box) uniformly exhibit highreproje
tion errors. The same behavior is exhibited by the features on the rightfa
e of the box. This is an indi
ation that we need to further subdivide that region.Fig. 5.5d displays one possible subdivision obtained by running our segmentationalgorithm with a di�erent 
olor resolution parameter (hr = 7).Both examples above should be 
onsidered as a proof of 
on
ept. We have notrea
hed the point yet, where a segmentation into surfa
es is 
onsistently and robustlyworking in all image sequen
es. There are some theoreti
al questions to be addressedand a lot of engineering e�ort to be made to rea
h that milestone. For example,it is not 
lear how to measure the di�eren
e between two homographies, or whatis the threshold above whi
h a point is 
onsidered an outlier. Furthermore, whenit 
omes to our proposed s
heme there are additional issues to be addressed. The
omputation of the 
olor resolution (hr) to be used for the �ner (or 
oarser) grainedsegmentation and the veri�
ation that the segmentation is the �right� one and thusthe pro
edure should terminate, are two interesting resear
h topi
s. Moreover, thiss
heme should be extended to areas where there are not enough feature points. Insu
h 
ases, methods based on the transformation of the whole region (similar to thewarping method proposed in Se
. 4.4) or on the transformation on the boundaries(Se
. 4.3, also see literature about the Iterative Closest Point algorithm [110, 111℄)
an be used. 177



5.5 Towards an a
tive approa
h to image segmentationWe want to 
on
lude this dissertation with a dis
ussion about a
tive vision. We havealready showed in 
hapter 4 that knowledge of the 
amera motion 
an fa
ilitatethe estimation of surfa
e ve
tors by turning a non 
onvex, 
omplex optimizationproblem into a 
onvex linear problem (Se
. 4.5) and by allowing us to 
reate novelalgorithms for surfa
e estimation (Se
. 4.4). We believe that the pro
ess of surfa
esegmentation 
an be further simpli�ed and made more a

urate by the appropriate
amera motion. The homography based segmentation as des
ribed on the previousse
tion, and shown in Fig. 5.3, is a passive approa
h, be
ause the image a
quisitionpro
ess is independent of the segmentation results.In Fig. 5.6 we modify the approa
h by 
onne
ting the image a
quisition mod-ule with the segmentation results on a feedba
k loop. More spe
i�
ally, the trans-formation of the passive approa
h into an a
tive one involves two stages; predi
tionand optimization. The former stage in
orporates the a priori evaluation of the ex-pe
ted quality of the segmentation when the 
amera performs a spe
i�
 motion usingsome obje
tive 
riterion. Note that as the name suggests, the system should be ableto predi
t the quality without the 
amera a
tually performing that motion. Thelatter stage refers to the pro
ess of sele
ting a 
amera motion that maximizes theestimated expe
ted quality of the segmentation.In the 
ontext of homography-based plane �nding, we argue that the inter-mediate goal is the a

urate estimation of the homographies. Hen
e, we think thatlemma 5.2 is a good starting point to predi
t the quality of the homography esti-178



Figure 5.6: Our updated proposed s
heme to address the 3D plane estimation prob-lem by 
ombining feature based homography estimation with 
olor based segmenta-tion. A feedba
k loop for sele
ting the next best 
amera position is added, makingthe whole s
heme "a
tive".
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mation without a
tually 
omputing the homographies. In order to build a system,however, a number of related problems needs to be addressed. In our opinion themost important ones are, how to 
onstru
t the obje
tive fun
tion from the 
ovari-an
e matrix of the elements of the homography matrix, and how to �nd the 
ameramotion that optimizes that obje
tive fun
tion.
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Appendix ASegmentation Results for the Weizmann datasetA.1 The Weizmann Institute datasetThe Weizmann Institute dataset is a new database of images 
reated for the purposeof separating an image into ba
kground and foreground regions. As su
h ea
h image
ontains a single dominant obje
t, that should be 
lassi�ed as foreground, while therest of the image is 
onsidered as ba
kground. In total, the database 
ontains
100 images and 300 human segmentations. There are three signi�
ant di�eren
esbetween this dataset and the Berkeley one.First, all the images are grays
ale and not 
olor. As a 
onsequen
e we per-form the �ltering on the 3D spa
e (i.e., 2 dimensions for spatial 
oordinates and 1dimension for the grays
ale intensity values).The texture variation on these images is signi�
antly less 
ompared to thetexture variation on the Berkeley images. This is partially due to the fa
t that thereare fewer images of natural s
enes, and mainly be
ause it is harder to en
ode texturevariation on a grays
ale image.In ea
h image only two segments are labeled, the foreground obje
t versusthe rest of the image that is 
onsidered ba
kground. Thus, there are fewer edgeslabeled in the human segmentations, namely only the edges on the boundary of theforeground obje
t. All the signi�
ant edges inside the obje
t as well as the edges of181



the ba
kground are ignored.Overall, for all the above reasons, this dataset is less 
hallenging than theBerkeley one. This fa
t is experimentally proven by the results of the segmentations.A.2 ExperimentsAs with the Berkeley dataset we apply all possible 
ombinations of �ltering (usingthe Normal and Epane
hnikov kernel) and grouping methods and display the 
u-mulative results for the whole database. To redu
e the number of �gures we onlydisplay the Probabilisti
 Rand index and the Boundary Displa
ement Error results.Compared to the parameters we used in the Berkeley dataset we use a mu
h largerrange of 
olor resolutions, namely hr = 0.5 . . . 40 on in
rements of 0.5. First wepresent the results when we use CC3D, CC5D and GRAG grouping methods.The �gures with the BDE measure report that Color Mean Shift (CMS) out-performs the other methods not matter if the �ltering is performed with a Normalor an Epane
hnikov kernel. These plots are similar to the ones for the Berkeleydataset. What 
ome as a surprise are the plots for the Probabilisti
 Rand index.Not only they show that the segmentations be
ome better as the average segmentsize in
reases, asymptoti
ally rea
hing the value of 1 (whi
h is ideal), they alsopresent the methods that performed poorly on the previous dataset, e.g. Lo
alMode �ltering with GRAG grouping, (and on the 
urrent dataset 
onsidering theBDE measure) to outperform all the other methods. After 
he
king the results forthe individual images we realized that the suspi
iously good values for the PR index182



Figure A.1: BDE vs average segment size plots for the Weizmann dataset when �ltering is performed with an Epane
hnikovkernel.
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Figure A.2: PR vs average segment size plots for the Weizmann dataset when �ltering is performed with an Epane
hnikovkernel.
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Figure A.3: BDE vs average segment size plots for the Weizmann dataset when �ltering is performed with a Normal kernel.
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Figure A.4: PR vs average segment size plots for the Weizmann dataset when �ltering is performed with a Normal kernel.
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(a) Original Image (b) Human Segmentation

(
) MF+CC3D (hr = 40), PR=0.37 (d) MF+CC3D (hr = 80), PR=0.95

(e) PR measure vs average image sizeFigure A.5: A single image of the Weizmann dataset along with the human and
omputer generated segmentation for two di�erent 
olor resolutions (hr = 40, 80)and their 
orresponding Probabilisti
 Rand values (0.37, 0.95). Noti
e that these
ond segmentation produ
es a mu
h higher PR value even if it is mu
h worsethan the �rst segmentation. This is a problem of the PR measure when appliedto foreground/ba
kground segmentation images. In this example a segmentation ofthe whole image into a single region produ
es a PR value of 0.97.187



are due to the nature of the human segmentations. More spe
i�
ally, with only oneforeground and one ba
kground region, the PR index for a segmentation of the wholeimage into a single region is very high. For example Fig. A.5 shows the results forthe �rst image of the database and the �rst segmentation. One reasonable 
omputersegmentation (Fig. A.5
) has the PR value of 0.37. The mu
h worse segmentationof Fig. A.5d produ
es a PR value of 0.95. Finally, the segmentation into a singlesegment produ
es a PR index of 0.97, that is very 
lose to the absolute best value of
1. Thus, we 
on
lude that PR is not a good index of the quality of the segmentationfor that spe
i�
 database.Noti
e that this problem was not present in the Berkeley dataset. Looking atany of the PR �gures (e.g. Fig. 3.7), one sees the paraboli
 like shape of all theplots that indi
ates that for both very small and very large segment sizes the PRvalues are bad (as expe
ted).In Fig. A.6 we plot on the same graph the segmentation results of thetwo prominent �ltering methods (i.e., Mode Finding and Color Mean Shift) usingEpane
hnikov and Normal kernels 
oupled with the CC3D grouping method. Com-paring the segmentation results along regular average segment size intervals (i.e.from ∼ 100 pixels to ∼ 800 pixels in intervals of 50) we get the following numbers.For the Color Mean Shift method the Normal kernel results are on average ∼ 31%better than the Epane
hnikov results, while Mode Finding with a Normal kernelprodu
ed ∼ 33% better results on average than the Epane
hnikov based method.Using the same numbers we were able to quantify how better the segmentationresults for Color Mean Shift were 
ompared to the Mode Finding ones. When using188



Figure A.6: BDE vs average segment size plots for the Weizmann dataset. The goal is to 
ompare the performan
e when weuse di�erent �ltering kernels. In this plots we use the Mode Finding and Color Mean Shift �ltering methods along with theCC3D grouping methods. The dotted and solid line plots denote �ltering with a Normal and Epane
hnikov kernel respe
tively.The Normal kernel 
learly outperforms the Epane
hnikov kernel. Similar results were obtained with di�erent 
ombinations of�ltering and grouping methods.
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a Normal kernel CMS produ
ed ∼ 8% better results, while for the Epane
hnikovkernel the value was slightly higher at ∼ 9.4% 
ompared to Mode Finding. Weobserved similar in
reases in the performan
e when we used the other groupingmethods as well.Next we move our attention to the grouping method with an adaptive threshold(GAT). In Se
. 3.4.3 we presented one way to linearly adjust the segmentationparameter k a

ording to the �ltering parameter hr (Eq. 3.1). Figs. A.7, A.8and A.9 present the segmentation results of applying this method to the WeizmannInstitute dataset. More spe
i�
ally, Figs. A.7, A.8 present the results when the�ltering is done with an Epane
hnikov and a Normal kernel respe
tively, while inFig. A.9 we 
ompare the best performing methods.The results for all the �ltering methods with an Epane
hnikov kernel are 
on-sistently better 
ompared to using the GAT method without any �ltering. In the
ases of �ltering with a Normal kernel, for a range of average segment sizes up to
∼ 150 pixels all the methods outperform the non �ltering alternative. For larger av-erage segment sizes Color Mean Shift and Anisotropi
 Di�usion perform mu
h worsethat GAT only, while Mode Finding and Lo
al Mode Filtering performs equallywell. Overall, GAT 
oupled with Lo
al Mode Filtering with a Normal kernel seemsto perform best for segment sizes up to ∼ 150 pixels and Mode Finding with anEpane
hnikov kernel is the best performing method for larger segment sizes.On the last �gure (Fig. A.10) of this appendix we 
ompare the best segmenta-tion methods using CC3D and GAT with varying k for the grouping step. It is 
learthat grouping with an adaptive threshold outperforms the simple 
onne
ted 
ompo-190



Figure A.7: BDE vs average segment size plot for the GAT grouping method with variable k pre
eeded by the �ltering methodswith an Epane
hnikov kernel. We also display the plot when we use the GAT grouping method without any �ltering method(ba
k 
urve).
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Figure A.8: BDE vs average segment size plot for the GAT grouping method with variable k pre
eeded by the �ltering methodswith a Normal kernel. We also display the plot when we use the GAT grouping method without any �ltering method (ba
k
urve).
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Figure A.9: BDE vs average segment size plot for the GAT grouping method with variable k pre
eeded by sele
ted �lteringmethods. We also display the plot when we use the GAT grouping method without any �ltering method (ba
k 
urve).
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Figure A.10: BDE vs average segment size plot for the best methods using a hard and an adaptive threshold for grouping. GATbased grouping methods outperform the CC3D based methods.
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Table A.1: Con
lusions summary
• CMS outperforms all the other �ltering methods when grouped with CC3D,CC5D or GRAG (Figs. A.2, A.4, A.6).
• Normal kernel outperforms Epane
hnikov kernel �ltering (Figs. A.6).
• Segmentation methods based on �ltering and grouping outperform methodsbased on grouping only (Figs. A.7, A.8).
• MF and LMF �ltering 
ombined with GAT with varying k grouping performbetter than CMS and AD �ltering (Figs. A.7, A.8).
• GAT based methods outperform CC3D, CC5D and GRAG based methods(Fig. A.10).nents based grouping methods. All the result of the experiments on the WeizmannInstitute dataset are summarized in Table A.1.

195



Appendix BStret
h FilterB.1 Introdu
tionWe proved in a previous 
hapter that the surfa
e normal parameters, namely theslant of a plane, is en
oded in the stret
h between two epipolar lines (Eq. 4.12). Thisis one example of a general problem where, one is given two signals, one of them beinga transformed version of the other, and the goal is to re
over this transformation. Aswe des
ribed earlier (Alg. 4.2), assuming one wants to estimate the zero (shift) and�rst order (stret
h) 
omponent of the transformation, a general method is to usethe log of the magnitude of the Fourier transform. This te
hnique, whi
h is knownas Cepstral analysis, was �rst introdu
ed by Bogert et al. [59℄ and was made widelyknown by Oppenheim and S
hafer [60℄. It is 
ommonly used in spee
h pro
essing[61℄ to separate di�erent parts of the spee
h signal. Cepstral analysis requires anexpli
it FTT on both signals with 
omplexity O(N log(N)).Phase-di�eren
e based te
hniques exploiting the phase shift theorem have alsobeen used in 
omputer vision. In most 
ases the assumption is that one signal is sim-ply shifted relative to another, thus only the zero order 
omponent is estimated. Inthis 
ase, a very robust way to re
over the amount of shift is through measurementsof the 
hange of phase in di�erent frequen
ies. In a 
lassi
 paper on stereo, Sanger[112℄ 
onvolved ea
h s
an line of two images with Gabor �lters. Similar work at the196



same time period was performed by Jenkin and Jepson [113℄. Fleet and Jepson in[114℄ and [115℄ studied the stability of the previous te
hniques in the presen
e ofphase singularities and identi�ed patterns on the phase domain where the previousmethods fail.For 2D signals, Srinivasa et al. [62℄ re
over the global relative translation,uniform s
ale and image rotation (i.e., 4 parameters) of two images by analyzingthe 
hanges in various Fourier 
omponents. It is straightforward to use the FourierShift property to re
over translations. However, they pursue a di�erent strategyto re
over di�erent 
omponents. Spe
i�
ally, they show that by performing a log-polar transformation on ea
h image, rotation and s
aling 
an be transformed intotranslations. Lo
al phase-based te
hniques have also been developed for opti
al �owestimation. Fleet and Jepson's method [65℄ use Gabor �lters to lo
ally 
ompute thephase of two 2D signals, and estimate the lo
al shift (i.e., opti
al �ow) of the twosignals. While, their te
hnique is shown to outperform most other methods in termsof a

ura
y and robustness ([116℄), it still assumes that all the 
omponents of thetransformation higher than zero order are zero.Re
ent stereo approa
hes re
ognize the importan
e of higher order 
omponentsof the transformation and try to estimate them. For example, Ogale and Aloimonosin [117℄ attempt to re
over both the shift and the stret
h of the transformation bytrying many possible warpings of the image, in order to 
ompensate for the stret
h
omponent, and 
hoosing the one leading to best mat
hes.In this 
hapter, we present an approa
h similar to Sanger's, but instead ofmeasuring the translation, we dire
tly re
over the �stret
h� (a linear fa
tor) of two197



signals. Related to our approa
h are the �s
ale representation" by L. Cohen [118℄and the Mellin transform. Both of these methods de
ompose the signal using aset of basis fun
tions. The stret
h is en
oded as a phase shift in these representa-tions. Conversely, our method uses only a single �lter to estimate the stret
h. Moreexpli
itly, our main 
ontributions are:
• We analyti
ally 
reate a �lter that is able to dire
tly measure the lo
al stret
hof two signals (Se
. B.3).
• We present experimental results where we apply this �lter to shifted andstret
hed real signals (Se
. B.4).Overall our method is mu
h faster then the other approa
hes, sin
e it only requiresthe appli
ation of a single �lter at one point in ea
h image. This 
omputationaladvantage is o�set to an in
reased sensitivity to errors in shift estimation.B.2 Gabor Fun
tion and notation preliminariesA

ording to its de�nition, a Gabor �lter 
onsists of a Gaussian fun
tion of spatialbandwidth σ, that modulates a 
omplex sinusoid of frequen
y ω.

G(x, ω, σ) =
1√
2πσ

e−
x2

2σ2 e2πiωx (B.1)We 
onsider the spatial bandwidth (σ) to be �xed with respe
t to the frequen
y (ω)
σ =

c

ω
, (B.2)198



where c is a 
onstant (e.g. Sanger uses c = 1 [112℄) . As a 
onsequen
e, the Gaborfun
tion only has two parameters, namely x and ω.We use a 
alligraphi
 font for the Fourier transform (Fω) of a signal (or a�lter). In order to avoid any 
onfusion, we denote with a subs
ript the integrationvariable when needed.B.3 Estimating the stret
hSuppose that one is given two signals I1(x) and I2(x), where I2 is a �stret
hed versionof I1.
∀x ∈ R, I2(x) = I1(αx) (B.3)In this paper we des
ribe a way to estimate the unknown stret
h parameter α. Ourapproa
h is based on two observations:

• Convolving the �rst signal (I1) with a Gabor �lter of frequen
y ω is equiva-lent to 
onvolving the se
ond signal (I2) with a Gabor �lter of frequen
y αω(Theorem B.1).
• Considering the log-frequen
y domain of the Gabor �lters the multipli
ation istransformed into addition (i.e., stret
h is transformed into shift) and thus 
anbe estimated using the phase shift property of the Fourier transform (TheoremB.2).In the remaining se
tion we formally present our approa
h in in
remental steps usingtwo theorems. Note that the �nal result is a single �lter on the spatial domain, even199



thought we are using the frequen
y domain in our proofs.Theorem B.1. If the two stret
hed signals (I1, I2) are as in Eq. B.3, then
∀ω, [I1(x) ⋆ G(x, ω)](0) = [I2(x) ⋆ G(x, αω)](0) (B.4)Proof. A

ording to the de�nition of a Gabor �lter (Eq. B.1) and its standarddeviation (Eq. B.2) we get

G(x, αω) =
1√
2πσ′

e−
x2

2σ′2 e2πiαωx,

σ′ = σαω =
c

αω
=
σω
αThus,

G(x, αω) =
α√
2πσ

e−
x2α2

2σ2 e2πiωαx = αG(αx, ω). (B.5)From the de�nition of 
onvolution we have
[I1(x) ⋆ G(x, ω)](0) =

ˆ

x

I1(x)G(−x, ω)dx. (B.6)Similarly,
[I2(x) ⋆ G(x, αω)](0) =

ˆ

x

I2(x)G(−x, αω)dx

=

ˆ

x

I1(αx)G(−x, αω)dx (B.7)
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Setting y = αx, then dy = αdx,
[I2(x) ⋆ G(x, αω)](0) =

ˆ

y

I1(y)G(− y
α
, αω)

dy

α
.Using Eq.B.5 we have

[I2(x) ⋆ G(x, αω)](0) =

ˆ

y

I1(y)G(−y, ω)dy

= [I1(x) ⋆ G(x, ω)](0).

Based on Theorem B.1 the response of the 
onvolution of I1, I2 with the Gabor�lter is a fun
tion of the frequen
y ω, that is
R1(ω) = [I1(x) ⋆ G(x, ω)](0) =

[I2(x) ⋆ G(x, αω)](0) = R2(αω). (B.8)If we 
onsider the log frequen
y ψ instead of the frequen
y ω
ψ = eω ⇔ ω = logψ, (B.9)then Eq. B.8 is transformed to
R1(ψ) = R2(ψ + logα). (B.10)201



In prin
iple, we 
ould estimate the shift (in the log-frequen
y domain ψ) by trans-forming it into a phase shift using the Fourier transform
R1(u) = Fψ{R1} = e2πi logαuR2(u) (B.11)and measuring the di�eren
e in the phase of R1 and R2 for any spe
i�
 frequen
y

u1. While this is a valid approa
h, it is rather 
omputationally expensive. Forevery point of the two signals one has to 
ompute the frequen
y response R1, R2(by 
onvolving with Gabor �lters of di�erent frequen
ies) and then take the Fouriertransform of those responses. The following theorem provides an alternative solutionthat amounts to 
onvolving the two signals with a single �lter.Theorem B.2. There exist �lters H(x, u) whose 
onvolution with I1, I2 dire
tlyen
odes the stret
h as
[I1(x) ⋆ H(x, u)](0) = e2πi logαu[I2(x) ⋆ H(x, u)](0). (B.12)Spe
i�
ally, the �lters have the analyti
 form

H(x, u) =

ˆ

ω

G(x, eω)e−2πiωudω, (B.13)where u, ω are free parameters that de�ne the form of the �lter.1We have noti
ed that the following issue is often at �rst 
onfusing to readers. We use twodi�erent frequen
y domains. Symbols ω (and ψ) denote the frequen
y in the �traditional� sense,while symbol u denotes the Fourier transform of ψ, so in some sense is the �frequen
y of thefrequen
y domain". 202



Proof. From Eqs. B.8, B.9 and B.10 we have
R1(e

ω) = R2(e
ω + logα)If we 
onsider the Fourier transform of R1(e
ω) with respe
t to ω, then

R1(u) =

ˆ

ω

e−2πiωuR1(e
ω)dω

=

ˆ

ω

e−2πiωu[

ˆ

x

I1(x)G(−x, eω)dx]dω

=

ˆ

x

I1(x)[

ˆ

ω

G(−x, eω)e−2πiωudω]dx

=

ˆ

x

I1(x)H(−x, u)dx

= [I1(x) ⋆ H(x, u)](0).Similarly for R2(e
ω) we get

R2(u) = [I2(x) ⋆ H(x, u)](0).From the phase shift property of the Fourier transform we get
R1(u) = e2πi logαuR2(u)and thus

[I1(x) ⋆ H(x, u)](0) = e2πi logαu[I2(x) ⋆ H(x, u)](0).
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Algorithm B.1 Stret
h estimation with a single �lter.Input :
I1, I2 : Input Signals
x0 : A single point along the X axisOutput
α : The stret
h between the two signals around point x0AlgorithmCreate the �lter H(x, u) =

´ ω2

ω1
G(x, eω)e−2πiωudωConvolve the two signals I1, I2 with H(x, u) around x0Compute the di�eren
e in phase of the two measurements ∆θCompute the �log-frequen
y shift� ∆ψ = ∆θ

2πuCompute the stret
h α = e∆ψThe algorithm is a straightforward implementation of the theory and is pre-sented in Alg. B.1. Noti
e that we use a bounded integral in order to estimate the�lter H , with lower and upper bounds on the frequen
y variable ω1, ω2, respe
tively.Also noti
e that we pre
ompute a single �lter and we use the same �lter in bothsignals I1, I2.The 
omputation of stret
h around a point x0 involves the 
onvolution of thetwo signals, a 
omputation of a phase di�eren
e, a division and an exponentiation,thus if the size of the �lter is M the 
omplexity of the algorithm is O(M).
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B.3.1 How Parameter u a�e
ts HSymbol u is used to denote the frequen
y domain produ
ed by 
onsidering theFourier transform of the Gabor �lters with respe
t to their frequen
ies (ω). Thus,intuitively a �lter H with small u frequen
y is �smoother� than one with high u.Fig. B.1 shows two di�erent �lters for u = 0.25 and u = 1.
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B.4 ExperimentsB.4.1 Stret
h without Shift ExperimentsOn this �rst set of experiments, the original signal (I1) is the horizontal lines ofvarious textures [119℄ (Fig. B.2). We randomly sele
ted 200 s
an lines and stret
hedea
h one of them around its 
enter in order to produ
e a se
ond signal (Fig. B.3, �rstand se
ond row). Then we 
onvolved both signals with a single �lter of frequen
y
u = 0.25 as shown in Fig. B.3 (third row). Following the steps des
ribed in Alg. B.1we estimated the stret
h. We experimentally found that frequen
ies in the range
u = [0.25 . . . 0.5] worked well. The higher the frequen
y, the better the results forstret
hes 
loser to 1 and the worse for stret
hes 
loser to 0. For the lower and upperbounds of integral H (Eq. B.13) we used the values −3.5 and −1, respe
tively.In Fig. B.4 we present the results as a fun
tion of the stret
h α. Ea
h graph
orresponds to an image from Fig. B.2. For ea
h stret
h value we pi
k 200 randompoints and syntheti
ally stret
h the signal about ea
h. We plot both the medianvalue and the 99% 
on�den
e interval for the estimated stret
hes. The results aregood 
onsidering the following fa
ts. First, we are using a single �lter to estimatethe stret
h. Se
ond, the size of the �lter is ∼ 20 pixels. Third, we have dis
retesignals, thus for a stret
h of α = 0.5 only 10 pixels are 
ommon in the original andthe stret
hed image. Fourth, for pra
ti
al purposes, we are usually interested instret
hes 
lose to one (e.g. α = [0.9 . . . 1.1]) in whi
h 
ase the estimated stret
h isquite a

urate. Thus, in Fig. B.5 we display the results on that range of stret
hes.In all 
ases the estimated stret
h is very 
lose to the real stret
h between the two207



(a) Cross tiles (b) Roman tiles

(
) Peddles (d) Bri
k wallFigure B.2: Texture images for stret
h experiments.
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(a) Original image (b) Stret
hed image (α = 0.5)
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(d) 1D stret
h signal along the same s
an line
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(e) The stret
h �lter H we useFigure B.3: An example of an original and stret
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anline, alongwith the �lter H that is used throughout the experiments.
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h when α is 
lose to 1.signals.B.4.2 Stret
h Estimation in the Presen
e of TranslationIn real appli
ations, the most 
ommon 
ase is for the two signals to be both shiftedand stret
hed i.e., i2(x) = i1(αx + β). In su
h 
ases, estimation of the stret
h(α) is a�e
ted by the shift (β) and vi
e versa. In the following experiments, weempiri
ally investigate the sensitivity of the stret
h estimation in the presen
e oftranslation between the two signals. Fig. B.6 we display the error in the stret
h211
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Figure B.6: Stret
h estimation results with a single �lter when there is a shift error.Ea
h �gure 
orresponds to a di�erent a
tual stret
h value.The error 
urve produ
edwhen the two signals are not perfe
tly aligned does not depend mu
h on the a
tualstret
h value.
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estimates, when the two signals are stret
hed and shifted, as a fun
tion of the shift.As expe
ted (due to the small size of the �lters), this approa
h is very sensitive toshifts. Furthermore, the error in the stret
h estimation in
reases with the shift.B.5 Con
lusionsIn this 
hapter we presented a �lter that retrieves the lo
al stret
h of two signals.We also presented experiments that indi
ate that this approa
h produ
es very goodresults, but is also very sensitive to the shift between the two signals. Two simpleimprovements that will de
rease the sensitivity to the shift error and in
rease thea

ura
y of the estimation are
• use the stret
h results from multiple �lters. We noti
ed that �lters with di�er-ent u values exhibit di�erent sensitivity to shift errors and 
an work a

uratelyfor di�erent ranges of stret
hes. The smaller the value of u the more sensitivethe �lter is to shift noise, but at the same time the more a

urate the resultsare for a larger range of stret
hes. Thus a 
arefully 
onstru
ted band of stret
h�lters 
ould provide high noise toleran
e and high stret
h sensitivity.
• 
ompute the stret
h from more signal points. It is experimentally establishedthat frequen
y based approa
hes for registering two signals require as mu
hdata points as possible. In the previous experiments the �lter size was around

20 pixels. A larger �lter would be mu
h less sensitive to shifts. Furthermoresin
e we work with images 
onsidering multiple s
an lines in the 
omputationof stret
h would further improve the robustness and a

ura
y of the results.213



If both improvements are 
arefully implemented then this method 
an potentiallyprovide a real-time alternative for stret
h estimation and 
ould be used in realsystems.
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Appendix CTowards Surfa
e Segmentation ProofsLemma C.1. If we model the error in the lo
alization of the feature points as in-dependent Gaussian random variables with varian
e σ2, σ′2 for the features on the�rst and se
ond frame respe
tively, the 9 × 9 
ovarian
e matrix of the homographyis
Ch = JSJT (C.1),where

J = [ x1 x2 . . . x9
][

0 0 . . . 0

0 1
λ1−λ2

. . . 0... ... . . . ...
0 0 . . . 1

λ1−λ9

][

xT1

xT2...
xT9

] (C.2)
,with xi the eigenve
tor 
orresponding to the ith eigenvalue λi of matrix ATA. Matrix
S is

S =
n

∑

i=1

(rT2ir2if
e
i + rT2i−1r2i−1f

o
i + rT2ir2i−1f

eo
i + rT2i−1r2if

oe
i ) (C.3)
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with ri the ith row of matrix A and
f ei = σ2[h2

1 + h2
2 − 2x′i(h1h7 + h2h8)] + 2σ′2(xih7h9 + xiyih7h8 + yih8h9)

+(σ2x
′2
i + x2

iσ
′2)h2

7 + (σ2x
′2
i + y2

i σ
′2)h2

8 + σ
′2h2

9

f oi = σ2[h2
4 + h2

5 − 2y
′

i(h4h7 + h5h8)] + 2σ′2(xih7h9 + xiyih7h8 + yih8h9)

+(σ2y
′2
i + x2

iσ
′2)h2

7 + (σ2y
′2
i + y2

i σ
′2)h2

8 + σ′2h2
9

f oei = f eoi = σ2[(h1 − x′ih7)(h4 − y′ih7) + (h2 − x′ih8)(h5 − y′ih8)]Proof. This proof is based on eigenve
tor perturbation theory and is similar to proofsgiven in [95, 120℄. Next we provide a detailed outline of the proof, but omit the �nal
umbersome algebrai
 
omputations.First a note on notation. We use the subs
ript zero :0 to denote the initialmeasurement and the symbol δ for the perturbation matrix or ve
tor.Let us denote with B0 the 9 × 9 matrix of the produ
t of the original mea-surements AT0A0. The perturbed matrix A = A0 + δA introdu
es a perturbedmatrix B = ATA = (A0 + δA)T (A0 + δA) = AT0A0 + AT0 δA + δATA0 + δAT δA ≃

AT0A0 +AT0 δA+ δATA0. As you noti
e we only keep the linear error terms and dropthe higher order error terms. Hen
e
B = B0 + δB (C.4), where

δB = δATA+ AT δA. (C.5)216



Let us denote with λi, xi the ith eigenvalue and eigenve
tor respe
tively ofmatrix B (i = 1 . . . 9). Our goal is to �nd an analyti
 expression for the ith eigen-ve
tor xi and eigenvalue λi with respe
t to the perturbation matrix δB and theeigenve
tors and eigenvalues of the initial matrix B0 (x0i, λ0i). If we express thenew measurements as
λi = λ0i + δλi, (C.6)
xi = x0i + δxi (C.7)one needs to 
ompute the di�eren
es δλi, δxi.From the de�nition of the eigenvalues and eigenve
tors we have
B0x0i = λ0ix0i (C.8)The same equation is valid for the new eigenvalues and eigenve
tors i.e.,
Bxi = λixi ⇒ (C.9)

(B0 + δB)(x0i + δxi) = (λ0i + δλi)(x0i + δxi)⇒ (C.10)
B0x0i +B0δxi + δBx0i + δBδxi = λ0ix0i + λ0iδxi + δλix0i + δλiδxi. (C.11)217



From Eq. C.8 and ignoring the se
ond order terms we simplify Eq. C.11 as
B0δxi + δBx0i = λ0iδxi + δλix0i. (C.12)The eigenve
tors of the original matrix B0 form a 
oordinate system for the

9D spa
e so we 
an express the eigenve
tor 
hange δxi as a linear 
ombination of
x0i i.e.,

δxi =
9

∑

j=1

ǫijx0j . (C.13)Combining Eqs. C.12, C.13 we obtain
B0

9
∑

j=1

ǫijx0j + δBx0i = λ0i

9
∑

j=1

ǫijx0j + δλix0i, (C.14)
9

∑

j=1

ǫijλ0jx0j + δBx0i = λ0i

9
∑

j=1

ǫijx0j + δλix0i. (C.15)Left multiply Eq. C.15 with xT0i and 
onsidering the orthogonality of x0i i.e.,
xT0ix0j =



















1, i = j

0, i 6= j

(C.16)we get
ǫiiλ0ix

T
0ix0i + xT0iδBx0i = λ0iǫiix

T
0ix0i + δλix

T
0ix0i ⇒ (C.17)
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δλi = xT0iδBx0i. (C.18)Left multiply Eq. C.15 with xT0k, k 6= i we get
xT0k

9
∑

j=1

ǫijλ0jx0j + xT0kδBx0i = λ0ix
T
0k

9
∑

j=1

ǫijx0j + xT0kδλix0i ⇒ (C.19)
xT0kǫikλ0kx0k + xT0kδBx0i = λ0iǫikx

T
0kx0k ⇒ (C.20)

ǫikλ0k + xT0kδBx0i = λ0iǫik ⇒ (C.21)
ǫik =

xT0kδBx0i

λ0i − λ0k
, k 6= i. (C.22)In order to 
ompute the remaining 
oe�
ients ǫii we use the orthogonality ofthe eigenve
tors i.e.,

xTi xi = 1⇒ (C.23)
(x0i + δxi)

T (x0i + δxi) = 1⇒ (C.24)
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xT0ix0i + xT0iδxi + δxTi x0i + δxTi δxi = 1 (C.25)Ignoring the se
ond order term δxTi δxi and given the fa
t that xT0ix0i = 1 weget
xT0iδxi + δxTi x0i = 0 (C.26)From Eq. C.13 and left multiplying with xT0i we get

xT0i

9
∑

j=1

ǫijx0j + (

9
∑

j=1

ǫijx0j)
Tx0i = 0⇒ (C.27)

ǫii = 0. (C.28)In synopsis a perturbed matrix B by δB 
auses a 
hange in the eigenvalue λiby
δλi = xT0iδBx0i (C.29)and a 
orresponding 
hange in the eigenve
tor xi by

δxi =
9

∑

j=1,j 6=i

(
xT0jδBx0i

λ0i − λ0j

)x0j . (C.30)Sin
e the homography is the eigenve
tor 
orresponding to the least eigenvalue(i.e.,h ≡ x01), if we rewrite the sum of Eq. C.30 in matrix form we get
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δh = [ x01 x02 . . . x09
][

0 0 . . . 0

0 1
λ01−λ02

. . . 0

. . . . . .
. . . . . .

0 0 . . . 1
λ01−λ09

][

xT01

xT02...
xT09

]δBh (C.31)
We want to express the 
hange in the homography as a linear 
ombination ofthe elements of matrix δB. If we denote the identity matrix of size 9× 9 as I9 andthe individual elements of ve
tor h as h1, h2, . . . , h9 then

δBh ≡ [ h1I9 h2I9 · · · h9I9 ]δb (C.32), where δb is a 
olumn ve
tor produ
ed by δB as follows
δb = [ δB11 δB21 . . . δB91 δB12 . . . δB92 . . . δB91 . . . δB99

]T . (C.33)Next we need to express the perturbation ve
tor δb with respe
t to the per-turbation ve
tor δa. As above we get δa by 
on
atenating the 
olumns of matrix
δAT . From Eq. C.5 by denoting with δbi, δBij , δaij , aij the elements of the ithrow and jth 
olumn of matri
es δb, δB, δA, A respe
tively with a little algebra weobtain the following expression

δb9(j−1)+i = δBij =
2n
∑

k=1

(akiδakj + δakiakj) (C.34)221



that is linear on the perturbation ve
tor δa i.e.,
δb = Gδa (C.35)for a properly 
onstru
ted 81× (2n · 9) matrix G.The last step is to 
ompute the 
ovarian
e matrix for matrix A. The homog-raphy estimation matrix A is

A = [

0 0 0 x1 y1 1 −y′1x1 −y′1y1 −y′1

x1 y1 1 0 0 0 −x′1x1 −x′1y1 −x′1... ... ... ... ... ... ... ... ...
0 0 0 −xn −yn −1 y′nxn y′nyn y′n

xn yn 1 0 0 0 −x′nxn −x′nyn −x′n

]. (C.36)
If we assume that the 
omponents of the image ve
tors xi = (xi, yi, 1)T , x′

i =

(x′i, y
′
i, 1)T have errors (δxi, δyi, δx′i, δy′i) then we get the perturbation matrix

δAT = [

0 0 0 δx1 δy1 0 −(x1δy
′
1 + y′1δx1) −(y1δy

′
1 + y′1δy1) −δy′1

δx1 δy1 0 0 0 0 −(x1δx
′
1 + x′1δx1) −(y1δx

′
1 + x′1δy1) −δx′1... ... ... ... ... ... ... ... ...

0 0 0 δxn δyn 0 −(xnδy
′
n + y′nδxn) −(ynδy

′
n + y′nδyn) −δy′n

δxn δyn 0 0 0 0 −(xnδx
′
n + x′nδxn) −(ynδx

′
n + x′nδyn) −δx′n

]T .

(C.37)222



If we model these errors as independent, random variables following Gaussian dis-tributions with zero mean value and varian
e σ2, σ′2 for the �rst and se
ond im-age respe
tively we 
an 
ompute the 
ovarian
e matrix of δAT . As we mentionedabove we 
reate the ve
tor δa by 
on
atenating the 
olumns of δAT . Ve
tor δahas 18n entries, thus the 
ovarian
e matrix of δAT has a size of 18n × 18n. Sin
ethe variables are independent, the 
ovarian
e matrix Ca has a blo
k diagonal form
Ca = diag{E1, E2, . . . , En} with the 18× 18 diagonal elements being displayed onFig. C.1.From Eqs. C.31, C.32 and C.35 we get that the perturbation of the homog-raphy ve
tor δh is a linear 
ombination of the perturbation of the input ve
tor δai.e.,
δh =[ x01 x02 . . . x09

][

0 0 . . . 0

0 1
λ01−λ02

. . . 0

. . . . . .
. . . . . .

0 0 . . . 1
λ01−λ09

][

xT01

xT02...
xT09

][ h1I9 h2I9 · · · h9I9 ]Gδa.

(C.39)If we 
ompa
t the notation by using the matrix J
J = [ x01 x02 . . . x09

][

0 0 . . . 0

0 1
λ01−λ02

. . . 0

. . . . . .
. . . . . .

0 0 . . . 1
λ01−λ09

][

xT01

xT02...
xT09

], (C.40)
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Ei = [

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 σ2 0 0 −y′

i
σ2 0 0 σ2 0 0 0 0 0 −x′

i
σ2 0 0

0 0 0 0 σ2 0 0 −y′

i
σ2 0 0 σ2 0 0 0 0 0 −x′

i
σ2 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 −y′

i
σ2 0 0 x2

i
σ′2 + y

′
2

i
σ2 xiyiσ′2 xiσ′2

−y′

i
σ2 0 0 0 0 0 x′

i
y′

i
σ2 0 0

0 0 0 0 −y′

i
σ2 0 xiyiσ′2 y2

i
σ′2 + y

′
2

i
σ2 yiσ′2 0 −y′

i
σ2 0 0 0 0 0 x′

i
y′

i
σ2 0

0 0 0 0 0 0 xiσ′2 yiσ′2 σ′2 0 0 0 0 0 0 0 0 0

0 0 0 σ2 0 0 −y′

i
σ2 0 0 σ2 0 0 0 0 0 −x′

i
σ2 0 0

0 0 0 0 σ2 0 0 −y′

i
σ2 0 0 σ2 0 0 0 0 0 −x′

i
σ2 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 −x′

i
σ2 0 0 x′

i
y′

i
σ2 0 0 −x′

i
σ2 0 0 0 0 0 x2

i
σ′2 + x

′
2

i
σ2 xiyiσ′2 xiσ′2

0 0 0 0 −x′

i
σ2 0 0 x′

i
y′

i
σ2 0 0 −x′

i
σ2 0 0 0 0 xiyiσ′2 y2

i
σ′2 + x

′
2

i
σ2 yiσ′2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 xiσ′2 yiσ′2 σ′2

] (C.38)

Figure C.1: Blo
k i of the 
ovarian
e matrix for δa
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the 
ovarian
e matrix Ch is given by
Ch = J [ h1I9 h2I9 · · · h9I9 ]GCaG

T [ h1I9 h2I9 · · · h9I9 ]TJT (C.41)With the proper algebrai
 manipulation we get the �nal result.
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Lemma C.2. Given the proje
tion matri
es for the two views of a 
amera withintrinsi
 parameters K

P = K · [I | 0] P′ = K · [R | t] (C.42)where R, t represent the rotation and translation between the two views respe
tivelyand a plane de�ned by πT ·X = 0 with π = (νT , 1)T (ν is the surfa
e normal), thenthe homography indu
ed by the plane is x′ = H · x with
H = K · (R− t · νT ) ·K−1. (C.43)Proof. The general idea is to 
ompute the world point with respe
t to the imagepoint of the �rst and se
ond frame and equate the two expressions. Let us as-sume that there is a plane π with surfa
e normal N = (νT , 1)T in homogeneous
oordinates1. By de�nition any world point X belonging to that plane satis�es theequation

NTX = 0. (C.44)Let x, x′ denote the proje
tion of the world point on the �rst and se
ond framerespe
tively. If P = K·[I | 0] and P′ = K · [R | t] are the proje
tion matri
es for thetwo 
amera views then x = P ·X and x′ = P′ ·X respe
tively. If we parameterizethe world point X = (yT, ρ)T then we get that x = K · [I | 0] · (yT, ρ)T = K · y.Thus the world point X belongs to the ray parameterized by ρ X = ((K−1 ·x)T , ρ)T .1We assume that the plane does not pass through the 
enter of the 
amera of the �rst frame at
(0, 0, 0, 1)T that's why we are allowed to assume that π4 = 1.226



Using Eq. C.44 we 
ompute ρ = −νTK−1x, thus
X = ((K−1x)T , νTK−1x)T (C.45)From the proje
tion of X to the se
ond view we get

x′ = K · [R | t] · ((K−1x)T , νTK−1x)T = K(R− tνT )K−1x (C.46)
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Appendix DPTU-Camera 
alibrationIn this 
hapter we des
ribe the pro
edure of 
alibrating the Pan and Tilt Unit (PTU)with the 
ameras. Fig. D.1 displays the setting that we use in our experiments. Anarray of 
ameras is atta
hed on top of a Pan and Tilt Unit (PTU). The PTU has twodegrees of freedom namely rotation around the horizontal (pan) and verti
al (tilt)plane. In the experiments we use a single 
amera (lo
ated on the top right 
ornerof the array). Before performing any experiment we have to 
alibrate the 
amerawith respe
t to the PTU. The next se
tion des
ribes that pro
edure in details.D.1 A
quiring 
alibration dataWe 
aptured images of a 
he
kerboard pattern for di�erent pan and tilt angles.We sele
ted 11 di�erent pan and tilt angles and 
alibrated for the pan and the tiltindependently. We 
aptured 10 images for ea
h angle for a total of 220 images. Figs.D.2, D.3 display some of these images.We used the 
amera 
alibration toolbox 
reated by Bouguet [121℄ to 
omputethe intrinsi
 parameters �rst. Then, sele
ting the 0
◦ pan, 0

◦ tilt set of images asbaseline, we 
omputed the extrinsi
 parameters for ea
h di�erent pan/tilt 
ombina-tion with respe
t to the baseline. Table D.1 displays the rotation and translation of
228



Figure D.1: The Pan and Tilt Unit (PTU) and the 
ameras atta
hed to it.
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Figure D.2: Calibration images for di�erent pan values. Ea
h 
olumn represents adi�erent pan angle (−5
◦

,−3
◦

, 0
◦

, 3
◦

, 5
◦) and ea
h row a di�erent pla
ement of the
alibration grid. 230



Figure D.3: Calibration images for di�erent tilt values. Ea
h 
olumn represents adi�erent tilt angle (−5
◦

,−3
◦

, 0
◦

, 3
◦

, 5
◦) and ea
h row a di�erent pla
ement of the
alibration grid. 231
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(b) The 
amera and PTU 
oordinate systemsFigure D.4: The 
amera and PTU 
oordinate systems.the 
amera that 
orresponds to pan and tilt rotations of the PTU1. More spe
i�
allythe translation ve
tor displays the new position of the 
amera 
enter with respe
tto the 
oordinate system of the 
amera at 0
◦ pan and 0

◦ tilt.In Fig. D.4(a) we draw the 
amera 
oordinate system that we use in the restof this se
tion.D.2 Calibrating the 
amera with respe
t to the PTUOur goal is to analyti
ally 
ompute an estimate for the rotation and translation ofthe 
amera as we rotate and translate the PTU (Fig. D.4(a)). More spe
i�
ally weneed to estimate1. the two axes of rotation (rθ, rφ) and the 
orresponding ve
tors (vθ,vφ) betweenthe 
enter of the two rotation axes and the fo
al point of the 
amera that 
ausethe translation of the 
amera 
enter1The numeri
al errors are approximately three times the standard deviations232



Table D.1: Rotation and translation of the 
amera with respe
t to the baseline position (0◦ tilt, 0
◦ pan).Pan (φ) Rotation Ve
tor (ωφ) Rotation Angle Translation Ve
tor (t)

−5
◦ −0.022± 0.086 −0.998± 0.131 0.053± 0.006 5.07

◦ ± 0.69
◦ −1.349± 0.198 0.215± 0.134 5.422± 1.460

−4
◦ −0.014± 0.093 −0.998± 0.142 0.053± 0.006 4.32

◦ ± 0.64
◦ −0.442± 0.160 0.057± 0.119 2.975± 1.348

−3
◦ −0.004± 0.109 −0.999± 0.166 0.053± 0.007 3.32

◦ ± 0.57
◦ −0.358± 0.126 0.087± 0.105 2.173± 1.211

−2
◦ −0.046± 0.167 −0.998± 0.255 0.053± 0.010 2.12

◦ ± 0.58
◦ −0.490± 0.107 0.082± 0.104 1.771± 1.192

−1
◦ −0.086± 0.348 −0.995± 0.535 0.054± 0.020 1.03

◦ ± 0.61
◦ −0.259± 0.092 0.055± 0.102 1.057± 1.184

1
◦

0.125± 0.320 0.991± 0.487 −0.049± 0.018 1.18
◦ ± 0.64

◦

0.321± 0.080 −0.045± 0.104 −0.953± 1.232

2
◦

0.027± 0.194 0.998± 0.295 −0.052± 0.011 2.05
◦ ± 0.64

◦

0.567± 0.086 −0.099± 0.112 −2.783± 1.322

3
◦

0.022± 0.153 0.998± 0.233 −0.053± 0.009 2.95
◦ ± 0.73

◦

0.956± 0.111 −0.226± 0.131 −5.010± 1.522

4
◦

0.002± 0.117 0.999± 0.181 −0.053± 0.007 4.02
◦ ± 0.75

◦

1.176± 0.135 −0.239± 0.140 −6.073± 1.602

5
◦

0.029± 0.091 0.998± 0.142 −0.053± 0.006 5.12
◦ ± 0.76

◦

1.287± 0.157 −0.157± 0.140 −7.203± 1.594Tilt (θ) Rotation Ve
tor (ωθ) Rotation Angle Translation Ve
tor (t)

−5
◦

0.997± 0.190 −0.078± 0.239 0.014± 0.012 4.86
◦ ± 1.11

◦

0.946± 0.265 −1.258± 0.328 −12.655± 2.252

−4
◦

0.996± 0.177 −0.090± 0.220 0.015± 0.010 3.89
◦ ± 0.83

◦

0.667± 0.178 −1.236± 0.213 −10.310± 1.684

−3
◦

0.995± 0.186 −0.102± 0.236 0.015± 0.009 2.92
◦ ± 0.67

◦

0.679± 0.127 −0.739± 0.142 −7.654± 1.330

−2
◦

0.981± 0.229 −0.193± 0.290 0.009± 0.010 2.09
◦ ± 0.63

◦

0.379± 0.104 −0.579± 0.104 −5.296± 1.180

−1
◦

0.998± 0.452 −0.058± 0.562 0.018± 0.018 0.98
◦ ± 0.57

◦

0.155± 0.088 −0.331± 0.084 −2.622± 1.098

1
◦ −0.991± 0.499 0.135± 0.623 −0.017± 0.017 0.90

◦ ± 0.60
◦ −0.190± 0.094 0.428± 0.077 2.835± 1.123

2
◦ −0.987± 0.239 0.160± 0.315 −0.012± 0.008 2.05

◦ ± 0.64
◦ −0.361± 0.116 0.875± 0.093 5.323± 1.229

3
◦ −0.999± 0.158 −0.035± 0.220 −0.019± 0.006 3.06

◦ ± 0.57
◦ −0.372± 0.140 1.296± 0.110 8.403± 1.221

4
◦ −0.999± 0.123 −0.051± 0.177 −0.018± 0.005 3.99

◦ ± 0.58
◦ −0.513± 0.169 1.847± 0.136 11.477± 1.240

5
◦ −0.996± 0.096 −0.091± 0.139 −0.020± 0.005 5.01

◦ ± 0.58
◦ −0.690± 0.187 2.491± 0.157 14.089± 1.210
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2. the two axes of rotation (ωθ, ωφ) that rotate the 
oordinate system atta
hedto the 
amera 
enter.In the following subse
tions we des
ribe both pro
edures. Note that we use thesymbols ωφ, ωθ for the rotation of the whole 
amera 
oordinate system, while thesymbols rφ, rθ for the rotation axes of the PTU unit. Also we denote with φ, θ the panand tilt angles of the PTU, while with ψ, ξ the angles we use for the parametrizationof the rotation axes rφ, rθ.D.2.1 Estimating the translation of the 
amera 
enterLet us denote withOCXCY CZC the 
oordinate system atta
hed to the 
amera at the
0
◦ pan and 0

◦ tilt position. The translation measurements of Table D.1 
orrespond tothe position of the 
amera 
enter when we pan or tilt the 
amera at a given angle.We denote that position with OC′ in Fig. D.4(b). We 
onsider the 
oordinatesystem of the PTU OUXUY UZU to be a translated version of OCXCY CZC by v.Hen
e, for any point P the relation of its 
oordinates in the two 
oordinate systemsis PU = PC + v. Then, we apply the rotation around axis r, so the 
amera 
entermoves from OC to OC′. Denoting the rotation matrix (
orresponding to the rotationaxis r) with R(r) we have the following equations
OC′ = R(r) · v

OC′ = v + t.234



The above equations leads us to the bilinear system with respe
t to the rotationmatrix R and the ve
tor v

(R(r)− I)v = t. (D.1)Using the translation of the 
amera 
enter (ti) for di�erent angles (θi) of TableD.1, we need to estimate both the rotation axis r (2 parameters) and the ve
tor v(3 parameters). Using the Rodrigues formula to express the rotation around an axis
R = (1− cos θ)r · rT + cos θI + sin θQr (D.2)

, where Qr = [

0 −r3 r2

r3 0 −r1

−r2 r1 0

], we set up the following optimization problem
arg min

r,v

∑

i

||((1− cos θi)(rr
T − I) + sin θiQr)v − ti|| (D.3)

s.t. ||r|| = 1. (D.4)The above optimization problem is non-
onvex with respe
t to r,v. Sin
e therotation axis r has only 2 degrees of freedom we use spheri
al 
oordinates (ψ, ξ) to
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Figure D.5: Mat
h 
ost for pan (left) and tilt (right) rotation.parameterize r

r1 = cosψ sin ξ

r2 = sinψ sin ξ

r3 = cos ξand then solve the 
onvex optimization problem with respe
t to v. Fig. D.5displays the minimum 
ost that we obtained for di�erent angles ψ, ξ. We displaythe solution to the optimization for pan and tilt angles in Table D.2.D.2.2 Estimating the rotation of the 
amera 
oordinate system (ω)The rotation axis measurements are displayed on the se
ond 
olumn of Table D.1.Noti
e that the �rst �ve rotation ve
tors are approximately the opposite of thelast �ve. This is expe
ted sin
e the angle of the rotation is reversed. Sin
e theve
tors are 
onsistent, instead of formulating and solving a 
omplex non-
onvexoptimization problem, we estimate the rotation axis with a simple average operation.More spe
i�
ally, we 
ompute the average value for the two variables and use the236



Table D.2: Calibration ResultsPTU Pan PTU Tiltrotation axis r −0.052 0.997 −0.052 -0.940 0.324 −0.105ve
tor v 46.554 312.956 −3.629 −221.493 −86.002 −2.419mat
hing 
ost 9.12 4.10rotation ve
tor ω 0.053 0.997 −0.053 −0.994 0.110 −0.016
ontraint that the norm of the rotation ve
tor is one to obtain the value for thethird 
oordinate. The results for both pan and tilt are displayed in Table D.2.D.3 Computing the external parameters for any PTU rotationTo synopsize the 
alibration pro
ess, here are the equations that provide the 
ameratranslation T and rotation Rω as a fun
tion of the pan and tilt of the PTU. Wedenote with φ, θ the pan and tilt angle of the PTU respe
tively.
T(φ) = ((1− cos φ) · [

−0.997 −0.052 0.003

−0.052 −0.006 −0.052

0.003 −0.052 −0.997

]+

sinφ · [

0 0.052 0.997

−0.052 0 0.052

−0.997 −0.052 0

]) · [

46.554

312.956

−3.629

]

(D.5)
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Rωφ
(φ) = [

0.003 0.053 −0.003

0.053 0.994 −0.053

−0.003 −0.053 0.003

] + [

0.997 −0.053 0.003

−0.053 0.006 0.053

0.003 0.053 0.997

] · cos φ+

[

0 0.053 0.997

−0.053 0 −0.053

−0.997 0.053 0

] · sin φ (D.6)
T(θ) = ((1− cos θ) · [

−0.116 −0.304 0.099

−0.304 −0.896 −0.034

0.099 −0.033 −0.989

]+

sin θ · [

0 0.105 0.323

−0.105 0 0.940

−0.323 −0.940 0

]) · [

−221.493

−86.002

−2.419

]

(D.7)

Rωθ
(θ) = [

0.988 −0.110 0.016

−0.110 0.012 −0.002

0.016 −0.002 0.000

] + [

0.012 0.110 −0.016

0.110 0.988 0.002

−0.016 0.002 1

] · cos θ+

[

0 0.016 0.110

−0.016 0 0.994

−0.110 −0.994 0

] · sin θ (D.8)238
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