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Increasing autonomy and intelligence in mechatronic devices requires them to be 

multiple interaction-state devices. Different modes of operations and different types 

of interactions with the use-environment require the device to have multiple 

interaction-states, each state capable of producing a different behavior to meet its 

intended requirements. For multiple interaction-state mechatronic devices, a 

satisfactory framework does not exist for representing, evaluating, and synthesizing 

design concepts.  Hence, majority of mechatronic designers currently use informal 

methods for representing and evaluating design concepts during the conceptual design. 

This leads to the following problems. First, informal representation of design 

concepts hinders information exchange and reuse. Second, in absence of a validation 

methodology, it is not clear how to determine if a proposed design concept is 

consistent with the requirements. Finally, designers cannot perform computer aided 

evaluation during the conceptual design stage.  



  

This dissertation focuses in the area of computational foundations for representing, 

validating, evaluating, and synthesizing design concepts of multiple interaction-state 

mechatronic devices. A modeling and simulation framework has been developed for 

representing design concepts behind multiple interaction-state mechatronic devices. 

The problem of consistency-checking of interaction-states has been studied and an 

algorithm has been developed for solving the interaction consistency-checking 

problem. The problem of determining the presence of unsafe parameter values has 

been studied and an algorithm has been developed to determine whether an 

interaction-state in the proposed design concept can attain unsafe parameter values. 

Algorithms have been developed for evaluating design concepts based on the 

maximum power consumption and sharability of components. Finally, algorithms 

have been developed for automatically synthesizing transition diagrams for meeting 

the desired behavior specifications, given a components library. 

We believe that the results reported in this dissertation will provide the underlying 

foundations for constructing the next generation computer aided design tools for 

conceptual design of mechatronic devices. We expect that these tools would 

streamline the product development process, facilitate information reuse, and reduce 

product development time. 
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Chapter 1: Introduction 

This chapter is organized in the following manner. Section 1.1 describes the 

background needed to introduce the problem being addressed in this dissertation. 

Section 1.2 describes the motivation behind the research described in this dissertation. 

Section 1.3 describes the major research issues being addressed in the dissertation. 

Section 1.4 describes the organization of the remainder of the dissertation. 

1.1 Background 

The industrial revolution has brought mechatronic devices into the forefront of 

technological advancements. Mechatronic devices refer to the devices that integrate 

elements from mechanical, electrical and electronic, and information domains, which 

are designed to provide better solutions than would be possible if components from 

only one domain are used [Walt01]. Use of mechatronic devices is pervasive, ranging 

from everyday utilities such as microwave ovens and washing machines, to intelligent 

robots and numerical controlled machine tools used in industry.  

Increasing autonomy and intelligence in mechatronic devices requires them to be 

multiple interaction-state devices. Multiple interaction-state devices are those devices 

in which the interactions between elements of the use-environment and elements of 

the device can have different qualitative structures (i.e., different interaction 

topologies) depending upon the modes of device operation and the states of the use-

environment. Different modes of operations and different types of interaction 

topologies with the use-environment require the device to be in different states, while 

each state is capable of producing a different behavior to meet its intended 
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requirements. For example, consider a hybrid vehicle as shown in Figure 1.1. When 

the vehicle is going down a hill, the engine is storing energy into the batteries. When 

the vehicle is going up a hill, both the batteries and the engine are providing power to 

the wheels. In this example, the interactions topology among device components 

(battery, engine, and wheel) is changing depending upon the states of the use-

environment (e.g., uphill or downhill).  

Energy flow in 
downhill travel

Wheel MotorMotor

BatteryEngine

Wheel MotorMotor

BatteryEngine

Energy flow in 
uphill travel

 

Figure 1.1: Example of interaction-states in a hybrid car 

Figure 1.2 shows an abstraction of the information flow in a typical product 

development process [Pahl96]. This figure mainly illustrates the information flow and 

does not show the iterative nature of the design process. Starting from the customer, 

the first step is need analysis, which determines the requirements.  This step 

establishes why a device should exist.  The second step is to establish behavior 
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specifications, which creates the specifications of the desired observable behavior of 

the device that satisfy the requirements. This step establishes what a device should 

do. After that, the conceptual design step analyzes the desired behavior of the device 

and results in the specifications of the internal structure of the device. Finally the 

detailed design step completes the design by developing details of every component 

in the structure.  The conceptual and the detailed design steps establish how the 

device will provide the desired behavior. 

Requirements

Specify Desired Behavior

Behavior Specifications

Final Design

Design Concept

Need Analysis

Detailed Design

Conceptual Design

 

Figure 1.2: An abstraction of information flow in design (this figure only shows the 

information flow and does not depict loops generated by the iterative nature of the 

design process) 
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In systems engineering community, requirements engineering is often used to 

establish what a system will do [Hull02]. Furthermore, in this step, high level system 

requirements are hierarchically decomposed into lower level requirements. A 

particular way of decomposing the requirements may also impose constraints on how 

the system will be designed. Therefore, requirements engineering may overlap with 

the conceptual design step.    

While it is well understood what constitutes a detailed design, it is not always clear 

what goes into describing a design concept. In this dissertation, we assume that the 

design concept will need to have the following three main ingredients. First, the 

design concept will need to identify various major components (e.g., functional units) 

that will be needed to meet the requirements and their roles in meeting the 

requirements. Second, the design concept will need to specify the basic working 

principles behind every main component to ensure that the component is realizable. 

Third, the design concept will need to specify how various components will interact 

with each other to achieve the requirements. We believe that these three pieces of 

information are necessary for evaluating complexity and cost associated with design 

concepts. 

1.2 Motivation 

Today’s intensive competition in the market requires companies to deliver better 

quality products in shorter lead-times with limited product development budget. 

Computer aided design (CAD) tools are being used to satisfy such needs. However, 

most of the commercial CAD systems for mechanical products are aiding designers 

only in the detailed design step. Computer aided design tools for early stage of 
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mechanical design are either restricted to few specific products or only providing 

simple sketching functions. Figure 1.3 illustrates the current state of design tools and 

design data being stored. CAD models currently only store geometric information and 

there is no connectivity between the final product geometry and requirements. 

Computer Aided Design, 
Analysis, and Manufacturing  

Systems
(e.g., Pro/Engineer, Unigraphics, Catia)

Observations:
1. Only geometric information is stored
2. There is no connectivity between the final product 
geometry and requirements

CAD Models

Designer

 

Figure 1.3: Limitations of existing CAD models 

Most designers use their own notations and conventions to create and represent 

design concepts. This informal and ad-hoc practice of creating and storing design 

concepts makes it very difficult for a person who was not a part of the design team to 

understand the design concepts underlying a product. Design of mechatronic devices 

is further complicated by the collaboration of engineers from different disciplines on 

a complex device, all of whom have their own perspective and way of working. A 

shared understanding between each disciplines involved is key to the success of the 



 6 
 

integrated device. Furthermore, unless formal representations are developed for 

modeling design concepts, we cannot develop software tools for design concept 

synthesis and evaluation. On the other hand, if we consider detailed design phase of 

mechanical products, computer interpretable representations are widely used in forms 

of solid models and feature-based models. These representations have led to the 

development of many engineering analysis tools that are frequently used to increase 

designers’ productivity.  

Unlike mechatronic devices, formal languages for design are successfully being used 

in software and VLSI (Very Large Scale Integrated Circuits) industry. In the software 

industry, UML (Unified Modeling Language) is increasingly being used as a 

modeling language to model the concepts behind complex software systems. In the 

VLSI industry, VHDL (VLSI Hardware Description Language) is being used to 

model concepts behind complex computer chips.  

Requirements engineering provides a systematic process for developing system 

requirements. However, existing representation schemes being used in requirements 

engineering alone are not sufficient for representing complex mechatronic device 

concepts. Interactions among components are viewed as important pieces of 

information in requirements engineering. However, detailed representations for 

adequately modeling all possible types of interactions that are common in 

mechatronic devices have not been developed. In the absence of detailed interaction 

models, only a limited type of computer-aided validation and evaluation can be 

carried out in the requirements engineering area. Usually, such validation and 

evaluation is sufficient for requirements engineering. However, in order to support 
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computer aided conceptual design, a lot more information needs to be formally 

represented.      

For mechatronic devices, a satisfactory design concept description language does not 

exist. Besides, traditional functional modeling approaches that have been developed 

for single interaction topology based devices cannot be conveniently applied to 

multiple interaction-state devices. Hence, the majority of mechatronic device 

designers currently use informal methods for representing and evaluating design 

concepts. This leads to the following problems: 

• Informal representation of design concepts hinders information exchange and 

reuse, which leads to longer development time, longer product update time and 

perhaps poorer product quality. Dynamic design teams and the need to constantly 

upgrade products increase the importance of archiving and exchanging design 

concepts. In the absence of formal representation, a new designer who has been 

given the charge of improving a device may take a very long time to understand 

how the existing device works and exchange ideas with his/her colleagues. 

• In the absence of a formal validation methodology, it is not clear how to 

determine if a proposed design concept is consistent with the requirements. Such 

inconsistency may not be detected until the device testing stage.  Hence, informal 

methods of validating design concepts may waste designer’s energy on 

unpromising design concepts. 

• Designers need to develop the concepts further in order to apply computer aided 

engineering tools. This may not only waste time and energy on unpromising 
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design concepts, but also limit the number of promising concepts that can be 

evaluated in a given development time. 

It is clear that if we were to achieve a high level of automation in design of multiple 

interaction-state mechatronic devices we will need formal representations to describe 

design concepts. We believe that such a formal representation will enable computer-

supported tools for aiding conceptual design.  Figure 1.4 graphically shows different 

computational tools that can utilize the formal design concept representation. 

Design Concept 
Representation

Simulation 
Tools

Tools for 
Validation

Tools for 
Evaluation 

Automated
Synthesis 

Tools

 

Figure 1.4: Applications enabled by formal design concept representations 

In order to reduce the product development time, we also need tools that can perform 

automated validation [Chan90] of the proposed design concepts. These tools will 

ensure that only valid design concepts are transferred to the detailed design stage for 

further development. The importance of this step can be better understood by 

examining the consequence of not performing the design validation at the detailed 

design stage. For example, the product development gets significantly delayed if non-

manufacturable shapes are passed from the detailed design step to the manufacturing 

step.  Similarly, passing invalid design concepts to the detailed design stage leads to 

unnecessary delays in the product development. 
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Many tools have been developed that can perform validation during detailed design 

stages. These tools check various features in the geometric model of the proposed 

design to assess their validity. Such tools are significantly reducing the time to carry 

out the validation tasks. We are interested in developing validation tools for the 

conceptual design stage. Developing such tools requires the following three steps. 

First we need to develop a representation to model design concepts. This is analogous 

to the development of feature-based representations for modeling detailed designs. 

The next step is to develop the definition of validity.  This is similar to defining what 

feature parameters will be considered valid during the detailed design stage. For 

example, very thin walls or features with zero-draft angles may not be considered 

valid in the context of injection molding. Finally, we need algorithms that can 

determine if a proposed design is invalid. This is analogous to the development of a 

geometric algorithm that can detect if the given design contains a feature with zero 

draft angles.  

Design concepts generated during conceptual design stage must be evaluated before 

being developed further into detailed designs. Unlike detailed designs, design 

concepts do not carry complete design information. Therefore, evaluation methods 

that have been developed for evaluating detailed designs cannot be applied to the 

conceptual design stage. Depending upon the information available in the design 

concepts, different types of evaluation can be performed. Therefore, we will need to 

analyze design concept representations and develop the appropriate evaluation 

algorithms.   
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In order to effectively explore the design space, we need to examine a large number 

of design concepts. Generating design concepts manually limits the number of design 

concepts that can be examined. Therefore, we need to develop algorithms for 

automatically synthesizing design concepts to meet a given set of requirements. 

Formal representations, validation methods, and evaluation methods provide the 

necessary infrastructure for the development of automated synthesis algorithms.        

1.3 Research Issues 

The main research issues being considered in this dissertation are described in the 

following sections.  

1.3.1   Design Concept Representation 

Design concepts behind multiple interaction-state mechatronic devices capture 

designers’ idea in the conceptual design stage for meeting requirements. 

Representation of design concepts provides the foundation of design information 

archiving, exchange and reuse. Design concept representation for mechatronic device 

cannot be simply accomplished by aggregation of existing representations. 

Furthermore, multiple interaction-states encountered in complex mechatronic devices 

need to be adequately modeled. Current representation schemes such as function 

based flow diagrams and bond graphs do not offer a convenient means for 

representing changing interaction topologies encountered in multiple interaction-state 

devices. State transition diagrams currently being used in modeling and analyzing 

concepts behind software and electronic circuits provide a starting point for capturing 

state transitions of multiple interaction-states mechatronic devices. However, they do 
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not provide adequate modeling support for describing interactions among device 

components.  

This dissertation will focus on the following three research issues related to the 

representation of design concepts:  

• Modeling primitives for multiple interaction-state mechatronic devices. 

Modeling design concepts of mechatronic devices with multiple interaction-states 

requires considering interactions that lead to continuous and discrete changes in 

device parameter values.  Therefore, modeling primitives are needed to model 

interactions among device components and interaction between device 

components and the environment. Furthermore, the modeling framework will 

need to support changes in governing interactions as the device goes through 

different modes of operations. This dissertation provides these modeling 

primitives to support conceptual design. 

• Modeling operators for multiple interaction-state mechatronic devices. We 

envision that during the conceptual design, the underlying modeling primitives 

will be manipulated to add more detail to the design concept.  An example of 

such a manipulation is decomposing a primitive into a set of primitives. To 

eliminate design errors, we need to ensure that the primitives that result from 

manipulating existing primitives remain valid. Operators needed to manipulate 

the primitives will depend a great deal on the primitives themselves. Thus, new 

modeling operators are needed. This dissertation provides the modeling 

operators. 
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• A framework for enabling concept simulation. In many situations, simulation 

serves as a powerful tool for evaluating designs. However, simulation tools 

developed for detailed design simulation cannot be used during conceptual 

design. Instead we need a new simulation framework that only utilizes the 

information available during the conceptual design. The new representation 

developed in the dissertation enables concept simulation. This dissertation 

provides a framework for determining the response of the device to a given set of 

events in the use-environment. By creating a set of simulated events in the use-

environment, users can evaluate the concept using the framework provided in this 

dissertation.   

1.3.2   Algorithms for Design Concepts Validation 

In order to reduce the product development time, we need tools that can perform 

automated validation of the proposed design concepts. These tools will ensure that 

only valid design concepts are transferred to the detailed design stage for further 

development. However, in conceptual design stage, often we only know the 

qualitative structure of the design solution instead of the knowing the exact equations. 

This requires design concept validation methods to work with the qualitative design 

information. 

This dissertation will focus on the following two research issues related to the design 

concept validation area:  

• Algorithms for checking interaction-state consistency. Validating interaction-

states involves checking the consistency of the set of interactions in the state. 

This requires us to ensure that the underlying interactions in the state are not 
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over-constrained. Furthermore, we need to ensure that any subset of the 

interactions is also not over-constrained. This dissertation provides algorithms, 

the corresponding correctness proofs, and worst-case asymptotic complexity 

analysis for the interaction-state consistency-checking problem.  

• Algorithms for detecting presence of unsafe parameter values. In many 

instances, unsafe parameter values are defined as a part of the requirements. In 

order to satisfy requirements, a valid design concept must be safe and hence 

should not attain unsafe parameter values. Checking presence of unsafe 

parameter values based on the existing discrete parameter value formulations is 

not expected to work in presence of interactions that involve both continuous and 

discrete changes in parameter values. Therefore, we need new algorithms. This 

dissertation presents the problem formulation for checking presence of unsafe 

parameter values in a design concept based on multiple interaction-states and 

provides algorithms for solving it. 

1.3.3   Algorithms for Design Concepts Evaluation 

Design concepts generated must be evaluated before being developed further in the 

detailed design stage. Since design evaluation consumes resources such as time and 

money, eliminating unpromising design concept alternatives as soon as possible is 

desired. Different representation schemes usually support different types of 

evaluations. The new representation scheme described in the dissertation enables new 

directions for design concept evaluations.  

This dissertation will focus on the following two research issues related to the design 

concept evaluation area:  
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• Algorithms for evaluating design concepts based on active component use. 

The new representation of multiple interaction-state mechatronic design concepts 

makes it possible for us to determine which components are active in which 

states. Consider the problem of evaluating the maximum power consumed by a 

design concept. This cannot be simply computed by summing up the power 

requirements for all components. Instead, we need to figure out when 

components are active and when they are not active. We also need to determine 

the state where the maximum power is being consumed by active components. 

This dissertation provides an algorithm for evaluating design concepts based on 

maximum power consumption. The algorithm developed in this dissertation can 

be extended to the estimation of noise generation as well. 

• Algorithms for determining component sharability.  In many designs, two 

different states require components of the same type but for different usages. If 

two different usages are not needed at the same time, then a single physical 

component can fulfill both roles. Sharing of a physical component among 

multiple states can potentially reduce the cost of the design. Therefore, this 

dissertation investigates the computational complexity of the component 

sharability problem and presents an algorithm for solving it.           

1.3.4   Design Concepts Synthesis 

The representation, validation and evaluation schemes provide the infrastructure for 

the conceptual design of mechatronic devices with multiple interaction-states. The 

same schemes can be adopted for synthesis as well. This dissertation will explore the 

following two issues related to the synthesis area:  
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• Component description. A component library will be used for describing the 

known components. Components will need to be described in such a way that a 

synthesis algorithm will be able to identify the applicable components and 

connect them together to create a possible design concept. This dissertation will 

provide a component description scheme for describing known components. This 

scheme will support description of both simple as well as complex components. 

• Synthesis algorithm. The synthesis algorithm will need to identify the 

appropriate components and connect them together to form valid design concepts 

consistent with the desired behavior. Although algorithms have been developed 

for synthesizing circuit and simple input/output type of electromechanical 

products, they will require significant extensions be useful in mechatronic 

devices with multiple interaction-states. This dissertation will focus on the 

development of sound synthesis algorithms that can utilize complex components 

in simple arrangements to come up with the possible design concepts. Complex 

components will allow the synthesis algorithm to exploit the known design 

concepts and make use of them in solving new design problems.   

1.4 Dissertation Outline 

The remainder of this dissertation is organized in the following manner.  

Chapter 2 presents a literature survey on topics related to this dissertation.  

Chapter 3 describes a modeling and simulation framework for representing design 

concepts behind multiple interaction-state mechatronic devices.   

Chapter 4 describes the problem of consistency-checking of interaction-states as a 

step in the design concept validation. It presents an algorithm for solving the 
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interaction consistency-checking problem. It also presents an algorithm for analyzing 

inconsistent interaction-states and identifying the inconsistent interactions. 

Chapter 5 describes the problem of determining whether unsafe parameter value sets 

are embedded in an interaction-state transition diagram. It presents an algorithm to 

determine whether a given interaction-state transition diagram can include unsafe 

parameter value sets.  

Chapter 6 describes an algorithm for estimating the maximum power consumed by a 

design concept. It also describes an algorithm for determining the sharable 

components in multiple interaction-state devices.    

Chapter 7 describes algorithms for automatically synthesizing detailed transition 

diagrams given the initial behavior specifications and a components library. 

Chapter 8 describes the main research contributions of this dissertation and identifies 

the anticipated benefits resulting from this research. It also gives suggestions for the 

future extension of the work described in this dissertation. Figure 1.5 shows the 

organization of the dissertation. 
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Chapter 2: Related Research 

This chapter provides a review of the state of the art in topic areas related to this 

dissertation.  

To facilitate reasoning about behavioral and spatial aspects of an electro-mechanical 

system, the process of design has been divided into the following distinct stages: (1) 

conceptual design, and (2) detailed design. The detailed design stage is divided into 

(1) parametric design, (2) configuration design, and (3) optimization and refinement 

of the design.  Conceptual design schemes based on a variety of models have been 

proposed such as influence diagrams [Navi91], behavioral networks [Will89], 

equations, qualitative reasoning [Navi92] and bond graphs [Ulri88, Welc91]. A 

variety of representations such as graphs, grammars, constraint satisfaction etc. have 

been presented based on those models. Mechanism synthesis is addressed in 

[Erdm95]. The conceptual design step results in a selection of major components and 

their interconnections to provide its intended functionality. The choice of components 

is followed by parametric design wherein the components are sized for their geometry 

and material properties. Once a behavioral topology of components is chosen and 

sized, spatial orientation and location of components along with minor refinements to 

their form is addressed during spatial configuration design. The spatial configuration 

problem is highly dependent on the nature of the components, their physical forms, 

their material construction, constraints on spatial volume, weight and size and finally 

manufacturing and assembly considerations. 

We review related work in the area of conceptual design representations in Section 

2.1. Research in the design validation area is reviewed in Section 2.2. Previous work 
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in the area of evaluation is reviewed in Section 2.3. Research in design synthesis is 

reviewed in Section 2.4. We present the overall summary of the related work in 

Section 2.5. 

2.1 Representations in Conceptual Design  

Design representation is regarded as the description or model of design information 

and it is strongly coupled to the design methodology being practiced [Dym94]. 

Conceptual design is usually viewed as the stage that needs a lot of human 

intervention during the generation of creative ideas. Design information generated 

during the conceptual design stage is traditionally generated for human designers. 

Since it is in the early stage of design, most of the information is incomplete and 

often represented informally as sketches for human consumption. However, the broad 

usage of computer tools is pushing the research towards the study of formal and 

reusable representations during the conceptual design stage. Formal languages, 

ontologies and other computational representations belong to this case.  

Sketches have been used as the initial representation for conceptual design in many 

industries because they are thought to be able to easily express innovative ideas 

[Mcgo98, Purc98, Yang03, Tove04]. Some progress has been made in the area of 

formalizing representations of planar mechanisms using sketches [Stah98]. However, 

they are defined using adhoc notations and may be difficult to understand for people 

other than their creators. Moreover, different designers may use different styles and 

may find it difficult to understand each other’s sketches. It would be difficult to store 

and reuse sketches using computers.   
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Automated evaluation of concepts represented in sketches is also very challenging 

due to varying levels of details. Schematic representations are also used in which 

design is described schematically as a graph of its constituent elements. A common 

example would be the analog circuit description [Ulri02]. However, formal schematic 

representations are not popular in mechanical designs.   

Function is an important concept in conceptual design across different domains. 

However, there is no universally accepted definition of term function. The function 

representation research was inspired by prior work from value engineering [Mile72, 

Akiy91]. Due to the hierarchical nature of the design problem solving, functions are 

often decomposed into sub-functions. Besides the hierarchical relationships between 

functions and sub-functions, different levels of importance for all functions are also 

identified. Function representation is also referred to as functional modeling. The 

fundamental issue in functional representation is to represent the function structure 

that includes the all the constituent sub-functions and the relationship between them.  

Pahl and Beitz’s widely accepted systematic approach to engineering design defines 

conceptual design as the feasible combination of working principles for sub-

functions. Pahl and Beitz describe the function as the transformation from input to 

output in three flows: material, energy and signal [Pahl96]. They describe both 

functions and flows among functions. Working principles are sought for low level 

sub-functions and working structures are formulated by combining working 

principles. Compatibility of sub-functions is shown in compatibility matrix. Many 

variations have been proposed based on this basic framework [Ulri95, Magr97, 

Ullm97, Wood01].  
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Suh views design as the mapping between functional requirements and design 

parameters. Design problems are posed by defining top level functional requirements. 

Design parameters are defined in physical domain. Design solutions are formulated 

by combination of design parameters [Suh90]. 

Grabowski et. al. divide the traditional single function model into three layered 

function models with different levels of abstraction. The logical model, borrowed 

from electronic domain, is used to present high level topology and connectivity of 

sub-functions. The status model describes the working state combinations of different 

components. The relation model defines the mathematical or physical relations 

between physical variables [Grab99]. However, functions in the logical model are 

defined only using input/output of components. The status model only deals with 

discrete states of components.  

An object oriented graphical representation of functions and flows is proposed in 

[Szyk99]. Data structures of functions and flows are defined using attribute/value 

pairs while the relationships between functions and flows are depicted graphically. 

Working principles (called artifact in [Szyk99]) are attached to functions and flows in 

the graph. Shooter et. al. subsequently proposed a model for design information flow 

in which the relationship between intended behavior and observed behavior of design 

artifact are described and elaborated [Shoo00]. Zeiny proposed a dynamic object-

oriented model that stores form, function, behavior, taxonomy, composition and 

relationships. All the design information is stored in a generic container object called 

Design Entity. Design entities are organized hierarchically [Zein04].  
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The NIST Core Product Model (CPM) provides a base-level product model that is 

open, non-proprietary, generic, extensible, independent of any product development 

process and capable of capturing the full engineering context commonly shared in the 

product development process [Fenv01]. The CPM is intended to serve as a generic 

core representation for design information through the whole product development 

process. Specialized representations can be developed from it by adding more details 

to it. 

Stone and Wood have proposed a functional basis language that tries to subsume the 

previous effort in functional modeling and provide a consistent classification scheme 

for functions. In this approach, functions are characterized using verb-object 

(function-flow) format and definitions of different classes of functions and flows are 

provided [Ston00, Hirt01]. Bohm and Stone recently argued that supporting functions 

are needed to completely represent artifacts. Supporting functions describe 

manufacturing, assembly and support features present in the embodied form of a 

product [Bohm04]. However, these ‘function-transformation’ methodologies have 

difficulty in representing a function that does not transform something. Besides, flows 

with a changing flow topology are difficult to model.  

Some other researchers view functions as closely coupled with behaviors and present 

approaches for representing both. Function is defined as ‘what a device is for’ and 

behavior is defined as ‘what a device does’. In this sense, function is also viewed as 

‘intended behavior’ and sometimes function and intended behavior are used 

interchangeably. Chandrasekaran proposed a language called function representation 

for describing the function of a device, its structure and the causal processes in the 
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device that culminate in the achievement of the function [Chan94]. The causal 

process is described using simple state transitions.  

Iwasaki et al. proposed the Causal Functional Representation Language (CFRL) 

[Iwas93, Iwas95]. They argued that this framework allows them to capture the 

knowledge of how the device is intended to work to achieve its function. CFRL 

relates intuitive functional description to behavior represented as a state transition. 

However, state is not defined formally. The interactions between system components 

are not captured either.  

Sasajima et al. proposed Representation Language for Behavior and Function (FBRL) 

for representing function and behavior with predefined task and domain independent 

primitives [Sasa96]. Umeda et al. proposed Function-Behavior-State (FBS) modeling 

and a conceptual design support tool called FBS modeler [Umed96]. In FBS, a state is 

described by a set of entities and attributes and relationships between them. Behavior 

is described by a sequence of one or more changes of states. Qian and Gero propose a 

Function-Behavior-Structure path design model [Qian96]. Deng et al. proposed a 

representation model for desired product in terms of its function, behavior, structure 

and working environment [Deng99]. This Function-Environment-Behavior-Structure 

(FEBS) model includes initial function decomposition and conversion, causal 

behavioral process generation and physical phenomena library. In a subsequent paper, 

they argued that in some cases, material must also be considered in conceptual 

design. Thus conceptual design framework must also include material [Deng04a].  

Approaches used in FBRL, FBS, and FEBS focus on capturing designer’s intentions 

or behavioral processes by using simple state transitions. Basically they have two 
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limitations. First, states are only defined using a set of state variables. Relationships 

and constraints among state variables are not modeled.  Second, they do not have 

different levels of abstraction for different levels of design information (i.e., they do 

not make any distinction between a higher level or lower level functions).  

Bond graphs have been used in modeling behavior of dynamic system [Madh98]. The 

system is viewed as consisting of standard elements that have different numbers of 

input and output ports by which they are connected. This approach is restricted to 

power and signal flow based systems.  

Vargas-Hernandez and Shah presents an information model called 2nd-CAD that aims 

at providing users with catalogs of elements to create interconnected multi layered 

structures of functions, behaviors, and components. The logic model of 2nd-CAD 

consists of entity and relationship models with corresponding transactions and 

constraints. Functions, behaviors and components are represented in function entity-

relationship models, behavior entity-relationship models and component entity-

relationship models respectively. Flow relationship models connect the output of one 

element and the output of another element. Composition relationship models connect 

parent and children elements. The mapping relationship models connect elements 

from different structures [Varg04]. Only energy flows are used in the function model. 

Behavior models are limited to bond graphs.  

Current research in mechatronic system design is based on existing design 

methodologies. Most of the efforts focus on analyzing system performance using 

bond graphs [Karn00, Good02].  Diaz et al. used a hybrid representation of linear 

graph and block diagrams to support automatic generation of simulations from 
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individual components [Diaz99]. This approach is based on an augmented system 

graph that represents the topology of the system. Stacey et al. represented functions 

using concept arrays and blob diagrams [Stac96]. Chen and Jayaram extended flow 

diagram based functional representation schemes into mechatronic system 

representation by introducing two additional flows (information flow and control 

flow) and new relationships between functions and flows [Chen02]. They also 

presented a systematic approach for applying their schemes [Jaya03].  

Gausemeier et. al. proposed a semi-formal specification language for modeling 

functions in conceptual design of mechatronic systems. Functions are viewed as 

transformations of discrete system states described by parameters [Gaus01]. However, 

functions are not represented formally. The modeling does not support hierarchy of 

functions either. 

Verma and Wood argue that freeform text and functional basis represent extreme 

views for storage and reuse of functions during design [Verm03]. They suggest that a 

way to reconcile the two would be to use both. They proposed an augmented 

language to improve description of certain aspects of functions during the conceptual 

design.    

Dori and Crawley argued that Object-Process Methodology (OPM) could serve as a 

domain-independent paradigm and modeling methodology that are shared among the 

various fields of knowledge for complex systems [Dori03]. OPM uses objects, 

processes and states as basic building blocks (called entities). Links are used to 

capture the static relations and behavioral relations between entities. They believe that 

in this way, structure and behavior, which are the two major aspects of system, can 



 26 
 

co-exist in one paradigm. However, each object has its own states. Moreover, 

complex interactions between objects and their transformation are not captured. 

Williams describes design as a process of building a network of qualitative 

interactions (called an interaction topology) between primitive components. 

Interactions are described by equations among parameters of components. He argued 

that new devices could be constructed by examining possible interactions producible 

by available components and every type of connection between components. The 

resulting structure is a topology of potential interactions [Will92].  

Aiming at constructing the logical relationships between sub-functions at the first 

level of functional decomposition through information flows, Erden et. al. combine 

Petri nets with hybrid automata to model the logical behavior of mechatronic systems. 

They argue the logical relationships between sub-functions of a system can be best 

achieved by Petri nets. Hybrid automata are used to model both discrete and 

continuous state changes and evolution [Erde03]. Although energy, material and 

information flows are all acknowledged, only information flow is used in their first 

level of decomposition. Interactions among design parameters in the states are not 

explicitly considered.   

State transition diagrams (STD), also known as state machines, are a way of 

describing the time-dependent behavior of a system. The basic consistency rule is: "A 

system's behavior in any state must be the same no matter by which path the state is 

arrived at” [Hare87]. STDs are good for modeling complex system behavior such as 

multiple entries and exits subject to different conditions. It has been successfully used 

in software/systems engineering (requirements engineering) [Kont98] and electrical 
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circuit design. The idea of simple state transitions has also been used to represent 

design knowledge [Chan93]. State transition matrix is used in systems engineering for 

analyzing complex system behavior [Haze96]. Researchers have also used hybrid 

automata that combine discrete transition diagram with continuous systems in 

modeling dynamical behavior [Broo04]. STD has been formalized in Unified 

Modeling Language (UML) (extended as statechart diagram) [Booc98]. However, the 

STD in UML cannot be directly used to represent design concepts. Each STD in 

UML only represents the states for one object. In order to represent design concepts, 

we also need to consider object hierarchy and the interactions between objects. UML 

provides another diagram called interaction diagram to model interactions. UML has 

been suggested as integration tool in design of mechatronic systems [Mroz01]. In 

order to conveniently model design concepts, we need a diagram that concurrently 

models interactions and state transition.   

Researchers have also recognized the importance of a formal representation of the 

design process. Gorti et. al. presented a knowledge representation model for product 

and design process by applying and extending traditional object-oriented 

methodology [Gort98].  

Some researchers also use shape grammar to capture the design knowledge of a 

certain types of artifacts. Shape grammar is a set of shape rules that could generate 

design step by step [Caga01].   

2.2 Validation During Conceptual Design 

Validation, also sometimes referred to as verification, involves checking that a design 

proposal satisfies functional and other specifications [Chan90]. Design validation 
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studies are usually closely related to design representations. For function-behavior 

based representations, the embedded behavior enables designers to do simulation. The 

behavior of the proposed system can be simulated and compared against the desired 

behavior [Brac96].  

Deng et al. proposed a constraint-based functional design verification model based on 

an extension of their Function-Environment-Behavior-Structure (FEBS) design model 

[Deng99]. The input is the functional design model, which incorporates four aspects 

of functional design information: the working environment, the physical structure, the 

intended behavior, and the required function. A framework is developed that allows 

for the backward reasoning to trace the causes of system behavior. Design 

verification is achieved by identifying input and output design variables, developing a 

variable dependency graph, propagating constraints over the graph, and checking the 

values of the design variables against these constraints. 

Efforts have also been made in the formal validation area using logic. Even though 

we are not aware of a validation effort that directly deals with electro-mechanical 

design, but efforts are being made in several other domains, particularly in the 

domain of process design. For example, Gruninger et al. used formal enterprise 

models to characterize process integration within enterprises. Customer’s business 

requirements are transformed into logical questions and checked against the 

constraints within the enterprise model [Grun00].  

Approaches for checking unsafe states in finite state machines are presented in 

[Mage99]. However, significant extensions are needed to check interaction-states that 

include both continuous as well as discrete variables.  
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2.3 Evaluation During Conceptual Design  

Evaluation is needed to compare design option during the decision making. It is well 

known that evaluations can be either absolute or relative. Absolute evaluation 

evaluates the concept directly against the evaluation criteria such as feasibility 

judgment, technology-readiness assessment and go/no-go screening. Relative 

evaluation compares concepts with each other using measures defined by the criteria 

such as decision-matrix method [Ullm97]. 

Pahl and Beitz presented a general evaluation method: identifying evaluation criteria, 

weighting the evaluation criteria, assessing the values of alternatives and comparing 

alternatives. Evaluation criteria are usually derived from requirements or from 

general technical and economic characteristics [Pahl95]. Saaty proposed analytical 

hierarchy process (AHP) for evaluating multi-attributes problems [Saat90]. Hari and 

Weiss argued that failure modes and effect analysis should be conducted during 

conceptual design for evaluation. Potential failure modes and design improvements 

needed to eliminate these failures are estimated for concepts. Severity, frequency and 

detection phase are rated quantitatively. These parameters and their combinations 

indicate the reliability of the concepts [Hari99]. Huang and Liao proposed a method 

that integrates ordinal, cardinal and matrix algebra methods with normalized values 

based on Pahl and Beitz, and Saaty [Huan00]. Kalenchuk and Gu argued that product 

life cycle performance such as maintainability should also be evaluated during the 

conceptual design. They proposed specific maintainability metrics incorporating 

uncertainty for evaluating product maintenance of conceptual design alternatives 

[Kale02]. 



 30 
 

Pugh’s decision matrix method has been widely used for rating concepts relative to 

each other in their abilities to meet criteria set by customer requirements. It is an 

iterative evaluation method that consists of several steps. First, criteria are chosen for 

comparison. Then concepts are selected. Third, every designer picks the best concept 

that serves as a datum with which all other concepts will be compared. Finally the 

total score is calculated [Pugh90]. Takai and Ishii presented two modified Pugh 

methods [Taka02].  

Due to the characteristic of incomplete information during conceptual design, 

evaluation uncertainties must be accounted for. Many decision support systems have 

been proposed for consideration of uncertainty during evaluation. See and Lewis 

presented a method for evaluating multiple, potentially conflicting criteria. They 

introduce hypothetical alternative choices to help assess decision maker’s preferences 

[See02, Gurn03].  

2.4 Conceptual Design Synthesis 

Traditionally, the design process has involved two main activities---synthesis and 

analysis. A general discussion of the synthesis process itself can be found in 

[Rooz02]. Most of the present generation CAD tools are geared towards analysis. As 

people want to achieve higher level of automation in design, they are beginning to 

investigate the possibility of automating some aspects of synthesis as well. At least in 

some applications, it may be desirable to have a system that takes customer needs as 

input and automatically designs a suitable product. There is no known general 

solution to synthesis problem. However, research is underway to achieve automation 

in specialized domains.  
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Particularly, in design of integrated circuits, significant level of automation has been 

achieved. Circuit design synthesis techniques are surveyed in [Kuma96]. Logic 

program synthesis techniques are surveyed in [Devi94]. Automated design synthesis 

is much harder for mechanical and electro-mechanical devices.  We believe that the 

primary reason for this discrepancy is that for mechanical and electro-mechanical 

devices, it is more difficult to decouple the interactions among the device 

requirements than it is for purely digital devices.   

Conceptual design synthesis investigates how design concepts are generated from the 

given design requirements. Usually synthesis techniques are closely associated with 

specific design representations. Due to the lack of availability of formal design 

representations during the conceptual design, many efforts are mainly focused on 

developing a synthesis methodology, not on the automation. 

In their systematic approach, Pahl and Beitz’s use the following process to generate 

conceptual solutions [Pahl96]. First, designers identify overall function from the 

design specifications. Then, the overall function is decomposed hierarchically into 

sub-functions, leading to a function structure. Working principles are sought for each 

sub-function and the solution is generated based on the feasible combination of 

working principles.  

Suh views design as the inter-leaved mapping between function requirements and 

design parameters. Function requirement can not be decomposed unless its 

corresponding design parameter(s) is(are) determined [Suh90]. He presents two main 

axioms to assist designers in performing the right design decomposition. However, a 

procedure for automatically carrying out the decomposition is not given. 
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Chakrabarti et. al. view design solutions as combinations of a set of functional 

elements. They also argue that each element can be defined by basic element types or 

combinations thereof. Existing designs are investigated for distilling these element 

types with associated inputs and outputs. They describe design problem by functions 

represented by a number of inputs and outputs. Transformation chains are generated 

between these inputs and outputs. Each transformation can be embodied by choosing 

from the database of functional elements [Chak02]. They developed a program called 

FuncSION (Functional Synthesiser for Input Output Networks) to implement this 

approach. They use exhaustive search algorithm in their work. Search terminates 

when predetermined bounds on the number of the elements in the chain or the 

complexity of the chains are met.  

Ward and Seering developed a synthesis algorithm for generating sets of components 

that combine to satisfy the design problem from a schematic input of a mechanical 

system, mathematical representations of the function specifications and catalog of 

elements. A control strategy of interval calculus and constraint propagation 

techniques is used to avoid exhaustive search [Ward93]. The algorithm is limited to 

single input single output systems. 

Ulrich developed a bond graph based synthesis algorithm for single-input single-

output devices. Input output chains are searched to connect the input bond graph 

chunk to the output chunk. The number of bond graph elements is preset to limit the 

search [Ulri88].  

Following case-based design procedures, Madhusudan synthesizes electromechanical 

products based on bond graph representations. His synthesis algorithm consists of 
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three essential procedures: elaboration, retrieval and verification. Design 

specifications are described using inputs and outputs. First, internal topologies in the 

flow path are generated. Then cases are retrieved using retrieving keys. Finally, case 

verification is performed by symbolically solving the device relation and output time 

histories for the input time-histories [Madh98].  

Campbell et. al. applied A-design methodology on synthesis of electromechanical 

design configurations. Starting from functional descriptions that describe the expected 

inputs and outputs, agents are used to generate design alternatives. Configuration-

agents create design configuration by attaching various embodiment structure 

enhanced from that of Welch and Dixon [Welc94] to fulfill the input function 

parameters and output function parameters. Instantiation-agents extract the equations 

from the design configuration and choose actual components from a computer catalog 

by choosing the exact values of variables in the design [Camp00]. The algorithm can 

only handle problems in the form of inputs and outputs. 

Qian presented an analogy-based synthesis approach based on function-behavior-

structure representations. His computational model includes knowledge base. It starts 

with a search for an existing design based on keywords. A subsequent designer 

guided search is performed to find designs with similar function or behavior. New 

designs are generated by combining the retrieved existing designs with the retrieved 

analogous designs [Qian02]. 

Deng and Lu proposed a synthesis framework for MEMS conceptual design based on 

their FEBS representation schemes. Characteristics of MEMS such as 

chemical/biological/other reactions are also considered in the behavior representation 
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[Deng04b]. The approach is limited to problems defined in terms of inputs and 

outputs. 

Graph grammars also have been used to generate design solutions. Graph grammars 

are a set of rules that could transform the nodes and arcs in a graph representing 

design specifications [Fu93, Li01]. Shridharan and Campbell applied graph grammar 

to create function structures. Grammar rules are extracted from studying function 

structures of thirty products. New solutions can be generated by applying these rules 

to the input given by the user [Srid04]. Schmidt and Cagan developed a synthesis 

algorithm that uses a graph-based abstraction grammar to create design alternatives 

and a recursive simulated annealing process to select a near-optimum design 

[Schm97]. Grammar based approaches are limited to specific types of products since 

different grammars have to be developed for different products. 

Subramanian and Wang developed an algorithm for synthesizing single-input, single 

output mechanisms. They used recursive search algorithm that starts from the desired 

output and work backwards to the specified input. If several primitive mechanisms 

are identified during the process, they randomly pick one and continue [Subr95]. This 

method cannot be applied to complex device synthesis with multiple inputs and 

outputs. 

2.5 Summary 

The research in representation of design concepts is mainly focused on single 

interaction-state systems, where the relationship between different components of 

system is fixed during operation of the product. However, changing interaction 

relationships under different operation modes is the basis for multi-state mechatronic 
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systems to work. Representing design concepts of multi-state mechatronic systems 

not only requires representing the components of the system, but also new features 

such as changing interaction topologies among system components. Besides, 

mechatronic product design requires us to consider complex interactions between 

system elements. These interactions may not necessarily be of the form of 

input/output relationships. Instead, these interactions in the most general form may 

need to be expressed as constraints or other types of complex relationships among 

parameters of various components. In order to describe complex requirements, we 

will also need to explicitly model the use-environments. In order to simulate the 

design concept, we will also need to formally define the events that trigger different 

interactions. Finally, we will need to add explicit notions of unsafe states in the 

representations to ensure that the concepts being represented are safe. This requires us 

to develop a new representation based on the combinations of existing representations 

to capture the behavior exhibited by multi-state devices. 

Evaluation and validation is closely coupled to representation. Current design 

validation methods available as a part of function-based design will not be able to 

perform validation due to the additional validation requirements imposed on the new 

representation. Thus a new validation methodology will be needed for the new 

representation. Currently available evaluation techniques cannot fully exploit 

additional information present in the new representation. Moreover, most evaluation 

methods do not consider design concepts explicitly and do not consider how the 

evaluation will be performed using the available information. Thus, we will need to 

develop new evaluation algorithms that can exploit the additional information 
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available in the design concepts and assist the users in comparing two different 

possible concepts.  

Increasingly, a large number of new electro-mechanical devices are designed using 

off-the-shelf components and sub-systems.  The main challenge in designing such 

products is to arrive at the optimal product configuration that satisfies the functional 

specifications and at the same time is cost effective. Typically, a large number of 

potential product configurations exist for a required end-user functionality. For 

example, linear mechanical motion can be realized through a number of different 

product configurations consisting of a combination of motors and mechanisms such 

as cams, screw systems, piston drives etc. Synthesizing the optimal configuration 

from a large number of alternatives is a challenging task. Currently, designers tend to 

make decisions based on their intuition and past experiences with the previous 

designs. Such design practices lead to long delays in incorporating new components 

and new solutions into current product designs. The development of a synthesis 

algorithm will significantly assist designers in effectively exploiting new off-the-shelf 

components. 

Synthesis algorithms are also closely related to specific design representations. The 

new representation developed as a part of this dissertation will enable us to describe 

behavior of complex components. Moreover, explicit modeling of use-environment 

will aid in selection of the appropriate components from the component library. 

Hence, we plan to develop a new synthesis algorithm that can effectively utilize 

existing basic and complex components.       
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Chapter 3: Modeling and Simulation Framework 

This chapter provides a framework for modeling design concepts of mechatronic 

devices with multiple interaction-states to facilitate computer-aided conceptual design 

of such devices. This chapter introduces the primitives and operators used in the 

modeling framework, and illustrates the modeling process by an example.  

This chapter has been organized in the following manner. Section 3.1 describes the 

background information related to this chapter. Section 3.2 describes the class 

definitions for the primitives used in the framework to model behavior specifications. 

Behavior specifications describe how the device interacts with different components 

of the use-environment under different conditions. We use transition diagrams to 

capture the behavior specifications. Every component and device is modeled as an 

artifact. After defining the behavior specifications, conceptual design is carried out. 

This step entails decomposing the device into components and further elaborating the 

interactions among different components of the device and the use-environment. 

Operators for elaboration to support the conceptual design process are described in 

Section 3.3. Section 3.4 describes how the primitives can be used to model the 

behavior specifications and how the elaboration operators can be used to transform 

the behavior specifications into a design concept. Section 3.5 describes an algorithm 

for simulating a transition diagram. Section 3.6 presents an example. Finally, Section 

3.7 summarizes this chapter.  

3.1 Background 

The following terminology will be used in the remainder of this chapter. 
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Use-environments: We define the use-environment as part of the world with which 

the mechatronic device interacts in its lifetime. Modeling the use-environment 

becomes necessary to describe the desired behavior of complex devices. Consider the 

energy flow in a hybrid vehicle. The road is a part of the use-environment in this case. 

The changes in road conditions alter the operating modes of the hybrid vehicle. 

Therefore, road conditions are needed to describe the desired behavior of the hybrid 

vehicle. 

Mechatronic Devices: Mechatronic devices refer to the devices that integrate 

components from mechanical, electrical and electronic, and information domains. A 

mechatronic device interacts with its use-environment to meet the customer needs. 

Components in a mechatronic device interact with each other and components of the 

use-environment to produce the desired behavior.  For example, a hybrid car is a 

mechatronic device, which is composed of a passenger cabin, an engine, a battery, a 

motor, a control system, a transmission system, and four wheels. 

Design Worlds: A design world consists of entities that need to be modeled to carry 

out the device design and describes how the device produces the desired behavior. In 

our case, it is the combination of a mechatronic device and its use-environment. In the 

hybrid vehicle design example, the hybrid vehicle to be designed and the road 

comprise the design world.  

Component Interactions: Components in a mechatronic device and its use-

environment may interact with each other in different ways. Such interactions include 

energy, signal, and mass flows between components, and two or more components 

mutually constraining each other’s motions. For example, the engine transmits power 
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to the transmission system in the hybrid vehicle. Therefore the engine interacts with 

the transmission system. 

Mechatronic Device Behaviors: The behavior of a mechatronic device is the way in 

which the device interacts with its use-environment over time by responding to the 

changes in the use-environment, and affects the use-environment. For example, the 

behavior of a hybrid vehicle is as following: (1) the engine and the battery both 

provide power to the wheels when the vehicle travels uphill or accelerates, (2) the 

engine provides power to the wheels and it charges the battery when the vehicle 

travels downhill or decelerates, and (3) the engine provides power to the wheels when 

the vehicle travels along a horizontal road. 

Requirements: Requirements define the customers’ needs for a product.  In this 

chapter, requirements are considered as the description of the services provided by a 

device to its use environment. Subject and verb pairs typically describe these 

requirements. Subjects are typically components of the device and the use-

environments. Additional specifications are used to include constraints on the 

requirements. For example, requirements for a hybrid vehicle may be stated as 

following: (1) hybrid vehicle stores spare power being produced by engine when 

vehicle encounters reduced load; (2) hybrid vehicle delivers stored energy to wheels 

when vehicle encounters increased load.     

Behavior Specifications: Behavior specifications formally state the specifications of 

the observable behavior of a device that would satisfy the stated requirements. These 

specifications include how the device will interact with use-environment under 

different conditions and how the device and components of the use-environment will 
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mutually affect each other. In the subsequent sections of this chapter, we use 

transition diagrams to represent the behavior specifications of the device being 

designed. 

Working Principles: We define working principles as the basic physical principles 

behind device components.  

Design Concepts:  We call the result of conceptual design stage a design concept. A 

design concept needs to have the following three main ingredients. First, the design 

concept will need to identify various major components that will be needed to meet 

the requirements. Second, the design concept will need to specify basic working 

principle behind every main component to ensure that the component is realizable. 

Third, the design concept will need to specify how various components will interact 

with each other.   

3.2 Class Definitions for Modeling Primitives 

In this section we define classes for the modeling primitives used in our framework. 

Figure 3.1 shows the overall conceptual design modeling framework and main 

primitives used in this framework. The rationale behind the main primitives shown in 

this figure is as following. We need to be able to models events in the use-

environments to which the design concept will respond. To ensure the safety of the 

device operation, we need to be able to model unsafe parameter value sets. These are 

the parameter value sets that the device should never enter because it can cause 

significant operational difficulties or create hazardous conditions. For example, when 

the door of a machine tool is open, the spindle should not rotate. Engineering 
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characteristics are needed to specify quantitative constraints associated with the 

operation of the device being designed.  
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Figure 3.1: Overview of primitives 

We need transition diagrams to model how the device (or components of the device) 

interacts with the use-environment in response to various events in the use-

environment. Figure 3.2 shows the primitives used in defining interaction-state 

transition diagrams. Dependency among various primitive definitions is depicted in 

Figure 3.3. The primitive at the start of an arrow is needed for defining the primitive 

at the end of the arrow. 

Every class instance will have a name that will serve as the identification for the class 

instance. We use notation “name.member” in this chapter to refer to a member of a 

class instance. For example, notation a.p refers to member p of class instance with 
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name a. In the following subsections we introduce the class definitions for various 

primitives. 
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Figure 3.2: Structure of interaction state transition diagram 

3.2.1 Classes for Modeling Parameters and Parameter Interactions  

A parameter is a type of observation of an artifact. For example, a table is an artifact, 

and the height of the table is a parameter.  Class Parameter is defined using the 

following members: 

• DataType indicates the data type of this parameter.  Parameter can be of several 

different data types. Our framework supports basic data types such as INTEGER, 

REAL, BOOLEAN, and STRING.  We also support user-defined data types that 

are defined by using class UserDefinedDataType in terms of basic data types.  
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• Unit is a string that describes the unit of a piece of data. If the unit is not 

required, then it is set to NONE.  
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primitive A must be part of at least n instances of 
primitive B.  

Figure 3.3: Relationships between major primitives 

Class UserDefinedDataType is defined using member Fields, a set of names of 

Parameter instances. 

For example, Parameter position can be defined in the following manner:  
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position : Parameter
DataType = positionVector
Unit = NONE

positionVector : UserDefinedDataType
Fields = {x, y, z}
Unit = NONE

y : Parameter
DataType = REAL
Unit = “mm”

x : Parameter
DataType =  REAL
Unit = “mm”

z : Parameter
DataType =  REAL
Unit = “mm”

 

As will be introduced in detail in the subsequent sections, parameters will be assigned 

values within states at specific time instances.  If the data type of a parameter is a 

basic data type, then the value of this parameter is represented as a number, string, or 

symbol (e.g., 3.002, “mm”, TRUE).   Values for user defined data types are 

represented as sets of expressions. For example, {(x=2), (y=4), (z=3)} represents a 

possible value for a user defined data type position vector.  

Parameter may also take NONE or NA (not available) as a value for convenience. 

When a parameter does not have a value, we assign its value as NONE. When the 

value of a parameter is not known at the time of modeling, we assign the value as NA.   

Relationships among parameters are called parameter interactions. From the 

perspective of the governing equations behind the relationships, there are two types of 

interactions: 

• Declarative Interactions: These can be modeled using algebraic or ordinary 

differential equations.  For example, the interaction of the mass parameter and 

the volume parameter of an artifact with uniform density is given by m=dv, 

where m is the mass, d is the density, and v is the volume of the artifact. 

However, in conceptual design stage, the exact equation may not be available. A 

qualitative structure that describes the characteristics of the interaction is then 

used.  
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• Procedural Interactions: These cannot be modeled explicitly using algebraic or 

ordinary differential equations during conceptual design. In most of the cases, a 

procedure is needed to describe these interactions. If simulation of a design 

concept is necessary, then simplified numerical simulation can be used as 

surrogates for these interactions. For example, the interaction among a light 

source, a person, and, image at the camera lens (i.e., light from the light source 

reflects from person’s face and forms an image at the camera lens) cannot be 

modeled by algebraic equations or ordinary differential equations.  

We define class ParameterInteraction using the following members:  

• InteractionReason is a tag taken from the following options: 

o ENERGY FLOW indicates energy flow. 

o SIGNAL FLOW indicates signal flow. 

o MASS FLOW indicates mass flow. 

o SPATIAL CONSTRAINT indicates spatial constraints among a set of 

components. 

o LAW indicates physical laws governing relationships among physical 

parameters of a component. 

o OTHER indicates all other types of interactions.  

• InteractionType is a tag taken from the following options:  

o NON-CAUSAL INTERACTION: For these interactions, there is no need to 

specify the dependence among parameters.  For example, the interaction of 

the mass and the volume of an artifact with uniform density is a non-causal 

interaction.  
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o CAUSAL INTERACTION: For these interactions, we have to specify the 

dependent relationships between parameters.   

o ParameterSet is a set of names of Parameter instances that interact with 

each other. 

o DependantParameter is the name of a Parameter instance whose value is 

dependent on the other parameters belonging to a ParameterSet as a result of 

the interaction. For non-causal interactions, DependantParameter is set to 

NONE. 

o Equation is an algebraic or ordinary differential equation (in terms of 

parameters) if the interaction is declarative. In this case, it is defined as an 

instance of class Expression. If the interaction is procedural or the exact 

form of the equation is not available, then we don’t capture the equation. 

Therefore this field is set to NA. 

Class Expression is defined using a member called Content, a special type of string 

that starts and ends with a parenthesis symbol. It includes numbers, standard and user 

defined function names, logical symbols, and mathematical symbols.   

3.2.2 Classes for Modeling Artifacts, Artifact Interactions, and Artifact Mappings  

An artifact is a finite collection of parameters and the interactions among these 

parameters. Class Artifact is defined using the following members:  

• InputParameterSet is a set of names of Parameter instances. These parameters 

serve as the input ports for flow types of interactions among artifacts. 
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• OutputParameterSet is a set of names of Parameter instances. These parameters 

serve as the output ports for energy and signal flow types of interactions among 

artifacts. 

• GeneralParameterSet is a set of names of Parameter instances. These 

parameters do not play input or output role.   

• ParameterInteractionSet is the set of names of ParameterInteraction instances 

describing interactions among parameters belonging to the artifact.  

• ArtifactType is a tag assigned to either USE-ENVIRONMENT or DEVICE to 

classify two different types of artifacts.  

For example, let us consider a DC motor without load. It can be represented by  

motor : Artifact
InputParameterSet = {v, k}

OutputParameterSet = {ω}

GeneralParameterSet = {weight}

ParameterInteractionSet = {c}

ArtifactType = DEVICE

c : ParameterInteraction
InteractionReason = LAW

InteractionType = CAUSAL INTERACTION

ParameterSet = {v, k, ω} 

DependantParameter = ω

Equation = (ω = v/k)

ω : Parameter
DataType = REAL

Unit = “rad/s”

k : Parameter
DataType = REAL

Unit = NONE

v : Parameter
DataType = REAL

Unit = “m/s”

weight : Parameter
DataType = REAL

Unit = “kg”

 

Where v is the input voltage, k is the motor constant, ω is the no-load speed.  

If a is the name of an Artifact, then we use notation a::p to refer to Parameter p of 

Artifact a. 

Artifacts interact with each other to affect their mutual behaviors. Complex artifacts 

can also be decomposed into simple artifacts. These two relationships about artifacts 

are modeled using classes ArtifactInteraction and ArtifactMapping. 
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Artifact interactions usually result due to interactions among their parameters. We 

define class ArtifactInteraction using the following members: 

• ArtifactSet is the set of names of the Artifact instances in the interaction. 

• InteractionInfo is defined as the set of names of ParameterInteraction 

instances that describe the parameter interactions between the artifacts.  

All artifact interactions can finally be modeled as parameter interactions 

An artifact mapping is defined as the relationship between an artifact and its children 

artifacts. The relationship includes artifact hierarchy and parameter mapping between 

parent artifact and children artifacts. We define class ArtifactMapping using the 

following members: 

• Artifact is the name of the Artifact instance being decomposed. 

• ChildrenArtifactSet is the set of the names of children Artifact instances resulting 

from the decomposition of Artifact.  

• ParameterMappingSet is a set of Expression instances. Each Expression 

instance defines the relationship between the parent artifact’s parameters and its 

children artifacts’ parameters. For example, suppose parameter p1 of parent a1 is 

mapped to parameter p2 of children artifact a2 and parameter p3 of children artifact 

a3. Then, a possible expression can be (a1::p1 =  a2::p2 + a3::p3). 

3.2.3 Classes for Modeling Interaction-States 

An interaction-state describes the invariant interactions between a set of artifacts. For 

example, if a motor is driving a gearbox to transmit mechanical energy, then the 

interaction-state of this set of artifacts is the description of the motor, the power 

source, the gearbox, and their interactions. Every artifact in the artifact set of this 
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interaction-state must participate in at least one artifact interaction in this state. An 

artifact is active in the interaction-state if it belongs to the artifact set of the state. 

Otherwise, the artifact is considered inactive in the state. Usually when we refer to the 

artifacts in a state, we refer to the active artifacts in the state.  

We use symbol t to denote the time variable associated with the internal clock of the 

state. We call t the local time variable because t only exists with respect to a specific 

state.  On the other hand, when simulating a design concept, we need another variable 

to indicate the time in the design world, which includes all states of the device. This 

time variable is denoted as T and is called the global time variable. At a given global 

time T=T*, the device is in a particular state with its own corresponding local time 

t=t*.  Within a state, t starts from 0. Ending time of a state is denoted by symbol te.  At 

a particular time t’, the value of a parameter p of artifact a is denoted by a::p(t=t′). 

a::p(t) is used to represent the value of a parameter parametrically. On the other hand, 

if the global time variable is used to indicate the value of a parameter, we use 

a::p(T=T′) for a specific time, and a::p(T) to represent it parametrically.   

Notation s::a::p will be used to refer to the Parameter p of Artifact a in State s. 

We define class InteractionState using the following members: 

• ArtifactSet is a set of names of Artifact instances that are active in the state. 

• ArtifactInteractionSet is a set of names of ArtifactInteraction instances 

between the active artifacts in this state. 

• InitialValueSet is a set of names of class ValueAssignment instances that 

describes how parameter values are initialized.  
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• ChangeModeSet is a set of names of class ChangeMode instances that describes 

how parameter values will change inside of the interaction-state.   

Class ValueAssignment is defined using the following members:  

• ParameterName is the name of a Parameter instance. 

• InitializationType is a tag taken from the following options:  

o INHERIT indicates that the parameter inherits its value from the previous 

state. Let the current state be s, and its previous state be s′, then the initial 

value of a parameter a::p belonging to this artifact can be obtained in the 

following manner: s::a::p (t = 0) = s′::a::p (t = te), where te is the ending time 

of state s′.  

o DERIVE indicates the value of a parameter is derived from other parameter 

values that belong to some artifacts in the same state.   

o ASSIGN indicates the value of a parameter is assigned to a particular value.  

• Value denotes the value of a parameter. If the InitializationType is set to INHERIT 

or DERIVE, Value is set to NA. 

Class ChangeMode is defined using the following members:  

• ParameterName is the name of the Parameter instance. 

• ChangeType is a tag taken from the following options:  

o CONSTANT indicates the value is a constant within the state.  

o DERIVE indicates the value changes according to the values of parameters it 

interacts with.  

o EQUATION indicates the value is changing according to time variable t.   
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• Equation is an equation in terms of a parameter with respect to the local time in a 

state. In this case, it is defined using class Expression. If the ChangeType is set 

to CONSTANT or DERIVE, it is set to NA. 

Some limitations may apply on combining initialization types and value-changing 

modes as shown in the Table 3.1  

Table 3.1: Limitations on combining initialization types and value-changing modes  

CONSTANTINHERIT

EQUATION

EQUATION

DERIVEDERIVE

CONSTANTASSIGN

Value changing modeInitialization type

CONSTANTINHERIT

EQUATION

EQUATION

DERIVEDERIVE

CONSTANTASSIGN

Value changing modeInitialization type

 

States may be inconsistent if the underlying interactions are inconsistent. An 

Interaction-state s is inconsistent if equations defined in ArtifactInteractionSet are 

inconsistent. Equations may turn out to be inconsistent if the system of equations is 

over-constrained.  

Let X be the set of parameters belonging to all the artifacts in an interaction-state s. 

Let F be the set of interactions in state s defined over X. Each f in F is a subset of X 

and describes an interaction. During the conceptual design stage we only consider the 

qualitative nature of interactions.  

• Set X = {x1, … xn}  

• Set F = {f1, …fm}, where each fi ⊆ X and ∪F = X 

• n ≥ m 
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The problem of interaction consistency is to determine if there exists F′ ⊂ F such that 

cardinality(F′) > cardinality(∪F′). If such F′ exists, then the given set of interactions 

is considered inconsistent.  

For example, consider an interaction-state that has seven parameters. Let the set of 

parameters for this state be defined as X = {x1, x2, x3, x4, x5, x6, x7}. Let the 

interactions among these parameters be characterized by the following set of 

relationships: 

f1(x1, x2) = 0,  f2(x2, x3) = 0,  f3(x3, x4) = 0, f4 (x2, x4) = 0,  f5(x1, x4) = 0, f6(x5, x6, x7) = 0.  

Although overall there are seven parameters and only six relationships, but the first 

five relationships (i.e., f1(x1, x2) = 0, f2(x2, x3) = 0, f3(x3, x4) = 0, f4(x2, x4) = 0, f5(x1, x4) 

= 0) only involve four variables x1, x2, x3, and x4. Therefore these relationships are 

over-constrained. Thus, the interactions in this state are inconsistent and this state is 

inconsistent.  

3.2.4 Classes for Modeling Event and Event Spaces  

An event occurs when a use-environment artifact becomes active or inactive, or a 

parameter or parameters of the use-environment artifacts change their values. Event 

space refers to the set of all possible events that can happen in the use-environment. 

Class Event Space is defined using the following members:    

• ParameterRangeSet is a set of names of ParameterValueRange instances. 

These parameters belong to the use-environment artifacts.  

Class ParameterValueRange is defined using the following members: 

• Parameter is the name of a Parameter instance. 

• RangeType is a tag taken from the following options:  



 53 
 

o CONTINOUS means that values are bound between ValueLowerLimit and 

ValueUpperLimit. 

o DISCRETE means that values are assigned from a ValueSet. 

• ValueSet is a set of Expression instances. If RangeType is set to CONTINOUS, 

ValueSet is set to NA.  

• ValueLowerLimit is a value for the parameter. If RangeType is set to DISCRETE, 

Value LowerLimit is set to NA. 

• ValueUpperLimit is a value for the parameter. If RangeType is set to DISCRETE, 

ValueUpperLimit is set to NA. 

During the simulation of a design concept, global time variable T represents time in 

the design world, which includes the device and the use-environment. Every event 

happens in the use-environment at a certain specific value of T.  

We define class Event using the following members: 

• GlobalTime is the value of the global timer that describes the time when this event 

happens. 

• EventCondition is defined as an instance of class Expression that describes 

parameter value changes during the event. 

The following Expression instances show several examples of event conditions:  

(a = ACTIVE). This expression means that Artifact a became active at design 
world time T=4. 
(a::p = 3). This expression means that Parameter p of Artifact a takes value of 3 
at design world time T=5. 
(a::p = 3+). This expression means that the value of Parameter p of Artifact a
takes is incremented by 3 at design world time T=6.  
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To facilitate efficient simulations, the current modeling framework has the following 

limitations. Events can only involve use-environment parameters. Use-environment 

parameters that are used to define events are called event parameters. Event 

parameters affect device parameters only during initialization of a state. Device 

parameters cannot affect values of event parameters.  

3.2.5 Classes for Modeling Unsafe Parameter Value Sets  

A parameter value set is a snapshot of an interaction-state. In a transition diagram, 

interaction-states may contain a set (possibly infinite) of parameter value sets. A 

unique parameter value set can be extracted from an interaction-state by selecting a 

specific time instant in the interaction-state.  For example at T = 5, the values of all 

parameters belonging to both the device and the use-environment artifacts define the 

world-state at T = 5.  An unsafe parameter value set is a parameter value set that is 

forbidden by requirements.   

Class UnsafeParameterValueSet is defined using member ParameterValueSet, 

where ParameterValueSet is a set of Expression instances that indicates the 

forbidden parameter values or value ranges by the requirements. 

A design concept should never enter an unsafe parameter value set. Therefore, a 

design concept should be such that in response to all possible events contained in the 

event space, it should never enter an interaction-state that will contain unsafe 

parameter value sets.       
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3.2.6 Classes for Modeling Interaction-State Transitions and Transition Diagrams    

An interaction-state transition is the indication of changes from one interaction-state 

to another interaction-state. We define class InteractionStateTransition using the 

following members: 

• StartState is the InteractionState instance where the transition starts. 

• EndState is the InteractionState instance where the transition ends. 

• TransitionCondition is an Expression instance that indicates the condition 

under which the transition occurs. This is a composite expression that may 

contain (1) sub-expressions indicating the internal time clock of a state reaching a 

particular value, such as (t=4) or (2) sub-expressions indicating some parameters 

taking particular values, such as (a::p(t)=5).   

• ClosureActionSet is a set of Expression instances that describes how the 

parameters value will be set in the starting state before leaving it. For example, 

{(a1::p1(t=te) = 1), (a1::p2(t=te) = 2), (a2::p1(t=te) = 3)}.  

• Initialization Action Set is a set of Expression instances that describe how the 

parameters value will be set in the ending state before entering it. {(a1::p1(t=0) = 

2), (a1::p2(t=0) = 3), (a2::p1(t =0) = 3)}. Expressions in this set override the 

initialization expressions defined for a state.  

InteractionStateTransition r is realizable for InteractionState s if there exists a 

sequence of events such that the device reaches s and transition condition for r is 

satisfied. If a transition is not realizable, then it is called unrealizable. Unrealizable 

transitions should be eliminated from the design concept, as they do not contribute 

anything to the behavior.  
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x3 = 2 + 2t2

x1 = 2x2

Transition r1 Condition: x3+x4=8

Transition r2 Condition: x2=4 &  x1=3

Transition r3 Condition: x3=8

Transition r4 Condition: x3=10

Event Space: 
x4 and x5 are external continuous environment parameters
1 ≤ x4 ≤2,  1 ≤ x5 ≤2  

Figure 3.4: Unrealizable transitions 

A transition may be unrealizable because of a variety of reasons: 

• The condition for some other transition will always be satisfied before condition 

for this transition is satisfied. Transition r4 in Figure 3.4 is unrealizable because 

condition for transition r3 is always satisfied before condition for transition r4 is 

satisfied. Therefore, transition r4 never takes place.   

• Interactions in the state rule out the possibility of the transition condition being 

satisfied. Transition r2 in Figure 3.4 is unrealizable because x2 = 4 and x1 = 3 

cannot be satisfied due to an interaction between x1 and x2. 

• The event space does not allow the condition for this transition to be satisfied. 

Transition r1 in Figure 3.4 is unrealizable because condition for this transition 

cannot be satisfied due to restriction on the ranges of parameters x4 and x5. 

A transition diagram is a graph whose nodes are interaction-states and edges are 

interaction-state transitions. We define class TransitionDiagram using the 

following members. 

• InitialState is the name of a special InteractionState instance. Every transition 

diagram must include an initial state, which is the device interaction-state at T = 0. 
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As a special interaction-state, the initial state has all the artifacts including device 

artifacts and use-environment artifacts. Parameters of these artifacts are initialized 

in the initial state. However, all the artifacts remain inactive until events trigger 

the device to leave the initial state. 

• InteractionStateSet is the set of names of remaining InteractionState instances. 

• InteractionStateTransition Set is the set of names of 

InteractionStateTransition instances. 

A transition diagram is considered safe with respect to an event space E and a set of 

unsafe world-states U, if there does not exist a sequence of events Es that results in 

one of the unsafe world-states. Figure 3.5 graphically shows an example of an unsafe 

transition diagram that reaches an unsafe world-state.  

a1

s1

a1

s2

a2

r1

e1

r2

e2

 

Figure 3.5: Example of unsafe transition diagram 

In this example, p1 is a parameter of artifact a1 and p2 is a parameter of artifact a2. 

This diagram has four interaction-states including initial state s0. In each state, the 

local time variable t is from 0 to some ending time te. In state s1, we have 

s1::a1::p1(t)=s1::a1::p1(t=0) + 1.  

In state s2, we have  

s2::a1::p1(t)=s2::a1::p1(t=0) + 2t,  s2::a2::p2(t)=s2::a1::p1(t) + 1.  
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The definition of the event space and the unsafe parameter value set are as the 

following: 

w : ParameterRange
Parameter = p1

RangeType = CONTINUOUS

ValueSet = NONE

ValueLowerLimit = 0

ValueUpperLimit = 10

e : EventSpace
ParameterRangeSet = {w}

u : UnsafeParameterValueSet
ParameterValueSet = {(a1::p1=4), (a2::p2=5)}

 

The transition condition from state s1 to s2 is defined using expression (a1::p1(t)=3). 

Thus, when an event (a1::p1(t=0):=2) happens, it will result in unsafe parameter value 

set u, which happens in s2, when t=0.5.  

We define a transition diagram as valid when the following conditions are met: 

• Every state in the transition diagram is consistent. 

• Every transition in the transition diagram is realizable. 

Given a valid transition diagram and an event space, we can simulate how the 

transition diagram responds to different events in the event space. 

3.3 Elaboration Operators  

Primitives are building blocks for modeling design concepts. In our modeling 

framework, we use operators for constructing and manipulating these primitives.  

According to the usage, these operators are classified into two categories: constructor 

operators for constructing primitives and elaboration operators for elaborating 

primitives.  
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Each primitive has its own CONSTRUCT operator that is similar to the concept of 

constructor used in object-orientated programming languages.  A CONSTRUCT 

operator takes input parameters to perform the initialization of a primitive. When a 

CONSTRUCT operator is called, it first checks if input parameters are sufficient for 

constructing the primitive.  If not, it will return failure.  The construction of a 

transition diagram should be performed in a bottom up manner. That is, first construct 

the lower level primitives such as parameters, artifacts etc, then construct higher level 

primitives such as interaction-state and then finally the transition diagram.  

In our framework, an initial transition diagram, which represents the specifications of 

observable behaviors of a device, will be constructed first.  After that, the conceptual 

design is performed by elaborating the initial transition diagram and by creating the 

internal structures of the mechatronic device being designed. The following operators 

are used for this purpose.  

• Decompose Artifact.  This operator is called DECOMPOSE-ARTIFACT and 

used to decompose an artifact into a set of artifacts. This operator is defined as the 

following.  

o Input: artifact a, transition diagram D in which a exists. 

o Output: a set of artifacts A, the artifact mapping M between a and A, and the 

new transition diagram D′ after a is decomposed. 

o Action: decompose a into A by establishing an artifact mapping between a and 

A. Replace a in D, which leads to D′. The artifact interactions involving a in D 

will be converted to artifact interactions involving A.  
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o Precondition: Working principles for the input artifact are not known. 

Therefore, this artifact has to be treated as a complex artifact and has to be 

decomposed further.  

For example, as shown in Figure 3.6, artifact a1 has two parameters p1 and p2, h is 

a parameter based artifact interaction between a1 and a2 in D as defined in the 

following:  

h : ArtifactInteraction
ArtifactSet = {a1, a2}

InteractionInfo = {c}

c : ParameterInteraction
InteractionReason = ENERGY FLOW

InteractionType = CAUSAL INTERACTION

ParameterSet = {a1::p1, a1::p2, a2::p3} 

DependantParameter = a2::p3

Equation = (a2::p3 = a1::p1 + a1::p2)

 

a11

s1

(a) Before decomposition of a1

s0 a2

a1

s1

a2

s2

a3

s0
a2

h: a2::p3 = 
a1::p1 + a1::p2

(b) After decomposition of a1

a12

h

h': a2::p3 = a3::p4

a2

s2

a3

h': a2:: p3 = a3::p4

h'

h'

h1: a2::p3 = a11::p1 + a12::p2
h2: a2:: p3 = a11::p1 + a12::p2
h3: a2:: p3 = a11::p1 + a12::p2

h1

h2h3

 

Figure 3.6: Usage of operator DECOMPOSE-ARTIFACT 
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Applying operator DECOMPOSE-ARTIFACT will decompose a1 into two sub-

artifacts:  a11 and a12. Now h is converted into three artifact interactions h1, h2 and 

h3 in D′ as defined in the following: 

h1 : ArtifactInteraction
ArtifactSet = {a11, a2}

InteractionInfo = {c′ }

h2 : ArtifactInteraction
ArtifactSet = {a12, a2} 

InteractionInfo = {c′ }

h3 : ArtifactInteraction
ArtifactSet = {a11, a12} 

InteractionInfo = {c′ }

c′ : ParameterInteraction
InteractionReason = ENERGY FLOW

InteractionType = CAUSAL INTERACTIONS

ParameterSet = {a11::p1, a12::p2, a2::p3} 

DependantParameter = a2::p3

Equation = (a2::p3 = a11::p1 + a12::p2)  

Artifact decomposition should follow the following constraints. 

o Maintain parameter consistency between children artifacts and parent 

artifact. Let {p1, …, pn} be set of parameters belonging to Artifact a and let 

{pi1, …, pij} be the set of parameters for an artifact ai ∈ Ai. For every pk ∈ {p1, 

…, pn}, there should exist a mapping of the following type pk = f(p11, …, pi1, 

pi2, …). This can be accomplished in the following manner: 

� Parent parameters are inherited directly. For example, if we consider the 

AC motor as an artifact, and then decompose it into the following 

artifacts: rotor, electromagnetic stator windings, housing, bearing, and 

shaft. The power parameter of the AC motor is inherited directly to the 

power parameter of the electromagnetic stator windings. 
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� Parent parameters are mapped to children parameters. For example, the 

weight parameter of the AC motor artifact is a function of the weight of 

the rotor, electromagnetic stator windings, housing, bearing, and shaft. 

o Maintain interaction consistency between children artifacts and parent 

artifact. If we replace parent artifact with its children artifacts, then all the 

interactions between parent artifact and use-environment artifacts must be 

able to be mapped into the interactions between children artifacts and use-

environment artifacts. For example, one of the AC motor’s behaviors is to 

take electrical energy from a power source and convert it into rotational 

mechanical energy. If we decompose the motor into rotor and electromagnetic 

stator windings, then rotor and the electromagnetic stator windings must also 

be able to accept electric energy and carry out the conversion. 

• Decompose State: This operator is called DECOMPOSE-STATE and used to 

decompose an interaction-state into several sub-states and state transitions among 

these sub-states. This operator is defined as the following. 

o Input: state s and a transition diagram D that contains s. 

o Output: new state set S, new state transition set R and a new transition 

diagram D′.  

o Action: Replace the original state by a new state set and a new state transition 

set. Redirect transitions that involve the original state to the decomposed state.  

o Precondition: Sometimes the artifacts and artifact interactions cannot be 

satisfied by existing working principles, therefore we need to further 
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decompose artifacts into finer levels. Sometime artifact decomposition may 

also require state decomposition to maintain state consistency.  

This operation is illustrated in Figure 3.7.  

a1

s1

a3

a2

s2

a3

a1

s0

a2 a3

r1

(a) Original transition diagram 

(c) s1 should be decomposed into 
two states 

r2r3

a2 a11

s1

a3a2

(b) After artifact decomposition of a1

a12

a11

s11

a3a2

a12

s12

a3a2

a12
a2

s2

a3

r1

r2

r3

a11

s11

a3a2

a12

r4

(d) After state decomposition of s1

s12

a3a2

a12

a11

s11

a3a2

a12

 

Figure 3.7: Usage of operator DECOMPOSE-STATE 

In state s1, artifact a1 interacts with a2 and a3. Then a1 is decomposed into a11 

and a12 as shown in Figure 3.7(b). However, it is determined that the interaction 
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between a11 and a2 and the interaction between a12 and a2 cannot exist at the 

same time. Thus s1 should be decomposed as shown in Figure 3.7(c). The 

original transition diagram will also be changed into a new diagram as shown in 

Figure 3.7(d). 

• Decompose Transition: This operator is called DECOMPOSE-TRANSITION and 

used to decompose an interaction-state transition into several states and state 

transitions among these states. This operator is defined as the following. 

o Input: state transition r. 

o Output: new state set S and new state transition set R. 

o Action: Replace the original state transition by a new state set and a new state 

transition set. In other words, this operator substitutes a state transition with a 

new transition diagram.  

o Precondition: Designers decide that there are alternative ways for realizing the 

state transition. Sometimes the transition cannot be satisfied by existing 

working principles or designers view a better solution by inserting 

intermediate states and corresponding transitions. In this case, we need to 

further elaborate the state transition into a finer level.  Using the 

decomposition transition operator must also result in a set of states each with 

its unique interaction topology.  

This is illustrated in Figure 3.8. The transition r2 between states s1 and s2 is 

decomposed. Figure 3.8(b) shows the result of decomposing r2. r2 is replaced by 

a transition diagram that includes transitions r2′,  r4, and r5, and states s3 and s4. 
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Design concept generated as a result of applying the elaboration operators described 

above will not violate the behavioral requirements represented in the initial transition 

diagram and hence it is referred as an elaboration of the initial behavior specification. 

This is due to the following reasons: 

 

(a) Before decomposing transition r2

a1

s1

a3

a2

s2

a3

a1

s0

a2 a3

r1

r2r3

a2

(b) After decomposing transition r2

a1

s1

a3

a2

s2

a3

a1

s0

a2 a3

r1
r2´

r3

a2 a1

s3

a3

a1

s4

a2

r4
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Figure 3.8: Usage of operator DECOMPOSE-TRANSITION  

• Applying operator DECOMPOSE-ARTIFACT will decompose the artifact into 

several sub-artifacts. As long as the decomposition follows the parameter and 

interaction consistency guidelines (refer to the description of the operator 
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Decompose Artifact), the interaction between the artifact and the use-environment 

can always be fulfilled by the interactions between its sub-artifacts and the use-

environment. These sub-artifacts can also be assembled into the original artifact. 

Thus the elaborated behavior model will not violate the initial behavior 

specification. 

• Applying operator DECOMPOSE-STATE will decompose a state into several sub-

states and associated transitions. According to the definition of interaction-state, 

the interactions in the new states should not happen at the same time. However, 

after an artifact is decomposed, interaction topology in the original state should be 

represented by the interactions between sub-artifacts and the use-environment. 

This reorganization may lead to state decomposition. As stated above, this will 

not cause any violation. State decomposition without artifact decomposition 

means that the interactions in the original state actually do not exist at the same 

time. As long as all the interactions in the original state are preserved in the new 

states, there is no difference in the behavior. 

• Applying operator DECOMPOSE-TRANSITION will decompose a transition into 

several transitions and associated states. Since decomposing transition will not 

change the starting and ending states of this transition, there is no difference in the 

behavior either.  

3.4 Steps in Conceptual Design  

In our framework, a design concept is modeled using primitives and operators defined 

in Section 3.2 and 3.3 using the following two main steps.  
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Step 1: Define Behavioral Specifications. This step builds the initial transition 

diagram from requirements.  There are several sub-tasks in this step.   

The first task is to define the initial primitives of the design world. The design world 

usually includes the device to be designed and the artifacts in the use-environment 

with which the device interacts.  For constructing artifacts, we need to construct 

parameters and parameter-interactions for each artifact.  Device artifacts respond to 

events in the use-environment. Thus, given a design problem, we should also define 

the event space.  

After artifacts are created, we can use these artifacts to construct a set of interaction-

states by adding artifact interactions according to the requirements.  In creating states, 

we should check the consistency of each state to make sure that all states are 

consistent. After states are constructed and their consistencies have been checked, we 

can define a set of state transitions to construct an initial transition diagram.  In 

creating transitions, we should check if a transition is realizable or not. Unrealizable 

transitions should be eliminated from the design concept. Also, for a specific design 

problem, we should know the conditions that result in unsafe operations. These 

conditions should be defined as unsafe world-states. Thus, we should also be able to 

check if the created transition diagram is safe or not.  If the transition diagram is 

valid, then we have finished the definition of behavior specifications, i.e., 

construction of an initial valid transition diagram. To capture design constraints, 

engineering characteristics should also be defined as a part of the behavior 

specification. 
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Step 2: Elaborate Transition Diagrams: This is the main step of the modeling 

framework. After the initial transition diagram is constructed, the device artifacts may 

need to be further decomposed such that they can be realized via known working 

principles. At the same time, interaction-states and transitions may also need to be 

decomposed because of the following reasons: 

1) After the artifact decomposition, the initial artifact interactions should also be 

replaced by the interactions represented by the sub-artifacts. In this case, new 

artifact interactions may not happen concurrently and thus they should be broken 

up into several different interaction-states. New states may also require new 

transitions to connect these states. 

2) Breaking up unrealizable transitions may require state decomposition and 

transition decomposition. A transition may be unrealizable due to the following 

reasons: a) no working principles or events could be found that can match the 

parameter values in two states associated with the transition, b) no working 

principles or events could be found that can satisfy the transition condition. To 

solve this, intermediate transitions and states must be introduced. This may also 

be accompanied by corresponding artifact decompositions. 

The elaboration step must ensure that the device’s desired behavior is satisfied. 

Figure 3.9 shows the elaboration process.  
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Initial Transition Diagram

Elaborated Transition Diagram

Elaboration

Decomposed 
Artifact

Artifact

 

Figure 3.9: Elaboration of interaction transition diagrams 

Design concept is formally defined as an ordered set (Di, Df, E, U), in which Di is the 

initial behavior specification, Df is the fully elaborated transition diagram, E is the 

event space, U is the set of unsafe parameter values with respect to E.  A design 

concept is considered valid if it meets the following conditions: 

• Di and Df are valid transition diagrams. 

• Di and Df are safe with respect to E and U. 

• Every artifact interaction in every state of Df can be expressed in terms of 

parameter interactions. For every parameter interaction and state transition, there 

exists a known working principle.  

• Df  is an elaboration of Di. 
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3.5 Simulating Transition Diagrams 

This section describes an algorithm for simulating a transition diagram. Transition 

diagrams in behavior specifications and in design concepts can both be simulated. 

This would provide capabilities to check the behavior specifications or design 

concepts as early as possible. The algorithm for this task is described below. 

Algorithm SIMULATETRANSITIONDIAGRAM 

Input:  

• An event sequence L  

• A transition diagram D 

• Unsafe parameter value sets U 

Output:  

• A sequence V of 5-tuples. Each 5-tuple is defined as (t1, t2, s, Q, Safety_Status). 

Where  

� t1 is the start time.  

� t2 is the end time.  

� s is the interaction-state in which the device remains between time t1 and t2.  

� Q is the set of equations that are valid between time t1 and t2. 

� Safety_Status determines if an unsafe world state is embedded within 

interaction state s or not. Safety_Status is set to TRUE if s does not contain an 

unsafe parameter value set. It is set to FALSE if s contains an unsafe 

parameter value set. 

Steps: 
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1) Assign T = 0; Current_State = D.InitialState; Incoming_Transition = NONE; and 

V = ∅. 

2) Outgoing_Transition = NONE. 

3) Find the set of outgoing transitions RO for Current_State. This is done by 

identifying all transitions r in D.InteractionStateTransitionSet such that 

r.StartState = Current_State. 

4) Assign Transition_Time = INFINITY; Transition_Event = NONE; and 

Safety_Status = TRUE. 

5) Initialize parameters in Current_State using value assignments in 

Current_State.InitialValueSet. 

i. For every member i ∈ Current_State.InitialValueSet 

a) if i.InitializationType is ASSGIN, apply the value assignment in i.Value.  

b) if i.InitializationType is INHERIT, then inherit the value from the previous 

state. 

ii. If Incoming_Transition ≠ NONE, override the previously defined value 

assignment using   Incoming_Transition.InitializationActionSet. 

6) Let Q1 be the set of equations defined in Current_State.ChangeModeSet, Q2 be 

the set of equations defined in ParameterInteractionSet of various artifacts 

belonging to Current_State, Q3 be the set of equations defined in 

Current_State.ArtifactInteractionSet. Q=Q1∪ Q2∪Q3. 

7) For every transition r in RO, do the following: 

i. If r.TransitionCondition does not involve any event parameter, then 
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(i). Compute the time Tmp when this transition can occur by solving equation 

set Q∪ (r.TransitionCondition) for time t. 

(ii). Transition_Time = Tmp; Outgoing_Transition = r. 

ii. Otherwise, do the following: 

a) If an event exists in L that can satisfy r.TransitionCondition, then find the 

first such event l in L. 

b) Transition_Time = l.GlobalTime; Outgoing_Transition = r; 

Transition_Event = l. 

8) Assign t1 = T; t2 = Transition_Time; te = Transition_Time – T. 

9) Check state safety using the approach described below:  

i. For every unsafe parameter value set u in U do the following:  

(i). Find the parameter value set Z containing those parameters that remain 

constant during the state. If u ⊆ Z, then Safety_Status = FALSE, go to step 

10. 

(ii). If equations in Q are solvable analytically, then  

i) Substitute unsafe values from u in Q and solve for time t.  

ii) If t ≤ t2, then go to step 10. 

iii) If t > t2, then Safety_Status = TRUE, go to the next u. 

(iii). Otherwise,  

i) Assign t = 0;  

ii) While t ≤ te and global time T  ≤  Transition_Time, do the following: 

(a) Substitute t and T in Q and compute values of all parameters. 

Store these values in the value parameter set Z’.  
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(b) For every unsafe parameter value set u in U do the following:  

(i). If u involves parameters that belong to artifacts not in this state, 

go to the next u. 

(ii). if u ⊆ Z’, then Safety_Status = FALSE. 

(iii). Assign T =  T + Delta. 

(iv). Assign t = t + Delta. 

10) Insert (t1, t2, Current_State, Q, Safety_Status) into V. 

11) Assign T = Transition_Time. 

12) If T = INFINITY, then return V. 

13) Otherwise, Current_State = Outgoing_Transition.EndState; 

Incoming_Transition  = Outgoing_Transition. 

14) If Transition_Event is not equal to NONE, then remove it from L. 

15) If L is not empty then go to Step 2. 

16) Otherwise, return V. 

3.6 Example of Modeling Autonomous Vacuum Cleaner (AVC) 

This section describes application of the methodology presented in this chapter to the 

design of an autonomous vacuum cleaner (AVC). The design task is to develop a 

device that is able to collect the debris on a surface while avoiding collision from 

obstacles on the surface. The requirements are described in Figure 3.10.  
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•AVC cleans Surface
•AVC avoids Obstacles

Needs

•AVC cleans Surface
•AVC avoids Obstacles

Needs

AVC
Surface
Obstacle
Interface
PowerSource

Design World Artifacts

AVC
Surface
Obstacle
Interface
PowerSource

Design World Artifacts

•Maximum moving speed is 
0.01m/s
•Maximum size of debris to 
clean is 0.01m3

•Maximum capacity of storing 
debris is 0.1m3

•Input voltage is limited to 120v

Engineering characteristics

•Maximum moving speed is 
0.01m/s
•Maximum size of debris to 
clean is 0.01m3

•Maximum capacity of storing 
debris is 0.1m3

•Input voltage is limited to 120v

Engineering characteristics

 

Figure 3.10: Requirements of AVC 

Customer needs described using the “artifact verb” pairs are shown in the left box 

(e.g., AVC cleans surface). Design world artifacts are extracted from the customer 

needs in the right box. AVC is the device artifact while surface and the obstacles are 

the use-environment artifacts. Engineering characteristics are also given in the bottom 

of the right box. The two steps described in Section 3.4 are carried out in the 

following manner: 

1. Define Behavior Specifications: Parameters that are used to define behavior 

specifications are shown in Table 3.2. For example, AVC stores the debris thus it 

has a remaining capacity parameter. The possible interactions between AVC and 

its use-environment are summarized into the event space shown in Table 3.3.  
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Table 3.2: Artifacts and Parameters used in AVC behavior specification 

REALVoltageOutputPower 
Source

ON/OFFBOOLEANPauseStatus

TRUE/FALSEBOOLEANAVCInContactObstacle

TRUE/FALSEBOOLEANMovePossible

ON/OFFBOOLEANPower

REALInputVoltage

0 to 100%REALRemainingCapacity

ON/OFFBOOLEANPowerInterface

ON/OFFBOOLEANPauseStatus

0 to 100%REALRemainingEnergy

TRUE/FALSEBOOLEANLocationVisited

TRUE/FALSEBOOLEANObstacleInContact

REALAreaCoveredSurface

REALSpeedAVC

ConventionTypeParameterArtifact

REALVoltageOutputPower 
Source

ON/OFFBOOLEANPauseStatus

TRUE/FALSEBOOLEANAVCInContactObstacle

TRUE/FALSEBOOLEANMovePossible

ON/OFFBOOLEANPower

REALInputVoltage

0 to 100%REALRemainingCapacity

ON/OFFBOOLEANPowerInterface

ON/OFFBOOLEANPauseStatus

0 to 100%REALRemainingEnergy

TRUE/FALSEBOOLEANLocationVisited

TRUE/FALSEBOOLEANObstacleInContact

REALAreaCoveredSurface

REALSpeedAVC

ConventionTypeParameterArtifact

 

Table 3.3: Event space used in AVC behavioral specification 

{ON, OFF}Interface::PauseStatus

{ON, OFF}Interface::Power

{TRUE, FALSE}

{TRUE, FALSE}

{TRUE, FALSE}

Value

Surface::MovePossible

Obstacle::AVCInContact

Surface::LocationVisited

Parameter

{ON, OFF}Interface::PauseStatus

{ON, OFF}Interface::Power

{TRUE, FALSE}

{TRUE, FALSE}

{TRUE, FALSE}

Value

Surface::MovePossible

Obstacle::AVCInContact

Surface::LocationVisited

Parameter

Unsafe parameter value sets are described in Table 3.4. From the requirements, 

the primary working modes of AVC (e.g., interaction-states) are also identified. 
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Table 3.4: Unsafe state used in AVC behavioral specification 

AVC::RemainingEnergy ≤ 10%
AVC::RemainingCapacity ≤ 2%

 

 Figure 3.11 shows proposed behavior specifications for AVC. 

Transition list
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s0

RepositionReposition
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r7 r8

VacuumVacuum

AvoidAvoid
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Surface::MovePossible = FALSEr4

Obstacle::AVCInContact = FALSEr8

Obstacle::AVCInContact = TRUEr7

Surface::LocationVisited = TRUEr6
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Interface::PauseStatus = OFF

Interface::Power = OFF

Interface::Power = ON

Condition

r5

r3

r2

r1

Name

Surface::MovePossible = FALSEr4

Obstacle::AVCInContact = FALSEr8

Obstacle::AVCInContact = TRUEr7

Surface::LocationVisited = TRUEr6

Surface::LocationVisited = FALSE

Interface::PauseStatus = OFF

Interface::Power = OFF

Interface::Power = ON

Condition

r5

r3

r2

r1

Name

r1 r2

r4

Transition Diagram 

 

Figure 3.11: AVC behavior specification #1 

Detailed descriptions of each interaction-state are shown in Figures 3.12, 3.13, 

3.14, 3.15 and 3.16. In case of only qualitative structures is known for the 

interactions, we use symbol f to denote there is a relationship between the 
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parameters involved in the interaction. For example, x3 = f(x1, x2) indicated that 

parameter x3 will depend on x1 and x2. Parameters x1, x2, and x3 will be related to 

each other by an equation whose structure is not known at the time of modeling. 

s0 (Initial State)

NONECONSTANTFALSEASSIGNAVC::ObstacleInContact

NONECONSTANTONASSIGNAVC::PauseStatus

NONECONSTANTOFFASSIGNAVC::Power

NONECONSTANT100%ASSIGNAVC::RemainingEnergy

NONECONSTANT100%ASSIGNAVC::RemainingCapacity

NONECONSTANT0ASSIGNAVC::InputVoltage

NONECONSTANT0ASSIGNAVC::Speed

EquationChange 
Type

Initialization 
Value

Initialization 
Type

Parameter

NONECONSTANTFALSEASSIGNAVC::ObstacleInContact

NONECONSTANTONASSIGNAVC::PauseStatus

NONECONSTANTOFFASSIGNAVC::Power

NONECONSTANT100%ASSIGNAVC::RemainingEnergy

NONECONSTANT100%ASSIGNAVC::RemainingCapacity

NONECONSTANT0ASSIGNAVC::InputVoltage

NONECONSTANT0ASSIGNAVC::Speed

EquationChange 
Type

Initialization 
Value

Initialization 
Type

Parameter

Parameters Initialization and Change

Surface

AVC

Obstacle

Artifact Interaction Equations

None

Interface

 

Figure 3.12: Definition of state s0 
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s1 (Waiting)

Parameters Initialization and Change

AVC

Artifact Interaction Equations

AVC::Power = Interface :: Power
AVC::PauseStatus = Interface::PauseStatus

NONECONSTANTNAINHERITAVC::ObstacleInContact

NONECONSTANTNAINHERITAVC::InpuVoltage

NONECONSTANTNADERIVEAVC ::PauseStatus

NONECONSTANTNADERIVEAVC::Power

NONECONSTANTNAINHERITAVC::RemainingEnergy

NONECONSTANTNAINHERITAVC::RemainingCapacity

NONECONSTANTNAINHERITAVC::Speed

EquationChange TypeInitialization 
Value

Initialization 
Type

Parameter

NONECONSTANTNAINHERITAVC::ObstacleInContact

NONECONSTANTNAINHERITAVC::InpuVoltage

NONECONSTANTNADERIVEAVC ::PauseStatus

NONECONSTANTNADERIVEAVC::Power

NONECONSTANTNAINHERITAVC::RemainingEnergy

NONECONSTANTNAINHERITAVC::RemainingCapacity

NONECONSTANTNAINHERITAVC::Speed

EquationChange TypeInitialization 
Value

Initialization 
Type

Parameter

Interface

 

Figure 3.13: Definition of state s1 
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s2 (Reposition)

Parameters Initialization and Change

AVC Surface

Artifact Interaction Equations

None

NONECONSTANTNAINHERITAVC::ObstacleInContact

NONECONSTANTNAINHERITAVC::InputVoltage

NONECONSTANTNAINHERITAVC::PauseStatus

NONECONSTANTNAINHERITAVC::Power

AVC::RemainingEnergy(t) = 
AVC::RemainingEnergy(t=0)
− AVC::Speed × t / 400

EQUATIONNAINHERITAVC::RemainingEnergy

NONECONSTANTNAINHERITAVC::RemainingCapacity

NONECONSTANT0.05m/sASSIGNAVC::Speed

EquationChange 
Type

Initialization 
Value

Initialization 
Type

Parameter

NONECONSTANTNAINHERITAVC::ObstacleInContact

NONECONSTANTNAINHERITAVC::InputVoltage

NONECONSTANTNAINHERITAVC::PauseStatus

NONECONSTANTNAINHERITAVC::Power

AVC::RemainingEnergy(t) = 
AVC::RemainingEnergy(t=0)
− AVC::Speed × t / 400

EQUATIONNAINHERITAVC::RemainingEnergy

NONECONSTANTNAINHERITAVC::RemainingCapacity

NONECONSTANT0.05m/sASSIGNAVC::Speed

EquationChange 
Type

Initialization 
Value

Initialization 
Type

Parameter

 

Figure 3.14: Definition of state s2 
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s3 (Vacuum)

Parameters Initialization and Change

Artifact Interaction Equations

AVC::RemainingCapacity(t) = AVC::RemainingCapacity(t=0) −
Surface::AreaCovered / 20

SurfaceAVC

NONECONSTANTNAINHERITAVC::ObstacleInContact

NONECONSTANTNAINHERITAVC::InputVoltage

NONECONSTANTNAINHERITAVC::PauseStatus

NONECONSTANTNAINHERITAVC::Power

AVC::RemainingEnergy(t) = 
AVC::RemainingEnergy(t=0)
– AVC::Speed × t / 400

EQUATIONNAINHERITAVC::RemainingEnergy

NONEEQUATIONNAINHERITAVC::RemainingCapacity

NONECONSTANT0.05m/sASSIGNAVC::Speed

EquationChange 
Type

Initialization 
Value

Initialization 
Type

Parameter

NONECONSTANTNAINHERITAVC::ObstacleInContact

NONECONSTANTNAINHERITAVC::InputVoltage

NONECONSTANTNAINHERITAVC::PauseStatus

NONECONSTANTNAINHERITAVC::Power

AVC::RemainingEnergy(t) = 
AVC::RemainingEnergy(t=0)
– AVC::Speed × t / 400

EQUATIONNAINHERITAVC::RemainingEnergy

NONEEQUATIONNAINHERITAVC::RemainingCapacity

NONECONSTANT0.05m/sASSIGNAVC::Speed

EquationChange 
Type

Initialization 
Value

Initialization 
Type

Parameter

 

Figure 3.15: Definition of state s3 
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s4 (Avoid)

Parameters Initialization and Change

Artifact Interaction Equations

AVC::RemainingCapacity(t) = AVC::RemainingCapacity(t=0) −
Surface::AreaCovered / 80
AVC::ObstacleInContact = Obstacle::AVCInContact

AVC
Obstacle

Surface

NONECONSTANTNAINHERITAVC::ObstacleInContact

NONECONSTANTNAINHERITAVC::InputVoltage

NONECONSTANTNAINHERITAVC::PauseStatus

NONECONSTANTNAINHERITAVC::Power

AVC::RemainingEnergy(t) = 
AVC::RemainingEnergy (t=0) –
AVC::Speed × t / 400

EQUATIONNAINHERITAVC::RemainingEnergy

NONEEQUATIONNAINHERITAVC::RemainingCapacity

NONECONSTANT0.05m/sASSIGNAVC::Speed

EquationChange 
Type

Initialization 
Value

Initialization 
Type

Parameter

NONECONSTANTNAINHERITAVC::ObstacleInContact

NONECONSTANTNAINHERITAVC::InputVoltage

NONECONSTANTNAINHERITAVC::PauseStatus

NONECONSTANTNAINHERITAVC::Power

AVC::RemainingEnergy(t) = 
AVC::RemainingEnergy (t=0) –
AVC::Speed × t / 400

EQUATIONNAINHERITAVC::RemainingEnergy

NONEEQUATIONNAINHERITAVC::RemainingCapacity

NONECONSTANT0.05m/sASSIGNAVC::Speed

EquationChange 
Type

Initialization 
Value

Initialization 
Type

Parameter

 

Figure 3.16: Definition of state s4 
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10m

10m

2m

2m

Reposition moving speed is 0.1m/s
Vacuum moving speed is 0.05m/s
Vacuum diameter is 0.4m

6m

10m

6m

 

Figure 3.17: Illustration of a use-environment for simulation 

Figure 3.17 illustrates a typical use-environment. Table 3.5 shows an event 

sequence that results from this use-environment. Simulation shows (see Table 3.6) 

that this behavior specification is unsafe with respect to the given unsafe 

parameter value sets. At global time T = 1180s, the value of 

AVC::RemainingCapacity is reduced to 2% and thus the device enters an unsafe 

design-world state. A modified behavior specification is shown in Figure 3.18. 

This behavior specification is safe. The waiting state is also modified 

correspondingly, shown in Figure 3.19. 
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Table 3.5: Event sequence for AVC behavior simulation 

AVC::RemainingCapacity = 2%1180

Obstacle::AVCInContact = FALSE1164

Obstacle::AVCInContact = FALSE1084

Obstacle::AVCInContact = TRUE1116

Obstacle::AVCInContact = FALSE1124

Obstacle::AVCInContact = TRUE1156

Obstacle::AVCInContact = TRUE1036

Obstacle::AVCInContact = FALSE1044

Obstacle::AVCInContact = TRUE1076

Obstacle::AVCInContact = TRUE996

Obstacle::AVCInContact = FALSE1004

Obstacle::AVCInContact = TRUE596

Obstacle::AVCInContact = FALSE604

Obstacle::AVCInContact = TRUE796

Obstacle::AVCInContact = FALSE804

Obstacle::AVCInContact = FALSE404

Obstacle::AVCInContact = TRUE396

Obstacle::AVCInContact = FALSE204

Obstacle::AVCInContact = TRUE196

Surface::LocationVisited = FALSE4

Interface::PauseStatus = OFF2

Interface::Power = ON1

None0

EventTime (s)

AVC::RemainingCapacity = 2%1180

Obstacle::AVCInContact = FALSE1164

Obstacle::AVCInContact = FALSE1084

Obstacle::AVCInContact = TRUE1116

Obstacle::AVCInContact = FALSE1124

Obstacle::AVCInContact = TRUE1156

Obstacle::AVCInContact = TRUE1036

Obstacle::AVCInContact = FALSE1044

Obstacle::AVCInContact = TRUE1076

Obstacle::AVCInContact = TRUE996

Obstacle::AVCInContact = FALSE1004

Obstacle::AVCInContact = TRUE596

Obstacle::AVCInContact = FALSE604

Obstacle::AVCInContact = TRUE796

Obstacle::AVCInContact = FALSE804

Obstacle::AVCInContact = FALSE404

Obstacle::AVCInContact = TRUE396

Obstacle::AVCInContact = FALSE204

Obstacle::AVCInContact = TRUE196

Surface::LocationVisited = FALSE4

Interface::PauseStatus = OFF2

Interface::Power = ON1

None0

EventTime (s)
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Table 3.6: AVC behavior simulation result 

85.3%2%Unsafe1180

85.5%3%Vacuum1164 to 1180

85.1%0.33%Avoid1196

86.5%9.33%Vacuum1084 to 1116

86.1%6.67%Avoid1116 to 1124

86%6%Vacuum1124 to 1156

85.6%3.67%Avoid1156 to 1164

87.1%13.33%Avoid1036 to 1044

87%12.67%Vacuum1044 to 1076

86.6%10%Avoid1076 to 1084

87.6%16.67%Avoid996 to 1004

87.5%16%Vacuum1004 to 1036

92.6%50.67%Avoid596 to 604

92.5%50%Vacuum604 to 796

90.1%34%Avoid796 to 804

90%33.33%Vacuum804 to 996

Vacuum

Avoid

Vacuum

Avoid

Vacuum

Reposition

Waiting

Initial

State

66.67%

67.33%

83.33%

84%

100%

100%

100%

100%

RemainingCapacity at 
start of the state

95%404 to 596

95.1%396 to 404

97.5%204 to 396

97.6%196 to 204

100%4 to 196

100%2 to 4

100%1 to 2

100%0 to 1

RemainingEnergy at 
start of the state

Time (s)

85.3%2%Unsafe1180

85.5%3%Vacuum1164 to 1180

85.1%0.33%Avoid1196

86.5%9.33%Vacuum1084 to 1116

86.1%6.67%Avoid1116 to 1124

86%6%Vacuum1124 to 1156

85.6%3.67%Avoid1156 to 1164

87.1%13.33%Avoid1036 to 1044

87%12.67%Vacuum1044 to 1076

86.6%10%Avoid1076 to 1084

87.6%16.67%Avoid996 to 1004

87.5%16%Vacuum1004 to 1036

92.6%50.67%Avoid596 to 604

92.5%50%Vacuum604 to 796

90.1%34%Avoid796 to 804

90%33.33%Vacuum804 to 996

Vacuum

Avoid

Vacuum

Avoid

Vacuum

Reposition

Waiting

Initial

State

66.67%

67.33%

83.33%

84%

100%

100%

100%

100%

RemainingCapacity at 
start of the state

95%404 to 596

95.1%396 to 404

97.5%204 to 396

97.6%196 to 204

100%4 to 196

100%2 to 4

100%1 to 2

100%0 to 1

RemainingEnergy at 
start of the state

Time (s)
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Transition list

r3 r6

s0

RepositionReposition
r5

r7 r8

VacuumVacuum

AvoidAvoid

WaitingWaiting

AVC::RemainingCapacity ≤ 2%r9

AVC::RemainingEnergy ≤ 10%r10

AVC::RemainingEnergy ≤ 10%r11

AVC::RemainingEnergy ≤ 10%r12

AVC::RemainingCapacity ≤ 2%r13

Obstacle:: AVCInContact = FALSEr8

Surface::MovePossible = FALSEr4

AVC::RemainingEnergy ≤ 10%r14

Obstacle:: AVCInContact = TRUEr7

Surface::LocationVisited = TRUEr6

Surface::LocationVisited = FALSE

Interface::PauseStatus = OFF

Interface ::Power = OFF

Interface::Power = ON

Condition

r5

r3

r2

r1

Name

AVC::RemainingCapacity ≤ 2%r9

AVC::RemainingEnergy ≤ 10%r10

AVC::RemainingEnergy ≤ 10%r11

AVC::RemainingEnergy ≤ 10%r12

AVC::RemainingCapacity ≤ 2%r13

Obstacle:: AVCInContact = FALSEr8

Surface::MovePossible = FALSEr4

AVC::RemainingEnergy ≤ 10%r14

Obstacle:: AVCInContact = TRUEr7

Surface::LocationVisited = TRUEr6

Surface::LocationVisited = FALSE

Interface::PauseStatus = OFF

Interface ::Power = OFF

Interface::Power = ON

Condition

r5

r3

r2

r1

Name

r1
r2

r4
r9

r10

r11

r12

r13

r14

 

Figure 3.18: AVC behavior specification #2 
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s1 (Waiting)

Parameters Initialization and Change

AVC

Artifact Interaction Equations

AVC::Power = Interface::Power
AVC::PauseStatus = Interface::PauseStatus
AVC::InputVoltage = PowerSource::VoltageOutput

NONECONSTANTNAINHERITAVC::InpuVoltage

NONECONSTANTNAINHERITAVC::ObstacleInContact

NONEDERIVENADERIVEAVC ::PauseStatus

NONEDERIVENADERIVEAVC::Power

AVC:: RemainingEnergy(t) = 
AVC:: RemainingEnergy(t=0) +   
t / 200

EQUATIONNAINHERITAVC::RemainingEnergy

AVC::RemainingCapacity(t) = 
AVC::RemainingCapacity(t=0) + 
t / 200

EQUATIONNAINHERITAVC::RemainingCapacity

NONECONSTANTNAINHERITAVC::Speed

EquationChange 
Type

Initialization 
Value

Initialization 
Type

Parameter

NONECONSTANTNAINHERITAVC::InpuVoltage

NONECONSTANTNAINHERITAVC::ObstacleInContact

NONEDERIVENADERIVEAVC ::PauseStatus

NONEDERIVENADERIVEAVC::Power

AVC:: RemainingEnergy(t) = 
AVC:: RemainingEnergy(t=0) +   
t / 200

EQUATIONNAINHERITAVC::RemainingEnergy

AVC::RemainingCapacity(t) = 
AVC::RemainingCapacity(t=0) + 
t / 200

EQUATIONNAINHERITAVC::RemainingCapacity

NONECONSTANTNAINHERITAVC::Speed

EquationChange 
Type

Initialization 
Value

Initialization 
Type

Parameter

Interface PowerSource

 

Figure 3.19: Modified “Waiting” state 

2. Elaborate Transition Diagram: Since there is no known artifact that can fulfill 

the behavior specification of AVC directly, we need to decompose AVC into 

artifacts that can be realized. Starting points of the decomposition are the artifact 

interactions between AVC and use-environment artifacts. The operator 

DECOMPOSE-ARTIFACT is applied to replace the AVC in behavior specification 

with its major component artifacts shown in Table 3.7. AVC’s parameters are 

mapped to the parameters of its children artifacts. In this example the major 
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parameters of AVC are directly mapped to one parameter of one children artifact 

respectively. Furthermore, the “Waiting” state also needs to be decomposed using 

operator DECOMPOSE-STATE. It is decomposed into “Waiting”, “Recharge” 

and “Empty” states. The corresponding transitions are also redirected and 

decomposed. A detailed interaction-state transition diagram for the design concept 

is shown in Figure 3.20. Detailed descriptions of each interaction-state used in the 

diagram are shown in Figures 3.21 through 3.27.  

Table 3.7: Decomposed Artifacts and Parameters of AVC 

REALSpeedOutputPathPlanningAlg.(PPA)

TRUE/FALSEBOOLEANObstacleInContact

ON/OFFBOOLEANPauseStatus

REALEnergyInput

0 to 100%REALRemainingCapacityVacuum

0 to 100%REALRemainingEnergy

REALInputVoltageBattery

ON/OFFBOOLEANPowerController

REALSpeedTransporter

ConventionTypeParameterArtifact

REALSpeedOutputPathPlanningAlg.(PPA)

TRUE/FALSEBOOLEANObstacleInContact

ON/OFFBOOLEANPauseStatus

REALEnergyInput

0 to 100%REALRemainingCapacityVacuum

0 to 100%REALRemainingEnergy

REALInputVoltageBattery

ON/OFFBOOLEANPowerController

REALSpeedTransporter

ConventionTypeParameterArtifact
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Transition list

r3
r6

r13

s0

RepositionReposition
r5

r10

r7

r11

r8 RechargeRechargeVacuumVacuum

AvoidAvoid

WaitingWaiting

Vacuum::RemainingCapacity = 100%r14

Vacuum::RemainingCapacity ≤ 2%r13

Obstacle::AVCInContact = TRUEr9

Battery::RemainingEnergy = 100%r12

Surface::MovePossible = FALSEr4

Battery::RemainingEnergy ≤ 10%r11

Obstacle::AVCInContact = FALSEr10

Surface::LocationVisited = TRUEr6

Battery::RemainingEnergy ≤ 10%r7

Battery::RemainingEnergy ≤ 10%r8

Surface::LocationVisited = FALSE

Interface::PauseStatus = OFF

Interface::Power = OFF

Interface::Power = ON

Condition

r5

r3

r2

r1

Name

Vacuum::RemainingCapacity = 100%r14

Vacuum::RemainingCapacity ≤ 2%r13

Obstacle::AVCInContact = TRUEr9

Battery::RemainingEnergy = 100%r12

Surface::MovePossible = FALSEr4

Battery::RemainingEnergy ≤ 10%r11

Obstacle::AVCInContact = FALSEr10

Surface::LocationVisited = TRUEr6

Battery::RemainingEnergy ≤ 10%r7

Battery::RemainingEnergy ≤ 10%r8

Surface::LocationVisited = FALSE

Interface::PauseStatus = OFF

Interface::Power = OFF

Interface::Power = ON

Condition

r5

r3

r2

r1

Name

r1 r2

r12

r4

r9

EmptyEmpty
r14

 

Figure 3.20: AVC design concept based on behavior specification #2 
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s0 (Initial State)

Parameters Initialization and Change

Transporter

Path Planning Alg. Battery

Surface

Obstacle

Vacuum

NONECONSTANTFALSEASSIGNController::ObstacleInContact

NONECONSTANT0ASSIGNTransporter::EnergyInput

NONECONSTANT0ASSIGNPPA::SpeedOutput

NONECONSTANTOFFASSIGNController::Power

NONECONSTANT100%ASSIGNBattery::RemainingEnergy

NONECONSTANTONASSIGNController::PauseStatus

NONECONSTANT100%ASSIGNVacuum::RemaininCapacity

NONECONSTANT0ASSIGNBattery ::InputVoltage

NONECONSTANT0ASSIGNTransporter::Speed

EquationChange 
Type

Initialization 
Value

Initialization 
Type

Parameter

NONECONSTANTFALSEASSIGNController::ObstacleInContact

NONECONSTANT0ASSIGNTransporter::EnergyInput

NONECONSTANT0ASSIGNPPA::SpeedOutput

NONECONSTANTOFFASSIGNController::Power

NONECONSTANT100%ASSIGNBattery::RemainingEnergy

NONECONSTANTONASSIGNController::PauseStatus

NONECONSTANT100%ASSIGNVacuum::RemaininCapacity

NONECONSTANT0ASSIGNBattery ::InputVoltage

NONECONSTANT0ASSIGNTransporter::Speed

EquationChange 
Type

Initialization 
Value

Initialization 
Type

Parameter

Artifact Interaction Equations

None

Controller

PowerSource

 

Figure 3.21: Definition of state s0 
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s1 (Waiting)

NONECONSTANTNAINHERITController::ObstacleInContact

NONEDERIVENADERIVEController::Power

NONEDERIVENADERIVEController::PauseStatus

EquationChange 
Type

Initialization 
Value

Initialization 
Type

Parameter

NONECONSTANTNAINHERITController::ObstacleInContact

NONEDERIVENADERIVEController::Power

NONEDERIVENADERIVEController::PauseStatus

EquationChange 
Type

Initialization 
Value

Initialization 
Type

Parameter

Parameters Initialization and Change

Controller

Artifact Interaction Equations

Controller::Power = Interface::Power
Controller::PauseStatus = Interface::PauseStatus

Interface

 

Figure 3.22: Definition of state s1 
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s2 (Reposition)

Parameters Initialization and Change

Artifact Interaction Equations

Transporter

Surface
PathPlanningAlg.

Battery

Transporter::Speed = PPA::SpeedOutput
Transporter::EnergyInput = Battery::RemainingEnergy
Battery::RemainingEnergy(t) = Battery(t)::RemainingEnergy(t=0) −
Transporter::Speed × t / 400

NONEDERIVENADERIVETransporter::EnergyInput

NONECONSTANT0.05m/sASSIGNPPA::SpeedOutput

NONEEQUATIONNA INHERITBattery::RemainingEnergy

NONECONSTANTNAINHERITBattery::InputVoltage

NONEDERIVENADERIVETransporter::Speed

EquationChange 
Type

Initialization 
Value

Initialization 
Type

Parameter

NONEDERIVENADERIVETransporter::EnergyInput

NONECONSTANT0.05m/sASSIGNPPA::SpeedOutput

NONEEQUATIONNA INHERITBattery::RemainingEnergy

NONECONSTANTNAINHERITBattery::InputVoltage

NONEDERIVENADERIVETransporter::Speed

EquationChange 
Type

Initialization 
Value

Initialization 
Type

Parameter

 

Figure 3.23: Definition of state s1 
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s3 (Vacuum)

Parameters Initialization and Change

Artifact Interaction Equations

Transporter::Speed = PPA::SpeedOutput
Transporter::EnergyInput = Battery::RemainingEnergy
Vacuum::RemainingCapacity(t) = Vacuum::RemainingCapacity(t=0) 
− Surface::AreaCovered / 20
Battery::RemainingEnergy(t) = Battery(t)::RemainingEnergy(t=0) −
Transporter::Speed × t / 400

Transporter
Surface

Path Planning Alg.

Battery

Vacuum

NONEEQUATIONNA INHERITVacuum::RemainingCapacity

NONEDERIVENADERIVETransporter::EnergyInput

NONECONSTANT0.01m/sASSIGNPPA::SpeedOutput

NONEEQUATIONNA INHERITBattery::RemainingEnergy

NONECONSTANTNAINHERITBattery::InputVoltage

NONEDERIVENADERIVETransporter::Speed

EquationChange 
Type

Initialization 
Value

Initialization 
Type

Parameter

NONEEQUATIONNA INHERITVacuum::RemainingCapacity

NONEDERIVENADERIVETransporter::EnergyInput

NONECONSTANT0.01m/sASSIGNPPA::SpeedOutput

NONEEQUATIONNA INHERITBattery::RemainingEnergy

NONECONSTANTNAINHERITBattery::InputVoltage

NONEDERIVENADERIVETransporter::Speed

EquationChange 
Type

Initialization 
Value

Initialization 
Type

Parameter

 

Figure 3.24: Definition of state s3 
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s4 (Avoid)

Parameters Initialization and Change

Artifact Interaction Equations

Transporter
Obstacle

PathPlanningAlg. Battery
Vacuum

Surface

NONECONSTANTNAINHERITController::Power

NONECONSTANTNAINHERITController::ObstacleInContact

NONECONSTANTNAINHERITController::PauseStatus

NONEEQUATIONNA INHERITVacuum::RemainingCapacity

NONEDERIVENADERIVETransporter::EnergyInput

NONECONSTANT0.01m/sASSIGNPPA::SpeedOutput

NONEEQUATIONNA INHERITBattery::RemainingEnergy

NONECONSTANTNAINHERITBattery ::InputVoltage

NONEDERIVENADERIVETransporter::Speed

EquationChange 
Type

Initialization 
Value

Initialization 
Type

Parameter

NONECONSTANTNAINHERITController::Power

NONECONSTANTNAINHERITController::ObstacleInContact

NONECONSTANTNAINHERITController::PauseStatus

NONEEQUATIONNA INHERITVacuum::RemainingCapacity

NONEDERIVENADERIVETransporter::EnergyInput

NONECONSTANT0.01m/sASSIGNPPA::SpeedOutput

NONEEQUATIONNA INHERITBattery::RemainingEnergy

NONECONSTANTNAINHERITBattery ::InputVoltage

NONEDERIVENADERIVETransporter::Speed

EquationChange 
Type

Initialization 
Value

Initialization 
Type

Parameter

Transporter::Speed = PPA::SpeedOutput
Transporter::EnergyInput = Battery::RemainingEnergy
Vacuum::RemainingCapacity(t) = Vacuum::RemainingCapacity(t=0) −
Surface::AreaCovered / 60
Controller::ObstacleInContact = Obstacle::AVCInContact
Battery::RemainingEnergy(t) = Battery(t)::RemainingEnergy(t=0) −
Transporter::Speed × t / 400

Controller

 

Figure 3.25: Definition of state s3 
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s5 (Recharge)

NONECONSTANTNADERIVEBattery::InputVoltage

Battery::RemainingEnergy(t) = 
Battery::RemainingEnergy(t=0) + 
t / 200

EQUATIONNAINHERITBattery::RemainingE
nergy

EquationChange 
Type

Initialization 
Value

Initialization 
Type

Parameter

NONECONSTANTNADERIVEBattery::InputVoltage

Battery::RemainingEnergy(t) = 
Battery::RemainingEnergy(t=0) + 
t / 200

EQUATIONNAINHERITBattery::RemainingE
nergy

EquationChange 
Type

Initialization 
Value

Initialization 
Type

Parameter

Parameters Initialization and Change

Artifact Interaction Equations

Battery

Battery::InputVoltage = PowerSource::VoltageOutput

PowerSource

 

Figure 3.26: Definition of state s5 

s6 (Empty)

Vacuum::RemainingCapacity(t) = 
Vacuum::RemainingCapacity(t=0) +        
t / 200

EQUATI
ON

NAINHERITVacuum::RemainingCapacity

EquationChange 
Type

Initialization 
Value

Initialization 
Type

Parameter

Vacuum::RemainingCapacity(t) = 
Vacuum::RemainingCapacity(t=0) +        
t / 200

EQUATI
ON

NAINHERITVacuum::RemainingCapacity

EquationChange 
Type

Initialization 
Value

Initialization 
Type

Parameter

Parameters Initialization and Change

Artifact Interaction Equations

Vacuum

None

 

Figure 3.27: Definition of state s5 
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3.7 Summary 

In this chapter, we describe a new modeling framework for representing design 

concepts of multiple interaction-state devices. We also provide conditions for 

ensuring its validity. The distinction between our approach and traditional functional 

representation approaches for conceptual design is as following:  

• We use interactions instead of function flows or input/output flows to describe 

relationships between artifacts. Interactions are more general than flows. In 

addition to capturing flows, they can also be used to capture non-flow based 

relationships such as spatial constraints. Therefore, our approach is more 

expressive.  

• We use interaction-states to capture the operating modes of a device. Hence we 

can support devices with multiple interaction-states (i.e., devices whose 

interactions with the use environment change with time). Therefore, design 

concepts modeled using our framework can be simulated more accurately. For 

example, events can be used to simulate the behavior of a proposed design 

concept in response to events in the use-environment.  

The main rationale behind developing a new modeling framework in this dissertation 

was to create a framework that (1) is convenient for mechatronic designers to use, (2) 

is expressive enough to support conceptual design, and (3) explicitly represents 

information needed to support evaluation and validation during conceptual design.     

General purpose modeling approaches such as UML, extended finite state machine, 

and hybrid automata are very expressive. However, they are not very convenient for 

mechatronic designers to use. During conceptual design, most mechatronic designers 
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focus their attention to identifying the main components, specifying interactions 

among them, and organizing interactions in a meaningful way. The general purpose 

modeling approaches are quite capable of capturing all of this information. However, 

they typically require use of multiple diagrams (e.g. UML) to accomplish this and the 

designer often needs to customize the environment to create a familiar terminology.  

Our modeling framework described in this Chapter is sufficiently expressive and it 

gives the designers the familiar terminology to carry out the conceptual design. In the 

background, our modeling framework ensures that sufficient information has been 

gathered and organized to support automated evaluation and validation without any 

further manual post-processing of the design information. In summary, our modeling 

framework has the following distinguishing features to support the conceptual design:   

• Conceptual Design Centric Terminology: Our modeling framework uses 

terminology familiar to mechatronic designers for carrying out conceptual 

design. Familiar notions of parameters, artifact, interactions, and decomposition 

are used in our framework. In addition, our framework allows for making a 

distinction among use-environment and device artifacts. This offers the following 

benefits. First, external behavior and internal behavior of the device are clearly 

distinguished. External behavior refers to the interactions between the device and 

use-environment. Internal behavior refers to the interactions between component 

objects of the device. Designers can focus their energy on developing external 

behaviors in the early stage of design while internal behaviors in the later stage. 

Second, device behaviors are clearly shown in different use-environments. 

Device with multiple interaction-states can usually be used in different use-
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environments. Explicit modeling of use-environments helps classify device 

behaviors in cases of different use-environments. This classification not only 

simplifies the design problem, but also helps designers explore unexpected 

behaviors in new environments. Third, it allows designers to investigate 

hazardous effects device could have in the environment.  

• Interaction Centric Single Modeling Diagrams: Our modeling framework uses 

interaction centric single modeling diagrams. This makes it convenient for 

designers to use our modeling framework. Our approach supports a wide variety 

of interactions encountered during design tasks. We support classes for 

interaction. These classes capture relationships between parameters and artifacts. 

Relationships among parameters are called parameter interactions. We use 

member InteractionReason to capture different types of interactions in 

engineering design such as energy flow, material flow, signal flow, spatial 

constraints, physical law etc. Relationships between artifacts are captured using 

artifact interactions. We also provide classes for representing interaction-states. 

As one of the most important primitives in our modeling framework, interaction-

states describe the invariant interactions among a set of artifacts. In engineering 

design, an interaction-state captures a working mode of the device. All 

interactions in the interaction-state exist at the same time in this working mode. 

We apply this notion to general modeling techniques in designing this class.  

• Hierarchical Modeling to Support Decomposition Based Engineering 

Design: Engineering design is a hierarchical process. Design starts at the top 

level where the device is modeled as single entity. During subsequent levels the 
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device is decomposed into its constituent components. This decomposition 

continues throughout the design process. Our modeling framework has the 

necessary classes to support both elaboration and refinement encountered in the 

decomposition process. It also keeps track of all the ownership relationships that 

result from the decomposition process. Artifact, state and transition can be 

decomposed further during the design process. Our modeling framework 

provides decompose-artifact, decompose-state, decompose-transition operators 

for these operations. Class ArtifactMapping is designed to capture the 

hierarchical information between artifacts. 

• Support Incomplete Interaction Information: Often during conceptual design, 

one has to deal with incomplete interaction information due to missing details in 

the underlying artifacts. Our framework allows the designers to partially specify 

interactions. Our system can perform consistency checking with only knowing 

the structure of the interactions.   

• Providing Information Organization To Supported Automated Validation 

During Conceptual Design: Our system organizes the information in such way 

that the validation can begin during the conceptual design stage. In order to 

ensure the result of modeling (design concept) is valid in senses of both modeling 

and engineering, we define validation conditions for a design concept as part of 

the modeling framework. These conditions ensure that not only design concept is 

modeled correctly, but also can be validated automatically. 

• Providing Information Organization to Support Automated Evaluation 

During Conceptual Design: Engineering design concept, as the result of 
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modeling using the framework, needs to be evaluated before entering the detailed 

design stage. The earlier this evaluation could be done, the more time, energy and 

cost could be saved. Our modeling framework supports engineering related 

analysis such as determining component sharability and maximum power 

consumed during the conceptual design stage itself. Our framework facilitates 

gathering of information to facilitate this evaluation in a seamless manner.  

Figure 3.28 shows the connections between this chapter and the following chapters. 

Modeling Framework 
(Chapter 3)

Valid 
Design Concept

Modeled by

Require

Interactions are consistent
(Chapter 4)

Transition diagrams are safe
(Chapter 5)

Final transition diagram is elaborated 
from initial transition diagram

(Guaranteed by operators)

Transition diagrams are realized 
by existing components

(Chapter 7)

Evaluation
(Chapter 6)

Compare

 

Figure 3.28: Organization of the content of the remaining chapters 
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Chapter 4: Consistency-Checking of Interaction-states 

This chapter defines the problem of consistency-checking of interaction-states and 

presents a polynomial time algorithm for solving the interaction consistency-checking 

problem. This chapter also presents an algorithm for analyzing inconsistent 

interaction-states and identifying the inconsistent interactions.  

This chapter has been organized in the following manner. Section 4.1 describes the 

problem formulation of consistency-checking of interaction-states. Section 4.2 

describes the algorithms for mapping consistency checking problem to minimum s-t 

cut problem in an interaction network. Section 4.3 describes the algorithm for finding 

minimum s-t cut and identifying inconsistent interactions. Section 4.4 presents the 

implementation details and two examples. Finally, Section 4.5 presents concluding 

remarks. 

4.1 Problem Formulation 

4.1.1 Problem Statement 

Let X be the set of parameters belonging to all the artifacts in an interaction-state s. 

By examining parameters and artifact interaction in s we can identify the parameter 

sets that participate in these interactions. The set of all parameters interaction set is 

denoted as F.   

Each f in F is a subset of X and describes an interaction. During the conceptual design 

stage we are only concerned with the qualitative nature of interaction. For example, 

consider the hybrid car example. Let us assume we only consider major artifacts: 

engine, battery, motor, transmission and the wheels. The hybrid car is required to 
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enter different interaction-states when the road condition changes. When the vehicle 

travels uphill or accelerates, both the engine and the battery provide power to the 

wheels through the transmission and motor respectively. The road can be modeled as 

a use-environment artifact. In this case, the interaction-state consists of these artifacts 

and their interactions. Figure 4.1 graphically shows the interactions. 

Battery Engine

Motor Transmission

Wheel

Road
 

Figure 4.1: Example of an interaction-state for hybrid car 

We use the following notations to represent the main parameters participating in the 

interaction: 

x1 = Battery Power Output, x2 = Motor Power Output, x3 = Engine Power Output, 

x4 = Transmission Power Output, x5 = Wheel Power Input, x6 = Road Slope.  

Then we can list the participating parameters in interactions when the vehicle is going 

uphill as follows: 

f1 = {x1,  x2}, f2 = {x3,  x4}, f3 = {x2,  x4,  x5}, f4 = {x5,  x6},  

Each of the above-described sets of parameters implies that there exists a specific 

relationship among the parameters in the set and hence all the parameters in the set 

cannot be assigned values independently. Please note that we are not concerned about 
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the specific equation that is associated with the interaction. In most cases, such 

equations are not available at the conceptual design stage. So we are only concerned 

about the set of parameters that participate in an interaction.      

We also model the constraints on the values of individual parameters as sets of 

participating parameters consisting of only one member.  Since there is a maximum 

power constraint on the engine’s power output, we have f5 = {x3}. The slope of the 

road is determined by the use-environment; therefore we model it as f6 = {x6}. 

Therefore, in this case we have six variables and six interactions in this interaction-

state.  

We formulate the interaction consistency problem in the following manner. Given,  

• Set X = {x1, x2, … xn}  

• Set F = {f1, f2, f3, …fm}, where each fi ⊆ X and ∪F = X 

• n ≥ m 

The problem of interaction consistency is to determine if there exists F′ ⊂ F such that 

cardinality(F′) > cardinality(∪F′). If such F′ exists, then the given set of interactions 

is considered inconsistent.  

Let us consider the following example, 

• X = {x1, x2, x3, x4, x5}  

• F = {f1 = {x3, x4, x5}, f2 = {x1, x3}, f3 = {x1, x2}, f4 = {x1, x2, x3}, f5 = {x2, x3}} 

Although there is a total of five parameters and only five interactions, the last four 

interactions (i.e., f2 = {x1, x3}, f3 = {x1, x2}, f4 = {x1, x2, x3}, f5 = {x2, x3}) only involve 

three variables (i.e., x1, x2, x3). Therefore, these interactions are over-constrained. 

Thus, the interactions in this state are inconsistent and this state is invalid. If n < m, 
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the set of interactions is obviously inconsistent. Thus we only deal with cases in 

which n ≥ m. 

Here we assume that no redundant equations will be subsequently used in the detailed 

design stage to realize the set of interactions. A redundant equation can be deduced 

from a set of other equations. For example, assume that we have the following two 

equations: x1 + x2 = 3, x2 + x3 = 5. Then the equation x3 − x1 = 2 can be derived from 

the first two equations and hence it is a redundant equation.  

If the set of interactions is inconsistent, a natural problem that arises is identifying the 

interactions that lead to the inconsistency. Designers need to locate the subset of 

inconsistent interactions and modify them to ensure that the modified interactions are 

consistent.  

4.1.2 Overview of Our Approach 

Given the set of interactions, we use the following approach to solve the problem: 

1) Construct an interaction network from the set of interactions. Section 4.2.1 shows 

how the network is constructed. Then we show that the consistency problem is 

equivalent to checking the size of the minimum s-t cut problem in the interaction 

network. Section 4.2.2 presents the proof for this equivalence.  

2) We use the algorithm FINDMINIMUMSTCUTSIZE to compute the size of the 

minimum s-t cut of the network and find out whether the set of interactions is 

consistent. Section 4.3.1 presents this algorithm. If the interactions are found to be 

inconsistent, then we determine the set of interactions that lead to inconsistency. 

Section 4.3.2 describes the algorithm FINDINCONSISTENTINTERACTIONS defined 

for this task.  
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4.1.3 Related Work On Finding Min Cut Of A Graph 

The usual approach to solve the minimum cut problem is to use its close relationship 

to the maximum flow problem. Ford and Fulkerson showed the duality of the 

maximum flow and the minimum s-t-cut in their famous Max-Flow-Min-Cut-

Theorem [Ford56]. They also gave a simple algorithm for solving the problem. 

Finding a minimum cut without specifying the vertices to separate can be done by 

finding minimum s-t-cuts for a fixed vertex s and all |V| − 1 possible choices of t ∈ V 

− {s} and then selecting the smallest one. Goldberg and Tarjan used push-relabel 

algorithms to achieve a faster computation. They do not maintain a valid flow during 

the operation; each node may have a positive “flow excess”, and the algorithm tries to 

push it to neighboring nodes. Many modifications based on these two types of 

approaches have been made to achieve faster algorithms.  

Algorithms that are not based on flows have also been developed. Nagamochi and 

Ibaraki gave a procedure that repeatedly identifies and contracts edges that are not in 

the minimum cut until the minimum cut becomes apparent. It applies only to 

undirected graphs with non-uniform edge weights [Naga92]. The approach by Gabow 

is based on a matroid characterization of the minimum cut problem. According to this 

characterization, the minimum cut in a graph is equal to the maximum number of 

disjoint directed spanning trees that can be found in it. Gabow’s algorithm finds the 

minimum cut by finding such trees [Gabo95]. Karger and Stein give a randomized 

algorithm that finds the minimum cut in an arbitrarily weighted undirected graph 

[Karg96]. 
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4.2 Mapping Consistency Checking Problem To Minimum S-T Cut Problem In 

Interaction Network 

4.2.1 Construction Of Interaction Network   

We build an interaction network G that describes how interactions F and parameters 

X are related to each other.    

There are four kinds of nodes in G: 

• s-node: Source node.  

• t-node: Sink node. 

• x-node: Node corresponding to an parameter in X.  

• f-node: Node corresponding to an interaction in F. 

There are three types of edges in G: 

• sf-edge:  Edge connecting the s-node to an f-node. The capacity of this edge is 1 

unit. 

• fx-edge: Edge connecting an f-node to an x-node. The capacity of this edge is n + 

1 units. 

• xt-edge: Edge connecting an x-node to the t-node.  The capacity of this edge is 1 

unit. 

Now we present the algorithm for constructing the interaction network G. 

Algorithm CONSTRUCTINTERACTIONNETWORK 

Input: System of interactions F with respect to X. There are n variables in X and m 

interactions in F. 

Output: Interaction network G  

Steps: 
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1) Create an empty network G. 

2) Insert node s into network G. Label this node as s-node. 

3) Insert node t into network G. Label this node as t-node. 

4) Insert a node for every f ∈ F into G. Label these nodes as f-nodes. Create an edge 

from the s-node to every f-node. Label these edges as sf-edges. Set the capacity of 

every sf-edge to 1. 

5) Insert a node for every x ∈ X into G. Label these nodes as x-nodes. Create an edge 

from every x-node to the t-node. Label these edges as xt-edges. Set the capacity of 

every xt-edge to 1.  

6) For every f, insert an edge from the f-node to an x-node if x belongs to f. Label 

these edges as fx-edges. Set the capacity of every fx-edge to n + 1.  

Figure 4.2 shows network G for the following parameters and interactions: 

• X = {x1, x2, x3, x4, x5}  

• n = 5  

• F = {f1 = {x3, x4, x5},  f2 = {x1, x3}, f3 = {x1, x2}, f4 = {x1, x2, x3}, f5 = {x2, x3}} 

• m = 5 

 4.2.2 Mapping Consistency-Checking Problem to Minimum Cut Problem  

In this section we will show that the interaction consistency-checking problem can be 

mapped to the problem of checking the size of the minimum s-t cut in network G.   

Let G = (V, E) be an edge-weighted directed graph (digraph) with a finite set of 

vertices V and a set of ordered pairs of vertices, E ⊆ V × V , called edges. We 
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typically use e or (u, v) to denote an edge e = (u, v). c(e) is called the capacity of e. A 

network is a digraph in which two vertices are distinguished as the source s and the  

f1 = { x3, x4, x5}
f2 = { x1, x3 }
f3 = { x1, x2 }
f4 = { x1, x2, x3 }
f5 = { x2, x3 }
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Figure 4.2: Interaction network constructed from the above relationships 

target t where s ≠ t, and in which each edge has a non-negative capacity. A flow in a 

network is defined to be a function f that assigns a real number to each edge, subject 

to two constraints: 

• Flow of an edge is non-negative and less than or equal to the capacity; 

• For each vertex other than the source and the target, the flow into the vertex 

equals the flow out of it. 
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The value of a flow is the net flow into the sink. Given a network, a flow is a 

maximum flow provided it has the largest value among all flows. A directed s-t path 

in G is a sequence of vertices and edges of the form s, (s, v1), v1, (v1, v2), v2, . . . , vk-1, 

(vk-1, t), t. An s-t cut is a partition of the node set V into two subsets S and T = V-S. 

Alternatively, we can define a cut as the set of edges whose endpoints belong to the 

different subsets S and T. A cut is referred to as an s-t cut if s ∈ S and t ∈ T. The size 

of an s-t cut is the sum of the capacities of all the forward edges (edges from S to T) 

in the cut. An s-t cut is a minimum s-t cut provided it has the smallest size among all 

s-t cuts.  

A path of a network is a sequence s, e0, v1, e1,…, ek, t with s, v1, …, t ∈V, and e0, 

e1,…, ek ∈E , such that it starts in s, ends in t and does not contain any vertex twice. 

The residual capacity of an edge ei = (vi, vi+1) is given by 

res(ei) = c(vi, vi+1) − f(vi, vi+1) 

Given a flow network G = (V, E) and a flow f, the residual network of G induced by f 

is Gr = (V, Er), where 

Er = {(u, v) ∈V × V: res(u, v) > 0}. 

Each edge of the residual network, or residual edge, can admit a strictly positive net 

flow. A residual edge may not be an edge in E. An augmenting path with respect to a 

network G and a flow f is a simple path from s to t in the residual network Gr 

[Corm90]. 

Figure 4.3(a) and 4.3(b) illustrate a network G and the network with a flow value of 

1. An augmenting path P can be formed by s, (s, f1), f1, (f1, x2), x2, (x2, t), t. The 

residual capacity of this path is the minimum res(P) =  min{res((s, f1)), res((f1, x2)), 
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res((x2, t))}. Thus res(P) =  min{2, 5, 4} = 2. The residual network for the network 

with a flow value of 1 is shown in Figure 4.3(c).  
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Figure 4.3: Residual network 

Now we present mathematical preliminaries that prove that the consistency-checking 

problem can be mapped to the problem of finding the size of the minimum s-t cut in a 

network.  

Lemma 4.1. The size l* of the minimum s-t cut in network G is less than or equal to 

the number of interactions m. 
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Proof: A cut of G can be created by selecting all edges with an sf-edge label from the 

network (for example, see edges in dotted lines in Figure 4.4). The size of this cut is 

equal to the sum of the capacities of all edges with an sf-edge label. There are m such 

edges in G and the capacity for each such edge is 1 unit. Therefore, the size of this cut 

is m. Therefore, we can conclude that the size l* of a minimum cut in G is less than or 

equal to m. 

m=5 , n = 5
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Figure 4.4: A cut of the network 

Lemma 4.2. A minimum s-t cut of network G cannot contain an edge with an fx-edge 

label.  

Proof: According to Lemma 4.1, the size of the minimum s-t cut of G is less than or 

equal to m. Since the capacity of fx-edges is n + 1, any cut that contains an edge with 
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an fx-edge label must have a size of at least n + 1. Since n ≥ m, any cut that contains 

an fx-edge cannot be a minimum s-t cut due to Lemma 4.1.  

Lemma 4.3. If the size l* of the minimum s-t cut of network G is less than m, then 

the minimum cut must contain at least one sf-edge and one xt-edge.  

Proof: According to lemma 4.2, minimum s-t cut C* does not contain any edges with 

an fx-edge label. Let C* be a minimum s-t cut of G such that l* < m. Cut C* can be of 

the following three types: 1) all edges in the cut are sf-edges; 2) all edges in the cut 

are xt-edges; 3) edges in the cut contain both types of edges. In cases 1 and 2, we can 

find a path from s to t. Therefore, C* cannot be a cut. Thus only case 3 produces a 

valid cut.  

Theorem 4.1. If there exists a subset of interactions F′ ⊆ F such that cardinality(F′) > 

cardinality(∪F′) (i.e. the number of interactions is greater then the number of 

variables in the interactions), then there would exist a minimum s-t cut in network G 

of a size less than m.  

Proof: First let us construct the interaction network as shown in Figure 4.5 according 

to algorithm CONSTRUCTINTERACTIONNETWORK.  

F − F′

F′

X − ∪(F′)

∪(F′)

s t

Ef

Ef ′

Ex ′

Ex

 

Figure 4.5: A cut illustrating terminology used in Theorem 1 
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We define Ef as the set of sf-edges that connect the s-node with f-nodes that 

correspond to F − F′, Ex as the set of xt-edges that connect x-nodes that correspond to 

∪F′ with the t-node, Ef′ as the set of sf-edges that connect the s-node with f-nodes that 

correspond to F′, and Ex′ as the set of xt-edges that connect x-nodes that correspond to 

X − ∪F′ with the t-node. And we define the cardinalities of these sets of edges as the 

following:  

lf = cardinality(Ef), lx′ = cardinality(Ex′), lf′ = cardinality(Ef′), lx = cardinality(Ex) 

Since for every f-node∈F, there is only one sf-edge that connects it with the s-node, 

cardinality(F′) = cardinality(Ef′), thus lf′ = cardinality(F′). 

Similarly, since for every x-node∈F, there is only one xt-edge that connects it with 

the t-node, cardinality(∪F′) = cardinality(Ex), thus lx = cardinality(∪F′). 

Cut C = Ef ∪Ex is an s-t cut (shown in dotted lines in Figure 4.5) based on its 

construction. We define l = cardinality (C).  

According to the construction of the network, we have  

lf + lf′   = m          (4-1) 

According to the definition of C we have l = lf  + lx  

We are given cardinality(F′) > cardinality(∪F′), that is 

lf′  > lx            (4-2) 

Hence l = lf + lx 

   l < lf  + lf′                           (by 4-2) 

    l < m                                  (by 4-1) 

Since, cardinality(C) < m and cardinality(C*) ≤ cardinality(C), cardinality(C*) < m. 
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Figure 4.6 shows an example further illustrating terminology used in this Theorem. 
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Figure 4.6: An example of a cut for illustrating Theorem 1 

Theorem 4.2. Let C* be a minimum s-t cut of the interaction network G, and the size 

of the cut l* be less than m. In this case there would exist F′⊆ F such that 

cardinality(F′) > cardinality(∪F′).  

Proof: 

According to Lemma 4.2 and Lemma 4.3, the cut must be formed in the manner 

shown in Figure 4.7. We define Ef as the set of sf-edges that connect the s-node with 

f-nodes that correspond to F′′, Ef′ as the set of sf-edges that connect the s-node with f-

nodes that correspond to F − F′′, Ex as the set of xt-edges that connect x-nodes 
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corresponding to ∪(F − F′′) with the t-node, and Ex′ as the set of xt-edges that 

connect x-nodes that correspond to X −  ∪(F − F′′) with the t-node.  

F − F′

F′

X − ∪(F′)

∪(F′)

Ef

Ef ′

Ex ′

Exs t

 

Figure 4.7: A cut illustrating terminology used in Theorem 2 

We define the cardinalities of these sets of edges as the following:  

lf = cardinality(Ef), lx′ = cardinality(Ex′), lf′ = cardinality(Ef′), lx = cardinality(Ex) 

According to the construction of the network, we have  

lf + lf ′   = m          (4-3) 

Since cut C* = Ef  ∪ Ex, cardinality (C*) = lf  + lx      (4-4) 

According to Lemma 4.3, we also have: 

lf > 0 and lx >0 

We are given cardinality (C*) < m, thus 

lf  + lx < m                 (by 4-4) 

lf  + lx  < lf  + lf ′                                (by 4-3) 

Then we have lx < lf ′     

That states that cardinality(Ex) < cardinality (Ef′) 

Since for every f-node∈F, there is only one sf-edge that connects it with the s-node, 

cardinality(F − F′′) = cardinality(Ef′). 

Similarly, since for every x-node∈F, there is only one xt-edge that connects it with 

the t-node, cardinality(∪(F − F′′)) = cardinality(Ex). 
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Therefore, cardinality(∪(F − F′′)) < cardinality (F − F′′).  

We rename (F − F′′) as F′, then we have 

cardinality(F′) > cardinality(∪F′) 

Corollary 4.1. Let C* be a minimum s-t cut of size less than m and Ef′ be the set of 

sf-edges that are not in C*. The set of inconsistent interactions is represented by the f-

nodes that are connected to the s-node by edges in Ef′.  

Proof: It directly follows from Theorem 4.2.  

Theorem 4.3. Let C* be a minimum cut of size less than m. Let F′ be the set of f-

nodes that are connected to s-nodes by edges that are not in C*. Let F be the set of all 

f-nodes. Then ∀ F′′ ⊆ (F − F′), cardinality(F′′) ≤ cardinality (∪F′′).  

Proof: 

We will prove this theorem by contradiction.  

Assume there exists F′′⊆ (F − F′) such that cardinality (F′′) > cardinality (∪F′′). 

We define Ef as the set of sf-edges that connect the s-node with f-nodes that 

correspond to F − F′, Ex as the set of xt-edges that connect x-nodes corresponding to 

∪F′ with the t-node, Ef′ as the set of sf-edges that connect the s-node with f-nodes that 

correspond to F′, Ex′ as the set of xt-edges that connect x-nodes that correspond to X − 

∪F′ with the t-node, Ef′′ as the set of sf-edges that connect the s-nodes with f-nodes 

that correspond to F′′, and Ex′′ as the set of xt-edges that connect x-nodes 

corresponding to ∪F′′ with the t-node.  

Since for every f-node∈F, there is only one sf-edge that connects it with the s-node, 

cardinality(F′′) = cardinality(Ef′′). 
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Similarly, since for every x-node∈F, there is only one xt-edge that connects it with 

the t-node, cardinality(∪F′′) = cardinality(Ex′′). 

Then the assumption can also be represented as 

cardinality(Ex′′) – cardinality(Ef′′) < 0      (4-5) 

We separate F′′ from F-F′ as shown in Figure 4.8. Obviously (Ef – Ef′′) ∪ Ex′′ ∪Ex is 

also a cut C′ of the network.  

F − F ′ − F ′′

F ′

X − ∪(F ′) − ∪(F ′′)

∪(F ′)

Ef − Ef ′ ′

Ef ′

Ex ′ − Ex ′′

Ex

F ′′ ∪ F ′′ − ((∪ F ′′)∩(∪ F ′))

Ef ′ ′ Ex ′′s t

 

Figure 4.8: A cut illustrating terminology used in Theorem 3 

According to the definition of cut, 

cardinality(C*) = cardinality(Ef) + cardinality(Ex)     (4-6) 

cardinality(C′) = cardinality(Ef  – Ef′′ ) + cardinality(Ex′′) + cardinality(Ex) (4-7) 

cardinality(Ef  – Ef′′) = cardinality(Ef) – cardinality(Ef′′)    (4-8) 

Thus, cardinality(C′) = cardinality(Ef) – cardinality(Ef′′)+ cardinality(Ex′′) + 

cardinality(Ex) 

                 (4-9)   (by 4-7 and 4-8)  

Then  

cardinality(C′) – cardinality(C*) = cardinality(Ex′′) – cardinality(Ef′′) < 0             
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 (by 4-6 and 4-9) 

Therefore, cardinality (C′) < cardinality (C*) 

Thus C* is not a minimum s-t cut. This contradicts with the theorem statement.  

From the above theorems and corollary, we can conclude that the consistency-

checking problem can be solved by finding the size of the minimum s-t cut of G.  

Theorem 4.3 helps in ensuring that there are no other inconsistent interactions that are 

not covered by Corollary 1. 

4.3    Algorithms For Finding Minimum S-T Cut And Identifying Inconsistent 

Interactions 

4.3.1 Algorithm for finding minimum s-t cut in network G 

According to the duality between maximum flow problems and minimum cut 

problems, the size of the minimum s-t cut can be found by computing the maximum 

flow between s and t. Our algorithm is based on Ford and Fulkerson’s basic 

maximum flow algorithm of finding the augmenting path.  

Algorithm FINDMINIMUMSTCUTSIZE 

Input: A directed network G 

Output: The size of the minimum cut of G and the residual network Gr of G 

Steps: 

1) Set size of minimum cut to 0. 

2) Initialize flow of the network, set f(e) = 0, ∀ e ∈ E. 

3) Set Gr = G. 

4) Find an augmenting path from the s-node to the t-node in Gr 
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i. If a path is found, then  

a. Augment flow along this path.  

b. Increase the size of the minimum cut by 1.  

c. Generate new residual network Gr. 

d. Go to Step 4. 

ii. Else, return the size of the minimum cut and residual network. 

The working of this algorithm is illustrated in Figure 4.9.  
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Figure 4.9: Illustration of algorithm FINDMINIMUMSTCUTSIZE 

Figure 4.9a shows the original network. Initially, the residual network is the 

same as this network (see Step 3 of the above algorithm). Figure 4.9b shows an 

s-t path as s, (s, f1), f1, x1, (x1, t), t. Sending a unit flow along this path will 

saturate the flow capacities in edges (s, f1) and (x1, t) as shown in Figure 4.9c. 

The residual network with respect to this flow is shown in Figure 4.9d. A new 
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path shown in Figure 4.9e is found as s, (s, f2), f2, (f2, x1), x1, (x1, f1), f1, (f1, x2), x2, 

(x2, t), t.  

Now we analyze the complexity of this algorithm. Step 1 can be executed in 

time O(1). Step 2 can be done in time O(E) where, E = Number of sf-edges + 

Number of fx-edges + Number of xt-edges. E has an upper bound of n + nm + m. 

Thus, Step 2 takes time O(nm). Step 3 takes O(V + E). Since O(V) = O(n+m), 

step 3 takes O(nm). Step 4 will be executed at most m times. For a depth-first 

search, Step 4a takes time O(E) + O(1) + O(V + 2E) = O(nm). Step 4b takes O(1) 

time. Thus in the worst case, Step 4 takes O(nm2). Thus the worst case time 

complexity for this algorithm is O(nm2).  

For the network shown in Figure 4.2, we find the size of the minimum s-t cut of 

the network. In this case C* = 4 as shown in Figure 4.10. The maximum flow of 

the network is also shown in Figure 4.10. Since m = 5, the set of the interactions 

is not consistent. The residual network with respect to the maximum flow is 

shown in Figure 4.11.  
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Figure 4.10: Maximum flow of the graph 
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Figure 4.11: Residual network corresponding to maximum flow 
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Ford and Fulkerson’s algorithm finds maximum flow by finding all the 

augmenting paths in the network from s to t and saturating the flows along the 

paths. However, there are several characteristics of our problem that can be used 

to reduce the complexity of the algorithm directly. 

1) The network in our problem is actually a special network. Network G = (V, E) has 

a node set V partitioned into two subsets V1 and V2 so that for every edge ei=(vi, 

vi+1)∈E, either vi ∈ V1 and vi+1∈ V2 or vi ∈ V2 and vi+1∈ V1. Thus any s-t path 

follows the pattern s, f, x, f, x, f, x, …, t in which f-nodes and x-nodes appear in a 

pair wise manner. 

2) Every sf-edge and xt-edge has capacity of 1. That means that once such an edge is 

used in a path, it won’t be used in another path. Meanwhile, an f-node or an x-

node also can only be used in one path. 

4.3.2 Algorithm For Finding Inconsistent Interactions 

Algorithm FINDINCONSISTENTINTERACTIONS 

Input: Interaction residual network Gr corresponding to the maximum flow 

Output: set of f-nodes corresponding to inconsistent interactions 

Steps: 

1) Use depth-first search to find all nodes in residual network Gr that are reachable 

from s-node and put these nodes in set R. 

2) Remove x-nodes from R and return R. 

Now we will show that R corresponds to the f-nodes that are connected to the s-

node by edges in Ef′ as stated in Corollary 1. We denote the node set that is 

reachable from s in Gr as V1, and the set of the remaining nodes as V2 =V – V1. 
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There is no path in the residual network such that the s-node reaches the t-node. 

Otherwise, an augmenting flow could have been generated and hence flow 

would have not been maximum. Thus, s ∈V1 and t ∈V2. Therefore, cut C = {V1, 

V2} is an s-t cut. Since the flow is maximum, according to the duality between 

maximum flow and minimum cut, C is a minimum s-t cut [Ford56]. Therefore, 

we conclude that inconsistent interactions can be found by finding reachable 

nodes in the residual network corresponding to the maximum flow. Since we are 

only concerned about the inconsistent interactions, we remove x-nodes in the 

reachable node set.  

Now we analyze the complexity of this algorithm. For a depth-first search, Step 

1 can be executed in time O(E + V) = O(nm). Step 2 takes time O(n + m). 

Therefore, this algorithm runs in O(nm). 

For the network shown in Figure 4.2, the residual network with respect to the 

maximum flow is shown in Figure 4.11. Now we can find the reachable nodes 

from s-nodes as {f2, f3, f4, f5, x1, x2, x3} as shown in Figure 4.12. Thus the set of 

interaction nodes {f2, f3, f4, f5} is inconsistent. One can easily verify that there are 

only three variables {x1, x2, x3} involved in four interactions {f2, f3, f4, f5}.  

4.4    Implementation And Examples 

We have implemented the algorithms described in this chapter using C++. The 

implementation has been tested on the Windows 2000 platform. We ran the program 

on a PC with the following configuration: (1) AMD Athlon XP1700+ CPU and (2) 

1GB Memory. 
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Figure 4.12: Finding inconsistent relationships 
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Figure 4.13: Design alternative A of a planar mechanism 
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Figure 4.13 shows design alterative A behind a device based on a planar mechanism. 

There are 6 active artifacts that represent various links in the device (the ground 

artifact is not counted). Every artifact can be described by three parameters (x, y, θ). 

These parameters present the x and y coordinate of the center of the artifact, and its 

orientation. In this device, artifacts interact with each other via joints. We assume that 

all joints in this case are pivot joints. The presence of a pivot joint reduces two 

degrees of freedom between two links. This means that while (x, y, θ) parameters for 

one of the links can be assigned independently, only one variable for the second link 

can be assigned independently. Therefore, as per our terminology, there are two 

interactions among artifacts due to the presence of the pivot joint. Both of these 

interactions involve the same set of variables. However, the equations behind each 

interaction will be different and can only be found after assigning dimensional 

parameters to the links. As mentioned before, we do not care about the actual 

equations involved but rather the set of parameters that participate in an interaction.       

Therefore, interactions among artifacts due to the presence of joints can be described 

by the following set of participating parameters: 

f1= {xA, yA, θA , xB, yB, θB},  f2 = {xA, yA, θA , xB, yB, θB} 

Similarly, for other joints we get   

f3= {xB, yB, θB,  xC, yC, θC},  f4 = {xB, yB, θB,  xC, yC, θC} 

f5= {xC, yC, θC,  xD, yD, θD},  f6 = {xC, yC, θC,  xD, yD, θD} 

f7= {xD, yD, θD,  xE, yE, θE},  f8 = {xD, yD, θD,  xE, yE, θE} 

f9= {xE, yE, θE ,  xF, yF, θF},  f10 = {xE, yE, θE ,  xF, yF, θF} 

f11= {xF, yF, θF, xA, yA, θA},  f12 = {xF, yF, θF, xA, yA, θA} 
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Artifacts A and C are connected to the ground via pivot joints, so we need to model 

the following interactions: 

f13= {xA, yA, θA},  f14 = {xA, yA, θA} 

f15= {xC, yC, θC},  f16 = {xC, yC, θC} 

We want to have two degrees of freedom in this device. These constraints are 

modeled as interactions as well. However, only one parameter participates in these 

two interactions. Therefore, we get   

f17= {θA},  f18 = {θC} 

Then the interaction consistency problem for this device is formulated as the 

following: 

X = {xA, yA, θA, xB, yB, θB,  xC, yC, θC,  xD, yD, θD ,  xE, yE, θE ,  xF, yF, θF }  

F = {f1,  f2, f3, …,  f18} 

n = 18 and m = 18 

By running our software, we get the following result: 

The size of the minimum s-t cut is 17 < m, thus the interactions are inconsistent. 

The set of inconsistent interactions are identified as {f1, f2, f3, f4, f13, f14, f15, f16, f17, 

f18}. These ten interactions only involve nine variables. Hence this design concept is 

not valid.  

Now let us consider another design alternative. This design alternative called 

alternative B is shown in Figure 4.14. This alternative has the same numbers of 

artifacts and joints. However, the interactions are different. Interactions in this design 

can be modeled as the following: 

f1= {xA, yA, θA , xB, yB, θB},  f2 = {xA, yA, θA , xB, yB, θB} 
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Figure 4.14: Design alternative B of a planar mechanism 

f3= {xB, yB, θB,  xC, yC, θC},  f4 = {xB, yB, θB,  xC, yC, θC} 

f5= {xC, yC, θC,  xD, yD, θD},  f6 = {xC, yC, θC,  xD, yD, θD} 

f7= {xD, yD, θD,  xE, yE, θE},  f8 = {xD, yD, θD,  xE, yE, θE} 

f9= {xE, yE, θE ,  xF, yF, θF},  f10 = {xE, yE, θE ,  xF, yF, θF} 

f11= {xF, yF, θF, xA, yA, θA},  f12 = {xF, yF, θF, xA, yA, θA} 

Artifact A and artifact D are connected to the ground, so we have the following 

interactions: 

f13= {xA, yA, θA},  f14 = {xA, yA, θA} 

f15= {xD, yD, θD},  f16 = {xD, yD, θD} 

We again want to have two degrees of freedom in the system. So we get, 

f17= {θA },  f18 = {θD } 

By running our algorithm, we get the following result: 

The size of the minimum s-t cut is 18 = m, thus the interactions are consistent. 

This example illustrates that the interactions can have significant influence on the 

validity of a design concept.  
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In design of complex spatial mechanisms, it is getting harder to detect redundant links 

in mechanisms as they are getting more complicated. Figure 4.15 shows design 

alterative A behind a device based on a spatial mechanism.  
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Figure 4.15: Design alternative A of a spatial mechanism 

There are 16 active artifacts that represent various links in the device (the ground 

artifact is not counted). Every artifact can be described by six parameters (x, y, z, θx, 

θy, θz). These parameters present the x, y and z coordinate of the center of the artifact, 

and its orientation. In this device, artifacts interact with each other via joints. The 

joints between artifacts A and Ground, B and Ground, C and Ground, F and G, P and 

Ground, N and Ground, L and Ground, H and I, I and J, are revolute joints. The joints 

between A and D, B and E, C and F are prismatic joints. The joints between D and G, 

E and G, G and H, J and O, J and M, J and K are spherical joints. The presence of a 

revolute joint reduces five degrees of freedom between two links. This means that 

while (x, y, z, θx, θy, θz) parameters for one of the links can be assigned 
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independently, only one variable for the second link can be assigned independently. 

Therefore, as per our terminology, there are five interactions among artifacts due to 

the presence of the revolute joint. All of these interactions involve the same set of 

variables. However, the equations behind each interaction will be different and can 

only be found after assigning dimensional parameters to the links. As mentioned 

before, we do not care about the actual equations involved but rather the set of 

parameters that participate in an interaction. Similarly, the presence of a spherical 

joint reduces three degrees of freedom between two links and the presence of a 

prismatic joint reduces five degrees of freedom between two links. Therefore, there 

are three interactions among artifacts due to the presence of the revolute joint and 

there are five interactions among artifacts due to the presence of the revolute joint. 

Interactions among artifacts due to the presence of joints can be described by the 

following set of participating parameters: 

For the joint that connects A and Ground, we have: 

f1= {xA, yA, zA, θxA, θyA, θzA}. f2, f3, f4, f5, have the same qualitative structure as f1.  

Similarly, for other revolute joints we get   

f6= {xB, yB, zB, θxB, θyB, θzB}. f7, f8, f9, f10, have the same qualitative structure as f6.  

f11= {xC, yC, zC, θxC, θyC, θzC}. f12, f13, f14, f15, have the same qualitative structure as f11.  

f16= {xF, yF, zF, θxF, θyF, θzF, xG, yG, zG, θxG, θyG, θzG}. f17, f18, f19, f20, have the same 

qualitative structure as f16.  

f21= {xP, yP, zP, θxP, θyP, θzP}. f22, f23, f24, f25, have the same qualitative structure as f21.  

f26= {xN, yN, zN, θxN, θyN, θzN}. f27, f28, f29, f30, have the same qualitative structure as f26.  

f31= {xL, yL, zL, θxL, θyL, θzL}. f32, f33, f34, f35, have the same qualitative structure as f31.  
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f36= {xH, yH, zH, θxH, θyH, θzH, xI, yI, zI, θxI, θyI, θzI}. f37, f38, f39, f40, have the same 

qualitative structure as f36.  

f41= {xI, yI, zI, θxI, θyI, θzI, xJ, yJ, zJ, θxJ, θyJ, θzJ}. f42, f43, f44, f45 have the same 

qualitative structure as f41.  

For the prismatic joints, we need to model the following interactions: 

f46= {xA, yA, zA, θxA, θyA, θzA, xD, yD, zD, θxD, θyD, θzD}. f47, f48, f49, f50, have the same 

qualitative structure as f46.  

f51= {xB, yB, zB, θxB, θyB, θzB, xE, yE, zE, θxE, θyE, θzE}. f52, f53, f54, f55, have the same 

qualitative structure as f51.  

f56= {xC, yC, zC, θxC, θyC, θzC, xF, yF, zF, θxF, θyF, θzF}. f57, f58, f59, f60, have the same 

qualitative structure as f56.  

f61= {xO, yO, zO, θxO, θyO, θzO, xP, yP, zP, θxP, θyP, θzP}. f62, f63, f64, f65, have the same 

qualitative structure as f61.  

f66= {xK, yK, zK, θxK, θyK, θzK, xL, yL, zL, θxL, θyL, θzL}. f67, f68, f69, f70, have the same 

qualitative structure as f66.  

f71= {xM, yM, zM, θxM, θyM, θzM, xN, yN, zN, θxN, θyN, θzN}. f72, f73, f74, f75, have the same 

qualitative structure as f71.  

For the spherical joints, we need to model the following interactions: 

f76= {xD, yD, zD, θxD, θyD, θzD, xG, yG, zG, θxG, θyG, θzG}. f77, f78, have the same 

qualitative structure as f76.  

f79= {xE, yE, zE, θxE, θyE, θzE, xG, yG, zG, θxG, θyG, θzG}. f80, f81, have the same qualitative 

structure as f79.  
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f82= {xG, yG, zG, θxG, θyG, θzG, xH, yH, zH, θxH, θyH, θzH}. f83, f84, have the same 

qualitative structure as f82.  

f85= {xJ, yJ, zJ, θxJ, θyJ, θzJ, xO, yO, zO, θxO, θyO, θzO}. f86, f87, have the same qualitative 

structure as f85.  

f88= {xJ, yJ, zJ, θxJ, θyJ, θzJ, xM, yM, zM, θxM, θyM, θzM}. f89, f90, have the same qualitative 

structure as f88.  

f91= {xJ, yJ, zJ, θxJ, θyJ, θzJ, xK, yK, zK, θxK, θyK, θzK}. f92, f93, have the same qualitative 

structure as f91.  

Since there are 16 active artifacts excluding ground, there are 96 variables in total. 

We want to have at least three degrees of freedom in this device. These constraints 

are modeled as interactions as well. Therefore, we get   

f94= {xA, yA, zA, θxA, θyA, θzA}, f95= {xB, yB, zB, θxB, θyB, θzB}, f96= {xC, yC, zC, θxC, θyC, 

θzC}. 

Then the interaction consistency problem for this device is formulated as the 

following: 

X = { xA, yA, zA, θxA, θyA, θzA, xB, yB, zB, θxB, θyB, θzB, …, xP, yP, zP, θxP, θyP, θzP}  

F = {f1,  f2, f3, …,  f96} 

n = 96 and m = 96 

The device seems to work fine according to the analysis of its degree of freedom. 

However, by running our software, we find that the interactions between artifacts in 

this device are not consistent and thus the device would not work. The set of 

inconsistent interactions are identified as {f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11, f12, f13, f14, 

f15, f16, f17, f18, f19, f20, f46, f47, f48, f49, f50, f51, f52, f53, f54, f55, f56, f57, f58, f59, f60, f76, f77 f78, 
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f79, f80, f81, f94, f95, f96,}. These 44 interactions only involve 42 variables. Hence this 

design concept is not valid. We can also determine that the problem happens to 

artifact A, B, C, D, E, F, G, and Ground.  

Now let us consider another design alternative called alternative B that is shown in 

Figure 4.16.  
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Figure 4.16: Design alternative B of a spatial mechanism 

We remove artifact I and use artifact H to connect G and J. We also use a fixed joint 

between G and H, a spherical joint between H and J, a spherical joint between C and 

F. This alternative has 15 artifacts and 20 joints. Interactions in this design can be 

modeled as the following: 

f1= {xA, yA, zA, θxA, θyA, θzA}, f2, f3, f4, f5, have the same qualitative structure as f1.  

f6= {xB, yB, zB, θxB, θyB, θzB}, f7, f8, f9, f10, have the same qualitative structure as f6.  

f11= {xC, yC, zC, θxC, θyC, θzC}, f12, f13, f14, f15, have the same qualitative structure as f11.  

f16= {xP, yP, zP, θxP, θyP, θzP}, f17, f18, f19, f20, have the same qualitative structure as f16.  
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f21= {xN, yN, zN, θxN, θyN, θzN}, f22, f23, f24, f25, have the same qualitative structure as f21.  

f26= {xL, yL, zL, θxL, θyL, θzL}, f27, f28, f29, f30, have the same qualitative structure as f26.  

f31= {xA, yA, zA, θxA, θyA, θzA, xD, yD, zD, θxD, θyD, θzD}, f32, f33, f34, f35 have the same 

qualitative structure as f31.  

f36= {xB, yB, zB, θxB, θyB, θzB, xE, yE, zE, θxE, θyE, θzE}, f37, f38, f39, f40 have the same 

qualitative structure as f36.  

f41= {xC, yC, zC, θxC, θyC, θzC, xF, yF, zF, θxF, θyF, θzF}, f42, f43, f44, f45 have the same 

qualitative structure as f41.  

f46= {xO, yO, zO, θxO, θyO, θzO, xP, yP, zP, θxP, θyP, θzP}, f47, f48, f49, f50, have the same 

qualitative structure as f46.  

f51= {xK, yK, zK, θxK, θyK, θzK, xL, yL, zL, θxL, θyL, θzL}, f52, f53, f54, f55, have the same 

qualitative structure as f51.  

f56= {xM, yM, zM, θxM, θyM, θzM, xN, yN, zN, θxN, θyN, θzN}, f57, f58, f59, f60, have the same 

qualitative structure as f56.  

f61= {xF, yF, zF, θxF, θyF, θzF, xG, yG, zG, θxG, θyG, θzG}, f62, f63, have the same qualitative 

structure as f61.  

f64= {xD, yD, zD, θxD, θyD, θzD, xG, yG, zG, θxG, θyG, θzG}, f65, f66, have the same 

qualitative structure as f64.  

f67= {xE, yE, zE, θxE, θyE, θzE, xG, yG, zG, θxG, θyG, θzG}, f68, f69, have the same qualitative 

structure as f67.  

For the fixed joint that connects G and H, we have six interactions: 

f70= {xG, yG, zG, θxG, θyG, θzG, xH, yH, zH, θxH, θyH, θzH}, f71, f72, f73, f74, f75, have the 

same qualitative structure as f70.  
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f76= {xH, yH, zH, θxH, θyH, θzH, xJ, yJ, zJ, θxJ, θyJ, θzJ}, f77, f78, have the same qualitative 

structure as f76.  

f79= {xJ, yJ, zJ, θxJ, θyJ, θzJ, xO, yO, zO, θxO, θyO, θzO}, f80, f81, have the same qualitative 

structure as f79.  

f82= {xJ, yJ, zJ, θxJ, θyJ, θzJ, xM, yM, zM, θxM, θyM, θzM}, f83, f84, have the same qualitative 

structure as f82.  

f85= {xJ, yJ, zJ, θxJ, θyJ, θzJ, xK, yK, zK, θxK, θyK, θzK}, f86, f87, have the same qualitative 

structure as f85. 

We still want to have at least three degrees of freedom: 

f88= {xA, yA, zA, θxA, θyA, θzA}, f89= {xB, yB, zB, θxB, θyB, θzB}, f90= {xC, yC, zC, θxC, θyC, 

θzC}. 

Now we have n =90 and m = 90. By running our software, we get the following 

result: 

The size of the minimum s-t cut is 90 = m, thus the interactions are consistent. 

This example illustrates that in complex spatial mechanisms, although overall the 

degree of freedom of the device looks fine, there could be a part of the mechanism 

that is over-constrained. In this case, it would be very difficult to tell which part of the 

mechanism is causing the problem. However, our algorithm could solve this problem 

by finding out the inconsistent interactions. 

4.5   Summary 

This chapter presents a systematic approach to check the consistency of a set of 

interactions in an interaction-state of a mechatronic system. We also provide an 

algorithm to find the set of interactions that cause the inconsistency. During the 
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conceptual design stage, the actual equations describing the interactions are usually 

not known. Therefore our algorithm only utilizes the information on participating 

parameters to carry out its analysis. We have shown both the soundness and 

completeness of our algorithms. This implies that when our algorithm finds a set of 

interactions to be inconsistent, they are actually inconsistent. Furthermore, when our 

algorithm finds a set of interactions to be consistent, they are actually consistent. 

Even though the consistency-checking problem has an appearance of a combinatorial 

problem, we have found an algorithm that works in polynomial time and does not 

require exhaustive enumeration.     

The algorithms described in this chapter present a step towards automated validation 

of a proposed design concept. We believe that the framework described in this 

chapter will provide the underlying foundations for constructing the next generation 

software tools for the conceptual design of complex mechatronic systems.  
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Chapter 5:  Detection Of Unsafe Parameter Value Sets 

Embedded In Interaction-States 

This chapter defines the problem of detecting the presence of an unsafe parameter 

value set inside an interaction-state and presents an algorithm for solving the 

problem.  

This chapter has been organized in the following manner. Section 5.1 describes the 

problem formulation. Section 5.2 describes the algorithm for detecting the presence 

of an unsafe parameter value set inside an interaction-state. Section 5.3 presents 

examples illustrating how the algorithm works. Finally, Section 5.4 presents 

concluding remarks. 

5.1 Problem Formulation 

5.1.1 Problem Statement 

Let X be the set of parameters belonging to the artifacts in an interaction-state s. Let u 

be an unsafe parameter value set involving parameters from a subset X′ of X. We are 

concerned whether parameters in X′ would take the unsafe values defined in u at some 

time during the interaction-state. Incoming transitions and outgoing transitions 

influence whether this can happen. So we need to consider the transitions associated 

with the state as well.   

For example, consider the behavior specification of the AVC example as shown in 

Figure 3.11. The event space and the unsafe parameter value sets are shown in Table 

3.3 and 3.4 respectively for this example. Let us consider the vacuum state. Detailed 
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description of this state is shown in Figure 3.15. There are two active artifacts in this 

state: AVC and surface.  

We use the following notations to represent the main parameters participating in 

interactions in this interaction-state: 

x1 = AVC :: RemainingCapacity 

x2 = AVC :: RemainingEnergy  

One of the unsafe parameter value sets is defined as (x1 = 2%). There are two 

incoming transitions to the vacuum state: r5 and r8. There are two outgoing transitions 

from this state: r6 and r7. If any of the two incoming transitions lead to initial values 

in the state such that during the state the value of x1 is equal to 2% during this state, 

then the state is considered unsafe. 

The current framework for checking state safety only deals with discrete parameter 

value sets. If the unsafe parameter value set involves only one parameter, then we can 

incorporate value range on the parameter by treating it as two different unsafe 

discrete values at the upper and lower limits. We formulate the problem of detecting 

the presence of unsafe parameter value set inside an interaction-state in the following 

manner.  

Given,  

• Unsafe parameter value set u identifying a set of parameters X′ and defining their 

values.    

• Interaction-state s.  

• Set of incoming transitions Ri. 

• Set of outgoing transitions Ro. 
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The problem is to determine if there exists a local time t for s such that parameters in 

set X′ will take values defined in u.  

5.1.2 Overview of Our Approach 

To find out whether the unsafe parameter value set is embedded in the interaction-

state at a valid local time, we need to consider possible values of parameters in X′ 

during the lifetime of the interaction-state. Generally, values of parameters are 

determined by their initial values and the equations that control the change of values. 

Parameters may get their initial values by inheriting values from a previous 

interaction-state. Since current interaction-state may be reached through different 

paths from different interaction-states, the initial values of parameters may vary 

according to the history of the state. To enumerate every possible path of reaching the 

current interaction-state is computationally inefficient.  

We believe that for an overall safe device design, we should be able to ensure that an 

interaction state will be safe irrespective of its history. This obviously leads to a more 

conservative design. If an interaction-state is deemed to be safe irrespective of which 

transitions led this state, then there is no possible way for this state to contain an 

unsafe parameter value set. However, if we discover that it is possible to have initial 

conditions in the state such that it includes unsafe parameter value set, then it may 

still not be unsafe. The reason for this is as following. The initial conditions in an 

interaction state actually depend on the set of transitions by which the interaction-

state is reached. So while it may theoretically be possible to initialize the state with 

the conditions that lead to an unsafe parameter value set, it may not be feasible to 

initialize the state with those values given the set of transitions and other states in the 
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system. Considering all possible state histories is computationally almost intractable. 

Hence, we advocate developing a conservative approach that ensures that states are 

safe irrespective of their initialization history.        

We use the following three-step approach: 

• Determine possible initial values from the initialization of parameters in the 

interaction-state for each incoming transition. Incoming transitions may override 

the initial values of parameters set by default initialization or inherited from the 

previous state. 

• Analyze the equations that govern the interactions in the interaction-state. 

Parameters change values according to these interactions. 

• Check the influence of outgoing transitions. Even though parameters may have 

potential to reach the unsafe values at some time, an outgoing transition may 

transit the state to the next state before the unsafe values are reached. 

These steps are described in detail in section 5.2. 

5.2 Algorithm for Detecting the Presence of Unsafe Parameter Value Sets 

In an interaction state, a state parameter acquires its values by its initialization 

condition and interacting with other parameters. Initialization types and value-

changing modes are used to describe the characteristics of how parameters are 

initialized and changed. Initialization types are defined as ASSIGN, INHERIT and 

DERIVE. Value-changing modes are defined as CONSTANT, EQUATION and 

DERIVE. These are described in detail in Chapter 3. There are some limitations for 

combining initialization types and value-changing modes as shown in Table 5.1. 

Since some parameters are set to inherit values from previous state and we don’t 
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consider the state history, their initial values are unknown in this interaction-state. 

Parameters with derived initial values from other parameters via interactions can be 

finally determined as having known initial values or unknown initial values according 

to the following rules: 

• If all the parameters from which the value is derived only have known values, 

then this parameter will have known values. Furthermore, if all the parameters 

only have known constant values during the interaction-state, then this parameter 

will have known constant values. 

• If any source parameter gets its value from a previous state, then the derived 

parameter has an unknown value. 

The condition that the unsafe parameter value set is embedded in the interaction-state 

can be classified into several cases described below. 

Case 1: If the parameters in X′ only take known constant values in s, we can simply 

compare these values with the unsafe values and determine whether s is unsafe. This 

can be formulated as following: 

Let u be the unsafe parameter value set, s be the interaction-state. If u ⊆ s(t=0) then s 

is unsafe. 

For example, let X = {x1, x2, x3, x4}, u = {(x1=5), (x2=10)}, and s(t=0) ={(x1=5), 

(x2=10), (x3=10), (x4=10)}. In this example, u ⊆ s(t=0), therefore s is unsafe. 

Case 2: Based on the initial values of the state parameters and the interaction 

equations, we can determine the values of the parameters at any time during the 

interaction-state. Then the interaction-state is considered unsafe if at some time, all 
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the parameters in X′ reach their unsafe values simultaneously. This can be formulated 

as following: 

Let u be the unsafe parameter value set, s be the interaction-state. The equations in s 

are represented as fj(X(0), X, t) =0, 1 ≤j ≤m, where X(0) is the set of initial values of X. 

Then, if there exists t* such that u ⊆ s* (where s* = s(t=t*)), then s can potentially be 

unsafe if an outgoing transition does not transit the state before time t*. Otherwise, 

the state is considered safe. In general, some initial values in the state may be 

inherited from other states.  These initial values can be treated as unknown variables 

and the system of equations can be solved to determine if there exist initial value 

assignments that can make the state unsafe.      

The basic idea behind determining if a transition will take place before state reaching 

the unsafe value is as following. Let u be an unsafe parameter value set and s be an 

interaction-state. Let X(0) be the possible initial values of various parameters in the 

interaction-state. Let t* be the time at which parameters in the state reach unsafe 

values. Let these values be represented by X(t*). Let there exist an outgoing transition 

r such that the condition associated with the transition defines a hyper-plane over the 

values of parameters in state. If X(0) and X(t*) lie on two different sides of the hyper-

plane, then any state that starts with value X(0) will transition to a different state 

before actually resulting in unsafe values. Therefore this state will be a safe state.  

For example, let X = {x1, x2, x3, x4}, u = {(x1=5), (x2=10)}, and X(0) ={0, 0, 0, 0}. Let 

us assume that the interaction equations in s are {(x1(t) = x1(0) + t), (x2(t) = x2(0) + 

2x1)} and an outgoing transition has the condition represented as (x1+ x2 =6). In this 

case when t is equal to 5, various parameters in s will reach unsafe value defined in u. 
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However, the outgoing transition happens at t = 2, thus s can never actually reach the 

unsafe value set. Therefore s is safe. 

Case 3: If the interaction equations are unknown, then we cannot compute the exact 

values of the parameters. However, if qualitative structures of the equations are 

known, we can examine the structure of the equations to determine if by the nature of 

the equations, the possibility of reaching the unsafe states can be eliminated. In this 

analysis, we assume that the interaction equations in the state remain irredundant at 

the unsafe parameter values.  

Consider the following example: Let s involve the following interaction equations of 

known structure and unknown form: f1(x1, x2), f2(x1, x2, x3), f3(x2, x3, x4). Let u = {(x2 = 

0), (x3 = 0)}. Therefore at u, the state equation structure will become f1′ (x1), f2′ (x1), 

f3′ (x4), where f1′, f2′, and f3′ have been obtained by substituting values in u. In order 

for state s to reach u, there need to exist a solution to these equations. A solution to 

these equations will only exist if f1′= f2′. In other words, there is at least a redundant 

equation. As long as f1 and f2 have a structure such that substituting x2 = 0 and x3 = 0 

in them does not produce an identical equation, s can never reach unsafe value.  

The mathematical basis for the analysis in this case is given by Theorem 5.1 

described below.    

Let F be the set of parameter sets participating in interaction equations in state s. For 

every f ∈ F, f ⊆ Z, where Z = X ∪ Y ∪ {t}. X is the set of parameters in s. Y is the set 

of auxiliary variables corresponding to the unknown initial conditions in s.  
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Create F′ by eliminating parameters corresponding to X′ and X′′ from F. X′′ is the set 

of parameters that have known constant value in s. If this leads to an empty member 

in F′, then remove that member from F′.  

Theorem 5.1. If there exists a set F′′ ⊆ F′ such that cardinality(F′′) > 

cardinality(∪F′′), then s can reach unsafe values defined in u, if at least one of the 

equations in F′′ is redundant at u.  

Proof: 

In order for variables in s to reach values specified in u, all equations corresponding 

to F′′ will have to be simultaneously satisfied. cardinality(F′′) > cardinality(∪F′′). 

Therefore, equations corresponding to F can be satisfied at u, if at least one equation 

associated with F′′ is redundant at u. If this is not the case, then s will be safe. 

Depending on whether the equations are known or unknown, different algorithms 

may be applied. The algorithm for solving the problem with the known equations is 

the following: 

Algorithm CHECKSTATESAFETYWITHKNOWNEUQATIONS 

Input:  

• System of interactions K defined over X. There are n variables in X and m 

interactions in K. 

• Incoming transition ri. 

• Set of outgoing transitions Ro. 

• Unsafe parameter value set u involving parameter set X′. 

Output:  

• State safety status: SAFE or UNSAFE  
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Steps: 

1) Initialize parameters. If the initialization type is ASSIGN, then assign the initial 

value to the parameter. If initialization type is INHERIT, let the parameter value 

be unknown. If initialization type is DERIVE, initialize the independent 

parameters first. Then use the interaction equations to compute the dependent 

parameter values. If there is at least one inherited parameter among the 

independent parameters, then the dependent parameter value is marked as 

unknown.  

2) Override the parameter initialization using the initialization action set in the 

incoming transition ri. 

3) Find the set of parameters that have known constant value X′′ in s.  

4) If X′′ ⊆ X′, then for every parameter p ∈ X′′, check if unsafe value of p in u 

matches with value of p in s. Use the following conditions to determine the sate 

safety status.   

i. If value of at least one parameter does not match, then the state is safe. 

Return state safety status as SAFE and exit.  

ii. If all values of all parameters match and X′′ = X′, then the state is unsafe. 

Return state safety status as UNSAFE and exit.  

iii. If all values of all parameters match, X′′ ≠ X′, and all parameters in X′ − X′′ 

have unknown constant values, then the state is potentially unsafe. Return 

state safety status as UNSAFE and exit.  

iv. If X′′ = ∅ and all parameters in X′ − X′′ have unknown constant values, then 

the state is potentially unsafe. Return state safety status as UNSAFE and exit.  
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5) Let L be the set of state equations defined in terms of the sets of state parameters 

X and auxiliary variables Y. Y is the set of auxiliary variables that correspond to 

the unknown initial conditions. If all initial conditions are known, then Y will be 

empty. The state equations will be represented in the following form: L(X, Y, t) = 

{l1(X, Y, t) =0, …, lm(X, Y, t)=0}. Substitute unsafe values of parameters from 

X′′in L. This reduces L to L′(Z, Y, t) where Z = X − X′′. Substitute value of 

parameters from X′ − X′′ in L. This reduces L′ to L′′ (Z′, Y, t) where Z′ = (X − X′′) 

− X′. Solve the above equations and compute values of variables Z′, Y and t such 

that 0 ≤ t < ∞. If such a solution does not exist then the state is considered safe. 

Return state safety status as SAFE and exit.  

6) If a solution has been found in Step 5, then for every outgoing transition ro, do 

the following: 

i. If the outgoing transition is of the following form: lt(Xt)=0, Xt ⊇ Z and X′ ⊇ 

Xt, then do the following:  

• Substitute value of parameters from u into lt, let value of lt be l1.  

• Substitute values of parameters from the initial values of state (either 

known as a part of the state definition or taken from set Y computed as a 

part of Step 5) into lt, let value of lt be l2. 

• If l1 and l2 have different signs, then the state is safe. In this case initial 

values for the state and unsafe values for the state are on different sides 

of hyper plane defined by the outgoing transition. Hence it’s impossible 

to go from initial value to unsafe value. Return state safety status as 

SAFE and exit. 
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7) Return state safety status as UNSAFE and exit. 

If multiple solutions are found is Step 5, then we need to check all the solutions as a 

part of Step 6. If all solutions cannot be checked then one should directly proceed to 

Step 7. Moreover, the above algorithm needs to be used on all incoming transitions 

associated with the state. 

Many different types of mathematical techniques can be used in Step 5 to solve a 

given set of equations. Usually the choice of technique being used will depend upon 

the nature of equations. Since the execution of Step 5 depends on the mathematical 

techniques that are used to solve the equations, the complexity of the algorithm is 

difficult to estimate. 

Whenever the algorithm CHECKSTATESAFETYWITHKNOWNEUQATIONS returns state 

safety status as UNSAFE, a caution should be exercised in interpreting these results. 

This result in most case only implies that this state has a potential of reaching unsafe 

values. Whether or not the state will actually reach unsafe value will depend upon the 

state history.   

The algorithm for solving the problem with the unknown equations is the following: 

Algorithm CHECKSTATESAFETYWITHUNKNOWNEUQATIONS 

Input:  

• Set of parameter sets F for interactions defined over X. There are n variables in X 

and m parameter sets in F. 

• Incoming transition ri. 

• Unsafe parameter value set u involving parameter set X′. 

Output:  
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• State safety status: SAFE, UNSAFE, or UNKNOWN  

Steps: 

Step 1, 2, 3, and 4 are identical to the ones used in algorithm 

CHECKSTATESAFETYWITHKNOWNEUQATIONS. 

Step 5:  Find V = X ∪ Y ∪ {t}. Y is the set of auxiliary variables corresponding to the 

unknown initial conditions in s.  

Create F′ by eliminating parameters corresponding to X′ and X′′ from F. X′′ is the set 

of parameters that have known constant value in s. If this leads to an empty member 

in F′, then remove that member from F′. Let V′ = (V − X′′) − X′. Let the cardinality of 

V′ be n′ and the cardinality of F′ be m′.  

Call CONSTRUCTINTERACTIONNETWORK using F′ and V′ as inputs to create a flow 

network (this algorithm is defined in Chapter 4). 

Call FINDMINIMUMSTCUTSIZE on the flow network created in the previous step (this 

algorithm is also defined in Chapter 4).   

If a min-cut has been found such that the size of the min-cut is less than m′, then s is 

considered safe. Return state safety status as SAFE and exit.  

Step 6: Return state safety status as UNKNOWN. 

The above algorithm can return three results. If the algorithm returns state safety 

status as SAFE, then it means that unless one chooses redundant state equations, the 

state will be safe. If the algorithm returns state safety status as UNSAFE, then it 

means that there is possibility of the state parameters reaching the unsafe value 

depending upon how the state is initialized. If the algorithm returns state safety status 

as UNKOWN, then we cannot reach any conclusions based on the structure of the 
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equations. Hence the user should run algorithm 

CHECKSTATESAFETYWITHKNOWNEUQATIONS when the forms of the equations are 

known.       

5.3 Examples 

The algorithm described above can be illustrated by the following examples. 

First, let us consider the microwave oven design. The behavior specification of the 

microwave oven is shown in Figure 5.1. Unsafe parameter value set is defined as 

(Microwave::DoorStatus=OPEN AND Microwave::Heater = ON). We are concerned 

about whether this unsafe parameter value set is embedded in the interaction-state of 

heating. Description of the Heating state is shown in Figure 5.2.  

Now we follow the algorithm described above to check the safety of the “heating” 

state. First, we initialize the state parameters. As all of them are inheriting values 

from the previous state, their values are unknown at this time. Then in step 2, we 

identify the incoming transitions. Let us take r9 as the example. This transition will 

set the value of Microwave::Heater to ON. In step 4, the only parameter with known 

constant value is Microwave::Heater and its value matches the unsafe value. The 

other parameter Microwave::DoorStatus has unknown constant value depending on 

the previous state. Thus we consider the unsafe parameter value set embedded in the 

heating state.  

The second example comes from the AVC example described in Chapter 3. The 

behavior specification of AVC is shown in Figure 3.11. The unsafe parameter value 

set is defined as (AVC::RemainingCapacity ≤ 2%). We are concerned whether this 
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unsafe parameter value set is embedded in the interaction-state of vacuum. 

Description of the vacuum state is shown in Figure 3.15.  
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Figure 5.1: Transition diagrams for behavior specification of microwave 
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s3 (Heating)
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Figure 5.2: Definition of state s3 

Now we follow the algorithm described above to check the safety of the “vacuum” 

state. First, we initialize the state parameters. As all of them except AVC::Speed are 

inheriting values from the previous state, their values are unknown at this time. Then 

in step 2 we identify the incoming transitions as r5 and r8. However, these two 

transitions do not influence the initialization of the state variables. We also know the 

equation that describes the change of the parameter in the unsafe parameter value set 

as: 

AVC::RemainingCapacity(t)= AVC::RemainingCapacity(t=0) − t/20000 
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In step 4, although we don’t know the exact initial value of AVC::RemainingCapacity, 

we know there exist an initial value and a time t such that the value of 

AVC::RemainingCapacity would be below 2%. In step 6, the outgoing transitions are 

r6 and r7. They have no influence on state safety. Thus this state is considered unsafe.  

The third example is a device for storing and draining liquid. The behavior 

specification of this device is shown in Figure 5.3. Unsafe parameter value set is 

defined as (Reservoir::RemainingCapacity = 10). We are concerned whether this 

unsafe parameter value set is embedded in the interaction-state of Empty. Description 

of the Empty state is shown in Figure 5.4.  
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Figure 5.3: Transition diagrams for behavior specification of reservoir 
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Figure 5.4: Definition of state s2 

Now we follow the algorithm described above to check the safety of the Empty state. 

First, we initialize the state parameters. As all of them are inheriting values from the 

previous state, their values are unknown at this time. Then in step 2, we identify the 

incoming transition as r2. r2 does not influence the initialization of the state variables. 

We also know the equation that describes the change of the parameter in the unsafe 

parameter value set as: 

Reservoir::RemainingCapacity(t) = Reservoir::RemainingCapacity(t=0)  – 5t 

In step 4, although we don’t know the exact initial value of 

Reservoir::RemainingCapacity, we know there exist an initial value and a time t such 

that the value of Reservoir::RemainingCapacity would be below 10. Thus the state is 

potentially unsafe. However, in step 6, the outgoing transition r6 will transit the state 
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to state s3 before Reservoir::Remaining Capacity decreases to 20. The transition 

condition is: 

ft: Reservoir::RemainingCapacity = 20. That is: ft: Reservoir::RemainingCapacity – 

20 = 0. We can find an initial value such that  l2 = Reservoir::RemainingCapacity(t=0)  

– 20 > 0. If we substitute unsafe value of parameters into ft, we get l1 =10 – 20 < 0. 

Since l1 and l2 have different signs, we conclude that this interaction-state is safe. 

The fourth example is a coffee maker. The behavior specification of the coffee maker 

is shown in Figure 5.5. Unsafe parameter value set is defined as 

(CoffeeMaker::PotPresent = FALSE AND CoffeeMaker::::Brewer = ON). We are 

concerned whether this unsafe parameter value set is embedded in the interaction-

state of Brewing. Description of the Brewing state is shown in Figure 5.6.  
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Transition list in the coffee maker behavior specification

 

Figure 5.5: Transition diagrams for behavior specification of coffee maker 
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s3 (Brewing)

NONECONSTANTNAINHERITCoffeeMaker::
HeaterPower

NONECONSTANTNAINHERITCoffeeMaker::
Power

NONECONSTANTNAINHERITCoffeeMaker::
PotPresent

NONECONSTANTNAINHERITCoffeeMaker:: 
Heater

EquationChange 
Type

Initialization 
Value

Initialization 
Type

parameter

NONECONSTANTNAINHERITCoffeeMaker::
HeaterPower

NONECONSTANTNAINHERITCoffeeMaker::
Power

NONECONSTANTNAINHERITCoffeeMaker::
PotPresent

NONECONSTANTNAINHERITCoffeeMaker:: 
Heater

EquationChange 
Type

Initialization 
Value

Initialization 
Type

parameter

Artifact Set and Interaction Topology

Parameters Initialization and Change

Coffee

Coffee Powder

Artifact Interaction Set

Coffee::Temperature(t) = f(CoffeeMaker::HeatPower, t)
Coffee::Weight(t) = Coffee::Weight(t)/30 + Water::Weight(t)

Water

Coffee Maker

 

Figure 5.6: Definition of state s3 

Now we follow the algorithm described above to check the safety of the “brewing” 

state. First, we initialize the state parameters. As all of them are inheriting values 

from a previous state, their values are unknown at this time. Then in step 2, we 

identify the incoming transitions. Let us take r7 as the example. This transition will 

set the value of CoffeeMaker::Brewer to ON. In step 3, the only parameter with 

known constant value is CoffeeMaker::Brewer and its value matches the unsafe value. 
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The other parameter CoffeeMaker::PotPresent has unknown constant value 

depending on the previous state. Thus we consider the unsafe parameter value set 

embedded in the Brewing state.  

The fifth example is a mixer used in the manufacturing of composite materials. This 

machines works by mixing different types of materials and casting them into desired 

parts. We only show the mixing state here. In this state, two nozzles are used to lead 

in two different materials. A controller is used to control the total mass of the 

materials according to requirements. Figure 5.7 shows the mixing state. Unsafe 

parameter value set is defined as (Material1::Volume = 5 and Material2::Volume = 

10). We are concerned whether this value set is embedded in the mixing state. In this 

state, parameters have zero initial values. If we simply look at the interactions and 

parameter initialization, we would arrive at the conclusion that this state is unsafe. 

However, if we consider the outgoing transitions, state in figure 5.7(a) will be safe 

because the state is exited before unsafe values are reached. On the other hand state in 

figure 5.7(b) will reach unsafe values. 

5.4   Summary 

This chapter presents a systematic approach to check whether a predefined unsafe 

parameter value set is embedded in an interaction-state. The conceptual design stage 

lacks complete design details, hence we analyze different cases in which unsafe 

parameter value sets can be embedded in an interaction state and provide an 

algorithm to determine whether the interaction-state is safe based on these cases. This 

algorithm is not dependent on the state history. Hence, it can be applied to each 

interaction-state independently. During the conceptual design stage, the actual 
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equations describing the interactions may not be known. Therefore we present 

algorithms for handling both cases when interaction equations are known and when 

they are not known. We have shown that our algorithms are conservative in nature.  

We believe that the framework described in this chapter will provide the underlying 

foundations for constructing the next generation software tools for conceptual design 

of complex mechatronic systems. 

Material1::Volume(t) = Material1::Volume(0) + t
Material2::Volume(t) = Material2::Volume(0) +  
2×Material1::Volume(t)
Mass(t) = 100× Material1::Volume(t) +                       
500× Material2::Volume(t)

Material1::
Volume = 0

Material1::
Volume + Material2::
Volume = 6

Unsafe Value Set
Material1::Volume = 5 and Material2::Volume = 10

• This state is safe 
• Values Material1::Volume = 5 and Material2::Volume = 10 are 
reached at t = 5, but transition happens before that time (at t = 2)
(a) Unsafe value set not embedded in state

• This state will reaches unsafe values 
• Values Material1::Volume = 5 and Material2::Volume = 10 are 
reached at t = 5
• Outgoing transition will be reached at t = 6
(b) Unsafe value set embedded in state

Material1::
Volume = 0 Mass = 6600

Material1::Volume(t) = Material1::Volume(0) + t
Material2::Volume(t) = Material2::Volume(0) +  
2×Material1::Volume(t)
Mass(t) = 100× Material1::Volume(t) +                       
500× Material2::Volume(t)

 

Figure 5.7: Mixing state 
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Chapter 6:  Design Concept Evaluation 

Given a behavior specification, designers could generate many design concepts. An 

important design step is to evaluate these design concepts and select the best concepts 

and develop them into detailed designs. This chapter describes methods for 

performing new types of evaluations that are facilitated by the modeling framework 

described in Chapter 3. Specifically, it discusses two different types of evaluations 

that can be performed: determination of maximum power consumption and 

determination of optimal component sharing.  

This chapter has been organized in the following manner. Section 6.1 describes the 

optimal component-sharing problem. It first describes the optimal component-sharing 

problem and shows that this problem is NP-hard. It also presents a branch and bound 

algorithm for solving this problem. Section 6.2 describes the maximum power 

consumption problem and presents an algorithm for solving it. Finally, Section 6.3 

summarizes this chapter. 

6.1 Optimal Component Sharing  

6.1.1 Problem Statement 

Artifacts in design concepts will be realized by selecting components from the 

component library to implement the design concept. For examples, actuator artifacts 

will be mapped to suitable physical motors. Consider a situation in which a design 

concept needs two different actuators-- one for elevating a platform and one for tilting 

the platform. Now assume that these two actuators are used in two different states and 

hence never need to be used simultaneously.  In such a situation, one might consider 



 157 
 

the possibility of using a single physical motor that can play the role of elevating the 

platform in one state and tilting the platform in the other state. In this case we will say 

that the two artifacts in the design concept are sharing the physical component motor.  

Component sharing becomes an important design strategy in applications where 

weight or space is very tight.  In such situations, a design concept that maximizes 

number of sharable components may be preferred over the design that does not allow 

sharing components. Examples of such applications include medical devices used in 

minimally invasive surgery and satellites. In both of these applications it becomes 

necessary to use a single actuator or sensor to play multiple different roles.     

In order for a component to play multiple roles, it typically needs to be disconnected 

from one component and be connected to some other component. This in turn makes 

the connector a lot more complex because they need to incorporate elaborate 

switching mechanisms. If the switching mechanism becomes too complex, then it 

defeats the purpose of sharing components. Hence a tradeoff needs to be made 

between sharing components and deploying complex switching mechanisms.   

State transition diagrams carry the information about the artifacts that are not being 

used simultaneously. Hence they enable us to determine which artifacts can share 

physical components.  It is difficult to assess the actual complexity of switching 

mechanism during the conceptual design. Therefore, in formulating optimal 

component sharing problem, we do not explicitly consider the switching mechanism 

complexity. We instead account for it implicitly by requiring that if a component has 

been selected to play the role of an artifact, then it should play the role of that artifact 

in every state. This restriction ensures that the same artifact is not being realized by 
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different components in different states and hence unnecessarily increases the number 

of switching mechanisms.          

We use the following notation to describe this problem. Let S be the set of 

interaction-states. Let A be the set of artifacts used in the design concept. Each 

member of A describes an artifact and its type. Each member of S can be viewed as a 

subset of A. Let T be the set of artifact types used in the design concept. The optimal 

component sharing problem can be formulated as the following:   

Given: 

• T = {t1, …, tl} 

• A = {(a1, t(a1)), …, (am, t(am)}, where t(ai) ∈ T 

• S = {s1, …, sn}, where si ⊆  A 

We are interested in finding a set 

B = {B1,  …, Bb} satisfying: 

• Bi ⊆  A, such that every member of Bi has the same type.  

• Cardinality of B is minimum. 

• For each s ∈ S, Bi has at most one element common with s.  

• No two elements of B intersect with each other. 

Basically, every member of set B represents a set of artifacts that can be realized by 

the same physical component. 

Two elements with different types cannot be shared. Hence we need to solve this 

problem for each artifact type separately. Therefore, by eliminating the type we can 

significantly simplify this problem. The simplified problem can be stated as 

following: 
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Given: 

• A = {a1, …, am} 

• S = {s1, …, sn}, where  si ⊆ A 

We are interested in finding a set 

B = {B1, …, Bb} satisfying: 

• Bi ⊆ A. 

• Cardinality of B is minimum. 

• For each s ∈ S, Bi has at most one element common with s.  

• No two elements of B intersect with each other. 

Let us consider the following example.  

We are given: 

• A = {a1, a2, a3, a4, a5, a6, a7} 

• S = {s1, s2, s3, s4} ={{a1, a2, a4, a6}, {a3, a5, a7}, {a1, a5, a7}, {a1, a3, a6}}  

In this example, seven artifacts of the same type are used. However, some of them 

can share physical components since they are not used in the same state. For example, 

a2 can share a physical component with a3. a4 can share a physical component with a5. 

a6 can share a physical component  with a7. A possible solution for component-

sharing is B = {{a1}, {a2, a3}, {a4, a5}, {a6, a7}}. Then we only need four physical 

components to realize seven artifacts in the design concept. This is enabled by the 

fact that all artifacts are not being used simultaneously.  

6.1.2 Complexity Analysis of Optimal Component Sharing Problem 

Before attempting to develop an algorithm for this problem, we will first analyze the 

complexity of the problem. 



 160 
 

We want to prove that the optimal component sharing problem is NP-hard and we 

base this assertion by comparing it to the graph coloring problem. 

Graph Coloring Problem (GCP) is defined as following: 

Input: An undirected graph G. 

Problem: Assign colors to vertices of the graph such that adjacent vertices are not 

assigned the same color and the number of colors is minimized.  

Theorem 6.1. Optimal Component Sharing Problem is NP-Hard. 

Proof: To prove a problem C is NP-Hard we must show that it is at least as hard as a 

known NP-Hard problem, say D. Specifically this requires, 

1. A reduction, i.e., an algorithm to turn any instance of D into an instance of C. 

2. An argument that the reduction takes only polynomial-time. 

3. An argument that the reduction works, i.e., answer to the instance of C can be 

used to create the answer for the instance of D. 

We shall show that there is a natural reduction from the graph coloring problem to the 

optimal component sharing problem. It is well known that the graph coloring problem 

is NP-Hard [Corm90].  

Given any instance of graph coloring, we construct an instance of OCSP by the 

following transformation. For every vertex v ∈ V in the graph, insert an element a 

into A. For every edge e = (v1, v2) ∈ E in the graph, insert an element s = {a1, a2} into 

S. Here a1 and a2 are corresponding elements to v1 and v2. This transformation can be 

realized for any instance of graph coloring and it is done in linear time with respect to 

the size of the graph. Therefore requirements 1 and 2 have been met.  
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Solution to OCSP can be mapped to graph coloring solution in the following manner 

(an illustration is shown in Figure 6.1). For each group of sharable components, 

generate a distinct color. Vertices in the graph that correspond to the components 

assigned to the same group are marked with the corresponding color. This mapping 

ensures that no two adjacent vertices have the same color. Because an element has 

been inserted into set S for every pair of adjacent vertices, this ensures that elements 

corresponding to the adjacent vertices will not belong to the same member of B.  

Graph (V, E) (A, S)

Solve optimal 
component

sharing problem

Map

B

Map each 
member of B
to each color

Assign vertices of 
the same groups 
the same color

Colored Graph (V, E)
 

Figure 6.1: Converting GCP to OCSP 

Now we need to show that the minimum number of groups of sharable components 

also leads to the minimum number of colors in the graph. This can be shown by a 

simple contradiction. Let us assume that the optimal solution to the OCSP is not an 

optimal solution for the graph coloring problem. In that case, let us find the optimal 

solution to the graph coloring problem. Using this solution, we can generate a 

solution for the OCSP that will have the same cardinality as the optimal solution to 

the graph coloring problem. Now based on our assumption, the optimal solution to 

the graph coloring problem is better than the optimal solution found for OCSP. 

Hence, we have just found a solution to OSCP that is better than the optimal solution 

to OCSP. This leads to a direct contradiction and hence we conclude that the optimal 
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solution to OCSP is also an optimal solution for the graph coloring problem. Thus the 

requirement 3 has also been met.  This proves that OCSP is NP-Hard.  

6.1.3   Branch And Bound Algorithm For Solving The Problem 

In real life situations, very few artifacts are actually sharable. Hence, this leads to 

problem instances of relatively small size consisting of 10 or fewer elements in set A.  

Therefore, we believe that branch and bound algorithm is a good candidate for 

solving this problem. We expect that due to the pruning, it will work fast for many 

problem instances. Even if the truly worst case is encountered, since the problem size 

is small, it will still be able to find the optimal solution. So it will do better than 

simple enumeration and yet ensure optimal solution.   

Graph coloring problems are notoriously difficult [Corm90] to find greedy algorithms 

with good approximation bounds. OCSP appears to be very similar in structure to 

graph coloring problem, hence we did not attempt to look for a greedy algorithm. 

The branch and bound algorithm developed as a part of this dissertation is given 

below: 

Algorithm FINDSHARABLECOMPONENTS 

Input: 

•  A = {a1, …, am} 

• S = {s1, …, sn}, si ⊆ A 

Output:  

• Optimal set B = {B1, …, Bb} 

Steps: 

1. B = {{a1}, …, {am}}. 
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2. Assign Current_Best = Cardinality(B). 

3. Call MERGEPAIRS(S, B). 

4. Return B. 

Algorithm MERGEPAIRS used in the above algorithm is given below. 

Algorithm MERGEPAIRS(S, B) 

Input:  

• S = {s1, …, sn}, si ⊆  A 

Output:  

• Current_Best and the current best solution B 

Steps: 

1) Find all pairs Mp in B that can be merged. A pair can be merged if the merged 

pair does not share two or more elements with any members of S. 

2) If Mp is empty then  

i. if Cardinality(B) < Current_Best, then Current_Best = Cardinality(B) 

ii. Return. 

3) Otherwise, if LOWERBOUND(B) ≥ Current_Best, return. 

4) Sort members of Mp by increasing values of Filled_Count. Filled_Count is 

defined on a pair (b, b′) as the number of elements in S with which b∪b′ will 

have an intersection. 

5) For every pair (b, b′) in Mp, perform the following: 

i. b′′ = b ∪ b′ 

ii. MERGEPAIRS(S, ((B-{b, b′})∪{b′′})) 

Algorithm LOWERBOUND used in the above algorithm is given below. 
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Algorithm LOWERBOUND(B) 

Input:  

• B 

Output:  

• Lower bound on solution resulting from B 

Steps: 

1) Assign n1 = Number of elements in B that cannot be merged with any other 

member; n2 = 0; n3 = 0; C = B 

2) Remove those elements from C that cannot be merged with any elements of B.  

3) Until there exists c in C such that c can be merged with at least one element of C, 

do the following: 

i. Remove c from C. 

ii. Remove the members from C that can be merged with c 

iii. n2 = n2 + 1 

4) If C is not empty, then n3 =1 

5) Return (n1 + n2 + n3) 

The algorithm FINDSHARABLECOMPONENTS uses the following two heuristics: 

• Function LOWERBOUND computes the lower bound on the solution that can result 

from performing future merging on B. Thus we can prune the solutions with 

larger lower bounds. 

• Examining members of Mp after sorting it by Filled_Count helps in ensuring that 

we examine promising solutions first. This heuristic first examines those options 

that appear to have more merging choices in future. 
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Function LOWERBOUND guarantees that only unpromising solutions will be pruned.   

Theorem 6.2. For any B, the cardinality of B after merging sharable components is 

larger or equal to LOWERBOUND(B).  

Proof:  

For any element in B that cannot be merged with any other element, it cannot be 

merged in any solution. Number of these elements corresponds to n1. Let us assume 

that any element in B could merge with at least one element and one of these 

solutions B′ will have cardinality less than n2 + n3 after the merging. The merge will 

lead to two groups: group B2 includes members of B′ that have at least two elements 

and group B3 include members that have only one element. 

Let m2 be the cardinality of B2 and m3 be the cardinality of B3. Each time we remove 

an element from any member of B2, we can at least remove the rest of the elements 

from the same member because they can be merged. Thus we have m2 ≥ n2. If there 

are members in B′ that have only one element, then n3=1 and m3 ≥ 1. Otherwise, n3=0 

and m3=0. Thus we have m3 ≥ n3. We conclude that 

Cardinality(B′) = m2 + m3 

≥ n2 + n3 

This contradicts our assumption. Therefore any component sharing solution will have 

cardinality larger or equal to the return of the function LOWERBOUND(B)  

6.1.4 Example 

This algorithm can be illustrated using the following example. 

Given: 
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• A = {a1, a2, a3, a4, a5, a6, a7} 

• S = {s1, s2, s3, s4} ={{a1, a2, a4, a6},{a3, a5, a7},{a1, a5, a7},{a1, a3, a6}}  

Figure 6.2 shows a transition diagram illustrating this example. Initial state has 

been omitted from this figure because it has no bearing on this example. Figure 

6.2(a) shows the diagram before components are shared. Following the above 

branch and bound algorithm, we find an optimal solution to be B = {{a1}, {a2, 

a3}, {a4, a5}, {a6, a7}}. Figure 6.2(b) shows the solution graphically.   

a1

s1

a2

a4 a6

a3

s2

a7a5 a1

s3

a7a5

a1

s4

a6a3

A = {a1, a2, a3, a4, a5, a6, a7}

S = {s1, s2, s3, s4} ={{a1, a2, a4, a6},{a3, a5, a7},{a1, a5, a7},{a1, a3, a6}}

B = {{a1}, {a2, a3}, {a4, a5}, {a6, a7}}

This concept needs 7 motor artifacts

4 physical motors can be shared to 
fill the need of 7 motor artifacts in 

every state

Motor artifacts are used in 4 states

a1 a2 a4 a6

Mapping

a3 a5 a7

b1 b2 b4b3  

Figure 6.2: An example illustrating the branch and bound algorithm 
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6.2 Evaluating Design Concept Based On Maximum Power Consumption 

The new representation of multiple interaction-state mechatronic design concepts 

makes it possible for us to determine which components are active in which states. 

This characteristic can be used to find out the maximum power consumed by a 

mechatronic device. The maximum power consumed cannot be simply computed by 

summing up the power requirements for all components. Instead, we need to figure 

out when components are active and when they are not active. We also need to 

determine the state where the maximum power is being consumed by active 

components.  

In a given valid interaction-state transition diagram, each interaction-state represents 

a runtime working status of the device and use-environment. By definition, these 

working statuses are not concurrent. Thus the power consumption in each interaction-

state can be compared and the maximum value is also the maximum power 

requirement for the device. 

The following algorithm describes how to estimate maximum power consumption for 

a given design concept. 

Algorithm FINDMAXIMUMPOWERCONSUMPTION 

Input:  

• A valid interaction-state transition diagram, where s0 is the marked initial state.  

Output:  

• Maximum power consumption Pmax and interaction-state s*. 

Steps:  

1. Assign maximum power consumption Pmax = 0. 
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2. For each state s except the initial state, do the following: 

a. Find active power consuming artifacts aj in s. 

b. Assign P = Σ{power consumption of aj}. 

c. If P > Pmax, assign Pmax = P; s* = s. 

3. Return Pmax. 

Figure 6.3 depicts a simplified interaction-state diagram.   

s1

a2 a2

s2

a3

a1

s3

a3

a1

s0

a2 a3

m

a1

p q q m

p

 

Figure 6.3: An example of estimating maximum power consumption 

There are three artifacts in the design world, a1, a2, a3, and different states have 

different active artifacts. Let us assume that a1, a2, a3 consume power p, q, m 

respectively when they are active. Then according to the above algorithm, the 

maximum power required by the designed device is max{p + q, p + m, q + m}. It is 

worth noting that simply summing up the power requirement of the three artifacts will 

yield the power consumption estimate of p+q+m, which will unnecessarily lead to the 

selection of a bigger power supply. This example illustrates that modeling the 

interaction-states can produce more accurate estimate of the power consumption in 
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case of multiple interaction-state devices. Similar approach can followed for the 

estimation of noise level etc.   

6.3   Summary 

This chapter presents algorithms to evaluate design concepts based on two criteria: 

maximum power consumption and optimal number of sharable components. For 

maximum power consumption problem we provide a simple algorithm to generate the 

solution. For the optimal component sharing problem we prove that it is NP-hard by 

comparing it to the graph coloring problem. We also provide a branch and bound 

algorithm to find the solution.  
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Chapter 7:  Transition Diagram Synthesis 

This chapter introduces the transition diagram synthesis problem based on the 

modeling framework introduced in Chapter 3. It presents the structure for describing 

the basic elements for synthesizing a transition diagram behind a design concept and 

provides an algorithm for synthesizing transition diagrams.  

This chapter has been organized in the following manner. Section 7.1 describes the 

formulation of the problem based on the modeling framework introduced in Chapter 

3. Section 7.2 describes the structure of the component library used during the 

synthesis process. Section 7.3 describes algorithms for synthesizing transition 

diagrams. Section 7.4 describes theorems showing soundness of the algorithms. 

Section 7.5 presents an example. Finally, Section 7.6 presents concluding remarks. 

7.1 Problem Formulation 

7.1.1 Preliminaries 

Let Di be the transition diagram describing the desired behavior specifications of a 

device. Di is defined using the device artifact ad and a set of use-environment artifacts 

Au. Let C be the set of components from which the device artifact will be composed. 

All parameters used in Di and C will be selected from a standard parameter list P. For 

every component c ∈ C, c is defined by a transition diagram Di(c) describing its 

behavior specifications, a detailed transition diagram Df(c) describing the concept 

behind it, and elaboration operators that describe how the initial transition diagram is 

mapped into the detailed transition diagrams.  
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We classify components into the following two categories. Basic components are the 

components that are not further decomposed. Complex components are components 

that are further decomposed into basic components. For a basic component, its initial 

transition diagram and final transition diagram will only consist of the component 

itself and its use-environment artifacts.  We would like to make the following 

observations:  

• If c is a basic component, then Di(c) = Df(c). In other words, if c is a basic 

component, then the transition diagram corresponding to the behavior 

specifications cannot be further elaborated. 

• If c is a complex component, then Di(c) ≠ Df(c). In other words, if c is a complex 

component, then the transition diagram corresponding to the behavior 

specifications will need to be further elaborated. Such elaboration will typically 

introduce basic components in the definition of Df(c) and hence c is realized by 

connecting other basic components together.  

We are interested in modeling complex components because availability of complex 

components in the component library significantly reduces the combinatorial 

complexity of the synthesis problem by exploiting proven complex components. 

Once a complex component has been synthesized it can be reused in future design 

synthesis problems. 

Now we will provide few examples to further clarify definitions given above. Few 

representative standard parameters are shown in Table 7.1. The desired behavior 

specification of an intruder detection system is shown in Figure 7.1. The artifact 

definitions used in this behavior specification are shown in Table 7.2. An example of 
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a component library is shown in Figure 7.2. Definitions of artifacts in the component 

library include both basic components and complex components (shown in Table 

7.3). The behavior specifications for each component are shown in Figures 7.3 to 7.6.  

Table 7.1: Standard parameters used in IDS example 
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Figure 7.1:  Transition diagram and event space used in IDS behavioral specification 
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Figure 7.2:  Example of a component library 
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Table 7.2: Parameters selection for artifact definition 
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OpticalSignal
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CCD

CCD::VisualInput = Artifact1::VisualOutput
Artifact2::ImageInput = CCD::ImageOutput

Artifact1 Artifact2

ImageInput

VisualOutput

Power

ImageOutput

VisualInput

Alias

OpticalSignalCCD 
Camera

DigitalSignal

Power

OpticalSignalArtifact1

DigitalSignalArtifact2

ParameterObject

ImageInput

VisualOutput

Power

ImageOutput

VisualInput

Alias

OpticalSignalCCD 
Camera

DigitalSignal

Power

OpticalSignalArtifact1

DigitalSignalArtifact2

ParameterObject

 

Figure 7.3:  Working state for CCD in behavior specification 
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Motor::VoltageInput = Artifact1::VoltageOutput
Artifact2::OmegaInput = Motor::OmegaOutput

MotorArtifact1 Artifact2

OmegaInput

VoltageOutput

OmegaOutput

VoltageInput
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VoltageMotor
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ParameterObject
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Figure 7.4:  Working state for motor in behavior specification 

Lens::VisualInput = Artifact1::VisualOutput
Lens::VisualOutput = f(Lens::VisualInput)
Artifact2::VisualInput = Lens::VisualOutput

LensArtifact1 Artifact2

VisualInputOpticalSignal

VisualOutputOpticalSignal

VisualInput

VisualOutput

ViewAngle
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FocusLens

ViewAngle
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Figure 7.5:  Working state for lens in behavior specification 
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RecognitionAlg::SouceImage = Artifact1::ImageOutput
RecognitionAlg ::Identity = f(RecognitionAlg ::SouceImage)
Artifact2::Identity = RecognitionAlg ::Identity

Recognition alg.Artifact1 Artifact2

Identity

ImageOutput

SampleImages

SourceImage

Alias

DigitalSignalRecognitio
nAlg.

DigitalSignal

DigitalSignalArtifact1

DigitalSignalArtifact2

ParameterObject

Identity

ImageOutput

SampleImages

SourceImage

Alias

DigitalSignalRecognitio
nAlg.

DigitalSignal

DigitalSignalArtifact1
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ParameterObject

 

Figure 7.6:  Working state for recognition algorithm in behavior specification 

When generating a possible transition diagram for a design concept by connecting 

different components together, there are two possible representations. The first 

representation is called compact transition diagram Dc. This transition diagram 

represents complex components as single components and only utilizes their behavior 

specifications (i.e., Di(c)). The second representation is called elaborated transition 

diagram Df.  This representation represents complex components by their constituent 

basic components and utilizes their elaborate transition diagrams (i.e., Df(c)).    

In our framework, synthesis problem is solved using a two-step approach. In the first 

step, given the behavior specifications Di for the device, we generate compact 

transition diagram Dc behind the design concept by utilizing components in the 

component library. This step only uses behavior specifications of the components. 

Once we have successfully generated the compact transition diagram Dc, we map it 
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into elaborated transition diagram Df  by mapping each complex component in Dc into 

its constituents. 

The following definitions of equivalence will be used in the subsequent sections of 

this chapter.  

• Equivalence of parameters: Two parameters p1 and p2 are considered equivalent 

if their names are identical. This also implies (p1.DataType = p2.DataType) AND 

(p1.Unit = p2.Unit).  

• Equivalence of parameter interactions: Two parameter interactions are 

equivalent if their corresponding members are equivalent.  

• Equivalence of artifacts: Two artifacts are equivalent if their corresponding 

parameter sets are equivalent and parameter interactions are equivalent. However, 

ArtifactType of the artifacts could be different because it is context related. An 

artifact can serve as device in one context and use-environment artifact in another 

context.  

• Equivalence of interaction-states: Two interaction-states are equivalent if their 

corresponding members are equivalent. Since we only deal with synthesis related 

to component connectivity, we consider two equivalent states as having 

equivalent parameters and parameter interactions.  

• Equivalence of transitions: Two transitions are equivalent if their corresponding 

members are equivalent. 

• Equivalence of transition diagrams: two transition diagrams are equivalent if 

their corresponding members are equivalent. 
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7.1.2 Problem Statement 

In this dissertation, we impose the following restrictions on the synthesis problems 

being considered: 

• All parameters used will be only selected from a standard parameter list P. 

• We do not consider checking unsafe parameter value sets and validating 

interaction-state consistency as a part of the synthesis process. Transition diagram 

synthesis process will be limited to the selection of components only based on the 

interactions of the components with use-environment artifacts. Additional 

checking can be done as a post-processing step. 

• We only consider interactions that are defined between two artifacts. Interactions 

that simultaneously involve more than two artifacts will not be considered. 

• We only handle those components whose behavior specifications have only one 

working interaction-state (a component may have one additional initial state). 

However, complex components can have multiple interaction-states in their 

elaborated transition diagrams.   

We formulate the design concept synthesis problem in the following manner.  

Given,  

• Standard parameter list P 

• Transition diagram behind behavior specification Di (all parameters used in Di 

belong to P) 

• Component library C 

We are interested in finding the following two transition diagrams:  

1. Compact transition diagram Dc, satisfying the following conditions: 
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a) For every artifact a that is used in Dc, there exists either a basic or a complex 

component c in C such that a and c have the equivalent behaviors. This 

condition is described as the following: 

i. For every parameter interaction in the working state of Di(c) (please recall 

that Di(c) has only one working state), we can find an equivalent parameter 

interaction in those states of Dc that involve a.  

ii. Let S* be those states in Dc that involve a. Every state s in S* meets the 

following condition. For every parameter interaction in s, we can find an 

equivalent parameter interaction in the working state of Di(c).  

b) Dc is consistent with Di. This condition requires that Dc is equivalent to Di 

after the following transformations: 

i. For every state in Dc, remove those interactions that only involve 

components (i.e., use environment artifacts are not involved). Replace 

components in all the remaining interactions with the device artifact.  

ii. For every transition in Dc, replace the components and their parameters with 

the device artifact and its parameters. 

2. Elaborated transition diagram Df, generated by applying elaboration operators for 

every complex component in Dc.  

7.2 Structure of the Component library 

The component library is a set of available components that can be used during the 

synthesis process. As explained in Section 7.1, each component is defined by two 

transition diagrams Di(c) and Df(c). In addition to these two transition diagrams, for 
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each complex component we also have a sequence of elaboration operators that 

describe how to transform Di(c) into Df(c). These operators are described below: 

• Generate Replacement States. This operator is called GENERATE-

REPLACEMENT-STATES and used to replace the working state in the behavior 

specification of the complex component with the working states in its final 

transition diagram. This operator is defined as the following.  

o Input: Transition diagram that includes the working state s of the complex 

component in its behavior specification. 

o Action: Remove s from the transition diagram. Generate a set of empty states 

S that has the same number of working states as in the final transition diagram 

of the complex component. 

• Generate Replacement Components.  This operator is called GENERATE-

REPLACEMENT-COMPONENTS and used to replace the complex component 

with its constituent basic components in the empty states generated above. This 

operator is defined as the following.  

o Input: Transition diagram produced by GENERATE-REPLACEMENT-

STATES. 

o Action: Insert participating components of the complex component for each 

working state in its final transition diagram into each corresponding state in S.  

• Generate Interacting Artifacts.  This operator is called GENERATE-

INTERACTING-ARTIFACTS and used to generate use-environment artifacts for 

each states generated above. This operator is defined as the following.  
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o Input: Transition diagram produced by GENERATE-REPLACEMENT-

COMPONENTS.  

o Action: Insert interacting use-environment components of the complex 

component into each state in S according to each corresponding working state 

in its final transition diagram.  

• Generate Interactions.  This operator is called GENERATE-INTERACTIONS 

and used to generate interactions for each state generated above. This operator is 

defined as the following.  

o Input: Transition diagram produced by GENERATE-INTERACTING-

ARTIFACTS.  

o Action: Insert interactions between artifacts in each state of S based on the 

final transition diagram for the complex component.  

• Generate Internal Transitions.  This operator is called GENERATE-

INTERNAL-TRANSITIONS and used to generate transitions between states 

generated above. This operator is defined as the following.  

o Input: Transition diagram produced by GENERATE-INTERACTIONS.  

o Action: Insert transitions between states of S according to the corresponding 

transitions in the final transition diagram of the complex component.  

• Generate External Transitions.  This operator is called GENERATE-

EXTERNAL-TRANSITIONS and used to generate the transitions between states 

generated by the previous operator and other states in the compact transition 

diagram. This operator is defined as the following.  
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o Input: Transition diagram produced by GENERATE-INTERNAL-

TRANSITIONS.  

o Action: Apply incoming transitions for s to the states in S that correspond to 

the states that take incoming transitions from the initial state in the final 

transition diagram of the complex component. Apply outgoing transitions for 

s to the states in S that correspond to the states that take outgoing transitions to 

the initial state in the final transition diagram of the complex component. 

Remove transitions that do not involve any artifact in the starting and ending 

states of the transitions. 

The above described operator sequences are communicative in nature across complex 

components. For example, consider a state that involves two complex components c 

and c’. Applying the operator sequence for c first and then applying the operator 

sequence for c’ produces the same result as applying the operator sequence for c’ first 

and then applying the operator sequence for c.    

Parameters can be organized according to different levels of abstraction. For example, 

signals can be specialized into optical signals and digital signals. Usually desired 

parameters of a device being designed are expressed with a higher level of abstraction 

(i.e., more general). Parameters of components in the library are expressed using 

lower levels of abstraction (i.e., more specialized). When we look for matching 

parameters in the component library for desired parameters in the behavior 

specifications, specialized parameters can always be used in the place of more general 

parameters. For example, if we want a signal parameter in the desired artifact, we can 

choose a component with either optical signal or digital signal parameters in the 
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component library. On the other hand, parameters can use wildcard values in 

transition conditions. That means if any value in the range of values represented by 

the wildcard, the condition is satisfied. For example, transition condition (Signal = 

ANY) means any signal with any value could satisfy the condition. A satisfying 

condition could be (DigitalSignal = 5). These types of wildcards are mainly used to 

enable matching of transition conditions.  

Compatibility of parameters: Parameters can be organized hierarchically. For 

example, the parameter signal has optical signal and digital signal as its children. A 

child parameter can be used in any place where its parent parameter is used. We say 

the children parameter is one of the compatible parameters of the parent parameter. 

Similarly, a parameter interaction is compatible with another parameter interaction if 

the parameters in the second interaction are equivalent or children of the parameters 

in the first interaction.  

For the convenience of modeling, designers could use non-standard parameter names. 

These non-standard names serve as alias of standard parameters. We consider two 

parameters to be equivalent if their standard names are the same. 

Compatibility of transitions: a transition r1 is compatible with a transition r2 if the 

parameters used in r1 are equivalent or compatible with the parameters used in r2.  

7.3 Synthesis Algorithms 

Developing the transition diagram behind a design concept not only requires one to 

select the right components from the library, but also requires one to connect them in 

a consistent manner to generate the compact and the elaborated transition diagrams. 

Complex components can be treated as basic components while generating compact 
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transition diagrams. Once compact transition diagrams have been developed, they can 

be mapped to fully elaborated transition diagrams by including details about the 

complex components. Once fully elaborated transition diagrams are generated, they 

could be added into the component library for future reuse.  

Our synthesis algorithm starts from the initial transition diagram and uses breadth 

first search method for exploring various component combinations and generating the 

new compact transition diagrams.  

The basic ideas behind generating compact transition diagrams are as following. First 

we look for a state which still has unknown artifacts. Unknown artifact could be 

implemented by a component if the set of the component’s input/output interactions 

in its behavior specifications and the interactions associated with the unknown artifact 

have common members. The more the number of matching interactions is, the higher 

the possibility is that the component can be used as a part of the unknown artifact. If 

multiple components are possible, then these components are tried in the decreasing 

cardinality of matching interactions. The intent behind this heuristics is to converge to 

a solution quickly. After, identifying promising components we integrate the selected 

component into the current transition diagram. Since a component has to be used in 

its proper use-environment, we have to either find equivalent interactions in the state 

for the substituting component’s parameter interactions or we need to insert extra 

interactions that are not present in the state into the state. Interactions of device 

artifact that are equivalent to the interactions of the component are realized by the 

component. Thus we replace the device artifact with the component in those 

interactions. For those interactions of the device artifact that cannot be fulfilled, we 
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leave them as they are and they would be resolved by another component later. The 

extra interactions between the component and its use-environment artifact are 

considered as the interactions between the component and a new device artifact. We 

also need to replace the parameters in the transition that are equivalent between 

device artifact and the component just selected. This step inserts a new component 

and updates the interactions between the device artifact and its use-environment 

artifacts. Each introduction of component will realize some parameter interactions of 

the device artifact. Inserting a component may also introduce new interactions. The 

selection of a set of components will be able to finally realize all the desired 

interactions if there exists a solution. 

After selecting a component, we update transition diagrams for each applicable 

component. Components will be added one by one until there is no unknown artifact 

in any state, then the device artifact has been realized and we will get a compact 

transition diagram with the desired characteristics and the solution is considered 

complete.  

The algorithm for generating compact transition diagram is described below.  

Algorithm GENERATECOMPACTTRANSITIONDIAGRAM 

Input:  

• Standard parameter list P. 

• Initial behavior specification Di. 

• Component library C. 

Output:  

• Compact transition diagram Dc  
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Steps: 

1. Initialize the queue W with Di.  

2. Select the first element D from W and do the following:  

a Remove D from W. 

b Find the set of components C* from the component library C that are 

applicable to D in the following manner. 

i. Initialize C* as an empty sequence.  

ii. For each state s ∈ D, if there exit an artifact in s.ArtifactSet that is not a 

known component or known use-environment artifact, do the following: 

1) For every component c ∈ C, do the following: 

a) Let s′ be the working state of Di(c). 

b) if s′.InteractionInfo ∩ s.InteractionInfo ≠ ∅, insert c into C*, m 

= cardinality(s′.InteractionInfo ∩ s.InteractionInfo). 

iii. Sort elements of C* by decreasing value of m (ties will be broken 

randomly). 

c Examine every c in C* sequentially and do the following. 

i. Copy D to D′. 

ii. For each state s ∈ D′: 

1) Let s′ be the working state of Di(c). 

2) If s′.InteractionInfo ∩ s.InteractionInfo ≠ ∅, insert c into 

s.ArtifactSet, and replace aD with c in s′.InteractionInfo ∩ 

s.InteractionInfo.  
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3) Insert H′ = (s′.InteractionInfo − (s′.InteractionInfo ∩ 

s.InteractionInfo)) into s.InteractionInfo.  

iii. For every transition r ∈ D′, if r involves parameters of aD that are 

equivalent to that of c, replace aD with c. 

iv. If there is no device artifact in any state of D, then the solution is 

complete, return D′ and exit.  

v. Insert D′ into W. 

3. If the time limit has exceeded then exit with failure. Otherwise, go to Step 2. 

The basic idea behind generating elaborated transition diagram from the compact 

transition diagrams is as following.  Since complex components have multiple states 

in their final transition diagram Df(c), these states need to replace the state s where the 

complex component is used. We do the replacement for each complex component one 

by one. We use the operators associated with the complex component in the 

component library to decompose the initial transition diagram into a detailed 

transition diagram. The elaborated transition diagram is obtained after all complex 

components have been decomposed and the transition diagram  has been updated 

accordingly. 

The algorithm for generating elaborated transition diagram is described below. 

Algorithm GENERATEELABORATEDTRANSITIONDIAGRAM 

Input:  

• Compact transition diagram Dc. 

• Standard parameter list P. 

• Component library C. 
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Output:  

• Elaborated transition diagram Df. 

Steps: 

1. For every complex component c used in the compact transition diagram Dc, do 

the following: 

a Use the operators associated with c in the component library to elaborate Dc. 

2. Return the elaborated transition diagram as Df. 

7.4 Characteristics of Algorithms 

The following two theorems highlight the main characteristics of the above-described 

algorithms.  

Theorem 7.1. Compact transition diagram Dc generated by Algorithm 

GENERATECOMPACTTRANSITIONDIAGRAM meets the following conditions: 

1. For every artifact a that is used in Dc, there exists either a basic or a complex 

component c in C such that a and c have equivalent behaviors. This condition is 

described as the following: 

a) For every parameter interaction in the working state of Di(c) (please recall 

that Di(c) has only one working state), we can find an equivalent parameter 

interaction in those states of Dc that involve a.  

b) Let S* be those states in Dc that involves a. Every state s in S* meets the 

following condition. For every parameter interaction in s, we can find an 

equivalent parameter interaction in the working state of Di(c).  

2. Dc is consistent with Di. This condition requires that Dc is equivalent to Di after 

the following transformations: 
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c) For every state s in Dc, remove those interactions that only involve 

components from the component library (i.e., use environment artifacts are 

not involved). Replace components in all the remaining interactions with the 

device artifact.  

d) For every transition in Dc, replace the components and their attributes with 

the device artifact and its attributes. 

Proof:  

Condition 1a is satisfied by Step 2c of the algorithm. Each time we select a 

component into each state of Dc, we keep the interactions that are identical to that in 

Di(c) and add the interactions that are only in Di(c) into Dc. Thus all parameter 

interactions in Di(c) are kept in Dc. Since Di(c) only involves one working state, Step 

2c also ensures that condition 1b is satisfied.  

Since behavior specifications of all components selected will have only one working 

state, there will be the same number of states and transitions in Dc and Di. Step 2c 

ensures each time a component is added, some interactions of the device artifact will 

be realized by the interactions of the component. When the algorithm exits 

successfully, all interactions of the device artifact in each state must have been 

fulfilled. The interactions between the device artifact and use-environment artifacts 

must have been fulfilled too. Thus condition 2a is satisfied by Dc. For each transition, 

the algorithm only replaces the device artifact when equivalent parameters are found 

in the components selected. All component parameters in Dc must be realized by this 

kind of replacement. Thus if we reverse the replacement, we will get the same 

transitions in Di. Thus condition 2b is satisfied by Dc.  
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Theorem 7.2. If there exists a compact transition diagram that satisfies the given 

behavior specifications and involves finite number of components from the 

component library, then Algorithm GENERATECOMPACTTRANSITIONDIAGRAM will 

find it. 

Proof:  

Each state in the compact transition diagram is a connected graph. Nodes in the graph 

are the components and use-environment artifacts, and edges in the graph are 

interactions among components.  The use-environment artifacts only interact with 

components. Behavior specifications of a state identify the use-environment artifacts 

and their interactions with the desired artifact. Therefore, if a possible graph exists for 

a state, then it can be discovered by starting from a use-environment artifact and 

adding a component that corresponds to a node in the graph one at a time. Algorithm 

GENERATECOMPACTTRANSITIONDIAGRAM considers all possible sequences of 

introducing components in the graph. Hence if a solution exists with a finite number 

of components, then the algorithm will find it.               

7.5 Example 

Let us take the design of intruder detection system (IDS) as an example. We are given 

a list of standard parameters shown in Table 7.1, desired behavior specification of an 

intruder detection system shown in Figure 7.1. The artifact definitions for the 

behavior specification are shown in Table 7.2. The artifact definitions of a component 

library that shows both basic components and complex components are shown in 

Table 7.3. The behavior specifications for each component are shown in Figures 7.3 

to 7.11. Now we need to generate the compact transition diagram for IDS.  
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Figure 7.7:  Working state for image improvement system in behavior specification 
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Figure 7.8:  Final transition diagram for the Image Improvement System 
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Figure 7.9: State description of “Capture” 
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Figure 7.10: State description of “Track” 
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Switch

MasterController SwitchMotor SwitchSensorSwitchUnit
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SwitchMotor:: VoltageInput = MasterController:: LensPosition
SwitchUnit:: Position = SwitchMotor:: OmegaOutput
SwitchSensor:: AngularInput = SwitchUnit:: Position
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ZoomLensHolder:: Position = SwitchUnit:: Position
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Artifact Interaction Equations

 

Figure 7.11: State description of “Switch” 

In order to find applicable components from the library, we look at the interactions in 

each state of IDS. First, CCD camera is selected because its interactions are 

compatible with that of IDS in the monitor state. Then we incorporate CCD into the 

initial transition diagram of IDS and requirements for the new device artifact are 

generated. Second, image improvement system (IIS) is selected to magnify the digital 

image obtained from the CCD camera. IIS is only applied to the identify state. Third, 

we select recognition algorithms to produce the signal from the image. Two 

recognition algorithms are needed for detecting person’s presence and determining 

person’s identity. Since all the interactions have been fulfilled, a solution is reached. 

This process is illustrated in Figure 7.12. After we have a component, we try to 

incorporate the component into the current transition diagram. This will limit the 

behavior of the device and provide clues for selecting the next component. Figures 
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7.13 to 7.15 illustrate steps in incorporating different components after they are 

selected. 

Device(IDS)

CCD Device(1)

CCD IIS Device(2)

CCD

IIS Device(3)

Recognition Alg.

CCD IIS

Locating 
AlgorithmRecognition 

Algorithm.

Level 1: Interaction of CCD 
matches desired interaction 

Level 2: Interaction of IIS 
matches desired interaction 

Level 3: …

Level 4: …

 

Figure 7.12: Illustration of searching for components of IDS 
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Figure 7.13: Incorporate CCD into IDS 
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Device::PersonPresent = f′(IIS::ImageInput)

r6

IIS

CCD::VisualInput = Room::VisualOutput
CCD::ImageOutput = CCD::VisualInput
Recorder::ImageInput = CCD::ImageOutput
Recorder::VideoInput = f(Recorder::ImageOutput)

 

Figure 7.14: Incorporate IIS into IDS 
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r2Room CCD

CCD::VisualInput = Room::VisualOutput
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Monitor

Recorder

Record
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Recorder::VideoInput = f(Recorder::ImageOutput)
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Room CCD

Room CCD

Identify

Alg.

CCD::VisualInput = Room::VisualOutput
CCD::ImageOutput = CCD::VisualInput
IIS::ImageInput = CCD::ImageOutput
IIS::ImageOutput = IIS::Multiplicity × IIS::ImageInput
RecognitionAlg::ImageInput = CCD::ImageOutput
RecognitionAlg::PersonPresent = 
f′(RecognitionAlg::ImageInput)

r6

IIS

 

Figure 7.15: Incorporate recognition algorithm and locate algorithm into IDS 

IIS has four states in its final transition diagram, of which three are working states. In 

order to get an elaborated transition diagram from the compact transition diagram, we 

use the six elaboration operators sequentially. First we generate three empty states 

corresponding to the three working states of IIS. Second we insert the components of 

IIS into each state. Third, we incorporate artifacts interacting with IIS into the three 

states. Fourth, interactions are added for the three states. Fifth, transitions between the 

three states are inherited from the final transition diagram of IIS. Sixth, we identify 

that Track and Switch are the two states that are connected to the initial state in IIS’s 

final transition diagram. Since Track state takes incoming transition from the initial 

state in IIS’s final transition diagram, it will take the incoming transition from 

Monitor state in the elaborated transition diagram. Since Switch state takes outgoing 
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transition to the initial state in IIS’s final transition diagram, it will take the outgoing 

transition to Monitor state and Record state in the elaborated transition diagram. 

Since there is only one complex component used, the elaborated design concept is 

generated after applying elaboration operators for IIS. Figures 7.16 to 7.25 show 

various steps. 

r3

r2Room CCD

Monitor

Recorder

Record

Alg.

Room CCD
r6

CaptureCapture

TrackTrack SwitchSwitch

CCD::VisualInput = Room::VisualOutput
CCD::ImageOutput = CCD::VisualInput
Recorder::ImageInput = CCD::ImageOutput
Recorder::VideoInput = f(Recorder::ImageOutput)

CCD::VisualInput = Room::VisualOutput
CCD::ImageOutput = CCD::VisualInput
LocateAlg::ImageInput = CCD::ImageOutput
LocateAlg::PersonPresent = f(LocateAlg::ImageInput)

 

Figure 7.16: Applying operator: generate replacement states 
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LocateAlg MasterController

PitchMotor YawMotor

Holder
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Figure 7.17: Applying operator: generate replacement components 
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MasterController SwitchMotor

SwitchSensor
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ZoomLens ZoomLensHolder

Record

LocateAlg MasterController PitchMotor YawMotor

Holder PitchSensor

YawSensor

Room CCD Recorder

CCD

 

Figure 7.18: Applying operator: generate use-environment components 

Room

CCD

LocateAlg.

MasterController

Monitor

CCD::VisualInput = Room::Visualoutput
LocateAlg:: ImageInput = CCD::Imageoutput
MasterController::Theta =LocateAlg:: Theta
MasterController:: Phi = LocateAlg:: Phi

Artifact Interaction Equations

 

Figure 7.19: State description of “Monitor” 
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CCD

ZoomLens

MasterController

Capture

CCD::VisualInput = ZoomLens::VisualOutput
CCD::ImageOutput = LocateAlg:: ImageInput
MasterController::ImageInput = CCD::ImageOutput

Artifact Interaction Equations

 

Figure 7.20: State description of “Capture” 

Track

CCD LocateAlg MasterController

PitchMotor

YawMotor

holder

PitchSensor

YawSensor

Artifact Interaction Equations

LocateAlg:: ImageInput = CCD::ImageOutput
MasterController:: Theta = LocateAlg:: Theta
MasterController:: Phi = LocateAlg:: Phi
PitchMotor:: VoltageInput = MasterController:: Theta
YawMotor:: VoltageInput = MasterController:: Phi
Holder:: Theta = Pitchmotor::OmegaOutput
Holder:: Phi = YawMotor:: OmegaOutput
PitchSensor:: Theta = Holder:: Theta
YawSensor:: Phi = Holder:: Phi
MasterController:: Theta = PitchSensor:: Theta
MasterController:: Phi = YawSensor:: Phi

 

Figure 7.21: State description of “Track” 
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Switch

MasterController SwitchMotor SwitchSensorSwitchUnit

ZoomLens ZoomLensHolder

SwitchMotor:: VoltageInput = MasterController:: LensPosition
SwitchUnit:: Position = SwitchMotor:: OmegaOutput
SwitchSensor:: AngularInput = SwitchUnit:: Position
MasterController:: LensPosition = SwitchSensor:: AngularOutput
ZoomLensHolder:: Position = SwitchUnit:: Position
ZoomLens:: Position = ZoomLensHolder:: Position

Artifact Interaction Equations

 

Figure 7.22: State description of “Switch” 
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Record

CCD LocateAlg MasterController

PitchMotor

YawMotor

holder

PitchSensor

YawSensor

Artifact Interaction Equations
CCD::ImageInput = Room::VisualOutput
Recorder::ImageInput = CCD::ImageOutput
LocateAlg:: ImageInput = CCD::ImageOutput
MasterController:: Theta = LocateAlg:: Theta
MasterController:: Phi = LocateAlg:: Phi
PitchMotor:: VoltageInput = MasterController:: Theta
YawMotor:: VoltageInput = MasterController:: Phi
Holder:: Theta = Pitchmotor::OmegaOutput
Holder:: Phi = YawMotor:: OmegaOutput
PitchSensor:: Theta = Holder:: Theta
YawSensor:: Phi = Holder:: Phi
MasterController:: Theta = PitchSensor:: Theta
MasterController:: Phi = YawSensor:: Phi

Room Recorder

 

Figure 7.23: State description of “Record” 
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(Holder::Theta = MasterController::Theta)
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r7
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IDS::Power=OFFr4
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(Holder::Theta = MasterController::Theta)
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r7
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r3

Figure 7.24: Applying operator: generate internal transitions 
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Figure 7.25: Applying operator: generate external transitions 

7.6 Summary 

This chapter presents a systematic approach to synthesizing design concepts based on 

the modeling framework described in Chapter 3.        

This chapter describes how to represent the components library based on which 

design concepts are constructed. It then provides an algorithm to synthesize design 

concepts from the components. Stored complex components are used to simplify the 

synthesis process. Generated design concepts can be stored as a new complex 

component in order to be reused for a more complex design concept. We also show 

the soundness of the algorithm.     
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The limitations of the approach described in this chapter lie in the assumptions that 

have been made. Although the final design concept can have multiple states, the 

synthesis algorithm cannot handle components with multiple states in their behavior 

specifications. Future work needs to be done to relax this assumption.  
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Chapter 8:  Transition Diagram Synthesis 

This chapter has been organized in the following manner. Section 8.1 describes the 

main research contributions of this dissertation. Section 8.2 identifies the anticipated 

industrial benefits resulting from the research described in this dissertation. Section 

8.3 discusses the limitations of the methods and approach described in this 

dissertation and provides future research directions. 

8.1 Intellectual Contributions 

This dissertation makes intellectual contributions in the following areas: 

• A Modeling and Simulation Framework: We have developed a new modeling 

framework for representing design concepts of multiple interaction-state devices. 

We also describe conditions for ensuring its validity. The distinction between our 

approach and traditional functional representation approaches for conceptual 

design is as following. First, we use interactions instead of function flows or 

input/output flows to describe relationships between artifacts. Interactions are 

more general than flows. Therefore, our approach is more expressive than existing 

approaches. Second, we use interaction-states to capture the operating modes of a 

device. Hence we can support devices with multiple interaction-states. Therefore, 

design concepts modeled using our framework can be simulated more accurately.  

• Validation Algorithms: We have developed a systematic approach to check the 

consistency of a set of interactions in an interaction-state of a mechatronic system. 

We also provide an algorithm to find the set of interactions that cause the 

inconsistency. During the conceptual design stage, the actual equations describing 
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the interactions are usually not known. Therefore, our algorithm utilizes the 

information on participating parameters to carry out its analysis. We have shown 

both the soundness and completeness of our algorithms. This implies that when 

our algorithm finds a set of interactions to be inconsistent, they are actually 

inconsistent. Furthermore, when our algorithm finds a set of interactions to be 

consistent, they are actually consistent. Even though the consistency-checking 

problem appears to be combinatorial, we have developed an algorithm that works 

in polynomial time and does not require exhaustive enumeration.  

We have also developed a systematic approach to check whether a predefined 

unsafe parameter value set is embedded in an interaction-state. We analyze 

different cases in which unsafe parameter value sets can be embedded in an 

interaction-state and provide an algorithm to determine whether the given 

interaction-state is safe. This algorithm is not based on the state history and hence 

it can be applied to each interaction-state separately. We have shown that this 

approach results in a conservative analysis, i.e., when we conclude that a state is 

safe, it is actually safe.  

• Evaluation Algorithms: We have developed algorithms for evaluating design 

concepts based on maximum power consumption and optimal component sharing. 

Our approach utilizes the characteristics of the new modeling framework that 

makes it possible for us to determine which artifacts are active in which states, 

and which artifacts play what roles. Therefore we can evaluate maximum power 

consumption more accurately and make the components sharable that play 

different roles but not used concurrently.  



 209 
 

For maximum power consumption estimation we have developed a simple 

algorithm to generate the solution. We have proved that the optimal component 

sharing problem is NP-hard. We have also developed a branch and bound 

algorithm to find the solution for the optimal component sharing problem.  

• Synthesis Algorithms: We utilize our modeling framework for representing 

known components. We utilize interaction-states transition diagram to represent 

behavior of complex components. Ability to model complex components allows 

us to utilize them in synthesizing new design concepts. We have developed a new 

synthesis algorithm for synthesizing transition diagrams given the desired 

behavior specifications and a component library. We have also shown soundness 

of the algorithm. 

8.2 Anticipated Benefits  

Conceptual design stage currently lacks computer-supported engineering design tools 

when compared to the detailed design stage. The problem lies in the lack of formal 

representation, evaluation and synthesis methods to be used during the conceptual 

design stage. We expect that the research reported in this dissertation will facilitate 

the development of computer aided design tools for the conceptual design stage, thus 

streamlining the design process. Specific benefits of the research reported in this 

dissertation include: 

• Improved support for design information archival and reuse: Not all of the 

design activities require development of new designs from scratch. Actually, 

many “new” product designs are developed by adopting existing designs. Thus it 

is very important to archive design information in a computer interpretable and 
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formal scheme for reuse purposes. Indexed design information also facilitates 

quick and efficient searching for reuse. Our modeling framework supports the 

computer interpretable representation of multi-state mechatronic device concepts 

that cannot be conveniently captured by traditional approaches. Therefore, new 

product design could benefit from the archived design. 

• Improved support for design concept evaluation and selection: Evaluation is 

important for selecting the most appropriate design option. Eliminating infeasible 

design alternatives in the design process as early as possible could save a 

significant amount of development time and money. By simulating and validating 

the generated design concept, we could avoid spending time and energy on 

developing infeasible design concepts. By comparing design concepts based on 

the evaluation criteria, we can identify promising design alternatives, thus 

reducing the search space for further exploration.  

• Design automation: Computer aided design tools are helping designers in many 

ways. Computer aided design tools for conceptual design will greatly help 

designers in generating and selecting promising design concepts. Automated 

design synthesis techniques could generate design alternatives much faster. In a 

given amount of product development time, it allows designer to explore larger 

design space. Therefore it also improves the chances of finding better design 

solutions.  

8.3 Directions for Future Work 

The methods and approach described in this dissertation work have the following 

limitations and therefore future work is needed to extend it in those areas: 
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1. Extended modeling framework: Our modeling framework uses flat state 

descriptions to depict the state transition diagrams. However, when the device has 

hundreds of components, the flat states may not be the most efficient modeling 

primitives. Extensions of the state structure may be needed to handle this situation 

by extending the states to utilize a hierarchical structure.  

2. Design suggestion based on validation results: Our interactions consistency 

checking algorithm only identifies the set of inconsistent interactions. It would be 

much useful if redesign suggestions were automatically generated based on the 

inconsistency of interactions. The representation of interactions in a graph may be 

utilized to provide design improvement suggestions to rearrange interactions. 

3. Richer evaluation schemes: Current evaluation schemes only include evaluation 

based on maximum power consumption and optimal components sharing. Other 

evaluation schemes are needed such as device life estimation and device failure 

diagnosis.  New evaluation algorithms will need to be developed for these new 

criteria.  

4. Synthesis using complex components with multiple interaction-state behavior 

specification: Our current synthesis algorithm assumes that complex component 

only has one working state in its behavior specification. Extensions are needed to 

utilize complex components with multiple states in their behavior specifications.  
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