

ABSTRACT

Title of dissertation: COMPUTATIONAL FOUNDATIONS FOR

COMPUTER AIDED CONCEPTUAL DESIGN
OF MULTIPLE INTERACTION-STATE
MECHATRONIC DEVICES.

 Changxin Xu, Ph.D., 2005

Directed By: Associate Professor Satyandra K. Gupta,

Department of Mechanical Engineering

Increasing autonomy and intelligence in mechatronic devices requires them to be

multiple interaction-state devices. Different modes of operations and different types

of interactions with the use-environment require the device to have multiple

interaction-states, each state capable of producing a different behavior to meet its

intended requirements. For multiple interaction-state mechatronic devices, a

satisfactory framework does not exist for representing, evaluating, and synthesizing

design concepts. Hence, majority of mechatronic designers currently use informal

methods for representing and evaluating design concepts during the conceptual design.

This leads to the following problems. First, informal representation of design

concepts hinders information exchange and reuse. Second, in absence of a validation

methodology, it is not clear how to determine if a proposed design concept is

consistent with the requirements. Finally, designers cannot perform computer aided

evaluation during the conceptual design stage.

This dissertation focuses in the area of computational foundations for representing,

validating, evaluating, and synthesizing design concepts of multiple interaction-state

mechatronic devices. A modeling and simulation framework has been developed for

representing design concepts behind multiple interaction-state mechatronic devices.

The problem of consistency-checking of interaction-states has been studied and an

algorithm has been developed for solving the interaction consistency-checking

problem. The problem of determining the presence of unsafe parameter values has

been studied and an algorithm has been developed to determine whether an

interaction-state in the proposed design concept can attain unsafe parameter values.

Algorithms have been developed for evaluating design concepts based on the

maximum power consumption and sharability of components. Finally, algorithms

have been developed for automatically synthesizing transition diagrams for meeting

the desired behavior specifications, given a components library.

We believe that the results reported in this dissertation will provide the underlying

foundations for constructing the next generation computer aided design tools for

conceptual design of mechatronic devices. We expect that these tools would

streamline the product development process, facilitate information reuse, and reduce

product development time.

COMPUTATIONAL FOUNDATIONS FOR COMPUTER AIDED
CONCEPTUAL DESIGN OF MULTIPLE INTERACTION-STATE

MECHATRONIC DEVICES

By

Changxin Xu

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2005

Advisory Committee:
Associate Professor Satyandra K. Gupta, Chairman / Advisor
Professor Davinder K. Anand
Associate Professor Mark A. Austin
Dr. Michael Gruninger
Professor Edward B. Magrab
Professor Dana S. Nau
Dr. Ram D. Sriram

© Copyright by

Changxin Xu

2005

 ii

Acknowledgements

I would like to thank my advisor, Dr. Satyandra K. Gupta, for his invaluable

advice and suggestions through years of my study. His guidance led me through

many hard times. His hardworking spirit, persistence and skilled ways of

analyzing problems are imprinted in my heart. I am sure I will benefit from this in

my life.

I would like to thank my parents and my wife Li Yin. It is their continuous

encouragement and endless support that keep me inspired and motivated.

I would also like to thank my dissertation committee members: Drs. Anand,

Austin, Gruninger, Magrab, Nau, and Sriram for accepting to serve in the

committee and providing suggestions.

Finally, I would like to thank my colleagues in the Computer Integrated

Manufacturing Lab: Antonio, Alok, Mukul and Ira for devoting their precious

time proofreading my dissertation. I would also like to thank Drs. Lin and Yao for

providing feedbacks on my research.

.

 iii

Table of Contents

Acknowlegements ... ii

Table of Contents ... iii

List of Tables ... vi

List of Figures ... vii

Chapter 1: Introduction... 1

1.1 Background ... 1
1.2 Motivation... 4
1.3 Research Issues ... 10

1.3.1 Design Concept Representation.. 10
1.3.2 Algorithms for Design Concepts Validation ... 12
1.3.3 Algorithms for Design Concepts Evaluation .. 13
1.3.4 Design Concepts Synthesis.. 14

1.4 Dissertation Outline .. 15

Chapter 2: Related Research... 18

2.1 Background ... 19
2.2 Motivation... 27
2.3 Research Issues ... 29
2.4 Dissertation Outline .. 30
2.5 Summary ... 34

Chap ter 3: Modeling and Simulation Framework... 37

3.1 Background ... 37
3.2 Class Definitions for Modeling Primitives ... 40

3.2.1 Classes for Modeling Parameters and Parameter Interactions 42
3.2.2 Classes for Modeling Artifacts, Artifact Interactions, and Artifact
Mappings... 46
3.2.3 Classes for Modeling Interaction-States... 48
3.2.4 Classes for Modeling Event and Event Spaces..................................... 52
3.2.5 Classes for Modeling Unsafe Parameter Value Sets 54
3.2.6 Classes for Modeling Interaction-State Transitions and Transition
Diagrams... 55

3.3 Elaboration Operators ... 58
3.4 Steps in Conceptual Design .. 66
3.5 Simulating Transition Diagrams ... 70

 iv

3.6 Example of Modeling Autonomous Vacuum Cleaner (AVC)........................... 73
3.7 Summary ... 95

Chapter 4: Consistency-Checking of Interaction-states .. 100

4.1 Problem Formulation .. 100
4.1.1 Problem Statement .. 100
4.1.2 Overview of Our Approach ... 103
4.1.3 Related Work On Finding Min Cut Of A Graph 104

4.2 Mapping Consistency Checking Problem To Minimum S-T Cut Problem In
Interaction Network .. 105

4.2.1 Construction Of Interaction Network ... 105
4.2.2 Mapping Consistency-Checking Problem to Minimum Cut Problem . 106

4.3 Algorithms For Finding Minimum S-T Cut And Identifying Inconsistent
Interactions.. 117

4.3.1 Algorithm for finding minimum s-t cut in network G.......................... 117
4.3.2 Algorithm For Finding Inconsistent Interactions............................... 121

4.4 Implementation And Examples ... 122
4.5 Summary ... 134

Chapter 5: Detection Of Unsafe Parameter Value Sets Embedded In

Interaction-States .. 135

5.1 Problem Formulation .. 135
5.1.1 Problem Statement .. 135
5.1.2 Overview of Our Approach ... 137

5.2 Algorithm for Detecting the Presence of Unsafe Parameter Value Sets 138
5.3 Examples ... 147
5.4 Summary ... 154

Chapter 6: Design Concept Evaluation... 156

6.1 Optimal Component Sharing .. 156
6.1.1 Problem Statement .. 156
6.1.2 Complexity Analysis of Optimal Component Sharing Problem 159
6.1.3 Branch And Bound Algorithm For Solving The Problem 162
6.1.4 Example ... 165

6.2 Evaluating Design Concept Based On Maximum Power Consumption......... 167
6.3 Summary ... 169

Chapter 7: Transition Diagram Synthesis ... 170

7.1 Problem Formulation .. 170
7.1.1 Preliminaries... 170
7.1.2 Problem Statement .. 179

7.2 Structure of the Component library .. 180
7.3 Synthesis Algorithms .. 184

 v

7.4 Characteristics of Algorithms ... 189
7.5 Example .. 191
7.6 Summary ... 205

Chapter 8: Transition Diagram Synthesis ... 206

8.1 Intellectual Contributions.. 206
8.2 Anticipated Benefits .. 209
8.3 Directions for Future Work ... 210

References ... 212

 vi

List of Tables
Table 3.1: Limitations on combining initialization types and value-changing
modes .. 51
Table 3.2: Artifacts and Parameters used in AVC behavior specification 75
Table 3.3: Event space used in AVC behavioral specification.................................... 75
Table 3.4: Unsafe state used in AVC behavioral specification 76
Table 3.5: Event sequence for AVC behavior simulation ... 83
Table 3.6: AVC behavior simulation result ... 84
Table 3.7: Decomposed Artifacts and Parameters of AVC ... 87
Table 7.1: Standard parameters used in IDS example .. 172
Table 7.2: Parameters selection for artifact definition.. 175

 vii

List of Figures
Figure 1.1: Example of interaction-states in a hybrid car ... 2
Figure 1.2: An abstraction of information flow in design... 3
Figure 1.3: Limitations of existing CAD models .. 5
Figure 1.4: Applications enabled by formal design concept representations 8
Figure 1.5: Organization of the dissertation.. 17
Figure 3.1: Overview of primitives ... 41
Figure 3.2: Structure of interaction state transition diagram 42
Figure 3.3: Relationships between major primitives .. 43
Figure 3.4: Unrealizable transitions .. 56
Figure 3.5: Example of unsafe transition diagram.. 57
Figure 3.6: Usage of operator DECOMPOSE-ARTIFACT... 60
Figure 3.7: Usage of operator DECOMPOSE-STATE.. 63
Figure 3.8: Usage of operator DECOMPOSE-TRANSITION..................................... 65
Figure 3.9: Elaboration of interaction transition diagrams ... 69
Figure 3.10: Requirements of AVC ... 74
Figure 3.11: AVC behavior specification #1... 76
Figure 3.12: Definition of state s0 ... 77
Figure 3.13: Definition of state s1 ... 78
Figure 3.14: Definition of state s2 ... 79
Figure 3.15: Definition of state s3 ... 80
Figure 3.16: Definition of state s4 ... 81
Figure 3.17: Illustration of a use-environment for simulation.................................... 82
Figure 3.18: AVC behavior specification #2... 85
Figure 3.19: Modified “Waiting” state ... 86
Figure 3.20: AVC design concept based on behavior specification #2....................... 88
Figure 3.21: Definition of state s0 ... 89
Figure 3.22: Definition of state s1 ... 90
Figure 3.23: Definition of state s1 ... 91
Figure 3.24: Definition of state s3 ... 92
Figure 3.25: Definition of state s3 ... 93
Figure 3.26: Definition of state s5 ... 94
Figure 3.27: Definition of state s5 ... 94
Figure 3.28: Organization of the content of the remaining chapters 99
Figure 4.1: Example of an interaction-state for hybrid car 101
Figure 4.2: Interaction network constructed from the above relationships............... 107
Figure 4.3: Residual network .. 109
Figure 4.4: A cut of the network... 110
Figure 4.5: A cut illustrating terminology used in Theorem 1.................................. 111
Figure 4.6: An example of a cut for illustrating Theorem 1 113
Figure 4.7: A cut illustrating terminology used in Theorem 2.................................. 114
Figure 4.8: A cut illustrating terminology used in Theorem 3.................................. 116
Figure 4.9: Illustration of algorithm F INDMINIMUMSTCUTSIZE 118

 viii

Figure 4.10: Maximum flow of the graph... 120
Figure 4.11: Residual network corresponding to maximum flow 120
Figure 4.12: Finding inconsistent relationships.. 123
Figure 4.13: Design alternative A of a planar mechanism.. 123
Figure 4.14: Design alternative B of a planar mechanism.. 126
Figure 4.15: Design alternative A of a spatial mechanism....................................... 127
Figure 4.16: Design alternative B of a spatial mechanism....................................... 131
Figure 5.1: Transition diagrams for behavior specification of microwave............... 148
Figure 5.2: Definition of state s3 ... 149
Figure 5.3: Transition diagrams for behavior specification of reservoir 150
Figure 5.4: Definition of state s2 ... 151
Figure 5.5: Transition diagrams for behavior specification of coffee maker............ 152
Figure 5.6: Definition of state s3 ... 153
Figure 5.7: Mixing state.. 155
Figure 6.1: Converting GCP to OCSP .. 161
Figure 6.2: An example illustrating the branch and bound algorithm...................... 166
Figure 6.3: An example of estimating maximum power consumption..................... 168
Figure 7.1: Transition diagram and event space used in IDS behavioral
specification .. 173
Figure 7.2: Example of a component library ... 174
Figure 7.3: Working state for CCD in behavior specification............................... 175
Figure 7.4: Working state for motor in behavior specification.............................. 176
Figure 7.5: Working state for lens in behavior specification................................. 176
Figure 7.6: Working state for recognition algorithm in behavior specification..... 177
Figure 7.7: Working state for image improvement system in behavior
specification .. 192
Figure 7.8: Final transition diagram for the Image Improvement System............. 193
Figure 7.9: State description of “Capture”.. 193
Figure 7.10: State description of “Track”... 194
Figure 7.11: State description of “Switch”... 195
Figure 7.12: Illustration of searching for components of IDS 196
Figure 7.13: Incorporate CCD into IDS.. 197
Figure 7.14: Incorporate IIS into IDS ... 197
Figure 7.15: Incorporate recognition algorithm and locate algorithm into IDS........ 198
Figure 7.16: Applying operator: generate replacement states................................... 199
Figure 7.17: Applying operator: generate replacement components 200
Figure 7.18: Applying operator: generate use-environment components................. 201
Figure 7.19: State description of “Monitor”... 201
Figure 7.20: State description of “Capture”.. 202
Figure 7.21: State description of “Track”... 202
Figure 7.22: State description of “Switch”... 203
Figure 7.23: State description of “Record”... 204
Figure 7.24: Applying operator: generate internal transitions 204
Figure 7.25: Applying operator: generate external transitions 205

 1

Chapter 1: Introduction

This chapter is organized in the following manner. Section 1.1 describes the

background needed to introduce the problem being addressed in this dissertation.

Section 1.2 describes the motivation behind the research described in this dissertation.

Section 1.3 describes the major research issues being addressed in the dissertation.

Section 1.4 describes the organization of the remainder of the dissertation.

1.1 Background

The industrial revolution has brought mechatronic devices into the forefront of

technological advancements. Mechatronic devices refer to the devices that integrate

elements from mechanical, electrical and electronic, and information domains, which

are designed to provide better solutions than would be possible if components from

only one domain are used [Walt01]. Use of mechatronic devices is pervasive, ranging

from everyday utilities such as microwave ovens and washing machines, to intelligent

robots and numerical controlled machine tools used in industry.

Increasing autonomy and intelligence in mechatronic devices requires them to be

multiple interaction-state devices. Multiple interaction-state devices are those devices

in which the interactions between elements of the use-environment and elements of

the device can have different qualitative structures (i.e., different interaction

topologies) depending upon the modes of device operation and the states of the use-

environment. Different modes of operations and different types of interaction

topologies with the use-environment require the device to be in different states, while

each state is capable of producing a different behavior to meet its intended

 2

requirements. For example, consider a hybrid vehicle as shown in Figure 1.1. When

the vehicle is going down a hill, the engine is storing energy into the batteries. When

the vehicle is going up a hill, both the batteries and the engine are providing power to

the wheels. In this example, the interactions topology among device components

(battery, engine, and wheel) is changing depending upon the states of the use-

environment (e.g., uphill or downhill).

Energy flow in
downhill travel

Wheel MotorMotor

BatteryEngine

Wheel MotorMotor

BatteryEngine

Energy flow in
uphill travel

Figure 1.1: Example of interaction-states in a hybrid car

Figure 1.2 shows an abstraction of the information flow in a typical product

development process [Pahl96]. This figure mainly illustrates the information flow and

does not show the iterative nature of the design process. Starting from the customer,

the first step is need analysis, which determines the requirements. This step

establishes why a device should exist. The second step is to establish behavior

 3

specifications, which creates the specifications of the desired observable behavior of

the device that satisfy the requirements. This step establishes what a device should

do. After that, the conceptual design step analyzes the desired behavior of the device

and results in the specifications of the internal structure of the device. Finally the

detailed design step completes the design by developing details of every component

in the structure. The conceptual and the detailed design steps establish how the

device will provide the desired behavior.

Requirements

Specify Desired Behavior

Behavior Specifications

Final Design

Design Concept

Need Analysis

Detailed Design

Conceptual Design

Figure 1.2: An abstraction of information flow in design (this figure only shows the

information flow and does not depict loops generated by the iterative nature of the

design process)

 4

In systems engineering community, requirements engineering is often used to

establish what a system will do [Hull02]. Furthermore, in this step, high level system

requirements are hierarchically decomposed into lower level requirements. A

particular way of decomposing the requirements may also impose constraints on how

the system will be designed. Therefore, requirements engineering may overlap with

the conceptual design step.

While it is well understood what constitutes a detailed design, it is not always clear

what goes into describing a design concept. In this dissertation, we assume that the

design concept will need to have the following three main ingredients. First, the

design concept will need to identify various major components (e.g., functional units)

that will be needed to meet the requirements and their roles in meeting the

requirements. Second, the design concept will need to specify the basic working

principles behind every main component to ensure that the component is realizable.

Third, the design concept will need to specify how various components will interact

with each other to achieve the requirements. We believe that these three pieces of

information are necessary for evaluating complexity and cost associated with design

concepts.

1.2 Motivation

Today’s intensive competition in the market requires companies to deliver better

quality products in shorter lead-times with limited product development budget.

Computer aided design (CAD) tools are being used to satisfy such needs. However,

most of the commercial CAD systems for mechanical products are aiding designers

only in the detailed design step. Computer aided design tools for early stage of

 5

mechanical design are either restricted to few specific products or only providing

simple sketching functions. Figure 1.3 illustrates the current state of design tools and

design data being stored. CAD models currently only store geometric information and

there is no connectivity between the final product geometry and requirements.

Computer Aided Design,
Analysis, and Manufacturing

Systems
(e.g., Pro/Engineer, Unigraphics, Catia)

Observations:
1. Only geometric information is stored
2. There is no connectivity between the final product
geometry and requirements

CAD Models

Designer

Figure 1.3: Limitations of existing CAD models

Most designers use their own notations and conventions to create and represent

design concepts. This informal and ad-hoc practice of creating and storing design

concepts makes it very difficult for a person who was not a part of the design team to

understand the design concepts underlying a product. Design of mechatronic devices

is further complicated by the collaboration of engineers from different disciplines on

a complex device, all of whom have their own perspective and way of working. A

shared understanding between each disciplines involved is key to the success of the

 6

integrated device. Furthermore, unless formal representations are developed for

modeling design concepts, we cannot develop software tools for design concept

synthesis and evaluation. On the other hand, if we consider detailed design phase of

mechanical products, computer interpretable representations are widely used in forms

of solid models and feature-based models. These representations have led to the

development of many engineering analysis tools that are frequently used to increase

designers’ productivity.

Unlike mechatronic devices, formal languages for design are successfully being used

in software and VLSI (Very Large Scale Integrated Circuits) industry. In the software

industry, UML (Unified Modeling Language) is increasingly being used as a

modeling language to model the concepts behind complex software systems. In the

VLSI industry, VHDL (VLSI Hardware Description Language) is being used to

model concepts behind complex computer chips.

Requirements engineering provides a systematic process for developing system

requirements. However, existing representation schemes being used in requirements

engineering alone are not sufficient for representing complex mechatronic device

concepts. Interactions among components are viewed as important pieces of

information in requirements engineering. However, detailed representations for

adequately modeling all possible types of interactions that are common in

mechatronic devices have not been developed. In the absence of detailed interaction

models, only a limited type of computer-aided validation and evaluation can be

carried out in the requirements engineering area. Usually, such validation and

evaluation is sufficient for requirements engineering. However, in order to support

 7

computer aided conceptual design, a lot more information needs to be formally

represented.

For mechatronic devices, a satisfactory design concept description language does not

exist. Besides, traditional functional modeling approaches that have been developed

for single interaction topology based devices cannot be conveniently applied to

multiple interaction-state devices. Hence, the majority of mechatronic device

designers currently use informal methods for representing and evaluating design

concepts. This leads to the following problems:

• Informal representation of design concepts hinders information exchange and

reuse, which leads to longer development time, longer product update time and

perhaps poorer product quality. Dynamic design teams and the need to constantly

upgrade products increase the importance of archiving and exchanging design

concepts. In the absence of formal representation, a new designer who has been

given the charge of improving a device may take a very long time to understand

how the existing device works and exchange ideas with his/her colleagues.

• In the absence of a formal validation methodology, it is not clear how to

determine if a proposed design concept is consistent with the requirements. Such

inconsistency may not be detected until the device testing stage. Hence, informal

methods of validating design concepts may waste designer’s energy on

unpromising design concepts.

• Designers need to develop the concepts further in order to apply computer aided

engineering tools. This may not only waste time and energy on unpromising

 8

design concepts, but also limit the number of promising concepts that can be

evaluated in a given development time.

It is clear that if we were to achieve a high level of automation in design of multiple

interaction-state mechatronic devices we will need formal representations to describe

design concepts. We believe that such a formal representation will enable computer-

supported tools for aiding conceptual design. Figure 1.4 graphically shows different

computational tools that can utilize the formal design concept representation.

Design Concept
Representation

Simulation
Tools

Tools for
Validation

Tools for
Evaluation

Automated
Synthesis

Tools

Figure 1.4: Applications enabled by formal design concept representations

In order to reduce the product development time, we also need tools that can perform

automated validation [Chan90] of the proposed design concepts. These tools will

ensure that only valid design concepts are transferred to the detailed design stage for

further development. The importance of this step can be better understood by

examining the consequence of not performing the design validation at the detailed

design stage. For example, the product development gets significantly delayed if non-

manufacturable shapes are passed from the detailed design step to the manufacturing

step. Similarly, passing invalid design concepts to the detailed design stage leads to

unnecessary delays in the product development.

 9

Many tools have been developed that can perform validation during detailed design

stages. These tools check various features in the geometric model of the proposed

design to assess their validity. Such tools are significantly reducing the time to carry

out the validation tasks. We are interested in developing validation tools for the

conceptual design stage. Developing such tools requires the following three steps.

First we need to develop a representation to model design concepts. This is analogous

to the development of feature-based representations for modeling detailed designs.

The next step is to develop the definition of validity. This is similar to defining what

feature parameters will be considered valid during the detailed design stage. For

example, very thin walls or features with zero-draft angles may not be considered

valid in the context of injection molding. Finally, we need algorithms that can

determine if a proposed design is invalid. This is analogous to the development of a

geometric algorithm that can detect if the given design contains a feature with zero

draft angles.

Design concepts generated during conceptual design stage must be evaluated before

being developed further into detailed designs. Unlike detailed designs, design

concepts do not carry complete design information. Therefore, evaluation methods

that have been developed for evaluating detailed designs cannot be applied to the

conceptual design stage. Depending upon the information available in the design

concepts, different types of evaluation can be performed. Therefore, we will need to

analyze design concept representations and develop the appropriate evaluation

algorithms.

 10

In order to effectively explore the design space, we need to examine a large number

of design concepts. Generating design concepts manually limits the number of design

concepts that can be examined. Therefore, we need to develop algorithms for

automatically synthesizing design concepts to meet a given set of requirements.

Formal representations, validation methods, and evaluation methods provide the

necessary infrastructure for the development of automated synthesis algorithms.

1.3 Research Issues

The main research issues being considered in this dissertation are described in the

following sections.

1.3.1 Design Concept Representation

Design concepts behind multiple interaction-state mechatronic devices capture

designers’ idea in the conceptual design stage for meeting requirements.

Representation of design concepts provides the foundation of design information

archiving, exchange and reuse. Design concept representation for mechatronic device

cannot be simply accomplished by aggregation of existing representations.

Furthermore, multiple interaction-states encountered in complex mechatronic devices

need to be adequately modeled. Current representation schemes such as function

based flow diagrams and bond graphs do not offer a convenient means for

representing changing interaction topologies encountered in multiple interaction-state

devices. State transition diagrams currently being used in modeling and analyzing

concepts behind software and electronic circuits provide a starting point for capturing

state transitions of multiple interaction-states mechatronic devices. However, they do

 11

not provide adequate modeling support for describing interactions among device

components.

This dissertation will focus on the following three research issues related to the

representation of design concepts:

• Modeling primitives for multiple interaction-state mechatronic devices.

Modeling design concepts of mechatronic devices with multiple interaction-states

requires considering interactions that lead to continuous and discrete changes in

device parameter values. Therefore, modeling primitives are needed to model

interactions among device components and interaction between device

components and the environment. Furthermore, the modeling framework will

need to support changes in governing interactions as the device goes through

different modes of operations. This dissertation provides these modeling

primitives to support conceptual design.

• Modeling operators for multiple interaction-state mechatronic devices. We

envision that during the conceptual design, the underlying modeling primitives

will be manipulated to add more detail to the design concept. An example of

such a manipulation is decomposing a primitive into a set of primitives. To

eliminate design errors, we need to ensure that the primitives that result from

manipulating existing primitives remain valid. Operators needed to manipulate

the primitives will depend a great deal on the primitives themselves. Thus, new

modeling operators are needed. This dissertation provides the modeling

operators.

 12

• A framework for enabling concept simulation. In many situations, simulation

serves as a powerful tool for evaluating designs. However, simulation tools

developed for detailed design simulation cannot be used during conceptual

design. Instead we need a new simulation framework that only utilizes the

information available during the conceptual design. The new representation

developed in the dissertation enables concept simulation. This dissertation

provides a framework for determining the response of the device to a given set of

events in the use-environment. By creating a set of simulated events in the use-

environment, users can evaluate the concept using the framework provided in this

dissertation.

1.3.2 Algorithms for Design Concepts Validation

In order to reduce the product development time, we need tools that can perform

automated validation of the proposed design concepts. These tools will ensure that

only valid design concepts are transferred to the detailed design stage for further

development. However, in conceptual design stage, often we only know the

qualitative structure of the design solution instead of the knowing the exact equations.

This requires design concept validation methods to work with the qualitative design

information.

This dissertation will focus on the following two research issues related to the design

concept validation area:

• Algorithms for checking interaction-state consistency. Validating interaction-

states involves checking the consistency of the set of interactions in the state.

This requires us to ensure that the underlying interactions in the state are not

 13

over-constrained. Furthermore, we need to ensure that any subset of the

interactions is also not over-constrained. This dissertation provides algorithms,

the corresponding correctness proofs, and worst-case asymptotic complexity

analysis for the interaction-state consistency-checking problem.

• Algorithms for detecting presence of unsafe parameter values. In many

instances, unsafe parameter values are defined as a part of the requirements. In

order to satisfy requirements, a valid design concept must be safe and hence

should not attain unsafe parameter values. Checking presence of unsafe

parameter values based on the existing discrete parameter value formulations is

not expected to work in presence of interactions that involve both continuous and

discrete changes in parameter values. Therefore, we need new algorithms. This

dissertation presents the problem formulation for checking presence of unsafe

parameter values in a design concept based on multiple interaction-states and

provides algorithms for solving it.

1.3.3 Algorithms for Design Concepts Evaluation

Design concepts generated must be evaluated before being developed further in the

detailed design stage. Since design evaluation consumes resources such as time and

money, eliminating unpromising design concept alternatives as soon as possible is

desired. Different representation schemes usually support different types of

evaluations. The new representation scheme described in the dissertation enables new

directions for design concept evaluations.

This dissertation will focus on the following two research issues related to the design

concept evaluation area:

 14

• Algorithms for evaluating design concepts based on active component use.

The new representation of multiple interaction-state mechatronic design concepts

makes it possible for us to determine which components are active in which

states. Consider the problem of evaluating the maximum power consumed by a

design concept. This cannot be simply computed by summing up the power

requirements for all components. Instead, we need to figure out when

components are active and when they are not active. We also need to determine

the state where the maximum power is being consumed by active components.

This dissertation provides an algorithm for evaluating design concepts based on

maximum power consumption. The algorithm developed in this dissertation can

be extended to the estimation of noise generation as well.

• Algorithms for determining component sharability. In many designs, two

different states require components of the same type but for different usages. If

two different usages are not needed at the same time, then a single physical

component can fulfill both roles. Sharing of a physical component among

multiple states can potentially reduce the cost of the design. Therefore, this

dissertation investigates the computational complexity of the component

sharability problem and presents an algorithm for solving it.

1.3.4 Design Concepts Synthesis

The representation, validation and evaluation schemes provide the infrastructure for

the conceptual design of mechatronic devices with multiple interaction-states. The

same schemes can be adopted for synthesis as well. This dissertation will explore the

following two issues related to the synthesis area:

 15

• Component description. A component library will be used for describing the

known components. Components will need to be described in such a way that a

synthesis algorithm will be able to identify the applicable components and

connect them together to create a possible design concept. This dissertation will

provide a component description scheme for describing known components. This

scheme will support description of both simple as well as complex components.

• Synthesis algorithm. The synthesis algorithm will need to identify the

appropriate components and connect them together to form valid design concepts

consistent with the desired behavior. Although algorithms have been developed

for synthesizing circuit and simple input/output type of electromechanical

products, they will require significant extensions be useful in mechatronic

devices with multiple interaction-states. This dissertation will focus on the

development of sound synthesis algorithms that can utilize complex components

in simple arrangements to come up with the possible design concepts. Complex

components will allow the synthesis algorithm to exploit the known design

concepts and make use of them in solving new design problems.

1.4 Dissertation Outline

The remainder of this dissertation is organized in the following manner.

Chapter 2 presents a literature survey on topics related to this dissertation.

Chapter 3 describes a modeling and simulation framework for representing design

concepts behind multiple interaction-state mechatronic devices.

Chapter 4 describes the problem of consistency-checking of interaction-states as a

step in the design concept validation. It presents an algorithm for solving the

 16

interaction consistency-checking problem. It also presents an algorithm for analyzing

inconsistent interaction-states and identifying the inconsistent interactions.

Chapter 5 describes the problem of determining whether unsafe parameter value sets

are embedded in an interaction-state transition diagram. It presents an algorithm to

determine whether a given interaction-state transition diagram can include unsafe

parameter value sets.

Chapter 6 describes an algorithm for estimating the maximum power consumed by a

design concept. It also describes an algorithm for determining the sharable

components in multiple interaction-state devices.

Chapter 7 describes algorithms for automatically synthesizing detailed transition

diagrams given the initial behavior specifications and a components library.

Chapter 8 describes the main research contributions of this dissertation and identifies

the anticipated benefits resulting from this research. It also gives suggestions for the

future extension of the work described in this dissertation. Figure 1.5 shows the

organization of the dissertation.

 17

Conceptual design modeling
framework (Chapter 3)

Algorithm for simulating
transition diagrams (Chapter 3)

Representation

Validation

Evaluation

Synthesis

Helps in explaining
how the device works

Helps in ensuring that
device does not exhibit

undesired behaviors

Helps in comparing two
different proposed concepts

Helps in reusing the known
concepts in new designs

Algorithm for consistency checking
of interaction-states (Chapter 4)

Algorithm for detecting unsafe
parameter values (Chapter 5)

Algorithm for evaluating optimal
component sharability (Chapter 6)

Algorithm for transition
diagram synthesis (Chapter 7)

Algorithm for evaluating maximum
power consumption (Chapter 6)

Chapter Category Goal

Figure 1.5: Organization of the dissertation

 18

Chapter 2: Related Research

This chapter provides a review of the state of the art in topic areas related to this

dissertation.

To facilitate reasoning about behavioral and spatial aspects of an electro-mechanical

system, the process of design has been divided into the following distinct stages: (1)

conceptual design, and (2) detailed design. The detailed design stage is divided into

(1) parametric design, (2) configuration design, and (3) optimization and refinement

of the design. Conceptual design schemes based on a variety of models have been

proposed such as influence diagrams [Navi91], behavioral networks [Will89],

equations, qualitative reasoning [Navi92] and bond graphs [Ulri88, Welc91]. A

variety of representations such as graphs, grammars, constraint satisfaction etc. have

been presented based on those models. Mechanism synthesis is addressed in

[Erdm95]. The conceptual design step results in a selection of major components and

their interconnections to provide its intended functionality. The choice of components

is followed by parametric design wherein the components are sized for their geometry

and material properties. Once a behavioral topology of components is chosen and

sized, spatial orientation and location of components along with minor refinements to

their form is addressed during spatial configuration design. The spatial configuration

problem is highly dependent on the nature of the components, their physical forms,

their material construction, constraints on spatial volume, weight and size and finally

manufacturing and assembly considerations.

We review related work in the area of conceptual design representations in Section

2.1. Research in the design validation area is reviewed in Section 2.2. Previous work

 19

in the area of evaluation is reviewed in Section 2.3. Research in design synthesis is

reviewed in Section 2.4. We present the overall summary of the related work in

Section 2.5.

2.1 Representations in Conceptual Design

Design representation is regarded as the description or model of design information

and it is strongly coupled to the design methodology being practiced [Dym94].

Conceptual design is usually viewed as the stage that needs a lot of human

intervention during the generation of creative ideas. Design information generated

during the conceptual design stage is traditionally generated for human designers.

Since it is in the early stage of design, most of the information is incomplete and

often represented informally as sketches for human consumption. However, the broad

usage of computer tools is pushing the research towards the study of formal and

reusable representations during the conceptual design stage. Formal languages,

ontologies and other computational representations belong to this case.

Sketches have been used as the initial representation for conceptual design in many

industries because they are thought to be able to easily express innovative ideas

[Mcgo98, Purc98, Yang03, Tove04]. Some progress has been made in the area of

formalizing representations of planar mechanisms using sketches [Stah98]. However,

they are defined using adhoc notations and may be difficult to understand for people

other than their creators. Moreover, different designers may use different styles and

may find it difficult to understand each other’s sketches. It would be difficult to store

and reuse sketches using computers.

 20

Automated evaluation of concepts represented in sketches is also very challenging

due to varying levels of details. Schematic representations are also used in which

design is described schematically as a graph of its constituent elements. A common

example would be the analog circuit description [Ulri02]. However, formal schematic

representations are not popular in mechanical designs.

Function is an important concept in conceptual design across different domains.

However, there is no universally accepted definition of term function. The function

representation research was inspired by prior work from value engineering [Mile72,

Akiy91]. Due to the hierarchical nature of the design problem solving, functions are

often decomposed into sub-functions. Besides the hierarchical relationships between

functions and sub-functions, different levels of importance for all functions are also

identified. Function representation is also referred to as functional modeling. The

fundamental issue in functional representation is to represent the function structure

that includes the all the constituent sub-functions and the relationship between them.

Pahl and Beitz’s widely accepted systematic approach to engineering design defines

conceptual design as the feasible combination of working principles for sub-

functions. Pahl and Beitz describe the function as the transformation from input to

output in three flows: material, energy and signal [Pahl96]. They describe both

functions and flows among functions. Working principles are sought for low level

sub-functions and working structures are formulated by combining working

principles. Compatibility of sub-functions is shown in compatibility matrix. Many

variations have been proposed based on this basic framework [Ulri95, Magr97,

Ullm97, Wood01].

 21

Suh views design as the mapping between functional requirements and design

parameters. Design problems are posed by defining top level functional requirements.

Design parameters are defined in physical domain. Design solutions are formulated

by combination of design parameters [Suh90].

Grabowski et. al. divide the traditional single function model into three layered

function models with different levels of abstraction. The logical model, borrowed

from electronic domain, is used to present high level topology and connectivity of

sub-functions. The status model describes the working state combinations of different

components. The relation model defines the mathematical or physical relations

between physical variables [Grab99]. However, functions in the logical model are

defined only using input/output of components. The status model only deals with

discrete states of components.

An object oriented graphical representation of functions and flows is proposed in

[Szyk99]. Data structures of functions and flows are defined using attribute/value

pairs while the relationships between functions and flows are depicted graphically.

Working principles (called artifact in [Szyk99]) are attached to functions and flows in

the graph. Shooter et. al. subsequently proposed a model for design information flow

in which the relationship between intended behavior and observed behavior of design

artifact are described and elaborated [Shoo00]. Zeiny proposed a dynamic object-

oriented model that stores form, function, behavior, taxonomy, composition and

relationships. All the design information is stored in a generic container object called

Design Entity. Design entities are organized hierarchically [Zein04].

 22

The NIST Core Product Model (CPM) provides a base-level product model that is

open, non-proprietary, generic, extensible, independent of any product development

process and capable of capturing the full engineering context commonly shared in the

product development process [Fenv01]. The CPM is intended to serve as a generic

core representation for design information through the whole product development

process. Specialized representations can be developed from it by adding more details

to it.

Stone and Wood have proposed a functional basis language that tries to subsume the

previous effort in functional modeling and provide a consistent classification scheme

for functions. In this approach, functions are characterized using verb-object

(function-flow) format and definitions of different classes of functions and flows are

provided [Ston00, Hirt01]. Bohm and Stone recently argued that supporting functions

are needed to completely represent artifacts. Supporting functions describe

manufacturing, assembly and support features present in the embodied form of a

product [Bohm04]. However, these ‘function-transformation’ methodologies have

difficulty in representing a function that does not transform something. Besides, flows

with a changing flow topology are difficult to model.

Some other researchers view functions as closely coupled with behaviors and present

approaches for representing both. Function is defined as ‘what a device is for’ and

behavior is defined as ‘what a device does’. In this sense, function is also viewed as

‘intended behavior’ and sometimes function and intended behavior are used

interchangeably. Chandrasekaran proposed a language called function representation

for describing the function of a device, its structure and the causal processes in the

 23

device that culminate in the achievement of the function [Chan94]. The causal

process is described using simple state transitions.

Iwasaki et al. proposed the Causal Functional Representation Language (CFRL)

[Iwas93, Iwas95]. They argued that this framework allows them to capture the

knowledge of how the device is intended to work to achieve its function. CFRL

relates intuitive functional description to behavior represented as a state transition.

However, state is not defined formally. The interactions between system components

are not captured either.

Sasajima et al. proposed Representation Language for Behavior and Function (FBRL)

for representing function and behavior with predefined task and domain independent

primitives [Sasa96]. Umeda et al. proposed Function-Behavior-State (FBS) modeling

and a conceptual design support tool called FBS modeler [Umed96]. In FBS, a state is

described by a set of entities and attributes and relationships between them. Behavior

is described by a sequence of one or more changes of states. Qian and Gero propose a

Function-Behavior-Structure path design model [Qian96]. Deng et al. proposed a

representation model for desired product in terms of its function, behavior, structure

and working environment [Deng99]. This Function-Environment-Behavior-Structure

(FEBS) model includes initial function decomposition and conversion, causal

behavioral process generation and physical phenomena library. In a subsequent paper,

they argued that in some cases, material must also be considered in conceptual

design. Thus conceptual design framework must also include material [Deng04a].

Approaches used in FBRL, FBS, and FEBS focus on capturing designer’s intentions

or behavioral processes by using simple state transitions. Basically they have two

 24

limitations. First, states are only defined using a set of state variables. Relationships

and constraints among state variables are not modeled. Second, they do not have

different levels of abstraction for different levels of design information (i.e., they do

not make any distinction between a higher level or lower level functions).

Bond graphs have been used in modeling behavior of dynamic system [Madh98]. The

system is viewed as consisting of standard elements that have different numbers of

input and output ports by which they are connected. This approach is restricted to

power and signal flow based systems.

Vargas-Hernandez and Shah presents an information model called 2nd-CAD that aims

at providing users with catalogs of elements to create interconnected multi layered

structures of functions, behaviors, and components. The logic model of 2nd-CAD

consists of entity and relationship models with corresponding transactions and

constraints. Functions, behaviors and components are represented in function entity-

relationship models, behavior entity-relationship models and component entity-

relationship models respectively. Flow relationship models connect the output of one

element and the output of another element. Composition relationship models connect

parent and children elements. The mapping relationship models connect elements

from different structures [Varg04]. Only energy flows are used in the function model.

Behavior models are limited to bond graphs.

Current research in mechatronic system design is based on existing design

methodologies. Most of the efforts focus on analyzing system performance using

bond graphs [Karn00, Good02]. Diaz et al. used a hybrid representation of linear

graph and block diagrams to support automatic generation of simulations from

 25

individual components [Diaz99]. This approach is based on an augmented system

graph that represents the topology of the system. Stacey et al. represented functions

using concept arrays and blob diagrams [Stac96]. Chen and Jayaram extended flow

diagram based functional representation schemes into mechatronic system

representation by introducing two additional flows (information flow and control

flow) and new relationships between functions and flows [Chen02]. They also

presented a systematic approach for applying their schemes [Jaya03].

Gausemeier et. al. proposed a semi-formal specification language for modeling

functions in conceptual design of mechatronic systems. Functions are viewed as

transformations of discrete system states described by parameters [Gaus01]. However,

functions are not represented formally. The modeling does not support hierarchy of

functions either.

Verma and Wood argue that freeform text and functional basis represent extreme

views for storage and reuse of functions during design [Verm03]. They suggest that a

way to reconcile the two would be to use both. They proposed an augmented

language to improve description of certain aspects of functions during the conceptual

design.

Dori and Crawley argued that Object-Process Methodology (OPM) could serve as a

domain-independent paradigm and modeling methodology that are shared among the

various fields of knowledge for complex systems [Dori03]. OPM uses objects,

processes and states as basic building blocks (called entities). Links are used to

capture the static relations and behavioral relations between entities. They believe that

in this way, structure and behavior, which are the two major aspects of system, can

 26

co-exist in one paradigm. However, each object has its own states. Moreover,

complex interactions between objects and their transformation are not captured.

Williams describes design as a process of building a network of qualitative

interactions (called an interaction topology) between primitive components.

Interactions are described by equations among parameters of components. He argued

that new devices could be constructed by examining possible interactions producible

by available components and every type of connection between components. The

resulting structure is a topology of potential interactions [Will92].

Aiming at constructing the logical relationships between sub-functions at the first

level of functional decomposition through information flows, Erden et. al. combine

Petri nets with hybrid automata to model the logical behavior of mechatronic systems.

They argue the logical relationships between sub-functions of a system can be best

achieved by Petri nets. Hybrid automata are used to model both discrete and

continuous state changes and evolution [Erde03]. Although energy, material and

information flows are all acknowledged, only information flow is used in their first

level of decomposition. Interactions among design parameters in the states are not

explicitly considered.

State transition diagrams (STD), also known as state machines, are a way of

describing the time-dependent behavior of a system. The basic consistency rule is: "A

system's behavior in any state must be the same no matter by which path the state is

arrived at” [Hare87]. STDs are good for modeling complex system behavior such as

multiple entries and exits subject to different conditions. It has been successfully used

in software/systems engineering (requirements engineering) [Kont98] and electrical

 27

circuit design. The idea of simple state transitions has also been used to represent

design knowledge [Chan93]. State transition matrix is used in systems engineering for

analyzing complex system behavior [Haze96]. Researchers have also used hybrid

automata that combine discrete transition diagram with continuous systems in

modeling dynamical behavior [Broo04]. STD has been formalized in Unified

Modeling Language (UML) (extended as statechart diagram) [Booc98]. However, the

STD in UML cannot be directly used to represent design concepts. Each STD in

UML only represents the states for one object. In order to represent design concepts,

we also need to consider object hierarchy and the interactions between objects. UML

provides another diagram called interaction diagram to model interactions. UML has

been suggested as integration tool in design of mechatronic systems [Mroz01]. In

order to conveniently model design concepts, we need a diagram that concurrently

models interactions and state transition.

Researchers have also recognized the importance of a formal representation of the

design process. Gorti et. al. presented a knowledge representation model for product

and design process by applying and extending traditional object-oriented

methodology [Gort98].

Some researchers also use shape grammar to capture the design knowledge of a

certain types of artifacts. Shape grammar is a set of shape rules that could generate

design step by step [Caga01].

2.2 Validation During Conceptual Design

Validation, also sometimes referred to as verification, involves checking that a design

proposal satisfies functional and other specifications [Chan90]. Design validation

 28

studies are usually closely related to design representations. For function-behavior

based representations, the embedded behavior enables designers to do simulation. The

behavior of the proposed system can be simulated and compared against the desired

behavior [Brac96].

Deng et al. proposed a constraint-based functional design verification model based on

an extension of their Function-Environment-Behavior-Structure (FEBS) design model

[Deng99]. The input is the functional design model, which incorporates four aspects

of functional design information: the working environment, the physical structure, the

intended behavior, and the required function. A framework is developed that allows

for the backward reasoning to trace the causes of system behavior. Design

verification is achieved by identifying input and output design variables, developing a

variable dependency graph, propagating constraints over the graph, and checking the

values of the design variables against these constraints.

Efforts have also been made in the formal validation area using logic. Even though

we are not aware of a validation effort that directly deals with electro-mechanical

design, but efforts are being made in several other domains, particularly in the

domain of process design. For example, Gruninger et al. used formal enterprise

models to characterize process integration within enterprises. Customer’s business

requirements are transformed into logical questions and checked against the

constraints within the enterprise model [Grun00].

Approaches for checking unsafe states in finite state machines are presented in

[Mage99]. However, significant extensions are needed to check interaction-states that

include both continuous as well as discrete variables.

 29

2.3 Evaluation During Conceptual Design

Evaluation is needed to compare design option during the decision making. It is well

known that evaluations can be either absolute or relative. Absolute evaluation

evaluates the concept directly against the evaluation criteria such as feasibility

judgment, technology-readiness assessment and go/no-go screening. Relative

evaluation compares concepts with each other using measures defined by the criteria

such as decision-matrix method [Ullm97].

Pahl and Beitz presented a general evaluation method: identifying evaluation criteria,

weighting the evaluation criteria, assessing the values of alternatives and comparing

alternatives. Evaluation criteria are usually derived from requirements or from

general technical and economic characteristics [Pahl95]. Saaty proposed analytical

hierarchy process (AHP) for evaluating multi-attributes problems [Saat90]. Hari and

Weiss argued that failure modes and effect analysis should be conducted during

conceptual design for evaluation. Potential failure modes and design improvements

needed to eliminate these failures are estimated for concepts. Severity, frequency and

detection phase are rated quantitatively. These parameters and their combinations

indicate the reliability of the concepts [Hari99]. Huang and Liao proposed a method

that integrates ordinal, cardinal and matrix algebra methods with normalized values

based on Pahl and Beitz, and Saaty [Huan00]. Kalenchuk and Gu argued that product

life cycle performance such as maintainability should also be evaluated during the

conceptual design. They proposed specific maintainability metrics incorporating

uncertainty for evaluating product maintenance of conceptual design alternatives

[Kale02].

 30

Pugh’s decision matrix method has been widely used for rating concepts relative to

each other in their abilities to meet criteria set by customer requirements. It is an

iterative evaluation method that consists of several steps. First, criteria are chosen for

comparison. Then concepts are selected. Third, every designer picks the best concept

that serves as a datum with which all other concepts will be compared. Finally the

total score is calculated [Pugh90]. Takai and Ishii presented two modified Pugh

methods [Taka02].

Due to the characteristic of incomplete information during conceptual design,

evaluation uncertainties must be accounted for. Many decision support systems have

been proposed for consideration of uncertainty during evaluation. See and Lewis

presented a method for evaluating multiple, potentially conflicting criteria. They

introduce hypothetical alternative choices to help assess decision maker’s preferences

[See02, Gurn03].

2.4 Conceptual Design Synthesis

Traditionally, the design process has involved two main activities---synthesis and

analysis. A general discussion of the synthesis process itself can be found in

[Rooz02]. Most of the present generation CAD tools are geared towards analysis. As

people want to achieve higher level of automation in design, they are beginning to

investigate the possibility of automating some aspects of synthesis as well. At least in

some applications, it may be desirable to have a system that takes customer needs as

input and automatically designs a suitable product. There is no known general

solution to synthesis problem. However, research is underway to achieve automation

in specialized domains.

 31

Particularly, in design of integrated circuits, significant level of automation has been

achieved. Circuit design synthesis techniques are surveyed in [Kuma96]. Logic

program synthesis techniques are surveyed in [Devi94]. Automated design synthesis

is much harder for mechanical and electro-mechanical devices. We believe that the

primary reason for this discrepancy is that for mechanical and electro-mechanical

devices, it is more difficult to decouple the interactions among the device

requirements than it is for purely digital devices.

Conceptual design synthesis investigates how design concepts are generated from the

given design requirements. Usually synthesis techniques are closely associated with

specific design representations. Due to the lack of availability of formal design

representations during the conceptual design, many efforts are mainly focused on

developing a synthesis methodology, not on the automation.

In their systematic approach, Pahl and Beitz’s use the following process to generate

conceptual solutions [Pahl96]. First, designers identify overall function from the

design specifications. Then, the overall function is decomposed hierarchically into

sub-functions, leading to a function structure. Working principles are sought for each

sub-function and the solution is generated based on the feasible combination of

working principles.

Suh views design as the inter-leaved mapping between function requirements and

design parameters. Function requirement can not be decomposed unless its

corresponding design parameter(s) is(are) determined [Suh90]. He presents two main

axioms to assist designers in performing the right design decomposition. However, a

procedure for automatically carrying out the decomposition is not given.

 32

Chakrabarti et. al. view design solutions as combinations of a set of functional

elements. They also argue that each element can be defined by basic element types or

combinations thereof. Existing designs are investigated for distilling these element

types with associated inputs and outputs. They describe design problem by functions

represented by a number of inputs and outputs. Transformation chains are generated

between these inputs and outputs. Each transformation can be embodied by choosing

from the database of functional elements [Chak02]. They developed a program called

FuncSION (Functional Synthesiser for Input Output Networks) to implement this

approach. They use exhaustive search algorithm in their work. Search terminates

when predetermined bounds on the number of the elements in the chain or the

complexity of the chains are met.

Ward and Seering developed a synthesis algorithm for generating sets of components

that combine to satisfy the design problem from a schematic input of a mechanical

system, mathematical representations of the function specifications and catalog of

elements. A control strategy of interval calculus and constraint propagation

techniques is used to avoid exhaustive search [Ward93]. The algorithm is limited to

single input single output systems.

Ulrich developed a bond graph based synthesis algorithm for single-input single-

output devices. Input output chains are searched to connect the input bond graph

chunk to the output chunk. The number of bond graph elements is preset to limit the

search [Ulri88].

Following case-based design procedures, Madhusudan synthesizes electromechanical

products based on bond graph representations. His synthesis algorithm consists of

 33

three essential procedures: elaboration, retrieval and verification. Design

specifications are described using inputs and outputs. First, internal topologies in the

flow path are generated. Then cases are retrieved using retrieving keys. Finally, case

verification is performed by symbolically solving the device relation and output time

histories for the input time-histories [Madh98].

Campbell et. al. applied A-design methodology on synthesis of electromechanical

design configurations. Starting from functional descriptions that describe the expected

inputs and outputs, agents are used to generate design alternatives. Configuration-

agents create design configuration by attaching various embodiment structure

enhanced from that of Welch and Dixon [Welc94] to fulfill the input function

parameters and output function parameters. Instantiation-agents extract the equations

from the design configuration and choose actual components from a computer catalog

by choosing the exact values of variables in the design [Camp00]. The algorithm can

only handle problems in the form of inputs and outputs.

Qian presented an analogy-based synthesis approach based on function-behavior-

structure representations. His computational model includes knowledge base. It starts

with a search for an existing design based on keywords. A subsequent designer

guided search is performed to find designs with similar function or behavior. New

designs are generated by combining the retrieved existing designs with the retrieved

analogous designs [Qian02].

Deng and Lu proposed a synthesis framework for MEMS conceptual design based on

their FEBS representation schemes. Characteristics of MEMS such as

chemical/biological/other reactions are also considered in the behavior representation

 34

[Deng04b]. The approach is limited to problems defined in terms of inputs and

outputs.

Graph grammars also have been used to generate design solutions. Graph grammars

are a set of rules that could transform the nodes and arcs in a graph representing

design specifications [Fu93, Li01]. Shridharan and Campbell applied graph grammar

to create function structures. Grammar rules are extracted from studying function

structures of thirty products. New solutions can be generated by applying these rules

to the input given by the user [Srid04]. Schmidt and Cagan developed a synthesis

algorithm that uses a graph-based abstraction grammar to create design alternatives

and a recursive simulated annealing process to select a near-optimum design

[Schm97]. Grammar based approaches are limited to specific types of products since

different grammars have to be developed for different products.

Subramanian and Wang developed an algorithm for synthesizing single-input, single

output mechanisms. They used recursive search algorithm that starts from the desired

output and work backwards to the specified input. If several primitive mechanisms

are identified during the process, they randomly pick one and continue [Subr95]. This

method cannot be applied to complex device synthesis with multiple inputs and

outputs.

2.5 Summary

The research in representation of design concepts is mainly focused on single

interaction-state systems, where the relationship between different components of

system is fixed during operation of the product. However, changing interaction

relationships under different operation modes is the basis for multi-state mechatronic

 35

systems to work. Representing design concepts of multi-state mechatronic systems

not only requires representing the components of the system, but also new features

such as changing interaction topologies among system components. Besides,

mechatronic product design requires us to consider complex interactions between

system elements. These interactions may not necessarily be of the form of

input/output relationships. Instead, these interactions in the most general form may

need to be expressed as constraints or other types of complex relationships among

parameters of various components. In order to describe complex requirements, we

will also need to explicitly model the use-environments. In order to simulate the

design concept, we will also need to formally define the events that trigger different

interactions. Finally, we will need to add explicit notions of unsafe states in the

representations to ensure that the concepts being represented are safe. This requires us

to develop a new representation based on the combinations of existing representations

to capture the behavior exhibited by multi-state devices.

Evaluation and validation is closely coupled to representation. Current design

validation methods available as a part of function-based design will not be able to

perform validation due to the additional validation requirements imposed on the new

representation. Thus a new validation methodology will be needed for the new

representation. Currently available evaluation techniques cannot fully exploit

additional information present in the new representation. Moreover, most evaluation

methods do not consider design concepts explicitly and do not consider how the

evaluation will be performed using the available information. Thus, we will need to

develop new evaluation algorithms that can exploit the additional information

 36

available in the design concepts and assist the users in comparing two different

possible concepts.

Increasingly, a large number of new electro-mechanical devices are designed using

off-the-shelf components and sub-systems. The main challenge in designing such

products is to arrive at the optimal product configuration that satisfies the functional

specifications and at the same time is cost effective. Typically, a large number of

potential product configurations exist for a required end-user functionality. For

example, linear mechanical motion can be realized through a number of different

product configurations consisting of a combination of motors and mechanisms such

as cams, screw systems, piston drives etc. Synthesizing the optimal configuration

from a large number of alternatives is a challenging task. Currently, designers tend to

make decisions based on their intuition and past experiences with the previous

designs. Such design practices lead to long delays in incorporating new components

and new solutions into current product designs. The development of a synthesis

algorithm will significantly assist designers in effectively exploiting new off-the-shelf

components.

Synthesis algorithms are also closely related to specific design representations. The

new representation developed as a part of this dissertation will enable us to describe

behavior of complex components. Moreover, explicit modeling of use-environment

will aid in selection of the appropriate components from the component library.

Hence, we plan to develop a new synthesis algorithm that can effectively utilize

existing basic and complex components.

 37

Chapter 3: Modeling and Simulation Framework

This chapter provides a framework for modeling design concepts of mechatronic

devices with multiple interaction-states to facilitate computer-aided conceptual design

of such devices. This chapter introduces the primitives and operators used in the

modeling framework, and illustrates the modeling process by an example.

This chapter has been organized in the following manner. Section 3.1 describes the

background information related to this chapter. Section 3.2 describes the class

definitions for the primitives used in the framework to model behavior specifications.

Behavior specifications describe how the device interacts with different components

of the use-environment under different conditions. We use transition diagrams to

capture the behavior specifications. Every component and device is modeled as an

artifact. After defining the behavior specifications, conceptual design is carried out.

This step entails decomposing the device into components and further elaborating the

interactions among different components of the device and the use-environment.

Operators for elaboration to support the conceptual design process are described in

Section 3.3. Section 3.4 describes how the primitives can be used to model the

behavior specifications and how the elaboration operators can be used to transform

the behavior specifications into a design concept. Section 3.5 describes an algorithm

for simulating a transition diagram. Section 3.6 presents an example. Finally, Section

3.7 summarizes this chapter.

3.1 Background

The following terminology will be used in the remainder of this chapter.

 38

Use-environments: We define the use-environment as part of the world with which

the mechatronic device interacts in its lifetime. Modeling the use-environment

becomes necessary to describe the desired behavior of complex devices. Consider the

energy flow in a hybrid vehicle. The road is a part of the use-environment in this case.

The changes in road conditions alter the operating modes of the hybrid vehicle.

Therefore, road conditions are needed to describe the desired behavior of the hybrid

vehicle.

Mechatronic Devices: Mechatronic devices refer to the devices that integrate

components from mechanical, electrical and electronic, and information domains. A

mechatronic device interacts with its use-environment to meet the customer needs.

Components in a mechatronic device interact with each other and components of the

use-environment to produce the desired behavior. For example, a hybrid car is a

mechatronic device, which is composed of a passenger cabin, an engine, a battery, a

motor, a control system, a transmission system, and four wheels.

Design Worlds: A design world consists of entities that need to be modeled to carry

out the device design and describes how the device produces the desired behavior. In

our case, it is the combination of a mechatronic device and its use-environment. In the

hybrid vehicle design example, the hybrid vehicle to be designed and the road

comprise the design world.

Component Interactions: Components in a mechatronic device and its use-

environment may interact with each other in different ways. Such interactions include

energy, signal, and mass flows between components, and two or more components

mutually constraining each other’s motions. For example, the engine transmits power

 39

to the transmission system in the hybrid vehicle. Therefore the engine interacts with

the transmission system.

Mechatronic Device Behaviors: The behavior of a mechatronic device is the way in

which the device interacts with its use-environment over time by responding to the

changes in the use-environment, and affects the use-environment. For example, the

behavior of a hybrid vehicle is as following: (1) the engine and the battery both

provide power to the wheels when the vehicle travels uphill or accelerates, (2) the

engine provides power to the wheels and it charges the battery when the vehicle

travels downhill or decelerates, and (3) the engine provides power to the wheels when

the vehicle travels along a horizontal road.

Requirements: Requirements define the customers’ needs for a product. In this

chapter, requirements are considered as the description of the services provided by a

device to its use environment. Subject and verb pairs typically describe these

requirements. Subjects are typically components of the device and the use-

environments. Additional specifications are used to include constraints on the

requirements. For example, requirements for a hybrid vehicle may be stated as

following: (1) hybrid vehicle stores spare power being produced by engine when

vehicle encounters reduced load; (2) hybrid vehicle delivers stored energy to wheels

when vehicle encounters increased load.

Behavior Specifications: Behavior specifications formally state the specifications of

the observable behavior of a device that would satisfy the stated requirements. These

specifications include how the device will interact with use-environment under

different conditions and how the device and components of the use-environment will

 40

mutually affect each other. In the subsequent sections of this chapter, we use

transition diagrams to represent the behavior specifications of the device being

designed.

Working Principles: We define working principles as the basic physical principles

behind device components.

Design Concepts: We call the result of conceptual design stage a design concept. A

design concept needs to have the following three main ingredients. First, the design

concept will need to identify various major components that will be needed to meet

the requirements. Second, the design concept will need to specify basic working

principle behind every main component to ensure that the component is realizable.

Third, the design concept will need to specify how various components will interact

with each other.

3.2 Class Definitions for Modeling Primitives

In this section we define classes for the modeling primitives used in our framework.

Figure 3.1 shows the overall conceptual design modeling framework and main

primitives used in this framework. The rationale behind the main primitives shown in

this figure is as following. We need to be able to models events in the use-

environments to which the design concept will respond. To ensure the safety of the

device operation, we need to be able to model unsafe parameter value sets. These are

the parameter value sets that the device should never enter because it can cause

significant operational difficulties or create hazardous conditions. For example, when

the door of a machine tool is open, the spindle should not rotate. Engineering

 41

characteristics are needed to specify quantitative constraints associated with the

operation of the device being designed.

Behavior
Specification

Design Concept

Device
decomposition into
underlying artifacts

Detailed
Interaction-state

transition diagram

Unsafe parameter
values

Possible events

Initial
interaction-state

transition diagram

Design information
Elements needed

to model it

Artifacts
Interaction-states

Event space

Parameters

Interactions
Transitions

Unsafe parameter value sets

Artifact mapping

Primitives

Transition
diagram

Transition
diagram

Major functional units,
working principles behind
the units, and interactions

between the units

Desired response
of the device

to events in the use
environment Interactions

Figure 3.1: Overview of primitives

We need transition diagrams to model how the device (or components of the device)

interacts with the use-environment in response to various events in the use-

environment. Figure 3.2 shows the primitives used in defining interaction-state

transition diagrams. Dependency among various primitive definitions is depicted in

Figure 3.3. The primitive at the start of an arrow is needed for defining the primitive

at the end of the arrow.

Every class instance will have a name that will serve as the identification for the class

instance. We use notation “name.member” in this chapter to refer to a member of a

class instance. For example, notation a.p refers to member p of class instance with

 42

name a. In the following subsections we introduce the class definitions for various

primitives.

Interaction State Transition Diagram

Artifact Interaction

…

Artifact
Interaction

Interaction
State

Transition

Interaction
State

…

Transition

Parameter Interaction

Parameter Parameter

Interaction State

Artifact

Artifact

Parameter Parameter

Parameter Interaction

Parameter

Artifact

Figure 3.2: Structure of interaction state transition diagram

3.2.1 Classes for Modeling Parameters and Parameter Interactions

A parameter is a type of observation of an artifact. For example, a table is an artifact,

and the height of the table is a parameter. Class Parameter is defined using the

following members:

• DataType indicates the data type of this parameter. Parameter can be of several

different data types. Our framework supports basic data types such as INTEGER,

REAL, BOOLEAN, and STRING. We also support user-defined data types that

are defined by using class UserDefinedDataType in terms of basic data types.

 43

• Unit is a string that describes the unit of a piece of data. If the unit is not

required, then it is set to NONE.

Parameter

Parameter
Interaction

Artifact

Artifact
Interaction

Artifact
Mapping

Interaction
State

Event
Space

Parameter
Value Set

State
Transition

Transition
Diagram

1..* 0..*
0..*

1..*

1..*

0..*

1..*
0..*

1..*

1..*

1..*

1..*

1..* 1..*

1..*

0..*

Legend:

Primitive

A B Primitive B is dependant on primitive A

A B
n..* m..* An instance of primitive B is comprised of at least n

instances of primitive A. An instance of primitive
A may be part of at least n instances of primitive B.

A B
n..* m..*

An instance of primitive B must be comprised of at
least n instances of primitive A. An instance of
primitive A must be part of at least n instances of
primitive B.

Figure 3.3: Relationships between major primitives

Class UserDefinedDataType is defined using member Fields, a set of names of

Parameter instances.

For example, Parameter position can be defined in the following manner:

 44

position : Parameter
DataType = positionVector
Unit = NONE

positionVector : UserDefinedDataType
Fields = {x, y, z}
Unit = NONE

y : Parameter
DataType = REAL
Unit = “mm”

x : Parameter
DataType = REAL
Unit = “mm”

z : Parameter
DataType = REAL
Unit = “mm”

As will be introduced in detail in the subsequent sections, parameters will be assigned

values within states at specific time instances. If the data type of a parameter is a

basic data type, then the value of this parameter is represented as a number, string, or

symbol (e.g., 3.002, “mm”, TRUE). Values for user defined data types are

represented as sets of expressions. For example, {(x=2), (y=4), (z=3)} represents a

possible value for a user defined data type position vector.

Parameter may also take NONE or NA (not available) as a value for convenience.

When a parameter does not have a value, we assign its value as NONE. When the

value of a parameter is not known at the time of modeling, we assign the value as NA.

Relationships among parameters are called parameter interactions. From the

perspective of the governing equations behind the relationships, there are two types of

interactions:

• Declarative Interactions: These can be modeled using algebraic or ordinary

differential equations. For example, the interaction of the mass parameter and

the volume parameter of an artifact with uniform density is given by m=dv,

where m is the mass, d is the density, and v is the volume of the artifact.

However, in conceptual design stage, the exact equation may not be available. A

qualitative structure that describes the characteristics of the interaction is then

used.

 45

• Procedural Interactions: These cannot be modeled explicitly using algebraic or

ordinary differential equations during conceptual design. In most of the cases, a

procedure is needed to describe these interactions. If simulation of a design

concept is necessary, then simplified numerical simulation can be used as

surrogates for these interactions. For example, the interaction among a light

source, a person, and, image at the camera lens (i.e., light from the light source

reflects from person’s face and forms an image at the camera lens) cannot be

modeled by algebraic equations or ordinary differential equations.

We define class ParameterInteraction using the following members:

• InteractionReason is a tag taken from the following options:

o ENERGY FLOW indicates energy flow.

o SIGNAL FLOW indicates signal flow.

o MASS FLOW indicates mass flow.

o SPATIAL CONSTRAINT indicates spatial constraints among a set of

components.

o LAW indicates physical laws governing relationships among physical

parameters of a component.

o OTHER indicates all other types of interactions.

• InteractionType is a tag taken from the following options:

o NON-CAUSAL INTERACTION: For these interactions, there is no need to

specify the dependence among parameters. For example, the interaction of

the mass and the volume of an artifact with uniform density is a non-causal

interaction.

 46

o CAUSAL INTERACTION: For these interactions, we have to specify the

dependent relationships between parameters.

o ParameterSet is a set of names of Parameter instances that interact with

each other.

o DependantParameter is the name of a Parameter instance whose value is

dependent on the other parameters belonging to a ParameterSet as a result of

the interaction. For non-causal interactions, DependantParameter is set to

NONE.

o Equation is an algebraic or ordinary differential equation (in terms of

parameters) if the interaction is declarative. In this case, it is defined as an

instance of class Expression. If the interaction is procedural or the exact

form of the equation is not available, then we don’t capture the equation.

Therefore this field is set to NA.

Class Expression is defined using a member called Content, a special type of string

that starts and ends with a parenthesis symbol. It includes numbers, standard and user

defined function names, logical symbols, and mathematical symbols.

3.2.2 Classes for Modeling Artifacts, Artifact Interactions, and Artifact Mappings

An artifact is a finite collection of parameters and the interactions among these

parameters. Class Artifact is defined using the following members:

• InputParameterSet is a set of names of Parameter instances. These parameters

serve as the input ports for flow types of interactions among artifacts.

 47

• OutputParameterSet is a set of names of Parameter instances. These parameters

serve as the output ports for energy and signal flow types of interactions among

artifacts.

• GeneralParameterSet is a set of names of Parameter instances. These

parameters do not play input or output role.

• ParameterInteractionSet is the set of names of ParameterInteraction instances

describing interactions among parameters belonging to the artifact.

• ArtifactType is a tag assigned to either USE-ENVIRONMENT or DEVICE to

classify two different types of artifacts.

For example, let us consider a DC motor without load. It can be represented by

motor : Artifact
InputParameterSet = {v, k}

OutputParameterSet = {ω}

GeneralParameterSet = {weight}

ParameterInteractionSet = {c}

ArtifactType = DEVICE

c : ParameterInteraction
InteractionReason = LAW

InteractionType = CAUSAL INTERACTION

ParameterSet = {v, k, ω}

DependantParameter = ω

Equation = (ω = v/k)

ω : Parameter
DataType = REAL

Unit = “rad/s”

k : Parameter
DataType = REAL

Unit = NONE

v : Parameter
DataType = REAL

Unit = “m/s”

weight : Parameter
DataType = REAL

Unit = “kg”

Where v is the input voltage, k is the motor constant, ω is the no-load speed.

If a is the name of an Artifact, then we use notation a::p to refer to Parameter p of

Artifact a.

Artifacts interact with each other to affect their mutual behaviors. Complex artifacts

can also be decomposed into simple artifacts. These two relationships about artifacts

are modeled using classes ArtifactInteraction and ArtifactMapping.

 48

Artifact interactions usually result due to interactions among their parameters. We

define class ArtifactInteraction using the following members:

• ArtifactSet is the set of names of the Artifact instances in the interaction.

• InteractionInfo is defined as the set of names of ParameterInteraction

instances that describe the parameter interactions between the artifacts.

All artifact interactions can finally be modeled as parameter interactions

An artifact mapping is defined as the relationship between an artifact and its children

artifacts. The relationship includes artifact hierarchy and parameter mapping between

parent artifact and children artifacts. We define class ArtifactMapping using the

following members:

• Artifact is the name of the Artifact instance being decomposed.

• ChildrenArtifactSet is the set of the names of children Artifact instances resulting

from the decomposition of Artifact.

• ParameterMappingSet is a set of Expression instances. Each Expression

instance defines the relationship between the parent artifact’s parameters and its

children artifacts’ parameters. For example, suppose parameter p1 of parent a1 is

mapped to parameter p2 of children artifact a2 and parameter p3 of children artifact

a3. Then, a possible expression can be (a1::p1 = a2::p2 + a3::p3).

3.2.3 Classes for Modeling Interaction-States

An interaction-state describes the invariant interactions between a set of artifacts. For

example, if a motor is driving a gearbox to transmit mechanical energy, then the

interaction-state of this set of artifacts is the description of the motor, the power

source, the gearbox, and their interactions. Every artifact in the artifact set of this

 49

interaction-state must participate in at least one artifact interaction in this state. An

artifact is active in the interaction-state if it belongs to the artifact set of the state.

Otherwise, the artifact is considered inactive in the state. Usually when we refer to the

artifacts in a state, we refer to the active artifacts in the state.

We use symbol t to denote the time variable associated with the internal clock of the

state. We call t the local time variable because t only exists with respect to a specific

state. On the other hand, when simulating a design concept, we need another variable

to indicate the time in the design world, which includes all states of the device. This

time variable is denoted as T and is called the global time variable. At a given global

time T=T*, the device is in a particular state with its own corresponding local time

t=t*. Within a state, t starts from 0. Ending time of a state is denoted by symbol te. At

a particular time t’, the value of a parameter p of artifact a is denoted by a::p(t=t′).

a::p(t) is used to represent the value of a parameter parametrically. On the other hand,

if the global time variable is used to indicate the value of a parameter, we use

a::p(T=T′) for a specific time, and a::p(T) to represent it parametrically.

Notation s::a::p will be used to refer to the Parameter p of Artifact a in State s.

We define class InteractionState using the following members:

• ArtifactSet is a set of names of Artifact instances that are active in the state.

• ArtifactInteractionSet is a set of names of ArtifactInteraction instances

between the active artifacts in this state.

• InitialValueSet is a set of names of class ValueAssignment instances that

describes how parameter values are initialized.

 50

• ChangeModeSet is a set of names of class ChangeMode instances that describes

how parameter values will change inside of the interaction-state.

Class ValueAssignment is defined using the following members:

• ParameterName is the name of a Parameter instance.

• InitializationType is a tag taken from the following options:

o INHERIT indicates that the parameter inherits its value from the previous

state. Let the current state be s, and its previous state be s′, then the initial

value of a parameter a::p belonging to this artifact can be obtained in the

following manner: s::a::p (t = 0) = s′::a::p (t = te), where te is the ending time

of state s′.

o DERIVE indicates the value of a parameter is derived from other parameter

values that belong to some artifacts in the same state.

o ASSIGN indicates the value of a parameter is assigned to a particular value.

• Value denotes the value of a parameter. If the InitializationType is set to INHERIT

or DERIVE, Value is set to NA.

Class ChangeMode is defined using the following members:

• ParameterName is the name of the Parameter instance.

• ChangeType is a tag taken from the following options:

o CONSTANT indicates the value is a constant within the state.

o DERIVE indicates the value changes according to the values of parameters it

interacts with.

o EQUATION indicates the value is changing according to time variable t.

 51

• Equation is an equation in terms of a parameter with respect to the local time in a

state. In this case, it is defined using class Expression. If the ChangeType is set

to CONSTANT or DERIVE, it is set to NA.

Some limitations may apply on combining initialization types and value-changing

modes as shown in the Table 3.1

Table 3.1: Limitations on combining initialization types and value-changing modes

CONSTANTINHERIT

EQUATION

EQUATION

DERIVEDERIVE

CONSTANTASSIGN

Value changing modeInitialization type

CONSTANTINHERIT

EQUATION

EQUATION

DERIVEDERIVE

CONSTANTASSIGN

Value changing modeInitialization type

States may be inconsistent if the underlying interactions are inconsistent. An

Interaction-state s is inconsistent if equations defined in ArtifactInteractionSet are

inconsistent. Equations may turn out to be inconsistent if the system of equations is

over-constrained.

Let X be the set of parameters belonging to all the artifacts in an interaction-state s.

Let F be the set of interactions in state s defined over X. Each f in F is a subset of X

and describes an interaction. During the conceptual design stage we only consider the

qualitative nature of interactions.

• Set X = {x1, … xn}

• Set F = {f1, …fm}, where each fi ⊆ X and ∪F = X

• n ≥ m

 52

The problem of interaction consistency is to determine if there exists F′ ⊂ F such that

cardinality(F′) > cardinality(∪F′). If such F′ exists, then the given set of interactions

is considered inconsistent.

For example, consider an interaction-state that has seven parameters. Let the set of

parameters for this state be defined as X = {x1, x2, x3, x4, x5, x6, x7}. Let the

interactions among these parameters be characterized by the following set of

relationships:

f1(x1, x2) = 0, f2(x2, x3) = 0, f3(x3, x4) = 0, f4 (x2, x4) = 0, f5(x1, x4) = 0, f6(x5, x6, x7) = 0.

Although overall there are seven parameters and only six relationships, but the first

five relationships (i.e., f1(x1, x2) = 0, f2(x2, x3) = 0, f3(x3, x4) = 0, f4(x2, x4) = 0, f5(x1, x4)

= 0) only involve four variables x1, x2, x3, and x4. Therefore these relationships are

over-constrained. Thus, the interactions in this state are inconsistent and this state is

inconsistent.

3.2.4 Classes for Modeling Event and Event Spaces

An event occurs when a use-environment artifact becomes active or inactive, or a

parameter or parameters of the use-environment artifacts change their values. Event

space refers to the set of all possible events that can happen in the use-environment.

Class Event Space is defined using the following members:

• ParameterRangeSet is a set of names of ParameterValueRange instances.

These parameters belong to the use-environment artifacts.

Class ParameterValueRange is defined using the following members:

• Parameter is the name of a Parameter instance.

• RangeType is a tag taken from the following options:

 53

o CONTINOUS means that values are bound between ValueLowerLimit and

ValueUpperLimit.

o DISCRETE means that values are assigned from a ValueSet.

• ValueSet is a set of Expression instances. If RangeType is set to CONTINOUS,

ValueSet is set to NA.

• ValueLowerLimit is a value for the parameter. If RangeType is set to DISCRETE,

Value LowerLimit is set to NA.

• ValueUpperLimit is a value for the parameter. If RangeType is set to DISCRETE,

ValueUpperLimit is set to NA.

During the simulation of a design concept, global time variable T represents time in

the design world, which includes the device and the use-environment. Every event

happens in the use-environment at a certain specific value of T.

We define class Event using the following members:

• GlobalTime is the value of the global timer that describes the time when this event

happens.

• EventCondition is defined as an instance of class Expression that describes

parameter value changes during the event.

The following Expression instances show several examples of event conditions:

(a = ACTIVE). This expression means that Artifact a became active at design
world time T=4.
(a::p = 3). This expression means that Parameter p of Artifact a takes value of 3
at design world time T=5.
(a::p = 3+). This expression means that the value of Parameter p of Artifact a
takes is incremented by 3 at design world time T=6.

 54

To facilitate efficient simulations, the current modeling framework has the following

limitations. Events can only involve use-environment parameters. Use-environment

parameters that are used to define events are called event parameters. Event

parameters affect device parameters only during initialization of a state. Device

parameters cannot affect values of event parameters.

3.2.5 Classes for Modeling Unsafe Parameter Value Sets

A parameter value set is a snapshot of an interaction-state. In a transition diagram,

interaction-states may contain a set (possibly infinite) of parameter value sets. A

unique parameter value set can be extracted from an interaction-state by selecting a

specific time instant in the interaction-state. For example at T = 5, the values of all

parameters belonging to both the device and the use-environment artifacts define the

world-state at T = 5. An unsafe parameter value set is a parameter value set that is

forbidden by requirements.

Class UnsafeParameterValueSet is defined using member ParameterValueSet,

where ParameterValueSet is a set of Expression instances that indicates the

forbidden parameter values or value ranges by the requirements.

A design concept should never enter an unsafe parameter value set. Therefore, a

design concept should be such that in response to all possible events contained in the

event space, it should never enter an interaction-state that will contain unsafe

parameter value sets.

 55

3.2.6 Classes for Modeling Interaction-State Transitions and Transition Diagrams

An interaction-state transition is the indication of changes from one interaction-state

to another interaction-state. We define class InteractionStateTransition using the

following members:

• StartState is the InteractionState instance where the transition starts.

• EndState is the InteractionState instance where the transition ends.

• TransitionCondition is an Expression instance that indicates the condition

under which the transition occurs. This is a composite expression that may

contain (1) sub-expressions indicating the internal time clock of a state reaching a

particular value, such as (t=4) or (2) sub-expressions indicating some parameters

taking particular values, such as (a::p(t)=5).

• ClosureActionSet is a set of Expression instances that describes how the

parameters value will be set in the starting state before leaving it. For example,

{(a1::p1(t=te) = 1), (a1::p2(t=te) = 2), (a2::p1(t=te) = 3)}.

• Initialization Action Set is a set of Expression instances that describe how the

parameters value will be set in the ending state before entering it. {(a1::p1(t=0) =

2), (a1::p2(t=0) = 3), (a2::p1(t =0) = 3)}. Expressions in this set override the

initialization expressions defined for a state.

InteractionStateTransition r is realizable for InteractionState s if there exists a

sequence of events such that the device reaches s and transition condition for r is

satisfied. If a transition is not realizable, then it is called unrealizable. Unrealizable

transitions should be eliminated from the design concept, as they do not contribute

anything to the behavior.

 56

x3 = 2 + 2t2

x1 = 2x2

Transition r1 Condition: x3+x4=8

Transition r2 Condition: x2=4 & x1=3

Transition r3 Condition: x3=8

Transition r4 Condition: x3=10

Event Space:
x4 and x5 are external continuous environment parameters
1 ≤ x4 ≤2, 1 ≤ x5 ≤2

Figure 3.4: Unrealizable transitions

A transition may be unrealizable because of a variety of reasons:

• The condition for some other transition will always be satisfied before condition

for this transition is satisfied. Transition r4 in Figure 3.4 is unrealizable because

condition for transition r3 is always satisfied before condition for transition r4 is

satisfied. Therefore, transition r4 never takes place.

• Interactions in the state rule out the possibility of the transition condition being

satisfied. Transition r2 in Figure 3.4 is unrealizable because x2 = 4 and x1 = 3

cannot be satisfied due to an interaction between x1 and x2.

• The event space does not allow the condition for this transition to be satisfied.

Transition r1 in Figure 3.4 is unrealizable because condition for this transition

cannot be satisfied due to restriction on the ranges of parameters x4 and x5.

A transition diagram is a graph whose nodes are interaction-states and edges are

interaction-state transitions. We define class TransitionDiagram using the

following members.

• InitialState is the name of a special InteractionState instance. Every transition

diagram must include an initial state, which is the device interaction-state at T = 0.

 57

As a special interaction-state, the initial state has all the artifacts including device

artifacts and use-environment artifacts. Parameters of these artifacts are initialized

in the initial state. However, all the artifacts remain inactive until events trigger

the device to leave the initial state.

• InteractionStateSet is the set of names of remaining InteractionState instances.

• InteractionStateTransition Set is the set of names of

InteractionStateTransition instances.

A transition diagram is considered safe with respect to an event space E and a set of

unsafe world-states U, if there does not exist a sequence of events Es that results in

one of the unsafe world-states. Figure 3.5 graphically shows an example of an unsafe

transition diagram that reaches an unsafe world-state.

a1

s1

a1

s2

a2

r1

e1

r2

e2

Figure 3.5: Example of unsafe transition diagram

In this example, p1 is a parameter of artifact a1 and p2 is a parameter of artifact a2.

This diagram has four interaction-states including initial state s0. In each state, the

local time variable t is from 0 to some ending time te. In state s1, we have

s1::a1::p1(t)=s1::a1::p1(t=0) + 1.

In state s2, we have

s2::a1::p1(t)=s2::a1::p1(t=0) + 2t, s2::a2::p2(t)=s2::a1::p1(t) + 1.

 58

The definition of the event space and the unsafe parameter value set are as the

following:

w : ParameterRange
Parameter = p1

RangeType = CONTINUOUS

ValueSet = NONE

ValueLowerLimit = 0

ValueUpperLimit = 10

e : EventSpace
ParameterRangeSet = {w}

u : UnsafeParameterValueSet
ParameterValueSet = {(a1::p1=4), (a2::p2=5)}

The transition condition from state s1 to s2 is defined using expression (a1::p1(t)=3).

Thus, when an event (a1::p1(t=0):=2) happens, it will result in unsafe parameter value

set u, which happens in s2, when t=0.5.

We define a transition diagram as valid when the following conditions are met:

• Every state in the transition diagram is consistent.

• Every transition in the transition diagram is realizable.

Given a valid transition diagram and an event space, we can simulate how the

transition diagram responds to different events in the event space.

3.3 Elaboration Operators

Primitives are building blocks for modeling design concepts. In our modeling

framework, we use operators for constructing and manipulating these primitives.

According to the usage, these operators are classified into two categories: constructor

operators for constructing primitives and elaboration operators for elaborating

primitives.

 59

Each primitive has its own CONSTRUCT operator that is similar to the concept of

constructor used in object-orientated programming languages. A CONSTRUCT

operator takes input parameters to perform the initialization of a primitive. When a

CONSTRUCT operator is called, it first checks if input parameters are sufficient for

constructing the primitive. If not, it will return failure. The construction of a

transition diagram should be performed in a bottom up manner. That is, first construct

the lower level primitives such as parameters, artifacts etc, then construct higher level

primitives such as interaction-state and then finally the transition diagram.

In our framework, an initial transition diagram, which represents the specifications of

observable behaviors of a device, will be constructed first. After that, the conceptual

design is performed by elaborating the initial transition diagram and by creating the

internal structures of the mechatronic device being designed. The following operators

are used for this purpose.

• Decompose Artifact. This operator is called DECOMPOSE-ARTIFACT and

used to decompose an artifact into a set of artifacts. This operator is defined as the

following.

o Input: artifact a, transition diagram D in which a exists.

o Output: a set of artifacts A, the artifact mapping M between a and A, and the

new transition diagram D′ after a is decomposed.

o Action: decompose a into A by establishing an artifact mapping between a and

A. Replace a in D, which leads to D′. The artifact interactions involving a in D

will be converted to artifact interactions involving A.

 60

o Precondition: Working principles for the input artifact are not known.

Therefore, this artifact has to be treated as a complex artifact and has to be

decomposed further.

For example, as shown in Figure 3.6, artifact a1 has two parameters p1 and p2, h is

a parameter based artifact interaction between a1 and a2 in D as defined in the

following:

h : ArtifactInteraction
ArtifactSet = {a1, a2}

InteractionInfo = {c}

c : ParameterInteraction
InteractionReason = ENERGY FLOW

InteractionType = CAUSAL INTERACTION

ParameterSet = {a1::p1, a1::p2, a2::p3}

DependantParameter = a2::p3

Equation = (a2::p3 = a1::p1 + a1::p2)

a11

s1

(a) Before decomposition of a1

s0 a2

a1

s1

a2

s2

a3

s0
a2

h: a2::p3 =
a1::p1 + a1::p2

(b) After decomposition of a1

a12

h

h': a2::p3 = a3::p4

a2

s2

a3

h': a2:: p3 = a3::p4

h'

h'

h1: a2::p3 = a11::p1 + a12::p2
h2: a2:: p3 = a11::p1 + a12::p2
h3: a2:: p3 = a11::p1 + a12::p2

h1

h2h3

Figure 3.6: Usage of operator DECOMPOSE-ARTIFACT

 61

Applying operator DECOMPOSE-ARTIFACT will decompose a1 into two sub-

artifacts: a11 and a12. Now h is converted into three artifact interactions h1, h2 and

h3 in D′ as defined in the following:

h1 : ArtifactInteraction
ArtifactSet = {a11, a2}

InteractionInfo = {c′ }

h2 : ArtifactInteraction
ArtifactSet = {a12, a2}

InteractionInfo = {c′ }

h3 : ArtifactInteraction
ArtifactSet = {a11, a12}

InteractionInfo = {c′ }

c′ : ParameterInteraction
InteractionReason = ENERGY FLOW

InteractionType = CAUSAL INTERACTIONS

ParameterSet = {a11::p1, a12::p2, a2::p3}

DependantParameter = a2::p3

Equation = (a2::p3 = a11::p1 + a12::p2)

Artifact decomposition should follow the following constraints.

o Maintain parameter consistency between children artifacts and parent

artifact. Let {p1, …, pn} be set of parameters belonging to Artifact a and let

{pi1, …, pij} be the set of parameters for an artifact ai ∈ Ai. For every pk ∈ {p1,

…, pn}, there should exist a mapping of the following type pk = f(p11, …, pi1,

pi2, …). This can be accomplished in the following manner:

� Parent parameters are inherited directly. For example, if we consider the

AC motor as an artifact, and then decompose it into the following

artifacts: rotor, electromagnetic stator windings, housing, bearing, and

shaft. The power parameter of the AC motor is inherited directly to the

power parameter of the electromagnetic stator windings.

 62

� Parent parameters are mapped to children parameters. For example, the

weight parameter of the AC motor artifact is a function of the weight of

the rotor, electromagnetic stator windings, housing, bearing, and shaft.

o Maintain interaction consistency between children artifacts and parent

artifact. If we replace parent artifact with its children artifacts, then all the

interactions between parent artifact and use-environment artifacts must be

able to be mapped into the interactions between children artifacts and use-

environment artifacts. For example, one of the AC motor’s behaviors is to

take electrical energy from a power source and convert it into rotational

mechanical energy. If we decompose the motor into rotor and electromagnetic

stator windings, then rotor and the electromagnetic stator windings must also

be able to accept electric energy and carry out the conversion.

• Decompose State: This operator is called DECOMPOSE-STATE and used to

decompose an interaction-state into several sub-states and state transitions among

these sub-states. This operator is defined as the following.

o Input: state s and a transition diagram D that contains s.

o Output: new state set S, new state transition set R and a new transition

diagram D′.

o Action: Replace the original state by a new state set and a new state transition

set. Redirect transitions that involve the original state to the decomposed state.

o Precondition: Sometimes the artifacts and artifact interactions cannot be

satisfied by existing working principles, therefore we need to further

 63

decompose artifacts into finer levels. Sometime artifact decomposition may

also require state decomposition to maintain state consistency.

This operation is illustrated in Figure 3.7.

a1

s1

a3

a2

s2

a3

a1

s0

a2 a3

r1

(a) Original transition diagram

(c) s1 should be decomposed into
two states

r2r3

a2 a11

s1

a3a2

(b) After artifact decomposition of a1

a12

a11

s11

a3a2

a12

s12

a3a2

a12
a2

s2

a3

r1

r2

r3

a11

s11

a3a2

a12

r4

(d) After state decomposition of s1

s12

a3a2

a12

a11

s11

a3a2

a12

Figure 3.7: Usage of operator DECOMPOSE-STATE

In state s1, artifact a1 interacts with a2 and a3. Then a1 is decomposed into a11

and a12 as shown in Figure 3.7(b). However, it is determined that the interaction

 64

between a11 and a2 and the interaction between a12 and a2 cannot exist at the

same time. Thus s1 should be decomposed as shown in Figure 3.7(c). The

original transition diagram will also be changed into a new diagram as shown in

Figure 3.7(d).

• Decompose Transition: This operator is called DECOMPOSE-TRANSITION and

used to decompose an interaction-state transition into several states and state

transitions among these states. This operator is defined as the following.

o Input: state transition r.

o Output: new state set S and new state transition set R.

o Action: Replace the original state transition by a new state set and a new state

transition set. In other words, this operator substitutes a state transition with a

new transition diagram.

o Precondition: Designers decide that there are alternative ways for realizing the

state transition. Sometimes the transition cannot be satisfied by existing

working principles or designers view a better solution by inserting

intermediate states and corresponding transitions. In this case, we need to

further elaborate the state transition into a finer level. Using the

decomposition transition operator must also result in a set of states each with

its unique interaction topology.

This is illustrated in Figure 3.8. The transition r2 between states s1 and s2 is

decomposed. Figure 3.8(b) shows the result of decomposing r2. r2 is replaced by

a transition diagram that includes transitions r2′, r4, and r5, and states s3 and s4.

 65

Design concept generated as a result of applying the elaboration operators described

above will not violate the behavioral requirements represented in the initial transition

diagram and hence it is referred as an elaboration of the initial behavior specification.

This is due to the following reasons:

(a) Before decomposing transition r2

a1

s1

a3

a2

s2

a3

a1

s0

a2 a3

r1

r2r3

a2

(b) After decomposing transition r2

a1

s1

a3

a2

s2

a3

a1

s0

a2 a3

r1
r2´

r3

a2 a1

s3

a3

a1

s4

a2

r4

r5

Figure 3.8: Usage of operator DECOMPOSE-TRANSITION

• Applying operator DECOMPOSE-ARTIFACT will decompose the artifact into

several sub-artifacts. As long as the decomposition follows the parameter and

interaction consistency guidelines (refer to the description of the operator

 66

Decompose Artifact), the interaction between the artifact and the use-environment

can always be fulfilled by the interactions between its sub-artifacts and the use-

environment. These sub-artifacts can also be assembled into the original artifact.

Thus the elaborated behavior model will not violate the initial behavior

specification.

• Applying operator DECOMPOSE-STATE will decompose a state into several sub-

states and associated transitions. According to the definition of interaction-state,

the interactions in the new states should not happen at the same time. However,

after an artifact is decomposed, interaction topology in the original state should be

represented by the interactions between sub-artifacts and the use-environment.

This reorganization may lead to state decomposition. As stated above, this will

not cause any violation. State decomposition without artifact decomposition

means that the interactions in the original state actually do not exist at the same

time. As long as all the interactions in the original state are preserved in the new

states, there is no difference in the behavior.

• Applying operator DECOMPOSE-TRANSITION will decompose a transition into

several transitions and associated states. Since decomposing transition will not

change the starting and ending states of this transition, there is no difference in the

behavior either.

3.4 Steps in Conceptual Design

In our framework, a design concept is modeled using primitives and operators defined

in Section 3.2 and 3.3 using the following two main steps.

 67

Step 1: Define Behavioral Specifications. This step builds the initial transition

diagram from requirements. There are several sub-tasks in this step.

The first task is to define the initial primitives of the design world. The design world

usually includes the device to be designed and the artifacts in the use-environment

with which the device interacts. For constructing artifacts, we need to construct

parameters and parameter-interactions for each artifact. Device artifacts respond to

events in the use-environment. Thus, given a design problem, we should also define

the event space.

After artifacts are created, we can use these artifacts to construct a set of interaction-

states by adding artifact interactions according to the requirements. In creating states,

we should check the consistency of each state to make sure that all states are

consistent. After states are constructed and their consistencies have been checked, we

can define a set of state transitions to construct an initial transition diagram. In

creating transitions, we should check if a transition is realizable or not. Unrealizable

transitions should be eliminated from the design concept. Also, for a specific design

problem, we should know the conditions that result in unsafe operations. These

conditions should be defined as unsafe world-states. Thus, we should also be able to

check if the created transition diagram is safe or not. If the transition diagram is

valid, then we have finished the definition of behavior specifications, i.e.,

construction of an initial valid transition diagram. To capture design constraints,

engineering characteristics should also be defined as a part of the behavior

specification.

 68

Step 2: Elaborate Transition Diagrams: This is the main step of the modeling

framework. After the initial transition diagram is constructed, the device artifacts may

need to be further decomposed such that they can be realized via known working

principles. At the same time, interaction-states and transitions may also need to be

decomposed because of the following reasons:

1) After the artifact decomposition, the initial artifact interactions should also be

replaced by the interactions represented by the sub-artifacts. In this case, new

artifact interactions may not happen concurrently and thus they should be broken

up into several different interaction-states. New states may also require new

transitions to connect these states.

2) Breaking up unrealizable transitions may require state decomposition and

transition decomposition. A transition may be unrealizable due to the following

reasons: a) no working principles or events could be found that can match the

parameter values in two states associated with the transition, b) no working

principles or events could be found that can satisfy the transition condition. To

solve this, intermediate transitions and states must be introduced. This may also

be accompanied by corresponding artifact decompositions.

The elaboration step must ensure that the device’s desired behavior is satisfied.

Figure 3.9 shows the elaboration process.

 69

Initial Transition Diagram

Elaborated Transition Diagram

Elaboration

Decomposed
Artifact

Artifact

Figure 3.9: Elaboration of interaction transition diagrams

Design concept is formally defined as an ordered set (Di, Df, E, U), in which Di is the

initial behavior specification, Df is the fully elaborated transition diagram, E is the

event space, U is the set of unsafe parameter values with respect to E. A design

concept is considered valid if it meets the following conditions:

• Di and Df are valid transition diagrams.

• Di and Df are safe with respect to E and U.

• Every artifact interaction in every state of Df can be expressed in terms of

parameter interactions. For every parameter interaction and state transition, there

exists a known working principle.

• Df is an elaboration of Di.

 70

3.5 Simulating Transition Diagrams

This section describes an algorithm for simulating a transition diagram. Transition

diagrams in behavior specifications and in design concepts can both be simulated.

This would provide capabilities to check the behavior specifications or design

concepts as early as possible. The algorithm for this task is described below.

Algorithm SIMULATETRANSITIONDIAGRAM

Input:

• An event sequence L

• A transition diagram D

• Unsafe parameter value sets U

Output:

• A sequence V of 5-tuples. Each 5-tuple is defined as (t1, t2, s, Q, Safety_Status).

Where

� t1 is the start time.

� t2 is the end time.

� s is the interaction-state in which the device remains between time t1 and t2.

� Q is the set of equations that are valid between time t1 and t2.

� Safety_Status determines if an unsafe world state is embedded within

interaction state s or not. Safety_Status is set to TRUE if s does not contain an

unsafe parameter value set. It is set to FALSE if s contains an unsafe

parameter value set.

Steps:

 71

1) Assign T = 0; Current_State = D.InitialState; Incoming_Transition = NONE; and

V = ∅.

2) Outgoing_Transition = NONE.

3) Find the set of outgoing transitions RO for Current_State. This is done by

identifying all transitions r in D.InteractionStateTransitionSet such that

r.StartState = Current_State.

4) Assign Transition_Time = INFINITY; Transition_Event = NONE; and

Safety_Status = TRUE.

5) Initialize parameters in Current_State using value assignments in

Current_State.InitialValueSet.

i. For every member i ∈ Current_State.InitialValueSet

a) if i.InitializationType is ASSGIN, apply the value assignment in i.Value.

b) if i.InitializationType is INHERIT, then inherit the value from the previous

state.

ii. If Incoming_Transition ≠ NONE, override the previously defined value

assignment using Incoming_Transition.InitializationActionSet.

6) Let Q1 be the set of equations defined in Current_State.ChangeModeSet, Q2 be

the set of equations defined in ParameterInteractionSet of various artifacts

belonging to Current_State, Q3 be the set of equations defined in

Current_State.ArtifactInteractionSet. Q=Q1∪ Q2∪Q3.

7) For every transition r in RO, do the following:

i. If r.TransitionCondition does not involve any event parameter, then

 72

(i). Compute the time Tmp when this transition can occur by solving equation

set Q∪ (r.TransitionCondition) for time t.

(ii). Transition_Time = Tmp; Outgoing_Transition = r.

ii. Otherwise, do the following:

a) If an event exists in L that can satisfy r.TransitionCondition, then find the

first such event l in L.

b) Transition_Time = l.GlobalTime; Outgoing_Transition = r;

Transition_Event = l.

8) Assign t1 = T; t2 = Transition_Time; te = Transition_Time – T.

9) Check state safety using the approach described below:

i. For every unsafe parameter value set u in U do the following:

(i). Find the parameter value set Z containing those parameters that remain

constant during the state. If u ⊆ Z, then Safety_Status = FALSE, go to step

10.

(ii). If equations in Q are solvable analytically, then

i) Substitute unsafe values from u in Q and solve for time t.

ii) If t ≤ t2, then go to step 10.

iii) If t > t2, then Safety_Status = TRUE, go to the next u.

(iii). Otherwise,

i) Assign t = 0;

ii) While t ≤ te and global time T ≤ Transition_Time, do the following:

(a) Substitute t and T in Q and compute values of all parameters.

Store these values in the value parameter set Z’.

 73

(b) For every unsafe parameter value set u in U do the following:

(i). If u involves parameters that belong to artifacts not in this state,

go to the next u.

(ii). if u ⊆ Z’, then Safety_Status = FALSE.

(iii). Assign T = T + Delta.

(iv). Assign t = t + Delta.

10) Insert (t1, t2, Current_State, Q, Safety_Status) into V.

11) Assign T = Transition_Time.

12) If T = INFINITY, then return V.

13) Otherwise, Current_State = Outgoing_Transition.EndState;

Incoming_Transition = Outgoing_Transition.

14) If Transition_Event is not equal to NONE, then remove it from L.

15) If L is not empty then go to Step 2.

16) Otherwise, return V.

3.6 Example of Modeling Autonomous Vacuum Cleaner (AVC)

This section describes application of the methodology presented in this chapter to the

design of an autonomous vacuum cleaner (AVC). The design task is to develop a

device that is able to collect the debris on a surface while avoiding collision from

obstacles on the surface. The requirements are described in Figure 3.10.

 74

•AVC cleans Surface
•AVC avoids Obstacles

Needs

•AVC cleans Surface
•AVC avoids Obstacles

Needs

AVC
Surface
Obstacle
Interface
PowerSource

Design World Artifacts

AVC
Surface
Obstacle
Interface
PowerSource

Design World Artifacts

•Maximum moving speed is
0.01m/s
•Maximum size of debris to
clean is 0.01m3

•Maximum capacity of storing
debris is 0.1m3

•Input voltage is limited to 120v

Engineering characteristics

•Maximum moving speed is
0.01m/s
•Maximum size of debris to
clean is 0.01m3

•Maximum capacity of storing
debris is 0.1m3

•Input voltage is limited to 120v

Engineering characteristics

Figure 3.10: Requirements of AVC

Customer needs described using the “artifact verb” pairs are shown in the left box

(e.g., AVC cleans surface). Design world artifacts are extracted from the customer

needs in the right box. AVC is the device artifact while surface and the obstacles are

the use-environment artifacts. Engineering characteristics are also given in the bottom

of the right box. The two steps described in Section 3.4 are carried out in the

following manner:

1. Define Behavior Specifications: Parameters that are used to define behavior

specifications are shown in Table 3.2. For example, AVC stores the debris thus it

has a remaining capacity parameter. The possible interactions between AVC and

its use-environment are summarized into the event space shown in Table 3.3.

 75

Table 3.2: Artifacts and Parameters used in AVC behavior specification

REALVoltageOutputPower
Source

ON/OFFBOOLEANPauseStatus

TRUE/FALSEBOOLEANAVCInContactObstacle

TRUE/FALSEBOOLEANMovePossible

ON/OFFBOOLEANPower

REALInputVoltage

0 to 100%REALRemainingCapacity

ON/OFFBOOLEANPowerInterface

ON/OFFBOOLEANPauseStatus

0 to 100%REALRemainingEnergy

TRUE/FALSEBOOLEANLocationVisited

TRUE/FALSEBOOLEANObstacleInContact

REALAreaCoveredSurface

REALSpeedAVC

ConventionTypeParameterArtifact

REALVoltageOutputPower
Source

ON/OFFBOOLEANPauseStatus

TRUE/FALSEBOOLEANAVCInContactObstacle

TRUE/FALSEBOOLEANMovePossible

ON/OFFBOOLEANPower

REALInputVoltage

0 to 100%REALRemainingCapacity

ON/OFFBOOLEANPowerInterface

ON/OFFBOOLEANPauseStatus

0 to 100%REALRemainingEnergy

TRUE/FALSEBOOLEANLocationVisited

TRUE/FALSEBOOLEANObstacleInContact

REALAreaCoveredSurface

REALSpeedAVC

ConventionTypeParameterArtifact

Table 3.3: Event space used in AVC behavioral specification

{ON, OFF}Interface::PauseStatus

{ON, OFF}Interface::Power

{TRUE, FALSE}

{TRUE, FALSE}

{TRUE, FALSE}

Value

Surface::MovePossible

Obstacle::AVCInContact

Surface::LocationVisited

Parameter

{ON, OFF}Interface::PauseStatus

{ON, OFF}Interface::Power

{TRUE, FALSE}

{TRUE, FALSE}

{TRUE, FALSE}

Value

Surface::MovePossible

Obstacle::AVCInContact

Surface::LocationVisited

Parameter

Unsafe parameter value sets are described in Table 3.4. From the requirements,

the primary working modes of AVC (e.g., interaction-states) are also identified.

 76

Table 3.4: Unsafe state used in AVC behavioral specification

AVC::RemainingEnergy ≤ 10%
AVC::RemainingCapacity ≤ 2%

 Figure 3.11 shows proposed behavior specifications for AVC.

Transition list

r3
r6

s0

RepositionReposition
r5

r7 r8

VacuumVacuum

AvoidAvoid

WaitingWaiting

Surface::MovePossible = FALSEr4

Obstacle::AVCInContact = FALSEr8

Obstacle::AVCInContact = TRUEr7

Surface::LocationVisited = TRUEr6

Surface::LocationVisited = FALSE

Interface::PauseStatus = OFF

Interface::Power = OFF

Interface::Power = ON

Condition

r5

r3

r2

r1

Name

Surface::MovePossible = FALSEr4

Obstacle::AVCInContact = FALSEr8

Obstacle::AVCInContact = TRUEr7

Surface::LocationVisited = TRUEr6

Surface::LocationVisited = FALSE

Interface::PauseStatus = OFF

Interface::Power = OFF

Interface::Power = ON

Condition

r5

r3

r2

r1

Name

r1 r2

r4

Transition Diagram

Figure 3.11: AVC behavior specification #1

Detailed descriptions of each interaction-state are shown in Figures 3.12, 3.13,

3.14, 3.15 and 3.16. In case of only qualitative structures is known for the

interactions, we use symbol f to denote there is a relationship between the

 77

parameters involved in the interaction. For example, x3 = f(x1, x2) indicated that

parameter x3 will depend on x1 and x2. Parameters x1, x2, and x3 will be related to

each other by an equation whose structure is not known at the time of modeling.

s0 (Initial State)

NONECONSTANTFALSEASSIGNAVC::ObstacleInContact

NONECONSTANTONASSIGNAVC::PauseStatus

NONECONSTANTOFFASSIGNAVC::Power

NONECONSTANT100%ASSIGNAVC::RemainingEnergy

NONECONSTANT100%ASSIGNAVC::RemainingCapacity

NONECONSTANT0ASSIGNAVC::InputVoltage

NONECONSTANT0ASSIGNAVC::Speed

EquationChange
Type

Initialization
Value

Initialization
Type

Parameter

NONECONSTANTFALSEASSIGNAVC::ObstacleInContact

NONECONSTANTONASSIGNAVC::PauseStatus

NONECONSTANTOFFASSIGNAVC::Power

NONECONSTANT100%ASSIGNAVC::RemainingEnergy

NONECONSTANT100%ASSIGNAVC::RemainingCapacity

NONECONSTANT0ASSIGNAVC::InputVoltage

NONECONSTANT0ASSIGNAVC::Speed

EquationChange
Type

Initialization
Value

Initialization
Type

Parameter

Parameters Initialization and Change

Surface

AVC

Obstacle

Artifact Interaction Equations

None

Interface

Figure 3.12: Definition of state s0

 78

s1 (Waiting)

Parameters Initialization and Change

AVC

Artifact Interaction Equations

AVC::Power = Interface :: Power
AVC::PauseStatus = Interface::PauseStatus

NONECONSTANTNAINHERITAVC::ObstacleInContact

NONECONSTANTNAINHERITAVC::InpuVoltage

NONECONSTANTNADERIVEAVC ::PauseStatus

NONECONSTANTNADERIVEAVC::Power

NONECONSTANTNAINHERITAVC::RemainingEnergy

NONECONSTANTNAINHERITAVC::RemainingCapacity

NONECONSTANTNAINHERITAVC::Speed

EquationChange TypeInitialization
Value

Initialization
Type

Parameter

NONECONSTANTNAINHERITAVC::ObstacleInContact

NONECONSTANTNAINHERITAVC::InpuVoltage

NONECONSTANTNADERIVEAVC ::PauseStatus

NONECONSTANTNADERIVEAVC::Power

NONECONSTANTNAINHERITAVC::RemainingEnergy

NONECONSTANTNAINHERITAVC::RemainingCapacity

NONECONSTANTNAINHERITAVC::Speed

EquationChange TypeInitialization
Value

Initialization
Type

Parameter

Interface

Figure 3.13: Definition of state s1

 79

s2 (Reposition)

Parameters Initialization and Change

AVC Surface

Artifact Interaction Equations

None

NONECONSTANTNAINHERITAVC::ObstacleInContact

NONECONSTANTNAINHERITAVC::InputVoltage

NONECONSTANTNAINHERITAVC::PauseStatus

NONECONSTANTNAINHERITAVC::Power

AVC::RemainingEnergy(t) =
AVC::RemainingEnergy(t=0)
− AVC::Speed × t / 400

EQUATIONNAINHERITAVC::RemainingEnergy

NONECONSTANTNAINHERITAVC::RemainingCapacity

NONECONSTANT0.05m/sASSIGNAVC::Speed

EquationChange
Type

Initialization
Value

Initialization
Type

Parameter

NONECONSTANTNAINHERITAVC::ObstacleInContact

NONECONSTANTNAINHERITAVC::InputVoltage

NONECONSTANTNAINHERITAVC::PauseStatus

NONECONSTANTNAINHERITAVC::Power

AVC::RemainingEnergy(t) =
AVC::RemainingEnergy(t=0)
− AVC::Speed × t / 400

EQUATIONNAINHERITAVC::RemainingEnergy

NONECONSTANTNAINHERITAVC::RemainingCapacity

NONECONSTANT0.05m/sASSIGNAVC::Speed

EquationChange
Type

Initialization
Value

Initialization
Type

Parameter

Figure 3.14: Definition of state s2

 80

s3 (Vacuum)

Parameters Initialization and Change

Artifact Interaction Equations

AVC::RemainingCapacity(t) = AVC::RemainingCapacity(t=0) −
Surface::AreaCovered / 20

SurfaceAVC

NONECONSTANTNAINHERITAVC::ObstacleInContact

NONECONSTANTNAINHERITAVC::InputVoltage

NONECONSTANTNAINHERITAVC::PauseStatus

NONECONSTANTNAINHERITAVC::Power

AVC::RemainingEnergy(t) =
AVC::RemainingEnergy(t=0)
– AVC::Speed × t / 400

EQUATIONNAINHERITAVC::RemainingEnergy

NONEEQUATIONNAINHERITAVC::RemainingCapacity

NONECONSTANT0.05m/sASSIGNAVC::Speed

EquationChange
Type

Initialization
Value

Initialization
Type

Parameter

NONECONSTANTNAINHERITAVC::ObstacleInContact

NONECONSTANTNAINHERITAVC::InputVoltage

NONECONSTANTNAINHERITAVC::PauseStatus

NONECONSTANTNAINHERITAVC::Power

AVC::RemainingEnergy(t) =
AVC::RemainingEnergy(t=0)
– AVC::Speed × t / 400

EQUATIONNAINHERITAVC::RemainingEnergy

NONEEQUATIONNAINHERITAVC::RemainingCapacity

NONECONSTANT0.05m/sASSIGNAVC::Speed

EquationChange
Type

Initialization
Value

Initialization
Type

Parameter

Figure 3.15: Definition of state s3

 81

s4 (Avoid)

Parameters Initialization and Change

Artifact Interaction Equations

AVC::RemainingCapacity(t) = AVC::RemainingCapacity(t=0) −
Surface::AreaCovered / 80
AVC::ObstacleInContact = Obstacle::AVCInContact

AVC
Obstacle

Surface

NONECONSTANTNAINHERITAVC::ObstacleInContact

NONECONSTANTNAINHERITAVC::InputVoltage

NONECONSTANTNAINHERITAVC::PauseStatus

NONECONSTANTNAINHERITAVC::Power

AVC::RemainingEnergy(t) =
AVC::RemainingEnergy (t=0) –
AVC::Speed × t / 400

EQUATIONNAINHERITAVC::RemainingEnergy

NONEEQUATIONNAINHERITAVC::RemainingCapacity

NONECONSTANT0.05m/sASSIGNAVC::Speed

EquationChange
Type

Initialization
Value

Initialization
Type

Parameter

NONECONSTANTNAINHERITAVC::ObstacleInContact

NONECONSTANTNAINHERITAVC::InputVoltage

NONECONSTANTNAINHERITAVC::PauseStatus

NONECONSTANTNAINHERITAVC::Power

AVC::RemainingEnergy(t) =
AVC::RemainingEnergy (t=0) –
AVC::Speed × t / 400

EQUATIONNAINHERITAVC::RemainingEnergy

NONEEQUATIONNAINHERITAVC::RemainingCapacity

NONECONSTANT0.05m/sASSIGNAVC::Speed

EquationChange
Type

Initialization
Value

Initialization
Type

Parameter

Figure 3.16: Definition of state s4

 82

10m

10m

2m

2m

Reposition moving speed is 0.1m/s
Vacuum moving speed is 0.05m/s
Vacuum diameter is 0.4m

6m

10m

6m

Figure 3.17: Illustration of a use-environment for simulation

Figure 3.17 illustrates a typical use-environment. Table 3.5 shows an event

sequence that results from this use-environment. Simulation shows (see Table 3.6)

that this behavior specification is unsafe with respect to the given unsafe

parameter value sets. At global time T = 1180s, the value of

AVC::RemainingCapacity is reduced to 2% and thus the device enters an unsafe

design-world state. A modified behavior specification is shown in Figure 3.18.

This behavior specification is safe. The waiting state is also modified

correspondingly, shown in Figure 3.19.

 83

Table 3.5: Event sequence for AVC behavior simulation

AVC::RemainingCapacity = 2%1180

Obstacle::AVCInContact = FALSE1164

Obstacle::AVCInContact = FALSE1084

Obstacle::AVCInContact = TRUE1116

Obstacle::AVCInContact = FALSE1124

Obstacle::AVCInContact = TRUE1156

Obstacle::AVCInContact = TRUE1036

Obstacle::AVCInContact = FALSE1044

Obstacle::AVCInContact = TRUE1076

Obstacle::AVCInContact = TRUE996

Obstacle::AVCInContact = FALSE1004

Obstacle::AVCInContact = TRUE596

Obstacle::AVCInContact = FALSE604

Obstacle::AVCInContact = TRUE796

Obstacle::AVCInContact = FALSE804

Obstacle::AVCInContact = FALSE404

Obstacle::AVCInContact = TRUE396

Obstacle::AVCInContact = FALSE204

Obstacle::AVCInContact = TRUE196

Surface::LocationVisited = FALSE4

Interface::PauseStatus = OFF2

Interface::Power = ON1

None0

EventTime (s)

AVC::RemainingCapacity = 2%1180

Obstacle::AVCInContact = FALSE1164

Obstacle::AVCInContact = FALSE1084

Obstacle::AVCInContact = TRUE1116

Obstacle::AVCInContact = FALSE1124

Obstacle::AVCInContact = TRUE1156

Obstacle::AVCInContact = TRUE1036

Obstacle::AVCInContact = FALSE1044

Obstacle::AVCInContact = TRUE1076

Obstacle::AVCInContact = TRUE996

Obstacle::AVCInContact = FALSE1004

Obstacle::AVCInContact = TRUE596

Obstacle::AVCInContact = FALSE604

Obstacle::AVCInContact = TRUE796

Obstacle::AVCInContact = FALSE804

Obstacle::AVCInContact = FALSE404

Obstacle::AVCInContact = TRUE396

Obstacle::AVCInContact = FALSE204

Obstacle::AVCInContact = TRUE196

Surface::LocationVisited = FALSE4

Interface::PauseStatus = OFF2

Interface::Power = ON1

None0

EventTime (s)

 84

Table 3.6: AVC behavior simulation result

85.3%2%Unsafe1180

85.5%3%Vacuum1164 to 1180

85.1%0.33%Avoid1196

86.5%9.33%Vacuum1084 to 1116

86.1%6.67%Avoid1116 to 1124

86%6%Vacuum1124 to 1156

85.6%3.67%Avoid1156 to 1164

87.1%13.33%Avoid1036 to 1044

87%12.67%Vacuum1044 to 1076

86.6%10%Avoid1076 to 1084

87.6%16.67%Avoid996 to 1004

87.5%16%Vacuum1004 to 1036

92.6%50.67%Avoid596 to 604

92.5%50%Vacuum604 to 796

90.1%34%Avoid796 to 804

90%33.33%Vacuum804 to 996

Vacuum

Avoid

Vacuum

Avoid

Vacuum

Reposition

Waiting

Initial

State

66.67%

67.33%

83.33%

84%

100%

100%

100%

100%

RemainingCapacity at
start of the state

95%404 to 596

95.1%396 to 404

97.5%204 to 396

97.6%196 to 204

100%4 to 196

100%2 to 4

100%1 to 2

100%0 to 1

RemainingEnergy at
start of the state

Time (s)

85.3%2%Unsafe1180

85.5%3%Vacuum1164 to 1180

85.1%0.33%Avoid1196

86.5%9.33%Vacuum1084 to 1116

86.1%6.67%Avoid1116 to 1124

86%6%Vacuum1124 to 1156

85.6%3.67%Avoid1156 to 1164

87.1%13.33%Avoid1036 to 1044

87%12.67%Vacuum1044 to 1076

86.6%10%Avoid1076 to 1084

87.6%16.67%Avoid996 to 1004

87.5%16%Vacuum1004 to 1036

92.6%50.67%Avoid596 to 604

92.5%50%Vacuum604 to 796

90.1%34%Avoid796 to 804

90%33.33%Vacuum804 to 996

Vacuum

Avoid

Vacuum

Avoid

Vacuum

Reposition

Waiting

Initial

State

66.67%

67.33%

83.33%

84%

100%

100%

100%

100%

RemainingCapacity at
start of the state

95%404 to 596

95.1%396 to 404

97.5%204 to 396

97.6%196 to 204

100%4 to 196

100%2 to 4

100%1 to 2

100%0 to 1

RemainingEnergy at
start of the state

Time (s)

 85

Transition list

r3 r6

s0

RepositionReposition
r5

r7 r8

VacuumVacuum

AvoidAvoid

WaitingWaiting

AVC::RemainingCapacity ≤ 2%r9

AVC::RemainingEnergy ≤ 10%r10

AVC::RemainingEnergy ≤ 10%r11

AVC::RemainingEnergy ≤ 10%r12

AVC::RemainingCapacity ≤ 2%r13

Obstacle:: AVCInContact = FALSEr8

Surface::MovePossible = FALSEr4

AVC::RemainingEnergy ≤ 10%r14

Obstacle:: AVCInContact = TRUEr7

Surface::LocationVisited = TRUEr6

Surface::LocationVisited = FALSE

Interface::PauseStatus = OFF

Interface ::Power = OFF

Interface::Power = ON

Condition

r5

r3

r2

r1

Name

AVC::RemainingCapacity ≤ 2%r9

AVC::RemainingEnergy ≤ 10%r10

AVC::RemainingEnergy ≤ 10%r11

AVC::RemainingEnergy ≤ 10%r12

AVC::RemainingCapacity ≤ 2%r13

Obstacle:: AVCInContact = FALSEr8

Surface::MovePossible = FALSEr4

AVC::RemainingEnergy ≤ 10%r14

Obstacle:: AVCInContact = TRUEr7

Surface::LocationVisited = TRUEr6

Surface::LocationVisited = FALSE

Interface::PauseStatus = OFF

Interface ::Power = OFF

Interface::Power = ON

Condition

r5

r3

r2

r1

Name

r1
r2

r4
r9

r10

r11

r12

r13

r14

Figure 3.18: AVC behavior specification #2

 86

s1 (Waiting)

Parameters Initialization and Change

AVC

Artifact Interaction Equations

AVC::Power = Interface::Power
AVC::PauseStatus = Interface::PauseStatus
AVC::InputVoltage = PowerSource::VoltageOutput

NONECONSTANTNAINHERITAVC::InpuVoltage

NONECONSTANTNAINHERITAVC::ObstacleInContact

NONEDERIVENADERIVEAVC ::PauseStatus

NONEDERIVENADERIVEAVC::Power

AVC:: RemainingEnergy(t) =
AVC:: RemainingEnergy(t=0) +
t / 200

EQUATIONNAINHERITAVC::RemainingEnergy

AVC::RemainingCapacity(t) =
AVC::RemainingCapacity(t=0) +
t / 200

EQUATIONNAINHERITAVC::RemainingCapacity

NONECONSTANTNAINHERITAVC::Speed

EquationChange
Type

Initialization
Value

Initialization
Type

Parameter

NONECONSTANTNAINHERITAVC::InpuVoltage

NONECONSTANTNAINHERITAVC::ObstacleInContact

NONEDERIVENADERIVEAVC ::PauseStatus

NONEDERIVENADERIVEAVC::Power

AVC:: RemainingEnergy(t) =
AVC:: RemainingEnergy(t=0) +
t / 200

EQUATIONNAINHERITAVC::RemainingEnergy

AVC::RemainingCapacity(t) =
AVC::RemainingCapacity(t=0) +
t / 200

EQUATIONNAINHERITAVC::RemainingCapacity

NONECONSTANTNAINHERITAVC::Speed

EquationChange
Type

Initialization
Value

Initialization
Type

Parameter

Interface PowerSource

Figure 3.19: Modified “Waiting” state

2. Elaborate Transition Diagram: Since there is no known artifact that can fulfill

the behavior specification of AVC directly, we need to decompose AVC into

artifacts that can be realized. Starting points of the decomposition are the artifact

interactions between AVC and use-environment artifacts. The operator

DECOMPOSE-ARTIFACT is applied to replace the AVC in behavior specification

with its major component artifacts shown in Table 3.7. AVC’s parameters are

mapped to the parameters of its children artifacts. In this example the major

 87

parameters of AVC are directly mapped to one parameter of one children artifact

respectively. Furthermore, the “Waiting” state also needs to be decomposed using

operator DECOMPOSE-STATE. It is decomposed into “Waiting”, “Recharge”

and “Empty” states. The corresponding transitions are also redirected and

decomposed. A detailed interaction-state transition diagram for the design concept

is shown in Figure 3.20. Detailed descriptions of each interaction-state used in the

diagram are shown in Figures 3.21 through 3.27.

Table 3.7: Decomposed Artifacts and Parameters of AVC

REALSpeedOutputPathPlanningAlg.(PPA)

TRUE/FALSEBOOLEANObstacleInContact

ON/OFFBOOLEANPauseStatus

REALEnergyInput

0 to 100%REALRemainingCapacityVacuum

0 to 100%REALRemainingEnergy

REALInputVoltageBattery

ON/OFFBOOLEANPowerController

REALSpeedTransporter

ConventionTypeParameterArtifact

REALSpeedOutputPathPlanningAlg.(PPA)

TRUE/FALSEBOOLEANObstacleInContact

ON/OFFBOOLEANPauseStatus

REALEnergyInput

0 to 100%REALRemainingCapacityVacuum

0 to 100%REALRemainingEnergy

REALInputVoltageBattery

ON/OFFBOOLEANPowerController

REALSpeedTransporter

ConventionTypeParameterArtifact

 88

Transition list

r3
r6

r13

s0

RepositionReposition
r5

r10

r7

r11

r8 RechargeRechargeVacuumVacuum

AvoidAvoid

WaitingWaiting

Vacuum::RemainingCapacity = 100%r14

Vacuum::RemainingCapacity ≤ 2%r13

Obstacle::AVCInContact = TRUEr9

Battery::RemainingEnergy = 100%r12

Surface::MovePossible = FALSEr4

Battery::RemainingEnergy ≤ 10%r11

Obstacle::AVCInContact = FALSEr10

Surface::LocationVisited = TRUEr6

Battery::RemainingEnergy ≤ 10%r7

Battery::RemainingEnergy ≤ 10%r8

Surface::LocationVisited = FALSE

Interface::PauseStatus = OFF

Interface::Power = OFF

Interface::Power = ON

Condition

r5

r3

r2

r1

Name

Vacuum::RemainingCapacity = 100%r14

Vacuum::RemainingCapacity ≤ 2%r13

Obstacle::AVCInContact = TRUEr9

Battery::RemainingEnergy = 100%r12

Surface::MovePossible = FALSEr4

Battery::RemainingEnergy ≤ 10%r11

Obstacle::AVCInContact = FALSEr10

Surface::LocationVisited = TRUEr6

Battery::RemainingEnergy ≤ 10%r7

Battery::RemainingEnergy ≤ 10%r8

Surface::LocationVisited = FALSE

Interface::PauseStatus = OFF

Interface::Power = OFF

Interface::Power = ON

Condition

r5

r3

r2

r1

Name

r1 r2

r12

r4

r9

EmptyEmpty
r14

Figure 3.20: AVC design concept based on behavior specification #2

 89

s0 (Initial State)

Parameters Initialization and Change

Transporter

Path Planning Alg. Battery

Surface

Obstacle

Vacuum

NONECONSTANTFALSEASSIGNController::ObstacleInContact

NONECONSTANT0ASSIGNTransporter::EnergyInput

NONECONSTANT0ASSIGNPPA::SpeedOutput

NONECONSTANTOFFASSIGNController::Power

NONECONSTANT100%ASSIGNBattery::RemainingEnergy

NONECONSTANTONASSIGNController::PauseStatus

NONECONSTANT100%ASSIGNVacuum::RemaininCapacity

NONECONSTANT0ASSIGNBattery ::InputVoltage

NONECONSTANT0ASSIGNTransporter::Speed

EquationChange
Type

Initialization
Value

Initialization
Type

Parameter

NONECONSTANTFALSEASSIGNController::ObstacleInContact

NONECONSTANT0ASSIGNTransporter::EnergyInput

NONECONSTANT0ASSIGNPPA::SpeedOutput

NONECONSTANTOFFASSIGNController::Power

NONECONSTANT100%ASSIGNBattery::RemainingEnergy

NONECONSTANTONASSIGNController::PauseStatus

NONECONSTANT100%ASSIGNVacuum::RemaininCapacity

NONECONSTANT0ASSIGNBattery ::InputVoltage

NONECONSTANT0ASSIGNTransporter::Speed

EquationChange
Type

Initialization
Value

Initialization
Type

Parameter

Artifact Interaction Equations

None

Controller

PowerSource

Figure 3.21: Definition of state s0

 90

s1 (Waiting)

NONECONSTANTNAINHERITController::ObstacleInContact

NONEDERIVENADERIVEController::Power

NONEDERIVENADERIVEController::PauseStatus

EquationChange
Type

Initialization
Value

Initialization
Type

Parameter

NONECONSTANTNAINHERITController::ObstacleInContact

NONEDERIVENADERIVEController::Power

NONEDERIVENADERIVEController::PauseStatus

EquationChange
Type

Initialization
Value

Initialization
Type

Parameter

Parameters Initialization and Change

Controller

Artifact Interaction Equations

Controller::Power = Interface::Power
Controller::PauseStatus = Interface::PauseStatus

Interface

Figure 3.22: Definition of state s1

 91

s2 (Reposition)

Parameters Initialization and Change

Artifact Interaction Equations

Transporter

Surface
PathPlanningAlg.

Battery

Transporter::Speed = PPA::SpeedOutput
Transporter::EnergyInput = Battery::RemainingEnergy
Battery::RemainingEnergy(t) = Battery(t)::RemainingEnergy(t=0) −
Transporter::Speed × t / 400

NONEDERIVENADERIVETransporter::EnergyInput

NONECONSTANT0.05m/sASSIGNPPA::SpeedOutput

NONEEQUATIONNA INHERITBattery::RemainingEnergy

NONECONSTANTNAINHERITBattery::InputVoltage

NONEDERIVENADERIVETransporter::Speed

EquationChange
Type

Initialization
Value

Initialization
Type

Parameter

NONEDERIVENADERIVETransporter::EnergyInput

NONECONSTANT0.05m/sASSIGNPPA::SpeedOutput

NONEEQUATIONNA INHERITBattery::RemainingEnergy

NONECONSTANTNAINHERITBattery::InputVoltage

NONEDERIVENADERIVETransporter::Speed

EquationChange
Type

Initialization
Value

Initialization
Type

Parameter

Figure 3.23: Definition of state s1

 92

s3 (Vacuum)

Parameters Initialization and Change

Artifact Interaction Equations

Transporter::Speed = PPA::SpeedOutput
Transporter::EnergyInput = Battery::RemainingEnergy
Vacuum::RemainingCapacity(t) = Vacuum::RemainingCapacity(t=0)
− Surface::AreaCovered / 20
Battery::RemainingEnergy(t) = Battery(t)::RemainingEnergy(t=0) −
Transporter::Speed × t / 400

Transporter
Surface

Path Planning Alg.

Battery

Vacuum

NONEEQUATIONNA INHERITVacuum::RemainingCapacity

NONEDERIVENADERIVETransporter::EnergyInput

NONECONSTANT0.01m/sASSIGNPPA::SpeedOutput

NONEEQUATIONNA INHERITBattery::RemainingEnergy

NONECONSTANTNAINHERITBattery::InputVoltage

NONEDERIVENADERIVETransporter::Speed

EquationChange
Type

Initialization
Value

Initialization
Type

Parameter

NONEEQUATIONNA INHERITVacuum::RemainingCapacity

NONEDERIVENADERIVETransporter::EnergyInput

NONECONSTANT0.01m/sASSIGNPPA::SpeedOutput

NONEEQUATIONNA INHERITBattery::RemainingEnergy

NONECONSTANTNAINHERITBattery::InputVoltage

NONEDERIVENADERIVETransporter::Speed

EquationChange
Type

Initialization
Value

Initialization
Type

Parameter

Figure 3.24: Definition of state s3

 93

s4 (Avoid)

Parameters Initialization and Change

Artifact Interaction Equations

Transporter
Obstacle

PathPlanningAlg. Battery
Vacuum

Surface

NONECONSTANTNAINHERITController::Power

NONECONSTANTNAINHERITController::ObstacleInContact

NONECONSTANTNAINHERITController::PauseStatus

NONEEQUATIONNA INHERITVacuum::RemainingCapacity

NONEDERIVENADERIVETransporter::EnergyInput

NONECONSTANT0.01m/sASSIGNPPA::SpeedOutput

NONEEQUATIONNA INHERITBattery::RemainingEnergy

NONECONSTANTNAINHERITBattery ::InputVoltage

NONEDERIVENADERIVETransporter::Speed

EquationChange
Type

Initialization
Value

Initialization
Type

Parameter

NONECONSTANTNAINHERITController::Power

NONECONSTANTNAINHERITController::ObstacleInContact

NONECONSTANTNAINHERITController::PauseStatus

NONEEQUATIONNA INHERITVacuum::RemainingCapacity

NONEDERIVENADERIVETransporter::EnergyInput

NONECONSTANT0.01m/sASSIGNPPA::SpeedOutput

NONEEQUATIONNA INHERITBattery::RemainingEnergy

NONECONSTANTNAINHERITBattery ::InputVoltage

NONEDERIVENADERIVETransporter::Speed

EquationChange
Type

Initialization
Value

Initialization
Type

Parameter

Transporter::Speed = PPA::SpeedOutput
Transporter::EnergyInput = Battery::RemainingEnergy
Vacuum::RemainingCapacity(t) = Vacuum::RemainingCapacity(t=0) −
Surface::AreaCovered / 60
Controller::ObstacleInContact = Obstacle::AVCInContact
Battery::RemainingEnergy(t) = Battery(t)::RemainingEnergy(t=0) −
Transporter::Speed × t / 400

Controller

Figure 3.25: Definition of state s3

 94

s5 (Recharge)

NONECONSTANTNADERIVEBattery::InputVoltage

Battery::RemainingEnergy(t) =
Battery::RemainingEnergy(t=0) +
t / 200

EQUATIONNAINHERITBattery::RemainingE
nergy

EquationChange
Type

Initialization
Value

Initialization
Type

Parameter

NONECONSTANTNADERIVEBattery::InputVoltage

Battery::RemainingEnergy(t) =
Battery::RemainingEnergy(t=0) +
t / 200

EQUATIONNAINHERITBattery::RemainingE
nergy

EquationChange
Type

Initialization
Value

Initialization
Type

Parameter

Parameters Initialization and Change

Artifact Interaction Equations

Battery

Battery::InputVoltage = PowerSource::VoltageOutput

PowerSource

Figure 3.26: Definition of state s5

s6 (Empty)

Vacuum::RemainingCapacity(t) =
Vacuum::RemainingCapacity(t=0) +
t / 200

EQUATI
ON

NAINHERITVacuum::RemainingCapacity

EquationChange
Type

Initialization
Value

Initialization
Type

Parameter

Vacuum::RemainingCapacity(t) =
Vacuum::RemainingCapacity(t=0) +
t / 200

EQUATI
ON

NAINHERITVacuum::RemainingCapacity

EquationChange
Type

Initialization
Value

Initialization
Type

Parameter

Parameters Initialization and Change

Artifact Interaction Equations

Vacuum

None

Figure 3.27: Definition of state s5

 95

3.7 Summary

In this chapter, we describe a new modeling framework for representing design

concepts of multiple interaction-state devices. We also provide conditions for

ensuring its validity. The distinction between our approach and traditional functional

representation approaches for conceptual design is as following:

• We use interactions instead of function flows or input/output flows to describe

relationships between artifacts. Interactions are more general than flows. In

addition to capturing flows, they can also be used to capture non-flow based

relationships such as spatial constraints. Therefore, our approach is more

expressive.

• We use interaction-states to capture the operating modes of a device. Hence we

can support devices with multiple interaction-states (i.e., devices whose

interactions with the use environment change with time). Therefore, design

concepts modeled using our framework can be simulated more accurately. For

example, events can be used to simulate the behavior of a proposed design

concept in response to events in the use-environment.

The main rationale behind developing a new modeling framework in this dissertation

was to create a framework that (1) is convenient for mechatronic designers to use, (2)

is expressive enough to support conceptual design, and (3) explicitly represents

information needed to support evaluation and validation during conceptual design.

General purpose modeling approaches such as UML, extended finite state machine,

and hybrid automata are very expressive. However, they are not very convenient for

mechatronic designers to use. During conceptual design, most mechatronic designers

 96

focus their attention to identifying the main components, specifying interactions

among them, and organizing interactions in a meaningful way. The general purpose

modeling approaches are quite capable of capturing all of this information. However,

they typically require use of multiple diagrams (e.g. UML) to accomplish this and the

designer often needs to customize the environment to create a familiar terminology.

Our modeling framework described in this Chapter is sufficiently expressive and it

gives the designers the familiar terminology to carry out the conceptual design. In the

background, our modeling framework ensures that sufficient information has been

gathered and organized to support automated evaluation and validation without any

further manual post-processing of the design information. In summary, our modeling

framework has the following distinguishing features to support the conceptual design:

• Conceptual Design Centric Terminology: Our modeling framework uses

terminology familiar to mechatronic designers for carrying out conceptual

design. Familiar notions of parameters, artifact, interactions, and decomposition

are used in our framework. In addition, our framework allows for making a

distinction among use-environment and device artifacts. This offers the following

benefits. First, external behavior and internal behavior of the device are clearly

distinguished. External behavior refers to the interactions between the device and

use-environment. Internal behavior refers to the interactions between component

objects of the device. Designers can focus their energy on developing external

behaviors in the early stage of design while internal behaviors in the later stage.

Second, device behaviors are clearly shown in different use-environments.

Device with multiple interaction-states can usually be used in different use-

 97

environments. Explicit modeling of use-environments helps classify device

behaviors in cases of different use-environments. This classification not only

simplifies the design problem, but also helps designers explore unexpected

behaviors in new environments. Third, it allows designers to investigate

hazardous effects device could have in the environment.

• Interaction Centric Single Modeling Diagrams: Our modeling framework uses

interaction centric single modeling diagrams. This makes it convenient for

designers to use our modeling framework. Our approach supports a wide variety

of interactions encountered during design tasks. We support classes for

interaction. These classes capture relationships between parameters and artifacts.

Relationships among parameters are called parameter interactions. We use

member InteractionReason to capture different types of interactions in

engineering design such as energy flow, material flow, signal flow, spatial

constraints, physical law etc. Relationships between artifacts are captured using

artifact interactions. We also provide classes for representing interaction-states.

As one of the most important primitives in our modeling framework, interaction-

states describe the invariant interactions among a set of artifacts. In engineering

design, an interaction-state captures a working mode of the device. All

interactions in the interaction-state exist at the same time in this working mode.

We apply this notion to general modeling techniques in designing this class.

• Hierarchical Modeling to Support Decomposition Based Engineering

Design: Engineering design is a hierarchical process. Design starts at the top

level where the device is modeled as single entity. During subsequent levels the

 98

device is decomposed into its constituent components. This decomposition

continues throughout the design process. Our modeling framework has the

necessary classes to support both elaboration and refinement encountered in the

decomposition process. It also keeps track of all the ownership relationships that

result from the decomposition process. Artifact, state and transition can be

decomposed further during the design process. Our modeling framework

provides decompose-artifact, decompose-state, decompose-transition operators

for these operations. Class ArtifactMapping is designed to capture the

hierarchical information between artifacts.

• Support Incomplete Interaction Information: Often during conceptual design,

one has to deal with incomplete interaction information due to missing details in

the underlying artifacts. Our framework allows the designers to partially specify

interactions. Our system can perform consistency checking with only knowing

the structure of the interactions.

• Providing Information Organization To Supported Automated Validation

During Conceptual Design: Our system organizes the information in such way

that the validation can begin during the conceptual design stage. In order to

ensure the result of modeling (design concept) is valid in senses of both modeling

and engineering, we define validation conditions for a design concept as part of

the modeling framework. These conditions ensure that not only design concept is

modeled correctly, but also can be validated automatically.

• Providing Information Organization to Support Automated Evaluation

During Conceptual Design: Engineering design concept, as the result of

 99

modeling using the framework, needs to be evaluated before entering the detailed

design stage. The earlier this evaluation could be done, the more time, energy and

cost could be saved. Our modeling framework supports engineering related

analysis such as determining component sharability and maximum power

consumed during the conceptual design stage itself. Our framework facilitates

gathering of information to facilitate this evaluation in a seamless manner.

Figure 3.28 shows the connections between this chapter and the following chapters.

Modeling Framework
(Chapter 3)

Valid
Design Concept

Modeled by

Require

Interactions are consistent
(Chapter 4)

Transition diagrams are safe
(Chapter 5)

Final transition diagram is elaborated
from initial transition diagram

(Guaranteed by operators)

Transition diagrams are realized
by existing components

(Chapter 7)

Evaluation
(Chapter 6)

Compare

Figure 3.28: Organization of the content of the remaining chapters

 100

Chapter 4: Consistency-Checking of Interaction-states

This chapter defines the problem of consistency-checking of interaction-states and

presents a polynomial time algorithm for solving the interaction consistency-checking

problem. This chapter also presents an algorithm for analyzing inconsistent

interaction-states and identifying the inconsistent interactions.

This chapter has been organized in the following manner. Section 4.1 describes the

problem formulation of consistency-checking of interaction-states. Section 4.2

describes the algorithms for mapping consistency checking problem to minimum s-t

cut problem in an interaction network. Section 4.3 describes the algorithm for finding

minimum s-t cut and identifying inconsistent interactions. Section 4.4 presents the

implementation details and two examples. Finally, Section 4.5 presents concluding

remarks.

4.1 Problem Formulation

4.1.1 Problem Statement

Let X be the set of parameters belonging to all the artifacts in an interaction-state s.

By examining parameters and artifact interaction in s we can identify the parameter

sets that participate in these interactions. The set of all parameters interaction set is

denoted as F.

Each f in F is a subset of X and describes an interaction. During the conceptual design

stage we are only concerned with the qualitative nature of interaction. For example,

consider the hybrid car example. Let us assume we only consider major artifacts:

engine, battery, motor, transmission and the wheels. The hybrid car is required to

 101

enter different interaction-states when the road condition changes. When the vehicle

travels uphill or accelerates, both the engine and the battery provide power to the

wheels through the transmission and motor respectively. The road can be modeled as

a use-environment artifact. In this case, the interaction-state consists of these artifacts

and their interactions. Figure 4.1 graphically shows the interactions.

Battery Engine

Motor Transmission

Wheel

Road

Figure 4.1: Example of an interaction-state for hybrid car

We use the following notations to represent the main parameters participating in the

interaction:

x1 = Battery Power Output, x2 = Motor Power Output, x3 = Engine Power Output,

x4 = Transmission Power Output, x5 = Wheel Power Input, x6 = Road Slope.

Then we can list the participating parameters in interactions when the vehicle is going

uphill as follows:

f1 = {x1, x2}, f2 = {x3, x4}, f3 = {x2, x4, x5}, f4 = {x5, x6},

Each of the above-described sets of parameters implies that there exists a specific

relationship among the parameters in the set and hence all the parameters in the set

cannot be assigned values independently. Please note that we are not concerned about

 102

the specific equation that is associated with the interaction. In most cases, such

equations are not available at the conceptual design stage. So we are only concerned

about the set of parameters that participate in an interaction.

We also model the constraints on the values of individual parameters as sets of

participating parameters consisting of only one member. Since there is a maximum

power constraint on the engine’s power output, we have f5 = {x3}. The slope of the

road is determined by the use-environment; therefore we model it as f6 = {x6}.

Therefore, in this case we have six variables and six interactions in this interaction-

state.

We formulate the interaction consistency problem in the following manner. Given,

• Set X = {x1, x2, … xn}

• Set F = {f1, f2, f3, …fm}, where each fi ⊆ X and ∪F = X

• n ≥ m

The problem of interaction consistency is to determine if there exists F′ ⊂ F such that

cardinality(F′) > cardinality(∪F′). If such F′ exists, then the given set of interactions

is considered inconsistent.

Let us consider the following example,

• X = {x1, x2, x3, x4, x5}

• F = {f1 = {x3, x4, x5}, f2 = {x1, x3}, f3 = {x1, x2}, f4 = {x1, x2, x3}, f5 = {x2, x3}}

Although there is a total of five parameters and only five interactions, the last four

interactions (i.e., f2 = {x1, x3}, f3 = {x1, x2}, f4 = {x1, x2, x3}, f5 = {x2, x3}) only involve

three variables (i.e., x1, x2, x3). Therefore, these interactions are over-constrained.

Thus, the interactions in this state are inconsistent and this state is invalid. If n < m,

 103

the set of interactions is obviously inconsistent. Thus we only deal with cases in

which n ≥ m.

Here we assume that no redundant equations will be subsequently used in the detailed

design stage to realize the set of interactions. A redundant equation can be deduced

from a set of other equations. For example, assume that we have the following two

equations: x1 + x2 = 3, x2 + x3 = 5. Then the equation x3 − x1 = 2 can be derived from

the first two equations and hence it is a redundant equation.

If the set of interactions is inconsistent, a natural problem that arises is identifying the

interactions that lead to the inconsistency. Designers need to locate the subset of

inconsistent interactions and modify them to ensure that the modified interactions are

consistent.

4.1.2 Overview of Our Approach

Given the set of interactions, we use the following approach to solve the problem:

1) Construct an interaction network from the set of interactions. Section 4.2.1 shows

how the network is constructed. Then we show that the consistency problem is

equivalent to checking the size of the minimum s-t cut problem in the interaction

network. Section 4.2.2 presents the proof for this equivalence.

2) We use the algorithm FINDMINIMUMSTCUTSIZE to compute the size of the

minimum s-t cut of the network and find out whether the set of interactions is

consistent. Section 4.3.1 presents this algorithm. If the interactions are found to be

inconsistent, then we determine the set of interactions that lead to inconsistency.

Section 4.3.2 describes the algorithm FINDINCONSISTENTINTERACTIONS defined

for this task.

 104

4.1.3 Related Work On Finding Min Cut Of A Graph

The usual approach to solve the minimum cut problem is to use its close relationship

to the maximum flow problem. Ford and Fulkerson showed the duality of the

maximum flow and the minimum s-t-cut in their famous Max-Flow-Min-Cut-

Theorem [Ford56]. They also gave a simple algorithm for solving the problem.

Finding a minimum cut without specifying the vertices to separate can be done by

finding minimum s-t-cuts for a fixed vertex s and all |V| − 1 possible choices of t ∈ V

− {s} and then selecting the smallest one. Goldberg and Tarjan used push-relabel

algorithms to achieve a faster computation. They do not maintain a valid flow during

the operation; each node may have a positive “flow excess”, and the algorithm tries to

push it to neighboring nodes. Many modifications based on these two types of

approaches have been made to achieve faster algorithms.

Algorithms that are not based on flows have also been developed. Nagamochi and

Ibaraki gave a procedure that repeatedly identifies and contracts edges that are not in

the minimum cut until the minimum cut becomes apparent. It applies only to

undirected graphs with non-uniform edge weights [Naga92]. The approach by Gabow

is based on a matroid characterization of the minimum cut problem. According to this

characterization, the minimum cut in a graph is equal to the maximum number of

disjoint directed spanning trees that can be found in it. Gabow’s algorithm finds the

minimum cut by finding such trees [Gabo95]. Karger and Stein give a randomized

algorithm that finds the minimum cut in an arbitrarily weighted undirected graph

[Karg96].

 105

4.2 Mapping Consistency Checking Problem To Minimum S-T Cut Problem In

Interaction Network

4.2.1 Construction Of Interaction Network

We build an interaction network G that describes how interactions F and parameters

X are related to each other.

There are four kinds of nodes in G:

• s-node: Source node.

• t-node: Sink node.

• x-node: Node corresponding to an parameter in X.

• f-node: Node corresponding to an interaction in F.

There are three types of edges in G:

• sf-edge: Edge connecting the s-node to an f-node. The capacity of this edge is 1

unit.

• fx-edge: Edge connecting an f-node to an x-node. The capacity of this edge is n +

1 units.

• xt-edge: Edge connecting an x-node to the t-node. The capacity of this edge is 1

unit.

Now we present the algorithm for constructing the interaction network G.

Algorithm CONSTRUCTINTERACTIONNETWORK

Input: System of interactions F with respect to X. There are n variables in X and m

interactions in F.

Output: Interaction network G

Steps:

 106

1) Create an empty network G.

2) Insert node s into network G. Label this node as s-node.

3) Insert node t into network G. Label this node as t-node.

4) Insert a node for every f ∈ F into G. Label these nodes as f-nodes. Create an edge

from the s-node to every f-node. Label these edges as sf-edges. Set the capacity of

every sf-edge to 1.

5) Insert a node for every x ∈ X into G. Label these nodes as x-nodes. Create an edge

from every x-node to the t-node. Label these edges as xt-edges. Set the capacity of

every xt-edge to 1.

6) For every f, insert an edge from the f-node to an x-node if x belongs to f. Label

these edges as fx-edges. Set the capacity of every fx-edge to n + 1.

Figure 4.2 shows network G for the following parameters and interactions:

• X = {x1, x2, x3, x4, x5}

• n = 5

• F = {f1 = {x3, x4, x5}, f2 = {x1, x3}, f3 = {x1, x2}, f4 = {x1, x2, x3}, f5 = {x2, x3}}

• m = 5

 4.2.2 Mapping Consistency-Checking Problem to Minimum Cut Problem

In this section we will show that the interaction consistency-checking problem can be

mapped to the problem of checking the size of the minimum s-t cut in network G.

Let G = (V, E) be an edge-weighted directed graph (digraph) with a finite set of

vertices V and a set of ordered pairs of vertices, E ⊆ V × V , called edges. We

 107

typically use e or (u, v) to denote an edge e = (u, v). c(e) is called the capacity of e. A

network is a digraph in which two vertices are distinguished as the source s and the

f1 = { x3, x4, x5}
f2 = { x1, x3 }
f3 = { x1, x2 }
f4 = { x1, x2, x3 }
f5 = { x2, x3 }

6

1

f1

s

f2

f3

f4

f5

x1

x2

x3

x4

x5

t
1

1

1

1

1

6

1

6

1

6

6

6

1

1
6

6

6

6

6

6

Figure 4.2: Interaction network constructed from the above relationships

target t where s ≠ t, and in which each edge has a non-negative capacity. A flow in a

network is defined to be a function f that assigns a real number to each edge, subject

to two constraints:

• Flow of an edge is non-negative and less than or equal to the capacity;

• For each vertex other than the source and the target, the flow into the vertex

equals the flow out of it.

 108

The value of a flow is the net flow into the sink. Given a network, a flow is a

maximum flow provided it has the largest value among all flows. A directed s-t path

in G is a sequence of vertices and edges of the form s, (s, v1), v1, (v1, v2), v2, . . . , vk-1,

(vk-1, t), t. An s-t cut is a partition of the node set V into two subsets S and T = V-S.

Alternatively, we can define a cut as the set of edges whose endpoints belong to the

different subsets S and T. A cut is referred to as an s-t cut if s ∈ S and t ∈ T. The size

of an s-t cut is the sum of the capacities of all the forward edges (edges from S to T)

in the cut. An s-t cut is a minimum s-t cut provided it has the smallest size among all

s-t cuts.

A path of a network is a sequence s, e0, v1, e1,…, ek, t with s, v1, …, t ∈V, and e0,

e1,…, ek ∈E , such that it starts in s, ends in t and does not contain any vertex twice.

The residual capacity of an edge ei = (vi, vi+1) is given by

res(ei) = c(vi, vi+1) − f(vi, vi+1)

Given a flow network G = (V, E) and a flow f, the residual network of G induced by f

is Gr = (V, Er), where

Er = {(u, v) ∈V × V: res(u, v) > 0}.

Each edge of the residual network, or residual edge, can admit a strictly positive net

flow. A residual edge may not be an edge in E. An augmenting path with respect to a

network G and a flow f is a simple path from s to t in the residual network Gr

[Corm90].

Figure 4.3(a) and 4.3(b) illustrate a network G and the network with a flow value of

1. An augmenting path P can be formed by s, (s, f1), f1, (f1, x2), x2, (x2, t), t. The

residual capacity of this path is the minimum res(P) = min{res((s, f1)), res((f1, x2)),

 109

res((x2, t))}. Thus res(P) = min{2, 5, 4} = 2. The residual network for the network

with a flow value of 1 is shown in Figure 4.3(c).

0/6

1/3
f1

s f2

x1

x2

t

0/3

0/1

1/5

0/6

1/6

(a): Original network

6

2
f1

s f2

x1

x2

t
1

3
1

5

6

1

1

4

6

3
f1

s f2

x1

x2
t

3

1

5
6

6

(b): Network with flow =1

Figure 4.3: Residual network

Now we present mathematical preliminaries that prove that the consistency-checking

problem can be mapped to the problem of finding the size of the minimum s-t cut in a

network.

Lemma 4.1. The size l* of the minimum s-t cut in network G is less than or equal to

the number of interactions m.

 110

Proof: A cut of G can be created by selecting all edges with an sf-edge label from the

network (for example, see edges in dotted lines in Figure 4.4). The size of this cut is

equal to the sum of the capacities of all edges with an sf-edge label. There are m such

edges in G and the capacity for each such edge is 1 unit. Therefore, the size of this cut

is m. Therefore, we can conclude that the size l* of a minimum cut in G is less than or

equal to m.

m=5 , n = 5

6

1

f1

s

f2

f3

f4

f5

x1

x2

x3

x4

x5

t1

1

1

1

1

6

1

6

1

6

6

6

1

16
6

6

6

6

6

Figure 4.4: A cut of the network

Lemma 4.2. A minimum s-t cut of network G cannot contain an edge with an fx-edge

label.

Proof: According to Lemma 4.1, the size of the minimum s-t cut of G is less than or

equal to m. Since the capacity of fx-edges is n + 1, any cut that contains an edge with

 111

an fx-edge label must have a size of at least n + 1. Since n ≥ m, any cut that contains

an fx-edge cannot be a minimum s-t cut due to Lemma 4.1.

Lemma 4.3. If the size l* of the minimum s-t cut of network G is less than m, then

the minimum cut must contain at least one sf-edge and one xt-edge.

Proof: According to lemma 4.2, minimum s-t cut C* does not contain any edges with

an fx-edge label. Let C* be a minimum s-t cut of G such that l* < m. Cut C* can be of

the following three types: 1) all edges in the cut are sf-edges; 2) all edges in the cut

are xt-edges; 3) edges in the cut contain both types of edges. In cases 1 and 2, we can

find a path from s to t. Therefore, C* cannot be a cut. Thus only case 3 produces a

valid cut.

Theorem 4.1. If there exists a subset of interactions F′ ⊆ F such that cardinality(F′) >

cardinality(∪F′) (i.e. the number of interactions is greater then the number of

variables in the interactions), then there would exist a minimum s-t cut in network G

of a size less than m.

Proof: First let us construct the interaction network as shown in Figure 4.5 according

to algorithm CONSTRUCTINTERACTIONNETWORK.

F − F′

F′

X − ∪(F′)

∪(F′)

s t

Ef

Ef ′

Ex ′

Ex

Figure 4.5: A cut illustrating terminology used in Theorem 1

 112

We define Ef as the set of sf-edges that connect the s-node with f-nodes that

correspond to F − F′, Ex as the set of xt-edges that connect x-nodes that correspond to

∪F′ with the t-node, Ef′ as the set of sf-edges that connect the s-node with f-nodes that

correspond to F′, and Ex′ as the set of xt-edges that connect x-nodes that correspond to

X − ∪F′ with the t-node. And we define the cardinalities of these sets of edges as the

following:

lf = cardinality(Ef), lx′ = cardinality(Ex′), lf′ = cardinality(Ef′), lx = cardinality(Ex)

Since for every f-node∈F, there is only one sf-edge that connects it with the s-node,

cardinality(F′) = cardinality(Ef′), thus lf′ = cardinality(F′).

Similarly, since for every x-node∈F, there is only one xt-edge that connects it with

the t-node, cardinality(∪F′) = cardinality(Ex), thus lx = cardinality(∪F′).

Cut C = Ef ∪Ex is an s-t cut (shown in dotted lines in Figure 4.5) based on its

construction. We define l = cardinality (C).

According to the construction of the network, we have

lf + lf′ = m (4-1)

According to the definition of C we have l = lf + lx

We are given cardinality(F′) > cardinality(∪F′), that is

lf′ > lx (4-2)

Hence l = lf + lx

 l < lf + lf′ (by 4-2)

 l < m (by 4-1)

Since, cardinality(C) < m and cardinality(C*) ≤ cardinality(C), cardinality(C*) < m.

 113

Figure 4.6 shows an example further illustrating terminology used in this Theorem.

6

1

f1

s

f2

f3

f4

f5

x1

x2

x3

x4

x5

t1

1

1

1

1

6
1

6

1

6

6

6

1

6

6

6

6

6

6 1

F − F′ ∪(F′)

F′

X − ∪(F′)

Figure 4.6: An example of a cut for illustrating Theorem 1

Theorem 4.2. Let C* be a minimum s-t cut of the interaction network G, and the size

of the cut l* be less than m. In this case there would exist F′⊆ F such that

cardinality(F′) > cardinality(∪F′).

Proof:

According to Lemma 4.2 and Lemma 4.3, the cut must be formed in the manner

shown in Figure 4.7. We define Ef as the set of sf-edges that connect the s-node with

f-nodes that correspond to F′′, Ef′ as the set of sf-edges that connect the s-node with f-

nodes that correspond to F − F′′, Ex as the set of xt-edges that connect x-nodes

 114

corresponding to ∪(F − F′′) with the t-node, and Ex′ as the set of xt-edges that

connect x-nodes that correspond to X − ∪(F − F′′) with the t-node.

F − F′

F′

X − ∪(F′)

∪(F′)

Ef

Ef ′

Ex ′

Exs t

Figure 4.7: A cut illustrating terminology used in Theorem 2

We define the cardinalities of these sets of edges as the following:

lf = cardinality(Ef), lx′ = cardinality(Ex′), lf′ = cardinality(Ef′), lx = cardinality(Ex)

According to the construction of the network, we have

lf + lf ′ = m (4-3)

Since cut C* = Ef ∪ Ex, cardinality (C*) = lf + lx (4-4)

According to Lemma 4.3, we also have:

lf > 0 and lx >0

We are given cardinality (C*) < m, thus

lf + lx < m (by 4-4)

lf + lx < lf + lf ′ (by 4-3)

Then we have lx < lf ′

That states that cardinality(Ex) < cardinality (Ef′)

Since for every f-node∈F, there is only one sf-edge that connects it with the s-node,

cardinality(F − F′′) = cardinality(Ef′).

Similarly, since for every x-node∈F, there is only one xt-edge that connects it with

the t-node, cardinality(∪(F − F′′)) = cardinality(Ex).

 115

Therefore, cardinality(∪(F − F′′)) < cardinality (F − F′′).

We rename (F − F′′) as F′, then we have

cardinality(F′) > cardinality(∪F′)

Corollary 4.1. Let C* be a minimum s-t cut of size less than m and Ef′ be the set of

sf-edges that are not in C*. The set of inconsistent interactions is represented by the f-

nodes that are connected to the s-node by edges in Ef′.

Proof: It directly follows from Theorem 4.2.

Theorem 4.3. Let C* be a minimum cut of size less than m. Let F′ be the set of f-

nodes that are connected to s-nodes by edges that are not in C*. Let F be the set of all

f-nodes. Then ∀ F′′ ⊆ (F − F′), cardinality(F′′) ≤ cardinality (∪F′′).

Proof:

We will prove this theorem by contradiction.

Assume there exists F′′⊆ (F − F′) such that cardinality (F′′) > cardinality (∪F′′).

We define Ef as the set of sf-edges that connect the s-node with f-nodes that

correspond to F − F′, Ex as the set of xt-edges that connect x-nodes corresponding to

∪F′ with the t-node, Ef′ as the set of sf-edges that connect the s-node with f-nodes that

correspond to F′, Ex′ as the set of xt-edges that connect x-nodes that correspond to X −

∪F′ with the t-node, Ef′′ as the set of sf-edges that connect the s-nodes with f-nodes

that correspond to F′′, and Ex′′ as the set of xt-edges that connect x-nodes

corresponding to ∪F′′ with the t-node.

Since for every f-node∈F, there is only one sf-edge that connects it with the s-node,

cardinality(F′′) = cardinality(Ef′′).

 116

Similarly, since for every x-node∈F, there is only one xt-edge that connects it with

the t-node, cardinality(∪F′′) = cardinality(Ex′′).

Then the assumption can also be represented as

cardinality(Ex′′) – cardinality(Ef′′) < 0 (4-5)

We separate F′′ from F-F′ as shown in Figure 4.8. Obviously (Ef – Ef′′) ∪ Ex′′ ∪Ex is

also a cut C′ of the network.

F − F ′ − F ′′

F ′

X − ∪(F ′) − ∪(F ′′)

∪(F ′)

Ef − Ef ′ ′

Ef ′

Ex ′ − Ex ′′

Ex

F ′′ ∪ F ′′ − ((∪ F ′′)∩(∪ F ′))

Ef ′ ′ Ex ′′s t

Figure 4.8: A cut illustrating terminology used in Theorem 3

According to the definition of cut,

cardinality(C*) = cardinality(Ef) + cardinality(Ex) (4-6)

cardinality(C′) = cardinality(Ef – Ef′′) + cardinality(Ex′′) + cardinality(Ex) (4-7)

cardinality(Ef – Ef′′) = cardinality(Ef) – cardinality(Ef′′) (4-8)

Thus, cardinality(C′) = cardinality(Ef) – cardinality(Ef′′)+ cardinality(Ex′′) +

cardinality(Ex)

 (4-9) (by 4-7 and 4-8)

Then

cardinality(C′) – cardinality(C*) = cardinality(Ex′′) – cardinality(Ef′′) < 0

 117

 (by 4-6 and 4-9)

Therefore, cardinality (C′) < cardinality (C*)

Thus C* is not a minimum s-t cut. This contradicts with the theorem statement.

From the above theorems and corollary, we can conclude that the consistency-

checking problem can be solved by finding the size of the minimum s-t cut of G.

Theorem 4.3 helps in ensuring that there are no other inconsistent interactions that are

not covered by Corollary 1.

4.3 Algorithms For Finding Minimum S-T Cut And Identifying Inconsistent

Interactions

4.3.1 Algorithm for finding minimum s-t cut in network G

According to the duality between maximum flow problems and minimum cut

problems, the size of the minimum s-t cut can be found by computing the maximum

flow between s and t. Our algorithm is based on Ford and Fulkerson’s basic

maximum flow algorithm of finding the augmenting path.

Algorithm FINDMINIMUMSTCUTSIZE

Input: A directed network G

Output: The size of the minimum cut of G and the residual network Gr of G

Steps:

1) Set size of minimum cut to 0.

2) Initialize flow of the network, set f(e) = 0, ∀ e ∈ E.

3) Set Gr = G.

4) Find an augmenting path from the s-node to the t-node in Gr

 118

i. If a path is found, then

a. Augment flow along this path.

b. Increase the size of the minimum cut by 1.

c. Generate new residual network Gr.

d. Go to Step 4.

ii. Else, return the size of the minimum cut and residual network.

The working of this algorithm is illustrated in Figure 4.9.

 119

(c): Add a flow along simple path: (s, f1, x1, t)

6

1

f1

s f2

x1

x2 t1

1

16

6

(a): Original network

1/6

1/1
f1

s f2

x1

x2 t0/1

1/1

0/10/6

0/6

(b): Path: (s, f1, x1, t)

(d): Residual network of the above network

6

1
f1

s f2

x1

x2 t1

1

16

6

1

1

f1

s f2

x1

x2 t1

1

16

6

(e): Another path : (s, f2, x1, f1, x2, t)

5

1

1
f1

s f2

x1

x2 t1

1

16

6 5

Figure 4.9: Illustration of algorithm FINDMINIMUMSTCUTSIZE

Figure 4.9a shows the original network. Initially, the residual network is the

same as this network (see Step 3 of the above algorithm). Figure 4.9b shows an

s-t path as s, (s, f1), f1, x1, (x1, t), t. Sending a unit flow along this path will

saturate the flow capacities in edges (s, f1) and (x1, t) as shown in Figure 4.9c.

The residual network with respect to this flow is shown in Figure 4.9d. A new

 120

path shown in Figure 4.9e is found as s, (s, f2), f2, (f2, x1), x1, (x1, f1), f1, (f1, x2), x2,

(x2, t), t.

Now we analyze the complexity of this algorithm. Step 1 can be executed in

time O(1). Step 2 can be done in time O(E) where, E = Number of sf-edges +

Number of fx-edges + Number of xt-edges. E has an upper bound of n + nm + m.

Thus, Step 2 takes time O(nm). Step 3 takes O(V + E). Since O(V) = O(n+m),

step 3 takes O(nm). Step 4 will be executed at most m times. For a depth-first

search, Step 4a takes time O(E) + O(1) + O(V + 2E) = O(nm). Step 4b takes O(1)

time. Thus in the worst case, Step 4 takes O(nm2). Thus the worst case time

complexity for this algorithm is O(nm2).

For the network shown in Figure 4.2, we find the size of the minimum s-t cut of

the network. In this case C* = 4 as shown in Figure 4.10. The maximum flow of

the network is also shown in Figure 4.10. Since m = 5, the set of the interactions

is not consistent. The residual network with respect to the maximum flow is

shown in Figure 4.11.

 121

0/6

1/1

f1

s

f2

f3

f4

f5

x1

x2

x3

x4

x5

t
1/1

1/1

1/1

1/1

0/1

0/6

1/1

0/6

1/1

1/6

1/6

1/6

1/1

0/10/6

0/6

1/6

0/6

0/6

0/6

Figure 4.10: Maximum flow of the graph

6f1

s

f2

f3

f4

f5

x1

x2

x3

x4

x5

t
1

1

1

1

1

6

1

6

1

5

5

5

1

16
6

5

6

6

6

1

1

1

1
1

Figure 4.11: Residual network corresponding to maximum flow

 122

Ford and Fulkerson’s algorithm finds maximum flow by finding all the

augmenting paths in the network from s to t and saturating the flows along the

paths. However, there are several characteristics of our problem that can be used

to reduce the complexity of the algorithm directly.

1) The network in our problem is actually a special network. Network G = (V, E) has

a node set V partitioned into two subsets V1 and V2 so that for every edge ei=(vi,

vi+1)∈E, either vi ∈ V1 and vi+1∈ V2 or vi ∈ V2 and vi+1∈ V1. Thus any s-t path

follows the pattern s, f, x, f, x, f, x, …, t in which f-nodes and x-nodes appear in a

pair wise manner.

2) Every sf-edge and xt-edge has capacity of 1. That means that once such an edge is

used in a path, it won’t be used in another path. Meanwhile, an f-node or an x-

node also can only be used in one path.

4.3.2 Algorithm For Finding Inconsistent Interactions

Algorithm FINDINCONSISTENTINTERACTIONS

Input: Interaction residual network Gr corresponding to the maximum flow

Output: set of f-nodes corresponding to inconsistent interactions

Steps:

1) Use depth-first search to find all nodes in residual network Gr that are reachable

from s-node and put these nodes in set R.

2) Remove x-nodes from R and return R.

Now we will show that R corresponds to the f-nodes that are connected to the s-

node by edges in Ef′ as stated in Corollary 1. We denote the node set that is

reachable from s in Gr as V1, and the set of the remaining nodes as V2 =V – V1.

 123

There is no path in the residual network such that the s-node reaches the t-node.

Otherwise, an augmenting flow could have been generated and hence flow

would have not been maximum. Thus, s ∈V1 and t ∈V2. Therefore, cut C = {V1,

V2} is an s-t cut. Since the flow is maximum, according to the duality between

maximum flow and minimum cut, C is a minimum s-t cut [Ford56]. Therefore,

we conclude that inconsistent interactions can be found by finding reachable

nodes in the residual network corresponding to the maximum flow. Since we are

only concerned about the inconsistent interactions, we remove x-nodes in the

reachable node set.

Now we analyze the complexity of this algorithm. For a depth-first search, Step

1 can be executed in time O(E + V) = O(nm). Step 2 takes time O(n + m).

Therefore, this algorithm runs in O(nm).

For the network shown in Figure 4.2, the residual network with respect to the

maximum flow is shown in Figure 4.11. Now we can find the reachable nodes

from s-nodes as {f2, f3, f4, f5, x1, x2, x3} as shown in Figure 4.12. Thus the set of

interaction nodes {f2, f3, f4, f5} is inconsistent. One can easily verify that there are

only three variables {x1, x2, x3} involved in four interactions {f2, f3, f4, f5}.

4.4 Implementation And Examples

We have implemented the algorithms described in this chapter using C++. The

implementation has been tested on the Windows 2000 platform. We ran the program

on a PC with the following configuration: (1) AMD Athlon XP1700+ CPU and (2)

1GB Memory.

 124

6f1

s

f2

f3

f4

f5

x1

x2

x3

x4

x5

t
1

1

1

1

1

6

1

6

1

5

5

5

1

16
6

5

6

6

6

1

1

1

1
1

Figure 4.12: Finding inconsistent relationships

10 interactions,9 parameters
Inconsistent!

Ground

A

B

C

F

E

D

Joint
Joint

Joint Joint

Joint
Joint

JointJoint

Desired degrees of
freedom are 2

1DOF 1DOF

Figure 4.13: Design alternative A of a planar mechanism

 125

Figure 4.13 shows design alterative A behind a device based on a planar mechanism.

There are 6 active artifacts that represent various links in the device (the ground

artifact is not counted). Every artifact can be described by three parameters (x, y, θ).

These parameters present the x and y coordinate of the center of the artifact, and its

orientation. In this device, artifacts interact with each other via joints. We assume that

all joints in this case are pivot joints. The presence of a pivot joint reduces two

degrees of freedom between two links. This means that while (x, y, θ) parameters for

one of the links can be assigned independently, only one variable for the second link

can be assigned independently. Therefore, as per our terminology, there are two

interactions among artifacts due to the presence of the pivot joint. Both of these

interactions involve the same set of variables. However, the equations behind each

interaction will be different and can only be found after assigning dimensional

parameters to the links. As mentioned before, we do not care about the actual

equations involved but rather the set of parameters that participate in an interaction.

Therefore, interactions among artifacts due to the presence of joints can be described

by the following set of participating parameters:

f1= {xA, yA, θA , xB, yB, θB}, f2 = {xA, yA, θA , xB, yB, θB}

Similarly, for other joints we get

f3= {xB, yB, θB, xC, yC, θC}, f4 = {xB, yB, θB, xC, yC, θC}

f5= {xC, yC, θC, xD, yD, θD}, f6 = {xC, yC, θC, xD, yD, θD}

f7= {xD, yD, θD, xE, yE, θE}, f8 = {xD, yD, θD, xE, yE, θE}

f9= {xE, yE, θE , xF, yF, θF}, f10 = {xE, yE, θE , xF, yF, θF}

f11= {xF, yF, θF, xA, yA, θA}, f12 = {xF, yF, θF, xA, yA, θA}

 126

Artifacts A and C are connected to the ground via pivot joints, so we need to model

the following interactions:

f13= {xA, yA, θA}, f14 = {xA, yA, θA}

f15= {xC, yC, θC}, f16 = {xC, yC, θC}

We want to have two degrees of freedom in this device. These constraints are

modeled as interactions as well. However, only one parameter participates in these

two interactions. Therefore, we get

f17= {θA}, f18 = {θC}

Then the interaction consistency problem for this device is formulated as the

following:

X = {xA, yA, θA, xB, yB, θB, xC, yC, θC, xD, yD, θD , xE, yE, θE , xF, yF, θF }

F = {f1, f2, f3, …, f18}

n = 18 and m = 18

By running our software, we get the following result:

The size of the minimum s-t cut is 17 < m, thus the interactions are inconsistent.

The set of inconsistent interactions are identified as {f1, f2, f3, f4, f13, f14, f15, f16, f17,

f18}. These ten interactions only involve nine variables. Hence this design concept is

not valid.

Now let us consider another design alternative. This design alternative called

alternative B is shown in Figure 4.14. This alternative has the same numbers of

artifacts and joints. However, the interactions are different. Interactions in this design

can be modeled as the following:

f1= {xA, yA, θA , xB, yB, θB}, f2 = {xA, yA, θA , xB, yB, θB}

 127

Ground

A

B C

D

F E
Joint

Joint

Joint Joint

Joint

JointJoint

1DOF 1DOF

Figure 4.14: Design alternative B of a planar mechanism

f3= {xB, yB, θB, xC, yC, θC}, f4 = {xB, yB, θB, xC, yC, θC}

f5= {xC, yC, θC, xD, yD, θD}, f6 = {xC, yC, θC, xD, yD, θD}

f7= {xD, yD, θD, xE, yE, θE}, f8 = {xD, yD, θD, xE, yE, θE}

f9= {xE, yE, θE , xF, yF, θF}, f10 = {xE, yE, θE , xF, yF, θF}

f11= {xF, yF, θF, xA, yA, θA}, f12 = {xF, yF, θF, xA, yA, θA}

Artifact A and artifact D are connected to the ground, so we have the following

interactions:

f13= {xA, yA, θA}, f14 = {xA, yA, θA}

f15= {xD, yD, θD}, f16 = {xD, yD, θD}

We again want to have two degrees of freedom in the system. So we get,

f17= {θA }, f18 = {θD }

By running our algorithm, we get the following result:

The size of the minimum s-t cut is 18 = m, thus the interactions are consistent.

This example illustrates that the interactions can have significant influence on the

validity of a design concept.

 128

In design of complex spatial mechanisms, it is getting harder to detect redundant links

in mechanisms as they are getting more complicated. Figure 4.15 shows design

alterative A behind a device based on a spatial mechanism.

Ground

A

B

C

D

E

F

G H I J

K L

M N

O P

Ground

R

R

R

P

P

P R

R

P

P

P R

R

R

S

S

S
S

S
S

1DOF

1DOF

1DOF

Spherical Joint

Revolute Joint

Legend:

R
P Prismatic Joint
S

R

Desired degrees of
freedom are 3

44 interactions,42 parameters
Inconsistent!

Figure 4.15: Design alternative A of a spatial mechanism

There are 16 active artifacts that represent various links in the device (the ground

artifact is not counted). Every artifact can be described by six parameters (x, y, z, θx,

θy, θz). These parameters present the x, y and z coordinate of the center of the artifact,

and its orientation. In this device, artifacts interact with each other via joints. The

joints between artifacts A and Ground, B and Ground, C and Ground, F and G, P and

Ground, N and Ground, L and Ground, H and I, I and J, are revolute joints. The joints

between A and D, B and E, C and F are prismatic joints. The joints between D and G,

E and G, G and H, J and O, J and M, J and K are spherical joints. The presence of a

revolute joint reduces five degrees of freedom between two links. This means that

while (x, y, z, θx, θy, θz) parameters for one of the links can be assigned

 129

independently, only one variable for the second link can be assigned independently.

Therefore, as per our terminology, there are five interactions among artifacts due to

the presence of the revolute joint. All of these interactions involve the same set of

variables. However, the equations behind each interaction will be different and can

only be found after assigning dimensional parameters to the links. As mentioned

before, we do not care about the actual equations involved but rather the set of

parameters that participate in an interaction. Similarly, the presence of a spherical

joint reduces three degrees of freedom between two links and the presence of a

prismatic joint reduces five degrees of freedom between two links. Therefore, there

are three interactions among artifacts due to the presence of the revolute joint and

there are five interactions among artifacts due to the presence of the revolute joint.

Interactions among artifacts due to the presence of joints can be described by the

following set of participating parameters:

For the joint that connects A and Ground, we have:

f1= {xA, yA, zA, θxA, θyA, θzA}. f2, f3, f4, f5, have the same qualitative structure as f1.

Similarly, for other revolute joints we get

f6= {xB, yB, zB, θxB, θyB, θzB}. f7, f8, f9, f10, have the same qualitative structure as f6.

f11= {xC, yC, zC, θxC, θyC, θzC}. f12, f13, f14, f15, have the same qualitative structure as f11.

f16= {xF, yF, zF, θxF, θyF, θzF, xG, yG, zG, θxG, θyG, θzG}. f17, f18, f19, f20, have the same

qualitative structure as f16.

f21= {xP, yP, zP, θxP, θyP, θzP}. f22, f23, f24, f25, have the same qualitative structure as f21.

f26= {xN, yN, zN, θxN, θyN, θzN}. f27, f28, f29, f30, have the same qualitative structure as f26.

f31= {xL, yL, zL, θxL, θyL, θzL}. f32, f33, f34, f35, have the same qualitative structure as f31.

 130

f36= {xH, yH, zH, θxH, θyH, θzH, xI, yI, zI, θxI, θyI, θzI}. f37, f38, f39, f40, have the same

qualitative structure as f36.

f41= {xI, yI, zI, θxI, θyI, θzI, xJ, yJ, zJ, θxJ, θyJ, θzJ}. f42, f43, f44, f45 have the same

qualitative structure as f41.

For the prismatic joints, we need to model the following interactions:

f46= {xA, yA, zA, θxA, θyA, θzA, xD, yD, zD, θxD, θyD, θzD}. f47, f48, f49, f50, have the same

qualitative structure as f46.

f51= {xB, yB, zB, θxB, θyB, θzB, xE, yE, zE, θxE, θyE, θzE}. f52, f53, f54, f55, have the same

qualitative structure as f51.

f56= {xC, yC, zC, θxC, θyC, θzC, xF, yF, zF, θxF, θyF, θzF}. f57, f58, f59, f60, have the same

qualitative structure as f56.

f61= {xO, yO, zO, θxO, θyO, θzO, xP, yP, zP, θxP, θyP, θzP}. f62, f63, f64, f65, have the same

qualitative structure as f61.

f66= {xK, yK, zK, θxK, θyK, θzK, xL, yL, zL, θxL, θyL, θzL}. f67, f68, f69, f70, have the same

qualitative structure as f66.

f71= {xM, yM, zM, θxM, θyM, θzM, xN, yN, zN, θxN, θyN, θzN}. f72, f73, f74, f75, have the same

qualitative structure as f71.

For the spherical joints, we need to model the following interactions:

f76= {xD, yD, zD, θxD, θyD, θzD, xG, yG, zG, θxG, θyG, θzG}. f77, f78, have the same

qualitative structure as f76.

f79= {xE, yE, zE, θxE, θyE, θzE, xG, yG, zG, θxG, θyG, θzG}. f80, f81, have the same qualitative

structure as f79.

 131

f82= {xG, yG, zG, θxG, θyG, θzG, xH, yH, zH, θxH, θyH, θzH}. f83, f84, have the same

qualitative structure as f82.

f85= {xJ, yJ, zJ, θxJ, θyJ, θzJ, xO, yO, zO, θxO, θyO, θzO}. f86, f87, have the same qualitative

structure as f85.

f88= {xJ, yJ, zJ, θxJ, θyJ, θzJ, xM, yM, zM, θxM, θyM, θzM}. f89, f90, have the same qualitative

structure as f88.

f91= {xJ, yJ, zJ, θxJ, θyJ, θzJ, xK, yK, zK, θxK, θyK, θzK}. f92, f93, have the same qualitative

structure as f91.

Since there are 16 active artifacts excluding ground, there are 96 variables in total.

We want to have at least three degrees of freedom in this device. These constraints

are modeled as interactions as well. Therefore, we get

f94= {xA, yA, zA, θxA, θyA, θzA}, f95= {xB, yB, zB, θxB, θyB, θzB}, f96= {xC, yC, zC, θxC, θyC,

θzC}.

Then the interaction consistency problem for this device is formulated as the

following:

X = { xA, yA, zA, θxA, θyA, θzA, xB, yB, zB, θxB, θyB, θzB, …, xP, yP, zP, θxP, θyP, θzP}

F = {f1, f2, f3, …, f96}

n = 96 and m = 96

The device seems to work fine according to the analysis of its degree of freedom.

However, by running our software, we find that the interactions between artifacts in

this device are not consistent and thus the device would not work. The set of

inconsistent interactions are identified as {f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11, f12, f13, f14,

f15, f16, f17, f18, f19, f20, f46, f47, f48, f49, f50, f51, f52, f53, f54, f55, f56, f57, f58, f59, f60, f76, f77 f78,

 132

f79, f80, f81, f94, f95, f96,}. These 44 interactions only involve 42 variables. Hence this

design concept is not valid. We can also determine that the problem happens to

artifact A, B, C, D, E, F, G, and Ground.

Now let us consider another design alternative called alternative B that is shown in

Figure 4.16.

Spherical Joint

Revolute Joint
Legend:

R
P Prismatic Joint
S

Fixed JointF

Ground

A

B

C

D

E

F

G H J

K L

M N

O P

Ground

R

R

R

P

P

P S

S

P

P

P R

R

R

S

S

S
S

S F

1DOF

1DOF

1DOF

Figure 4.16: Design alternative B of a spatial mechanism

We remove artifact I and use artifact H to connect G and J. We also use a fixed joint

between G and H, a spherical joint between H and J, a spherical joint between C and

F. This alternative has 15 artifacts and 20 joints. Interactions in this design can be

modeled as the following:

f1= {xA, yA, zA, θxA, θyA, θzA}, f2, f3, f4, f5, have the same qualitative structure as f1.

f6= {xB, yB, zB, θxB, θyB, θzB}, f7, f8, f9, f10, have the same qualitative structure as f6.

f11= {xC, yC, zC, θxC, θyC, θzC}, f12, f13, f14, f15, have the same qualitative structure as f11.

f16= {xP, yP, zP, θxP, θyP, θzP}, f17, f18, f19, f20, have the same qualitative structure as f16.

 133

f21= {xN, yN, zN, θxN, θyN, θzN}, f22, f23, f24, f25, have the same qualitative structure as f21.

f26= {xL, yL, zL, θxL, θyL, θzL}, f27, f28, f29, f30, have the same qualitative structure as f26.

f31= {xA, yA, zA, θxA, θyA, θzA, xD, yD, zD, θxD, θyD, θzD}, f32, f33, f34, f35 have the same

qualitative structure as f31.

f36= {xB, yB, zB, θxB, θyB, θzB, xE, yE, zE, θxE, θyE, θzE}, f37, f38, f39, f40 have the same

qualitative structure as f36.

f41= {xC, yC, zC, θxC, θyC, θzC, xF, yF, zF, θxF, θyF, θzF}, f42, f43, f44, f45 have the same

qualitative structure as f41.

f46= {xO, yO, zO, θxO, θyO, θzO, xP, yP, zP, θxP, θyP, θzP}, f47, f48, f49, f50, have the same

qualitative structure as f46.

f51= {xK, yK, zK, θxK, θyK, θzK, xL, yL, zL, θxL, θyL, θzL}, f52, f53, f54, f55, have the same

qualitative structure as f51.

f56= {xM, yM, zM, θxM, θyM, θzM, xN, yN, zN, θxN, θyN, θzN}, f57, f58, f59, f60, have the same

qualitative structure as f56.

f61= {xF, yF, zF, θxF, θyF, θzF, xG, yG, zG, θxG, θyG, θzG}, f62, f63, have the same qualitative

structure as f61.

f64= {xD, yD, zD, θxD, θyD, θzD, xG, yG, zG, θxG, θyG, θzG}, f65, f66, have the same

qualitative structure as f64.

f67= {xE, yE, zE, θxE, θyE, θzE, xG, yG, zG, θxG, θyG, θzG}, f68, f69, have the same qualitative

structure as f67.

For the fixed joint that connects G and H, we have six interactions:

f70= {xG, yG, zG, θxG, θyG, θzG, xH, yH, zH, θxH, θyH, θzH}, f71, f72, f73, f74, f75, have the

same qualitative structure as f70.

 134

f76= {xH, yH, zH, θxH, θyH, θzH, xJ, yJ, zJ, θxJ, θyJ, θzJ}, f77, f78, have the same qualitative

structure as f76.

f79= {xJ, yJ, zJ, θxJ, θyJ, θzJ, xO, yO, zO, θxO, θyO, θzO}, f80, f81, have the same qualitative

structure as f79.

f82= {xJ, yJ, zJ, θxJ, θyJ, θzJ, xM, yM, zM, θxM, θyM, θzM}, f83, f84, have the same qualitative

structure as f82.

f85= {xJ, yJ, zJ, θxJ, θyJ, θzJ, xK, yK, zK, θxK, θyK, θzK}, f86, f87, have the same qualitative

structure as f85.

We still want to have at least three degrees of freedom:

f88= {xA, yA, zA, θxA, θyA, θzA}, f89= {xB, yB, zB, θxB, θyB, θzB}, f90= {xC, yC, zC, θxC, θyC,

θzC}.

Now we have n =90 and m = 90. By running our software, we get the following

result:

The size of the minimum s-t cut is 90 = m, thus the interactions are consistent.

This example illustrates that in complex spatial mechanisms, although overall the

degree of freedom of the device looks fine, there could be a part of the mechanism

that is over-constrained. In this case, it would be very difficult to tell which part of the

mechanism is causing the problem. However, our algorithm could solve this problem

by finding out the inconsistent interactions.

4.5 Summary

This chapter presents a systematic approach to check the consistency of a set of

interactions in an interaction-state of a mechatronic system. We also provide an

algorithm to find the set of interactions that cause the inconsistency. During the

 135

conceptual design stage, the actual equations describing the interactions are usually

not known. Therefore our algorithm only utilizes the information on participating

parameters to carry out its analysis. We have shown both the soundness and

completeness of our algorithms. This implies that when our algorithm finds a set of

interactions to be inconsistent, they are actually inconsistent. Furthermore, when our

algorithm finds a set of interactions to be consistent, they are actually consistent.

Even though the consistency-checking problem has an appearance of a combinatorial

problem, we have found an algorithm that works in polynomial time and does not

require exhaustive enumeration.

The algorithms described in this chapter present a step towards automated validation

of a proposed design concept. We believe that the framework described in this

chapter will provide the underlying foundations for constructing the next generation

software tools for the conceptual design of complex mechatronic systems.

 135

Chapter 5: Detection Of Unsafe Parameter Value Sets

Embedded In Interaction-States

This chapter defines the problem of detecting the presence of an unsafe parameter

value set inside an interaction-state and presents an algorithm for solving the

problem.

This chapter has been organized in the following manner. Section 5.1 describes the

problem formulation. Section 5.2 describes the algorithm for detecting the presence

of an unsafe parameter value set inside an interaction-state. Section 5.3 presents

examples illustrating how the algorithm works. Finally, Section 5.4 presents

concluding remarks.

5.1 Problem Formulation

5.1.1 Problem Statement

Let X be the set of parameters belonging to the artifacts in an interaction-state s. Let u

be an unsafe parameter value set involving parameters from a subset X′ of X. We are

concerned whether parameters in X′ would take the unsafe values defined in u at some

time during the interaction-state. Incoming transitions and outgoing transitions

influence whether this can happen. So we need to consider the transitions associated

with the state as well.

For example, consider the behavior specification of the AVC example as shown in

Figure 3.11. The event space and the unsafe parameter value sets are shown in Table

3.3 and 3.4 respectively for this example. Let us consider the vacuum state. Detailed

 136

description of this state is shown in Figure 3.15. There are two active artifacts in this

state: AVC and surface.

We use the following notations to represent the main parameters participating in

interactions in this interaction-state:

x1 = AVC :: RemainingCapacity

x2 = AVC :: RemainingEnergy

One of the unsafe parameter value sets is defined as (x1 = 2%). There are two

incoming transitions to the vacuum state: r5 and r8. There are two outgoing transitions

from this state: r6 and r7. If any of the two incoming transitions lead to initial values

in the state such that during the state the value of x1 is equal to 2% during this state,

then the state is considered unsafe.

The current framework for checking state safety only deals with discrete parameter

value sets. If the unsafe parameter value set involves only one parameter, then we can

incorporate value range on the parameter by treating it as two different unsafe

discrete values at the upper and lower limits. We formulate the problem of detecting

the presence of unsafe parameter value set inside an interaction-state in the following

manner.

Given,

• Unsafe parameter value set u identifying a set of parameters X′ and defining their

values.

• Interaction-state s.

• Set of incoming transitions Ri.

• Set of outgoing transitions Ro.

 137

The problem is to determine if there exists a local time t for s such that parameters in

set X′ will take values defined in u.

5.1.2 Overview of Our Approach

To find out whether the unsafe parameter value set is embedded in the interaction-

state at a valid local time, we need to consider possible values of parameters in X′

during the lifetime of the interaction-state. Generally, values of parameters are

determined by their initial values and the equations that control the change of values.

Parameters may get their initial values by inheriting values from a previous

interaction-state. Since current interaction-state may be reached through different

paths from different interaction-states, the initial values of parameters may vary

according to the history of the state. To enumerate every possible path of reaching the

current interaction-state is computationally inefficient.

We believe that for an overall safe device design, we should be able to ensure that an

interaction state will be safe irrespective of its history. This obviously leads to a more

conservative design. If an interaction-state is deemed to be safe irrespective of which

transitions led this state, then there is no possible way for this state to contain an

unsafe parameter value set. However, if we discover that it is possible to have initial

conditions in the state such that it includes unsafe parameter value set, then it may

still not be unsafe. The reason for this is as following. The initial conditions in an

interaction state actually depend on the set of transitions by which the interaction-

state is reached. So while it may theoretically be possible to initialize the state with

the conditions that lead to an unsafe parameter value set, it may not be feasible to

initialize the state with those values given the set of transitions and other states in the

 138

system. Considering all possible state histories is computationally almost intractable.

Hence, we advocate developing a conservative approach that ensures that states are

safe irrespective of their initialization history.

We use the following three-step approach:

• Determine possible initial values from the initialization of parameters in the

interaction-state for each incoming transition. Incoming transitions may override

the initial values of parameters set by default initialization or inherited from the

previous state.

• Analyze the equations that govern the interactions in the interaction-state.

Parameters change values according to these interactions.

• Check the influence of outgoing transitions. Even though parameters may have

potential to reach the unsafe values at some time, an outgoing transition may

transit the state to the next state before the unsafe values are reached.

These steps are described in detail in section 5.2.

5.2 Algorithm for Detecting the Presence of Unsafe Parameter Value Sets

In an interaction state, a state parameter acquires its values by its initialization

condition and interacting with other parameters. Initialization types and value-

changing modes are used to describe the characteristics of how parameters are

initialized and changed. Initialization types are defined as ASSIGN, INHERIT and

DERIVE. Value-changing modes are defined as CONSTANT, EQUATION and

DERIVE. These are described in detail in Chapter 3. There are some limitations for

combining initialization types and value-changing modes as shown in Table 5.1.

Since some parameters are set to inherit values from previous state and we don’t

 139

consider the state history, their initial values are unknown in this interaction-state.

Parameters with derived initial values from other parameters via interactions can be

finally determined as having known initial values or unknown initial values according

to the following rules:

• If all the parameters from which the value is derived only have known values,

then this parameter will have known values. Furthermore, if all the parameters

only have known constant values during the interaction-state, then this parameter

will have known constant values.

• If any source parameter gets its value from a previous state, then the derived

parameter has an unknown value.

The condition that the unsafe parameter value set is embedded in the interaction-state

can be classified into several cases described below.

Case 1: If the parameters in X′ only take known constant values in s, we can simply

compare these values with the unsafe values and determine whether s is unsafe. This

can be formulated as following:

Let u be the unsafe parameter value set, s be the interaction-state. If u ⊆ s(t=0) then s

is unsafe.

For example, let X = {x1, x2, x3, x4}, u = {(x1=5), (x2=10)}, and s(t=0) ={(x1=5),

(x2=10), (x3=10), (x4=10)}. In this example, u ⊆ s(t=0), therefore s is unsafe.

Case 2: Based on the initial values of the state parameters and the interaction

equations, we can determine the values of the parameters at any time during the

interaction-state. Then the interaction-state is considered unsafe if at some time, all

 140

the parameters in X′ reach their unsafe values simultaneously. This can be formulated

as following:

Let u be the unsafe parameter value set, s be the interaction-state. The equations in s

are represented as fj(X(0), X, t) =0, 1 ≤j ≤m, where X(0) is the set of initial values of X.

Then, if there exists t* such that u ⊆ s* (where s* = s(t=t*)), then s can potentially be

unsafe if an outgoing transition does not transit the state before time t*. Otherwise,

the state is considered safe. In general, some initial values in the state may be

inherited from other states. These initial values can be treated as unknown variables

and the system of equations can be solved to determine if there exist initial value

assignments that can make the state unsafe.

The basic idea behind determining if a transition will take place before state reaching

the unsafe value is as following. Let u be an unsafe parameter value set and s be an

interaction-state. Let X(0) be the possible initial values of various parameters in the

interaction-state. Let t* be the time at which parameters in the state reach unsafe

values. Let these values be represented by X(t*). Let there exist an outgoing transition

r such that the condition associated with the transition defines a hyper-plane over the

values of parameters in state. If X(0) and X(t*) lie on two different sides of the hyper-

plane, then any state that starts with value X(0) will transition to a different state

before actually resulting in unsafe values. Therefore this state will be a safe state.

For example, let X = {x1, x2, x3, x4}, u = {(x1=5), (x2=10)}, and X(0) ={0, 0, 0, 0}. Let

us assume that the interaction equations in s are {(x1(t) = x1(0) + t), (x2(t) = x2(0) +

2x1)} and an outgoing transition has the condition represented as (x1+ x2 =6). In this

case when t is equal to 5, various parameters in s will reach unsafe value defined in u.

 141

However, the outgoing transition happens at t = 2, thus s can never actually reach the

unsafe value set. Therefore s is safe.

Case 3: If the interaction equations are unknown, then we cannot compute the exact

values of the parameters. However, if qualitative structures of the equations are

known, we can examine the structure of the equations to determine if by the nature of

the equations, the possibility of reaching the unsafe states can be eliminated. In this

analysis, we assume that the interaction equations in the state remain irredundant at

the unsafe parameter values.

Consider the following example: Let s involve the following interaction equations of

known structure and unknown form: f1(x1, x2), f2(x1, x2, x3), f3(x2, x3, x4). Let u = {(x2 =

0), (x3 = 0)}. Therefore at u, the state equation structure will become f1′ (x1), f2′ (x1),

f3′ (x4), where f1′, f2′, and f3′ have been obtained by substituting values in u. In order

for state s to reach u, there need to exist a solution to these equations. A solution to

these equations will only exist if f1′= f2′. In other words, there is at least a redundant

equation. As long as f1 and f2 have a structure such that substituting x2 = 0 and x3 = 0

in them does not produce an identical equation, s can never reach unsafe value.

The mathematical basis for the analysis in this case is given by Theorem 5.1

described below.

Let F be the set of parameter sets participating in interaction equations in state s. For

every f ∈ F, f ⊆ Z, where Z = X ∪ Y ∪ {t}. X is the set of parameters in s. Y is the set

of auxiliary variables corresponding to the unknown initial conditions in s.

 142

Create F′ by eliminating parameters corresponding to X′ and X′′ from F. X′′ is the set

of parameters that have known constant value in s. If this leads to an empty member

in F′, then remove that member from F′.

Theorem 5.1. If there exists a set F′′ ⊆ F′ such that cardinality(F′′) >

cardinality(∪F′′), then s can reach unsafe values defined in u, if at least one of the

equations in F′′ is redundant at u.

Proof:

In order for variables in s to reach values specified in u, all equations corresponding

to F′′ will have to be simultaneously satisfied. cardinality(F′′) > cardinality(∪F′′).

Therefore, equations corresponding to F can be satisfied at u, if at least one equation

associated with F′′ is redundant at u. If this is not the case, then s will be safe.

Depending on whether the equations are known or unknown, different algorithms

may be applied. The algorithm for solving the problem with the known equations is

the following:

Algorithm CHECKSTATESAFETYWITHKNOWNEUQATIONS

Input:

• System of interactions K defined over X. There are n variables in X and m

interactions in K.

• Incoming transition ri.

• Set of outgoing transitions Ro.

• Unsafe parameter value set u involving parameter set X′.

Output:

• State safety status: SAFE or UNSAFE

 143

Steps:

1) Initialize parameters. If the initialization type is ASSIGN, then assign the initial

value to the parameter. If initialization type is INHERIT, let the parameter value

be unknown. If initialization type is DERIVE, initialize the independent

parameters first. Then use the interaction equations to compute the dependent

parameter values. If there is at least one inherited parameter among the

independent parameters, then the dependent parameter value is marked as

unknown.

2) Override the parameter initialization using the initialization action set in the

incoming transition ri.

3) Find the set of parameters that have known constant value X′′ in s.

4) If X′′ ⊆ X′, then for every parameter p ∈ X′′, check if unsafe value of p in u

matches with value of p in s. Use the following conditions to determine the sate

safety status.

i. If value of at least one parameter does not match, then the state is safe.

Return state safety status as SAFE and exit.

ii. If all values of all parameters match and X′′ = X′, then the state is unsafe.

Return state safety status as UNSAFE and exit.

iii. If all values of all parameters match, X′′ ≠ X′, and all parameters in X′ − X′′

have unknown constant values, then the state is potentially unsafe. Return

state safety status as UNSAFE and exit.

iv. If X′′ = ∅ and all parameters in X′ − X′′ have unknown constant values, then

the state is potentially unsafe. Return state safety status as UNSAFE and exit.

 144

5) Let L be the set of state equations defined in terms of the sets of state parameters

X and auxiliary variables Y. Y is the set of auxiliary variables that correspond to

the unknown initial conditions. If all initial conditions are known, then Y will be

empty. The state equations will be represented in the following form: L(X, Y, t) =

{l1(X, Y, t) =0, …, lm(X, Y, t)=0}. Substitute unsafe values of parameters from

X′′in L. This reduces L to L′(Z, Y, t) where Z = X − X′′. Substitute value of

parameters from X′ − X′′ in L. This reduces L′ to L′′ (Z′, Y, t) where Z′ = (X − X′′)

− X′. Solve the above equations and compute values of variables Z′, Y and t such

that 0 ≤ t < ∞. If such a solution does not exist then the state is considered safe.

Return state safety status as SAFE and exit.

6) If a solution has been found in Step 5, then for every outgoing transition ro, do

the following:

i. If the outgoing transition is of the following form: lt(Xt)=0, Xt ⊇ Z and X′ ⊇

Xt, then do the following:

• Substitute value of parameters from u into lt, let value of lt be l1.

• Substitute values of parameters from the initial values of state (either

known as a part of the state definition or taken from set Y computed as a

part of Step 5) into lt, let value of lt be l2.

• If l1 and l2 have different signs, then the state is safe. In this case initial

values for the state and unsafe values for the state are on different sides

of hyper plane defined by the outgoing transition. Hence it’s impossible

to go from initial value to unsafe value. Return state safety status as

SAFE and exit.

 145

7) Return state safety status as UNSAFE and exit.

If multiple solutions are found is Step 5, then we need to check all the solutions as a

part of Step 6. If all solutions cannot be checked then one should directly proceed to

Step 7. Moreover, the above algorithm needs to be used on all incoming transitions

associated with the state.

Many different types of mathematical techniques can be used in Step 5 to solve a

given set of equations. Usually the choice of technique being used will depend upon

the nature of equations. Since the execution of Step 5 depends on the mathematical

techniques that are used to solve the equations, the complexity of the algorithm is

difficult to estimate.

Whenever the algorithm CHECKSTATESAFETYWITHKNOWNEUQATIONS returns state

safety status as UNSAFE, a caution should be exercised in interpreting these results.

This result in most case only implies that this state has a potential of reaching unsafe

values. Whether or not the state will actually reach unsafe value will depend upon the

state history.

The algorithm for solving the problem with the unknown equations is the following:

Algorithm CHECKSTATESAFETYWITHUNKNOWNEUQATIONS

Input:

• Set of parameter sets F for interactions defined over X. There are n variables in X

and m parameter sets in F.

• Incoming transition ri.

• Unsafe parameter value set u involving parameter set X′.

Output:

 146

• State safety status: SAFE, UNSAFE, or UNKNOWN

Steps:

Step 1, 2, 3, and 4 are identical to the ones used in algorithm

CHECKSTATESAFETYWITHKNOWNEUQATIONS.

Step 5: Find V = X ∪ Y ∪ {t}. Y is the set of auxiliary variables corresponding to the

unknown initial conditions in s.

Create F′ by eliminating parameters corresponding to X′ and X′′ from F. X′′ is the set

of parameters that have known constant value in s. If this leads to an empty member

in F′, then remove that member from F′. Let V′ = (V − X′′) − X′. Let the cardinality of

V′ be n′ and the cardinality of F′ be m′.

Call CONSTRUCTINTERACTIONNETWORK using F′ and V′ as inputs to create a flow

network (this algorithm is defined in Chapter 4).

Call FINDMINIMUMSTCUTSIZE on the flow network created in the previous step (this

algorithm is also defined in Chapter 4).

If a min-cut has been found such that the size of the min-cut is less than m′, then s is

considered safe. Return state safety status as SAFE and exit.

Step 6: Return state safety status as UNKNOWN.

The above algorithm can return three results. If the algorithm returns state safety

status as SAFE, then it means that unless one chooses redundant state equations, the

state will be safe. If the algorithm returns state safety status as UNSAFE, then it

means that there is possibility of the state parameters reaching the unsafe value

depending upon how the state is initialized. If the algorithm returns state safety status

as UNKOWN, then we cannot reach any conclusions based on the structure of the

 147

equations. Hence the user should run algorithm

CHECKSTATESAFETYWITHKNOWNEUQATIONS when the forms of the equations are

known.

5.3 Examples

The algorithm described above can be illustrated by the following examples.

First, let us consider the microwave oven design. The behavior specification of the

microwave oven is shown in Figure 5.1. Unsafe parameter value set is defined as

(Microwave::DoorStatus=OPEN AND Microwave::Heater = ON). We are concerned

about whether this unsafe parameter value set is embedded in the interaction-state of

heating. Description of the Heating state is shown in Figure 5.2.

Now we follow the algorithm described above to check the safety of the “heating”

state. First, we initialize the state parameters. As all of them are inheriting values

from the previous state, their values are unknown at this time. Then in step 2, we

identify the incoming transitions. Let us take r9 as the example. This transition will

set the value of Microwave::Heater to ON. In step 4, the only parameter with known

constant value is Microwave::Heater and its value matches the unsafe value. The

other parameter Microwave::DoorStatus has unknown constant value depending on

the previous state. Thus we consider the unsafe parameter value set embedded in the

heating state.

The second example comes from the AVC example described in Chapter 3. The

behavior specification of AVC is shown in Figure 3.11. The unsafe parameter value

set is defined as (AVC::RemainingCapacity ≤ 2%). We are concerned whether this

 148

unsafe parameter value set is embedded in the interaction-state of vacuum.

Description of the vacuum state is shown in Figure 3.15.

r1 s1
(Waiting)

s3
(Heating)

r3

r8

Initial
r2

s2
(Ready)

r4
r7

r6

r9

r5
r10

r11

Microwave::DoorClosed = TRUEr11

Microwave::DoorClosed = FALSE

Microwave::HeaterStatus = OFF

Microwave::HeaterStatus = ON

Microwave::DoorClosed = FALSE

Microwave::DoorClosed = TRUE

Food:: InMicrowave = FALSE

Microwave::DoorClosed = FALSE

Microwave::DoorClosed = TRUE

Food::InMicrowave = TRUE

Microwave::Power = OFF

Microwave::Power = ON

Closure Action

r9

r10

r12

r6

r7

r8

r5

r4

r3

r2

r1

Name

Microwave::DoorClosed = TRUEr11

Microwave::DoorClosed = FALSE

Microwave::HeaterStatus = OFF

Microwave::HeaterStatus = ON

Microwave::DoorClosed = FALSE

Microwave::DoorClosed = TRUE

Food:: InMicrowave = FALSE

Microwave::DoorClosed = FALSE

Microwave::DoorClosed = TRUE

Food::InMicrowave = TRUE

Microwave::Power = OFF

Microwave::Power = ON

Closure Action

r9

r10

r12

r6

r7

r8

r5

r4

r3

r2

r1

Name

Transition list in the microwave behavior specification

r12

Figure 5.1: Transition diagrams for behavior specification of microwave

 149

s3 (Heating)

NONECONSTANTNAINHERITMicrowave::
HeaterStatus

NONECONSTANTNAINHERITMicrowave::
HeaterPower

NONECONSTANTNAINHERITMicrowave::
Power

NONECONSTANTNAINHERITMicrowave::
DoorClosed

EquationChange TypeInitialization
Value

Initialization
Type

parameter

NONECONSTANTNAINHERITMicrowave::
HeaterStatus

NONECONSTANTNAINHERITMicrowave::
HeaterPower

NONECONSTANTNAINHERITMicrowave::
Power

NONECONSTANTNAINHERITMicrowave::
DoorClosed

EquationChange TypeInitialization
Value

Initialization
Type

parameter

Artifact Set and Interaction Topology

Parameters Initialization and Change

Microwave Food

Artifact Interaction Set

Food::Temperature = f(Microwave::HeatingPower, t)

Figure 5.2: Definition of state s3

Now we follow the algorithm described above to check the safety of the “vacuum”

state. First, we initialize the state parameters. As all of them except AVC::Speed are

inheriting values from the previous state, their values are unknown at this time. Then

in step 2 we identify the incoming transitions as r5 and r8. However, these two

transitions do not influence the initialization of the state variables. We also know the

equation that describes the change of the parameter in the unsafe parameter value set

as:

AVC::RemainingCapacity(t)= AVC::RemainingCapacity(t=0) − t/20000

 150

In step 4, although we don’t know the exact initial value of AVC::RemainingCapacity,

we know there exist an initial value and a time t such that the value of

AVC::RemainingCapacity would be below 2%. In step 6, the outgoing transitions are

r6 and r7. They have no influence on state safety. Thus this state is considered unsafe.

The third example is a device for storing and draining liquid. The behavior

specification of this device is shown in Figure 5.3. Unsafe parameter value set is

defined as (Reservoir::RemainingCapacity = 10). We are concerned whether this

unsafe parameter value set is embedded in the interaction-state of Empty. Description

of the Empty state is shown in Figure 5.4.

r1 s1
(Waiting)

s3
(Storing)

r2
Initial s2

(Empty)

r4

r5

r3 r6

Reservoir::Power = OFFr4

Reservoir::RemainingCapacity = 20r6

Reservoir::Power = OFF

Reservoir::RemainingCapacity = 100

Reservoir::Drain = FALSE

Reservoir::Drain = TRUE

Reservoir::Power = ON

Closure Action

r7

r5

r3

r2

r1

Name

Reservoir::Power = OFFr4

Reservoir::RemainingCapacity = 20r6

Reservoir::Power = OFF

Reservoir::RemainingCapacity = 100

Reservoir::Drain = FALSE

Reservoir::Drain = TRUE

Reservoir::Power = ON

Closure Action

r7

r5

r3

r2

r1

Name

Transition list in the Reservoir behavior specification

r7

Figure 5.3: Transition diagrams for behavior specification of reservoir

 151

s2 (Empty)

NONECONSTANTNAINHERITReservoir::Drain

NONECONSTANTNAINHERITReservoir::Power

Reservoir::RemainingCapacity(t) =
Reservoir::RemainingCapacity(t=0) – 5t

EQUATIONNAINHERITReservoir::
RemainingCapacity

EquationChange
Type

Initialization
Value

Initialization
Type

parameter

NONECONSTANTNAINHERITReservoir::Drain

NONECONSTANTNAINHERITReservoir::Power

Reservoir::RemainingCapacity(t) =
Reservoir::RemainingCapacity(t=0) – 5t

EQUATIONNAINHERITReservoir::
RemainingCapacity

EquationChange
Type

Initialization
Value

Initialization
Type

parameter

Artifact Set and Interaction Topology

Parameters Initialization and Change

Reservoir Water

Artifact Interaction Set

None

Figure 5.4: Definition of state s2

Now we follow the algorithm described above to check the safety of the Empty state.

First, we initialize the state parameters. As all of them are inheriting values from the

previous state, their values are unknown at this time. Then in step 2, we identify the

incoming transition as r2. r2 does not influence the initialization of the state variables.

We also know the equation that describes the change of the parameter in the unsafe

parameter value set as:

Reservoir::RemainingCapacity(t) = Reservoir::RemainingCapacity(t=0) – 5t

In step 4, although we don’t know the exact initial value of

Reservoir::RemainingCapacity, we know there exist an initial value and a time t such

that the value of Reservoir::RemainingCapacity would be below 10. Thus the state is

potentially unsafe. However, in step 6, the outgoing transition r6 will transit the state

 152

to state s3 before Reservoir::Remaining Capacity decreases to 20. The transition

condition is:

ft: Reservoir::RemainingCapacity = 20. That is: ft: Reservoir::RemainingCapacity –

20 = 0. We can find an initial value such that l2 = Reservoir::RemainingCapacity(t=0)

– 20 > 0. If we substitute unsafe value of parameters into ft, we get l1 =10 – 20 < 0.

Since l1 and l2 have different signs, we conclude that this interaction-state is safe.

The fourth example is a coffee maker. The behavior specification of the coffee maker

is shown in Figure 5.5. Unsafe parameter value set is defined as

(CoffeeMaker::PotPresent = FALSE AND CoffeeMaker::::Brewer = ON). We are

concerned whether this unsafe parameter value set is embedded in the interaction-

state of Brewing. Description of the Brewing state is shown in Figure 5.6.

r1 s1
(Setup)

s3
(Serving)

r7

Initial
r2

s2
(Brewing)

r4

r6

r3 r5

CoffeeMaker::Brewer = ON

CoffeeMaker::Brewer = OFF

CoffeeMaker::Power = OFF

CoffeeMaker::PotPresent = TRUE

CoffeePowder::InCoffeeMaker = TRUE

CoffeeMaker::Power = OFF

CoffeeMaker::Power = ON

Closure Action

r6

r7

r5

r4

r3

r2

r1

Name

CoffeeMaker::Brewer = ON

CoffeeMaker::Brewer = OFF

CoffeeMaker::Power = OFF

CoffeeMaker::PotPresent = TRUE

CoffeePowder::InCoffeeMaker = TRUE

CoffeeMaker::Power = OFF

CoffeeMaker::Power = ON

Closure Action

r6

r7

r5

r4

r3

r2

r1

Name

Transition list in the coffee maker behavior specification

Figure 5.5: Transition diagrams for behavior specification of coffee maker

 153

s3 (Brewing)

NONECONSTANTNAINHERITCoffeeMaker::
HeaterPower

NONECONSTANTNAINHERITCoffeeMaker::
Power

NONECONSTANTNAINHERITCoffeeMaker::
PotPresent

NONECONSTANTNAINHERITCoffeeMaker::
Heater

EquationChange
Type

Initialization
Value

Initialization
Type

parameter

NONECONSTANTNAINHERITCoffeeMaker::
HeaterPower

NONECONSTANTNAINHERITCoffeeMaker::
Power

NONECONSTANTNAINHERITCoffeeMaker::
PotPresent

NONECONSTANTNAINHERITCoffeeMaker::
Heater

EquationChange
Type

Initialization
Value

Initialization
Type

parameter

Artifact Set and Interaction Topology

Parameters Initialization and Change

Coffee

Coffee Powder

Artifact Interaction Set

Coffee::Temperature(t) = f(CoffeeMaker::HeatPower, t)
Coffee::Weight(t) = Coffee::Weight(t)/30 + Water::Weight(t)

Water

Coffee Maker

Figure 5.6: Definition of state s3

Now we follow the algorithm described above to check the safety of the “brewing”

state. First, we initialize the state parameters. As all of them are inheriting values

from a previous state, their values are unknown at this time. Then in step 2, we

identify the incoming transitions. Let us take r7 as the example. This transition will

set the value of CoffeeMaker::Brewer to ON. In step 3, the only parameter with

known constant value is CoffeeMaker::Brewer and its value matches the unsafe value.

 154

The other parameter CoffeeMaker::PotPresent has unknown constant value

depending on the previous state. Thus we consider the unsafe parameter value set

embedded in the Brewing state.

The fifth example is a mixer used in the manufacturing of composite materials. This

machines works by mixing different types of materials and casting them into desired

parts. We only show the mixing state here. In this state, two nozzles are used to lead

in two different materials. A controller is used to control the total mass of the

materials according to requirements. Figure 5.7 shows the mixing state. Unsafe

parameter value set is defined as (Material1::Volume = 5 and Material2::Volume =

10). We are concerned whether this value set is embedded in the mixing state. In this

state, parameters have zero initial values. If we simply look at the interactions and

parameter initialization, we would arrive at the conclusion that this state is unsafe.

However, if we consider the outgoing transitions, state in figure 5.7(a) will be safe

because the state is exited before unsafe values are reached. On the other hand state in

figure 5.7(b) will reach unsafe values.

5.4 Summary

This chapter presents a systematic approach to check whether a predefined unsafe

parameter value set is embedded in an interaction-state. The conceptual design stage

lacks complete design details, hence we analyze different cases in which unsafe

parameter value sets can be embedded in an interaction state and provide an

algorithm to determine whether the interaction-state is safe based on these cases. This

algorithm is not dependent on the state history. Hence, it can be applied to each

interaction-state independently. During the conceptual design stage, the actual

 155

equations describing the interactions may not be known. Therefore we present

algorithms for handling both cases when interaction equations are known and when

they are not known. We have shown that our algorithms are conservative in nature.

We believe that the framework described in this chapter will provide the underlying

foundations for constructing the next generation software tools for conceptual design

of complex mechatronic systems.

Material1::Volume(t) = Material1::Volume(0) + t
Material2::Volume(t) = Material2::Volume(0) +
2×Material1::Volume(t)
Mass(t) = 100× Material1::Volume(t) +
500× Material2::Volume(t)

Material1::
Volume = 0

Material1::
Volume + Material2::
Volume = 6

Unsafe Value Set
Material1::Volume = 5 and Material2::Volume = 10

• This state is safe
• Values Material1::Volume = 5 and Material2::Volume = 10 are
reached at t = 5, but transition happens before that time (at t = 2)
(a) Unsafe value set not embedded in state

• This state will reaches unsafe values
• Values Material1::Volume = 5 and Material2::Volume = 10 are
reached at t = 5
• Outgoing transition will be reached at t = 6
(b) Unsafe value set embedded in state

Material1::
Volume = 0 Mass = 6600

Material1::Volume(t) = Material1::Volume(0) + t
Material2::Volume(t) = Material2::Volume(0) +
2×Material1::Volume(t)
Mass(t) = 100× Material1::Volume(t) +
500× Material2::Volume(t)

Figure 5.7: Mixing state

 156

Chapter 6: Design Concept Evaluation

Given a behavior specification, designers could generate many design concepts. An

important design step is to evaluate these design concepts and select the best concepts

and develop them into detailed designs. This chapter describes methods for

performing new types of evaluations that are facilitated by the modeling framework

described in Chapter 3. Specifically, it discusses two different types of evaluations

that can be performed: determination of maximum power consumption and

determination of optimal component sharing.

This chapter has been organized in the following manner. Section 6.1 describes the

optimal component-sharing problem. It first describes the optimal component-sharing

problem and shows that this problem is NP-hard. It also presents a branch and bound

algorithm for solving this problem. Section 6.2 describes the maximum power

consumption problem and presents an algorithm for solving it. Finally, Section 6.3

summarizes this chapter.

6.1 Optimal Component Sharing

6.1.1 Problem Statement

Artifacts in design concepts will be realized by selecting components from the

component library to implement the design concept. For examples, actuator artifacts

will be mapped to suitable physical motors. Consider a situation in which a design

concept needs two different actuators-- one for elevating a platform and one for tilting

the platform. Now assume that these two actuators are used in two different states and

hence never need to be used simultaneously. In such a situation, one might consider

 157

the possibility of using a single physical motor that can play the role of elevating the

platform in one state and tilting the platform in the other state. In this case we will say

that the two artifacts in the design concept are sharing the physical component motor.

Component sharing becomes an important design strategy in applications where

weight or space is very tight. In such situations, a design concept that maximizes

number of sharable components may be preferred over the design that does not allow

sharing components. Examples of such applications include medical devices used in

minimally invasive surgery and satellites. In both of these applications it becomes

necessary to use a single actuator or sensor to play multiple different roles.

In order for a component to play multiple roles, it typically needs to be disconnected

from one component and be connected to some other component. This in turn makes

the connector a lot more complex because they need to incorporate elaborate

switching mechanisms. If the switching mechanism becomes too complex, then it

defeats the purpose of sharing components. Hence a tradeoff needs to be made

between sharing components and deploying complex switching mechanisms.

State transition diagrams carry the information about the artifacts that are not being

used simultaneously. Hence they enable us to determine which artifacts can share

physical components. It is difficult to assess the actual complexity of switching

mechanism during the conceptual design. Therefore, in formulating optimal

component sharing problem, we do not explicitly consider the switching mechanism

complexity. We instead account for it implicitly by requiring that if a component has

been selected to play the role of an artifact, then it should play the role of that artifact

in every state. This restriction ensures that the same artifact is not being realized by

 158

different components in different states and hence unnecessarily increases the number

of switching mechanisms.

We use the following notation to describe this problem. Let S be the set of

interaction-states. Let A be the set of artifacts used in the design concept. Each

member of A describes an artifact and its type. Each member of S can be viewed as a

subset of A. Let T be the set of artifact types used in the design concept. The optimal

component sharing problem can be formulated as the following:

Given:

• T = {t1, …, tl}

• A = {(a1, t(a1)), …, (am, t(am)}, where t(ai) ∈ T

• S = {s1, …, sn}, where si ⊆ A

We are interested in finding a set

B = {B1, …, Bb} satisfying:

• Bi ⊆ A, such that every member of Bi has the same type.

• Cardinality of B is minimum.

• For each s ∈ S, Bi has at most one element common with s.

• No two elements of B intersect with each other.

Basically, every member of set B represents a set of artifacts that can be realized by

the same physical component.

Two elements with different types cannot be shared. Hence we need to solve this

problem for each artifact type separately. Therefore, by eliminating the type we can

significantly simplify this problem. The simplified problem can be stated as

following:

 159

Given:

• A = {a1, …, am}

• S = {s1, …, sn}, where si ⊆ A

We are interested in finding a set

B = {B1, …, Bb} satisfying:

• Bi ⊆ A.

• Cardinality of B is minimum.

• For each s ∈ S, Bi has at most one element common with s.

• No two elements of B intersect with each other.

Let us consider the following example.

We are given:

• A = {a1, a2, a3, a4, a5, a6, a7}

• S = {s1, s2, s3, s4} ={{a1, a2, a4, a6}, {a3, a5, a7}, {a1, a5, a7}, {a1, a3, a6}}

In this example, seven artifacts of the same type are used. However, some of them

can share physical components since they are not used in the same state. For example,

a2 can share a physical component with a3. a4 can share a physical component with a5.

a6 can share a physical component with a7. A possible solution for component-

sharing is B = {{a1}, {a2, a3}, {a4, a5}, {a6, a7}}. Then we only need four physical

components to realize seven artifacts in the design concept. This is enabled by the

fact that all artifacts are not being used simultaneously.

6.1.2 Complexity Analysis of Optimal Component Sharing Problem

Before attempting to develop an algorithm for this problem, we will first analyze the

complexity of the problem.

 160

We want to prove that the optimal component sharing problem is NP-hard and we

base this assertion by comparing it to the graph coloring problem.

Graph Coloring Problem (GCP) is defined as following:

Input: An undirected graph G.

Problem: Assign colors to vertices of the graph such that adjacent vertices are not

assigned the same color and the number of colors is minimized.

Theorem 6.1. Optimal Component Sharing Problem is NP-Hard.

Proof: To prove a problem C is NP-Hard we must show that it is at least as hard as a

known NP-Hard problem, say D. Specifically this requires,

1. A reduction, i.e., an algorithm to turn any instance of D into an instance of C.

2. An argument that the reduction takes only polynomial-time.

3. An argument that the reduction works, i.e., answer to the instance of C can be

used to create the answer for the instance of D.

We shall show that there is a natural reduction from the graph coloring problem to the

optimal component sharing problem. It is well known that the graph coloring problem

is NP-Hard [Corm90].

Given any instance of graph coloring, we construct an instance of OCSP by the

following transformation. For every vertex v ∈ V in the graph, insert an element a

into A. For every edge e = (v1, v2) ∈ E in the graph, insert an element s = {a1, a2} into

S. Here a1 and a2 are corresponding elements to v1 and v2. This transformation can be

realized for any instance of graph coloring and it is done in linear time with respect to

the size of the graph. Therefore requirements 1 and 2 have been met.

 161

Solution to OCSP can be mapped to graph coloring solution in the following manner

(an illustration is shown in Figure 6.1). For each group of sharable components,

generate a distinct color. Vertices in the graph that correspond to the components

assigned to the same group are marked with the corresponding color. This mapping

ensures that no two adjacent vertices have the same color. Because an element has

been inserted into set S for every pair of adjacent vertices, this ensures that elements

corresponding to the adjacent vertices will not belong to the same member of B.

Graph (V, E) (A, S)

Solve optimal
component

sharing problem

Map

B

Map each
member of B
to each color

Assign vertices of
the same groups
the same color

Colored Graph (V, E)

Figure 6.1: Converting GCP to OCSP

Now we need to show that the minimum number of groups of sharable components

also leads to the minimum number of colors in the graph. This can be shown by a

simple contradiction. Let us assume that the optimal solution to the OCSP is not an

optimal solution for the graph coloring problem. In that case, let us find the optimal

solution to the graph coloring problem. Using this solution, we can generate a

solution for the OCSP that will have the same cardinality as the optimal solution to

the graph coloring problem. Now based on our assumption, the optimal solution to

the graph coloring problem is better than the optimal solution found for OCSP.

Hence, we have just found a solution to OSCP that is better than the optimal solution

to OCSP. This leads to a direct contradiction and hence we conclude that the optimal

 162

solution to OCSP is also an optimal solution for the graph coloring problem. Thus the

requirement 3 has also been met. This proves that OCSP is NP-Hard.

6.1.3 Branch And Bound Algorithm For Solving The Problem

In real life situations, very few artifacts are actually sharable. Hence, this leads to

problem instances of relatively small size consisting of 10 or fewer elements in set A.

Therefore, we believe that branch and bound algorithm is a good candidate for

solving this problem. We expect that due to the pruning, it will work fast for many

problem instances. Even if the truly worst case is encountered, since the problem size

is small, it will still be able to find the optimal solution. So it will do better than

simple enumeration and yet ensure optimal solution.

Graph coloring problems are notoriously difficult [Corm90] to find greedy algorithms

with good approximation bounds. OCSP appears to be very similar in structure to

graph coloring problem, hence we did not attempt to look for a greedy algorithm.

The branch and bound algorithm developed as a part of this dissertation is given

below:

Algorithm FINDSHARABLECOMPONENTS

Input:

• A = {a1, …, am}

• S = {s1, …, sn}, si ⊆ A

Output:

• Optimal set B = {B1, …, Bb}

Steps:

1. B = {{a1}, …, {am}}.

 163

2. Assign Current_Best = Cardinality(B).

3. Call MERGEPAIRS(S, B).

4. Return B.

Algorithm MERGEPAIRS used in the above algorithm is given below.

Algorithm MERGEPAIRS(S, B)

Input:

• S = {s1, …, sn}, si ⊆ A

Output:

• Current_Best and the current best solution B

Steps:

1) Find all pairs Mp in B that can be merged. A pair can be merged if the merged

pair does not share two or more elements with any members of S.

2) If Mp is empty then

i. if Cardinality(B) < Current_Best, then Current_Best = Cardinality(B)

ii. Return.

3) Otherwise, if LOWERBOUND(B) ≥ Current_Best, return.

4) Sort members of Mp by increasing values of Filled_Count. Filled_Count is

defined on a pair (b, b′) as the number of elements in S with which b∪b′ will

have an intersection.

5) For every pair (b, b′) in Mp, perform the following:

i. b′′ = b ∪ b′

ii. MERGEPAIRS(S, ((B-{b, b′})∪{b′′}))

Algorithm LOWERBOUND used in the above algorithm is given below.

 164

Algorithm LOWERBOUND(B)

Input:

• B

Output:

• Lower bound on solution resulting from B

Steps:

1) Assign n1 = Number of elements in B that cannot be merged with any other

member; n2 = 0; n3 = 0; C = B

2) Remove those elements from C that cannot be merged with any elements of B.

3) Until there exists c in C such that c can be merged with at least one element of C,

do the following:

i. Remove c from C.

ii. Remove the members from C that can be merged with c

iii. n2 = n2 + 1

4) If C is not empty, then n3 =1

5) Return (n1 + n2 + n3)

The algorithm FINDSHARABLECOMPONENTS uses the following two heuristics:

• Function LOWERBOUND computes the lower bound on the solution that can result

from performing future merging on B. Thus we can prune the solutions with

larger lower bounds.

• Examining members of Mp after sorting it by Filled_Count helps in ensuring that

we examine promising solutions first. This heuristic first examines those options

that appear to have more merging choices in future.

 165

Function LOWERBOUND guarantees that only unpromising solutions will be pruned.

Theorem 6.2. For any B, the cardinality of B after merging sharable components is

larger or equal to LOWERBOUND(B).

Proof:

For any element in B that cannot be merged with any other element, it cannot be

merged in any solution. Number of these elements corresponds to n1. Let us assume

that any element in B could merge with at least one element and one of these

solutions B′ will have cardinality less than n2 + n3 after the merging. The merge will

lead to two groups: group B2 includes members of B′ that have at least two elements

and group B3 include members that have only one element.

Let m2 be the cardinality of B2 and m3 be the cardinality of B3. Each time we remove

an element from any member of B2, we can at least remove the rest of the elements

from the same member because they can be merged. Thus we have m2 ≥ n2. If there

are members in B′ that have only one element, then n3=1 and m3 ≥ 1. Otherwise, n3=0

and m3=0. Thus we have m3 ≥ n3. We conclude that

Cardinality(B′) = m2 + m3

≥ n2 + n3

This contradicts our assumption. Therefore any component sharing solution will have

cardinality larger or equal to the return of the function LOWERBOUND(B)

6.1.4 Example

This algorithm can be illustrated using the following example.

Given:

 166

• A = {a1, a2, a3, a4, a5, a6, a7}

• S = {s1, s2, s3, s4} ={{a1, a2, a4, a6},{a3, a5, a7},{a1, a5, a7},{a1, a3, a6}}

Figure 6.2 shows a transition diagram illustrating this example. Initial state has

been omitted from this figure because it has no bearing on this example. Figure

6.2(a) shows the diagram before components are shared. Following the above

branch and bound algorithm, we find an optimal solution to be B = {{a1}, {a2,

a3}, {a4, a5}, {a6, a7}}. Figure 6.2(b) shows the solution graphically.

a1

s1

a2

a4 a6

a3

s2

a7a5 a1

s3

a7a5

a1

s4

a6a3

A = {a1, a2, a3, a4, a5, a6, a7}

S = {s1, s2, s3, s4} ={{a1, a2, a4, a6},{a3, a5, a7},{a1, a5, a7},{a1, a3, a6}}

B = {{a1}, {a2, a3}, {a4, a5}, {a6, a7}}

This concept needs 7 motor artifacts

4 physical motors can be shared to
fill the need of 7 motor artifacts in

every state

Motor artifacts are used in 4 states

a1 a2 a4 a6

Mapping

a3 a5 a7

b1 b2 b4b3

Figure 6.2: An example illustrating the branch and bound algorithm

 167

6.2 Evaluating Design Concept Based On Maximum Power Consumption

The new representation of multiple interaction-state mechatronic design concepts

makes it possible for us to determine which components are active in which states.

This characteristic can be used to find out the maximum power consumed by a

mechatronic device. The maximum power consumed cannot be simply computed by

summing up the power requirements for all components. Instead, we need to figure

out when components are active and when they are not active. We also need to

determine the state where the maximum power is being consumed by active

components.

In a given valid interaction-state transition diagram, each interaction-state represents

a runtime working status of the device and use-environment. By definition, these

working statuses are not concurrent. Thus the power consumption in each interaction-

state can be compared and the maximum value is also the maximum power

requirement for the device.

The following algorithm describes how to estimate maximum power consumption for

a given design concept.

Algorithm FINDMAXIMUMPOWERCONSUMPTION

Input:

• A valid interaction-state transition diagram, where s0 is the marked initial state.

Output:

• Maximum power consumption Pmax and interaction-state s*.

Steps:

1. Assign maximum power consumption Pmax = 0.

 168

2. For each state s except the initial state, do the following:

a. Find active power consuming artifacts aj in s.

b. Assign P = Σ{power consumption of aj}.

c. If P > Pmax, assign Pmax = P; s* = s.

3. Return Pmax.

Figure 6.3 depicts a simplified interaction-state diagram.

s1

a2 a2

s2

a3

a1

s3

a3

a1

s0

a2 a3

m

a1

p q q m

p

Figure 6.3: An example of estimating maximum power consumption

There are three artifacts in the design world, a1, a2, a3, and different states have

different active artifacts. Let us assume that a1, a2, a3 consume power p, q, m

respectively when they are active. Then according to the above algorithm, the

maximum power required by the designed device is max{p + q, p + m, q + m}. It is

worth noting that simply summing up the power requirement of the three artifacts will

yield the power consumption estimate of p+q+m, which will unnecessarily lead to the

selection of a bigger power supply. This example illustrates that modeling the

interaction-states can produce more accurate estimate of the power consumption in

 169

case of multiple interaction-state devices. Similar approach can followed for the

estimation of noise level etc.

6.3 Summary

This chapter presents algorithms to evaluate design concepts based on two criteria:

maximum power consumption and optimal number of sharable components. For

maximum power consumption problem we provide a simple algorithm to generate the

solution. For the optimal component sharing problem we prove that it is NP-hard by

comparing it to the graph coloring problem. We also provide a branch and bound

algorithm to find the solution.

 170

Chapter 7: Transition Diagram Synthesis

This chapter introduces the transition diagram synthesis problem based on the

modeling framework introduced in Chapter 3. It presents the structure for describing

the basic elements for synthesizing a transition diagram behind a design concept and

provides an algorithm for synthesizing transition diagrams.

This chapter has been organized in the following manner. Section 7.1 describes the

formulation of the problem based on the modeling framework introduced in Chapter

3. Section 7.2 describes the structure of the component library used during the

synthesis process. Section 7.3 describes algorithms for synthesizing transition

diagrams. Section 7.4 describes theorems showing soundness of the algorithms.

Section 7.5 presents an example. Finally, Section 7.6 presents concluding remarks.

7.1 Problem Formulation

7.1.1 Preliminaries

Let Di be the transition diagram describing the desired behavior specifications of a

device. Di is defined using the device artifact ad and a set of use-environment artifacts

Au. Let C be the set of components from which the device artifact will be composed.

All parameters used in Di and C will be selected from a standard parameter list P. For

every component c ∈ C, c is defined by a transition diagram Di(c) describing its

behavior specifications, a detailed transition diagram Df(c) describing the concept

behind it, and elaboration operators that describe how the initial transition diagram is

mapped into the detailed transition diagrams.

 171

We classify components into the following two categories. Basic components are the

components that are not further decomposed. Complex components are components

that are further decomposed into basic components. For a basic component, its initial

transition diagram and final transition diagram will only consist of the component

itself and its use-environment artifacts. We would like to make the following

observations:

• If c is a basic component, then Di(c) = Df(c). In other words, if c is a basic

component, then the transition diagram corresponding to the behavior

specifications cannot be further elaborated.

• If c is a complex component, then Di(c) ≠ Df(c). In other words, if c is a complex

component, then the transition diagram corresponding to the behavior

specifications will need to be further elaborated. Such elaboration will typically

introduce basic components in the definition of Df(c) and hence c is realized by

connecting other basic components together.

We are interested in modeling complex components because availability of complex

components in the component library significantly reduces the combinatorial

complexity of the synthesis problem by exploiting proven complex components.

Once a complex component has been synthesized it can be reused in future design

synthesis problems.

Now we will provide few examples to further clarify definitions given above. Few

representative standard parameters are shown in Table 7.1. The desired behavior

specification of an intruder detection system is shown in Figure 7.1. The artifact

definitions used in this behavior specification are shown in Table 7.2. An example of

 172

a component library is shown in Figure 7.2. Definitions of artifacts in the component

library include both basic components and complex components (shown in Table

7.3). The behavior specifications for each component are shown in Figures 7.3 to 7.6.

Table 7.1: Standard parameters used in IDS example

Time

Area

Position

Dimension

StoringCapacity

Weight

Speed

Volume

Power

Energy

Voltage

Focus

Illumination

DigitalSignal

OpticalSignal

Parameter

Electrical

Mechanical

Mechanical

Mechanical

Mechanical

Mechanical

Mechanical

Mechanical

Electrical

Electrical

Electrical

Optical

Optical

Digital

Optical

Domain

REAL

REAL

(REAL, REAL, REAL)

(REAL, REAL, REAL)

REAL

REAL

REAL

REAL

REAL

REAL

REAL

REAL

REAL

REAL

REAL

Type

Time

Area

Position

Dimension

StoringCapacity

Weight

Speed

Volume

Power

Energy

Voltage

Focus

Illumination

DigitalSignal

OpticalSignal

Parameter

Electrical

Mechanical

Mechanical

Mechanical

Mechanical

Mechanical

Mechanical

Mechanical

Electrical

Electrical

Electrical

Optical

Optical

Digital

Optical

Domain

REAL

REAL

(REAL, REAL, REAL)

(REAL, REAL, REAL)

REAL

REAL

REAL

REAL

REAL

REAL

REAL

REAL

REAL

REAL

REAL

Type

 173

r5

r3

r1

r2

r4

r4

r6

Room IDS

IDS::VisualInput =
Room::VisualOutput
IDS::PersonPresent =
f(IDS::VisualInput)

Monitor

IDS::VisualInput =
Room::VisualOutput
IDS::PersonAuthorize
d = f(IDS::VisualInput)

Identify

Room IDS Recorder

Record

IDS::VisualInput = Room::VisualOutput
IDS::VideoOuput = f(IDS::VisualInput)
Recorder::VideoOuput = IDS::VideoOutput

Initialize

h2

IDS::PersonAuthorized = FALSE

IDS::Power = ON

IDS::Power = OFF

(IDS::Timer≥1200s) OR
(IDS::PersonPresent = FALSE)

Room::PersonPresent = TRUE

IDS::PersonAuthorized = TRUE

Condition

r6

r5

r4

r3

r2

r1

Name

IDS::PersonAuthorized = FALSE

IDS::Power = ON

IDS::Power = OFF

(IDS::Timer≥1200s) OR
(IDS::PersonPresent = FALSE)

Room::PersonPresent = TRUE

IDS::PersonAuthorized = TRUE

Condition

r6

r5

r4

r3

r2

r1

Name

TRUE / FALSEIDS::PersonAuthorized

0 to 1200sIDS::Timer

ON / OFFIDS::Power

TRUE / FALSERoom::PersonPresent

ValueAttribute

TRUE / FALSEIDS::PersonAuthorized

0 to 1200sIDS::Timer

ON / OFFIDS::Power

TRUE / FALSERoom::PersonPresent

ValueAttribute

Room IDS

Figure 7.1: Transition diagram and event space used in IDS behavioral specification

 174

GENERATE-REPLACEMENT-STATES
GENERATE-REPLACEMENT-
COMPONENTS
GENERATE-INTERACTING-ARTIFACTS
GENERATE-INTERACTIONS
GENERATE-INTERNAL-TRANSITIONS
GENERATE-EXTERNAL-TRANSITIONS

Behavior specification

Detailed Transition Diagram

Master Controller, Pitch motor,
Yaw motor, Pitch sensor, Yaw
sensor, Holder, Location
Algorithm, Zoom lens, Lens holder,
Switch motor, switch sensor, switch
mechanism

Sub Components of IIS

…

Recognition
algorithm

Locating algorithm

Image improvement
system (IIS)

Motor

Lens

CCD camera

…

Recognition
algorithm

Locating algorithm

Image improvement
system (IIS)

Motor

Lens

CCD camera

Component library

(1)

(2)

(3)

Elaboration
operators

Initialize Improve

Track Switch Capture

Initialize

Figure 7.2: Example of a component library

 175

Table 7.2: Parameters selection for artifact definition

DigitalSignal

OpticalSignal

Information

Power

Information

Timer

Information

DigitalSignal

OpticalSignal

Parameter

VisualOutput

IMAGEVideoInputRecorder

TRUE/FALSEBOOLEANPersonAuthorized

TRUE/FALSEBOOLEANPersonPresentRoom

ON/OFFBOOLEANPower

TRUE/FALSEBOOLEANPersonPresent

Timer

IMAGEVideoOutput

VisualInputIDS

ConventionTypeAliasArtifact

DigitalSignal

OpticalSignal

Information

Power

Information

Timer

Information

DigitalSignal

OpticalSignal

Parameter

VisualOutput

IMAGEVideoInputRecorder

TRUE/FALSEBOOLEANPersonAuthorized

TRUE/FALSEBOOLEANPersonPresentRoom

ON/OFFBOOLEANPower

TRUE/FALSEBOOLEANPersonPresent

Timer

IMAGEVideoOutput

VisualInputIDS

ConventionTypeAliasArtifact

CCD

CCD::VisualInput = Artifact1::VisualOutput
Artifact2::ImageInput = CCD::ImageOutput

Artifact1 Artifact2

ImageInput

VisualOutput

Power

ImageOutput

VisualInput

Alias

OpticalSignalCCD
Camera

DigitalSignal

Power

OpticalSignalArtifact1

DigitalSignalArtifact2

ParameterObject

ImageInput

VisualOutput

Power

ImageOutput

VisualInput

Alias

OpticalSignalCCD
Camera

DigitalSignal

Power

OpticalSignalArtifact1

DigitalSignalArtifact2

ParameterObject

Figure 7.3: Working state for CCD in behavior specification

 176

Motor::VoltageInput = Artifact1::VoltageOutput
Artifact2::OmegaInput = Motor::OmegaOutput

MotorArtifact1 Artifact2

OmegaInput

VoltageOutput

OmegaOutput

VoltageInput

Alias

VoltageMotor

AngularSpeed

VoltageArtifact1

OmegaArtifact2

ParameterObject

OmegaInput

VoltageOutput

OmegaOutput

VoltageInput

Alias

VoltageMotor

AngularSpeed

VoltageArtifact1

OmegaArtifact2

ParameterObject

Figure 7.4: Working state for motor in behavior specification

Lens::VisualInput = Artifact1::VisualOutput
Lens::VisualOutput = f(Lens::VisualInput)
Artifact2::VisualInput = Lens::VisualOutput

LensArtifact1 Artifact2

VisualInputOpticalSignal

VisualOutputOpticalSignal

VisualInput

VisualOutput

ViewAngle

Focus

Alias

FocusLens

ViewAngle

OpticalSignalArtifact1

OpticalSignalArtifact2

ParameterObject

VisualInputOpticalSignal

VisualOutputOpticalSignal

VisualInput

VisualOutput

ViewAngle

Focus

Alias

FocusLens

ViewAngle

OpticalSignalArtifact1

OpticalSignalArtifact2

ParameterObject

Figure 7.5: Working state for lens in behavior specification

 177

RecognitionAlg::SouceImage = Artifact1::ImageOutput
RecognitionAlg ::Identity = f(RecognitionAlg ::SouceImage)
Artifact2::Identity = RecognitionAlg ::Identity

Recognition alg.Artifact1 Artifact2

Identity

ImageOutput

SampleImages

SourceImage

Alias

DigitalSignalRecognitio
nAlg.

DigitalSignal

DigitalSignalArtifact1

DigitalSignalArtifact2

ParameterObject

Identity

ImageOutput

SampleImages

SourceImage

Alias

DigitalSignalRecognitio
nAlg.

DigitalSignal

DigitalSignalArtifact1

DigitalSignalArtifact2

ParameterObject

Figure 7.6: Working state for recognition algorithm in behavior specification

When generating a possible transition diagram for a design concept by connecting

different components together, there are two possible representations. The first

representation is called compact transition diagram Dc. This transition diagram

represents complex components as single components and only utilizes their behavior

specifications (i.e., Di(c)). The second representation is called elaborated transition

diagram Df. This representation represents complex components by their constituent

basic components and utilizes their elaborate transition diagrams (i.e., Df(c)).

In our framework, synthesis problem is solved using a two-step approach. In the first

step, given the behavior specifications Di for the device, we generate compact

transition diagram Dc behind the design concept by utilizing components in the

component library. This step only uses behavior specifications of the components.

Once we have successfully generated the compact transition diagram Dc, we map it

 178

into elaborated transition diagram Df by mapping each complex component in Dc into

its constituents.

The following definitions of equivalence will be used in the subsequent sections of

this chapter.

• Equivalence of parameters: Two parameters p1 and p2 are considered equivalent

if their names are identical. This also implies (p1.DataType = p2.DataType) AND

(p1.Unit = p2.Unit).

• Equivalence of parameter interactions: Two parameter interactions are

equivalent if their corresponding members are equivalent.

• Equivalence of artifacts: Two artifacts are equivalent if their corresponding

parameter sets are equivalent and parameter interactions are equivalent. However,

ArtifactType of the artifacts could be different because it is context related. An

artifact can serve as device in one context and use-environment artifact in another

context.

• Equivalence of interaction-states: Two interaction-states are equivalent if their

corresponding members are equivalent. Since we only deal with synthesis related

to component connectivity, we consider two equivalent states as having

equivalent parameters and parameter interactions.

• Equivalence of transitions: Two transitions are equivalent if their corresponding

members are equivalent.

• Equivalence of transition diagrams: two transition diagrams are equivalent if

their corresponding members are equivalent.

 179

7.1.2 Problem Statement

In this dissertation, we impose the following restrictions on the synthesis problems

being considered:

• All parameters used will be only selected from a standard parameter list P.

• We do not consider checking unsafe parameter value sets and validating

interaction-state consistency as a part of the synthesis process. Transition diagram

synthesis process will be limited to the selection of components only based on the

interactions of the components with use-environment artifacts. Additional

checking can be done as a post-processing step.

• We only consider interactions that are defined between two artifacts. Interactions

that simultaneously involve more than two artifacts will not be considered.

• We only handle those components whose behavior specifications have only one

working interaction-state (a component may have one additional initial state).

However, complex components can have multiple interaction-states in their

elaborated transition diagrams.

We formulate the design concept synthesis problem in the following manner.

Given,

• Standard parameter list P

• Transition diagram behind behavior specification Di (all parameters used in Di

belong to P)

• Component library C

We are interested in finding the following two transition diagrams:

1. Compact transition diagram Dc, satisfying the following conditions:

 180

a) For every artifact a that is used in Dc, there exists either a basic or a complex

component c in C such that a and c have the equivalent behaviors. This

condition is described as the following:

i. For every parameter interaction in the working state of Di(c) (please recall

that Di(c) has only one working state), we can find an equivalent parameter

interaction in those states of Dc that involve a.

ii. Let S* be those states in Dc that involve a. Every state s in S* meets the

following condition. For every parameter interaction in s, we can find an

equivalent parameter interaction in the working state of Di(c).

b) Dc is consistent with Di. This condition requires that Dc is equivalent to Di

after the following transformations:

i. For every state in Dc, remove those interactions that only involve

components (i.e., use environment artifacts are not involved). Replace

components in all the remaining interactions with the device artifact.

ii. For every transition in Dc, replace the components and their parameters with

the device artifact and its parameters.

2. Elaborated transition diagram Df, generated by applying elaboration operators for

every complex component in Dc.

7.2 Structure of the Component library

The component library is a set of available components that can be used during the

synthesis process. As explained in Section 7.1, each component is defined by two

transition diagrams Di(c) and Df(c). In addition to these two transition diagrams, for

 181

each complex component we also have a sequence of elaboration operators that

describe how to transform Di(c) into Df(c). These operators are described below:

• Generate Replacement States. This operator is called GENERATE-

REPLACEMENT-STATES and used to replace the working state in the behavior

specification of the complex component with the working states in its final

transition diagram. This operator is defined as the following.

o Input: Transition diagram that includes the working state s of the complex

component in its behavior specification.

o Action: Remove s from the transition diagram. Generate a set of empty states

S that has the same number of working states as in the final transition diagram

of the complex component.

• Generate Replacement Components. This operator is called GENERATE-

REPLACEMENT-COMPONENTS and used to replace the complex component

with its constituent basic components in the empty states generated above. This

operator is defined as the following.

o Input: Transition diagram produced by GENERATE-REPLACEMENT-

STATES.

o Action: Insert participating components of the complex component for each

working state in its final transition diagram into each corresponding state in S.

• Generate Interacting Artifacts. This operator is called GENERATE-

INTERACTING-ARTIFACTS and used to generate use-environment artifacts for

each states generated above. This operator is defined as the following.

 182

o Input: Transition diagram produced by GENERATE-REPLACEMENT-

COMPONENTS.

o Action: Insert interacting use-environment components of the complex

component into each state in S according to each corresponding working state

in its final transition diagram.

• Generate Interactions. This operator is called GENERATE-INTERACTIONS

and used to generate interactions for each state generated above. This operator is

defined as the following.

o Input: Transition diagram produced by GENERATE-INTERACTING-

ARTIFACTS.

o Action: Insert interactions between artifacts in each state of S based on the

final transition diagram for the complex component.

• Generate Internal Transitions. This operator is called GENERATE-

INTERNAL-TRANSITIONS and used to generate transitions between states

generated above. This operator is defined as the following.

o Input: Transition diagram produced by GENERATE-INTERACTIONS.

o Action: Insert transitions between states of S according to the corresponding

transitions in the final transition diagram of the complex component.

• Generate External Transitions. This operator is called GENERATE-

EXTERNAL-TRANSITIONS and used to generate the transitions between states

generated by the previous operator and other states in the compact transition

diagram. This operator is defined as the following.

 183

o Input: Transition diagram produced by GENERATE-INTERNAL-

TRANSITIONS.

o Action: Apply incoming transitions for s to the states in S that correspond to

the states that take incoming transitions from the initial state in the final

transition diagram of the complex component. Apply outgoing transitions for

s to the states in S that correspond to the states that take outgoing transitions to

the initial state in the final transition diagram of the complex component.

Remove transitions that do not involve any artifact in the starting and ending

states of the transitions.

The above described operator sequences are communicative in nature across complex

components. For example, consider a state that involves two complex components c

and c’. Applying the operator sequence for c first and then applying the operator

sequence for c’ produces the same result as applying the operator sequence for c’ first

and then applying the operator sequence for c.

Parameters can be organized according to different levels of abstraction. For example,

signals can be specialized into optical signals and digital signals. Usually desired

parameters of a device being designed are expressed with a higher level of abstraction

(i.e., more general). Parameters of components in the library are expressed using

lower levels of abstraction (i.e., more specialized). When we look for matching

parameters in the component library for desired parameters in the behavior

specifications, specialized parameters can always be used in the place of more general

parameters. For example, if we want a signal parameter in the desired artifact, we can

choose a component with either optical signal or digital signal parameters in the

 184

component library. On the other hand, parameters can use wildcard values in

transition conditions. That means if any value in the range of values represented by

the wildcard, the condition is satisfied. For example, transition condition (Signal =

ANY) means any signal with any value could satisfy the condition. A satisfying

condition could be (DigitalSignal = 5). These types of wildcards are mainly used to

enable matching of transition conditions.

Compatibility of parameters: Parameters can be organized hierarchically. For

example, the parameter signal has optical signal and digital signal as its children. A

child parameter can be used in any place where its parent parameter is used. We say

the children parameter is one of the compatible parameters of the parent parameter.

Similarly, a parameter interaction is compatible with another parameter interaction if

the parameters in the second interaction are equivalent or children of the parameters

in the first interaction.

For the convenience of modeling, designers could use non-standard parameter names.

These non-standard names serve as alias of standard parameters. We consider two

parameters to be equivalent if their standard names are the same.

Compatibility of transitions: a transition r1 is compatible with a transition r2 if the

parameters used in r1 are equivalent or compatible with the parameters used in r2.

7.3 Synthesis Algorithms

Developing the transition diagram behind a design concept not only requires one to

select the right components from the library, but also requires one to connect them in

a consistent manner to generate the compact and the elaborated transition diagrams.

Complex components can be treated as basic components while generating compact

 185

transition diagrams. Once compact transition diagrams have been developed, they can

be mapped to fully elaborated transition diagrams by including details about the

complex components. Once fully elaborated transition diagrams are generated, they

could be added into the component library for future reuse.

Our synthesis algorithm starts from the initial transition diagram and uses breadth

first search method for exploring various component combinations and generating the

new compact transition diagrams.

The basic ideas behind generating compact transition diagrams are as following. First

we look for a state which still has unknown artifacts. Unknown artifact could be

implemented by a component if the set of the component’s input/output interactions

in its behavior specifications and the interactions associated with the unknown artifact

have common members. The more the number of matching interactions is, the higher

the possibility is that the component can be used as a part of the unknown artifact. If

multiple components are possible, then these components are tried in the decreasing

cardinality of matching interactions. The intent behind this heuristics is to converge to

a solution quickly. After, identifying promising components we integrate the selected

component into the current transition diagram. Since a component has to be used in

its proper use-environment, we have to either find equivalent interactions in the state

for the substituting component’s parameter interactions or we need to insert extra

interactions that are not present in the state into the state. Interactions of device

artifact that are equivalent to the interactions of the component are realized by the

component. Thus we replace the device artifact with the component in those

interactions. For those interactions of the device artifact that cannot be fulfilled, we

 186

leave them as they are and they would be resolved by another component later. The

extra interactions between the component and its use-environment artifact are

considered as the interactions between the component and a new device artifact. We

also need to replace the parameters in the transition that are equivalent between

device artifact and the component just selected. This step inserts a new component

and updates the interactions between the device artifact and its use-environment

artifacts. Each introduction of component will realize some parameter interactions of

the device artifact. Inserting a component may also introduce new interactions. The

selection of a set of components will be able to finally realize all the desired

interactions if there exists a solution.

After selecting a component, we update transition diagrams for each applicable

component. Components will be added one by one until there is no unknown artifact

in any state, then the device artifact has been realized and we will get a compact

transition diagram with the desired characteristics and the solution is considered

complete.

The algorithm for generating compact transition diagram is described below.

Algorithm GENERATECOMPACTTRANSITIONDIAGRAM

Input:

• Standard parameter list P.

• Initial behavior specification Di.

• Component library C.

Output:

• Compact transition diagram Dc

 187

Steps:

1. Initialize the queue W with Di.

2. Select the first element D from W and do the following:

a Remove D from W.

b Find the set of components C* from the component library C that are

applicable to D in the following manner.

i. Initialize C* as an empty sequence.

ii. For each state s ∈ D, if there exit an artifact in s.ArtifactSet that is not a

known component or known use-environment artifact, do the following:

1) For every component c ∈ C, do the following:

a) Let s′ be the working state of Di(c).

b) if s′.InteractionInfo ∩ s.InteractionInfo ≠ ∅, insert c into C*, m

= cardinality(s′.InteractionInfo ∩ s.InteractionInfo).

iii. Sort elements of C* by decreasing value of m (ties will be broken

randomly).

c Examine every c in C* sequentially and do the following.

i. Copy D to D′.

ii. For each state s ∈ D′:

1) Let s′ be the working state of Di(c).

2) If s′.InteractionInfo ∩ s.InteractionInfo ≠ ∅, insert c into

s.ArtifactSet, and replace aD with c in s′.InteractionInfo ∩

s.InteractionInfo.

 188

3) Insert H′ = (s′.InteractionInfo − (s′.InteractionInfo ∩

s.InteractionInfo)) into s.InteractionInfo.

iii. For every transition r ∈ D′, if r involves parameters of aD that are

equivalent to that of c, replace aD with c.

iv. If there is no device artifact in any state of D, then the solution is

complete, return D′ and exit.

v. Insert D′ into W.

3. If the time limit has exceeded then exit with failure. Otherwise, go to Step 2.

The basic idea behind generating elaborated transition diagram from the compact

transition diagrams is as following. Since complex components have multiple states

in their final transition diagram Df(c), these states need to replace the state s where the

complex component is used. We do the replacement for each complex component one

by one. We use the operators associated with the complex component in the

component library to decompose the initial transition diagram into a detailed

transition diagram. The elaborated transition diagram is obtained after all complex

components have been decomposed and the transition diagram has been updated

accordingly.

The algorithm for generating elaborated transition diagram is described below.

Algorithm GENERATEELABORATEDTRANSITIONDIAGRAM

Input:

• Compact transition diagram Dc.

• Standard parameter list P.

• Component library C.

 189

Output:

• Elaborated transition diagram Df.

Steps:

1. For every complex component c used in the compact transition diagram Dc, do

the following:

a Use the operators associated with c in the component library to elaborate Dc.

2. Return the elaborated transition diagram as Df.

7.4 Characteristics of Algorithms

The following two theorems highlight the main characteristics of the above-described

algorithms.

Theorem 7.1. Compact transition diagram Dc generated by Algorithm

GENERATECOMPACTTRANSITIONDIAGRAM meets the following conditions:

1. For every artifact a that is used in Dc, there exists either a basic or a complex

component c in C such that a and c have equivalent behaviors. This condition is

described as the following:

a) For every parameter interaction in the working state of Di(c) (please recall

that Di(c) has only one working state), we can find an equivalent parameter

interaction in those states of Dc that involve a.

b) Let S* be those states in Dc that involves a. Every state s in S* meets the

following condition. For every parameter interaction in s, we can find an

equivalent parameter interaction in the working state of Di(c).

2. Dc is consistent with Di. This condition requires that Dc is equivalent to Di after

the following transformations:

 190

c) For every state s in Dc, remove those interactions that only involve

components from the component library (i.e., use environment artifacts are

not involved). Replace components in all the remaining interactions with the

device artifact.

d) For every transition in Dc, replace the components and their attributes with

the device artifact and its attributes.

Proof:

Condition 1a is satisfied by Step 2c of the algorithm. Each time we select a

component into each state of Dc, we keep the interactions that are identical to that in

Di(c) and add the interactions that are only in Di(c) into Dc. Thus all parameter

interactions in Di(c) are kept in Dc. Since Di(c) only involves one working state, Step

2c also ensures that condition 1b is satisfied.

Since behavior specifications of all components selected will have only one working

state, there will be the same number of states and transitions in Dc and Di. Step 2c

ensures each time a component is added, some interactions of the device artifact will

be realized by the interactions of the component. When the algorithm exits

successfully, all interactions of the device artifact in each state must have been

fulfilled. The interactions between the device artifact and use-environment artifacts

must have been fulfilled too. Thus condition 2a is satisfied by Dc. For each transition,

the algorithm only replaces the device artifact when equivalent parameters are found

in the components selected. All component parameters in Dc must be realized by this

kind of replacement. Thus if we reverse the replacement, we will get the same

transitions in Di. Thus condition 2b is satisfied by Dc.

 191

Theorem 7.2. If there exists a compact transition diagram that satisfies the given

behavior specifications and involves finite number of components from the

component library, then Algorithm GENERATECOMPACTTRANSITIONDIAGRAM will

find it.

Proof:

Each state in the compact transition diagram is a connected graph. Nodes in the graph

are the components and use-environment artifacts, and edges in the graph are

interactions among components. The use-environment artifacts only interact with

components. Behavior specifications of a state identify the use-environment artifacts

and their interactions with the desired artifact. Therefore, if a possible graph exists for

a state, then it can be discovered by starting from a use-environment artifact and

adding a component that corresponds to a node in the graph one at a time. Algorithm

GENERATECOMPACTTRANSITIONDIAGRAM considers all possible sequences of

introducing components in the graph. Hence if a solution exists with a finite number

of components, then the algorithm will find it.

7.5 Example

Let us take the design of intruder detection system (IDS) as an example. We are given

a list of standard parameters shown in Table 7.1, desired behavior specification of an

intruder detection system shown in Figure 7.1. The artifact definitions for the

behavior specification are shown in Table 7.2. The artifact definitions of a component

library that shows both basic components and complex components are shown in

Table 7.3. The behavior specifications for each component are shown in Figures 7.3

to 7.11. Now we need to generate the compact transition diagram for IDS.

 192

IISArtifact1

IIS::ImageInput = Artifact1::ImageOutput
IIS::ImageOutput = IIS:: Multiplicity × IIS::ImageInput
Artifact2::ImageInput = IIS::ImageOutput

Artifact2

ImageInput

ImageOutput

Multiplicity

ImageOutput

ImageInput

Alias

DigitalSignalImage
Improvement
System (IIS)

DigitalSignal

Multiplicity

DigitalSignalArtifact1

DigitalSignalArtifact2

ParameterObject

ImageInput

ImageOutput

Multiplicity

ImageOutput

ImageInput

Alias

DigitalSignalImage
Improvement
System (IIS)

DigitalSignal

Multiplicity

DigitalSignalArtifact1

DigitalSignalArtifact2

ParameterObject

GENERATE-REPLACEMENT-STATES
GENERATE-REPLACEMENT-COMPONENTS
GENERATE-INTERACTING-ARTIFACTS
GENERATE-INTERACTIONS
GENERATE-INTERNAL-TRANSITIONS
GENERATE-EXTERNAL-TRANSITIONS

Elaboration Operators

Figure 7.7: Working state for image improvement system in behavior specification

 193

CaptureCaptureTrackTrack SwitchSwitch

InitializeInitialize
r1

r2 r3

r4

r5

ConditionNa
me

MasterController::LensinPosition = FALSEr5

MasterController::ImageOut ≠ NONEr4

MasterController::LensinPosition = TRUEr3

(Holder::Theta = MasterController::Theta)
AND (Holder::Phi = MasterController::Phi)

r2

Artifact::Singal = ANYr1

ConditionNa
me

MasterController::LensinPosition = FALSEr5

MasterController::ImageOut ≠ NONEr4

MasterController::LensinPosition = TRUEr3

(Holder::Theta = MasterController::Theta)
AND (Holder::Phi = MasterController::Phi)

r2

Artifact::Singal = ANYr1

Figure 7.8: Final transition diagram for the Image Improvement System

Artifact

ZoomLens

MasterController

Capture

ImageOutput

Alias

DigitalSignalArtifact

ParameterObject

ImageOutput

Alias

DigitalSignalArtifact

ParameterObject

Artifact Interaction Equations

Artifact::VisualInput = ZoomLens::VisualOutput
Artifact ::ImageOutput = LocateAlg:: ImageInput
MasterController::ImageInput = Artifact ::ImageOutput

Figure 7.9: State description of “Capture”

 194

Track

Artifact LocateAlg MasterController

PitchMotor

YawMotor

holder

PitchSensor

YawSensor

ImageOutput

Alias

DigitalSignalArtifact

ParameterObject

ImageOutput

Alias

DigitalSignalArtifact

ParameterObject

Artifact Interaction Equations

LocateAlg:: ImageInput = Artifact::ImageOutput
MasterController:: Theta = LocateAlg:: Theta
MasterController:: Phi = LocateAlg:: Phi
PitchMotor:: VoltageInput = MasterController:: Theta
YawMotor:: VoltageInput = MasterController:: Phi
Holder:: Theta = Pitchmotor::OmegaOutput
Holder:: Phi = YawMotor:: OmegaOutput
PitchSensor:: Theta = Holder:: Theta
YawSensor:: Phi = Holder:: Phi
MasterController:: Theta = PitchSensor:: Theta
MasterController:: Phi = YawSensor:: Phi

Figure 7.10: State description of “Track”

 195

Switch

MasterController SwitchMotor SwitchSensorSwitchUnit

ZoomLens ZoomLensHolder

SwitchMotor:: VoltageInput = MasterController:: LensPosition
SwitchUnit:: Position = SwitchMotor:: OmegaOutput
SwitchSensor:: AngularInput = SwitchUnit:: Position
MasterController:: LensPosition = SwitchSensor:: AngularOutput
ZoomLensHolder:: Position = SwitchUnit:: Position
ZoomLens:: Position = ZoomLensHolder:: Position

Artifact Interaction Equations

Figure 7.11: State description of “Switch”

In order to find applicable components from the library, we look at the interactions in

each state of IDS. First, CCD camera is selected because its interactions are

compatible with that of IDS in the monitor state. Then we incorporate CCD into the

initial transition diagram of IDS and requirements for the new device artifact are

generated. Second, image improvement system (IIS) is selected to magnify the digital

image obtained from the CCD camera. IIS is only applied to the identify state. Third,

we select recognition algorithms to produce the signal from the image. Two

recognition algorithms are needed for detecting person’s presence and determining

person’s identity. Since all the interactions have been fulfilled, a solution is reached.

This process is illustrated in Figure 7.12. After we have a component, we try to

incorporate the component into the current transition diagram. This will limit the

behavior of the device and provide clues for selecting the next component. Figures

 196

7.13 to 7.15 illustrate steps in incorporating different components after they are

selected.

Device(IDS)

CCD Device(1)

CCD IIS Device(2)

CCD

IIS Device(3)

Recognition Alg.

CCD IIS

Locating
AlgorithmRecognition

Algorithm.

Level 1: Interaction of CCD
matches desired interaction

Level 2: Interaction of IIS
matches desired interaction

Level 3: …

Level 4: …

Figure 7.12: Illustration of searching for components of IDS

 197

r3

r2Room CCD

CCD::VisualInput = Room::VisualOutput

CCD::ImageOutput = CCD::VisualInput
Device::ImageInput = CCD::ImageOutput
Device::PersonPresent =
f(Device::ImageInput)

Monitor

Recorder

Record

device

Room CCD

Room CCD

Identify

device

CCD::VisualInput = Room::VisualOutput

CCD::ImageOutput = CCD::VisualInput
Device::ImageInput = CCD::ImageOutput
Device::PersonPresent =
f′(Device::ImageInput)

r6

CCD::VisualInput = Room::VisualOutput
CCD::ImageOutput = CCD::VisualInput
Recorder::ImageInput = CCD::ImageOutput
Recorder::VideoInput = f(Recorder::ImageOutput)

Figure 7.13: Incorporate CCD into IDS

r3

r2Room CCD

CCD::VisualInput = Room::VisualOutput

CCD::ImageOutput = CCD::VisualInput
Device::ImageInput = CCD::ImageOutput
Device::PersonPresent =
f(Device::ImageInput)

Monitor

Recorder

Record

device

Room CCD

Room CCD

Identify

device

CCD::VisualInput = Room::VisualOutput

CCD::ImageOutput = CCD::VisualInput
IIS::ImageInput = CCD::ImageOutput
IIS::ImageOutput = IIS::Multiplicity ×
IIS::ImageInput
Device::PersonPresent = f′(IIS::ImageInput)

r6

IIS

CCD::VisualInput = Room::VisualOutput
CCD::ImageOutput = CCD::VisualInput
Recorder::ImageInput = CCD::ImageOutput
Recorder::VideoInput = f(Recorder::ImageOutput)

Figure 7.14: Incorporate IIS into IDS

 198

r3

r2Room CCD

CCD::VisualInput = Room::VisualOutput
CCD::ImageOutput = CCD::VisualInput
LocateAlg::ImageInput = CCD::ImageOutput
LocateAlg::PersonPresent = f(LocateAlg::ImageInput)

Monitor

Recorder

Record

CCD::VisualInput = Room::VisualOutput
CCD::ImageOutput = CCD::VisualInput
Recorder::ImageInput = CCD::ImageOutput
Recorder::VideoInput = f(Recorder::ImageOutput)

Alg.

Room CCD

Room CCD

Identify

Alg.

CCD::VisualInput = Room::VisualOutput
CCD::ImageOutput = CCD::VisualInput
IIS::ImageInput = CCD::ImageOutput
IIS::ImageOutput = IIS::Multiplicity × IIS::ImageInput
RecognitionAlg::ImageInput = CCD::ImageOutput
RecognitionAlg::PersonPresent =
f′(RecognitionAlg::ImageInput)

r6

IIS

Figure 7.15: Incorporate recognition algorithm and locate algorithm into IDS

IIS has four states in its final transition diagram, of which three are working states. In

order to get an elaborated transition diagram from the compact transition diagram, we

use the six elaboration operators sequentially. First we generate three empty states

corresponding to the three working states of IIS. Second we insert the components of

IIS into each state. Third, we incorporate artifacts interacting with IIS into the three

states. Fourth, interactions are added for the three states. Fifth, transitions between the

three states are inherited from the final transition diagram of IIS. Sixth, we identify

that Track and Switch are the two states that are connected to the initial state in IIS’s

final transition diagram. Since Track state takes incoming transition from the initial

state in IIS’s final transition diagram, it will take the incoming transition from

Monitor state in the elaborated transition diagram. Since Switch state takes outgoing

 199

transition to the initial state in IIS’s final transition diagram, it will take the outgoing

transition to Monitor state and Record state in the elaborated transition diagram.

Since there is only one complex component used, the elaborated design concept is

generated after applying elaboration operators for IIS. Figures 7.16 to 7.25 show

various steps.

r3

r2Room CCD

Monitor

Recorder

Record

Alg.

Room CCD
r6

CaptureCapture

TrackTrack SwitchSwitch

CCD::VisualInput = Room::VisualOutput
CCD::ImageOutput = CCD::VisualInput
Recorder::ImageInput = CCD::ImageOutput
Recorder::VideoInput = f(Recorder::ImageOutput)

CCD::VisualInput = Room::VisualOutput
CCD::ImageOutput = CCD::VisualInput
LocateAlg::ImageInput = CCD::ImageOutput
LocateAlg::PersonPresent = f(LocateAlg::ImageInput)

Figure 7.16: Applying operator: generate replacement states

 200

Track

LocateAlg MasterController

PitchMotor YawMotor

Holder

PitchSensorYawSensor

Switch

MasterController SwitchMotor

SwitchSensor

SwitchUnit

ZoomLens ZoomLensHolder

Record

LocateAlg MasterController

PitchMotor YawMotor

Holder

PitchSensor YawSensor

Figure 7.17: Applying operator: generate replacement components

 201

Track

LocateAlg

MasterController

PitchMotor YawMotor

Holder PitchSensor

YawSensor

Switch

MasterController SwitchMotor

SwitchSensor

SwitchUnit

ZoomLens ZoomLensHolder

Record

LocateAlg MasterController PitchMotor YawMotor

Holder PitchSensor

YawSensor

Room CCD Recorder

CCD

Figure 7.18: Applying operator: generate use-environment components

Room

CCD

LocateAlg.

MasterController

Monitor

CCD::VisualInput = Room::Visualoutput
LocateAlg:: ImageInput = CCD::Imageoutput
MasterController::Theta =LocateAlg:: Theta
MasterController:: Phi = LocateAlg:: Phi

Artifact Interaction Equations

Figure 7.19: State description of “Monitor”

 202

CCD

ZoomLens

MasterController

Capture

CCD::VisualInput = ZoomLens::VisualOutput
CCD::ImageOutput = LocateAlg:: ImageInput
MasterController::ImageInput = CCD::ImageOutput

Artifact Interaction Equations

Figure 7.20: State description of “Capture”

Track

CCD LocateAlg MasterController

PitchMotor

YawMotor

holder

PitchSensor

YawSensor

Artifact Interaction Equations

LocateAlg:: ImageInput = CCD::ImageOutput
MasterController:: Theta = LocateAlg:: Theta
MasterController:: Phi = LocateAlg:: Phi
PitchMotor:: VoltageInput = MasterController:: Theta
YawMotor:: VoltageInput = MasterController:: Phi
Holder:: Theta = Pitchmotor::OmegaOutput
Holder:: Phi = YawMotor:: OmegaOutput
PitchSensor:: Theta = Holder:: Theta
YawSensor:: Phi = Holder:: Phi
MasterController:: Theta = PitchSensor:: Theta
MasterController:: Phi = YawSensor:: Phi

Figure 7.21: State description of “Track”

 203

Switch

MasterController SwitchMotor SwitchSensorSwitchUnit

ZoomLens ZoomLensHolder

SwitchMotor:: VoltageInput = MasterController:: LensPosition
SwitchUnit:: Position = SwitchMotor:: OmegaOutput
SwitchSensor:: AngularInput = SwitchUnit:: Position
MasterController:: LensPosition = SwitchSensor:: AngularOutput
ZoomLensHolder:: Position = SwitchUnit:: Position
ZoomLens:: Position = ZoomLensHolder:: Position

Artifact Interaction Equations

Figure 7.22: State description of “Switch”

 204

Record

CCD LocateAlg MasterController

PitchMotor

YawMotor

holder

PitchSensor

YawSensor

Artifact Interaction Equations
CCD::ImageInput = Room::VisualOutput
Recorder::ImageInput = CCD::ImageOutput
LocateAlg:: ImageInput = CCD::ImageOutput
MasterController:: Theta = LocateAlg:: Theta
MasterController:: Phi = LocateAlg:: Phi
PitchMotor:: VoltageInput = MasterController:: Theta
YawMotor:: VoltageInput = MasterController:: Phi
Holder:: Theta = Pitchmotor::OmegaOutput
Holder:: Phi = YawMotor:: OmegaOutput
PitchSensor:: Theta = Holder:: Theta
YawSensor:: Phi = Holder:: Phi
MasterController:: Theta = PitchSensor:: Theta
MasterController:: Phi = YawSensor:: Phi

Room Recorder

Figure 7.23: State description of “Record”

r5

r4
Initial
state

Identify

Track Capture
RecordMonitor Switch

r8

r4

r7

r9

ConditionName

MasterController::ImageInput ≠ NONEr9

MasterController::LensinPosition = TRUEr8

(Holder::Theta = MasterController::Theta)
AND (Holder::Phi = MasterController::Phi)

r7

IDS::Power=ONr5

IDS::Power=OFFr4

(IDS::Timer≥1200s) OR (IDS::PersonPresent = FALSE)r3

ConditionName

MasterController::ImageInput ≠ NONEr9

MasterController::LensinPosition = TRUEr8

(Holder::Theta = MasterController::Theta)
AND (Holder::Phi = MasterController::Phi)

r7

IDS::Power=ONr5

IDS::Power=OFFr4

(IDS::Timer≥1200s) OR (IDS::PersonPresent = FALSE)r3

r3

Figure 7.24: Applying operator: generate internal transitions

 205

r5 r2

r4
Initial
state

Identify

Track Capture
Record

r6
r1

Monitor Switch
r8

r4

r7

r9

ConditionName

MasterController::ImageInput ≠ NONEr9

MasterController::LensinPosition = TRUEr8

(Holder::Theta = MasterController::Theta)
AND (Holder::Phi = MasterController::Phi)

r7

IDS::PersonAuthorized = FALSEr6

IDS::Power=ONr5

IDS::Power=OFFr4

(IDS::Timer≥1200s) OR (IDS::PersonPresent = FALSE)r3

Room::PersonPresent = TRUEr2

IDS::PersonAuthorized = TRUEr1

ConditionName

MasterController::ImageInput ≠ NONEr9

MasterController::LensinPosition = TRUEr8

(Holder::Theta = MasterController::Theta)
AND (Holder::Phi = MasterController::Phi)

r7

IDS::PersonAuthorized = FALSEr6

IDS::Power=ONr5

IDS::Power=OFFr4

(IDS::Timer≥1200s) OR (IDS::PersonPresent = FALSE)r3

Room::PersonPresent = TRUEr2

IDS::PersonAuthorized = TRUEr1

r3

Figure 7.25: Applying operator: generate external transitions

7.6 Summary

This chapter presents a systematic approach to synthesizing design concepts based on

the modeling framework described in Chapter 3.

This chapter describes how to represent the components library based on which

design concepts are constructed. It then provides an algorithm to synthesize design

concepts from the components. Stored complex components are used to simplify the

synthesis process. Generated design concepts can be stored as a new complex

component in order to be reused for a more complex design concept. We also show

the soundness of the algorithm.

 206

The limitations of the approach described in this chapter lie in the assumptions that

have been made. Although the final design concept can have multiple states, the

synthesis algorithm cannot handle components with multiple states in their behavior

specifications. Future work needs to be done to relax this assumption.

 207

Chapter 8: Transition Diagram Synthesis

This chapter has been organized in the following manner. Section 8.1 describes the

main research contributions of this dissertation. Section 8.2 identifies the anticipated

industrial benefits resulting from the research described in this dissertation. Section

8.3 discusses the limitations of the methods and approach described in this

dissertation and provides future research directions.

8.1 Intellectual Contributions

This dissertation makes intellectual contributions in the following areas:

• A Modeling and Simulation Framework: We have developed a new modeling

framework for representing design concepts of multiple interaction-state devices.

We also describe conditions for ensuring its validity. The distinction between our

approach and traditional functional representation approaches for conceptual

design is as following. First, we use interactions instead of function flows or

input/output flows to describe relationships between artifacts. Interactions are

more general than flows. Therefore, our approach is more expressive than existing

approaches. Second, we use interaction-states to capture the operating modes of a

device. Hence we can support devices with multiple interaction-states. Therefore,

design concepts modeled using our framework can be simulated more accurately.

• Validation Algorithms: We have developed a systematic approach to check the

consistency of a set of interactions in an interaction-state of a mechatronic system.

We also provide an algorithm to find the set of interactions that cause the

inconsistency. During the conceptual design stage, the actual equations describing

 208

the interactions are usually not known. Therefore, our algorithm utilizes the

information on participating parameters to carry out its analysis. We have shown

both the soundness and completeness of our algorithms. This implies that when

our algorithm finds a set of interactions to be inconsistent, they are actually

inconsistent. Furthermore, when our algorithm finds a set of interactions to be

consistent, they are actually consistent. Even though the consistency-checking

problem appears to be combinatorial, we have developed an algorithm that works

in polynomial time and does not require exhaustive enumeration.

We have also developed a systematic approach to check whether a predefined

unsafe parameter value set is embedded in an interaction-state. We analyze

different cases in which unsafe parameter value sets can be embedded in an

interaction-state and provide an algorithm to determine whether the given

interaction-state is safe. This algorithm is not based on the state history and hence

it can be applied to each interaction-state separately. We have shown that this

approach results in a conservative analysis, i.e., when we conclude that a state is

safe, it is actually safe.

• Evaluation Algorithms: We have developed algorithms for evaluating design

concepts based on maximum power consumption and optimal component sharing.

Our approach utilizes the characteristics of the new modeling framework that

makes it possible for us to determine which artifacts are active in which states,

and which artifacts play what roles. Therefore we can evaluate maximum power

consumption more accurately and make the components sharable that play

different roles but not used concurrently.

 209

For maximum power consumption estimation we have developed a simple

algorithm to generate the solution. We have proved that the optimal component

sharing problem is NP-hard. We have also developed a branch and bound

algorithm to find the solution for the optimal component sharing problem.

• Synthesis Algorithms: We utilize our modeling framework for representing

known components. We utilize interaction-states transition diagram to represent

behavior of complex components. Ability to model complex components allows

us to utilize them in synthesizing new design concepts. We have developed a new

synthesis algorithm for synthesizing transition diagrams given the desired

behavior specifications and a component library. We have also shown soundness

of the algorithm.

8.2 Anticipated Benefits

Conceptual design stage currently lacks computer-supported engineering design tools

when compared to the detailed design stage. The problem lies in the lack of formal

representation, evaluation and synthesis methods to be used during the conceptual

design stage. We expect that the research reported in this dissertation will facilitate

the development of computer aided design tools for the conceptual design stage, thus

streamlining the design process. Specific benefits of the research reported in this

dissertation include:

• Improved support for design information archival and reuse: Not all of the

design activities require development of new designs from scratch. Actually,

many “new” product designs are developed by adopting existing designs. Thus it

is very important to archive design information in a computer interpretable and

 210

formal scheme for reuse purposes. Indexed design information also facilitates

quick and efficient searching for reuse. Our modeling framework supports the

computer interpretable representation of multi-state mechatronic device concepts

that cannot be conveniently captured by traditional approaches. Therefore, new

product design could benefit from the archived design.

• Improved support for design concept evaluation and selection: Evaluation is

important for selecting the most appropriate design option. Eliminating infeasible

design alternatives in the design process as early as possible could save a

significant amount of development time and money. By simulating and validating

the generated design concept, we could avoid spending time and energy on

developing infeasible design concepts. By comparing design concepts based on

the evaluation criteria, we can identify promising design alternatives, thus

reducing the search space for further exploration.

• Design automation: Computer aided design tools are helping designers in many

ways. Computer aided design tools for conceptual design will greatly help

designers in generating and selecting promising design concepts. Automated

design synthesis techniques could generate design alternatives much faster. In a

given amount of product development time, it allows designer to explore larger

design space. Therefore it also improves the chances of finding better design

solutions.

8.3 Directions for Future Work

The methods and approach described in this dissertation work have the following

limitations and therefore future work is needed to extend it in those areas:

 211

1. Extended modeling framework: Our modeling framework uses flat state

descriptions to depict the state transition diagrams. However, when the device has

hundreds of components, the flat states may not be the most efficient modeling

primitives. Extensions of the state structure may be needed to handle this situation

by extending the states to utilize a hierarchical structure.

2. Design suggestion based on validation results: Our interactions consistency

checking algorithm only identifies the set of inconsistent interactions. It would be

much useful if redesign suggestions were automatically generated based on the

inconsistency of interactions. The representation of interactions in a graph may be

utilized to provide design improvement suggestions to rearrange interactions.

3. Richer evaluation schemes: Current evaluation schemes only include evaluation

based on maximum power consumption and optimal components sharing. Other

evaluation schemes are needed such as device life estimation and device failure

diagnosis. New evaluation algorithms will need to be developed for these new

criteria.

4. Synthesis using complex components with multiple interaction-state behavior

specification: Our current synthesis algorithm assumes that complex component

only has one working state in its behavior specification. Extensions are needed to

utilize complex components with multiple states in their behavior specifications.

 212

Bibliography

[Akiy91] K. Akiyama. Function Analysis: Systematic Improvement of Quality
Performance. Productivity Press, 1991.

[Arms00] J.R. Armstrong and F.G. Gray. VHDL Design Representation and
Synthesis. Prentice Hall, 2000.

[Booc98] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling
Language User Guide. Addison-Wesley Press, 1998.

[Bohm04] M.R. Bohm and R.B. Stone. Representing functionality to support reuse:
conceptual and supporting functions. In Proceedings of the ASME
Design Engineering Technical Conference, Salt Lake City, Utah, USA,
September 2004.

[Brac96] R.H. Bracewell and J.E. Sharpe. Functional descriptions used in
computer support for qualitative scheme generation–schemebuilder.
Artificial Intelligence for Engineering Design, Analysis and
Manufacturing, 10(4):333-345, 1996.

[Broo04] C. Brooks, A. Cataldo, E. A. Lee, J. Liu, X. Liu, S. Neuendorffer, H.
Zheng (eds.). HyVisual: A Hybrid System Visual Modeler. Technical
Memorandum UCB/ERL M04/18, June 28, 2004, University of
California, Berkeley, CA 94720.

[Caga01] J. Cagan. Engineering shape grammars. Formal Engineering Design
Synthesis. Antonsson, E. K., and J. Cagan, eds., Cambridge University
Press, 2001.

[Camp00] M.I. Campbell, J. Cagan and K. Kotovsky. Agent-based synthesis of
electromechanical design configurations. Journal of Mechanical Design,
Transactions of the ASME, 122(1):61-69, March 2000.

[Chak02] A. Chakrabarti, P. Langdon, Y.C. Liu, and T.P. Bligh. An approach to
compositional synthesis of mechanical design concepts using computers.
In Engineering Design Synthesis: Understanding, Approaches and
Tools, Springer, 2002.

[Chan90] B. Chandrasekaran. Design problem solving: a task analysis. AI
Magazine, 11(4):59-71, 1990.

[Chan93] B. Chandrasekaran, A. Goel, and Y. Iwasaki. Functional representation
as a basis for design rationale. IEEE Computer, 26(1):48-56, January
1993.

 213

[Chan94] B. Chandrasekaran. Functional representations: a brief historical
perspective. Applied artificial intelligence, special issue on functional
reasoning, 8(2):173-197, 1994.

[Chen02] L. Chen, M. Jayaram and J.F. Xi. A new functional representation
scheme for conceptual modeling of mechatronic systems. In Proceedings
of the ASME Design Engineering Technical Conferences, Montreal,
Canada, September 2002.

[Corm90] T.H. Cormen, C.E. Leiserson and R.L. Rivest. Introduction to
Algorithms. The MIT Press, 1990.

[Deng99] Y.M. Deng, S.B. Tor and G.A. Britton. A computerized design
environment for functional modeling of mechanical products. In
Proceedings of the Fifth ACM Symposium on Solid Modeling, Ann
Arbor, Michigan, USA, 1999.

[Deng00] Y.M. Deng, G.A. Britton and S.B. Tor. Constraint-based functional
design verification for conceptual design. Computer Aided Design,
32(14):889-899, December 2000.

[Deng04a] Y.M. Deng and W. Liu. From function to structure and material: a
conceptual design framework. In Proceedings of the Fifth International
Symposium on Tools and Methods of Competitive Engineering,
Lausanne, Switzerland, April 13-17, 2004.

[Deng04b] Y.-M. Deng and W.F. Lu. A conceptual design synthesis framework for
micro-electro-mechanical systems (MEMS). In Proceedings of the
ASME Design Engineering Technical Conference, Salt Lake City, Utah,
USA, September 2004.

[Devi94] Y. Deville and K.K. Lau. Logic Program Synthesis. Journal of Logic
Programming, 20: 321-350, May-July, 1994.

[Diaz99] A. Diaz-Calderon, C. Paredis, and P. Khosla. Combining information
technology components and symbolic equation manipulation in
modeling and simulation of mechatronic systems. In Proceedings of the
1999 IEEE International Symposium on Computer Aided Control System
Design, August 1999.

[Doeb82] E.O. Doebelin. Measurement Systems: Application and Design.
McGraw-Hill, NY, 1983.

[Dori03] D. Dori and E. Crawley. Towards a common computational synthesis
framework with object-process methodology. In Proceedings of
Computational Synthesis, AAAI Spring Symposium, Stanford, CA,
March 2003.

 214

[Dym94] C.L. Dym. Engineering Design: A Synthesis of Views. Cambridge
University Press, 1994.

[Erdm95] A.G. Erdmann. Computer-aided mechanism design: now and the future.
Journal of Mechanical Design, 117: 93-100, 1995.

[Erde03] Z. Erden, A. Erden and A.M. Erkmen. Petri net approach to behavioral
simulation of design artifacts with application to mechatronic design.
Research in Engineering Design, 14(1):34-46 , February 2003.

[Fenv01] S.J. Fenves. A core product model for representing design information.
Technical Report, Number NISTIR6736, National Institute of Standards
and Technology, Gaithersburg, MD, USA, 2001.

[Ford56] L.R. Ford Jr., and D.R. Fulkerson. Maximal flow through a network.
Canadian Journal of Mathematics. 8:399 – 404, 1956.

[Fu93] Z. Fu, A. De Pennington, and A. Saia. A graph grammar approach to
feature representation and transformation. International Journal of
Computer Integrated Manufacturing. 6(1-2):137-151, 1993.

[Gabo95] H.N. Gabow. A matroid approach to finding edge connectivity and
packing arborescences. Journal of Computer and System Sciences,
50(2):259 –273, 1995.

[Gaus01] J. Gausemeier, M. Flath and S. Mohringer. Conceptual design of
mechatronic systems supported by semi-formal specification. In
Proceedings of the IEEE/ASME International Conference on Advanced
Intelligent Mechatronics, AIM, v 2, 2001, p 888-892.

[Good02] E.D. Goodman, K. Seo, R.C. Rosenberg, Z. Fan, J. Hu, and B. Zhang.
Automated design methodology for mechatronic systems using bond
graphs and genetic programming. In Proceedings of the NSF Design,
Service and Manufacturing Grantees and Research Conference, San
Juan, Puerto Rico, January 2002.

[Gold88] A.V. Goldberg and R.E. Tarjan. A new approach to the maximum-flow
problem. Journal of the ACM, 35(4):921–940, October 1988.

[Gort98] S.R. Gorti, G.J. Gupta, G.J. Kim, R.D. Sriram, and A. Wong. An object-
oriented representation for product and design process. Computer-Aided
Design, 30(7):489-501, 1998.

[Grab99] H. Grabowski, S. Rude and M. Huang. Supporting early phase of
mechatronic product design with layered function models. In
Proceedings of the IEEE International Symposium on Industrial
Electronics, v 2, 1999, p 914-918.

 215

[Grab04] H. Grabowski, R.-S. Lossack and C. Bruch. Requirements development
in product design - A state and state transition-based approach In
Proceedings of the Fifth International Symposium on Tools and Methods
of Competitive Engineering, Lausanne, Switzerland, April, 2004.

[Grun00] M. Gruninger, K. Atefi, and M.S. Fox. Ontologies to support process
integration in enterprise engineering. Computational and Mathematical
Organization Theory, 6(4):381-394, 2000.

[Gurn03] A.P. Gurnani, T.K. See and K. Lewis. An approach to robust
multiattribute concept selection. In Proceedings of the ASME Design
Engineering Technical Conferences, Chicago, Illinois, USA, September
2003.

[Hare87] D. Harel. Statecharts: a visual formalism for complex systems. Science
of Computer Programming, 8(3):231-274, June 1987.

[Haze96] G.A. Hazelrigg. System Engineering: An Approach to Information-
Based Design. Prentice hall Inc. 1996.

[Hirt01] J. Hirtz, R. Stone, D. McAdams, S. Szykman, and K. Wood. A
functional basis for engineering design: reconciling and evolving
previous efforts. Research In Engineering Design, 13(2):65-82, March
2002.

[Huan00] Y.M. Huang. On evaluation method during conceptual design. In
Proceedings of the ASME Design Engineering Technical Conferences,
Baltimore, Maryland, USA, September 2000.

[Hull02] E. Hull, K. Jackson and J. Dick. Requirement Engineering. Springer,
London, 2002.

[Iwas93] Y. Iwasaki et al. How things are intended to work: capturing functional
knowledge in device design. In Proceedings of the Thirteenth
International Joint Conference on Artificial Intelligence, AAAI Press,
San Mateo, California, USA, 1993.

[Iwas95] Y. Iwasaki, M. Vescovi, R. Fikes, and B. Chandrasekaran. Casual
functional representation language with behavior-based semantics.
Applied Artificial Intelligence, 9:5-31, 1995.

[Jaya03] M. Jayaram and L. Chen. Functional modeling of complex mechatronic
systems. In Proceedings of the ASME Design Engineering Technical
Conferences, Chicago, Illinois, USA, September 2003.

[Karg96] D.R. Karger and C. Stein. A new approach to minimum cut problem.
Journal of the ACM, 43(4): 601–640, July 1996.

 216

[Karn00] D. Karnopp, D. Margolis and R. Rosenberg. System Dynamics -
Modeling and Simulation of Mechatronic Systems. John Wiley & Sons
Inc., New York, 2000.

[Kont98] G. Kontonya and I. Sommerville. Requirements Engineering: Processes
And Techniques. John Wiley & Sons Inc., New York, 1998.

[Kuma96] R. Kumar, C. Blumenrohr, D. Eisenbiegler and D. Schmid. Formal
synthesis in circuit design - a classification and survey. Lecture Notes in
Computer Science, v 1166, p 294, 1996.

[Li01] X. Li, L. Schmidt, W. He, L. Li, Y. Qian. Transformation of an EGT
grammar: new grammar, new designs. In Proceedings of ASME 2001
Design Engineering Technical Conferences, Pittsburgh, PA, USA, 2001.

[Madh98] T. N. Madhusudan. On Synthesis Of Electromechanical Assemblies -
Automated Generation And Evaluation Of Design Alternatives. Ph. D.
Dissertation, Carnegie-Mellon University, June 1998.

[Mage99] J. Magee and J. Kramer. Concurrency: state models and java program.
John Willey & Sons Ltd, 1999

[Magr97] E. B. Magrab. Integrated Product and Process Design and
Development. CRC Press, 1997.

[Mcgo98] A. McGown, G. Green and P. A. Rodgers. Visible ideas: information
patterns of conceptual sketch activity. Design Studies, 19 (4):431-453,
1998.

[Mile72] L. Miles. Techniques of Value Analysis Engineering. McGraw-Hill,
1972.

[Mroz01] Z. Mrozek. UML as integration tool for design of the mechatronic
system. Second workshop on robot motion and control. Oct. 18-20, 2001.

[Naga92] H. Nagamochi, and T. Ibaraki. Computing edge connectivity in
multigraphs and capacitated graphs. Siam Journal On Discrete
Mathematics, 5(1):54-66, February 1992.

[Navi91] D. Navin-Chandra, K. P. Sycara, and S. Narasimhan. A transformational
approach to case based synthesis. Artificial Intelligence in Engineering,
Manufacturing and Design. 5(1): 31-45, May, 1991.

[Navi92] D. Navin-Chandra, S. Narasimhan, and K. P. Sycara. Qualitative
reasoning methods in design. Intelligent Design and Manufacturing, A.
Kusiak, Editiors, John Wiley and Sons, January, 1992.

 217

[Pahl96] G. Pahl and W. Beitz. Engineering Design: A Systematic Approach.
Springer-Verlag, 1996.

[Purc98] A.T. Purcell and G.S. Gero, G.S. Drawings and the design process.
Design Studies, 19 (4):389-430, 1998.

[Qian96] L. Qian, and J.S. Gero. Function-behavior-structure paths and their role
in analogy-based design. AI EDAM: Artificial Intelligence for
Engineering Design, Analysis and Manufacturing, 10(5):289-312, 1996.

[Qian02] L. Qian. Creative Design by Analogy. Engineering Design Synthesis:
Understanding, Approaches and Tools. Springer, 2002.

[Uric88] K.T. Ulrich. Computation and pre-parametric design. Technical Report
1043, AI Lab, MIT, Cambridge, MA.

[Saat90] T.L. Saaty. How to make a decision: the analytic hierarchy process.
European Journal of Operational Research. 48(1):9-26, 1990.

[Sasa96] M. Sasajima, Y. Kitamura, M. Ikeda, and M. Mizoguchi.
Representation language for behavior and function: FBRL. Expert
Systems with Applications, 10(3/4):471-479, 1996.

[Schm97] L.C. Schmidt and, J. Cagan. GGREADA: A graph grammar-based
machine design algorithm. Research In Engineering Design, 9 (4): 195-
213, 1997.

[See02] T.K. See and K. Lewis. Multiattribte decision making using hypothetical
equivalents. In Proceedings of the ASME Design Engineering Technical
Conferences, Montreal, Canada, September 2002

[Shoo00] S.B. Shooter, W.T. Keirouz, S. Szykman and S. Fenves. A model for
information flow in design. In Proceedings of the ASME Design
Engineering Technical Conferences, Baltimore, Maryland, USA,
September 2000.

[Srid04] P. Sridharan and M.I. Campbell. A grammar for function structures. In
Proceedings of the ASME Design Engineering Technical Conference,
Salt Lake City, Utah, USA, September 2004.

[Stac96] M. Stacey, H. Sharp, M. Petre, G. Rzevski, and R. Buckland. A
representation schema to support conceptual design of mechatronic
systems. Artificial Intelligence in Design, J. S. Gero and F. Sudweeks
Editors, 603-622, 1996.

[Stah98] T.F. Stahovich, R. Davis and H. Shrobe. Generating multiple new
designs from a sketch. Artificial Intelligence, 104 (1-2): 211-264, Sep
1998.

 218

[Ston00] R.B. Stone and K.L. Wood. Development of a functional basis for
design. Journal of Mechanical Design, 122(4):359-370, December 2000.

[Subr95] D. Subramanian D and C.S.E. Wand. Kinematic synthesis with
configuration-spaces. Research In Engineering Design, 7 (3): 193-213,
1995.

[Suh90] N. Suh. The Principles of Design. Oxford University Press, New York.
1990.

[Szyk99] S. Szykman, J.W. Racz, and R.D. Sriram. The representation of function
in computer-based design. In Proceedings of the ASME Design
Engineering Technical Conferences (11th International Conference on
Design Theory and Methodology), Las Vegas, NV, September 1999.

[Szyk01] S. Szykman, R.D. Sriram, and W.C. Regli. The role of knowledge in
next-generation product development systems. ASME Journal of
Computation and Information Science in Engineering, 1(1):3-11, 2001.

[Taka04] S. Takai and K. Ishii. Modifying Pugh’s concept evaluation methods. In
Proceedings of the ASME Design Engineering Technical Conference,
Salt Lake City, Utah, USA, September 2004.

[Thom93] B. Thome (editor). Systems Engineering: Principles and Practice of
Computer-based Systems Engineering. John Wiley & Sons, 1993.

[Tove04] M. Tovey and C. Richards. Computer representation for concept design
and maintenance instruction. In Proceedings of the Fifth International
Symposium on Tools and Methods of Competitive Engineering,
Lausanne, Switzerland, April 2004.

[Ullm97] G.D. Ullman. The Mechanical Design Process. McGraw-Hill, New
York, 1995.

[Ulri88] K. Ulrich and W. Seering. Computation and conceptual design. Robotics
and Computer-Integrated Manufacturing, 4(3/4):309-315, 1988.

[Ulri95] K.T. Ulrich and S. Eppinger. Product Design and Development.
McGraw-Hill, New York, 1995

[Ulri02] K.T. Ulrich and W.P. Seering. Synthesis of schematic descriptions in
mechanical design. In Engineering Design Synthesis: Understanding,
Approaches and Tools, Springer, 2002.

[Umed96] Y. Umeda et al. Supporting conceptual design based on the function-
behavior-state modeler. AIEDAM, 10(4):275-288, September 1996.

 219

[Umed97] Y. Umeda and T. Tomiyama. Function reasoning in design. IEEE
Expert, 2(12):42-48 1997.

[Varg04] N. Vargas-Hernandez and J.J. Shah. 2nd-CAD: a tool for conceptual
systems design in electromechanical domain. Journal of Computing and
Information Science in Engineering, 4(3):28-36, 2004.

[Verm03] M. Verma and W.H. Wood. Functional modeling: toward a common
language for design and reverse engineering. In Proceedings of the
ASME Design Engineering Technical Conferences, Chicago, Illinois,
USA, September 2003.

[Walt01] R.M. Walters. Overview of the design and development of mechatronic
systems. In Proceedings of the 5th World Multiconference on Systemics,
Cybernetics and Informatics, Orlando, USA, July 2001.

[Ward93] A.C. Ward and W.P. Seering. Quantitative inference in a mechanical
design compiler. Journal Of Mechanical Design, 115 (1): 28-35, Mar
1993.

[Welc91] R. Welch and J.R. Dixon. Conceptual design of mechanical systems.
Design Theory and Methodology, American Society of Mechanical
Engineers, Design Engineering Division (Publications), DE.31: 61-68,
1991.

[Welc94] R.V. Welch and J.R. Dixon. Guiding conceptual design through
behavioral reasoning. Research in Engineering Design. 6(3):169-188,
1994.

[Will89] B. Williams. Invention from First Principles via Topologies of
Interaction. PhD thesis, Massachusetts Institute of Technology Artifical
Intelligence Lab, June 1989.

[Will92] B.C. Williams. Interaction-based design: constructing novel devices
from first principles. In Intelligent Computer Aided Design, edited by
D.C. Brown, M. Waldron and H. Yoshikawa, pages 255-274, Elsevier
Science Publishers, 1992.

[Wood01] K.L. Wood and J.L. Greer. Function-based synthesis methods in
engineering design: state of the art, methods analysis, and visions for the
future. Formal Engineering Design Synthesis (edited by E.K. Antonsson
and J. Cagan), Cambridge University Press, 2001.

[Yang03] M.C. Yang. Concept generation and sketching: correlations with design
outcome. In Proceedings of the ASME Design Engineering Technical
Conference, Chicago, IL, USA, September 2003.

 220

[Zein04] A. Zeiny. Computable dynamic design repository for product data
representation. In Proceedings of the ASME Design Engineering
Technical Conference, Salt Lake City, Utah, USA, September 2004.

