
ABSTRACT

Title of Thesis: PIEZOELECTRIC ENERGY HARVESTING
IN A SOFT SEGMENTED ROBOT

Nilanjana Ghosh
MS, 2021

Thesis Directed by: Dr. Derek A. Paley
Department of Aerospace Engineering and
Institute for Systems Research

The twenty-first century has seen a tremendous rise in electronic devices. However,

this rise comes with a cost in energy. Researchers have been exploring alternate energy

sources to replace traditional energy sources like batteries for the past two decades. Piezoelectricity

is one of the less used alternate sources, which converts vibration energy into electricity.

This thesis explores the energy harvested by piezoelectric devices from the movement of

a soft robot. The energy harvested can recharge the power source that runs the robot.

A model derived from the lumped-parameter model of piezoelectricity is developed for

connected piezoelectric devices. This model is used to calculate the amount of energy

generated from movements of the soft robot, like stretching and rotation. This thesis also

highlights the stability and limitations of the proposed model.
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Chapter 1: Introduction

1.1 Motivation

Robotics has been the main focal point for most industries in the 21st century.

With most industries transitioning to Industry 4.0, there has been a monumental rise in

technologically advanced robots with higher degrees of computational power, capabilities,

and precision. However, a drawback to these capabilities is the higher power requirement.

Traditional wireless power sources like electrochemical batteries require not only

constant recharging but also affect the environment. To overcome these drawbacks,

researchers are focusing on alternative energy sources for ambient energy harvesting.

Ambient energy is available in the form of solar, thermal, or vibrational energy. One way

to harvest vibrational energy is to use piezoelectric materials. Their inherent electromechanical

coupling and high power density prove to be a good source for energy harvesting.

Though the piezoelectric effect was discovered in 1880, its use was limited to

sensors and actuators. In the last few decades, with the increase in low power electronics,

energy harvesting using piezoelectricity has become popular. However, extensive applications

in this area are rare.

In robotic applications like soft robots, though the actuators are lightweight and

flexible, they require rigid and heavy electronic and mechanical components to provide
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power. Using heavy and rigid power sources reduces the flexibility and usage of a soft

robot. To overcome this, energy harvested from the movement of a soft robot can be used

to power it or extend its battery life.

This thesis explores the possibilities of using piezoelectric devices to generate energy

from the movement of a soft segmented robot. The generated energy can be used to

recharge the primary power source of the robot.

1.2 Literature Review

1.2.1 Piezoelectric Energy Harvesting

Certain materials can generate electric charges under applied stress. This phenomenon

is known as the direct piezoelectric effect. However, these materials can also produce

strain in response to an applied electric field. This phenomenon is known as the converse

piezoelectric effect [1].

The piezoelectric effect has been used in high-precision actuation systems like

micromanipulators, micro- valves, atomic force microscope, adaptive optics, ultra-precision

machine tools, and structure dampers [2, 3]. Hence, the converse piezoelectric effect

has seen several usages over the decades. However, using the direct piezoelectric effect,

vibration energy can be converted to electrical energy. A rise in using the piezoelectric

effect in recent years for energy harvesting can be attributed to the increase in low-power

electronics [4]. Some popular applications of piezoelectric energy harvesting can be seen

in harvesting mechanical energy from human motion [5] and harvesting energy from wind

flows and water vertices [6, 7, 8].
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Due to its high efficiency, simple structure, high voltage generation capability,

and low cost, piezoelectric energy harvesting proves to be a good source of alternate

energy technologies. In addition, the inherent electromechanical coupling of piezoelectric

materials made it a popular choice over electromagnetic and electrostatic generators [9].

Piezoelectric energy harvesting is composed of three main parts: the energy source,

the harvesting mechanism, and the energy sink [4, 10]. The energy source is the ambient

source that produces the mechanical strain; it can be vibration due to movement or from

environmental factors like wind. The harvesting mechanism refers to the electronic circuit

used, and the energy sink can be a battery or a circuit that utilizes the generated voltage.

It is essential to develop a mathematical and analytical model of the energy harvesting

technology to gain better insights into the system’s function. Several models have been

proposed for piezoelectric energy harvesting to describe the dynamics of the energy

harvesting system. One of the more popular ones is the lumped parameter model [11,

12, 13]. This model provides a simple and efficient way to model the energy output from

a piezoelectric device.

Naturally occurring piezoelectric materials are mostly crystals. However, developments

in material science and manufacturing enable the construction of thin flexible and mechanically

stretchable piezoelectric devices [14]. These material properties have increased the popularity

of piezoelectric energy harvesting.
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1.2.2 Motion of a Soft Robot

A soft robot is a robot made up of a soft appendage. Due to its flexible structure, it

can be used for applications like underwater rescue missions, equipment maintenance, and

surveillance, etc. [15]. Often a soft robot is discretized into a series of link or segments for

analyzing its behavior [16, 17]. This provides a control problem involving many degrees

of freedom, albeit fewer than a continuum model.

The locomotion of a snake-like robot is often defined using two main planar models:

serpentine locomotion (horizontal locomotion) and traveling wave locomotion (vertical

locomotion) [18, 19, 20].

A traveling wave is a spatiotemporal oscillation that is a periodic function of both

space and time. The traveling wave locomotion describes the gaits of a snake-like robot

[17]. A sinusoidal traveling wave equation shown in Equation 1.1 can be used to approximate

the movement of a soft robot [20].

z = A sin (ωt+ kx) (1.1)

The travelling wave equation is used to describe the movement of the internal links

of a soft segmented robot. The different modes of the movement of a snake like robot can

be described using travelling wave equation described in Equation 1.1 [20].
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1.3 Thesis Contribution

The primary contribution of this work is developing a model to calculate the voltage

and power generated by piezoelectric devices from the movements of a soft segmented

robot, like stretching and rotation. An analytical model for connected piezoelectric devices

is derived from the lumped parameter model of piezoelectric energy harvesters [11, 13,

21].

The lumped parameter model provides a way to calculate the voltage generated

by piezoelectric devices for a single piezoelectric structure. In this work, this model is

expanded to multiple piezoelectric devices. In the proposed model, multiple piezoelectric

devices are mechanically coupled with one another. Two main types of motion have

been considered in this work: the stretching of a piezoelectric device and the rotation of

connected piezoelectric devices. The model is simulated using external sinusoidal force

and internal intrinsic length change.

The voltage generated and the stability of the model depend on parameters like

electromechanical coupling factor and material parameters. These parameters have been

extensively explored throughout this work.

1.4 Thesis Organization

Chapter 1 introduces the thesis and provides a brief overview of the previous works

done on this topic. Chapter 2 outlines the mathematical and conceptual background for

the thesis. Chapter 3 explores the behavior of piezoelectric devices when stretched.
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The lumped parameter model introduced in Chapter 2 is used to derive the model for

connected piezoelectric devices. Chapter 4 looks into the results of piezoelectric devices

when rotated. Here, the lumped parameter model is used as a base to derive the models

for rotation. Chapter 5 summarizes the results of this thesis and highlights the future

direction of this work.
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Chapter 2: Modeling of a Piezoelectric Energy Harvester

Piezoelectric Effect

The piezoelectric effect is the production of electric polarization by application of

stress in certain solid materials [22]. It was first demonstrated by Pierre Curie and Jacques

Curie in 1880.

The piezoelectric effect occurs as a result of charge distribution inside the material

when stressed, as depicted in Figure 2.1. Due to charge redistribution in the material

when stress is applied, an electric field will exist from the positive side to the negative

side. The direction of the electric field will change when the applied stress is in the

opposite direction.

As stated earlier, piezoelectric effect is divided into two major parts: the direct and

the converse piezoelectric effects. When a piezoelectric material is mechanically strained,

electric polarization proportional to the applied stress is produced. This effect is known as

the direct piezoelectric effect. When the same material is subjected to an electric field, it

becomes strained, and the amount of strain is proportional to the electric field. This effect

is known as the converse piezoelectric effect [1]. The direct and converse piezoelectric

effects can be represented as shown in Equation 2.1:
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Figure 2.1: Redistribution of charge due to applied stress

P = dσ (2.1)

X = dE (2.2)

Where, P is the polarization, σ is the stress applied, X is the strain produced, E is the

electric field applied, and d is the piezoelectric coefficient.

We know that the polarization in a material is proportional to the electric field in

the material, and the strain produced is proportional to stress, therefore [1, 4]:

P = εE (2.3)

X = sσ (2.4)

Where, ε is the absolute permittivity of the material, and s is the material compliance.
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We can combine the Equations 2.1 and 2.3 to get the coupled equations for piezoelectricity:

P = dσ + εE

X = dE + sσ

(2.5)

The Equation 2.5 forms the basis of modeling of piezoelectric devices [1].

Lumped Parameter Model

A standard energy harvesting method for piezoelectricity is the cantilevered beam

structure. An easy way to model the behavior of the cantilevered beam structure with a

vibrating base is a spring-mass damper model [11, 23, 24]. A cantilevered bimorph beam

is used as an energy harvester. Two oppositely polarized piezoelectric plates sandwiching

the substrate are connected in series. A simple electrical circuit consisting of a load

resistance RL is connected to the output terminal of the harvester as shown in Figure 2.2.
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Figure 2.2: Cantilevered bimorph piezoelectric energy harvester

The harvester shown in Figure 2.2 can be modeled by using a mass-spring-damper

model coupled with an electrical circuit as shown in Figure 2.3. Here, M is the equivalent

mass, C and K are the equivalent damping and stiffness coefficient, respectively, CP is

the electrical capacitance formed, and y and x are the displacement of the base and the

equivalent mass, respectively. In addition, an electromechanical coupling factor α exists

between the mechanical and the electrical circuit.
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Figure 2.3: Single degree of freedom lumped-parameter model

The differential equation governing the equation of motion due to the vibrating base

can be written as:

Mẍ+Bẋ+Kx+ αV = Bẏ +Ky

α [ẋ− ẏ]− CV̇ (t) =
V

R

(2.6)

The Equation 2.6 is used as a base to develop the models for piezoelectric energy

harvesters with multiple degree of freedom.
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Chapter 3: Energy Harvesting Incorporating Stretching

The lumped parameter model described in Section 2 is used to analyze the effects of

stretching of a soft appendage. This chapter expands the model to multiple piezoelectric

devices connected. A basic structure showing the stretching of a soft appendage is shown

in Figure 3.1.

The responses of the model are derived for two types of forcing first, where external

sinusoidal force is applied, and second when a traveling wave moves through the links.

Figure 3.1: Stretching of a soft robot

12



3.1 Single Node Model

A state space model for the lumped parameter model defined in Section 2 is developed

and used to analyze the voltage generated and the stability of the system.

3.1.1 Dynamic Modeling

From the Equation 2.6, we get the expressions for ẍ and V̇ as follows:

ẍ =
1

M
(−Bẋ−Kx− αV +Bẏ +Ky)

V̇ =
1

CP

(
− V

RL

+ α [ẋ− ẏ]

) (3.1)

Taking z = [x ẋ V ]′ to be the states of the system and input u = [y ẏ]′ we get the state

space equation as:


ẋ

ẍ

V̇

 =


0 1 0

−K
M
− B
M

− α
M

0 α
Cp

− 1
CPRL




x

ẋ

V

+


0 0

K
M

B
M

0 − α
CP


y
ẏ

 (3.2)

Integration of Equation 3.2 yields position of the lumped mass and the generated output

voltage as shown in Figure 3.2.
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Figure 3.2: Position of mass vs. voltage generated for sinusoidal input

3.1.2 Stability Analysis

At zero input, i.e., when u = 0 we have from Equation 3.2:

ẋ = ẍ = 0

when

K

M
x− α

M
V = 0 (3.3)
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and

V̇ = 0

when

− V

CPRL

= 0 (3.4)

From 3.3 and 3.4 we get, ż = 0 when z = 0. Again, from equation (3.2) with

u = 0 we get,

ż = Az

where

A =


0 1 0

−K
M
− B
M

− α
M

0 α
Cp

− 1
CpRL


The eigen values of A are obtained from solving:

|A− λI| = 0

Hence, ∣∣∣∣∣∣∣∣∣∣∣∣

−λ 1 0

−K
M
− B
M
− λ − α

M

0 α
Cp

− 1
CpRL

∣∣∣∣∣∣∣∣∣∣∣∣
= 0
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which implies

−λ

∣∣∣∣∣∣∣∣
− B
M
− λ − α

M

α
Cp

− 1
CpRL

− λ

∣∣∣∣∣∣∣∣−
∣∣∣∣∣∣∣∣
−K
M

− α
M

0 − 1
CpRL

− λ

∣∣∣∣∣∣∣∣ = 0

which implies

−λ
((
− B
M
− λ
)(
− 1

CpRL

− λ
)

+
α2

MCp

)
−
(
K

M

(
1

CpRL

+ λ

))
= 0

which implies

λ3 +

(
B

M
+

1

CpRL

)
λ2 +

(
B

MCpRL

+
α2

MCp
+
K

M

)
λ+

K

MCpRL

= 0 (3.5)

(3.6)

In 3.5B,M,Cp, RL, α > 0, hence the coefficients of λ do not have any sign change.

By Descartes’ rule [25], we can conclude that no roots are in the right half of the plane.

Hence, the origin of the system is exponentially stable.
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Figure 3.3: Steady state response of system 3.2

3.1.3 Energy Generated

The power output, P obtained from the piezoelectric device is proportional to the

square of the voltage V 2, i.e.,

P =
V 2

R
(3.7)

The output power when a sinusoidal input is applied to the single node piezoelectric

device is shown in Figure 3.4 using R = 100kΩ. The output power generated is in the

range of microwatts.
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Figure 3.4: Electric power generated (P)

3.2 Multi Node Model

A soft robot can be represented as a continuum structure consisting of nodes and

stretchable edges. To harvest energy from the movement of the soft robot, a structure

similar to Figure 3.5 is suggested. Here, a piezoelectric device is attached to each node of

soft robot. The output terminals of the piezoelectric devices are connected in series to get

maximum voltage output.
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Figure 3.5: Multiple Lumped Piezoelectric Devices

The equations of motion for 3.5, for a n node system where i = 1, 2, ..., n can be

written as

Mẍi +Bẋi +Kxi + αVi = Bẏi +Kyi

α [ẋi − ẏi]− CPi
V̇i =

Vi
Ri

(3.8)

The electrical parameters for series connected devices are given by

Veq =
i=n∑
i=1

Vi

1

CPeq
=

i=n∑
i=1

1

CPi

RPeq =
i=n∑
1=1

Ri

(3.9)

This model with a single vibrating base describes a system with vibrating only in
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one direction, without any internal movements of the links. Thus, this model fails to

describe the motion of a soft segmented robot.

3.2.1 Dynamic Modeling of Mechanically Coupled System

The links of a soft segmented robot is mechanically coupled together. Hence, in

this section a mechanically coupled model of multiple piezoelectric devices is developed.

3.2.1.1 Modeling with Constant Intrinsic Length

A structure of multiple piezoelectric devices connected to one another can be devised

as shown in Figure 3.6. The forces acting on the 1st, ith and nth mass is shown in Figure

3.7. The electrical output is connected in series to get maximum voltage.

Let l̄ be the rest length of each spring. The length of the spring when the spring is

stretched is

l1 = x1 − y

li = xi − xi−1, i = 2, . . . , n

(3.10)

To find the force produced by the stretching of spring, the difference between the

stretched length and the intrinsic length is calculated:

δ1 = l1 − l̄1 = x1 − l̄ − y

δi = li − l̄i = xi − xi−1 − l̄
(3.11)

20



To get the rate of change of length the Equations 3.10 and 3.11 are differentiated

with respect to time.

l̇1 = ẋ1 − ẏ

l̇i = ẋi − ẋi−1,i = 2, . . . , n

(3.12)

δ̇1 = l̇1 − ˙̄li = ẋ1 − ẏ

δ̇i = l̇i − ˙̄li = ẋi − ẋi−1

(3.13)

Here ˙̄l = 0 as l̄ is constant.

Figure 3.6: Connected Piezoelectric Devices

The forces acting on each node of the system in Figure 3.6 is shown in the free body

diagram in Figure 3.7.
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Figure 3.7: Forces acting on 1st, ith and nth node

The equations of motion of the for the multi node system in Figure 3.6 can be

derived from the free body diagram in Figure 3.7. The force equations are:

Mẍ1 = −K
(
x1 − l̄ − y

)
−B (ẋ1 − ẏ)

+K
(
x2 − l̄ − x1

)
+B (ẋ2 − ẋ1)− αV1

Mẍi = −K
(
xi − l̄ − xi−1

)
−B (ẋi − ẋi−1)

+K
(
xi+1 − l̄ − xi

)
+B (ẋi+1 − ẋi)− αVi

Mẍn = −K
(
xn − l̄ − xn−1

)
−B (ẋn − ẋn−1)− αV

α (ẋ1 − ẏ1)− CP V̇1 =
V1
R

α (ẋi+1 − ẋi)− CP V̇i =
Vi
R

α (ẋn − ẋn−1)− CP V̇n =
Vn
R

(3.14)

The Equation 3.14 can be simplified to
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Mẍ1 = −2Kx1 +Kx2 − 2Bẋ1 +Bẋ2 − αV1 +Ky +Bẏ

Mẍi = −2Kxi +Kxi+1 +Kxi−1 − 2Bẋi +Bẋi+1 +Bẋi−1 − αVi

Mẍn = −Kxn +Kxn−1 +Kl̄ −Bẋn +Bẋn−1 − αVn

CP V̇1 = −α (ẋ1 − ẏ)− V1
R

CP V̇i = −α (ẋi − ẋi−1)−
Vi
R

(3.15)

The overall voltage generated by the piezoelectric structure when connected in

series is given by Equation 3.9.

3.2.1.2 Modeling with Varying Intrinsic Length

For a travelling wave through the stacked piezoelectric material, each of the links

will expand and contract according to the dynamics of the travelling wave. In this scenario

the intrinsic length of the spring l̄i constantly changes. If a wave l̄i travels through the links

then we have the following equations:

l̄i = l̄0 + l0 sin (ωt+ φi) (3.16)

The equations of motion from Equation 3.15 can be modified to include the varying

intrinsic length as
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Mẍ1 = −K
(
x1 − l̄1 − y

)
−B

(
ẋ1 − l̇1 − ẏ

)
+K

(
x2 − l̄2 − x1

)
+B

(
ẋ2 − l̇2 − ẋ1

)
− αV1

Mẍi = −K
(
xi − l̄i − xi−1

)
−B

(
ẋi − l̇i − ẋi−1

)
+K

(
xi+1 − l̄i+1 − xi

)
+B

(
ẋi+1 − l̇i+1 − ẋi

)
− αVi

Mẍn = −K
(
xn − l̄n − xn−1

)
−B

(
ẋn − l̇n − ẋn−1

)
− αV2

α
[
ẋ1 − l̇1 − ẏ1

]
− CP V̇1 =

V1
R

α
[
ẋi − l̇i − ẋi−1

]
− CP V̇i =

Vi
R

α
[
ẋn − l̇n − ẋn−1

]
− CP V̇n =

Vn
R

(3.17)

The Equation 3.17 can be simplified to

Mẍ1 = −2Kx1 +Kx2 +Kl̄1 −Kl̄2 − 2Bẋ1 +Bẋ2 +B ˙̄l1 −B ˙̄l2 − αV1 +Ky +Bẏ

Mẍi = −2Kxi +Kxi+1 +Kxi−1 +Kl̄i −Kl̄i+1 + 2Bẋi +Bẋi+1 +Bẋi−1 −B ˙̄li+1 +B ˙̄li − αVi

Mẍn = −Kxn +Kxn−1 +Kl̄n −Bẋn +Bẋn−1 +B ˙̄ln − αVn

CP V̇1 = −α
[
ẋ1 − ˙̄l1 − ẏ1

]
− V1
R

CP V̇i = −α
[
ẋi+1 − ˙̄li − ẋi

]
− Vi
R

(3.18)
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3.2.2 Stability Analysis

The system of Equation, 3.15 and 3.18 are unstable for certain values of α, K and

B only. To analyse this phenomenon, the damping coefficient ζ is defined as

ζ =
B

2
√
KM

(3.19)
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Figure 3.8: Bifurcation Diagram for different values of α = 7.3 and 0.3 and varying ζ

It can be observed from Figure 3.8 that the real part of the eigenvalues λ becomes
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positive at certain values of K and B. The system becomes unstable at these values. It

is observed that the system is stable for lower values of the coupling factor α. At the

values for which the system becomes unstable, the length of the soft appendage increases

indefinitely and the voltage also increases proportionally.

3.2.3 Model Response for Different Forcing

The models developed in Sec. 3.2.1.1 and 3.2.1.2, are simulated with sinusoidal

inputs. This section focuses on the responses for the models for the different inputs.

3.2.3.1 Responses for Constant Intrinsic Length

The model defined in 3.2.1.1 is given a sinusoidal input u = [a sin (ωt) aω cos (ωt)]
′
,

where a = 5 and ω = 5. The system is simulated for 3 and 10 nodes respectively, as

shown in Fig. 3.9 and 3.10. The position, x and voltage, V both have initial conditions.
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Figure 3.9: Position and voltage for stretching in 3 nodes
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Figure 3.10: Position and voltage for stretching in 10 nodes

When starting from a higher initial condition, the voltage takes some time to stabilize

and give a sinusoidal output. Increasing the number of nodes, means increasing the

number of piezoelectric devices, hence, it can be seen that increasing the number of

nodes, keeping the model and input parameters constant, gives a higher series voltage,

Vs. Also, with the increase in number of nodes, the system takes longer time to give a

steady voltage output.

3.2.3.2 Response for Varying Intrinsic Length

The model defined in Sec. 3.2.1.2 is given a sinusoidal input u = [a sin (ωt) aω cos (ωt)]
′
.

The model is simulated with a = 5 and ω = 5, with l̄ = 0.1mm. The response of the
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model is for 3 nodes, and 10 nodes can be seen in Fig. 3.11 and Fig. 3.12 respectively.
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Figure 3.11: Position and voltage for stretching in 3 nodes with travelling wave
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Figure 3.12: Position and voltage for stretching in 10 nodes with travelling wave

In this case, when the internal length between each node changes in accordance to a

travelling wave equation, the position of each node, hence, the output voltage generated is

out of phase from one another. As the voltages are out of phase, thus, the resultant series

voltage does not cancel each other, hence, we get a higher voltage output. Moreover, the

stress generated due to change in intrinsic length also contributes to the output voltage.

3.2.4 Energy Generated

The power output in the multi node case is similar to the power output defined for

single node case. For multiple piezoelectric devices connected in series can be defined as:
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P =

∑n
i=1 V

2
i

R
(3.20)

The output power for stretching with constant and varying intrinsic length can be

seen in Fig. 3.13 and 3.14. As seen in the case of generated voltage, the output power is

higher for varying intrinsic length rather than constant intrinsic length.
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Figure 3.13: Power generated for 3 nodes and 10 nodes respectively in
constant intrinsic length
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Figure 3.14: Power generated for 3 nodes and 10 nodes respectively in
varying intrinsic length
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Chapter 4: Energy Harvesting Incorporating Rotation

This chapter expands the concepts from Chapter 3 to rotation of a piezoelectric

device. Here, the piezoelectric devices are modeled as rigid rods rotating around the

origin with spring and damper attached in between. The input vibrating force is applied

at the tip of the rod away from the origin.

4.1 Single Node Model

The single node model is shown in Fig. 4.1. It consists of a base rod, which rotates

with an input u =
[
φ φ̇
]
. Another rod, that rotates at an angle θ as a response to the input.

The length of the spring l̄ between each rod can be defined as:

l̄ = r
(
θ̄
)

(4.1)

Where θ̄ is the intrinsic rotating angle.

4.1.1 Dynamic Modeling

For rotating motion, we consider the spring in between each node, with rotational

spring constant κ and damping of B, bends by an angle θ. The motion of the system is
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shown in 4.1. Assume that the nodes are equally spaced from the origin, hence, r0 = r1 =

r.

The translational velocity of the first node with respect to the base node is

v1 − v0 = r1θ̇ − r0φ̇

v1 − v0 = r
(
θ̇ − φ̇

) (4.2)

Figure 4.1: Single Node Bending

For the system in Equation 4.1 the equations of motion are:

Iθ̈ = −κ sin
(
θ − θ̄ − φ

)
− B

(
θ̇ − φ̇

)
− αV

αr
(
θ̇ − φ̇

)
− CpV̇ =

V

R

(4.3)

If the angles, θ, θ̄, φ are sufficiently small. Hence, using the small angle approximation

yields:
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θ̈ =
1

I

(
−κθ − κθ̄ − Bθ̇ − αV + κφ+ Bφ̇

)
V̇ =

1

Cp

(
αr
(
θ̇ − φ̇

)
− V

R

) (4.4)

In Equations 4.3 and 4.4, I = Mr2/3.

4.1.2 Voltage and Energy Response

The single node model defined in the previous section is simulated using sinusoidal

input. The voltage generated from the rotation of the piezoelectric device is shown in

Fig. 4.2 and Fig. 4.3 shows the corresponding power generated. The voltage generated

after stabilization is very low compared to the stretching scenario as the amount of strain

produced in rotation is smaller. The output power of the system is given by Equation 3.7.
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Figure 4.2: Voltage response of rotation in single node
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Figure 4.3: Power generated in rotation of a single node

4.2 Multi Node Model

In the multi node model, each rod is connected to one another and the origin O as

shown in Fig. 4.4. This section explores the mathematical modeling of the multi node

model for two cases: constant intrinsic angle and variable intrinsic angle.
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Figure 4.4: Multiple Node Bending

4.2.1 Dynamic Modeling

4.2.1.1 Modeling with Constant Intrinsic Angle

In this scenario, the intrinsic angle θ̄, remains constant. Each link rotates in response

to the input vibration, u =
[
φ φ̇
]
. The equations of motion with small angle approximation

are given below:
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Iθ̈1 = −κ
(
θ1 − θ̄ − φ

)
+ κ

(
θ2 − θ̄ − θ1

)
− B

(
θ̇1 − φ̇

)
+ B

(
θ̇2 − θ̇1

)
− αV1

αr
(
θ̇1 − φ̇

)
− CpV̇1 =

V1
R

Iθ̈i = −κ
(
θi − θ̄ − θi−1

)
+ κ

(
θi+1 − θ̄ − θi

)
− B

(
θ̇i − θ̇i−1

)
+ B

(
θ̇i+1 − θ̇i

)
− αVi

αr
(
θ̇i − θ̇i−1

)
− CpV̇i =

Vi
R

Iθ̈n = −κ
(
θn − θ̄ − θn−1

)
− B

(
θ̇n − θ̇n−1

)
− αVn

αr
(
θ̇n − θ̇n−1

)
− CpV̇n =

Vn
R

(4.5)

θ̈1 =
1

I

(
−2κθ1 + κθ2 − 2Bθ̇1 + Bθ̇2 − αV1 + κφ+ Bφ̇

)
V̇1 =

1

CP

(
αr
(
θ̇1 − φ̇

)
− V1
R

)
θ̈i =

1

I

(
−2κθi + κθi−1 + κθi+1 − 2Bθ̇i + Bθi−1 + Bθi+1 − αVi

)
V̇i =

1

Cp

(
αr
(
θ̇i − θ̇i−1

)
− Vi
R

)
θ̈n =

1

I

(
−κθn + κθn−1 + κθ̄ − Bθ̇n + Bθ̇n−1 − αVn

)
V̇n =

1

Cp

(
αr

(
θ̇n − θ̇n−1 −

Vn
R

))

(4.6)
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4.2.1.2 Modeling with Varying Intrinsic Angle

In the case of varying intrinsic angles, the intrinsic angles θ̄1, θ̄2, . . . , θ̄n, vary in

response to a travelling wave motion. The equations of motion for this scenario are

Iθ̈1 = −κ
(
θ1 − θ̄1 − φ

)
+ κ

(
θ2 − θ̄2 − θ1

)
− B

(
θ̇1 − ˙̄θ1 − φ̇

)
+ B

(
θ̇2 − ˙̄θ2 − θ̇1

)
− αV1

αr
(
θ̇1 − φ̇

)
− CpV̇1 =

V1
R

Iθ̈i = −κ
(
θi − θ̄i − θi−1

)
+ κ

(
θi+1 − θ̄i+1 − θi

)
− B

(
θ̇i − ˙̄θi − θ̇i−1

)
+ B

(
θ̇i+1 − ˙̄θi+1 − θ̇i

)
− αVi

αr
(
θ̇i − θ̇i−1

)
− CpV̇i =

Vi
R

Iθ̈n = −κ
(
θn − θ̄n − θn−1

)
− B

(
θ̇n − ˙̄θn − θ̇n−1

)
− αVn

αr
(
θ̇n − θ̇n−1

)
− CpV̇n =

Vn
R

(4.7)

Simplifying the above Equation gives
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θ̈1 =
1

I

(
−2κθ1 + κθ2 + κθ̄1 − κθ̄2 − 2Bθ̇1 + Bθ̇2 + B ˙̄θ1 − B ˙̄θ2 − αV1 + κφ+ Bφ̇

)
V̇1 =

1

CP

(
αr
(
θ̇1 − φ̇

)
− V1
R

)
θ̈i =

1

I

(
−2κθi + κθi−1 + κθi+1 + κθ̄i − κθ̄i+1 − 2Bθ̇i + Bθi−1 + Bθi+1 + B ˙̄θi − B ˙̄θi+1 − αVi

)
V̇i =

1

Cp

(
αr
(
θ̇i − θ̇i−1

)
− Vi
R

)
θ̈n =

1

I

(
−κθn + κθn−1 + κθ̄ − Bθ̇n + Bθ̇n−1 + B ˙̄θn − αVn

)
V̇n =

1

Cp

(
αr

(
θ̇n − θ̇n−1 −

Vn
R

))
(4.8)

4.2.2 Energy Generated

The output power of the system is calculated using the Equation 3.20. The output

power for constant intrinsic angle and varying intrinsic is shown in the Fig. 4.5. It can

be observed that after the initial noise subsides, the output power generated in the case

when the intrinsic length is varied is higher. But this output power is lower than the case

of stretching of the piezoelectric devices.
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Figure 4.5: Output power for constant intrinsic angle and varying intrinsic angle
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4.3 Modeling Response for Different Forcing

The models developed in section 4.2.1.2 and 4.2.1.1 are simulated using sinusoidal

input. The result of the simulation is discussed in this section. The series voltage is found

by:

Vs =
n∑
i=1

Vi (4.9)

4.3.1 Responses for Constant Intrinsic Angle

The model developed in section Sec. 4.2.1.2 is simulated using sinusoidal input.

It can be noted that even in series connection of 10 piezoelectric devices, the generated

voltage is low. Though the response looks similar to the case of stretching, but since,

rotation produces less strain as compared to stretching, the overall voltage output is low.

But compared to the case of stretching, the output is more stable. Hence, a higher strain

though results in higher voltage, but it compromises the stability of the system.
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Figure 4.6: Angular rotation, generated voltage and series voltage for rotation
of 10 nodes when intrinsic angle remains constant

4.3.2 Responses for Variable Intrinsic Angle

The model developed in section Sec. 4.2.1.1 is simulated using sinusoidal input.

Here, similar to the case of of varying intrinsic length in stretching, the angles are out of

phase with each other, hence the voltage produced is out of phase. This results in higher

output voltage Vs. Though the output is lesser when compared to stretching, it is higher

than the output produced when the intrinsic length remains constant.
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Figure 4.7: Angular rotation, generated voltage and series voltage for rotation
of 10 nodes when intrinsic angle is varied
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Chapter 5: Conclusion

Every progress comes with a price. The progress made in robotic and automation

have made life easier for humans, but these come with a heavy price paid by the environment.

The use of wireless non-renewable power sources like batteries has resulted in unimaginable

solid waste. Hence, recent decades have seen a rise in alternative power sources.

The alternative power sources provide a better solution for the environment and

effectively reduce the cost of replaceable batteries and recharging of batteries. Piezoelectric

energy harvesting provides a good source of alternative energy.

In the case of soft robotics, harvesting energy using flexible piezoelectric polymers

reduces the bulk power requirement. It retains the robot’s flexibility and increases the

operation time by reducing the need for recharging the power source.

5.1 Summary of Contributions

The primary contribution of this thesis is deriving the mathematical model for

energy generated by piezoelectric devices. The lumped parameter model of piezoelectricity

provides an efficient and easy method of analyzing the behavior of the energy harvesting

system vibrating linearly. This model is expanded to include multiple piezoelectric devices

and the rotation of the devices in this thesis.
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The lumped parameter model considers a tip mass mounted of a spring and damper

with a vibrating base. Chapter 4 looks into the case when multiple devices are coupled

mechanically and stretched linearly. Two models depicting two cases: no intrinsic vibration

of links and another with intrinsic vibration of strings is developed and simulated. This

model is further expanded to the case of solid rods instead of tip mass in chapter 5.

The work extensively looks into the voltage generated and output power in the cases

described.

5.2 Suggestion for Ongoing and Future Work

In this thesis, two cases of piezoelectric energy harvesting are explored. The results

from these two cases can be further expanded to soft, segmented robots. The model of

soft, segmented robot developed in [17] can be used for this purpose. This would provide

a way to implement the developed piezoelectric models with snake-like soft robots.

The state-space model suggested below incorporates piezoelectric energy harvesting

in a soft, segmented robot:

q̇ = v

v̇ = −M−1
(
∂Et
∂q

+ αV + Fext

)
˙̄κ = Bkuk

˙̄l = Blul

V̇ = −Av − V

R

(5.1)
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Where, q = (x1, y1, . . . , xN , yN)
′

represents the Cartesian coordinates of all the nodes of

the soft robot and v = (ẋ1, ẏ1, . . . , ẋN , ẏN) represents the node velocities. κ̄ represents

the intrinsic curvature and l̄ represents the intrinsic length of each edge. The matrix A is

defined by the following matrix:

A =



α −α 0 . . . 0

0 α −α . . . 0

. . .

0 . . . 0 α −α


(5.2)

Analyzing the results for the above equations can provide some interesting results.
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