
ABSTRACT
Designers of SoCs with non-digital components, such as analog
or MEMS devices, can currently use high-level system design
languages, such as SystemC, to model only the digital parts of a
system. This is a significant limitation, making it difficult to per-
form key system design tasks — design space exploration, hard-
ware-software co-design and system verification — at an early
stage. This paper describes lumped analytical models of a class
of complex non-digital devices — MEMS microhotplates —
and presents techniques to integrate them into a SystemC simu-
lation of a heterogeneous System-on-a-Chip (SoC). This
approach makes the MEMS component behavior visible to a
full-system simulation at higher levels, enabling realistic system
design and testing. The contributions made in this work include
the first SystemC models of a MEMS-based SoC, the first mod-
eling of MEMS thermal behavior in SystemC, and a detailed
case study of the application of these techniques to a real sys-
tem. In addition, this work provides insights into how MEMS
device-level design decisions can significantly impact system-
level behavior; it also describes how full-system modeling can
help detect such phenomena and help to address detected prob-
lems early in the design flow.

Categories and Subject Descriptors
B.7.2 [Integrated Circuits] Design Aids — Simulation. C.4
[Performance of Systems] Modeling Techniques. I.6 [Simula-
tion and Modeling] Simulation Languages, Model Develop-
ment, Applications.

General Terms
Design, Experimentation, Performance

Keywords
SystemC, MEMS, Modeling, Microhotplate, Gas Sensor, Power

1.  INTRODUCTION
Embedded systems are simultaneously growing more complex
in design and shrinking in physical size, resulting in an increas-
ing number and diversity of components being fabricated on a
single chip. The System-on-Chip (SoC) approach exploits
increases in transistor count to deliver simultaneous benefits in
performance, power dissipation, reliability, footprint and cost
[13]. The emergence of the SoC design paradigm has led to the
development of system-level design, modeling, and verification
tools, such as SystemC, that focus on digital systems at high lev-
els of abstraction. These tools enable system designers to per-
form detailed exploration of a wide range of configurations
early in the design flow. In addition, high-level modeling also
provides an “executable specification” that software developers
may use as a target, and that verification engineers may use to
generate test vectors. As a result, the software stack can be
developed in parallel with the later stages of hardware design,
significantly reducing time-to-market.

Modern SoCs can incorporate not only digital but also analog
and MEMS components on the same silicon substrate. Exten-
sive research has been done on analog and MEMS fabrication
techniques, with the result that many such components can now
be fabricated using processes compatible with standard digital
CMOS process technologies [4]. This gives designers a new
capability but raises a number of important questions. How are
these non-digital components to be modeled in system simula-
tion? How is the software driving heterogeneous components to
be written, tested, debugged and optimized? To exploit the wide
range of components and perform hardware-software co-design
and validation, the high-level models used must accurately rep-
resent all SoC components.

In practice, the requirement to model all SoC components
faithfully can be relaxed under certain circumstances — for
example, if the communication between a non-digital and a dig-
ital component is predominantly unidirectional or deterministic.
During high-level modeling, components such as pad drivers or
clock generators can be abstracted away conveniently and with-
out significant loss of accuracy because they do not usually
impact high-level system behavior in complex ways. 

However, this approach — abstracting away non-digital
behavior entirely — becomes invalid when there is feedback in
the system, such as in the case of microprocessors running con-
trol programs that interact with analog or MEMS sensors and
actuators. Components with complex time-dependent behavior
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cannot be abstracted away because the behavior of the digital
system can depend on both time and the state of the non-digital
component. Unfortunately, current high-level SoC design tools,
such as SystemC, only allow digital components to be mod-
eled.

There is thus a gap between the high-level event-driven sim-
ulation methodology used by the SoC designer and the FEM,
SPICE or MATLAB-based differential-equation-solving
approach used for design and analysis of non-digital compo-
nents. Accurate modeling of feedback systems containing het-
erogeneous components requires bridging this gap. The
alternative — waiting for a hardware prototype before perform-
ing software development and verification — is undesirable for
reasons of cost, complexity and time-to-market. Current design
flows demand that the complete system be modeled, tested,
debugged and verified well before the expensive fabrication
stage, where design modification costs become prohibitive.

This paper presents an approach for modeling the function-
ality, performance, power, and thermal behavior of a complex
class of non-digital components — MEMS microhotplate-
based gas sensors — within a SystemC design framework. The
components modeled include both the digital components
(such as microprocessors, busses and memory) and the MEMS
devices comprising a gas sensor SoC.

The contributions made in this work include the first Sys-
temC models of a MEMS-based SoC and the first SystemC
models of MEMS thermal behavior, as well as techniques for
significantly improving simulation speed. Towards demonstrat-
ing the effectiveness of these techniques, a detailed case study
of the application of the proposed approach to a real heteroge-
neous SoC is also presented, providing some insights on how
device-level design decisions can have system-level impact,
and how such issues can be studied and addressed through inte-
grated full-system modeling.

The rest of this paper is organized as follows: section 2 pro-
vides an overview of related work in literature, section 3
describes the operation and architecture of the MEMS Gas Sen-
sor SoC, section 4 discusses the methodology used for the char-
acterization and modeling of system components, section 5
illustrates some of the results and insights that can be obtained
using integrated SoC simulation, and section 6 presents conclu-
sions and directions for future work.

2.  RELATED WORK
There has been relatively little work so far on modeling the
behavior of non-digital SoC components within standard Sys-
temC frameworks. Bjornsen et. al. [8] describe using SystemC
to model the transient behavior of high-speed analog-to-digital
converters. They found SystemC to be an effective modeling
tool, with simulation speeds significantly faster than HDL.
Zhang et. al. [18] compared Verilog, VHDL, C/C++ and Sys-
temC as candidates for modeling liquid flow in a microfluidic
chemical handler, and found SystemC to be the most suitable,
since SystemC processes, events and modules are suitable
building blocks for expressing fluid flow in a manner analo-
gous to dataflow. This paper presents the first SystemC models
of a MEMS-based SoC, the first SystemC models of MEMS
thermal behavior, techniques for improving simulation effi-

ciency, and a detailed case study of the application of this
approach to a real heterogeneous SoC. The rest of this section
provides background information on related work in literature.

Attempts at generalized modeling of mixed-signal elements
for large-scale hardware design include VHDL-AMS [10] and
Verilog-AMS [11], aimed at extending the VHDL and Verilog
language definitions to include analog and mixed-signal
regimes. These have been moderately successful for mixed-
domain component modeling; however, they are designed for
implementation and end-of-design verification late in the
design flow, not for system-level design and verification. Effec-
tive system-level design involves representing entire systems at
high levels of abstraction and modeling them at high simulation
speeds. These requirements are not adequately met by HDL
frameworks that primarily target component-level design, cre-
ating the need for higher-level techniques and tools that are
more efficient at system-level design.

A recent key advance in system design has been the devel-
opment of higher-level languages and tools for expressing
hardware constructs. In particular, SystemC [12] — a freely
available C++-based library that provides a variety of hard-
ware-oriented constructs and an event-based simulation kernel
— has gained rapid acceptance. It is now supported by a variety
of EDA tools and IP vendors and has been widely adopted as a
standard modeling platform1 that enables the development and
exchange of fast system-level models and supports system-
level software development, top-down design, IP core integra-
tion, hardware-software co-design and system verification.
Designs can be expressed at a variety of levels of abstraction in
SystemC [9, 12]. In particular, accurate and high-speed simula-
tion at high levels of abstraction is a key tool, enabling design-
ers to model the behavior of large workloads on complex
systems.

The SystemC 2.0 standard [14] addresses purely digital sim-
ulation. However, increasing on-chip heterogeneity has led to
the demand for modeling both digital and non-digital compo-
nents within an integrated framework. Ongoing efforts such as
SystemC-AMS [17] and SEAMS [7] propose extensions to the
SystemC language definition and additions to the SystemC ker-
nel to incorporate analog and mixed-signal devices into the
simulation framework. In contrast, the techniques and models
presented in this paper use a standard, unmodified SystemC
kernel and library to model non-digital components, and repre-
sent the first application of SystemC design to a MEMS SoC.

3.  THE MEMS GAS SENSOR SOC
A microhotplate-based gas sensor exploits temperature-depen-
dent conductivity variations in certain thin films to facilitate the
detection of trace gases in the ambient atmosphere. The MEMS
gas sensor SoC presented here integrates an array of such sen-
sors with on-chip digital circuitry to enable programmable con-
trol and data gathering. This SoC incorporates a wide range of
components: a MEMS microhotplate-based gas sensor array,
an 8051 microcontroller, and on-chip interconnect and periph-
erals. In such a system, one of the design challenges is posed by

1. SystemC was approved as IEEE standard 1666 in December 
2005.



the heterogeneity of the components involved: issues regard-
ing analog, digital and MEMS design all need to be understood
and taken into account. The following sections describe SoC
design and operation, with section 3.1 presenting the structure
and operation of microhotplate-based gas sensors, and section
3.2 describing overall SoC topology and system architecture.

3.1  The MEMS Microhotplate-Based Gas 
Sensor
The conductance of certain metal oxide films varies with the
temperature, concentration, and type of gas molecules adsorbed
into the film. Conductance-type gas microsensors use a MEMS
microhotplate device to vary the temperature of the thin film to
facilitate the detection of trace gases in the environment.
Monolithic integrated gas sensors have numerous possible
applications such as detecting food product freshness, detecting
toxin leakage in chemical facilities, or identifying hazardous
chemical agents in public places.

A microhotplate is a MEMS device used to obtain high
temperatures over a localized area on a silicon chip. Bulk
micromachining techniques [4] can physically and thermally
isolate the heating elements from the underlying silicon sub-
strate, allowing surface temperatures as high as 450ºC to be
reached. Such structures feature low power dissipation, low
fabrication cost, and scalability to different process technolo-
gies, making them suitable for use in chemical microsensors
[3] or as microscopic infrared sources [15]. 

Recent advances in MEMS fabrication have allowed these
to be scalably implemented with standard CMOS-compatible
foundry processes, enabling designers to integrate MEMS gas
sensors, analog components, and digital components into a sin-
gle SoC [3, 4]. The microhotplate’s small size facilitates build-
ing the on-chip sensor arrays needed for gas classification in
complex sensing environments. 

Structural Components A microhotplate-based gas sensor
consists of a central platform supported at each corner by a can-
tilever joining it to the substrate, as illustrated in Figure 1(a).
The material immediately below and around the platform is
etched away in a single postprocessing step, which physically

and thermally isolates it from the substrate. The central struc-
ture of the microhotplate is physically suspended over empty
space, with only the cantilevers at the corners providing
mechanical support.

Electrical Components Electrically, a microhotplate-based
gas sensor comprises three major components, shown in Figure
2(a): a polysilicon heater, a temperature sensor, and a thin film
gas sensor. The cross-section of the microhotplate in Figure
1(b) illustrates their physical implementation as conductive lay-
ers separated by insulating silicon oxide layers. A description
of each component follows:
• Polysilicon Heater: Implemented as a serpentine
resistor, this generates heat to raise microhotplate temper-
ature. The heater current or voltage may be controlled.
Note that the electrical resistance of a polysilicon heater
is not constant and changes linearly with temperature
within the range of operation.
• Temperature Sensor: Implemented in an Aluminum
or Polysilicon layer with a known temperature coefficient
of resistance (TCR). A small constant current is passed
through this, and the voltage drop across it is used to mea-
sure microhotplate surface temperature.
• Gas Sensor Film: A thin film of tin or titanium oxide
(SnO2 or TiO2) is deposited between two gold electrodes
onto the top surface of the microhotplate, exposed to the
external atmosphere. The thin film conductivity changes
when specific molecules are adsorbed into it. The
observed conductivity patterns depend on the tempera-
ture, concentration and type of adsorbed molecules, giv-
ing molecules a signature pattern that facilitates chemical
detection. Since different thin films interact differently
with gas molecules [4], individual elements in a micro-
hotplate array may differ in the type of sensor film used to
improve sensing ability. 

A microsensor array can be encapsulated behind a digital-only
interface as illustrated in Figure 2(b), facilitating integration
into high-level digital SoC designs. A digital-to-analog con-
verter (DAC) drives the polysilicon heater current and an ADC

Figure 1.  (a) Scanning Electron Microscope (SEM) micrograph of a microhotplate, showing it suspended
above the underlying substrate. Cantilever supports at the corners provide structural support and electrical
pathways. The gold electrodes, between which the thin sensor film is deposited, are also visible. The microhotplate
is fabricated with a standard digital CMOS foundry process, followed by an etching step to suspend the
microstructure and chemical vapor deposition of the metal oxide thin film.
(b) Cross-section of the suspended microhotplate. The figure shows the polysilicon heater, the Al temperature
sensor, the metal oxide sensing film and the insulating SiO2 layers. Cantilever supports are not shown.

(b)(a)



senses the voltage drop across the temperature sensor. Multi-
plexing circuitry enables the use of a single ADC, thus helping
to reduce chip area. The ADC and DAC are connected to regis-
ters that can be memory-mapped to a system bus via control
circuitry. 

3.2  System Architecture 
The system topology for the integrated MEMS gas sensor SoC
is illustrated in Figure 3. It consists of a microhotplate array, an
8051 microcontroller, and on-chip interconnect. The 8051 sup-
ports a single-master on-chip Special Function Register (SFR)
bus, to which the gas sensor array is connected, allowing pro-
grams to access the microhotplate array via memory-mapped
I/O.

A high-speed cycle-accurate SystemC model of the micro-
controller was created to facilitate hardware-software develop-
ment  and tes t ing.  The HDL implementat ion of  the
microcontroller was synthesized from a commercially available
8051 IP core. The primary functions of the microcontroller

software include controlling each microhotplate, maintaining
the appropriate surface temperature, and collecting gas sensor
data. A control algorithm monitors the temperature sensor read-
ing and varies the heater current to converge rapidly and stabi-
lize at the required surface temperature. Gas sensor
conductivity readings are quickly taken at each temperature.
This last activity is simple timed data-gathering, with no feed-
back loop involved. The gathered data may be processed on-
chip or transmitted by the SoC to a central location for remote
analysis.

4.  METHODOLOGY
There are many challenges inherent in the integrated modeling
of a heterogeneous SoC. First, microhotplate behavior is
dependent not just on electrical parameters but also on the heat-
ing and cooling of the microstructure. This is addressed by set-
ting up a lumped parameter model that correctly models the
coupling between power dissipation, heating, and the electrical
resistance of the heater. Even when this is done, a problem is

(b)

Figure 2. (a) Schematic showing the electrical components of the microhotplate-based gas sensor.
(b) Schematic illustrating digital encapsulation of a sensor array using an ADC/DAC array and multiplexing.
A Digital Gain Control (DGC) register may be used to improve accuracy and dynamic range.
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posed by the fact that the behavior of analog and MEMS com-
ponents is best represented by differential equations, not by the
discrete-time event-based state machines used for digital simu-
lation in SystemC. This is solved by expressing microhotplate
behavior in discrete time, so that numerical methods can be
applied, and then integrating this efficiently into SystemC’s
network-of-communicating-processes model of computation.
In addition, the values of the various simulation parameters
must be known to enable accurate system modeling. 

There are thus four major issues that need to be addressed:
modeling the MEMS microhotplates, integrating these models
with SystemC, improving simulation efficiency, and obtaining
the values of various component parameters. The remainder of
this section discusses each of these in detail.

4.1  Electrical And Thermal Modeling Of 
MEMS Microhotplates
The work presented in this paper focuses on modeling the elec-
trothermal aspects of the microhotplate, not the electrochemical
gas-sensing aspects of the metal oxide thin film. A MEMS
microhotplate can be modeled using a lumped analytical model
incorporating the following state variables:
• Polysilicon heater power dissipation (P).
• Microhotplate surface temperature (T), measured
using temperature sensor resistance.
• Ambient temperature (T0).
• Microhotplate thermal resistance (Rth).
• Microhotplate thermal capacitance (Cth)
• Polysilicon heater current (I), controlled by writing to
a DAC register.
• Polysilicon heater electrical resistance (Re).
• Polysilicon heater temperature coefficient of resis-
tance (TCR or α).

Of these Rth, Cth and α are treated as constant for a given
microhotplate structure. System behavior can be expressed as a
set of differential equations in these variables. Second-order
effects in microhotplate behavior, such as the slight (less than
5%) variation of Rth with temperature, are not currently mod-
eled.

The thermal equation governing heat flow is:

... (1)

Where t represents time. The heater electrical power dissipation
can be written simply as:

... (2)

And the heater electrical resistance varies with temperature as:

... (3)

Taking T' = T - T0, we use the above equations to obtain:

... (4)

which is a first-order Ordinary Differential Equation (ODE). 
Systems of differential equations are most commonly solved

using numerical methods, which have a wide range of applica-
bility. However, the above equation is simple enough to have
an exact analytical solution. More complex systems, such as a
collection of distributed heat sources on a chip [5, 6], typically
require numerical analysis. For this study, we used the exact
solution but, for purposes of completeness, also ran on the
model with the numerical solution to measure the effect on
runtime. The two mechanisms produce equivalent results, with
the exact solution requiring less computation. Their impact on
simulation speed is discussed in 4.3. 

The Euler Forward Method for numerically solving such
ODEs involves using a discrete-time representation of Equa-
tion 4 being used to derive microhotplate surface temperature
at time-step n+1 from the state variables at time-step n.

... (5)

This computation can be performed at runtime with the micro-
hotplate implemented as a SystemC module with the parame-
ters defined at instantiation. A SystemC process calculates and
updates the state variables at each time-step. Since a microhot-
plate has a separate SystemC process, its time-step size can be
varied independently of the time-step size used for other sys-
tem components. In this case, the microcontroller runs on a
10ns time-step (a 100 MHz core clock frequency), while
microhotplate simulation reaches convergence at a 100µs or
smaller time-step. This is because the thermal time constant of
the microhotplate (τ = RthCth) is typically of the order of milli-
seconds, and time-steps of τ/10 or smaller tend to converge.
Note that the time-step chosen must be sufficiently small to
ensure that the numerical solutions obtained are stable and con-
vergent (the error increases with the square of the time-step in
Euler Forward Iteration), yet not so small that too much simula-
tion time is spent modeling the MEMS component, impeding
system simulation. 

An exact analytical solution to Equation 4 (in terms of Tn
and tn) is given by:

... (6)

This computation is performed in a similar manner at runtime.
However, since this is an exact solution, each time-step may be
arbitrarily large without significant loss of accuracy. The rest of
this paper uses the exact solution unless otherwise specified.
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4.2  Integration with SystemC
A SystemC simulation consists of a hierarchical network of
parallel processes that exchange messages and concurrently
update signal and variable values under the control of a simula-
tion kernel. Signal assignment statements do not affect the tar-
get signals immediately, and the new values become effective
only in the next simulation cycle. As shown in Figure 4, the
kernel resumes when all the processes become suspended,
either by executing a wait statement or upon reaching the last
process statement. On resuming, the kernel updates the signals
and variables and suspends itself again while scheduled pro-
cesses resume execution. If the time of the next scheduled
event is the current simulation time, the processes execute a
delta cycle, in which signal and variable values are updated
without incrementing the current time [12].

The microhotplate is modeled as a standard SystemC mod-
ule. It does not require any changes to the SystemC kernel or
library, and it obeys standard SystemC simulation semantics,
running as a user-defined process. Each time it is invoked, the
microhotplate simulation process calculates the amount of time
elapsed since the last update, solves the system state equations
accordingly, updates the state variables to reflect the new
device state and finally suspends execution until it is invoked
again by the kernel.

Each microhotplate has standard SystemC port/channel con-
nections to the rest of the system. It communicates with actual
microcontroller C programs compiled and loaded into the Sys-
temC model of the microcontroller, rather than with mathemat-
ical idealizations of program behavior. In particular, system
interrupts, computation time, microcontroller CPU states, and
the busses are all cycle-accurate representations of the hard-
ware being designed, validated against HDL simulations.

4.3  Simulation Efficiency
Effective design-space exploration depends on high simulation
speeds, making simulation efficiency a key design issue. This
section explores three avenues for improving simulation effi-
ciency: using more efficient SystemC processes, reducing Sys-
temC kernel synchronization overheads, and using exact
solutions to reduce the computational overheads involved in
MEMS modeling. These provide a combined speedup of over
70x compared to simulation done without these techniques.

SystemC provides two kinds of processes: SC_METHODS
and SC_THREADS [12]. The main difference in terms of sim-
ulation semantics is that an SC_THREAD’s state is stored each
time it is suspended and is restored each time it resumes, allow-
ing local variable values to be preserved. A process resumes
from the exact state it left on suspension. Storing and restoring
state across invocations has obvious simulation overheads.
SC_METHODs, on the other hand, are similar to function calls
and restart from the beginning each time they are invoked. No
local state is preserved across invocations. We found that stor-
ing required state as class data fields to allow the use of
SC_METHODs instead of SC_THREADs raised simulation
speed from 56 KIPS (thousand instructions per second) to 281
KIPS1.

Code profiling indicated that synchronization of the main
CPU process with the SystemC kernel at each suspend-resume
was the performance bottleneck, since the processor module
incremented the elapsed time after each executed instruction in
order to be cycle-accurate. To eliminate this bottleneck, we

Figure 4. The execution semantics of SystemC. A number of interacting processes run until they end or execute
a wait statement. Once all processes have run, the kernel updates all signals and variables before running ready
processes again. The user can define specific conditions under which simulation should stop.
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1. All measurements of simulation speed were performed with a 
1.6GHz Pentium M processor with 2MB of L2 cache and 768MB of 
PC2700 DDR SDRAM. Compilation was done using gcc 3.4.4 with 
-O2 compile-time flags.



used free-running simulation, where the CPU continuously
fetches and executes instructions while using an internal
counter to keep track of elapsed cycles. This continues until an
event that requires synchronization with the system occurs;
events that trigger synchronization include interrupts, commu-
nication with system components that have separate processes,
and reaching a user-defined limit on the maximum number of
free-running cycles. When a synchronization event occurs, the
processor informs the SystemC kernel of the time elapsed since
the last synchronization (based on the internal counter that
tracks elapsed cycles), updates any state required to ensure
complete synchronization, resets the internal counter, and con-
tinues execution.

A processor usually spends much of its time fetching and
executing instructions rather than communicating with other
system components, so free-running simulation provides an
elegant method for reducing overheads while maintaining
cycle-accuracy. An upper bound can be put on the number of
consecutive free-running cycles, causing regular synchroniza-
tion regardless of other activity. We found that allowing up to
100 free-running cycles further sped up simulation from 281
KIPS to 2.89 MIPS. Allowing up to 4000 free-running cycles
further boosted simulation speed to 4.17 MIPS, after which fur-
ther increases led to no additional speedup. Profiling indicated
that, after this optimization, the simulator was spending time in
instruction processing and microhotplate modeling, not in syn-
chronization.

Lastly, solving the differential equations governing micro-
hotplate behavior also has a computational overhead. For a
microhotplate with nominal time constant of 1ms, accurate
modeling requires a time-step size smaller than 100µs while
using the Euler Forward Method. Other, more sophisticated,
numerical methods may be used that allow larger time-steps.
Simulation efficiency is significantly higher when the exact
analytic solution to the system of equations is used, since it
allows the use of arbitrarily large time-steps without signifi-
cant loss of accuracy. In practical terms, the microhotplate state
only needs to be updated when the processor writes to it to
change the DAC input or reads from it to find out the tempera-
ture, leading to lowered computational overheads. In the simu-
lation framework presented here, system modeling proceeds at
4.17 MIPS using the exact solution and 3.71MIPS using the
numerical solution (See section 4.1 for details on the two
approaches)

4.4  Component Characterization
For characterization, the 8051 microcontroller IP core was syn-
thesized to TSMC 0.25µm CMOS technology using Synopsys
Design Compiler. Gate-level power simulation, with SAIF
back-annotation [16] of activity was performed using Synopsys
Power Compiler. Layout and back-annotation of delays and
capacitance were performed using Tanner L-Edit. The micro-
controller has a simple two-state power model, consuming
4.4mW when active (at 100MHz) and 0.25mW when idle. This
state-machine based power model was observed to be accurate
within 5% of gate-level power simulation for all programs run. 

The values of the critical thermal and electrical parameters
for the microhotplate — electrical resistance, temperature coef-
ficient of resistance, thermal resistance and thermal capacitance
— were the nominal design parameters and were verified
experimentally on standalone hotplates fabricated through
MOSIS, using the standard techniques described by Afridi et.
al. [2, 3, 4].

5.  RESULTS
The ability to model the complete system in detail enables
designers to find answers easily and quickly to questions about
overall system behavior. Such questions can range from how a
microhotplate responds to a given input to finding out whether
a given piece of code running on a microcontroller can meet
desired performance parameters while controlling one or more
MEMS devices. This section first presents a validation of the
SystemC microhotplate model by comparing expected and
observed behavior to a simple input. Further, this section dis-
cusses the observed results when a given temperature controller
program is used to run a microhotplate and illustrates the kind
of detailed observations that can be drawn from this. Lastly, it
provides an example of how full-system simulation can help
detect undesirable effects caused by valid low-level decisions
that are suboptimal at the system level.

5.1  Model Validation
Validation of the microhotplate model was performed by using
a function generator to apply a step voltage across a stand-
alone microhotplate (implemented through MOSIS) and com-
paring the experimental data obtained against the SystemC
model of such a device. Figure 5 shows such a comparison,
and the high degree of correlation between simulation and
experimental behavior is clearly seen. The simulated peak
temperature is about 3% lower due to a small difference
(caused by the slight temperature-dependence of thermal resis-

TABLE 1. Techniques for enhancing simulation efficiency, and their impact on performance. The exact 
analytical model for the microhotplates is used unless otherwise specified.

Technique Simulation speed (MIPS)
SC_THREAD only 0.056
SC_METHOD only 0.281
SC_METHOD with up to 100 free-running cycles 2.89
SC_METHOD with up to 4000 free-running cycles 4.17
SC_METHOD with up to 4000 free-running cycles (Numerical model) 3.71



tance) between the simulated and observed values of Rth. Fig-
ure 5 also shows a thermomicrograph sequence of a MEMS
microhotplate heating up, illustrating the high surface temper-
atures that can be attained over a localized area.

5.2  Simulation With a Controller Program
The above test provides crucial experimental validation for the
microhotplate models used; however, system designers need to
know how the system as a whole behaves when configured
with a given topology and loaded with specific software. The
results from SystemC simulation enable total SoC power dissi-
pation and microhotplate behavior to be modeled in an inte-
grated environment. This enables designers to observe the
time-domain behavior of the entire system when running spe-
cific software. 

To illustrate this, a test C program implementing a simple
proportional controller was implemented, to control surface
temperature in a single-microhotplate system. It was given a
setpoint of 380ºC for 20ms followed by a setpoint of 200ºC for
a further 20ms, after which the program turned the microhot-
plate off. This simplified program was chosen for illustration
here because it is representative of the control aspects of the
software stack used for microhotplate-based gas sensor appli-
cations.

Figure 6 illustrates the output of the simulation. The X axis
represents system time in milliseconds, while microhotplate
temperature, power, and current, as well as microcontroller
power dissipation, are suitably scaled to be shown on the Y
axis. The results shown here are based on a SystemC simula-
tion incorporating both the cycle-accurate behavior of the
microcontroller and the electrothermal behavior of the micro-
hotplate. A discussion of the behavior of the four variables
plotted follows.

The microhotplate heater current, directly controlled by the
microcontroller, changes step-wise, since it is incremented in
discrete steps through a DAC. The microhotplate power dissi-
pation changes step-wise when current changes and smoothly
at other times. It does not change in fixed size steps, since a) It
is proportional to the square of the current and b) It depends on
the electrical resistance of the polysilicon heater, which
increases linearly with surface temperature. For example,
between 3ms and 5ms, heater current is constant, yet microhot-
plate power dissipation rises smoothly in a classic asymptotic
exponential curve. This is because the steadily increasing tem-
perature raises the electrical resistance of the polysilicon heater
(Equation 3), leading to an increase in power dissipation at a
constant current. Note that the large change in microhotplate

Figure 5. A comparison of experimental and simulated microhotplate behavior. A 2V voltage pulse is applied
between 4 and 14ms. The observed changes in surface temperature are compared against those predicted by
simulation. The plot on the left is “noisier” and less sharp simply because of the small, but unavoidable, experimental
noise. The bottom strip shows a thermomicrograph sequence of a microhotplate structure heating up [1].
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power dissipation around 22ms corresponds to only a small
variation in heater current, since they are quadratically related.

The microhotplate surface temperature changes smoothly,
since the thermal capacitance of the microhotplate causes the
temperature to be continuous in time, always varying smoothly.
Around t=5 ms, the surface temperature first overshoots and
then undershoots the setpoint of 380ºC before settling at it. This
overshoot-and-stabilize behavior is typical of the proportional
controller algorithm used. The same is true of the undershoot at
t=25 ms. At t=40ms, the controller sets the heater current to 0,
immediately dropping microhotplate power to 0. However, sur-
face temperature follows a decaying exponential as it cools off,
finally stabilizing at 30ºC, since that was set as the ambient
room temperature in the simulation. 

The “jagged” nature of the CPU power plot is due to the
CPU waking up periodically in response to a timer interrupt,
performing the computation required to run the controller,
sending control signals to the microhotplate DACs, and then
going into a low-power mode. The tiny “blips” in CPU power
dissipation after t=40ms are due to interrupts being processed,
but in these instances no feedback control computations are
performed, leading to a much shorter active CPU duty cycle.

5.3  System-Level Effects of Low-Level Design 
Decisions
At the microhotplate design level, using a controlled-current or
a controlled-voltage source to drive the heater is an implemen-
tation detail, with circuit-level concerns typically deciding the

choice of one over the other. However, we found that such deci-
sions could significantly impact system-level behavior, with
integrated SystemC modeling of the MEMS device helping
both to detect such behavior and to ensure optimal design. 

In the previous example, a controlled current source was
used to drive the microhotplate heater. However, exploring the
design space using SystemC indicated that the behavior would
be very different, exhibiting much less overshoot-undershoot
behavior, if the hotplates heaters were driven by a controlled
voltage source rather than a controlled current source. At first
glance, this seems counter-intuitive, but it is borne out by the
SystemC simulation (see Figure 7). 

The reason that this seemingly minor device-level design
decision has broader impact is that heater resistance increases
with temperature, so power dissipation increases with tempera-
ture at constant current; but at constant voltage, microhotplate
power dissipation falls with increasing temperature (since P =
I2R = V2/R). A current-driven microhotplate thus has a small
implicit positive feedback effect: higher power dissipation
drives temperature up, which tends to cause a rise in power dis-
sipation. A voltage-driven microhotplate, on the other hand,
has a small implicit negative feedback effect: higher tempera-
ture causes higher heater resistance, which tends to reduce
power dissipation. These loops interact with the overriding
feedback loop implemented in software. 

Figure 7 shows system behavior for the same control pro-
gram when heater voltage, and not current, is directly con-

Figure 6. An example illustrating the use of integrated functional, power and thermal modeling in a
heterogeneous system. The X axis represents system time in milliseconds, while other variables are suitably
scaled to be shown on the Y axis. A feedback loop, in the form of a proportional controller program, is loaded into
the SystemC simulator and given a surface temperature setpoint of 380ºC for 20ms, followed by a setpoint of 200ºC
for another 20ms, and finally turns the microhotplate off at t=40ms. 
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trolled. The negative feedback loop leads to significantly more
stable behavior, with considerably smaller and fewer over-
shoots. Also note that power decreases when voltage is con-
stant and temperature is rising (around 7ms). This is because
the rising temperature raises microhotplate resistance, and the
power dissipated is inversely proportional to this resistance.
The increased feedback stability was an easily-overlooked fac-
tor that can now be used to guide system-level, component-
level, and software-level decisions for the SoC presented here.
Unanticipated feedback behavior is a serious issue, since,
depending upon severity, it can lead to suboptimal performance
or oscillatory behavior and may neccessitate software fixes or
even require the system to be modified and re-fabricated. 

Integrated simulation of both digital and MEMS compo-
nents proved to be an extremely useful tool in the hardware-
software co-design for this SoC:
• Full-system simulation results were among the inputs
in the decision to use voltage-driven, rather than current-
driven, microhotplates. 
• Integrated simulations were used to assess system
robustness while facing process variations in device
parameters.
• Running the software stack under realistic conditions
enables more thorough testing, leading to better defect
detection before the system is fabricated.
• Interrupt routines, timer settings, operating frequency,
I/O and control algorithm parameters can be better opti-

mized when realistic simulation results are available. In
the absence of these, designers need to allow larger mar-
gins of error to account for the uncertainty in the final
performance of the system.

Complex system-level interactions, such as those illustrated
above, need to be taken into account by system, software, and
component designers, and integrated modeling of both micro-
controller and MEMS device behavior in SystemC enabled pre-
cisely that.

6.  CONCLUSION
This paper describes an approach for modeling the functional-
ity, power, performance and thermal behavior of a complex
class of MEMS components — MEMS microhotplate-based
gas sensors — within a standard SystemC design framework.
The system components modeled include both standard digital
components (microprocessors, busses and memory) and
MEMS devices. 

The contributions made in this work include the first Sys-
temC models of a MEMS-based SoC, the first modeling of
MEMS thermal behavior in SystemC, techniques for attaining
significant (over 70x) improvement in simulation speed and a
detailed case study of the application of the proposed models
and techniques to a real system. It also provides insights on
how device-level design decisions can have system-level
impact, which can be captured and addressed through accurate
modeling of the entire system, including non-digital compo-
nents.

Figure 7. SystemC Power and Thermal modeling of a microhotplate driven by controlled-voltage source
rather than a controlled-current source. A small inherent negative feedback loop introduced leads to much more
stable behavior, with much smaller overshoots and a faster settling time (compare with the overshoot-undershoot
behavior in Figure 6).
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Future work will include more detailed hotplate models that
include second-order effects, analytical studies of microhot-
plate feedback behavior and application of the presented tech-
niques to other components of heterogeneous SoCs.
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