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ABSTRACT In this paper, the design of a two degree-of-freedom leg mechanism is accomplished by a
two-stage optimization process. In the first stage, leg dimensions are optimized with respect to three
design objectives: minimize (i) leg size, (ii) vertical actuating force, and (iii) peak crank torque for an
entire walking cycle. Following the optimization of leg dimensions, in the second stage, spring elements
with various placement configurations are considered for further reduction of the actuating force and crank
torque. Several tradeoff solutions are obtained and a comparison between various spring configurations is
made. It is shown that the inclusion of spring elements can significantly reduce the actuating force and
crank torque.

1 INTRODUCTION

A wide variety of leg mechanisms for walking machines have been proposed in the literature over the
past few decades (Todd, 1985). For example, the Adaptive Suspension Vehicle (Waldron et al., 1984; Pugh
et al.,, 1990) and TITAN III (Hirose, 1984) used pantograph-type mechanism to provide two degrees of
freedom (DOFs) for each leg. A third DOF was obtained by rotating the pantograph as a whole about
an axis fixed on the frame of the vehicle. This pantograph-type leg mechanism is flexible and efficient
in terms of energy loss. However, all three DOFs must be actively controlled even for walking on a flat
terrain, resulting in machines with complex control architecture and slow speed. On the other hand,
Funabashi(1985a; 1985b) used a one-DOF multiple-bar linkage as a leg mechanism in his biped machine to

generate an ovoid foot-path with a continuously rotating crank (motor). Although this type of mechanism



can achieve fast locomotion with minimal control, it lacks the flexibility required for avoiding obstacles
and climbing stairs.

In a recent paper, a compound two DOF leg mechanism proposed by Williams et al.(1991) was studied
(Shieh et al., 1994). The compound mechanism consists of a four-bar linkage and a pantograph. It
generates an ovoid foot-path with a continuously rotating crank and therefore it requires minimal control
and consumes very little propelling energy when walking on a flat terrain. It also provides a second DOF
for obstacle avoidance and a third DOF for turning capability. It was shown that the design of such
a complex mechanism can be accomplished by a multiobjective optimization procedure including many
geometric and structural constraints, without the need of a prescribed coupler-point path. That study was
preliminary, in that the model emphasized the driving torque of the forward-and-backward motion, while
the vertical actuating force of the up-and-down movement was not included as a design objective. Since the
actuator size of a leg mechanism is crucial to the performance of a walking machine, a comprehensive design
methodlogy should take into account both actuating force and torque. Additionally, such a methodology
should also accomodate the placement of a set of light weight passive elements, such as springs, on the leg
mechansim in order to further reduce the actuating force and torque. Spring elements have been used in
leg mechanisms both to store kinetic energy (Alexander, 1990; Dhandapani and Ogot, 1994) and to reduce
actuating forces (Shin and Streit, 1993). In Shin and Streit(1993), a two-DOF equilibrator (the leg) and
an extra mechanism which switches alternatively between the propelling and returning phases in a walking
cycle was implemented. While such an equilibrator allows a significant reduction in actuating forces, the
extra mechanism used in the equilibrator leg requires a complicated control algorithm even for flat terrain
walking.

In this paper, we present a two-stage optimization procedure for the design of the compound mechanism
shown in Fig. 1 that addresses the issues just outlined. In the first-stage, leg dimensions are optimized by
simultaneously minimizing: (i) the leg size, (ii) the vertical actuating force, and (iii) the peak crank torque,
subject to several geometric constraints. In the second-stage optimization, we reduce the actuating force
and torque by directly placing spring elements on the mechanism. Further reduction of the actuating force
and torque for the entire walking cycle is achieved by optimizing the size and the attachment points of a
set of tension springs. This is different from the approach suggested by Matthew and Tesar(1977a; 1977b)
who develped an analytic solution to meet external force and torque requirements at a finite number of
points.

The balance of this paper is organized as follows. In Section 2, a description of the leg mechanism is
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FIGURE 1: The compound leg mechanism

reviewed. In Section 3, we describe the first-stage optimization of the mechanism, including the formulation
of design objectives and constraint functions, and the optimization results. In Section 4, three different
configurations for the placement of springs are presented and the second-stage optimization results are

discussed. Finally, concluding remarks are given in Section 5.
2 MECHANISM DESCRIPTION

A planar two-DOF mechanism (Williams et al., 1991) composed of a four-bar linkage AgAByB and a
pantograph CDEFGH is shown in Fig. 1. One end of the pantograph is driven by the four-bar coupler
point C, while the other end D is driven by a linear actuator. Rotation of the crank provides a back-
and-forth motion, while linear motion of point D provides an up-and-down motion of the foot point E.
A third-DOF motion (not shown in the figure) providing a turning capability is achieved by allowing the
planar mechanism to rotate about a vertical axis fixed on the frame of the walking machine. In this

study, we concentrate only on the planar portion of the leg mechanism. For convenience, an X-Y reference



coordinate system with its Y-axis pointing downward in the direction of m and with its origin located
at joint By is defined in Fig. 1.

The first DOF, rotation of crank AgA, is used to generate an ovoid path for normal walking on a flat
terrain. Such a path enables the walking machine to step over small obstacles (rocks or trenches) without
raising its body too much or applying the second DOF motion. In our design, the four-bar linkage is
selected such that AB = BC = ByB and the angle (LDByAg) between the symmetric axis Bﬁ and
the four-bar linkage baseline m is equal to ¢/2, where ¢ = LABC. 1t is well known (Hartenberg and
Denavit, 1964) that for this type of four-bar linkage the coupler-point curve traced by the point C is
symmetric about the axis m. The pantograph, which is connected to the four-bar linkage at point C,
reproduces and amplifies the coupler-point curve by a factor of (—z5/xz4) at the foot-point E. The negative
sign refers to the inverted shape of the curve generated by point E as compared to that generated by point
C. For simplicity, the amplification factor (z5/z4) is denoted as n hereafter. The joint D is guided along
the symmetry axis to provide a specified vertical stride s,.

The curve traced by the foot-point path consists of two portions: a propelling portion and a returning
portion. The propelling portion of the foot-point path is that portion of the curve where the foot makes
contact with the ground (line E3E; Ey). Points E5 and Ej are the two extreme positions of the foot path
traced by E where dXg/da = 0. The distance between these two positions EyF3, which are symmetric
about the Y-axis, is referred to as the horizontal stride. Note that the horizontal stride must be no smaller
than the desired stride sz, as shown in Fig. 1. Due to symmetry, the crank angles at the two positions,
E, and Ej3, separating the propelling and returning portions are also symmetric about o = 0 (Hartenberg

and Denavit, 1964).
3 FIRST-STAGE OPTIMIZATION: LEG DIMENSIONS

The problem of determining leg dimensions, spring size, and spring placement for the mechanism just
described can be formulated as a constrained multiobjective optimization problem. We decompose the
optimization process into two stages. In the first-stage optimization, the design variables (see Fig. 1),
dimensions T through z5 and the coupler angle ¢, are determined. Then springs are added in the second-
stage optimization, with their size and placement optimized, to further reduce the driving torque and
actuating force. All of these subject to various mechanism constraints. Such complexity in the number of
design variables, constraints and objectives calls for numerical optimization. We used Consol-Optcad (Fan

et al., 1990), an interactive optimization-based design package, to achieve these goals.



3.1 Objective Functions

Three design objectives are simultaneously considered in the optimization model: minimize (i) the leg
size, (ii) the vertical actuating force at joint D, and (iii) the peak crank torque on a flat walking terrain.

Objective 1: minimizing the leg size.

Since the configuration of the leg mechanism changes as a function of the crank angle and the joint
D displacement, the problem of computing the leg size will become unnecessarily complex if it is to be
calculated at all configurations. For simplicity, the leg size is only calculated at the configuration shown
in Fig. 1, where point F is at the middle of the propelling portion and joint D at the middle of its
vertical operating range. At this particular configuration, the crank angle « is taken to be w. 1 Since the
pantograph as shown in Fig. 1 has its two links CG = GE and the transmission angle of the pantograph

at the normal configuration is selected to be 7/2, the leg height BoE can be derived as,
BoE = Ycl|,_ . + V2(z4 + z5) (1)

where Yo can be found in Appendix A. The width w of leg mechanism is defined as the maximum X

coordinate of joint A or G, i.e.

w = max(X4,Xg)

= max[(z1 +z2) sin(¢/2), V2(z4 + z5)/2]. (2)

Normalizing the leg size with respect to a prespecified walking area (s,s;) yields

01 = Yolger + \/§(x4s+sx5)]max(XA,Xg) . 3
voh

Therefore, the first design objective is: min {01}.

Objective 2: minimizing the vertical actuating force. Since the vertical actuating force fsgy at joint D is related

to the ground reaction force fosy by a factor of —(1 + n),
02 := fgey = —(1 +n) fosy. (4)

Hence our second design objective is : min {02}.

Objective 3: minimizing the peak crank torque. Assuming that the transmission loss between the input crank

and the output foot point is negligible, the input and output powers are equal:

do .  dXg dYg
Tﬁ—fsox 7 + fsov 7

2 5)

1a could be taken to be zero as well.



Rearranging Eq. (5) results in a functional objective

dXg dYg
FO1 .—T——fosx-z;—fOSYE VaeR, (6)
Note that fsox = —fosx and fsoy = —fosy. Also note that torque 7" remains unchanged as joint D moves

up and down. Thus our third design objective (which is in a functional form, i.e., a function of design

variables and a free variable o, a € Ry) is: min {Fo1}.

3.2 Constraint Functions

The mechanism constraint functions refer to the constraints imposed on the geometry of the linkage and
foot-point path. All the constraints on length or distance are normalized.

Stride length. The horizontal stride is defined as the distance from E; to E3 (see Fig. 1). The corresponding
crank angles at Ey and F3 are denoted as a@ = o, and o = —ay, respectively. The angle o, is obtained
numerically by setting dXg/do = 0. Due to symmetry, E; E3 = E1E>. Hence, the constraint on the stride
length is

= —_la=Qgp > He;. (7)

Normally the threshold Hg; is 1 since the foot-path stride should be no less than a prespecified stride length
She

Foot-path height. The height of the foot path is the difference between the Y coordinate of the foot-point
Fatao=0and a=m, 7

= YEI&:ﬂ’ - YEl
Sh

C2:

2=0 > He, (8)

where the value of Hge is positive.

Four-bar transmission angle. Since AB = ByB = z3, the minimum and maximum transmission angles, C3

and C4, of the four-bar linkage, can be written as

c3 = 2sin-1(f2—;{—1)zncg (9)
c4 = 2sin~1(F2Ty < g, (10)
Z3

To achieve efficient force transmission in the four-bar linkage, the transmission angle should not deviate
too much from /2. In this paper, Hcs and Hgyq are chosen such that (/2 — Hgs) = (Heq — 7/2). Note that

under this constraint the Grashof criteria for the four-bar linkage are automatically satisfied.



Pantograph transmission angle. The pantograph becomes singular when all its links are aligned, i.e., ACGE

collapses to a straight line. The singularity of a pantograph is avoided as long as ACGE remains a bona
fide triangle throughout a full crank cycle. Again, to achieve this, the transmission angle /CGE should not
deviate too much from /2. Hence, the minimum and maximum transmission angles of the pantograph,

C5 and C6, are

_ 2(:1,'4 +.’B5)2 — 2.
c5 := cos! min] > H 11
[ 2(zs + 23)° ] > Hes (11)
_1:2(zq + .’1,‘5)2 -2
€6 := cos™! AT < H 12
[ 2($4+2}5)2 ] Cé ( )

where lpin and lp,, are the minimum and maximum distances of CFE, respectively, and can be easily
obtained from Fig. 1. The thresholds Hcs and Hcg are chosen such that (7/2 — Hes) = (Hgg — 7/2).

Links 4 and 5 orientation angles. In order to prevent link 4 from interfering with the four-bar linkage or link

5 from bumping into the ground, the orientations of these two links must be constrained. Since the link
lengths CG = GE, the minimum and maximum angles of 05 are equal to those of m — 64. Therefore one

constraint would be enough,
FC1 := 65 > Hpci, Vaé€e R,p (13)

The quantity 65 can be obtained by subtracting ZGEC from the orientation of CTD),

Xg

U
g ) (149

— —1 ——
) —cos™( 52;

05 = cos!(

where U = [X¢? + Yo? + Yp? — 2YCYD]I/z-

Second derivatives of Y. Since the propelling portion of the foot path should be always below the non-

propelling portion within the entire stride length, it is desirable to have the foot path concave upward (-Y

direction) for the entire propelling portion, i.e.

Yg

FC2 := d;2 SHFCQ, for E2E3 (15)
(64

3.3 First-Stage Optimization Results: Leg Dimensions

The leg dimensions optimization was carried out based on the following specifications: (i) foot reaction
force fosx = O N, and fosy = -890 N (200 Ib); (ii) horizontal (sp) and vertical (s,) stride lengths of 0.3 m

(12 in) and 0.2 m (8 in), respectively; and (iii) walking on a flat terrain. In addition, the parameters of



Initial Optimized Designs

Design | 1 | 2 |3 |4 [5 |6 |7
faev, * | N/JA 2.75 [3.00 |3.25 (3.50 {3.75 {4.00 {4.25
fasy, 2.67 12.38 |2.55 [2.75 [3.00 |3.25 {3.56 |3.85

z; (cm) | 3.0 |50 |45 |41 |37 [34 [31 |29
z; (cm) | 140 |21.3 |19.4 [17.8 |16.4 |15.6 |15.4 |14.5
zs (cm) | 12.0 |19.3 |17.3 |15.6 |14.3 |13.0 |12.5 |11.8
z4 (cm) | 150 |13.8 [12.4 [11.2 [10.1 9.1 |83 | 7.7
zs (cm) | 30.0 |23.0 |23.1 |23.4 |23.7 |24.1 |24.8 |255
¢ (rad) | 3.00 |2.20 |2.17 |2.14 [2.09 |2.05 [2.00 |2.00
fimax © | 546 |50.0 |50.8 [52.1 [54.1 |55.9 |58.6 |58.4
Pimin 94.9 [85.6 [87.3 [89.3 [91.6 |93.6 |95.5 [94.9

“fsev, and fsey, are the upper bound and optimized values of the actuating force fssy (kN), respectively.
®ftmin and fmax are the minimum and maximum of the transmission anlges (in degrees) of the four-bar linkage.

TABLE 1: Initial and Optimized Design variables
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FIGURE 2: Leg size vs. fsgy and crank torque vs. fggy for seven optimized solutions

constraints are chosen as follows: Hg; = 1; Hga = 0.08; Hes = Hes = 0.873 radian (50 degrees); Hoq = Heg =
2.268 radians (130 degrees); Hpc; = 0.436 radian (25 degrees); and Hpgy = 0.

Our main goal here is to investigate how the vertical actuating force affects the leg design in terms of the
crank torque and leg size. As we gradually relaxed the limitations on the vertical actuating force at joint
D, from 2.75 (kN) to 4.25 (kN) at an equal increment of 0.25 (kN), seven optimized leg designs, labeled 1
to 7, were obtained. The initial and seven optimized leg dimensions and their extreme transmission angles
are shown in Table 1.

Fig. 2 shows the tradeoffs between the three design objectives. As the vertical actuating force increases
from 2.38 kN to 3.85 kN, the normalized leg size decreases from 3.86 to 2.72. Similar trend can be observed
for the crank torque curve in Fig. 2. However, as shown in Fig. 2, the impact of actuating force on leg

size is much larger than that on the crank torque.
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FIGURE 3: (a) Foot path; (b) Torque curve for an initial and optimized designs

Fig. 3(a) shows both the initial and optimized foot paths for the optimized design number 3 listed in
Table 1. We note that the propelling portion (the lower portion) of the foot path becomes much flatter
after optimization. Fig. 3(b) shows the crank torque variation during the propelling portion which has

been substantially reduced after optimization.
4 SECOND-STAGE OPTIMIZATION: SPRING SIZE AND PLACEMENT

Since a large actuator will make the walking machine heavy and this in turn results in high reaction
load at the foot point, it is desired to further reduce the already optimized torque and force obtained from
the first-stage optimization. For this reason, light weight passive elements such as springs are considered.
Among a variety of springs, tension spring is selected for its ease of attachment. Since there is no general
guideline for mounting springs to the mechanism, the spring placement configuration should take advantage
of some of the features of the mechanism. For our leg mechanism, symmetry is a significant feature. Thus,
all of the springs are arranged in such a way that the actuator force and crank torque are reduced in a
symmetric manner. In the following sections, three possible spring configurations as shown in Fig. 4 are

presented for the reduction of the actuating force and torque.
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FIGURE 4. Three proposed spring configurations

4.1 First Configuration

Fig. 4(a) shows two springs attached on the leg mechanism. Spring k; (ki is the spring constant) is
connected at points C and C’. Point C’ lies on the axis of symmetry By D and point C is the coupler point
of the four-bar. Spring ko is attached onto the pantograph at G’ and F’, where point G’ lies on link FG
and point F’ lies on link DF. As a result (see below), the crank torque is reduced by both springs, while
the vertical actuating force at point D is reduced by spring ks alone.

Without the springs, when the mechanism is subject to a force fys, the pantograph will be under
compression, i.e., points C' and E tend to approach each other, while the coupler point C of the four-bar

linkage tends to move away from its base point By. After the springs are attached on the mechanism,

10



spring k1 will pull the coupler point C toward the base point By and spring k2 will extend the pantograph.
Because of this, force acting on the coupler point C' is affected by both springs, resulting in a reduced
crank torque. As to the pantograph, a reduced actuating force at point D is obtained due to the fact that
the compressive force from the ground is partially balanced by the tension force from spring ks.

Applying the principle of virtual work (see details in Appendix B), we obtain the crank torque as

dX dY
T = [nfosx + (k161 — k252)Xc]-z;C- + [nfosy + k161(Yo — s1) + k202 (Yp — Y¢) d_ac (16)

where n = z5/z4, 6 = (1 — lp1/l1), and 83 = (sa1522/242)(1 — lo2/l2). The coefficients of the dX¢/do and
dYc/de in Eq. (16) are respectively the X- and Y- forces at joint C. Note that in Eq. (16), fosy is always
negative, while k161 (Yo — s1) and k2d2(Yp — Y¢) are always positive. Therefore, the crank torque can be
substantially reduced as long as the term (k161 — k2d2) is kept at a small value. The vertical actuating

force at point D is
fssy = —(1 +n)fosy — k202(Yp — Yo). (17)

Note that the right hand side of Eq. (17) is the difference of two positive quantities (since fosy is negative).

It can be seen from Eq. (16) that the resultant crank torque is affected by both springs. This implies
that there are restrictions in the selection of springs, because of their coupling effect on crank torque. Note
that in this configuration, an additional reaction force in the X- direction at point D is introduced by

spring kg, which will increase the frictional force of the slider at point D.

4.2 Second Configuration

Fig. 4(b) shows an alternative arrangement of the springs. Spring k; is attached at points C and C’
identical to that shown for the first configuration, while spring k3 is connected at points D and D', where
point D' lies on the axis of symmetry BoD. The crank torque T for this spring configuration, via a

formulation similar to that described in Appendix B, is given by

dX dY,
T = (nfosx + k16:X0) =2 + [nfosy + k161 (Yo — s1)]—— (18)
do da
and the actuating force fzsy is found to be
fsey = —(1 + n) fosy — ks[(ss — YD) — log]. (19)

From Egs. (18) and (19), it is clear that the crank torque T depends only on spring k; and the actuating

force fsgy is solely related to spring k3. Unlike the first configuration, there is no coupling effect between

11



these two springs. Moreover, k3 spring will not generate additional side force at point D. However, one

potential problem with this design is that the attachment point D’ may come too close to the ground.

4.3 Third Configuration

The third spring configuration, as shown in Fig. 4(c), consists of three springs. Spring k, is attached to
the pantograph at F' and G' identical to that of the first configuration. One end of two springs k4 are
attached at point C, while the other ends are attached at C” and C", respectively. Both C” and C",
which are symmetric about the Y-axis, are located on a horizontal line passing half way between the two
extreme Y coordinates of the coupler curve. Since the coupler point C' does not change much in its ¥V
coordinate (compared to the change in the X coordinate), the force generated by springs k4 are mainly in
the X-direction. Neglecting the Y-direction force generated by springs k4, the crank torque T is obtained

as

dX, dYo
T = [nfosx + (k202 — 2k4)Xc]d—aC + [nfosy + k202(Ye — 51) _d_ac (20)

and fgey is given by Eq. (17).

Note that, in this design, points C" and C" must be separated far enough for the springs to remain in
tension at all times. This may pose a problem in a situation when the available space is limited. Similar
to the second configuration, springs k2 and k4 are not coupled. Again, spring k; generates an additional

frictional force on the slider point D.

4.4 Design Variables, Objectives, and Constraints

For the sizing and placement of the springs, an optimization-based model is established. The model is
comparably simpler than that for the leg mechanism dimensions and again the software Consol-Optcad
(Fan et al., 1990) is used.

The design variables for the three spring configurations include the distances s, s21, S22, s3, and sy, the
spring constants k; through k4, and their unstretched (or free) lengths lp; through lps. All of the design
variables are assumed to be positive, except s; which is allowed to be negative. Here, quantities s; and
s3 are measured from point By along the Y-axis direction, while s9; and sy are measured from point F
along ﬁ and 1_73 , respectively, and the quantity s4 is defined as C"C™.

The design objectives of the second-stage optimization are the crank torque T and the actuating force

fsey, as described in the previous sections. The constraints can be divided into two groups: constraints on

12



the extension ratios of the springs, and constraints on the location of the spring attachment points. For
each spring, two constraints on the extension ratio are imposed. For example, spring k; has the following

two constraints:

in(l

SCl := min(l,) > Hsex (21)
lor
l

SC2 ma;x( J < Hsco- (22)
01

The quantity Hsci, normally set to one, is the minimum extension ratio. The quantity Hsco, depending
on the spring characteristics, is the maximum extension ratio. The stretched lengths [; and Iy and their
extreme values can be found in Appendix B, while min(l3) = s3 — {Yp1 + sv/[2(1 + n)]}, max(l3) =
s3 — {Yp1 - sv/[2(1 + n)]}, min(ly) = s4/2 — XE|,—,, and max(ly) = s4/2 + XE|,_,, can be easily
obtained from Fig. 4. Here Yp; = Y| a=r T \/§w4 where Yp, is the Y coordinate of slider D when it is
held at its middle position, and sv/[2(1 + n)] is one-half of the vertical stride of slider D.

As to the constraints on the locations of the spring attachment points, agian we take spring k; as an

example:

SC3 := 31 > Hscs (23)
SC4 = s1 <Hses (24)
where Hscz and Hscq are the minimum and maximum values for sy, respectively. Note that, for spring ko,
the maxima of s3; and sop are desired to be smaller than z4 and zs, respectively. Therefore, a second-stage

optimization model can be easily developed for each spring configuration using the objective and constraint

functions described in this section.

4.5 Second-Stage Optimization Results: Spring Size and and Placement

The second-stage optimization results are obtained based on the following assumptions: (i) the maximum
spring extension ratio for all springs is 30%; (ii) the spring constants are not to exceed 50 kN/m; (iii) joint
D is held at the middle position while the crank torque and actuating force are computed for a full
crank cycle; and (iv) leg dimensions obtained for design number 3 of Table 1 is used for all three spring
configurations.

The spring constants and their unstretched lengths for the three optimized configurations are tabulated

in Table 2, while the spring locations are listed in Table 3. From these two tables, it can be observed that

13



Initial | Spring Configuration
Guess I | I [ III
lo1 (m) 0.1 | 0.130 | 0.316
loz (m) 0.1 |0.182 0.186
l03 (m) 0.1 0.216
log (m) 0.1 0.500
ki (kN/m) | 0 | 295 | 10.2
ks (kN/m) 0 50.0 50.0
k3 (kN/m) 0 42.6
ks (kN/m) 0 48.8

TABLE 2: Design variables of the springs

Initial | Spring Configuration
Guess I | II | I
s1(m) 0 0.150 | -0.100
sau(m) | 01 | 0.017 0.038
seo(m) [ 0.1 | 0.233 0.233
s3(m) | 0.35 0.548
84(m) 0.30 0.576

TABLE 3: Location Variables of the springs

springs k; for the first configuration is shorter than for the second configuration, because spring k; in the
first configuration must provide a larger side force to cancel that generated by spring ks. Springs ky used
in the first and third configurations are attached at almost the same positions, i.e., G’ and G coincide. The
location of D' for spring k3, which is 0.548 meters below joint By, does not come too close to the ground
because the leg is about 0.8 meter long. Since s4 is about 0.576 meter (much larger than the width of the
leg), there may not be enough room to attach springs k4 for the third configuration. Table 4 shows the
maximal crank torques and actuating forces for the three alternative designs with and without springs. As
shown in Table 4, the actuating torque and force values for the second configuration have been reduced to

about half of the values without springs.

Without | Spring Configurations
Springs I [ I [ IO
Ssey (kN) 2.75 2.22 | 1.38 1.69

T (N-m) 7.93 6.44 | 4.01 4.92

TABLE 4: Actuating force and torque with and without springs

14
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FIGURE 5: A comparison of actuating forces and torques: (a) Crank torque vs. crank angle; (b) Actuating force vs. crank angle

From the above discussions, we conclude that the second spring configuration is the most promising
design. For this configuration, Figs. 5(a) and 5(b) show the reduction in crank torque and actuating force,
respectively, for a full walking cycle. Although the torque and force in the returning portion are increased,

they are reduced significantly in the propelling portion of the walking path.

5 SUMMARY

We present the results of a two-stage optimization study for a planar two-DOF leg mechanism. In
the first stage, leg mechanism dimensions are determined via a multiobjective optimization procedure to
achieve three design goals: minimum leg size, minimum actuating force, and minimum peak crank torque.
The dimensional synthesis of such a complicated leg mechanism is accomplished without the need for a
prescribed coupler-point path. In the second stage, the actuating force and torque are further reduced
by the attachment of tension springs. Three different configurations for the placement of springs are
considered. The spring attachment points and spring sizes are optimized via an optimization model for

the entire walking cycle. It is concluded that the actuating force and torque can be sustantially reduced

with the inclusion of tension springs.
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NOMENCLATURE

Ci := ith constraint.

e; := unit vector with the orientation angle 6;, i.e., e; = [cos(8;) sin(6;)].
ex := unit vector of X-axis.

ey := unit vector of Y-axis.

fijx = X-component of f;;.

fijy == Y-component of f;;.

fi; := force (vector) applied by links ¢ on j.

FCi := ith functional constraint.

FO: := ¢th functional objective.

Hg; = threshold value for the ith hard constraint.

Hpg;:= threshold value for the ith hard functional constraint.
I; := stretched length of the ith spring.

lo; := unstretched length of the ith spring.

k; := spring constant of the ith spring.

n := amplification factor (=z35/z4).

0: := ith objective.

R, := crank angle range of the propelling portion of the foot-point path.
8 = W

821 = F_GY'.

892 = B—C'

83 = W

ss = CTO7

sy = horizontal stride length, 0.30 m (12 in).

sy := vertical stride length, 0.20 m (8 in).

T := crank torque, N-m.

z; = design variable, i=1, ..., 5 (see Fig. 1).

x := vector of all the design variables.

X() := X coordinate of point (-).

Yy := Y coordinate of point (-).
a := crank angle (see Fig. 1).
0; := orientation angle of link indicated in Fig. 1,:= 0,1, ... , 7.
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APPENDIX A

Derivation of the Coordinates of Points C' and

The X- and Y-coordinates of the coupler point C in the reference frame, as shown in Fig. 1, can be written as
Xc = ByBcos(62) + BC cos(m/2 — ¢/2 + 65) (A1)
Yo = ByBsin(8;) + BCsin(n/2 — ¢/2 + 653) (A.2)

where (7/2 — ¢/2 + 03) is the orientation angle of the vector BC and

0 = %~ 1ABoAg + 524BBy (A.3)
65 = g — LAByAg — %LABBO. (A4)

Substituting Eqs. (A.3)-(A.4) and BoB = BC = z3 into Egs. (A.1)-(A.2) yields
X¢ = 2z3sin(LAByAp) sin(%AABBo + %qﬁ) (A.5)
Yo = 225 cos(£ ABy o) sin(5 LABBo + - 4). (A.6)

The quantities ZABgAg and ZABB, are obtained via the sine law for AAByA¢ and AABB,, respectively:

sin{e)

LAB()A(): sin"l{ /2 (A7)
[(za/21)? —2(x2/x1) cos(a)+1]

1 1 @ /m1)? ~2(@a /) cos(a) +1]

§ZABBo—sm { iy 2(:12;3/1:1) } (A.8)

Then, the coordinate of the coupler point C' (X¢, Yc), is obtained by substituting Eqs. (A.7) and (A.8) into (A.5)
and (A.6), as

Xc = z sin(a){cos(4/2) + V sin(¢/2)} (A.9)
Yo = [z2 — z1 cos(a)]{cos(¢/2) + V sin(4/2)} (A.10)

where
= (225 /21)" — 112, (A.11)

V= p
(z2/z1)" = 2(z2/21) cos(a) + 1

From the two triangles, ACFD and ADHE as shown in Fig. 1, the coordinates of E and C are related by
Xg=-nXc and Yg = Yp + n(Yp — Y¢). Thus, the foot-point coordinates are

Xg=-nz sin(a){cos(¢/2)+V sin(¢/2)} (A.12)
Ye=(1+n)Yp — n[zs —x; cos(a)}{cos(¢/2)+V sin(4/2)}. (A13)
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APPENDIX B

Derivation of Crank Torque T' and Force fgq for the First Spring Configuration

From the principle of virtual work and stationary energy,
oW =46P (B.1)
where W is the virtual work and 0P is the virtual potential energy. The potential energy stored by the springs is
P=1/2k(l —lo1)? +1/2 ky(la — lo2)*. (B.2)
Differentiating Eq. (B.2) results in

0P =k (ly — lo1)0ly + ka(l2 — lo2)dl,. (B.3)

The square of [; can be written from Fig. 4(a), as
L% =[X3 + (Yo - 51)% (B.4)

while the square of l2 can be obtained by applying the cosine law to AF'FG and ACDF as

2 _ 521522

lgz = 3212 + S22 TB (YD - YC)2 + .X02 had 22342]. (B5)

From Egs. (B.4) and (B.5) min(l;), min(l), max(l;), and max(l3) could be obtained. Differentiating Eqs. (B.4) and
(B.5) and substituting the resulting equations in Eq. (B.3), yields

dX dy. dX dy
6P = k6, [XC—%E + (Yo - s1)d—:]6a — ko6 (Yp — Yo)6Yp + k262[—Xcd—aC +(Yp — YC)EC-]MYD (B.6)

where 8; =1 — lo1/l; and 82 = (s21822/74%)(1 — lo2/12). Now, consider the virtual work of the leg mechanism,
W =Toa + fo5 '5r30E+f86 '5rBoD- (B7)

Since fos = fosxex + fosvey, fss = fssxex + fssvey, re,g = —nXcex +[(1+n)Yp —n¥cley , and rg,p = Ypey,
the virtual work is given:

W =(T — nfosxdf—ac - nfosy%éq)éa +
[(1 +7)fosy + faev]6YD. (B.8)
Substituting Egs. (B.8) and (B.6) into (B.1) and set the coefficients of da and §Yp to zero, yields
T = [nfosx + (k161 — k252)Xc]i§§— + [nfosy + k161 (Yo — s1) + k202(YD — YC)]% (B.9)
and
fssy = —(1 +n)fosy — k282(Yp — Yo). (B.10)

The side force fssx can be found by taking the moment about point C of the forces acting on the pantograph,
fesex =—(1+ ’n)fOSX + k282 X . (B.ll)
Finally, summing all the forces acting on pantograph, yields

faax = nfosx — k2daXc
faay nfosy + k202(Yp — Yo). (B.12)
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