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Alkylation of DNA by a variety of small molecules has been found to be both 

a cause of cancer and a treatment of the disease.  One class of alkylating agent is the 

quinone  methides  (QMs).  These  highly  electrophilic  molecules  are  the  reactive 

intermediates of a variety of natural products, such as mitomycin C.  Investigation of 

the reactivity and selectivity of QMs is important in understanding their mechanism 

of action.  

Competition studies with a model QM have been undertaken to investigate the 

reversibility of the nucleoside adducts formed, as well as their product profile.  From 

these initial studies, it has been found that there are three terminal sites of alkylation, 

the N1 and N2 of dG and the N6 of dA, as well as two reversible sites, the N1 of dA 

and the N3 of dC.  The N7 adduct of dG was found to deglycosylate over time.  

Further studies into the reversibility of the N7 adduct of dG found that the adduct 



regenerated QM and deglycosylated at  approximately the same rates.  Thus, these 

studies have identified a third reversible QM adduct of the 2'-deoxynucleosides.  

An  oxidative  quench  of  labile  QM  adducts  has  been  developed.   The 

methodology  utilizes  [bis(trifluoroacetoxy)]iodobenzene  to  convert  the  nucleoside 

adducts to a stable derivative.  Use of the oxidative quench will allow for the analysis 

of the observation of labile QM-DNA adducts and determination of the inherent QM 

selectivity with duplex DNA.

  Studies of substituent effects on the reactivity of QMs were also undertaken.  

Addition of an electron donating group to the aromatic ring increases the rate of QM 

generation from the precursor and nucleoside adducts.  Conversely, addition of an 

electron withdrawing group to the aromatic ring results in a destabilized QM, which 

decreases the rate of generation from both the precursor and the nucleoside adducts.  

Model  reactions  of QM with a  new sequence-specific  DNA binding agent 

were performed to investigate the possibility of using a QM-TRIPside conjugate for 

sequence-selective alkylation of DNA.  Unfortunately, the major product of reaction 

was irreversible; however, further changes to the QM or the TRIPsides may result in 

the  formation  of  a  reversible  adducts  TRIPside  adducts,  which  should  allow for 

sequence-selective DNA alkylation.  
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Chapter 1

Introduction

1.1.  Importance of Understanding DNA Alkylation

DNA alkylating agents have garnered much interest over the years due to their 

dual nature as both anti-cancer agents and carcinogens.  These compounds can be natural 

products, small molecules generated from a variety of biological and chemical processes, 

or synthetic compounds.  The complexity of the types and number of alkylation reactions 

has driven a substantial research effort to investigate the properties of alkylating agents. 

This research has elucidated many of the underlying mechanisms involved with the toxic 

effects of these compounds.   Many of the compounds used as anti-cancer agents can also 

cause mutations, and even additional diseases or new cancers.  To understand these side 

effects, it is necessary to understand the drug's mechanism of action and selectivity for 

cellular nucleophiles.  This knowledge helps in the design of new drugs with increased 

efficacy and decreased side effects.

To fully understand the mechanism of action of a compound and correlate that 

with the effects seen in vivo, a detailed analysis of the types and quantities of adducts is 

necessary.   Although  not  all  of  the  adducts  generated  in  vitro  will  necessarily  be 

generated in vivo, in vitro studies provide a starting point for disentangling the intricacies 

of  DNA alkylation.   Without  a  fully  elucidated  reaction  scheme,  the  quantities,  and 

therefore the effects, of different lesions can be misjudged, which can misdirect future 
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research.   Thus,  an  in-depth  understanding  of  the  reactivity  and  selectivity  of  an 

alkylating agent is essential to both understanding the causes of carcinogenesis and to 

developing improved alkylating agents for use as anti-cancer drugs.

1.2.  Structure of DNA and Types of DNA Alkylation

DNA is composed of four bases, adenine, cytosine, guanine, and thymine, which 

are  attached  to  a  2'-deoxyribose  sugar  (Scheme  1.1).   The  bases  are  connected  via 

phosphodiester bonds, resulting in a double helix structure (Figure 1.1). Both the oxygen 

and nitrogen nucleophiles of  the bases, and at times even the oxygen of the phosphate, 

can react with a variety of electrophilic agents.  In general, electrophiles with large dipole 

moments  react  at  the  oxygens  of  the  bases,  while  electrophiles  with  small  dipole 

moments react at the nitrogen nucleophiles.1  Of the nitrogen nucleophiles, the N7 of dG 

is typically regarded as the most nucleophilic site of DNA.1  The N1 position of dA and 

N3 position of dC are also considered good nucleophiles.  In contrast, the N1 and N2 

positions of dG and N6 position of dA are considered weak nucleophiles.1  

The sites where the electrophilic reagent reacts on DNA is also dictated by its 

binding affinity for various DNA sequences.  Depending on the non-covalent contacts 

that the compound can make with either the major or minor groove of DNA, the alkylator 
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will bind at different sequences.  Thus binding site dictates which nucleophiles are in 

close enough proximity to react with the electrophile, thus limiting the type of adduct that 

can be formed.  

There  are  three  major  types  of  DNA alkylation events  that  can  occur:  mono-

alkylation, intrastrand crosslink, and interstrand crosslink (Scheme 1.2).  Of the three, 

interstrand  crosslinks  are  the  most  toxic;  it  has  been  found  that  a  single  interstrand 

crosslink can be enough to kill a bacterium.3,4  The type of alkylation depends on the 

structure of  the alkylating agent  and the sequence of the DNA being alkylated.   For 

alkylating agents with only one reactive site, mono-adduct formation is the only possible 

3

Figure 1.1: Double helical structure of DNA. Figure adapted.2

Scheme 1.2.  Types of DNA alkylation events.
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outcome.  However, if an alkylating agent possesses two (or more) reactive sites, then all 

three of  the  alkylation events  are  possible.   If,  following the initial  alkylation event, 

reaction with water occurs at the second reactive center, then a mono-adduct will result. 

However,  if  the  second  reactive  center  interacts  with  the  DNA,  then  either  of  the 

crosslinks may develop.  Which type of crosslink is formed depends on the structure of 

the alkylating agent and the DNA sequence.  If the alkylating agent is smaller than the 

width of the major or minor groove, an intrastrand crosslink or a mono-alkylation event 

are the only types of alkylation events possible.  If the alkylating agent can span the 

groove to which it is bound, then it can form an interstrand crosslink.  However, some 

alkylating  agents  only  react  with  certain  nucleophiles  of  DNA.  If  a  bifunctional 

alkylating agent reacts at an initial site of reaction that does not have another reactive 

nucleophile in close proximity, then the alkylating agent will be unable to react a second 

time with the DNA.  In this case, hydrolysis of the second reactive center is likely to 

occur, yielding a mono-alkylation event instead of a crosslink.  

1.3.  Types of DNA Alkylating Agents

DNA alkylating agents span many classes of compounds and are varied in size 

and type of  reactive moiety.   Classically,  many alkylating agents used for  biological 

studies derive from organic reagents used to alkylate nucleophilic centers, such as methyl 

iodide (1.6) and dimethylsulfate (1.7),  which react through SN2 mechanisms (Scheme 

1.3).5  Due to their high reactivity, these compounds react with most of the nucleophiles 

of DNA, although the yields of the adducts vary.  Dimethylsulfate reacts primarily at the 

N7 of dG, N1 and N3 positions of dA and N3 of dC.  In contrast, methyl iodide reacts at 
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both the O6 and N7 positions of dG, N1 and N7 positions of dA, and the N3, N4, and O2 

positions of dC.5  

Many  alkylating  agents  are  also  either  natural  products  or  the  products  of 

metabolism of natural products.  Two of the simplest reversible alkylating agents are the 

cytotoxic  byproducts  of  lipid peroxidation,  malondialdehyde (1.8)  and acrolein (1.10, 

Scheme 1.4).6-10     Malondialdehyde and acrolein can both form bifunctional adducts with 

dG in vitro and in vivo.  These adducts, termed M1G (1.11) and 1, N2-hydroxypropano-

dG (1.15), respectively, are reversible and exist in an equilibrium between the ring closed 

and  ring  opened  forms  (Schemes  1.5,  1.6).8,9  The  structures  of  the  two  adducts  of 

malondialdehyde, one of which is an open chain and the other is a cyclic adduct, are 

considerably different,  leading to the hypothesis  that  the ring-opened and ring-closed 

adducts  have  significantly  different  cytotoxicity.  This  lability  between  isomers  with 

different toxicity may pose problems to the DNA repair  machinery since the various 
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adducts may be repaired through different pathways, which increases stress on the cell. 

Acrolein can also form reversible crosslinks within a DNA double helix.7,8 Inter-

strand crosslinks are very hard for cells to repair and thus are extremely cytotoxic.3,11  The 

acrolein adducts, N2-(3-oxopropyl)-dG (1.13) and 1,N2-hydroxypropano-dG (1.15), exist 
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Scheme 1.5.  Cyclic and open chain β-hydroxyacrolein adducts of dG.
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in equilibrium in DNA (Scheme 1.6).  However N2-(3-oxopropyl) dG can also form an 

interstrand crosslink (1.14)with a dG in the opposing strand.7,8  Adducts of acrolein can 

exist in a variety of forms, all of which should stress the cell by activating the cell’s 

repair machinery.  Thus, from one small, reversible alkylating agent, a wide variety of 

adducts can be formed.  The large number of adducts should increase the likelihood of 

mutation  and cell  death  by  presenting  multiple  adducts  to  the  repair  and  replication 

machineries.

Classic examples of chemotherapeutic  DNA alkylating agents  are  the nitrogen 

mustards (NM, 1.16,  Scheme 1.7).   Various NMs are now being used as anti-cancer 

agents  due  to  their  high cytotoxicity.12  The mechanism of  NM action (Scheme 1.7) 

proceeds by loss of a chloride ion, with the central nitrogen providing stabilization of the 

positive charge.  Attack at a carbon of the aziridine ring by a DNA nucleophile results in 

an alkylation event.3,12,13  Loss of the second chloride ion followed by a second DNA 

attack results  in  a  crosslink.   The nitrogen mustards  preferentially  react  with the N7 

positions  of  guanine  to  form  a  dG  N7-NM-dG  N7  inter-strand  crosslink  (1.19).12,13 
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Scheme 1.7.  Mechanism of nitrogen mustard alkylation of DNA.  
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However, due to the high reactivity of the nitrogen mustards, they can be hydrolyzed in 

aqueous solution, resulting in either a mono-alkylator or a fully hydrolyzed agent.   

Another class of anti-cancer drugs are the platinum compounds, of which cisplatin 

(1.20) is the most famous (Scheme 1.8).  Cisplatin is first hydrolyzed, releasing chloride 

and forming a water bound intermediate, before being subjected to nucleophilic attack by 

the bases of DNA.14  The selectivity of cisplatin is very similar to that of the nitrogen 

mustards,  with  the  primary  sites  of  alkylation  are  the  N7  positions  of  the  purines. 

Guanine N7 is the primary site of alkylation, with cisplatin being most selective for tracts 

of dG.15-18  Cisplatin is a potent anti-cancer drug that has been used clinically since 1971.19 

The toxic lesions responsible for cisplatin's remarkable efficacy are intra-strand dG N7-

dG  N7  crosslinks.20  Unfortunate  side  effects  associated  with  cisplatin  include  high 

nephrotoxicity and resistance to the drug.14,19  Despite this problem, cisplatin is currently 

used to treat a variety of tumors.

Various analogs of cisplatin have been developed to increase the selectivity of the 

alkylation events and decrease the side effects, but many either show cross-resistance 

with  cisplatin  or  similar  toxicity.14,21  Carboplatin,  cis-diamin-1-1'-cyclobutane 

dicarboxylate platinum (II) (1.21), has decreased toxicity as compared to cisplatin, but 

does show similar patterns of resistance (Scheme 1.8).19  Attempts have also been made 

8
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to improve the selectivity of cisplatin for DNA, as opposed to other cellular nucleophiles 

to  decrease  the  toxicity,  by  conjugation  of  derivatives  to   directing  agents,  such  as 

oligonucleotides  and  acridines.22,23    By  increasing  the  selectivity  for  G·C  tracts  or 

specific DNA sequences, respectively, the toxicity of cisplatin should be reduced and 

more specific alkylation would be achieved.  These conjugates did alter the sequence 

selectivity of the platinum(II) compound, however they have not yet been subjected to 

clinical trials.22,23  

The family of cyclopropyl alkylating agents is a class of organic alkylating agents 

that has received a lot of attention and includes members such as the duocarmycins (1.23, 

1.24) and CC-1065 (1.22, Scheme 1.9).  Much of the  interest in these molecules is due to 
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Scheme 1.9.  Structures of well known cyclopropyl alkylating agents.  
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their sequence selectivity.  These compounds react with the bases of DNA by way of a 

nitrogen nucleophile attacking the cyclopropyl ring, which opens and restores aromaticity 

to an adjacent ring system (Scheme 1.10).  CC-1065 and the duocarmycins form non-

covalent bonds within the minor groove of DNA, which imparts sequence selectivity to 

these molecules.24-27  Many derivatives of these agents have been synthesized with varied 

lengths  to  alter  the sequence  selectivity  and site  of  alkylation,  illustrating how DNA 

alkylating agents can be tuned to limit their off target reactions.  

An additional interesting feature of this class of alkylating agents is that some 

members are able to alkylate DNA reversibly, an attribute not very common with DNA 

alkylating agents.  Reversible alkylating agents have been shown to be even more potent 

than irreversible alkylating agents, such as in the case of the duocarmycins.  This is likely 

because following excision of the adduct from DNA, the alkylating agent can regenerate 

and realkylate the DNA.24-27

1.4. Quinone Methides

Quinone methide (QM) based alkylating agents (Scheme 1.11) are closely related 

to the cyclopropyl alkylating agents.  QM are typically transient intermediates generated 
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Scheme 1.10.  Mechanism of action of cyclopropyl alkylating agents.
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in vivo during the metabolic activation of a variety of compounds, including both natural 

products and synthetic agents.  Upon activation of the quinone methide precursor, an 

extremely electrophilic quinone methide intermediate is formed, as attack at the exocyclic 

methylene group restores aromaticity to the ring.   QM can also be generated by a variety 

of chemicals and have been used extensively for organic synthetic reactions, resulting in 

a large body of knowledge on QM reactivity.

Both ortho and para QM (1.25 and 1.26, respectively) have been generated in a 

variety of ways for use in organic synthesis.  o-QM have been generated by oxidation of 

phenols with Ag2O,28 fluoride induced desilylation of silyl  ethers,29 dehydration of  o-

hydroxybenzyl alcohols,30 and thermal extrusion of small molecules.31  These techniques 

have  been  used  to  synthesize  a  variety  of  natural  products.   (+)-  and  (-)- 

hexahydrocannabinol were synthesized using a QM derived from a silyl ether,29 while 

cycloaddition of  an alkyne with a  QM generated by oxidation of a  phenol  yielded a 

synthetic route to carpanone (Scheme 1.12).32

 p-QM have also been used synthetically, but have primarily been generated by 

oxidation of their parent phenols.33,34  Oxidation of various phenols using SmI2  has been 
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Scheme 1.11.  Structures and mechanism of action of quinone methides.  
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used to form new carbon-carbon bond in a cyclic product.33  Formation of carbocycles 

was also achieved by forming p-QM with tethered nucleophiles in the presence of Lewis 

acids, making this an efficient method for generating tri-cyclic structures.34

Mitomycin C (1.29) is one of the most famous of the QM alkylating agents and 

has been the subject of intensive study since it is used as an anti-cancer drug (Scheme 

1.13).35  Under  hypoxic conditions often found in solid tumors, mitomycin C is activated 

by reduction to form a QM.  Reaction of the N2 position of dG at the initial electrophilic 

site generated in the activation of mitomycin C  results in a monoadduct.  The mitomycin 

C core then releases another leaving group, generating a second site for DNA alkylation 

and  resulting  in  a  dG N2-dG N2 inter-strand  crosslink  (1.33).35,36  The  selectivity  of 

mitomycin C is due to its binding to the minor groove of DNA and its interactions with 

the bases of the minor groove of the DNA double helix.35,36  

Butylated hydroxy toluene (BHT) (1.34, Scheme 1.14) is a well studied example 

of  a  synthetic  compound  that  forms  QM  upon  activation.   BHT  is  used  as  a  food 

preservative and upon activation by P-450 forms a QM.37  Cytotoxicity from treatment 
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Scheme 1.12.  Structures of (-) - hexahydrocannabinol and carpanone.  
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with  BHT has  been  observed  in  isolated  rat  hepatocytes,  rat  liver  slices,  and  mouse 

keratinocytes.38-40  Effects of QM treatment include tumor promotion, lung toxicity, and 

cell  death.38-42  In  vitro  studies  have  found that  BHT reacts  with  a  variety  of  DNA 

nitrogen nucleophiles, which are the likely causes of the observed in vivo toxicity.43

QM are also formed in vivo from a variety of other compounds, including the 

anti-cancer drug tamoxifen (1.35) and its derivatives (Scheme 1.15).44-47  Tamoxifen is 
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Scheme 1.13.  Mechanism of mitomycin C (1.29) activation and alkylation.  
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widely used to treat  women with oestrogen receptor-positive tumors, including breast 

cancer.48  However,  studies  have  found  that  tamoxifen  increases  the  occurrence  of 

endometrial  cancer  in  women  and  hepatocellular  tumors  in  rats.49-51  Hydroxylated 

metabolites of tamoxifen, as well as toremifene (1.36) and acolbifene (1.37), have been 

found to form QM under either chemical  or enzymatic  oxidative conditions (Scheme 
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Scheme 1.14.  Structure of BHTOH.  
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1.16).45,47  These  QM  have  the  potential  to  contribute  to  the  tumorigenic  effect  of 

tamoxifen and its analogs.  

To  better  understand  QM  reactivity  and  toxicity,  the  Rokita  laboratory  has 

developed a variety of compounds that form QM upon activation by stimuli such as light, 

enzymes, and salt.52,53  These model systems provide a way to control QM generation and 

analyze the alkylation selectivity in vitro.  A quinone methide precursor (QMP, 1.40) 

consisting of  an  o-cresol derivative  protected as  the  silyl  ether  with  a  leaving group 

appended onto the benzylic position has proved the most useful of the aforementioned 

systems (Scheme 1.17).  Both bromide and acetate leaving groups have been utilized, 
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Scheme 1.16.  Oxidative activation of tamoxifen to a quinone methide.  
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depending on ease of synthesis of the QMP, and the resulting QM have been used to 

investigate the inherent reactivity of this class of compounds towards dNs.  This model 

QM was found to react with all of the dNs, except for T, forming dA N1, dA N6, dC N3, 

dG N1, dG N2, and dG N7 adducts.54-56 

A bis-QMP (1.41) has also been synthesized and conjugated to acridine so that it 

can cross-link DNA (Scheme 1.18).57  This conjugate efficiently (> 64%) cross-linked 

double stranded DNA at the dG N7 positions.57  QMs have also been conjugated to other 

sequence directing agents, such as 2'-deoxyoligonucleotides and hairpin polyamides,58,59 

and been found to alkylate only their target sequence.

1.5. Sequence Directing Agents

A  major  problem  associated  with  DNA  alkylating  agents  is  their  lack  of 

selectivity, and thus their inherent toxicity.   This toxicity is generally found not only in 

the malignant cells, in the case of cancer, but in all cells as the alkylating agent is not 

targeted to any particular cell  or  DNA sequence.   One method that  has been used to 

16

Scheme 1.18.  Structure of a bi-functional quinone methide-acridine conjugate.
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overcome this problem is to conjugate the alkylating agent to a sequence directing agent. 

There  are  a  variety  of  sequence  directing  agents,  the  most  common  of  which  are 

oligonucleotides,  peptide  nucleic  acids  (PNA),  and  polyamides  (Scheme  1.19).60,61 

Oligonucleotides can bind to either single stranded DNA (ssDNA) or the major groove of 

dsDNA and are often used as sequence directing agents in vitro because they are easily 

obtained, inexpensive, and can easily be modified with various handles for attaching the 

alkylating agent.   However,  problems with using oligonucleotides do exist,  especially 

their digestion by cellular nucleases, transport of the poly-anionic molecule across the 

cell membrane, and decreased fidelity in poly-pyrimidine sequences because of fewer 

hydrogen bonding interactions due to off-center binding in the major groove.  

17

Scheme 1.19.  Representative structures of PNA and polyamide.  
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PNA has many improvements over oligonucleotides, as its peptide backbone is 

neutral  and inert  to cellular  nucleases.62  The peptide backbone does,  however,  make 

PNA  somewhat  susceptible  to  proteases  and  also  results  in  solubility  problems.62 

Furthermore, PNA also utilizes off-center binding in the major groove, resulting in the 

same problem of too few hydrogen bonding sites in poly-pyrimidine sequences as for 

oligonucleotides.  Polyamides bind in the minor groove of dsDNA and utilize a hairpin 

shape to make contacts with both strands.63  However, the reactivity of the rings of the 

polyamide can sometimes be problematic when conjugated to alkylating agents, as they 

are  nucleophilic  enough to  react  with  the  alkylating  agent  before  the  compound has 

reacted with DNA.59,64  Thus, while the field of sequence-selective DNA alkylation has 

many tools to utilize, there are still problems to be addressed. 

Understanding and controlling the selectivity of alkylating agents will allow for 

the design of alkylating agents with improved sequence selectivity, which should result in 

decreased toxicity in vivo.  The goal of this thesis is to probe the inherent selectivity of a 

model  o-QM and attempt to modulate its reactivity and selectivity through electronics 

and sequence directing agents.  These experiments should provide a basis for designing 

improved QM-based anti-cancer applications.  
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Chapter 2

Evolution of Adducts Formed Between 2'-Deoxynucleosides and a 
Model Quinone Methide

2.1.  Introduction

Toxicity  and  carcinogenicity  of  DNA alkylating  agents  are  often  assessed  by 

identifying their adducts formed in vitro, followed by their structural characterization, 

and finally measurement of their comparative yields.  The cytotoxic and/or mutagenic 

effects  of  individual  adducts  are  then  typically  studied  in  vivo,  yielding  a  complete 

picture of the compound's toxicity and carcinogenicity.  This allows for an understanding 

of the activity of a compound and its lesions  that are most toxic to cells.  However, if 

adducts are undetected or their amounts underestimated, then the impact of the substance 

on biological systems can easily be misinterpreted. This is of particular worry with DNA 

alkylating agents  as  a  variety  of  these compounds have already been shown to form 

reversible adducts under physiological conditions.6, 7, 9, 24, 65  Therefore, it is probable that 

there are other alkylating agents that form reversible adducts which have been overlooked 

during traditional analysis.  

Early  investigations  of  quinone  methide  (QM)  reaction  with  DNA  and 

2'-deoxynucleosides  hinted  at  either  a  novel  selectivity  for  weak nucleophiles  or  the 

possibility  of  reversibility.43,66,67  Studies  by  the  Angle  group  utilized  an  anthracene 

derived  o-QM (2.2) that was generated by oxidation with silver oxide (Scheme 2.1).66 
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 Reactions  of  the resulting QM with dA and dG were  incubated for  96 hrs  at  room 

temperature and then the adducts were isolated and characterized.  The products of these 

alkylation reactions were the N6 adduct of dA and the N2 adduct of dG, both exocyclic 

amines and weak nucleophiles.66  Furthermore, these adducts were stable and were not 

found to regenerate QM.66  These results were somewhat surprising since small alkylating 

agents, without non-covalent interactions to guide binding, typically react at  the most 

nucleophilic sites of DNA, such as the dG N7 and dA N1.5  

The  Bolton  group  continued  investigations  into  QM  selectivity  for  the 

nucleophiles  of  DNA  by  utilizing  a  p-QM  (2.5)  derived  from  2,6-di-tert-butyl-4-

methylphenol (BHT, 2.4) and monitoring its reaction with all four 2'-deoxynucleosides 

(Scheme 2.2).43  A plethora of  BHT-QM adducts were isolated and characterized,  as 

opposed to only two adducts found in reaction of the anthracene derived QM.  Four 
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Scheme 2.1.  Angle's quinone methide.
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adducts of dG attached at N1, N2, N7, and guanine N7, alternatively, were identified, as 

well as the N3 and N4 adducts of dC, the N6 adduct of dA, and the N3 adduct of dT.43 

This was very surprising in light of the previous results since the BHT derived QM was 

found to react with both weak and strong nucleophiles, negating the assumption of an 

inherent QM preference for weak nucleophiles.  Although the two QMs are structurally 

different, it seems unlikely that the difference could be due solely to this fact as neither 

QM should have any substantial binding preferences for the 2'-deoxynucleosides.  The 

only other obvious explanation of the differences between the experiments was the the 

significantly  shorter  incubation times (under  1 hr)  of the Bolton reactions,  versus 96 

hours used by Angle.  Time courses from the BHT studies revealed that the dC N3 adduct 

decomposed over time, although whether this decrease was due to QM regeneration or 

adduct decomposition was not investigated.43

The selectivity of QM alkylation was further investigated by the Rokita group.  A 

model o-QM (2.8, Scheme 2.3) was designed such that QM formation could be initiated 

from a QMP by the addition of fluoride.  Studies with calf  thymus DNA resulted in 

trends  very  similar  to  Angle's,  in  that  the  major  products  were  adducts  of  the  weak 

nucleophiles of dG and a small amount of dC N3 adduct (2.10).67  However, studies of 
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Scheme 2.3.  Rokita quinone methide. 
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QM  reaction  with  dA  resulted  in  the  identification  of  two  products,  the  adducts  of 
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Scheme 2.4.  Structures of QM-nucleoside adducts.
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alkylation at the N1 (2.11) and N6 (2.12) positions (Scheme 2.4).  Over time, the amounts 

of  dA N1 adduct  decreased and dA N6 adduct  increased,  suggesting that  the dA N1 

adduct was either regenerating QM which could then react at the N6 position or that the 

N1 adduct underwent a Dimroth rearrangement (Scheme 2.5).68   Labeling studies proved 

that the dA N1 adduct did not undergo the Dimroth rearrangement to yield the dA N6 

adduct.  Thus, the QM was likely regenerated from the dA N1 adduct, allowing for an 

increase in the dA N6 adduct.  This was confirmed by  15N labeling studies68 and now 

suggests that some QM adducts are reversible under physiological conditions.68
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Scheme 2.5.  Mechanism of the Dimroth rearrangement.
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Four adducts of dG formed by reaction with the model o-QM were also identified 

(Scheme 2.4), the products of reaction at the N1 (2.14), N2 (2.13), and N7 (2.15) positions 

and the resulting product of deglycosylation of the dG N7 adduct, the guanine N7 adduct 

(2.16).55   No adducts of T were identified in reactions with QM.  

Further evidence for the reversibility of QM-DNA adducts was found in reaction 

of  a  2'-oligodeoxynucleotide-QM conjugate  that  was  used to  alkylate  DNA  sequence 

selectively  (Scheme  2.6).58  During  these  experiments,   an  intra-molecular  adduct 

between the QM and its oligonucleotide tail was formed and this self-adduct had the 

ability to alkylate its complementary sequence.  Alkylation of complementary DNA was 

found to be possible for at least eight days.58  The self adduct was impervious to external 

nucleophiles, such as water and thiols, and to non-complementary DNA sequences.  The 

thermodynamic driving force of complementary base pairing is required to overcome the 

intrinsic preference for intra-molecular reaction.  Thus, the reversibility of the QM-self 
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Scheme 2.6.  Quinone methide-oligonucleotide conjugate self-adduct formation.
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adduct allows for the formation of an intra-molecular adduct with an ability to alkylate its 

complementary sequence.58  

The  findings  that  QM  adducts  have  the  potential  to  form  reversible  adducts 

necessitated a full examination of the stability of all QM adducts to better understand the 

discrepancies concerning alkylation specificity  in the literature.   This knowledge will 

allow for improved assessment of the toxicity of QM in vivo and identification of which 

adducts are most likely to cause the cytotoxic effects.  This knowledge will also aid in the 

design of  QM-based  alkylating agents  with improved selectivity,  as  compared to  the 

small molecule.  To this end, a full kinetic analysis of the reaction of a model o-QM with 

all four dNs was undertaken.  

2.2.  Results and Discussion69

2.2.1.  Single 2'-Deoxynucleoside Studies.  

The QMP used to generate the model o-QM for these studies was synthesized by 

acetylation of  2-hydroxymethyl  phenol,  followed by silylation of  the phenol  to  yield 

AcQMP-H (Scheme 2.7).  Kinetic studies of QM alkylation began with a brief analysis of 

individual nucleoside reactions.  This was done to identify the appropriate time frame for 

observing alkylation and to ensure each adduct had a unique retention time during HPLC 
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Scheme 2.7.  Synthesis of AcQMP-H.  
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analysis.  These studies confirmed earlier results in that the dA N1 adduct was short lived 

and gave rise to the dA N6 adduct,68 while reactions with dG resulted in the formation of 

the N1, N2, and N7 adducts and the guanine N7 adduct.55  Reaction of dC with AcQMP-H 

resulted in the formation of a single adduct, as seen previously,54 which formed quickly 

and then slowly regenerated dC and QM over the subsequent hours (Figure 2.1).  

2.2.2.  Kinetic competition studies.  

Competition studies involving all of the 2'-deoxynucleosides were then undertaken 
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Figure 2.1: Time-dependent profile of dC alkylation by an unsubstituted ortho-QM. 
Reaction products were separated and quantified by reverse phase (C-18) 
chromatography and monitored at A260. Data represent averages of three independent 
analyses and were fit to two exponential functions. These lines are added to indicate 
product trends and do not represent kinetic modeling.

0 10 20 30 40 50 60 70
0

2

4

6

8

10

12

nm
ol

 a
dd

uc
t

time (hrs)

 dC N3-QM adduct



to investigate the relative ratios of adducts formed.  Each dN was present in concentration 

of  0.25  mM,  yielding  1.0  mM  of  total  dNs,  and  AcQMP-H  was  added  to  a  final 

concentration of  25 mM, such that  the  the  dNs  would be  the  limiting reactant.   The 

reactions were monitored using HPLC and the amount of adduct formed was determined 

by comparing the area of the adduct signal (λ260) to the area of an internal standard of 

known concentration (phenol) and adjusting for differences in molar absorptivity (Table 

2.1, Appendix Figure 1 and Table 1).  

At  short  time  points  (<  4  hrs),  adducts  of  dA  N1  (2.11)  and  dC  N3  (2.10) 

predominate (Figure 2.2).  These adducts decompose within approximately 24 and 48 hrs, 

respectively.  As the dA N1 and dC N3 adducts regenerate QM, the dG N1 (2.14) and N2 

(2.13)  and  the  dA N6 (2.12)  adducts  increase,  reaching their  maximal  concentrations 

between  24  and  48  hours.   The  dG  N7  adduct  (2.15)  also  forms  quickly  and  then 

decomposes,  although it  does  not  reach the levels  of  the dA N1 or  dC N3 adducts. 

During the time that the dG N7 adduct is decomposing, the guanine N7 adduct (2.16) 

forms.  Therefore, at short times (< 24 h), the adducts of strong nucleophiles, dA N1 and 

dC N3 predominate.  Over time these products regenerate QM and the adducts of weak 

nucleophiles, dG N1 and N2 and dA N6,  slowly form and remain stable for at least a 

week.   Thus,  adducts  of  strong  nucleophiles  form quickly  and  are  reversible,  while 
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Table 2.1:  λmax and calculated molar absorptivities (ε) of dN-QM-H adducts. 

AcQMP-H (λ max, nm)

ε  (260 nm, mM-1cm-1)

dC N31

(2.10)
dA N11

(2.11)
dA N6

(2.12)
dG N11

(2.14)
dG N2

(2.13)
dG N71

(2.15)
guanine N71

(2.16)

278

7.72

260

14.5

273

14.5

257

12.5

256

12.5

260

12.5

280

12.5



adducts of weak nucleophiles form slowly and are irreversible.

2.2.3.  dG N7 reversibility.

From  the  kinetic  competition  studies  described  above,  it  was  impossible  to 

determine whether the dG N7 adduct was reversible.  These studies could only analyze 

the amounts of dG N7 and guanine N7 adduct formed, since any QM regenerated from 

dG N7 adduct would react with the other nucleophiles in solution.  Since the dG N7 

position is typically considered the strongest nucleophile of DNA,1 its adduct should also 

be reversible from extension of the studies described above, wherein the dA N1 and dC 
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Figure 2.2: Time-dependent profile of dNs alkylation by an unsubstituted ortho-QM. 
Reaction products were separated and quantified by reverse phase (C-18) 
chromatography and monitored at A260. Data represent averages of three 
independent analyses and were fit to two exponential functions. These lines are added 
to indicate product trends and do not represent kinetic modeling.
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N3 adducts decompose over time.  Under the reaction conditions used, deglycosylation is 

competitive with any potential  QM regeneration since the guanine N7 adduct  can be 

isolated from the reaction mixture.  Thus, development of method to determine whether 

the dG N7 adduct is reversible was necessary.  

A trapping scheme (Scheme 2.8) was devised that utilized an alternative QMP, 

BrQMP-H  (Scheme  2.9),  which  fully  generated  QM  within  minutes,  as  opposed  to 

AcQMP-H, which generates QM for approximately 8 hours.  This ensured than any QM 

in solution following the first 30 minutes of reaction initiation would be derived from 

QM regenerated from dG N7 adduct.   BrQMP-H was synthesized by silylation of  o-
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Scheme 2.8.  dG N7 adduct trapping scheme.
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cresol  followed by radical bromination of the methyl  group (Scheme 2.9).   Trapping 

reactions contained 5mM dG and 5mM BrQMP-H to increase the yield of the dG N7 

adduct.  By both having 10-fold more dG present than in the competition studies and 

having  the  QM formed  in  a  burst,  the  maximal  amount  of  dG N7 adduct  could  be 

increased from approximately 1 nmol in the kinetic studies to 18 nmol in the trapping 

reactions.  Reactions were initiated by the addition of 500 mM potassium fluoride and 

then incubated at 37 °C for 30 minutes to insure that all BrQMP-H had converted to its 

QM intermediate.  The reaction was analyzed by HPLC following the 30 min incubation 

to measure the quantities of dG N7 and guanine N7 adduct formed before addition of 

trapping agent.  A ten-fold excess of phenylhydrazine (50 mM, final concentration) was 

then added and the reaction was again monitored by HPLC (Figure 2.3).  

The half-life of the dG N7 adduct was shorter in the presence of phenylhydrazine 

(~2.5 h, Figure 2.3) than in its absence (~6 h, Figure 2.2) and no formation of the dG N1 

or N2 adducts was observed.  This is consistent with all regenerated QM from the dG N 7 

adduct being trapped by phenylhydrazine, instead of realkylating dG to populate the other 

adducts.   The guanine N7 adduct (2.16) and phenylhydrazine adduct (2.22) formed in 

approximately equal amounts and at approximately equal rates.  These two adducts also 

fully accounted for the initial amount of dG N7 adduct.  Varying the concentration of 
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Scheme 2.9.  Synthesis of BrQMP-H.
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phenylhydrazine from 25 to 100 mM did not affect the yield of its QM adduct and is 

consistent with complete trapping of all regenerated QM.   The lack of concentration 

dependence also confirmed that the phenylhydrazine did not react with the QM in an SN2 

type process, but instead reaction likely involved disassociation of QM from dG followed 

by alkylation of phenylhydrazine.  

2.2.4.  Comparison to theoretical calculations.

These  results  correlate  very  well  with  theoretical  calculations  done  by  the 
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Figure 2.3: Competing pathways for decomposition of the dG N7 adduct were 
characterized by formation of their diagnostic guanine N7 and phenylhydrazine adducts. 
The parent dG N7 adduct was formed within 30 min by treatment with BrQMP in the 
presence of potassium fluoride, and subsequent QM formation was trapped by addition 
of phenylhydrazine (PH). The resulting adducts were separated and quantified by reverse 
phase HPLC. Data represent averages from a minimum of three independent analyses 
and were fit to single exponential processes for highlighting the net change of products.
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Freccero group.70,71  For the weak nucleophiles of dG, N1 and N2, the ΔG‡ of the forward 

reactions were approximately 20 kcal/mol,70 which is energetically accessible due to the 

21 kcal/mol of energy available in the 37 °C solution.72  However, the ΔG‡ of the reverse 

reactions, regenerating QM, were approximately 30 kcal/mol, which is too great to be 

reversible in a biological time frame under the reaction conditions studied (Table 2.2).70 

Similarly, the ΔG‡ of dA N6 alkylation is approximately 20-21 kcal/mol, which again is 

favorable for alkylation under conditions examined.  But, the ΔG‡ of the reverse reaction 

is approximately 31 kcal/mol, which is too high to allow for reversion of the adduct 

during the time frame of analysis.70
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Table 2.2: Theoretical calculation of forward and reverse QM alkylation reactions.71,72

Site of Alkylation ∆  Gsol ∆  G (rel. reactants) ∆  Grev rxn

N6 9-MeA

N1 9-MeA

N2 9-MeG

N1 9-MeG

N7 9-MeG

18.8a

22.4b

11.8a

14.5b

16.5a

19.8b

20.2a

22.9b

18.7a

20.1b

- 10.7

- 5.2

- 11.7

- 7.4

- 2.8

29.51

33.1

17.0a

19.7

28.2a

31.5

27.4a

30.3

21.5a

22.9

a B3LYP/6-31G(d).  b B3LYP/6-311G+(d,p)//B3LYP/6-31G(d)

N3 1-MeC 11.2a

14.2b -7.2 18.41

21.4a



In contrast, the ΔG‡ of the forward reaction of QM with dA is approximately 13 

kcal/mol and the ΔG‡ of the reverse reaction is approximately 18 kcal/mol.  Thus, both 

forward and reverse reactions are energetically accessible at 37 °C,72 which explains the 

observed  reversibility  of  the  dA  N1  adduct  under  the  conditions  studied.70   For  the 

alkylation of the dC N3 position, the  ΔG‡ of the forward reaction is approximately 12 

kcal/mol  while  the  ΔG‡ of  the  reverse  reaction  is  approximately  19  kcal/mol,  which 

correlates well with the reversibility seen in these studies.71

Theoretical studies of alkylation at  the dG N7 position provided at  least some 

explanation of the  partitioning between QM regeneration and deglycosylation.  The ΔG‡ 

of the forward reaction is approximately 20 kcal/mol, which is significantly higher than 

the ΔG‡ of QM reaction with the dA N1 position (~13 kcal/mol).  Furthermore, the ΔG‡ 

of the reverse reaction is approximately 21 kcal/mol, which is at the limit of the energy 

available under the conditions studied.  Thus, regeneration of QM from the dG N7 adduct 

likely does not occur all the time, allowing for deglycosylation to be competitive.  

 The reversibility of QM adducts can also be predicted qualitatively by analyzing 

the relevant acidity of the nucleophile or its conjugate acid (Scheme 2.10).  Although 

nucleophilicity is typically correlated to basicity, this oversimplification does not extend 

to the nucleophiles of DNA.  Nucleophiles with pKa values of less than 4 form quickly 

reversible adducts.  For nucleophiles with pKa values between 4 and 9, reversion of the 

adducts is slow, but detectable.  When the pKa of the parent nucleophile is diagnostic of 

its leaving group ability and is greater than 9, QM regeneration is not detected.  Thus, 

despite the low probability of reacting with the weak nucleophiles (N6 of dA and N1 and 

33



N2 of dG), products of their alkylation accumulate over time since they form irreversibly. 
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Scheme 2.10.70  pKa of QM adducts qualitatively corresponds to reversibility.
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2.2.5.  Biological implications of QM adduct reversibility.

In double stranded DNA, the rate of deglycosylation of alkylated dG N7 adducts 

is reduced approximately 24-fold from the rate in nucleosides.5  Therefore in DNA, the 

reversibility of the QM dG N7 adduct is likely increased, as compared to deglycosylation, 

effectively yielding three reversible adducts; dG N7, dA N1, and dC N3.  Reversibility of 

the dG N7 adduct in double stranded DNA is particularly important as both the dA N1 

and dC N3 positions are utilized in hydrogen bonding and are thus sterically hindered 

from interacting with diffusible reagents.55,67  Thus, the dG N7 is likely the primary site of 

alkylation at short time points in duplex DNA.  

The identification of reversible adducts has significant implications for both QM 

toxicity and QM utility in biological applications.  In aqueous solution, the half-life of an 

unsubstituted QM is in the millisecond range.73,74  However, in the presence of DNA, QM 

can be regenerated from the reversible adducts to extend the QM lifetime to hours or 

even days  due to  efficient  trapping  by strong nucleophiles.   The dA N1 adduct  had 

previously been shown to regenerate QM for transfer to the other DNA nucleophiles for 

at  least  12  hours.68  Intramolecular  trapping  within  a  QM-oligonucleotide  conjugate 

preserved the ability of the QM to alkylate a complementary target for up to two weeks, 

even in the presence of extraneous nucleophiles.58  The studies presented above suggest 

that the dG N7 adducts also act as reservoirs of QM in solution, potentially prolonging 

QM lifetime in vivo for days.  

The reversibility of QM adducts, and the increased QM lifetime in solution, can 

help  to  increase  the  toxicity  of  an  alkylating  agent,  as  has  been  seen  for  the 
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duocarmycins24, 25 and ecteinascidin 743.65  Initial alkylation at dA N1, dC N3, and dG N7 

should occur quickly and will likely be excised from the DNA.  However, regeneration of 

QM from the excised bases can lead to further alkylation of the genome or other cellular 

nucleophiles.  Thus, there should not be a one to one correspondence between alkylating 

agent  and DNA damage;  instead a  single  QM should be able to wreak havoc on an 

organism's DNA multiple times before its trapping by irreversible alkylation.  

Understanding the kinetic profile of QM alkylation should also assist in the design 

of sequence specific alkylating agents.  In the case of the QM-oligonucleotide conjugate 

(Scheme 2.6), formation of the self-adduct has the possibility to result in either reversible 

or irreversible intra-molecular adducts.  Design of oligonucleotide sequences that form 

self adduct at only strong nucleophiles, especially dC which can only form reversible 

adducts, should increase the yield of reversible self-adduct form, and hence the efficiency 

of complementary strand alkylation.  Furthermore, the reversibility of QM adducts should 

allow for self-adduct regeneration if the conjugate binds to a mismatch in the genomic 

DNA, thus further preventing off target binding.

2.3.  Conclusions.

These  studies  have  elucidated  the  kinetic  profile  of  a  model  o-QM with  the 

nucleophiles of DNA.  At short time points (<24 h), the products of alkylation at strong 

nucleophiles,  dA  N1  and  dC  N3,  predominate  and  then  regenerate  QM  over  time. 

Adducts of the weak nitrogen nucleophiles; N1 and N2 of dG, N6 of dA; slowly increase 

and are irreversible under the conditions studied.  The dG N7 adduct was identified as a 

third  reversible  QM adduct,  and  in  this  2'-deoxynucleoside  system partitions  equally 
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between QM regeneration and deglycosylation.  These results have also been found to 

correlate very well with theoretical calculations done on the same system.70,71

This work has further highlighted the need to examine the specificity of DNA 

alkylation at multiple time points to ensure that all of the adducts formed are identified. 

Earlier  work in  the literature  had overlooked the  short  lived QM adducts since their 

lifetimes were shorter than the time necessary for analysis in ds DNA.  Model systems 

utilizing  2'-deoxynucleosides  are  a  useful  substitute  when  analyzing  the  products  of 

alkylation as they do not require the extended dialysis and digestion times required to 

analyze ds DNA.  In the future, additional care should be taken to ensure that reversible 

adducts are not  overlooked, especially in the area of DNA alkylation.   Use of either 

model systems with dNs or agents to trap reversible adducts should aid in the discovery 

of the full range of products made by reagents and in elucidating the ratios of adduct 

formation. 
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2.4.  Materials and Methods.  

General.  Solvents, starting materials,  and reagents of the highest commercial 

grade were used without further purification.  All aqueous solutions were prepared with 

distilled, deioinized water with a resistivity of 18.0 MΩ. Silica gel (230- 400 mesh) for 

column chromatography was purchased from EM Sciences.  1H and  13C spectra were 

recorded on a DRX 400 spectrometer (1H, 400.13 Mhz;  13C, 100.62 MHz).  All NMR 

chemical shifts (δ) are reported in parts per million (ppm) and were determined relative to 

the standard values for solvent.  Coupling constants (J) are reported in Hertz (Hz).  High 

resolution  mass  spectra  were  determined  with  a  JEOL  SX102  mass  spectrometer. 

Authentic samples of each deoxynucleoside adduct for use as chromatographic standards 

were prepared as described previously.54,55,68

General Methods.  Preparative and analytical HPLC were performed on both a 

Jasco PU-908/MD1510 diode array instrument  and a  Jasco PU-2080 PLUS/UV-2077 

PLUC  fixed  wavelength  instrument.   Analytical  samples  used  a  reverse  phase  C-18 

analytical column (Varian, Microsorb-MV 300, 5  μm particle size, 250 mm, 4.6 mm) 

with a flow rate of 1 mL/min.  Preparative samples used a semiprep column (Alltech, 

Econosphere C-18,  10  μm, 250 mm, 10 mm) with a flow rate of 5 mL/min.  UV-vis 

spectra were measured on an HP 8543 series sprectrophotometer.  Molar absorptivities 

(ε) of the deoxynucleosides, 2-hydroxymethylphenol, and 2-(N'-phenylhydrazinomethyl) 

phenol were measured in 10 mM TEAA pH 4, using serial dilutions (Table 2.3).  Adduct 

formation was quantified using HPLC. Areas of the deoxynucleoside-QM adducts were 

compared at λ260 relative to an internal standard (phenol) at λ260.  Molar absorptivities of 
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the deoxynucleoside adducts were estimated by the sum of λ260 values for the individual 

deoxynucleoside and 2-hydroxymethylphenol.

2-(Acetoxymethyl)phenol (2.21).  A solution of BF3·Et2O (400 μL, 2.5 mmol) in 

acetic anhydride (3 mL) was added dropwise to a solution of 2-(hydroxymethyl)phenol 

(1.24 g, 10.0 mmol) in THF (5 mL) at 0 °C.  The reaction was stirred at 0 °C for 4 h and 

then neutralized to pH 7 by dropwise addition of cold saturated NaHCO3.  The resulting 

mixture was extracted with ether (3 x 50 mL).  The organic layer was washed with brine 

(50 mL), dried with MgSO4, filtered, and concentrated under reduced pressure to yield a 

yellow  oil.   The  desired  product  was  purified  by  silica  gel  flash  chromatography 

(hexanes:ethyl  acetate  step  gradient  of  17:3,  4:1,  and  finally  7:3)  and  isolated  as  a 

colorless oil (1.36 g, 83%).  1H NMR (CDCl3): δ 2.11 (s, 3H), 5.12 (s, 2H), 6.92 (m, 2H), 

7.28 (m, 2H), 7.78 (s, 1H). 13C NMR (CDCl3):  δ 21.1, 63.5, 118.0, 120.8, 121.9, 131.3, 

132.4, 155.7, 173.9.

2-(Acetoxymethyl)-O-tert-butyldimethylsilylphenol  (AcQMP-H).   A solution 

of  2.1  (200 mg, 1.20 mmol) in DMF (6 mL) was combined under nitrogen with  tert-

butyldimethylsilyl chloride (908 mg, 6.02 mmol) and imidazole (816 mg, 12.2 mmol) at 

room temperature.   The solution was stirred at  room temperature overnight and then 

quenched by addition of H2O (20 mL).  The mixture was extracted with ethyl acetate (3 x 

20 mL).  The combined organic phases were washed with brine, dried with MgSO4, and 

39

Table 2.3: Molar absorptivites of dNs, 2-hydroxymethylphenol, and QM-PH adduct.
2-hydroxymethylphenol dC dA dG Phenylhydrazine

ε  (250 nm, M-1cm-1) 0.74 6.98 11.713.8 2.87



concentrated  under  reduced  pressure  to  yield  a  crude  product  (oil).   The  desired 

compound was  purified by silica gel flash chromatography (hexanes:ethyl acetate step 

gradient of 99:1, 49:1, and  finally 19:1) and isolated as a colorless oil (320 mg, 95%). 

1H NMR (CDCl3): δ 0.23 (s, 6H), 0.99 (s, 9H), 2.06 (s, 3H), 5.10 (s, 2H), 6.81 (dd, J=8.0, 

1.1, 1H), 6.93 (td, J =8.0, 1.1 Hz, 1H), 7.19 (td, J=8.0, 1.5 Hz, 1H), 7.29 (dd, J=8.0, 1.5 

Hz, 1H).  13C NMR (CDCl3): δ -4.2, 18.2, 21.0, 25.6, 62.3, 118.5, 121.0, 126.4, 129.5, 

130.4,  154.0,  171.0.  HRMS  (FAB)  m/z  281.1599  (M  +  H+).  Calcd  for  C15H24O3Si 

(M+H+): 281.1573. 

2-(Bromomethyl)-O-tert-butyldimethylsilylphenol  (BrQMP).75  N-Bromo-

succinimide  (270  mg,  1.5  mmol)  was  added  to  a  solution  of  2-methyl-O-tert-

butyldimethylsilylphenol54 (300  mg,  1.4  mmol)  in  CCl4 (20  mL).   The  solution  was 

heated to reflux, and then, AIBN (6.8 mg, 0.038 mmol) was added.  The reaction was 

refluxed for 35 min, cooled, and filtered.  The filtrate was washed with water, dried with 

MgSO4, and concentrated under reduced pressure.  BrQMP was purified by silica gel 

flash chromatography (hexanes:ethyl acetate, 97:3) to yield a colorless oil (0.24 g, 57%). 

1H NMR (CDCl3): δ 0.28 (s, 6H), 1.04 (s, 9H), 4.51 (s, 2H), 6.79 (d, J = 7.8, 1H), 6.90 (t, 

J=7.8 Hz, 1H), 7.17 (td,  J=7.8, 1.6 Hz, 1H), 7.31 (dd,  J=7.8, 1.6 Hz, 1H).  NMR data 

agrees with literature values.75

Phenylhydrazine-QM Adduct [2-(N'-Phenylhydrazinomethyl) phenol] (2.22). 

A solution of BrQMP and phenylhydrazine in DMF was added to an aqueous solution of 

potassium  fluoride,  yielding  final  concentrations  of  75  mM  BrQMP,  75  mM 

phenylhydrazine, and 500 mM KF in a DMF:H2O mixture (80:20, 0.4 mL).  The reaction 

40



was incubated (15 min) at 37 °C until all starting material had converted to a derivative 

with a new retention time by HPLC.  This product was purified by preparative HPLC 

[3% CH3CN, 9.7 mM triethylammonium acetate (TEAA), pH 4, to 25% CH3CN, 7.5 mM 

TEAA, pH 4, over 66 min, 5 mL/min] and identified as the desired adduct.  1H NMR 

(DMSO-d6): δ 4.52 (s, 2H), 4.58 (s, 2H), 6.58-7.14 (m, 9H).  13C NMR (DMSO-d6): δ 

54.5, 112.3, 115.3, 116.4, 118.7, 124.2, 127.7, 128.5, 128.6, 151.6, 155.5.  HRMS (FAB) 

m/z 214.1106.  Calcd for C13H14N2O (M+) 214.1111.

Time-Dependent  Profile  of  Alkylation  Products  Formed  by  Each 

Deoxynucleoside  Individually.   AcQMP  in  DMF  (30  μL)  was  combined  with  an 

aqueous solution (70 μL) of the reaction components to yield a final concentration of 25 

mM AcQMP, 4 mM phenol, 0.5 mM deoxynucleoside (dA, dC, and dG alternatively), 10 

mM potassium phosphate, pH 7, and 500 mM KF.  The solution was incubated at 37 °C, 

and aliquots were analyzed at the indicated times by reverse phase HPLC using a linear 

gradient of 3% CH3CN, 9.7 mM TEAA, pH 4, to 25% CH3CN, and 7.5 mM TEAA, pH 

4, over 66 min. 

Deoxynucleoside  Competition  Studies.   The  conditions  described  above  for 

examing each deoxynucleoside independently were also used for the competitive studies 

containing dA, dC, dG, and T together.  Each deoxynucleoside was present at 0.25 mM to 

yield a total deoxynucleoside concentration of 1.0 mM.

Partitioning of the Unstable QM-dG N7 Adduct.  dG in DMF (21 mM, 24 μL) 

was combined with an aqueous solution (50 μL) to yield final concentrations of dG (5.0 

mM), phenol (4.0 mM), potassium phosphate (pH 7, 10 mM), and KF (500 mM).  The 
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reaction was initiated by adding BrQMP in DMF (6 μL) to a final concentration of 5.0 

mM.  The resulting mixture was incubated for 30 min (37 °C) and quenched by addition 

of phenylhydrazine in DMF (50 mM, 2 μL) or, as a control, just DMF (2 μL).  Incubation 

at 37 °C was maintained, and aliquots were removed at the indicated times for analysis by 

reverse phase HPLC under analytical conditions (3% CH3CN, 9.7 mM TEAA, pH 4, to 

28% CH3CN, and 7.2 mM TEAA, pH 4, over 78 min at 1 mL/min). 
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Chapter 3

Oxidative Trapping of Labile Quinone Methide Adducts

3.1.  Introduction.

DNA alkylating agents are of interest to the scientific community as they have 

been shown to be both a cause of and a treatment for cancer.  To understand an alkylating 

agent’s cytotoxicity, investigations into the mechanism of action and the selectivity are 

necessary.   Typically,  the  compound  is  incubated  with  DNA  and  then  adducts  are 

isolated, identified, and their yields quantified (Scheme 3.1).  This type of analysis yields 

a  detailed profile of alkylation selectivity and can provide the rationale for reactivity 

patterns  observed  in  vivo.   However,  certain  assumptions  are  made  in  this  scheme, 

primarily that none of the DNA-alkylating agent adducts are reversible during the time 

frame  of  analysis.   While  most  DNA  alkylating  agents  react  irreversibly  with  the 

nucleophilic sites of DNA, this is not always true.  Reversible alkylating agents pose 

additional problems for this analysis since a true accounting of all adducts is not assured.
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Scheme 3.1.  General scheme for analysis of DNA alkylating agent selectivity.
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A class of compounds for which the classical approach to adduct analysis fails is 

the quinone methides (QM, Scheme 3.2).  QM are reactive intermediates formed during 

the metabolic activation of a variety of compounds, including mitomycin C, tamoxifen 

and butylated hydroxytoluene.35,43,47  Due to their dual nature as anticancer agents and 

carcinogens, understanding their mechanism of action is very important.  To better probe 

the selectivity of QM alkylation, the Rokita group has developed a QM precursor (QMP, 

Scheme 3.2) that forms QM in situ upon addition of fluoride.  This convenient system 

allows  for  investigation  of  the  inherent  reactivity  of  a  small,  model  QM  that  lacks 

noncovalent DNA interactions.  

Initial studies of QM alkylation of 2'-deoxynucleosides and DNA resulted in a 

variety of adducts.  Following overnight alkylation of dsDNA and enzymatic digestion, 

primarily the dG N1 and N2 adducts were found with a smaller amount of the dC N3 

adduct.67  However, subsequent studies with nucleosides found that many more products 
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Scheme 3.2.  Competition of reversible and irreversible nucleophiles for QM.
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of QM alkylation are formed.  dA reacts at two positions, N1 and N6, while dG reacts at 

both the N1 and N2 as well as at the N7 position (Scheme 2.4).55,68  

A full  kinetic analysis  of QM reaction with dNs found that adducts of strong 

nucleophiles, dA N1, dG N7, and dC N3, predominate at short time points (< 24h).69  As 

the  incubation  times  increase  to  72  h,  adducts  of  strong  nucleophiles  decompose, 

regenerating free QM, which can react with the weak nucleophiles of DNA, dG N1 and 

N2 and dA N6.  The QM adducts of the weak nucleophiles are stable for at least one week 

under physiological conditions.69  The ability of QM to form reversible adducts accounts 

for the results of earlier studies of QM alkylation of dsDNA in which adducts of weak 

nucleophiles were primarily detected.

Model  systems  involving  nucleosides  can  be  used  to  investigate  the  ratio  of 

alkylated adducts, since the reaction mixture may be analyzed without delay.  In contrast, 

analysis of dsDNA requires enzymatic digestion.  However, nucleosides cannot mimic all 

of  the properties of DNA.  Nucleosides do not have the phosphates present,  thus the 

polyanionic  nature  of  DNA  is  not  mimicked.   Furthermore,  in  DNA,  some  of  the 

nucleophilic sites, such as dC N3 and dA N1, are utilized in base pairing, which does not 

occur with free nucleosides.  The base pairing, as well as the steric hindrance of the 

double helix, can potentially shield these nucleophilic sites from alkylation.  Because of 

these differences, a full analysis of QM reaction with dsDNA is required to elucidate the 

selectivity of QM for DNA.

The  reversibility  of  QM-DNA  adducts  poses  a  significant  problem  to 

understanding the alkylation selectivity of QM-based compounds for dsDNA.  Generally, 

45



the inherent specificity of an alkylating agent for DNA is determined by incubating the 

alkylating agent with DNA, followed by dialysis to remove any organic reagents that may 

interfere with the subsequent enzymatic digestions.  The alkylated DNA is then digested 

and  analyzed  by  HPLC or  LC-MS.   However,  in  the  case  of  QM,  the  dialysis  and 

enzymatic  digestion  steps  require  incubation  times  of  multiple  hours,  which  is  long 

enough  for  the  reversible  adduct  concentrations  to  change  appreciably.   Analysis  of 

model QM selectivity for DNA requires a way to trap, or quench, the labile QM-DNA 

adducts, allowing for analysis without QM regeneration.  

A variety of ways to trap labile QM-DNA adducts may be envisioned and include 

acetylation, silylation, and oxidation.  Since the QM-DNA adducts consist of a benzyl-

substituted phenol, any of the aforementioned reactions should trap the phenolic oxygen 

and  prevent  donation  of  a  lone  pair  to  regenerate  QM.   However,  silylation  and 

acetylation share a number of potential problems.  Since the phenolic oxygen and the 

oxygens  of  the  phosphate  may  react  during  silylation  and  acetylation,  there  is  a 

possibility of incomplete derivatization of the QM adducts and formation of multiple 

products.  

An  oxidative  quench  circumvents  the  potential  problems  associated  with 

silylation and acetylation if  conditions could be found to selectively oxidize the QM 

phenol to a benzoquinone derivative.  Requirements for such an oxidizing agent are that 

it must stop QM regeneration nearly instantaneously, be mild, and perform the reaction in 

a primarily aqueous mixture.  The requirement for a fast reaction is due to the fact that 

QM-nucleoside adduct ratios change drastically in as little as thirty minutes.  Due to the 
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low oxidation potentials of some nucleosides, particularly dG,76 the oxidant must be very 

mild so that it only oxidizes the phenolic moiety of the QM and does not affect the bases. 

Finally, since the DNA alkylation reactions are performed in a 70:30 H2O:DMF solution, 

the oxidant must be reactive under aqueous conditions.  

3.2.  Results and Discussion.

3.2.1.  Reactions with Fremy's salt.

Following  a  survey  of  the  literature,  two  oxidants,  Fremy’s  salt  (potassium 

nitrosodisulfonate) and [bis(trifluoroacetoxy)iodo]benzene (BTI),  were used for model 

studies since they had been shown to convert 2-hydroxymethylphenol (the product of 

water  addition  to  QM)  to  2-hydroxymethylbenzoquinone  under  aqueous  conditions 

(Scheme 3.3).77,78  Oxidation of 2-hydroxymethylphenol (the product of QM reaction with 

water) with a ten-fold excess of Fremy's salt produced an HPLC peak that corresponded 

to  2-hydroxymethylbenzoquinone.   The  UV-Vis  spectrum of  the  peak  had  the  same 

maxima (244 nm) as that reported in the literature79 and a high-resolution mass spectrum 

was obtained that confirmed the assignment.  However, synthetic procedures both in the 

literature and in this  laboratory generated only a low yield of the product standard.77 
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Scheme 3.3.  Oxidation of 2-hydroxymethylphenol to 2-hydroxymethylbenzoquinone.
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Even  a  twenty-fold  excess  of  Fremy’s  salt  was  unable  to  drive  the  oxidation  to 

completion.  Furthermore, oxidation of the nucleoside adducts did not result in any new 

HPLC peaks that might correspond to the oxidized adducts.  Without full conversion of 

the adducts to their oxidized derivatives, it would be impossible to accurately determine 

the specificity of alkylation.  Because of these problems, Fremy's salt did not satisfy the 

criteria for a quench.  

3.2.2.  Reactions with BTI.

BTI was next  investigated since a four-fold excess of BTI oxidized the water 

adduct cleanly and in nearly quantitative yield with only 10 minutes of incubation.78  UV-

Vis,79 as well as 1H and 13C NMR characterization unambiguously identified the product 

as 2-hydroxymethylbenzoquinone.78,79  Oxidation of 2-hydroxymethylphenol in a solution 

containing DMF, water, and acetonitrile also proved successful, suggesting that BTI is 

compatible with the conditions used for DNA alkylation.

3.2.3.  Oxidation of the dC N3-QM Adduct.

Synthesis  of  the  labile  adducts,  dA  N1  and  dC  N3,  was  approached  using 

conditions similar to that used to oxidize 2-hydroxymethylphenol.  The dC N3 adduct 

was chosen for initial studies due to its greater stability compared to the other reversible 

adducts and because it is the only adduct formed by during reaction of QM with dC.54,69 

A reaction mixture of 50 mM dC , 50 mM BrQMPH, 7 mM phosphate (pH 7), and 500 

mM KF in a solution of 70:30 DMF:H2O yielded the dC N3 adduct, which was then 

oxidized in situ by addition of a four-fold excess of BTI in CH3CN (Scheme 3.4).  From 
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these reactions, a peak eluting at approximately 48 minutes from the HPLC (3%-25% 

CH3CN in H2O over 66 min, Appendix Figure 2) was identified as a possible match for 

the oxidized adduct.  The UV-Vis spectrum showed maxima at 218, 271, and 335 nm 

(Figure 3.1), consistent with predictions for the oxidized dC N3 adduct.  These initial 

oxidation studies of dC N3-QM adduct generated in situ resulted in conversion to a new 

product with few other new products, as monitored by HPLC.  

1H  NMR  spectra  of  the  HPLC  purified  compound  showed  there  was  no 

deglycosylation, as the characteristic deoxyribose peaks were visible (Figure 3.2).  Small 

shifts  were seen for  the pyrimidine ring hydrogens (Figure 3.3),  while  the presumed 
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Scheme 3.4.  Oxidation of the dC N3-QM adduct.
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Figure 3.1.  UV-Vis spectrum of the oxidized dC N3 adduct.
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benzoquinone hydrogens were shifted to significantly lower field (> 8 ppm) as compared 

to 2-hydroxymethylbenzoquinone (6.75 ppm).  Addition of D2O found that the three new 

signals (9.43, 8.63, 8.38 ppm) at low field were non-exchangeable, suggesting that these 

protons are associated with carbon atoms originally associated as part of the QM.

13C spectra of the oxidized dC N3 adduct were also obtained, and proved puzzling 

(Figure 3.4).  From these experiments, only 14 carbons could be identified, although the 

initial dC N3 adduct contained 16 carbons.  Due to the relatively low signal to noise ratio 

for  the  13C  spectra,  it  is  possible  that  the  carbon  signals  are  simply  to  small  to  be 
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Figure 3.2: 1H NMR spectrum of HPLC purified oxidized dC N3 adduct prepared by 
procedure in Materials and Methods.  The spectrum was acquired at 400.13 MHz in d6-
DMSO.  The numbers correspond to the shifts of peaks (ppm) associated with the adduct.
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Figure 3.3:  Comparison of 1H NMR spectra of dC and the oxidized dC N3 adduct 
prepared as described in Materials and Methods



accurately identified.   Another  possibility  is  that  during oxidation and purification,  a 

rearrangement occurs that eliminates either one two-carbon unit or two one-carbon units.

3.2.4.  Spectral Characterization of the Oxidized dC N3 Adduct.

Further  NMR  characterization  of  the  oxidized  dC  adduct  was  undertaken  to 

elucidate the structure.  From COSY experiments the hydrogens presumed to belong to 

the  benzoquinone  only  coupled  strongly  to  each  other,  while  the  hydrogens  on  the 

pyrimidine ring only coupled each other  strongly (Fig 3.5).   Weak correlations were 

observed between the new proton signals and the pyrimine ring hydrogens, suggesting 
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Figure 3.4: 13C NMR spectrum of oxidized dC N3 adduct prepared as described in 
Materials and Methods.



couplings through multiple bonds.  

Since the new proton signals were not consistent with a benzoquinone derivative, 

the  initial  oxidized  adduct  may  have  undergone  a  rearrangement,  cyclization,  and/or 

further oxidation.  To investigate this possibility, two-dimensional NMR spectra (HSQC, 

Figure  3.6,  and HMBC, Figure  3.7,  Table  3.1)  were collected.   From these data  the 

nucleoside framework could clearly be traced, substantiating earlier evidence that BTI 

does not affect the nucleosides.  Furthermore, connectivity between the three new protons 

and their carbons and the carbon skeleton of dC was established.  From the HMBC data, 

the N3 position of dC can be connected to the proton (Hb) at approximately 9.6 ppm and 
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Figure 3.5: COSY spectrum of oxidized dC N3 adduct prepared as described in 
Materials and Methods.



its carbon (Cb) at 118 ppm (Figure 3.7, Scheme 3.5).  Cb is connected to a quaternary 

carbon (140 ppm), which is in turn connected to proton Hc (8.4 ppm) and carbon Cc (144 
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Figure 3.6: HSQC spectrum of oxidized dC N3 adduct prepared as described in 
Materials and Methods.

Scheme 3.5.  Structural data gathered from NMR spectra of the oxidized dC N3 adduct.
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ppm).   Cc is  connected  to  another  quaternary  carbon  at  125  ppm,  which  is  in  turn 

connected to proton Ha (9.45 ppm) and carbon Ca (189 ppm) (Scheme 3.5).  However, no 

connectivity can be seen between Ca and any other carbons.  Thus, from these studies, the 

final structure of the oxidized dC N3 adduct is not fully known. 

Two major problems associated with the structural elucidation of the oxidized dC 

N3 adduct have been its solubility and its reluctance to yield a reproducible mass by MS, 

The oxidized dC N3 adduct is only soluble at concentrations of ~ 8 mg/mL in DMSO, 

and is even less soluble in other solvents, which is not concentrated enough for facile 

NMR analysis.  This has hampered NMR analysis by requiring very long pulsing times 
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Figure 3.7: HMBC spectrum of oxidized dC N3 adduct prepared as described in 
Materials and Methods.



and resulting in low signal to noise ratios.  

Mass spectrum analysis was performed on oxidized dC N3 samples using both 

ESI LC-MS and FAB.  Unfortunately,  the  signals  seen in  these experiments did not 

correspond to any proposed structure.  Furthermore, when MS analysis of the oxidized 

dC N3 adduct was repeated by facilities at the University of Maryland and the University 
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Table 3.1: Compiled NMR shifts of the oxidized dC N3 adduct prepared as described in 
Materials and Methods.

13C Shift (ppm) nHa Assignment

188.9

146.4

146.3

144.4

140.0

131.1

126.0

117.8

99.3

89.1

86.8

71.5

62.4

39.0

1

Q

Q

1

Q

1

Q

1

1

1

1

1

2

2

9.43 (s)

-

-

8.38 (s)

-

7.85 (d)

8.63 (s)

6.78 (d)

-

3.86 (m)

6.38 (t)

4.30 (d)

3.60 (m)

2.22 (m)

CA, HA

C4

C2

Cc, Hc

Q1

C6, H6

Q2

CB, HB

C5, H5

C4', H4'

C1', H1'

C3', H3'

C5', H5'

C2', H2'

a nH is the number of hydrogens on each carbon and was determined by DEPT experiments.  Q 
= quaternary carbon.  Assignments were made by comparison to literature values and 
experimental evidence described in the text.

1H Shift (ppm)



of California, Riverside, the resulting spectrum was different each time.  Since dC could 

be  easily  identified  using  either  MS  methods,  the  problem  is  likely  with  either 

vaporization or fragmentation of the oxidized compound.  

Having exhausted all other alternatives, syntheses of 15N enriched oxidized dC N3 

adduct and   13C15N enriched oxidized dC N3 adduct will be undertaken.   NMR studies 

utilizing both enriched compounds should allow for complete correlation of the carbons 

and  nitrogens  in  the  oxidized  dC  N3  adduct  backbone,  resulting  in  structural 

identification.  

3.2.5.  Characterization of the Oxidized dA N1-QM Adduct.

Oxidation of the dA N1-QM adduct was pursued in conjunction with the oxidized 

dC N3 adduct in the hopes that it would yield a structure more easily.  The oxidized dA 

N1 adduct was generated in situ using the same conditions as the dC N3 adduct and also 

generated a new product with full consumption of the original adduct.  HPLC analysis 

(conditions described in Materials and Methods) yielded a peak at 52 minutes with UV-

Vis absorption maxima of 228nm, 266nm, 299nm, and 360nm.  The changes in 1H NMR 

for the oxidized dA adduct were again similar to those seen in the dC adduct.  The sugar 

peaks were visible, indicating that the adduct did not deglycosylate.  The hydrogens in 

the purine ring experienced small shifts,  while the presumed benzoquinone hydrogens 

were again shifted significantly downfield (> 8 ppm).  Preliminary NMR analysis of the 

oxidized adducts collected from the HPLC found three new protons at low shift (8 – 9.5 

ppm, Figure 3.8).  

The oxidized dA N1 adduct has a similar pattern of new proton signals as the 
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oxidized dC N3 adduct, suggesting that these compounds share similar structures of their 

oxidized adducts.  Due to similarities in the structure and functional groups of dC and dA 

(Scheme 3.6), as well as similarities of the 1H NMR of the oxidized dC N3 and dA N1 
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Figure 3.8: 1H NMR spectrum of the oxidized dA N1 adduct prepared as described in 
Materials and Methods.

Scheme 3.6. Comparison of similar structural features of dC and dA.
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adducts, structural insights gained from analysis of the isotpically enriched oxidized dC 

N3 adduct will likely be applicable to the oxidized dA N1 adduct.  

3.3.  Conclusions.

Oxidation of labile dN-QM adducts results in their conversion to a single, stable 

product.  Although characterization of the oxidized adducts has proved troublesome, once 

the adduct structures are determined, this technique should be easily applied to trapping 

of labile DNA-QM adducts.  Such a methodology will allow for the determination of the 

inherent selectivity of a QM for the nucleophiles of dsDNA for the first time.  
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3.4.  Materials and Methods.

Oxidation of 2-hydroxymethylphenol with Fremy’s salt.  54 mg (0.20 mmol) 

of Fremy’s salt was added to a solution of 2.5 mg (0.020 mmol) 2-hydroxymethylphenol 

in 1 mL of 10 mM phosphate buffer, pH 7.  The mixture was incubated for 1 hour at 37° 

C.  The mixture was then injected onto the HPLC for analysis (3%-25% CH3CN in H2O 

over 66 min).  HRMS (EI) m/z 138.0316.  Calcd. For C7H6O3 138.0317.

Oxidation of 2-hydroxymethylphenol with BTI.  15 mg (0.043 mmol) of 2-

hydroxymethylphenol was dissolved in 450 µL of a 2:1 solution of CH3CN:H2O.  To this 

solution was added 208 mg (0.160 mmol) BTI in 1.5 mL of a 2:1 solution of 

CH3CN:H2O.  The mixture was stirred for 10 min at room temperature and then brought 

to pH 7 with saturated NaHCO3.  The solution and precipitate were washed with 2 x 1 

mL water saturated ether and then were extracted with 2 mL CH2Cl2.  The CH2Cl2 layer 

was washed with water, dried with MgSO4, and blown down with nitrogen.  1H NMR 

(MeOD) δ 4.49 (d, 2H), 6.75 (m, 3H).  13C NMR (MeOD) δ 58.8, 131.3, 137.6, 137.9, 

150.1, 188.6, 189.2.  NMR agrees with literature values.77-79

Oxidized  Nucleoside  Adducts.  A  200  µL  reaction  of  70:30  DMF:H2O, 

containing 50 mM dC or dA, 50 mM BrQMPH, 7 mM phosphate and 500 mM KF  was 

incubated at 37 °C for 20 minutes.  BTI (17.2 mg, 0.027 mmol) in 200 µL CH3CN was 

added and the mixture was stirred and then incubated at room temperature for 20 min. 

The reaction was brought to pH 7 by the addition of saturated NaHCO3, washed with 400 

µL water saturated ether and then filtered.  The water layer was injected onto preparatory 
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HPLC (Varian, C-18, Econosphere semi-prep column, 3%-25% CH3CN over 66 min, 5 

mL/min)  and  the  sample  was  collected.   The  sample  was  frozen  and  lyophilized  to 

dryness. 

1H NMR of oxidized dC N3 adduct (DMSO) δ 2.23 (m, 2H), 3.61 (m, 2H), 3.86 (m, 1H), 

4.29 (m, 1H), 6.38 (t, J=6.6, 6.6 Hz, 1H), 6.78 (d, J=8 Hz, 1H), 7.84 (d, J=8 Hz, 1H), 8.38 

(s, 1H), 8.63 (s, 1H), 9.43 (s, 1H).  13C NMR (DMSO) δ 62.4, 71.0, 71.5, 86.9, 89.2, 99.3, 

117.8, 125.6, 131.1, 139.9, 144.5, 146.4, 146.4, 188.9.

1H NMR of oxidized dA N1 adduct (DMSO) δ 2.40 (m, 1H), 2.75 (m, 1H),  3.61 (m, 2H), 

3.92 (m, 1H), 4.46 (m, 1H), 6.53 (t, J=6.6, 6.6 Hz, 1H), 8.34, (s, 1H), 8.69 (s, 1H), 9.21 

(s, 1H), 9.57 (s, 1H).
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Chapter 4

Modulation of Quinone Methide Reactivity by Aromatic Substituents

4.1  Introduction
Covalent reagents are often ignored for use in selective modification of DNA due 

to the belief that these reactions are limited to irreversible processes that result in kinetic 

traps.  Irreversible alkylation is best illustrated by DNA alkylating agents such as the 

nitrogen mustards  that  react  with the dG N7 positions  of  DNA.3  Due to  their  high 

reactivity,  compounds,  such  as  NM, can  react  with  other  cellular  nucleophiles  or  be 

hydrolyzed before reaching their target.  Because these reactions are irreversible, most of 

the mustard reactant is rendered inactive prior to DNA cross-linking.  Furthermore, even 

after  the  first  alkylation  has  occurred  with  DNA,  a  cross-linking  reaction  is  not 

guaranteed as a second dG N7 nucleophile must be in close proximity to the original site 

of alkylation.3  

Reversible  DNA  alkylating  agents  have  the  potential  to  overcome  the  issues 

associated with NM, providing increased selectivity and potency.  Ecteinascidin 743 (Et-

743,  4.1,  Scheme 4.1),  a  natural  product  that  covalently  and  reversibly  binds  DNA, 

illustrates the potential of reversible alkylating agents.  Et 743 binds to two sequences, 

5’-AGT and 5’-AGC, of which 5’-AGC is preferred.80  Although the rates of covalent 

binding of Et 743 binding to both sequences are similar, the covalent release from 5’AGT 

is  significantly  faster.80  Over  time,  migration  of  the  Et  743 adduct  from 5’-AGT to 

5’-AGC can be observed as Et 743 moves from its sites of kinetic alkylation to its site of 
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thermodynamic  alkylation.  The  migration  from  kinetic  to  thermodynamic  sites  of 

alkylation causes time-dependent cytotoxicity and likely contributes to the utility of Et 

743 as  a  anti-cancer  agent  by  allowing the  excised  adducts  to  regenerate  Et743 and 

realkylate DNA.80  

Quinone  methides  provide  an  ideal  model  system  for  investigating  the 

reversibility of alkylating agents.  QM have been implicated in the biological activation 

of  mitomycin  C  (1.29)35  and  2,6-di-tert-butyl-4-methylphenol  (1.34),43 both  of  which 

alkylate DNA and are an anti-cancer drug and a carcinogen, respectively.  Furthermore, a 

model o-QM (2.8) has been shown to form reversible adducts with 2'-deoxynucleosides 

(dN), initially reacting with the strong nucleophiles and forming unstable adducts.55,68,69 

These  unstable  adducts  then  regenerate  QM,  which  in  turn  reacts  with  the  weaker 

nucleophiles to form irreversible adducts.  

Computational studies of the reaction of this model o-QM and dNs indicate that 
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Scheme 4.1.  Structure of ecteinascidin 743.
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the ΔG‡ of regeneration of QM from the strong nucleophiles was lower than the energy 

available  in  the system at  37  ºC,  whereas the the  ΔG‡ of  QM regeneration from the 

weaker nucleophiles was greater than the energy available in the system.70,71  These free 

energies of activation should be sensitive to variations in the electronic properties of the 

QM.  Addition of  an electron-donating substituent  should stabilize  the QM and may 

result  in  increased  reversibility  of  adducts.   Conversely,  addition  of  an  electron-

withdrawing  substituent  should  destabilize  the  QM  and  may  result  in  decreased 

reversibility of adducts.  

            The ability to control the reactivity of a reversible alkylating agent should allow 

for rational design of compounds for varied kinetics and selectivity.  Addition of aromatic 

substituents should alter the electronics of a simple o-QM, thereby altering the reactivity 

and kinetics.  This provides a very convenient model system for studying the effects of 

reactivity  on the reversibility  of  DNA alkylation.   To test  the  hypothesis  that  added 

electron  density  increases  the  rate  of  QM  alkylation  and  decreased  electron  density 

decreases the rate of alkylation, as well as the ability to logically design QM of varied 

reactivities, a series of QM derivatives has been synthesized and the reactions with dNs 

analyzed.  

4.2.  Results and Discussion81

4.2.1.  Synthesis of substituted QMPs

Quinone methide precursors (QMPs) with a methyl substituent (AcQMP-Me) and 

a methyl ester substituent (AcQMP-Est) were synthesized as representative of electron 
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donating  and  electron  withdrawing  groups,  respectively  (Scheme  4.2).  Synthesis  of 

AcQMP-Me proceeded by Fisher esterification of 4-methyl salicylic acid, followed by 

reduction of the methyl ester  with LiAlH4,  selective acetylation of the newly formed 

benzylic alcohol,  followed by silylation of the phenol (Scheme 4.3).  Deprotection of 

AcQMP-Me in the presence of fluoride yields the reactive quinone methide intermediate, 

QM-Me.  Synthesis of AcQMP-Est was originally attempted by formylation of methyl 3-

hydroxybenzoate  using  a  Riemer-Tieman reaction,  however  this  resulted in  yields  of 

approximately 2%.  As  an alternative, formylation of 3-hydroxybenzoic acid using  a 
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Scheme 4.2.  Substituted QMPs utilized in these studies.
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tin(IV) chloride catalyst was tried and increased the yield to approximately 8% (Scheme 

4.4).  While these yields were sufficient to garner AcQMP-Est for preliminary studies, 

these synthetic routes were not conducive to large scale synthesis.  

The low yields achieved for the formylation reactions are not surprising as both 3-

hydroxybenzoic  acid  and  methyl  3-hydroxybenzoate  are  electron-poor  systems.   An 

alternative synthesis  that  avoided the need for  electrophilic  aromatic substitution was 

devised.   This  procedure  started  by hydroxylating  bromo-terephthalic  acid  and  then 
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Scheme 4.4.  Initial synthetic routes to AcQMP-Est.
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esterification of both carboxylic acid moieties (Scheme 4.5).  Selective reduction of the 

2-position methyl ester yielded methyl 3-hydroxy-4-hydroxymethylbenzoate which was 

then fully silylated with  t-butyldimethylsilyl  chloride.  The benzylic alcohol was then 

selectively  desilylated  and  acetylated  to  yield  AcQMP-Est. Upon  deprotection  with 

fluoride, AcQMP-Est yields QM-Est, the corresponding quinone methide intermediate. 

4.2.2.  Reaction of dC with substituted QMPs.

Initial investigations to determine if QM reactivity can be controlled by addition 

of aromatic substituents were performed with dC since it forms a single adduct upon 

incubation with QM-H.54  QM-Me and QM-Est each reacted with dC to form one adduct, 

identified as the product of alkylation at the N3 position, analogous to reaction of QM-H 

with dC.  Furthermore, the 1H NMR shift of the benzylic position methylene protons of 

the  dC  N3-QM  adducts  proved  to  be  very  characteristic,  with  variation  of  only 
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Scheme 4.5.  Synthesis of AcQMP-Est.
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approximately 0.1 ppm between the proton shifts of all three dC N3-QM adducts (Table 

4.1). 

            Kinetic measurements of dC reaction with the three QMPs were performed under 

conditions described in a previous chapter,69 with the exception that pH 6 HPLC buffer 

was used for analysis of the reactions of AcQMP-Me and AcQMP-Est.  The pH change 

from the pH 4 buffer used for reactions of AcQMP-H was utilized to adjust the retention 

times of the adducts so that there would not be any overlap.  A 50-fold excess of QM was 

utilized and resulted in the alkylation of approximately 20% of dC.  While the yields of 

the dC- QM adducts were comparable for all three QM reactions, the rates of formation 

varied significantly (Figure 4.1).  AcQMP-Me  reacted very quickly with dC, forming a 

maximal amount of adduct within 30 minutes, as compared to the 8 hours required for 

maximal formation of the dC N3-QM-H adduct.  In contrast, the dC N3 adduct of QM-

Est did not form a maximum amount for more than 24 hours.  Furthermore, unlike the dC 

N3 adducts of QM-H and QM-Me, the adduct of QM-Est did not regenerate QM for at 

least seven days, making this adduct stable on a biological time scale.  Thus, the very 

small changes in electronics caused by individual aromatic substituents resulted in at least 
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Table 4.1: Benzylic proton shifts of substituted QM adducts.

AcQMP-H

AcQMP-Me

AcQMP-Est

dC N3
(2.10)

dA N1
(2.11)

dA N6 dG N1
(2.14)

dG N2 guanine N7
(2.16)

4.96

5.03

5.11

5.26

ND

5.16

4.76

4.72

4.69

5.28

5.24

5.09

4.58

4.33

4.43

5.49

5.30

5.40

Adducts 
formed by (2.12) (2.13)



a 5-fold change in the half life of the dC N3 adduct.  

4.2.3.  Analysis of dNs reaction with AcQMP-Me.

Having  confirmed  the  hypothesis  that  aromatic  substituents  can  change  the 

reactivity  of  QM,  a  full  kinetic  analysis  of  the  substituted  QMPs  with 

2’-deoxynucleosides (dNs) was undertaken.  Initial studies focused on QM reaction with 

single  dNs  to  allow for  adduct  isolation  and  identification.  These  reactions  utilized 

higher  DMF concentrations  (up  to  70%)  during  preparative  scale  reactions  to  avoid 

reaction of the QMs with water.   The exception was the synthesis of the dG N2 and 
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Figure 4.1:  Formation and decomposition of quinone methide adducts of dC N3. 
Reaction conditions and product analysis are described in the Experimental Procedures. 
Each point represents the average of at least three independent determinations and was 
fit to exponential processes for highlighting the net trends of the data. The indicated 
error derives from the standard deviations. 
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guanine N7 adducts which utilized lower DMF concentrations (30%) since the dG N1 

adduct predominates at high DMF concentrations.82-84  

As  was  observed  with  the  QM-dC  adducts,  the  shift  of  the  benzylic  protons 

proved diagnostic of the position at which alkylation occurred.  Characteristic shifts in 

the maximal UV absorbance (Table 4.2) and high-resolution mass spectrometry (HRMS) 

further confirmed the assignments.  2'-Deoxynucleoside reactions with QM-Me yielded 

two adducts of dA, N1 and N6, of which only the N6 adduct was isolable.  The dA N1-

QM-Me adduct decomposed too quickly for full structural characterization, however the 

UV maximum (nm) was consistent with the assigned structure.68  Three dG adducts of 

AcQMP-Me  were  also  isolated  and  identified,  dG  N1,  N2 and  guanine  N7.  The 

deglycosylation product of dG N7 adduct, the guanine N7 adduct, was isolated, however 

the  dG N7 adduct  was  not  isolable  due  to  its  lability,  but  was  assigned  by  its  UV 

maximum.55  

Full kinetic analysis of competitive reaction of  AcQMP-Me and dNs resulted in 
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Table 4.2: λmax and estimated molar absorptivities at 260 nm.

AcQMP-H (λ max, nm)

ε  (260 nm, mM-1cm-1)

AcQMP-Me (λ max, nm)

ε  (260 nm, mM-1cm-1)

AcQMP-Est (λ max, nm)

ε  (260 nm, mM-1cm-1)

dC N3
(2.10)

dA N1
(2.11)

dA N6 dG N1
(2.14)

dG N2 dG N7
(2.15)

guanine N7
(2.16)

278

7.72

279

7.72

283

9.25

260

14.5

259

14.5

266

16.0

273

14.5

271

12.5

271

16.0

257

12.5

251

12.5

247

14.0

256

12.5

251

12.5

243

14.0

260

12.5

N/A

14.0

280

12.5

279

12.5

287

14.0

(2.12) (2.13)

259

12.5



the same trend in product profile as observed for AcQMP-H, but in a compressed time 

frame (Figure 4.2, Appendix Figure 3 and Table 2).  The initial products were dominated 

by  reversible  adducts,  dA  N1  and  dC  N3,  which  quickly  decompose  within 

approximately the first eight hours of reaction (Figures 4.2 and 4.3), as compared with 

decomposition over approximately 48 hours for reaction with AcQMP-H.  During the 

first eight hours, products of irreversible addition increase, reaching final, maximal levels 

within approximately 8 to 24 hours.  The dG N7 adduct reaches a maximum within 30 

minutes, declining over the next eight hours, with the guanine N7 adduct growing in 

during the same time period.  This is significantly faster than the 24 hours required for 
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Figure 4.2: Time-dependent profile of adducts formed by the electron-rich QM-Me and 
deoxynucleosides. Reaction conditions and product analysis are identical to those used 
for Figure 1. Again, each point represents the average of at least three independent 
determinations and was fit to exponential processes for highlighting the net trends of the 
data. The indicated error derives from the standard deviations. 
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dG N7-QM-H reversion and guanine N7-QM-H formation.  Addition of the methyl group 

resulted in significantly increased rates of adduct formation and QM regeneration from 

reversible adducts.  Although the kinetics of alkylation with QM-Me were significantly 

faster than with QM-H, all of the irreversible adducts remained stable for at least seven 

days.  Therefore, while addition of a methyl substituent is sufficient to increase the rate of 

reaction, it is not sufficient to cause a stable adduct to be reversible.  Potentially, the 

addition of excess electron density may be able to achieve that conversion.

            Interestingly, the ratio of the maximal amounts of the dG N7 and guanine N7 

QM-Me adducts formed during the kinetic analysis were markedly different than the ratio 
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Figure 4.3: Kinetic profile of first 8 hrs of dNs reaction with AcQMP-Me.  Reaction 
conditions and product analysis are identical to those used for Figure 1. Again, each 
point represents the average of at least three independent determinations and was fit to 
exponential processes for highlighting the net trends of the data. The indicated error 
derives from the standard deviations. 
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seen for reaction with QM-H.  In the case of QM-H, the dG N7 adduct partitioned nearly 

equally between QM regeneration and deglycosylation, resulting in a maximal amount of 

guanine N7 adduct that is approximately half of the maximal amount of dG N7 adduct 

formed.  However, in the case of QM-Me reaction, the maximal amount of guanine N7 

adduct accounts for nearly 80% of the maximal amount of dG N7 adduct formed.  This 

difference  is  likely  due  to  the  altered  reactivity  of  QM-Me.  Since  QM-Me is  more 

electronically stabilized than QM-H, it has a longer lifetime in solution.81  This should 

allow QM-Me to react more selectively with the nucleophilic sites of dNs, as opposed to 

water.81  Furthermore, QM-Me should regenerate from the dG N7 adduct faster than the 

adduct deglycosylates.   Since the N7 position of dG is  the most  nucleophilic  site on 

DNA, it follows that QM regenerated from the dG N7 adduct likely re-alkylates dG at the 

N7 position.  Over time, the dG N7 adducts deglycosylate, resulting in increased yields of 

the guanine N7 adduct.  

4.2.4.  Reaction of dNs with AcQMP-Est.

Reaction of AcQMP-Est with single dNs also resulted in formation of multiple 

adducts.  Incubation of dA with QM-Est resulted in reaction at the N1 and N6 positions, 

as was seen in reactions of QM-H.68  Both adducts were stable enough to be isolated and 

characterized.  The benzylic positions of both adducts were again consistent with the 

shifts  of  the  dA  N1-QM  adduct  and  dA  N6-QM-H  and  dA  N6-QM-Me  adducts, 

respectively (Table 4.1).  UV-Vis maxima also correlated well with the values seen for 

QM-H and QM-Me (Table 4.2).  
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Only two adducts of dG could be identified at the concentrations used for kinetic 

measurements.55  The  two  adducts  were  isolated  and  identified  as  the  products  of 

alkylation at the guanine N7 and dG N2 positions (Table 4.1 and 4.2).  The dG N7 adduct 

is likely not seen due to lability of the glycosidic bond when the N7 position is alkylated. 

Since regeneration of QM-Est from the dG N7 adduct should be very slow, the adduct 

likely deglycosylates quickly after alkylation.  Although the dG N1 adduct is not seen at 

dG concentrations used for kinetic studies, increasing the dG concentration does result in 

formation of small amounts of a third dG adduct, identified by NMR and MS as the 

product of alkylation at the dG N1 position.  Lack of observable formation of the dG N1-

QM-Est adduct under kinetic conditions, even though the dG N2 adduct was discernible, 

may be due to differences in activation energy between the two adducts.  Computational 

studies of dG reaction with QM-H found that the dG N1 adduct has an activation energy 

approximately 3 kcal/mol higher than the dG N2 adduct.70  Hence, the dG N1 position 

should be more sensitive to changes in QM reactivity, leading to the diminished reactivity 

observed between dG N1 and QM-Est.  

            The overall rate of reaction of AcQMP-Est with dNs was significantly slower than 

reaction with AcQMP-H due to electronic destabilization of the QM from the methyl 

ester substituent (Figure 4.4, Appendix Figure 4 and Table 3).  Maximal amounts of the 

dA N1 adduct were not reached until 24 hours, as compared to the first 30 minutes of 

reaction with AcQMP-H.  Furthermore, QM regeneration from dA N1 adduct continued 

for nearly seven days, during which time the dA N6 adduct slowly formed.  The guanine 

N7 and dG N2 adducts continued to increase to approximately 5 days and are also stable 
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for at least seven days.  By addition of a methyl ester, not only were the kinetics of QM 

reaction with dNs significantly slowed, but the dC N3 adduct, which was reversible in 

reactions with QM-H and QM-Me, was now stable for at least seven days.  

4.2.5.  Reaction rates of substituted QMPs with alternative leaving groups.

Although the rates of reaction varied drastically between QM-Me and QM-Est, 

the  acetate  derivatives  and  water  adducts  were  formed  in  approximately  the  same 

amounts, as were the nucleoside adducts.   Furthermore, the kinetics of acetate derivative 

decomposition and water adduct formation followed the trends described above (Figure 
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Figure 4.4: Time-dependent profile of adducts formed by the electron-poor QM-Est 
and deoxynucleosides. Reaction conditions and product analysis are identical to those 
used for Figure 1. Again, each point represents the average of at least three 
independent determinations and was fit to exponential processes for highlighting the 
net trends of the data. The indicated error derives from the standard deviations. 
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4.5).  The  acetate  derivative  of  AcQMP-Me decomposed  very  quickly,  having  fully 

generated QM within approximately 4 hours.  In comparison, the acetate derivative of  

AcQMP-H decomposed within approximately 20 hours,  while  the  acetate  derivate  of 

AcQMP-Est required  over  48  hours  to  fully  decompose.  Thus,  addition  of  aromatic 

substituents not only modulates the kinetics of acetate derivative decomposition, but also 

of dN alkylation, and thus QM formation.  Altering the leaving group can also control the 

rate of QM formation.  Utilizing bromide as a leaving group instead of acetate results in 

significantly faster kinetics, even without addition of a substituent.69  Upon addition of 
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Figure 4.5: Comparison of acetate derivative decomposition.  Reaction conditions and 
product analysis are identical to those used for Figure 1. Again, each point represents 
the average of at least three independent determinations and was fit to exponential 
processes for highlighting the net trends of the data. The indicated error derives from 
the standard deviations.
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fluoride, BrQMP-H (Scheme 2.9) fully forms QM in less than 10 minutes, with kinetics 

so fast that they cannot accurately be measured by HPLC.  

The trends discussed above are also applicable to QM formed from morpholino 

and ammonium precursors and to QM generated by laser flash photolysis, studied by 

Freccero  (Table  4.3).  The  half-lives  of  morpholino  QMPs  varies  with  aromatic 

substituent,  addition  of  electron  donating  groups  decreases  the  half-life  whereas  the 

addition of electron withdrawing groups extends the half-life.  Extending this trend, the 

rate of substituted QM reaction with nucleophiles such as water, morpholine, and thiols 

was also dependent on aromatic substitution.  QM with electron donating groups reacted 

slower with all three nucleophiles in comparison to unsubstituted QM.  Contrastingly, 

electron  withdrawing  groups  significantly  increase  the  rate  of  QM reaction  with  the 

nucleophiles.  Furthermore,  the  lifetimes  of  QM  in  solution  were  extended  by  the 

addition of an electron-donating group, while addition of an electron-withdrawing group 
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Table 4.3: Lifetimes of substituted QMs in water.80

X

COOMe

H

H

H

OMe

Y

H

COOMe

H

OMe

H

T/ºC

100

100

50

22

22

t1/2 of QMP (min) in water

Stable

149

115

11

4

OH

N

X
Y

O

O

X
Y

OH

OH

X
Y



resulted in decreased lifetimes.  Thus, the effects of aromatic substitution on adduct and 

QM stability can be extended to a variety of nucleophiles and is applicable to situations 

other than QM reaction with DNA.  

4.3.  Conclusions

            From the experiments described above, it has been determined that QM reactivity 

can be rationally altered by the addition of aromatic substituents, resulting in QMs with 

markedly  different  reaction  kinetics.  As  hypothesized,  addition  of  electron  donating 

substituents  stabilizes  the  QM  and  increases  the  reversibility  of  QM  adducts,  while 

addition  of  electron  withdrawing  substituents  destabilizes  the  QM and  decreases  the 

reversibility of QM adducts.  This knowledge can now be applied to synthesizing QM 

that are tuned for different applications,  such as in vivo DNA alkylation.  QMs with 

increased electron density, such as one with a methoxy substituent, will further increase 

the rate of reaction with dNs, thus completing the alkylation on a biological time scale. 

Furthermore,  these trends can be extended to  nucleophiles  other  than those of  DNA, 

extending the utility of substituted QM.  
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4.4.  Materials and Methods

General. Reagents and solvents were purchased were purchased as ACS grade or 

higher and used without purification unless noted. NMR solvents were purchased from 

Cambridge  Isotope  Laboratories.  2-(Acetoxymethyl)-tert-butyldimethylsilylphenol 

(AcQMP-H) and  its  deoxynucleoside  adducts  were  prepared  as  described 

previously.55,67,69 NMR data were recorded with 400 MHz and 500 MHz spectrometers 

alternatively, and chemical shifts (δ)  are reported in parts per million (ppm) relative to 

TMS or solvent protons. Molar absorptivities (ε) of phenol, nucleosides and substituted 

2-hydroxymethylphenols were measured in 10 mM  triethylammoniun acetate (TEAA) 

pH 6 using an HP 8543 series UV-Vis spectrophotometer. Molar absorptivities of the 

nucleoside adducts were estimated by addition of the  ε260 values of the nucleoside and 

appropriately substituted 2- hydroxymethylphenol.  The  ε260 values were determined by 

serial dilutions of the appropriate compound in the HPLC buffer being used for analysis.

Kinetic Studies with Individual Deoxynucleosides. To an aqueous solution (70 

μL) of 4 mM phenol, 0.5 mM deoxynucleoside, 10 mM potassium phosphate pH 7, 500 

mM  KF  was  added  the  quinone  methide  precursor  (AcQMP-H,  AcQMP-Me, and 

AcQMP-Est alternatively) in DMF (30 μL) yielding a final concentration of 25 mM. The 

reactions were incubated at 37 °C and, at the indicated times, analyzed directly by reverse 

phase HPLC (C-18, Varian, Microsorb-MV 300, 5 μm particle size, 250 mm x 4.6 mm) 

using a gradient of 3 % CH3CN, 9.7 mM TEAA, to 25 % CH3CN, 7.5 mM TEAA at 1 

mL/min over 66 min.  For  AcQMP-H reaction, TEAA was adjusted to pH 4,  and for 

AcQMP-Me and AcQMP-Est, the TEAA was adjusted to pH 6. Product formation was 
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monitored by integrating the elution profile at 260 nm generated by a diode array detector 

and normalizing  its  signal  by  the relative  ε260 of  each  product  and absorbance  of  an 

internal standard (phenol).

Competition Studies in the Presence of all Deoxynucleoside.  To an aqueous 

solution (70 μL) of 4 mM phenol, 0.25 mM of dA, dC, dG, and T (1.0 mM total dN), 10 

mM potassium phosphate pH 7, 500 mM KF, was added the quinone methide precursor 

(AcQMP-H, AcQMP-Me,  and AcQMP-Est alternatively)  in  DMF (30  μL) yielding a 

final  concentration  of  25  mM.  Reactions  were  incubated  at  37  °C  and  analyzed  as 

described above. 

Methyl 4-Methylsalicylate (4.3). 4-Methylsalicylic acid (1.00g, 7.50 mmol) was 

dissolved in a mixture of concentrated H2SO4 (2.00 mL) and 500 mL MeOH and allowed 

to  reflux  24  hours.  The  reaction  was  cooled  and  quenched  with  100  mL  H2O  and 

extracted with ether (3 X 150 mL) in the presence of minimal brine to facilitate phase 

separation. The combined organic phase was washed with NaHCO3 (3 X 100 mL), brine, 

dried (MgSO4) and concentrated under reduced pressure to yield the title compound (1.14 

g, 99%). 1H NMR (CDCl3)  δ 2.31 (s, 3H), 3.89 (s, 3H), 6.66 (d,  J=8 Hz, 1H), 6.76 (s, 

1H),  7.67  (d,  J=8 Hz,  1H),  10.70  (s,  OH).  NMR spectral  data  agree  with  literature 

values.85

2-Hydroxymethyl-5-methylphenol  (4.4).  LiAlH4 (0.251  g,  6.60  mmol)  was 

added to a solution of methyl 4-methylsalicylate (1.00 g, 6.00 mmol) in dry THF (30.0 

mL).  The reaction was stirred for 1 hr at room temperature under nitrogen. H2O (30 mL) 

was added to quench the reaction, and the mixture was filtered and extracted with ethyl 
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acetate  (3  x  150 mL).   The combined organic phases were washed with brine,  dried 

(MgSO4) and concentrated under reduced pressure.  The crude mixture was purified by 

silica gel flash chromatography (9:1, hexanes:ethyl acetate) and concentrated to yield the 

desired product (0.530 g, 64 %) as a white solid.  1H NMR (CDCl3) δ 2.28 (s, 3H), 4.80 

(s, 2H), 6.65 (d,  J=8 Hz, 1H), 6.69 (s, 1H), 6.90 (d,  J=8 Hz, 1H), 7.15 (s, OH).  NMR 

spectral data agree with literature values.77

2-Acetoxymethyl-5-methylphenol  (4.5).   2-Hydroxymethyl-5-methylphenol 

(0.228 g, 1.65 mmol) was dissolved in THF (5.0 mL) at 0 °C.  Acetic anhydride (1.0 mL) 

and BF3•Et2O (200 μL) were added and the solution was stirred at 0 °C for 75 min.  The 

reaction was quenched by the addition of saturated NaHCO3 (150 mL) and extracted with 

CH2Cl2 (3x100  mL).   The  combined  organic  phases  were  washed  with  brine,  dried 

(MgSO4) and concentrated under reduced pressure.  The crude liquid was purified by 

flash silica gel chromatography (3:17, ethyl acetate:hexanes) to yield the product (0.247 

g, 83 %) as a clear oil.  1H NMRδ (CDCl3) 2.08 (s, 3H), 2.28, (s, 3H), 5.07 (s, 2H), 6.71 

(d,  J=8Hz, 1H), 6.75 (s, 1H), 7.13 (d,  J=8Hz, 1H), 7.78 (s, OH).  13C NMR (CDCl3)  δ 

20.9,  21.1,  63.2,  118.3,  118.7,  121.4,  132.1,  141.6,  155.4,  173.8.   HRMS  (EI)  m/z 

180.0780 (M+); Calcd. For C10H12O3 (M+): 180.0786.

2-Acetoxymethyl-5-methyl-O-(tert-butyldimethysilyl)phenol (AcQMP-Me). 2-

Acetoxy-5-methylphenol (0.230 g, 1.27 mmol) was dissolved in DMF (8.0 mL).  tert-

Butyldimethylsilyl chloride (TBDMS-Cl, 0.575 g, 3.81 mmol) and imidazole (0.520 g, 

7.64 mmol) were added and the mixture was stirred for 4 hrs at room temperature.  The 

reaction was quenched by the addition of H2O (100 mL) and extracted with CH2Cl2 (3 x 
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75 mL).   The combined organic phases were washed with brine,  dried (MgSO4)  and 

concentrated under reduced pressure.  The crude liquid was purified by silica gel flash 

chromatography (97:3, hexanes:ethyl acetate) to yield the desired product as a clear oil 

(0.300 g, 80 %).  1H NMR (CDCl3) δ 0.26 (s, 6H), 1.02 (s, 9H), 2.06 (s, 3H), 2.30 (s, 3H), 

5.08 (s, 2H), 6.65 (s, 1H), 6.76 (d,  J=7.6 Hz, 1H), 7.19 (d,  J=7.6 Hz, 1H).  13C NMR 

(CDCl3)  δ  4.3,  18.1,  20.9,  21.3,  25.6,  62.1,  119.3,  121.8,  123.3,  130.4,  139.6,  153.9, 

170.9.  HRMS (FAB) m/z 295.1726 (M + H+); Calcd. for C16H26O3Si (M+ H+): 295.1729.

Methyl 3-hydroxybenzoate (4.6).  3-Hydroxybenzoic acid (2.5 g, 18 mmol) was 

dissolved in methanol (500 mL) and catalytic concentrated HCl (2 mL).  The solution 

was stirred at  reflux overnight and then extracted with ethyl acetate to yield the title 

compound in quantitative yield (2.8 g).  1H NMR (CDCl3) δ 3.92 (s, 3 H), 7.07-7.11 (m, 

1 H), 7.30 (t, J=7.7 Hz, 1 H), 7.58-7.61 (m, 2H). Data agrees with literature values.86   

Methyl 3-hydroxy-4-formylbenzoate (4.8).87  Tin (IV) chloride (0.20 mL, 0.77 

mmol) and tributyl amine (0.70 mL, 3.8 mmol) were added to a solution of 3-hydroxy 

methylbenzoate (1.3 g, 8.5 mmol) in dry toluene (30 mL).  After stirring for 20 min at 

room temperature, paraformaldehyde (0.66 g, 22 mmol) was added and the reaction was 

stirred for 8 hrs at 90 °C.  The reaction was cooled and quenched by addition of H2O (100 

mL), and acidified to pH 2 with HCl (2 M).  The product was extracted with ether (3 x 

100 mL), dried (MgSO4) and concentrated under reduced pressure.  The crude mixture 

was purified by silica gel flash chromatography (9:1 hexanes:ethyl acetate ) to yield 4.5 

(97 mg, 7.5 %).  1H NMR (CDCl3) δ 3.92 (s, 3H), 7.61 (s, 1H), 7.63 (s, 2H), 9.95 (s, 1H), 
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10.92 (s, 1H).  13C NMR (CDCl3) δ 52.7, 119.0, 120.4, 122.8, 133.6, 137.2, 161.2, 165.6, 

196.5.  HRMS (EI) m/z 180.0431 (M+); Calculated for C9H8O4 (M+): 180.0424.

Methyl  3-hydroxy-4-formylbenzoate  (4.8).  2-Hydroxybenzoic  acid  (5.00  g, 

36.2 mmol) was dissolved in a solution of KOH (25 g, 450 mmol) and H2O (25 mL). 

Following addition of chloroform (25 mL), the reaction was stirred at reflux for 2 hours. 

The reaction was cooled, quenched by the addition of water (50 mL) and then acidified 

by dropwise addition of 2 M HCl.  The product was extracted with EtOAc (4 x 150 mL), 

and  the  combined  organic  phases  were  washed  with  water,  dried  (MgSO4),  and 

concentrated under reduced pressure.  The crude extract was dissolved in methanol (150 

mL) with catalytic HCl (2 mL) and refluxed overnight.  The reaction was cooled and then 

quenched by the addition of saturated NaHCO3 until the pH reached 7.  The product was 

extracted with EtOAc (3 x 200 mL), the combined organic layers washed with water, 

dried (MgSO4), and concentrated under reduced pressure.  The residue was purified by 

flash silica chromatography (EtOAc:Hexanes, 1:9) to yield the title compound as a white 

powder (149 mg, 2.3%).   1H NMR (CDCl3) δ 3.92 (s, 3H), 7.61 (s, 1H), 7.63 (s, 2H), 

9.95 (s, 1H), 10.92 (s, 1H).  

Methyl  3-hydroxy-4-hydroxymethylbenzoate  (4.9).  Methyl  3-hydroxy-4-

formylbenzoate (97 mg, 0.53 mmol) was dissolved in MeOH (5 mL) and solid NaBH4 

(24 mg, 0.67 mmol) was added.  The reaction was stirred at room temperature under 

nitrogen for 45 min, and then quenched by the addition of 2 M HCl (4 mL) and water (10 

mL).  The  product  was  extracted  with  ethyl  acetate  (3  x  20  mL)  and  the  combined 
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organic  phases  washed  with  brine,  dried  (MgSO4)  and  concentrated  under  reduced 

pressure.  The product was purified by silica gel flash chromatography (4:1 hexanes:ethyl 

acetate) to yield 4.6 as a white solid (97.0 mg, 99 %).  1H NMR (CD3OD) δ 3.85 (s, 3H), 

4.67 (s, 2H), 7.38 (s, 1H), 7.39 (d, J=8 Hz, 1H), 7.48 (d, J=8 Hz, 1H).  1H NMR agrees 

with literature values.88

2-Hydroxyterephthalic acid (4.10).89  2-Bromoterephthalic acid (11.03 g, 5.300 

mmol) was added to a solution of 3.62 g sodium hydroxide (90.0 mmol) and 8.12 g 

sodium  acetate  (990  mmol)  in  206  mL  water.  Phenolphthalein  was  included  as  an 

indicator, and reaction was initiated by addition of 0.0572 g Cu powder. The mixture was 

refluxed for 80 hours. Formation of the product was monitored by NMR, and following 

full conversion, the solution was cooled and the product precipitated by addition of 1 M 

HCl. The product was filtered, dried under high vacuum, and then heated at 90 °C for 24 

hours to yield a white solid (8.09 g, 99 %). Mp (uncorrected): 316-318 °C.  Melting point 

agrees with literature values.89  1H NMR (CD3OD) δ  7.45 (m, 2H), 7.89 (d,  J=8.1 Hz). 

13C NMR (DMSO) δ 116.79, 117.60, 119.42, 136.74, 160.42, 166.28, 170.94. 

2-Hydroxydimethylterephthalate (4.11). 2-Hydroxyterephthalic acid (1.0 g, 5.5 

mmol)  was  dissolved  in  250  mL methanol  with  catalytic  sulfuric  acid  (2  mL),  and 

refluxed for 24 hours. The solution was then cooled and the methanol removed under 

reduced pressure. The crude product was dissolved in ethyl acetate (100 mL), and the 

organic layer was washed with brine and saturated sodium bicarbonate. The organic layer 

was dried (MgSO4) and concentrated under reduced pressure to yield the desired product 

as a white powder (1.0 g, 84 %). 1H NMR (CDCl3) δ 3.93 (s, 3H), 3.98 (s, 3H), 7.52 (dd, 
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J=1.5 Hz, 8.3 Hz, 1H), 7.64 (d, J=1.5 Hz, 1H), 7.90 (d, J=8.3 Hz, 1H), 10.73 (s, 1H, OH). 

1H NMR spectral data agrees with literature values.90 

Methyl  3–hydroxy-4-hydroxymethylbenzoate  (4.12). 2-Hydroxydimethyl-

terephthalate (390 mg, 1.9 mmol) was dissolved in 20 mL absolute methanol.  Sodium 

borohydride (1.7 g, 44 mmol) was added and the solution stirred for one hour at room 

temperature.  The solution was then put on ice and brought to pH 2 with 6 N HCl. The 

solution was extracted with ethyl acetate and diethyl ether.  The organic layers were dried 

with  magnesium sulfate,  and  the  product  concentrated  under  reduced pressure.   The 

product was purified using silica gel flash chromatography (3:97, ethyl acetate:hexanes) 

to yield 249 mg of the title compound (75 % yield).  1H NMR (CD3OD) δ 3.85 (s, 3H), 

4.67 (s, 2H), 7.38 (s, 1H), 7.39 (d, J=8 Hz, 1H), 7.48 (d, J=8 Hz, 1H). 1H NMR spectral 

data agree with literature values.91  13C NMR (CD3OD) δ 52.5, 60.5, 116.2, 121.6, 128.5, 

131.0, 134.6, 155.9, 168.6. HRMS (EI) m/z 182.0581 (M+); Calcd. For C9H10O4 (M+): 

182.0579.

Methyl  3-tert-butyldimethylsilyloxy-4-(tert-butyldimethylsilyloxymethyl) 

benzoate (4.13).  Solid  TBDMS-Cl (1.00 g, 6.63 mmol) and imidazole (1.00 g, 14.7 

mmol) were added to a solution of methyl 3-hydroxy-4-hydroxymethylbenzoate (186 mg, 

1.01 mmol) in DMF (3 mL).   The mixture was stirred for 45 min under nitrogen at 

ambient temperature. The reaction was quenched by the addition of 15 mL water and 

extracted with chloroform (3 x 75 mL).  The combined organic phases were washed with 

brine, dried (MgSO4) and concentrated under reduced pressure.  The crude extract was 

purified  by  silica  gel  flash  chromatography (3:97,  ethyl  acetate:hexanes)  to  yield the 
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desired product (398 mg, 96 %) as a colorless oil.  1H NMR (CDCl3) δ 0.09 (s, 6H), 0.24 

(s, 6H), 0.94 (s, 9H), 1.00 (s, 9H), 3.86 (s, 3H), 4.77 (s, 2H), 7.40 (s, 1H), 7.52 (d, J=8 

Hz, 1H), 7.52 (d,  J=8 Hz, 1H), 7.66 (d,  J=8 Hz, 1H).  13C NMR (CDCl3)  δ  -5.5, -4.4, 

18.1, 18.3, 25.6, 25.8, 51.9, 60.5, 118.4, 122.5, 126.5, 129.2, 137.8, 151.6, 166.8. HRMS 

(FAB) m/z 411.2382 (M+H+); Calc. for C21H38O4Si2 (M+H+): 411.2387.

Methyl  3-tert-butyldimethylsilyloxy-4-acetoxymethylbenzoate  (AcQMP-Est). 

Solid  FeCl3•6  H2O  (48  mg,  0.18  mmol)  was  added  to  a  solution  of  methyl  3-tert-

butyldimethylsilyloxy-4-(tertbutyldimethylsilyloxymethyl)benzoate  (398  mg,  0.969 

mmol) and Ac2O (12 mL).  The solution was stirred at 0  °C for 30 minutes and then 

quenched by the addition of ether (50 mL).  The resulting mixture was washed with 

saturated NaHCO3, dried (MgSO4), and concentrated under reduced pressure.  The crude 

extract was purified by silica gel flash chromatography (1:9 ethyl acetate:hexanes) to 

yield the desired product as a clear oil (258 mg, 79 %).  1H NMR (CDCl3) δ 0.21 (s, 6H), 

0.95 (s, 9H), 2.04 (s, 3H), 3.82 (s, 3H), 5.08 (s, 2H), 7.30 (d, J=7.6 Hz, 1H), 7.41 (s, 1H), 

7.55 (d, 7.6 Hz, 1H).  13C NMR (CDCl3) δ -4.5, 18.0, 20.7, 25.4, 52.0, 61.5, 118.9, 122.1, 

129.2, 130.8, 131.6, 153.4, 166.3, 170.4. HRMS (FAB) m/z 339.1626 (M+H+) Calcd. for 

C17H26O5Si (M+H+): 339.1628. 

G N1-QM-Me Adduct (4.14).92  AcQMP-Me (75 mg, 0.26 mmol) was added to 

2’-deoxyguanosine (23.8 mg, 0.090 mmol) in DMF (3.5 mL). Reaction was initiated by 

addition of aqueous fluoride (0.80 mL, 0.81 M KF, 0.065 M potassium phosphate pH 

7.0), and the resulting solution was maintained at 37 ºC for 24 hr.  The solution was then 

lyophilized  overnight.  The  resulting  residue  was  dissolved  in  minimal  methanol  and 
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fractionated on silica  gel  with a  chromatotron (CH2Cl2:  MeOH, 30:1).   The fractions 

containing the desired compound were concentrated under reduced pressure and analyzed 

by  1H NMR.  A final purification was performed with HPLC using a semi-preparative 

reverse phase (C-18) column ((Varian Microsorb, C-18, 5 μm, 250 mm x 10 mm) and a 

gradient of 3% CH3CN, 9.7 mM TEAA pH 6, to 25 % CH3CN, 7.5 mM TEAA pH 6, 4.7 

mL/min over 66 min to yield the desired adduct (9.4 mg, 27% based on dG).  1H NMR 

([D7] DMF) δ  2.22 (s, 3H), 2.34 (m, 1H,  J=2.7, 6.0, 13.1 Hz), 2.70 (m), 3.69 (m, 2H), 

3.97 (m, 1H,), 4.54 (m, 1H), 5.24 (s, 2H), 6.27 (dd, 1H, J=6.0, 8.1 Hz), 6.63 (d, 1H, J=7.4 

Hz), 6.82 (s, 1H), 7.09 (d, 1H,  J=7.8 Hz), 7.15 (bs, 1H), 8.04 (s, 1H).  13C NMR ([D7] 

DMF) δ 20.6, 20.8, 38.5, 40.3, 62.7, 71.9, 83.4, 88.6, 116.1, 120.2, 120.7, 128.8, 136.1, 

138.8, 149.7, 154.4, 155.0, 157.4, 172.5. HRMS (FAB, CH3CN ) m/z 388.1623; (M+H+) 

Calcd. for C18H21N5O5 (M+H+) 388.1603 .

dA N6 –QM-Me Adduct (4.15).92  AcQMP-Me (75 mg, 0.26 mmol) was added 

to 2’-deoxyadenosine (45.0 mg, 0.18 mmol) in DMF (1.0 mL), and reaction was initiated 

by the addition of aqueous fluoride (0.3 mL of a KF 1.33 M stock solution) and allowed 

to react 24 hr at 37 °C. The crude reaction mixture was precipitated by addition of H20 

(10 mL). The supernatant was collected by vacuum filtration with a Buchner funnel and 

lyophilized  overnight.  The  resulting  residue  was  dissolved  in  minimal  methanol  and 

fractionated on silica gel  with a chromatotron (CH2Cl2:MeOH, 10:1).  Isolation of the 

crude product and final purification by HPLC followed the procedures described for the 

dG  N1-QM2  adduct  above  to  yield  the  desired  adduct  (3.2  mg,  3.4%).  1H  NMR 

([D7]DMF) δ 2.22 (s, 3H), 2.40 (m, 1H), 2.86 (m, 1H), 3.76 (d, 1H, J=3.8 Hz), 3.79 (d, 
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1H,  J=3.8 Hz), 4.03 (m, 1H), 4.59 (m, 1H), 4.72 (s, 2H), 5.44 (bs, 2H), 6.49 (dd, 1H, 

J=6.0, 8.0 Hz), 6.61 (d, 1H,  J=7.6 Hz), 6.73 (s, 1H), 7.17 (d, 1H,  J=7.7 Hz), 8.23 (bs, 

1H), 8.31 (s, 1H), 8.43 (s, 1H). HRMS (FAB, MeOH) m/z 372.1643 (M + H+); calcd 

C18H21N5O4 (M+H+) 372.1672.

dG N2-QM-Me and  guanine  N7-QM-Me Adducts.  To a solution  of  dG (5 

mM), phenol (4 mM final), potassium phosphate (10 mM, pH 7), KF (500 mM), was 

added AcQMP- Me (25 mM) in 65:35 water:DMF (800 μL).  The reaction was incubated 

at 37 °C for 72 hrs. The products were purified by reverse phase semipreparative HPLC 

as for the dG N1-QM-Me adduct. Fractions containing the desired products were dried 

and combined after three repetitions of the procedure above to collect enough sample for 

NMR analysis. 

dG N2–QM-Me Adduct (4.16):  1H NMR ([D6]DMSO, 37  °C)  δ  2.20 (m, 5H), 

3.51 (dd, J=4.6, 11.66 Hz, 1H), 3.58 (1H, dd, J=4.6, 11.6 Hz, 1H) , 3.83 (m, 1H), 4.33 (s, 

2H), 4.36 (m, 1H), 6.16 (t, J=6.9 Hz, 1H), 6.56 (d, J=7.6 Hz, 1H), 6.64 (s, 1H), 7.07 (d, 

J=7.6  Hz,  1H),  7.83  (s,  1H).  HRMS  (ESI,  MeOH)  388.1618  (m/z);  Calc.  (M+H+) 

388.1621. 

Guanine N7–QM-Me Adduct (4.17):  1H NMR ([D6]DMSO, 37  °C)  δ  2.18 (s, 

3H), 5.30 (s, 2H), 6.55 (d, J=7.6 Hz, 1H), 6.5 (s, 1H), 6.93 (d, J= 7.6 Hz, 1H), 7.80 (s, 

1H). HRMS (ESI, MeOH) 272.1159 (m/z); Calc. (M+H+) 272.1161.

dG N2-QM-Est,  dG N1-QM-Est  and Guanine N7-QM-Est  Adducts.   To a 

solution of dG (5 mM), phenol (4 mM), potassium phosphate (10 mM pH 7), KF (500 

mM), was added AcQMP-Est (25 mM) in 50:50 water:DMF (800 μL).  The reaction was 
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incubated at 37 °C for 96 hrs. The desired products were isolated by HPLC as described 

for the dG N1-QM-Me adduct. 

dG N2–QM-Est Adduct (4.18):  1H NMR ([D6]DMSO, 37  °C)  δ  2.17 (m, 1H), 

2.56 (m, 1H), 3.48 (dd, J=4.6, 11.6 Hz, 1H), 3.55 (dd, J=4.6, 11.6, 1H), 3.81 (s, 3H), 4.33 

(m, 1H), 4.43 (s, 2H), 6.13 (t, J=6.9 Hz, 1H), 7.3 (d, J=7.8 Hz, 1H), 7.34 (d, J=7.8 Hz, 

1H), 7.40 (s, 1H), 7.82 (s, 1H). HRMS (ESI, MeOH) 432.1521 (m/z); Calc. C19H22N5O7 

(M+H+) 432.1519. 

Guanine N7–QM-Est Adduct (4.19):  1H NMR ([D6]DMSO, 37  °C)  δ  3.81 (s, 

3H), 5.40 (s, 2H), 6.98 (d, J=7.9 Hz, 1H), 7.33 (dd, J=1.3, 7.9 Hz, 1H), 7.44 (d, J=1.3 Hz, 

1H),  7.91  (s,  1H).  HRMS  (ESI,  MeOH)  316.1047  (m/z);  Calc.  C14H14N5O4 (M+H+) 

316.1046.

dG N1 – QM-Est Adduct (4.20): 1H NMR ([D6]DMSO, 37 °C) δ 2.19 (m, 2H), 

2.53 (m, 1H), 3.52 (m, 2H), 3.80 (s, 3H), 4.33 (m, 1H), 5.09 (s, 2H), 6.12 (t, J=6.9 Hz, 

1H), 7.0 (d,  J=8 Hz, 1H), 7.01 (s, 1H), 7.24 (s,1H), 7.88 (s, 1H). HRMS (ESI, MeOH) 

432.1521 (m/z); Calc. C19H22N5O7 (M+H+) 432.1519.

dA N1-QM3 and dA N6-QM-Est Adducts. A solution of dA (25 mM), phenol 

(4 mM), potassium phosphate (10 mM pH 7), KF (500 mM), and AcQMP-Est (25 mM) 

in 70:30 water:DMF (800 μL) was incubated at 37 °C for 96 hrs. The desired products 

were purified by HPLC and analyzed as for the dG N1-QM-Me adduct.

dA N1–QM-Est Adduct (4.21):  1H NMR ([D6]DMSO, 37  °C)  δ  2.28 (m, 1H), 

2.61 (m, 1H), 3.50 (dd, J=4.5, 11.8 Hz, 1H), 3.58 (dd, J=4.5, 11.8 Hz, 1H), 3.81 (s, 2H), 

3.85 (dd, J=4.4, 7.4 Hz, 1H), 4.38 (m, 1H), 5.16 (s, 2H), 6.24 (t, J=6.7 Hz, 1H), 7.32 (d, 
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J=1.8 Hz, 1H), 7.36 (dd, J=1.7, 7.9 Hz, 1H), 7.57 (d, J=7.9 Hz, 1H), 8.23 (s, 1H), 8.55 (s, 

1H). HRMS (ESI, MeOH) 416.1563 (m/z); Calc. C19H22N5O6 (M+H+) 416.1570. 

dA N6–QM-Est Adduct (4.22):  1H NMR ([D6]DMSO, 37  °C)  δ  2.28 (m, 1H), 

2.73 (m, 1H), 3.53 (dd, J=4.1, 11.8 Hz, 1H), 3.62 (dd, J=4.1, 11.8 Hz, 1H), 3.80 (s, 3H), 

3.89 (dd, J=3.6, 6.8 Hz, 1H), 4.42 (m, 1H), 4.69 (s, 2H), 6.36 (t, J=6.9 Hz, 1H), 7.20 (d, 

J=7.9 Hz, 1H), 7.33 (dd, J=1.5, 7.9 Hz, 1H), 7.42 (d, J=1.5 Hz, 1H), 8.19 (s, 1H),8.36 (s, 

1H) HRMS (ESI, MeOH) 416.1567 (m/z); Calc. C19H22N5O6 (M+H+) 416.1570.
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Chapter 5

TRIPside Reactions with Substituted Quinone Methides

5.1.  Introduction
A major problem associated with using DNA alkylating agents as therapeutic 

agents is their lack of specificity.  Most small alkylating agents, whether natural products 

or synthetic molecules, have very limited recognition of target sites, which results in 

alkylation throughout an entire genome as opposed to the single gene of interest.  This 

can pose serious problems when a drug is being administered in relatively large doses or 

for extended periods of time, as in the case of cancer chemotherapy.  The non-specific 

alkylation kills both cancerous and  non-cancerous cells, as well as causing new 

mutations with the potential to cause additional cancers in the organism.  

There are a variety of ways to address the issue of alkylation specificity.  One 

strategy has been to engineer an alkylating agent to be preferentially sequestered by 

cancerous cell.  Chemical moieties can be engineered into drugs so that upon entry to the 

tumor, the drug is trapped is trapped in the cytosol, instead of in the lysosomes where 

healthy cells sequester toxins, increasing the dosage in cancerous tissue and decreasing 

the treatment of healthy tissue.93  However, designing anti-cancer drugs, and specifically 

alkylating agents, that are only sequestered or activated by a certain environments can be 

challenging.  A second approach has been to attach an anti-cancer drug to a moiety, such 

as cobalamine, that induces preferential uptake into cancerous cells, as compared with 

healthy cells.94  Again, a major problem with engineering selectivity in this manner is the 
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challenge of finding and incorporating agents that influence uptake.  A more universal 

approach to tuning alkylation specificity is to engineer a sequence recognition region into 

the alkylating molecule.  The sequence-directing agent localizes the alkylating agent to 

the desired sequence, resulting in the potential to reduce or eliminate off-target 

alkylation.  

Some natural products already display some degree of sequence selectivity due to 

their structure.24-26,65,80,95  However, engineering this sequence selectivity into other 

scaffolds can be just as challenging as engineering in groups required for selective 

cellular sequestration or uptake.  An alternative approach has been to couple the 

alkylating agent to a sequence directing agent, thus minimizing the need for alteration of 

either the alkylating agent or sequence directing agent.  Three of the most common 

classes of directing agents are oligonucleotides,22,58,96-100 peptide nucleic acids (PNA),62,101-

105 and polyamides.61,63,106-109  PNA uses the bases of DNA attached by a peptide backbone 

(Scheme 5.1) and forms triplexes within the major groove of DNA.  Polyamides (Scheme 

5.2) utilize small heterocycles in a hairpin to bind to the minor groove of DNA, forming 

hydrogen bonds with the non-Watson-Crick face of the dsDNA.  

Oligonucleotides are very useful since they are quite inexpensive and can be 

purchased from many companies with a variety of linkers to aid in the conjugation to the 

alkylating agent. QM-oligonucleotide conjugates have been used by the Rokita group for 

sequence-directed alkylation of DNA in vitro.58,100,110-113  From these studies, incubation of 

an oligonucleotide conjugated to a QM was found to produce of a "self-adduct" (Scheme 

5.3).58  This self-adduct is constantly opening and reforming an intra-molecular adduct, 
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but in the presence presence of the complementary sequence, it can form an inter-strand 

adduct.58  In this manner, the self-adduct protects the QM from non-specific reactions. 

Despite the success of oligonucleotides as sequence-directing agents for a variety of 

alkylating agents, there are problems associated with their use.  Oligonucleotides bind to 

duplex DNA in an asymmetric fashion, with the sequence directing agents backbone 

being closer to one side of the major groove and the bases only forming Hoogsteen base-

pairs with the nucleotides on the other side of the major groove (Figure 5.1).  This 

asymmetric binding poses a problem with recognition of mixed sequence tracts, since the 

oligonucleotide must bond to purines which have fewer hydrogen bonds, leading to 
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Scheme 5.1.  Representative structure of peptide nucleic acid (PNA).
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decreased fidelity.114  Furthermore, oligonucleotides can be easily degraded in vivo by 

cellular nucleases, decreasing their utility.   

PNA has also been used extensively as a sequence-directing agent.62, 97, 101, 102, 104, 105, 

115-121  Since it has a peptide backbone, instead of a phosphodiester backbone, it is 

impervious to cellular nucleases, although it is degraded slowly by proteases.117  The 

problem of off-center binding in the major groove is also associated with PNA, and is one 

of the major detractors.  Furthermore, in general, PNA is fairly insoluble, leading 

problems with synthesis and use, and the monomers are quite expensive.122  Thus, 

although PNA has significantly improved properties as compared to DNA, there are still 
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Scheme 5.2.  Structure of a representative hairpin polyamide.
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issues that must be addressed before it can reach its full potential.  

Polyamides are the only sequence-directing agent of the three described here to 

bind in the minor groove of dsDNA.  Hairpin polyamides (Scheme 5.2)  line both sides of 

the minor groove, eliminating the fidelity problems associated with oligonucleotides and 

PNA.  However, the utility of polyamides as directing agents for DNA alkylating agents 

is fairly limited.  The nitrogens of the polyamide are nucleophilic and compete with DNA 

for the alkylating agent.59,64  Since the alkylating agent is conjugated to the polyamide 

tail, the localization increases the intra-molecular reaction, leading to very poor yields. 

When a QM was conjugated to a polyamide, the alkylation efficiency was quite low due 

to side reactions of the QM with the polyamide.59  Similar efficiency was seen for a 

nitrogen mustard-polyamide conjugate.64  Because of these side reactions, polyamides are 

not particularly useful as sequence directing agents for DNA alkylating agents.  

Recently, the Gold group has reported another type of sequence directing agent.123-

126  Their system utilizes 2-aminoquinazoline and 2-aminoquinoline nucleosides (termed 

TRIPsides, Scheme 5.3) to recognize DNA sequences.123-126  By changing the position of 

attachment of the deoxyribose, the backbone of the molecule is kept in the center of the 
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Scheme 5.3.  Structures of the TRIPside monomers.
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major groove, allowing for facile recognition of any sequence (Scheme 5.4, Figure 5.1). 

The solubility of the TRIPsides is similar to that of the deoxynucleosides, which 

eliminates another problem associated with PNA.  QM-TRIPsides conjugates appear 
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Scheme 5.4.  Depiction of TRIPside binding to double stranded DNA.  The TRIPside 
binds the the purine, keeping the backbone in middle of the major groove and 
maximizing hydrogen bonding.
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likely to be successful in both directing the QM to particular DNA sequences and 

stabilizing DNA-TRIPside triplexes.  To investigate the possibility of using QM-

TRIPside conjugates to regulate gene expression in vivo, model reactions were carried 

out between the TRIPside monomers and QMPs. 

5.2.  Results and Discussion.

5.2.1.  TRIPside reactions with AcQMP-H.

Preliminary studies of the reactivity of the TRIPside monomers toward the model 

QM were performed under the same conditions as nucleoside studies have been 

performed in the past.69,81  Initially, individual reactions of all four TRIPsides with 

AcQMP-H were monitored.  However, incubations of the AntiAT and AntiTA TRIPsides 

did not result in the formation of any new product peaks by HPLC, and so were not 

investigated with the other QMPs.  

Incubations of AntiCG and AntiGC TRIPsides with AcQMP-H led to the 

formation of two products each (Figure 5.2).  For both AntiCG and AntiGC, the minor 

97

Figure 5.1: Pictorial representations of off-center and centered binding of sequence-
directing agents to the major groove of DNA.



product quickly decomposed within approximately 4 days, most likely by expulsion of 

the QM.  The major products grew in quickly (within ~ 8 h) and remained stable for at 

least 7 days.  Thus, although one adduct is reversible and would be useful for self-adduct 

formation and sequence-selective DNA alkylation, the major adduct results in a terminal 

species that would decrease the alkylation efficiency.

5.2.2.  AntiCG reaction with AcQMP-Me.

One potential way to overcome the stability of the major adduct, if the QM does 

react reversibly, is to increase the electron density of the QM.  This should make 

reversion to TRIPside and QM from their adduct less energetically demanding and 
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Figure 5.2: Reactions of AntiCG and AntiGC with AcQMP-H.  Reactions and analysis 
were performed as described in Materials and Methods.  AntiCG1 and 2 refer to the 
HPLC adduct peaks with shorter and longer retention times, respectively.  AntiGC1 and 
2 refer to the HPLC adduct peaks with shorter and longer retention times, respectively.
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possibly result in two reversible adducts.81  To test this theory, reaction of AntiCG with 

AcQMP-Me was undertaken.  Due to limitations on the quantity of TRIPsides provided 

by Professor Barry Gold (University of Pittsburgh), reaction of AntiGC with AcQMP-Me 

could not be investigated.  As with AntiCG reactions with AcQMP-H, reactions with 

AcQMP-Me resulted in the formation of two adducts (Figure 5.3).  The minor adduct 

again decomposed, presumably regenerating QM within 24 hrs.  Once again, the major 

adduct did not decompose for over 7 days.  

5.2.3.  AntiCG reaction with AcQMP-OMe.

To further increase the electron density of the QM and the possibility of making 
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Figure 5.3: Reaction of AntiCG with AcQMP-Me.  Reactions and analysis were 
performed as described in Materials and Methods.  AntiCG1 and 2 refer to the HPLC 
adduct peaks with shorter and longer retention times, respectively.  AntiGC1 and 2 refer 
to the HPLC adduct peaks with shorter and longer retention times, respectively.
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the major TRIPside adduct reversible, a methoxy substituted QMP, AcQMP-OMe, was 

synthesized (Scheme 5.5).  2-Hydroxy,4-methoxybenzaldehyde was silylated with 

TBDMS·Cl.  The aldehyde was then reduced with borane·THF, and the newly formed 

benzylalcohol was acetylated.  Reaction of AcQMP-OMe with AntiCG was monitored by 

HPLC for 72 hrs.  The same trends were observed as for AcQMP-H and AcQMP-Me. 

Two adducts were formed, with the minor adduct completely decomposing within 2 hrs 

(Figure 5.4).  The major adduct again was stable for the entire time frame of analysis, 72 

hrs.  Thus, even significant increases in QM electron density are not sufficient to convert 

a stable TRIPside adduct to a reversible adduct.

Unfortunately, if any of the three QM tested were conjugated to a TRIPside 

oligomer, the major outcome would likely be irreversible self-adduct formation.  While 

the outcome of these experiments is disappointing, it is not completely surprising.  The 

pKas of the aminoquinoline core of the AntiCG and AntiGC TRIPsides are 5.1 and 8.9.127 
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Scheme 5.5.  Synthesis of AcQMP-OMe.
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Qualitative analysis of reversible QM adducts has found that nucleophiles with pKas of ~ 

9 and above form irreversible adducts under physiological conditions.69  Thus, the 

likelihood of the second adduct, whose nucleophile has a pKa of 8.9, being reversibly was 

unlikely.  

Although both of the TRIPside-QM adducts were not reversible, these 

experiments further illustrate the effect of electron density on the kinetics of reaction. 

The rate of reaction significantly increased as the electron density of the QM was 

increased, as was seen in reaction with 2'-deoxynucleosides.81  Therefore, the general 
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Figure 5.4: Reaction of AntiCG with AcQMP-OMe.  Reactions and analysis were 
performed as described in Materials and Methods.  AntiCG1 and 2 refer to the HPLC 
adduct peaks with shorter and longer retention times, respectively.  AntiGC1 and 2 refer 
to the HPLC adduct peaks with shorter and longer retention times, respectively.
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statements that increasing QM electron density leads to increased rates of QM generation 

and regeneration and decreasing QM electron density leads to decreased rates of QM 

generation and regeneration holds true for other nitrogen nucleophiles.  The results found 

here add to the data illustrating the concept of altering QM electron density in a rational 

fashion to change the time frame of reaction for various applications.  

5.3.  Conclusions.
Gold's TRIPsides are a useful addition to the selection of sequence-directing 

agents in the literature.  While their potential utility is very high, conjugation of o-QM to 

a TRIPside oligomer will not be as useful as originally hoped since the major product of 

alkylation is irreversible.  This problem may be overcome by utilizing a p-QM instead of 

an o-QM, since p-QM have been shown in the literature to be more reactive,43 or by 

changing the electronics of the TRIPside monomers to generate a compound wherein the 

pKas of both nucleophiles are significantly less than 9.  
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5.4.  Materials and Methods
General. Reagents and solvents were purchased were purchased as ACS grade or 

higher and used without purification unless noted. NMR solvents were purchased from 

Cambridge Isotope Laboratories. 2-(Acetoxymethyl)-tert-butyldimethylsilylphenol 

(AcQMP-H) and 2-(acetoxymethyl)-5-methyl-tert-butyldimethylsilylphenol were 

prepared as previously described.55,67,69 NMR data were recorded with a 400 MHz and 

500 MHz spectrometers alternately, and chemical shifts (δ) are reported in parts per 

million (ppm) relative to TMS or solvent protons.

Kinetic Studies with Individual TRIPsides. To an aqueous solution (70 μL) of 4 

mM phenol, 0.5 mM TRIPside, 10 mM potassium phosphate pH 7, 500 mM KF was 

added the quinone methide precursor (AcQMP-H, AcQMP-Me and AcQMP-OMe 

alternatively) in DMF (30 μL) yielding a final concentration of 25 mM. The reactions 

were incubated at 37 °C and, at the indicated times, analyzed directly by reverse phase 

HPLC (C-18, Varian, Microsorb-MV 300, 5 μm particle size, 250 mm x 4.6 mm) using a 

gradient of 3% CH3CN, 9.7 mM TEAA, pH 4, to 25% CH3CN, 7.5 mM TEAA, pH 4, at 

1 mL/min over 66 min. 

2-(tert-Butyl-dimethylsilanyloxy)-4-methoxybenzaldehyde (5.6).  To a solution 

of 500 mg (4.0 mmol) 5-methoxysalicylaldehyde in 15 mL DMF was added 1.81 g (12 

mmol) tert-butyldimethylsilyl chloride and 1.64 g (24 mmol) imidazole.  The solution 

was stirred at room temperature for 4 h, and then quenched by the addition of 100 mL 

H2O.  The product was extracted with ether (3 x 75 mL), and the combined organic 

phases washed with brine and water, dried with MgSO4, and concentrated under vacuum. 
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The crude product was carried on to the next step.

2-(tert-Butyl-dimethyl-silanyloxy)-4-methoxy-benzylalcohol (5.7).  The crude 

product from synthesis of 5.1 was dissolved in 2mL THF at 0 °C and then 1.5 mL (15 

mmol) 1 M borane-THF was added dropwise.  The reaction was stirred on ice for 1.5 hrs, 

and then quenched by the addition of 100 mL H2O.  The product was extracted with 

EtOAc (3 x 75 mL) and the combined organic layers were washed with water, dried with 

MgSO4, and concentrated under reduced pressure.  The crude product was carried on to 

the next step.

2-Acetoxy-5-methoxy-O-(tert-butyldimethylsilyl)phenol (AcQMP-OMe).  A 

solution of 3.0 mL (32 mmol) acetic anhydride and 600 μL (5 mmol) BF3·Et2O was added 

to the crude reaction mixture of 5.2 was dissolved in 10 mL THF at 0 °C.  The resulting 

mixture was stirred on ice for 75 min.  Saturated NaHCO3 was added dropwise until the 

solution reached pH 7.  The product was extracted with CH2Cl2 (3 x 75 mL) and the 

combined organic phases washed with brine, sat. NaHCO3, and water.  The organic layers 

were then dried with MgSO4 and concentrated under reduced pressure.  AcQMP-OMe 

was purified by silica gel flash chromatography (97:3, hexanes:ethyl acetate) to yield a 

clear oil (500 mg, 40% overall yield).  1H NMR (CDCl3) δ 0.23 (s, 6H), 0.98 (s, 9H), 2.03 

(s, 3H), 3.76 (s, 3), 5.02 (s, 2H), 6.38 (d, J = 2.4 Hz, 1H), 6.48 (dd, J = 7.8, 2.4 Hz, 1H), 

7.29 (d, J = 7.8 Hz, 1H).  13C NMR (CDCl3) δ - 4.28, 18.18, 21.04, 25.60, 55.25, 62.15, 

105.42, 105.76, 118.94, 131.72, 155.34, 160.81, 171.07.

AntiCG-QM-H Adduct.  The adduct was collected during kinetic analysis of the 

reaction of AntiCG and AcQMP-H on HPLC.  The solution was lyophilzed to dryness 
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and submitted for MS analysis.  HRMS (FAB+) m/z 367.1639.  Calcd for C21H23N2O4 

(M+) 367.1658.  
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Chapter 6

Conclusions

Understanding  the reactivity  and  selectivity  of  DNA alkylating  agents  is  very 

important due to their dual nature as carcinogens and anti-cancer drugs.  Without a full 

accounting for the types and amounts of adducts formed, the toxicity of the compound 

can  easily  be  misunderstood.   This  is  of  particular  importance  for  reversible  DNA 

alkylating agents, since the traditional schematic for analyzing the products of alkylation 

assumes that all adducts formed are irreversible.

Quinone  methides  (QM)  have  posed  problems  for  analysis  because  of  the 

reversibility  of  some of  their  adducts.   Early  studies  missed the reversibility  of  QM 

adducts due to their adherence to the traditional analysis scheme.  It is only recently that 

the full measure of QM adduct reversibility has been addressed.  

This dissertation has focused on elucidating the inherent specificity of a model 

QM for the nucleophiles of DNA.  Analysis of the evolution of QM- 2'-deoxynucleosides 

adducts has highlighted how product ratios change dramatically in as little as 1 hr.  At 

short time points, the products of alkylation at strong nucleophiles predominate.  These 

adducts  regenerate  QM  during  incubation,  during  which  time  the  adducts  of  weak 

nucleophiles form.  The products of alkylation at weak nucleophiles form irreversibly 

under the conditions studied.  Furthermore, the dG N7 adduct was identified as the third 

reversible product of QM alkylation.  This finding has important implications for QM 
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activity  in  vivo  since  the  dG N7 adduct  is  likely  the  main  product  of  alkylation  of 

dsDNA.  Alkylation at the strong nucleophiles, dA N1, dC N3, and dG N7, results in a 

form of  protected  quinone methide  which  should  extend the lifetime of  this  reactive 

intermediate for days.  

An oxidative  trap  of  labile  QM adducts  has  also  been  developed  so  that  the 

inherent specificity of QM for DNA may be determined for the first  time.  BTI can 

quickly convert QM adducts to stable derivatives, which should allow for the trapping of 

labile QM-DNA adducts.  Structural identification of the oxidized adducts has proved 

difficult, however isotopically enriched adducts should finalize the structure.  Application 

of this trapping methodology to alkylated dsDNA will elucidate the selectivity of a model 

o-QM.   The results of the trapping studies will allow for future QM-based alkylating 

agents to be targeted to sites with which the QM is inherently most reactive.

The design of new QM for biological  applications will  also be helped by the 

finding  that  QM  reactivity  can  be  logically  altered  by  the  addition  of  aromatic 

substituents.  Electron-donating substituents  increase QM reactivity, shortening the time 

frame  of  reaction,  while  electron-withdrawing  substituents  decrease  QM  reactivity, 

extending the time frame of reaction.  With this knowledge, QM-based alkylating agents 

can be tuned for different biological applications, and different time frames, including 

sequence-selective DNA alkylation.  

Reversibility of QM adducts potentially makes these compounds very useful for 

the sequence-selective alkylation of DNA.  The studies presented here have determined 

that reversible adducts predominate at short alkylation times, which explains the ability 
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of  a  QM-oligo-2'-deoxynucleotide  conjugates  to  form  a  reversible  self-adduct  that 

alkylates  its  complementary  sequence.   These  conjugates  can  now  be  improved  by 

altering  the  sequence  to  ensure  that  only  reversible  self-adducts  form,  which  should 

increase the yield of target alkylation.

Unfortunately, model studies with a new sequence directing agent123-126 suggested 

that the major product of a QM-TRIPside conjugate would be an irreversible self-adduct. 

However, the small amount of reversible self-adduct formed may be enough to regulate 

gene expression.  Furthermore, alterations to either the QM or the TRIPsides may yet 

produce an improved sequence-selective alkylating agent. 

The  results  presented  within  this  dissertation  increase  the  knowledge  of  QM 

reactivity with the nucleophiles of DNA.  From these results, QM-based alkylating agents 

can be developed to yield increased formation of reversible self-adduct, which should 

lead to  increased target  alkylation.   Furthermore,  the reactivity  of  the  QM-alkylating 

agents can now be logically altered, resulting in complete alkylation within a designated 

time-frame.  Alternative sequence-directing agents for QM should provide for improved 

target-promoted  alkylation.   Modulation  of  the  reactivity  of  either  the  o-QM or  the 

TRIPsides may allow for selective alkylation of any genomic sequence,  which could 

provide a powerful method of gene control.  
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Appendix
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Figure 1:  Representative chromatogram of AcQMP-H reaction with dNs.
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Figure 2:  HPLC chromatograms of the alkylation reaction of dC by QM (left panel) and 
the product of oxidation of the dC alkylation reaction (right panel).
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Figure 3:  Representative chromatogram of dNs reaction with AcQMP-Me as monitored 
at 260 nm.
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Figure 4:  Representative chromatogram of dNs reaction with AcQMP-Est as monitored 
at 260 nm.



Table 1:  Data obtained from monitoring reactions of dNs with AcQMP-H by HPLC at 
260 nm.  These data were used to generate Figure 2.2. 

dA N1 Adduct
Time (hrs) Ave Area Relative to Phenol Ave μMol

0.0 0.000000 0.000000
0.5 0.276392 0.006418
1.0 0.275073 0.006387
4.0 0.238829 0.005546
8.0 0.166534 0.003867

24.0 0.012688 0.000295
48.0 0.000000 0.000000
72.0 0.000000 0.000000

dC N3 Adduct
Time (hrs) Ave Area Relative to Phenol Ave μMol

0.0 0.000000 0.000000
0.5 0.138527 0.006039
1.0 0.153711 0.006701
4.0 0.235989 0.010289
8.0 0.243822 0.010630

24.0 0.177992 0.007760
48.0 0.085036 0.003707
72.0 0.066353 0.002893

dG N1 Adduct
Time (hrs) Ave Area Relative to Phenol Ave μMol

0.0 0.000000 0.000000
0.5 0.018129 0.000489
1.0 0.018163 0.000490
4.0 0.019488 0.000526
7.0 0.020327 0.000548

24.0 0.022822 0.000616
48.0 0.025189 0.000680
72.0 0.025245 0.000681

dG N2 Adduct
Time (hrs) Ave Area Relative to Phenol Ave μMol

0.0 0.000000 0.000000
0.5 0.032202 0.000869
1.0 0.029998 0.000809
4.0 0.040342 0.001089
7.0 0.040687 0.001098

24.0 0.045468 0.001227
48.0 0.045431 0.001226
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72.0 0.042477 0.001146

dA N6 Adduct
Time (hrs) Ave Area Relative to Phenol Ave μMol

0.0 0.000000 0.000000
0.5 0.010462 0.000243
1.0 0.014712 0.000342
4.0 0.039003 0.000906
8.0 0.053054 0.001232

24.0 0.068795 0.001597
48.0 0.079235 0.001840
72.0 0.056485 0.001312

dG N7 Adduct
Time (hrs) Ave Area Relative to Phenol Ave μMol

0.0 0.000000 0.000000
0.5 0.043564 0.001175
1.0 0.042441 0.001145
4.0 0.033956 0.000916
7.0 0.019790 0.000534

24.0 0.000000 0.000000
48.0 0.000000 0.000000
72.0 0.000000 0.000000

Guanine N7 Adduct
Time (hrs) Ave Area Relative to Phenol Ave μMol

0.0 0.000000 0.000000
0.5 0.000000 0.000000
1.0 0.000000 0.000000
4.0 0.000000 0.000000
7.0 0.007878 0.000213

24.0 0.010842 0.000293
48.0 0.015246 0.000411
72.0 0.016546 0.000446

Acetate Derivative
Time (hrs) Ave Area Relative to Phenol Ave μMol

0.0 0.000000 0.000000
0.5 1.460050 0.667338
1.0 1.083690 0.495317
4.0 0.574811 0.262726
7.0 0.268372 0.122664

24.0 0.014940 0.006828
48.0 0.000000 0.000000
72.0 0.000000 0.000000
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H2O Adduct
Time (hrs) Ave Area Relative to Phenol Ave μMol

0.0 0.000000 0.000000
0.5 1.304579 0.596278
1.0 1.394559 0.637404
4.0 2.408828 1.100991
7.0 2.557132 1.168776

24.0 3.332684 1.523254
48.0 2.975298 1.359905
72.0 3.111027 1.421942

Table 2:   Data obtained from monitoring reactions of dNs with AcQMP-Me by HPLC at 
260 nm.  These data were used to generate Figure 4.2 and 4.3.  

dA N1 Adduct
Time (hrs) Ave nMol STD

0.00 0.000000
0.25 3.668934 0.973962
0.50 3.802396 0.288262
1.00 2.708576 0.371334
2.00 1.248401 0.105659
4.00 0.400493 0.036102
8.00 0.086405 0.086766

24.00 0.000000
48.00 0.000000
72.00 0.000000

dC N3 Adduct
Time (hrs) Ave nMol STD

0.00 0.000000
0.25 3.003436 0.921215
0.50 4.148582 1.862595
1.00 4.091671 0.330971
2.00 2.921835 1.205529
4.00 1.320431 0.679601
8.00 0.865239 0.583494

24.00 0.000000
48.00 0.000000
72.00 0.000000
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dG N1 Adduct
Time (hrs) Ave nMol STD

0.00 0.000000 0.000000
0.25 0.562033 0.295314
0.50 0.723889 0.213061
1.00 0.623022 0.282242
2.00 0.857146 0.295206
4.00 1.384883 0.096087
8.00 2.116176 0.383745

24.00 1.887875 0.224962
48.00 1.135963 0.805367
72.00 1.642528 0.264257

dG N2 Adduct 
Time (hrs) Ave nMol STD

0.00 0.000000 0.000000
0.25 0.460053 0.134285
0.50 0.616576 0.064758
1.00 0.787825 0.117086
2.00 0.884928 0.137848
4.00 0.918191 0.072143
8.00 0.993541 0.114982

24.00 1.118454 0.238124
48.00 1.293375 0.084118
72.00 1.237245 0.116352

dA N6 Adduct
Time (hrs) Ave nMol STD

0.00 0.000000 0.000000
0.25 0.127792 0.182917
0.50 0.687583 0.211022
1.00 0.693741 0.095637
2.00 0.955689 0.447736
4.00 1.521674 0.363152
8.00 1.600420 0.121777

24.00 1.416917 0.076715
48.00 1.586147 0.230265
72.00 1.560786 0.304605

dG N7 Adduct
Time (hrs) Ave nMol STD

0.00 0.000000 0.000000
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0.25 0.604984 0.094433
0.50 0.704732 0.180879
1.00 0.808222 0.053769
2.00 0.607522 0.086106
4.00 0.371168 0.066401
8.00 0.107172 0.094832

24.00 0.000000
48.00 0.000000
72.00 0.000000

Guanine N7 Adduct
Time (hrs) Ave nMol STD

0.00 0.000000 0.000000
0.25 0.000000 0.000000
0.50 0.016012 0.027734
1.00 0.110533 0.010343
2.00 0.266233 0.023159
4.00 0.426828 0.105306
8.00 0.602875 0.070750

24.00 0.695409 0.134325
48.00 0.714419 0.167994
72.00 0.738879 0.190374

Acetate Derivative
Time (hrs) Ave nMol STD

0.25 211.526800 33.016909
0.50 176.175142 30.276469
1.00 95.874744 31.505347
2.00 33.475349 3.262008
4.00 7.826688 6.958060
8.00 2.172250 3.762447

24.00 0.000000
48.00 0.000000
72.00 0.000000

H2O Adduct
Time (hrs) Ave nMol STD

0.00 0.000000
0.25 316.052532 63.595968
0.50 517.808195 57.403656
1.00 665.104504 190.250456
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2.00 869.642422 25.611226
4.00 1014.791320 103.868172
8.00 1153.133013 67.952088

24.00 1200.416730
48.00 1346.809758 118.867088
72.00 1336.074553 144.270030

Table 3: Table 2:   Data obtained from monitoring reactions of dNs with AcQMP-Est by 
HPLC at 260 nm.  These data were used to generate Figure 4.4. 

dA N1 Adduct
Time (hrs) nMol Adduct STD

0.0 0.000000 0.000000
0.5 0.592018 0.047221
4.0 1.833962 0.111890
8.0 2.419161 0.101366

24.0 2.489906 0.198665
48.0 1.595607 0.053233
72.0 1.030851 0.046842
96.0 0.673933 0.126554

120.0 0.420106 0.111435
144.0 0.225031 0.089916
168.0 0.257400 0.228511

dC N3 Adduct
Time (hrs) nMol Adduct STD

0.0 0.000000 0.000000
0.5 0.000000 0.000000
4.0 1.513533 0.116823
8.0 2.237870 0.028851

24.0 3.444660 0.127109
48.0 3.572911 0.368670
72.0 3.554467 0.076445
96.0 3.502699 0.118701

120.0 3.445065 0.140183
144.0 3.214134 0.607732
168.0 2.597835 0.578726

dG N2 Adduct
Time (hrs) nMol Adduct STD

0.0 0.000000 0.000000
0.5 0.000000 0.000000
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4.0 0.376503 0.161263
8.0 0.564255 0.271101

24.0 0.678189 0.032640
48.0 0.838345 0.068454
72.0 0.953872 0.102274
96.0 1.191485 0.094518

120.0 1.386609 0.137911
144.0 1.401373 0.102551
168.0 1.451489 0.023867

dA N6 Adduct
Time (hrs) nMol Adduct STD

0.0 0.000000 0.000000
0.5 0.000000 0.000000
4.0 0.000000 0.000000
8.0 0.171867 0.033628

24.0 0.576096 0.023187
48.0 0.952951 0.017441
72.0 1.169115 0.040231
96.0 1.291937 0.023861

120.0 1.402404 0.039470
144.0 1.505301 0.052909
168.0 1.513032 0.038378

Guanine N7 Adduct
Time (hrs) nMol Adduct STD

0.0 0.000000 0.000000
0.5 0.000000 0.000000
4.0 0.000000 0.000000
8.0 0.153990 0.013923

24.0 0.337224 0.002769
48.0 0.406272 0.025135
72.0 0.450969 0.017087
96.0 0.468702 0.018862

120.0 0.469013 0.028764
144.0 0.487837 0.011533
168.0 0.477026 0.009112

Acetate Derivative
Time (hrs) nMol Adduct Range

0.0 0.000000 0.000000
0.5 1305.645147 100.334819
4.0 936.127564
8.0
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24.0 194.221097
48.0 61.875114 2.717013
72.0 32.832301 4.268047

Water Adduct
Time (hrs) nMol Adduct STD

0.0 0.000000 0.000000
0.5 104.042398 3.276589
4.0 395.162916
8.0

24.0 956.349739
48.0 1183.937809 21.605116
72.0 1276.856555 13.768225
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