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I. Introduction

Let us consider a square, affine nonlinear control system

& = f(z)+ ; gi(2)u; 0

Yi = hi() 1=1,...,m,

where z(t) € R" and ui(t) € R, f and g; are smooth vector fields on IR™, h; : IR" - IR are
smooth scalar functions for ¢ = 1,...,m. We assume that z¢ = 0 is such that f(z¢) = 0.
Moreover, throughout the paper, we set

h(z)=(hi(z) ... hm(z))T
g(x)=(g1(z) ... gm(z))

G : the smooth distribution spanned by the columns of g(z)
K; : the distribution which annihilates span{dh;} .

We also suppose that G and K; have constant dimensions m and n — 1 respectively.

We say that (1) is noninteractive if the i—th input does not influence the j—th output
for j # i. The problem of noninteracting control with stability consists of finding a state—
feedback control law such that the closed-loop system resulting from (1) is noninteractive
and asymptotically stable at zy.

Both linear and nonlinear noninteracting control problems have been widely discussed
in the literature ([1,3,4,5,6,7,8,9,11,12,13,14,15,16,17,18,19]). Unlike the linear case, only
recently some necessary ([20,21]) and sufficient ([22,23]) conditions have been given to
guarantee that the resulting noninteractive closed-loop system is also asymptotically sta-
ble. In [22] it is shown how to extend to a nonlinear setting the construction given in [3]
to solve the problem of linear noninteracting control with stability. In the linear case, we
know that if we find a set of m subspaces R; C Njx; K; which can be made simultaneously
invariant by means of static state-feedback, then the problem of noninteracting control is
solvable. Even if these subspaces are stabilizable and the plant is controllable, it is not
possible in general to obtain asymptotic stability as well as noninteraction by means of
static feedback alone [1]. The idea which underlies [3] is to use dynamic feedback to define
an “extended system” and an associated set of m independent controllability subspaces
R¢ which can be made simultaneously invariant and, thus, asymptotically stable.

In this paper, for the class of globally noninteractive systems (1), it is shown that it
is possible to carry over to a global setting the results contained in [22]. Additionally the
proof given here allows us to state the local results proven in [22] under weaker hypotheses.
Roughly speaking, on the original system we can define a set of m subsystems, which
essentially correspond to the decoupled channels. In general these subsystems cannot be
simultaneously stabilized without destroying the noninteraction property, since they share
some common parts. By using dynamic feedback, we can embed these subsystem into a
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larger state space in order to “separate” them , thus allowing us to stabilize them separately
so that stability can be achieved for the overall system without affecting noninteraction.

The paper is organized as follows. In Section II some important concepts are reviewed.
In Section III, by using dynamic extension, we define a set of “extended” distributions,
which are crucial to the solution of our problem. In Section IV we explicitly construct the
dynamic feedback which renders (1) asymptotically stable and noninteractive.

II. Basic notations and concepts

In this section we introduce some concepts and notation we use later (the interested
reader is referred to [24, 27, 29, 30]).

In what follows, if 8 is any smooth vector field and A is any smooth distribution, by
[0, A] we mean the set {[4,7] : 7 € A}, where [-,] is the Lie bracket of any two smooth
vector fields.

A smooth distribution A is said to be globally invariant under a smooth vector field
0if [6,A]C A.

A smooth distribution A is said to be globally weakly controlled invariant if

[f,AlcA+@G
[g;, A]CA+G 7=1,....,m.

For a given set of smooth vector fields {71,...,7»} and a given smooth distribution K,
we denote by (7, ... ,'rm|K ) the smallest distribution which contains K and is invariant
under f,g1,...,gm (see [24] for proof of existence)

Lemma II.1. Let us define the following sequence of distributions,

So =K
Sk = Z[Ti, Sk—1] + Sk—1 .
=1
If there exists k* < n such that Sg+ = Sk+«41 (in this case, we say that (T1y... ,Tm‘] K) is

finitely computable), then
Ske = (Tl,...,Tm|K> .

Actually, in the above sequence, we implicitly suppose that each S; is a smooth
distribution (see [24] for a more general setting). If each Sy is a nonsingular distribution,
then (m,... ,Tle ) is finitely computable. In this case, supposing that K = span{7; :
J € J C{1,...,m}} and setting f = go, by induction, it can be shown easily that the
distributions Si are locally spanned by vector fields in the set

{0:0=rj0rb0=[ry,..[ri,,75].]:1<k<n-10<is <m;1<h<kandjeJ},
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and (r1,... ,Tle ) is involutive. It should be noted, however, that, even in this case,
in general it is impossible to find an everywhere linearly independent set of vector fields
spanning {(r1,... ,Tle ). This must be taken into account in what follows.

Moreover, throughout the paper, denoting by A any smooth nonsingular involutive
distribution, we use the following notation.

L2 : leaf of A passing through z
FA : foliation of A .

We say that (1) is semiglobally stabilizable to x if for all bounded sets Q 3 zo of R"
there exists a static state—feedback (preserving the equilibrium point) which makes zo an
asymptotically stable equilibrium for the resulting closed-loop system and € is contained
in the basin of attraction [29].

Finally, (1) is said to be convergent input bounded state (CIBS) if for each control
u(t) on [0,+00) such that u(t) — 0 as ¢t — oo and for each Z, the solution of (1) with
z(0) = Z exists for all ¢ > 0 and is bounded [30].

Throughout the paper, we also implicitly suppose that any feedback control law we
consider preserves the equilibrium point at the origin. In particular, we consider static

feedback laws
u = a(z)+ B(z)v,

with @(0) = 0 and B(z) nonsingular (in this case the feedback law is said to be regular),
and dynamic feedback laws
u=a(z,w)+ Blz,w)v

W = y(z,w) + 6(z,w)v
with @(0,0) = 0 and v(0,0) = 0.

III. Fundamental assumptions and definitions

Set
Pi*:<f7g17"'7gm|spa'n{gj:j7éi}> Z‘::17"'77%

PO = <f7g17"'7gm|G>

P* = ﬁ Pr.
=1

We assume that P and Py can be computed by means of standard algorithms (see Section
II). For this purpose, we assume that each Si (see Lemma II.1) has constant dimension
and throughout the paper, by saying globally finitely computable, we mean this.

and

We assume that our system has already been rendered noninteractive (without sta-
bility). We wish to find conditions under which there exist a dynamic state—feedback law
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which semiglobally stabilizes the system and at the same time preserves the noninteraction
property. A typical case in which regular static state-feedback alone cannot help us is the
following. Suppose that the free dynamics of (1) on £~ (whenever it is well-defined) is
unstable at the origin. In this case, it was shown in [17] that in a neighbourhood of the
origin we cannot make the system noninteractive and asymptotically stable at the same
time by means of regular static state-feedback.

Generally, under suitable regularity assumptions, by changing coordinates in a neigh-
bourhood of the origin, it is possible to put a noninteractive system in a simple standard
form (see [17]) . Unfortunately, this is not true anymore in a global setting. As it will be
seen later, we require a suitable noninteractive form to be defined globally.

We also denote by Z the Lie ideal generated by the vector fields {[gj,ad’]ig,-] 11,7 =
1,...,m;k >0and ¢ # j} in the Lie algebra generated by {f,g1,...,9m} and define

Aprx =span{7:7 €71} .

Throughout the paper, we assume that Apsx is nonsingular. Now LIOAM’X 1s an invariant
subset of the free dynamics of (1). The restriction of (1) to £5™™ is usually referred to
as the Apyrx dynamics. It has been shown in [20] that, for any dynamic feedback control
law such that the closed-loop system resulting from (1) has still some relative degree and
is noninteractive, the resulting system admits an invariant subset for the free dynamics ,
and the restriction of the free dynamics to this invariant set is diffeomorphic to the Ay
dynamics (for details see [20,21,22]).
Thus, we collect all the previous facts in the two following assumptions.

Assumption 1. The distributions P; and Py are globally finitely computable and
Py, P;, P*and Ajx ¢ = 1,...,m have constant dimension for all z. Moreover,
dimPy = n for all z.

Assumption 2. (1) is globally noninteractive and there exist global coordinates (z1,...,Zm)
such that (1) has the form

I; = f,‘(.’ti) + gii(mi)ui 1=1,...,m

m
:i!m+1 = fm+1(.'131, . 7xm7$m+1) + ng+1,]'(il‘1, ‘e ,xm,xm+1)u]~
=1

m (2)
Tmt2 = fmte2(T) + Z gm+2,5(T)u;

i=1
y; = hi(z;) 1=1,....m

with
P =span{0/0z; : j # i} t=1,...,m

P* = span{0/0tm+1,0/02m+2}
Py =span{0/0z; :i=1,...,m + 2}
Amrx = span{0/0zm+2}
P'NG =span{g; : j # 1} 1=1,...,m
P*NG=0.



The requirement P* N G = 0 is a necessary condition for (2) to have some relative
degree at z¢ [17], which is a sufficient condition to achieve local noninteracting control
[24], and its role will be clear later. However, this assumption can be weakened as in [23],
but for simplicity we do not do so here. Note that under Assumption 2 the free dynamics
of (2) on LF" (which in what follows we call P* dynamics) is globally defined and is given
by

Emy2 = fm12(0, ... Tmt1, Tm2)

j?m+1 = fm+1(0, e ,.’Bm+1) .

Also the the Apx dynamics, is globally defined and given by
im+2 = fm+2(0, e ,$m+2) .

Note also that, under our assumptions, LIIP:,£50 and LF are globally diffeomorphic to
Euclidean spaces and that dimP; = n, i.e. we require strong accessibility at each point
(in the linear case this is equivalent to full controllability; for the case dimPy # n, see

[22]). The quotient IR™/FAMix can be identified with IR™, where 7 = n — dim(Apix),
by omitting the z,,42 coordinates from IR™. Moreover, there exist vector fields f and gj,
j=1,...,m, defined on IR"™/FA™X such that, if o : R"® — R™/F2MIX is the canonical
projection and o, its differential,

Foa(z) = au(f(z))
gjoo(z) = ox(g;j(z)) j=1,...,m.

The vector fields J? and §; can be identified with those obtained from f and g; in (2) by

omitting the z,,4+9 coordinates from JR™. Thus, we can define the following set of smooth
distributions on R"/F A mrx

Ri=<f’§17"'7,g\m|span{/g\i}> r=1,...,m.

Let f = go. We will assume that the distributions }Ei, ¢t =1,...,m, are constant dimen-
sional and finitely computable. Then from Lemma II.1 (see also Lemma 1.8.6 in [24] and
our remarks in Section II) it follows that there exist vector fields {X;z} in the set

{9:9=§i0r9:[/g\jm"'a[gj1a§i]---] :1<h<n-1;0<7<m; 1S7€Sh} (3)

such that
R,‘:span{X,‘kZISkSS,‘} r=1,...,m (4)

for some s; such that s; > dimﬁi. Note that s; is finite, since ﬁi is finitely computable.
Using the global form (2), and setting Z = o(z), it is possible to show by induction that

Xix = (8/0z:)Yir(z:) + (8)02ma1)Zx(Z) i=1,...,m, (5)
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where i}ik and 2ik are respectively the z; and z,,4+1 components of )?ik- In general these
vector fields are not everywhere independent. Collecting the above assumptions, we have
the following

Assumption 3. The distributions R,,E:Héz i, t=1,...,m,and Y ", R; are constant

dimensional. Moreover, R;is globally finitely computable and the vector fields {)/(\' ik 1<
k < s;} are complete.

Note that Assumption 3 does not require the existence of a set of everywhere inde-
pendent vector fields which span R;.

We need now an auxiliary result. We denote by P; and P, the distributions which
assign to each point o(z) the subspaces (04 ). (P;) and (04 )(Po) respectively and by Apx
the distribution on IR"/FAMIX | defined in the same way as Apgx but with f and g;

replaced by fa,nd gi,9=1,...,m

Lemma II1.1.
By=3" Ri=span{d/0a; : j # (m+2)} = (.., Gm|span{di i = 1,...,m})
=1
P, =) R;=span{0/0z;:j ¢ {i,(m +2)}} = (F,G1,- -, Gm|span{g; : j # i})
J#i
t=1,...,m
Apgx =0.

<

Proof. Asin [22, Lemma III.1].e

Note that dim(span{gi,...,gm}) = m, since otherwise P*NG # 0 (assumption P*NG = 0
is crucial here). Note also that, since R; is _nonsingular, it is also involutive ([23, Lemma

1.8.8]). From Lemma IIL.1 it follows that R C Njzi Eh;é Rh = span{@/azz,a/azcmﬂ}

hence for each ¢ there exist local coordinates (z7,. .,x?_l,xal,... L 0T eT)T (de-

pending on ¢) such that
R; =span{0/8p:}
(note that the z;, 7 # {7,m + 1,m + 2}, coordinates are the same as in (2) and that ¢,

and @; depend only on 7). This result does not hold in general on all of R™. With this in
mind, we make the following assumption

Assumption 4. For each 2 = 1,...,m there exist global coordinates
T T T
(1:1 7"-7$i—1»$i+17' mv‘fozasoT)T
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such that

—~

R; = span{0/0¢;} i=1,...,m

and (m?,...,mﬁl,xal,... 22 o 31T« R™ = R™ is onto.
We define now certain subsystems, which play a key role in the solution of our problem.
Note that, since g; € ﬁi, the restriction of g; to ,Céz‘, :=1,...,m, is a well-defined smooth

vector fields on L. Since f(O) = 0 and R; is invariant under 7, it follows that f restricts to

a well-defined vector field on £(1)2,~ as well. Thus, the following subsystems are well-defined

S (Flcf glcdy i=1,...,m. (6)
In the sequel, having set @ = («f, --- ,zT, 2T, V' and @ = (uT, aT)T, we also

refer to the following system

Tmt2 = @(Tma2,U) =

- (M)

= frmt+2(T15- o Tmy Tmt1, Tmi2) + ng+2,j($1>~-- Ty Tmgl, Tmt2 )Uj -
J=1

Note that this subsystem is not affine with respect to the input 4. As it can be immediately
checked, the free dynamics of (7) corresponds to the Apx dynamics.

In the following sections, for simplicity of notation, unless otherwise stated, we drop
the hats.

IV. The dynamic extension
In analogy with [22], we now introduce an “extended” system. Let

n; = dimz; 1=1,...,m
Ng = dim:cm+1

Nwi = N; + Ng r=1,...,m

m
TNy = E Nawi
=1
[
n"=n-+4+ny .

Consider the extended system
z = flz) + g(z)u

W = Uy

y = h(z),
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where dimw = n,,. Having set,

w; = (21> , dimA; = n; , dimp; =ng, t=1,...,m,

2
w1
(1)
Wm
<=(2) - (0) - (1)
w Wo Uy

we can rewrite the extended system in the compact form
j:e — fe(we) +ge(w€)ue

and

(8)

ye — he(xe) ,
with
f(ow)
fo(z) = N 9°(z%) = (gi(z®) ... g5m(2°)),
0

h®(z®) = h(z),

where the 1—th zero block has dimension n,;, ¢ =1,...,m, and

(9 [0

0
gf(xe) = 0 7gfn+i(xe) = Inwanwi = 1,...,m.
0 0

Lo ) L

In what follows we need also the following notations:

G® =span{g{ : 1 =1,...2m} , Gu; = span{g;,,;} and G, = @Gwi

=1
Now let us consider the set of vector fields contained in (3) and correspondingly define the
following “extended” vector fields
X ik(:v)
[ Fale)

X5(2%) = | Xh(zi, i) i=1,...,m, (9.1)




where

* Y;k(zz))
Xi .'Ei, 1) = 92
k( # ) ( sz(ﬂi) z;=0 for j#i; Tmy1=p; ( )
(see (5) for the definition of Yjx and Z;¢) and set
R =span{X{ :1 <k <s;} i=1,...,m. (10)

Note that the distributions defined above are smooth. In what follows, we also refer to the
“extended” vector field

( gig’f) \

gi(z%) = | gi(zi, i) i=1,...,m, (11)
0
0o/
where g} is defined as in (9.2). The next Lemma tells us that the distributions R¢ have
some 1nteresting properties.

Lemma IV.1. If Apgx = 0, the distributions R{ are independent, involutive and dim Rf =
dim R;.0

Proof. Let z € IR® and U be an open neighbourhood of z. Denoting by r; the constant
dimension of R;, let {X;x : k € {Li1,...,Lir.} CT{1,...,38:}} a set of vector fields, contained
in (3), which span R;. On U we have

i

X,'q= E Cigly Xily, v=1,....m;¢g=1,...,8;

t=1

for some unique smooth functions c;q;,. First, we show that the c;q;,, depend only on z;.
As a matter of fact, since Apyrx = 0, we have

[Xiq, Xju] =0 Lj=1l...,m;i#7; h=1,...,8;;¢g=1,...,s;

which implies Lx;, cit;,q = 0 for j # ¢. Our claim follows from Lemma III.1. Therefore, by

construction
i

e . L .
quzzciluqxil“ v=1,....m; g=1,...,s;.
t=1
Thus, around any point z°, in order to span R, we can take any set of independent

vector flelds {X§& : k € {lir,..., lin,} C{1,...,8i}} such that {X : k € {li,...,lir;} C

{1,...,8;}} span R; around z. Thus, mutual independence of the distributions R, 1 =
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1,...,m, and the fact that dim R; = dim R{ follow at once by constuction. On the other
hand, involutivity can be shown as in [22].e

Since [X 5, X5,] = 0 for j # 4, the next lemma follows immediately.

Lemma IV.2. The distributions } ., R, i =1,...,m, and } ;" | R are constant dimen-
sional and involutive for all z°.0

It is worth noting that

[f6, RS C Gui+ RECG+ RS ,i=1,...,m
95, R{] C Gyi + R C G* + R; vi=1,....m;j=1,...,2m
JERLY

and for all z¢ € R, i.e. the distributions Rf, 1 =1,...,m, are globally weakly controlled
invariant for the extended system (8).
V. Main result
We define the global noninteracting control problem with stability in the following
way:

(GINCPS). Given any bounded set 2, find a dynamic state—feedback control law

u = a(z®)+ Bz )v
w = vy(z) + 6(z%)v

such that the resulting closed-loop system is noninteractive and locally asymptotically
stable at z§ = 0 with a basin of attraction which contains §2.

Moreover, to avoid trivial solutions to (GINCPS), we impose a regularity constraint
on the class of dynamic feedback laws considered.

(%)

Regularity assumption. The matrix

has rank m for all z.

The main result is the following

Theorem. Suppose that Assumptions 1 through 4 hold. Then (GNCPS) is solvable if
a) the system (7) is CIBS,
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and,

b) the subsystems (6) are globally stabilizable via dynamic state—feedback.c

Remark 1. In the case of linear systems Apgx = 0 always and R; is a controllability
subspace, so that our assumptions are met. Thus, our theorem extends to a global setting
a well-known result for linear systems [3], i.e. if the noninteracting control problem is
solvable for a linear system , then it is also solvable with stability.

temark 2. It is worth noting that the subsystems (6) are defined on the system $ obtained
from ¥ by omitting the z,,4+2 coordinate. In general, it is not possible to state assumption
(b) directly on the original system 3. It should also be noted that dynamic state feedback
stabilizability does not imply state feedback stabilizability (see [25] for a counterexample)

As it will be seen, under our assumptions, it is possible to construct a global set of
coordinates for the leaves of the distributions R$, ¢ = 1,...,m, (Lemma V.2). These
distributions can be made simultaneously invariant under f¢ + g°a® and ¢°8§ for j =
1,...,2m (Lemma V.3), so that the resulting closed-loop system is noninteractive (not
necessarily stable) with respect to {u1,...,um}. Unlike the distributions R;,t = 1,...,m,
the distributions R¢, i = 1,...,m, are now independent by construction (Lemma IV.1).
Since for each ¢ = 1,...,m the leaves ﬁéz" and £§ ! are diffeomorphic (Lemma V.1),
Assumption 4 and Lemma V.4 allow us to simultaneously stabilize the dynamics on each
L".(I)2 ? and the dynamics modulo the foliation of Y .-, Rf without destroying the above
noninteraction property.

Before proving the theorem, we first give some preliminary results. In what follows,

we implicitly suppose that assumptions 1 through 4 hold.

Lemma V.1.
R{ e . .
Lyt ={z° € R" |:vj =0,A;=0,p;=0forj#1; A\i=2z;, i = Tmy1
a.nd(O,...,zi,O,...,:va)EC(I){"} t=1,...,m.
In particular, 7 : R*° — IR™, the canonical projection onto the first n coordinates, maps
L".(I,z ¢ diffeomorphically onto £§‘ 0

Proof. Fix 7 € 1,...,m. By Chow’s Theorem (see [26]), any point in L(If" can be joined
to the origin by a concatenation of integral curves of {X§ : 1 < k < s;}. Now each such
curve satisfies the differential equations,

z; = Yir(zi)

;=0 J# {i,m+1,m+ 2}
Tmt+1 = Zik(Z1,. -+, Tmy1)

fi = Zik(0,..., 24,0, ..., 1)

Ai = Yir(zi) -
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Since the first curve of the concatenation passes through the origin, we conclude at once
. R?
that at all points on £,*
=0 j#{im+1m+2)
T = A
Tm4+1 = Hi -
Since the z component of the curve satisfies differential equations given by X, it follows

that the ¢ component lies on C ‘. The assertion that = maps ER diffeomorphically onto
£R‘ follows at once.e

Lemma V.2. There exist global coordinates z = (27 --- 2L ;)T such that

Rf:span{ga-} i=1,...,m.
2;

<
Proof. We split the proof into different steps.
a) By Assumption 4, for each 7 = 1,...,m there exist global coordinates
T
(xl""7xi1:-17$21:|'1" * m"lgz’s‘oz )T

(depending on ¢) such that

Ri=span{a } 1=1,...,m.

Set r; = dimR;. Let us define
*:R" — R" i=1,...,m
o (z%) = ¢:(0,0,...,0,2;,0,...,0, 1)
5r: R™ — R™™™ t=1,...,m
@?(ze) = (151'(0707' -+50,24,0,...,0, :uz)

and . .
v:R" — R”
SAWER
:vm w.f,,
Tm+1 @1
A1 .
. — .
: o
Am A
K1
. ~
\ Hm ) Tm+1
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Clearly ¥ is a diffeomorphism.

b) Suppose now that we have applied the above coordinate change. Take the projection

oi: R* — R" r=1,...,m
2 = 0i(z%) = ¢;(2°) .

We claim that the restriction of o; to any leaf of R is a diffeomorphism. First observe
that this is trivially true for any leaf passing through a point at which z; = 0 for j #
{i;m+1,m+2}, z; =\ and zp41 = p;. This follows by considering the flows of the
vector flelds {Xix};L, and {X§ };L, and arguing as in Lemma V.1.
Now consider an arbitrary point z° = (z1,... ,5m+1,X1, D iim) € R™.
Define _ _ _ _
z° = (0,...,5,‘,0,...,/7,‘,/\1,...,/\i_l,fi,/\i_*_l,...,/\m,ﬁl,...,ﬁm) .

From above, ; = o; lﬁfg : C?g — IR"™ is a diffeomorphism. We will use this to show that
0; = 0; |£§5 is onto in the following way.

Let us pick an arbitrary point in IR™ and let ¢ be its inverse image under ;. Now
we can join Z° to ¢ by a concatenation of integral curves of {X§ };.,. Consider the z;
and p; components of the differential equations corresponding to these integral curves. It
is easily seen that if we replace the initial condition Z¢ by z¢, these components will have
the same initial conditions, and since they are not affected by the other components and
the {X,k}i'_l are complete, it follows that the z; and u; components will be unchanged.
Since the 1mage of a, depends only on z; and u; components, it now follows that there
exists a point ¢ € ,C~ such that

7:(2°) = 5:(T°) i=1,...,m.
Thus, we have shown that &; is onto.

Now we will show that o; is a d1ffeornorphlsm by first showmg that the map p; =
(7;)715; is a covering map. Note that p; maps £~ onto L'Ze :

Now fix go € L% and consider ¢; € o7 (o) C E;e for j € A, where A is some index
set. By redefining the indices if necessary, we assume that span{X$, : 1 < k < r;} = R}
in a neighbourhood of ¢o. Denoting by & the flow of a complete vector field X, let us
define the following maps

) (—e, €)™ -—>£§5 i=1,...,m

(b1 vertr) = Bt 0 0 B (go) (12)
@bf:(—e,e)ri ——>£§f i=1,...,m

(b1 strs) = B 00 B0 (gy), (13)

where ¢ is chosen sufficiently small for (13) to be an embedding, so that ¥ is a diffeo-
morphism onto its image (with respect to the “preferred” coordinates charts [27]). Set
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V; = %! ((—¢,€)™). Note also that (13) is defined for the same € as (12) and this is possible
since the vector fields X;; are complete.
The crucial fact is that V; is also open and that g; 'VJ is a diffeomorphism onto Vj. First

note that by definition the ¢ component of go and g¢; are the same. Note also that on ﬁRg
we have ¢ = const for [ = 1,...,m: as amatter of fact, on these leaves dg} (X5, ) = 0 for
I=1,...,m, since dg;(Xix) = 0 which implies also dgoz(X,k)lxl_O for 15 and £ p1mp = 0
Thus, also the &7 components are equal, since they are constant along leaves of R¢ and they
are equa.l at 7° and z°. Hence from the definitions p;(go) = p:(g;) and zi(go) = x,(q]) (here
pi(g;) and z;(q;) means respectively p; and z; components of ¢;). Now, by considering

the z; and y; components of integral curves of {X;x};’,, we conclude that,

Gi(¢?(t1, t«,-‘))—-—O'z(’(/) (tl, .. z)) i:l,...,m

for all (t1,...,t,,) € (—€,€)". Since 9? and &; are diffeomorphisms, it follows that 7 is a
diffeomorphism onto V; as well and in particular V; is open.

Moreover, we have (g;)"}(Vp) = Ujea Vi, where A is some index set. As a matter
of fact, suppose that there exists p € (9;)"'V; but ¢ V, for any o. Then, 0:(p) € Vy
and g,(p) = 1/;°(tr,, .,t1) for some (¢r;,...,t1) € (—¢,€)". Let us consider the point

do = @_tl -od_ "‘ (p) By construction ¢, and gy have the same ¢} coordinates and
thus 0i;(ga) = qo. Th1s clearly gives a contradiction, since it implies that p € V,.

By standard arguments in manifold theory (see [27]) it now follows that the require-
ment that the {V;};c4 be disjoint can be met by making V; smaller if necessary. Thus,
we have shown that g; is a covering map.

Since ,Clce is simply connected (it is diffeomorphic to JR™), we conclude at once that
0; and hence &; is a diffeomorphism [27].

c) Since 7; is a global diffeomorphism, it follows that

zi = @i (z®) 1=1,...,m
is a global set of coordinates for L:?f. Thus, (2§,...,22)7 is a global set of coordinates

for the leaves of Y .~ RS. As zm4; coordinate, we can choose the intersection between
1=1*Y + 3

each leaf of 3 1~ R¢ and the axis

(/\?a s 7/\3;7 (@T)Ta s a(‘IE:n)Tv $£+1)T .

This intersection is unique, since otherwise (27,...,22)T would not be a global set of
coordinates for that leaf of 3 .-, R¢. Also zp,+1 depends smoothly on z¢. Thus, we set

Zm41 = Pmt1(2°) .
Moreover, from standard properties of foliations, the Jacobian of the map

e (2 oz zhag)
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is nonsingular on JR™ . The proof of the lemma is now complete.e

Suppose now that we have changed coordinates, according to the previous lemma. In
general, the distributions R{ are not invariant under f¢ or g; for j =1,...,2m, so that
we cannot still derive a standard noninteractive form similar to (2). The next lemma tells
us how to do it.

Lemma V.3. There exists a globally defined smooth feedback u® = a®(2®) + 5¢(x€)v*® such
that «®(0) = 0, B%(2®) is nonsingular on R™, the distributions RS, i = 1,...,m, are
invariant under fe = f*+g°a® and g] = ¢°B5, j = 1,...,2m, where 5 is the j-th column
of B¢, and g = g¢, ¢ =1,...,m. As a consequence, the closed—loop system resulting from
(8) is given in z coordinates by

zi = fi(zi, 2ma1) + Gii(Zis Zmt1 )i + Gimt1 (20, Zmt 1 J0mpr 1= 1,...,m
Zm41 = fm+1(Zm+1) + Gm+1,m+1(Zm+1)Vm+1 (14)
y,~=h,-(z,~,zm+1) i=1,...,m,
. e T T T . . .
with v® =(v{ -+ v5.,) ,dimy;=1fori=1,...,m and dimvy4; = ny.©

Proof. The proof consists of four steps.

a) By means of a nonsingular matrix

Tmixm 0
ﬂf=< x 1)

we can arrange the columns of ¢° in such a way that
gi=9bi=g;€Ri i=1,....m

(see (11) for the definition of §f). Since Rf is involutive and by construction [¢F, X 5] =0
for y #¢ and 5,2 = 1,...,m, it follows that

[95, ] C R; t,7=1,...,m.

b) Fix : =1,...,m. By construction we already have for y =1,...,m
R{ + G ifj=1
€ . e 1 we 1
[gm+17R]] C { R; else . ( 5)

Let us define

Jmod R . (16)

§$n+,~(21, R e L4 % o PR 7Zm+1) = (gven-{»i(z)

z;=z;p=const
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Note that gy, ; has rank n;, since otherwise R{ N G; # 0. As in [28, Lemma 3.1}, it can
be shown that
SPan{.fif;er,-} = span{gf;,“} mod R .

This exactly means that there exists a globally defined nonsingular matrix 35, such that
gfn-i—i = g§z+iﬂ§i mod Rf. Thus, setting §$n+i = gfn+iﬂ§z‘7 we have

[gm+z7R$] C Rf
and from (15) and (16) it follows also

[9m+i R;] C R j=1....m;3#1.

Note that
Ixm 0 - O
g | O B o 0
00 - B
is nonsingular on R"".
c) we want now to show that there exists a*(z¢) = (02, aT(z?) --- aZ(z%))7,
defined on IR"™", such that
(R =[f+ ) 0hsjon RICR,  i=1..,m. (17)
Jj=1

An explicit expression of a® in = coordinates is given by

Ome

fl(wl)

fm+1($170’--- 707#’1)
af = . . (18)

f(@m)
fm+1(0’0> ce ammvum)

Note that «®(0) = 0. To show that (18) satisfy (17), it is sufficient to prove it around z°.
Note that, substituting (18) in (17), we have

[faXi ic]
(Ul

[, X5, ) = [f+Y s X581 = | [f, ,z,,] v=1...,m; {la,..., lir} C{1,...

i=1
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where [f, Xu,|* = [f, Xu'.t](:ce) . Moreover, since [f, Xy, ] = D4y Citiolin Xilin
J =0 for j#i ; Tm41= i
and using the same arguments as in the proof of Lemma IV.1, it can be shown that the

ci, 1., depend only on ;. This implies that [f¢, ] € R¢.

d) the form (14) now follows easily, since §¢ € R¢ , [f¢,RS] C RS, 97, Rf] C Rf for
j=1,...,2m and Rf C N;%; K}, where K7 = kerdh}(z¢).e

The following lemma states an interesting property of the matrix gm+1,m+1-

Lemma V.4. The matrix gm41,m+1 has full row rank.

Proof. We prove the lemma in the linear case. The nonlinear analogue can be proven
by means of pointwise arguments and regularity assumptions. The matrix §m+1,m+1 has
Ny columns and n + ng, — Z:’;l r; < ny rows, since in our case n = dim(} .~ R:).
Suppose that these rows are not independent. Then, by means of elementary column
transformations, we can rearrange ¢° in such a way that

gin -+ 0 By x
0 0 0 *

where (Bf -+ BL)T has column rank strictly greater than ny, — (n + nw — Yy 73) =
-n+ 3. r;i. Since the independent columns of the matrix

gin - 0 B
0 gmm Bm
o .- 0 0

are elements of (3 iv, R¢) N G*, it follows that it must be dim((3_;2; Rf) N G¢) > m +
(3 ri)—n. If we show that dim((} [~ Rf)NG®) = m+(D_;2; ri)—n, our thesis follows
by contradiction. It is clearly sufficient to show that dim((> Rf) NGy) =3 i Ti—n.
For, let us define the subspace W C R™Ft™ ag

W:: {(C?" ° m)T € RT1+ e ZZXZI”C'L - 0 {lzla . 7lirg} C {17"'73i}} ’
=1 t=1

where {Xilu""’Xiliri} is a basis of R;. It is clear that this subspace, which is given by
the kernel of the matrix

X = (Xllu T 'Xlll,.‘. .- .Xmlml e X

mrm)

18



coincides with the subspace (3~ Rf) N Gy, Since from linear algebra we have

> ri = dim(ker{X}) + dim(Im{X}) =

=1

= dim((zmj R)NGw)+n

i=1
our claim follows.e

Proof (of Main Theorem). Since w*(fe) = f and m.(gf) = g;, ¢ = 1,...,m, from Lemma
V.1 it follows that for each ¢ = 1,...,m the subsystem

B¢ (FolLl e |cE) (19)

is diffeomorphic to 3;. Thus, from assumption b), it follows that (19) can be globally
stabilized via dynamic smooth feedback. This and Lemma V.4 ensure that assumptions
of [29, Theorem 6.1] are satisfied, so that, given any bounded set €, (14) can be rendered
locally asymptotically stable at 0, with a basin of attraction containing 2, by a suitable

feedback
vi=ni(z,~,zﬁ,~)+5i t=1,...,m

,(Z)i - Ci(ziﬂ;bi) 1= 17"'>m (20)
Vmt1 = Gong1,me1 [~ Fnt1 (Zmt1) — G2ma]

where @ > 0 is a real number depending on Q and g +1,m+1 18 the pseudoinverse of
gm+1,m+1. Moreover, the resulting closed-loop system is also noninteractive, as it can be
easily checked. Now, it is easy to see that the system

m

Tmt2 = fm+2($1,---,$m+1,$m+2)+z Imt+2,5(T15 - Tma1, Tmt2)Fj(21, .0, T, Tmt1, W)
=1

is CIBS (just pick & = («f --- 2L 2T, FF ... F% )T and recall Assumption

(2)) From the above facts and [30], it follows that, given any bounded set Q, (2) can be
rendered locally asymptotically stable at 0, with a basin of attraction which contains €2, by
means of the composition of the feedback law of Theorem V.3 and the feedback law (20).
The resulting closed-loop system is also noninteractive, since z,,+2 does not influence any
output.e

Remark 3. It is important to note that the noninteracting structure of the stabilizing
feedback (20) is essential to achieve noninteraction of the cloed-loop system.

Remark 4. Note that the dynamic state-feedback (20) possibly increases the dimension of
the dynamic extension introduced in Section IV.
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IX. Conclusions

In this paper we have given for the first time some sufficient conditions for global
noninteracting control with stability by means of dynamic state-feedback. This result
generalizes and extends [22], in the sense that locally our sufficient condition can be stated
in terms of stability of the Ay dynamics and stabilizability via dynamic state—feedback

of the subsystems f],-, ¢ =1,...,m. As a matter of fact, the necessary conditions stated in
[22] are too strong since they imply that the subsystems ;, ¢ = 1,...,m, are exponentially

stabilizable by means of static state-feedback.
Except for the stability of the Apgx dynamics, which has been shown to be necessary
for local stability and noninteraction [20], it is still an open question to determine whther

the stabilizability of the subsystems £;, ¢ = 1,...,m, via dynamic state-feedback is also
necessary to solve our problem.
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