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Preface

If you can dream - and not make dreams your master;

If you can think - and not make thoughts your aim;

If you can meet with triumph and disaster

And treat those two impostors just the same...

...Yours is the Earth and everything that’s in it,

And - which is more - you’ll be a Man my son!

-Rudyard Kipling, ’If’
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Chapter 1

Introduction

1.1 Motivation: Linearization Coefficients

Given a complete system of orthogonal polynomials {Pi(x) : i ∈ I}, the

question arises how to calculate the linearization coefficients of the product of any

two polynomials; in other words, for Pn(x) · Pm(x) =
∑

i∈I ciPi(x), calculate ci for

all i ∈ I.

For several families of polynomials, the study of stochastic integrals, in which

integrals are defined against random-valued measures, produces formulae for lin-

earization coefficients. In this paper, we articulate the combinatoric machinery

implicit in [7] and [1] in order to better understand stochastic integration and, in

the future, enhance the mathematical framework surrounding it so it may be ap-

plied to the problem of linearization coefficients in other families of polynomials.

This machinery provides formulas for the linearization coefficients of Hermite poly-

nomials, and could possible provide formulas for the polynomials arising from other

Gaussian measures (e.g., measures with spectral atoms).
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1.2 Stochastic Integrals

In order to extend a continuous measure M on R to a measure on all of Rn,

we usually use the product measure Mn ≡ M × · · · ×M . In the case of a scalar,

deterministic measure M , Mn vanishes on all linear subspaces of Rn. This is not

necessarily true in the case of random-valued measure (even when the variances

of increments decrease to zero with the size of the increments). For example: in

the case that the measure is the random spectral measure of a stationary Gaussian

process (the primary case used in this paper), each subspace Ai,j = {(x1, · · · , xn) ∈

Rn : xi = −xj} for i 6= j has a positive (deterministic) measure. The notion of ”off-

diagonal” integration is developed to remove these linear subspaces from the area

of integration. This method, which is related to the classic probabilistic method of

inclusion-exclusion, leads to some very interesting combinatorial properties. In the

case of random spectral measure, it provides a well-known method of calculating

the linearization coefficients of the Hermite polynomials.

1.3 Outline of Thesis

In Chapter 2, Introduction to Stochastic Integration, we define a random mea-

sure and build the univariate and multivariate stochastic integral using functions

that disappear along diagonals. Major gives a form of Itô’s Lemma [5, p. 30] that

demonstrates the connection between off-diagonal stochastic integrals with Gaus-

sian measure and the Hermite polynomials (Chapter 2, p. 15). We then confirm

that Major’s formulation of Itô’s Lemma is a special case of the more widely-known
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formulation demonstrated in McKean [6, pp. 32-33]. This verification, through di-

rect calculation, is one of the novel elements of this work. The link between the two

is elsewhere explored in [3].

In Chapter 3, The Combinatorics of Stochastic Integrals, we formally define the

notion of diagonal. The connection between partitions of {1, · · · , n} and diagonals

in Rn is explored. We define what integration along a diagonal means, and we

prove that in the case of a Gaussian random measure, stochastic integrals vanish

along diagonals in which two variables are equal. Along diagonals in which two

variables are equal in magnitude but are opposite in sign, integration reduces to

deterministic integration in a single variable against the original spectral measure.

We then apply the combinatorial theory of Möbius inversion to integration along

diagonals using a partial ordering derived from partitions. This illustrates how

an off-diagonal integral can be represented as a linear combination of stochastic

integrals along other diagonals.

In Chapter 4, The Diagram Formula, we examine the relationship between

combinatorial objects called “diagrams” and stochastic integrals. The product of

two off-diagonal integrals is shown to be a stochastic integral evaluated along diag-

onals determined by the associated diagram, which results in the Diagram Formula.

We then combine Itô’s Lemma with the Diagram Formula to calculate the lineariza-

tion coefficients of Hermite Polynomials.

In Chapter 5, Conclusion, we provide a retrospective overview of the work

and propose some further mathematical research suggested by this combinatorial

approach to stochastic integrals.
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Chapter 2

An Introduction to Stochastic Integrals

2.1 Definition of Random Spectral Measure

The first step in constructing stochastic integrals is to define a specific type of

random measure against which we will integrate. In this work, all Gaussian fields

{Xn : n ∈ Z+} are presumed real and satisfy the following properties:

1) discrete;

2) stationary;

3) with non-atomic spectral measures.

Definition 2.1.1 (Spectral Measure) Any probability measure G on [−π, π) such

that

E(X0Xn) =

∫
einxdG(x)

is called the spectral measure associated with Xn.

Remark 2.1.1 G can be assumed to have all of R in its domain, but with positive

support only on [−π, π).

By Bochner’s theorem (Appendix, Theorem A.0.1), there exists a unique spectral

measure for every discrete Gaussian stationary field. Since EX0Xn = EXnX0, it

follows that
∫
einxdG(x) =

∫
e−inxdG(x), and therefore G is symmetric about the

origin: i.e., G(A) = G(−A) for all Borel sets A, where −A ≡ {−x : x ∈ A}.
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Remark 2.1.2 Unless otherwise noted, all notions of convergence and closedness

are in the usual L2
G sense.

Notation 2.1.1 Let fin(LC
n) be the linear span of {Xi1 · · ·Xin : i1, · · · , in ∈ Z}

over C and let LC
n be the Hilbert space closure of fin(LC

n). The inner product of

A,B ∈ LC
n is defined to be E(AB).

Note that for any A,B ∈ LC
n , although the inner product 〈A,B〉LC

n
= E(AB) may

be complex, the norm ‖A‖LC
n

=
√
E(AA) is real.

Let fin(L2
G) be all finite linear combinations of the form

{
∑m

j=−m cje
ijx : m ∈ Z+, cj ∈ C}. The following mapping, I : fin(L2

G)→ fin(LC
1 ),

leads to our first random measure. Let cj ∈ C ∀j,m ∈ Z+.

Definition 2.1.2

I(
m∑

j=−m

cje
ijx) =

m∑
j=−m

cjXj

Lemma 2.1.1 I is an isometry from fin(L2
G) to fin(LC

1 ).

Proof: Prove that I is norm-preserving and therefore an isometry (see Appendix,

Theorem A.0.2).

||I(
m∑

j=−m

cje
ijx)||2LC

1
= ||

m∑
j=−m

cjXj||2LC
1

=
m∑

j,k=−m

cjckE(XjXk)
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=

∫
(

m∑
j=−m

cje
ixj)(

m∑
k=−m

cke
−ixk)dG(x)

= ||
m∑

j=−m

cje
ijx||2L2

G

2

So I is norm-preserving and can be extended to a function from all of L2
G to all of

LC
1 . We will refer to this extended function as I for the rest of this work.

Definition 2.1.3 (Random Spectral Measure) Define the random spectral mea-

sure ZG(A) associated with G, for any Borel set A, by:

ZG(A) ≡ I(χA),

where χA is the indicator function of the set A.

2.2 Properties of Random Spectral Measure

The subscript G will be suppressed and the random spectral measure denoted

by Z when there is no ambiguity.

Lemma 2.2.1 Let A,B be Borel sets in R.

1) EZ(A) = 0.

2) Z(A) = Z(−A).

3) E(Z(A)Z(B)) = G(A
⋂
B).

4) Z(A) = U(A)+iV (A) for some real-valued, Gaussian random variables U(A), V (A).
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5) U(−A) = U(A), V (−A) = −V (A)

6) U(A) and V (A) are independent.

7) U(A), V (A) ∼ N (0, G(A)
2

) ∀A such that A
⋂

(−A) = ∅.

Proof: In the following proofs, we follow the approach of Major [5, p. 17-21] Due to

the denseness of the trigonometric polynomials in the space of complex L2
G functions,

there exist ck ∈ C, k ∈ Z such that

χA(x) = lim
n→∞

n∑
k=−n

cke
ikx.

1) EZ(A) = limn→∞
∑n

k=−n ckEXk = 0.

2)
∑n

k=−n cke
−ikx =

∑n
k=−n cke

ikx → χA = χA Therefore,

1

2
(

n∑
k=−n

cke
ikx +

n∑
k=−n

cke
−ikx)→ χA

Let dk = 1
2
(ck + c−k). Then dk = d−k and limn→∞

∑n
k=−n dke

ikx = χA.

Z(−A) = I(χ−A)

= I( lim
n→∞

n∑
j=−n

dje
−ijx)

= lim
n→∞

n∑
j=−n

djX−j

= lim
n→∞

n∑
j=−n

djXj

= lim
n→∞

n∑
j=−n

djXj

= I( lim
n→∞

n∑
j=−n

djeijx)

= Z(A)
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3) By the isometry property of I,

E(Z(A)Z(B)) = 〈I(χA), I(χB)〉LC
1

= 〈χA, χB〉L2
G

=

∫
χAχBdG(x)

= G(A
⋂

B)

4) Since Z(A) is the limit of sums of jointly complex-valued Gaussian variables, it

is itself a complex-valued Gaussian variable.

5) By 2), U(A) + iV (A) = U(−A)− iV (−A).

6) In order to show U(A), V (A) independent, we show their covariance is zero.

Observe:

U(A) =
Z(A) + Z(−A)

2

V (A) =
Z(A)− Z(−A)

2i

So the covariance is:

E(U(A)V (A)) = E(
Z(A) + Z(−A)

2
· Z(A)− Z(−A)

2
)

=
1

4i
E(Z(A)2 − Z(−A)2)

=
1

4i
E(Z(A)Z(−A)− Z(−A)Z(A))

=
1

4i
(G(A

⋂
(−A))−G((−A)

⋂
A))

= 0

Therefore, U(A), V (A) are independent of each other.

7) By 4), U(A), V (A) are both Gaussian random variables. By 1), EU(A) =
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EV (A) = 0. Now let A be a Borel set such that A
⋂

(−A) = ∅.

E(Z(A)2) = 〈Z(A), Z(A)〉2LC
1

= 〈χA, χ−A〉2L2
G

=

∫
−A

T
A

dG(x)

= 0

Therefore,

E((U(A) + iV (A))2) = E(U(A)2)− E(V (A)2) + 2iE(V (A))E(U(A))

= 0

so EU(A)2 = EV (A)2. By 3), EU(A)2 + EV (A)2 = E|Z(A)|2 = G(A), so

EU(A)2 = EV (A)2 = G(A)
2

. 2

2.3 Definitions of Classes of Integrands, Simple Integrands,

and Intervals

In order that the off-diagonal stochastic integrals be real-valued, the integrands

in this work are limited to the following class of functions, HG
n :

Definition 2.3.1 (HG
n ) f ∈ HG

n if and only if:

1) f : Rn 7→ C;

2) f ∈ L2
Gn ;

3) f(x1, ..., xn) = f(−x1, ...,−xn); and
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4) f(x1, · · · , xn) = f(xπ(1), · · · , xπ(n)) for all permutations π ∈ Sn.

Properties 3 and 4 state that all functions in HG
n are Hermitian symmetric and

permutation symmetric.

Definition 2.3.2 The inner product of f, g ∈ HG
n is

〈f, g〉HG
n
≡ n!〈f, g〉L2

Gn

= n!

∫
f(x1, · · · , xn)g(x1, · · · , xn)dG(x1) · · · dG(xn)

We define a set of intervals used throughout this work as a step towards defining

the off-diagonal stochastic integral.

Definition 2.3.3 For any given l ∈ Z+, k ∈ {1, 2, · · · , l · 2l − 1}, let J lk = (k−1
2l
, k

2l
)

be an interval on the real line, and let J l−k = −J lk be its reflection over the origin.

Let J l
l·2l = (l− 1

2l
,+∞) and J l−l·2l = (−∞,−l+ 1

2l
). Let Jl = {J lk : −l ·2l ≤ k ≤ l ·2k}

be the collection of all of these integrals. We denote the index set of the finite-length

intervals by Kl = {−l · 2l + 1, · · · , l · 2l − 1}.

Then {J1,J2, · · · } is a nested set of partitions. At each stage of refinement, a

finite number of endpoints are lost, since the partition intervals are open: since G

is non-atomic, this is not a problem. Though we use this particular set of partitions

in our proofs, the proofs hold for any nested set of partitions whose mesh (over

any compact set) goes to zero. Define the following class of Hermitian symmetric,

permutation symmetric simple functions on R:

Definition 2.3.4 For any given l ∈ Z+, let simpl(R) denote the following class of
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simple, finite, piecewise-constant functions from R to C:

simpl(R) = {g ∈ HG
1 : g(x) =

∑
j∈Kl

cjχJ lj(x)}

where cj ∈ C ∀j.

2.4 Definition of Univariate Stochastic Integral

We define the univariate stochastic integral with integrands in simpl(R) as a

mapping from the class of simple functions simpl(R) above to random variables in

LC
1 :

Definition 2.4.1 Define the mapping
∫
dZ(x) :

⋃
l simp

l(R) 7→ LC
1 : for g ∈ simpl(R),

∫
g(x)dZ(x) =

∑
i∈Kl

g(ml
i)(Z(J li))

An equivalent definition arises more directly from the isometry I:

∫
g(x)dZ(x) =

∑
k∈Kl

g(ml
k)(Z(J lk))

= I(
∑
k∈Kl

g(ml
k)χJ lk)

= I(g(x))

Remark 2.4.1 The above integral is evaluated on all of Jl. To limit the area of

integration to only those intervals in Jl that fall within the range (a, b), for some

a, b ∈ R, the definite integral notation
∫ b
a
g(x)dZ(x) can be adopted. We will call

these definite stochastic integrals. Note that, because (a, b) may not be symmetric

across the origin, the integral may be complex-valued.
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Indefinite stochastic integrals are real-valued, as are definite stochastic integrals

evaluated on any (−t, t):

∫
g(x)dZ(x)

=
∑
j∈Kl

g(ml
j)(Z(J lj))

=
∑
j∈Kl

(Re(g(ml
j)) + i · Im(g(mj)

l))(U(J lj) + i · V (J lj))

=
∑

j∈Kl,j>0

(Re(g(ml
j))U(J lj)− Im(g(ml

j))V (J lj) + i(Im(g(ml
j))U(J lj) +Re(g(ml

j))V (J lj)))

+
∑

j∈Kl,j<0

(Re(g(ml
j))U(J lj)− Im(g(ml

j))V (J lj) + i(Im(g(ml
j))U(J lj) +Re(g(ml

j))V (J lj)))

= 2 ·
∑

j∈Kl,j>0

(Re(g(ml
j))U(J lj)− Im(g(ml

j))V (J lj))

Since G is non-atomic, this class of simple functions on open intervals is dense in

HG
1 . Since I is an isometry, the domain of the univariate stochastic integral can be

extended from simpl(R) to all of HG
1 .

2.5 Definition of Multivariate Stochastic Integral

For the multivariate integral case, we again begin by restricting our integrands,

this time to a set of simple-function integrands defined on Rn. Let Jl = {J lk : k ∈ Kl}

be as above.

Definition 2.5.1 Define simpl(Rn) as the set of functions g : Rn → C such that:

1) g(x1, · · · , xn) =
∑

i1∈Kl · · ·
∑

in∈Kl ci1,··· ,in
χ
J li1

(x1) · · ·χJ lin (xn)

2) g ∈ HG
n (i.e., g is Hermitian symmetric and permutation symmetric)

3) ci1,··· ,in = 0 if |ij| = |il| for any j 6= l

12



Remark 2.5.1 These functions always take the value 0 along subspaces in which

|xj| = |xl| for some j 6= l.

Define the mapping In from
⋃
l simp

l(Rn) to LC
n :

Definition 2.5.2

In(
∑
i1∈Kl

· · ·
∑
in∈Kl

ci1,··· ,inχJ li1
(x1) · · ·χJ lin (xn))

=
∑
i1∈Kl

· · ·
∑
in∈Kl

ci1,··· ,inI(χJ li1
(x1)) · · · I(χJ lin

(xn))

=
∑
i1∈Kl

· · ·
∑
in∈Kl

ci1,··· ,inZ(J li1) · · ·Z(J lin)

We define I0 ≡ 1.

The property Z(−Jk) = Z(Jk) is called Hermitian symmetry. Hermitian symmetry

of the multivariate random measure Z(J li1) ·Z(J li2) · · · · ·Z(J lin) is immediate from the

univariate case; that is, Z(−J li1)·Z(−J li2)·· · ··Z(−J lin) = Z(J li1) · Z(J li2) · · · · · Z(J lin).

Lemma 2.5.1 In(g(x1, · · · , xn)) is a real-valued random variable for all g ∈ simpl(Rn).

Proof: It is clear that In(g(x1, · · · , xn)) = In(g(x1, · · · , xn)) and is therefore real-

valued. 2

We can extend In so its domain is all of HG
n :

Lemma 2.5.2 In : simpl(Rn) 7→ LC
n is an isometry.
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Proof: Let g, h ∈ simpl(Rn).

〈In(g(x1, · · · , xn)), In(h(x1, · · · , xn))〉LC
n

(2.1)

=
∑
j1∈Kl

· · ·
∑
kn∈Kl

g(ml
j1
, · · · ,ml

jn)h(ml
k1
, · · · ,ml

kn
)

E(Z(J lj1) · · ·Z(J ljn)Z(J lk1) · · ·Z(J lkn)) (2.2)

= n!
∑
j1∈Kl

· · ·
∑
kn∈Kl

g(ml
j1
, · · · ,ml

jn)h(ml
k1
, · · · ,ml

kn
)G(J lj1) · · ·G(J ljn) (2.3)

In order to get from line 2.2 to line 2.3, each Z(J ljp) must pair with a Z(J lkq) in order

to create G(J ljp). There are n! ways of matching up the n distinct intervals. Then

line 2.3 is equal to

n!

∫
g(x1, · · · , xn)h(x1, · · · , xn)dG(x1) · · · dG(xn) (2.4)

= 〈f, g〉HG
n

(2.5)

Since the norm is preserved under In for all finite combinations of elements of

simpl(Rn), the mapping is an isometry (Appendix, Theorem A.0.2). 2

If the permutation and Hermitian symmetric restrictions were not placed on simpl(Rn),

it would be dense in L2
G. Therefore, simpl(Rn) is dense in HG

n , and we can extend

the domain of In to all of HG
n : the range is increased to all of LC

n . From now on, In

will refer to the function with this extended domain and range. In future chapters,

we change our notation to reflect the lack of support along the diagonals:

Notation 2.5.1 For any n ∈ Z, g ∈ HG
n ,

∫
� g(x1, · · · , xn)dZ(x1) · · · dZ(xn) = In(g(x1, · · · , xn))
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2.6 Itô’s Lemma

The class of functions that can be represented by stochastic integrals is closed

under composition with smooth (i.e., twice differentiable) functions. This is shown

via Itô’s Lemma, which illuminates the close relationship between stochastic inte-

grals and the Hermite polynomials.

Definition 2.6.1 (Hermite Polynomials) The Hermite polynomials are the se-

ries of orthogonal polynomials with respect to the measure e−x
2/2, defined by the

formulae:

H0(x) = 1

Hn(x) = (−1)nex
2/2 d

n

dxn
e−x

2/2 for n ≥ 1.

Now we state a major formula of stochastic integrals: Itô’s Lemma. Note that this

is a specialized version of the formula, developed by Major, strictly dealing with

random spectral measures Z. Then we examine the relationship between Major’s

formulation and the more traditional one [6, p. 32]

Lemma 2.6.1 (Itô’s Lemma, Major) Let Z be the random spectral measure of

a measure G. Let p1, · · · , pm be an orthonormal set of functions in H1
G. Let

j1, · · · , jm ∈ Z be given, and let n =
∑m

i=1 ji. Define the functions ga, for a ∈

{1, · · · , n}, such that ga = pk for
∑k−1

i=1 ji < a ≤
∑k

i=1 ji. Then:

Hj1(

∫
p1(x)dZ(x)) · · ·Hjm(

∫
pm(x)dZ(x)) =

∫
� g1(x1) · · · gN(xn)dZ(x1) · · · dZ(xn)

where Hi(x) is the i’th Hermite polynomial.
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Since the Hermite polynomials form a basis for all L2
G functions, this formula implies

that the class of off-diagonal stochastic integrals is closed under composition with

polynomials.

2.7 Reconciling Major and McKean on Itô’s Lemma

Major’s simplified version of Itô’s Lemma turns out to be sufficient for our

purposes, so we concern ourselves here with a proof that Major’s version is indeed a

specialization of McKean’s. First, we state a slightly modified version of McKean’s

formulation.

Lemma 2.7.1 (Ito’s Lemma, McKean) Let f(t, x1, ..., xn) with domain [0,∞)×

Rn have continous second partial derivatives. Let {Wi, 1 ≤ i ≤ n} be a set of Wiener

processes such that, for all i, j, Wi is either independent of or identical to Wj. Choose

n stochastic integrals:

gi(t) = ai +
∫ t

0
bi(s)dWi(s) +

∫ t
0
ci(s)ds

where ai, bi, ci ∈ HG
1 ∀i Then the composition F (t) = f(t, g1(t), ..., gn(t)) is a stochas-

tic integral of the following form:

dF (t) =

∂f

∂t
(t, g1(t), ..., gn(t))dt+

n∑
i=t

∂f

∂xi
(t, g1(t), ..., gn(t))dgi(t)

+
1

2

n∑
i,j=1

∂2f

∂xi∂xj
(t, g1(t), ..., gn(t))d〈gi, gj〉(t)

where d〈gi, gj〉(t) = bi(t)bj(t)∆ij(t)dt and ∆ij(t) = 1 if Wi and Wj are identical and

is 0 otherwise. [6, pp. 32-33]
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In the fully-generalized version of Itô’s Lemma, McKean allows ai, bi, and ci to exist

in a much larger class of functions. Why is Major’s formulation (Lemma 2.6.1)

good enough for our purposes? The Hermite polynomials in a single standard-

normal variable X0 are dense in the L2(P ) functions measurable with respect to X0,

and a similar statement can be made for multivariable tensor products of Hermite

polynomials in orthonormal variables in the linear space spanned by {Xt}. Since

these Hermite polynomials are found to be in the range of stochastic integrals of all

orders, the linear span of such integrals spans the linear space that {Xt1 · · ·Xtn :

n ∈ Z+, t ∈ R+} spans. In order to reconcile these two formulations (at least for

products of Hermite polynomials in a single first-order stochastic integral), we take

f to be a Hermite polynomial. With a proper Wiener integral
∫ t

0
g(x)dW (x) as an

argument, both of the above lemmas produce identical values for df(
∫
g(x)dW (x)).

We elaborate these arguments in the following two subsections.

2.7.1 Stochastic Integrals Reduce to Integration

Against a Wiener Process

McKean is integrating against several Wiener processes, while Major is inte-

grating against a complex-valued random spectral measure. Since Z is composed of

a Gaussian real and a Gaussian complex part, however, we can reduce integration

against dZ to integration of a complex function against Wiener processes. As be-

fore, we can decompose Z into two independent, real-valued Gaussian independent-

increments processes: U and V , where Z(J lj) = U(J ji ) + iV (J ji ). Let g(x) ∈ HG
1 be
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defined as g(x) = g1(x) + ig2(x) for real-valued functions g1, g2 ∈ HG
1 . Then:

∫
g(x)dZ(x) =

∫
(g1(x) + ig2(x))dU(x) +

∫
(−g2(x) + ig1(x))dV (x)

So the stochastic integral reduces to two integrals, each against a real-valued Gaus-

sian random-variable. Now we show that any of our first-order stochastic integrals

against dZ can be reduced to an integral against a Wiener process. Let h ∈ simpl(R)

and U be as above. Notice that U(·) = W1 ◦ 1
2
G(·) for a Wiener process W1,

in the sense of equality in distribution of the entire stochastic process. Similarly,

V (·) = W2 ◦ 1
2
G(·) for a Wiener process W2 that is independent of W1. So Major’s

integration is equivalent to integration against Wiener processes, as in McKean.

2.7.2 Proving Major is a Special Case of McKean

Now we take f in McKean’s formulation of the lemma to be a Hermite polyno-

mial, and we prove that the resulting stochastic differential equation is the same one

satisfied by the multiple Wiener-Ito integral that Major claims it should be. We first

want to examine a non-anticipating f that depends on only one Wiener process, so

we would like to set f(W (t)) = Hn(
∫ t

0
q(s)dW (s)) for some function q in H1

G. How-

ever, we must normalize the Wiener integral, as Major requires all his component

functions be orthonormal. So we instead calculate dHn(
R t
0 q(s)dW (s)√R t

0 q
2(s)ds

) using McKean’s
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version of the lemma. For brevity’s sake, let p(x) =
∫ x

0
q(s)dW (s)

/√∫ t
0
q2(s)ds:

dHn(p(t)) = 0 · dt+H ′n(p(t)) · d(p(t)) +
1

2
H ′′n(p(t)) · d〈p(t), p(t)〉 (2.6)

= H ′n(p(t)) ·
[ q(t)√∫ t

0
q2(s)ds

dW − q2(t)

2

∫ t
0
q(s)dW (s)

(
∫ t

0
q2(s)ds)3/2

]
+

1

2
H ′′n(p(t)) · q2(t)∫ t

0
q2(s)ds

dt (2.7)

Line 2.6 is simply a substitution into McKean’s formula. In line 2.7, we expand

d(p(t)) and d〈p(t), p(t)〉. Then we separate the term containing dW from the terms

containing dt in line 2.8:

= H ′n(p(t))
q(t)√∫ t

0
q2(s)ds

dW

+
1

2

q2(t)∫ t
0
q2(s)ds

dt
[
H ′′n(p(t))− p(t) ·H ′n(p(t))

]
(2.8)

= H ′n(p(t))
q(t)√∫ t

0
q2(s)ds

dW − n

2

q2(t)dt∫ t
0
q2(s)ds

Hn(p(t)) (2.9)

In passing from line 2.8 to 2.9, we have applied the Hermite identity H ′′n(x) −

xH ′n(x) = −nHn(x) (Lemma A.0.1). If n = 0, then McKean’s formula reduces to

the trivial identity 0 = 0, as does Major’s (since we defined I0 = 0 [in Definition

2.5.2]). So now let us inductively assume that McKean’s and Major’s formulas

match for all n < N . In other words,

H ′n(p(t))
q(t)√∫ t

0
q2(s)ds

dW − n

2

q2(t)dt∫ t
0
q2(s)ds

Hn(p(t))

= dHn(p(t))

= d
( ∫ t

0

· · ·
∫ t

0

q(s1)√∫ t
0
q(s)ds

· · · q(sn)√∫ t
0
q(s)ds

dW (s1) · · · dW (sn)
)

for all n < N . Our aim now is to show the formulas match for n = N .
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dHN(p(t))

by Major = d
( ∫ t

0

· · ·
∫ t

0

q(s1)√∫ t
0
q2(s)ds

· · · q(sN)√∫ t
0
q2(s)ds

dW (s1) · · · dW (sN)
)

(2.10)

=
−N

2
(

∫ t

0

q2(s)ds)−N/2
q2(t)dt∫ t

0
q2(s)ds

·N ·
∫ t

0

q(s1) ·
[ ∫ s1

0

· · ·
∫ s1

0

q(s2) · · · q(sN)dW (s2) · · · dW (sN)
]
dW (s1)

+
( ∫ t

0

q2(s)ds
)−N/2

q(t) ·N

·
∫ t

0

· · ·
∫ t

0

q(s2) · · · q(sN)dW (s2) · · · dW (sN)dW (t) (2.11)

In expression 2.11, we apply the chain rule. First, we collect the denominators

together as the term (
∫ t

0
q2(s)ds)−N/2 and differentiate it. On the next line, we turn

the multiple Wiener-Ito integral into an iterated integral. Since all the integrands

are identical, we can replace its domain of integration with one where s1 is always

greater than or equal to s2, · · · , sN and then multiply that integral by N , since any

of the N variables could be largest. The last two lines are the other half of the chain

rule differentiation, as we differentiate the iterated integral.

The iterated integral technique above creates a nonanticipating, random inte-

grand, which falls outside the scope of Major’s theory. A more general definition of

the stochastic integral, as in [6], allows such integrands, and it is a necessary bridge

between the two formulations of Itô’s Lemma.

In line 2.12, we move the term (
∫ t

0
q2(s)ds)−N/2 back inside the first integral

to properly scale the integrands and apply the inductive hypothesis to convert the

stochastic integral of degree N−1 into a Hermite polynomial. We perform virtually
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the same operation on the second integral, except we only move (
∫ t

0
q2(s)ds)(−N+1)/2

inside the integral.

=
−N

2

q2(t)dt∫ t
0
q2(s)ds

·N ·
∫ t

0

q(s1)√∫ t
0
q2(s)ds

HN−1(p(s1))dW (s1)

+
q(t)√∫ t

0
q2(s)ds

NHN−1(p(t))dW (t) (2.12)

In line 2.13, we apply the identity H ′n(x) = nHn−1(x).

=
−N

2

q2(t)dt∫ t
0
q2(s)ds

∫ t

0

H ′N(p(s1))
q(s1)√∫ t
0
q2(s)ds

dW (s1)

+
q(t)√∫ t

0
q2(s)ds

H ′N(p(t))dW (t) (2.13)

Line 2.14 is a straightforward substitution, while in line 2.15 we integrate the Her-

mite polynomial.

=
−N

2

q2(t)dt∫ t
0
q2(s)ds

∫ t

0

H ′N(p(s1))dp(s1)

+
q(t)√∫ t

0
q2(s)ds

H ′N(p(t))dW (t) (2.14)

=
−N

2

q2(t)dt∫ t
0
q2(s)ds

HN(p(t))

+
q(t)√∫ t

0
q2(s)ds

H ′N(p(t))dW (t) (2.15)

by McKean = dHN(p(t)) (2.16)

So we have shown that substituting a stochastic integral into a single Hermite poly-

nomial yields the same result, whether we use McKean’s or Major’s version of the

lemma.
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Chapter 3

The Combinatorics of Stochastic Integrals

In the last chapter, we defined the off-diagonal stochastic integral∫
� g(x1, · · · , xn)dZ(x1) · · · dZ(xn) by taking limits of sums over the complement of

the areas in Rn where two or more coordinates were equal in magnitude. In this

chapter, we extend the domain of integration of the stochastic integral to include

all of Rn.

3.1 Diagonals

Definition 3.1.1 Let Dii,i2,··· ,in ⊂ Rn, where ij ∈ {±1, · · · ,±n}, be defined as

follows:

Di1,··· ,in ≡ {(x1, · · · , xn) ∈ Rn : xj = xk ⇔ ij = ik, xj = −xk ⇔ ij = −ik}

Each such Di1,··· ,in is called a diagonal of the space Rn. In order that each diagonal

is represented uniquely, the indices {i1, · · · , in} are assumed to satisfy the following

properties:

i1 = 1; (3.1)

|ij| ≤ max
k<j
|ik|+ 1, ∀j > 1; (3.2)

ij > 0 if |ij| > |ik| ∀k < j. (3.3)
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In other words, the indexing will start at 1; no index equals k until all positive

integers less than k have been used; and k > 0 must occur in the indices before −k.

By definition, all the diagonals indexed as in properties 3.1-3.3 are disjoint:

for a given Di1,··· ,in , and j, k ∈ {1, · · · , n}, there are three possibilities:

1) xj = xk for all (x1, · · · , xn) ∈ Di1,··· ,in ;

2) xj = −xk for all (x1, · · · , xn) ∈ Di1,··· ,in ; or

3) |xj| 6= |xk| for all (x1, · · · , xn) ∈ Di1,··· ,in .

Example 3.1.1 Three examples of diagonals:

• The “off-diagonal” subset of Rn, or {(x1, · · · , xn) : |xi| 6= |xj| ∀ i 6= j}, is

denoted D1,2,··· ,n.

• The subset of Rn in which x1 = x2 and no other coordinates are equal in

magnitude is D1,1,2,3,4,··· ,n−1.

• The subset of Rn in which x1 = −x3 and no other coordinates are equal in

magnitude is D1,2,−1,3,4,··· ,n−1.

3.2 Ordering Partitions

Partitions of [n] = {1, 2, · · · , n} can represent the diagonals in Rn, and such

partitions can be partially ordered. Let n ∈ Z+.

Definition 3.2.1 A partition of [n] = {1, · · · , n} is a set of disjoint sets, the union

of which is all of [n]. Π(n) is the set of all partitions of [n]. For any partition ν,

we refer to each element of ν as a partition atom. Let r(ν) denote the number of
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partition atoms in ν. We refer to this number as r when there is no ambiguity of

partition. Define the mapping νmap : {1, · · · , n} → {1, · · · , r(ν)} such that νmap(q)

is the index of the partition atom that contains q, where the partition atoms are

ordered by least element. The subscript is suppressed, so that ν ∈ Π(n) refers to

both a partition of [n] and a mapping from [n] to [r(ν)].

We choose the notation r(σ) to make the reader think of the “rank of σ,”

which we will make sense of later.

Example 3.2.1 Let σ = {{1, 3}, {2}} ∈ Π(3). Then r(σ) = 2, σ(1) = 1, σ(2) =

2, σ(3) = 1.

The elements of Π(n) can be partially ordered as follows: if ν, π ∈ Π(n),

then ν ≤ π if and only if every partition atom in ν is contained in a partition

atom of π. The notation 0 will denote the partition in which each element of [n]

is a singleton set, and the notation 1 will refer to the partition that groups all the

elements together in one set. Intuitively, a coarser partition is greater than a finer

one (if the two partitions are ordered relative to each other).

Example 3.2.2 We partially order the elements of Π(3):

{{1, 2}, {3}}

0 = {{1}, {2}, {3}} ≤ {{1, 3}, {2}} ≤ {{1, 2, 3}} = 1

{{1}, {2, 3}}

Definition 3.2.2 For any σ, θ ∈ Π(n), we define:
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1) π = σ ∧ θ ∈ Π(n) is the mutual refinement of two partitions: i.e., π(i) = π(j)

if and only if σ(i) = σ(j) and θ(i) = θ(j);

2) σk ⊂ {1, · · · , n} is the kth partition atom of σ, where the partition atoms are

ordered by least element; |σk| ∈ N is the number of elements in σk;

3) sk(σ) is the number of partition atoms in σ that have exactly k elements. (We

will primarily use s1(σ) and s2(σ), the number of singletons and doubletons in

σ.)

Notice that σ ∧ θ ≤ σ and σ ∧ θ ≤ θ.

Example 3.2.3 Let σ = {{1, 3}, {2}, {4}} ∈ Π(4). Then:

• r(σ) = 3;

• σ1 = {1, 3}, σ2 = {2}, σ3 = {4};

• |σ1| = 2, |σ2| = 1, |σ3| = 1;

• σ(1) = 1, σ(2) = 2, σ(3) = 1, σ(4) = 3.

Definition 3.2.3 We say that the diagonal Di1,··· ,in satisfies the partition σ ∈ Π(n)

if σ partitions the elements of ~i into classes by their magnitude; i.e., σ(j) = σ(k) if

and only if |ij| = |ik|.

Example 3.2.4 The diagonals D1,2,1,3,2, D1,2,−1,3,2, D1,2,1,3,−2, and D1,2,−1,3,−2 all

satisfy the partition {{1, 3}, {2, 5}, {4}} ∈ Π(5).
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Definition 3.2.4 Let σ ∈ Π(n). Define I(σ) ⊂ {(i1, · · · , in) ∈ Zn : 1 ≤ |ik| ≤ n}

such that

I(σ) ≡ {~i ∈ Zn : D~i satisfies σ}

Lemma 3.2.1 Each diagonal Di1,··· ,in satisfies a unique σ ∈ Π(n).

Proof: Given Di1,··· ,in , it is trivial to construct a σ ∈ Π(n) that it satisfies: let

σk = {ij : |ij| = k}. Then Di1,··· ,in satisfies σ.

Now assume Di1,··· ,in satisfies σ, θ ∈ Π(n). Let j, k ∈ {1, · · · , n}. Then:

σ(j) = σ(k) ⇔ |ij| = |ij|

⇔ θ(j) = θ(k)

So θ = σ. 2

Let σ ∈ Π(n). We count the number of diagonals that satisfy σ.

Lemma 3.2.2 Define p(σ) ≡ |I(σ)|, the number of diagonals that satisfy a given

partition σ. Then for any given σ ∈ Π(n),

p(σ) = |I(σ)| = 2

∑r(σ)
k=1(|σk| − 1)

Proof: Let Di1,··· ,in satisfy σ. Let jk ∈ [n] be the least element of σk. According to

the rules by which our diagonals are written, ijk = k. For a given k,

|{m ∈ σk : m 6= jk}| = |σk| − 1
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Summing over all k:

|
⋃

k∈{1,··· ,r(σ)}

{m ∈ σk : m 6= jk}}| =

r(σ)∑
k=1

(|σk| − 1).

For all m ∈ σk,m 6= jk, we notice that im = k or im = −k. Since we have two

choices for each element of
⋃
k∈{1,··· ,r(σ)}{m ∈ σk : m 6= jk}, we end up with a total

of 2

∑r(σ)
k=1(|σk| − 1)

diagonals that satisfy σ. 2

3.3 Restricting Integrands Along Diagonals

We want to consider stochastic integrals integrated along diagonals of Rn. The

integrands cannot be treated as L2
Gn functions in an n−fold integral, since in that

case each of these subsets has measure zero (given that G is non-atomic). As an

L2
G function, the integrand can take on any value along these diagonals! So the

integrands are now further restricted to ensure that they are well-defined on all of

Rn.

For a given σ ∈ Π(n) and~i ∈ I(σ), there is a natural set-isomorphism between

D~i and R|σ|.

Definition 3.3.1 Let ijk be the first occurrence of k in the sequence i1, · · · , in. Then

define the mapping h~i : Di1,··· ,in → Rr(σ) by:

h~i(x1, · · · , xn) = (xj1 , · · · , xjr), where r = r(σ)
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Note that this is a bijection from the diagonal to the space {(x1, · · · , xr) ∈ R|σ| :

xi 6= xj ∀i 6= j}.

Example 3.3.1 Let σ = {{1, 3}, {2, 5}, {4}}. Then D1,2,−1,3,2 satisfies σ. Since

r(σ) = 3, the mapping h~i : D1,2,−1,3,2 → R3 is defined in the following way. For

every (x1, x2, x3, x4, x5) = (x1, x2,−x1, x4, x2) ∈ D1,2,−1,3,2,

h~i(x1, x2, x3, x4, x5) = (x1, x2, x4)

Similarly, consider the inverse mapping h−1
~i

: R3 → D1,2,−1,3,2:

h−1
~i

(x1, x2, x3) = (x1, x2,−x1, x3, x2)

Remark 3.3.1 For any σ ∈ Π(n), define the mapping gσ : Rn → Rr (where r =

r(σ)):

gσ(x1, · · · , xn) = (xj1 , · · · , xjr)

such that gσ ⇀D~i = h~i for any ~i ∈ I(σ).

We employ h~i to piece together appropriate functions along each diagonal.

Definition 3.3.2 Let L̃2
Gn be a class of functions from Rn → C such that f ∈ L̃2

Gn

if and only if, for every σ ∈ Π(n),~i ∈ I(σ):

f ◦ h−1
~i
∈ Hr

G.

In other words, for any f ∈ L̃2
Gn and σ ∈ Π(n), there exists some g ∈ Hr(σ)

G such

that

f(x1, · · · , xn) = g(xj1 , · · · , xjr)
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for every (x1, · · · , xn) ∈ D ~i(σ)
(assuming that ~i(σ) exists).

That is, each function in L̃2
Gn , evaluated on any diagonal D ~i(σ)

, corresponds to

a function in H
r(σ)
G via h ~i(σ)

.

Definition 3.3.3 The norm in L̃2
Gn is defined, for any f ∈ L̃2

Gn, as:

|f |L̃2
Gn

=
∑

σ∈Π(n)

∑
~i∈I(σ)

|f ◦ h−1
~i
|Hr

G

3.4 Integration Along Diagonals

Now consider integration in Rn along diagonals other than the “off-diagonal”

diagonal, D1,2,··· ,n. Note that the off-diagonal multiple stochastic integral, devel-

oped in the previous chapter (which is referred to as a Multiple Wiener-Itô Integral

in Major), is identical to the idea in this chapter of “integration along D1,2,··· ,n.”

We will refer to it as “off-diagonal integration” and “integration along D1,2,··· ,n” in-

terchangeably. Beginning with R2, we want to integrate along the diagonal D1,−1,

which corresponds to the diagonal x2 = −x1. Let f(x1, x2) ∈ L̃2
G2 . How do we

define:

∫
D1,−1

f(x1, x2)dZ(x1)dZ(x2)

Such an integral could intuitively be written as

∫
f(x,−x)dZ(x)dZ(−x)

but we have yet to formally define this notation.
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We again begin with simple functions to define the multiple integral. However,

these functions need to be dense in L̃2
Gn , not simply in L2

Gn . This requires separate

simple functions on every diagonal. These functions are pieced together to build a

class of functions dense in L̃2
Gn .

Definition 3.4.1 Define Simpl(Rn) ⊂ L̃2
Gn such that f ∈ Simpl(Rn) if and only if

f ∈ L̃2
Gn and:

f(x1, · · · , xn) =
∑

σ∈Π(n)

fσ(xjσ,1 , · · · , xjσ,r(σ)
) ·
∑
~i∈I(σ)

χD~i

where fσ ∈ simpl(Rr(σ)), and jσ,k is the index of the first element of σk.

The indicator functions reflect the fact that each (x1, · · · , xn) is in only one diagonal.

Recall that Kp is a set of disjoint intervals at the pth level of refinement (see

Definition 2.3.3, page 10).

Lemma 3.4.1
⋃
l∈Z+ Simpl(Rn) is dense in L̃2

Gn.

Proof: Let f ∈ Simpl(Rn). Let fD~i = fdD~i. Then for every (x1, · · · , xn) ∈ D~i,

functions of the form:

fD~i ◦ h
−1
~i

(x1, · · · , xr) =
N∑

k1,··· ,kr∈Kl
c~i,k1,··· ,kr · χ(J lk1

×···×J lkr )

are dense in L2
Gr . Therefore,

⋃
l∈Z+ Simpl(Rn) is dense in L̃2

Gn . 2

Definition 3.4.2 Let f ∈ Simpl(R2).∫ ∫
f(x,−x)dZ(x)dZ(−x) =

∑
i∈Kl

f(ml
i,−ml

i) lim
p→∞

∑
j∈Kp
|Z(Jpj

⋂
J li)|2
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In fact, this integral yields a deterministic value almost surely! We will use the

notation |dZ(x)|2 instead of dZ(x)dZ(−x), since Z is Hermitian symmetric.

Lemma 3.4.2 The limit in definition 5 exists almost surely and is equal to:

∫
f(x,−x)dG(x)

Proof: Recall the previous notation Z(J li) = U(J li) + iV (J li), where U(J li), V (J li) are

independent, real-valued random variables with identical distributions: N (0, 1
2
G(J li)).

Let |J li | denote length of the interval J li . The method of proof is to calculate the

expectation and variance of the above integral. The expectation of the integral is:

E(

∫
f(x,−x)|dZ(x)|2) =

∑
i∈Kl

f(ml
i,−ml

i)E( lim
p→∞

∑
j∈Kp
|Z(Jpj

⋂
J li)|2)

=
∑
i∈Kl

f(ml
i,−ml

i)E( lim
p→∞

∑
j∈Kp
|U(Jpj

⋂
J li) + iV (Jpj

⋂
J li)|2)

=
∑
i∈Kl

f(ml
i,−ml

i) lim
p→∞

∑
j∈Kp

E(U(Jpj
⋂

J li)
2) + E(V (Jpj

⋂
J li)

2)

=
∑
i∈Kl

f(ml
i,−ml

i) lim
p→∞

∑
j∈Kp

1

2
G(Jpj

⋂
J li) +

1

2
G(Jpj

⋂
J li)

=
∑
i∈Kl

f(ml
i,−ml

i)[
1

2
G(J li) +

1

2
G(J li)]

=

∫
f(x,−x)dG(x)

The variance of the integral goes to zero, since the variables U(J li) and V (J li) are
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all mutually independent:

V ar(

∫
f(x,−x)|dZ(x)|2)

=
∑
i∈Kl
|f(ml

i,−ml
i)| V ar[ lim

p→∞

∑
j∈Kp

(U(Jpj
⋂

J li)
2 + V (Jpj

⋂
J li)

2)]

=
∑
i∈Kl
|f(ml

i,−ml
i)|[

3

2
lim
p→∞

∑
j∈Kp

G(Jpj
⋂

J li)
2]

≤
∑
i∈Kl
|f(ml

i,−ml
i)|[

3

2
lim
p→∞

(max
k∈Kp

G(Jpk ))
∑
j∈Kp

G(Jpj
⋂

J li)]

=
∑
i∈Kl
|f(ml

i,−ml
i)|[

3

2
lim
p→∞

(max
k∈Kp

G(Jpk ))G(J li)]

≤ lim
p→∞

(max
k∈Kp

G(Jpk ))
3

2

∫
|f(x,−x)|dG(x)

→ 0

2

Remark 3.4.1 : The same limit exists for any partition whose mesh over any

compact interval goes to zero.

Now consider integration (in R2) along the diagonal D1,1 (i.e., the diagonal x1 = x2).

It is defined in a similar manner:

Definition 3.4.3 Let f ∈ Simpl(R2).

∫
f(x, x)dZ(x)dZ(x) =

∑
i∈Kl

f(mi,mi) lim
p→∞

∑
j∈Kp

(Z(Jpj
⋂

J li))
2

This integral, too, is almost surely deterministic: in this case, it is zero! We will use

the notation (dZ(x))2 instead of dZ(x)dZ(x).

Lemma 3.4.3 The limit in definition 6 exists almost surely and is equal to zero.
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Proof: The proof is almost identical to the proof above, and is omitted here. The

difference lies in the expectation to which the random variables converge: in this

case,

E[U(J li)
2 − V (J li)

2] = 0

so the expectation of the integral is zero. The variance still vanishes in the limit. 2

Notice that we can define integration against any number of dZ(x) and dZ(−x)

similarly.

Notation 3.4.1 For any σ ∈ Π(n),~i ∈ I(σ), let:

i+k = |{a ∈ [n] : ia = k}|

i−k = |{a ∈ [n] : ia = −k}|

Definition 3.4.4 Let f ∈ Simpl(Rn). Let σ ∈ Π(n), and ~i ∈ I(σ). Recall that ml
j

is the midpoint of interval J lj. Then:

∫
D~i

f(x1, · · · , xn)dZ(x1) · · · dZ(xn) =

lim
p→∞

∑
j1,··· ,jr∈Kl

f ◦ h−1
~i

(ml
j1
, · · · ,ml

jr)
∑
k∈Kp

Πr
q=1(Z(J ljq

⋂
Jpk )

~i+q)(Z(−J ljq
⋂
−Jpk )

~i−q)

Lemma 3.4.4 The limit in the above definition exists almost surely and is equal to

0 if i+k ≥ 2 or i−k ≥ 2 for any k, and to

∫
� f(xσ(1) · sgn(i1), · · · , xσ(n) · sgn(in)) [Πl:|σl|=2dG(xl · sgn(il))]

·[Πm:|σm|=1 · dZ(xm · sgn(im))]

otherwise.
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Proof: If the diagonal D~i contains ik = il for j 6= l (i.e., the case in which i+k ≥ 2

or i−k ≥ 2), that dimension can be integrated along first and the entire sum goes

to zero, as in Lemma 3.4.3. If ik 6= il ∀j 6= l, consider all pairs of ik, il, k 6= l,

such that ik = −il. Integrating along dimension ik thus involves integrating against

|dZ(xik)|2. By Lemma 3.4.2, integration in this dimension reduces to integration

against dG(xik · sgn(ik)). The rest of the variables are never equal to each other, so

it is a standard off-diagonal integral at this point. 2

A number of diagonals may satisfy a given σ ∈ Π(n) (in fact, we calculated how

many diagonals will satisfy each partition and gave it a name, p(σ)). However,

for any σ ∈ Π(n), there is at most one diagonal D~(i) such that ~i ∈ I(σ) and∫
D~i
dZ(x1) · · · dZ(xn) is nonzero with positive probability.

Corollary 3.4.1 Let σ ∈ Π(n). Then there is at most one ~i ∈ I(σ) such that∫
D~i

dZ(x1) · · · dZ(xn) 6= 0

with non-zero probability.

Proof: If σ has a partition atom containing at least three distinct elements, j, k, l,

then |ij| = |ik| = |il| for any ~i that satisfies σ. Therefore, ij = ik, ij = il, or ik = il,

and integration along D~i yields zero by Lemma 3.4.3. So assume the partition atoms

of σ have at most two elements each. If j is the least element in a partition atom,

then ij must equal the number of partition atoms in σ that have a least element

less than j. If j, k are in a partition atom together and k > j, ik must equal −ij

(otherwise, ik = ij and integrating along the associated diagonal yields zero). This
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is the only~i that corresponds to a diagonal along which integration yields a nonzero

value with positive probability. 2

Note that the same applies for any integrand f ∈ L̃2
Gn .

Notation 3.4.2 Given σ ∈ Π(n), denote the vector of indices ~i described in the

Corollary above, if such a vector exists, as ~i(σ).

Notation 3.4.3 Let n ∈ Z+, σ ∈ Π(n), f ∈ L̃2
Gn. Then we employ the following

notation:

Zσ
n(f) =

∫
D ~i(σ)

f(x1, ..., xn)dZ(x1)...dZ(xn)

Similarly, we write

Z≥σn (f) =
∑

{θ∈Π(n):θ≥σ}

∫
D ~i(θ)

f(x1, ..., xn)dZ(x1)...dZ(xn)

Remark 3.4.2 Though we define the random variable Z≥σn (f) as a sum of integrals

along certain diagonals, we could have instead begun by defining Z≥σn (f) in an alter-

native but equivalent manner: as an “integral” (i.e., limit of sums) evaluated over

the subspace of Rn in which σ(i) = σ(j) implies |xi| = |xj|.

Definition 3.4.5 (Alternative Definition for Z≥σ
n ) Let f be a simple function

in L̃ which is constant on each interval of J l for given l ∈ Z+. Let σ ∈ Π(n) such

that no partition atom in σ has more than two elements. Then

Z≥σ =
∑
i1∈Kl

· · ·
∑

ir(σ)∈Kl
f(miσ(1)

·εiσ(1)
, · · · ,miσ(n)

·εiσ(n)
)Z(Jiσ(1)

·εiσ(1)
) · · ·Z(Jiσ(n)

·εiσ(n)
)

(3.4)

where εσ(k) is +1 if k is the least element in its partition atom of σ and −1 if k is

the greatest element in its partition atom of σ.
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3.5 Möbius Inversion

Now we pause and review Möbius inversion.

Note: In this section, we rely on [2, p. 83] for our description of Möbius

inversion; however, we switch his ordering: ≤ in his explanation becomes ≥ in our

notation.

Definition 3.5.1 A partially-ordered set X is locally finite if and only if for every

a, b ∈ X, a ≤ b, the collection of all elements {c ∈ X : a ≤ c ≤ b} is finite.

Definition 3.5.2 Let X be a locally finite, partially-ordered set. Then the Möbius

function µ is defined inductively for x, y ∈ X, y ≤ x:

µ(x, x) = 1

µ(x, y) = −
∑
y<t≤x

µ(x, t)

Theorem 3.5.1 (Möbius inversion) Let X be a locally finite ordered set, x ∈ X,

and f(x), g(x) be functions defined on X such that:

f(x) =
∑
x≤u≤1

g(u).

Then

g(x) =
∑
x≤u≤1

µ(u, x)f(u).

[2, p. 83]

Let f ∈ L̃2
Gn . For this function, there is a subset Ω′ ⊂ Ω with full measure such that

ω ∈ Ω′ ensures that Zπ
n (f, ω) and Z≥πn (f, ω) are real-valued and well-defined. Fix
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some ω ∈ Ω′. Then, Zπ
n (f, ω) and Z≥πn (f, ω) are treated as functions on π ∈ Π(n),

and the situation is as follows:

1) There is a partial ordering on Π(n).

2) There are two well-defined functions on Π(n), Zπ
n (f, ω) and Z≥πn (f, ω).

3) There is a relationship between the two functions; namely, Z≥πn (f, ω) =∑
ν≥π Z

ν
n(f, ω).

4) Π(n) is locally finite, since |Π(n)| <∞.

All the requirements to perform Möbius inversion are satisfied!

Corollary 3.5.1 Zπ
n =

∑
ν≥π µ(ν, π)Z≥νn

This result is not immediately intuitive , but it is useful in other contexts. By the

above corollary:

∫
� f(x1, · · · , xn)dZ(x1) · · · dZ(xn) = Z0

n(f)

=
∑

ν∈Π(n)

µ(ν, 0)Z≥νn

Below are several examples of Möbius inversion. They appear to reduce to trivial

statements of equality, because we defined Z≥σn as a sum of Zπ
n over all π ≥ σ, but

they help illustrate the inversion technique.

Example 3.5.1 We begin with a simple example. Let π = {{1}, {2}} ∈ Π(2).

Calculate
∫
D ~i(π)

dZ(x1)dZ(x2). By the above corollary,

∫
D ~i(π)

f(x1, x2)dZ(x1)dZ(x2) =
∑
ν≥π

µ(ν, π)
∑
θ≥ν

∫
D ~i(θ)

f(x1, x2)dZ(x1)dZ(x2)

There are only two elements in Π(2): π and ~1 = {{1, 2}}. Since µ(~1, π) = −1, the
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above equals:

= µ(π, π)[

∫
D ~i(π)

f(x1, x2)dZ(x1)dZ(x2) +

∫
D ~i(1)

f(x1, x2)dZ(x1)dZ(x2)]

+ µ(~1, π)

∫
D ~i(1)

f(x1, x2)dZ(x1)dZ(x2)

=

∫
D ~i(π)

f(x1, x2)dZ(x1)dZ(x2) +

∫
D ~i(1)

f(x1, x2)dZ(x1)dZ(x2)

−
∫
D ~i(1)

f(x1, x2)dZ(x1)dZ(x2)

=

∫
D ~i(π)

f(x1, x2)dZ(x1)dZ(x2)

as desired.

Example 3.5.2 Now let π = {{1, 2}, {3}, {4}, {5}} ∈ Π(5). Since there are four

distinct partition atoms in π, there are (4
2
) = 6 ways of merging two partition atoms

to create a “greater” partition in Π(5):

π1 = {{1, 2, 3}, {4}, {5}}

π2 = {{1, 2, 4}, {3}, {5}}

π3 = {{1, 2, 5}, {3}, {4}}

π4 = {{1, 2}, {3, 4}, {5}}

π5 = {{1, 2}, {3, 5}, {4}}

π6 = {{1, 2}, {4, 5}, {3}}

By merging two partition atoms, each of these partitions can yield three ”greater”
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partitions:

φ1 = {{1, 2, 3, 4}, {5}}

φ2 = {{1, 2, 3, 5}, {4}}

φ3 = {{1, 2, 3}, {4, 5}}

φ4 = {{1, 2, 4, 5}, {3}}

φ5 = {{1, 2, 4}, {3, 5}}

φ6 = {{1, 2, 5}, {3, 4}}

φ7 = {{1, 2}, {3, 4, 5}}

Notice that each φ is greater than three πs, and each π is less than three φs. The

only element greater than any φ is ~1. Calculate the stochastic integral along the

diagonal associated with π.

∫
D ~i(π)

f(~x)dZ(x1)dZ(x2)dZ(x3)dZ(x4)dZ(x5)

=
∑
ν≥π

µ(ν, π)
∑
θ≥ν

∫
D ~i(θ)

f(~x)dZ(x1)dZ(x2)dZ(x3)dZ(x4)dZ(x5)

= µ(π, π)
∑
θ≥π

∫
D ~i(θ)

f(~x)dZ(x1)dZ(x2)dZ(x3)dZ(x4)dZ(x5)

+
6∑

k=1

µ(πk, π)
∑
θ≥πk

∫
D ~i(θ)

f(~x)dZ(x1)dZ(x2)dZ(x3)dZ(x4)dZ(x5)

+
7∑

k=1

µ(φk, π)
∑
θ≥φk

∫
D ~i(θ)

f(~x)dZ(x1)dZ(x2)dZ(x3)dZ(x4)dZ(x5)

+ µ(~1, π)
∑
θ≥~1

∫
D ~i(θ)

f(~x)dZ(x1)dZ(x2)dZ(x3)dZ(x4)dZ(x5)

The stochastic integral vanishes along the diagonals corresponding to all φs (as well

as along the diagonal corresponding to ~1), since each has a partition atom with at
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least three elements in it. So the above simplifies to:

= µ(π, π)
∑
θ≥π

∫
D ~i(θ)

f(~x)dZ(x1)dZ(x2)dZ(x3)dZ(x4)dZ(x5)

+
6∑

k=1

µ(πk, π)
∑
θ≥πk

∫
D ~i(θ)

f(~x)dZ(x1)dZ(x2)dZ(x3)dZ(x4)dZ(x5)

= 1 · [
∫
D ~i(π)

f(~x)dZ(x1)dZ(x2)dZ(x3)dZ(x4)dZ(x5)

+
6∑

k=1

∫
D ~i(πk)

f(~x)dZ(x1)dZ(x2)dZ(x3)dZ(x4)dZ(x5)]

+ −1 ·
6∑

k=1

∫
D ~i(πk)

f(~x)dZ(x1)dZ(x2)dZ(x3)dZ(x4)dZ(x5)

=

∫
D ~i(π)

f(~x)dZ(x1)dZ(x2)dZ(x3)dZ(x4)dZ(x5)

as desired.
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Chapter 4

The Diagram Formula

4.1 Introduction and Exploration of Diagonals in Area of Integration

In the previous chapter, stochastic integrals were defined over all of Rn by

dividing Rn into disjoint diagonals, denoted by {Di1,··· ,in}. (Recall that the off-

diagonal was written D1,2,··· ,n.) Each partition ν ∈ Π(n) corresponded to at most

one~i ∈ Rn, denoted by~i(ν). Given a fixed f ∈ L̃2
Gn and an appropriate ω ∈ Ωf ⊂ Ω,

we were then able to use Möbius inversion to express the off-diagonal integral as a

linear combination of stochastic integrals along other diagonals (see Corollary 3.5.1).

Products of off-diagonal integrals can also be expressed as the sum of stochastic

integrals along certain diagonals. For example, consider a product of two off-diagonal

stochastic integrals:

∫
� h1(x1, x2)dZ(x1)dZ(x2) ·

∫
� h2(x3, x4)dZ(x3)dZ(x4)

It may be tempting to merge the two integrals into one off-diagonal integral:

∫
� h1(x1, x2) · h2(x3, x4)dZ(x1)dZ(x2)dZ(x3)dZ(x4)

But this is a mistake. What is the difference between the two expressions above?

The first does not necessarily vanish along the diagonals:

D1,2,−1,3, D1,2,3,−1, D1,2,−2,3, D1,2,3,−2, D1,2,−1,−2, D1,2,−2,−1
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while the second does. In order to express the above product as a sum of off-diagonal

integrals, the integral must be evaluated along every allowed diagonal.

Consider the properties of these diagonals. Remember that any integral van-

ishes along the diagonal xi = xj for any i 6= j (Lemma 3.4.3). So we will only

consider diagonals such that, for each i 6= j, xi = −xj or xi 6= xj. Next, recog-

nize that the off-diagonal integrals vanish along their own sub-diagonals, forcing the

product of the integrals to also vanish along those sub-diagonals. In other words,∫
� h1(x1, x2)dZ(x1)dZ(x2) vanishes along the diagonal x1 = −x2, so the product of

the two integrals vanishes, as well. The product similarly vanishes along x3 = −x4.

Thus, the following partitions remain:

{{1}, {2}, {3}, {4}},

{{1, 3}, {2}, {4}}, {{1, 4}, {2}, {3}}, {{1}, {2, 3}, {4}}, {{1}, {2, 4}, {3}},

{{1, 3}, {2, 4}}, {{1, 4}, {2, 3}}

Let B be the set of these partitions. These correspond to the diagonals along

which the integral should be evaluated:

∫
� h1(x1, x2)dZ(x1)dZ(x2) ·

∫
� h2(x3, x4)dZ(x3)dZ(x4)

=
∑
σ∈B

∫
D~i(σ)

h1(x1, x2)h2(x3, x4)dZ(x1)dZ(x2)dZ(x3)dZ(x4)

4.2 Diagrams

The product above can be represented in terms of diagrams.

Definition 4.2.1 (Diagram) A diagram of order (n1, ..., nm) is an undirected graph
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of n = n1 + ...+ nm vertices, each indexed by a pair of integers (l, j), l ∈ [1,m], j ∈

[1, nl], such that:

1) No more than one edge is connected to each vertex, and

2) Two vertices can only be connected if they do not share the same l coordi-

nate; i.e., if (a1, b1) is connected to (a2, b2), then a1 6= a2.

Let Γ(n1, · · · , nm) be the set of all diagrams of order (n1, · · · , nm), denoted Γ when

there is no ambiguity about the order.

Any product of k off-diagonal integrals [
∫
� dZ(x1) · · · dZ(xn1)] · · ·

·[
∫
� dZ(xn−nk+1) · · · dZ(xn)] can be expressed as a sum of stochastic integrals over

diagonals in the space Rn.

Lemma 4.2.1 There is a one-to-one correspondence between diagrams in

Γ(n1, · · · , nk) and diagonals in Rn on which [
∫
� dZ(x1) · · · dZ(xn1)]·[

∫
� dZ(xn1+1) · · · dZ(xn1+n2)]·

· · · · [
∫
� dZ(xn−nk+1) · · · dZ(xn)] is nonzero with positive probability.

Proof: Let n =
∑k

i=1 ni. Each γ ∈ Γ(n1, · · · , nk) corresponds to a π ∈ Π(n)

in the following way. Each node in γ is numbered with a unique integer from 1 to

n, beginning at the leftmost column of nodes and numbering down each column.

According to this numbering scheme, any two nodes a, b that share the same l

coordinate correspond to two variables xa, xb that are in the same off-diagonal

integral in the above product.

Define π ∈ Π(n) to contain only singleton and doubleton sets: j, k ∈ [n] (j 6= k)

are in the same partition atom of π if and only if nodes j and k are connected by an

edge in γ. Since π contains only singletons and doubletons,~i(π) is well defined, and
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∫
D~i(π)

dZ(x1) · · · dZ(xn) is nonzero with positive probability. Similarly, any partition

π ∈ Π(n) such that
∫
D~i(π)

dZ(x1) · · · dZ(xn) is nonzero with positive probability can

be mapped to a diagram. 2

In the product of off-diagonal integrals∫
� h1(x1, x2)dZ(x1)dZ(x2) ·

∫
� h2(x3, x4)dZ(x3)dZ(x4), the first two variables are

never equal in the domain of integration– neither are the last two variables. So we

construct diagrams of degree (2, 2). Each one should correspond to a diagonal in

the domain of integration.

Figure 4.1: All possible diagrams of degree (2,2)

This provides an ideal notation for the above equation (Equation 4.1):∫
� h1(x1, x2)dZ(x1)dZ(x2) ·

∫
� h2(x3, x4)dZ(x3)dZ(x4)

=
∑

γ∈Γ(2,2)

∫
D~i(σγ )

h1(x1, x2) · h2(x3, x4)dZ(x1)dZ(x2)dZ(x3)dZ(x4)

where σγ ∈ Π(4) is the partition corresponding to diagram γ.

Now consider the product of three stochastic integrals:∫
h1(x1)dZ(x1) ·

∫
h2(x2)dZ(x2) ·

∫
h3(x3)dZ(x3)
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Consider integration along the appropriate diagonals. Let C = {{1, 2, 3}, {1, −1, 2},

{1, 2, −1}, {1, 2, −2}}.∫
h1(x1)dZ(x1) ·

∫
h2(x2)dZ(x2) ·

∫
h3(x3)dZ(x3) (4.1)

=
∑
~i∈C

∫
D~i

h1(x1)h2(x2)h3(x3)dZ(x1)dZ(x2)dZ(x3) (4.2)

The diagrams associated with these diagonals are:

Figure 4.2: All possible diagrams of degree (1,1,1). Notice that no diagram above

corresponds to the diagonal {{1, 2, 3}}. This is appropriate, since integrating along

that diagonal yields zero almost surely.

These diagrams again correspond to the appropriate diagonals in equation 4.1:∫
h1(x1)dZ(x1) ·

∫
h2(x2)dZ(x2) ·

∫
h3(x3)dZ(x3)

=
4∑
i=1

∫
D~i(σγi )

h1(x1)h2(x2)h3(x3)dZ(x1)dZ(x2)dZ(x3)

4.3 Diagram Formula

Recall that for any π ∈ Π(n), s2(π) is the number of doubletons in π (see

Notation 3.2.2).
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Definition 4.3.1 For any diagram γ ∈ Γ(n1, · · · , nk), let n =
∑k

i=1 ni and let

πγ ∈ Π(n) be the partition associated with γ. Then the random variable hγ ∈ LC
s2(π)

is defined to be:

hγ =

∫
D~i(πγ )

h(x1, · · · , xn)dZ(x1) · · · dZ(xn)

The correspondence between diagrams and diagonals along with stochastic

integrals are nonzero with positive probability is formalized in the Diagram Formula.

Though lemma 4.2.1 supplies most of the proof for the Diagram Formula, see [5, p.

42-50] for a formal proof.

Theorem 4.3.1 (Diagram Formula) For any h1 ∈ Hn1
G , · · · , hm ∈ H

nm
G , the fol-

lowing relations hold:

1) hγ ∈ HG
N−2|γ|, and ‖hγ‖ ≤ Πm

j=1‖hj‖ for all γ ∈ Γ, and

2) Πm
i=1

∫
� hi(x1, · · · , xni)dZG(x1) · · · dZG(xni) =

∑
γ∈Γ hγ.

Using the Diagram Theorem, we now prove:

Lemma 4.3.1 For any n,m ∈ Z+, n 6= m, and any f ∈ L̃2
Gn , g ∈ L̃2

Gm ,∫
� f(x1, · · · , xn)dZ(x1) · · · dZ(xn) is orthogonal to

∫
� g(x1, · · · , xm)dZ(x1) · · · dZ(xm)

as elements of the original probability space of the stationary time series {Xt}.

Proof: Let n < m, without loss of generality.

<

∫
� f(x1, · · · , xn)dZ(x1) · · · dZ(xn),

∫
� g(x1, · · · , xm)dZ(x1) · · · dZ(xm) >

= E(

∫
� f(x1, · · · , xn)dZ(x1) · · · dZ(xn) ·

∫
� g(x1, · · · , xm)dZ(x1) · · · dZ(xm))

= E(
∑

γ∈Γ(n,m)

(f · g)γ)
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Where (f ·g)γ is defined in definition 4.3.1. For any γ ∈ Γ(n,m), |γ| ≤ n. Therefore,

at least one node in γ is not connected to any others. This leaves a term dZ(xk) in

(f ·g)γ such that |xk| 6= |xl| for any k 6= l, 1 ≤ k ≤ n+m. The expectation of dZ(xk)

(or, in our limiting arguments, Z(J lk)) is zero. So each (f · g)γ is zero, making the

entire sum zero, as well. 2

4.4 Linearization Coefficients

Consider the product of Hermite polynomials with univariate stochastic inte-

gral arguments:

Πk
i=1Hni(

∫
dZ(x)) (4.3)

By Itô’s Lemma, line 4.3 equals

Πk
i=1

( ∫
� dZ(xn1+···+ni−1+1) · · · dZ(xn1+···+ni)

)
(4.4)

We can apply the Diagram Formula to line 4.4:

∑
γ∈Γ(n1,··· ,nk)

[ ∫
· · ·
∫
dG(x1) · · · dG(x|γ|)

]
·
[ ∫
� dZ(y1) · · · dZ(yN−2|γ|)

]
(4.5)

=
∑

γ∈Γ(n1,··· ,nk)

[ ∫
� dZ(y1) · · · dZ(yN−2|γ|)

]
(4.6)

=
∑

γ∈Γ(n1,··· ,nk)

HN−2|γ|(

∫
dZ(x)) (4.7)

We integrate out the measure G in line 4.6 and then apply Itô’s Lemma once more

in line 4.7. To simplify the notation, define P(m;n1, ..., nk) = |{γ ∈ Γ(n1, ..., nk) :

# edges in γ = m}|. So the above equation becomes:

Πk
i=1Hni(

∫
dZ(x)) =

bN/2c∑
i=1

P(i;n1, ..., nk)HN−2i(

∫
dZ(x))
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We have therefore calculated the linearization coefficients of the Hermite

polynomials, limited to the case in which the argument is the stochastic integral∫
dZ(x). However, since the range of the stochastic integral is all R, the equality

holds for all x ∈ R. Thus, we have calculated the linearization coefficients for

arbitrary arguments.
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Chapter 5

Conclusion

While we have focused on random spectral measure of Gaussian stationary pro-

cesses in this paper, we have also developed a more general notation and framework

along the way. Our construction of the univariate and multivariate stochastic inte-

grals is not restricted to random spectral measure, although Major’s version of Itô’s

Lemma is. The notion of integration along any diagonal is implicit in [5], [6], [7],

and [1], but we introduced here the rigorously defined notation for stochastic in-

tegration on all of Rn that is missing in those works. We believe this to be the

most significant contribution of this largely expository work, and it is defined in

enough generality that it can be applied in the cases of other spectral measures in

a Gaussian-process setting (for example, non-atomic measures), and perhaps in the

case of non-Gaussian settings, as in [1].

5.1 Further Generalizations

The behavior of any given measure along a diagonal is specific to that measure:

in our case of random spectral measure, the dual facts that

a) integrating along any linear subspace of Rn such that xi = xj (for some

i 6= j) yields zero; and

b) integrating along a linear subspace of Rn in which xi = −xj (for some i 6= j)
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reduces to integration against the Gaussian measure G (against either xi or xj);

meant we could restrict our attention to diagonals in which any coordinate xj was

either equal to the negative of some other coordinate, or not equal in magnitude to

any other coordinate. This allowed us to represent each relevant diagonal with a

partition of [n] in which partition atoms contained at most two elements. We were

also able to represent each diagonal with a diagram: nodes i and j were connected

in the diagram if and only if xi = −xj along the diagonal. If we examine a different

measure Z, each partition might correspond to more than one diagonal along which

the measure is non-zero with positive probability. For example, if the measures of

the two diagonals defined by 1) xi = xj, and 2) xi = −xj are both non-zero with

positive probability, then any partition σ ∈ Π(n) in which σ(i) = σ(j) corresponds

to two diagonals we are interested in. We might come up with a different notion

of diagram for such a measure, however. For example, if the measure Y disappears

along any diagonal such that |xi| = |xj| = |xk|, but not necessarily along xi = xj or

xi = −xj, we could create a “diagram-prime” object in which there are two types

of edges: an A-edge would connect nodes i and j if and only if xi = xj along the

diagonal, while a B-edge would connect them if and only if xi = −xj along the

diagonal. Since no three coordinates could be equal in magnitude, each node would

still be connected to at most one other node. A corresponding “Diagram-Prime”

Formula could be developed to calculate the product of several off-diagonals with

this measure. Our application of Möbius Inversion depended on a unique diagonal

in Rn associated with each partition in Π(n): without this, the partial ordering of

Π(n) cannot be applied to the relevant diagonals in Rn. In our hypothetical measure
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Y above, we might still be able to perform Möbius inversion by imposing a partial

ordering on “diagram-primes”, and therefore implicitly on the diagonals with which

we are concerned.

5.2 Final Words

This work was initially motivated by a problem posed by Dr. Alexander

Barg (University of Maryland, College Park). The problem centered around finding

linearization coefficients for a family of polynomials relevant to the field of For-

ward Error Correction/Coding Theory. The work veered off this path as we sorted

through the mathematical literature and found that several gaps in the theory had

been glossed over. We have no doubt that the researchers who developed the field

of stochastic integration and explored its application to linearization coefficients un-

derstood the topics with mathematical rigor. However, as we worked to understand

their text and express it in perhaps a more accessible form, we were able to develop

some of their work a bit more fully. This is most apparent in Chapter 3, in which

we define, formally, what stochastic integration along a diagonal means.
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Appendix A

Reference Theorems

Definition A.0.1 (Pre-Hilbert Space) A pre-Hilbert space is (in this work) a

complex linear vector space X together with an inner product defined on X × X.

Corresponding to each pair of vectors x, y ∈ X is the inner product, a complex scalar

denoted 〈x, y〉. The inner product satisfies the following axioms:

1) 〈x, y〉 = 〈y, x〉

2) 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉

3) 〈cx, y〉 = c〈x, y〉 ∀c ∈ C

4) 〈x, x〉 ≥ 0 and 〈x, x〉 = 0 if and only if x = 0.

The topology and norm of the space are defined through the inner product. [4, pp. 46-

47]

Definition A.0.2 (Hilbert Space) A Hilbert space is a pre-Hilbert space which

is complete with respect to the norm defined by its inner product. [4, p. 49]

Lemma A.0.1 (Hermite Identity) H ′′n(x)− xH ′n(x) = −nHn(x)

Theorem A.0.1 (Bochner’s Theorem) Every positive definite function

Q : R→ C is the Fourier transform of a positive finite Borel measure on R. [5, p. 14]
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Definition A.0.3 (Isometry) A linear isometry is a linear, distance-preserving

map between metric spaces.

Theorem A.0.2 (Isometry Theorem) A metric space X is linearly isometric to

a metric space Y if there is a linear bijection f : X → Y that preserves the norm of

every element in X or, equivalently, preserves the inner product on all elements in

some X ′ ⊂ X such that the closed linear span of X ′ is X. [8]
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