SRC TR 88-26

Optimal Systolic Designs for the
Computation of the Discrete
Hartley and the Discrete Cosine
Transforms

by

Chaitali Chakrabarti
and Joseph Ja Ja

Optimal Systolic Designs for the Computation of
the Discrete Hartley and the Discrete Cosine Transforms !

Chaitali Chakrabarti
Department of Electrical Engineering
Systems Research Center

University of Maryland
College Park, MD. 20742

Joseph JaJa
Department of Electrical Engineering
Institute for Advanced Computer Studies
Systems Research Center
University of Maryland

College Park, MD. 20742

Abstract

In this paper, we propose new algorithms for computing the Dis-
crete Hartley and the Discrete Cosine Transform. The algorithms are
based on iterative applications of the modified small n algorithms of
DFT. The one dimensional transforms are mapped into two dimen-
sions first and then implemented on two dimensional systolic arrays.
Pipelined bit serial architectures operating on left to right LSB to
MSB binary arithmetic is the basis of the hardware design. Different
hardware schemes for implementing these transforms are studied. We
show that our schemes achieve a substantial speed-up over existing
schemes.

1Supported in part by NSA Contract No. MDA-904-85H-0015, NSF Grant No. DCR-
86-00378 and by the Systems Research Center Contract No. OIR-85-00108

1 Introduction

The Discrete Cosine Transform (DCT) has emerged as the most popular trans-
form for many coding schemes. This is due to the fact that, for a wide class of
signals, it performs very closely to the statistically optimal Karnuhen-Loeve Trans-
form (KLT). Its energy packing efficiency is also greater than any other transform.
Since the DCT block is an integral part of any image processing scheme, a study of
its implementation in VLSI is very important. Another popular scheme is the Dis-
crete Hartley Transform (DHT) which may replace the Discrete Fourier Transform
(DFT) in many spectral analysis and digital processing schemes. The advantage
is that the computation of this transform does not require complex arithmetic and
could be done much faster.

There exist many methods for computing the one-dimensional DCT. They
are either based on direct factorisation of the DCT matrix [Lee], [CHF], or on a
rotation of the output of a Fourier [NP], [VN] or Hartley [Mal] transform. There are
many methods [Br], [PW], [SJBH], [Hou] for computing fast DHT in one dimension
too. However, there are no known VLSI implementations of these algorithms. The
straightforward approach would be to implement these algorithms on a linear array
of inner product processors. The result is complicated control and arithmetic units.

In this paper we propose new algorithms to compute DHT and DCT along
with their implementations on fully pipelined bit serial two dimensional systolic
arrays. We map the one dimensional transforms into two dimensions such that
N computations are roughly replaced by v/N subcomputations which can be done
fully in parallel. In the computation of DCT(N), we suggest four schemes based on
whether DFT(v/N) or DHT(+/N) is used for the subcomputations on the rows and
on the columns. A comparison of these schemes lead us to claim that the scheme
based on DHT-DHT is the best. Moreover, we have improved upon the method

suggested by Sorensen et.al. to compute the two-dimensional DHT. The hardware

design of all these consists of a few types of regular and modular components,
The compatibility of the input/output characteristics makes the interconnections
between the components simple. The delay is small and the throughput is very
high.

The rest of the paper is organized as follows. In Section 2, we discuss the
index mappings for two-dimensional DFT, DHT and DCT and the various schemes
for their computation. Sections 3 and 4 deal with the systolic array implementation
of the proposed schemés. We introduce the word design in Section 3 and the bit
serial design in Section 4. We conclude the paper in Section 5 with a comparison
of the various schemes for computing DHT and DCT and an estimate of the sizes

and delays of the various components.
2 New Two Dimensional Schemes

Any one dimensional linear transform f(k) = 3, a(k,n)z(n),
0 < n,k < N —1, can be mapped into a two dimensional transform. Let N = N; N,
and let

n = Kin;+ Kyns mod N = Kijny mod N + Kyng mod N — ap i, N (1)
k = Kgski+ K4kz mod N = Kzk;y mod N + K4k, mod N — bkth (2)

where K, K,, K3, K4 are integer constants, a,,n,,br,k, are either O or 1,
0< ny,ky <Ny —1,0<ng, ks <N — 1.
Then f(k) can be written in the form

kl,kz ZZ a(ky, k2,1, n2)E(n1, na). (3)

na n1

The main motive behind this transformation is to map the computation into a sys-
tolic two dimensional array of size N; X N,. The number of systolic steps will be
drastically reduced from O(N) to O(Ny + N;). The success of this transformation

depends on choosing Kj, K, K3, K, in such a way that equation (3) can indeed

be computed by one or few N; X N; systolic arrays. Our goal in this section is to
establish such transformations for the one dimensional Discrete Fourier Transform
(DFT), Discrete Hartley Transform (DHT) and Discrete Cosine Transform (DCT).
We will also sketch the procedures to execute the two dimensional computations.
The detailed calculations are included in Appendices 1,2,3 and 4. We have modi-
fied an existing scheme for DHT. The schemes for DCT have not appeared in the

literature before.

2.1 Discrete Fourier Transform
The one dimensional Discrete Fourier Transform of N points, DFT(N),
is defined by
Z z(n)Wx 0<k<N, | (4)

n—O

where Wy = ezp(j3nk). Equation (4) can then be reduced to

Flky, ky) = Z Y E(na, ma)WRE, ()

ny ng
where n and k are defined as in (1) and (2). The choice of K; = N,, K; = Ny,
K; = (N-;1 mod N;)Nz, Ky = (Nl‘1 mod N,)N,, where N = N1 N; and N;, N; are

mutually prime, gives a two dimensional DFT of the form

A 1
F(kl’ k2 = 7 { 53(7&1, n2)W{\;1k1 } W"*"’ (6)
ma % R

The derivation is given in [Bu]. It is clear that expression (6) consists of a set of
column DFT’s followed by a set of DFT’s on the rows.

We now turn to the one dimensional DFT computation of columns or rows.
The most popular method of computing DFT is by Fast Fourier Transform [CT]
which uses O(N log N) opéra,tions as opposed to O(N?) operations required by
algorithms for DFT(N). Recently, faster algorithms, based on the so called small
n algorithms, have been derived by Winograd and others [AC], [Gd], [Sil], [Win].

For small values of N, these algorithms use the fewest number of multiplications.

Each such algorithm can be expressed as Y = SyCnTInZ, where Sy isan N X J
incidence matrix, Ty is a J X N incidence matrix, Cy is a J X J diagonal matrix
with purely real or purely imaginary entries, J =~ N. Therefore, a two dimensional

DFT of size N; X N; can be expressed as
Y = SNchzTNz (SNlchTle)T . (7)

[OJ] have provided a systolic implementation based on three types of components,
namely summation component (Z = TX), scaling component (7 = CX), and

transpose component (Z = X7). The interconnection is shown in Fig.1.

X
——| Summation | Summation
Scaling Transpose Scaling
DFT(X)
Summation |—— Summation

Fig.1 Interconnection of the various components for DFT

2.2 Discrete Hartley Transform
The one dimensional Discrete Hartley Transform of N points, DHT(N),

is defined by

Z n)cas "k, 0<k<N-1, (8)

n—O
where cas (z) = cos (z) + sin (z).
If we define two dimensional arrays H-and %, (8) can be reduced to

H(kl, ky) = Z Z Z(n1,n2)cas TV-nk (9)

ny n3

where n and k are defined as in (1) and (2). f N = NyN; and N;, N; are relatively
prime, a choice of K; = Ny, K3 = Ny, Ks = (N;! mod N;)Ng,
Ky = (N7! mod N;)N; gives a two dimensional DHT of the form

o 2 .
H(ky k) = E Z £(n1,n2)cas —ﬂnlkl cas — 2m —ngksy
N N,

ni

27 . 27
E {E £(n1,ns)sin —]\Tlnlkl} sin -]Vznzkz. (10)

ny
The derivation is given in Appendix 1A. From expression (10) it is obvious, that
this is not a simple DHT of the columns of £(n,,ns) followed by a DHT of the rows.
Let A(ky,ng) = {%ﬁ'zm Z(ny,n2)cas %"—;nlkl, and
B(ky,ng) = %[A(kl, ng) + A(Ny = ky,na) + A(ky, Nz — ng) — A(Ny — k1, N2 — nz)),
then

(k) = 3 Blky, ng)cas %nzkz (11)

ng
Thus two dimensional DHT can be obtained [SJBH] by computing the DHT of the
columns followed by some adjustments to produce B(k;,n;) and then computing
the DHT of the rows. For details see Appendix 1B.

One dimensional DHT can be produced by various schemes. We choose
the Winograd-Hartley transform algorithm since the number of multiplications
is minimum. The algorithm can be expressed as H = SNé’NTN:%, where ¢ =
Re[Cn] — Im[CN], Sn, Tn, Cn are the matrices appearing in DFT(N). Since Cy
contains purely real or purely imaginary entries, Cy differs from Cy in that the
imaginary entries are negated. Sorensen et.al. [SIBH] claim that they can compute
this replacement in place with eight additions for four output points. In Appendix
4, we show how matrices Sy and T e¢an be modified and how the rows and columns
of Z can be permuted so that the replacement can be computed with four additions
for four output points. Two dimensional DHT can be computed using summation,
scaling, transpose and adder components. The interconnection is shown in Fig.2A.

A simpler scheme would be to compute two dimensional DFT and then sub-
tract the imaginary part from the real part to get two dimensional DHT. Since we

already have good schemes to compute two dimensional DFT, the only hardware

Y

extension necessary is a row of subtractors.- The intercdnngction is shown in Fig.2B.
The disadvantage of this method is that :_Wg are not utilising the fact that DHT is a
real transform, instead, we are resorting to complex adders and mul)tipliers and then
with the help of another subtractor VuznitA retfiéﬁné_ DHT. In the next' tWo_sections,
we will see that this scheme fares poorly cofxiﬁ;féa to the first scheme both in terms

of hardware as well as delay.

X
——| Summation Summation
Scaling Scaling
l Transpose l
DHT(X)
Summation Summation —
Adder
Fig.2A Interconnection of the various components for Scheme 1 of DHT
X
——=| Summation Summation
Scaling Transpose Scaling
Summation Summation
DHT(X)
Adder e
Fig.2B Interconnection of the various components for Scheme 2 of DHT

2.3 Discrete Cosine Transform
The one dimensional Discrete Cosine Transform of N points, DCT(N),

is defined [ANR] by

2 N2 T '
= < —
C(k) an_‘az(n cos [2N(2n+1)k], 1<k<N-1
mm::-Exm (12)
n=0
We define a new series y(n) by
y(n) = z(2n) 0<n gi;"-—1
— z(2N—-2n-1) %5 <N-1. (13)
With this substitution equation (12) reduces to
2 N-—-
o) = & zzj n)cos [2 ln+ 1)k] (14)
V2=
o) = LY yiw. (15
n=0

Applying the same procedure as in Sections 2.1 and 2.2, we define two dimensional
arrays C(ki,k;) and §(ny,n2). Equation (14) then reduces to

Clhy, k) = —N-ZZy n1,N2)cos [—-(4n+1)k]

"2 ny

C(0,0) = ———ZZy(nhnz)a (16)

nz m
where n and k are defined as in (1) and (2). Since computation of C(0,0) is
straightforward, we shall not treat it here. We define two functions s(k;) and t(k,)
as follows s(k1) = (Kzky mod N)/(2Nzk;), t(kz2) = (Ksks mod N)/(2N1k;).

If N; and N, are mutually prime to each other, a choice of K; = N,, K3 = Ny,

K3 = (N;! mod Ny)Nz, Ky = (N7 mod N;)N; gives a two dimensional DCT

Cky, ks) = ZZy (n1, n2)cos [(2n1 + s(k1)) k1 + ——(2nz + t(k2)) k2 — Zr—bklkg] .
ng n N N2 2
(17)

The- derivation is included in Appendix 2.

When by,z, = 0
Ok, ks) = —z {z §(n1, nz)cos [(2n, + s(kl))kl]} [R%(znz +t(k2))k2]
-2 ; {; §(ny, ng)sin []—V;(2n1 + s(kl))kl] } sin [Tv’f;(zn2 + t(k,))k,] .

(18)
When by, 4, = 1
Clky, k) = -J%,- 3 {; §(n1,ns)cos [—ﬁ;(znl + s(kl))kl]} sin []_’\;;(an + t(kz))kz]
+ %; {; (1, ma)sin | 7-(2ms + (k) } cos | -(2n + t(ka) .

(19)

Thus the two dimensional DCT can be obtained by applying one dimensional
transforms on columns followed by one dimensional transforms on rows. Though
the expressions for by, x, = 0 or 1, seem very different, they are actually not so.
We will show in Section 3, how a small manipulation in the last phase is enough to
realise the two different expressions.

When b, 1, = 0

(ks ka) = 2 { DO, [DOT[8(m1,ma)]] — DSTy [DSTrs[(na,ma)]]) (20)
When by, 4, = 1,

Clkr,ks) = = {DST,., [DC T, [8(r1,m2)]] + DCTn, [DSTu[i(na,ma)]]), (21)

where DCT(DST) differs from DCT(DST) in the cosine(sine) argument.

We will first discuss the popular methods of computing one dimensional DCT.
These methods use either one dimensional DFT or one dimensional DHT on per-
muted data. Let

1N’

Yr(k) = Z y(n)Wx (22)

n=0

where y(n) is defined as in equation (13). C(k) can then be expressed as
C(k) = —=Re[e 5 Yp(k)]. (23)

.Thus a computation of one dimensional DFT followed by a complex multiplication

gives one dimensional DCT. Let

1 2 21
Va(k) = 7= 3 l(n)eas Jnk, (24)
n C(k) = % [Yg(k)cas (—%‘]—’\;) + Ya(N — k)cas (:—;)] . (25)

Thus a computation of one dimensional DHT followed by real multiplications gives
one dimensional DCT.

Let Z¢(k) = pct, =%, y(n)cos & (2n + g(k))k and
Zs(k) = DST,. =3, y(n)sin % (2n+g(k))k, where g(k) is a predetermined function.
We need to know how to compute them in order to be able to compute the two
dimensional DCT. Both DFT and DHT can be used for this computation.
If we use DFT then,

Zo(k) = Re e ¥4Myy(k)|
Zs(k) = —Im[e" ROy (k)] . (26)

If we use DHT then,

Zo(k) = % [YH(k)ca.s (—%kg(k)) + Y (N ~ K)eas (%kg(k))]

Zsk) = 3 [YH(k)cas (%ky(k)) ~ Ya(N — k)cas (—%kg(k))] @

For systolic implementation, it is necessary for Yz (k) and Yg (N — k) to be adjacent
so that Z¢(k) and Zg(k) can be computed with constant time delay, irrespective of
the value of k. In Appendix 3, we show how to modify matrix,Sxy, so that this is

possible.

Since two dimensional DCT is a function of Z¢(k1), Zs(k1), Zc(kz), Zs(k2), we
can use either one dimensional DFT or DHT on the rows as well as on the columns
and then adjust using multipliers and adders.

We propose the following algorithm
e Compute DFT or DHT on columns.
e Adjust using éomplex or real multipliers and adders.
e Compute DFT or DHT on rows.
e Adjust using complex or real multipliers and adders.

The interconnection is shown in Fig.3. There are thus four possible schemes based
on whether DFT or DHT is used on columns and on rows, DFT-DFT, DFT-DHT,
DHT-DFT, DHT-DHT. We shall discuss them in the next section. Since both DCT
and DHT are real transforms, we would expect to do better if we used DHT to

compute DCT. In the subsequent sections we will show that this is true.

X
~——| Summation F———{ Summation
Scaling Scaling
i Transpose T
Summation Summation
Multiplier Multiplier DCT(X)
-adder -adder

Fig.3

Interconnection of the various components for DCT

10

3 Systolic Implementations

In this section we discuss the systolic array implementations of the two dimen-
sional schemes of DFT, DHT and DCT. The scheme [OJ] for DFT uses only three
types of components, summation, scaling and transpose. Our schemes for DHT
and DCT use these components along with special type of multipliers and adders.
Here we present the functional definitions and the data flow through the various
components.

3.1 DFT implementation

Summation Component: - This component performs the operation Z = SX ,
where S is an incidence matrix of size M x Ny, X is the iﬁput matrix of size Ny X N3,
and Z is the output matrix of size M X N,. Since S is known, the elements of S
can be directly embedded. The nature of S makes it possible for the summation
component to be constructed with three different types of subcomponents, addition
(sij = 1), delay (s;; = 0) and subtraction (s;; = —1) subcomponents. The functional

description of each subcomponent is given in Fig.4.

Addition L Xout(iy§) = Xinlis) %
Subcomponent Zout(1,5) = Zin(2,7) + Xin(4,7) ¥
Delay : Xout(iaj) = Xm(’a]) Xin -~ s -+ Xout

Subcomponent Zout(8,5) = Zin(t,7)

v
Subtraction : Xou(i,5) = Xin(3,7) Zout
Subcomponent Zout(4,3) = Zin(4,7) — Xin(3,7)

Fig.4 Function description of the various subcomponents
Xin and Z;, are the values prior to some clocking, while X,,; and Z,,; are the
values generated after the clocking. The three different types of subcomponents are

interconnected as shown in Fig.5.

11

0 0 0
{ { {
" Xos Xoz2 Xoa Xoo - | Soo | Sio [] SM-10
¢ { 4
X2 X4 X —- |+~ Soa |=| &1 = | Sm-1n
¢ $ {
Xpi-10 — |~ Son,-1 |~ | S1N-1 o0~ M1
4 ¢ i
! : o
Zos 2,3 ZMy 0
2,2 2y
Zo,1 210
Zoo

~ Fig.5 Data flow through the summation component
Scaling component : This component performs the operation Z = C X, where
C is a diagonal matrix of size N1 X N1, X and Z are the input and output matrices
of size Ny X N;. Since the elements C;; are known beforehand, they can be built

into this component. The function description of this subcomponent is

Zout (Z, j) = C("a z) Xﬁ'n(i7 J)

Xos Xoz2 Xog Xoo = — Co0 — | Zys Zo Zoa Zoo

X12 X2 X0 —| - C11 — | 213 Z1a Zyp

XNy-10 —=| — | ONy-1, N -1 |— | = 2N, -10

Fig.6 Data flow through the scaling component

12

A linear array of such subcomponents form this component. The skewed data
through this component are shown in Fig.6. Notice that the data flow is consistent

with that of the summation component.

Transpose component: This component performs the operation Z = X7,
where X and Z are the input and output matrices of sizes Ny X N; and N2 x N;

respectively. The functional description of each subcomponent is given in Fig.7.

if C(¢,5) > O then

Xout(1,5) = Zout(5,5) = Your($,5) = Xin(6,5) Xun -
else if C(¢,7) < O then - ”

Xout(457) = Zout (6,5) = Your(1,5) = Yin(%, 4) Ty —| T |~ Zew
else _ P B

Xout (1, 7) = Zout(3,5) = Yous(1,5) = Zin(3, 1) Yin Cim Yout
endif

Fig. 7 Function description of transpose subcomponent

Xon Xoo —| = Too |- Tio j—= -+ —={Ta20| —= [~
1 €00 €10 . Cn-2,0
X0 oo | | Tog {~ Tig |— v [Thozy| — |~
1 i 7
€o,1 c1,1 Cn~2,1
—| —= | Top-1 |-~ Tip-1 {—= o« —Taozn-)| — [— 2o, Zag
o
rd
ki i t
€on-1 €1,a-1 Cn-2,n-1

Fig.8 Data flow through the transpose component

13

The control flag C; ; are set according to
if(k—j)<(r—1)—jthenC;; =1
else if (k —j) > (n —1) + 7 then C;; = —1
else C;; =0
where n = maz(Ny, N;) and k is the clocking instant. The subcomponents are

connected as shown in Fig.8.

3.2 DHT implementation

We have seen in Section 2.2 that two dimensional DHT can be computed using
summation, scaling, transpose and adder units. The input % is formed by permuting
the columns of z. The second summation component of Fig.2A does not have the
elements of Sy, embedded in it, instead, the elements are those of the modified
SNy S'N,, as explained in Appendix 4. Let TN, be obtained by permuting the
columns of Ty,, such that T, (,5) and T, (s, Nz — j) are adjacent to each other
for 1 < 7 < N; — 1. The third summation component of Fig.2A has the elements of
Tw, embedded instead of those of Ty,. The adder component in Scheme 1 (Fig.2A)
consists of N; subcomponents, each of which compute either addition or subtraction.
The input to this component is the matrix A fed in a skewed manner and the output

is the matrix B. They are related as follows.

B(i, 4) = A(i,5) + A(Ny—1,5)
B(Ny —,7) = A(i,J) — A(N1—1,5)
B(i,N; — j) = é(i,Nz'—j) + {1(N1—2',N2*.7')
B(Ny—4,N,—j) = A(5,Na—3) — A(Ny—1,N;—j)

for1<i<N;—1land1<j7<N;-1.

B(0,5) = A(0,5) for 0 < § < N, — 1 and B(¢,0) = A(%,0) for 0 < ¢ < Ny — 1. The
data flow is shown in Fig.9.

The components of Scheme 2 (Fig.2B) are identical to those of DFT, except for

the adder in the last stage. The adder component consists of a linear array of N,

14

subcomponents each of which perform the following operation
H(i,5) = Ya(i,5) — Yr, (3, 5),

where Yr,(1,5) and Y, (7,7) are the real and imaginary components of the DFT

output Yr(7,7). The data flow is shown in Fig.10.

Aimp-i Ay 11 o Bim-i Bij

coe AN]—’.,NQ-J' ANI—GJ ese e | el —e _’BNl-'l'.Nz—j BNy-I'.j

Data flow through the ¢th adder subcomponent of Scheme 1

J&o 3 Ao'z onl Ao'o — ‘D" — B0,3 BO,2 Bﬂ.l BO,O
A1 Ay A — | — — |—B1n,-1 Bin Bipo
AN;-],] fiz.o hunall Bhanay " —’BN1—1,1 Bz,o
— —r [~ | e
J&Nl_l.o - | — I~ 'BN;—I.O

Fig.9 Data flow through the adder component of Scheme 1

YRo.a YRo,z YRo.: Yﬂo.o - | = f{ I? fI f{
- | 7" Hoa 0,2 0,1 0,0
Ylo,s Ylo 2 YIo 1 Ylo o T | T
YR: 2 YRm YR: 0 - | = I? I? .
il gl BaanalV 7 $ % 1,1 H;,
le 2 Yh.: Yl: 0 - | ™™
Yr Ngm10 —_— | — .
- | —Hn-10
Y] Nz =1,0 — — 2

Fig.10 Data flow through the adder component of scheme 2

15

3.3 DCT implementation
The algorithm for the -DCT implementation can be split into two phases, the first
phase consists of the computation of DFT or DHT on columns followed by adjust-
ment using multipliers and adders while the second phase consists of the computa-
tion of DFT or DHT on rows followed by adjustment using multipliers and adders.
The four schemes are based on whether DFT or DHT is used to operate on the
rows and on the columns. Since the computation of DFT and DHT over rows and
columns have already been discussed in the previous sections, we discuss here only
the designs of the various multiplier-adder units . We then proceed to give a short
description of each of the four schemes.
Multiplier-adder type A :
The input to this component consists of complex data formed after computing DFT
on columns. The function description of the ith component is as follows

Zo(3,7) = Xgr(1,5)cosa — X (i, 7)sina

Zs(i,7) = Xr(3,5)sin a + X;(i,5)cos e,
where o = F-is(2) and Xr and Xy are the real and imaginary parts of the input
data (see equation(26)). The skewed data flow through this component is shown in

Fig.11.

X&os XRoz Xro, XRoo - ™ g "’Xcoa Xeoa XCo: XCoo
Xlos XIo: Xn, Xloo - — ""Xso.a Xsoz Xsox Xsoo
XR,, X, Xrio | =™ — _’Xcm Xcl.l XC':,o
Xlx 2 XI: 1 Xlz.o henall B = _’Xsm sz,x Xsa.o
° XRM-:.O el e —» —‘XCN;-l o
XIN:-M i — —J(SN,—x 0

Fig.11 Data flow through multipler-adder A

16

Multiplier-addér type B :
The input to this component is Yy (¢, 5), the data after computing DHT on columns.
The function description of the ¢th subcomponent is as follows

Zc(4,7) = }[Yr(i,5)cas(—a) + Yg(N — i, j)cas o]

Zs5(4,5) = 2{Ya(i,j)cas o — Yy (N ~ i, f)cas(~a)],
where a = {-is(¢) (see equation (27)). Yg(¢,5) and Yg (N -+, j) are made adjacent
by modifying Sy, to S'N, as explained in Appendix 3. Fig.12 shows the skewed data

flow through this component.

= | ZC Ze, Ze Ze,
YHo‘a YHo,z YHO,I YHQ“, PUPSI 0,3 0,2 0,1 6,0
o ——.ZSO,S ZSO,2 ZSO.I. ZSO,O
o —"ch 2 ch,l ZC].o
YH:,: YH: a YHx,o —
o ""‘ZS1,3 ZSL! ZS!,D
YHM ~1,1 YHNx ~1,0 e " —"ZCNx -1 Z, Cry-1,0
| —¢-ZSN1 -1 ZsN’ -0
| o B
|
=t |
Y 110 | — | —Zcmme
— |28t mo

Fig.12 Data flow through multiplier-adder B
Multiplier-adder type C :
The input to this component is complex data formed after computing DFT on rows
along with a control line, b;;. The output is the real cosine transform C (¢,5). The

function description of the jth subcomponent is as follows

When b;; =0
C(i,§) = Xr(%,7)cos & — X1(i,§)sin o
When b,’j =1

C(i,5) = Xa(3,5)sina + X135, §)cos a,

17

where o = F-jt(j) and Xg(7,7) and X;(¢,7) are the real and imaginary components
of the input data (see equations 20, 21, 26). The data flow through this component

is shown in Fig.13.

XRos Xﬂo.z XRo,x Xpeo — | — . N N N
el B Co,a Co,z Co,1 CO,O
Xlo,a XIo,z Xlo,l Xloo -~ | -
*
bo,i
XR:,: XRI.J XRio hanall Bhane é' C’ é
| ™ (12 1,1 1,0
le Xlx.x XIIO - |
by,;
XRN,-N — o
i~ —.CNQ-I,O
XIN;—!,O — ——y
bN:-ld

Fig.13 Data flow through multiplier-adder C

Multipler-adder type D :
The input data to this component consists of two parts, Yo (¢, 5), which was formed
after computing DHT or DFT on the rows of Z¢(7,7), and Ys(7,5), which was
formed after computing DHT or DFT on the rows of Y3(7, 7). The control line b;; is
also fed as an input. The function description of the jth subcomponent is as follows
When b;; =0
C(4,5) = LYo (i,5)cas(—a) + Yo(i, N2 — j)cas o — Ys(i,j)cas

+Ys(¢, N2 — j)cas(—a)]
When b;; =1
C(4,5) = LYo (¢, 5)cas a — Yo(i, N2 — j)cas(—a) + Ys(i, 5)cas(—a)

+Ys(2, N2 — j)cas a|,
where a = F-7t(j) (see equations 20, 21, 27). Y¢(7,5), (Ys(7,5)) and
Yo (i, N2 — 7), (Ys(¢, N2 — 5)) are made adjacent by modifying matrix Sy, to SN,
The data flow through this component is shown in Fig.14.

18

Yeo, Yoo, : Yeo, Yooo — | — & é N N
: N . e | —> C C
Yo Yaa Vet Yao —|— v T
. i ¥
bo,;
ch.: . 'YCx.i YCI.D |
Ys, 2 V Ysl_; YS;,o — | el T C1,2 Cl,l Cl.o
Yer,-ia Yommro . Sy)
‘Na=13 - *CNg-10 . . ot N
Lo 2 R > |=*CN-11 Cnyea0
YSN,-n YSN,-:.d — | —
o ¥)
' b1js by -1,

!

b
S

Yo o
Nz /31,0 > _’Cer/ﬂ 0

Yy [¥2 /31,0

brn, 21,5

Fig.14 Data flow through multiplier-adder D

Scheme 1 DFT-DFT

First phase : The first summation unit has elements of T, embedded, the second
summation unit has elements of Sy, embedded and the scaling unit has elements
of Cy, embedded in it. The multiplier- adder fs of type A.

Second phase : The first summation unit has elements of Ty, embedded, the second
summation unit has elements of Sy, embedded and the scaling unit has elements
of Cy, embedded in it. The multiplier- adder is of type C.

The interconnection of the various components is shown in Fig.15.

X | Summation ‘ Summation
TN: TNz
! !

Scaling Scaling
CN, CN:

' Transpose !
Summation Summation
SN, S,
v !
Multiplier Multiptier | DCT(X)

-adder A -adder C

Fig.15 Interconnection for Scheme 1

19

Scheme 2 DFT-DHT

First phase : This is identical to the first phase of Scheme 1.

Second phase : The first summation unit has elements of Ty, embedded, the second
summation unit has elements of Sy, embedded and the scaling unit has elements

of Cy, embedded in it. The multiplier-adder is of type D.

The interconnection of the various components is shown in Fig.16.

X Summation Summation
TN, . TN,
' '
Scaling Scaling
Cn, Cn,
} Transpose i
Summation Summation
SN: SN2
! |
Multiplier | Multiplier DCT(X)
-adder A -adder D
Fig.16 Interconnection for Scheme 2
Scheme 3 DHT-DFT

First phase : The first summation unit has elements of Ty, embedded, the second

summation unit has elements of Sy, embedded and the scaling unit has elements

of C'N, embedded. The multiplier-adder is of type B.

Second phase : This is identical to the second phase of Scheme 1.

The interconnection is shown in Fig.17.

20

I'N

DCT(X)

Scheme 4

First phase : This is identical to the first phase of Scheme 3.

Summation Summation
In, Tn,

! !
Scaling Scaling
CN, CN:

I Transpose l
Summation Summation
SN, SNz
! !
Multiplier Multiplier
-adder B -adder C

Fig.17 Interconnection for Scheme 3
DHT-DHT

Second phase : This is identical to the second phase of Scheme 2.

The interconnection is shown in Fig.18.

X

| Summation

I,

R

chling
Cw,

K

Summation
SN,

{

Multiplier
-adder B

Transpose

.

Fig.18

Interconnection for Scheme 4

Summation

T,

Summation

SN,

!

Multiplier
-adder D

DCT(X)

The matrices S , é’, T for computing the DCT for N = 35 (N, = 7, N; = 5)

using Scheme 4 have been listed in Appendix 5.

Thus we find that the element skewed implementation of DFT(N), DHT(N),

DCT(N) requires an area of O(N) and a computation time of O(maz(Ny, Nz)),

21

where N = Ny N; and N;, N, are mutually prime. Our designs are optimal since

the theoretical lower bound of AT? = Q}(N?) have been achieved.
4 Bit serial implementations

In this section we discuss the synchronous. bit serial implementations of the
components discussed in Section 3. We chose to use this mode because for data
of precision p, there is a drastic reduction in area from O(pN;N;) to O(N;N,) for
most of the components. Another advantage is that the communication within and
between VLSI chips is more efficient. The disadvantage of having to clock the bit
serial version p times more can be taken care of by clocking at a faster rate, since
the basic subcomponents are much simpler. We have chosen the binary left directed
LSB to MSB technique [JK] as against the higher base right directed MSB to LSB
technique [0J], since the circuitry of the subcomponents is of lesser complexity .
The larger delay in the scaling subcomponent is compensated by a smaller delay in

each of the summation subcomponents and a higher clock rate.

4.1 DFT implementation

In this section we discuss briefly the bit serial versions of the summation, scaling
and transpose components as in [0J], [JK] but in the light of a different data flow
format. Every element of data of precision p, is followed by a “0” word, which is
a string of p zeros. This is necessary since 2p bits are generated by the bit serial
multiplier and unless the data is appended by a “0” word, the results would be erro-
neous. We can thus think of every data to be a 2p bit word now. The control input
r:n would indicate that the first bit of an element is being supplied. Thus r;, = 1 for
the least significant bit of the 2p word and is O otherwise. We choose to propagate
the real and the imaginary parts of the data along the same line inorder to further
reduce the size of each subcomponent. The sequence is as follows, the 2p bit real

part followed by the 2p bit imaginary part. The control input g;, indicates whether

the data is real or imaginary. ¢;, = O for the real part and is 1 for the imaginary part.

0 0 (zI;,‘)P-—l cen (1:1'.’.)1 (931.',')0 0 0 (ch'j)P—l ve (zRij)l (xRij)O

0 0 0 .es 0 1 o ... 0 0 vee 0 1

1 1 1 1 1 0 0 0 ces 0 0
Summation component : The functional definition of the bit serial summa-

tion subcomponent is as follows.
Lout = Tin
Tout = Tin
Qout = Gout = Gin
if ¢in = §in then
if r;, = 1 then
Zout = Zin + Tin — 2Cout
.else
Zout = Zin T Zin + Cin — 2Cout
endif
endif
Since the delay in the summation subcomponent is only one, the elements are fed

in 1 bit skewed manner.

Scaling component : The scaling subcomponent is essentially a multiplier fol-
lowed by a shift register so that only the higher order bits can be retained. There
are two types of subcomponents depending on whether Cj; is real or imaginary. The
subcomponent corresponding to an imaginary C;; consists of additional circuitry so
that the data in the real and the imaginary parts can be swapped. This is pos-
sible by having an additional 2p bit shift register. To maintain uniformity in the
bit skewness of the data, the subcomponent corresponding to a real Cj; has to be
equipped with a 2p bit shift register too. The functional definition of the scaling

subcomponent is as follows.

23

Tin

Gin

Tout = Tin
Tout = Tin
Qout = Gin
if r;n = 1 then
Zout = Tinl — 2Cout
else
Zout = TinY + Zin + Cin — 2Cout

endif

Cout = Cin

Transpose component : This component consists of an array of shift registers
of length 2p — 2. The area of this subcomponent is thus a function of p. The
functional definition of the shift register SR of the ¢5th subcomponent is as follows.
Tout = Yout = SR(0]
fori=0,1,...,2p—3
SR[{] = SR[i + 1]
if ¢ > O then
SR[2p — 2| = zin
else
SR[2p — 2] = yin
endif
The control input at the kth clock unit is as follows
ifk>20+7)—-(2p—-2)M
cin(1,7) =1
else
cin(t,7) = —1
endif.

24

4.2 DHT implementation
In this section we discuss the data flow formats and the bit serial implementation

of the adder units of Schemes 1 and 2 of DHT. The data in Scheme 1 is of the form

as shown below.

0 ... 0 (ziji)p-1 -+v (migi)r (mij)o O ... O (Zij)p-1 ... (%ig)1 (Ziglo Xim
0 ... 0 0 0 1 0 ... 0 0 0 1 Tin
We do not need the control input ¢;, since the data is always real. The elements are
1 bit skewed. The bit serial summation and the transpose components are identical
to those of DFT. Since both the data and C;; are always real, the scaling component
performs only real multiplications. No additional shift registers are required. The
scaling component is not only smaller, but the delay for every element passing
through it is 2p less.
The adder unit in Scheme 1 consists of |N;/2| components, each of which
consists of 2p, 4p shift registers, an adder, a subtractor and a couple of delay units.

The data flow through the sth component is as follows.

~

0 Ain-; 0 Ay —= — 0 Bine-j 0 B

0 Am-ine-i 0 Anj—ij — — 0 Bni-iN,—i 0 Bwj-ij

The data flow through the various components in Scheme 2 is identical to that
of DFT. The adder unit consists of N; subcomponents, each of which consists of 2p

bit shift registers and subtractors. The data flow through the jth subcomponent is

as follows.

25

0 YFJ;,j 0 YFR‘.' ;" — 0 H ij 0 0

4.3 DCT implementation
In this section we discuss the data format and the bit serial implementation of the
different multiplier-'é,dder units of DCT. The format of the data is identical to that
of DFT. After the first phase, the data consists of the cosine part X¢ and the sine
part Xg. We can think of X¢ to be equivalent to the real part Xz in DFT and X
to be equivalent to the imaginary part X in DFT. Here the control input ¢;, would
indicate whether the data is the cosine part or the sine part, ¢;, = 0 for the cosine
part and is 1 for the sine part. The input data X is always real. Thus in Schemes
1 and 2, which compute DFT first, every element of the input data is followed by

three “0” words.

0 0 0O 00O 00 (x,-,-),,_l cee (:B,'j)l (.’B;j)o X;
0 00O 010 00 0 cee 0 1 Tin
1 111 110 00 0 ces 0 0 Qin

In Schemes 3 and 4, which compute DHT first, the input data occurs in both
the sine and the cosine part. This guarantees simpler circuitry and less delay in the

multiplier-adder B.

0 ... 00 (.'I:.'j)p._1 ce (:B.'j)l (:B.'j)o 0 00 (x,-,-)p..l ven (z,-,-)l (a:.-,-)o X;
0o ... 00 0 ces 0 1 0 ...00 O - 0 1 Tin
1 11 1 vee 1 1 0 00 0 - 0 0 Qin

The multiplier-adder units are a combination of summation, scaling subcom-
ponents timed properly with the help of shift registers and regulated with the control
inputs. We shall not discuss the functional definition of the subunits here. Other

than the multiplier-adder units, the rest of the components in the various schemes

26

are either identical to those used in DFT or to those used in DHT. Multiplier-adders
C and D need a control input b;;. Since N; and N; are fixed, the value of b;; for
0<t< N;—1and 0 <3< N; —1 are known beforehand. These values can be
stored in Np Ni-bit shift registers. The clock would be an AND of the system clock
with r,Gn.

Multiplier-adder A : The 7th subcomponent, 1 < 7 < N; — 1, would con-
sist of two fixed serial multipliers, cos ﬁ”;is(i) and sin ﬁis(a’), 2p bit shift registers,
an adder, a subtractor and switches based on the control input ¢;,. The data flow

through this component is as follows. Z¢, Zg, Xg, X are defined as in Section 3.3.

X1 0 Xp; — — 0 Zs, 0 Zei;

Multiplier-adder B: The ¢th subcomponent, 1 < ¢ < | N;/2], would consist of
four fixed serial multipliers, cas (-—F”l-is(i)), cas (Tv"—lis(i)), cas (—7rs(z') + Nle's(i)),
cas (1rs(z') - N’—lis(i)), switches based on ¢;,, adders, subtractors and some simple
logic circuitry. The data flow through this subcomponent is as follows. Z¢, Zs, Yg

are defined as in Section 3.3.

0 YH‘-’J' 0 YH.‘,,‘ — —_— 0 ZS.‘,J' 0 ZC.‘,J'

0 YHNI_.-,,' 0 YHNI...-,,- — —_ 0 ZSN, -i; 0 ZCN1 —irj

Multiplier-adder C : The jth subcomponent, 1 < 7 < N; — 1, consists of two
fixed serial multipliers, cos 3 Jt(s) and sin F-5t(7), 2p bit shift registers, an adder,
subtractor and some simple switches based on the control inputs ¢;, and b;;. The

data flow through this subcomponent is as follows. Xg, X, C are as defined as in

Section 3.3.

27

Multiplier-adder D : The jth subcomponent, 1 < 7 < N; — 1, consists of two
fixed p bit serial multipliers, cas (-——}\’7"; jt(j)) and cas (-137’; Jt(])) , adders, subtractors
and some simple switches based on ¢;, and b;;. The data flow through this subcom-

ponent is as follows. Yg, Y5, C are as defined as in Section 3.3.

0 YS.‘,,' 0 YC.',,' —
— Ci; 0 0 0

0 YS.‘,NQ - 0 YC-‘.Nz -; -

Thus we find that the bit skewed implementation of DFT(N), DHT(N), DCT(N)
requires an area of O(pN) and a computation time of O(maz(Ny, N2)p), where p is
the precision, N = N1 N; and Ny, N, are mutually prime. Note that these designs

achieve the optimal time performance for bit serial systolic architectures.
5 Conclusion

In this report we have presented two dimensional schemes for computing DFT,
DHT, DCT based on the so called small n algorithms, their systolic word and
bit serial array implementations. The section on DFT exists in the literature.
We included it here, since, we needed some of the components for our designs of
DHT and DCT. Though the two dimensional formulation of DHT is not a new
concept, detailed VLSI design to compute it does not exist in the literature. We
have improved upon the method suggested by Sorensen et. al. [SJBH] and have
given a fairly detailed description of the various components. We have formulated

the mapping from one dimensional DCT into the two dimensional form. We have

28

proposed four schemes based on whether DFT or DHT is computed‘;ﬁ‘:;;l‘ie, TOWS
~ and on the columns. |

We claim that Scheme 1 for the computation of DHT is_éﬁi)geric;r t;) Sche'me:
2. This is because the data in Scheme 1 is always real and hence thAe>as_sc.)cia,ted'
circuitry is simpler. The delay in the scaling and adder units" iél‘ sighi"fliééjx;tl& {leés.
In the bit serial mode, 2p bits are necessary to describe each elemer.n:; v;z,éi.a;éainsﬁ 4p
bits in Scheme 2. Thus the overall delay in scheme 1 is half of that of :Si:heme 2.

A comparison of the four schemes for DCT leads us to claim that scheme 4,
that is, DHT-DHT is the best. The reasons are as follows. First of all, since the
data is always real, its representation in‘terms of bits as well as control inputs is
simpler. Secondly, the circuitry is less complex. Thirdly, the delay is much less. For
instance, in the bit serial mode, the delay is 2p bits less for every element through
each of the scaling components as well as the multiplier-adder units.

In the formulation for DCT, we have assumed that Ny and N, are relatively
prime. A practical case would be when N;, N; ~ /N;N,. We find that when
N2 = N1+ 1 or when N; = N, + 1, there is a remarkable reduction in the hardware
needed in the multiplier-adder units. In the case when N, = Ny +1, s(k;) = 1/2 for
all k;. This implies that X¢ (N1 — ky) = Xs(k1) and Xg(Ny — k1) = X¢(k1). The
number of multipliers in multiplier-adder A and B is thus reduced by half.

An estimate of the sizes of the various components used to compute the DCT
of 208 (N; = 16, N; = 13) points with 16 bit precision using Scheme 4 is as
follows. The technology is CMOS. In the first phase, the summation components
consist of 288 subcomponents each of size approximately 80A X 90\ with a delay
of at most 5ns. The scaling component consists of 18 subcomponents each of size
approximately 1200\ x 1200A. The multiplier-adder subcomponent consists of 16
subcomponents of size 2500\ x 2500\. Though each of these subcells work correctly
for a clock period of 20ns, we choose 40ns for reliabie operation. The throughput

is 20,000 of such DCTs per second.

29

[AC]

[ANR]

[Br]

[Bu]

[CHF]

[CT]

[Gd]

[Hou]

[JK]

[Lee]

[Mal]

[NP]

References

Agarwal R.,Cooley,J.,“New algorithms for digital convolution”, IEEE
Trans. Acoust.,Speech,Signal Processing, vol. ASSP-25, pp.392-410, 1977.
Ahmed,N.,Natarajan,T.,Rao,K.R.,“Discrete Cosine Transform”, IEEE
Trans.on Computer, C-23, pp.90-93, Jan’74.

Bracewell,R.N.,“Discrete Hartley Transform”, J.Opt.Soc.Amer., vol.73,
pp-1832-1835,Dec’83.
Burrus,C.,S.,“Index Mappings for MUtidimensional Formulation of the
DFT and Convolution”, IEEE Trans. Acoust.,Speech,Signal Processing,
vol. ASSP-25, pp.239-242, 1977.

Chen,W. ,Harrison,C.S.,Fralick,S.C.,“A fast computational algorithm for
the discrete cosine transform”, IEEE Trans. on Comm., COM-25,
pp-1004-1008, 1977. |
Cooley,J.,Tukey,J.,“An algorithm for the machine calculation of complex
Fourier series”, Math. Comput., vol.19, pp.297-301, 1985.

Good,I.,“The interaction algorithm and practical Fourier analysis”,

J. Royal Stat.Soc., ser.B, vol.20, pp.361-372, 1958.

Hou,H.S.,“The fast Hartley transform algorithm”, IEEE Trans. on
Computer, vol.C-36, pp.147-156, Feb’87.

JaJa,J.,Kapoor,A. “Parallel and Pipelined VLSI Architectures based on
decomposition” , IEEE Workshop on VLSI Signal Processing (3rd Conf.)
pp.177-187, Oct.’86. |
Lee,B.G.,“A new algorithm for the discrete cosine transform”, IEEE Trans.
Acoust.,Speech,Signal Processing, vol. ASSP-32, pp.1243-1245, 1984.
Malvar,H.,“Fast Computation of Discrete Cosine Transform through Fast
Hartley Transform”, Electron.Lett., vol.22, pp.353-353, Mar 1986.

Narasimha,M.J.,Peterson,A.M.,“On the computation of the discrete cosine

[0J]

[PW]

[Sil]

[STBH]

[VN]

[Win]

transform”, IEEE Trans.on Cqmm.,COM-26, pp.934-936, 1978.
Owens,R.M.,JaJ aﬁ,j .,“A VLSI chip for the Winograd/Prime Factor
Algorithm to compute the Discrete Fourier Transform”, IEEE Trans.
Acoust.,Speech,Signal Processing, vol.ASSP-34, pp.979-989, Aug.’86.
Pei,S.C.,Wu,J.L.,“Split radix fast Hartley transform”, Electron.Lett.,
vol.22, pp.26-27, Jan’86.

Silverman,H.F.,“An introduction to programming the Winograd Fourier
transform algorithm (WFTA)”, IEEE Trans. Acoust.,Speech,Signal
Processing, vol. ASSP-25, pp.152-165, 1977.

Sorensen,H.V.,Jones,D.L.,Burrus,C.S.,Heideman,M.T.,“On Computing
the Discrete Hartley Transform”, IEEE Trans. Acoust.,Speech,Signal
Processing, vol. ASSP-33, no.4, pp.1231-1238, 1985.
Vetterli,M.,Nussbaumer,H.J.,“Simple FFT and DCT algorithms with
reduced number of operations”, Signal Process., pp.267-278, 1984.
Winograd,S.,“On computing the discrete Fourier transform”, Math.

Comput., vol.32, pp.175-195, 1978.

31

L Appendix 1
~ Part A :

I;I(k‘l,k‘z) = sz(nl,nz)cas—nk (1)

.n2 ni

= \/_ sz(nhn2)ca’s—(KlK3nlk1 mod N + Ksz4n2k2 mod N
ng m1

+ K Kynik; mod N + K3;K3nzky mod N — aN),where a = 0 or 1(2)

In order for two dimensional nesting to be possible, the constants K;, K;, Ks,
K4 have to be chosen such that Ky K ni1k, mod N and K3K3nqoky mod N are zero.
K, = aN; and K, = §N; guarantee the first term to be zero. Since N; and N, are
relatively prime to each other, we can choose K; = fN; and K3 = vN; and make

the second term zero. Expression (1) then reduces to

2
325" #(ny,ng)cas — (a7N2 niky mod N + B6N2nzk, mod N)

Hby) = \/— oy N
(3)

By choosing @ = 8 =1, v = N; ' mod Ny, § = Ny mod N, we get

I-:T(kl, k) = Z z #(ny,n2)cas —(N2n1k1 mod N + Ningkz mod N)

\/_ ng Ny
2
= \/___ Z Z #(ny1,nq)cas (Fnl ko + Fﬂ'nzkg)

nz nj
N 27 2
= \/_]7- > {Z #(ny,nz)cas Flnlkl} cas -ﬁ;ngk2
ng ni

2 o . 27 or
_ﬁ %: {; £(nq,nq)sin V, nlkl} sin —N—2n2k2 (4)

32

Part B :

H (k1, k2) can also be expressed as
. 1 2
H(ky, ko) = W% {; &(nq,nq)cos -Nzrl-nlkl} cas sz—:ngkg

+—\—/LJV %: {; &(n1,n2)sin ?V—tnlkl} cas (—%nzkz) (5)

2

1 2
LetA(kl, ng) = \/—N Z .’2‘(7’&1, ng)cas ']vﬂ'nlkl, then
ny ° 1

. 1 Nzl 2
H(kl, kg) = A(k‘l,O) -+ 5 Z {A(k], nz) + A(N1 - kl, TIQ)}CCLS Fﬂ'nzkz
ny=1 2
17t 27
+ - Z {A(kl, n2) - A(N1 - kl, ng)}cas - _ngkz
2 np=1 N2
1%t 2
= A(kl,O) + § Z {A(kl,nz) + A(N1 - kl,-ng)}cas —ﬁ—ngkg
na=1 2
1 Np—-1 ' 2
+§ Z {A(kl, Ng et n2) - A(Nl - k], N2 -_ nz)}cas '—'(le — Nz)kg
No—=ng=1 N2
1 Np-—-1
= A(k1,0) + 5 Y {A(k1,n2) + ANy — ky,n2) + A(ks, Ny — ng)
np=1
2w
—A(Nl — kl,Nz - nz)}cas —’ngkg
N,
Ny-1
2 2
= E B(k1,n2)cas lngkz, (6)

Ny

nz=0
where B(0,n;) = A(0,n2) for 0 < ny < N; — 1,
B(k1,0) = A(k1,0) for 0< k; < Ny —1 and
B(k1,n3) = [A(ky,n2) + A(Ny — k1,n2) + A(k1, Na — ng) — A(Ny — k1, Ny — n3)],
for1<kh <N —land1<ny,<N,-1.

33

Appendix 2

2 A 0 .W

_]\7 % ; y(nl, nz)COS [—]-\Zfr—nk + ,2_N_k]

2 2

= =5 X i, nz)eos [(KiKsmak mod N + KyKanzhy mod N
n2 ni

+ K1K4n1k2 mod N -+ K2K3n2k1 mod N — (lN)

C(ky, ks)

+ 5= (Kky mod N + Kk mod N — bklkzN)] ™

where a is a positive integer constant. Two dimensional nesting is possible only
if the cross terms, namely, K3 K yn 1k, mod N and KyK3nzk; mod N are zero. A
choice of K; = aN; and K4 = §N;, where o and § are positive integer constants
guarantee the first term to be zero. Since Ny and N; are mutually prime, the second
term can be made zero by choosing K; = SN; and K3 = vN,, where 8 and 7are

positive integer constants. Equation (7) then reduces to

. 2 2
ki, ks) = = X3 9(m,ma)eos [-N’i(a»yN;nlkl mod N + B6N?nyk; mod N — alN)

n2 Ny

+ 5=(yNok1 mod N + N1k mod N — bklkzN)]

2 2
= =2 S, ns)eos |r(arNEnaky + B5N;nak, — GN)
+ L(')’-N.Zkl mOdN+6N1k2 mOdN""bklkzN) s 8
2N

where 4 is an integer constant. We define two functions s(k,) and #(k;) such that
3(k1) = (yNzk1 mod N)/(2N;k;) and t(k;) = (6N1k2 mod N)/(2N1ky). It is obvi-
ous that s(k;) and t(k;) can be predetermined. We choose a = 8 = 1,

v = N; ' mod Ny, 6 = Ny' mod N,. On substituting these values into equation (8)

we get
. 2 . ki | nok;
Ol k) = = ,
(K1, k2) N%;y(nl n3)cos [27r (N, + ,)
T
+ 5=(2Nakrs(k) + 2Nikt(hy) bklkzN)]
2 R T T
=]—V- g;y(nl,m)cos [Fl@nl + S(kl))kl + E(an + t(kQ))kg —_ gbklkz] R

(9)

34

Appendix 3
One dimensional DHT can be expressed by
H = SyCnTyw, (10)

where Sw, Cn, T are defined as in section 2.2. Let H be a permutation of H, such
~ that A = (HO)HQ)H(N —1)---H(R)H(N —k)--)T,1 < k < |[N/2|, and N is

odd. H is thus equal to PH, where P is a permutation matrix with the following

characteristics :
For odd ¢, P, [i/2]) =1
For even ¢, and i # 0, P(i, N —i/2) =1

P(0,0) = 1.
H can thus be expressed as

f{ == gNéNTNm, (11)

where Sy = PSy. To get the output in the form of H , all we need is to modify
the matrix Sy to Sx. Since both P and Sy are known beforehand, Sy can be
precomputed. This modification results in an entire row getting permuted without
changing the order of the elements in a row. So, we do not need to modify Ty in
the computation of DHT of rows.

Example :

For N = 5, P takes the followingform | 1

35

Appendix 4

Let A = Sn,Cn, T, &.

In the first step we have to ensure that A(ky, N2), A(Ny — k1, n3), A(k1, N2 — ny),

A(Ny — k1, Nz — ng) will be adjacent to each other. This can be made possible by

1. permuting the columns of & such that z(k;,n;) and z(k;, N, — n;) are adjacent
to each other, for 1 < n, < Ny — 1.

2. replacing Sy by Sy as explained in Appendix 3.

Let A(ky,n3) = A(ky,n3) + A(Ny — k1, nz) and

A(Ny = k1,n2) = A(k1,n2) — A(Ny — k1, ng), for 1 < ky < |N1/2). This is for odd
N;. For even Ny, A(Ny/2,n;) = A(N1/2,7n,). A can thus be expressed as A = PA,

where A and A are the two matrices defined above. The matrix P has the following

characteristics :
For odd 1, P(i,7)=1; P(i,i +1)=1.
For even ¢ and ¢ # 0, P(¢,:) = —1; P(z,i — 1) = 1.

P(0,0) = 1.
Thus A = PSNléNlTNIw = S"NléN,TN,i, where .S"N1 = PS'NI. Since P is known
beforehand, Sy, can be precomputed. Thus A(ky,n2) + A(Ny — k1,ny),
A(ky,nz) — A(Ny — kyyna), A(kr, N2 — ng) + A(Ny — ky, Np — ny) and
A(ky, N2 — ng) — A(Ny — k1, N2 — ny) are adjacent to each other.

Example :

For N =5, P takes the following form | . 1 -1

36

Appendix 5

We illustrate Scheme 4 of DCT (DHT-DHT) with the help of an example.
Let N = 35 with N; = 7 and N; = 5. The matrices S7, C7, T7, S5, Cs, T5 can
be derived from the small n algorithms (n = 5,7). C is obtained by negating the

imaginary entries of C, S is obtained by permuiting the rows of S as explained in

Appendix 3.
(1 1 1 1 1 1 1
1. . 1 1 1 1 1 1
11 1 1 1 1 1 : .1 -1 -1 . 1
. 11 1 1 ., -1 -1 -1 . .. =1 1 1 -1 .
Sr=11-1 . -1 1 -1 . -1 Tr=].-1 1 . . 1 -],
11 -1 ..-1-1 1 . 1 .01 1 =1 1 =1 -1
11 . -1 1 -1 . 1 -1 S S L T
\11 .1 101 .1 g c. 11 =1 -1
\ . 1 -1 . . 1 -1
(1.00 Ce .)
. =117 .. .)
. 079 .
) .. 006 . . . i
G = 0.73,
.. 0.44)
. -034 .)
. 0.53)
\ . —0387
11 1 1 1
:1 1 1 -1 o b
) -1 . -1 -1 -1
S={11 1 -1 1 [, L= "1 7] 1 -1
11 -1 1 1 : Lol 1
11 -1 -1 -1 1 -1
1.00)
. =125
A) . 056 .
Cs = . 095 . ’
. . 154)
. ~0.36

37

