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In this paper we consider the problem of constructing a network over which a
number of commodities are to be transported. Fixed costs are associated to the con-
struction of network arcs and variable costs are associated to routing of commodities.
In addition, one capacity constraint is related to each arc. The problem is to determine
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1 Introduction

Network design problems occur in many applications, including transportation, distribution,
communication, computer, and energy systems. In such problems, there exists communica-
tion of some intensity between selected nodes of an underlying graph, and this traffic travels
along arcs which may have finite capacities. A central question to be decided is which arcs of
the underlying graph should be included in the network design. In the fixed-charge network
design problem, a tradeoff between operating costs and network construction costs is tar-
geted. A larger network may cost more to build but may reduce operating costs by including
more attractive origin-destination paths. Conversely, a smaller network may increase the
operating costs. This problem comprises strategic, tactical, and operational decision-making
and includes a number of problems as special cases, such as shortest path, minimum span-
ning tree, plant location, Steiner tree, and traveling salesman problems (Magnanti and Wong
[7]). Although other approaches can be more useful for evaluating a small number of choices
or for modeling networks with uncertainty, integer programming formulations allow one to
pick a quantitatively good solution from a large feasible solution space.

This particular network design problem, like many others, is NP-complete (Johnson et
al. [4]). A number of techniques have been used for fixed-charge network design problems,
including Benders decomposition, branch-and-bound, Lagrangean relaxation, dual ascent,
and linear programming relaxations (see the survey by Magnanti and Wong [7]). In particu-
lar, Balakrishnan et al. [1] achieve good results with a dual ascent procedure for large-scale
problems. However, the capacitated problem has received little attention. Capacitated min-
imum spanning tree problems have been solved using branch-and-bound, by Lagrangean
relaxation of the integer programming problem, and by linear programming relaxations (see
the survey by Minoux [8]). A fixed-charge capacitated network design problem with only one
source is studied by Khang and Fujiwara [5], who use Lagrangean relaxation and subgradient
optimization to get a lower bound and a scaling heuristic to obtain an upper bound.

In this paper we present an integer programming formulation of the fixed-charge capaci-
tated network design problem and extend the dual ascent method of Balakrishnan et al. [1]

to this problem. While as Balakrishnan et al. [1] predict, the dual ascent method by itself



cannot find good lower bounds for the capacitated problem, it is clear that increasing the vari-
able cost of bottleneck arcs (the capacity of which is exceeded in the initial primal solution)
will force the algorithm to include additional paths in the network. The proposed algorithm
iteratively updates the variable cost bottleneck arcs, thus increasing the lower bound. We
show that the algorithm generates a sequence of lower bounds and terminates with a primal
feasible solution. Experimental results on problems with 20 to 60 arcs show that the lower
bounds obtained are better than those achieved by linear programming relaxations.

The motivation for this work stems from the material handling network design problem
of manufacturing facilities. Given a steady demand pattern in a job shop environment, the
objective is to form a material handling network that minimizes the cost of moving parts
between selected nodes (resource input and output stations) and the cost of constructing the
links in the network (material flow paths). Capacity constraints on each arc limit the total
volume of parts which can use the arc for transport in order to prevent traffic congestion. The
general problem has not been previously studied, despite its applicability beyond material
handling systems design. For related work in the material handling system area see Chhajed
et al. [2] and Kim and Tanchoco [6].

The primary contribution of this paper is the proposed solution techniqﬁe, which yields
good lower and upper bounds and can be applied to large-scale problems. We emphasize
the derivation of lower bounds, since they can be employed to evaluate heuristic solution
algorithms and can be embedded in branch-and-bound implicit enumeration procedures to
obtain optimal solutions.

The paper is organized as follows: Section 2 presents the integer programming formulation
of the fixed-charge capacitated network design problem, as well as the dual problem of the
linear programming relaxation. In Section 3 the dual ascent procedure is described, some
associated definitions and properties are presented and the labeling method used by the dual
ascent scheme is discussed. In Section 4 the proposed iterative procedure for finding a good
lower bound and a primal feasible solution is presented. Section 4 also includes the proof that
a lower bound is generated at each step of the procedure. Section 5 presents a small example
to demonstrate the steps of the proposed algorithm. In Section 6 our computational results

for a number of problem sets are discussed. The conclusions of this study are provided in



Section 7.

2 Mathematical Formulations

Consider an undirected graph G = (N, A), the vertices of which represent possible origin
and destination points for the transportation of discrete physical goods. The arcs of G are
alternative route segments for the transportation system. The design model targets the
optimal selection of arcs to be included in the network, which depends upon the tradeoff
between fixed construction costs and variable operating costs.

In the model presented below, there exist multiple commodities representing distinct
physical goods with different nodes of origin and destination. Let K denote the set of these
commodities. Several units of commodity k are to be transported from the point of origin,
O(k), to the point of destination, D(k).

The model contains two types of variables. The first type models discrete design choices
and the second models continuous flow decisions (Balakrishnan et al. [1]). Let y;; be a binary

variable defined as follows:

1 if arc {,7} € Ais included in the network design
Yij =
! 0 otherwise
Also, let ach denote the fraction of the flow of commodity k£ that travels on the directed
arc (%,7). Although the network is undirected, the flow is directed and is characterized by
an origin and a destination. To capture this orientation requirement, let A be the set of

directed arcs that correspond to A; i.e. for each undirected arc {i,5} € A, (4,j) € A and

(4,7) € A denote the corresponding directed arcs with opposite orientations. Then, if (z,y)

k

is the vector of design and flow variables, with z = (z7;) and y = (y4;), the network design

problem can be formulated as follows.
Problem CFP(G) (Fixed Charge Capacitated Network Design Problem)
minimize Z=Y > cfjacfj + > Fuyi (1)

kEK (i,j)EA {ni}eA



subject to :

1 ifi=O(k)
ok —Sak={ 1 ifi=DKk) VieNkeK 2)
JEN leN
0 otherwise
I;{fk(wfj +ai) < By V{ij}eA (3)
ok <y WijleAkekK (4)
>0 VG,j)eAkekK (5)
yi; €{0,1}  V{ij}ed (6)

In this formulation, F;; is the non-negative fixed-charge attributed to arc {z,5}. The
cost, cfj, of routing flow from commodity k on the directed arc (¢, ) is scaled to reflect the
unit arc cost and the total flow for this commodity. In other words, if f; units of commodity

k must be transported, and & is the per unit arc routing cost for this commodity, then
1Y 1] g
cii = fi

The objective function Z of (1) reflects the basic tradeoff between routing cost savings
and fixed costs for using network arcs. Constraints (2) are the standard flow conservation
equations, imposed on each commodity k. They e}lsure the continuity of the transportation
path between each origin-destination pair. Inequalities (3) provide the arc capacity con-
straints. The constant B;; is the capacity of arc {i,j} € A and the lefthand side of (3)
represents the total amount of flow of all commodities through each edge {i,;} € A. The
forcing constraints (4) prohibit flow through inactive arcs, i.e. arcs {i,j} € A:y; =0.
Constraints (5) ensure the non-negativity of the continuous variables xfj, while constraints
(6) force the discrete variables y;; to assume binary values.

Relationships (1)-(2) and (4)-(6) define the fixed-charge uncapacitated network design
problem on G, hereafter designated as FP(G). Its formulation is due to Balakrishnan et al.
[1].

It is emphasized that the capacitated version of the network design problem, CFP(G),

is substantially more complicated than FP(G), and that the linear programming relaxation

does not provide a good approximation to the binary integer program (Balakrishnan et
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al. [1]). However, this model offers a more accurate mathematical representation of most
network design problems, since capacity constraints are often encountered in practice (e.g.
communication networks, material flow paths).

Let us consider the linear program formed by relaxing constraints (6) in problem FP(G).
The dual of this linear programming problem can be formulated as follows:

Problem DP(G) (Dual of the linear relaxation of FP(G))

maximize Zp=Y, Ulf)(k) (7)
keK
subject to :
uf —uf <o +wf; Vke K,(i,7) € A (8)
S (wh+wh)<Fy; Ve d 9)
keK
wh; >0 Ve K,(i,j) € A (10)

The dual variables u’B(k),‘v’k € K, and wf;,Vk € K,(1,j) € A, correspond to the flow
conservation equations (2) and the forcing constraints (4), respectively. Note that, since one
of the flow conservation equations (2) for each commodity k£ € K is redundant (Balakrishnan
et al. [1]), one of the corresponding dual variables can be set equal to zero. To simplify the
formulation, we have set ug(k) =0,Vk € K.

An important observation for the dual ascent method discussed in the following sections is
that for any given vector w = (wfj) that satisfies the dual constraints (9), the above problem

decomposes by commodity. Each subproblem is the dual of the shortest path problem from
origin O(k) to destination D(k) with respect to the modified arc lengths, &; = cf; + wfj

3 The dual ascent framework

In general dual ascent approaches explore the set of feasible solutions to the dual of the
linear programming relaxation of an integer program. In particular, the method we consider
computes approximate solutions to the uncapacitated dual problem DP(G). In doing so, it
provides a lower bound to the capacitated problem CFP((), which is further improved by

appropriate variable cost adjustments.



3.1 Preliminaries

Given the formulations of Section 2, we proceed with some definitions of sets and variables

that will be employed in the discussion of the dual ascent approach.

Definition 3.1 Q¢ is the convexr polyhedron formed by equalities and inequalities (2)-(3),
i.e., the set of feasible solutions to CFP(G).

Due to the particular structure of constraints (2)-(4), problem FP(G) can be decomposed
to shortest path subproblems, given a choice of binary variables y;;. This results to the

integrality property below.

Property 3.1 (Balakrishnan et al. [1]) There always exists an integral optimal solution
to the uncapacitated network design problem, FP(G).

Definition 3.2 For any integral feasible solution, (z,y), of the uncapacitated problem, let
H={{i,j}€A:yij=1} and H={(s,j) € A: {i,j} € H}.

Definition 3.3 For any integral feasible solution, (z,y), of FP(G), let Vk € K, Hy =
{(,j) € A: xf‘] =1} and Hy = {{i,j} € A: (i,j) € Hy V (5,%) € Hy}.

Definition 3.4 For any feasible solution to the dual problem, DP(G), let s,; be the slack

variable that corresponds to constraint (9) for {i,j} € A.

Since there exists an one-to-one correspondence between undirected arcs and slack vari-
ables, we will employ the term (non)zero-slack arc, instead of (non)zero-slack variable of

constraint (9) that corresponds to an arc. From the above definition, it follows directly that:
Property 3.2 For any feasible solution of DP(G), Fij = s,j+ Crex(wh+wk), v{i,j} € A.

The following lemma provides an expression for the primal objective function (1) of any
integral primal feasible solution of FP(G), in terms of the dual and slack variable values,

w,’-“j and s;;, respectively, of any feasible solution of the dual problem, DP(G).



Lemma 3.1 The objective function value, Z", of any integral primal feasible solution of
FP(G), (z,y), is
Zh=3% 3 (htuwh)+ 3 sty X wj
keK (i,j)eH* {i,j}eH keK (i,5)€H\Hy

where wfj and s;; are the dual and slack variables of any dual feasible solution of DP.

Proof  For any integral primal feasible solution (x,y), define the sets H, H, Hy and H;
Vk € K as in (3.2) and (3.3). Then, the objective (1) for (z,y) can be written as
=% Y &+ T R (1)
keK (i,j)eH {i,jyeH
since all other terms in (1) are zero.
From Property 3.2, Fi; = sij + Lirex(ws; + wf;). Substituting in (11) and transforming
the second summation from undirected to directed arcs, we obtain
Zh=3% 3 cht X st Y Y wg (12)
keK (i,j)eH* {i,i}eH k€K (i,5)€H
By grouping together the terms that correspond to each directed arc and each commodity,
(12) can be written as
h=3 Y (dHwh)+ X sty X w
keK (i,j)eH* {i,jyeR k€K (i,j)eH\Hy,

Q.E.D.

3.2 The labeling method

The labeling method of Balakrishnan et al. [1] is a dual ascent procedure motivated by

the decomposition of the linear dual problem DP(G) to duals of shortest path subproblems

(see section 2). Given a feasible dual variable vector w = (wf), each dual variable uf,
can be set equal to the shortest origin-destination path with respect to the modified arc
lengths &f] = cfj + wfj In fact, this is the optimal solution to the primal shortest path
subproblem. Therefore, as the values of the wfj variables increase (but remain dual feasible),
the corresponding shortest paths also increase. In this context, the labeling method increases

the dual objective function by increasing the wfj values and, thus, absorbing fixed-charges
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into the dual objective and simultaneously reducing the slack of some arcs. The maximum
increase occurs when the slack of some arcs is reduced to zero. Appendix A provides a brief
outline of the method and proper definitions for the sets Ny(k) and N,(k) that are employed
below.

In the remainder of this section, two important properties of the labeling method are

presented and an analytical expression for the dual objective is derived.

Property 3.3 (zero-slack path, Balakrishnan et al. [1]) For every commodity k € K,
all nodes in Ny(k) are connected to the destination D(k) via shortest paths containing only

zero-slack ares.

Property 3.4 (shortest path, Balakrishnan et al. [1]) At every step of the labeling al-
gorithm, u¥ Vi € N,k € K represents the shortest path distance from origin O(k) to node i,

using the modified arc lengths éfj = cfj + wf]

Given the above property, the following corollary can be derived in a straight forward man-

ner,

Corollary 3.1 At the termination of the labeling method, i.e., when O(k) € Ny(k) Vk € K,
the value of the dual objective function (7) is

Zp = Z Z (cfj_*_wzl'cj)

kEK (i,j)e Ak

where A¥ is the set of zero-slack arcs that constitute a shortest origin-destination path for

commodity k € K.

Proof Since the solution derived by the labeling method is dual feasible (Balakrishnan
et al.), the dual objective (7) is given by
Zh =3 upn (13)
keK
Consider a commodity k¥ € K. From Property 3.3 and since O(k) € Ny(k), it follows that
there exists an O(k)— D(k) shortest path containing only zero-slack arcs. Let A* be the set of

directed arcs in this path. Then, from Property 3.4, each dual variable u%( x) can be expressed



as the shortest path with respect to the modified costs éfj between an origin-destination pair,
ie.,

upgy = D, & (14)
(i.7)eAk

Equation (14) holds for every commodity ¥ € K. From (13) and the definition of the

modified costs we conclude that
Zp =3, > (ci+uwh)
keK (i,j)e Ak

Q.E.D.

4 Solution approach

In this section we present the proposed dual ascent algorithm, which extends the labeling
method of Balakrishnan et al. [1] to the case of capacitated networks. It is noted that the
sharpness of the lower bound derived by the algorithm directly depends upon the degree
to which capacity constraints affect the optimal solution of the network design problem. In

Section 4.2 we show that the algorithm generates a lower bound at each iteration.

4.1 The Iterative Dual Ascent (IDA) algorithm

Consider the dual feasible solution to DP(G) derived by applying the labeling method to
G. Let A, C A be the set of zero-slack arcs, i.e., A, = {{i,j} € A : s;; = 0}, and A, the
corresponding set of directed arcs, i.e., 4, = {(,7) € A: {i,j} € 4,}.

If G = (N,A,), then there exist two mutually exclusive alternatives for the convex

polyhedron Q¢ :
1. Qe = 0; i.e. there exists no feasible solution to the capacitated problem CFP(G").

2. Qe # 0; i.e. there exists at least one feasible solution to the capacitated problem

CFP(G).

If problem CFP(G’) is feasible, then no additional labeling steps are required to obtain

a network design that satisfies the capacity constraints. Furthermore, the lower bound
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cannot be improved by the dual ascent strategy. On the other hand, if problem CFP(G')
is infeasible, then we reduce the slack of non-zero slack arcs ({i,5} € A\ A,) and include
one or more of them in A, in order to obtain a new subgraph G’ of GG such that there exists
a feasible solution to CFP(G"). The basic idea stems from the shortest path property of
the dual solution derived by the labeling method (Property 3.4). Since the arcs of A, which
form the shortest paths with respect to the modified costs, éf?j, cannot accommodate all of
the commodities, flow must be directed to new arcs. This can be achieved by increasing the
cost of the current shortest paths in order to create new origin-destination paths (consisting
of zero-slack arcs) that satisfy the shortest path Property 3.4.

The underlying mechanism for the required flow diversion is straightforward. Bottleneck
arcs, {i,j} € A,, are identified and their variable costs cfj are increased for some commodity
k € K in an attempt to alter the origin-destination shortest paths. This variable cost increase
can be thought of as a penalty for violated capacity constraints. Subsequently, by re-applying
the labeling method, the slacks of additional arcs are reduced to zero. Consequently, by
iteratively implementing the labeling method and increasing the cost of bottleneck arcs, we
eventually obtain a set A, such that CFP(G’) has a feasible solution.

The following important issue should be emphasized. Our method seeks to obtain a lower
bound that is better than the one obtained by the linear programming relaxation. It is clear
that by altering the variable costs the value of the dual objective function obtained by the
labeling method is increased. However, it remains to be shown that the bounds obtained
by this iterative algorithm remain always below the optimum. In the following section, this
important property is proved.

Based on the definitions of the previous sections, we directly state the following algorithm
(Iterative Dual Ascent), which provides both a lower bound and a feasible design for the fixed-
charged capacitated network design problem. It is noted that Steps 2-4 are employed by the
labeling method discussed in Appendix A, while Steps 5-6 implement the flow diversion
procedure discussed above.

Algorithm IDA
Step 1 : initialization of dual variables and slacks

g1
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wh —0V(i,j) e A ke K
sij — Fy; V{i,j} € A
u¥ « shortest path from O(k) to node i, Vi € N,k € K
Zp — Thek Uhg
Step 2 : initialization of labeled/unlabeled arc sets
Ny(k) — {D(k)},Vk e K
Ni(k) — N\ {D(k)},Vk € K
Set CND = {k € K : O(k) € N,(k)}
Step 3 : evaluation of 6-increase
Select k € CND
Set A(k) = {(i,7) € A:7 € Ni(k),j € Na(k)}
Set A'(k) = {(z,7) € A(k) : cf; + w; — (uf — uf) = 0}
Calculate 8; = min{s;; : (1,5) € A'(k)}
Calculate 8; = min{c}; + wf — (ub —uf): (i,5) € A(k) \ A'(k)}
Set § «— min{éy, 62}
Step 4 : dual variable update and node labeling
wfj — (w,kj +6), sij — (si; — 6), V(i,7) € A'(k)
uf — (uF +6), Vt € Ny(k) and Z3 « (Z3 +9)
Update sets Ny(k) and Ny(k) by labeling (at most) one node:
If § = 61, sij = 0 for some (¢, ) € A'(k) set Ni(k) — Ny(k)\{z} and No(k) — Ny(k)u{e}
Set CND « CND\ {k}; f CND # 0 go to Step 3
If O(k) € Na(k), Vk € K, set Z}, = Z3 and go to Step 5
Otherwise set CND = {k € K : O(k) € Ny(k)} and go to Step 3
Step § : feasibility check on zero slack arcs
Set A? = {{i,j} € A:s;; =0}
Set G, = (N, A?)
if Qoy # 0 and ¢ # 1 set Zj, = Z%" and go to Step 7
if Qa, # 0 and ¢ = 1 set Zj, = Zp, and go to Step 7
if Qa; = 0 identify A = {{i,j} € A? that violate constraint (3)}

Step 6 : variable cost update

11



Set ¢, = min{s;; : {i,5} € A\ A2}

Select k, € K and {i,,7,} € A

Set cifj, = (i, + ¢4)

Set Z} = (Zp + ¢,)

g=q+1

Go to Step 2
Step 7 : termination

Output lower bound Z},

Solve the linear relaxation of CFP(G!) to obtain ¢ = (zf;)

Set yi; = 1,V{i,j} € Al: 25 >0

Output primal feasible solution (z,y)
The arcs of A which violate capacity constraint (3) and the excess flow on them are identified
by solving in Step & the linear programming relaxation of the problem of Eqs.(1)-(6) on an
augmented graph, G. This graph contains the arcs of A? as well as a copy of each arc in
Al

2. If A} is the set of these duplicate arcs, very large variable costs and zero fixed costs

are assigned to {i,7} € A/. In the optimal solution of the linear programming relaxation of
CFP(G), if some flow is routed to a duplicate arc, i.e. 3{i,j} € A : z¥; > 0, then problem
CFP(G) is infeasible. This follows from the fact that such flows cannot exist in the optimal
solution due to the large variable cost of arcs {i,7} € Aj. The formulation of the capacitated
network design problem on this augmented graph and the method for identifying arcs that
violate capacity constraints are presented in Appendix B.

In Step 6 the algorithm selects the combination of arc {i4,j,} € A and commodity
k, € K such that the excess flow is maximum. This arc and flow pair ({4,,7,}, k;) impacts

the capacity constraints most severely and the associated variable cost is updated; i.e.

f,-k"- = maw{fi’; :{e,5} € Ak e K}

qJ)q

where :-kj represents the excess flow for commodity k on arc {,j} (see Appendix B). The
following remarks clarify the way the IDA algorithm improves the lower bound and results

in a feasible design.
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Remark 4.1 Once the slack of an arc becomes zero, it remains so in every subsequent step

of the algorithm.

This is a direct consequence of the non-negativity of the slack variables and the fact that the
labeling method only decreases the slacks. If the slack of {¢,} becomes zero at any iteration
q of IDA, this arc always belongs to some shortest path(s) of this iteration; it may also be

included in additional origin-destination shortest paths. Consequently, A? C A+!.

Remark 4.2 At each iteration the IDA algorithm increases the value of the dual objective

. . y k
Zp by increasing the variable cost c;%; .

This is clear from Step 4, since at each iteration only non-negative constants (§) are added
to Zp. Furthermore, since the dual objective comprises shortest path lengths, increasing the

. k . o .
variable cost ¢;%; in Step 6 results in increased Zj,.

Remark 4.3 Algorithm IDA converges to a primal feasible solution of FPG(G) if such a

solution exists.

According to Remark 4.1, A? C A?*!. In addition, the stopping criterion guarantees that
the solution comprises a set of arcs that accommodate the flow requirements and respect
the capacity constraints. Thus, the only case that the algorithm IDA may not converge is
when the cardinality of A, is not increased in consecutive iterations. However, this can only
occur if there exists a single path between some origin-destination pair that is not capable

to accommodate the flow of the corresponding commodity, which leads to a contradiction.

Remark 4.4 The minimum non-zero slack (¢,) is selected in Step 6 for updating the variable

cost in order to guarantee the lower bound property of IDA.

This is required in order to obtain a sequence of lower bounds (see Section 4.2). If 4, is
set equal to any other non-zero slack, the bound obtained may be higher than the objective

function value of the optimal primal solution of CFP(G).
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4.2 The lower bound property of IDA for CFP

In this section we initially prove that the dual objective Zp,, which is evaluated by the first
application of the labeling method is lower than the optimal primal objective of problem
CFP(G) by at least ¢ (where ¢ = min{s;; : {s,5} € A\ A,}). This is true given that the
set of zero-slack arcs does not provide a feasible solution to the capacitated network design
problem, i.e. Qg = 0. Then, we extend this result to all iterations of the IDA procedure.

Assuming that CFP(G) has a feasible solution, let Z be the objective function value of
the optimal solution of CFP(G), (z*,y*).

Theorem 1 If Qg = 0, then Z* > Z% + ¢.

Proof Given an optimal solution (z*,y*) to CFP(G), the optimal value of the objective

function is

Zi=3 % eymi+ 3 Fuyj (15)

keK (i,5)€A {i,j}€4

If A7 = {{i,j} € Ay = 1} and A7 = {(5,§) € A: {i,j} € A2}, (15) can be written as

Zr=3% S &+ > F, (16)

keK (i,j)€AL {i.i}eAy
since all other terms in (15) are zero.
Consider now the graph G = (N, A%). Note that CFP(G?) has the same optimal
solution as CFP(G). An integral feasible solution to problem FP(G?) can be constructed
by:

1. solving a shortest path problem for each commodity k£ € K on G¥ with respect to the

arc lengths cfj

2. setting :cf‘] = 1 for all arcs in the shortest origin-destination path for commodity %, and

y;; = 1 for all arcs that belong to at least one of these shortest paths

The value of the objective function for this integral solution (z,y) is

ZC:Z E cfjmfj—i— Z Fijyij (17)

keK (ij)eAL {i.5}eAr

14



From definitions (3.2) and (3.3) construct the sets H, H, Hy and H; for (z,y). Note that
H C A? and H C A*. Then (17) becomes
Ze=Y, Y, &+ Y Fy (18)
keK (i,j)eH; {ij}eH
Since H C A, Yuqyer Fij < Tijyear Fij- Also, since Hy contains only the shortest path

arcs for commodity k, > jjem, cij < Yig)ea: © *. Summing the latter inequality over the

k
1] m

set of commodities and adding it to the former, we conclude that
zZr > 7, (19)
From Lemma 3.1 Z, can be expressed as
Ze=2 2 (e+wh)+ 3 si+ ) 3w (20)
keK (i,5)€Hy, {i,j}eH k€K (i,5)€H\Hy
where (u,w) is the dual feasible solution derived by the labeling method when applied to
G = (N, A), and s;; the associated slacks. The second and third terms in (20) are always
greater than or equal to zero, since the slack and dual variables are non-negative (by definition
and feasibility, respectively). Thus,
Ze2 3 D0 (c+wp) (21)
kEK (i\j)€H,
Note that Hy contains arcs that form an origin-destination path for &, the length of which, in
terms of &F;, is greater than the one derived by the labeling method (see Property 3.4). Let A3
be the set of zero-slack arcs that constitute a shortest origin-destination path (with respect
to the modified costs ¢; ) for commodity k& derived by the labeling method. Consequently,
> (cfj + wfj) Y (cf] + wfj) (22)
(i!j)er (11])€AZ
Summing both sides of (22) over all commodities ¥ € K, we obtain
2 2 1J+w1] 23 > ”+w (23)
k€K (i,5)€H, keK (i,j)€Ag

From Corollary 3.1 Z3 = Yicx E(,,J)GAO(C + wk Thus, comparing (19) and (23) we
conclude that

Z. > 75 (24)
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By hypothesis, Q¢ = 0. Since G' = (N, A,), there exists at least one arc in the optimal
solution that does not belong to A,. Otherwise, G’ would contain the optimal solution

(contradiction). Therefore,

i, i} € AT\ A, (25)

The slack, s;,j, of {41,71} is non-zero by definition of 4,, i.e., s%; > 0.

Reconsider now H, i.e., the set of arcs that belong to the shortest path, with respect to
the original costs cf;, for at least one commodity k¥ € K, in problem FP(G?)). H may or
may not be a subset of A,.

Case 1 HC A,

In this case, H is a subset of the set of zero-slack arcs produced by the labeling method.
Note that H C A, implies that H C A, and from (25) we have {i;,7:} ¢ H. In addition,
since {i1,/1} € A* and H C A? by definition, we obtain

> Fi2Fnp+ Y, Fj (26)
{i.j}eAl {ii}eH
Since Hj is the shortest path (with respect to the original arc costs, ;) for commodity

ke K,

Yo odhaf > 3 & Vkek (27)
(i.g)eA: (1,7)€Hx

Summing both sides of inequality (27) over the set of commodities K, adding the result to
(26) and taking into account the definitions of Z* and Z., (16) and (18) respectively, we

obtain

Z: 2 Rlyjl + Z, (28)

By definition, ¢ < s7 ;. < Fy;,, since each slack is less than or equal to the associated fixed

cost and ¢ is the minimum non-zero slack. Considering that Z. > Z§ (from 24), inequality

(28) results in
Z;22Z.+¢22Zp+¢ (29)

Case 2 H ¢ A,

In this case, the integral solution (z,y) defined at the beginning of this proof comprises

arcs with non-zero slack in the dual solution (u,w). Note that, H € A, implies H € A,.
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Thus, there exists a non-zero slack arc in H \ A,; i.e.

H{ig,jz} € I_{ \ /io 152, >0 (30)

1272
Adding the term }(; 1cpq si; in both sides of inequality (23) we obtain
2 2 (gtuwit X sz X (dituh)+ X sy (31)
k€K (i,j)€H) {ij}eH kEK (i,j)€AR {ij}eH
From the definition of Z,, (20), Corollary 3.1 and the non-negativity of the dual variables,

w, (31) results in

>75+ ¥ s (32)
(ijyeH
since {i2,52} € H\ Ao, 8ij, < Ypijjensij and ¢ < si,. Then, inequality (32) can be
written as
ZE>Zp 485,270+ ¢ (33)

122

Finally, from (33) and (24) we conclude that
Z;>Zp+ ¢

Q.E.D.
Theorem 2 below, shows that the bound Z} obtained from each iteration ¢ of algorithm

IDA is a lower bound to the optimal solution of CFP(G).
Theorem 2 At each iteration q of algorithm IDA, Z} < Z*.

Proof  This result will be shown by induction. Consider the first iteration, i.e. ¢ = 1.
In Step 5 of IDA, there are two possibilities. Either Qg # 0 and the algorithm terminates
or Qg = @ and the algorithm proceeds to identify capacity constraint violations. In the
first case, Z}, = Z§, and Z}; is a lower bound to the capacitated problem, since Zg is a
lower bound to the uncapacitated problem. In the second case, Z} is updated in Step 6:
Zy = Z3 + é1. According to Theorem 1, Z§ + ¢; is a lower bound to the optimal solution
of the capacitated problem CFP(G). Thus, for ¢ =1, Z}, < Z*.

Assume that Zjj < Z* holds for iteration ¢ = I. It will be shown that this inequality also
holds for iteration ¢ = 1 + 1.
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If QGIH # 0, the algorithm terminates with Zf' = Z} + 4, i.e. the lower bound of
iteration [ (Step 5). From the induction hypothesis, Z}' < Z¢.

I Qa,, = @, then it is left to show that Z5!' + ¢y < Z, where ZJ' is the dual
objective function value after Step 4 of iteration [+ 1. Note that after iteration [ only one of
the variable costs was altered (see Step 6). Consequently, during iteration /4 1 the labeling
method will provide a dual objective, Zi?, that may differ from the one derived in iteration

[ by at most ¢, i.e.
ZF < Zp+ ¢ (34)

Since C_)G;+1 = (), there exists at least one non-zero slack arc that is active in the optimal
solution of the capacitated problem but is not included in the dual-ascent solution since its
slack is positive. Let {i’,5'} € A*\ A'*! be such an arc. Since A} C Al*! (by construction),
then (¢,j') € AL

Consider now the commodity k; for which the cost of arc {7, 7} has been modified in
Step 6. Obviously the shortest paths with respect to the modified costs in iteration / do not
contain arc {i’,j'}. Let H’ be the set of arcs of the shortest origin-destination path, with

k

respect to &5, for commodity & that includes arc {i’,5'} (see Fig.1). Then, if

Y (ftud+ X osi— X (d+wh) s
(ij)eH’ {i,j}eR! (i,)eA¥
the dual ascent iterations in Step 4 would reduce the slack of arcs {7,5} € H' to zero and, thus

would include arc {#’,;'} in A%!. This contradicts our conclusion above, and consequentl
0 y

Yo truw)+ Y sii— Y (Hwl) > e (35)

(3.5 EH GAER (ijyeat
Let us now consider the set of zero-slack arcs after Step 6 of iteration [+ 1. There are two
alternatives: i) A’;Hl C AZ; i.e., the optimal solution contains all arcs with zero-slack at
iteration [ + 1, and ii) A¥*" € A*; i.e., the optimal solution does not contain all zero-slack
arcs in AF.
In the first case, the difference between Z5! at iteration [ + 1 and the optimal objective
function value Z* includes at least the unabsorbed fixed cost of {s',j'} € Ar\ A'*!. This is

because the fixed cost of the optimal solution contains the fixed cost of all arcs in the path
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Aﬁl plus the cost F,'ljl. Since Filjl Z Sitgt Z ¢1+1,
78 + b < 2} (36)

In the second case, flow should be diverted from path A%! to path H', or some segments
of path A%*! should be eliminated and path H'’ should be included. From inequality (35),
we know that H' has length at least ¢; greater than A’;l. Since the increase of cfl’jl by &
has not transformed H'’ to the shortest modified cost path, the difference between the left
and right hand side of inequality (35) has not been eliminated. Consequently, we need to
further increase the length of the current path by at least the minimum slack of the arcs in

H'. Since ¢4, is less than or equal to this slack, we obtain
Zgt + ¢ < 2 (37)

Furthermore, considering that Zj* = Z5' + ¢! and iﬁequalities (36) and (37) we have
Z{:’l < Z*, i.e. the inequality Z;, < Z* holds for ¢ = | + 1. Consequently, it holds Vg € V.
Q.ED.

5 An illustrative example

The sample network shown in Figure 2, will be employed to illustrate the application of
algorithm IDA. The graph consists of eight nodes, N = {0,1,...,7} and nine arcs, A=
{{0,2},...,{5,7}}. Two commodities are to be transported :

e five units of commodity 0 (fo = 5) from node O(0) = 0 to node D(0) = 6
e three units of commodity 1 (fi = 3) from node O(1) =1 to node D(1) =7

All unit variable costs (cf;) are set equal to one. Thus, cf; = fr Y(4,7) € A, and the fixed
charge is the same for each arc (F;; = 10). Also, all arc capacities are assumed to be equal
to seven units of flow (B;; = 7). ’

Note that the solution of the linear programming relaxation of CFP(G) on this graph

yields Zrp = 79 and the optimal objective function value is ZF = 95.
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At the beginning of IDA, the dual variables uQ and u} are set equal to the shortest origin-
destination distances for flow 0 and 1, i.e. 15 and 9 respectively. After the first termination
of the labeling method, i.e. after Step 4 of the first iteration (¢ = 1) of IDA, the non-zero

dual and slack variables assume the following values:

o u} =10, uf =10, ud = 15, u} = 13, ud = 12, u} = 16, ud = 12, u} = 16, v} = 27,

b =19, ul = 42, ul = 9, u = 15, ul = 32
o wy, =10, wi, =10, wd; =7, wis = 3, wiy = 10, wl = 10, wis = 10, wi, = 10
® So3 = 10, S94 = 10

The set of zero-slack arcs is A = {{0,2},{1,2}, {2,5},{3,5},{4,5},{5,6},{5,7}} and G} =
(N, A}). Since Qg = 0, IDA uses the augmented graph to identify the arcs for which the
capacity constraints are violated (see Appendix B). In this case, only the capacity of arc
{2,5} is violated. Thus, the cost cJ is increased by the minimum non-zero slack (¢; = 10),
and the procedure returns to Step 2. Note that commodity £ = 0 is chosen for variable cost
update since fo > fi. The dual objective is Z}, = ud 4+ ul = 74 and the lower bound is
Zjy=Zh+ ¢ = 84.

After the second iteration of the dual ascent procedure (Step 4 of IDA) the non-zero dual

and slack variables assume the following values:

o ud =10, v = 10, u = 15, u} = 13, u = 22, u} = 16, u§ = 22, uj = 16, v} = 37,

ul =19, ud =52, ul =9, ud =15, ul =32

. w82 = 10, w}z =10, wg3 =2, wg4 =2, wg5 =T, w%s =3, wg5 =10, wgs =10, wge =10,

wi, =10
® 823=8,324=8

The set of zero-slack arcs is A2 = A and G = (N, A2). Since Qg = 0 and ¢, = 8, the
algorithm sets c)s «— (c35+8) and returns to Step 2. The dual objectiveis Z3 = ul+ul = 84

and the lower bound is Z} = Z3 + ¢2 = 92.
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After the third iteration of the dual ascent, A3 = A and G = (N, A3). Now, Qg # 0
and the algorithm terminates with Z3 = Z% = 92. Note that

Zip=19<2Z}=92<7*=95

as expected. Finally, the cost of the feasible network design on Gj is Z, = 95.

6 Computational results

Algorithm IDA was implemented in C on a Sun Spark IPX Workstation. Numerous compu-
tational tests were performed. In this section we present the results of randomly generated
case problems with number of arcs varying from 20 to 60. These are mainly problems on grid
graphs (i.e. the degree of each node is at most 4). For each case, 50 different problems were
solved. The parameters employed to generate the case problems were uniformly distributed

on the ranges shown in Table 1.

Table 1: Ranges of randomly selected parameters in case problems

Parameter Range
Fixed charge 5 - 40
Number of commodities 10 - 35
Commodity flow 4 - 12
Arc capacity 30 - 250

We emphasize the comparison of the lower bounds obtained by the linear programming
relaxation and the dual ascent algorithm. However, we also note that the designs gener-
ated by the dual ascent algorithm can be employed as initial feasible solutions for local
improvement heuristics (e.g. add-drop heuristics or random search techniques).

Table 2 shows the number of test problems for which the dual ascent method (IDA)
provides a sharper lower bound than the linear programming relaxation (out of 50 problems
per case).

Analysis of these results showed that in the few cases for which Zpp < Z;, the networks

consisting of the arcs that belonged to the shortest path (with respect to the variable costs cfj
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Table 2: Lower bound comparison (50 problems per case)

Number of arcs Number of times Z;, > Zrp

20 43
30 45
40 41
30 42
60 46

for at least one commodity were feasible for CFP. In other words, routing every commodity
on a shortest origin-destination path violated no capacity constraints. In addition, for these
cases only one step of dual ascent procedure was executed during the application of algorithm
IDA. Consequently, no variable cost updates (Step 6) were performed and the lower bound
obtained by IDA was equal to the dual objective function evaluated by the first application
of the labeling method. Since the latter is an approximate solution to the dual of the linear
relaxation of the uncapacitated problem, it is clear that Zyp > Zj was expected in such

Cases.

Table 3: Comparison of IDA solution vs. optimum and lower bounds ( average % deviation)

Optimum Dual ascent Linear relaxation
Number of arcs Mﬂ x 100% ZLD.ZA”,__ZHL x 100% ZID?L_TZLE x 100%
20 3.7 6.5 10.3
30 4.5 7.2 10.8
40 - 7.4 11.9
50 - 8.1 12.2
60 - 8.3 12.6

Columns 3 and 4 of Table 3 present the average deviation between the value of the
objective function of the feasible network design obtained by IDA (Z;p4) and the two lower
bounds, Zrp and Zj, respectively. The results show that the lower bounds derived by the

dual ascent approach are much tighter, on the average, than those of the LP relaxation.
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Note that the examples in which capacity constraints are not active are included in these
results. Furthermore, column 2 of Table 3 presents the average deviation of the IDA solution
(Z1pa) from the optimum (Z*) for the 20 and 30 arc examples. The optimum solution was
evaluated by a branch-and-bound scheme. It is worth noting that for most of these cases
the deviation from the optimum was not very large (less than 12% in the worst case).
Figure 3 relates the quality of the lower bounds to the ratio of fixed to average scaled
variable cost. Recall that the fixed cost Fj;, and the variable cost cf; for commodity & € K,

were the same for all {z,5} € A. The following terms are defined for this comparison:
_ F; . N "
or= m, where | K| is the cardinality of the set of commodities

e D(z) = average percentage difference between dual ascent and LP-relaxation lower
bounds for all those problems with r € (z — 0.5,z]. For example, D(r) for r = 1.5 in

Figure 3 includes all test problems for which the ratio r is between 1.0 and 1.5.

Table 4 shows the number of test problems in each range.

Table 4: Distribution of r for example problems

Range of r Number of problems

0.0-0.5 28
0.5-1.0 31
1.0-1.5 29
1.5-2.0 32
2.0-2.5 32
2.5-3.0 30
3.0-3.5 33
3.5-4.0 35

The trend displayed in Figure 3 is not surprising. The dual ascent method proceeds
by including unabsorbed fixed-charges to the dual objective; when it terminates, the fixed-
charges of the arcs that have zero slack have been included in the lower bound. On the other

hand, the linear programming relaxation may include only fractions of arc fixed-charges.
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Consequently, it is expected that higher values of the ratio r will result in improved dual
ascent lower bounds.

Finally, Figure 4 shows the difference between the dual ascent and LP-relaxation lower
bounds, as a function of the overflow (flow on arc copies) after the first iteration of algorithm
IDA. The horizontal axis of the graph represents the percentage (s) of overflow, with respect

to the total network flow; i.e.
.= Tkek L(ig)eati;
Lkex fr

The vertical axis shows the percentage difference between the lower bounds as defined above.

As shown in Figure 4, the larger the overflow after the first iteration, the better the dual
ascent lower bound. This was also expected, since a large flow on arc copies means that the
solution derived by the labeling method after the first iteration of IDA cannot accommodate
large amounts of the overall material flow. Consequently, the linear programming relaxation
does not provide a close approximation of the mixed integer program. The number of test

problems in each region of s is shown in Table 5.

Table 5: Distribution of s for example problems

Range of s Number of problems

0-5 89
5-10 73
10-15 52
15-20 24
20-25 12

7 Conclusions

In this paper the multi-commodity fixed-charge capacitated network design problem has
been studied. This work is motivated by the design of material handling flow paths in a
manufacturing facility. Applications of the problem can be also found in othe areas, including

transportation, communication, and distribution networks.
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An iterative dual-ascent procedure that determines a lower bound and a feasible solution
to the problem has been developed. The proposed algorithm includes additional arcs to
the network iteratively by increasing selected arc variable costs. This method is similar to
the Lagrangean concept of increasing the multiplier values of violated constraints to direct
the solution towards primal feasibility. Extensive experimental results have shown that the
resulting lower bounds are sharper than those obtained by the linear programming relaxation.
In addition, the procedure yields good primal feasible solutions.

The lower bound evaluation procedure can be embedded in a branch-and-bound scheme
to derive optimal solutions to the mixed integer program and may also serve as a basis for
comparison of heuristics. The application of this procedure to the facility design problem

can be found in Ioannou et al. [3].
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Appendix A

This appendix provides a brief description of the labeling method used in the proposed
algorithm. This method generalizes Dijkstra’s algorithm for shortest path and the algorithm
of Wong for Steiner tree problems.

The labeling method, as the name implies, successively labels nodes, starting from each
commodity’s destination and proceeding towards its origin. Two sets are required Vk € K:
i) Na(k), the set of labeled nodes for commodity k € K, and ii) N;(k) = N \ N,(k), the set
of unlabeled nodes. At each step, at most one arc (¢, 7) is included in the origin-destination
shortest path for one commodity by reducing its slack to zero. For this arc, node j was
already labeled and node ¢ now enters Ny(k). The dual ascent strategy of the labeling

method can be summarized as follows.
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1. Initialize the dual variables: wf; = 0, “Ii)(k) = shortest O(k) — D(k) path with respect
to the arc lengths c&, Ny(k) = {D(k)} Vk € K.

150
2. Select k € K and (i,j) between Ny(k) and Nz(k). Increase wf; and reduce the corre-

sponding slack s;;.

3. If si; equals zero, include node ¢ in N3(k). Update the shortest path lengths, u*
Vj € Ny(k). This increases the value of the dual objective.

4. Repeat steps 2 and 3 until O(k) € N,(k), Vk € K.

For an extended description of the labeling method, see Balakrishnan et al. [1].

Appendix B

In this appendix the generation of the augmented graph used to identify arcs that violate
capacity constraints is presented.

Consider the set of zero slack arcs, A?, produced by the dual ascent algorithm at a certain
iteration ¢. For each arc {i,j} € A!, we introduce an artificial (duplicate) arc {i,;'} and
assign to it a very large variable cost, M ~ oo, for each commodity k € K, a zero fixed-charge
and an unlimited capacity. Let A; be the set of duplicate arcs and A the corresponding set
of directed arcs. Also, let £}; be the fraction of overflow for commodity & on arc {i,;} € A’

The fixed-charge capacitated network design problem is formulated on the augmented

graph G = (N, A}) as follows:

minimize Z=3 (Y b+ S Mi)+ > Fuyy
k€K (i,5)€A] (i.4)€A, (i,}€ Al
subject to :
~1 ifi=O0(k)
S(eh+ik) - S (@h+85) =0 1 ifi=D(k) VieNkek
JEN IeN

0 otherwise

3" filal + %) < B, v{i,j} € A
keK
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ohyaeh <y Wi, jleALkeK

132V

zh, 85 >0 V(i,j) € AlUAL ke K

J
Yi; € {Oa 1} V{Z,]} € AZ
Let us consider the linear programming relaxation of the above problem, i.e. the for-

mulation that results by relaxing the last set of constraints (y;; € {0,1}). If any variable
&F; in the optimal solution of this mixed integer program relaxation assumes positive value,
it is clear that the problem FP(G, = (N, A?)) is infeasible. Note that if there existed a
feasible solution to FP(G,), then & = 0 V{i,5} € A/, since the very large variable cost of
arcs {1,7} € /i; would prohibit flow across them in the optimal solution. Thus, arcs that
violate capacity constraints can be identified by checking the values of the variables ifj The

amount of commodity overflow on each arc is given by:
fk <k
i = Je Tij

where fi is the total commodity flow.
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