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This thesis describes work in two areas: unpredictability in a system with

both single photon detection and chaos, and synchronization in networks of coupled

systems.

The unpredictability of physical systems can depend on the scale at which

they are observed. For example, single photons incident on a detector arrive at ran-

dom times, but slow intensity variations can be observed by counting many photons

over large time windows. We describe an experiment in which a weak optical sig-

nal is modulated by feedback from a single-photon detector. We demonstrate that

at low photon rates, the photon arrivals are described by Poisson noise, while at

high photon rates, the intensity of the light shows a deterministic chaotic modula-

tion. Furthermore, we show that measurements of the entropy rate can resolve both

noise and chaos, and describe the relevance of this observation to random number

generation.



We also describe an experimental system that allows for the study of large

networks of coupled dynamical systems. This system uses a spatial light modulator

(SLM) and a camera in a feedback configuration, and has an optical nonlinearity

due to the relationship between a spatially-dependent phase shift applied by the

modulator, and the intensity measured by the camera. This system is a powerful

platform for studying synchronization in large networks of coupled systems, because

it can iterate many (∼1000) maps in parallel, and can be configured with any desired

coupling matrix. We use this system to study cluster synchronization. It is often

observed that networks synchronize in clusters. We show that the clusters that form

can be predicted based on the symmetries of the network, and their stability can be

analyzed. This analysis is supported by experimental measurements.

The SLM feedback system can also exhibit chimera states. These states were

first seen in models of large populations of coupled phase oscillators. Their defining

feature is the coexistence of large populations of synchronized and unsynchronized

oscillators in spite of symmetrical coupling configurations and homogeneous oscilla-

tors. Our SLM feedback system provided one of the first two experimental examples

of chimera states. We observed chimeras in coupled map lattices. These states evolve

in discrete time, and in this context, “coherence” and “incoherence” refer to smooth

and discontinuous regions of a spatial pattern.
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Chapter 1: Introduction

Like many important concepts in science, chaos was discovered several times.

Poincaré encountered chaos while studying the three-body problem in orbital dy-

namics [1] in the early 20th century. Chaos was also experimentally observed in

the sinusoidally-driven van der Pol oscillator 1927, and described mathematically in

this context the 1950s [2, 3]. One of the first scientists to realize the far-reaching

importance of chaos was Lorenz, who discovered chaos while working on a simplified

model of convection in the atmosphere. His paper from 1963, Deterministic Nonpe-

riodic Flow [4] described many ideas that are central to the modern understanding of

chaos, including dissipative dynamics in phase space, the fractal structure of attrac-

tors (which he described in a qualitative way), and sensitivity to initial conditions.

This sensitivity to initial conditions is the property of chaos that allows for random

number generation.

The idea that chaos can be used to generate random numbers is old – older

than the use of the word “chaos” to describe unpredictable nonperiodic motion in

deterministic systems. The word “chaos” has been in use since 1975 [5], although

its meaning has evolved somewhat over the years [6].
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In 1947 [7, 8] Ulam and von Neumann showed that the logistic map,

xt+1 = 4xt(1− xt), (1.1)

generates one bit of information with every iteration. They introduced the change

of variables xt = sin2(πzt), and showed that Equation 1.1 has an explicit solution.

zt = 2tz0 mod 1 (1.2)

This solution gives a concrete example of how a deterministic system can generate

information. If the initial condition, z0, is written in binary, then, according to

Equation 1.2, the decimal place is moved to the right one place for each iteration.

The trailing, insignificant digits of z become more significant as time passes. If,

at each iteration, one reads out the binary digit to the right of the decimal place,

one will find a string of random bits that is as unbiased as a fair coin. There are

specific values of z0 for which this is not the case, for example 0.11111111111111...,

and 0.10101010101010...., but almost all real numbers on the interval [0,1] have as

many 0’s as 1’s, and in general, an equal number of occurrences of the bit patterns

of length d. In other words, almost all real numbers have one bit of entropy per

binary digit [9]. By amplifying differences in initial conditions, chaos makes these

insignificant trailing bits of information large enough to measure [10].

1.1 Entropy generation in a photon-counting feedback loop

Since in 2008, chaotic semiconductor lasers have been used to generate random

numbers [11]. These systems are appealing for (at least) two reasons. First, they
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are fast (on the order of 109 to 1012 bits per second) [12]. Second, random bits

generated by physical processes offer additional cryptographic security compared

to pseudorandom algorithms because their unpredictability can be attributed to a

fundamentally unpredictable physical process.

Not all physical random number generators are based on chaos. Another, much

longer used, physical source of unpredictability is the detection of single photons

[13, 14]. Several commercial devices, which are marketed as “quantum random

number generators” are currently being sold [15], which are based on weak light

sources and photon-counting detectors. One scheme employs a beam splitter and

two detectors, so that whenever a photon arrives, one detector or the other detects

the photon, yielding either a 0 or a 1. Another scheme involves harvesting entropy

from the random time intervals between photon arrivals [16].

In this thesis, we describe an experimental system with unpredictability due

to both chaotic dynamics and discrete photon arrivals. It similar to earlier opto-

electronic feedback loops [17,18]. These feedback loops are known to have complex

dynamics that can be tuned anywhere between fixed points and high-dimensional

chaos, and whose timescales can be tuned over a wide range [19,20]. By incorporat-

ing a photon-counting detector, we are able to observe a transition from shot noise

to chaos with increasing photon rate. Furthermore, we find that the type of unpre-

dictability we observe – shot noise or chaos – depends on our scales of observation

in both time and value.

These results have immediate relevance to physical random number genera-

tion. Usually, physical random number generators are evaluated based on their
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ability to produce bit streams free of bias and correlation [21,22]. Physical systems

usually have both bias (for example, non-identical detectors) and correlation (dy-

namical correlation times, finite detector bandwidth). In practice, post-processing

is very often employed to improve the statistical properties of a noise source. It

can be difficult to assess whether the entropy in the resulting bit stream should

be attributed to the physical noise source or the post-processing procedure. Fur-

thermore, the designer of a physical random number generator must decide how

frequently to sample their system and to what resolution they should measure it.

So, they should be aware of the effect of coarse graining on the entropy rate of their

system. We show that the scaling of the entropy rate with sampling resolution can

be attributed to either chaos or shot noise depending on the photon count rate and

sampling resolution.

1.2 Synchronization in networks of coupled dynamical systems

Often, networks of coupled dynamical systems will synchronize in clusters. Up

until a few years ago, only anecdotal examples could be analyzed in detail [23–26].

We show here that the symmetries of a network can be used to predict the clusters

that form in an arbitrary network. The master stability function formalism has

proven to be a very useful paradigm for the study of global synchronization in

networks of coupled systems [27]. This technique examines the linear stability of

the globally-synchronous solution. We present here the linear stability analysis of

cluster synchronization, and show that the symmetries of a network can be used to
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determine a coordinate transformation that vastly simplifies the this analysis. Now,

due to work presented here, it is possible to predict and analyze the stability of a

great number of cluster-synchronous states in a given arbitrary network. We also

present an experimental verification of the predictions made by this technique. In

the experiment, a novel bifurcation called “isolated synchronization” is observed,

where a single cluster looses synchrony while others remain synchronized. This

bifurcation can also be explained in terms of the symmetries of the network.

In larger networks, one is often interested in dynamical behaviors that persist

in the the “thermodynamic limit”, where the number of oscillators becomes infinite.

The Kuramoto model of coupled phase oscillators [28] is particularly appealing be-

cause it can be shown analytically that in the thermodynamic limit a population of

phase oscillators undergoes a phase transition from unsynchronized to synchronized

behavior with increasing coupling strength.

In the early 2000’s, it was realized that in certain coupling configurations,

Kuramoto oscillators could form “chimera states” in which there were coexisting

synchronized and unsynchronized populations [29–31]. It was not until 2012 that

such states were observed in experiment [32,33]. Now, there are several quite diverse

experimental examples of chimera states [32–38]. Here, we describe one of the first

two experimental observations of chimera states.
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1.3 Organization of this thesis

Chapter 2 describes the photon-counting feedback loop. The operation of

the components in the loop will be described, as well as some details of the digital

implementation of the signal processing and data acquisition. Finally, the transition

between shot noise and deterministic chaos will be described, and illustrated by

examining time series plots, Poincaré sections, autocorrelation functions, and the

growth of the variance in the number of photon counts with the counting time

window.

Chapter 3 describes the quantification of entropy production in the photon-

counting feedback loop. This chapter also contains brief descriptions of some basic

concepts from information theory, and a couple of different analyses of the entropy

rate of a Poisson process. This material, while not new, provides an illustration

of important concepts and a point of reference for understanding the experimental

results. The main goal of this chapter is to show that the entropy rate of the photon

counting feedback loop reflects chaos at large scales and high photon rates, and shot

noise at small scales and low photon rates.

Chapter 4 describes cluster synchronization. A lot of space will be devoted

to describing the linear stability analysis of the cluster-synchronous state, and how

the symmetries of the network are crucial in predicting with clusters form and

analyzing their stability. We experimentally demonstrate cluster synchrony in a few

networks. In one of these networks, the symmetries are far from obvious, and we

show that computational group theory can be used to analyze cluster synchrony in

6



this network. In another network, the symmetries are obvious by inspection, and

we use this network as an example to show both the diversity of possible patterns

and the method for predicting them and analyzing their stability.

Chapter 5 describes an experimental observation of chimera states. These

chimera states exist in a coupled map lattice, and have some qualitative similarities

and differences compared with chimera states in populations of phase oscillators. A

one-dimensional and a two-dimensional version of the same system are be compared,

and a few basic theoretical results are be given.

Chapter 6 presents a list of questions. These are ideas that arose during our

investigation that I did not have time to pursue.
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Chapter 2: Photon Counting Optoelectronic Feedback Loop

This chapter is based on work from the following publication

Aaron Morgan Hagerstrom, Thomas Edward Murphy, and Rajarshi Roy. Harvest-
ing entropy and quantifying the transition from noise to chaos in a photon-counting
feedback loop. Proceedings of the National Academy of Sciences 112(30):9258–9263,
2015.

2.1 Overview

This chapter describes an optoelectronic feedback loop in which noise due

to discrete photon arrivals plays an important role in the dynamics. The chapter

proceeds as follows: Section 2.2 describes the motivation for this experiment, and

highlights some previous work on similar experimental systems in order to provide

some historical context. Section 2.2.1 describes the the configuration of the feedback

loop, and describes the difference between this experiment, which incorporates noise

from individual photons, and earlier experiments. Section 2.3 describes the digital

signal processing and data acquisition in this experiment. Section 2.4 describes how

the photon statistics change from Poisson statistics to low-dimensional chaos as

the photon rate increases, and how different scales of observation resolve different

features of the dynamics. The next chapter discusses entropy production in this
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system in the wider context of random number generation.

2.2 Motivation and background

In many situations, continuous variables are used to model processes which are

comprised of many individual, random occurrences. For example it is common to

model the birth and death of organisms in a population by differential equations [39].

Another example is the arrival of individual photons at a detector [40], which is often

both modeled and measured as a continuously variable intensity. It is often the case

that both large scale deterministic fluctuations and small scale noise are present.

We have constructed a model system in which small-scale shot noise from individual

photon arrivals is coupled to large scale chaotic dynamics. We describe how the

unpredictability of this system depends on the scale at which it is observed. At

small scales, we resolve individual photon arrivals, and at large scales we resolve low-

dimensional deterministic dynamics. This chapter quantifies the scale dependence

in terms of the autocorrelation function, the distribution of photon arrivals in a time

window, and the dependence of the variance of this quantity on the time window.

The next chapter describes how entropy production in this system reflects both

processes.

The experimental system we discuss in this chapter is modeled after earlier

experiments with optoelectronic feedback loops. Optoelectronic feedback loops have

become a widely-used test bed to study many concepts in nonlinear dynamics [17].

They have several features that make them appealing as a model system: the
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timescales, dimensionality and Lyapunov spectra of their dynamics can be tuned

over a wide range, they are well-modeled by a fairly simple delay-differential equa-

tion, and they can be constructed from widely-available telecommunications compo-

nents. The wide bandwidth and separation of timescales possible in these systems

allows for breathers [19, 20], and a multistability between a large number of peri-

odic modes [41]. The high dimensionality of these systems allows them to exhibit

chimera states [38], and allows for their use in reservoir computing [42]. Opto-

electronic feedback loops have been used to demonstrate high speed chaos-based

communication over existing fiber optic telecommunications infrastructure [43]. Fi-

nally, optoelectronic oscillators have been used extensively as a model system to

study the synchronization of networks of coupled chaotic systems [18,44–46].

The complex dynamics displayed by optoelectronic feedback loops are due to

four features of their dynamics: feedback with gain, time delay, filtering, and non-

linearity. These are common features of a variety of oscillators. Feedback with gain

is a way of continually injecting energy into a system to ensure that the dynam-

ics do not decay into a trivial state. Feedback loops will typically have a finite

bandwidth, and these bandwidth limitations can often be modeled as a filter. We

introduced a filter using digital signal processing, but this is not necessary in all

situations [19]. Time delay, which we denote here as Td, is often due to finite propa-

gation time for signals. Some implementations of optoelectronic feedback loops use

long optical fibers or coaxial cables [17,19]. Here, we implement delay using digital

processing. Time delay allows for high-dimensional dynamics. The phase space of a

time-delayed system is infinite-dimensional, because, in order to determine the time
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evolution of a system with time-delayed feedback, one must know the history of its

previous behavior over an interval of time. The initial condition is a function of

time, rather than a point in phase space. Finally, there must be some nonlinearity

present in order for the existence of chaos. Nonlinearities are usually present in

feedback loops. If the feedback gain is too low, the loop cannot oscillate, and small

perturbations will decay to a trivial fixed point. If the feedback gain is large enough,

oscillations will grow until their growth is limited by some mechanism. Such a mech-

anism necessarily “turns on” when the amplitude of oscillations is large. This kind

of amplitude dependence is not found in linear differential equations. In our opto-

electronic feedback loop, a Mach-Zehnder modulator (MZM) imposes a sinusoidal

nonlinearity.

The construction of optoelectronic feedback loops is documented in detail in

the PhD theses of Adam Cohen [47], Bhargava Ravoori [48], Caitlin Williams [49],

as well as in several papers [17,18]. In the interest of brevity, I will not go into great

detail on the aspects of this work that are well-documented by earlier publications.

Instead, I will focus on what is new in this work, namely feedback based on discrete

photon arrivals.

2.2.1 Discrete and analog dynamics

The optoelectronic feedback loop we describe in this chapter differs from the

previous experimental systems in that it incorporates a photon-counting detector

whereas other experiments incorporate analog photodetectors. Thus, the discrete,
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Figure 2.1: Schematic configuration of optoelectronic feedback loops
with an analog photodetector a), and photon-counting detector b). Qual-
itative sketches of the temporal behavior of the detector output and the
filter output are also shown. With an analog detector, the signal from
the detector is a smooth function of time. The signal from the photon-
counting detector is a series of sharp voltage pulses. The filter outputs
are roughly similar on a large scale between the two systems, but the
discreteness of the photon counts is visible.

12



stochastic individual photon arrivals are coupled with the deterministic dynamics

of the feedback loop.

Figure 2.1 shows a schematic the two types of optoelectronic feedback loops,

both with an analog detector (2.1a) and a photon-counting detector (2.1b). Light

from a fiber-coupled continuous-wave laser passes through the MZM. The MZM

modulates the optical power of the transmitted light (P ), according to the applied

voltage v, so that there is a sinusoidal relationship between the transmitted optical

power and the applied voltage: P = P0 sin2 (αv + φ). The optical power transmitted

through the modulator is then detected by a photodetector.

In the analog feedback loop shown in Figure 2.1a, the voltage signal from the

photodetector is proportional to the optical power vmod(t) ∝ P (t). This signal is

delayed and processed by a filter, and the filter output v(t) drives the modulator.

The equations of motion for a deterministic optoelectronic feedback loop can be cast

in this form [18]:

dx

dt
= Ex + βF I(t)

I(t) = sin2
[
GTx(t− Td) + φ

] (2.1)

Here, x is the state variable of a linear, time invariant filter, matrix E and

the vectors F and G describe the characteristics of the filter, I(t) is the normalized

intensity of light transmitted through the MZM, and Td is the time delay. The

round-trip gain is denoted by β. When a photon-counting detector is used in place

of an analog photodiode, as shown in Figure 2.1b, the filter variables can be modeled

by a linear differential equation driven by discrete photon arrivals.
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dx

dt
= Ex + βF

1

λ0

∞∑
i=1

δ(t− ti) (2.2)

When modeling this system, the photon arrivals times, {ti}, are generated by

a non-stationary Poisson point process whose rate, λ(t), depends on the state of the

filter variables.

λ(t) = λ0I(t) = λ0 sin2
[
GTx(t− Td) + φ

]
. (2.3)

Figure 2.1 also qualitatively compares the dynamics of the filter variables as

given in Equations (2.1) and (2.2). In the deterministic system shown in Figure 2.1a,

both the time variation of the intensity and the filter output are smooth functions.

In the photon-driven system shown in Figure 2.1b, the detector produces sharp

voltage pulses whenever a photon hits it. The filter output is driven by these pulses,

the discrete nature of the photon arrivals is reflected in the sharp edges of the filter

output. Still, the shape of the filter output in Figure 2.1b is qualitatively similar

to Figure 2.1a, at least on a coarse scale. One might expect that as the incident

photon rate λ0 increases, the dynamics of these two systems become increasingly

similar.

2.2.2 Components of the feedback loop

In our experiment, the light source is a narrow-linewidth distributed-feedback

laser with a wavelength of 850 nm. The laser is operated well above threshold, and

produces a continuous wave (CW) output. The laser is coupled into a single-mode

(SM) optical fiber.
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After passing through the modulator and attenuator, the light is coupled into

the photon counting detector. The laser wavelength of 850 nm was chosen be-

cause silicon detectors have high sensitivity in this range. We used a Geiger-mode

avalanche photodiode. The dead time of this device was about 100 ns, and the dark

count rate was about 100 counts/s. The dead time and dark counts limit the dy-

namic range of the detector. We can resolve photon rates from about 102 counts/s

to 107 counts/s.

The light from the laser is coupled into a Mach-Zendher modulator. The power

of the light exiting the modulator is related to the applied voltage by

P (t) = P0 sin2

(
πv

2Vπ
+ φ

)
. (2.4)

For our modulator, Vπ is 1.6 V. The rate of photon arrivals at the detector is given

by:

λ(t) = λ0 sin2

(
πv

2Vπ
+ φ

)
(2.5)

In our implementation, the filter and time delay are implemented digitally

using a field-programmable gate array (FPGA). The FPGA is an Alterra Cyclone

II, and it is incorporated into a KNJN Saxo-Q acquisition board. In addition to the

FPGA, the Saxo-Q board has two 10-bit digital-to-analog converters (DACs) with a

maximum speed of 165 MSa/s, as well as four digital-to-analog converters (ADCs)

with a maximum speed of 200 MSa/s. This board also has a USB2 interface, which

is used to configure the device, and communicate between a PC and the FPGA. We

use the USB to set the values of filter variables and transmit photon arrival time
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data to the computer.

The amplifier is a simple non-inverting amplifier with a feedback resistance of

27 kΩ, a resistance to ground of 1 kΩ, and a fixed gain of 27. Signals with sharp

edges cause this amplifier to introduce ringing artifacts. To avoid this ringing, we

used the two-pole filter described in the next section, whose impulse response does

not have a sharp rising edge.

2.3 Digital Implementation on FPGA

The filtering in our system, as well as the time delay, are implemented digitally

on the FPGA. In order to perform these operations, the FPGA must record each

photon arrival. The photon arrival times offer the highest possible resolution of the

time evolution of the system. For this reason, the FPGA is configured to transmit

the photon arrival time data to a PC over a USB connection so that it can be stored.

It is also convenient to have the FPGA be able receive the values of parameters over

USB, so that these values can be set by computer without hard-coding them into

the verilog code. This section describes how the FPGA detects photons, updates the

filter variables, performs a time delay, and transmits photon data to the computer

on a high level. Major design choices are justified, but low-level details of the

implementation are not.
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2.3.1 Photon Detection and Time delay

When a photon is detected by the photon-counting detector, the detector

generates a TTL pulse. We connected the output of the photon-counting detector

to an input pin of the FPGA, and the FPGA can be configured to update the value

of a register whenever the detector generates a pulse. In practice, it was helpful to

implement a deadtime in the software running on the FPGA, in order to prevent

the same photon from being registered more than once. The detected photon data

is then digitally time delayed, in order to introduce a time delay into our feedback

loop. This delay was accomplished using a shift register.

In digital signal processing, all quantities are updated in discrete time, usually

dictated by the rising or falling edge of a clock signal. A shift register is a convenient

way to implement a delay in discrete time. A shift register consists of a series of

locations in memory: Y0 . . . YNd−1, where Nd is the time delay in clock cycles. The

value at the ith location at the end of the nth clock cycle is denoted Yi[n]. On each

clock cycle, each location except for YNd−1 is updated by shifting the value to an

adjacent location in memory.

Yi[n+ 1] = Yi+1[n] for i = 0 . . . Nd − 2 (2.6)

The first location, YNd−1, is updated based on whether a photon is detected or not.

YNd−1[n+ 1] =


1 if one or more photons arrived in iteration n

0 else

(2.7)

The result is that the if system has been running for at least Nd clock cycles (one
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delay time), we have

Y0[n] =


1 if one or more photons arrived in iteration n−Nd

0 otherwise.

(2.8)

The time-delayed photon data is represented by Y0[n], and this signal is used

to update the filter variables. I used an array of size Nd = 32768. This leads to a

maximum time delay of Td = ∆t = 1.734 ms, where ∆t is the clock cycle which is

used to update the shift register, ∆t=8/(151.1515 MHz) = 52.9270 ns.

In this experiment, two different clock signals are used for photon detection.

The clock which measures the photon arrival times has a frequency of 151.1515

MHz. The clock that is used for signal processing is 8 times slower, with a speed of

18.8939 MHz. I chose this clock speed because the dead time of the detector limits

the number of photons that can be detected in one delay time. With ∆t = 52.9270

ns, it is possible to have two photons arrive in adjacent time bins, and so the dead

time of the detector does not impose a limitation on the dynamic range of the loop.

2.3.2 Filter equations

The filter state variables are represented by 32-bit integers, and fixed point

arithmetic is used to calculate their time evolution. For readability, in this section,

I will adopt the convention that the filter variables take values between 0 and 1,

although in their digital representation, they take values between 0 and 232 − 1.

The filter state-space variables are updated according to the following equa-
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tions.

X1[n+ 1] =

(
1− ∆t

T1

)
X1[n] + gY0[n]

X2[n+ 1] =

(
1− ∆t

T2

)
X2[n] + gY0[n]

(2.9)

where g is a factor that sets the amplitude of the filter variables, and T1 and T2

are the time scales of the filter. The DAC outputs a positive voltage signal, so that

the voltage applied to the modulator is v[n] = V0(X1[n]−X2[n]). V0 is a constant,

measured in volts, that describes the characteristics of the DAC and the amplifier.

The scale of the variables X1 and X2 is arbitrary. To put these variables in a

physical context, we note that the MZM is driven by the voltage v[n] = V0(X1[n]−

X2[n]). So, X1 and X2 should be compared to Vπ. Introducing the dimensionless

variables xi = gV0Xi
π

2Vπ
and β = gV0λ0

π
2Vπ

, it is straightforward to verify that

equation (2.9) is the Euler discretization of

d

dt

x1

x2

 =

− 1
T1

0

0 − 1
T2


x1

x2

+ β

1

1

 1

λ0

∞∑
i=1

δ(t− ti), (2.10)

which is of the same form as equation (2.2). The rate of photon arrivals is given by

λ(t) = λ0I(t) = λ0 sin2 [x1(t− Td)− x2(t− Td) + φ] . (2.11)

2.4 Dynamics

If we take the expectation value of the random term in equation (2.10), we

obtain the deterministic model, given in equation (2.1). This model has rich dy-

namics. It is well-known that equations of the form (2.1) will go through a series
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bifurcations into to chaos as β increases [18]. Recall that in our photon-counting

feedback loop,

β = gV0λ0
π

2Vπ
(2.12)

So, if the quantity gλ0 is kept constant as λ0 is varied, one will see dynamics whose

noisiness varies with the values of λ0, but the analogous deterministic equation as

given by equation 2.1 will be unchanged. It is also well-known that the dimension-

ality of chaotic systems with time delay can be tuned over a wide range, and that

the dimension and number of positive Lyapunov exponents tends to increase with

the time delay [50].

In this section, we will describe the dependence of the dynamics on the incident

photon rate, λ0 with βTd held constant at 8.87. In our implementation, the time

delay is Td=1.734 ms. This is set by the memory of the FPGA and the filter clock

frequency ∆t. For the data presented here, the modulator bias is φ = π/4, and

the filter constants T1=1.2 ms, and T2=60 µs. We vary the photon rate over a

factor of 256, from λ0Td = 12.5 (7.20 × 103 count/s) to λ0Td = 3, 200 (1.845 × 106

counts/s). As the photon rate is increased, we see a transition from Poisson shot

noise to deterministic chaos.

2.4.1 Time series, probability distributions, and autocorrelation func-

tions

Figure 2.2 shows several time series recorded with this system with increasing

photon rate. We plot Nw(t), the number of photon arrivals in the interval [t−w,t]. In
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Figure 2.2: Time series, probability distributions, and autocorrelation
functions. a) - c) show experimental data, and d) shows the result of a
deterministic simulation of Equation 2.1. a) At a low photon rate of λ0Td
= 12.5, the dynamics appear Poissonian. The time series has no visible
structure, the autocorrelation function is sharply peaked at 0, and the
distribution of photon counts in a window of w = Td/4 is nearly Poisson.
b) λ0Td = 200, a slow modulation of the photon rate is evident. c) at λ0Td
= 3,200, the photon rate varies smoothly, the photon count distribution
is bimodal and much wider than a Poisson distribution with the same
mean, and the autocorrelation function shows slow oscillations. The
deterministic simulation d) shows the same features as the high photon
rate data shown in c).
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Figure 2.2, all of the plots were generated with w = Td/4. When the incident photon

rate is λ0Td = 12.5, the photons appear to arrive at random, uncorrelated times as

in a stationary Poisson process. Increasing the incident photon rate to λ0Td = 200,

a smooth modulation of the photon rate starts to become apparent. At λ0Td =

3, 200, Nw(t) has a smooth character, and qualitatively resembles a low-dimensional

chaotic signal. We also plot the results of a deterministic simulation using equation

(2.1). This time series was smoothed with a moving average over a time window

of width w to be directly comparable with Nw(t). We plot the autocorrelation

function, C(t′) =
〈
(Nw(t)− N̄w)(Nw(t− t′)− N̄w)

〉
, normalized so that the value of

the autocorrelation function is unity at t′ = 0. As the photon rate increases from

λ0Td = 12.5, the autocorrelation function changes from a δ-like peak, characteristic

of a Poisson process, to an oscillatory function which shows correlations at long

timescales (tens of milliseconds). The autocorrelation function of the deterministic

simulation time series is in close agreement with the autocorrelation function of the

photon arrivals with λ0Td = 3, 200. Histograms of Nw(t) also show a transition from

a nearly Poisson distribution to a bimodal distribution. The peaks of the bimodal

distribution are due to turning points imposed by the maximum and minimum

values of the transmitted light through the modulator. This bimodal distribution is

seen in the deterministic simulation.
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2.4.2 Attractor visualizations

To visualize the development of chaos with increasing photon rate, we show

Poincaré surfaces of section in Figure 2.3. We perform a time-delay embedding of

the experimental time series Nw(t), using a time delay of ∆ = Td/4, by constructing

a list of points in two dimensional space of the form [Nw(t), Nw(t−∆)]. Because

the attractor has a dimension higher than 2, we reduce the dimensionality of the

attractor by plotting the points only when the state variables pass through a codi-

mension 1 Poincaré surface defined by x1− x2 = π. The embeddings show a similar

trend to the plots in Figure 2.2. We see a development of complex chaotic dynamics

from discrete photon noise as the photon rate increases. The deterministic simula-

tion is plotted for comparison, and, as in Figure 2.2, a moving average of width w

is employed so that the smoothed intensity time series, Iw(t), is directly analogous

to Nw(t). The deterministic signal in Figure 2.3d can be regarded as the infinite

photon rate limit of the photon counting system.

2.4.3 Variance

Figure 2.4 shows the dependence of the variance of Nw on the window w and

offers another indication of the transition from shot noise to deterministic chaos.

The time integral of an uncorrelated random signal executes a random walk in

which the variance grows linearly with the integration time. For this reason, we plot

Var(Nw)/w in Figure 2.4. We see distinct asymptotic growth rates of the variance

with small and large w. When w is small, the variance reflects the Poissonian nature
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Figure 2.3: Poincaré sections. We visualize the emergence of a chaotic
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of the photon arrivals, and the growth rate of the variance has roughly constant value

of Var(Nw)/w = λ0Ī. In the limit where the counting window is much longer than

the time scale of the variations in intensity, Nw(t) can be regarded as the sum of the

photon counts in many independent identically distributed intervals, and the central

limit theorem implies that the variance will grow in proportion to w. As we increase

the photon rate from λ0Td = 12.5 to λ0Td = 3, 200, we see an increasing offset

between the two asymptotic rates of growth of the variance. The variance can be

related to the photon rate, counting window, and the unnormalized autocorrelation

function, cI(t
′) =

〈
(I(t)− Ī)(I(t− t′)− Ī)

〉
[40].

Var(Nw) = w

λ0Ī + λ2
0

∫ w

−w
dt′
(

1− |t
′|
w

)
cI(t

′)︸ ︷︷ ︸
Θ(w)

 (2.13)

The second term in Equation (2.13) accounts for the difference between the observed

variance and the variance of a Poisson process with the same rate. The quantity

Θ(w) has units of time, and measures the correlations in I(t) introduced by the

feedback. This quantity increases from 0 to an asymptotic value Θ∞ as w increases,

accounting for the shape of the curves shown in Figure 4. cI(t
′) and Θ(w) can be

calculated from time series generated by deterministic simulations. In this case, we

find Θ∞ = 150 µs. The value of Θ∞ is related to the size of the intensity fluctuations,

and the rate at which Θ(w) approaches this asymptotic value is determined by the

timescales of the correlations of I(t).
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Chapter 3: Entropy generation in a photon-driven feedback loop

This chapter is based on work from the following publication

Aaron Morgan Hagerstrom, Thomas Edward Murphy, and Rajarshi Roy. Harvest-
ing entropy and quantifying the transition from noise to chaos in a photon-counting
feedback loop. Proceedings of the National Academy of Sciences 112(30):9258–9263,
2015.

3.1 Overview

The main goal of this Chapter is to describe entropy quantification in the

context of the experiment described in Chapter 2. The entropy content of datasets

shown in Chapter 2 will be analyzed, and I will comment on how the entropy

estimates indicate the transition from photon counting noise to chaos described in

Chapter 2. Finally, I will discuss the relevance of these results in the general context

of random number generation.

The Chapter is organized as follows. Section 3.2 describes why physical

random number generators are important, and discusses how most researchers in

this field approach the calculation of entropy rates. I will briefly discuss some of

the recommendations in the draft NIST SP800-90B guidelines for physical entropy

sources [52]. In Section 3.3, I give some basic definitions of information-theoretic
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quantities and describe how entropy rates are calculated. In Section 3.4, I describe

how to calculate the entropy rate of a constant-rate Poisson process. The results

in this section, while very basic, should be familiar to anyone who wants to harvest

entropy from photon arrival times. They also are a point of comparison for our ex-

perimental data. Section 3.5 shows entropy calculations applied to the deterministic

model of the photon counting feedback loop. Section 3.6 describes the application

of the entropy calculations to experimental data from the photon-counting feedback

loop. Section 3.7 discusses the relevance of these experimental results to physical

random number generation in general.

3.2 Background

Random numbers are very important for Monte-Carlo techniques [53] and for

information security applications. In many cases, random numbers are generated us-

ing deterministic algorithms, and are called “pseudorandom numbers”. The appeal

of using pseudorandom numbers is clear – computers are fast, and pseudorandom

number generators allow for random number generation without the need for ded-

icated hardware. Especially for cryptographic applications, there is a real concern

that pseudorandom numbers are not good enough. A deterministic algorithm will

have reproducible results, and there is a possibility that an attacker could exploit

this predictability. For example, in 2012, security researchers showed that an alarm-

ing fraction – two out of every thousand – of RSA public keys collected from the

Internet offer no security because they were not generated using properly-seeded ran-
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dom numbers [54]. In order to avoid security weaknesses of this type, the random

number generator used in Linux systems is continually re-seeded using entropy [55]

harvested from events like key-strokes and mouse movements. Intel has also started

to manufacture hardware-based random number generators [56]. There is still a

great deal of interest in devices that harvest entropy from physical sources, both

because these devices can have high speeds, and more importantly, because the un-

predictability of the random numbers can be claimed to be due to a fundamentally

unpredictable physical process.

A variety of mechanisms have been proposed for physical random number

generation using quantum mechanics [13,14]. Several commercial devices, which are

marketed as “quantum random number generators” are currently being sold [15].

Some commercial devices use weak light sources and photon-counting detectors.

One scheme employs a beam splitter and two detectors, so that whenever a photon

arrives, one detector or the other detects the photon, yielding either a 0 or a 1.

Another scheme involves harvesting entropy from the random time intervals between

photon arrivals [16].

There are also a variety of techniques for random number generation based on

chaos [11, 12, 57–66]. Many of these techniques employ optical systems with a high

bandwidth and fast detectors. A major advantage of these chaos-based techniques

is that they are fast. Whereas the bit rates of photon-counting random number

generators are measured in megabits per second, the bit rates of chaos-based random

number generators are measured in gigabits or terrabits per second [12]. Some

proponents of photon-counting based random number generation claim that chaos
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is not “fundamentally” random, but the detection of individual photons is [15]. It is

often pointed out that, on a fundamental level, the chaotic dynamics of a laser system

are continually perturbed by microscopic quantum fluctuations [65, 66]. It’s worth

noting that not all chaos-based random number generation techniques are optical,

some rely on digital electronics [58]. It’s also worth noting that chaos isn’t the

only optical method of generating random bits. Like chaos, amplified spontaneous

emission can yield bit rates in the gigabit per second range [57,67,68].

The bit rate is a crucial figure of merit for random number generators. Usually,

the designer of a random number generator wants to show that their device can be

used for practical purposes, like Monte Carlo techniques or cryptography. For these

applications, it is important that they verify that their numbers are free of bias

and correlation. “Bias” refers to streams of bits where “1” or “0” account for more

than half of the bits. “Correlation” refers to a tendency to have longer sequences

of either “0” or “1”, or more generally, a situation where the value of one bit can

be partially predicted based on the values of previous bits. Ideally, each bit is

completely statistically independent of the other bits, and is equally likely to be

either “0” or “1”. In such a case, a bit stream is said to be “full entropy” or “one

bit per symbol”. The NIST [21] and Diehard [22] tests are commonly used to verify

that a stream of bits is indeed full entropy.

Physical processes are usually not completely free of bias and correlation. In a

system based on single-photon detection, there may be bias because the beamsplitter

is not exactly 50/50, or because there are some small manufacturing differences

between the two detectors. There can also be correlations due to non-ideal behavior
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of the detectors [69]. The probability distribution of a measured quantity in a

chaotic system is usually not completely uniform, so chaotic systems usually have

some bias. They also tend to show deterministic correlations if sampled quickly [12,

65,66]. So, in practice, almost all physical random number generators employ some

“conditioning” to reduce bias and correlation. These approaches vary in complexity.

Two of the more simple techniques are taking the logical XOR of independent bit

streams [11] and numerical differentiation [60]. Taking the idea of conditioning to

its logical extreme, it is of course possible to seed a pseudorandom number generator

with a signal measured from a physical entropy source. Indeed, some authors employ

hash functions, which will output completely full-entropy noise, regardless of how

predictable their input is [70].

3.2.1 NIST Recommendations for Entropy Sources

The NIST [21] and Diehard [22] tests were not designed as a way to assess

physical random number generators. They were designed to certify that a bit stream

is free of bias and correlation. When conditioning is used, it can be difficult to claim

that the entropy rate certified by these tests is due to the physical system, rather

than the conditioning. Given that bias and correlation can be corrected using hash

functions, NIST has drafted the new SP800-90B guidelines [52] for physical random

number generators. These standards do not require that a physical noise source be

free of bias and correlations. Instead, they require (among other things) that:

1. Although the noise source is not required to produce unbiased and independent
outputs, it shall exhibit probabilistic behavior; i.e., the output shall not be
definable by any known algorithmic rule.
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2. The developer shall document the operation of the noise source; this documen-
tation shall include a description of how the noise source works and rationale
about why the noise provides acceptable entropy output, and should reference
relevant, existing research and literature.

Furthermore, the new standards allow for conditioning, and several specific hash

functions are approved types of conditioning. In order to justify the use of a hash

function for conditioning, one must be able to assess the entropy rate of the noise

source:

1. When an input string with m bits of assessed entropy is provided to an ap-
proved conditioning function with an n-bit output, the resulting assessed en-
tropy is uniformly distributed across the entire n-bit output. Note that if
m ≥ n, full entropy output is not necessarily provided; see item 2.

2. When an input string with 2n bits (or more) of assessed entropy is provided
to an approved conditioning function with an n-bit output, the resulting n-bit
output is considered to have full entropy.

So, to summarize, one must assess how much entropy one is entitled to take

from a noise source, and it is not as important whether the noise source has bias and

correlations. This chapter is describes one possible route towards justifying such an

assessment.

3.2.2 Entropy Generation in Physical Systems

Entropy is usually computed from discrete quantities. Physical variables like

voltage, current, and optical intensity are often either continuous, or their discretiza-

tion is so fine (individual photons and electrons) that it makes sense to think of

them as continuous. Bits, by contrast, are discrete – either 0 or 1. Measurements of

physical systems usually involve digitizing or discretizing a quantity to some finite
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τ

Figure 3.1: Illustration of an time trace from a physical system sampled
to resolution in time τ , and resolution in value ε. The vertical grid
lines represent sampling times, and the horizontal grid lines represent
bin edges.

resolution, ε. Measurements of a physical system are usually discrete in time as

well. For example, an oscilloscope records samples at discrete times, with a time

interval between measurements of τ . These three parameters ε and τ are often un-

avoidable. In some cases, on might need to consider a third variable, w. In the case

of the photon-counting feedback loop described in Chapter 2, w is the time interval

over which we count photons. Rate fluctuations much faster than 1/w will not be

resolved.
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In the context of statistical mechanics, information entropy is a very important

concept [71–75]. There is a rich literature on the dependence of the entropy rate,

h, of signals harvested from physical systems on the variables ε and τ [10, 76–80].

In these contexts, the entropy rate is often called the (ε, τ) entropy, and is denoted

h(ε, τ). It has been shown in Brownian motion and Johnson noise in RC circuits that

statistical measurements of this entropy can be related to heat dissipation [81, 82].

There have also been experimental investigations of entropy rates in convection

experiments [77,80]. The (ε, τ) entropy will have qualitatively different dependence

on ε and τ depending on the physical origin of the unpredictability [10,76,80].

3.3 Entropy and Entropy Rate

This section discusses a few basic concepts from information theory that will be

employed in the rest of the chapter, with an emphasis on calculating the entropy rate

of a dynamical system. Most of these concepts are described in standard textbooks,

like [83]. For a discussion of entropy in the context of dynamics, see [10, 76, 80, 84],

especially [10, 80].

This section requires some notation. This is all standard notation, but for

clarity I’m making a table of definitions (3.1).

The Shannon entropy of a random variable X is defined as

H(X) = −
∑
x∈X

p(x) log2 p(x). (3.1)
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Table 3.1: some notation

Symbol Meaning

X a generic random variable

x a specific value that X might take, like 4

X the set of possible values x might take

p(x) the probability that X takes the specific value x

Xi a random variable, the value of X at time i

xi the value of Xi in a particular realization

x(t) the value of X at a specific time in
a specific realization of the physical process

p(xi, xj) the joint probability that Xi takes
the value xi and Xj takes the value xj

p(xi|xj) the conditional probability that Xi

takes the value xi given that Xj takes the value xj

The entropy of this joint probability distribution can be calculated in the same way:

H(X1, X2, . . . , Xd) = −
∑
x1∈X

∑
x2∈X

· · ·
∑
xd∈X

p(x1, x2, . . . , xd) log2 p(x1, x2, . . . , xd).

(3.2)

Another important concept is conditional entropy. This is used to quantify to

what extent one variable, X1, can be predicted by sampling a different variable, X2.

Conditional entropy is defined as the expected value of the entropy of X1 given that

X2 has been sampled and is known to have the value x2:

H(X1|X2) = −
∑
x2∈X

p(x2)H(X1|X2 = x2)

= −
∑
x1∈X

∑
x2∈X

p(x1, x2) log2 p(x1|x2)

(3.3)

If X1 can be completely predicted by sampling X2, then H(X1|X2) = 0. On the

other hand, if X1 and X2 are independent, H(X1|X2) = H(X1). The conditional
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entropy can be related to the entropy of a joint probability.

H(X1|X2) = −
∑
x1∈X

∑
x2∈X

p(x1, x2) log2 p(x1|x2)

= −
∑
x1∈X

∑
x2∈X

p(x1, x2) log2

p(x1, x2)

p(x2)

= H(X1, X2)−H(X2)

(3.4)

This is called the “chain rule”.

The entropy rate of a stochastic process can be measured either in bits per

sample, or bits per second. For consistency with the rest of the chapter, I will write

the formulas for the entropy rate in bits per second, by adding a factor of 1/τ , where

τ is the time interval between samples. There are two definitions of the entropy rate

h. These definitions will yield the same result for stationary processes [83], but, in

practice, one is more easy to calculate.

The first definition is

h1(X) = lim
d→∞

1

τd
H(X1, X2, . . . , Xd). (3.5)

In Equation 3.5, one considers patterns of increasing length d, and measures how the

entropy of the set of patterns of length d changes with d. If d is large enough, one

finds that the entropy of the set of patterns (pattern entropy) grows proportionally

to d. This linear growth is shown in Figure 3.2.

The second definition of entropy rate is based on the extent to which the

current sample, xi, can be predicted based on the history of previous samples.

h2(X) = lim
d→∞

1

τ
H(Xd|Xd1 , . . . , X1). (3.6)
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Figure 3.2: Pattern entropy and entropy rate. a) An example of the
growth of the pattern entropy, Hd = H(X1, X2, . . . , Xd), as a function
of d. The asymptotic linear growth is indicated by a dashed line. Al-
though this figure is intended as an illustration of concepts of pattern en-
tropy and entropy rate, experimental data are shown here. The pattern
entropy rate was calculated by applying the Cohen-Procaccia method
(Equation 3.9) to the time series Nw(t), from the photon-counting feed-
back loop, with λ0Td = 3200, τ = w = Td/4, and ε = 400 photons.
Note that there are two linear scaling regions of Hd. Small embedding
dimensions, or pattern lengths, are insufficient to predict the dynamics,
leading to a fast increase of Hd with d. b) Approximations of the entropy
rate based on Equations 3.5 and 3.8. Both h1 and h2 approach the same
limit, but h2 approaches much more quickly with increasing embedding
dimension.

37



As mentioned previously h1 = h2 for stationary systems. Equation (3.6) be re-

written in another form that is more convenient experimentally. By the same logic

as Equation (3.4), we can write

H(Xd|Xd1 , . . . , X1) = H(Xd, Xd−1, . . . , X1)−H(Xd−1, Xd−2, . . . , X1), (3.7)

which leads to

h2(X) = lim
d→∞

1

τ
[H(Xd, Xd−1, . . . , X1)−H(Xd−1, Xd−2, . . . , X1)] . (3.8)

Like Equation 3.5, this formula for the entropy rate indicates a linear growth of the

pattern entropy with d. Whereas Equation 3.5 calculates the average entropy per

symbol in a large pattern, Equation 3.8 calculates the slope of the growth of the

pattern entropy with d. It can be argued that h2 will give a better approximation

of the entropy rate for finite d [85], and Figure 3.2 suggests that this is the case.

3.3.1 Entropy Calculations

The first step to computing the (ε, τ) entropy rate of an experimental signal is

to generate a list of points in d-dimensional space using time delay embedding with

a delay of τ . These vectors can be regarded as samples of a d-dimensional prob-

ability distribution over phase space. The entropy of this probability distribution,

Hd = H(X1, X2, . . . , Xd). In principle Hd can be calculated by building a histogram

with boxes of width ε and applying Shannon’s formula, Equation 3.1 [83]. In prac-

tice, direct application of this approach requires a very large amount of data when

the embedding dimension is large. Cohen and Procaccia proposed a more efficient
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algorithm to estimate the pattern entropy [85] in the context of estimating metric

entropy from experimental data. First, one randomly selects a small number M of

reference points from the time series. M is usually small compared to the length of

the time series. In our case we observed only small differences between M = 5000

and M = 20000. For each reference point i, one computes ni(ε), the fraction of

the points in the dataset within a box of width ε centered on the reference point.

The only difference between a direct calculation of the Shannon entropy, and the

Cohen-Procaccia procedure is that in a direct calculation, a rectangular array of

bins is used, rather than a set of bins centered on random points chosen from the

data set. In searching for neighbors for the ith reference point, we exclude points

within a time window of τ of that point, as suggested by Theiler [86]. The pattern

entropy is then estimated by

Hd(ε) = − 1

M

M∑
i=1

log2 ni(ε). (3.9)

It is a general feature of unpredictable signals that Hd grows linearly with d in the

limit that d is large, and the entropy rate is the slope of this linear increase, as indi-

cated in Equation 3.8. Cohen and Procaccia argued that Equation 3.8 approaches

the correct value of the entropy rate at a lower dimension than Equation 3.5. Figure

3.2 shows an anecdotal example where this is the case.

We will see that the calculation of Hd from Equation 3.9 requires a large

amount of data. Some authors have suggested using the correlation entropy, H
(2)
d ,

in place of Hd. [10, 76,77].

H
(2)
d (ε) = − log2

1

M

(
M∑
i=1

ni(ε)

)
(3.10)
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3.4 Entropy rate of a constant rate Poisson process

In this section, I give a few basic results about the entropy rate of a Poisson

process. This is relevant to the discussion of a photon-counting optoelectronic feed-

back loop because the arrival of photons generated by a laser at a photon-counting

detector is described by a Poisson process. The results given in this section are far

from new, but will provide context for later results, and it can be helpful to show

how the methods described here can be applied in a simple case.

A Poisson process describes events (like photon arrivals) that occur at random

times. The probability per unit time for an event to occur is constant, and the

probability that an event occurs at time t is independent of whether or not an event

occurs at time t′.

Because the events in different points in time are statistically independent, it’s

very easy to evaluate the entropy rate. I will assume that we have divided time into

small bins of width τ , and that it is possible to sample system much faster than the

event rate, so τλ0 � 1. I will consider the case where τλ0 � 1 later in this section.

The probability that one or more events occurs in a time bin is 1 − eλ0τ ≈ λ0τ . I

will now consider a random variable Yi, which takes a value 1 if one or more photons

arrive in bin i, and 0 if no photons arrive. The probability mass function of Yi is

p(Yi = 0) = 1− p0

p(Yi = 1) = p0

(3.11)

The entropy rate can be trivially evaluated from either Equation 3.5 or Equa-
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tion 3.6.

h =
−1

τ
[(1− p0) log2 (1− p0) + p0 log2 (p0)] (3.12)

In photon counting experiments, it is possible to time photon arrivals to a high

degree of precision. We used a clock with a speed of 1/τ=151.1515 MHz, and state-

of-the-art detectors can tag photon arrivals to tens of ps. On the other hand, the

maximum count rates resolvable by detectors are on the order of 107 counts/second.

So, we are interested in the limit that τ → 0. Recalling that p0 ≈ λ0τ , and expanding

to lowest order, we have

h = λ0

(
λ0

ln 2
− log2 λ0τ

)
(3.13)

There are a few comments to make here. The entropy rate grows without

bound as τ → 0, but the growth is logarithmic. This presents a limitation to the

scalability of random number generation using photon-counting detectors. To put

in real numbers, the experimental system described in Chapter 2 has a temporal

resolution of τ=6.62 ns. If λ0 = 2 × 106 counts/s, the entropy rate is h = 15.4

Mbits/s. If the timing resolution could be increased to τ=66.2 ps, which is on the

order of the state of the art, then we would have h = 28.6 Mbits/s. Improving the

timing resolution of a detector by a factor of 100 will not increase the bit rate by a

factor of 100 but instead will yield a relatively small increase of about 6.6 bits per

photon. In contrast, when either a chaotic system or amplified spontaneous emission

is used to generate random numbers, the entropy rate can scale more favorably with

τ . As discussed in Section 3.5, the entropy rate of a chaotic system is determined by
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its positive Lyapunov exponents, which can be on the order of hundreds of gigabits

per second [12,57]. These fast dynamical timescales allow one to take advantage of

fast digitizers to harvest entropy at high rates.

Another point to make here is that bias and entropy rate are distinct concepts.

As τ → 0, the distribution of Yi is increasingly biased in favor of 0, and yet the

entropy rate grows.

3.4.1 Entropy rate from inter-arrival intervals

Another way to harvest entropy from a Poisson process would be to use the

inter-arrival intervals. Time will still be discretized in bins of width τ , but now

the random variable we will consider is Ti, the time interval between the (i − 1)th

photon arrival and the ith photon arrival.Since time is divided into bins of width τ ,

Ti takes on discrete values: τ , 2τ , and so on.

The variables Ti are independent and identically distributed, and this distri-

bution is given by a geometric distribution. This is a direct consequence of the

statistical independence of different time bins, and the assumption that the rate is

constant.

p(ti = kτ) = p0(1− p0)k for k=1,2,...,∞ (3.14)

From 3.5, we have

h =
−1

t̄

∞∑
k=1

p0(1− p0) log2 p0(1− p0) (3.15)

Where t̄ = τ/p0 is the average of ti. This sum can be evaluated in closed form, and
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we have

h =
−1

τ
[(1− p0) log2 (1− p0) + p0 log2 (p0)] , (3.16)

which is identical to Equation 3.12. So, measuring inter-arrival times will yield

exactly the same entropy rate as measuring Yi.

3.4.2 Can intensity modulation increase entropy rates?

So far, I have only discussed constant-rate Poisson processes. In the previous

chapter, I described a system in which feedback is used to modulate the intensity

of a weak light source, so that variations in the photon arrival rate were seen at

the detector. It is natural to ask if these rate fluctuations increase the entropy rate

of the signal compared to a constant-rate process. It turns out that the Poisson

process has the highest possible entropy of any process consisting of a sequence of

discrete events with a given average inter-event interval.

This can be shown using Lagrange multipliers. We will assume that we are

harvesting entropy from the intervals between events, Ti, as in the last section. The

average inter-event interval will be denoted t̄. It may be the case that when rate fluc-

tuations are present, the inter-event intervals are no longer independent or identically

distributed. I will assume that the process which determines the inter-arrival inter-

vals is stationary, but individual photon arrivals are not necessarily independent.

So p(ti = k) = p(tj = k), but p(ti|ti−1, ti−2, . . . , ti−d) 6= p(ti|tj−1, tj−2, . . . , tj−d).

It is well-known [83] that for any random variables X1, X2, . . . Xd,

H(X1, X2, . . . Xd) ≤ H(X1) +H(X2) + · · ·+H(Xd) (3.17)
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From Equation 3.5, we then have

h ≤ −1

t̄

∞∑
k=1

p(k) log2 p(k) (3.18)

I will now maximize the right-hand-side of 3.18 subject to the constraints that the

distribution has a well-defined mean, is defined for integers k greater than 1, and is

normalized. Introducing the Lagrange multipliers α and β, the variational equations

are:

∂

∂p(k)

[
α

(
t̄− τ

∞∑
k=1

kp(k)

)
+ β

(
1−

∞∑
k=1

p(k)

)
+
∞∑
k=1

p(k) log2 p(k)

]
= 0 (3.19)

This can be solved for pk.

p(k) = 2−ατk−1−β (3.20)

This has the form of a geometric distribution. The values of α and β are set by

the constraint equations. The result will be Equation 3.14 with p0 = 1/t̄. The

conclusion is that, if entropy is harvested from the time intervals between a series of

events with a well-defined average inter-event interval, a Poisson process will yield

the highest possible entropy rate.

3.4.3 Counting windows and ε

In Chapter 2, I used the variable Nw(t), the number of photon counts in the

interval [t−w, t], to analyze the behavior of the photon-counting feedback loop. One

advantage of this variable is that it shows the chaotic character of the dynamics,

at least as far as having similar time traces and autocorrelation functions. Another

example is that it can be directly compared to a Poisson process with a constant
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rate. In a Poisson process, the distribution number of events, N , to arrive in an

interval [t− w, t] is

p(N) =
N̄N

N !
e−N̄ . (3.21)

In a constant-rate process, the expected number of events is N̄ = wλ0

In a constant-rate process, successive samples are uncorrelated if τ ≥ w. The

entropy rate is then straightforward to calculate from Equations 3.1 and 3.5. There

is not a closed-form solution, but in a certain limit, it is possible to make a crude

approximation that works fairly well. In the limit that λ0w � 0, the Poisson

distribution (Equation 3.21) approaches the Gaussian distribution with a mean and

a variance of λ0w. If
√
λ0w � ε, the sum in Equation 3.1 can be approximated by

an integral. In this case, we can approximate the entropy rate of a Poisson process

with a counting window as

h =
1

τ
log2

(√
2πewλ0

ε

)
. (3.22)

Note that this entropy’s dependence on ε is − log2 ε. The logarithmic dependence

on ε is common in noisy systems [76, 80, 84]. Figure 3.3 shows the comparison of

the entropy rate calculated from Equation 3.22 to the entropy rate calculated from

experimental photon count data.

3.5 Entropy rate of chaotic systems

In chaotic systems, unpredictability is due to the sensitive dependence on ini-

tial conditions. Because small perturbations grow exponentially in time, chaotic
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both τ = Td/4 and τ = 3Td/4, the level of this plateau slowly decreases
with increasing embedding dimension d, and appears to approach hks.

47



systems generate information. The growth of uncertainty is quantified by the Lya-

punov exponents µi, and in particular the largest exponent, µ1. Positive Lyapunov

exponents and entropy rate both quantify unpredictability and there is a close rela-

tionship between these two quantities. One would expect that if a chaotic system is

sampled infrequently (τµ1 � 1), successive samples will be uncorrelated because of

the growth of uncertainty between measurements. On the other hand, if the inter-

val between successive samples is small (τµ1 � 1), one expects strong correlations

between adjacent samples and a reduced entropy per sample. Experimental and

theoretical work using semiconductor lasers has shown that these considerations are

crucial to physical random number generation using chaotic dynamics [64–66]. In

the limit that τ, ε → 0, h(ε, τ) will approach a finite value, the Kolmogorov-Sinai

(or metric) entropy, hks [10, 87–89]. The metric entropy is related to the Lyapunov

exponents, µi, by

hks =
1

log(2)

∑
µi>0

µi. (3.23)

We calculated the spectrum of Lyapunov exponents from Equation 2.1, with all of

the parameters given in Chapter 2 [50, 90]. There is only one positive Lyapunov

exponent with a value of µ1/ log(2) = 345 bits/s. The Kaplan-Yorke dimension [91]

calculated from the Lyapunov spectrum is 3.56.

The (ε, τ) entropy will have qualitatively different behavior as ε→ 0 depending

on the physical origin of unpredictability [10, 80]. In chaotic systems, the entropy

rate does not depend on either the sampling rate or the sampling resolution. This

property of chaotic systems imposes a theoretical limitation on physical random
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number generation. Increasing the speed and resolution of a measurement device

cannot in principle increase the entropy that can be harvested from a deterministic

chaotic system beyond hks. In contrast to deterministic systems, the, entropy rate

of stochastic signals diverges like − log(ε) for finite τ [76, 80].

Figure 3.4 shows the dependence of h(ε, τ) on ε for τ = Td/4 and τ = (3/4)Td.

In this figure, ε has the same units as the normalized intensity I(t), which varies

between 0 and 1. As one would expect, h in independent of ε as long as ε is small

compared to the size of the attractor. With both τ = Td/4 and τ = 3Td/4, the

level of this plateau slowly decreases with increasing embedding dimension d, and

appears to approach hks.

Figure 3.4 shows that the convergence of the entropy estimate with increasing d

is rather slow. The comparison of Figure 3.4 a) and 3.4 b) suggests that τ = (1/4)Td

is too small to resolve the expected entropy rate, hks. Care should be taken when

applying this method. The slow convergence of the entropy estimate could lead to

too-large estimates of the entropy. Comparing the curves in Figure 3.4 a) for d = 10

and d = 15, one might imagine that the entropy rate estimate given by these curves

is close to its asymptotic value for high d, but such an estimate would be off by a

factor of two.

3.6 Entropy generation in a photon-driven feedback loop

To analyze the photon count data from the experiment described in Chapter

2, we computed Nw(t), the number of photon counts in the interval [t − w, t]. We
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also chose a rather large value of τ , on the order of Td. These two choices allowed

us to detect deterministic chaos in the experimental time series.

Figure 3.5 shows the entropy per unit time calculated from the experiment with

both τ = (1/4)Td and τ = (3/4)Td. We see that as the photon rate increases, the

dependence of the entropy on ε becomes progressively flatter at high ε. Furthermore,

in the region that this flattening is present, the value of h(ε, τ) is close to hks.

The flattening of h(ε, τ) at high photon rate is another indication that this system

behaves more deterministically in the high photon-rate regime. At all photon rates,

we see h(ε, τ) sharply increases as ε decreases, which is due to the shot noise inherent

in the system. It is natural to compare the entropy rates we observe to a constant-

rate Poisson process with the same average rate. In Figure 3.5 a), we see the entropy

rate approaching the rate of the Poisson process given by the dashed lines for small

ε. In Figure 3.5 b), it is harder to infer the asymptotic behavior for small ε, because

we were unable to resolve the value of h with sufficiently small ε.

It’s also worth noting that in comparing Figure 3.4, and 3.5, the difference

between τ = (1/4)Td and τ = (3/4)Td is more pronounced in simulation than

experiment. The entropy rate also converges faster as d increases in experiment

than in simulation.

3.7 Comments

At the outset of this project, we had a rather simple question: does discrete

noise, for example arising from individual photon arrivals, increase the unpredictabil-
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ity of a chaotic system? Another, related question, is whether chaos “amplifies” the

discrete noise. As I describe in Chapter 2, we were able to give some insight into

these questions by examining the qualitative appearance of the time series and

Poincaré sections (Figure 2.3), the variance of Nw(t) (Figure 2.4) and the autocor-

relation functions (Figure 2.2). The autocorrelation function was sharply peaked

at low photon rates, indicating a lack of temporal correlations. As the photon rate

increased, the autocorrelation function developed a complex, oscillatory character

with correlations lasting for tens of ms, similar to the deterministic system. The

qualitative appearance of both the time series and Poincaré sections confirmed that,

as the photon rate λ0 increases, deterministic chaos develops from noise. So, in a

sense, The lower photon rates are noisier.

We then set out to show these trends by quantifying entropy production. It

quickly became apparent that we could not avoid considering three parameters: w

(the counting window), ε (resolution in value), and τ (time resolution) if we wanted

to understand the roles of chaos and shot noise. If we employ the smallest value

of τ possible, and count individual photon arrivals, we are left with the straight-

forward result of Subsection 3.4.2, that the constant rate Poisson process has the

highest achievable entropy. Furthermore, the entropy scales with the photon rate in

a straightforward manner, given in Equation 3.13. We are then left with an unsat-

isfying conclusion: a constant-intensity light source with a high photon rate gives

the largest entropy rate. This analysis is unsatisfying because it fails to capture the

unpredictability in the chaotic wave forms shown in Figure 2.2. It also fails to cap-

ture the comparatively noisy character of the time traces for lower photon rates. In
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order to resolve these features of the dynamics, we had to introduce coarse graining

in both time (τ and w) and value, ε. The choice of (τ and w) allow for us to resolve

the slow intensity fluctuations and the associated uncertainty. The dependence of

the entropy on ε showed that at small scales, Poisson shot noise dominates, and at

large scales, the chaotic dynamics can be resolved.

3.7.1 Broader context

Two prevalent methods have attracted attention for optical random number

generation: those based on single photon detection from strongly attenuated light

sources [13, 14], and those based on digitized high-speed fluctuations from chaotic

lasers [11]. In the former case, the entropy is claimed to originate entirely from

quantum mechanical uncertainty, yet in practice these methods are also subject to

unpredictable drift and environmental variations. In the latter case, the entropy is

attributed to the dynamical unpredictability of chaos, but the unavoidable presence

of spontaneous emission is thought to play a role in seeding these macroscopic fluctu-

ations [64,66]. The system presented here is unprecedented in that it can approach

macroscopic chaos from the single photon limit, thereby revealing the transition

from noise to chaos. Moreover, the analysis offers a unified measure of entropy that

captures both behaviors, and clarifies the relationship between sampling frequency,

measurement resolution and entropy rate.

The designer of a physical random number generator must choose the sam-

pling rate and resolution that they will use to collect numbers from a physical
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system. These decisions will impact the entropy rate. Heuristically, finer discretiza-

tion (smaller ε) and more frequent sampling (smaller τ) lead to higher entropy rates,

but without the methods presented here it is difficult to assess the dependence of

the entropy rate on these parameters in any given system. The statistical tests that

are usually used to evaluate physical random number generation [21, 22] were not

designed to answer these questions, but rather to certify that a stream of bits is free

of bias and correlation. If a random number generator employs post processing (as

most do), existing statistical tests applied to the output binary sequence provide no

insight into whether the entropy originates from the physical process or the post-

processing algorithm employed. We offer a new approach to determine the entropy

of a physical process that clarifies the origin and nature of uncertainty and informs

the choice of sampling rate and measurement resolution.
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Chapter 4: Cluster Synchronization and Symmetries in Networks

This chapter is based on work from the following publications

Louis M. Pecora, Francesco Sorrentino, Aaron M. Hagerstrom, Thomas E. Murphy,
and Rajarshi Roy. Cluster synchronization and isolated desynchronization in com-
plex networks with symmetries. Nature Communications, 5, 2014.

Francesco Sorrentino, Louis M. Pecora, Aaron M. Hagerstrom, Thomas E. Murphy,
and Rajarshi Roy. Cluster Synchronization in Laplacian Coupled Systems: Beyond
symmetries. Submitted to Physical Review Letters (arXiv preprint arXiv:1507.04381),
2015

4.1 Overview

This chapter focuses on synchronization patterns that can emerge in networks

of coupled dynamical systems. The symmetries of a network can be used both to

predict the synchronization patterns, and to analyze their stability.

This chapter is organized as follows. Section 4.2 provides background and

motivation, and introduces the mathematical formulation of the problem of clus-

ter synchronization. Section 4.3 describes the relationship between the symmetries

of a network and the possible cluster synchronization patterns. Section 4.4 de-

scribes, very briefly, the linear stability analysis of global synchronization. Section

4.5 describes the linear stability analysis of cluster synchronization. Section 4.6

55



describes the a coordinate transformation that is necessary for this analysis. Sec-

tion 4.7 describes the experimental system that I used to obtain the experimental

demonstration of cluster synchronization shown in Section 4.8. Section 4.9 briefly

describes the generalization of the symmetry-based approach to a much larger class

of synchronization patterns.

4.2 Background

Synchronization in complex networks is essential to the proper functioning of a

wide variety of natural and engineered systems, ranging from electric power grids to

neural networks [92]. Global synchronization, in which all nodes evolve in unison, is a

well-studied effect, the conditions for which are often related to the network structure

through the master stability function [27]. Equally important, and perhaps more

commonplace, is partial or cluster synchronization (CS), in which patterns or sets

of synchronized elements emerge [26]. Recent work on cluster synchronization has

been restricted to networks where the synchronization pattern is induced either by

tailoring the network geometry or by the intentional introduction of heterogeneity in

the time delays or node dynamics [46,93–99]. These anecdotal studies illustrate the

interesting types of cluster synchronization that can occur, and suggest a broader

relationship between the network structure and synchronization patterns. Recent

studies have begun to draw a connection between network symmetry and cluster

synchronization, although all have considered simple networks where the symmetries

are apparent by inspection [23–25]. More in-depth studies have been done involving
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bifurcation phenomena and synchronization in ring and point symmetry networks

[100, 101]. Finally, a form of cluster synchronization can occur in situations where

input and output couplings match in a cluster, but there is no symmetry [101,102].

Here we address the more common case where the intrinsic network symmetries

are neither intentionally produced nor easily discerned. We present a comprehensive

treatment of cluster synchronization, which uses the tools of computational group

theory to reveal the hidden symmetries of networks and predict the patterns of

synchronization that can arise. We use irreducible group representations to find

a block diagonalization of the variational equations that can predict the stability

of the clusters. We further establish and observe a generic symmetry breaking

bifurcation termed isolated desynchronization, in which one or more clusters lose

synchrony while the remaining clusters stay synchronized. The analytical results

are confirmed through experimental measurements in a spatiotemporal electro-optic

network. By statistically analyzing the symmetries of several types of networks, as

well as electric power distribution networks, we argue that symmetries, clusters,

and isolated desynchronization can occur in many types of complex networks and

are often found concurrently. Throughout we use the abbreviation ID for isolated

desynchronization.

4.2.1 Coupling – adjacency matrix and Laplacian matrix

Two types of matrices are very commonly used to describe networks [103]: the

adjacency matrix and Laplacian matrix. The adjacency matrix is denoted by A.
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The element Aij is 1 if nodes i is connected to node j, and 0 otherwise. Here, we

only discuss the case of bidirectional coupling, where Aij = Aji, but there are many

cases where one might want to consider a network in which there are unidirectional

couplings. It’s also common to have weighted connections. In this case, the value

of Aij is not necessarily 0 or 1, and specifies the strength of the connection between

i and j. Most of the formalism discussed in this chapter will probably carry over

to both weighted and unidirectional connections, but this has not been explored in

detail. Typically, the diagonal entries of A are set to 0.

The Laplacian matrix is the same as the adjacency matrix, except for the

values of the diagonal elements. In the Laplacian matrix, normally denoted L, the

diagonal entries are given by the opposite of the row sums.

Lij = Aij for i 6= j

Lii = −
∑
j 6=i

Aij

(4.1)

As a consequence of this definition,
∑

j Lij = 0. In the next section, I will discuss

how this allows for global synchronization.

Except where otherwise noted, this chapter discusses adjacency matrix cou-

pling where all of the links are bidirectional and of equal weight.

4.2.2 General model of networks of coupled identical systems

A set of general dynamical equations to describe a network of N coupled

identical oscillators are

ẋi(t) = F(xi(t)) + σ
∑
j

AijH(xj), i = 1, ..., N, (4.2)
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where xi is the n-dimensional state vector of the ith oscillator, F describes the

dynamics of each oscillator, A is a coupling matrix that describes the connectivity

of the network, σ is the overall coupling strength, and H is the output function

of each oscillator. Eq. 4.2 or its equivalent forms provide the dynamics for many

networks of oscillators including all those in Refs. [23–27, 92, 93, 95–97, 99]. This

includes some cases of time delays in the coupling functions. As noted in Ref. [92]

it is only necessary for the form of the equations of motion or, more importantly,

the variational equations to have the form of Eq. 4.2 near the synchronization

manifolds. The form of Eq. (4.2) also applies to discrete time systems or more

general coupling schemes [104]. And the same form emerges in the more general

case for the variational equations where the vector field and the coupling combine

into one function, viz. F(xi(t), {xj(t)}), where the argument in brackets is the

input of all nodes connected to node i, so long as the nodes are treated as having

the same basic dynamics. See Ref. [104] for more explanation. Generalizations of

Eq. (4.2) have been studied in Refs. [46,94,98,105]. The types of natural and man-

made systems which can be modeled by equations of the same form as Eq. (4.2) is

large [103,106].

The same analysis as presented here will apply to more general dynamics.

Here, for simplicity, we take all nodes to have identical dynamics and be bidirec-

tionally coupled to other nodes in the network by couplings of the same weight, i.e.

Aij is taken to be the (symmetric) adjacency matrix of 1’s and 0’s with the factor

of σ controlling the weight of the couplings. The vector field F can contain self

feedback terms. Here we take the self feedback to be identical for all nodes.
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4.3 Symmetries and cluster synchronization

Symmetries are relabelings of the nodes of a network that do not change the

equations of motion. Figure 4.1 shows a network with a few symmetries that are

apparent by visual inspection. For example, the network can be reflected about

the three different axes indicated. It can also be rotated about the central node,

either clockwise or counter-clockwise. In total, this network has six symmetries,

including the trivial symmetry (the identity). The symmetries of the network form

a (mathematical) group G. Each symmetry g of the group can be described by

a permutation matrix Rg that re-orders the nodes. These permutation matrices

commute with the adjacency matrix, i.e. A = RT
g ARg for each Rg. As a result, the

dynamical equations are unchanged by these operations.

The set of symmetries (or automorphisms) [100,107] of a network can be quite

large, even for small networks, but they can be calculated from A using widely avail-

able discrete algebra routines [108, 109]. Figure 4.2a shows three graphs generated

by randomly removing 6 edges from an otherwise fully connected 11-node network.

Although the graphs appear similar and exhibit no obvious symmetries, the first

instance has no symmetries (other than the identity permutation), while the others

have 32 and 5,760 symmetries, respectively. So for even a moderate number of nodes

(11) finding the symmetries can become impossible by inspection.

Once the symmetries are identified, the nodes of the network can be parti-

tioned into M clusters by finding the “orbits” of the symmetry group: the disjoint

sets of nodes that, when all of the symmetry operations are applied, permute among
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Figure 4.1: Symmetries and clusters in a simple network. All of the
symmetry operations of this graph are shown, as well as the permuta-
tion matrices that represent them. Note that the outer nodes, 2,3, and
4 can change position under the operations, but node 1 cannot be per-
muted with 2,3, or 4. It is possible for nodes 2,3, and 4 to synchronize
independently of 1. A solution of this form is allowed because if the
nodes synchronize in this way, the equations of motion for nodes 2,3,and
4 will be identical.
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one another [100]. Because Eq. (4.2) is essentially unchanged by the permutations

the dynamics of the nodes in each cluster can be equal, which is exact synchroniza-

tion. Hence, there are M synchronized motions {s1, ..., sM}, one for each cluster. In

Fig. 4.2a, the nodes have been colored to show the clusters. For the first example,

which has no symmetries, the network divides into M = N trivial clusters with one

node in each. The other instances have 5 and 3 clusters, respectively. Once the clus-

ters are identified, Eq. (4.2) can be linearized about a state where synchronization

is assumed among all of the nodes within each cluster. This linearized equation is

the variational equation and it determines the stability of the clusters.
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a

0 symmetries
(11 clusters)

32 symmetries
(5 clusters)

5,760 symmetries
(3 clusters)

A =  

B =  

A =  A =  

B =  B =  

Figure 4.2: Three randomly generated networks with varying amounts
of symmetry and associated coupling matrices. (a) Nodes of the same
color are in the same synchronization cluster. The colors show the maxi-
mal symmetry the network dynamics can have given the graph structure.
(b) A graphic showing the structure of the adjacency matrices of each
network (black squares are 1, white squares are 0). (c) Block diagonal-
ization of the coupling matrices A for each network. Colors denote the
cluster, as in (a). The 2 × 2 transverse block for the 32 symmetry case
comes from one of the IRRs being present in the permutation matrices
two times. The matrices for the 32 symmetry case are given in Equations
4.13,4.14 and 4.15.
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4.4 Master stability function formalism

The master stability function (MSF) [27] is widely used to analyze the stability

of global synchronization in networks with Laplacian coupling. My goal here is to

give a very brief review of this technique because the linear stability analysis of

cluster synchronization we present here is an extension of the MSF formalism, and

a lot of concepts from the MSF formalism will carry over to the analysis of cluster

synchrony. In particular, the concepts of the synchronization manifold and the

transverse directions will be very important in both.

We consider a system of coupled oscillators described by

ẋi(t) = F(xi(t)) + σ
∑
j

LijH(xj), i = 1, ..., N, (4.3)

This is the same as Equation 4.2, except that the Laplacian is used in place of the

adjacency matrix. By design, Equation 4.3 admits a globally-synchronous solution

xs = x1 = x2 = . . .xs. Because the coupling is Laplacian, i.e. the row sums are 0,

in the case of global synchronization we have
∑

j LijH(xs) = 0, and Equation 4.3

reduces to

ẋs(t) = F(xs(t)). (4.4)

That is, all of the oscillators evolve in time in exactly the same way as a single

oscillator would. This synchronous solution always exists, but is not always stable.

To analyze the stability of global synchrony, we consider small perturbations δxi(t)

away from the synchronous solution xs.

xi(t) = xs(t) + δxi(t) (4.5)
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We will then expand Equation 4.3 to first order in this perturbation, obtaining an

non-autonomous, linear system of differential equations for δxi(t).

δẋi(t) = DF(xs(t))δxi(t) + σ
∑
j

LijDH(xs)δxj(t) (4.6)

Where DF and DH are the Jacobian matrices of F and H.

An important simplification comes from expressing Equation 4.6 in the basis

of the eigenvectors of the Laplacian matrix, vi.

ηηηi = vTi ⊗ Inδx (4.7)

Here, In is the n × n identity matrix, and the ⊗ symbol denotes the Kronecker

product. ηηηi, is a vector quantity with the same dimensionality as the dynamics of a

single node, n.

η̇ηηi(t) = [DF(xs(t)) + σλiDH(xs)]ηηηi(t) (4.8)

Here, i indexes the eigenvectors and eigenvalues (λi) of the Laplacian.

The strength of the MSF formalism is that it decouples network connectivity

from the dynamics. Given a particular dynamical system, (e.g. Lorenz oscillators),

the stability of global synchronization can be determined from the eigenvalues of

the Laplacian matrix alone. By writing the variational equations is this basis, the

different modes of the network dynamics uncouple. Equation 4.6 is nN -dimensional:

it has N nodes, and each node has n dimensional dynamics. In contrast, Equation

4.8 is n-dimensional. Furthermore, σλi can be viewed as a parameter that encap-

sulates the coupling strength and the network topology. The magnitudes of the

perturbations ηi(t), will either grow or shrink exponentially in time. This rate of
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growth or decay is referred to as a transverse Lyapunov exponent. The systematic

dependence of the transverse Lyapunov exponents on the σλi is called the master

stability function.

Laplacian matrices have always a trivial eigenvector, v1 = [1, 1, . . . , 1], with

an eigenvalue of 0. In the context of synchronization, this vector has a physical

interpretation: perturbations in this direction effect all nodes equally, and so do not

break synchrony. The other eigenvectors are perpendicular to v1, and perturbations

along these directions will tend to drive the network out of synchrony.

The analysis of cluster synchronization will proceed along very similar lines. It

will not be possible to reduce the dimensionality of the problem as it is in the case of

global synchrony. In the case of cluster synchrony, there will be more synchronous

directions. If there are M clusters, there will be M orthogonal vectors that do

not break cluster synchrony. It will also be possible to find directions that are

transverse to a particular cluster. Section 4.6 describes how to find these directions,

the basis vectors of the IRR coordinate system. Section 4.5 describes the form that

the variational equations take in this coordinate system.

4.5 Variational equations in IRR Coordinates

Equation (4.2) is expressed in the “node” coordinate system, where the sub-

scripts i and j are identified with enumerated nodes of the network. Beyond iden-

tifying the symmetries and clusters, group theory also provides a powerful way to

transform the variational equations to a new coordinate system in which the trans-
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formed coupling matrix B = TAT−1 has a block diagonal form that matches the

cluster structure, as described below. The transformation matrix T is not a simple

node re-ordering, nor is it an eigendecomposition of A. The process for computing

T is nontrivial, and involves finding the irreducible representations (IRR) of the

symmetry group. We call this new coordinate system the “IRR coordinate system.”

In section 4.6 we show the steps necessary to obtain the symmetries, clusters, and

the transformation T .

Once we have T we can transform the variational equations as follows. Let

Cm be the set of nodes in the mth cluster with synchronous motion sm(t). Then

the original variational equations about the synchronized solutions are (in vectorial

form and in the node coordinates),

δẋ(t) =

[
M∑
m=1

E(m) ⊗DF(sm(t)) + σA
M∑
m=1

E(m) ⊗DH(sm(t))

]
δx(t), (4.9)

where the Nn-dimensional vector δx(t) = [δx1(t)T , δx2(t)T , ..., δxN(t)T ]T and E(m)

is an N -dimensional diagonal matrix such that

E
(m)
ii =


1, if i ∈ Cm,

0, otherwise,

(4.10)

i = 1, ..., N . Note that
∑M

m=1E
(m) = IN , where IN is the N -dimensional identity

matrix.

Applying T to Eq. (4.9) we arrive at the variational matrix equation shown

in Eq. (4.11),where ηηη(t) = T ⊗ In δx(t), J (m) is the transformed E(m), and B is the
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block diagonalization of the coupling matrix A,

η̇ηη(t) =

[
M∑
m=1

J (m) ⊗DF(sm(t)) + σB ⊗ In
M∑
m=1

J (m) ⊗DH(sm(t))

]
ηηη(t), (4.11)

where we have linearized about synchronized cluster states {s1, ..., sM}, ηηη(t) is the

vector of variations of all nodes transformed to the IRR coordinates and DF and

DH are the Jacobians of the nodes’ vector field and coupling function, respectively.

We note that this analysis holds for any node dynamics, steady state, periodic,

chaotic, etc.

We can write the block diagonal B as a direct sum
⊕L

l=1 Id(l)⊗C l, where C l is

a (generally complex) pl× pl matrix with pl = the multiplicity of the lth IRR in the

permutation representation {Rg}, L = the number of IRRs present, and d(l) = the

dimension of the lth IRR, so that
∑L

l=1 d
(l)pl = N [110, 111]. For many transverse

blocks C l is a scalar, i.e. pl = 1. However, the trivial representation (l = 1) which is

associated with the motion in the synchronization manifold has p1 = M . Note that

the vector field F can contain a self feedback term βxi as in the experiment and

other feedbacks are possible, e.g. row sums of Aij, as long as those terms commute

with the Rg. In all these cases, the B matrix will have the same structure.

Figure 4.2c shows the coupling matrix B in the IRR coordinate system for

the three example networks. The upper-left block is an M ×M matrix that de-

scribes the dynamics within the synchronization manifold. The remaining diagonal

blocks describe motion transverse to this manifold and so are associated with loss

of synchronization. Thus, the diagonalization completely decouples the transverse

variations from the synchronization block, and partially decouples the variations
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among the transverse directions. In this way the stability of the synchronized clus-

ters can be calculated using the separate, simpler, lower dimensional ODEs of the

transverse blocks to see if the non-synchronous transverse behavior decays to zero.

4.6 Calculating the IRR transformation

Below are the steps necessary to determine the symmetries of the network, ob-

tain the clusters, find the irreducible representations (IRRs), and the most crucial

part, calculate the transformation T from the node coordinates to the IRR coordi-

nates that will block diagonalize A, since A commutes with all symmetries of the

group [112].

Using the discrete algebra software [108,109] it is straightforward to determine

the group of symmetries of A, extract the orbits which give the nodes in each

cluster and extract the permutation matrices Rg, and use the character table of

the group and the traces of the Rg’s to determine which IRRs are present in the

node-space representation of the group. Remark: This step is discussed in any book

on representations of finite groups (e.g. Ref. [107]). After this we put each Rg into

its appropriate conjugacy class. To generate the transformaion T from the group

information and we have written code on top of the discrete algebra software which

for each IRR present constructs the projection operator P (l) [107] from the node

coordinates onto the subspace of that IRR, where l indexes the set of IRRs present.

This is done by calculating,

P (l) =
d(l)

h

∑
K

α
(l)
K

∑
g∈K

Rg (4.12)
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where K is a conjugacy class, α
(l)
K is the character of that class for the lth IRR, d(l)

is the dimension of the lth IRR and h is the order (size) of the group. Remark:

The trivial representation (all IRR matrices=1 and α(l) = 1) is always present and

is associated with the synchronization manifold. All other IRRs are associated with

transverse directions. Next we use singular value decomposition on P (l) to find the

basis for the projection subspace for the lth IRR. Finally, we construct T by stacking

the row basis vectors of all the IRRs which will form an N ×N matrix.

We show the results of this applied to the 32-symmetry case in Fig. 4.2:

A =



0 1 1 1 0 1 1 1 1 1 1
1 0 1 1 1 1 0 1 1 1 1
1 1 0 1 1 1 1 1 0 1 1
1 1 1 0 1 1 1 1 1 1 1
0 1 1 1 0 1 1 1 1 1 0
1 1 1 1 1 0 1 1 1 1 1
1 0 1 1 1 1 0 1 1 1 1
1 1 1 1 1 1 1 0 1 0 1
1 1 0 1 1 1 1 1 0 1 1
1 1 1 1 1 1 1 0 1 0 0
1 1 1 1 0 1 1 1 1 0 0


(4.13)

The nontrivial clusters are the nodes [1, 8], [2, 3, 7, 9], [4, 6], [5, 10] (the

numbering of nodes matches the row and column numbers of A). The transformation

matrix is,
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T =
1

2



0 0 0 0 0 0 0 0 0 0 2

0 0 0 −
√

2 0 −
√

2 0 0 0 0 0

−
√

2 0 0 0 0 0 0 −
√

2 0 0 0

0 0 0 0 −
√

2 0 0 0 0 −
√

2 0
0 −1 −1 0 0 0 −1 0 −1 0 0

−
√

2 0 0 0 0 0 0
√

2 0 0 0

0 0 0 0 −
√

2 0 0 0 0
√

2 0

0 0 0 −
√

2 0
√

2 0 0 0 0 0
0 −1 1 0 0 0 −1 0 1 0 0

0 0
√

2 0 0 0 0 0 −
√

2 0 0

0 −
√

2 0 0 0 0
√

2 0 0 0 0


(4.14)

And the block diagonal coupling matrix is, 0.75

B =



0 −
√

2 −
√

2 0 −2 0 0 0 0 0 0

−
√

2 1 2 2 2
√

2 0 0 0 0 0 0

−
√

2 2 1 1 2
√

2 0 0 0 0 0 0

0 2 1 1 2
√

2 0 0 0 0 0 0

−2 2
√

2 2
√

2 2
√

2 2 0 0 0 0 0 0
0 0 0 0 0 −1 −1 0 0 0 0
0 0 0 0 0 −1 −1 0 0 0 0
0 0 0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 0 −2 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0



(4.15)

B has a block-diagonal structure. The 5 × 5 block describes motion in the

synchronization manifold. Each of the 5 vectors acted on by this block corresponds

to a cluster. The other blocks correspond to transverse directions. Note that the

2 × 2 block couples transverse perturbations to the red and blue clusters shown in

Figure 4.1 b. This means that the red and blue clusters are intertwined. For given

parameter values, either both or neither of these clusters synchronize.
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4.7 Experimental system

Figure 4.3a shows the optical system used to study cluster synchronization.

Light from a 1550 nm light emitting diode (LED) passes through a polarizing beam-

splitter (PBS) and quarter wave plate (QWP), so that it is circularly polarized

when it reaches the spatial light modulator (SLM). The SLM surface imparts a pro-

grammable spatially-dependent phase shift x between the polarization components

of the reflected signal, which is then imaged, through the polarizer, onto an infrared

camera [32]. The relationship between the phase shift x applied by the SLM and

the normalized intensity I recorded by the camera is I(x) = (1− cosx) /2. The

resulting image is then fed back through a computer to control the SLM.

The SLM (Boulder Nonlinear Systems P512-1550) has an active area of 7.68 ×

7.68 mm2 and a resolution of 512 x 512 pixels. The camera (Goodrich SU320KTSW-

1.7RT/RS170) has an indium gallium arsenide focal plane array (FPA) with 320 ×

256 pixels and an area of 8 x 6.4 mm2. Using a lens assembly, the SLM was imaged

onto the camera with the magnification and orientation adjusted so that each 2 ×

2 pixel area on the SLM is projected onto a camera pixel. The camera’s frame rate

was about 8 Hz and was synchronized with the SLM’s refresh rate.

Each oscillator in equation (5) corresponds to a square patch of 16 × 16 pixels

on the SLM, which is imaged onto an 8 × 8 pixel region of the camera’s FPA. The

intensity I(x) is the average of camera pixel values in this area. The same phase

shift x is applied by each of the SLM pixels in the patch. We employ a spatial

calibration and lookup table to compensate for inhomogeneities in the SLM.
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a b

QWP

SLM

PBS

LED

camera

lens

computer

1 mm

Figure 4.3: Experimental configuration. a) Light is reflected from the
SLM, and passes though polarization optics, so that the intensity of light
falling on the camera is modulated according the phase shift introduced
by the SLM. Coupling and feedback are implemented by a computer.
b) An image of the SLM recorded by the camera in this configuration.
Oscillators are shaded to show which cluster they belong to, and the
connectivity of the network is indicated by superimposed gray lines.
The phase shifts applied by the square regions are updated according
to equation (4.16).

73



The dynamical oscillators that form the network are realized as square patches

of pixels selected from a 32 × 32 tiling of the SLM array. Figure 4.3b shows an

experimentally measured camera frame captured for one of the 11-node networks

considered earlier in Fig. 4.2 (A full video is presented in the Supplementary Movie

1). The patches have been falsely colored to show the cluster structure, and the

links of the network are overlaid to illustrate the connectivity. The phase shift of

the ith region, xi, is updated iteratively according to:

xt+1
i =

[
βI(xti) + σ

∑
j

AijI(xtj) + δ

]
mod 2π (4.16)

where β is the self feedback strength, and the offset δ is introduced to suppress the

trivial solution xi = 0. Eq. (4.16) is a discrete time equivalent of Eq. (4.2). Depend-

ing on the values of β, σ and δ, Eq. (4.16) can show constant, periodic or chaotic

dynamics. There are no experimentally-imposed constraints on the adjacency ma-

trix Aij, which makes this system an ideal platform to explore synchronization in

complex networks.

4.8 Experimental results

Figure 4.4 plots the time-averaged root-mean square (RMS) synchronization

error for all four of the nontrivial clusters shown in Fig. 4.3b, as a function of the

feedback strength β, holding σ constant. We find qualitatively similar results if σ is

chosen as a bifurcation parameter with β held constant. In Fig. 4.4c-e, we plot the

observed intracluster deviations (xti − xt) for three specific values of β indicated by

the vertical lines in Fig. 4.4a-b, showing different degrees of partial synchronization
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that can occur, depending on the parameters.

The phase shifts imparted by each oscillator xti are recorded and used to de-

termine the degree of synchronization, as shown in Fig 3. An individual oscillator’s

deviation from synchronization at a given time as shown in Fig. 3c-e is measured by

∆xti = (xti − x̄t), where x̄t denotes a spatial average of the phases of all of the nodes

within a particular cluster at time t. To quantify the degree of synchronization

within a cluster as shown in Fig. 3a, we calculate the RMS synchronization error

∆xRMS ≡
(〈

(xti − xt)2
〉
T

)1/2

, where 〈•〉T indicates an average over a time interval

T (here taken to be 500 iterations).

Together, Fig. 4.4a and Figs. 4.4c-e illustrate two examples of a bifurcation

commonly seen in experiment and simulation: isolated desynchronization, where one

or more clusters lose stability, while all others remain synchronized. At β = 0.72π

(Fig. 4.4c), all four of the clusters synchronize. At β = 1.4π (Fig. 4.4d), the

magenta cluster, which contains four nodes, has split into two smaller clusters of 2

nodes each, while the other two clusters remain synchronized.

Between β = 0.72π and β = 1.76π, two clusters, shown in Fig. 4.2 as red and

blue, undergo isolated desynchronization together. In Fig. 4.4a, the synchronization

error curves for these two clusters are visually indistinguishable. The synchroniza-

tion of these two clusters is intertwined: they will always either synchronize together

or not at all. While it is not obvious from a visual inspection of the network that

the red and blue clusters should form at all, their intertwined synchronization prop-

erties can be understood intuitively by examining the connectivity of the network.

Each of the two nodes in the blue cluster is coupled to exactly one node in the red
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cluster. If the blue cluster is not synchronized, the red cluster cannot synchronize

because its two nodes are receiving different input. The group analysis treats this

automatically and yields a transverse 2× 2 block in Fig. 4.2c.

The isolated desynchronization bifurcations we observe are predicted by com-

putation of the maximum Lyapunov exponent (MLE) of the transverse blocks of

Eq. (4.11), shown in Fig. 4.4. The region of stability of each cluster is predicted by

a negative MLE. While there are four clusters in this network, there are only three

MLEs: the two intertwined clusters are described by a 2-dimensional block in the

block-diagonalized coupling matrix B. These stability calculations reveal the same

bifurcations as seen in the experiment.

4.8.1 Subgroup decomposition and isolated desynchronization

The existence of isolated desynchronizations in the network experiments raises

several questions. Since the network is connected why doesn’t the desynchronization

pull other clusters out of sync? What is the relation of ID to cluster structure and

network symmetry? Is ID a phenomenon that is common to many networks? We

provide answers to all these questions using geometric decomposition of a group that

was developed in [113,114]. This technique enables a finite group to be written as a

direct product of subgroups G = H1 × ...×Hν where ν is the number of subgroups

and all the elements in one subgroup commute with all the elements in any other

subgroup. This means that the set of nodes permuted by one subgroup is disjoint

from the set of nodes permuted by any other subgroup. Then each cluster (say, Cj) is
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permuted only by one of the subgroups (say, Hk), but not by any others. There can

be several clusters permuted by one subgroup. This is the case of the red and blue

clusters in the 32 symmetry network in Fig.4.2, because the associated Hk cannot

have a geometric decomposition, but may have a more structured decomposition

such as a wreath product [115].

We can show that the above decomposition guarantees that the nodes as-

sociated with different subgroups all receive the same total input from the other

subgroups’ nodes. Hence, nodes of each cluster will not see the effects of individ-

ual behavior of the other clusters associated with different subgroups. This enables

the clusters to have the same synchronized dynamics even when another cluster

desynchronizes. If that state is stable we have ID.

To see this let Hk, a subgroup of G, permute only cluster Cm and π be the

permutation on the indices of nodes in Cm for one permutation Rg, g ∈ Hk. Assume

xi is not in Cm so it is not permuted by Rg and recall that A commutes with all

permutations in G, then we have (just concentrating on the terms from Cm),

[Rgẋ(t)]i = ẋi(t) = ...+ σ[RgAH(x)]i = ...+ σ[ARgH(x)]i = ...+ σ
∑
j∈Cm

AijH(xπ(j)),

(4.17)

where π(l) is, in general, another node in Cm and the sums over other clusters are

unchanged. This shows that all nodes in Cm are coupled into the ith node in the

same way (the same Aij factor). Similarly, if we use a permution Rg′ on the cluster

Cm′ containing xi we can show that all the nodes of Cm′ are coupled in the same
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way to the nodes in Cm. Hence, nodes of Cm′ each receive the same input sum from

the nodes of Cm whether the nodes of Cm are synchronized or not. This explains

how the cluster Cm can become desynchronized, but the nodes of Cm′ can still be

synchronized – they all have the same input despite the Cm desynchronization, thus

making the Cm′ synchronous state flow invariant. If it is also stable, this is the case

of ID. This argument is easily generalized to the case when Hk permutes nodes of

several clusters as this will just add other similar sums to Eq. (4.17). The latter case

explains the intertwined desynchronization in the experiment and is a more general

form of ID.

4.9 Generalizations

The symmetry-based analysis described allows for the linear stability analysis

of cluster synchrony in arbitrary networks. This is a major step forward, but there

is more to do.

So far, we have described how to analyze the stability of one synchronization

pattern. The orbits of the isomorphism group specify the maximally-symmetric

pattern, the pattern with the smallest number of clusters possible with adjacency

matrix coupling. We have already seen that other cluster-synchronized states are

possible. After an isolated desynchronization, the network is often in a dynamical

state that still has clusters. We need a formalism that will predict the stability of

these patterns.

We also have not considered the case of Laplacian coupling. We already know
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that Laplacian coupling allows for global synchronization, and we will see that it

allows for more complex synchronization patterns as well.

We will see that a given network can support a large number of synchroniza-

tion patterns. One very simple example of a 5-node network we will consider has

12 possible synchronization patterns. I don’t know how the number of patterns

will scale with the size of the network, but the number of possible synchronization

patterns in a large network has the possibility of being combinatorially huge. Con-

sider, for example, how many ways an all-to-all coupled network of N oscillators

could possibly split into two equal clusters. Of course, a huge variety of unequal

clusterings are also possible in an all-to-all coupled network [116]. As I will describe

in Chapter 5, a nonlocal ring coupling configuration also supports a vast (and yet

unquantified) number of multistable “incoherent” states.

So, for now, enumerating all of the synchronization patterns possible in a large

network is a challenge, because there are often a lot of them. But, thanks to recent

work by Francesco Sorrentino and Lou Pecora, it is now possible to predict and

analyze the stability of every possible cluster-synchronous state [117]. In this section,

I will give a simple example network with 5 nodes, and 12 possible synchronization

patterns. I will describe how to predict those patterns, and briefly indicate how the

linear stability analysis will proceed. Details can be found in [117]. Finally, I will

show the experimental confirmation of some of the new types of patterns.
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4.9.1 Subgroup clusters

The network we will consider is given by the Laplacian matrix

L =


−3 1 0 1 1
1 −3 1 0 1
0 1 −3 1 1
1 0 1 −3 1
1 1 1 1 −4

 . (4.18)

This network and all of the cluster synchronization patterns it supports are shown

in Figure 4.5. The patterns A1,..., A5 arise due to subgroups of the graph’s auto-

morphism group. The decomposition of a group into a direct product of subgroups,

i.e. G = H1 × ...Hi...×Hν , can be accomplished using computational group theory

software [113, 114]. An individual subgroup Hi can be excluded, and a new group

can be constructed G ′ = H1 × ... × Hν . The new group G ′ has its own orbits, and

the orbits of each subgroup will yield a cluster pattern, just as the orbits of the

full group do. The construction of the variational equations follows the same lines

as described in Sections 4.6 and 4.5, except one considers G ′ rather than the whole

group.

4.9.2 Laplacian coupling and merged clusters

Laplacian coupling allows for merged clusters. For example, L1 is the merger of

the trivial cluster, node (5), with the cluster (1,2,3,5). In general, merged clusters are

formed by merging clusters that arise due the symmetries of the adjacency matrix.

Not all clusters can merge. For example, in the pattern A2, node (5) can’t join either

of the other clusters. There isn’t really a good way to determine which mergers

are possible, except by evaluating each one individually. It is straightforward, but
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slightly tedious, to verify by hand that the synchronization patterns L1, L3, and L4

satisfy the equations of motion.

There is a better way to determine if it is possible for a given merger to

happen than direct examination of the equations of motion. Note that, according

to Equation 4.3, the coupling term vanishes between synchronized nodes. Deleting

links between nodes that are synchronized in a proposed merged-cluster state leads

to a new, dynamically-equivalent network. If the proposed synchronization pattern

is allowed by the symmetries of the dynamically-equivalent network, then the merged

cluster state is possible. Merged cluster states will have both new synchronous and

new transverse directions.

4.9.3 Experimental observation

We show subgroup and Laplacian clusters using the experimental system de-

scribed in 4.7. Figure 4.6 shows the experimental synchronization error for each

synchronization pattern as a function of the parameter σ. For these measurements,

β = 1.45π, and σ was decreased from π to 0 in steps of π/50, with 1000 iterations

at each value of σ. The phases xi were not reinitialized when the values of σ were

updated. We plot the pattern synchronization error. This quantity measures the

extent to which the nodes synchronize in one of the patterns shown in Figure 4.5,

and is defined as the average over all clusters under consideration (e.g. the clusters

(1, 5, 3) and (2, 4) for L3), of the time average of 〈|xi − 〈x〉 |〉, where 〈•〉 denotes the

average over the nodes in a cluster.
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Chapter 5: Chimeras in Coupled-Map Lattices

This chapter is based on work from the following publication

Aaron M. Hagerstrom, Thomas E. Murphy, Rajarshi Roy, Philipp Hövel, Iryna
Omelchenko, and Eckehard Schöll. Experimental observation of chimeras in coupled-
map lattices. Nature Physics, 8(9):658–661, 2012.

5.1 Introduction and outline

Chimera states were first recognized in a ring of coupled phase oscillators by

Kuramoto and Battogtokh in 2002 [29]. Networks of phase oscillators are widely

studied in part because the phase oscillator model describes the generic behavior

of systems near a Hopf bifurcation with weak coupling [28], and in part because

in many cases low-dimensional models of infinitely large populations can be con-

structed [118]. Depending on the strength of the coupling, a large population of

globally-coupled phase oscillators will either show synchronous “coherent” behavior,

or unsynchronized “incoherent” behavior. When nonlocal coupling is used instead,

both behaviors can be present at the same time: networks with nonlocal coupling

can have large, coexisting spatial regions of synchrony and incoherence. These re-

gions of qualitatively different behaviors are surprising because the coupling in these

models is homogeneous. There’s no reason why one particular part of a ring should
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synchronize while another part does not. This coexistence of seemingly incongru-

ous behaviors inspired Abrams and Strogatz to name these dynamical states after

a creature from Greek mythology with a goat’s head, a lion’s head, and a snake for

a tail [30]. Hundreds of papers have been written about Chimera states exploring

various types of coupling, different local dynamics, coupling with time delay, the ef-

fect of parameter heterogeneity, their metastability as a function of size, and many

other things [30,119–121,121–129].

Before 2012, there were no experimental demonstrations of chimeras. Now

there are several. This chapter describes one of the first two experimental real-

izations of chimera states. The other experiment was performed by Mark Tinsley,

Simba Nkomo, and Ken Showalter, who observed chimera states in two coupled pop-

ulations of chemical oscillators [33]. Their experiment was inspired by a theoretical

paper from 2008 which presented a low-dimensional analytical model of two coupled

populations of phase oscillators [119]. This theoretical paper was also the inspiration

for an experiment by Erik Martens, Shashi Thutupalli, Antoine Fourrière, and Oskar

Hallatschek, who used metronomes as phase oscillators, and constructed two coupled

populations by placing the metronomes on swings coupled by a spring [36]. Chimera

states have also been observed in time-delayed feedback loops [37,38]. Time-delayed

systems have an infinite-dimensional phase space which can be thought of as analo-

gous to a spatial domain. Chimera states have also been observed in electrochemical

systems including some with global coupling [34,35].

Many models which display chimera states have nonlocal coupling. In a spatial

domain, oscillators are said to be nonlocally coupled if each oscillator has a finite

86



range of influence, rather than being coupled to the whole system, or only to an

infinitesimally small local area. In systems consisting of a finite number of oscillators,

coupling is said to be nonlocal if a given oscillator is coupled to other oscillators

within a distance that is an appreciable fraction of the system size. Global coupling,

in which all oscillators receive the same signal [116], and local coupling [130–135]

were much more widely studied prior to the discovery of chimeras, in part because it

was hard to think of experimental situations in which nonlocal coupling might come

about. Shima and Kuramoto argued that nonlocal coupling could arise in reaction-

diffusion systems if one reagent diffused much more slowly than another [31].

When we wrote our paper in 2012, it was generally believed that chimera states

require nonlocal coupling. Now, in 2015, chimeras have been described in models

with purely local coupling [136] and in both models [137] and experiments [34, 35]

with global coupling. It’s also worth noting that more than a decade before chimeras

in phase oscillators were described by Kuramoto and Battogtokh, Kaneko described

dynamical states in globally-coupled iterated maps with a coexistence of a few large

synchronized clusters and many small unsynchronized clusters [116]. These states

probably deserve to be called chimeras.

The chimera states we describe here exist in a coupled-map lattice (CLM)

[130–135] in one or two [138] dimensions. Although we use the term “oscillator” to

describe the iterated maps in the experiment, the local dynamics of an individual

oscillator are not oscillatory. Each oscillator acts like a chaotic iterated map when

it is not coupled to other oscillators. Even though individual oscillators behave

chaotically, we will see situations where a network of coupled oscillators is periodic.
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The network is updated in discrete time, and so the temporal periodicity of a given

lattice site will be an integer number of iterations. In the chimeras we describe,

all of the nodes are synchronized, in the sense that the entire system is periodic

with the same period. In this case the terms “coherence” and “incoherence” refer

to spatial behavior rather than temporal behavior. We use the term coherent to

refer to smooth profiles, and incoherent to refer to spatial profiles with a large

number of discontinuities. These types of chimeras in coupled map lattice were first

theoretically considered and numerically simulated in refs. [139,140].

5.1.1 Organization of this chapter

Section 5.2 describes the chimera states we observed, and the dependence of the

dynamics on parameter values in both simulation and experiment. Two parameters

are particularly important: the coupling radius r, and the coupling strength ε.

At large ε, we see smooth spatial profiles. At low ε, we see incoherent patterns

with many spatial discontinuities. Section 5.3 derives an approximation for a critical

coupling strength at which a discontinuity develops.

Our chimera states have incoherent regions. These should be thought of as

finite-sized regions, rather than thin boundaries between neighboring smooth re-

gions. In Section 5.4, we show simulation data which demonstrates that the inco-

herent region scales with the number of oscillators, N .

We see patterns with different spatial wavenumbers. Intuitively, a smaller

coupling radius leads to patterns with higher wavenumber. In Section 5.5 we show
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that patterns with different wavenumbers are related by a simple scaling argument.

5.2 Coupled-map lattices in experiment

Figure 5.1 shows the experimental setup of the optical CML. This is the same

device described in Chapter 4. The device employs a phase spatial light modulator

(SLM) and an infrared camera in feedback configuration. Both the SLM and the

camera frames are partitioned into an M×M array of square regions. These regions

correspond to nodes in the network of coupled maps. The phase shift xi,j and

intensity I for a given region (i, j) are related by

I(xi,j) =
1

2
(1− cosxi,j) , i, j = 0, . . . ,M − 1. (5.1)

The intensity has been normalized to be between 0 and 1. A lens is used

to project an image of the SLM onto an infrared camera, which records the two-

dimensional intensity pattern I(xi,j). We construct a network of iterated maps

by using the computer to communicate between the camera and the SLM. Time

evolution of the network is achieved by iteratively updating the phase applied by

each region of the SLM in a way that depends upon the intensity measured by the

camera.

5.2.1 Chimeras in 1D and 2D

We present results for two different coupling schemes shown schematically in

Figures 5.1(b) and 5.1(c). In the one-dimensional (1D) configuration, the elements

in the array are arranged as a ring with periodic boundary conditions. The SLM is
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Figure 5.1: Experimental device and coupling configuration. a) Op-
tical configuration. Polarization optics create a nonlinear relationship
between the spatially dependent phase shift applied by the SLM and
the intensity of the light falling on the camera. Feedback and coupling
are implemented using a computer. b) One- and c) two-dimensional
coupling configurations are shown schematically. Because the elements
are coupled diffusively to their neighbors within a range R in either one
or two dimensions with periodic boundary conditions, the coupling is
identical for all oscillators.

90



treated as a 1D lattice with the elements coupled in a raster-ordered arrangement.

If xti is the phase of the ith element in the ring at the tth iteration, and I(xti) is

the intensity measured by the corresponding region in the camera, then the phase

is updated according to

xt+1
i = 2πa

{
I
(
xti
)

+
ε

2R

R∑
j=−R

[
I
(
xti+j

)
− I

(
xti
)]}

(5.2)

where i = 0, . . . , N−1 in the 1D ring configuration and the index i is periodic modulo

N . Thus each element is coupled diffusively to all of the elements within a distance

R on either side, and ε describes the strength of the coupling. The parameter

a controls the temporal dynamics of an isolated map. We choose a = 0.85 such

that the local map xt+1 = f(xt) ≡ 2πaI(xt) is chaotic with a Lyapunov exponent

λ ≈ 0.58.

We also examine a two-dimensional (2D) coupling scheme. In this configu-

ration, each element is coupled to its neighbors within a square region, and the

boundary conditions are periodic in both dimensions.

xt+1
i,j = 2πa

{
I
(
xti,j
)

+
ε

4R2

R∑
k,l=−R

[
I
(
xti+k,j+l

)
− I

(
xti,j
)]}

(5.3)

Figures 5.2(a) and 5.2(b) characterize the dependence of the dynamics of the

1D and the 2D systems on coupling strength and range by plotting a measure of

temporal entropy (see Section 5.2.2) in order to characterize the periodicity of the

dynamics. The color maps were obtained through numerical simulation of equations

(5.2) and (5.3). A period-2 profile will have an entropy of 1 bit, and a chaotic profile

will have an entropy close to 9 bits, since 512 bins were used. We see spatial profiles
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Figure 5.2: Parameter space of the 1D and 2D CML systems. a) Pa-
rameter space of the one-dimensional configuration (N = 256 elements).
Blue corresponds to low entropy and periodicity, orange corresponds to
high entropy and chaos. The dashed line indicates the critical coupling
strength εc = 0.54 b) Parameter space of the two-dimensional config-
uration (128 × 128 lattice). There is a prominent K = 1 tongue, and
two tongues with more complex spatial patterns. c) Experimental and
numerical realizations of the 1D system. In the middle panel, B, the inco-
herent region is highlighted in yellow. Labels A (coherence), B (chimera),
C (incoherence) show positions in the parameter space of panel a). d)
Experimental and numerical realizations of the 2D system. In the middle
panel, E, the incoherent region is highlighted.
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that are periodic in time, as well as profiles that are chaotic in time. There is a rich

variety of both coherent and incoherent spatial structures. The thin vertical regions

marked K = 1, 2, 3 in figure 5.2(a) indicate conditions for which the dynamical

state is periodic in time and forms a spatially periodic standing-wave pattern with

a spatial wavenumber of K. Within each of these regions, there is a transition from

spatial coherence to incoherence with decreasing coupling strength ε, as predicted

in [139,140].

Equations (5.2) and (5.3) admit a globally synchronous solution. The hatched

region in Figures 5.2(a) and 5.2(b) indicate the region in parameter space for which

global synchrony is stable, which is identical between the 1D and 2D systems.

A comparison of the 1D and 2D systems reveals that these systems show equiv-

alent behavior within a limited region in parameter space. In the 2D system there

is a prominent region marked K = 1, which contains profiles that are homogeneous

in one direction. Every solution of the 1D problem corresponds to a solution of the

2D problem that is uniform in one direction, i.e., xi,j = xi. While K = 2, 3 . . .

profiles also exist in principle, only the K = 1 profile is observed in simulation and

experiment in the 2D system within the evolution time we consider. Simulations

also reveal two smaller regions that contain complex profiles with spatial structures

that cannot be realized in one dimension.

Figure 5.2(c) shows experimental and numerical realizations of three profiles

from the K = 1 region. The sequence A,B,C shows a progression from spatial

coherence to spatial incoherence. All profiles have a temporal period of 2. At a

coupling radius r ≡ R/N = 70/256 ≈ 0.27 and ε = 0.75 (A), the profile has a
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smooth spatial variation. At r = 105/256 ≈ 0.41, ε = 0.44 (B), the profile shows

two large domains of coherent, synchronized behavior separated by narrow but finite,

regions of incoherent behavior highlighted in yellow. Numerical evidence indicates

that the width of these regions as a fraction of the system size remains constant as N

increases, and hence this is not a boundary effect (see Section 5.4). While the entire

profile is periodic in time, the dynamics of the coherent and incoherent regions are

qualitatively different in their degree of spatial coherence: within the incoherence

intervals there are numerous admissible combinations of upper and lower states

whose multiplicity scales exponentially with the system size [139]. This mixture

of qualitatively different behaviors is analogous to the chimera states discussed in

references [29,30,119,122–124], where an array of identical oscillators splits into two

domains: one coherent and phase locked, the other incoherent and desynchronized.

Unlike the chimeras in continuous-time phase oscillators [29, 30], the generalized

chimeras here and in [139,140] have two coherent parts (with high and low intensity,

respectively) and two incoherent parts, as a result of their mechanism of nascence

from the completely coherent K = 1 spatial profile. Finally, at r = 115/256 ≈ 0.45,

ε = 0.375 (C), the profile is completely incoherent. The same scenario occurs in

the K = 2 and K = 3 regions and can be interpreted through a spatial rescaling

described in Section 5.5.

Figure 5.2(d) shows snapshots of experimental and numerical realizations of

the 2D system in a 32× 32 lattice, obtained with similar parameter values to those

used in Figure 5.2(b). All of these realizations are periodic in time with period 2,

except (E), which has a period of 4 in the experimental realization shown. Like
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the 1D system, the 2D system undergoes a coherence-incoherence transition as ε is

decreased. At r = 9/32 ≈ 0.28, ε = 0.75, the system exhibits a smooth profile (D).

For r = 13/32 ≈ 0.41 and ε = 0.44, there is a chimera-like coexistence of coherence

and incoherence (E). Finally, at r = 14/32 ≈ 0.44 and ε = 0.375, the system is fully

incoherent (F).

5.2.2 Periodicity quantification

In Figures 5.2(a) and 5.2(b), the color of each point corresponds to a single

numerical simulation. Lattice sizes of 256 for the 1D case and 128× 128 for the 2D

case were used. Initially, the phase of each node is random and uniformly distributed

between 0 and 2π. In each simulation we discard 50000 transient iterations. Using

the next 5000 iterations, we construct one histogram for each of the N nodes in the

network, binning the values the phase achieves in these iterations. 512 bins were

used. Thus we estimate pni , the fraction of the time that node i will spends in the

nth bin. From these statistics we obtain the entropy, which is then averaged over

the N nodes in the system

H = − 1

N

N−1∑
i=0

511∑
n=0

pni log2 p
n
i . (5.4)

We note that for this system the temporal behavior of the whole network is either

chaotic or periodic, and the spatial average of the entropy will not differ substan-

tially from the entropy of any given node. We also note that this calculation only

characterizes the temporal behavior of the system, and does not distinguish between

spatial coherence and incoherence.
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5.3 Critical coupling strength

The development of a spatial discontinuity can be explained analytically. We

derive the critical coupling strength εc at which the smooth profile breaks up giving

rise to the incoherence regions (B) of figure 5.2(c). Considering the spatially contin-

uous version of equation (5.2) and solutions with wavenumber K = 1 and period-2

dynamics in time, the system dynamics are given by alternating profiles x0(u) and

x1(u) for even and odd time steps, respectively. By evaluating the spatial derivative

of this equation with the profiles x0(u) at the positions where the smooth profiles

break up, we obtain two equations which, when multiplied, will yield a condition

for the critical coupling strength.

Starting from the system equation (5.2)

xt+1
i = f

(
xti
)

+
ε

2R

R∑
j=−R

[
f
(
xtj+i

)
− f

(
xti
)]
, (5.5)

where we define the local map as f(x) = 2πaI(x), we obtain its spatially continuous

version for N →∞ and r = R/N :

xt+1(u) =f
(
xt(u)

)
+

ε

2r

∫ u+r

u−r

[
f
(
xt(v)

)
− f

(
xt(u)

)]
dv. (5.6)

Let us consider a solution with wave number K = 1 and period-2 dynamics in time.

Hence we can reduce the dynamics by even and odd time steps x0(u) and x1(u),

respectively:

x1−j(u) = (1− ε)f
(
xj(u)

)
+

ε

2r

u+r∫
u−r

f
(
xj(v)

)
dv (5.7)
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Figure 5.3: Critical coupling and scaling of coherent profiles. a) Condi-
tion G for breaking of the smooth profile. The solid curve corresponds to
the critical coupling strength εc = 0.54. The dashed and dotted curves
refer to ε = 0.675 > εc and ε = 0.475 < εc, respectively. b) Snap-
shots of the period-2 solution for even (x0

i (black)) and odd (x1
i (red))

time steps at the critical coupling strength of panel (a). The light red
and gray dots refer to the experiment. Points u1, u2 are discontinuity
points, where the profile breaks, and x∗ marks the fixed point of the local
map. Other parameters: N = 256, a = 0.85, r = 88/256 ≈ 0.34. c)-e)
Scaling of coherent intensity profiles. The measured coherent profiles
with spatial periods K = 1, 2, 3 shown in black for coupling radius (c)
r3 = 22/256 ≈ 0.09, (d) r2 = 33/256 ≈ 0.13, and (e) r1 = 66/256 ≈ 0.26.
The profile K = 1 numerically obtained from equations (5.2),(5.1) and
its rescaled profile are shown in red in panels c) and d),e), respectively.
Other parameters: a = 0.85, ε = 0.8, and N = 256.
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with j = 0, 1. Taking the spatial derivative yields

∂ux
1−j(u) =(1− ε)∂uf

(
xj(u)

)
∂ux

j(u)+

+
ε

2r

[
f
(
xj(u+ r)

)
− f

(
xj(u− r)

)]
. (5.8)

At the points where the smooth profile breaks up, the spatial derivative ∂ux
j(u)

becomes infinite. Considering that ∂ux
0(u), ∂ux

1(u) diverge to infinity, we can ne-

glect the coupling term on the right-hand side. Multiplying the equations for even

and odd time steps we obtain:

∂ux
0(u)∂ux

1(u) =
[
(1− ε)2∂uf

(
x0(u)

)
∂uf

(
x1(u)

)]
× ∂ux0(u)∂ux

1(u), (5.9)

which yields the following condition

1 = (1− ε)2∂uf
(
x0(u)

)
∂uf

(
x1(u)

)
. (5.10)

As the local dynamics is governed by the map f(x) = πa(1−cosx) and its derivative

is equal to f ′(x) = πa sinx, we introduce the function

G(u) = (πa)2(1− ε)2 sin(x0(u)) sin(x1(u))− 1 (5.11)

as a deviation from the previous condition (5.10).

For fixed coupling radius r and fixed ε we can numerically calculate x0(u), x1(u).

For the critical coupling strength εc the condition G(u∗) = 0 holds at discontinuity

points u∗.

In order to obtain an analytic approximation for the critical coupling strength

εc, we assume x0(u) = x1(u) = x∗ at the discontinuity points u∗, where x∗ is a fixed
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Figure 5.4: Local map f(x) = 2πaI(x) = πa(1 − cosx) (red) and its
twice iterate f 2 (blue) for a = 0.85. The filled and open circles refer to
the fixed points of f and the twice iterated f 2.
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point x∗ = πa(1− cosx∗) of the map, hence

G(u) = (πa)2 (1− εc)2 sin2 x∗ − 1 = 0. (5.12)

This leads to

εc = 1∓ 1

(πa)| sinx∗|
, (5.13)

where the minus sign should be chosen since the lower value of εc represents the

threshold where the smooth profile breaks up with decreasing coupling strength ε,

and the spatial coherence is lost. The map f(x) = πa(1 − cosx) has three fixed

points x∗0 = 0, x∗1 ≈ 0.79, and x∗2 ≈ 4.13 for a = 0.85, as shown in Figure 5.4.

The solutions with K = 1 in space and period-2 in time shown in Figure 5.3(b)

can be understood qualitatively as follows: part of the network is in the upper state,

part is in the lower state, and both states alternate with period 2. These two states

correspond very roughly to the two fixed points of the twice iterated map above and

below the fixed point x∗2 ≈ 4.13. They have bifurcated from x∗2 which has become

unstable in the twice iterated map, and the discontinuity point between these is the

fixed point x∗2 (see Figure 5.4). Hence, the approximation x∗ ≈ x∗2 in Equation (5.13)

leads to εc ≈ 0.55, which is close to the result obtained numerically in Figures 5.3(a)

and 5.3(b).

One can even obtain an approximate full analytical solution (for a > 0.6) by

Taylor expanding the local map f about π using

cosx∗2 ≈ −1 +
1

2
ψ2, (5.14)
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where ψ = x∗2 − π. This gives an equation for the fixed point

π + ψ ≈ πa

(
2− 1

2
ψ2

)
(5.15)

and hence

ψ ≈ 1

πa
(−1 +

√
1 + 2π2a(2a− 1)). (5.16)

This gives ψ ≈ 0.96, x∗2 ≈ 4.10, and εc ≈ 0.54, which agrees with the observed

behavior of both the experimental system and simulations to a few percent.

5.4 Scaling of the incoherent regions in chimera states with N

To illustrate the relationship between the size of the incoherent regions high-

lighted in yellow in Figs. 5.2(c),(d), and the finite size (N) of the experimental

lattice, we focus on the 1D case in Fig. 5.2(c) panel (B). While these incoherent

regions are small, they are finite and not just a boundary between the coherent

domains. The size of the incoherent region as a fraction of the system size remains

approximately constant as the system size is increased in numerical simulations,

which indicates that it is not a finite-size boundary effect. This is shown in Fig. 5.5,

which depicts snapshots for N = 256 and N = 1024, and a decreasing sequence of

coupling strengths ε = 0.44, 0.42, and 0.40, with the same coupling radius r ≈ 0.41

as in panel B of Fig. 5.2(c). Furthermore, Fig. 5.5 demonstrates that the inco-

herence regions become wider for decreasing coupling strength ε as expected in

the transition scenario from spatial coherence to complete incoherence via chimera

states (cf. [139, 140]). The initial conditions in Fig. 5.5 are carefully prepared to
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Figure 5.5: Simulations to illustrate scaling with system size of the in-
coherent regions for the 1D system. Snapshots for (a),(c),(e) N = 256,
and (b),(d),(f) N = 1024. Decreasing coupling strength is used in panels
(a),(b) ε = 0.44, (c),(d) ε = 0.42, (e),(f) ε = 0.40. Other parameters:
a = 0.85, r = 0.41. Transients of 1000 time steps were neglected. The
insets show the enlarged left incoherence region for each snapshot.

generate chimera states. We divided the ring of N elements into four equal parts,

and used I(x0
i = 4.5) ≈ 0.6 and I(x0

i = 2.5) ≈ 0.9 on the segments
i

N
∈
[
−1

8
,
1

8

]
and

i

N
∈
[

3

8
,
5

8

]
, respectively, and random sequences of these two values for the

other two parts, which contain the incoherent domains as subsets [139, 140]. The

experimental measurements presented in Fig. 5.2 were made with random initial

conditions. The role of initial conditions in the emergence of chimera states and the

existence of multistability needs to be explored in the future.
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5.5 Spatial rescaling and coherent patterns with K=1,2,3...

To obtain the scaling relation for coherent profiles, we consider again the

thermodynamic limit N →∞ and the spatially continuous version of system (5.2):

xt+1(u) = f(xt(u)) +
ε

2r

u+r∫
u−r

[
f(xt(v))− f(xt(u))

]
dv, (5.17)

where f(x) = 2πaI(x), r = R/N is a coupling radius, and the coherent solution

xti, i = 0, . . . , N − 1, of the system (5.2) approaches a corresponding smooth profile

xt(u), where u ∈ [0, 1].

In the following, we consider the case that the coupling strength ε is fixed.

Let there exist a state xK′(u) with spatial period K ′. The dynamics of this state is

governed by

xt+1
K′ (u) = f(xtK′(u)) +

ε

2r

u+r∫
u−r

[
f(xtK′(v))− f(xtK′(u))

]
dv, (5.18)

The solution xK′(u) will be compared with the state xK(u) with spatial period K.

Our goal is to show that the dynamics of xK′(u) is identical to the dynamics of xK(ũ)

at a rescaled space position ũ = (uK ′)/K for a correspondingly rescaled coupling

radius r̃ = (rK ′)/K. For simplicity, we will consider that K ′ = 1, and we assume

that xK′(u) = xK(u/K). The dynamics of the solution xK of Equation (5.18) with

rescaled u→ u/K and rescaled coupling radius r → r/K is governed by

xt+1
K

( u
K

)
= f

(
xtK

( u
K

))
+
εK

2r

(u+r)/K∫
(u−r)/K

[
f
(
xtK(v)

)
− f

(
xtK

( u
K

))]
dv, (5.19)

Let v = w/K, then

xt+1
K

( u
K

)
= f

(
xtK

( u
K

))
+

ε

2r

u+r∫
u−r

[
f
(
xtK

(w
K

))
− f

(
xtK

( u
K

))]
dw. (5.20)
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With the use of the above mentioned assumption xtK(u/K) = xtK′(u), we obtain

xt+1
K

( u
K

)
= f(xtK′(u)) +

ε

2r

u+r∫
u−r

[
f(xtK′(w))− f(xtK′(u))

]
dw = xt+1

K′ (u), (5.21)

i.e., identical dynamical evolution.

This is depicted in Figure 5.6, which illustrates the scaling of the coherent

profiles obtained from numerical simulations of equation (5.2) with a = 0.85, ε =

0.8, and N = 256. Coherent profiles with K = 1, 2, 3 for a coupling radius (a)

r1 = 66/256 ≈ 0.26, (b) r2 = 33/256 ≈ 0.13, and (c) r3 = 22/256 ≈ 0.09 are shown

in black. The rescaled coherent profile for K = 1 in the panels (b) and (c) is shown

in red.

To conclude this argument, if in the system (5.17) the coupling strength ε

is fixed and there exist two solutions xK′ and xK with space periods K ′ and K,

respectively, then xK′(u) = xK (uK ′/K) for corresponding coupling radii r and

(rK ′)/K, respectively.
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5.6 Concluding remarks

In this chapter, we showed that the CLM chimeras described in [139,140] can

be implemented in experiment. We also described some of their basic properties,

including the development of a spatial discontinuity with decreasing ε, and the

existence of patterns with different spatial wavenumbers. We also showed that

there are both one-dimensional and two-dimensional systems with similar behavior,

although, strangely, Chimeras with wavenumbers K other than 1 are not seen in

the two-dimensional system. The multistability of the chimera states, however, is

an important question that remains unaddressed.

As far as I am aware, it remains a complete mystery why, for large ε there

are coherent states and an apparently monostable (up to a translation) attractor,

whereas for low ε, there are many multistable, incoherent attractors. The argument

from Section 5.3 describes the development of a spatial discontinuity with decreasing

ε but it does not explain the multistability of incoherent states. When we wrote this

paper, we did not know about the application of group theory to cluster synchrony.

The incoherent patterns are probably subgroup clusters, and it may be possible to

say something about their stability now.
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Chapter 6: Unanswered questions

The majority of this thesis was devoted to describing what we did and why.

This Chapter focuses on what we didn’t do. The goal of this chapter is to briefly

mention some questions that became apparent during our investigation that might

lead to interesting future work.

6.1 Entropy and the photon-counting feedback loop

Time-delayed feedback loops have an infinite-dimensional phase space, and

support high-dimensional dynamics. Generally speaking, the larger the time delay

is in comparison to the filter time constants, the higher the dimensionality of the

dynamics. To obtain the results presented in Chapters 2 and 3, I deliberately

chose long filter time constants in order to observe low-dimensional dynamics. Time

series analysis techniques that rely on phase-space reconstruction, like the Cohen-

Procaccia procedure, tend not to perform well on high dimensional data, because

one needs an exceptionally large amount of samples to fill phase space sufficiently

to resolve the shape of the attractor.

From the point of view of random number generation, high-dimensional dy-

namics may offer additional security compared to low dimensional systems. An
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hypothetical attacker who wants to predict the future state of a high-dimensional

system might try to perform a phase-space embedding. Or, in other words, they

might try to count the number of occurrences of pattern of length d, to determine

which patterns are most common. The high-dimensionality of the system will pose

an obstacle to these methods.

On the other hand, one might be able to predict the dynamics of one chaos-

based random number generator by synchronizing a second chaotic system to it.

This leads to several interesting questions.

The first question is, how does the synchronization error between two photon-

counting feedback loops depend on the photon rate λ0? There may be an information-

theoretic argument that gives some insight into the synchronization error as a

function of λ0. The synchronization could be measured using several information-

theoretic quantities including mutual information, the Kullback-Liebler divergence,

or the Jensen-Shannon divergence. It’s not clear which would be best.

The synchronization of two chaotic feedback loops could be used to construct

an upper bound for the entropy rate of a random number generator. Consider two

unidrectionally coupled feedback loops. The output of the first, which is our random

number generator, will be called Xn. The second, which will try to synchronize to

Xn, and therefore predict it, will be called Yn. Yn will be the output of a feedback

loop driven by all of the previous random numbers Xn−1, Xn−2, .... In other words,

the second loop, Y is a model that one can use to predict the next sample, Xn. If

the two loops are partially synchronized, then the conditional entropy H(Xn|Yn) <

H(Xn). In general, H(Xn|Yn) ≥ H(Xn|Xn−1, Xn−2, . . . ). So it is clearly true that
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h ≤ (1/τ)H(X|Y ). However, because phase space embeddings of high-dimensional

signals don’t work very well, the conditional entropy might give a tighter bound on

the entropy rate than the Cohen-Procaccia method.

Another issue that could be addressed by synchronization is the effect of noise

on the unpredictability of the dynamics. When we started the work on the photon-

counting feedback loop, one of our ideas was provide an explicit demonstration that

the sensitivity to initial conditions present in chaos amplifies microscopic noise. We

still have not done this. However, it is possible to measure finite-time Lyapunov

exponents using synchronization between two loops [141]. It should also be possible

to perform an analogous experiment with the photon-counting system. This would

be an explicit measurement of how the uncertainty in the state of this system grows

in time. One might expect diffusive growth (∼
√
t) of the distance in phase space

between two trajectories in the shot-noise dominated regime, and exponential growth

in the high-photon rate limit.

6.2 Synchronization in networks of coupled systems

In the study of cluster synchrony, we have so far considered both Laplacian

coupling and adjacency matrix coupling. We have only done a little bit of work on

networks with directed links between nodes. It remains an open question whether

any interesting new phenomena are present in the case of directed coupling that are

not present with bidirectional coupling.

In my opinion, the biggest unresolved question regarding both chimeras and
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cluster synchrony is whether the two phenomena are related. Chimera states are,

after all, situations in which a large synchronized cluster forms, while many smaller

clusters remain unsynchronized.

So far, we have largely avoided the issue of quantifying the number of possible

cluster-synchronous states that a network can have. We did count the number of

clusters and subgroups for a few different ensembles of random networks [142], but

so far we have not tried to quantify the number of subgroup clusters and Laplacian

merged clusters. This quantification would depend on the type of network. Scale-

free networks would have different statistics from Erdős-Rényi, for example. All we

know is that there are probably a lot of different possible cluster synchronization

patterns possible in a given network. Some kind of quantification of these patterns

might go a long way towards understanding chimera states.

In the context of coupled-map lattice chimeras, the multistability of chimera

states and incoherent states needs to be quantified. Ref [139] argued that the mul-

tistability of the incoherent region scales exponentially with the system size. As far

as I am aware, it remains a complete mystery why, for large ε there are coherent

states with an apparently monostable (up to a translation) attractor, whereas for

low ε, there are exponentially many multistable, incoherent attractors. The argu-

ment from Section 5.3 describes the development of a spatial discontinuity with

decreasing ε but it does not explain the multistability of incoherent states. When

we wrote [32], we did not know about the application of group theory to cluster syn-

chrony. The incoherent patterns may be subgroup clusters, and it may be possible

to say something about their multiplicity and stability now.
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Another question regarding coupled map lattice chimeras is why coherent pro-

files with K=2,3,4... are seen in the one-dimensional system, but not in the two

dimensional system. This difference can be seen in comparing the parameter-space

maps in Figure 5.2(a) and Figure 5.2(a). It is easy to see from inspection of Equa-

tions (5.2) and (5.3) that any solution of Equations (5.2) is automatically also a

solution of Equation (5.3), if one assumes a spatial profile that is homogeneous in

one direction. So, there are three possibilities: either wavenumbers higher than 1

are not stable in two dimensions, the basin of attraction of the higher wave numbers

is so small that they are never seen, or the transient times to these states are so

long that they are never seen.

On a more global scale, the the biggest question is how (and if) cluster syn-

chronization and chimera states manifest in natural and technological systems. We

now know that chimeras are possible in experiments. It remains an open question

whether chimeras exist in natural contexts. Another interesting potential connection

is that the symmetry-based analysis presented here might be relevant to predicting

instabilities in the synchronization of the power grid.
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[1] Henri Poincaré. Leçons de mécanique céleste: professèes á la Sorbonne.
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Journal of the London Mathematical Society, 20:180–189, 1945.

[4] Edward N. Lorenz. Deterministic nonperiodic flow. Journal of the Atmospheric

Sciences, 20(2):130–141, 1963.

112



[5] TienYien Li and James A. Yorke. Period three implies chaos. American

Mathematical Monthly, 82(10):985–992, 1975.

[6] Brian R. Hunt and Edward Ott. Defining chaos. Chaos, 25(9):–, 2015.

[7] Stanislaw M. Ulam and John von Neumann. On combination of stochastic

and deterministic processes-preliminary report. In Bulletin of the American

Mathematical Society, volume 53, pages 1120–1120, 1947.

[8] M. Ranferi Gutiérrez, M. A. Reyes, and H. C. Rosu. A note on verhulst’s

logistic equation and related logistic maps. Journal of Physics A: Mathematical

and Theoretical, 43(20):205204, 2010.
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Omelchenko, and Eckehard Schöll. Experimental observation of chimeras in

coupled-map lattices. Nature Physics, 8(9):658–661, 2012.

[33] Mark R. Tinsley, Simbarashe Nkomo, and Kenneth Showalter. Chimera and

phase-cluster states in populations of coupled chemical oscillators. Nature

Physics, 8(9):662–665, 2012.

[34] Lennart Schmidt and Katharina Krischer. Clustering as a prerequisite

for chimera states in globally coupled systems. Physical Review Letters,

114:034101, 2015.

[35] Lennart Schmidt, Konrad Schönleber, Katharina Krischer, and Vladimir
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redundancy. Physical Review E, 80:026117, 2009.

[114] B. D. MacArthur, R.J. Sánchez-Garćıa, and J. W. Anderson. On automor-
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