
ABSTRACT

Title of thesis: AN ANALYSIS OF IMPROVEMENTS TO
BUCHBERGER’S ALGORITHM FOR
GRÖBNER BASIS COMPUTATION

Clinton E. McKay, Master of Arts, 2004

Thesis directed by: Professor William W. Adams
Department of Mathematics

Improvements to Buchberger’s Algorithm generally seek either to define a criterion for the

removal of unnecessary S-pairs or to describe a strategy for improving the choices which one

must make in the course of the algorithm. This paper surveys significant improvements to Buch-

berger’s original algorithm for Gröbner basis computation including the Gebauer-Möller Criteria,

the ”Sugar” strategy, and Jean-Charles Faugère’s F4 algorithm. Since Faugère’s F4 is generally

accepted as being a particularly efficient approach to Gröbner basis computation, we test several

variants of the F4 algorithm on a variety of benchmark ideals in an effort to judge the efficiency of

the Gröbner basis computation process, while also being mindful of the memory constraint issues

occurring in computer algebra.



AN ANALYSIS OF IMPROVEMENTS TO BUCHBERGER’S
ALGORITHM FOR GRÖBNER BASIS COMPUTATION

by

Clinton E. McKay

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Master of Arts

2004

Advisory Commmittee:

Professor William W. Adams, Chair/Advisor
Professor Lawrence C. Washington
Assistant Professor Niranjan Ramachandran



c© Copyright by

Clinton E. McKay

2004



ACKNOWLEDGMENTS

I owe my gratitude to all the people who have made this thesis possible. I would especially

like to thank my advisor, Professor William Adams, for the insights and guidance he provided

throughout this effort. He has always been available to provide help and advice. It has been a

pleasure to have had the opportunity to learn from a professor who is extremely knowledgable

and also incredibly patient with those who are less knowledgable. Special thanks also to Alyson

Reeves for her insights and for providing the implementations of the F4 algorithm, which I used

extensively in my research. My most sincere thanks also to Mom, Dad, Jessica Fitzgerald, Boo

Barkee, M. E. Yao, Jim Fennell, Charlie Toll, Jacquie Holmgren, Jim Schatz, Jack Clark, Bob

Boner, and Harry Rosenzweig.

ii



TABLE OF CONTENTS

List of Tables iv

1 Introduction 1

2 Buchberger’s Algorithm 4

3 The Gebauer-Möller Criteria 6

4 The “Sugar” Strategy 13

5 Faugère’s F4 Algorithm 16

6 Variants of F4 - Test Data Analysis 23

7 Conclusion 29

A Benchmark Polynomial Ideals 31

Bibliography 37

iii



LIST OF TABLES

2.1 Buchberger’s Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.1 Gebauer and Möller’s Improved Buchberger Algorithm . . . . . . . . . . . . . . . . 11

5.1 Faugère’s F4 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5.2 Reduction Subalgorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5.3 SymbolicPreprocessing Subalgorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5.4 Modified F4 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5.5 Modified SymbolicPreprocessing Subalgorithm . . . . . . . . . . . . . . . . . . . . 19

5.6 Simplify Subalgorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

6.1 Cyclic 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6.2 Cyclic 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6.3 Cyclic 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6.4 Katsura 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6.5 Katsura 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6.6 Katsura 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6.7 Katsura 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6.8 hCyclic 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6.9 f633 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

A.1 Cyclic6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

A.2 Cyclic7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

A.3 Cyclic8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

A.4 Cyclic9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

A.5 Katsura7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

A.6 Katsura8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

A.7 Katsura9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

iv



A.8 Katsura10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

A.9 hCyclic8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

A.10 f633 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

v



Chapter 1

Introduction

Gröbner bases provide a means for studying polynomial ideals in many variables, and the theory

of Gröbner bases may be applied to problems in a variety of disciplines including mathematics,

computer science, and engineering. Bruno Buchberger first developed an algorithm for computing

Gröbner bases in 1965, and since then, there have been numerous efforts to improve the efficiency

of the algorithm. These efforts have in many cases proven successful, and improved versions of

Buchberger’s Algorithm are utilized in nearly all computer algebra systems.

Before beginning our analysis of these improvements to Buchberger’s Algorithm, we first

introduce the basic terminology and results necessary to study Gröbner bases. Let K[x1, . . . , xn]

be the ring of polynomials in n variables with coefficients from the field K. We denote the set of

monomials, also referred to as power products, by

Tn = {xβ1
1 . . . xβn

n | βi ∈ N, i = 1, . . . , n}.

Let xα = xα1
1 . . . xαn

n , for non-negative integers α1, . . . , αn, and let deg(α) =
∑n

i=1 αi be the total

degree of the monomial xα. Given a set of nonzero polynomials F = {f1, . . . , fs} in K[x1, . . . , xn],

we denote the ideal generated by F as 〈F 〉.

Definition 1.1 A term order >T on the monomials of K[x1, . . . , xn] is a total order such that for

any exponents α,β,γ ∈ Nn, xα ≥ 1 and xα >T xβ implies xαxγ >T xβxγ .

We now provide three examples of commonly utilized term orders:

Example 1.2 Lexicographic (lex): xα >lex xβ if the leftmost nonzero entry of α− β is positive.

Example 1.3 Degree Lexicographic (degl): xα >degl xβ if deg(α) > deg(β), or deg(α) = deg(β)

and xα >lex xβ.

Example 1.4 Degree Reverse Lexicographic (rev): xα >rev xβ if deg(α) > deg(β), or deg(α) =

deg(β) and the rightmost nonzero entry of α− β is negative.

1



Definition 1.5 Fix a term order >, and let f be a polynomial in K[x1, . . . , xn] with f 6= 0. We

may write

f = a1x
α1 + a2x

α2 + · · ·+ arx
αr ,

where 0 6= ai ∈ K, xαi ∈ Tn, and xα1 > xα2 > · · · > xαr . Then we define LT(f) = a1x
α1 , the

leading term of f, and LM(f) = xα1 , the leading monomial of f .

Definition 1.6 Given a set F = {f1, . . . , fs} of polynomials in K[x1, . . . , xn]. We define the set

LT(F ) = {LT(f) | f ∈ F}, and similarly we define the set LM(F ) = {LM(f) | f ∈ F}.

Definition 1.7 Given a subset S of K[x1, . . . , xn], we define the leading term ideal of S to be the

ideal

LTI(S) = 〈LT(s) | s ∈ S〉.

Definition 1.8 A Gröbner basis G of a polynomial ideal I, with respect to >, is a finite set of

nonzero polynomials {g1, . . . , gt} ⊆ I such that LTI(G) = LTI(I). G is a reduced Gröbner basis

for I if for all g ∈ G, g is monic and no monomial of g lies in LTI(G− {g}).

Proposition 1.9 Let I 6= {0} be an ideal in K[x1, . . . , xn]. Then, for a given term order, I has a

unique reduced Gröbner basis.

The purpose of requiring the elements of G to be monic in Definition 1.8 is to guarantee

the uniqueness of the reduced Gröbner basis. The proof of this proposition is given in [1] and [6].

Definition 1.10 Given f, g, h ∈ K[x1, . . . , xn], with g 6= 0, we say that f reduces to h modulo g

in one step, written

f
g−→ h,

if and only if LM(g) divides a nonzero term X that appears in f and

h = f − X
LT(g)

g.

Definition 1.11 Let f, h, and f1, . . . , fs be polynomials in K[x1, . . . , xn], with

fi 6= 0 (1 ≤ i ≤ s), and let F = {f1, . . . , fs}. We say that f reduces to h modulo F, denoted

f
F−→+ h,

2



if and only if there exist a sequence of indices i1, i2, . . . , it ∈ {1, . . . , s} and a sequence of polynomials

h1, . . . , ht−1 ∈ K[x1, . . . , xn] such that

f
fi1−→ h1

fi2−→ h2

fi3−→ . . .
fit−1−→ ht−1

fit−→ h.

Definition 1.12 A polynomial r is called reduced with respect to a set of non-zero polynomials

F = {f1, . . . , fs} if r = 0 or no monomial that appears in r is divisible by any one of the LM(fi), i =

1, . . . , s. In other words r cannot be reduced modulo F.

Definition 1.13 If f
F−→+ r and r is reduced with respect to F, then we call r a remainder for f

with respect to F.

The reduction process enables us to define a division algorithm analagous to the well-known

Division Algorithm in one variable. Given f, f1, . . . , fs ∈ K[x1, . . . , xn] with fi 6= 0(1 ≤ i ≤ s),

this algorithm returns quotients u1, . . . , us ∈ K[x1, . . . , xn], and a remainder r ∈ K[x1, . . . , xn],

such that f = u1f1 + · · ·+ usfs + r.

Theorem 1.14 Let I be a non-zero ideal of K[x1, . . . , xn]. The following statements are equivalent

for a set of non-zero polynomials G = {g1, . . . , gt} ⊆ I.

1. G is a Gröbner basis for I.

2. f ∈ I iff f reduces to 0 modulo G.

3. f ∈ I iff f =
∑t

i=1 higi with LM(f) = max1≤i≤t(LM(hi)LM(gi)).

The preceeding theorem and its proof may be found in Adams and Loustaunau [1].

Definition 1.15 Let 0 6= f, g ∈ K[x1, . . . , xn]. Let L = LCM(LM(f),LM(g)). The polynomial

S(f, g) = L
LT(f)f −

L
LT(g)g is called the S-polynomial of f and g.

Theorem 1.16 (Buchberger) Let G = {g1, . . . , gt} be a set of non-zero polynomials in K[x1, . . . , xn].

Then G is a Gröbner basis for the ideal I = 〈g1, . . . , gt〉 if and only if for all i 6= j,

S(gi, gj)
G−→+ 0.

Again, this theorem along with the proof thereof may be found in [1].

3



Chapter 2

Buchberger’s Algorithm

As a result of Buchberger’s Theorem, there is a definitive, though not necessarily desirable, process

which one may go through to compute a Gröbner basis for an ideal I. In particular, the process be-

gins with reducing an S-polynomial formed from the generators of the ideal. Then, if non-zero, the

remainder is appended to the list of polynomials in our generating set. Additional S-polynomials

are formed, and the process then repeats until there are enough polynomials in the generating set

to reduce all S-polynomials to zero. Using the Noetherian property of K[x1, . . . , xn], we know that

indeed this process will always terminate.

The basic Buchberger Algorithm is as follows:

INPUT: F = {f1, . . . , fs} ⊆ K[x1, . . . , xn] with fi 6= 0 (1 ≤ i ≤ s)
OUTPUT: G = {g1, . . . , gt}, a Gröbner basis for 〈f1, . . . , fs〉
INITIALIZATION: G := F, SP := {{fi, fj}|fi 6= fj ∈ G}
WHILE SP 6= ∅ DO

Choose any (f, g) ∈ SP
SP := SP − {(f, g)}
S(f, g) G−→+ h, where h is reduced with respect to G
IF h 6= 0 THEN

SP := SP ∪ {(u, h)| for all u ∈ G}
G := G ∪ {h}

Table 2.1: Buchberger’s Algorithm

This algorithm for computing the Gröbner basis of an ideal is often extremely computation-

ally intense, since the number of S-polynomials may grow to be quite large. Also, it is the case that

an unfortunate choice as to the order in which the S-polynomials are considered could result in

drastically more S-polynomial computations and reductions than would have been the case had a

“better” choice been made. Although the reduction of an S-polynomial may be carried out rather

quickly, the process of reducing all S-polynomials will often be quite time consuming when there

are large quantities of S-polynomials needing to be reduced. Thus, Buchberger and other leading

4



mathematicians sought to develop methods for predicting when S-polynomials would reduce to

zero without actually computing them.

5



Chapter 3

The Gebauer-Möller Criteria

Though nearly twenty years old, Rüdiger Gebauer and H. Michael Möller’s paper On an Installation

of Buchberger’s Algorithm presents an improved version of Buchberger’s Algorithm which remains

an important benchmark against which the most modern algorithms for Gröbner basis computation

are compared. Gebauer and Möller build on Buchberger’s prior achievements and describe practical

criteria for detecting superfluous S-polynomial reductions. Before introducing this criteria, we first

define the concept of a syzygy and present another equivalent condition for being a Gröbner basis

of an ideal:

Definition 3.1 Given a set of nonzero polynomials F = {f1, . . . , fr} in

K[x1, . . . , xn], we define a syzygy of the tuple (LM(f1), . . . , LM(fr)) to be any tuple (h1, . . . , hr)

of K[x1, . . . , xn]r such that h1LM(f1)+ · · ·+hrLM(fr) = 0. The set of all syzygies of (LM(f1), . . . ,

LM(fr)) forms a K[x1, . . . , xn]-module which we call the first syzygy module of (LM(f1), . . . ,LM(fr))

and denote by S(1).

Theorem 3.2 The first syzygy module has a generating set, L(1), which is as follows:

L(1) := {Sij | 1 ≤ i < j ≤ r} with

Sij :=
LCM(LM(fi),LM(fj))

LM(fi)
ei −

LCM(LM(fi),LM(fj))
LM(fj)

ej

where ek is the kth canonical unit vector of K[x1, . . . , xn]r.

The preceding theorem was originally proved by D. K. Taylor in [11]. A proof may also be

found in [1].

Theorem 3.3 Let G = {g1, . . . , gr} ⊂ K[x1, . . . , xn]\{0} and I = 〈G〉. Then the following condi-

tions are equivalent:

1. G is a Gröbner basis of I.

6



2. Let L be a generating set of the module of syzygies

S(1) := {(h1, . . . , hr) ∈ K[x1, . . . , xn]r
∣∣∣∣∣

r∑
i=1

hiLM(gi) = 0}.

Then for each (f1, . . . , fr) ∈ L,

r∑
i=1

figi
G−→+ 0.

For the proof of this theorem, we refer the reader to H.M. Möller’s paper, [10].

Definition 3.4 An element gi of a Gröbner basis G is redundant if G′ := G\{gi} is also a Gröbner

basis and 〈G〉 = 〈G′〉.

Definition 3.5 Using the result of Theorem 3.3, we will similarly define an element Sik of L(1)

to be redundant if L(1)\{Sik} still generates S(1).

Definition 3.6 A minimal Gröbner basis for a polynomial ideal I is a Gröbner basis G for I such

that no element of G is redundant and all elements of G are monic.

The Gebauer-Möller Criteria, which we present below, applied to a polynomial ideal with

a particular term order, enable one to avoid carrying out the reduction of many S-polynomials,

which if reduced, would have reduced to zero. From Theorem 3.3 we may seek to eliminate

redundant elements in a Gröbner basis, G, by eliminating redundant elements in a basis of the

first syzygy module of the the leading monomials of G. This practice of avoiding unnecessary

S-polynomial reductions has been experimentally shown to improve the efficiency of a Gröbner

basis computation. It should be pointed out, however, that use of the Gebauer-Möller Criteria do

not necessarily result in obtaining a minimal Gröbner basis. Nevertheless, these criteria are an

extremely effective means of producing a nearly minimal, if not minimal, set of generators for a

polynomial ideal.

Definition 3.7 To find redundant elements in a basis for S(1), we define the module of syzygies

for L(1), which we denote S(2). Given a term order <T on K[x1, . . . , xn] we define an order on the

7



r(r − 1)/2 syzygies Sij by <1:

Sij <1 Skl ⇐⇒ LCM(LM(fi),LM(fj)) <T LCM(LM(fk),LM(fl)) or

LCM(LM(fi),LM(fj)) = LCM(LM(fk),LM(fl)), and j < l or

LCM(LM(fi),LM(fj)) = LCM(LM(fk),LM(fl)), j = l, and i < k.

Using this order, we denote the ijth canonical unit vector in K[x1, . . . , xn]r(r−1)/2 by eij . Let

S(2) :=


r∑

ij=1
i<j

hijeij ∈ K[x1, . . . , xn]r(r−1)/2

∣∣∣∣∣∣∣
r∑

ij=1
i<j

hijSij = 0

 .

Theorem 3.8 The module of syzygies S(2) has a generating set, L(2), defined as follows:

L(2) := {Sijk | 1 ≤ i < j < k ≤ r} with

Sijk =
LCM(LM(fi),LM(fj),LM(fk))

LCM(LM(fi),LM(fj))
eij −

LCM(LM(fi),LM(fj),LM(fk))
LCM(LM(fi),LM(fk))

eik+

LCM(LM(fi),LM(fj),LM(fk))
LCM(LM(fj),LM(fk))

ejk.

A proof of the preceding theorem may be found in [11].

Definition 3.9 The maximal syzygy involved in Sijk is denoted MS(i, j, k) and is defined by

MS(i, j, k) := max<1{Sij , Sik, Sjk}.

Let F = {f1, . . . , fr} ∈ K[x1, . . . , xn], and let S(1) be the first syzygy module of (LM(f1), . . . ,

LM(fr)). From Theorem 3.2, we know that L(1) := {Sij | 1 ≤ i < j ≤ r} is a generating set for

S(1), however, some of the Sij in L(1) may be redundant. Through eliminating redundant syzygies

in L(1), we are eliminating S-polynomials from our set of S-polynomials to reduce. Indeed, suppose

Sij is redundant, where

Sij =
LCM(LM(fi),LM(fj))

LM(fi)
ei −

LCM(LM(fi),LM(fj))
LM(fj)

ej.

Recall, ek is the kth canonical unit vector of K[x1, . . . , xn]r. Using the natural one-one correspon-

dance between unit vectors in K[x1, . . . , xn]r and polynomials in F, it follows that the S-polynomial

8



S(fi, fj) = LCM{LM(fi),LM(fj)}
LT(fi)

fi−LCM{LM(fi),LM(fj)}
LT(fj)

fj will reduce to zero, and therefore does

not need to be reduced. The purpose of the Gebauer-Möller Criteria is to eliminate redundant

elements in a generating set for S(1).

Let {f1, . . . , fr} be a set of polynomials in K[x1, . . . , xn]. The Gebauer-Möller Criteria are

as follows:

1. Criterion M holds for a pair (fi, fk) if ∃j < k, such that

LCM{LM(fj),LM(fk)} properly divides LCM{LM(fi),LM(fk)}.

2. Criterion F holds for a pair (fi, fk) if ∃j < i, such that

LCM{LM(fj),LM(fk)} = LCM{LM(fi),LM(fk)}.

3. Criterion Bk holds for a pair (fi, fj) if ∃j < k and

LM(fk) | LCM{LM(fi),LM(fj)},

LCM{LM(fi),LM(fk)} 6= LCM{LM(fi),LM(fj)}, and

LCM{LM(fi),LM(fj)} 6= LCM{LM(fj , fk).

In any cases in which criterion M , F , or Bk hold, the associated S-polynomial will reduce

to zero, and therefore does not need to be computed. This result is explained by the following

proposition:

Proposition 3.10 The module of syzygies S(1) is generated by

L∗ := {Sij | 1 ≤ i < j ≤ r, M(i, j) fails, F (i, j) fails, and Bk(i, j) fails ∀k > j}.

Proof. We first observe that if LCM{LM(fi),LM(fj),LM(fk)} =

max{LCM{LM(fi),LM(fj)},LCM{LM(fi),LM(fk)},LCM{LM(fj),LM(fk)}},

then one of the three components of Sijk is a constant, and MS(i, j, k) can be expressed in terms

of lesser syzygies with respect to <1 . Suppose that Sik may be written in terms of the syzygies

Sij and Sjk, then we may remove Sik from L(1) since L(1)\{Sik} still generates S(1).

9



If M holds for (fi, fk), then ∃j < k, such that LCM{LM(fj),LM(fk)} properly divides

LCM{LM(fi),LM(fk)} in fact LCM{LM(fi),LM(fk)} =

LCM{LM(fi),LM(fj),LM(fk)} and j 6= i. So either Sijk (if i < j) or Sjik (if j < i) has Sik for its

maximal syzygy:

Sjk <1 Sik because LCM{LM(fj),LM(fk)} <T LCM{LM(fi),LM(fk)}

Sij or Sji <1 Sik because j < k, i < k and

LCM{LM(fi),LM(fj)} ≤T LCM{LM(fi),LM(fk)}.

So Sik is redundant and therefore not required to be in a generating set for S(1). If F holds for

(fi, fk), then LCM{LM(fj),LM(fk)} = LCM{LM(fi),LM(fk)} for a j < i. So considering Sjik,

we have

LCM{LM(fj),LM(fi),LM(fk)} = LCM{LM(fi),LM(fk)},

and by a similar argument as before MS(j, i, k) = Sik. Thus Sik is redundant. If Bk holds for (i, j),

then analogously MS(i, j, k) = Sij , and Sij is redundant. �

Example 3.11 Suppose we wish to compute a Gröbner basis for the ideal I = {f1, f2, f3, f4} with

respect to some given term order. Then we initially have six S-polynomials to compute.

Suppose further that LM(f1) = x2y2,LM(f2) = y2z,LM(f3) = x2z, and

LM(f4) = xyz. Then

LCM{LM(f1),LM(f2)} = LCM{LM(f1),LM(f3)} =

LCM{LM(f2),LM(f3)} = LCM{LM(f1),LM(f4)} = x2y2z,

LCM{LM(f2),LM(f4)} = xy2z, and LCM{LM(f3),LM(f4)} = x2yz.

Note that criterion M holds for (f1, f4), criterion F holds for (f2, f3), and criterion B4

holds for (f2, f3), but in no other cases do any of the above defined criteria hold. Thus S(f1, f4)

and S(f2, f3) do not need to be computed, and we have reduced the number of S-polynomials by

one third.

10



As it turns out, the syzygy S13 is also redundant, even though the Gebauer-Möller criteria

do not identify this redundancy. To see that S13 is indeed redundant, observe

S13 = S14 − yS34 by S134 ∈ S(2) and

S14 = S12 + xS24 by S124 ∈ S(2).

So we have

S13 = S12 + xS24 − yS34.

Therefore, {S12, S24, S34} generate S(1).

Gebauer and Möller’s improved version of Buchberger’s Algorithm is as follows:

INPUT: F = {f1, . . . , fs} ⊆ K[x1, . . . , xn] with fi 6= 0 (1 ≤ i ≤ s)
OUTPUT: G = {g1, . . . , gt}, a Gröbner basis for 〈f1, . . . , fs〉
INITIALIZATION: G := {f1}, SP := ∅
FOR t := 2 to s

SP := updatePairs(SP, ft)
G := G ∪ {ft}

R := s
WHILE SP 6= ∅ DO

Choose any (f, g) ∈ SP
SP := SP − {(f, g)}
S(f, g) G−→+ h, where h is reduced with respect to G
IF h 6= 0 THEN

fR+1 := h
SP := updatePairs(SP, fR+1)
G := G ∪ {fR+1}, R := R + 1

Table 3.1: Gebauer and Möller’s Improved Buchberger Algorithm

The subalgorithm updatePairs is applied to SP by forming all polynomial pairs (fi, ft),

where i < t, that may be formed from the new polynomial at hand, ft, and then eliminating those

pairs in SP for which criterion M, F, or Bk hold.

Even though the Gebauer-Möller criteria do not always produce a minimal set of generators

for S(1), it has become the consensus among implementers of Buchberger’s Algorithm that applying

the Gebauer-Möller criteria results in a set of generators for S(1) that is nearly minimal (see,

for example,[5] and [7]). Since generally implementers of Buchberger’s Algorithm wish to find a

Gröbner basis as efficiently as possible, minimalization techniques which could be used to find a

11



truly minimal set of generators for S(1) are typically not utilized since employing such techniques

would slow down the Gröbner basis computation process. It is worth noting, however, that in

[5], M. Caboara et al. describe a procedure for finding a minimal set of generators for S(1),

while retaining the same efficiency as the usual application of the Gebauer-Möller criteria. This

procedure described in [5] does have the added requirement that the input polynomials for the

algorithm must be homogeneous.

12



Chapter 4

The “Sugar” Strategy

In the course of computing the Gröbner basis of an ideal, one must decide upon a procedure for

choosing the order in which S-polynomials are reduced. From experience, this selection strategy

may have a very significant effect upon the efficiency of the Gröbner basis computation. Unfortu-

nately, a strategy which proves to be quite efficient for a particular polynomial ideal with a given

term order could be extremely inefficient for other ideals and/or other term orders. Although

the effectiveness of any strategy will vary, in [4] Buchberger suggests choosing an S-polynomial

(fi, fj) if the least common multiple of the leading terms is minimal with respect to the given

term order. Assuming i < j, in the case of a tie, we would give priority to the S-polynomial with

the least j. Additional ties are not possible if we apply the Gebauer-Möller criteria to eliminate

redundant S-polynomials. Recall that the F criterion of Gebauer-Möller requires that we eliminate

pairs (fi, fk) if ∃j < i, such that LCM{LM(fj),LM(fk)} = LCM{LM(fi),LM(fk)}. Testing this

strategy, known as Buchberger’s normal selection strategy, has shown that it works rather well in

the case of degree-compatible term orders such as degree lexicographic and degree reverse lexico-

graphic. In the case of the lexicographic term order, however, the normal selection strategy has

been shown to have a negative effect on the algorithm (see [9]).

Suppose I = 〈f1, . . . , fs〉 is an ideal in K[x1, . . . , xn], and we wish to carry out Buchberger’s

Algorithm using the lexicographic term order and the normal selection strategy. Once the algorithm

produces two polynomials without the variable x1, the algorithm will run on these polynomials,

disregarding all others, until it has computed a Gröbner basis for the ideal generated by these two

polynomials. Then as further polynomials are introduced, we must compute Gröbner bases for

further subproblems. In fact it is often the case that we create so many subproblems, that for

the full problem of computing a Gröbner basis for I, this strategy is worse than carrying out the

Gröbner basis computation with no strategy at all (ie. the arbitrary selection strategy).

13



Although the lexicographic term order can make the Gröbner basis computation process

particularly time-consuming, there are methods for speeding up the process. One option is to

homogenize the generators of the ideal, and to carry out Buchberger’s Algorithm only for ho-

mogeneous ideals, and in increasing degrees. We will refer to this method as the “homogeneous

algorithm.” Experiments have shown that the choice of different selection strategies for choos-

ing the order for reducing the S-polynomials of a homogeneous ideal will generally have minimal

impact on the overall efficiency of Buchberger’s Algorithm (see [9]).

Definition 4.1 A polynomial f ∈ K[x1, . . . , xn] is homogeneous if the total degree of every term

is the same.

Definition 4.2 An ideal I ⊆ K[x1, . . . , xn] is a homogeneous ideal provided that I = 〈f1, . . . , fs〉

where each fi is homogeneous.

Let F = {f1, . . . , fs} ∈ K[x1, . . . , xn], and suppose we wish to compute a Gröbner basis

for 〈F 〉 with respect to a given term order via the homogeneous algorithm. The first step is

to homogenize each fi. So let f be any polynomial in K[x1, . . . , xn]. Let d be the total degree

of f. We define the homogenization of f to be fh := Y df(x1
Y , . . . , xn

Y ) ∈ K[x1, . . . , xn, Y ]. Note

that fh is homogeneous. We denote the homogenization of each fi in F by fh
i , and let Fh =

{fh
1 , . . . , fh

s } ∈ K[x1, . . . , xn, Y ]. A Gröbner basis for 〈Fh〉 may be found through implementing

Buchberger’s Algorithm on Fh. We denote this Gröbner basis as Gh, and seek to transform Gh

into a Gröbner basis for 〈F 〉 through dehomogenization. That is, we consider each polynomial gh
i

of Gh and set Y = 1 for all terms in which a power of the new variable Y appears. Thus, we create

a set of polynomials G = {g1, . . . , gt} ∈ K[x1, . . . , xn]. In many cases, it will be the case that G

is a Gröbner basis for 〈F 〉; however, this is not always so. It may be that the Gröbner basis of

〈Fh〉 is much larger than the Gröbner basis of 〈F 〉. So there are cases in which the homogeneous

algorithm fails to find a Gröbner basis for 〈F 〉. Therefore, we recognize that even though it is

experimentally known that use of the homogeneous algorithm may significantly reduce the number

of S-polynomials that must be reduced, this approach is highly problematic because the Gröbner

14



basis of the ideal generated by the homogenized polynomials can be much larger than the Gröbner

basis of the original ideal (see [9]).

In [9], Giovini et al. recommend an improved version of Buchberger’s Algorithm, called The

Sugar Strategy that seeks to exploit the strategic benefits of homogenization without introducing

the aforementioned, undesired effect.

Definition 4.3 Let I = 〈f1, . . . , fs〉 ⊆ K[x1, . . . , xn]. Then for each initial fi, the sugar of fi,

denoted Sugfi
, is defined to be the total degree of fi.

Definition 4.4 The sugar of a pair (fi, fj), denoted Sugfifj
is defined as follows:

Sugfifj
:= max(Sugfi

- deg LM(fi), Sugfj
- deg LM(fj)) +

deg LCM(LM(fi),LM(fj)).

Given I = 〈f1, . . . , fs〉 ⊆ K[x1, . . . , xn], we may associate with each fi a homogeneous

polynomial of degree equal to the sugar of fi. As we seek to find a Gröbner basis for I, similar

associations are made for each polynomial in the course of the algorithm. The purpose of making

these informal associations is to keep track of the degree that each polynomial would have been if

we had used the homogeneous algorithm.

The sugar strategy is implemented through comparing all pairs (fi, fj) where i < j and

reducing first the S-polynomial corresponding to the pair with the least sugar. Ties are then

broken using Buchberger’s normal selection strategy. To use the sugar strategy to improve the

versions of Buchberger’s Algorithm given in Table 2.1 and Table 3.1, we replace the “Choose any

(f, g) ∈ SP” instruction with instructions to “Choose the (f, g) ∈ SP with least sugar” and if

there are ties, “Break ties by choosing among the (f, g) ∈ SP with least sugar a pair with least

LCM{LM(f),LM(g)}.” In the case of the improved algorithm given in Table 3.1 this pair would be

unique since we are using the Gebauer-Möller criteria to eliminate redundant pairs. The algorithm

in Table 2.1 would require that further ties be broken through making an arbitrary choice among

those pairs with least LCM{LM(f),LM(g)}.

15



Chapter 5

Faugère’s F4 Algorithm

The improvements to Buchberger’s Algorithm that Jean-Charles Faugère describes in [7] also

concern strategies for choosing the order in which S-polynomials will be reduced. Although exper-

iments have shown that The Sugar Strategy significantly improves the efficiency of Buchberger’s

Algorithm for a variety of benchmark problems (see [9]), Faugère has observed an opportunity for

further optimization. In particular, Faugère suggests simultaneously reducing several polynomials

by a list of polynomials (i.e., reduce S(fi, fj) and S(fk, fl) by G = {g1, g2, g3}).

Suppose we wish to compute a Gröbner basis for I = 〈f1, . . . , fs〉 ⊆ K[x1, . . . , xn]. Then

instead of choosing one pair, (fi, fj), for reduction, we select a subset of pairs. Let SP be the set

of all pairs (fi, fj), with fi 6= fj . We must define a function, Sel(SP ), which selects a subset of

SP for reduction. Let

d := min{deg(LCM{LM(fi),LM(fj)}), (fi, fj) ∈ SP}.

Then during each iteration of Faugère’s F4 algorithm, we may select the subset of SP :

SPd := {(fi, fj) ∈ P | deg(LCM{LM(fi),LM(fj)}) = d}.

This is the selection procedure which Faugère recommmends in [7], and for now, we take this to

be the definition of Sel(SP ).

Definition 5.1 Let I = 〈f1, . . . , fs〉 ⊆ K[x1, . . . , xn], and let (fi, fj) with fi 6= fj be a pair of

polynomials. Then we define Left(fi) := (ti, fi) where ti is the monomial such that tiLM(fi) =

LCM(LM(fi),LM(fj)). Similarly, we define Right(fj) := (tj , fj) where tj is the monomial such

that tjLM(fj) = LCM(LM(fi),LM(fj)). Given a tuple (tk, fk), we define mult(tk, fk) := tkfk.

Definition 5.2 Let SPd be a subset of SP as described above, and define Left(SPd) = {Left(fi)}

for (fi, fj) ∈ SPd. Similarly, define Right(SPd) = {Right(fj)} for (fi, fj) ∈ SPd.

16



INPUT: F = {f1, . . . , fs} ⊆ K[x1, . . . , xn] with fi 6= 0 (1 ≤ i ≤ s),
OUTPUT: G = {g1, . . . , gt}, a Gröbner basis for 〈f1, . . . , fs〉
INITIALIZATION: G := F, SP := {{fi, fj}|fi 6= fj ∈ G}, d := 0
WHILE SP 6= ∅ DO

d := d + 1
SPd := Sel(SP )
SP := SP − {SPd}
Ld := Left(SPd) ∪Right(SPd)
∼
F

+

d := Reduction(Ld, G)

FOR h ∈
∼
F

+

d DO
SP := SP ∪ {(h, g) | g ∈ G}
G := G ∪ {h}

Table 5.1: Faugère’s F4 Algorithm

In Faugère’s F4 Algorithm presented above, we must modify the standard reduction proce-

dure used in Buchberger’s Algorithm to account for the fact that we are now reducing a subset of

K[x1, . . . , xn] by G rather than reducing a single polynomial modulo G. Thus the subalgorithm

Reduction(Ld, G) is as follows:

INPUT: Ld, G as defined in Table 5.1

OUTPUT:
∼
F

+
= A finite subset of K[x1, . . . , xn] (possibly the empty set)

F := SymbolicPreprocessing(Ld, G)
∼
F := Reduction to row echelon form of F with respect to an ordering <
∼
F

+
:= {f ∈

∼
F | LM(f) /∈ LM(F )}

Table 5.2: Reduction Subalgorithm

To construct the matrix F, which will be reduced to row echelon form, we carry out some

symbolic preprocessing. Each row in F will correspond to a polynomial, and each column will

correspond to a particular monomial. We denote the set of all monomials in F by M(F ). The

SymbolicPreprocessing(Ld, G) subalgorithm is given below in Table 5.3.

Although F4, as presented above, has been experimentally shown to be an efficient means

to compute a Gröbner basis for many benchmark problems (see [7]), there are several ways to

modify the F4 algorithm, which could result in greater efficiency. One possible modification would

be to eliminate pairs in SP for which the Gebauer-Möller criteria M,F, or Bk hold. Another

modification would be to reduce all rows during the reduction subalgorithm.

Faugère’s F4 Algorithm including these two modifications is given in Table 5.4.

17



INPUT: Ld, G as defined in Table 5.1
OUTPUT: A matrix F of polynomials in K[x1, . . . , xn]
INITIALIZATION: F := {t ∗ f | (t, f) ∈ Ld},
Done := LM(F )
WHILE M(F ) 6= Done DO

Choose an m ∈ M(F )−Done
Done := Done ∪ {m}
IF m is reducible modulo G THEN

m = m′ ∗ LM(g) for some g ∈ G and some m′ ∈ K[x1, . . . , xn]
F := F ∪ {m′ ∗ g}

Table 5.3: SymbolicPreprocessing Subalgorithm

INPUT: F = {f1, . . . , fs} ⊆ K[x1, . . . , xn] with fi 6= 0 (1 ≤ i ≤ s),
OUTPUT: G = {g1, . . . , gt}, a Gröbner basis for 〈f1, . . . , fs〉
INITIALIZATION: G := ∅, SP := ∅, d := 0
WHILE F 6= ∅ DO

f := first(F )
F := F − {f}
SP := updatePairs(SP, f)
G := G ∪ {f}

WHILE SP 6= ∅ DO
d := d + 1
SPd := Sel(SP )
SP := SP − {SPd}
Ld := Left(SPd) ∪Right(SPd)

(
∼
F

+

d , Fd) := Reduction(Ld, G, (Fi)i=1,...,(d−1))

FOR h ∈
∼
F

+

d DO
SP := updatePairs(SP, h)
G := G ∪ {h}

Table 5.4: Modified F4 Algorithm

Here, the subalgorithm updatePairs remains as in Table 3.1, and first(F ) chooses a poly-

nomial f such that LM(f) is minimal in F with respect to the given term order. The subalgorithm

Reduction changes in that it now takes an additional argument, (Fi)i=1,...,(d−1), and also in that it

returns the result of SymbolicPreprocessing. The SymbolicPreprocessing subalgorithm is mod-

ified as indicated below in Table 5.5.

The modification of F4 involving the reduction of all rows is achieved through the subalgo-

rithm Simplify. The Simplify subalgorithm is shown below in Table 5.6.

Example 5.3 To see how the Modified F4 Algorithm works in practice, we consider the Cyclic 4

problem, using the degree reverse lexicographical term order with x0 > x1 > x2 > x3.

18



INPUT: Ld, G as defined in Table 5.1,
The matrices (Fi)i=1,...,(d−1)

OUTPUT: A matrix F of polynomials in K[x1, . . . , xn]
INITIALIZATION: F := {mult(Simplify(m, f, (Fi)i=1,...,(d−1))) | (m, f) ∈ Ld},
Done := LM(F )
WHILE M(F ) 6= Done DO

Choose an m ∈ M(F )−Done
Done := Done ∪ {m}
IF m is reducible modulo G THEN

m = m′ ∗ LM(g) for some g ∈ G and some m′ ∈ K[x1, . . . , xn]
F := F ∪ {mult(Simplify(m′, f, (Fi)i=1,...,(d−1)))}

Table 5.5: Modified SymbolicPreprocessing Subalgorithm

INPUT: t a monomial in K[x1, . . . , xn], f a polynomial in K[x1, . . . , xn]
The matrices (Fi)i=1,...,(d−1)

OUTPUT: A tuple (a, b) where a is a monomial in K[x1, . . . , xn]
and b is a polynomial in K[x1, . . . , xn]
FOR u ∈ list of divisors of t DO

IF ∃j(1 ≤ j < d) such that (u ∗ f) ∈ Fj THEN
∼
F j is the row echelon form of Fj

with respect to the ordering <

there exists a unique p ∈
∼
F

+

j such that
LM(p) = LM(u ∗ f)
IF u 6= t THEN

RETURN Simplify( t
u , p, (Fi)i=1,...,(d−1))

ELSE
RETURN (1, p)

RETURN (t, f)

Table 5.6: Simplify Subalgorithm

Let F = {f1 = x0x1x2x3 − 1, f2 = x0x1x2 + x0x1x3 + x0x2x3 + x1x2x3, f3 = x0x1 + x1x2 +

x0x3 + x2x3, f4 = x0 + x1 + x2 + x3}.

After two iterations through the first WHILE loop, we enter the second WHILE loop and have

G = {f4}, SP1 = {(f3, f4)}, and L1 = {(1, f3), (x1, f4)}. We now enter into SymbolicPreprocess−

ing(L1, G, ∅); F1 = L1, Done = LM(F1) = {x0x1} and M(F1) = {x0x3, x0x1, x
2
1, x1x2, x1x3, x2x3},

we choose an element in M(F1) −Done, say x0x3, but x0x3 is reducible modulo G; we now have

Done = {x0x1, x0x3}, F1 = F1 ∪ {x3f4}, and M(F1) = M(F1) ∪ {x2
3}. Since all other elements

of M(F1) are not reducible modulo G, SymbolicPreprocessing returns F1 = {x3f4, f3, x1f4}. In

matrix form, we have:

19



 0 0 0 1 1 1 1
1 0 1 1 0 1 0
1 1 1 0 1 0 0


where the rows correspond to the elements of F1 and the columns correspond to the terms in

M(F1). Since x3f4 is the first polynomial listed in F1, the first row in the matrix corresponds to

the polynomial x3f4. Similarly, since x0x1 is the greatest term in M(F1) with respect to our degree

reverse lexicographical term order, the first column in the matrix corresponds to the x0x1 term.

Now we reduce our matrix to row echelon form and obtain: 0 0 0 1 1 1 1
1 0 1 0 −1 0 −1
0 1 0 0 2 0 1


which implies that

∼
F 1 = {f5 = x0x3 + x1x3 + x2x3 + x2

3, f6 = x0x1 + x1x2 − x1x3 − x2
3, f7 =

x2
1 + 2x1x3 + x2

3}. Since x0x1, x0x3 ∈ LM(F1), we have (
∼
F

+

1 = {f7}, and now G = {f4, f7}. Note

that we do not need to reduce the pair (f4, f7) because the least common multiple of the leading

monomials is x0x
2
1, which is a multiple of x0x1. Recall that x0x1 is the least common multiple of

the leading monomials of the pair (f3, f4). Thus, criterion M of Gebauer-Möller holds for (f4, f7).

At this point, we temporarily exit the second WHILE loop, but remain within the first WHILE loop.

We now consider f2 for the first time, and as we re-enter the second WHILE loop, we

have SP2 = {(f2, f4)}. Thus L2 = {(1, f2), (x1x2, f4)}. Then during SymbolicPreprocessing,

we attempt to simplify (1, f2) and (x1x2, f4) with F1. We see that x1f4 ∈ F1 and LM(f6) =

LM(x1f4) = x0x1, so Simplify(x1x2, f4, F1) = (x2, f6). At this point, F2 = {f2, x2f6} and

M(F2) = {x0x1x2, x1x
2
2, x0x1x3, x0x2x3, x1x2x3, x2x

2
3}. Done = LM(F2) = x0x1x2. Now we

choose any element of M(F2) − Done. We select x0x1x3, which is reducible modulo G. Indeed,

x0x1x3 = x1x3LM(f4), so we Simplify(x1x3, f4, F1). In the Simplify subalgorithm, we ini-

tially choose u = d, a choice that results in the subalgorithm returning Simplify(x1, f5, F1).

Then after carrying out Simplify(x1, f5, F1), we return the tuple (x1, f5). The mult function

is immediately applied to this tuple, thereby yielding x1f5, which is appended to F2. After test-

ing the remaining elements of M(F2) for reducibility modulo G, we find that only x0x2x3 and

x2
1x3 are reducible. After going through the simplification process for each, we ultimately obtain

F2 = {x2f5, x3f7, x1f5, f2, x2f6}. Because of the new elements appended to F2, x2
2x3, x2x

2
3, and

20



x3
3 are added to M(F2). These new elements of M(F2) are not reducible modolo G. Therefore,

SymbolicPreprocessing returns F2 = {x2f5, x3f7, x1f5, f2, x2f6}, or in matrix form:
0 0 0 0 1 1 1 0 1 0
0 0 0 1 0 0 0 2 0 1
0 0 1 1 0 1 0 1 0 0
1 0 1 0 1 1 0 0 0 0
1 1 0 0 0 −1 0 0 −1 0


where the rows correspond to the elements of F2 and the columns correspond to the terms in

M(F2). Since x2f5 is the first polynomial listed in F2, the first row in the matrix corresponds to

the polynomial x2f5. Similarly, since x0x1x2 is the greatest term in M(F2) with respect to our

degree reverse lexicographical term order, the first column in the matrix corresponds to the x0x1x2

term. Now we reduce our matrix to row echelon form and obtain:
0 0 0 0 1 1 1 0 1 0
0 0 0 1 0 0 0 2 0 1
0 0 1 0 0 1 0 −1 0 −1
1 0 0 0 0 −1 −1 1 −1 1
0 1 0 0 0 0 1 −1 0 −1


which implies that

∼
F 2 = {f8 = x0x2x3 + x1x2x3 + x2

2x3 + x2x
2
3, f9 = x2

1x3 + 2x1x
2
3 + x3

3, f10 =

x0x1x3 + x1x2x3 − x1x
2
3 − x3

3, f11 = x0x1x2 − x1x2x3 − x2
2x3 + x1x

2
3 − x2x

2
3 + x3

3, f12 = x1x
2
2 +

x2
2x3 − x1x

2
3 − x3

3}. Since x0x2x3, x
2
1x3, x0x1x3, x0x1x2 ∈ LM(F2), we have (

∼
F

+

2 = {f12}, and now

G = {f4, f7, f12}. Note that we do not need to reduce the pair (f4, f12) because the least common

multiple of the leading monomials is x0x1x
2
2. As was the case for the pair (f4, f7), criterion M of

Gebauer-Möller holds for (f4, f12). At this point, we temporarily exit the second WHILE loop, but

remain within the first WHILE loop.

In the next step, we consider f1 for the first time, and as we re-enter the second WHILE

loop, we have SP3 = {(f1, f4), (f7, f12)}. Thus L3 = {(1, f1), (x1x2x3, f4), (x2
2, f7), (x1, f12)}.

Then during SymbolicPreprocessing, we recursively call Simplify : Simplify(x1x2x3, f4) =

Simplify(x2x3, f6) = Simplify(x3, f11) = (x3, f11). We now have F3 = {f1, x3f11, x
2
2f7, x1f12}.

Then after carrying out the remainder of the SymbolicPreprocessing, we ultimately obtain F3 =

{f1, x3f11, x
2
2f7, x1f12, x3f12, x3f9}. After constructing the matrix F3 and reducing to row ech-

elon form, as was done for F1 and F2, we see that
∼
F 3 = {f13 = x2

1x
2
2 − x2

2x
2
3 + 2x1x

3
3 + 2x4

3,

f14 = x0x1x2x3−1, f15 = −x1x2x
2
3−x2

2x
2
3 +x1x

3
3−x2x

3
3 +x4

3 +1, f16 = x1x
2
2x3 +x2

2x
2
3−x1x

3
3−x4

3,

21



f17 = x2
1x

2
3 + 2x1x

3
3 + x4

3}. Thus, we have that an entire row in the matrix F3 reduces to zero. In

other words, the rank of F3 is five, as is demonstrated by the fact that
∼
F 3 contains five polynomials.

After comparing the leading monomials of
∼
F 3 with LM(F3), we see that

∼
F

+

3 = {f15, f17}, and now

G = {f4, f7, f12, f15, f17}. At this point, F = ∅, but the algorithm continues since new elements

are added to SP via the updatePairs subalgorithm. Indeed, many more iterations through the

“WHILE SP 6= ∅” loop are required before a Gröbner basis for F will be obtained.

In addition to the two modifications discussed above, another modification to F4 that could

improve the efficiency of a Gröbner basis computation, would be to redefine the Sel(SP ) function.

An obvious way to redefine Sel(SP ) would to have the function select the subset of pairs in SP

with least sugar.

Although F4 is known to be an efficient algorithm for Gröbner basis computation, it is

rather unclear what effect various modications to F4 will have on the efficiency of the algorithm.

F4 is now the default algorithm used for Gröbner basis computation in most computer algebra

systems, so certainly Faugère’s algorithm has been well received. But, as we mention above, there

are several variants of F4. We will now turn our attention to investigating how different variants

of F4 compare through testing each variant on a variety of benchmark ideals.

22



Chapter 6

Variants of F4 - Test Data Analysis

For this analysis, we consider ten benchmark ideals and eight variants of Faugère’s F4 algorithm

while always choosing GF(31991) for the coefficient field. The author carried out all tests using an

UltraSparc 650Mz Processor with 1024M of memory. The ten ideals studied are: Cyclic 6, Cyclic

7, Cyclic 8, Cyclic 9, Katsura 7, Katsura 8, Katsura 9, Katsura 10, hCyclic 8, and f633. Each may

be found in Appendix A. Note that hCyclic 8 and f633 are homogeneous ideals, whereas the others

are not. The eight variants of F4 that we compare are all combinations of the three modifications

discussed in the previous section. We number the variants as follows:

1. F4 with no modification

2. Reduce all rows

3. Use sugar

4. Check for deletable pairs

5. Reduce all rows and use sugar

6. Reduce all rows and check for deletable pairs

7. Use sugar and check for deletable pairs

8. Reduce all rows, use sugar, and check for deletable pairs

Note that in Example 5.3 discussed in the previous section, we use variant 6. For each test

case, we observe the following:

time: the time (in seconds) required for the Gröbner basis computation

spairs: the number of S-pairs considered

maxr: the maximum number of rows appearing in the matrix at any time during the computation

maxc: the maximum number of columns appearing in the matrix at any time during the compu-

tation

GBsz: the Gröbner basis size (i.e., the number of polynomials in the Gröbner basis found)

23



1 2 3 4 5 6 7 8
time: 0.168 0.231 0.165 0.166 0.230 0.233 0.151 0.226
spairs: 377 377 380 377 380 377 380 380
maxr: 144 139 148 144 139 139 148 139
maxc: 173 168 173 173 168 168 173 168
GBsz: 111 111 104 111 104 111 104 104

Table 6.1: Cyclic 6

From the data in Table 6.1, we observe that all eight variants of F4 produce a Gröbner basis

in a fraction of a second. Although the timings are extremely close for all eight variants, those

variants that include use of the sugar strategy each produce a smaller Gröbner basis for Cyclic

6. It is also the case that variants of F4, which include the reduce all rows option, result in a

Gröbner basis while requiring less computer memory. We can conclude that the variants using the

reduce all rows option require less computer memory, because the reduce all rows option reduces

the maximum size of the matrix required to carry out the computation.

1 2 3 4 5 6 7 8
time: 9.986 14.87 9.200 9.325 13.16 14.93 8.724 13.31
spairs: 2682 2682 2678 2682 2678 2682 2678 2678
maxr: 954 842 1097 954 883 842 1097 883
maxc: 1061 875 1211 1061 877 875 1211 877
GBsz: 592 592 556 592 556 592 556 556

Table 6.2: Cyclic 7

For the Cyclic 7 problem, we observe that a Gröbner basis is computed in less than 15

seconds for all eight variants of F4. Again we observe that the variants that include use of the

sugar strategy produce a smaller Gröbner basis, whereas variants that include the reduce all rows

option require a significantly smaller matrix to carry out the Gröbner basis computation. Although

variants that make use of the reduce all rows option consistently use less computer memory, this

advantage is offset by the fact that such variants are noticeably slower than other variants.

In the case of the Cyclic 8 problem, our results are consistent with the results previously

seen in the Cyclic 6 and Cyclic 7 problems; however, our observed differences between the variants

have grown in number and are increasingly magnified. Use of the sugar strategy now results in a

Gröbner basis with 300+ fewer polynomials than other variants. The matrices used to compute a

24



1 2 3 4 5 6 7 8
time: 261.2 443.2 190.1 237.2 309.7 443.7 157.2 309.3
spairs: 7588 7588 6466 7586 6466 7588 6415 6462
maxr: 4908 3733 4659 4908 3087 3733 4659 3087
maxc: 5614 4394 5863 5614 4169 4394 5863 4169
GBsz: 1516 1516 1212 1515 1212 1517 1172 1208

Table 6.3: Cyclic 8

Gröbner basis for variants using the reduce all rows option have 1000+ fewer rows and columns

than the matrices of other variants. Although checking for deletable pairs did not seem to improve

the performance of the algorithm in the cases of Cyclic 6 and Cyclic 7, here we observe that this

modified version of F4 can have positive effects on the algorithm, particularly when combined with

sugar and/or reduce all rows. Note that variant 7 is the most efficient variant, finding a Gröbner

basis 32.9 seconds faster than variant 3, the second most efficient variant for this benchmark

problem. Note also that the computer memory saving effect of the reduce all rows option is greatest

in variants 5 and 8, the two variants where the reduce all rows option is used in conjunction with

checking for deletable pairs.

We do not include a table for the tests on the Cyclic 9 problem, since all eight variants of

F4 failed to find a Gröbner basis for Cyclic 9 due to insufficient memory. Relative to Cyclic 7, we

observed above a very substantial increase in the size of the matrix used to compute a Gröbner

basis for Cyclic 8. As one would expect, when transitioning from the Cyclic 8 problem to the

Cyclic 9 problem, the matrix grows considerably larger once more. Although the reduce all rows

option helps to limit the growth of the matrix, the variants of F4 that include this option all failed

to contain the size of the matrix enough to allow for a Gröbner basis computation for the Cyclic

9 problem within the constraints of the available 1024M of computer memory.

1 2 3 4 5 6 7 8
time: 0.889 1.174 0.939 0.897 1.168 1.171 0.901 1.226
spairs: 377 377 377 377 377 377 377 377
maxr: 806 510 806 806 510 510 806 510
maxc: 832 554 832 832 554 554 832 554
GBsz: 76 76 76 76 76 76 76 76

Table 6.4: Katsura 7

25



For the Katsura 7 problem, all eight variants of F4 compute a Gröbner basis in about one

second. The different variants have absolutely no effect on the total number of S-pairs considered

or the size of the Gröbner basis. All variants that include the reduce all rows option require a

significantly smaller matrix to carry out the computation; however, the effect of the reduce all rows

option on the size of the matrix is neither enhanced nor lessened through combining this option

with the sugar strategy and/or checking for deletable pairs.

1 2 3 4 5 6 7 8
time: 6.783 7.637 6.831 6.867 7.626 7.722 6.820 7.799
spairs: 881 881 881 881 881 881 881 881
maxr: 1934 1136 1934 1934 1136 1136 1934 1136
maxc: 1970 1172 1970 1970 1172 1172 1970 1172
GBsz: 145 145 145 145 145 145 145 145

Table 6.5: Katsura 8

Like the Katsura 7 problem, we observe little difference between the eight variants of F4 in

the case of the Katsura 8 problem. The number of S-pairs computed and the Gröbner basis size

are exactly the same for all eight variants. The time required for the Gröbner basis computation

is consistantly about 7 seconds. Variants which include the reduce all rows option compute a

Gröbner basis for Katsura 8 while containing the growth of the matrix necessary to carry out the

computation. Indeed, approximately 800 fewer rows and columns are present in the matrices for

variants 2, 5, 6, and 8, than is the case for the variants that do not use the reduce all rows option.

1 2 3 4 5 6 7 8
time: 50.75 53.79 51.32 51.21 53.87 54.60 51.22 53.66
spairs: 1974 1974 1974 1974 1974 1974 1974 1974
maxr: 4528 2436 4528 4528 2436 2436 4528 2436
maxc: 4555 2525 4555 4555 2525 2525 4555 2525
GBsz: 274 274 274 274 274 274 274 274

Table 6.6: Katsura 9

Again, the number of S-pairs computed and the Gröbner basis size are the same for all

eight variants of F4. Variants that include the reduce all rows option compute a Gröbner basis

for Katsura 9 while using matrices with 2000+ fewer rows and columns than other variants. The

very modest differences in the time that each variant required to carry out the Gröbner basis

26



computation for Katsura 7 grew slightly larger in Katsura 8, and a bit larger again with Katsura

9. It is worth noting that variant 1 has been the most efficient in all three cases, and variant 7 has

consistently been the second most efficient. Nevertheless, the slowest variant, variant 6, computes

a Gröbner basis for Katsura 9 while requiring only 3.85 additional seconds than variant 1.

1 2 3 4 5 6 7 8
time: 403.7 403.9 403.6 405.1 403.4 404.4 404.2 406.3
spairs: 4464 4464 4464 4464 4464 4464 4464 4464
maxr: 11777 5406 11777 11777 5406 5406 11777 5406
maxc: 11767 5362 11767 11767 5362 5362 11767 5362
GBsz: 539 539 539 539 539 539 539 539

Table 6.7: Katsura 10

As we would expect based on the results of testing Katsura 7, 8, and 9, all eight variants

of F4 reduce the same number of S-pairs during the Gröbner basis computation for Katsura 10,

and the size of the Gröbner basis found is the same for all variants. Although timings continue to

differ only slightly between the eight variants, the variants which do not utilize the reduce all rows

option use considerably more computer memory than the variants that do employ the reduce all

rows option. Indeed variants 2, 5, 6, and 8 carry out the Gröbner basis computation with matrices

less than half the size of other variants, using 5800+ less rows and columns while retaining the

same efficiency the other four variants.

1 2 3 4 5 6 7 8
time: 255.1 377.6 255.4 256.4 376.4 378.7 255.9 380.1
spairs: 7025 7025 7025 7025 7025 7025 7025 7025
maxr: 8583 3611 8583 8583 3611 3611 8583 3611
maxc: 10762 4285 10762 10762 4285 4285 10762 4285
GBsz: 1189 1189 1189 1189 1189 1189 1189 1189

Table 6.8: hCyclic 8

For the homogeneous Cyclic 8 problem, we see that the reduce all rows option has a very

positive effect on the size of matrix necessary for the Gröbner basis computation but also a negative

effect on the efficiency of the computation process. All four variants that use the reduce all rows

option require matrices that are less than half the size of the matrices required by the other

variants, yet the variants using the reduce all rows option need 50% more time to compute the

27



Gröbner basis.

1 2 3 4 5 6 7 8
time: 0.636 0.560 0.637 0.637 0.562 0.565 0.645 0.563
spairs: 392 392 392 392 392 392 392 392
maxr: 2778 762 2778 2778 762 762 2778 762
maxc: 3110 985 3110 3110 985 985 3110 985
GBsz: 74 74 74 74 74 74 74 74

Table 6.9: f633

In the case of the f633 problem, which is also a homogeneous ideal, the Gröbner basis

computation is carried out in less than one second for all eight variants. Although all eight variants

are essentially equally efficient, it is interesting to note that the four variants which use the reduce

all rows option are modestly faster than the four variants that do not utilize the reduce all rows

option. The matrices used by variants that do not include the reduce all rows option grow to be

over three times the size of matrices needed to compute a Gröbner basis by variants that do use

the reduce all rows option. Like the Katsura n probems and the homogeneous Cyclic 8 problem,

all variants of F4 find a Gröbner basis for the f633 ideal that is of the same size and results from

the reduction of precisely the same number of S-pair reductions.

28



Chapter 7

Conclusion

The data above demonstrates that there is not one particular variant of F4 that is always the

best choice. For the benchmark ideals considered, it appears that F4 with no modifications often

computes a Gröbner basis in the least amount of time; however, in the case of Cyclic 8, this variant

is much slower than variant 7. For all test problems considered, variant 7 is never a bad choice with

respect to efficiency. Indeed in cases where variant 7 is not the most efficient, it is only marginally

slower than the fastest variant. Thus, when efficiency of the Gröbner basis computation process

is of particular concern, the results above suggest that using F4 together with the sugar strategy

and also checking for deletable pairs is likely to be a good choice.

However, we must recall that all tests were conducted using the degree-reverse-lexicographic

term order, and results will likely differ considerably for other term orders. Also, it is generally a

rash assumption to assume that efficiency is the only concern during a Gröbner basis computation.

As we observe in the case of the Cyclic 9 problem above, the amount of computer memory required

to compute a Gröbner basis is also an important issue. Indeed if the amount of computer memory

is insufficient for the computation, a Gröbner basis will not be found. The variants of F4 that

include the reduce all rows option typically use less computer memory than other variants of F4,

sometimes drastically less. Thus, if one uses a variant of F4 that does not include the reduce all

rows option and finds that the Gröbner basis computation of a particular ideal with a given term

order requires more computer memory than available resources will allow, the computation might

be successful for an F4 variant that does include the reduce all rows option. Unfortunately, in

the case of the Cyclic 9 problem, even the memory savings provided through use of the reduce all

rows option did not allow for the computation of Gröbner basis within the bounds of the available

1024M of computer memory.

Based on the results of the Cyclic n problems, we have reason to believe that variants of F4

29



that use the sugar strategy will often produce a Gröbner basis that is closer to a minimal Gröbner

basis (i.e., has fewer redundant polynomials) than other variants. Yet, further tests should be done

to investigate, in the case of other ideals and/or term orders, whether variants of F4 that include

the sugar strategy are always the closest to minimal Gröbner bases.

The Cyclic 8 problem for large coefficients was an intractable problem less than a decade ago

[7]. Through finding a Gröbner basis for Cyclic 8 over GF(31991) for all eight variants of F4, we

demonstrate that Faugère’s F4 algorithm is indeed a particularly powerful algorithm for computing

Gröbner bases, and F4 has rightly become the default algorithm for most major computer algebra

systems.

30



Appendix A

Benchmark Polynomial Ideals

x0x1x2x3x4x5 − 1

x0x1x2x3x4 + x1x2x3x4x5 + x2x3x4x5x0 + x3x4x5x0x1+
x4x5x0x1x2 + x5x0x1x2x3

x0x1x2x3 + x1x2x3x4 + x2x3x4x5 + x3x4x5x0 + x4x5x0x1+
x5x0x1x2

x0x1x2 + x1x2x3 + x2x3x4 + x3x4x5 + x4x5x0 + x5x0x1

x0x1 + x1x2 + x2x3 + x3x4 + x4x5 + x5x0

x0 + x1 + x2 + x3 + x4 + x5

Table A.1: Cyclic6

x0x1x2x3x4x5x6 − 1

x0x1x2x3x4x5 + x1x2x3x4x5x6 + x2x3x4x5x6x0+
x3x4x5x6x0x1 + x4x5x6x0x1x2 + x5x6x0x1x2x3+
x6x0x1x2x3x4

x0x1x2x3x4 + x1x2x3x4x5 + x2x3x4x5x6 + x3x4x5x6x0+
x4x5x6x0x1 + x5x6x0x1x2 + x6x0x1x2x3

x0x1x2x3 + x1x2x3x4 + x2x3x4x5 + x3x4x5x6 + x4x5x6x0+
x5x6x0x1 + x6x0x1x2

x0x1x2 + x1x2x3 + x2x3x4 + x3x4x5 + x4x5x6 + x5x6x0 + x6x0x1

x0x1 + x1x2 + x2x3 + x3x4 + x4x5 + x5x6 + x6x0

x0 + x1 + x2 + x3 + x4 + x5 + x6

Table A.2: Cyclic7

31



x0x1x2x3x4x5x6x7 − 1

x0x1x2x3x4x5x6 + x1x2x3x4x5x6x7 + x2x3x4x5x6x7x0+
x3x4x5x6x7x0x1 + x4x5x6x7x0x1x2 + x5x6x7x0x1x2x3+
x6x7x0x1x2x3x4 + x7x0x1x2x3x4x5

x0x1x2x3x4x5 + x1x2x3x4x5x6 + x2x3x4x5x6x7 + x3x4x5x6x7x0+
x4x5x6x7x0x1 + x5x6x7x0x1x2 + x6x7x0x1x2x3 + x7x0x1x2x3x4

x0x1x2x3x4 + x1x2x3x4x5 + x2x3x4x5x6 + x3x4x5x6x7+
x4x5x6x7x0 + x5x6x7x0x1 + x6x7x0x1x2 + x7x0x1x2x3

x0x1x2x3 + x1x2x3x4 + x2x3x4x5 + x3x4x5x6 + x4x5x6x7+
x5x6x7x0 + x6x7x0x1 + x7x0x1x2

x0x1x2 + x1x2x3 + x2x3x4 + x3x4x5 + x4x5x6 + x5x6x7 + x6x7x0 + x7x0x1

x0x1 + x1x2 + x2x3 + x3x4 + x4x5 + x5x6 + x6x7 + x7x0

x0 + x1 + x2 + x3 + x4 + x5 + x6 + x7

Table A.3: Cyclic8

x0x1x2x3x4x5x6x7x8 − 1

x0x1x2x3x4x5x6x7 + x1x2x3x4x5x6x7x8 + x2x3x4x5x6x7x8x0+
x3x4x5x6x7x8x0x1 + x4x5x6x7x8x0x1x2 + x5x6x7x8x0x1x2x3+
x6x7x8x0x1x2x3x4 + x7x8x0x1x2x3x4x5 + x8x0x1x2x3x4x5x6

x0x1x2x3x4x5x6 + x1x2x3x4x5x6x7 + x2x3x4x5x6x7x8+
x3x4x5x6x7x8x0 + x4x5x6x7x8x0x1 + x5x6x7x8x0x1x2+
x6x7x8x0x1x2x3 + x7x8x0x1x2x3x4 + x8x0x1x2x3x4x5

x0x1x2x3x4x5 + x1x2x3x4x5x6 + x2x3x4x5x6x7 + x3x4x5x6x7x8+
x4x5x6x7x8x0 + x5x6x7x8x0x1 + x6x7x8x0x1x2+
x7x8x0x1x2x3 + x8x0x1x2x3x4

x0x1x2x3x4 + x1x2x3x4x5 + x2x3x4x5x6 + x3x4x5x6x7+
x4x5x6x7x8 + x5x6x7x8x0 + x6x7x8x0x1 + x7x8x0x1x2+
x8x0x1x2x3

x0x1x2x3 + x1x2x3x4 + x2x3x4x5 + x3x4x5x6 + x4x5x6x7+
x5x6x7x8 + x6x7x8x0 + x7x8x0x1 + x8x0x1x2

x0x1x2 + x1x2x3 + x2x3x4 + x3x4x5 + x4x5x6 + x5x6x7 + x6x7x8+
x7x8x0 + x8x0x1

x0x1 + x1x2 + x2x3 + x3x4 + x4x5 + x5x6 + x6x7 + x7x8 + x8x0

x0 + x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8

Table A.4: Cyclic9

32



−x0 + 2x2
7 + 2x2

6 + 2x2
5 + 2x2

4 + 2x2
3 + 2x2

2 + 2x2
1 + x2

0

−x1 + 2x7x6 + 2x6x5 + 2x5x4 + 2x4x3 + 2x3x2 + 2x2x1 + 2x1x0

−x2 + 2x7x5 + 2x6x4 + 2x5x3 + 2x4x2 + 2x3x1 + 2x2x0 + x2
1

−x3 + 2x7x4 + 2x6x3 + 2x5x2 + 2x4x1 + 2x3x0 + 2x2x1

−x4 + 2x7x3 + 2x6x2 + 2x5x1 + 2x4x0 + 2x3x1 + x2
2

−x5 + 2x7x2 + 2x6x1 + 2x5x0 + 2x4x1 + 2x3x2

−x6 + 2x7x1 + 2x6x0 + 2x5x1 + 2x4x2 + x2
3

−1 + 2x7 + 2x6 + 2x5 + 2x4 + 2x3 + 2x2 + 2x1 + x0

Table A.5: Katsura7

−x0 + 2x2
8 + 2x2

7 + 2x2
6 + 2x2

5 + 2x2
4 + 2x2

3 + 2x2
2 + 2x2

1 + x2
0

−x1 + 2x8x7 + 2x7x6 + 2x6x5 + 2x5x4 + 2x4x3 + 2x3x2 + 2x2x1 + 2x1x0

−x2 + 2x8x6 + 2x7x5 + 2x6x4 + 2x5x3 + 2x4x2 + 2x3x1 + 2x2x0 + x2
1

−x3 + 2x8x5 + 2x7x4 + 2x6x3 + 2x5x2 + 2x4x1 + 2x3x0 + 2x2x1

−x4 + 2x8x4 + 2x7x3 + 2x6x2 + 2x5x1 + 2x4x0 + 2x3x1 + x2
2

−x5 + 2x8x3 + 2x7x2 + 2x6x1 + 2x5x0 + 2x4x1 + 2x3x2

−x6 + 2x8x2 + 2x7x1 + 2x6x0 + 2x5x1 + 2x4x2 + x2
3

−x7 + 2x8x1 + 2x7x0 + 2x6x1 + 2x5x2 + 2x4x3

−1 + 2x8 + 2x7 + 2x6 + 2x5 + 2x4 + 2x3 + 2x2 + 2x1 + x0

Table A.6: Katsura8

33



−x0 + 2x2
9 + 2x2

8 + 2x2
7 + 2x2

6 + 2x2
5 + 2x2

4 + 2x2
3 + 2x2

2+
2x2

1 + x2
0

−x1 + 2x9x8 + 2x8x7 + 2x7x6 + 2x6x5 + 2x5x4 + 2x4x3 + 2x3x2+
2x2x1 + 2x1x0

−x2 + 2x9x7 + 2x8x6 + 2x7x5 + 2x6x4 + 2x5x3 + 2x4x2 + 2x3x1+
2x2x0 + x2

1

−x3 + 2x9x6 + 2x8x5 + 2x7x4 + 2x6x3 + 2x5x2 + 2x4x1 + 2x3x0+
2x2x1

−x4 + 2x9x5 + 2x8x4 + 2x7x3 + 2x6x2 + 2x5x1 + 2x4x0 + 2x3x1+
x2

2

−x5 + 2x9x4 + 2x8x3 + 2x7x2 + 2x6x1 + 2x5x0 + 2x4x1 + 2x3x2

−x6 + 2x9x3 + 2x8x2 + 2x7x1 + 2x6x0 + 2x5x1 + 2x4x2 + x2
3

−x7 + 2x9x2 + 2x8x1 + 2x7x0 + 2x6x1 + 2x5x2 + 2x4x3

−x8 + 2x9x1 + 2x8x0 + 2x7x1 + 2x6x2 + 2x5x3 + x2
4

−1 + 2x9 + 2x8 + 2x7 + 2x6 + 2x5 + 2x4 + 2x3 + 2x2 + 2x1 + x0

Table A.7: Katsura9

34



−x0 + 2x2
10 + 2x2

9 + 2x2
8 + 2x2

7 + 2x2
6 + 2x2

5 + 2x2
4 + 2x2

3+
2x2

2 + 2x2
1 + x2

0

−x1 + 2x10x9 + 2x9x8 + 2x8x7 + 2x7x6 + 2x6x5 + 2x5x4 + 2x4x3+
2x3x2 + 2x2x1 + 2x1x0

−x2 + 2x10x8 + 2x9x7 + 2x8x6 + 2x7x5 + 2x6x4 + 2x5x3 + 2x4x2+
2x3x1 + 2x2x0 + x2

1

−x3 + 2x10x7 + 2x9x6 + 2x8x5 + 2x7x4 + 2x6x3 + 2x5x2 + 2x4x1+
2x3x0 + 2x2x1

−x4 + 2x10x6 + 2x9x5 + 2x8x4 + 2x7x3 + 2x6x2 + 2x5x1 + 2x4x0+
2x3x1 + x2

2

−x5 + 2x10x5 + 2x9x4 + 2x8x3 + 2x7x2 + 2x6x1 + 2x5x0 + 2x4x1+
2x3x2

−x6 + 2x10x4 + 2x9x3 + 2x8x2 + 2x7x1 + 2x6x0 + 2x5x1 + 2x4x2+
x2

3

−x7 + 2x10x3 + 2x9x2 + 2x8x1 + 2x7x0 + 2x6x1 + 2x5x2 + 2x4x3

−x8 + 2x10x2 + 2x9x1 + 2x8x0 + 2x7x1 + 2x6x2 + 2x5x3 + x2
4

−x9 + 2x10x1 + 2x9x0 + 2x8x1 + 2x7x2 + 2x6x3 + 2x5x4

−1 + 2x10 + 2x9 + 2x8 + 2x7 + 2x6 + 2x5 + 2x4 + 2x3 + 2x2 + 2x1 + x0

Table A.8: Katsura10

x0x1x2x3x4x5x6x7 − x8
8

x0x1x2x3x4x5x6 + x1x2x3x4x5x6x7 + x2x3x4x5x6x7x0+
x3x4x5x6x7x0x1 + x4x5x6x7x0x1x2 + x5x6x7x0x1x2x3+
x6x7x0x1x2x3x4 + x7x0x1x2x3x4x5

x0x1x2x3x4x5 + x1x2x3x4x5x6 + x2x3x4x5x6x7 + x3x4x5x6x7x0+
x4x5x6x7x0x1 + x5x6x7x0x1x2 + x6x7x0x1x2x3 + x7x0x1x2x3x4

x0x1x2x3x4 + x1x2x3x4x5 + x2x3x4x5x6 + x3x4x5x6x7+
x4x5x6x7x0 + x5x6x7x0x1 + x6x7x0x1x2 + x7x0x1x2x3

x0x1x2x3 + x1x2x3x4 + x2x3x4x5 + x3x4x5x6 + x4x5x6x7+
x5x6x7x0 + x6x7x0x1 + x7x0x1x2

x0x1x2 + x1x2x3 + x2x3x4 + x3x4x5 + x4x5x6 + x5x6x7 + x6x7x0 + x7x0x1

x0x1 + x1x2 + x2x3 + x3x4 + x4x5 + x5x6 + x6x7 + x7x0

x0 + x1 + x2 + x3 + x4 + x5 + x6 + x7

Table A.9: hCyclic8

35



x0x5 − x2
10

x1x6 − x2
10

x2x7 − x2
10

x3x8 − x2
10

x4x9 − x2
10

−4x1x5 − 4x2x5 − 4x3x5 − 4x4x5 + 4x0x6 − 4x2x6 − 4x3x6 − 4x4x6+
4x0x7 + 4x1x7 − 4x3x7 − 4x4x7 + 4x0x8 + 4x1x8 + 4x2x8 − 4x4x8+
4x0x9 + 4x1x9 + 4x2x9 + 4x3x9 + 2x0x10 + 2x1x10 + 2x2x10+
2x3x10 + 2x4x10 + x2

10

2x0x10 + 2x1x10 + 2x2x10 + 2x3x10 + 2x4x10 + x2
10,

4x1x5 + 4x2x5 + 4x3x5 + 4x4x5 − 4x0x6 + 4x2x6 + 4x3x6+
4x4x6 − 4x0x7 − 4x1x7 + 4x3x7 + 4x4x7 − 4x0x8 − 4x1x8−
4x2x8 + 4x4x8 − 4x0x9 − 4x1x9 − 4x2x9 − 4x3x9 + 2x5x10+
2x6x10 + 2x7x10 + 2x8x10 + 2x9x10x

2
10

2x0 + 2x1 + 2x2 + 2x3 + 2x4 + x10

2x5 + 2x6 + 2x7 + 2x8 + 2x9 + x10

Table A.10: f633

36



BIBLIOGRAPHY

[1] W. W. Adams and P. Loustaunau, An Introduction to Gröbner Bases, Graduate Studies in
Mathematics, vol. 3, American Mathematical Society, Providence, RI, 1994.

[2] D. Bayer, M. Stillman, The design of Macaulay: A system for computing in algebraic geometry
and commutative algebra, 1986 ACM Symposium on Symbolic and Algebraic Computation,
University of Waterloo, Ontario, 157-162, 1986.

[3] B. Buchberger, Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach
einem nulldimensionalen Polynomideal, PhD thesis, Innsbruck, 1965.

[4] B. Buchberger, A Criterion for Detecting Unnecessary Reductions in the Construction of
Gröbner Bases, in “EUROSAM 1979,” Lecture Notes in Computer Science 72, Springer Verlag,
Berlin-Heidelberg-New York, 1979, 3-21.

[5] M. Caboara, M. Kreuzer, and L. Robbiano, Efficiently Computing Minimal Sets of Critical
Pairs, Preprint submitted to Journal of Symbolic Computation, 2003.

[6] D. Cox, J. Little, and D. O’Shea, Ideals, Varieties, and Algorithms: An Introduction to
Computational Algebraic Geometry and Commutative Algebra, Springer Verlag, Berlin and
New York, 1992.

[7] J. C. Faugere, A New Efficient Algorithm for Computing Gröbner Bases (F4), Journal of Pure
and Applied Algebra, 139(1-3):61-88, June 1999.

[8] R. Gebauer and H. M. Möller, On an Installation of Buchberger’s Algorithm, J. Symbolic
Computation, 6: 257-286, 1987.

[9] A. Giovini, T. Mora, G. Niesi, L. Robbiano, and C. Traverso, “One Sugar Cube, Please”
or Selection Strategies in the Buchberger Algorithm, in Proc. International Symposium on
Symbolic and Algebraic Computation ISSAC’91 (S.M. Watt ed.), ACM Press, New York,
1991, 49-54.

[10] H. M. Möller, A Reduction Strategy for the Taylor Resolution, Proc. EUROCAL 85, Springer
L.N. in Comp. Sci. 162, 526-534.

[11] D. K. Taylor, Ideals Generated by Monomials in an R-sequence, Ph.D. Thesis, University of
Chicago, 1966.

37


