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We study two classes of quantum phenomena associated with classical chaos in

a variety of quantum models: (i) dynamical localization and its extension and gener-

alization to interacting few- and many-body systems and (ii) quantum exponential

divergences in high-order correlators and other diagnostics of quantum chaos.

Dynamical localization (DL) is a subtle phenomenon related to Anderson lo-

calization. It hinges on quantum interference and is typically destroyed in presence

of interactions. DL often manifests as a failure of a driven system to heat up, vi-

olating the foundations of statistical physics. Kicked rotor (KR) is a prototypical

chaotic classical model that exhibits linear energy growth with time. The quantum

kicked rotor (QKR) features DL instead: its energy saturates. Multiple attempts

of many-body generalizations faced difficulties in preserving DL. Recently, DL was

shown in a special integrable many-body model. We study non-integrable mod-

els of few- and many-body QKR-like systems and provide direct evidence that DL

can persist there. In addition, we show how a novel related concept of localization



landscape can be applied to study transport in rippled channels.

Out-of-time-ordered correlator (OTOC) was proposed as an indicator of quan-

tum chaos, since in the semiclassical limit, this correlator’s possible exponential

growth rate (CGR) resembles the classical Lyapunov exponent (LE). We show that

the CGR in QKR is related, but distinct from the LE in KR. We also show a singu-

larity in the OTOC at the Ehrenfest time tE due to a delay in the onset of quantum

interference. Next, we study scaling of OTOC beyond tE. We then explore how the

OTOC-based approach to quantum chaos relates to the random-matrix-theoretical

description by introducing an operator we dub the Lyapunovian. Its level statis-

tics is calculated for quantum stadium billiard, a seminal model of quantum chaos,

and aligns perfectly with the Wigner-Dyson surmise. In the semiclassical limit, the

Lyapunovian reduces to the matrix of uncorrelated finite-time Lyapunov exponents,

connecting the CGR at early times, when the quantum effects are weak, to univer-

sal level repulsion that hinges on strong quantum interference. Finally, we consider

quantum polygonal billiards: their classical counterparts are non-chaotic. We show

exponential growth of the OTOCs in these systems, sharply contrasted with the

classical behavior even before quantum interference develops.
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Chapter 1: Introduction

1.1 Quantum Mechanics and Classical Chaos

The first quarter of the twentieth century marked the birth of quantum me-

chanics, a fundamental theory that described the world on small scales and suc-

cessfully solved a multitude of puzzles in atomic, optical, and solid state physics,

to name a few. The classical physics, thoroughly tested in endless scenarios before,

naturally could not be discarded, however, and instead was thought of as a spe-

cific limiting case of the quantum theory, the one in which all relevant parameters

are far greater than the corresponding “quanta.” For example, the typical action

would then have to be much larger than the Planck’s constant in order for classi-

cal mechanics to apply. This implies that under such conditions, the predictions

of the classical and quantum theories should agree for all practical purposes. This

idea stands behind the famous corresponding principle formulated first by Bohr for

atomic energy levels [1] and then assumed for more general physical circumstances.

However, the situation with the correspondence principle turned out to be far more

complicated than that in another groundbreaking discovery of the early twentieth

century, the special relativity, which transforms into the classical mechanics in the

limit, in which all relevant speeds are far lower than the speed of light (or the formal
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c→∞ limit). In particular, it turned out that there is no way to introduce quantum

theory such that all observables would collapse to the classical predictions in the

formal ~→ 0 limit. This limit is singular, and only certain statistical agreement is

achievable, while higher-order correlators cannot generally be matched.

Many “regular” models satisfy the correspondence principle at a certain level

of generality. However, as it often happens in science, there appeared to be a

“minor” inconsistency that lead to the development of a whole new field of physics.

The surprise came from an already enigmatic and exquisite field founded in the late

nineteenth century on the intersection between mathematics, physics, and weather

prediction. It would later be coined the chaos theory by James A. Yorke [2]. Because

of an extremely fast, exponential rate of generation of fine structures in the phase

space of chaotic (classical) systems, these structures very quickly reach the scale

of finesse at which quantum mechanics operates, and at this point predictions of

quantum and classical theories no longer agree. This marks the practical breakdown

of the correspondence principle, because formally, the correspondence could only be

recovered for so exponentially large systems that even cosmic bodies are not large

enough [3]. In other words, in a reasonably short, observable time (typically, the

so-called Ehrenfest time tE [4, 5]), the quantum and classical predictions for the

dynamics start to disagree. It would not necessarily be a serious issue, however, if

we did not have vast experimental validation that the classical physics predictions

are correct and accurate in such scenarios. This is difficult to accept, given that all

these large chaotic systems physically consist of small constituents whose behavior

is surely governed by quantum, and not classical mechanics.
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Two paths can lead from this complication, and both turn out to be possi-

ble. In the vastly dominant one, inclusion of more details about the system into a

quantum model – such as decoherence by environment or interactions – allows to

correctly reproduce physical reality captured by the classical description. There is,

however, the second path, following which one attempts to create states of mat-

ter, which violate classical predictions even in the semiclassical parameter regime.

These attempts require delicate engineering of models and parameter regimes and

are easily turned into the former case, though. The essence of both of these op-

portunities is in examining and defining the characteristics that one would typically

regard as sub-dominant, such as many-body effects or weak environment coupling.

Of course, the study of quantum systems with classically chaotic counterparts went

very far beyond simple dynamics comparison, and many discoveries have been made

on the quantum signatures of chaos (see, e.g., Ref. [6]). The field formed around

these studies is typically referred to as quantum chaos, although Berry argued that

the name “quantum chaology” would be less paradoxical and thus preferential [7],

because typically, quantum mechanics washes out many classical chaotic properties

after the Ehrenfest time.

1.2 Quantum Kicked Rotor

A periodically driven – kicked – rotor (KR) [also know as Chirikov standard

map] [8] is a fundamental classical model that exhibits a transition from mostly

regular phase space with small chaotic islands to globally connected chaotic sea
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throughout the whole phase space with just small islands of stability. Associated

with the chaotic sea, there is a diffusion in the angular-momentum space. KR can

be visualized as a particle confined to move on a ring and periodically kicked by

an external force in a fixed direction. It can also be thought of as a pendulum, for

which the gravity is periodically switched on and off. In case of the usual quadratic

dispersion relation, the angular-momentum diffusion translates into the linear energy

growth with time. The model’s quantum counterpart, the quantum kicked rotor

(QKR) [5] is a seminal example of how quantum dynamics can drastically differ

from classical one. Instead of the momentum-space diffusion and linear energy

growth, QKR demonstrates a complete lack of thereof – dynamical localization

(DL) [5, 9, 10], – so that its energy under external drive saturates after a finite time.

This and related models are discussed in more details in Chapters 2 and 5.

When generalized to a many-body system, DL means the lack of heating

and contradicts the intuitive axioms of statistical physics and thermodynamics.

However, multiple attempts of such generalizations faced tremendous difficulties

in preserving the localization effect in the presence of interactions or other means of

modeling many-body effects, such as via introducing environment/decoherence or

non-linearities.

1.3 Dynamical Localization

One of the famous effects that can be attributed to quantum-to-classical cor-

respondence breaking is localization. It has various manifestations in different sys-
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tems, but the best known one is Anderson localization in disordered solids [11],

which causes zero conductivity. In essence, localization means that the electronic

eigenstates in the system are not itinerant – or extended throughout the space, –

as is the case in periodic crystals (due to the famous Bloch theorem). Instead,

the eigenstates decay exponentially with distance from their core, more similarly to

bound states in isolated atoms. A less widely known representative of this family of

phenomena is DL [5, 9, 10], mentioned above in Sec. 1.2 – the effect which prohibits

energy absorption from an external source and contradicts classical mechanics and

statistical physics. In other words, a system does not heat up under external drive.

More precisely, it consists in a similar exponential decay of eigenstates, but in the

momentum space of a driven dynamical system. The connection between the dy-

namical and Anderson localization was established formally in Refs. [12, 13, 14, 15]

and then further generalized in Ref. [16]. DL is based on a delicate destructive

interference, and complications such as interactions, non-linearities, or decoherence

typically destroy it. This property can be very useful for creation of various sta-

ble quantum devices, such as those for quantum computing, quantum memory, and

quantum sensing, to name a few. Fundamentally, replication of this phenomenon

in larger systems is also very important, because it directly violates some of the

foundations of statistical physics (and thermodynamics) and thereby presents ways

around its theorems and rules.

Let us discuss the expectations for this phenomenon in a many-body case.

Following the first of two paths outlined in Sec. 1.1, one can account for the fact

that there are many degrees of freedom that can exchange energy. Typically, this
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consideration is sufficient to rule out localization and restore the usual energy trans-

port consistent with classical and statistical physics. However, as we discover in

Chapters 2 and 3, the second path is achievable, too, i.e. systems can be engi-

neered, in which dynamical localization survives interactions and scales to infinite-

size systems. We coined this effect Dynamical Many-Body Localization (DMBL)

in Chapter 2 and then a bit more precisely – Many-Body Dynamical Localization

(MBDL) – in Chapter 3.

1.4 Transport in Rippled Channels and Localization Landscape

A new approach to disordered or irregular systems based on a concept called

localization landscape has been suggested recently [17]. It allows one to extract

tremendous amount of information about a system without solving its Schrödinger

equation and features a dramatically lower complexity than the latter one. In Chap-

ter 4, we test this approach in application to a problem of transport in rippled chan-

nels and demonstrate how localization landscape predicts Anderson-like localization

in this case and hence the transport properties of a channel.

1.5 Quantum Lyapunov Exponents

One of the fundamental characteristics of chaotic systems is their Kolmogorov-

Sinai entropy (KS-entropy) [18, 19, 20], which, due to the Pesin’s theorem [21, 22,

23], is usually equal to the sum of all system’s positive Lyapunov exponents (LEs).

The spectrum of Lyapunov exponents [24, 25] defines whether and to what degree
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it is chaotic, as they constitute exponential stretch/squeeze rates along the prin-

cipal axes in the phase space. Description of quantum-to-classical correspondence

and description of quantum systems in general would not be complete without un-

derstanding what role these parameters play in the quantum realm. But the very

definition of them is problematic in the quantum setting, as it relies on such classical

concepts as trajectories, as well as infinite divisibility of the phase space down to ar-

bitrarily small scales, which is not the case in quantum mechanics that imposes the

lower limit of ~ on the phase-space scales. On the other hand, it is natural to expect

that in a certain way, the presence of positive Lyapunov exponents should play an

important role in dynamics of larger quantum systems. In Chapter 5, we discuss

a novel way to calculate these important parameters for general quantum systems

based on the so-called out-of-time-ordered correlator (OTOC) [26, 27, 28]. It was

suggested that OTOC may serve as a useful characteristic and even an indicator

of quantum-chaotic behavior due to its simple interpretation in the semi-classical

limit. In particular, in the limit of ~ → 0, the expression for the rate of possi-

ble exponential growth of OTOC resembles the definition of the classical Lyapunov

exponent.

We calculate the OTOC for the classical and quantum kicked rotor and com-

pare its growth rate at initial times with the standard definition of the classical

Lyapunov exponent. Using both quantum and classical arguments, we show that

the OTOC’s growth rate and the Lyapunov exponent are in general distinct quan-

tities, corresponding to the logarithm of phase-space-averaged divergence rate of

classical trajectories and to the phase-space average of the logarithm, respectively.
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The difference appears to be more pronounced in the regime where no classical

chaos exists globally. In this case, the Lyapunov exponent quickly decreases with

the chaoticity parameter, while the OTOC’s growth rate may decrease much slower

showing higher sensitivity to small chaotic islands in the phase space. We also show

that the quantum OTOC as a function of time exhibits a clear singularity. The

underlying physics of this singularity can be related to that in the theory of weak

(dynamical) localization and is due to a delay in the onset of quantum interference

effects. Finally, we go beyond the Ehrenfest time tE and demonstrate scaling of

the OTOC as a function of time, such that the only dependence of the OTOC on

the effective quantum parameter ~eff and time is through a single variable – the

combination t/tE, where the Ehrenfest time tE is a function of ~eff .

1.6 Level Statistics and Lyapunov Operator

One of the most famous and very successful tools developed in quantum chaos

and widely accepted within and outside of the field is statistical analysis of energy

spectra. And one of the primary types of such analysis consists in calculating the

probability density for spacings between adjacent energy levels of a quantum sys-

tem, known in short as level statistics (this concept comes from the random-matrix

theory). This statistical approach allows to discover local correlations within the

spectrum. Following the conjecture by Bohigas, Giannoni, and Schmit (BGS con-

jecture) [29] 1, the quantum systems with Poisson level statistics are identified with

classically regular systems and quantum systems with Wigner-Dyson level statistics

1It was, in fact, first formulated by Casati, Valz-Gris, and Guarneri in Ref. [30]
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are identified with classically chaotic ones. This conjecture works very well for many

prototypical systems, but does not hold in general. For instance, many quantum

models with Wigner-Dyson level statistics do not have a classical counterpart or it is

not known (e.g., Sachdev-Ye-Kitaev model [27, 31]) and some classically chaotic dy-

namical systems acquire Poisson level statistics upon quantization, such as systems

that show localization. Moreover, ergodic, but not chaotic classical systems often

have quantum counterparts whose level statistics obeys Wigner-Dyson distribution

(see, e.g., Ref. [32]).

We explore how the OTOC-based approach to quantum chaos relates to the

random-matrix theoretical description, and then we proceed to merge them to-

gether. To do so, in Chapter 6 we consider the operator that generates the OTOC

(out-of-time-ordered operator, OTOO), and suggest a hybrid diagnostic of chaos in

quantum systems: level statistics of the OTOO or level statistics of the Lyapunovian

– the operator logarithm of OTOO. This approach proves to be more general and

allows to connect early-time classical-like and late-time deeply quantum features

associated with chaos. We calculate the Lyapunovian’s level statistics explicitly for

the quantum stadium billiard, a canonical model of quantum chaos with a textbook

classical counterpart – Bunimovich stadium billiard [33, 34, 35, 36, 37, 38, 39] – a

seminal model of classical chaos.

We show that in the bulk of the filtered spectrum, the eigenvalue-spacing

statistics for the Lyapunovian perfectly aligns with the Wigner-Dyson distribution.

One of the advantages of looking at the spectral statistics of this operator is that it

has a well-defined semiclassical limit where it reduces to the matrix of uncorrelated
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classical finite-time Lyapunov exponents in a partitioned phase space. We provide

a heuristic picture interpolating these two limits using Moyal quantum mechanics.

Our results show that the Lyapunovian may serve as a useful tool to characterize

quantum chaos and in particular quantum-to-classical correspondence in chaotic

systems. Specifically, it connects the semiclassical Lyapunov growth at early times,

when the quantum effects are weak, to universal level repulsion that hinges on strong

quantum interference effects.

1.7 Exponential Divergences in Non-Chaotic Quantum Systems

Having studied Lyapunov exponents extracted from the OTOC in classically

chaotic quantum systems, we then turn back to the question of quantum-to-classical

correspondence breaking from a particularly intriguing side. Normally, as we men-

tioned in Sec. 1.1, in chaotic systems with few degrees of freedom, the correspondence

is broken shortly after the beginning of the evolution, at the Ehrenfest time, which

is logarithmic in the system’s size [4, 5]. Exponential instabilities characteristic of

chaos vanish around this time, but until then are reproduced in quantum dynamics.

However, if the system is not classically chaotic, then one would expect no exponen-

tial features in both its classical and quantum dynamics. A series of fundamental

examples of violation of these natural expectations is found in Chapter 7, where

we consider quantum systems with classical counterparts that are non-chaotic (in-

tegrable or ergodic/mixing). We show that the existence of isolated unstable points

in classical phase space is sufficient to generate chaotic divergences on the quantum
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side – the disagreement that should only become more prominent when the system

size is increased and effects of interactions or decoherence are accounted for. It could

be regarded as a novel type of quantum-to-classical correspondence breaking, but

we prefer to take a more conservative position and interpret this observation as a

peculiarity of the OTOC in this kind of scenarios.

Specific calculations are performed for a variety of polygonal billiards, whose

classical Lyapunov exponents are always zero, but the quantum OTOC demonstrates

a fast exponential-like growth at early times with Planck’s-constant-dependent rates.

This behavior is sharply contrasted with the slow early-time growth of the analog

of the OTOC in the systems’ classical counterparts. These results suggest that

classical-to-quantum correspondence in dynamics is violated in the OTOC even

before quantum interference develops. When interactions or other decoherence-

inducing effects are present, the early-time window – defined as the Ehrenfest-time-

long time interval after the point when there were no quantum interferences in the

system – becomes very important, because the quantum coherence is repeatedly

destroyed. Therefore, the correspondence violation should extend to arbitrarily

long times in these realistic cases, as far as the OTOC is concerned. Note that

the OTOC is ultimately not an observable quantity, at least if we avoid certain

additional assumptions, such as a perfect invertibility of time or existence of two

perfect copies of a complex quantum system with identical control.
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Chapter 2: Dynamical Localization of Coupled Relativistic Kicked

Rotors

2.1 Introduction

Since the discovery of Anderson localization in 1958 [11], significant efforts—

both analytical and numerical—have been made to understand how localization is

affected by interactions. In 2005, Basko, Aleiner, and Altshuler [40] demonstrated

that, under certain conditions, localization can survive in the presence of interac-

tions. This phenomenon was called many-body localization (MBL). The MBL state

is a peculiar state of matter characterized by a number of counter-intuitive proper-

ties including ergodicity breaking [41], and it has been attracting a lot of attention

recently (see, e.g., Refs. [42, 43, 44, 45, 46] and references therein; for reviews, see

Refs. [47, 48]).

A different but closely related phenomenon to Anderson localization is dy-

namical localization. It was first introduced by Casati, Chirikov, Ford, and Izrailev

[5, 49, 50] for a prototypical dynamical model of quantum kicked rotor (QKR)—

a quantum analog of the classical kicked rotor (KR) also known as the Chirikov

standard map [5, 8]. Experimentally, it was first observed by Moore et al. [51]. Dy-
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namical localization manifests itself in quantum suppression of the chaotic classical

diffusion, which for KR occurs in the angular-momentum space when the kicking

strength exceeds a critical value. As opposed to Anderson localization in disordered

systems, dynamical localization is not related to genuine disorder or intrinsic ran-

domness and is a consequence of deterministic system dynamics. However, in 1982

Fishman et al. [12] showed that the QKR model can be directly mapped onto the

Anderson model with quasidisorder, and that dynamical localization in QKR cor-

responds to localization in the Anderson-type lattice model. In particular, in the

Floquet formalism, the free rotor evolution between the kicks generates a lattice

of angular-momentum states (dimensionless angular momentum is integer due to

quantization on a ring), and kicking embodies hopping between the “sites” of this

lattice.

The role of interactions in both Anderson and dynamical localization has been

studied for a long time. During a few decades, it was believed that interactions

generally destroy localization due to the associated dephasing. In particular, inter-

actions were studied directly [52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66],

and modeled by introducing noise [67, 68, 69, 70, 71, 72, 73, 74, 75], dissipation

[72, 76, 77, 78], and nonlinearity [79, 80, 81, 82, 83, 84, 85, 86, 87, 88]. Some ex-

perimental probes [89, 90, 91, 92, 93, 94] also tentatively suggested delocalization.

However, in some special cases of two interacting QKRs, dynamical localization

was found to be preserved, although weakened—specifically, for a single 2D QKR

[95] and for the interaction potential local in rotor angular-momentum space in 1D

[96, 97, 98, 99, 100, 101].
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Although dynamical localization for two coupled QKRs was predicted to dis-

appear in the presence of coordinate-dependent interactions [52, 53, 64, 65], in 2007

Toloui et al. [102, 103] reported localized regimes in two coupled QKRs. Fur-

thermore, recently Keser et al. [104] showed that coupled many-body systems can

possess dynamical localization, and the corresponding phenomenon was dubbed dy-

namical many-body localization (DMBL). However, DMBL has been found only for

a specific integrable system of linear quantum kicked rotors (LQKRs) so far, and the

existence of this phenomenon in more general, nonintegrable cases remains unclear.

In this paper, we propose a nonintegrable model of coupled quantum relativistic

kicked rotors (QRKRs). We explicitly show dynamical localization for up to three

coupled rotors (see Sec. 2.5), and independently of these explicit calculations we

argue that the DMBL state in a many-body ensemble of such systems is possible

for a wide range of parameters without fine-tuning to integrability. The many-body

LQKR Hamiltonian has the form

H
MB

LQKR
=

L∑
`=1

H
LQKR

` (p`, x`) + Vint(x1, . . . , xL; t), (2.1)

where the single-particle part H
LQKR

` (p`, x`) defined in Eqs. (2.5), (2.8), and (2.17)

depends on angular momentum linearly as C`p`. And this many-body Hamiltonian

is a high-angular-momentum limit of the many-body QRKR Hamiltonian given by

H
MB

QRKR
=

L∑
`=1

H
QRKR

` (p`, x`) + Vint(x1, . . . , xL; t), (2.2)
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where H
QRKR

` (p`, x`) defined in Eqs. (2.5), (2.7), and (2.8) depends on angular mo-

mentum as
√

(C`p`)2 +M2
` , since

√
(Cp)2 +M2 ' Cp, as Cp/M →∞ (2.3)

(parameter definitions are given below). Therefore, any possible delocalization stops

at sufficiently high angular momenta where this asymptotic dominates. On the other

hand, outside of this asymptotic regime, the classical counterpart of the QRKR

model exhibits chaotic behavior, and a quantum Anderson-type mechanism is nec-

essary to induce localization. We show that this mechanism also works to some

extent in the presence of interactions and conclude that in the general many-body

case, localization can result from an interplay of both effects.

Apart from the dynamical localization, we also address regimes where the

single relativistic kicked rotor exhibits novel transport behavior and examine them

in the interacting case. We find that interactions facilitate this behavior and increase

the number of such regimes.

New interesting transport effects can be found if the asymptotic behavior of

the dispersion relation at low angular momentum is different from the behavior at

high angular momentum. In 2003, Matrasulov et al. [105, 106] suggested a model of

QRKR, a quantum version of a classical relativistic kicked rotor (RKR) [107]. Both

RKR and QRKR models naturally possess this dispersion property. It is impor-

tant to note that from the viewpoint of the dispersion relation, QRKR interpolates

between conventional QKR at low angular momenta and exactly solvable LQKR
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[13, 108, 109, 110] at high angular momenta. Recently, Zhao et al. [111] discovered

rich transport properties of RKR and QRKR that included various regimes ranging

from localization to superballistic transport.

In general, the transport properties can be classified by the value of the index

ν in the time dependence of the mean-squared generalized “coordinate.” For a rotor,

the relevant choice is the angular-momentum space:

〈p2〉 ∼ tν . (2.4)

In the case of pure localization ν = 0. The values of ν > 0 correspond to various

types of delocalization. ν = 1 corresponds to the standard diffusion 〈p2〉 ∼ t, while

the case ν 6= 1 is called anomalous diffusion. In particular, ν ∈ (0, 1) is dubbed

subdiffusion and ν ∈ (1, 2) is superdiffusion. The regime with ν = 2 corresponds to

ballistic transport. There is also a special, less studied case of transient anomalous

diffusion called superballistic transport that corresponds to ν > 2. Only a few

examples of this regime are known to date [112, 113, 114, 115]. Interestingly, both

RKR and QRKR exhibit the superballistic transport regime [111].

Besides the angular-momentum dynamics, QRKR also naturally possesses a

spin-like degree of freedom, and dynamics in this “spin” space is quite peculiar

(strictly speaking, it is the particle-antiparticle space of the 1D Dirac equation, but

we will refer to it as spin for brevity). The first spinful kicked rotor model—spin-1/2

QKR—was suggested by Scharf [116] and later studied in Refs. [117, 118, 119, 120,

121], but the evolution of the spin in either of models did not receive much attention.
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In the present paper, first we review the QRKR model and introduce its spin

dynamics properties that, to the best of our knowledge, have not been discussed in

the literature. Then we numerically demonstrate robust localization upon driving

for the model with up to 3 interacting QRKRs. Most importantly, it means that in

this model interparticle coupling that corresponds to infinite-range interaction in the

respective lattice model does not always destroy few-body localization (as opposed to

the case in Refs. [52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70,

71, 72, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 90, 91, 94], but

similarly to the one in Refs. [102, 103]). More generally, we show that the coupled

model inherits the transport regimes of the single QRKR model. If generalized to a

many-body system of QRKRs, this statement results in DMBL similar to that found

in Ref. [104], but for a nonintegrable system. Independently of the numerics, but

in agreement with it, we argue that this is the case because the difference between

the dynamics of the many-body QRKRs model and the integrable model considered

in Ref. [104] vanishes as the angular-momentum terms increase and overwhelm the

mass terms.

2.2 Quantum Relativistic Kicked Rotor

In this section, we review the QRKR model (see also Ref. [111]) and study the

spin dynamics and spin-momentum entanglement in this model. We find a number

of unusual dynamic regimes involving the spin. From this point on, we mostly refer

to the rotors’ angular momenta simply as momenta for shortness.
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As for any kicked system, the Hamiltonian of the QRKR model reads

Ĥ(t) = Ĥ0 + V
∞∑

n=−∞

δ(t− n), (2.5)

where t is a dimensionless time (measured in the units of the kicking period, T ).

Throughout the paper, we use the notation

∆(t) ≡
∞∑

n=−∞

δ(t− n). (2.6)

For QRKR, the free part Ĥ0 is the dimensionless 1D Dirac Hamiltonian:

Ĥ0(p) = 2παpσ̂x +Mσ̂z, (2.7)

V (x) = K cos(qx), (2.8)

where K is an effective kicking strength, and q ∈ N specifies the spatial period of the

potential. Note that the kicking potential (2.8) is proportional to the unit matrix

in the spin space.

In order to quantify the role of quantum and relativistic effects in QRKR as

compared to RKR and QKR, respectively (see Sec. 2.5 for the coupled rotors case),

we make connection to the actual Dirac equation for a kicked relativistic spin-1/2

particle of mass m confined to a 1D ring of radius R:

i~
∂

∂tp
Ψ =

[
cppσ̂

x +mc2σ̂z + kR cos(qx)∆

(
tp
T

)]
Ψ, (2.9)
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where tp = tT is physical time, c is the speed of light, pp = ~p/R is physical (linear)

momentum, and k is the amplitude of the kicking force. Introduce a dimensionless

“effective Planck constant”:

~eff =
~T
mR2

. (2.10)

In the dimensionless Dirac equation, we absorb ~eff into the other parameters, so

that the Hamiltonian (2.5), (2.7), (2.8) enters it as follows:

ı̇
∂

∂t
Ψ = [Cpσ̂x +Mσ̂z +K cos(qx)∆(t)] Ψ, (2.11)

where

C ≡ 2πα =
cT

R
, (2.12)

M =
mc2T

~
=
C2

~eff

, (2.13)

K =
kTR

~
=
K

RKR

~eff

, (2.14)

and K
RKR

is the dimensionless kicking strength in the nonquantum RKR model [see

Eq. (2.20) below]. Note that this straightforward interpretation is not related to the

feasible physical realizations. Some of the latter are proposed in Sec. 2.6.

Consider integer times t only. Since the Hamiltonian is periodic in time—

H(t + 1) = H(t)—and the external potential has a kicking form, the stroboscopic

single-period evolution of the wave functions governed by Eq. (2.11) is given by the

Floquet operator F̂ as

Ψ(t+ 1) = F̂Ψ(t), (2.15)
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where

F̂ = exp
[
−iĤ0(p)

]
exp [−iV (x)] (2.16)

= exp [−i (2παpσ̂x +Mσ̂z)] exp [−iK cos(qx)] .

An efficient way of calculating the evolution (2.15) numerically is by switching

from the coordinate representation to the momentum representation back and forth,

applying each part of the Floquet operator (2.16) in its eigenbasis. This approach

allowed us to reproduce the results for single QRKR obtained in Ref. [111]. The

details of the numerical implementation of this method are given for coupled QRKRs

in Sec. 2.4.

As we mentioned above, in the high-momentum region the QRKR model can

be approximated by the LQKR model. It is determined by Hamiltonian (2.5) with

the free part:

HLQKR
0 (p) = 2παp (2.17)

and kicking potential (2.8). This model has been proved to be integrable in any

dimension by Figotin and Pastur [122].

During the free evolution between the kicks, the local eigenspinors of Ĥ0(p), i.e.

the eigenspinors at any given p as a parameter, acquire the phases ϕ±(p) = ±
√

(2παp)2 +M2,

where the quantized momentum p takes only integer values. As discussed in Ref. [111],

the transport regime in QRKR is determined by the phases ϕ±(p) along with

the kicking potential parameter q and initial conditions. Specifically, in the low-
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momentum region (2παp�M), QRKR is always localized (for the same reason as

QKR and LQKR), because propagators exp[−ı̇ϕ±(p)] act as quasi-random-number

generators for a sequence of integers p. In the high-momentum limit, QRKR tends

to LQKR, and the behavior of exp [−ı̇ϕ±(p)] is determined by the rationality of α.

Namely, irrational values of α give rise to the localized phase, and rational values—

α = r/s (r, s ∈ Z are relatively prime)—lead to delocalization (in particular, to

ballistic transport) if q/s ∈ Z. In the remaining case of α = r/s, but q/s /∈ Z,

the dynamics is bounded, but this is not related to the Anderson-type localization

[109, 111]. In the general case of the wave function containing components with

2παp ∼ M , an additional pattern—the superballistic transport—arises due to the

leakage of the wave function from the low-momentum region to the high-momentum

one [111]. Specifically, following the qualitative argument from Ref. [111], there are

three contributions to the momentum-space transport. One contribution is constant

and comes from localization in the disordered region at small momenta. Another

one is ballistic; i.e., the momentum variance grows quadratically in time. It comes

from the periodic nondisordered (in terms of exp[−ı̇ϕ±]) high-momentum region.

And the third contribution is superballistic. It is related to the transfer of pop-

ulation from the moderate-momentum to the high-momentum region and can be

qualitatively described by
t∫

0

dt′Γ(t− t′)Dt′2, where Γ(t) is a population transfer rate

and D is a coefficient of ballistic transport. In the simplest case of Γ(t) ≈ const,

this integral readily gives cubic growth of momentum variance.

Besides the rich dynamics that QRKR shows in the momentum space, it

also possesses very peculiar patterns in spin dynamics, even if the kicking is spin-
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independent, as in Eq. (2.8). These patterns are related to the entanglement be-

tween the spin and momentum degrees of freedom that occurs at each step as a

result of the combination of free evolution and kicking. We performed a series of

calculations of the spin evolution in the case of spin-independent kicking (2.8). In

Figs. 2.1 – 2.3 and 2.6, we show trajectories of the tip of the spin vector—more

precisely, the vector 2 s(t) = 〈Ψ(t) |σ̂|Ψ(t)〉 —within the Bloch sphere in four rep-

resentative regimes. Figs. 2.1 – 2.3 correspond to the localized phase, while Fig. 2.6

describes the spin dynamics in the delocalized phase. As an initial state, we chose a

Gaussian Ψ(p, t = 0) ∼ exp
[
−(p− p0)2/(2∆2

p)
]
χσ, where χσ = |↑〉+ i |↓〉 in Fig. 2.1

and χσ = |↑〉 in all other cases.

In Fig. 2.1, M/2πα is much larger than the initial momentum spread centered

around zero, and due to localization, the mass remains two orders of magnitude

greater than 2παp for the highest populated momentum components. In this case,

the spin-tip trajectory is a flat disk that lies in the XY plane and constitutes rotation

via exp [−ı̇Mσ̂z]. The radius of the spin trajectory is determined by the degree of the

spin-momentum entanglement and is oscillating in time within certain boundaries.

In Fig. 2.2, the mass M and the initial momentum p0 are equal, which leads

to the flat trajectory tilted at an angle—tan(θ) ≈ M/(2παp0) = 1/(2πα)—to the

Y Z plane. When the ratio between 2παp0 and M is varied, the trajectory remains

flat in a certain range of parameters, and only tilt angle changes accordingly.

In Fig. 2.3, 2παp0 � M , and the momentum spread ∆p � M . In this case,

we have alternating regimes of dynamics. When the majority of the momentum-

space population is far away from p = M/(2πα) � p0, the spin-tip trajectory
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Figure 2.1: Spin dynamics with a large mass, zero average initial momentum, and
small initial momentum-distribution width ∆p (parameters are shown above the
figure). The blue marker indicates the initial point, and the color indicates time (in
the units of the kicking period). The projection of the spin trajectory is shown on
the XZ coordinate plane.

is flat—in this case, it constitutes rotation in the Y Z plane due to the action of

exp [−ı̇2παpσ̂x]. The wave function dynamics far away from p = M/(2πα) con-

sists of periodic splitting into two parts and recombining back. One of these parts

corresponds to classical acceleration due to in-phase kicking and another one—to

deceleration due to out-of-phase kicking. As a manifestation of localization, these

parts span only very limited vicinity of the initial wave packet; Fig. 2.4(a) shows

these parts at the largest separation alongside the initial state. When the wave
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Figure 2.2: Spin dynamics with a medium mass equal to the average initial mo-
mentum, and small initial momentum-distribution width ∆p (parameters are shown
above the figure). The blue marker indicates the initial point, and the color indi-
cates time. The projection of the spin trajectory is shown on the XZ coordinate
plane.

function components are split, the spin tip stays very close to some point X0 at the

X axis. And when the components recombine, the spin tip comes to the surface of

the Bloch sphere developing a flat part of the trajectory that is parallel to the Y Z

plane and crosses the point X0. However, if the initial wave function is centered

close enough to p = M/(2πα), as is the case in Fig. 2.3, one of the split components

goes through this point, and the spin tip starts to move along the X axis until

that component leaves the vicinity of p = M/(2πα). Once the components of the

wave function recombine, a new flat disk parallel to Y Z plane develops, and then
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Figure 2.3: Spin dynamics with a small mass, high average initial momentum, and
medium initial momentum-distribution width ∆p (parameters are shown above the
figure). The blue marker indicates the initial point, and the color indicates time.
The projection of the spin trajectory is shown on the XZ coordinate plane.

this periodic pattern continues with the X-motion until the next disk is generated.

When the motion along the X axis brings the spin tip to the surface of the Bloch

sphere, the X-motion reflects off it and continues back to the center of the Bloch

sphere. During this motion, each time a nonvanishing part of the wave function

passes through p = M/(2πα), it gets modulated, split, and eventually becomes very

noisy in that region [see Figs. 2.4(b)–2.4(d)]. In Fig. 2.5, we show the entanglement

entropy as a function of time corresponding to this case. It is defined as
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Figure 2.4: Wave function at different stages of evolution with the same parameters
as in Fig. 2.3. Panel (a) shows the initial wave function (dot-dashed blue line) and
that at t = 25 (solid red line) in case of starting at p0 = 300—very far from
p = M/(2πα). Panels (b)–(d) exactly correspond to Fig. 2.3 and show the initial
wave function (dot-dashed blue lines) and the up and down spinor components (solid
red and dashed black lines, respectively) at the times indicated in the parentheses.
The initial down component is zero.
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Figure 2.5: Entanglement entropy (solid blue line, left axis) and momentum vari-
ance (〈p2〉−〈p〉2) (dashed red line, right axis) in the process corresponding to Fig. 2.3.
Parameters are shown above the figure.

S(t) = −tr [ρs(t) ln ρs(t)] , (2.18)

where

ρs(t) =
∞∑

p=−∞

|Ψ(p, t)〉 〈Ψ(p, t)| . (2.19)

The sharply pronounced dips in the entanglement entropy correspond to the flat disk

structures in the Bloch sphere with their edges coming close to the surface of the

sphere. And the envelope of the entanglement entropy corresponds to the motion

of the spin tip along the X axis. As the time goes, the wave function becomes

more and more noisy, and no sharp disk structures are generated for some time.

This corresponds to the region between 3000 and 5000 kicks in Figs. 2.3 and 2.5.

However, at some point, the revival of the disks structure in the Bloch sphere occurs,
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and the corresponding revival of the dips structure in the entanglement entropy can

be seen. As the wave function goes through the point p = M/(2πα) many times,

it splits again, and becomes randomized, so that eventually, the motion within the

Bloch sphere becomes less regular. However, it retains the features described above

for at least as long as 2× 104 kicks.

Fig. 2.6 shows the spin dynamics in the case of resonant value of α, i.e.,

delocalization in the momentum space. In this regime, the motion of the spin tip is

continuously slowing down. As time goes, more and more momentum components

get populated, and the spin-tip trajectory tends to one limiting point inside the

Bloch sphere.

2.3 Critical kicking strength in RKR

Before discussing coupled QRKRs, we need to address the difference between

the classical models of RKR and nonrelativistic KR with respect to the notion of

critical kicking strength. RKR is described by the dimensionless Hamiltonian:

H
RKR

= C2

√
1 +

p2

C2
+K

RKR
cos(qx)∆(t). (2.20)

According to Ref. [107], as opposed to KR, in RKR, different Kolmogorov-Arnold-

Moser (KAM) tori in the phase space are destroyed at different critical values of

the kicking strength Ki,cr
RKR

, which depend on the parameter C. Most importantly,

there are global limiting tori at high momentum that do not get destroyed at any

finite value of K
RKR

if C/2π ≡ α /∈ Z (the latter condition is always satisfied in the
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Figure 2.6: Spin dynamics in a resonant regime corresponding to delocalization (α
is rational). Parameters are shown above the figure. The blue marker indicates the
initial point, and the color indicates time. The projections of the spin trajectory are
shown on the XY and XZ coordinate planes.
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Figure 2.7: Phase map of RKR in a moderate kicking regime. Parameters: C = 20,
K

RKR
= 2, q = 1. Panel (b) shows zoomed region of moderate angular momenta

from panel (a). At low momenta, there are both chaotic and periodic trajectories.
At high momenta, all trajectories are periodic.

quantum localized phase described in Sec. 2.2, i.e., when α /∈ Q). This behavior is

illustrated in Figs. 2.7 – 2.9. Variegated regions of moderate momentum filled with

chaotic trajectories are always bounded from both sides by global regular trajectories

that span the rest of the phase space.

However, although the existence of the limiting tori guarantees classically

bounded trajectories, it is not the only source of localization exhibited by the QRKR,

even when coupling is introduced. The QRKR shows localization within both clas-

sically regular and classically chaotic regions. Therefore, in general, localization
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Figure 2.8: Phase map of RKR in a strong kicking regime. Parameters: C = 20,
K

RKR
= 20, q = 1. At low momenta, chaotic trajectories span most of the phase

space. At high momenta, all trajectories are periodic.

is caused by a combination of the classically bounded phase space and quantum

Anderson-type localization. The same argument holds for coupled QRKRs. We

illustrate it in Sec. 2.5.

2.4 Two and Three Coupled Quantum Relativistic Kicked Rotors

The many-body generalization of the LQKR model was considered in Ref. [104],

and it was shown analytically that the many-body LQKR model may exhibit the

DMBL phase. In other words, it was shown that localization may survive in the

presence of interactions. This finding partially motivated the present study of the

few-body generalization of the QRKR model, which is qualitatively distinct from
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Figure 2.9: Phase map of RKR in a very strong kicking regime. Parameters:
C = 20, K

RKR
= 200, q = 1. At low momenta, all trajectories are chaotic. At high

momenta, all trajectories are still periodic.

the LQKR model due to the nonintegrability.

In this section, we consider the simplest interacting cases: a two-body and a

three-body coupled-QRKR models. Specifically, we consider the models with the

Hamiltonian

Ĥ(t) = Ĥ0 + (V +Hint)∆(t), (2.21)

where Ĥ0 is chosen in two different ways. First, for the two-body case, we consider

the sum of the Dirac Hamiltonians of the noninteracting QRKRs:

Ĥ0 = 2πα1p1σ̂
x
1 +M1σ̂

z
1 + 2πα2p2σ̂

x
2 +M2σ̂

z
2. (2.22)
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Here σ̂x,z1 = σ̂x,z ⊗ I and σ̂x,z2 = I⊗ σ̂x,z are 4× 4 matrices, C` ≡ 2πα`. Second, we

use a spinless version of the QRKR to construct

Ĥ0 =
L∑
`=1

√
(2πα`p`)2 +M2

` , L = 2, 3. (2.23)

As mentioned in Sec. 2.2, it has been shown in Ref. [111] that the spinless model

H ′
QRKR

=
√

(Cp)2 +M2 + K cos(qx)∆(t) possesses the same localization proper-

ties as the spinful QRKR. For three coupled particles, we only use the spinless

Ĥ0 [Eq. (2.23)] to reduce computational complexity. The kicking potential has a

standard form:

V (x1, . . . , xL) =
L∑
`=1

K` cos(qx`), L = 2, 3. (2.24)

The interaction part is chosen in the same way as for coupled QKRs in Refs. [102,

103], which generalizes the potentials considered in Refs. [52, 95]:

Hint =
1

2

L∑
j,`=1

K int
j` {cos(qxj) cos(qx`) + cos[q(xj − x`)]},

L = 2, 3. (2.25)

We study these models numerically, and show that the localized phase is persistent

with respect to the interaction in a certain range of parameters.

The Floquet operator

F̂ = exp
[
−iĤ0

]
exp [−i(V +Hint)] . (2.26)
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For Ĥ0 in Eq. (2.22), Ψ is a four-component function. Its four components corre-

spond to the four possible spin configurations of two particles: ↑↑, ↑↓, ↓↑, and ↓↓,

respectively. The free part of the Floquet operator (2.26) in the spinful case is

calculated using the properties of the Pauli matrices:

exp
[
−iĤ0

]
=

2⊗
`=1

[
cos

(√
C2
` p

2
` +M2

`

)
I

−i sin

(√
C2
` p

2
` +M2

`

)
C`p`σ̂

x +M`σ̂
z√

C2
` p

2
` +M2

`

]
(2.27)

and can be efficiently applied numerically to a four-component wave function on a

momentum-space grid at each step. Similarly, the kicking and interaction part of the

evolution operator (2.26) can be efficiently applied numerically to a wave function

on a coordinate-space grid.

We choose an initial wave function in the basis of momentum eigenstates:

Ψ(t = 0) =
∑
P

aP (0) |P 〉 , (2.28)

where P = {p1, p2} or {p1, p2, p3} and, to make one step in time, we perform the

discrete Fourier transform of {aP} to go to the coordinate representation, where the

potential part of the Floquet operator (2.26) is diagonal, and we apply this part to

the vector representing the coordinate-space wave function. After that, we perform

the inverse Fourier transform to go back to the momentum representation and apply

the free part [operator (2.27) for the spinful case] to it. Then this cycle starts over

for the next step. This scheme allows us to achieve efficient numerical evolution
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that only requires application of diagonal operators and a fast Fourier transform.

2.5 Numerical experiments with two and three coupled QRKRs

In Figs. 2.10 – 2.12, we present time dependence of the average mean-squared

momentum per particle for two coupled spinful QRKR particles: 〈p2
1 + p2

2〉/2. In

Ref. [104], this quantity was shown to be a reliable indicator of dynamical localiza-

tion (as opposed to the average energy). Different values of the parameters determine

various regimes that are exhibited by our model. We start in a Gaussian-shaped

initial state in the momentum space centered around the point
(
p

(0)
1 , p

(0)
2

)
= (0, 0)

with both spins up:

Ψ(p1, p2, t = 0) ∼ exp

[
− p2

1

2∆2
1

− p2
2

2∆2
2

]
|↑↑〉 , (2.29)

and widths ∆1 = ∆2 = 4. Therefore, the initial value of the average mean-squared

momentum per particle is 〈p2
1 + p2

2〉/2 = 8. Figures 2.10 and 2.11 represent the dy-

namically localized state. It is characterized by nonresonant values of the velocities

(α1 6= α2 /∈ Q). Saturation of the average mean-squared momentum per particle is

verified by linear fits that have zero slope up to a fitting error; the corresponding

equations are shown inside the plots. The insets in these figures show the probabil-

ity density at the final time |Ψ(p1, p2, t = N)|2 as a function of each of the momenta

while integrated over the other one. As one can see from these insets, in the regime

of localization, the wave functions decay exponentially with momenta and, in the

vicinity of numerical boundaries, reach the values below 10−27. This ensures that
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Figure 2.10: Average mean-squared momentum per particle in the localized regime.
Oscillating red line shows the calculation result. Straight blue line is a linear fit that
shows no slope up to a fitting error (equation is given inside the plot). Parameters:
α1 = 1/3 + 0.02/2π,α2 = 1/3 − 0.03/2π, q = 3, K1 = K2 = 0.8, K int

12 = 0.04,
M1 = M2 = 12 (~eff1 ≈ ~eff2 ≈ 0.37). Insets: Probability density at the final time
t = N = 3 × 105 kicks as a function of each momentum while integrated over the
other one.

during the evolution, the population does not come close to the numerical bound-

aries, and there is no unphysical reflection from them. Stable exponential decay

of a wave function with a constant bound on its width indicates localization. In

Fig. 2.10, we take parameters similar to those used in Ref. [111] for the single QRKR

and add 5% of interaction, i.e., K int
12 = 0.05K1,2. These parameters correspond to

~eff1 ≈ ~eff2 ≈ 0.37. In Fig. 2.11, we set ~eff1 = ~eff2 = 1 and periodicity parameter

q = 1 and obtain more stable localization. Other parameters in this case are such

that in the corresponding RKR model, many tori are destroyed giving way to a broad

chaotic region. In particular, the kicking strength constant exceeds the first (and,

in this case, the only) critical constant—~effK1,2 > K1,cr
RKR
≈ 2—corresponding to
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Figure 2.11: Average mean-squared momentum per particle in the localized regime.
Oscillating red line shows the calculation result. Straight blue line is a linear fit that
shows no slope up to a fitting error (equation is given inside the plot). Parameters:
~eff = 1,α1 = 1.6+0.1/2π, α2 = 1.6−0.15/2π, q = 1, K1,2 = 4/~eff , K int

12 = 0.2/~eff ,
M1,2 = (2πα1,2)2 /~eff . Insets: Probability density at the final time t = N = 3× 105

kicks as a function of each momentum while integrated over the other one.
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Figure 2.12: Average mean-squared momentum per particle in the superballistic
regime. Black points show the calculation result. Red line is a power fit. Parameters:
α1,2 = 1/3− 0.03/2π, q = 3, K1,2 = 0.7, K int

12 = 0.2, M1,2 = 12. Inset: Probability
density at the final time t = 2 × 103 kicks as a function of each momentum while
integrated over the other one.

the single RKR. Figure 2.12 shows the delocalized phase described by the resonant

values of the velocities: α1 = α2. Even though α1, α2 /∈ Q—so that for single QRKR,

such α guarantees localization—according to Ref. [104], in the many-body LQKR

model, equal values of the velocities correspond to additional resonances due to the

interaction that lead to divergence of the emergent momenta-containing integrals of

motion (IOMs) present in the many-body LQKR model [104]. In the many-body

QRKR model at large momenta, these IOMs become approximate. Nevertheless,

their divergence results in the divergence of the associated momenta, which is con-

firmed by our numerical results. In particular, in Fig. 2.12 we see a rapid transport

in the momentum space that causes the fast growth of the probability density near

the numerical boundaries of the momentum grid. Unfortunately, this complication
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makes further numerical analysis at large time scales inefficient. However, we can

clearly see the signs of superballistic transport in this plot. In particular, in this

example, 〈p2
1 + p2

2〉 ∼ t2.57 until the wave function reaches the grid boundaries at

the time beyond t = 2000 kicks, and we can not rely on the numerics after that

point. The inset shows the probability density at final time |Ψ(p1, p2, t = N)|2 as

a function of each of the momenta while integrated over the other one (p1 and p2

dependencies are the same in this case due to symmetry).

In Fig. 2.13, we compare localization in two-particle and three-particle spinless

QRKR models at the same respective parameters. The plots are given in the lin-

log scale to show details of saturation. We should note that upon increasing the

interaction strengths, there appear regimes of long-lasting logarithmic growth of

the average mean-squared momentum per particle that may be generic for coupled

nonintegrable dynamical systems but also satisfy the condition ν = 0 in Eq. (2.4).

As one can see, in Fig. 2.13, panel (a), the localization length and time it takes

the mean-squared momentum to saturate increase with the number of particles,

as expected given the increased contribution of interactions. However, this panel

shows saturation well below the integrable region determined by p2
` � (M`/C`)

2 =

(C`/heff`
)2 ≈ 100. In contrast to it, in panel (b), the near-integrability threshold

is p2
` � 1, and the saturated value satisfies this condition to some extent. Notice

that in this case, the saturated values of mean-squared momentum per particle are

in the same range for two and three particles.
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Figure 2.13: Average momentum variance per particle in the localized regime
for two (blue lines) and three (red lines) coupled spinless QRKRs. Panel (a)
shows localization far from integrable limit; parameters are ~eff = 1, α1 =
1.6 + 0.1/2π, α2 = 1.6 − 0.15/2π, (α3 = 1.6 + 0.225/2π), q = 1, K1 =
2/~eff , K2 = 3/~eff , (K3 = 1.5/~eff), K int

12 = 0.1/~eff , (K int
23 = 0.07/~eff , K

int
31 =

0.13/~eff), M1,2,(3) =
(
2πα1,2,(3)

)2
/~eff . Panel (b) shows localization close to the

integrable limit. Parameters are the same as in panel (a) except for α1,2,(3) being
multiplied by a factor 0.1.

2.6 Experimental Proposal

Due to the structure of the Floquet operators (2.16) and (2.26) for single

and coupled QRKRs respectively, as well as for any kicked Hamiltonian, quantum

dynamics is almost invariant with respect to swapping the free and the kicked parts;

i.e., the Hamiltonians

H = H0 +H1∆(t) (2.30)
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and

Hswap = H0∆(t) +H1 (2.31)

generate the same Floquet evolution. More precisely, in order to get completely the

same dynamics, when swapping, one should also change from considering evolution

between the moments of time right after the kicks to those just before the kicks and

vice versa.

In particular, the single QRKR is equivalent to a model with the Hamiltonian

ĤQRKR
swap = (2παpσ̂x +Mσ̂z) ∆(t) +K cos(qx). (2.32)

Let us put q = 1. Recall that the angular coordinate x ∈ [0, 2π) and the dimension-

less angular momentum is quantized—p ∈ Z. Then one can establish a correspon-

dence between the QRKR and a spin-1
2

particle hopping on a 1D lattice subject to

a pulsed magnetic field. This correspondence is summarized in the following table.

QRKR x p 2πα M K

Spin-1
2

ka+ π j −µT
2~
Bx(1) −µT

2~
Bz T

T
~

Here k is a quasi-momentum in the first Brillouin zone for a lattice with real-space

site numbers j and a lattice constant a. µ is a magnetic moment associated with a

particle’s spin, Bx(1) is an x component of the magnetic field on the site j = 1 [so

that in general, Bx(j) = jBx(1) is linear in real space], Bz is a uniform z component

of the magnetic field, and T is a hopping energy. So, we get the following 1D single-

band tight-binding Hamiltonian for a spin-1
2

particle that is being periodically kicked
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via the external magnetic field:

Hmagn = −µ [Bx(j)sx +Bzsz] ∆(t)− T cos(ka), (2.33)

where sx and sz are the particle’s spin components.

If we keep the kicking function ∆(t) at the original place—as in Eq. (2.30)—we

get a Hamiltonian for a spin-1
2

particle in a time-independent magnetic field and in

a pulsed optical lattice:

Hpl = −µ [Bx(j)sx +Bzsz]− T cos(ka)∆(t). (2.34)

In this case, however, it is important to keep the lattice on so as not to recover the

quadratic kinetic energy term. It can be done by switching from the deep optical

lattice to the shallow one back and forth instead of turning it on and off completely.

Another possible setup for implementing the QRKR model is a two-level atom

in a laser field with detuning δ and nonuniform Rabi frequency Ω(j) at the jth site in

the presence of a pulsed optical lattice. It is implemented via the following mapping.

QRKR x p 2πα M K

Atom ka+ π j TΩ(1) −T δ
2

T
T
~
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Then in the rotating wave approximation,

Hat = ~Ω(j) (|g〉〈e|+ |e〉〈g|)− ~
δ

2
(|e〉〈e| − |g〉〈g|)

− T cos(ka)∆(t), (2.35)

where |g〉 and |e〉 are the ground and excited states of the atom in the rotating

frame. The same caveat regarding the quadratic kinetic term as in the previous

setting applies here. As well as in the previous examples, one could kick the first

part of this Hamiltonian instead of applying a pulsed lattice.

Similar models can be constructed on the basis of the QKR and LQKR models.

In particular,

HQKR
swap =

~effp
2

2
∆(t) +K cos(x) (2.36)

and

HLQKR
swap = 2παp∆(t) +K cos(x) (2.37)

correspond to a charged particle in a 1D lattice in the presence of a kicked electric

field. This field is linear in space for HQKR
swap and uniform for HLQKR

swap .

Extensions of the single-particle models (2.32) – (2.37) to the case of many

interacting particles can be mapped to corresponding many-body QRKRs, QKRs,

or LQKRs in the same way.

Hamiltonians (2.32) – (2.37) might be realized in cold atoms in optical lat-

tices. Interestingly, according to the mapping p 7→ j, for such systems, dynamical

localization as well as other intriguing transport regimes such as superballistic trans-
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port, take place in real space rather than in momentum space, which makes these

phenomena especially demonstrative in experiment.

2.7 Conclusion

Starting with the single-particle QRKR model that possesses the rich variety

of transport phases, we introduced its peculiar spin dynamics phenomenology and

generalized it to the model of interacting QRKRs. For the models of two and three

coupled QRKRs, we showed that the transport regimes—and, in particular, the

localized phase—can survive interactions. We are not aware of any previous study

of coupled QRKRs, but we point out that for the well-studied coupled QKRs and

related static lattice models, most works predict delocalization at least for infinite-

range interaction. Our calculations indicate the existence of the localized regimes

for such a coupling of two and three QRKRs.

Unfortunately, exact numerical study of the many-body QRKR model is not

feasible presently. However, at high momenta, it can be approximated by the inte-

grable many-body LQKR model, and this approximation works only better as the

system goes to higher momentum states. In Ref. [104], the many-body LQKR model

was analytically shown to exhibit the DMBL phase. Besides that, as opposed to the

case of QKR, the classical model behind QRKR is not chaotic at high momenta.

As we have shown, in the cases of two and three coupled QRKRs, localization has a

quantum origin and does not rely on the existence of KAM tori in the phase space

of the corresponding classical problem. However, for a large number of interacting
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rotors, if this localization happens to deteriorate completely, and the growth of the

particles’ momenta recovers, at high enough momenta the system will enter the inte-

grable regime and get localized. This is our main argument in favor of DMBL in the

nonintegrable system of the many-body QRKR model. In general, the observable

dynamical localization can represent a nontrivial interplay of both effects that may

be difficult to disentangle. In summary, our argument supplemented by few-body

calculations provide a strong hint that the nonintegrable many-body QRKR model

should exhibit dynamically localized many-body states.

In addition, we propose a class of kicked lattice models that map onto various

kicked-rotor models and can be realized in the framework of cold atoms in optical

lattices. This realization might allow one to study dynamical localization including

DMBL, and other anomalous transport phenomena exhibited by the QRKR and its

many-body versions in experiment.
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Chapter 3: Many-Body Dynamical Localization in a Kicked Lieb-

Liniger Gas

3.1 Introduction

Everyday experience tells us that injecting energy into a closed system causes

it to heat up. It follows therefore that doing this repeatedly will cause the system to

heat to infinite temperature. Remarkably this intuition does not necessarily carry

over to quantum systems. Recently there has been a large amount of work concern-

ing the prevention of runaway heating in periodically driven closed quantum systems

with much of the focus centered on achieving this via the addition of disorder to the

system [45, 123, 124, 125]. A far simpler and more intriguing example is provided

by the quantum kicked rotor, as discussed in detail in Chapter 2. In this elementary

quantum system a single particle is subjected to a periodic, instantaneous kicking

potential, but otherwise propagates freely. After an initial period of increase the en-

ergy is seen to saturate, no more energy from the kick can be absorbed, and heating

is stopped. This behavior stands in contrast to the corresponding classical system,

in which the energy grows without bound, linearly in time. As Chapter 2 explains, it

was first discovered numerically [5, 49, 50], and later the energy saturation was eluci-
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dated by the construction of a mapping between the angular-momentum dynamics of

the quantum kicked rotor and the dynamics in a lattice model with quasi-disordered

potential similar to the Anderson model [11]. This mapping shows that the wave-

function becomes exponentially localized in angular-momentum space and leads to

this phenomenon being dubbed dynamical localization [12, 15]. Subsequently, dy-

namical localization was observed in clouds of dilute ultra-cold atoms [51, 126, 127].

A natural question to ask is whether dynamical localization can survive in

the presence of interactions. This has been investigated in several studies where

interactions have been introduced through a more complicated kick which couples

the particles (see Chapter 2 and Refs. [128, 129]) or by including interparticle inter-

actions between the kicks [52, 53, 64, 65, 80, 81, 87, 99, 104, 130, 131]. These latter

scenarios are of particular interest as interparticle interactions can be readily tuned

in ultracold-atom experiments [132]. Using mean-field theory it was shown that after

some long time, which is non-linear in the interaction strength, the kinetic energy

of the system grows in a sub-diffusive manner, and localization is destroyed [80, 87].

Degradation of localization in the presence of interactions has also been shown ex-

perimentally in a system of two coupled rotors [94]. A lack or delay in heating is

also witnessed in other driven interacting quantum systems [133, 134, 135, 136].

In one dimension perturbative techniques such as mean-field theory break

down. Any would-be order, i.e a mean field is destroyed by the strong fluctuations

caused by the reduced dimensionality. Systems are strongly correlated as a matter of

course, excitations are collective and often cannot be adiabatically connected to the

those of free models [137, 138]. The description of a kicked interacting Bose gas using
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mean-field theory is no longer appropriate. Fortunately there exists an array of non-

perturbative methods which can be applied to the problem in one dimension. Here

we investigate many-body dynamical localization in an interacting one-dimensional

system using a variety of non-perturbative techniques: Fermi-Bose mapping, linear

and non-linear Luttinger-Liquid theory, and generalized hydrodynamics [139, 140].

We provide evidence that in the presence of interactions one-dimensional systems

can dynamically localize at least for a very long time, which is many orders of

magnitude longer than the time scales currently reachable in experiments. This

dynamical localization occurs in the space of many-body eigenstates which results

in a saturation of the energy and the width of the exponentially decaying quasi-

particle occupation function after a finite number of kicks.

3.2 Model

The system we study consists of an interacting 1D Bose gas which is subjected

to a periodic kicking potential. The Hamiltonian which describes this model is a

natural extension of the standard single-particle system to the many-body case:

H = HLL +
∞∑

j=−∞

δ(t− jT )HK. (3.1)
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The first term is the Lieb-Liniger Hamiltonian [141, 142] which provides an excellent

description of a 1D cold-atom gas [143, 144],

HLL = − 1

2m

N∑
i=1

∂2

∂x2
i

+ 2c
∑
〈i,j〉

δ(xi − xj), (3.2)

where N is the number of particles,
∑
〈i,j〉

denotes summation over pairs, m is the

mass of the particles, c is the interaction strength, and we have set ~ = 1. In the

second-quantized form,

HLL =

∫
dx b†(x)

[
− ∂2

x

2m

]
b(x) + c b†(x)b(x)b†(x)b(x). (3.3)

Here b†(x) and b(x) are creation and annihilation operators, [b(x), b†(y)] = δ(x− y),

describing bosons of mass m which interact with point-like density-density inter-

action of strength c ≥ 0. The model is integrable and its equilibrium and out-of-

equilibrium properties have been extensively studied [145, 146, 147, 148, 149]. The

eigenstates can be constructed exactly using Bethe Ansatz and are characterized

by a set of single-particle momenta, kj, j = 1, . . .N . The same states are also the

eigenstates of an infinite set of non-trivial conserved operators Qn (Q2 ∝ HLL) such

that Qn |{kj}〉 =
∑N

j=1 k
n
j |{kj}〉. This constrains the dynamics of the system. The

second term in Eq. (3.1) describes the kick which couples to the boson density:

HK =

∫
dxV cos (qx)b†(x)b(x), (3.4)
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where V is the kicking strength, T is the kicking period, and q is the wave-vector of

the kicking potential. A potential of this form is achieved experimentally by means

of a Bragg pulse. Note that while the unperturbed HLL in Eq. (3.3) is integrable,

the kicking breaks the integrability, and H in Eq. (3.1) is not integrable.

The kicked system follows a two-step time evolution which separates into evo-

lution between the kicks via e−iHLLT and over the kicks via e−iHK . This can be

expressed in terms of a single operator HF known as the Floquet Hamiltonian, gov-

erning evolution over one period: e−iHF = e−iHLLT e−iHK . Our goal is to determine

the energy of the system after N kicks,

E(t) = 〈Ψ0| eiHFNHLLe
−iHFN |Ψ0〉 , (3.5)

where t = NT , for some initial state |Ψ0〉. Throughout the chapter, we assume that

the system is initialized in its ground state.

3.3 Tonks-Girardeau limit

Aside from the trivial c = 0 limit which recovers the single-particle model, one

can examine the opposite case of c→∞ known as the the Tonks-Girardeau (TG)

gas [150, 151]. Through Fermi-Bose mapping the wave-functions of the TG gas take

the form of a Slater determinant. This mapping remains valid even in the presence

of time-dependent one-body potentials [152, 153]. As a result, we may write the
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solution of the time-dependent Schrödinger equation as

|Ψ0(t)〉 =

∫
dNxA det [φn(xi, t)]

N∏
j=1

b†(xj) |0〉 , (3.6)

where A =
∏

1≤i<j≤N
sgn(xi − xj) is an anti-symmetriser which makes sure the wave-

function remains symmetric, and φn(xi, t) are a set of orthogonal solutions of the

single-particle Schrödinger equation:

i∂tφn(x, t) =

[
− ∂2

x

2m
+

∞∑
j=−∞

δ(t− jT )V cos (qx)

]
φn(x, t). (3.7)

The energy of this state is given by the sum of the single-particle energies:

E(t) =
N∑
n=1

∫
φ∗n(x,NT )

[
− ∂2

x

2m

]
φn(x,NT ). (3.8)

Since each of the single-particle wave-functions exhibits dynamical localization with

the energy remaining bounded, the total energy of the TG gas will be bounded as

well. This proves dynamical localization in the limiting case of an infinitely strongly

repulsive Bose gas.

If the system is initially in the ground state all single-particle momentum

states are filled between the Fermi points |kj| ≤ kF , and kicking causes particles to

change their momenta by multiples of q. Therefore if q ≥ kF , particles cannot avoid

changing their momenta as a result of the kick. On the other hand if q = 2π/L then

Pauli blocking will come into play and inhibit the hopping of particles in momentum

space. Thus by changing between small and large values of q we can tune between
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many-body and single-particle physics. Moreover, for any c 6= 0, eigenstates of HLL

obey the Pauli exclusion principle, i.e. ki 6= kj,∀i 6= j [154], so we expect small q to

be the most interesting from the perspective of many-body physics.

3.4 General case

Having established localization at both ends of the range of values for the

coupling constant, we turn to a discussion of the system under general conditions,

for arbitrary c.

The low-energy behavior of many one-dimensional systems, including the Lieb-

Liniger model, is described by the Luttinger-liquid theory [155]. A purely analytic

approach to the kicked Lieb-Liniger model in this framework is given in Ref. [156].

One more step further is made there, as well, and the non-linear Luttinger liquid

analysis is applied to capture the dominant contribution of the band curvature. The

result in both cases is that as long as the system stays at low energy – within the

validity of the approximation – the energy is going to be bounded, just as in the

single-particle case. This statement is self-consistent as long as the kicking is not

too strong, so that the energy oscillations do not take the system outside of the

low-energy regime.

In order to study the behavior of the system beyond the region of applicability

of the analytics, we investigate the kicked Lieb-Liniger gas numerically, doing so by

making use of the integrability of HLL. The spectrum of the Lieb-Liniger model,

as in many other integrable models, consists of long-lived quasi-particles. In the
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thermodynamic limit and if the variation of the particle density is slow, the system

is completely described by the local occupation function of these quasi-particles,

n(x, λ, t). Here x is the position in space and λ is the quasi-particle momentum.

Generalized hydrodynamics (GHD) is a recently developed theory which describes

the evolution of n(x, λ, t) at large length scales [139, 140]. Between the kicks the

evolution of the gas is determined by the GHD equation:

{∂t + veff [n] ∂x}n(x, λ, t) = 0, (3.9)

where veff[n](x, λ, t) is the effective velocity of the quasi-particle excitations of the

model which depends upon n itself. We will use the following definition of a dressed

function. The dressed function fdr(λ) is defined with respect to a bare function f(λ)

as a solution of the equation:

fdr(λ) = f(λ) +

∫
dµ

2π
ϕ(λ− µ)n(x, µ, t)fdr(µ), (3.10)

where ϕ(x) = 2c/(c2 + x2). In these notations the effective velocity is given by:

veff(λ) =
[ε′(λ)]dr

[p′(λ)]dr
, (3.11)

where ε(λ) = λ2/2m and p(λ) = λ are the bare energy and momentum of the quasi-

particles, and the prime indicates the derivative with respect to λ. In both the TG

and non-interacting limits, this equation becomes exact [157], and n(x, λ, t) reduces

to the Wigner function [158].
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To determine the full evolution, we need to compute the effect of the kicks on

n(x, λ, t). In full generality this is a difficult task which requires the explicit knowl-

edge of the matrix elements of e−iHK with arbitrary eigenstates of the Lieb-Liniger

model. For slowly varying potential, however, which is an applicability condition of

GHD, the situation simplifies. In this case the kicking term couples to the quasi-

particles in the same way as to the bare particles described by b†(x), b(x) [159].

Hence, as explained in detail in Sec. 3.5.1, over a kick at time t we have:

ñ(x, z, t+)=e2iV sin( qz
2

) sin(qx)ñ(x, z, t−), (3.12)

where ñ(x, z, t) is the Fourier transform of n(x, λ, t) with respect to λ.

Using Eqs. (3.9) and (3.12), we can determine the total quasi-particle occupa-

tion function,

n(λ, t) =

∫
dxn(x, λ, t) , (3.13)

and the total energy of the gas:

E(t) =

∫
dλ

2π
εdr(λ)n(λ, t) . (3.14)

We also introduce the common measure of localization, the variance of the occu-

pation function, var[n(λ, t)] (see, e.g., Refs. [13, 14, 108, 109, 160, 161]), where for

convenience, we include additional factors into the conventional definition:

var[f(ζ, t)] =

∫
dζ

2π

ζ2

2m
f(ζ, t) . (3.15)
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Saturation of the variance indicates exponential localization in the λ space. All the

quantities in our calculations are dimensionless and sometimes implicitly expressed

in units of m, L/2π, and T . The evolution between the kicks can be evaluated via

a finite-difference scheme [162]:

n(x, λ, t+ δt) = n(x− veff[n(x, λ, t)]δt, λ, t) , (3.16)

where we choose T/δt = 1000. At each time step veff is reevaluated via Eq. (3.11),

and the shift is performed in the Fourier space by explicitly calculating the integral:

n(x, λ, t+ δt) =

∫
dpeip{x−veff[n(x,λ,t)]δt}n̄(p, λ, t) , (3.17)

where n̄(p, λ, t) is the Fourier transform of n(x, λ, t) with respect to x. This scheme

works well at short times, but due to its very high numerical complexity, for prac-

tical purposes we employ a different approach – a linearized approximation to

Eq. (3.9) [163]. In this approximation we calculate veff[〈n〉] after a kick using a

spatially averaged 〈n(λ, t)〉 =
∫

dxn(x, λ, t)/L which then allows to propagate the

solution over the entire duration of the free evolution at once. This is easily carried

out in Fourier space via:

n̄(p, λ, t+ T ) = e−ipveff[〈n〉]T n̄(p, λ, t) . (3.18)

The next kick is then applied via Eq. (3.12), veff[〈n〉] is determined anew, and the

process is repeated. This approximation becomes exact in the TG case and agrees
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well with the finite difference scheme at short times. We demonstrate the validity

of this approximation in Sec. 3.5.3.

We choose a small value of the kicking-potential wave-vector q = 4π/L and

take V = 0.5. In this case, the corresponding single-particle classical system is

in the regime of global chaos, although the phase-space is mixed with island of

stability present. The critical value of the kicking strength where the regular-to-

chaotic transition occurs is (qL/2π)2Vcr = 4Vcr ≈ 0.97 with the remaining KAM

islands vanishing to the naked eye towards (qL/2π)2V = 4V = 5 [8] (See Sec. 3.5.2

for details). As shown in Ref. [156], interactions cause the effective kicking strength

to be larger and the analogous critical value to be, in fact, even lower than the

single-particle one.

Fig. 3.1 shows the momentum variance of the Lieb-Liniger gas under kicking

for γ = N /(mcL) = 10. At short times, the energy grows quickly, but later,

it saturates and becomes bounded due to dynamical localization. At the same

time, n(λ, t), which is initially the Fermi-Dirac Π-shaped function with the Fermi

momentum λF = 100 – with our choice of N = 200, – acquires exponential tails (see

Fig. 3.2) and stops spreading any further after the saturation of energy is reached.

Fig. 3.2 also shows the Fourier transform of the spatial density n̄(p, t = 1.5×105) =∫
dλ
2π
n̄(p, λ, t = 1.5×105) that decays exponentially, as well, but its variance (width)

keeps growing with time, as opposed to that of n(λ, t) – see Fig. 3.1. We were unable

to reach its saturation at these parameters, so its continued growth eventually leads

to a breakdown of the numerical method and the applicability of GHD. Prior to

this, however, no delocalization is seen for a very long time. At low enough kicking
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Figure 3.1: Main plot. Upper solid blue curve: variance of the momentum density
n(λ, t) in the kicked Lieb-Liniger gas as a function of time relative to the initial
variance: var[n(λ, t)]−var[n(λ, 0)] [see Eq. (3.15)]. It saturates with time, signaling
at least transient dynamical localization in sharp contrast to the classical diffusion
(heating) under kicking. Lower dotted red curve: scaled variance of n̄(p, t). We
were unable to reach its saturation at these parameters, so its continued growth
eventually leads to the breakdown of GHD and our scheme and might also signal
the potential for eventual delocalization, which we, however, do not observe for a
very long time. Insets: the same data for var[n(λ, t)]− var[n(λ, 0)] as a function of
time at shorter time scales, which are more relevant to experiments. Parameters:
V = 0.5, q = 4π/L, γ = 10, N = 200. At low enough kicking strength, both
variances are well saturated, as we demonstrate in Sec. 3.5.3 and Fig. 3.4.

strength, however, both variances are well saturated. We show that behavior at the

kicking strength V = 0.15 in Sec. 3.5.3.

We wish to emphasize that our results show that a kicked interacting 1D bose

gas can exhibit dynamical localisation over certain timescales and provided the sys-

tem is initiated close to its ground state. Such conditions can be met within cold

atom gas systems. This however does not rule out the possibility of delocaliza-

tion at longer time scales or beyond the applicability of our methods e.g. at high
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Figure 3.2: Main plot: decimal logarithms of the momentum densities at the end
of the evolution. For n̄(p), all odd momentum components are zero, because we
start with the uniform-density initial state and q = 2 (in units of 2π/L). Only even
components of n̄(p) are plotted therefore. Parameters: V = 0.5, q = 4π/L, γ =
10, N = 200. Inset: normalized momentum density n(λ)/(2π) in the linear scale.
The Fermi momentum at our parameter choice is λF = 100.

temperature or larger kicking strength.

3.5 Additional Materials

3.5.1 Tonks-Girardeau Gas and Wigner Function

In the main text we provided a simple argument for the dynamical localization

of the TG gas based on the exact wavefunction of the model. One can also examine

it from a different perspective which can be more readily generalised to other cases.

Through Fermi-Bose mapping we can write the TG Hamiltonian and the kicking
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Hamiltonian as [150, 151]:

HTG =

∫
dxΨ†(x)

[
− ∂2

x

2m

]
Ψ(x), HK =

∫
dxV cos (qx)Ψ†(x)Ψ(x). (3.19)

We then study the time evolution of the Wigner function [158]:

n(x, λ) =

∫
dy eiλy

〈
Ψ†(x+ y/2)Ψ(x− y/2)

〉
, (3.20)

which follows a two step pattern. Between the kicks, using the Heisenberg equations

of motion this function evolves according to:

[∂t + veff(λ)∂x]n(x, λ, t) = 0, (3.21)

where veff(λ) = λ/m. The solution of this equation is

n(x, λ, t+ T−) = n(x− λT/m, λ, t). (3.22)

Meanwhile, when considering the evolution over the kicks, we can use the fact that

eiHKΨ†(x)e−iHK = e−iV cos qxΨ†(x), (3.23)

from which we get that

ñ(x, z, t+ T+) = e2iV sin (qz/2) sin (qx)ñ(x, z, t+ T−) (3.24)
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where ñ(x, z, t) is the Fourier transform of n(x, λ, t) with respect to λ. Repeated

application of this two-step evolution provides the full evolution of the TG Wigner

function. This can be better achieved numerically by working in the Fourier space

with respect to x, denoting the corresponding Fourier transform of n(x, λ, t) as

n̄(p, λ, t). Then, the free evolution is given by:

n̄(p, λ, t+ T−) = e−ipveffT n̄(p, λ, t). (3.25)

Having determined n(x, λ, t) at any time, we can then use it to find the density

and momentum distribution function via integration over x or λ, respectively:

n(λ, t) =

∫
dxn(x, λ, t), (3.26)

ρ(x, t) =

∫
dλ

2π
n(x, λ, t). (3.27)

The energy of the system is therefore given by:

E(t) =

∫
dλ

2π

[
λ2

2m

]
n(λ, t). (3.28)

This method allows one to investigate the implications of different initial conditions.

An initial trapping potential or finite temperature state could also be considered.

Moreover, this approach can be generalized away from the TG limit to give the

GHD approach presented in Sec. 3.4 [157].

The same analysis can be carried out in the free boson case with the exact
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same evolution. The difference between the cases only arising in the choice of initial

condition, for the TG gas a natural choice is the Fermi-Dirac distribution n(x, λ, 0) =

Θ(λF −λ)−Θ(−λF −λ), where λF is the Fermi momentum and Θ(x) the Heaviside

function.

We conclude this section by noting an interesting relation to the classical kicked

rotor system. Using the Heisenberg equations of motion for n(x, λ, t), the effect of

the kick can be determined via the solution of:

∂tn(x, λ, t) =
∞∑
j=0

δ(t− jT )V sin (qx) [n(x, λ+ q/2, t)− n(x, λ− q/2, t)] . (3.29)

For a sufficiently smooth n(x, λ, t) and small q the right-hand side can be expanded

in a Taylor series. Retaining only the leading term in this sequence we have that

the effect of the kick becomes

n(x, λ, t+ T+) = n(x, λ+ V q sin(qx), t+ T−) . (3.30)

Combining it with (3.22), we recover exactly the Chirikov standard map [8]. Such

an approximation breaks down at zero temperature when the initial state is a Fermi

function but may be appropriate at higher temperature.
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Figure 3.3: The phase portrait of Chirikov’s standard map. (a) V = 0.5, q = 1; (b)
V = 2, q = 1; (c) V = 0.5, q = 2; (d) V = 2, q = 2. The parameters as in panel (c)
are used in the main text for the kicked Lieb-Liniger model.
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3.5.2 Classical Kicked Rotor under a non-2π-periodic kicking poten-

tial

In this section, we show that the effective kicking strength in the classical

single-particle analog of our model – the Chirikov’s standard map – is modified. In

particular, the Hamilton’s equations of motion read:


pn+1 = pn + qV sin(qxn), mod 2π

xn+1 = xn + pn+1, mod 2π

, (3.31)

where we adopt the units in which xn ∈ [0, 2π), q ∈ Z, and, as one can check, both

xn and pn are 2π/q-periodic. Conventionally, q = 1. In case of general q, though,

one can make a coordinate change: p̃n = qpn, x̃n = qxn with the new coordinates

x̃n ∈ [0, 2πq), which are 2π-periodic. In these coordinates, the equations read:


p̃n+1 = p̃n + q2V sin(x̃n), mod 2πq

x̃n+1 = x̃n + p̃n+1, mod 2πq

, (3.32)

and it is customary to reduce the consideration to region of periodicity x̃n, p̃n ∈

[0, 2π). In these coordinates, the conventional standard map at q = 1 is restored

with the kicking strength parameter Ṽ = q2V . For example, at q = 2, kicking at

V = 0.5 is equivalent to kicking the conventional map at q = 1 with Ṽ = 4V = 2

– well above the regular-to-chaotic transition at Vcr ≈ 0.97. Fig. 3.3 demonstrates

this correspondence.
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Figure 3.4: Upper solid blue curve: variance of the momentum density n(λ, t) in
the kicked Lieb-Liniger gas as a function of time relative to the initial variance:
var[n(λ, t)] − var[n(λ, 0)]. It has oscillatory character that hints on certain un-
derlying invariance in the system (possibly approximate) and hence at least tran-
sient dynamical localization. Lower dotted red curve: scaled variance of n̄(p, t).
In this parameter regime, we reach its saturation, and GHD and our scheme
may be applicable for long times without eventual delocalization. Parameters:
V = 0.15, q = 4π/L, γ = 10, N = 200.

3.5.3 Additional data and approximation justification

In this section, we have two goals. First, in Fig. 3.4, we demonstrate the

regime, in which the variance of the Fourier transform of the spatial density is satu-

rated, which is achieved at weaker kicking. Second, we show that our approximate

scheme is justified. For that purpose, we employ the exact scheme described in the

main text in order to compute the spatial density and effective velocity at short

times and demonstrate the they are close to being constants with respect to the

corresponding scales. In particular, in Fig. 3.5(a), the spatial density is shown to

vary across the system by less than 0.4% of its average value.
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Figure 3.5: (a) Spatial density profile, n(x, t) =
∫

dλ
2π
n(x, λ, t), calculated at two

different times using the exact scheme from the main text. Both cases demonstrate
less than 0.4% deviation from the constant average density of N /L = 200/2π ≈
31.83. (b) The deviation of the effective velocity from its mean value, veff(x, λ, t)−
〈veff(λ, t)〉, where 〈. . .〉 represents averaging over the position x. Obtained via the
exact method discussed in the main text. Left and right panels show examples at the
same times as in panel (a). Parameters are the same as in the main text: V = 0.5,
q = 4π/L, γ = 10.
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Chapter 4: Transport and Localization in Rippled Channels and Lo-

calization Landscape

4.1 Introduction

In this chapter, we briefly consider a geometric analog of Anderson localiza-

tion in rippled channels and show how a recently developed powerful concept of

localization landscape manifests in some of the most intuitive scenarios.

Transport in rippled channels (or waveguides) has been studied theoretically in

both classical and quantum regimes. In Refs. [164, 165, 166, 167], classical polygo-

nal channels were considered, Refs. [168, 169] studied junctions, and Refs. [170, 171]

are on sinusoidal channels. Quantum transport in sinusoidal channels is considered

in Refs. [172, 173]. Experimental realization was demonstrated in Refs. [174, 175].

In all of these works (except those on the junctions), only periodic walls are stud-

ied. The dynamical properties of elementary cells of these channels, which can be

regarded as billiards, are connected with the transport properties, such as diffusion

and resistance, in the channels.

We study quantum transport in a different kind of rippled channels by ex-

amining their finite segment in two different regimes: (i) the segment is composed
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of periodic structures and (ii) the segment is disordered. We show that, following

the natural expectation, in the former case, the segment eigenstates are extended,

while in the latter case, they are well localized to individual cells of the segment.

We further show how this expected result can be inferred from the novel concept of

localization landscape.

4.2 Localization landscape

Recently, there has been a wave of new mathematical developments in a very

old field studying elliptic differential operators, their eigenfunctions, and density of

states. In Ref. [17], the concept of localization landscape was suggested to predict

universally the spatial structure of localized eigenstates and the gradual percolation

that occurs as one moves up the energy spectrum1. The problem formulation is

very general. Consider a static Schrödinger equation – an eigenvalue problem – for

a Hamiltonian H = − ~2

2m
∇2 + V , which is an elliptic differential operator as long

as V is an everywhere non-negative potential:

(
− ~2

2m
∇2 + V

)
ψ = Eψ in Ω, ψ|∂Ω = 0, (4.1)

where Ω is a certain domain. This eigenvalue problem can be very difficult to solve

depending on the complexity of the potential and the domain geometry. Instead of

solving it directly, however, consider the Dirichlet problem with uniform right-hand

1It was supplemented further with a dual landscape in Ref. [176].
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side and Dirichlet boundary conditions:

(
− ~2

2m
∇2 + V

)
u = 1 in Ω, u|∂Ω = 0. (4.2)

The solution u of this equation is everywhere positive and is called the localization

landscape. Its valleys and ridges determine the locations of low-energy localized

eigenfunctions of Eq. (4.1), as well as the percolation patterns that develop as we

consider eigenstates of higher energies. The reason for this accurate correspondence

is the following bound:

∀~r ∈ Ω : |ψ (~r)| ≤ Eu(~r), (4.3)

which is formulated and proven in Ref. [17]. The notations here assume a specific

normalization of the eigenfunction ψ, such that sup
Ω
|ψ| = 1. The eigenvalue E

in the right-hand side corresponds to the eigenfunction ψ. Note that the function

u, defined in Eq. (4.2), is universal for the Hamiltonian H and does not depend

on the eigenvalue E or eigenfunction ψ in Eq. (4.3). Therefore, the lines of local

minima of u define the borders between the regions hosting separate localized states

at low energies. As the energy grows, however, the bound in Eq. (4.3) becomes

less tight, and percolation occurs. The lower the line of minima of u is, the higher

up in spectrum one has to go in order to see percolation through that line. The

localization landscape was soon shown to be observable and was directly measured

experimentally [177].

Later, a directly related effective confining potential, which reflects the prop-
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erties of the eigenfunctions, was found in Ref. [178]. It turned out to be simply

the inverse of the localization landscape: W = 1/u, and appeared to govern the

exponential decay of localized eigenstates. In order to show that, in Ref. [178], the

auxiliary function ϕ, such that ψ ≡ uϕ is introduced. For this function, Eq. (4.1)

translates into:

− ~2

2m
∇2ϕ− 2

~2

2m

(
~∇u
u
· ~∇ϕ

)
+

1

u
ϕ = Eϕ in Ω, ϕ|∂Ω = 0. (4.4)

Then it was suggested to insert an additional term proportional to ~∇ϕ to arrive at

a compact form:

− ~2

2m

[
1

u2

(
~∇ · u2~∇ϕ

)]
+Wϕ = Eϕ. (4.5)

Note that this Schrödinger-type equation for the function ϕ does not include the

original potential V , but instead only features the effective confining potential W ,

which is, just as the localization landscape u, uniform throughout the spectrum.

This approach was further thoroughly tested numerically in Ref. [179] and proven

rigorously in Ref. [180]. Very recently, an even deeper insight was extracted from

localization landscape. It turned out that it allows to build a uniformly accurate

estimate for density of states throughout the whole spectrum [181] – a strong gen-

eralization of the Weyl’s asymptotic law [182].
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Figure 4.1: Channel segment in the regular regime. (a) The circles whose arcs
constitute the boundary. (b) The resulting boundary that encloses the domain Ω.
It is obtained by connecting the arcs of large and small circles at the points of their
contact, so that the boundary is C1-smooth.

Figure 4.2: Channel segment in the disordered regime. (a) The circles whose arcs
constitute the boundary. (b) The resulting boundary that encloses the domain Ω.
It is obtained by connecting the arcs of large and small circles at the points of their
contact, so that the boundary is C1-smooth.

4.3 Model

We consider a two-dimensional billiard that represents a long segment of a

rippled channel in two regimes – regular and disordered. Its walls consist of arcs of

circles that touch externally [see Figs. 4.1(a) and 4.2(a)], so that the boundary is

C1-smooth, as shown in Figs. 4.1(b) and 4.2(b) [183]. The eigenvalue problem we
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solve reads:

− 1

2
∇2ψ = Eψ in Ω, ψ|∂Ω = 0, (4.6)

where Ω is the billiard (channel segment) under consideration. We consider two

cases. First, the arc radii of the circles repeat periodically, so that the spectra of

individual circular sites are in resonance, allowing for hybridization of the individual

eigenstates, similar to what happens when atomic eigenstates combine into those of

a solid crystal. In the second scenario, we make the arc radii uniformly random. As

a result, the spectra of individual circular sites are off-resonant with respect to each

other, and, consequently, the eigenstates of the channel feature strong localization,

similar to that in the foundational Anderson model [11].

4.4 Eigenstates of Rippled Channel and Localization Landscape

We use finite-element method to compute eigenstates of a domain. Our nu-

merical scheme for this kind of problems is described in detail in Chapters 6 and

7. Ultimately, we associate localized eigenstates with low conductivity and lack of

transport (or poor transport), while we regard extended eigenstates as “conducting”

– in the same way as it is done in Anderson localization. However, a more rigorous

and direct study of geometric transport in rippled channels would be an interesting

direction for future work.

In Fig. 4.3, we demonstrate a number of low-energy eigenstates in the disor-

dered regime on top of the effective confining potential W = 1/u calculated from
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the localization landscape u found as:

− 1

2
∇2u = 1 in Ω, u|∂Ω = 0. (4.7)

As one can see, apart from the lack of resonant hybridization, the effective potential

demonstrates high barriers between the channel sites, and the larger the difference

between the adjacent site radii is, the higher the barrier is. Naturally, it should also

depend on junction widths – or site-to-site coupling – which we have not explored.

In Fig. 4.4, we demonstrate the eigenfunctions and the effective confining potential

in the periodic regime. One can see the striking distinction – all the eigenstates are

clearly delocalized in this case. In general, this model is intuitive and demonstrates

all the properties that we naturally expected to see there. But the purpose is to

demonstrate how the effective potential calculated from the localization landscape

can be used to predict transport properties of a channel by examining its barrier

structure. The approach can be applied to less obvious cases to determine conductive

properties of rippled channels.
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Figure 4.3: 14 examples of eigenfunctions of the channel segment on top of the
effective confining potential W in the disordered regime. Upper surfaces demonstrate
|ψ|2. Lower surfaces depict the effective potential W .
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Figure 4.4: 14 examples of eigenfunctions of the channel segment on top of the
effective confining potential W in the periodic regime. Upper surfaces demonstrate
|ψ|2. Lower surfaces depict the effective potential W .
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Chapter 5: Lyapunov Exponent and Out-of-Time-Ordered Correla-

tor’s Growth Rate in a Chaotic System

5.1 Introduction

One of the central goals in the study of quantum chaos is to establish a

correspondence principle between classical and quantum dynamics of classically

chaotic systems [4, 5, 6, 50, 67, 76, 184, 185, 186, 187, 188]. Several previous

works [6, 12, 13, 108, 189, 190, 191] have attempted to recover fingerprints of clas-

sical chaos in quantum dynamics. In particular, Aleiner and Larkin [192, 193, 194]

showed the existence of a semiclassical “quantum chaotic” regime attributed to the

delay in the onset of quantum effects (due to weak localization) revealing the key

measure of classical chaos – the Lyapunov exponent (LE). Recently, the subject

of quantum chaos has been revived by the discovery of an unexpected conjecture

that puts a bound on the growth rate of an out-of-time-ordered four-point corre-

lator (OTOC) [27, 28]. OTOC was first introduced by Larkin and Ovchinnikov to

quantify the regime of validity of quasi-classical methods in the theory of super-

conductivity [26]. The growth rate of OTOC appears to be closely related to LE.

Recent works have proposed experimental protocols to probe OTOC in cold atom
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and cavity QED setups [195, 196]. Several recent preprints have employed OTOC

as a probe to characterize many-body-localized systems [197, 198, 199, 200].

In Sec. 5.3, we calculate the Lyapunov exponent, OTOC and the two-point

correlator for the quantum kicked rotor (QKR), which is a canonical driven model

of quantum chaos [5, 49, 50, 201] (see Sec. 5.2 for details). The classical ver-

sion of this model manifests regular-to-chaotic transition (as a function of driving

strength K) which enables us to benchmark the behavior of OTOC against the

presence and absence of classical chaos. We show that in the limit of small di-

mensionless effective Planck’s constant, ~eff → 0, there exists a “quantum chaotic”

regime [26, 192, 193, 194] at early times where OTOC, C(t) = −
〈
[p̂(t), p̂(0)]2

〉
,

grows exponentially. This correlator’s growth rate, λ̃, that we abbreviate for brevity

as CGR, is found to be independent of the dimensionless Planck’s constant, ~eff , and

is purely classical at early times for the kicked rotor. Most importantly, the CGR

and the standard definition of LE in classical systems are shown to be different

at all non-zero kicking strengths. In particular, for the classically regular regime,

K < Kcr, CGR significantly exceeds LE due to much higher sensitivity to the pres-

ence of small chaotic islands. For the classically deeply chaotic regime, K � Kcr,

CGR exceeds LE by nearly a constant. We attribute these distinctions to differ-

ent averaging procedures carried out to extract these exponents and posit that this

statement may be more general than the specific QKR model studied here.

We also show that deviations from the essentially classical behavior of OTOC,

C(t) ∼ e2λ̃t, occur sharply at a time of the order of the Ehrenfest time, tE, where

OTOC exhibits a clear cusp. This corresponds to the minimal time it takes classical
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trajectories to self-intersect indicating the onset of quantum interference effects [192,

193, 194]. This is in analogy to the weak dynamical localization discussed by Tian

et al. [202]. At longer times, t > tE, the quantum disordering effects subdue the

exponential growth dictated by the CGR to a power-law growth.

Next, we calculate the two-point correlation function and show that CGR, λ̃,

is not revealed in this quantity (nor in the single-point average – e.g., the kinetic

energy as has been well known [6]). However, in Sec. 5.4, we find that the two-point

correlator does contain fingerprints of classical transition from regular dynamics to

chaos even deep in the quantum regime at long times, which has been a subject of

long-standing theoretical and experimental interest [203, 204, 205, 206].

Finally, in Sec. 5.5 we go beyond the Ehrenfest time and introduce a scaling

law for OTOC at all times and sufficiently strong chaoticity (K & 10) that allows

to unify the quantum Lyapunov exponent, which is no longer a constant, but a

function of time at t > tE across dimensions of the parameters K and ~eff and time.

5.2 Quantum Kicked Rotor

The dimensionless Hamiltonian of QKR [5, 49, 50, 201] can be written as

Ĥ =
p̂2

2
+K cos(x̂)∆(t), (5.1)

where ∆(t) =
∞∑

j=−∞
δ(t− j) is the sum of δ−pulses, p̂ is the dimensionless angular-

momentum operator, x̂ is the angular coordinate operator, and t is the dimensionless

time. The QKR is characterized by two parameters. One of them, the kicking

77



strength K, comes from the classical kicked rotor (KR, also called Chirikov standard

map) [8]. Another parameter is the dimensionless effective Planck constant ~eff ,

which enters the dimensionless angular momentum operator (p̂ = −i~eff
∂
∂x

) and the

dimensionless Schrödinger equation: i~eff
∂
∂t
|Ψ〉 = Ĥ |Ψ〉. The eigenvalues of p̂ are

quantized in units of ~eff due to the periodic boundary conditions. Note that in the

classical KR, the parameter ~eff is absent. In order to understand how classical chaos

emerges from quantum dynamics, we compute OTOC and the two-point correlator

in the regime of ~eff → 0 at short time scales.

5.3 Lyapunov Exponent and OTOC’s growth rate (CGR)

To specify our quantum diagnostics for chaotic behavior in the QKR, we choose

OTOC, C(t) [26, 28], and two-point correlator, B(t), as:

C(t) = −
〈
[p̂(t), p̂(0)]2

〉
, B(t) = Re 〈p̂(t)p̂(0)〉 . (5.2)

We point out that C(t) is closely related to the Loschmidt echo (also known as

fidelity). In the previous works, fidelity has been used as a theoretical and experi-

mental diagnostic of quantum chaos [195, 207, 208, 209, 210, 211, 212, 213, 214].

Before carrying out quantum calculations, we consider the classical correspon-

dence of C(t) [26, 28]. At short times t < tE
1:

C(t) = ~2
eff

〈(
∂p̂(t)

∂x(0)

)2
〉
≈ ~2

eff

〈〈(
∆p(t)

∆x(0)

)2
〉〉

= Ccl(t), (5.3)

1See Fig. 5.11 in Sec. 5.6.5 for comparison between C(t) and Ccl(t).
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where we changed the expectation value of the operator derivative to the finite differ-

ences of the classical variables averaged over the phase space ( 〈〈 . . . 〉〉 denotes classical

phase-space average). Note that the averaging allows for direct comparison of the

classical Ccl(t) to the quantum C(t). Such a comparison would not always be possible

for local quantities because of quantum wave-packet spreading. Due to the presence

of chaotic regions in the phase space, Ccl(t) ∼ e2λ̃t grows exponentially. Now we

compare this classical CGR, λ̃ = lim
t→∞

lim
∆x(0)→0

1
2t

ln Ccl(t+1)
Ccl(1)

, to the standard definition

of the LE: λ =

〈〈
lim
t→∞

lim
d(0)→0

1
t

ln d(t)
d(0)

〉〉
2 (where d(t) =

√
[∆x(t)]2 + [∆p(t)]2). No-

tice that there are key differences between definitions of λ and λ̃ coming from the

different orders of squaring, averaging, taking ratio and applying logarithm.

Next, we proceed to check if the classical correspondence follows through in

a quantum calculation of C(t) and compare the rate of exponential growth of C(t)

to λ̃ extracted from Ccl(t) and to LE λ. For the quantum case, the averaging in

Eq. (5.2) is performed in the Schrödinger picture over some initial state |Ψ(0)〉. We

use individual angular-momentum eigenstates |Ψ(0)〉 = |n〉 : p̂ |n〉 = ~effn |n〉 and

Gaussian wave-packets:

|Ψ(0)〉 =
∞∑

n=−∞

a(0)
n |n〉 , a(0)

n ∼ exp

[
−~2

eff(n− n0)2

2σ2

]
, (5.4)

where n0 = p0/~eff . In this calculation, we use wave-packet (5.4) with p0 = 0

and σ = 4. Numerically, |Ψ〉 is represented in a finite basis of eigenstates |n〉,

n ∈ [−N ;N − 1]. All functions of only p̂ are applied in this basis, and all functions

2See Sec. 5.6 for details on definition and calculation of the classical Lyapunov exponent.
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of only x̂ are applied in the Fourier-transformed representation. We use adaptive

grid with 2~effN ∈ [27; 216], so that all physical observables are well converged.

The wave-function is evolved by switching between representations back and forth

and applying the Floquet operator F̂ = e−ip̂
2/2~effe−iK cos(x̂)/~eff in parts. Then the

correlators are calculated in the Schrödinger picture.

The exponential growth of C(t) lasts between the time td and the Ehrenfest

time tE [4, 28, 185]. To achieve a hierarchical separation between td and tE ( tE
td
� 1)

for the QKR, we have to tune both K and ~eff . The estimates of td ∼ [ln(K/2)]−1

and tE ∼ | ln ~eff |
ln(K/2)

at K > 4 guide our choice of parameters to achieve this separation.

The smallest ~eff within the scope of our numerics is ~eff = 2−14. For this value of

~eff , the Ehrenfest time is in the range 7 . tE . 17 kicks for the range of kicking

strength 0.5 ≤ K ≤ 10. By K = 1000, tE shrinks down to 3 kicks, but at these

values of K, it appears to be enough to extract a well averaged exponent. For the

above mentioned parameter regimes, we numerically observe the exponential growth

of C(t) at early times (t < tE) as shown in the Fig. 5.1, upper panel. Fig. 5.1 also

shows that tE decreases upon increasing the kicking strength K for fixed ~eff . In

contrast to C(t), the two-point correlator B(t) saturates at time t ∼ 2 kicks (Fig. 5.1,

lower panel).

Equipped with the early time behavior of C(t), we are in a position to extract

the rate of its exponential growth, i.e obtain CGR from the quantum calculation. We

carry out a four-pronged comparison between CGR from the quantum calculation

of C(t), CGR from the classical calculation of Ccl(t), numerically obtained LE for

KR and analytical estimates (5.5) of LE from Chirikov’s standard map analysis [8].
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Figure 5.1: The upper panel shows OTOC, C(t), vs t in the semi-log scale for various
values of the kicking strength (K = 0.5, 2, 3, 6, 10) and ~eff = 2−14. The lower panel
is a plot of the two-point function, B(t), vs t at the corresponding parameters (in
the linear scale). Averaging is performed over the Gaussian wave packet defined in
Eq. (5.4) with p0 = 0 and σ = 4.
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The Chirikov’s analytical formula reads:

λ ≈ 1

2π

π∫
−π

dx lnL(x), (5.5)

where

L(x) =

∣∣∣∣∣1 +
k(x)

2
+ sgn[k(x)]

√
k(x)

(
1 +

k(x)

4

)∣∣∣∣∣ (5.6)

and k(x) = K cosx. The simplified expression λ ≈ ln(K/2) valid at large K is

obtained by substituting L(x) ≈ |k(x)| into Eq. (5.5) [8] 3.

In Fig. 5.2, we compare the exponents obtained in four ways listed above. In

order to extract the exponents from C(t), we determine the times, after which the

exponential growth starts slowing down, and fit C(t) from t = 1 up to these times

to the function ae2λfit(t−1) to find the parameter λfit (C(0) = 0, so we omit t = 0).

Numerical calculations of the classical LE and of the classical CGR [i.e. the

growth rate of Ccl(t)] are performed using the map tangent to the standard map –

this standard procedure is outlined in Sec. 5.6. Notice that the exponents extracted

from C(t) (quantum CGR) and from Ccl(t) (classical CGR) are in an excellent

agreement for all values of K. Both classical and quantum CGRs significantly

exceed LE at K < Kcr. This indicates that CGR may not be a reliable tool for

discriminating between classically regular and chaotic dynamics in a global sense,

but it can be employed to detect the existence of local disconnected chaotic islands

more efficiently than LE. As expected, numerically calculated values and analytical

estimates of the classical LE agree with each other for K & 3. At large K, the

3See Sec. 5.6 for details.
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Figure 5.2: Red circles: early-time growth rate of C(t) at ~eff = 2−14 (quantum
CGR). The rest of the data is classical. Green solid line: growth rate of Ccl(t)
(classical CGR). Blue triangles: LE calculated numerically. Black dashed line: LE
according to the Chirikov’s analytical formula (5.5). The main plot and the inset
show the same data in lin-log and linear scales, respectively (and in different ranges).
At K & 8, the difference between CGR and LE is constant ≈ ln

√
2. The initial state

in C(t) is the Gaussian (5.4) with p0 = 0 and σ = 4. Fitting details for extracting
CGR from C(t) and Ccl(t) are given in the main text.
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difference between CGR and LE becomes nearly constant ≈ ln
√

2. We attribute

this distinction primarily to the difference in the order of averaging in CGR and LE.

Now we proceed to consider the deviation of C(t) from its classical counterpart

Ccl(t) that manifests sharply at a time close to tE. The onset of this deviation

in OTOC is closely related to the weak dynamical localization effects [202]. In

Fig. 5.3, we plot ln[C(t)]/2t as a function of time t in the log-log scale. This plot

is constant [corresponding to the exponential rise of C(t)] at early times. Beyond

tE, the exponential growth slows down to a power-law growth (nearly quadratic

growth around t ∼ 100 kicks). At long times, the growth of C(t) slows down

further, but numerics quantifying this slowdown is out of the scope of the present

manuscript. However, we can unambiguously extract the exponent associated with

the exponential growth prior to tE. Note that in the range of K and ~eff where the

region of the exponential growth of C(t) is present (tE ≥ 3), λ̃ does not depend on

~eff (see Fig. 5.3, inset).

5.4 Regular-to-chaotic transition in long-time quantum dynamics

Classical KR is famous for its transition from regular motion to chaotic be-

havior that occurs as K is increased above K = Kcr ≈ 0.97. The chaotic phase

is characterized by the quasi-random walk in the angular-momentum space that

leads to diffusion in angular momentum, so that the rotor’s energy averaged over

the phase space grows linearly with time (number of kicks). On the other hand,

at long times QKR undergoes dynamical localization (which is closely connected to
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Figure 5.3: Main plot: ln[C(t)]/2t vs t in the log-log scale for K = 3, 4, 7, 10 (from
bottom to top line, respectively) and ~eff = 2−14. The flat region at early times
quantifies the exponential growth rate of C(t). This flat region persists up to the
time tE, at which the exponential growth slows down to a power-law growth with
a slowly decreasing power. Dotted lines are the eye guides: horizontal lines extend
the flat regions, sloped line is shown for power comparison. Inset: ln[C(t)]/2t vs t
in the log-log scale for K = 4 and ~eff = 2−14, 2−10, 2−6, 2−2 (from top to bottom
line, respectively). The rate of exponential growth is the same for different values
of ~eff , but tE shrinks when ~eff increases.
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Anderson localization in disordered solids [12]) and around ~eff ∼ 1, the standard

diagnostic – the average energy, i.e. the one-point correlator – seems insensitive to

the presence or absence of classical chaos [5, 50]. Thus a question arises: is there

a quantum diagnostic that manifests a robust signature of regular-to-chaotic clas-

sical transition in the purely quantum dynamics even in the dynamically localized

regime (~eff = 1, td � tE)? Remarkably, the two-point correlator [B(t) in Eq. (5.2)]

contains a sharp signature of the classical transition 4. In particular, we consider

B(t) averaged over time within various windows τ :

Bτ =
1

τ

τ∑
t=0

Re 〈p(t)p(0)〉 . (5.7)

As shown in Fig. 5.4, this averaged correlator maintains a sharp step-like structure

as a function of K for several orders of magnitude in τ (we reached as large window

as τ = 3 × 109, which is many orders of magnitude longer than any characteristic

time scale in the system). This implies that at very long times, the quantum system

does not lose the information about the classical transition. The plot supports the

following very intuitive statement. The larger the chaotic fraction of the classical

phase space is, the shorter the correlation-decay time window becomes (for explicit

demonstration of this behavior, the dependence of Bτ on the averaging window size

τ is given in Sec. 5.6.6, Fig. 5.12). Therefore, we can relate Bτ to the regular part

of the phase space weighted by the initial Wigner distribution P (x, p) of QKR (see

Fig. 5.5 for illustration). However, Bτ keeps decaying with time, while the regular

4In addition, time-dependence of B(t) in the interval t ∈ [0, tmax] is much more accessible than
that of OTOC C(t), as their computation complexities scale as O(tmax) and O(t2max), respectively.
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Figure 5.4: Long-time average Bτ (5.7) (over various windows τ) of the two-point
correlator B(t) as a function of K compared to the regular fraction of the phase
space weighted with the initial Wigner distribution P (x, p) (scaled). The trend
with increasing τ shows that at all K 6= 0, the correlations decay in time, but the
rate of this decay has a step-like dependence on K. At K > Kcr, the decay is quite
fast, while at K < Kcr, it takes Bτ at least exponentially large window to vanish. It
is not clear from the data whether at small K 6= 0, averaged correlator eventually
goes to zero at τ → ∞ or is bounded from below. Initial state corresponding to
P (x, p) is the Gaussian (5.4) with p0 = 0 and σ = 4.

phase-space fraction is a constant determined by the initial conditions and K, so a

fixed window should be chosen for comparison. As the ratio of regular to chaotic

areas of the phase space decreases, so does the average value of the correlator over

a this window, until it reaches zero at large K, where almost no regular regions are

present.
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Figure 5.5: Initial Wigner distribution P (x, p) (3D plot) on the top of the classical
Lyapunov exponent (shown in color in the horizontal plane, see colorbar for numer-
ical values). Initial state corresponding to P (x, p) is the Gaussian (5.4) with p0 = 0
and σ = 4. Lyapunov exponent is shown for K = 1.
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5.5 Universal Scaling of OTOC beyond the Ehrenfest Time

Consider the out-of-time-ordered correlator (OTOC) given in Eq. (5.2):

C(t) = −
〈
[p̂(t), p̂(0)]2

〉
. (5.8)

Clearly, C(0) = 0, but ∀t > 0 : C(t) > 0. Therefore, without loss of generality,

we can represent C(t) as an exponential of another function λ̃(t) at all positive

times. Moreover, the functions C(t) and λ̃(t) can in general be functions of at most

three variables: C(t) = C(K, ~eff , t) and λ̃ = λ̃(K, ~eff , t), because K and ~eff are

the only parameters of the model. So, we use the following general ansatz:

C(K, ~eff , t) = C(K, ~eff , 1) exp
[
λ̃(K, ~eff , t)× (t− 1)

]
. (5.9)

As we mentioned above, the corresponding classical model (the standard map)

has only one parameter, K, and has a mixed regular-chaotic phase space. This

system is described by the classical Hamilton’s equations of motion at discrete times

denoted as n for the kicked rotor Hamiltonian given in Eq. (5.1):


pn+1 = pn +K sinxn

xn+1 =
mod 2π

xn + pn+1

. (5.10)

Its global average Lyapunov exponent, λcl(K), depends only on K (as the only

parameter of the model), and at large K & 10 behaves as λcl(K) ≈ ln
K

2
. The
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same behavior as a function of K is expected from λ̃(K, ~eff , t) in Eq. (5.9) at early

times, t < tE, where the Ehrenfest (or scrambling) time tE ≈
1

λcl(K)
ln

K

~eff

[202].

And although quantitatively, there are differences between the conventionally de-

fined classical Lyapunov exponent λcl(K) and the growth rate of the OTOC – CGR

λ̃(K, ~eff , t)
5, there is indeed no dependence of λ̃ on ~eff and t as long as we restrict

the consideration to t < tE: λ̃(K, ~eff , t) = λ̃(K). Upon plugging this into Eq. (5.9),

we see that it means that the OTOC is characterized by pure exponential growth

at early times with the exponent independent of ~eff .

Next, we lift the restriction of t < tE and consider the behavior of the OTOC

at general times t. In this case, λ̃ picks up both the ~eff- and time-dependence.

However, we make a conjecture that λ̃(K, ~eff , t) depends on t and ~eff only in a

scaling combination t/tE(K, ~eff), where we slightly adjust the definition of tE by

allowing a K-dependent constant in it to be fitted to the data. Specifically, we

postulate that generally:

tE(K, ~eff) =
1

λcl(K)

[
ln
(
~−1

eff

)
+ c(K)

]
, (5.11)

where c(K) is a linear function of lnK. 6 This conjecture, suggested first by Shmuel

Fishman in 2019 [215], follows from the weak-localization-inspired intuition [202,

215] that the quantum interference that ceases the period of exponential growth

5As shown in Sec. 5.3 (Fig. 5.2), at t < tE we rather have λ̃(K, ~eff , t) = λ̃(K) ≈ ln
K√

2
.

6We also use a notation t0E(K, ~eff) =
ln
(
~−1

eff

)
λcl(K)

, which is the Ehrenfest time at c(K) ≡ 0.
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should depend only on the number of times that the Planck-sized phase-space cells

have “overlapped” with one another. At least for strongly chaotic systems, the

latter should scale as t/tE. As a result, λ̃ = λ̃

(
K,

t

tE(K, ~eff)

)
turns out to be

only a function of two variables, not three. This leads to a universal scaling of

the OTOC and, among other advantages, potentially allows one to uncover the

practically inaccessible semi-classical limit by extending the simulations done in the

intermediate-~eff regime via the scaling law toward the ~eff → 0 limit.

The scaling can be written down in the following way:

λ̃(K, ~eff , t) = λ̃

(
K,

t̃

ln ~−1
eff + c(K)

)
, (5.12)

where time is measured in the units of the Lyapunov time tλ(K) = 1/λcl(K), i.e.

t̃(K) = t/tλ(K) = λcl(K) t. At K & 10, we find c(K) ≈ 1.07 lnK + 1.55 (see

Fig. 5.6). As mentioned above, the reason why it works is that the correlations are

determined by how many times the phase space has been scrambled from the scale

of the initial partitioning to the scale of the whole system. And the number of times

it happened is determined by t/tE.

In Figs. 5.7 – 5.10, we give four different examples of the data collapse that

originates from the scaling in Eq. (5.12) for various values of K – both below and

above the regular-to-chaotic transition in the standard map (Kcr ≈ 0.97), that

corresponds to the transition between the local and global chaos in the phase space.

All the cases with K > 10 look exactly the same and follow the behavior shown in

Fig. 5.7. The scaling data from multiple values of K ≥ 10 is aggregated in Fig. 5.6.
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Figure 5.6: The dependence of the K-dependent term in the Ehrenfest time, c(K),
on the kicking strength K at K ≥ 10 in the linear-logarithmic scale.

Below the transition, K < Kcr, additional generalizations need to be made in order

to establish the scaling.

Note that the data in Figs. 5.6 – 5.10 is generated for quantum kicked rotor

(QKR), but the concept and conclusions may apply very generally to a wide variety

of “quantum chaotic” systems.

Unfortunately, we do not know how universal this scaling function remains

at longer times and weaker kicking strength. In the latter regime, it might require

a more sophisticated ansatz for tE. We also do not know how robust the scal-

ing remains as t/tE → ∞ and whether the collapsed straight lines at t > tE in

Figs. 5.7 – 5.10 are going to remain straight, parallel and collapsed at much longer

times. It is likely that the scaling becomes exact for arbitrarily long times only in

the strongly chaotic limit K →∞.
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Figure 5.7: The function λ̃ from Eqs. (5.9) and (5.12) as a function of scaled time
at K = 10 and ~eff = 2−14, 2−13, 2−12, 2−11, 2−10, 2−9, 2−8, and 2−7 in the double
logarithmic scale. Relevant power-law functions are shown as eye guides.

Figure 5.8: The function λ̃ from Eqs. (5.9) and (5.12) as a function of scaled time
at K = 3 and ~eff = 2−14, 2−13, 2−12, 2−11, 2−10, 2−9, 2−8, and 2−7 in the double
logarithmic scale. Relevant power-law functions are shown as eye guides.
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Figure 5.9: The function λ̃ from Eqs. (5.9) and (5.12) as a function of scaled time
at K = 1.1 and ~eff = 2−14, 2−13, 2−12, 2−11, 2−10, 2−9, 2−8, and 2−7 in the double
logarithmic scale. Relevant power-law functions are shown as eye guides.

Figure 5.10: The function λ̃ from Eqs. (5.9) and (5.12) as a function of scaled time
at K = 0.5 and ~eff = 2−14, 2−13, 2−12, 2−11, 2−10, 2−9, 2−8, and 2−7 in the double
logarithmic scale. Relevant power-law functions are shown as eye guides.
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5.6 Additional Materials

5.6.1 Classical Lyapunov exponent

Classical chaotic systems, such as KR, are characterized by Lyapunov expo-

nents that determine the rate of exponential separation of initially close trajectories

in the phase space. In one-dimensional systems, there is only one positive Lyapunov

exponent, λ, given by the phase-space average of λ(x, p):

d(t) ≈ d(0)eλ(x,p)t, (5.13)

where d(t) =
√

[x′(t)− x(t)]2 + [p′(t)− p(t)]2 is the distance at time t between two

initially close trajectories in the phase space. This can be used to extract λ as:

λ = 〈〈λ(x, p)〉〉 =

〈〈
lim
t→∞

lim
d(0)→0

1

t
ln
d(t)

d(0)

〉〉
. (5.14)
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5.6.2 Chirikov’s analytical derivation of formula (5.5) for Lyapunov

exponent

Consider two trajectories that obey the standard map:


pn+1 = pn +K sinxn

xn+1 =
mod 2π

xn + pn+1

, (5.15)


p′n+1 = p′n +K sinx′n

x′n+1 =
mod 2π

x′n + p′n+1

. (5.16)

Let us introduce relative coordinates: ξn = x′n − xn and ηn = p′n − pn, so that

d(n) =

(
ηn
ξn

)
. Standard map results for them in:


ηn+1 = ηn +K(sinx′n − sinxn)

ξn+1 = ξn + ηn+1

, (5.17)

where xn and x′n cannot be eliminated exactly. Using a trigonometric identity, we

can rewrite:

sinx′n − sinxn = sin(xn + ξn)− sinxn

= sinxn(cos ξn − 1) + sin ξn cosxn. (5.18)
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Consider a mapping tangent to that in Eq. (5.17). For that, assume ξn is small.

Then, to the linear order in ξn, the expression in Eq. (5.18) is equal to ξn cosxn, so

that the tangent mapping is:


ηn+1 = ηn + (K cosxn)ξn

ξn+1 = ξn + ηn+1

. (5.19)

It still contains xn determined by the standard map and thus non-linearly dependent

on time, but there is a class of trajectories for which this mapping is linear: periodic

trajectories with xn ≡ 0 or π and pn ∈ 2πZ. For them, the standard mapping

is trivial: pn+1 = pn, xn+1 = xn, and k ≡ K cosxn ≡ ±K (for xn ≡ 0 or π,

respectively). Consider the mapping (5.19) for trajectories near these special ones

and rewrite it in the matrix form:

(
ηn+1

ξn+1

)
=

1 k

1 k + 1

(ηnξn
)
. (5.20)

The length of dn =

(
ηn
ξn

)
is the distance between two trajectories in the phase space

at step n. Denote eigenvalues of the matrix in Eq. (5.20) as `± and the corresponding

eigenvectors as e±. Let us expand dn = une+ + vne−. Then for the coefficients, we

have: un+1 = `+un, vn+1 = `−vn, so that un = `n+u0, vn = `n−v0. Eigenvalues `± are:

`± = 1 +
k

2
±

√
k

(
1 +

k

4

)
, (5.21)
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so if k ∈ [−4, 0], then |`+| = |`−| = 1, and the distance between the trajectories

oscillates within some bounds. In the opposite case, when k /∈ [−4, 0], for positive

k, |`+| > 1 and |`−| < 1, so we get |un| −−−−→
n→+∞

∞, |vn| −−−−→
n→+∞

0 (and vice versa for

negative k < −4 or n→ −∞). In general, the eigenvalue `> : |`>| > 1 is given by:

`> = 1 +
k

2
+ sgn(k)

√
k

(
1 +

k

4

)
. (5.22)

For k > 0, the distance between trajectories:

dn = |dn| ≈
n→+∞

u0|`+|n = u0e
n ln |`+| = u0e

λ(0,0)n, (5.23)

where λ(0, 0) = ln |`+| is the positive Lyapunov exponent at x, p =
mod 2π

0 (for k < −4,

the positive Lyapunov exponent is λ(π, 0) = ln |`−| and in general, it is given by

ln |`>|).

Recall that map (5.20) only applies to the vicinities of the special points where

k = ±K. Let us now average this expression over the whole phase space substituting

the general expression k(x) = K cosx and using L(x) = |`>[k(x)]|. Then we arrive

to:

λ ≈

〈〈
lim
tc→∞

1

2tc

tc∑
n=1

ln
u2

0`
2n
+ + v2

0`
2n
−

u2
0`

2n−2
+ + v2

0`
2n−2
−

〉〉
, (5.24)

which upon neglecting the vanishing negative-exponent terms turns into

λ ≈ 〈〈 ln |`>[k(x)]| 〉〉 = 〈〈 lnL(x) 〉〉 , (5.25)
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that is given explicitly in Eqs. (5, 6). At large K, everywhere except the vicinities

of cos x = 0, one has: L(x) ≈ |k(x)| = |K cosx|, which results in λ ≈ ln(K/2).

We point out that the Chirikov’s analytical derivation does not yield consistent

results for the classical CGR.

5.6.3 Numerical calculation of Lyapunov exponent

The definition can be used directly to calculate LE. However, once chaotic

islands become small, the finite initial separation between trajectories (due to nu-

merical limitations) prevents from correct account for the contribution of chaotic

trajectories. The tangent map introduced above allows to overcome this difficulty,

because it is the derivative of the standard map. The calculation consists in prop-

agating both standard map (5.15) and tangent map (5.19) using the values of xn

from standard map as inputs for tangent map. Starting at each initial point within

some grid, we compute the expression:

λ(x0, p0) =
1

N

N∑
t=1

ln
d(t)

d(t− 1)
(5.26)

for a sufficiently large N and then average it over the phase space. Each time when

d(t) becomes large due to exponential stretching, we normalize it to unit length

preserving its direction.
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5.6.4 Classical CGR

This rate is extracted from the classical analogue of the quantum OTOC:

Ccl(t) = ~2
eff

〈〈(
∆p(t)

∆x(0)

)2
〉〉
∼ e2λ̃t. (5.27)

Then

λ̃ =
1

2
ln

Ccl(t)

Ccl(t− 1)
(5.28)

Let us average it over some interval in time to improve our fitting accuracy (this

step is not necessary though):

λ̃ =
1

2(tc − 1)

tc∑
t=2

ln
Ccl(t)

Ccl(t− 1)
. (5.29)

Substituting here Ccl(t) from Eq. (5.27) and taking into account that ∆x(0) is

constant throughout the phase space, we obtain:

λ̃ =
1

2(tc − 1)

tc∑
t=2

ln

[ 〈〈
[∆p(t)]2

〉〉〈〈
[∆p(t− 1)]2

〉〉] , (5.30)

which is calculated in the same way as the expression (5.26) using the tangent

map. The limitation t ≤ tc comes from the fact that, as opposed to the case for

LE – Eq. (5.26) – rescaling of d(t) =

(
∆p(t)

∆x(t)

)
alters the expressions for CGR –

Eq. (5.30) – and thus is not applicable.

100



1 5 10 15 20 25 30

Time (number of kicks)

10
-5

10
0

10
5

10
10

10
15

10
20

C
(t
)
an

d
C

cl
(t
)

C(t)
Ccl(t) with d(0) = 10−10

Ccl(t) with d(0) = 10−14
tE = 7

K = 10

h̄eff = 2−14

Figure 5.11: C(t) and Ccl(t) in the semilog scale. The exponential growth of Ccl(t)
saturates due to finite initial distance between trajectories as is shown by comparing
Ccl(t) at d(0) = 10−10 and d(0) = 10−14. The exponential growth of C(t), however,
saturates due to the quantum interference effects that kick in at tE = 7.

5.6.5 Classical Ccl(t) vs quantum C(t)

In this section, we demonstrate how these corresponding functions compare at

large K. Fig. 5.11 shows the comparison at K = 10 (in logarithmic scale). Both

C(t) and Ccl(t) grow exponentially at early times and both slow down after some

time. However, in case of Ccl(t) the reason is purely numerical – it is calculated by

definition here, and the initial distance between the trial trajectories is finite. When

the initial separation goes to zero, the exponential growth of Ccl(t) becomes infinite.

On the contrary, the termination of the exponential growth of C(t) is physical and

occurs at tE = 7, when quantum interference effects kick in.
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Figure 5.12: Bτ as a function of τ in the lin-log scale at K = 0.01, 0.3, 0.7, 1, 1.7, and
3 (from the top to the bottom curve, respectively). The point τ = 0 and the shaded
interval τ ∈ (0; 10) are added manually to show the initial value corresponding to
the wave-packet (4) with p0 = 0 and σ = 4. At K = 1.7 and 3, one can see the
complete relaxation to zero within the range of this plot.

5.6.6 Time-averaged two-point correlator as a function of averaging

window size

Here, we show the dependence of the time-averaged two-point correlator Bτ on

the size τ of the averaging window at various K. In Fig. 5.12, one can see that the

average correlations decay with time in steps, and the larger the kicking strength K

is, the faster the correlations decay. Notice that the lin-log scale of the plot implies

that the speed-up of this decay with K is exponential.
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Chapter 6: Universal Level Statistics of the Out-of-Time-Ordered

Operator

6.1 Introduction

There exist a number of approaches to define the concept of “quantum chaos.”

The basic approach is to quantize a classically chaotic model and declare the corre-

sponding quantum model as “quantum chaotic.” Another prevailing method iden-

tifies quantum chaos with level repulsion between energy levels, described by the

universal Wigner-Dyson statistics. The connection between the two is established

via the so-called Bohigas-Giannoni-Schmit (BGS) conjecture [29] (first formulated

in Ref. [30]), which postulates that the spectra of time-reversal-invariant classically

chaotic systems show the same fluctuation properties as predicted for Gaussian Or-

thogonal Ensemble (GOE) of random matrices. Semiclassical approaches in the form

of periodic orbit theory [216] by Berry [217] and non-linear sigma models by An-

dreev et al. [218, 219, 220] have been employed to prove BGS conjecture with partial

success. There are alternative approaches to quantum chaos: those based on wave-

function behavior, such as quantum ergodicity [221, 222, 223], Berry’s random-wave

conjecture [224], and nodal statistics [225]; criteria based on transport or scattering
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properties [226, 227]; and definitions connecting to exponential behavior reminiscent

of the classical instability, that is observed in quantum fidelity [207, 228], Loschmidt

echo [211, 229], and out-of-time-ordered correlator (OTOC) [230] (see Chapter 5 for

details on the latter one). More recently, the “definition” of quantum chaos based on

OTOC became the focus of much research owing to its applicability to many-body

quantum systems (see e.g. Refs. [27, 28, 195, 196, 197, 198, 199, 200, 231]). The

quasiclassical limit of OTOC reproduces the sensitivity of quasiclassical trajectories

to initial conditions. Exponential growth of OTOC at early times is identified as

a fingerprint of quantum chaos, connecting the quantum dynamics to the hallmark

of classical chaos – the Lyapunov divergence of classical trajectories, colloquially

known as the “butterfly effect.”

In many cases (e.g., disordered metals [192, 193, 232] and certain chaotic

billiards) these approaches do appear equivalent, but there is no universal equiv-

alence. For example, not all quantum models with Wigner-Dyson level statistics

are required to have an “obvious” classical counterpart (e.g., Sachdev-Ye-Kitaev

model [27, 31]) and not all classically chaotic dynamical systems acquire Wigner-

Dyson level statistics upon quantization, such as systems that show localization.

Moreover, quantum systems with merely mixing (non-chaotic) classical counterparts

can obey Wigner-Dyson distribution even without classical exponential instabilities

(see, e.g., Ref. [32]). Such cases are considered outside of the BGS characterization.

This ambiguity makes the notion of quantum chaos somewhat poorly defined. It is

highly desirable therefore to obtain a more straightforward way of connecting the

different intuitive ideas and approaches to “quantum chaos,” and we attempt to do
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so in this work by introducing an operator, we dub the Lyapunovian [see Eq. (6.1)

below], which, as we show, contains information about both the development of

the universal level statistics resulting from quantum interference and classical Lya-

punov exponents in a (semi)classical phase space. Our study is motivated by recent

work on OTOCs [27, 28, 195, 196, 197, 198, 199, 200, 231], the concept originally

introduced by Larkin and Ovchinnikov [26] in the context of disordered metals. It

involves a quantum expectation value of the following positive-definite operator:

Ĉ(t) ≡ exp [2 t Λ̂(t)] = − [x̂(t), p̂x(0)]2 , (6.1)

where we chose a pair of operators x̂(t) and p̂x(t) – the Heisenberg operators of a

particle’s x−coordinate and the corresponding component of its momentum. Both

in the case of a dirty metal and a billiard, one can argue in the semiclassical limit

that since p̂x(0) = −i~ ∂
∂x(0)

, the OTOC – the quantum expectation value of the

operator Ĉ(t) in Eq. (6.1) – probes the sensitivity of quasiclassical trajectories to

initial conditions: C(t) = 〈Ĉ(t)〉 = ~2

〈(
∂x(t)
∂x(0)

)2
〉

. Thus the classical Lyapunov-

like growth is anticipated at early times, C(t) ∝ exp(2λ̃t), where λ̃ is related to the

classical Lyapunov exponent (see Sec. 6.6 for details).

However, whether the OTOC actually exponentially grows or not depends on

the choice of a quantum state over which the expectation value is calculated. It

also depends on the existence of a long enough time window within the Ehrenfest

time scale t < tE (see Sec. 6.6), before the quantum interference washes out the

classical growth, if any. In some sense, the search for exponential growth of OTOC
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becomes the search for a quasiclassical description. In some cases, such as billiards

or diffusive metals, the quasiclassical limit is obvious. In some others, such as

the Sachdev-Ye-Kitaev model, the classical variables are “hidden” in the large-N

limit [233, 234]. The dependence of the OTOC on the choice of a quantum state is a

non-universal feature, and instead, motivated by Ref. [235], we focus on the random-

matrix structure of the Lyapunovian – the Hermitian operator Λ̂(t) in Eq. (6.1). The

Lyapunovian possesses a semiclassical interpretation which enables us to connect the

spectral statistics with that of the matrix of classical finite-time Lyapunov exponents

in different cells of the partitioned phase space 1.

The rest of the paper is organized as follows. In Sec. 6.2, we introduce the

specific model we used in the calculations. In Sec. 6.3, we demonstrate the main

results on the universal level statistics of the Lyapunov operators. Next, Sec. 6.4

elaborates on the dynamics of the time-dependent level statistics and the ways it can

be observed. Sec. 6.5 gives a heuristic picture that helps in developing the intuition

behind our findings. Finally, in Sec. 6.6, we show the early-time exponential growth

of OTOC in our model and explain why it is not always readily visible.

6.2 Model

For explicit calculations, we choose the quantum stadium billiard – a canon-

ical model to explore quantum signatures of chaos, – but the main construction

naturally transplants to a wide class of models. The classical Bunimovich stadium

1Note the qualitative difference between the finite-time spectrum of the single-particle Lya-
punovian and the spectrum of infinite-time Lyapunov exponents in multidimensional classical
models [236, 237].
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Figure 6.1: Energy-level statistics for quantum stadium billiard (separate for each
eigenstate parity, combined). Contribution from the bouncing-ball modes [241, 242,
243] is removed within the spectrum unfolding. Solid line shows GOE Wigner-Dyson
distribution.

billiard [33, 34, 35, 36, 37, 38, 39] is a seminal model of classical chaos, and its quan-

tum counterpart has been known to obey the Wigner-Dyson energy-level statistics of

GOE [29, 30, 238, 239, 240, 241] reproduced in Fig. 6.1 2. The oscillatory contribu-

tion of the bouncing-ball orbits [241, 242, 243] to the density of states – a non-generic

feature of the stadium – is subtracted in order to obtain the near-perfect agreement

between the level-spacing distribution and the Wigner surmise. Throughout the pa-

per, we consider the billiard with unit aspect ratio a/R = 1, where 2a is the length

of the straight segments of the walls and R is the radius of the circular ones. We use

the units where both the area of the billiard A = (π + 4)R2 and the particle mass

m are set to 1. We also choose a certain momentum p0 as the third unit. Later, it

will play the role of the quantum-particle’s average momentum. In the semiclassical

2Due to the reflection symmetries, the Hamiltonian can be written as a 4 × 4 block-diagonal
matrix in a basis of functions with definite parities. As a result, there is no correlation (and thus
no repulsion) between the eigenvalues of different blocks. More details are given after Eq. (6.2).
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limit, p0 translates into the momentum of the classical particle inside the billiard.

In these units, the Schrödinger equation and the boundary condition read:

− ~2
eff

2
∇2Ψ(x, y) = EΨ(x, y), Ψ(r)

∣∣∣
r∈billard walls

≡ 0, (6.2)

where ~eff = ~/(p0

√
A). The stadium billiard has two reflection symmetries: x ↔

−x and y ↔ −y. Correspondingly, its eigenstates have one of four possible pari-

ties [238]. E.g., the odd-odd-parity functions Ψoo(−x, y) ≡ Ψoo(x,−y) ≡ −Ψoo(x, y).

As it is usually done, in order to enforce these parities and speed up the calcula-

tions, we use a quarter of the billiard imposing Dirichlet and/or Neumann boundary

conditions on the cuts to obtain solutions of all four parities separately. We solve

these boundary-value problems for the Laplace operator numerically using the finite-

element method. It is known that the accuracy of the numerical solution deteriorates

with the number of found eigenstates [244]. We use the Weyl’s formula for the num-

ber of modes [182] to control it. According to the Weyl’s law, the average number

of eigenstates below energy E asymptotes to:

N (E) ' A

4π

2

~2
eff

E − P

4π

√
2

~2
eff

E, E →∞, (6.3)

where P is the billiard’s perimeter. We do all calculations in several ranges. The

smallest range is limited to about N = 5000 eigenstates and preserves almost exact

agreement with the Weyl’s formula, and the largest one is over N = 105 states. We

verify that our results do not depend on the truncation size N . In addition, we
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benchmark our solutions against those we obtain independently via the boundary-

integral method, and reach the same level of accuracy with both approaches. We

should note that the absolute error in the number of the found energy levels (as

compared to the Weyl’s formula) grows quadratically with energy for the levels

En, n & 2000 with a very small prefactor. However, while the overall magnitude of

the energy starts to overestimate the Weyl’s expression – the inverse of Eq. (6.3) –

after this point, the structure of the spectrum is preserved. This is verified by varying

the algorithm’s accuracy, comparing the results to those obtained via the boundary-

integral method, and subtracting the smooth quadratic function that brings the

spectra obtained by all methods on top of each other. In the tests we performed,

our results for the distributions did not show any influence of this deviation as it is

completely canceled by the spectrum unfolding anyway.

6.3 Universal statistics of the Lyapunovian

Let us turn to the central subject of the work – the level statistics of the out-

of-time-ordered operators. Apart from the Lyapunovian [Eq. (6.1)], we also define

the Hermitian operators:

Ĉ(k)(t) = (−i)k [x̂(t), p̂x(0)]k
+

= exp [k t Λ̂k(t)], (6.4)

with k ∈ N, such that Ĉ(2)(t) ≡ Ĉ(t). For even k = 2n, Λ̂2n(t) ≡ Λ̂(t), while for

odd k = 2n − 1, we only define Λ̂2n−1(t) within the positive-eigenvalue subspaces

of Ĉ2n−1(t), which is indicated by the “
+
= ” sign. In addition, we consider a closely
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related Hermitian operator that defines a 4-point-correlator part of OTOC:

F̂ (t) = x̂(t)p̂x(0)x̂(t)p̂x(0) + H. c.
+

= exp [Γ̂(t)]. (6.5)

We use the energy eigenstates |En〉 to construct matrices C
(k)
nm(t) = 〈En|Ĉ(k)(t)|Em〉

and Fnm(t) = 〈En|F̂ (t)|Em〉. For numerical calculations, we truncate the operators

to finite N × N matrices according to the number of the eigenstates in use. Then

the finite matrices are numerically diagonalized and the statistics of the spacings

between the logarithms of eigenvalues as well as between the eigenvalues themselves

are studied. Due to the definite parities of the energy eigenfunctions, the matrices

C
(k)
nm(t) and Fnm(t) are 4× 4 block-diagonal, and each block corresponds to one par-

ity. Level spacings are thus only calculated within each block separately (because

eigenvalues in different blocks are not correlated with each other), and then these

four sets of the spacings are combined for statistical analysis. The operators Ĉ(k)

and F̂ have the same bulk level statistics as their respective logarithms, Λ̂k and

Γ̂ 3. Therefore, we only show the results for the logarithmic operators. We observe

different ensembles for different operators.

Note that at t = 0, Ĉ(k)(0) = ~keff are c-numbers, so they do not have level-

spacing distributions. However, the operator F̂ (0) = x̂(0)p̂x(0)x̂(0)p̂x(0) + H. c. is

a non-trivial Hermitian operator, and its matrix Fnm(0) is real-valued. We find

3As opposed to the Hamiltonian, these matrices do not belong to Gaussian ensembles. In
Ref. [245], it is shown that for Wishart-ensemble matrices that have the form M†M with rectan-
gular matrix M from one of the Gaussian ensembles, the eigenvalue statistics of the bulk of the
spectrum is still very well described by the universal Wigner-Dyson distributions. For operators
that we consider, this appears to hold as well.
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Figure 6.2: Eigenvalue-spacing distribution for the bulk of the Lyapunovian spec-
trum for every second state (within each parity block, combined). The total number
of levels is 105. Insets: (a) bulk level spacing distribution for Γ̂(t = 0); (b) the same
for Γ̂(t 6= 0). Solid lines show the corresponding Wigner-Dyson distributions.

– see inset (a) in Fig. 6.2 – that the bulk level statistics for Γ̂(0) [and for F̂ (0)]

corresponds to GOE – the same ensemble as that of the Hamiltonian. The reason for

this can be understood by representing the momentum operator as p̂x = i
~eff

[Ĥ, x̂],

where Ĥ =
p̂2
x+p̂2

y

2
+ Vwalls(x̂, ŷ) is the Hamiltonian of the billiard. Then F̂ (0) =

−~−2
eff

(
x̂ [Ĥ, x̂]

)2

+ H.c.

At any finite time, t 6= 0, all C
(k)
nm(t) and Fnm(t) become non-trivial Hermitian

matrices with complex entries due to the unitary evolution of the operator x̂(t) =

eiĤtx̂e−iĤt with the random-matrix-like Hamiltonian. In Fig. 6.2, main plot and

inset (b) show the bulk level statistics of the Lyapunovian and Γ̂(t), respectively,

at a fixed time t 6= 0. Of course, microscopic details of both spectra are different

and time-dependent, as the individual eigenvalues move with time. But we find

that their bulk spectral statistics appear to be completely universal and remain the

same for any t 6= 0. We should stress that for the operators defined this way in
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the entire Hilbert space, there is no notion of short time (such as the collision or

Ehrenfest times), so all times are equivalent, indeed. On the other hand, as shown

in Sec. 6.4, one can observe dynamical evolution of the spectral properties of these

operators when they are projected to a sub-space of the Hilbert space that consists of

initially non-overlapping classical-like states only. In this case, after these classical-

like states “dissolve” in the semiclassical phase space as the time reaches and exceeds

tE, the statistics tends to develop from the initial uncorrelated Poisson-like one to

the Wigner-Dyson statistics – similar to that shown for the operators in the entire

Hilbert space in Fig. 6.2.

The bulk level statistics of Λ̂2n−1 and Γ̂ correspond to GUE [Fig. 6.2, inset (b)],

while extracting level statistics of the Lyapunovian [the operators Λ̂ ≡ Λ̂2n and Ĉ(2n)]

requires one more step. The bulk level statistics of Ĉ(1) and Λ̂1 correspond to GUE.

But since the spectrum of Ĉ(1) has positive and negative branches, and Ĉ ≡
[
Ĉ(1)

]2

,

the spectrum of Ĉ consists of these positive and negative branches squared and

superimposed onto each other (this translates to the spectrum of the operator Λ̂,

as well). This results in the effective suppression of level repulsion, because the

neighboring levels that originate from different branches of the spectrum of Ĉ(1)

have no short-range correlation. We present two ways to account for this effect.

First, provided the knowledge of the spectrum of Ĉ(1), one can filter the eigenvalues

of Ĉ that originate from only one – positive or negative – branch. This results in the

GUE filtered bulk level statistics for Ĉ and the Lyapunovian. Alternatively, without

the knowledge of the spectrum of Ĉ(1), but given that it is approximately evenly

distributed around zero (the matrix tends to be traceless as its size is increased), one
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can filter every second eigenvalue of Ĉ to greatly reduce the fraction of uncorrelated

neighboring eigenstates. Following this approach, for every second level in the bulk

of the spectra of Ĉ and Λ̂, one finds the Wigner-Dyson distribution that corresponds

to the Gaussian ensemble with the Dyson index β = 3 – intermediate between GUE

and GSE [Fig. 6.2, main plot].

While the former (GUE) result is natural, the β = 3 ensemble for every second

level of the Lyapunovian results from the combination of the operator’s intrinsic

structure and the filtering algorithm. However, it is still general – the same statistical

properties can be found for next-nearest-neighbor level spacing in the bulk of the

spectra of positive-definite matrices of the form M2 (or lnM2), where M is an

Hermitian random matrix drawn from GUE. This argument suggests that for all

odd powers 2n − 1, the bulk level statistics of Ĉ(2n−1)(t 6= 0) should correspond to

GUE, and for all even powers 2n, the bulk level statistics for every second level of

Ĉ(2n)(t 6= 0) should correspond to the Gaussian ensemble with β = 3. We have

verified that it is indeed the case for k = 1, 2, 3, and 4.

We stress that in integrable models, the spectral structure of the Lyapunovian-

type operators is drastically different from that in the non-integrable ones. There

are multiple degeneracies in the Lyapunov-operator spectra in the integrable case,

and the corresponding level-spacing distributions of the operators Λ̂1 and Λ̂ are

thus very tightly peaked around zero and are generally not even well defined, be-

cause the unfolding procedure cannot be performed. We checked it specifically

for a circular billiard, a rectangular billiard, and for a 1D particle-in-a-box model

(semi-analytically). In all these cases, the level repulsion is absent, and most of the
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Lyapunovian eigenstates are (quasi)degenerate. So, one can readily distinguish such

systems from the chaotic ones.

6.4 Time-dependent level statistics

We now turn to the particularly interesting question of connection between

the exponential Lyapunov growth of the OTOC, C(t) = 〈Ψ|e2 t Λ̂(t)|Ψ〉 ∝ e2λ̃t, at

early times and the Wigner-Dyson level statistics of the operator Λ̂(t). There ap-

pears to be a disconnect between the two: the former – the Lyapunov growth – is

an early-time (t < tE) classical behavior in the absence of quantum interference,

while the latter is a consequence of well-developed quantum interference. We be-

gin with a schematic demonstration of the mechanism of the correlation buildup

between initially almost uncorrelated classical-like states. It also translates to the

correlation build-up between the phase-space cells discussed in the next section. We

start by projecting the operator Ĉ(1)(t) onto an ensemble of 20 subspaces of the

Hilbert space to form an ensemble of 20 projected operators (to improve statistics).

Every subspace is composed of 8 almost non-overlapping minimal-uncertainty wave

packets, each has unit average momentum. Note that although all possible coher-

ent states form an over-complete basis, we do not have to project operators onto

all of them and, instead, have to take a subset that consists of states which form

an (almost) orthonormal basis in the corresponding subspace. Our subsets that

satisfy these requirements are small due to numerical limitations, but in principle,

can be arbitrary large, given small enough ~eff . Letting these states evolve in time,
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we calculate eigenvalue-spacing distribution for the projected operators at different

times (excluding the smallest and the largest eigenvalues). Then we average these

distributions over the ensemble of projected operators and, for better statistics, over

time in two intervals: short times (between 10−3tE and tE/2) and long times (be-

tween 2tE and 200tE). After unfolding, we obtain distributions that roughly show

the conversion from the uncorrelated – Fig. 6.3 (a) – to the correlated – Fig. 6.3 (b)

– state of the phase space. The quality of the distribution is very limited by the

small number of non-overlapping classical-like states that we fit into the billiard,

but the principle can be observed.

6.5 Phase-space description of OTOC

We study two related phenomena: {1} the exponential growth of OTOC at

early times (to be discussed in Sec. 6.6) and {2} the transition in the level statistics of

“the projected Lyapunovian” from the Poisson to the Wigner-Dyson distribution.

Here “the projected Lyapunovian” is a shorthand referral to a projection of the

Lyapunov operator to a subspace of virtually non-overlapping classical-like states,

as discussed above. To develop further intuition about the connection between {1}

and {2}, we follow Cotler et al. [246] and consider the Lyapunov operator within

the phase-space formulation. This is achieved by describing the quantum dynamics

in terms of the Wigner function, W (r,p, t), in the four-dimensional phase space

that we parameterize by z = (r,p) for brevity. All operators are translated into

phase-space distributions via the Wigner transform [247].
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Figure 6.3: Eigenvalue-spacing distribution for the bulk of the spectra of an ensem-
ble of projections of Ĉ(1)(t) onto the coherent-state subspaces averaged over that
ensemble and over time in two ranges of time: (a) at t < tE, the distribution shows
clear signatures of the Poisson component related to the uncorrelated nature of the
phase space; (b) at t > tE, the statistics tends to the universal GUE Wigner-Dyson
distribution as phase-space correlations build up. With larger matrices, one can see
that it becomes exact, such as the one shown in Fig. 2(b) in the main text. The
low quality of the histograms is related to the small size of the subspaces (8 × 8
matrices).
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In particular, the out-of-time-ordered operator Ĉ(t) corresponds to the Moyal

brackets:

CMB(z, t) = −JX(z, t), P (z, 0)K2, (6.6)

where we can choose P (z, 0) = pcl(z, 0) to be classical, and X(z, t) is the solution

of the Moyal evolution equation: Ẋ(z, t) = JH(z), X(z, t)K, where we also choose

a classical initial condition X(z, 0) = xcl(z, 0). These choices correspond to the

projection we introduced in the previous section. We can then express

X(z, t) = xcl(z, t) +
∞∑
k=1

~2k
effx

(2k)(z, t), (6.7)

and the series of quantum corrections vanishes at t = 0 according to the initial

conditions: x(2k)(z, 0) = 0. This choice of initial conditions ensures that X(z, t)

is the Moyal trajectory which coincides with the classical trajectory xcl(z, t) in the

~eff → 0 limit. The classical trajectories are obtained by solving the Hamilton-

Jacobi equation. The ~eff-dependent corrections are obtained by solving the series

of the following evolution equations:

ẋ(2n)(z, t) =
n∑
k=0

JH(z), x(2k)(z, t)K2(n−k), (6.8)

where the indexed brackets are defined as

JA,BK2n ≡
A(z)

(←−
∂ r

−→
∂ p −

←−
∂ p

−→
∂ r

)2n+1

B(z)

(2n+ 1)! (−4)n
. (6.9)
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The initial conditions for the higher-order corrections are x(2k)(z, 0) = 0 for all

k > 0, since at time t = 0 all distributions are classical and are captured within the

Poisson-bracket term of the evolution equation.

In this semiclassical approach, the classical phase space can be thought of

as partitioned into the cells with the phase volume δz = (2π~eff)2. Within the

phase-space formulation, the Lyapunov operator is represented via a matrix whose

indices enumerate these cells. The elements of this matrix are functions supported

only within one cell. The ~eff-expansion of the corresponding evolution shows that

the zeroth-order Larkin-Ovchinnikov classical term, [∂xcl(z, t)/∂x(z, 0)]2 ∝ e2λ(z)t,

leads to independent Lyapunov exponents for each cell [Fig. 6.4(a)]. In other

words, the Lyapunov operator in the classical limit is a matrix of uncorrelated Lya-

punov exponents. A typical correlation term comes from an expression of the type

~2
eff

[
∂x(2)(z, t)/∂x(z, 0)

]
[∂xcl(z, t)/∂x(z, 0)], which is the ~2

eff-order correction to the

trajectory [246]. The ~2
eff-dependent corrections to CMB(z, t) generate correlations

between the cells, and repulsion between the eigenvalues of the Lyapunov matrix

“commences” [Fig. 6.4(b)]. Such correlations fully develop around the Ehrenfest

time when the phase space becomes highly correlated [248] leading to the breakdown

of the Moyal expansion – or any semiclassical description of OTOC [26] [Fig. 6.4(c)].

The full quantum operators such as Ĉ(t) generally correspond to late times (t > tE)

in this picture, since they encapsulate full quantum interference effects resulting in

the universal Wigner-Dyson statistics as shown in Fig. 6.2. However, as shown in

Sec. 6.4, when projected to a subspace of initially classical-like states, these opera-

tors demonstrate the statistics change across the Ehrenfest time from the Poisson-
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Figure 6.4: Schematics of the correlation development in phase space with time if
initial states are semiclassical. (a) At times t � tE, the local finite-time Lyapunov
exponents are independent in different cells. (b) As time goes towards tE, the
correlations build up. (c) Around tE, the phase-space becomes fully correlated, as
shown by the distributions in Fig. 6.2.

dominated distribution to the Wigner-Dyson one.

6.6 Early-time behavior of OTOC

Finally, we address the question of how to actually extract the classical Lya-

punov exponent from the Lyapunov operator in a way similar to that in Chap-

ter 5 [230]. As noted above, not any matrix element would result in the expo-

nential growth. For example, Hashimoto et al. [249] reported lack of exponen-

tial growth in the thermal average of the out-of-time-ordered operator – defined as

OTOCβ(t) = Z−1
∑
n

e−βEn 〈En|Ĉ(t)|En〉 – for the quantum stadium billiard. One

would expect it to be the case, indeed, because the quantum thermal state in this

system has no semiclassical description, which would correspond to a particle moving

with a definite velocity. Instead, it mixes up different momenta and positions. So,

this thermal average involves the states with well-developed quantum interference,

where no classical dynamics is present already at t = 0. In addition, it primarily
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accounts for “the most quantum” low-energy states (unless the temperature β−1 is

very high) that also have low momenta, while the Lyapunov exponent is proportional

to the momentum.

To get exponential growth in this and, we believe, in many other systems, we

have to identify “the most classical” initial state and let it evolve with time. In the

case of a billiard, the natural choice is a Gaussian minimal-uncertainty wave packet:

Ψcl(r) ∝ exp

[
−(r− r0)2

2~effσ2
+

i

~eff

p0 · r
]
, (6.10)

where σ controls initial squeezing, and the parameters r0 and p0 are the initial

average position and momentum of the wave packet. |p0| = p0 = 1 is the unit of

momentum introduced before.

Let λcl denote the classical Lyapunov exponent of the system at unit momen-

tum |p| = 1 (the mass is fixed at m = 1, so λcl|p ∝ |p|). There are two relevant

time scales: the collision time tc ∼ 1/λcl is of the order of the time it takes the

wave packet to hit the billiard’s wall, and the Ehrenfest time tE ∼ | ln ~eff |/λcl is of

the order of the time it takes a minimal-uncertainty wave packet to spread across

the entire system. Classically, λcl is defined as the infinite-time average and can

be obtained for (almost) any initial condition by allowing enough time for a trial

trajectory to explore a sufficient fraction of the phase space. At early times, though,

the exponent fluctuates a lot before it reaches its average value, and the early-time

values depend on the initial conditions. In the quantum calculation, the classical

physics is limited to t < tE, which in our case allows for just a few collisions with
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Figure 6.5: OTOC as the operator (6.1) averaged over the initial state (6.10) at
early times (semi-log scale). ~eff = 2−7, x0 = y0 = 0, p0x/p0y = e, σ = 1/

√
2.

Between tc and tE, the growth is nearly exponential, C(t) ∝ e2λ̃t, for the time longer
than 4/(2λ̃), but the value of λ̃ is not self-averaged yet.

the walls. But instead of a single trial trajectory, we start with a wave packet that is

equivalent to averaging over an ensemble of trajectories, which, in turn, is equivalent

to averaging over a longer time and decreases the fluctuations. Within our numer-

ics, we were still unable to reach complete self-averaging, so while we see a robust

exponential growth spanning the interval between tc and tE, the value of the expo-

nent does depend on the initial wave packet and fluctuates moderately. However,

it does not indicate any disagreement between quantum and classical description

at early times. Classically, one can see the same fluctuations in the short-time

Lyapunov exponent averaged over Wigner distributions of initial conditions that

correspond to minimal-uncertainty wave packets used as initial conditions in our

quantum calculations [250]. The fluctuations occur both as functions of time and

initial conditions.
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As shown in Fig. 6.5, at early times (t < tE), OTOC does grow exponentially:

C(t) ∝ e2λ̃t. In this semiclassical regime, we can replace the commutator with the

Poisson brackets and average them classically over the ensemble of trajectories that

corresponds to the Gaussian Wigner distribution Wcl(z) built from the initial state

|Ψcl〉. We denote this average as 〈〈 . . . 〉〉 4. We then have C(t) ≈ Ccl(t) at t < tE,

where:

C(t) = 〈Ψcl|Ĉ(t)|Ψcl〉 ∝ e2λ̃t, (6.11)

Ccl(t) = ~2

〈〈(
∂x(z, t)

∂x(z, 0)

)2
〉〉
∝
〈〈
e2λps

cl (z,t)t
〉〉

= e2λt, (6.12)

and λps
cl (z, t) accounts for both the proportionality to the total momentum and the

short-time effects giving λps
cl (z, t) the dependence on the rest of the phase-space

coordinates and time. Note that λ in Eq. (6.12) is very close in spirit to the no-

tion of the expansion entropy used for the recently updated definition of classical

chaos [251]. Strictly speaking, one has to compare the quantum exponent λ̃ to the

classical value of λ. But as noted above, available time t < tE is not sufficient for

the quantum exponent λ̃ to self-average, and we do not reach exact quantitative

agreement. Instead, in various calculations, we got λ̃ in the interval between λcl/2

and 3λcl/2, while λ ' λcl. λcl ≈ 1.15 is calculated for the classical stadium billiard

in Refs. [37, 38, 39] 5. We reproduced the same value in our classical-billiard cal-

4Note that the Wigner distribution Wcl(z) is everywhere positive, so that it is an actual prob-
ability distribution, reflecting the fact that the initial state does not have quantum interferences
built in.

5In Refs. [37, 38, 39], the billiard area A = π+4, hence they provide a different numerical value
for the exponent (0.43) that scales as A−1/2 and gives 1.15 for A = 1.
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culation. The example of the quantum-billiard calculation in Fig. 4 has λ̃ ≈ 0.85

6.

6.7 Summary and Outlook

We proposed a novel tool to study and even define quantum chaos in general

quantum systems – the Lyapunov operator. We investigated the behavior of its

level statistics and benchmarked it in a simple example of the stadium billiard. The

Lyapunovian allowed us to unify the early-time signatures of chaos in the absence of

quantum interference and the late-time ones related to well developed interference in

a single quantity. Moreover, the Lyapunov operator can probe the transition between

the two regimes and generalize a straightforward intuition behind the quantum-to-

classical correspondence to a wider class of quantum systems. As compared to the

OTOC, the Lyapunovian is free from the ambiguity of the initial-state choice, and

thus can more reliably answer the question of regular-vs-chaotic nature of a given

system.

We also demonstrated that, as opposed to the recently reported results [249],

OTOC can be found to grow exponentially in chaotic systems when averaged ap-

propriately.

Note that the level-spacing statistics is only one of the ways to study spectral

correlations, and it only captures those at short ranges. Other statistical tools can

uncover additional information hidden in the Lyapunovian. One interesting question

6Note that classical Lyapunov exponent was first extracted in a related way in Refs. [211, 229]
from Loschmidt echo, which is closely related to OTOC.
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is to study long-range correlations in the spectra of Lyapunov operators with such

tools as spectral rigidity.
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Chapter 7: Early-Time Exponential Instabilities in Non-Chaotic Quan-

tum Systems

7.1 Introduction

Quantum mechanics has a general effect that it washes out sharp features of

classical dynamics due to its wave-like nature and the uncertainty principle. This

effect becomes crucial for chaotic systems because sharp features such as sensitive de-

pendence on initial conditions, that is the butterfly effect, are eventually destroyed.

In isolated systems, this suppression of the butterfly effect occurs after a short pe-

riod of semiclassical evolution – the length of this period grows logarithmically with

system size [4, 189, 248, 252, 253, 254, 255, 256]. This time scale is known as the

scrambling or Ehrenfest time, tE.

Even though the scrambling time is usually short even in macroscopic isolated

systems (which seems to be in a disagreement with observable phenomena), system’s

decoherence often resets dynamics back to the semiclassical regime. This explains

why classical chaotic dynamics is ubiquitously observable [3, 255, 256, 257] (for alter-

native views on the long Erhenfest-time “paradox,” see Refs. [258, 259]). Regardless

of the explanation, the behavior of quantum systems in the Erhenfest window and
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the fate of classical-to-quantum correspondence in this regime are clearly of funda-

mental interest, and we focus on this regime in the present manuscript.

In particular, we demonstrate here that in contrast to conventional wisdom,

quantum mechanics can induce certain short-time exponential instabilities in mod-

els, which are classically non-chaotic [260]. While our construction, described below,

is specific to billiards and out-of-time-ordered correlators, we believe that this behav-

ior can exist in a variety of dynamical systems. Besides, both classical and quantum

billiards are deeply connected to disordered metals [261, 262, 263, 264, 265, 266] (for

a review, see Ref. [267]), transport phenomena in various systems, such as propa-

gation of particles through rippled channels (see, e.g., Refs. [168, 169, 171, 173] and

references therein), and also quantum dots (see, e.g., Ref. [268]).

We start with a model based on an illustrative set of observations. Consider

a classical “mathematical billiard,” i.e. a point particle within a closed domain

reflecting off of its hard walls, such as the polygonal black shape in Fig. 7.1. It

has been rigorously proven [269, 270] that the Kolmogorov-Sinai (KS) entropy and

the closely related Lyapunov exponents of any polygonal billiard are strictly zero.

Next, consider the corresponding “physical billiard,” a classical hard disk of radius rp

reflecting off of the same polygonal walls. Clearly, this physical billiard is equivalent

to a mathematical billiard of a smaller size, since the particle’s center is not allowed

to approach the walls of the physical billiard closer than rp. Such equivalent billiard

is shown by the inner blue shape in Fig. 7.1. We assume that the particle’s mass is

concentrated in the center, and ignore rotational motion. A crucial observation [271,

272] is that this redrawing may give rise to a smoothing of sharp features of non-
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Figure 7.1: Outer black line: polygonal butterfly-shaped billiard. The area is unit.
Inner blue line: effective mathematical billiard hosting a point particle classically
equivalent to the outer polygonal billiard hosting a rigid circular particle of radius
rp = σ

√
~eff/2 and zero moment of inertia. Note that the inward-pointing corners

of the polygonal billiard are rounded into circular arcs or radius rp, making the
effective mathematical billiard classically chaotic with positive Lyapunov exponent.
Gray shaded region: a close sub-rp vicinity of the billiard wall: small changes of the
billiard geometry within this region do not affect the early-time quantum dynamics.
Middle red line: a smoothened billiard used for comparison purposes below.
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convex polygons, such as the black shape in Fig. 7.1. The resulting shape is no

longer a polygon, and the obstruction for the KS entropy to vanish is removed.

Indeed, the inner blue billiard in Fig. 7.1 is classically chaotic, with a positive

Lyapunov exponent. Finally, consider a quantum particle embedded into a non-

convex polygonal billiard. Semiclassical early-time dynamics of a quantum wave

packet is in a certain sense similar to motion of a finite-size classical particle; i.e.,

classically chaotic motion in the physical billiard. As shown below, there is indeed

the onset of exponential instabilities in the classically non-chaotic systems such as

this one, hence providing an example of violation of the conventional view on the

classical-to-quantum correspondence.

To diagnose this behavior, we employ the out-of-time-ordered correlator (OTOC).

The OTOC was introduced by Larkin and Ovchinnikov [26] in the context of quasi-

classical approximation in the theory of superconductivity in disordered metals and

used recently in the pioneering works by Kitaev [27] and Maldacena et al. [28] to

define and describe many-body quantum chaos with an eye on fundamental puz-

zles in black-hole physics. In the last few years, the OTOC has become a pop-

ular tool to describe “quantum chaos” in many-body quantum systems (see e.g.

Refs. [195, 196, 197, 198, 199, 200, 231, 273, 274, 275, 276, 277]). It was shown

in Refs. [230, 278, 279] (see Chapters 5 and 6) that the exponential growth of the

OTOC, although not always equal, might be connected to the exponential diver-

gences of orbits in the phase space of an effective classical system. In certain cases,

such as the celebrated Sinai billiard [33] and Bunimovich stadium [34, 35], it is

straightforward to understand this classical limit. Below, we consider non-chaotic
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Figure 7.2: Ergodic hierarchy [20] provides a nested classification of non-integrable
systems. Only K- and B-systems are chaotic and have positive Lyapunov exponents,
while merely ergodic and merely mixing systems have no exponential instabilities.

polygonal billiards instead. In a polygon, for any pair of trajectories – no matter

how close the initial conditions are – one can identify the origin of each trajectory

evolving the dynamics backward in time [269, 270], ensuring that the KS entropy is

zero. Note that in the ergodic hierarchy, which is displayed in Fig. 7.2 in the order

of “increasing chaoticity,” polygonal billiards fall within at most the strongly mixing

class (only K- and B-systems have a positive KS entropy; see e.g. Ref. [20] for a

detailed discussion of the hierarchy). Interestingly, however, the mixing property

at the classical level can be sufficient to generate Wigner-Dyson or intermediate

energy-level statistics on the quantum side, as was shown, for example, in Ref. [32]

for a family of irrational triangular billiards [280].

Apart from this “quantum” Lyapunov instability, where quantum mechanics

effectively promotes the corresponding classical system in the ergodic hierarchy,

there are potentially more prosaic sources of early-time instabilities in OTOC in
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various systems. First, note that the classical definition of exponential Lyapunov

instabilities involves taking two limits: infinitesimally small initial separation in the

phase space and infinite time-limit in the subsequent evolution. However, neither

limit is available quantum-mechanically because a wave-packet always has a finite

size per uncertainty principle and subsequently spreads out on time-scales of order

the Ehrenfest time. Second, there is a distinction between the quantum-mechanical

expectation value in the way quasiclassical trajectories are accounted for and the

classical phase-space average (see Chapter 5 and Ref. [230]). Therefore, in most

numerical simulations of OTOCs the proper Lyapunov limit can not be enforced

and the dynamics of the wave-packets may involve rapid growth, which is however

spurious in nature. To explore these types of phenomena, we also study convex

polygonal billiards (specifically an irrational triangle) and some integrable systems.

7.2 Models

We perform explicit calculations for the butterfly-shaped polygonal billiard

shown in Fig. 7.1 (outer black line) [260], the quadrilateral non-convex billiard shown

in Fig. 7.3, and a triangular billiard obtained from it by removing the vertex at (0; 0).

We launch a wave-packet with the initial wave-function

Ψ0(r) ∝ exp

[
−(r− r0)2

2~effσ2
+

i

~eff

p0 · r
]

(7.1)

by decomposing it into the billiard’s energy eigenstates and evolving accordingly.
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Figure 7.3: Deformed triangular billiard (unit area). All angles are incommensurate
with π. For a finite particle, the inward-pointing corner gets rounded analogous to
those in Fig. 7.1.

This requires numerical solution of the Schrödinger equation for the billiard:

− ~2
eff

2
∇2Ψ(r) = EΨ(r), Ψ(r)

∣∣∣
r∈billard walls

= 0. (7.2)

Here ~eff = ~/(p0

√
A), A is the billiard’s area, and p0 = |p0| is the wave-packet’s

average momentum. A = 1 and p0 = 1 are chosen as the units along with the

particle’s mass m = 1. The butterfly-shaped billiard has two reflection symmetries

with respect to x → −x and y → −y. Thus, its eigenstates fall into four parity

classes. In order to enforce these parities and speed up the calculations, one typically

solves the eigenvalue problem on a quarter of the billiard imposing the Dirichlet

and/or Neumann boundary conditions on each cut, thereby determining the parity

class of the solutions. We solve these four boundary-value problems for the Laplace

operator numerically using the finite-element method, and find eigenstates of each
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class up to a certain energy cutoff. The accuracy of the numerical solution generally

decreases with the number of found eigenstates [244]. We use Weyl’s formula for

the number of modes [182] to control it. Weyl’s law sets the asymptotic behavior of

the average number N (E) of eigenstates below energy E as: N (E) ' [A/(4π)] ε−

[P/(4π)]
√
ε, ε→∞, where ε = 2E/~2

eff and P is the billiard’s perimeter. For our

present purposes, it is sufficient to use around Nmax = 104 eigenstates, and within

this range, we have exact agreement with Weyl’s law, i.e. the number of found states

is centered around Weyl’s asymptote. In addition, we repeat the calculations with

the boundary-integral method and obtain the same results.

Due to the lack of narrow outer corners, the butterfly-shaped billiard allows

for a relatively long lifetime of the initial minimal-uncertainty wave packet until this

packet becomes completely scrambled and loses classical-like dynamics (see Fig. 7.4).

Along with this billiard, we introduce an effective mathematical billiard (Fig. 7.1,

inner blue line) that is obtained by tracing the set of positions available to the center

of a circular particle of radius σ
√

~eff/2 inside the polygonal butterfly billiard. The

squeezing parameter σ is defined in Eq. (7.1).

7.3 Diagnostic tool

As a measure of quantum chaotic dynamics, we use the OTOC [27, 28, 195,

196, 197, 198, 199, 200, 230, 231, 273, 274, 275, 276, 277, 278, 279] defined as:

C(t) = −
〈
[x̂(t), p̂x(0)]2

〉
, (7.3)
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Figure 7.4: An example of successive stages of the wave-packet evolution, |Ψ(r, t)|2,
in the butterfly-shaped polygonal billiard. Red arrows indicate the directions of
motion of the components. Initial velocity is aimed at an inner corner.

where x̂(t) and p̂x(t) are the Heisenberg operators of the x-components of the par-

ticle’s position and momentum. As was first pointed out by Larkin and Ovchin-

nikov [26], the OTOC probes the sensitivity of quasiclassical trajectories to initial

conditions as p̂x(0) = −i~eff∂/∂x(0), and hence C(t) = ~2

〈(
∂x(t)
∂x(0)

)2
〉

. Therefore,

classical Lyapunov-like growth is anticipated at early times, C(t) ∝ exp(2λ̃t), for a

chaotic system, with λ̃ related to its Lyapunov exponent in the respective subspace.

As was shown in Chapter 6 and Ref. [279], whether the OTOC actually grows

exponentially or not, depends on an initial quantum state and on the existence of

a finite time window between the first collision and the Ehrenfest time. For bil-

liards, a natural choice of the initial state is the minimal-uncertainty wave-packet,

Eq. (7.1). The scrambling (Ehrenfest) time in chaotic systems is short and grows

logarithmically slowly with system size: tE = ln(~−1
eff )/λcl, where λcl is the posi-
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tive Lyapunov exponent of the classical counterpart of the system [4, 252]. This

estimate is based on the fact that, in contrast to non-chaotic systems where the

spreading of wave-packets is algebraic in time, the spreading is typically exponen-

tial in chaotic systems, i.e. in quantum counterparts of K- and B-systems from

the ergodic hierarchy. Extending the Ehrenfest window to cover the long-time er-

godic classical behavior, which is required to define the global Lyapunov exponents

in chaotic systems, is an exponentially demanding numerical task. However, local

finite-time Lyapunov exponents can be defined, although they fluctuate at these

short times [279].

7.4 Breakdown of classical-to-quantum correspondence

As discussed in Chapter 6 [279], in quantum billiards, which are classically

chaotic, the exponential growth of the OTOC may be related to the classical Lya-

punov instability and extends up until the Ehrenfest time. After that, the wave

packet is spread across the entire system, and no further exponential growth is

possible.

The classical counterpart of the OTOC is defined as:

Ccl(t) =

〈〈
lim

∆x(0)→0

(
∆x(t)

∆x(0)

)2
〉〉

, (7.4)

where 〈〈 . . . 〉〉 denotes the classical phase-space average over the Gaussian Wigner

function corresponding to the initial quantum packet in Eq. (7.1), and ∆x is the

distance along the x−axis between a pair of trajectories starting near some point
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in the phase space. Ccl(t) agrees with C(t)/~2
eff all the way up to tE. After that,

they deviate from each other. The quantum-mechanical OTOC slows down and

eventually saturates, while the classical one continues to grow exponentially.

In the polygonal billiards, there are no positive classical Lyapunov exponents,

and the corresponding classical OTOC does not grow exponentially at any time, as

shown in the inset in Fig. 7.5 for the case of the butterfly-shaped polygonal billiard

(dotted black and solid green lines). However the quantum-mechanical OTOC in

polygonal billiards shows a clear exponential growth at early times that has no origin

in the classical counterparts, as demonstrated in Fig. 7.5 (main plot and inset), as

well as in Figs. 7.6, and 7.7 (described below).

As discussed in the introduction, the motion of a minimal-uncertainty wave

packet is in some sense similar to that of a finite-size disk. Classical motion of

such a disk gives rise to an effective billiard which hosts a point-like particle at the

disk’s center that is not allowed to approach the walls of the original billiard closer

than by the disk’s radius. Many billiards preserve their status within the ergodic

hierarchy upon this procedure (e.g., a Bunimovich stadium remains a stadium with

a smaller area and convex polygons also turn into similar convex polygons). Not so

for non-convex polygonal billiards, which go up the ergodic hierarchy for a finite-

sized particle from the strongly mixing class to the K-chaotic one. In such non-

chaotic systems, there can still be measure-zero sets of unstable points, and these

get smeared over finite-measure regions by introducing a finite size of the particle.

A quantum wave packet, which always has a finite width, can have a similar effect.

An additional consideration is that polygons constitute an everywhere dense
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Figure 7.5: Main plot – open blue circles and line: logarithm of the OTOC in the

polygonal butterfly-shaped billiard: ln (C(t)/~2
eff) = ln

(
− 1

~2
eff

〈
[x̂(t), p̂x(0)]2

〉)
. Solid

red triangles: the same in the rounded version of this billiard (middle red line in
Fig. 7.1). A remarkable agreement demonstrates that the growth in both cases is the
same, supporting our finite-size-related arguments. In addition, we show the corre-

sponding behavior of an alternative diagnostic, L(t) =
〈

ln
(
− 1

~2
eff

[x̂(t), p̂x(0)]2
)〉

,

that swaps the order of averaging and logarithm to that of the proper defini-
tion of the classical Lyapunov exponent. For chaotic systems with uniform phase
space, one would expect L(t) = 2λ̃t+ const at t < tE. Green squares and line:
L(t) in the polygonal butterfly-shaped billiard. Pink crosses: L(t) in the rounded
billiard. Dashed black lines: linear fits for ln(C(t)/~2

eff) and L(t) in the poly-
gon. Both show the exponent 2λ̃ ≈ 3.3 that is 5 times larger than the inverse
time-window, which ensures that the fit is valid. Inset – the comparison between
C(t)/~2

eff and Ccl(t) =
〈〈
{x(t), px(0)}2

Poisson

〉〉
[see Eq. (7.4)] and between exp [L(t)]

and exp [Lcl(t)] = exp
[ 〈〈

ln {x(t), px(0)}2
Poisson

〉〉 ]
in the polygonal quantum and clas-

sical billiards, respectively. ~eff = 2−7, σ = 1/
√

2, Rs =
√

2−1
16
√

2
≈ 0.02.
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Figure 7.6: Main plot – logarithm of the OTOC as a function of time in the polygonal
butterfly-shaped billiard at three different values of ~eff . The exponential growth of
the OTOC hinges on the finite wave-packet size. Inset – logarithm of the OTOC in
the quadrilateral billiard (Fig. 7.3), averaged over an ensemble of initial conditions
as indicated by the bar, · · ·, with the corresponding values of ~eff . σ = 1/

√
2.
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measure-zero set in the space of closed curves on a plane, and the phase space of the

corresponding billiards contains isolated unstable points. A slight variation of the

wall’s shape almost always results in finite-curvature regions and smears out sin-

gular phase-space points. A possible consequence of that would manifest in that a

quantum-mechanical wave packet effectively “rounds” singularities even if they orig-

inate from outer corners of polygons, including those in convex polygonal billiards

considered below. This can be generalized to a statement that quantum mechanics

promotes measure-zero sets of unstable points into finite-measure sets [260]. We

check these conjectures by varying the billiard’s boundary within the shaded gray

region in Fig. 7.1, and, in particular, compare the behavior of the OTOC in the

polygonal and in a rounded billiard, such as the middle red line in Fig 7.1. The

latter system is classically chaotic. We find a good agreement between the quantum

OTOCs in the two, as demonstrated in Fig. 7.5. In addition, from this comparison

we can infer that there are no significant effects related to the non-smoothness of

the polygonal boundary, such as diffraction, as in the case in the quantum baker’s

map [281]. Note a major difference between the Lyapunov behaviors of the quantum

baker’s map and our billiards: the latter do not have a classical Lyapunov exponent

at all and the exponential growth of the OTOC there is a purely quantum effect.

At smaller values of ~eff , the wave packets are tighter, and their sides become

steeper. Following the reasoning in Refs. [282, 283], it causes the rate of the OTOC’s

divergence, λ̃, to be larger than that at larger values of ~eff , as shown in Fig. 7.6,

main plot. The inset in Fig. 7.6 shows an analogous behavior for the quadrilateral

billiard shown in Fig. 7.3.
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7.5 Quantum dynamics in convex polygonal and integrable billiards

Classical convex polygonal billiards do not change their status within the er-

godic hierarchy upon promoting their point-particle versions to those with finite-

size hard particles. However, quantum-mechanically, they still show a rapid initial

growth of the OTOC coexisting with an oscillatory behavior, as we demonstrate

for an irrational triangular billiard obtained from the quadrilateral one in Fig. 7.3

by removing the vertex at (0; 0). The effective rate of growth is smaller than for

the non-convex billiard, but similar signs of instability are present. Note that this

growth should not be attributed to any mixing dynamics in the classical counter-

parts of these billiards. Upon quantization, the level statistics of irrational triangu-

lar billiards – the most widely used “quantum-chaotic” diagnostic – is close to the

Wigner-Dyson surmise [32], putting them outside of the Bohigas-Giannoni-Schmit

conjecture [29, 30]. As shown in Fig. 7.7, the early-time behavior has a period of

what looks very much like an exponential growth, although it is modulated by the

effects of collisions with the walls.

We believe that this behavior of OTOC in convex billiards is due to the fact

that a quantum simulation can not as a matter of principle access the proper small-

distance and long-time limit where classical Lyapunov exponents are defined. As

such, this type of growth in OTOC is a property of the initial wave-packet rather

than the system where it propagates. If so, similar growth should be observable in

integrable systems as well. We have considered the simplest billiard – the rectangular

billiard – and indeed found that a weak growth can be detected (again superimposed
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Figure 7.7: Logarithm of the OTOC, ln(C(t)/~2
eff), in an irrational triangular billiard

(upper blue line and open circles). After an initial-condition-dependent delay, the
OTOC shows exponential grows, although at a rate lower than that for the non-
convex billiard. The other related correlator, L(t), introduced in Fig. 7.5, is shown
for comparison (lower red line and asterisks). Black dashed lines show linear fits
with 2λ̃ ≈ 1, which is over 5 times larger than the inverse time window, ensuring
that the fit is valid.
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on oscillations). Since the rectangle factorizes into two one-dimensional segments,

one can also look at the most basic textbook quantum mechanical problem – a

particle in a box. The OTOC can be calculated to a large degree analytically in this

case and shows clear recurrent oscillations including short time-intervals of growth.

Of course these periods of growth have no relation to chaos or the butterfly effect and

do not contain any valuable information. The behavior of OTOC in these integrable

systems is presented in the following section.

All in all, there appear to exist two sources of rapid growth of OTOC in

billiards: one related to a genuine Lyapunov instability (in chaotic billiards and

those that are promoted in the chaotic hierarchy upon quantization) and a spurious

growth related to a finite-size wave-packet enforcing the “wrong” averaging of the

underlying classical dynamics. Such growth is present independently of the status of

the effective billiard in the chaotic hierarchy. In order for OTOC to have a physical

meaning, it is important to disentangle the two types of contributions. It should

be possible by looking at how the growth rates scale with the Planck constant and

extracting the “interesting” genuine Lyapunov growth, if any. The details of this

scaling procedure will be discussed in a subsequent publication.

7.6 Quantum dynamics in integrable polygonal billiards and a 1D

particle in a box

We show here that integrable polygonal billiards and even the textbook ex-

ample of a particle in a 1D box also demonstrate what appears as an exponential
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instability in the OTOC. Fig. 7.8 shows fast growth of the OTOC by more than 8

orders of magnitude in a rectangular billiard. As this billiard is completely separa-

ble in the (x, y) coordinates, and we only consider operators along the x axis, we

should observe exactly the same dynamics in a 1D particle-in-a-box model. We do

an independent semi-analytic calculation of the OTOC in the latter case. In partic-

ular, we use the analytically known eigenvalues and eigenfunctions of the 1D box to

decompose the initial Gaussian wave packet, Ψ0 =
∑

n ψn |n〉, where ψn = 〈n|Ψ0〉

and Ĥbox|n〉 = En|n〉 ≡ ~effεn|n〉, and propagate it in time. The only two steps done

numerically are the calculation of the overlap coefficients ψn and the summation of

the corresponding series, as shown in the following equations:

C(t) = −
〈
Ψ0

∣∣[x̂(t), p̂x(0)]2
∣∣Ψ0

〉
= −

∑
n,m

ψ∗nψm
〈
n
∣∣[x̂(t), p̂x(0)]2

∣∣m〉 , (7.5)

〈
n
∣∣[x̂(t), p̂x(0)]2

∣∣m〉 =
∑
k

〈n |[x̂(t), p̂x(0)]| k〉 〈k |[x̂(t), p̂x(0)]|m〉 , (7.6)

〈n |x̂(t)p̂x(0)| k〉 =

〈
n

∣∣∣∣eit Ĥbox
~eff x̂e

−it Ĥbox
~eff p̂x

∣∣∣∣ k〉 =
∑
j

eitεn(x)nje
−itεj(px)jk, (7.7)

(x)nm =

(
2

π

)2

L
nm [(−1)n+m − 1]

(n2 −m2)2 , (px)nm =
2

L

nm [(−1)n+m − 1]

(n2 −m2)
, n 6= m,

(7.8)

where L is the length of the box, (x)nm and (px)nm are the matrices of the

operators x̂ = x̂(0) and p̂x = p̂x(0), respectively, in the eigenbasis of the model.

(x)nn ≡ L/2 and (px)nn ≡ 0 for any n. We repeatedly used the resolution of

identity in these transformations. And indeed, we obtain the same results as in
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Figure 7.8: Logarithm of the OTOC, ln(C(t)/~2
eff), in a rectangular billiard (upper

blue line and open circles). The OTOC shows periods of what appears as expo-
nential growth superimposed with oscillations due to collisions. The growth rate
is the smallest among our examples but can be made continuous all the way to
the saturation value by varying the initial conditions. The related L-correlator, in-
troduced in Fig. 5 in the main text, is shown for comparison (lower red line and
crosses) and demonstrates the same behavior. Black dashed lines show linear fits
with 2λ̃ ≈ 0.5 ÷ 0.6, which is over 3 times larger than the individual inverse time-
windows, ensuring the adequate fit. Pink and light-green lines show the comparison
with the case of a particle in a 1D box. The data agrees, as expected. Longer-time
data for the 1D case is presented in Fig. 7.9.
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Figure 7.9: Logarithm of the OTOC, ln(C(t)/~2
eff), for a particle in a 1D box (upper

blue line). The OTOC shows periods of “exponential” growth and decay, as well as
those of oscillatory and stable behavior, and its evolution is strictly periodic. The
L-correlator, introduced in Fig. 5 in the main text, is shown for comparison (lower
red dashed-dotted line). It demonstrates the same “exponential” instability at early
time and periodic structure at longer time. The length of the box of ≈ 1.65 and the
particle’s momentum p0 ≈ 0.89 are chosen to correspond to those along the x−axis
in the rectangular billiard in Fig. 7.8.

our numerical curves for the rectangular billiard that show the same exponential-

looking growth – see Fig. 7.8. Given that this system is 1D and integrable, its

dynamics is inevitably periodic, which is confirmed by extending the time further,

as demonstrated in Fig. 7.9. However, at relatively short times, the growth of OTOC

and the L-correlator both show divergences well fitted by exponential functions.
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Chapter 8: Conclusion

The present thesis is devoted to a number of novel developments that can be

broadly attributed to the field of quantum chaos, which has started to undergo a

rapid revival of broad interest in the past few years, with a particular emphasis on

its many-body generalizations and peculiar effects that violate some of the textbook

truths, make our intuition fail, pose new questions and even open doors for some

opportunities in quantum technologies. We, however, started to work in the field

a little before the latest wave of interest emerged, and used our unique position

to step back and devote our efforts to ensure that the novel developments – our

own ones included – are given a thorough examination from the well-established

perspective of the traditional quantum chaos, that offers many vital connections to

classical physics and visual interpretations that the “many-body quantum chaos”,

as it is often called now, lacks due to its high complexity.

In Chapters 2 and 3, we studied dynamical localization in few- and many-body

settings. It has been considered multiple times in various models in the traditional

quantum chaos research before. But we were able to give for the first time an

affirmative answer to the question of whether it can survive in the presence of

interactions and in the absence of explicit integrability.
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In Chapter 4, we applied a novel localization-landscape-based approach to

study transport and an analog of Anderson localization in rippled channels. We

showed how visually instructive the effective confining potential is. It allows one to

predict transport properties of a channel in a much simpler way than the traditional

way based on solving the Schrödinger equation directly.

In Chapter 5, we revisited a recently introduced approach to define quantum

Lyapunov exponents based on the notion of the OTOC. We showed what the OTOC

means in the systems that can be studied efficiently from both quantum and classical

perspectives, gave it a precise classical interpretation, and showed how its exponen-

tial growth can abruptly end due to quantum interference. We also demonstrated

the intrinsic scaling characteristic of the OTOC.

In Chapter 6, we introduced a new hybrid quantum-chaotic measure, the Lya-

punovian level statistics, which allowed us to bridge the gap between seemingly

unrelated early-time and infinite-time approaches to quantum chaos – the OTOC

and the random-matrix theory.

Then, in Chapter 7, we showed that OTOC can pick up zero-measure diver-

gences in classical phase space that are not significant for classical dynamics and,

thereby, could lead to a – somewhat artificial in our opinion – effect of quantum

generation of chaos, as measured by the OTOC.
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[84] Ignacio Garćıa-Mata and Dima L. Shepelyansky. Delocalization induced by
nonlinearity in systems with disorder. Phys. Rev. E, 79:026205, Feb 2009.

152



[85] S. Flach, D. O. Krimer, and Ch. Skokos. Universal spreading of wave packets
in disordered nonlinear systems. Phys. Rev. Lett., 102:024101, Jan 2009.

[86] Mario Mulansky, Karsten Ahnert, Arkady Pikovsky, and Dima L. Shepelyan-
sky. Dynamical thermalization of disordered nonlinear lattices. Phys. Rev. E,
80:056212, Nov 2009.
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[214] Ignacio Garćıa-Mata and Diego A Wisniacki. Loschmidt echo in quantum
maps: the elusive nature of the lyapunov regime. J. Phys. A, 44(31):315101,
2011.

[215] Shmuel Fishman and Mark Srednicki. Private Collaboration, 2019.

[216] M C Gutzwiller. Chaos in Classical and Quantum Mechanics. Interdisciplinary
Applied Mathematics. Springer New York, 1991.

[217] Michael V Berry. Semiclassical theory of spectral rigidity. Proc. R. Soc. Lond.
A, 400(1819):229–251, 1985.

[218] A. V. Andreev, O. Agam, B. D. Simons, and B. L. Altshuler. Quantum chaos,
irreversible classical dynamics, and random matrix theory. Phys. Rev. Lett.,
76:3947–3950, May 1996.

[219] A V Andreev, B D Simons, O Agam, and B L Altshuler. Semiclassical field
theory approach to quantum chaos. Nucl. Phys. B, 482(3):536 – 566, 1996.

[220] Alexander Altland, Sven Gnutzmann, Fritz Haake, and Tobias Micklitz. A
review of sigma models for quantum chaotic dynamics. Rep. Prog. Phys.,
78(8):086001, 2015.

[221] E B Stechel and E J Heller. Quantum ergodicity and spectral chaos. Ann.
Rev. Phys. Chern., 35(1):563–589, 1984.

[222] Steve Zelditch. Quantum ergodicity and mixing. arXiv:math-ph/0503026,
2005.

[223] Steve Zelditch. Recent developments in mathematical quantum chaos. Current
Developments in Mathematics, 2009:115–204, 2010.

[224] M V Berry. Regular and irregular semiclassical wavefunctions. J Phys A,
10(12):2083, 1977.

[225] M V Berry. Statistics of nodal lines and points in chaotic quantum billiards:
perimeter corrections, fluctuations, curvature. J Phys A, 35(13):3025, 2002.
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