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Cyber-security domain is inherently dynamic. Not only does system configuration 

changes frequently (with new releases and patches), but also new attacks and 

vulnerabilities are regularly discovered. The threat in cyber-security is human, and hence 

intelligent in nature. The attacker adapts to the situation, target environment, and 

countermeasures. Attack actions are also driven by attacker’s exploratory nature, thought 

process, motivation, strategy, and preferences. Current security risk assessment is driven 

by cyber-security expert’s theories about this attacker behavior.  

The goal of this dissertation is to automatically generate the cyber-security risk 

scenarios by: 

 Capturing diverse and dispersed cyber-security knowledge  

 Assuming that there are unknowns in the cyber-security domain, and new 

knowledge is available frequently 



 Emulating the attacker’s exploratory nature, thought process, motivation, 

strategy, preferences and his/her interaction with the target environment 

 Using the cyber-security expert’s theories about attacker behavior 

The proposed framework is designed by using the unique cyber-security domain 

requirements identified in this dissertation and by overcoming the limitations of current 

risk scenario generation frameworks.  

The proposed framework automates the risk scenario generation by using the 

knowledge as it becomes available (or changes). It supports observing, encoding, 

validating, and calibrating cyber-security expert’s theories. It can also be used for 

assisting the red-teaming process.  

The proposed framework generates ranked attack trees and encodes the attacker 

behavior theories. This information can be used for prioritizing vulnerability remediation. 

The proposed framework is currently being extended for developing an automated threat 

response framework that can be used for analyzing and recommending countermeasures. 

This framework contains behavior driven countermeasures that uses the attacker behavior 

theories to lead the attacker away from the system to be protected. 
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1 Introduction 

Cyber-security domain is inherently dynamic. Not only does system configuration 

changes frequently (with new releases and patches), but also new attacks and 

vulnerabilities are regularly discovered. The threat in cyber-security is human, and hence 

intelligent in nature. The attacker adapts to the situation, the target environment, and to 

the countermeasures. Attack actions are also driven by attacker’s exploratory nature, 

thought process, motivation, strategy, and preferences. Current cyber-security risk 

assessment is driven by expert’s theories about attacks and attacker behavior.  

The goal of this dissertation is to automatically generate the cyber-security risk 

scenarios by: 

 Capturing diverse and dispersed cyber-security domain (for example, the 

knowledge about characteristics of software systems, their design, use, features, 

known as well as potential vulnerabilities and attacks etc.). 

 Assuming that there are unknowns in the cyber-security domain, and new 

knowledge is available frequently  

 Emulating the attacker’s exploratory nature, thought process, motivation, 

strategy,  preferences, and his/her interaction with the target environment  

 Using cyber-security expert’s theories  

Current manual risk scenarios are generated by red-team. Red-team consists of a 

group of cyber-security experts emulating real attacker. Manual attack trees are generated 

using cyber-security expert’s theories about attacker behavior (attacker’s exploratory 

nature, thought process, motivation, strategy, and preferences) and diverse type of 
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knowledge (characteristics of software, and known as well as potential vulnerabilities and 

attacks), but their quality is dependent on the analyst’s expertise. Risk scenarios 

generated by current automated frameworks produce repeatable outcome but they use 

limited information (primarily about presence of vulnerability, connectivity between 

software systems, attacker’s initial privileges, and privileges gained by exploiting 

vulnerabilities), do not capture attacker behavior, and do not use expert theories to 

generate risk scenarios. Current automated framework also assumes that complete 

knowledge is available a priori. This assumption is not valid in cyber-security domain. 

Current automated approach requires re-encoding knowledge and re-generating risk 

scenarios when new knowledge is available.  

It is widely accepted in cyber-security domain that the main objective of the attacker 

is to compromise the confidentiality, integrity, or availability of information. The 

proposed automated framework generates risk scenarios describing how the attacker can 

compromise the confidentiality, integrity, and availability of the information. However, 

current automated risk scenarios are generated only for attacker gaining restricted 

privilege on the target software system [1] or for violating a security property of the 

software[2]. This represents only one of the ways the attacker can achieve his/her goal of 

compromising the information confidentiality, integrity, and availability. 

The proposed framework simplifies the risk scenario generation without limiting the 

type of knowledge that can be used. The proposed framework also assumes that the 

knowledge is incomplete and there are unknowns in cyber-security domain. According to 

the Office of Management and Budget [3], the cyber-security risk assessment is complex 

process and does not improve the state of security. The lack of improvement in security 
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can also be attributed to current risk scenario generation frameworks not identifying and 

using the unique cyber-security domain characteristics and requirements. This 

dissertation identifies the unique cyber-security domain characteristics, which are used as 

requirements for designing the proposed framework. 

Chapter 2 describes the state of cyber-security. Chapter 3 describes how risk 

assessment is done in different domains, identifies the unique requirements for doing risk 

assessment in cyber-security domain, introduces current risk scenario generation 

frameworks and their limitations, and describes how the proposed framework overcomes 

these limitations. Chapter 4 uses these unique cyber-security domain requirements to 

design an automated risk scenario generation framework. It also compares the proposed 

framework’s design with the current risk scenarios generation frameworks. Chapter 5 

describes the proposed framework’s architecture. The implementation of proposed 

framework is described in Chapter 6 and 7, and the modes of operations of the proposed 

framework are described in Chapter 8. Chapter 9 compares the proposed framework with 

current cyber-security risk scenario generation frameworks using a case study. Chapter 

10 summarizes the research contribution, applications, and extensions of the framework. 

Finally, Chapter 11 describes the conclusion.  
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2 Characterization of the Security Domain 

2.1 Introduction 
 

“Out of every IT dollar spent, 15 cents goes to security. Security staff is being hired 

at an increasing rate. Surprisingly, however, enterprise security isn’t improving.”, 

according to the “Global State of Security” survey [4] . Accurate cyber-security risk 

assessment and investment are critical problems faced by many organizations today. One 

critical part of risk assessment is risk scenario generation. Risk scenarios describe how an 

undesirable outcome (for example, attacks, accidents, etc.) may occur. This dissertation 

focuses on identifying the requirements for doing risk assessments in the cyber-security 

domain. The identified cyber-security domain requirements are used to propose a 

framework for automatically generating risk scenarios, which describe the plan an 

attacker would use to compromise the system.  

This chapter surveys the current state of cyber-security, and identifies the domain 

characteristics that influence cyber-security risk assessment. Section 2.2 describes the 

current state of cyber-security. Section 2.3 describes the state of cyber-security risk 

assessment. Section 2.4 introduces the impact of cyber-security domain characteristics on 

the risk assessment.  

2.2 State of Security 

One of the cyber-security industry’s primary goals during past decade has been to 

produce more secure software, and notable improvements have occurred. A large amount 

of research has been done to 1) identify and improve coding techniques that reduce 

vulnerabilities and 2) discover and patch vulnerabilities more efficiently. According to 
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software manufactures, the cyber-security of software is improving. It is difficult to say 

the same about overall state of the cyber-security. In last decade, the number of reported 

vulnerabilities increased significantly from 1999 to 2007, with a slow decreasing trend in 

the last 3 years. The total number of vulnerabilities published in the National 

Vulnerability Database [5] in the past decade are shown in Figure 1. 

 

Figure 1: Number of reported vulnerabilities in last decade- source of data [5] 

Despite the efforts to make software more secure, all types of vulnerabilities 

continue to exist [6]. Figure 2 compares the number of vulnerabilities reported in 2010 

(for each type of vulnerability identified by the National Vulnerability Database [5]) and 

the total number of vulnerabilities of that type reported in the last decade.   

One of the reasons behind the failure to eradicate a single type of vulnerability 

may be that the attackers are adapting to software security improvements. As a result, 

new sub-categories of the same type of attacks are often discovered. Another reason is 

that the technology infrastructure itself changes rapidly, introducing more vulnerabilities.   
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Figure 2: Comparison of number of vulnerabilities reported in 2010 with total number of 

vulnerabilities reported in past decade - source of data [5] 

 

According to a study conducted by Carnegie Mellon University's Computer 

Emergency Response Team (CERT), the availability of automated tools capable of 

launching sophisticated attacks is increasing [7]. As a result, the level of technical 

knowledge needed by the attacker to launch the attacks does not need to be as high. 

According to [8] the defender’s capabilities have also increased due to the availability of 

better tools. Despite this increase in defender capability, the Global State of Security 

Survey showed an increase in financial losses caused by cyber-security breaches, from 

6% in 2007 to 20% in 2010[9]. Respondents indicated that the theft of intellectual 

property increased from 5% in 2007 to 15% in 2010 [9]. The percentage of respondents 

suffering a brand or reputation compromise also increased from 5% in 2007 to 14% in 

2010 [9]. The Global State of Security Survey showed also indicates that [9] 23% of its 

respondents did not know how many cyber-security incidents they encountered in past 
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year. This is down from 40% in 2007. The number of respondents who were not aware of 

the type of incidents that they encountered also decreased, from 45% in 2007 to 33% in 

2010[9]. This information is shown in Figure 3. The trend suggests that the increase in 

defensive capabilities is not necessarily making organizations more secure.  

 

Figure 3  State of cyber-security 2011 -  source of data [9] 

 

2.3 State of Cyber-security Risk Assessment and Risk-based Decision  

According to [9] only 30% of respondents used risk reduction to justify cyber-

security investment. This is shown in Table 1 below.  
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Factors justifying cyber-security investment 2007 2008 2009 2010 

Legal/regulatory environment  58%    47%    43%    43%   

Client requirement  34%    31%    34%    41%   

Professional judgment  45%    46%    40%    40%   

Potential liability/exposure  49%    40%    37%    38%   

Common industry practice  42%    37%    34%    38%   

Risk reduction score  36%    31%    31%    30%   

Potential revenue impact  30%    27%    26%    27%   

Table 1 Factor’s used to justify cyber-security investment- source of data [9] 

A case has also been made for replacing risk-driven cyber-security approach with 

due-diligence driven approach [10, 11]. One of the reasons behind this viewpoint is that 

current expert driven cyber-security risk assessment methods are often considered as 

“folk art”, leading to inconsistent, non-repeatable outcomes. The Office of Management 

and Budget (OMB) no longer requires the preparation of formal risk analyses [3]. 

According to the OMB [3], “In the past, substantial resources have been expended doing 

complex analyses of specific risks to systems, with limited tangible benefit in terms of 

improved security for the systems. Rather than continue to try to precisely measure risk, 

security efforts are better served by generally assessing risks and taking actions to 

manage them.”  

This dissertation agrees that the current cyber-security risk assessment 

methodology does need to be improved. However, the lack of improved cyber-security in 

the system is not only because of the limitation of current risk assessment methods, but is 

caused by a failure to understand the characteristics of the cyber-security domain. A lack 

of understanding of cyber-security domain characteristics affects all cyber-security 

methodologies, including the cyber-security risk assessment methods. The risk 

assessment can also be accurate without being complex.  
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In addition, there is an emerging trend towards integrating cyber-security with the 

central risk management framework of an organization. For example, there is a 

progressive move to combine physical security with cyber-security [12]. On national 

level, there is increasing focus on integrating the nation’s civil infrastructure with the 

technology infrastructure connected to internet. An example of this is the ultra-

interconnected US power grid [13, 14]. This exposes the critical infrastructure to a new 

type of threat. This threat can be addressed by integrating the cyber-security risk 

assessment with the critical infrastructure risk assessment.  

Despite these efforts, there is a fundamental misalignment between the 

characteristics of the domains whose risk assessment methods are to be integrated. Risk 

assessment techniques developed for a mature domain are often applied to other 

developing domains without understanding why these techniques were used in a specific 

way in the first domain. To efficiently integrate these different domains under a central 

risk management framework, the common risk assessment techniques need to be tailored 

to the specific domain requirements. 

2.4 Security Domain Characteristics and Impact on Risk Assessment 

Current cyber-security risk assessment focuses on identifying vulnerabilities, and 

corresponding security controls. Consequently, the risk scenario generation mainly 

focuses on vulnerability identification. Often these scenarios are reduced to capturing 

only the presence of a single vulnerability and how it can be exploited. This type of risk 

assessment focuses only on a small aspect of an otherwise complex cyber-security 

domain.  
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This section introduces the impact of cyber-security domain characteristics on the 

risk assessment process.  

2.4.1 Expert Theories 

Current cyber-security risk assessment is mainly driven by expert knowledge and 

judgment. Experts are asked to identify and rank the risks. The risk scenarios are often 

generated by performing a security/penetration testing. This penetration testing is carried 

out by a “red-team” that attacks the system to discover vulnerabilities. The red-team 

consists of a group of “ethical hackers” that compromises the system to uncover 

vulnerabilities [15]. The outcomes of current expert-driven risk assessments are 

subjective, and lead to inconsistencies and non-repeatable outcomes.  

This dissertation proposes a framework for automatically generating risk 

scenarios. The framework elicits the cyber-security theories from experts. It then uses 

these theories to automatically generate risk scenarios. The framework can also be used 

to validate and calibrate the expert theories. Validation can be done by using logical 

reasoning and calibration can be done by using empirical data. 

2.4.2 Domain Dynamicity 

Cyber-security domain is inherently dynamic. In this domain, the system to be 

protected changes with new versions and frequent updates. At the same time, new 

vulnerabilities and attacks are also discovered.  

Computer hardware trends are addressed by Moore's law [16]. This law suggests 

that the number of transistors that can be placed inexpensively on an integrated circuit 

increases exponentially. This number doubles approximately every two years. Software 

trails behind the Moore’s law. A complete reengineering of a typical software application 
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occurs on average 3-5 years. However, there is a drive for software to follow Moore’s 

law to take advantage of the availability of faster processing. That being said, software is 

more dynamic than hardware. Even though a complete redesign of software takes longer, 

patches and updates are released periodically. For example, Microsoft releases security 

patches and updates every alternate Tuesday. This is commonly known as “Patch 

Tuesday”. Unlike hardware maintenance, these patches and updates may change the 

system’s behavior. This dynamic nature of software also affects the risk scenarios.  

As mentioned in Section 2.3, the OMB no longer requires the preparation of 

formal risk analyses [3]. According to the OMB [3], “While formal risk analyses need not 

be performed, the need to determine adequate security will require that a risk-based 

approach be used.” The OMB recommends [3] reviewing the security controls when 

significant modifications are made to the system, but at least every three years. This 

recommendation assumes that the risks and the corresponding risk-based controls are 

impacted only by significant change in the system. This does not take into consideration 

the impact of frequent software updates. It also ignores the change in risk levels due to 

discovery of new vulnerabilities, or attacks.   

Due to the domain dynamicity, the risk scenarios should be updated, whenever 

new knowledge about the system, vulnerability and attack is available (or if current 

knowledge changes). 

2.4.3 Intelligent Threat 

In traditional risk assessment (for example, engineering system risk assessment), 

the threat agent (failure mode) is considered static, adhering to certain laws or rules. The 

field of study to determine this type of threat of failure is often called the “physics of 
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failure” [17]. However, in the case of cyber-security, the threat is reactive and intelligent 

in nature. One of the consequences is that the implementation of countermeasures may 

not decrease the overall risk, even though it efficiently reduces the probability of a high 

priority risk scenario. This is because the adaptive threat agent can change its strategy, 

increasing the probability of another low priority risk scenario. Apart from adapting to 

the implemented countermeasures, the attacker also adapts and reacts to the target 

system’s environment.  

The human attacker behavior is also driven by strategy and preferences. For 

example, attacker behavior research [18, 19] suggests that individual attackers prefer 

certain type of vulnerabilities to others. Just because vulnerability is present does not 

necessarily mean that it will be exploited. Hence, it is crucial to take into consideration 

attacker behavior when performing cyber-security risk assessments. 

The proposed framework automates the cyber-security risk scenario generation by 

capturing attacker behavior. The theories about attacker behavior can be elicited from 

cyber-security experts. The proposed framework supports validation and calibration of 

expert theories. Validated theories are used as an input in the automatic generation of risk 

scenarios. The proposed framework also captures the domain dynamicity, and the 

automation reduces the time and effort needed to generate risk scenarios. 
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3 Requirements of Risk Assessment Methodology  

3.1 Introduction  

Cyber-security risk assessment techniques are often adapted from mature domains 

(for example, engineering risk assessment domain) in which quantitative risk assessment 

methods are used. However, the risk assessment methods used in one domain may not 

directly apply to another. In order to accurately adapt these risk assessment methods, it is 

necessary to understand how domain characteristics influence the selection and 

development of the methods.   

This chapter describes the relationship between the risk assessment process and the 

characteristics of the domain in which the assessment is done. It identifies the cyber-

security domain characteristics that can be used as the requirements for developing cyber-

security assessment methods (or adapting methods from other domain). The chapter 

concludes with a discussion of current cyber-security risk scenario generation methods, 

their limitations, and the proposed framework that overcomes these limitations.    

3.2 Risk Assessment Process of Different Domains 

Risk assessment is used in many domains, ranging from financial systems to 

political science. This section describes the domains that lead in the development and use 

of risk assessment methods. It describes their domain background, risk assessment 

process, and their domain characteristics. Section 3.2.1 focuses on engineering systems 

risk assessment, illustrating its use by the Nuclear Regulatory Commission (NRC) and 

the National Aeronautics and Space Administration (NASA). Section 3.2.2 describes 

environmental risk assessment performed by the Environmental Protection Agency 



14 
 

(EPA). Section 3.2.3 covers infrastructure-security risk assessment performed by the 

Department of Homeland Security. Finally, Section 3.2.4 describes current cyber-security 

risk assessment. 

Section 3.3 identifies how the domain characteristics influence the risk assessment 

methods. Section 3.3 also describes how the cyber-security domain characteristics differ 

from the domains in which risk assessment is used predominantly. This dissertation 

proposes that the cyber-security risk assessment methods can be adopted from other 

domains only if they are tailored to meet the unique cyber-security domain requirements. 

Section 3.4 identifies these cyber-security domain requirements.  

3.2.1 Engineering System Risk Assessment 

3.2.1.1 Nuclear Regulatory Commission (NRC) 

 A nuclear power plant produces a controlled nuclear reaction. The nuclear 

reactions take place in reactor core, which contains the nuclear fuel. One of the primary 

objectives in the operation of nuclear reactors is to prevent damage to the core. Therefore, 

one of the primary objectives of the risk assessment is to prevent this core damage. “The 

NRC regulates commercial nuclear power plants and other uses of nuclear materials 

through licensing, inspection, and enforcement of its requirements” [20]. NRC uses risk 

assessment to support decision making throughout the regulatory process [21]. 

Background of Risk Assessment 

According to [22], “The NRC initially developed many of its regulations without 

considering numerical estimates of risk. Rather, those prescriptive, deterministic 

regulatory requirements were primarily based on experience, test results, and expert 
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judgment. In developing those requirements, the NRC considered factors such as 

engineering margins and the principle of defense-in-depth.” This approach involved 

asking only “What can go wrong?” and “What are the consequences?” [22].  

According to  [23], “An early study released in 1957 focused on three scenarios of 

radioactive releases from a 200-megawatt nuclear power plant operating 30 miles from a 

large population center. Regarding the probability of such releases, the study concluded 

that no one knows how or when we will ever know the exact magnitude of this low 

probability.” 

In 1975, the agency published the Reactor Safety Study [24], based on Probabilistic 

Risk Assessment (PRA) [22]. This resulted in asking the additional question, “How likely 

it is that something will go wrong?” [22]. 

According to [23], “Shortly after the Three Mile Island accident, a new generation of 

PRAs appeared in which some of the methodological defects of the Reactor Safety Study 

were avoided. The NRC released the Fault Tree Handbook in 1981 and the PRA 

Procedures Guide in 1983, which shored up and standardized much of the risk assessment 

methodology.” In NUREG 1150, released in 1991, NRC used structured expert judgment 

to quantify uncertainty [23]. According to [22] the agency developed the PRA 

Implementation Plan in 1994. By 2000, this plan was replaced by the Risk-Informed 

Regulation Implementation Plan (RIRIP), which in turn was superseded in April 2007 by 

the Risk-Informed, Performance-Based Plan (RPP) [22].  

NRC is moving toward a risk-informed, performance-based regulatory framework. 

According to [22], “Many of the present regulations are based on deterministic and 

prescriptive requirements that cannot be quickly replaced. Therefore, the current 
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requirements are being maintained, while risk-informed and/or performance-based 

regulations are being developed and implemented.” 

Risk Assessment Methodology 

The NRC uses the probabilistic risk assessment approach. PRA is used to estimate 

risk by quantifying 1) what can go wrong, 2) how likely it is, and 3) what are its 

consequences. PRA also provides insight into the strengths and weaknesses of the design 

and operation of the nuclear plant. According to [25], the NRC uses PRA to perform a 

layered risk assessment, “A Level 1 PRA estimates the frequency of accidents that cause 

damage to the nuclear reactor core. This is commonly called core damage frequency 

(CDF).” Second level is defined as [25], “A Level 2 PRA, which starts with the Level 1 

core damage accidents, estimates the frequency of accidents that release radioactivity 

from the nuclear power plant.” Finally [25], “A Level 3 PRA, which starts with the Level 

2 radioactivity release accidents, estimates the consequences in terms of injury to the 

public and damage to the environment.”  

The steps taken to perform the PRA are as follows [25, 26]: 

Step 1 Specify the hazard:  This step identifies the outcome to be prevented or 

reduced. The core damage is usually the outcome to be prevented [25, 26]. 

Step 2 Identify initiating events:  In this step, the analyst identifies initiating events 

that could lead to identified hazards (for example, breakage of a pipe carrying reactor 

coolant) [25, 26].  

Step 3 Frequency estimation:  The frequency of occurrence of each initiating event 

is identified in this step (for example, how often do we expect a pipe of this size to 

break?) [25, 26].  



17 
 

Step 4 Scenario Identification: In this step, the analyst identifies each combination 

of failures leading to the identified consequence (for example, pump failure and valve 

failure) [25, 26].  

Step 5 Scenario Quantification: The likelihood of each event sequences is computed 

and the probabilities of all sequences leading to the same outcome are combined [25, 26]. 

These probabilities are then multiplied by the frequency of the initiating event(s) [25, 26].  

3.2.1.2 National Aeronautics and Space Administration 

Background of Risk Assessment 

Before the Apollo accident in 1967, “NASA relied on its contractors to apply good 

engineering practices to provide quality assurance and quality control” [23]. At the onset 

of the Apollo program, NASA generally accepted the notion of using risk analysis, but 

during the program, pessimistic estimates discouraged the adoption of quantitative risk 

analysis[27]. This initial risk analysis used conservative values of failure frequencies, 

instead of a full uncertainty analysis[27]. Furthermore, according to [27] the risk 

assessment methods at that time were in infancy and software needed did not exist.  

In 1969, NASA’s Office of Manned Space Flight initiated the development of 

quantitative safety goals, but they were not adopted [23]. According to [23], “The reason 

given at the time was that managers would not appreciate the uncertainty in risk 

calculations. Following the inquiry into the Challenger accident of January 1986, we 

learned that distrust of reassuring risk numbers was not the only reason that PRA was 

abandoned. Rather, initial estimates of catastrophic failure probabilities were so high that 

their publication would have threatened the political viability of the entire space 

program.”  
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Throughout the Apollo program and until the Challenger accident, NASA relied 

heavily on failure modes and effects analysis (FMEA) for safety assessment[28]. FMEA 

is a qualitative process in which a group of experts identifies potential modes of failure 

and their effects. These failure modes are assigned a severity and likelihood ranking, 

which are used to calculate the priority ranking of the corresponding failure. 

After the Challenger accident, the National Research Council committee, in Post-

Challenger Evaluation of Space Shuttle Risk Assessment and Management, [29] found 

that previous quantification of shuttle risks were based almost exclusively on subjective 

judgments and qualitative rationales[27]. This committee [29], recommended using that 

probabilistic risk assessment approaches at the earliest possible date. The Committee on 

Science and Technology of the House of Representatives [30] recommended estimating 

the probability of failure of the Shuttle elements. According to [27], yet there was still 

strong resistance within NASA. One of the reasons for this resistance was because the 

cost to complete a PRA seemed high. 

In 1995, the first attempt at a comprehensive risk assessment was taken by NASA 

using the method similar to the risk assessment framework developed by the Nuclear 

Regulatory Commission [27]. Currently PRA has been adopted as one of the decision 

supporters for the management of the space shuttle, space station and some unmanned 

space missions [27].  

Risk Assessment Methodology 

NASA’s risk assessment process is similar to NRC’s process. This process consists 

of the following steps [31].  
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Step 1 Objectives Definition:  This step identifies the objectives of risk assessment 

and the undesired consequences to be evaluated [31].   

Step 2 System Familiarization:  In this step, analyst familiarizes himself with the 

system to be evaluated. The operations, maintenance and design documents are used for 

obtaining information about the system. System familiarization is a prerequisite for 

development of the system model  [31], which is used for the risk analysis.   

Step 3 Identification of initiating events (IEs):  In this step, analysts identify the 

events that trigger the accident scenario. Methods like Mater Logic Diagram (MLD) and 

Failure Mode and Effect Analysis (FMEA) are used to identify these events[31]. For 

further information about this tools refer to  [31, 32]. 

Step 4 Scenario Modeling: According to [31], “The modeling of each accident 

scenario proceeds with inductive logic and probabilistic tools called event trees (ETs). An 

ET starts with the initiating event and progresses through the scenario, a series of 

successes or failures of intermediate events called pivotal events, until an end state is 

reached.” 

Step 5 Failure Modeling:  According to [31], “Each failure (or its complement, 

success) of a pivotal event in an accident scenario is usually modeled with deductive 

logic and probabilistic tools called fault trees (FTs).” The Fault Trees represent the 

hierarchical logic behind how a combination of low-level events leads to the undesirable 

event [32]. 

Step 6 Data Collection, Analysis, and Development: In this step, data is collected to 

quantify the accident scenarios [31].  
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Step 7 Quantification and Integration: This step quantifies the event tree and fault 

tree models. The risk scenarios are also grouped by their consequences[31].  

Step 8 Uncertainty Analysis:  Uncertainty analysis is used to determine confidence 

in quantitative results [31].  

Step 9 Sensitivity Analysis: Sensitivity analysis is performed to identify elements 

that most strongly affect the risk outcome[31].  

Step 10 Importance Ranking: According to [31] , “In some PRA applications, 

special techniques are used to identify the lead, or dominant, contributors to risk in 

accident sequences or scenarios. The identification of lead contributors in decreasing 

order of importance is called importance ranking.” 

3.2.1.3 Engineering System Domain Characteristics and Impact on Risk 

Assessment 

This section describes the engineering system domain characteristics. These domain 

characteristics influence why and how the risk assessment is performed in the 

engineering domain.  

1. System Laws: In order to conduct the risk assessment, it is assumed that the 

system is characterized by well-understood rules or scientific laws (for example, 

natural or defined laws like the laws of physics). The scientific law is defined as a 

[33], “phenomenon of nature that has been proven to invariably occur whenever 

certain conditions exist or are met”.  These laws drive the system models and 

failure modes used for risk assessment.  

2. System Dynamics:  According to [34], “An important characteristic of many 

engineering system is that they behave dynamically, i.e., their response to an 
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initial perturbation evolves over time as system components interact with each 

other and with the environment.” This dynamic phenomenon significantly 

impacts systems like nuclear power plants. Traditional risk assessment methods 

do not address such dynamics, and special techniques like dynamic reliability 

analysis or simulation are used in assessment. The dynamic reliability analysis 

methods include dynamic event tree and discrete state transition modeling [34]. In 

both these methodologies, the analyst identifies the discrete system states and 

possible transitions between the states [34]. The simulation driven methods 

develop system models representing its elements and events [34].  Nejad-

Hosseinian [35]proposes a framework for capturing different types of engineering 

knowledge for automatically generating event sequence diagram for dynamic 

systems. This framework is described in detail in Appendix VII. 

3. High reliability system:  Critical engineering systems like nuclear plants and the 

space shuttle are designed for high reliability. As a result, the failure data about 

the system is not readily available. In this case, the risk assessment is often 

conducted by taking into account the condition of the system’s failure precursor 

state (degradation state) or by using expert judgment.  

Expert judgment is often used to determine the probability of failure when data is 

unavailable. The techniques used to extract this probability are studied under the 

title of expert elicitation. Present day engineering risk assessment is also 

dependent on the risk analyst’s ability to identify risk scenarios. The quality of 

risk assessment is directly tied to the expertise of the analyst, which raises 
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questions about the completeness of the risk scenarios identified. This concern 

was addressed by automatically generating event sequence diagrams [35]. 

4. Threat Agent:  The leading sources of threat in the engineering domain are failure 

mechanisms. These failure mechanisms are studied under the field of the physics 

of failure analysis [17], which identifies the physical mechanisms leading to the 

failure. Another area of concern is human error. The field of human reliability 

studies the potential human performance indicators and causes of unintentional 

human errors. This type of threat does not adapt to the preventative 

countermeasures, or to the change in system environment. 

5. Change in system:  Once built, the system configuration remains mostly stable. 

As a result, the system familiarization step does not need to be repeated 

frequently. System models once build remains stable. System maintenance is done 

to restore the original intended configuration of the system. Hence, the risk 

assessment performed for original system configuration may remain valid for the 

majority of useful life of the system. Due to stability of the system model and 

non-adaptive nature of the threat, risk scenarios once identified does not change. 

3.2.2 Environmental risk assessment   

3.2.2.1 Environmental Protection Agency (EPA) 

According to [36], “The mission of the EPA is to protect human health and to 

safeguard the natural environment — air, water, and land — upon which life depends. 

EPA fulfills this mission by, among other things, developing and enforcing regulations 

that implement environmental laws enacted by Congress.”   
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The EPA uses risk assessment to provide the best possible scientific characterization 

of risks [36]. The scientific implications of risks, identified as outcomes of the risk 

assessment, are used by the decision maker to optimally mitigate the environmental 

risks[36]. 

Background of Risk Assessment 

According to [37], “Procedures for analyzing hazards and measuring risks existed 

prior to 1970, but had been developed for purposes other than environmental protection 

(for example, to determine life insurance rates or the likelihood of flooding) and had not 

been widely applied to more complex environmental hazards.” Since EPA urgently 

needed suitable tools to carry out its mission, it supported the development of the newly 

consolidated field of risk analysis and helped to found the Society for Risk Analysis [37]. 

According to [37], “The Agency was among the first to apply the methods of risk 

analysis to problems in environmental protection. EPA developed new procedures and 

adapted methods from such disciplines as sanitary and industrial engineering, 

psychology, economics, sociology, statistics, and operations research. By the mid 1970s, 

EPA was conducting risk analyses to support some of its decisions.” 

The EPA’s initial risk assessment studies were documented in 1975 [36]. According 

to [36], these documents reflected EPA’s intent to use rigorous assessments of health risk 

and economic impact as part of the regulatory process. The first EPA document, [36] 

describing application quantitative procedures used in risk assessment, was published in 

1980 [36]. EPA adapted their risk assessment principles from the National Academy of 

Science (NAS)’s 1983 publication of “Risk Assessment in the Federal Government: 
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Managing the Process” [38] commonly referred to as the “Red Book” [36]. In 1984, the 

EPA published [36] “Risk Assessment and Management: Framework for Decision 

Making” [39], which “…emphasizes making the risk assessment process transparent, 

describing the assessment’s strengths and weaknesses more fully, and providing plausible 

alternatives within the assessment” [36].  

The EPA’s risk assessment practices evolved [36] with the risk assessment principles 

documented in publications like the “Science and Judgment in Risk Assessment”[40] and 

“Understanding Risk: Informing Decisions in a Democratic Society” [41]. These 

principles were developed to ensure that the assessments meet the intended objectives 

and are understandable [36]. 

According to [42], “Although EPA efforts focused initially on human health risk 

assessment, the basic model was adapted to ecological risk assessment in the 1990s to 

deal with risks to plants, animals and whole ecosystems.” 

According to [36], EPA’s risk assessment principles and practices were built on their 

own risk assessment guidance’s and policies  such as the Risk Characterization Policy 

[43], Guidance for Cumulative Assessment, Part 1: Planning and Scoping [44],  the Risk 

Assessment Guidance for Superfund [45],  EPA’s Information Quality Guidelines [46], 

and  A Summary of General Assessment Factors for Evaluating Quality of Scientific and 

Technical Information [47]. 

Risk Assessment Methodology 

The EPA [48] considers risk to be, “the chance of harmful effects to human health 

or to ecological systems resulting from exposure to an environmental stressor”. A stressor 

is defined [48] as, “any physical, chemical, or biological entity that can induce an adverse 
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response”. According to [48], risk assessment is a scientific process and the risk depends 

on three factors: 1) how much of a chemical is present in an environmental medium, 2) 

how much contact or exposure a person, or ecological receptor has with the contaminated 

environmental medium, and 3) the toxicity of the chemical. The risk assessments 

performed by EPA are classified in two categories: the human health risk assessment and 

the ecological risk assessment.  

Human Health Risk Assessment   

This assessment estimates the type and probability of adverse health effects in 

humans who may be exposed to chemicals in contaminated environmental [49]. 

According to [49], the human health risk assessment includes four basic steps. 

Step 1 Hazard Identification: This step evaluates whether or not a stressor has the 

potential to cause harm to humans and/or ecological systems[49]. The data regarding the 

clinical studies on humans provide the most accurate evaluation, but these are difficult to 

gather[50]. Hence, statistical methods are used to calculate the harm potential from 

epidemiological or animal studies[50].  

Step 2 Dose-Response Assessment:  This assessment examines the relationship 

between exposure and effects [49]. Data availability is also an issue in this step. When 

data are available, they often cover only a portion of the possible range of the dose-

response relationships [51]. This issue is addressed by using extrapolation techniques. 

Similar to the concept of “failure mode” in engineering risk assessment, in this case the 

understanding of how the toxicity is caused is called the “mode of action”. This is defined 

as a [51] “sequence of key events and processes, starting with interaction of an agent with 
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a cell, proceeding through operational and anatomical changes, and resulting in the effect, 

for example, cancer formation.” 

Step 3 Exposure Assessment: According to [52], “Exposure assessment is the 

process of measuring or estimating the magnitude, frequency, and duration of human 

exposure to an agent in the environment, or estimating future exposures for an agent that 

has not yet been released”. 

Step 4 Risk Characterization:  This is the communication part of the process. It 

examines how well the data support conclusions about the nature and extent of the risk 

from exposure to environmental stressors [49]. According to [53], “A risk 

characterization conveys the risk assessor's judgment as to the nature and presence or 

absence of risks, along with information about how the risk was assessed, where 

assumptions and uncertainties still exist, and where policy choices will need to be made.” 

Ecological Risk Assessment   

Similar to human health risk assessment, ecological risk assessment is the process for 

evaluating the likely impact of the exposure of stressors on the environment. 

Environmental stressors include chemicals, land change, disease, invasive species, and 

climate change [54]. 

The ecological risk assessment [54] includes three phases: 

Phase 1 Problem formulation:  This step determines what is at risk and what needs 

to be protected [54]. 

Phase 2 Analysis: In this step, the analyst determines 1) what plants and animals are 

exposed, 2) what is the degree of exposure, and 3) the likelihood of exposure causing 

harmful ecological effects [54]. 
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Phase 3 Risk characterization: According to [54], this step is divided into two major 

components: risk estimation and risk description. Risk estimation combines exposure 

profiles and exposure effects [54]. Risk description aides in interpreting the risk results 

and determines a level for harmful effects on the plants and animals[54]. 

3.2.2.2 Environmental Domain Characteristics  

The environmental risk assessment is driven by the following domain characteristics.  

1. System Laws:  Similar to the engineering domain, in the environmental domain 

the system model and risk assessment rely on underlying scientific laws 

(biological and chemical). These are supplemented by scientific theories. The 

scientific theory [55] explains empirical observations. Scientific theories must be 

falsifiable. These scientific theories are derived by empirical causal analysis 

indicating the impact of stressors on humans and the environment. 

2. Risk Exposure:  Risk exposure adds a probabilistic factor between the occurrence 

of the risk factor and the impact of risk. In the environmental risk assessment, the 

realization of consequence depends on the occurrence of risk, as well as the 

exposure to the risk. In other words, lack of exposure can mask the occurrence of 

risk.  

3. Threat: The threat in this domain is any physical, chemical, or biological entity 

that can induce an adverse response to the environment or human health. Similar 

to the engineering domain the threat does not adapt to the preventative 

countermeasures, or to the change in system environment 
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3.2.3 Infrastructure Security Risk Assessment 

3.2.3.1 Department of Homeland Security (DHS) 

Background of Risk Assessment 

According to the National Academy of Science (NAS)  review of the DHS’s 

approach to risk assessment [56] ,“The scope of responsibilities of DHS is large, ranging 

over most, if not all, aspects of homeland security and supporting in principle all 

government and private entities that contribute to homeland security. For some functions, 

DHS is responsible for all of the elements of risk analysis. For other functions for which 

the responsibility is shared, effective coordination is required with owners and operators 

of private facilities; with state, territorial, and local departments of homeland security and 

emergency management; and with other federal agencies such as the Department of 

Health and Human Services, the Environmental Protection Agency, or the Department of 

Agriculture.”   

The NAS review committee [56] evaluated six risk assessment models and 

processes. These models included the natural hazards, critical infrastructure protection, 

and homeland security grants risk models, as well as the Terrorism Risk Assessment and 

Management (TRAM) model, the Biological Threat Risk Assessment (BTRA) model and 

the DHS’s Integrated Risk Management Framework. The conclusion [56] of this review 

was as follows.  

 “Conclusion: DHS has established a conceptual framework for risk analysis (risk is 

a function of threat (T), vulnerability (V), and consequence (C), or R = f(T,V,C) ) that, 

generally speaking, appears appropriate for decomposing risk and organizing 

information, and it has built models, data streams, and processes for executing risk 
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analyses for some of its various missions. However, with the exception of risk analysis 

for natural disaster preparedness, the committee did not find any DHS risk analysis 

capabilities and methods that are yet adequate for supporting DHS decision making, 

because their validity and reliability are untested. Moreover, it is not yet clear that DHS is 

on a trajectory for development of methods and capability.” [56] 

The detailed review of these risk assessment methods is mentioned in [56]. In this 

dissertation, an example of infrastructure security risk assessment is described by the risk 

assessment done for the Homeland Security Grant Program. The purpose of this program 

[57] is to invest in the development of protection capabilities across the United States 

based on the assessed terrorism risk. According to [57], “At DHS, the State Homeland 

Security Grant Program is the primary tool the agency has to influence the behavior of 

State and local partners to take actions that reduce what both parties agree are the risks of 

a terrorist attack and to respond effectively to such an attack, or other catastrophe”. 

Risk Assessment Methodology- Homeland Security Grant Program  

The State Homeland Security Grant Program is established to allocate funds to state 

and local partners in order to reduce risk of terrorist attack and to better prepare the state 

if such attacks should occur. A risk-based approach is used to make the fund allocation 

decision. This risk-based approach has evolved over the period as described below [57].   

R=P formula used during 2001-2003: From 2001-2003 (during the transition of 

responsibility of conducting risk assessment from DOJ to DHS) this risk was considered 

to be equal to population count [57].  
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R=T+CI+PD formula used during 2004-2005: Risk was considered as weighted 

summation of the threat, critical infrastructure, and the population density of the area 

[57]. Probabilities were not considered during this period.  

R=T*V*C formula used during 2006-2007: From 2006 onwards, probability of 

occurrence of an event was incorporated in the risk assessment[57]. In this case, risk was 

defined as multiplication of the threat, vulnerability, and consequences. Threat was 

defined as the likelihood of an attack occurring and the product of vulnerability and 

consequence considered together represent the relative exposure and expected impact of 

an attack. According to [57], the DHS is treating vulnerability (V) and consequence (C) 

as an amalgamated, single variable. According to [57], the DHS assigns the probability of 

one to a vulnerability being present, meaning it assumes the presence of vulnerability. 

This is because of the difficulties associated with differentiating vulnerability values 

across areas and states. 

R=T*(V&C) formula used from 2007-Current: According to GAO [58], from 

2007 onwards, DHS’ presentation of the risk calculation formula used the variable 

(V&C), but the combination of vulnerability and consequence is still calculated as the 

product of V times C. 

3.2.3.2 Infrastructure Security Domain Characteristics  

Risk assessment techniques are not well developed in the infrastructure security 

domain [56]. This domain has the following characteristics:  

1. Adaptive Threat Agent:  The risk scenarios are driven by the dynamic nature of 

human threat and its ability to adapt to the countermeasures [56, 57] and the 

target’s environment. 
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2. Analyst Dependence:  Risk assessments in this domain are heavily driven by the 

intelligence analyst’s knowledge and judgment [57]. One of the reasons behind 

this reliance on experts is lack of available data. According to [57], this lack of a 

rich historical database of terrorist attacks “necessitates a reliance on intelligence 

and terrorist experts for probabilistic assessments of types of terrorist attacks 

against critical assets and/or regions”. According to [56],  “DHS has employed a 

variety of methods to compensate for this lack of data, including game theory, 

“red-team” analysis, scenario construction, and subjective estimates of both risks 

and consequences.” However, these methods have often failed to use state-of-the-

art approach [56]. 

3. Lack of governing law:  Unlike the engineering and environmental domains, the 

system and risk models in the infrastructure security risk domain are based on 

subjective analyst assessment. This assessment is driven by using expert theories, 

which (unlike scientific laws or principles) may or may not hold true for present 

and future assessment. Different experts can also form different theories based on 

the same evidential data. 

3.2.4 Cyber-security risk assessment 

Background of Risk Assessment 

Cyber-security risk assessment is currently driven by regulations. The importance of 

cyber-security was emphasized in the  “Presidential Decision Directives (PDD)” 62 [59] 

and 63 [60], the executive order 13231 entitled “Critical Infrastructure Protection in the 

Information Age” [61], the “Homeland Security Act of 2002” [62], the “Office of 
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Management and Budget (OMB), Circular A-130” [3], “Sarbanes-Oxley Act” [63], and 

the “Federal Information Security Management Act of 2002” (FISMA)  [64].  

“Presidential Decision Directives (PDD)” 62 [59] and 63 [60], released in 1998 by 

President Clinton address the new and nontraditional cyber-security threats against 

critical infrastructure. PDD 63 [60] focuses on critical infrastructure protection from both 

the physical and cyber security perspective. On October 16, 2001, President Bush 

announced Executive Order 13231, entitled “Critical Infrastructure Protection in the 

Information Age” [61].  

OMB Circular A-130 titled “Management of Federal Information Resources” [3] 

establishes policy for the management of federal information resources. The Appendix III 

of this circular called “Security of Federal Automated Information Resources” 

establishes a minimum set of controls to be included in federal automated information 

security programs [3]. According to the OMB Circular A-130 [3] Appendix III, “The 

Appendix no longer requires the preparation of formal risk analyses. In the past, 

substantial resources have been expended doing complex analyses of specific risks to 

systems, with limited tangible benefit in terms of improved security for the systems. 

Rather than continue to try to precisely measure risk, security efforts are better served by 

generally assessing risks and taking actions to manage them. While formal risk analyses 

need not be performed, the need to determine adequate security will require that a risk-

based approach be used. This risk assessment approach should include a consideration of 

the major factors in risk management: the value of the system or application, threats, 

vulnerabilities, and the effectiveness of current or proposed safeguards.” In summary, 
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OMB does not require formal risk assessment, but recommends using a simplified risk-

based approach for control evaluation.  

FISMA requires each federal agency to develop, document, and implement an 

agency-wide program to provide information security[65]. FISMA applies to both 

information and information systems used by the agency, contractors, and other 

organizations and sources, so it has somewhat broader applicability [64]. The Federal 

cyber-security requirements mentioned in OMB Circular A-130  continue to apply under 

FISMA, and the agency is responsible for ensuring appropriate cyber-security controls in 

accordance with the OMB Circular A-130, Appendix III, “Security of Federal Automated 

Information Resources” [3]. 

The criticism of FISMA has been that the law focuses on the process as opposed to 

the outcome i.e. it requires reporting of whether the security process were followed as 

opposed to measuring if the security was improved. According to GAO [66], the FISMA 

metrics do not measure how effectively agencies are performing activities. “For example, 

agencies report on the number of systems undergoing test and evaluation in the past year, 

but there is no measure of the quality of agencies' test and evaluation processes. 

Additionally, there are no requirements to report on certain key activities such as patch 

management.” [66] 

The National Institute of Standards and Technology (NIST) were assigned the 

responsibility to create a framework for FISMA implementation. The OMB Circular A-

130 also suggests using NIST’s risk assessment guidance. NIST produced a series of 

guidelines of general interest to the cyber-security community called 800 series Special 

Publications [67]. This 800 series includes the risk management guidance [68] to satisfy 
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the requirement of FISMA and OMB Circular A-130. The 800 series are the key 

publications that drive today’s federal and private sector information cyber-security 

initiatives. 

Risk Assessment Method – National Institute of Standards and Technology 

(NIST) 

This risk assessment process contains the following steps [68]: 

Step 1- System Characterization: This is similar to NASA’s PRA System 

Familiarization (Step 2), in which detailed information about the system is identified. In 

this phase, the risk analyst develops an understanding of the technology infrastructure to 

be assessed [68]. 

Step 2- Threat Identification: In this step, a comprehensive list of potential threat 

sources (for example, Natural Threats, Environmental Threats, and Human Threats) is 

created. Once identified, a list of threat motivation and actions is created. According to 

NIST [68], “Motivation and the resources for carrying out an attack make humans 

potentially dangerous threat-sources.” The estimate of motivation, capability, and 

resources may be required to determine the likelihood that a threat agent may exploit 

vulnerability[68]. An example[68] given by NIST is shown in Table 2 below:  
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Table 2:  Threat source to action mapping – source of data [68] 
Step 3- Vulnerability Identification:  In this step, a list of vulnerabilities is identified 

and is mapped to potential threat sources that can exploit them [68]. An example[68] 

given by NIST is shown in Table 3.  

Vulnerability Threat-Source Threat Action 

Terminated employees’ system 
identifiers (ID) are not removed [68] 

Terminated employees [68] Dialing into the company’s 
network and accessing  
proprietary data [68] 

Company firewall allows inbound telnet, 
and guest ID is enabled on ABC server 
[68] 

Unauthorized users (for 
example,  
hackers, terminated 
employees, cyber 
criminals, terrorists) [68] 

Using telnet to ABC server  
and browsing system files  
with the guest ID [68] 

Table 3: Vulnerability to threat action mapping - source of data [68] 

NIST’s [68] recommended methods for vulnerability identification are 1) using 

published vulnerability information, 2) performing system cyber-security testing, and 3) 

developing a cyber-security requirements checklist. 

The published vulnerability information can be collected from sources such as 

previous risk assessment documentation, audit reports, vulnerability databases (for 

example, national vulnerability database)[68]. 

Security testing involves vulnerability scanning, cyber-security test and evaluation, 

or penetration testing [68]. The penetration testing is often performed by a red-team.    

Threat-Source  Motivation  Threat Actions  

Hacker/Cracker Challenge, Ego, Rebellion  
Hacking, Social engineering, System intrusion, 
break-ins, Unauthorized system access [68] 

Cyber criminal 

Destruction of information, 
Illegal information, 
disclosure, Monetary gain, 
Unauthorized data alteration  

Computer crime (for example, cyber stalking), 
Fraudulent act (for example, replay, 
impersonation, interception), Information bribery, 
Spoofing, System intrusion [68] 
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In this step, the analyst also identifies the organizational or federal cyber-security 

requirements [68]. These cyber-security requirements are documented in the form of a 

checklist.  

Step 4- Control Analysis: During this step, the risk analyst determines whether the 

identified vulnerabilities and cyber-security requirements are being addressed by existing 

or planned cyber-security controls[68]. 

Step 5- Likelihood Determination:  Likelihood of the threat source exploiting 

vulnerability is described [68] using likelihood levels (high, medium, or low). Table 4 

below shows the likelihood levels described in [68].  

Likelihood Level Definition of Likelihood 

High  
"The threat-source is highly motivated and sufficiently capable, and 
controls to prevent the vulnerability from being exercised are 
ineffective.” [68]   

Medium  
“The threat-source is motivated and capable, but controls are in place 
that may impede successful exercise of the vulnerability .” [68]   

Low  
“The threat-source lacks motivation or capability, or controls are in place 
to prevent, or at least significantly impede, the vulnerability from being 
exercised .” [68]   

Table 4: Likelihood of vulnerability exploit - source of data [68] 

Step 6- Impact Analysis:  Impact of threat exploiting vulnerability results in loss of 

criticality, integrity, and availability[68]. The qualitative magnitude of impact is 

identified in Table 5 below. According to [68], some tangible impacts (for example, loss 

in revenue, cost of repairing system etc.) can be measured quantitatively. 
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Magnitude of 
Impact 

Definition of Impact 

High  “Exercise of the vulnerability (1) may result in highly costly loss of major 
tangible assets or resources; (2) may significantly violate, harm, or impede an 
organization’s mission, reputation, or interest; or (3) may result in human death or 
serious injury. ” [68] 

Medium  “Exercise of the vulnerability (1) may result in the costly loss of tangible assets or 
resources; (2) may violate, harm, or impede an organization’s mission, reputation, 
or interest; or (3) may result in human injury. ” [68] 

Low  “Exercise of the vulnerability (1) may result in the loss of some tangible assets or 
resources or (2) may noticeably affect an organization’s mission, reputation, or 
interest. ” [68] 

Table 5: Impact of vulnerability exploit – source of data [68] 

Step 7- Risk Determination: The level of risk to the system is identified [68] by 

multiplying the threat likelihood with the impact as shown in Table 6 below. 

Threat 

Likelihood 

Impact 

Low (10) Medium (50) High (100) 

High (1.0)  Low 10 X 1.0 = 10  Medium 50 X 1.0 = 50  High 100 X 1.0 = 100  

Medium (0.5)  Low  10 X 0.5 = 5  Medium  50 X 0.5 = 25  Medium  100 X 0.5 = 50  

Low (0.1)  Low 10 X 0.1 = 1  Low 50 X 0.1 = 5  Low 100 X 0.1 = 10  

Table 6:  System risk caculation - source of data [68] 

The resulting risk levels can be interpreted as below: 

High: According to  [68],  “If an observation or finding is evaluated as a high risk, 

there is a strong need for corrective measures. An existing system may continue to 

operate, but a corrective action plan must be put in place as soon as possible” 

Medium: According to  [68], “If an observation is rated as medium risk, corrective 

actions are needed and a plan must be developed to incorporate these actions within a 

reasonable period of time.”  
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Low: If an observation is described as low risk, a determine needs to be made to 

either take  corrective actions or to decide to accept the risk [68]. 

Step 8- Control Recommendation: The controls that can mitigate or eliminate the 

identified risks are determined in this step [68]. Appropriate identified controls are 

implemented to reduce the risk to an acceptable level. 

Step 9- Results Documentation: A report describing the threats, vulnerabilities, risk, 

and control recommendations is created in this step [68]. 

 

The risk assessment process, however, is often reduced to the three-step process 

described below: 

Reduced Step 1 – System Classification:  FIPS Publication 199 allows classification 

of the information or system (called assets in the FISMA guidance) in high, medium, or 

low categories based on the potential impact on organizations or individuals should there 

be a breach of cyber-security [69]. FIPS Publication 199 [69] Standards for Security 

Categorization of Federal Information and Information Systems describes these system 

classification criteria in detail. As an example [69], the definition of high impact 

according to FIPS Publication 199 is indicated below: 

“The potential impact is HIGH if-  

− The loss of confidentiality, integrity, or availability could be expected to have a 

severe or catastrophic adverse effect on organizational operations, organizational assets, 

or individuals.”  

FIPS Publication 199 [69]  further mentions, “A severe or catastrophic adverse effect 

means that, for example, the loss of confidentiality, integrity, or availability might: (i) 
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cause a severe degradation in or loss of mission capability to an extent and duration that 

the organization is not able to perform one or more of its primary functions; (ii) result in 

major damage to organizational assets; (iii) result in major financial loss; or (iv) result in 

severe or catastrophic harm to individuals involving loss of life or serious life threatening 

injuries.” 

Reduced Step 2- Minimum Security Requirements Identification: A second 

mandatory cyber-security standard, FIPS 200 [70] Minimum Security Requirements for 

Federal Information and Information Systems, identifies a set of 17 cyber-security 

requirements that should be met by the systems at minimum[70]. Examples of these 

requirements[70] are access control, awareness and training, audit and accountability. 

Reduced Step 3- Control Selection: A third standard NIST 800-53 [71] 

Recommended Security Controls for Federal Information Systems can be used to identify 

controls whose implementation satisfies the minimum requirements identified in FIPS 

200. NIST 800-53 identifies [71] controls that can be used for each system classification 

(high, medium, or low). 

In summary, in reduced assessment, the system classification level and cyber-

security requirements are used to determine the controls to be used. 

3.2.4.1 Cyber-Security Domain Characteristics  

The cyber-security domain characteristics are explained below. 

1. Lack of governing law:  In the cyber-security domain, the risk assessment is 

qualitative in nature and driven by the cyber-security experts. Expert theories, 

unlike system laws, may or may not hold true for present and future assessments. 
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In addition, different experts may form different theories based on the same 

evidential data. 

2. Adaptive threat:  Similar to the threat [56, 57] described in infrastructure risk 

assessment domain, the threat agent in cyber-security domain is human and 

considered reactive and intelligent in nature. This human threat adapts to the 

system environment and the countermeasures implemented. The human attacker 

actively searches for the opportunities provided by the system, and determines, or 

changes the attack goal given the availability of these opportunities. The cyber-

security risk scenario should take into consideration this adaptive and exploratory 

nature of the attacker. 

3. Domain Dynamicity:  Cyber-security domain is inherently dynamic. The system 

to be protected changes frequently with new versions and updates. At the same 

time, new vulnerabilities and attacks are also discovered frequently. 

4. Analyst dependence:   Current cyber-security risk assessment is heavily 

dependent on the analyst. The expert opinion is used to identify threat sources and 

vulnerabilities, to assess the likelihood and impact of the threat-vulnerability 

pairs, and finally to select the controls mitigating the identified risks. This analyst 

dependence makes the outcome of the risk assessment inconsistent and 

unrepeatable. 
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3.3 Domain Characteristic Comparison and Limitation of Cyber-

security Risk Assessment 

 This section compares the characteristics of the domains described in Section 3.2. 

Six domain characteristics were selected for this comparison. These are shown in Figure 

4, and are explained below. 

1. Rate of System Evolution: This describes the rate at which the system 

configuration changes. It is characterized as high (H), medium (M) or low (L) for 

the comparison shown in Figure 4.   

2. Rate of Vulnerability Evolution: This describes the rate at which new 

vulnerabilities in the system are identified. It is also characterized as high (H), 

medium (M) or low (L) for the comparison of different domains.  

3. System Dynamics: Dynamics refers to the time evolution of physical process, 

and system dynamics[34] refers to the behavior of complex systems guided by the 

dynamics . There is a difference between system dynamics and the dynamicity of 

domain. System dynamics is a behavior of the system (for example, nuclear 

reaction), while domain dynamicity describes the frequent changes in system, and 

threat. The system dynamics is characterized as high (H), medium (M) or low (L) 

for the comparison of different domains. 

4. Adversary Intelligence:  The adversary or threat against the system varies from 

domain to domain. In engineering systems, the threat is natural phenomenon that 

may lead to failure of the system. The behavior of this threat, characterized as 

failure modes, may be predictable. The natural phenomenon threat does not 

change its behavior to adapt to the implemented countermeasures or target 
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environment. The threat behavior is also not guided by the adversary’s strategy or 

preferences. This type of behavior is described as low adversary intelligence.   

As described in Section 3.2.2, in environmental risk assessment, the threat may be 

biological or chemical agents. In some cases, this threat may change its behavior 

to adapt to the environment. This is described as medium adversary intelligence. 

 In cyber-security and infrastructure security risk assessment domains, the human 

attacker is characterized by high adversary intelligence. The behavior of this type 

of threat may change to adapt to the situation [56, 57], target environment, and 

countermeasures implemented. Human behavior may also be guided by attacker 

strategy or preferences.  

5. Modeling Theories: Modeling theories describe the foundation on which system 

and risk assessment models are built. Modeling theories can be scientific law[33], 

scientific theories, or human theories. A scientific law is defined as a [33], 

“phenomenon of nature that has been proven to invariably occur whenever certain 

conditions exist or are met”. Scientific laws are described using a formal 

statement about such a phenomenon. A scientific theory [55] explains empirical 

observations. These theories must be falsifiable. Unlike scientific laws, scientific 

theories are driven by empirical observations. Finally, human theory presented 

here is defined as beliefs formed by experts. This belief may be formed by an 

expert’s experience and observations. Human theory may not be repeatable and 

may contradict other human theories.  

6. System Value:  System value represents the criticality of the system or the impact 

of the failure of the system. This is encoded as high, medium, or low.  
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The pink line in Figure 4 describes the engineering domain, the green line describes 

environmental risk assessment domain, the yellow line describes the infrastructure 

security risk assessment domain, and red line describes the cyber-security domain.   

 

Figure 4: Risk assessment domain comparision 

 

3.3.1 Engineering System Domain and Risk Assessment Method 

The engineering system domain is characterized by a low rate of system evolution 

and a low rate of vulnerability evolution. In this domain, the system and hazards once 

identified accurately does not change frequently.  

The adversary intelligence is low, which means that the threat does not react or adapt 

to the situation, target environment, or the countermeasure implemented. Nor does it act 

according to a strategy or preference. The modeling theories are driven by observable and 

repeatable scientific laws.  

The identification of risk scenarios is dependent on the analyst’s skills. The risk 

scenarios, however, are driven by the system laws and not by expert judgment. Since the 
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value of the system is high, appropriate time and resources may be allocated to develop 

and mitigate risk scenarios.  

3.3.2 Environmental Risk Assessment 

The risk assessment process used by the environmental domain is similar to the 

process used by the engineering domain. The risk assessments in this domain are often 

driven by scientific theories based on observed causal evidence. As described in Section 

3.2.2, in this domain the cause-effect relationship between a stressor and consequence is 

determined using empirical studies.  

The threat in this domain is any physical, chemical, or biological entity that can 

induce an adverse response to the environment or human health[48]. The adversary 

intelligence is considered medium for this domain.  

The system rate of evolution is considered medium in this dissertation as the 

environment and eco-system may change even if it is at a slow pace. The rate of 

vulnerability evolution is considered low, and the system dynamics are considered 

medium in this domain.  

The system value is considered high for the environmental domain in this 

dissertation. As a result, appropriate time and resources may be allocated to develop and 

mitigate risk scenarios.  

3.3.3 Infrastructure Security Domain and Risk Assessment Method 

In the infrastructure security risk assessment domain, the system rate of evolution is 

considered as medium. This is because the civil infrastructure changes, but not as often as 

the technology infrastructure.  
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The threat is human in nature and adapts [56, 57] to the situation and implemented 

countermeasures. The human threat also acts in accordance with his/her strategy and 

preferences.  

The rate of vulnerability evolution is also considered medium, as the change in the 

system provides new vulnerabilities or the adaptive threat uncovers new vulnerabilities 

that can be exploited to attack the system. 

The system dynamics is considered medium. The value of the system is high, so 

appropriate time and resources may be allocated to develop and mitigate risk scenarios.  

The modeling theories in this domain are driven by human expert theories. Expert 

theories introduce subjectivity, and corresponding inconsistencies and non-

reproducibility in the risk assessment outcome.  

3.3.4 Cyber-security Domain and Risk Assessment Method 

The cyber-security domain is characterized by a high rate of vulnerability and system 

evolution. The system configuration evolves periodically and new vulnerabilities are 

often identified. New attacks are also often identified, which may enable execution of 

risk scenarios previously deemed non-executable. These frequent changes make the 

cyber-security domain dynamic. This domain dynamicity is different from system 

dynamics, which refers to the characteristics of complex systems. 

Similar to the infrastructure security domain [56, 57], the threat in cyber-security 

domain is intelligent in nature. This means that the attacker has a strategy and preferences 

for how to carry out an attack. The attacker also adapts to the situation, target 

environment, or the implemented countermeasures.  
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Human theories are used to model cyber-security risks. Different experts may form 

different theories, even if they are formed from the same observed evidence. These 

theories may also conflict with each other. As a result, the risk scenarios generated by 

two analysts may be different.  

The value of the system can be medium to high. If the value of the system is 

medium, then it may not be beneficial to spend a large amount of time and resources 

doing manual risk assessment. An automated system can be used to address this issue. 

Even if the value of the system were high, in order to incorporate the scale and 

dynamicity of modern day technology infrastructure, the cyber-security risk assessment 

needs to be automated.  

Despite these differences, the current cyber-security risk assessment process is very 

similar to the engineering domain. The challenge with this process is that, by the time 

risk assessment is done and controls are identified (or implemented), the system 

configuration may have changed or new vulnerabilities and/or attacks may have been 

identified. These frequent changes shorten the usable lifespan of the risk assessment 

outcome.    

Cyber-security assessment techniques and processes are often adapted from other 

mature risk assessment domains. Some examples of these extensions are as follows: 

 There have been attempts to extend the fault tree, event tree, and failure mode and 

effect analysis (FMEA) methods to model cyber-security scenarios. Event trees 

are adopted as attack trees [72] for cyber-security assessment.  

 A cyber-security risk assessment called Annualized Loss Expectancy (ALE) [73] 

uses the concept of exposure factor similar to the EPA’s use of risk exposure. 



47 
 

This technique uses the analyst’s opinion for evaluating the exposure instead of 

using the scientific or empirical quantification methods employed by agencies like 

the EPA.  

This dissertation proposes a framework to automatically generate risk scenarios 

given the unique challenges of the cyber-security domain. The cyber-security risk 

scenarios are further examined in Section 3.5 and cyber-security domain requirements are 

detailed in Section 3.4. 

3.4 Detailed Cyber-Security Domain Requirements 

This dissertation uses the unique cyber-security domain characteristics as the 

requirements for developing more effective cyber-security risk assessment tools. This 

section details these requirements.  

3.4.1 Domain Dynamicity  

The cyber-security domain is inherently dynamic. This dynamicity manifests at three 

different interconnected levels. These levels are described below:  

1. System Dynamicity: The system to be protected changes as new software 

versions and updates become available, and as the system configuration and 

architecture changes. Consequently, one of the cyber-security countermeasures is 

to control the changes made to hardware, software, and firmware throughout the 

lifecycle of the system. This countermeasure is called “configuration 

management” or “baseline management”. However, according to NIST [74], a 

“reset of the baseline” occurs with frequent software updates and patches. This 

makes the exact understanding of the initial baseline obscure and more difficult to 
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track over time [74] . As a result, revising cyber-security assessments becomes 

impractical [74]. According to [74], the presumed state of security of the initial 

baseline is never updated in light of increased understanding, potentially giving a 

false sense of security.  

These changes in the system provide new opportunities to attackers. The cyber-

security risk scenario generation framework cannot assume that the system will 

remain static throughout the timeframe in which these risk scenarios are used. 

Yet, this assumption is made frequently in current risk assessment. 

2. Vulnerability Dynamicity: In addition to system configuration changes 

introducing more vulnerabilities, new vulnerabilities in existing systems are also 

discovered frequently.    

3. Attack Dynamicity: New attack methods exploiting vulnerabilities are also 

discovered frequently. These new attack methods may allow execution of risk 

scenarios previously deemed non-executable. According to a study done by 

CERT [7], the availability of automated tools capable of launching sophisticated 

attacks is increasing. Consequently, the technical knowledge required by the 

attacker to launch the attacks is decreasing. 

This dynamicity influences the design of cyber-security risk scenario generation 

framework, and the choice of knowledge representation methods capturing the 

information needed for generating the risk scenarios.  

1. Risk Scenario Generation Framework Requirements: The automated cyber-

security risk scenario generation framework should assume that information is 
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incomplete and new information may be available at any time. It should be able 

to update the risk scenarios efficiently when new knowledge becomes available.   

2. Domain Knowledge Representation Requirements: Risk scenario generation 

should function by assuming that information is dynamic. The knowledgebase 

used by the risk scenario generation framework may capture this dynamic 

information. The domain dynamicity adds more requirements for the 

knowledgebase storing this dynamic information. These requirements are 

described below. 

a. Dispersed Information Sources: The cyber-security domain information 

can be generated by sources dispersed in space and time. The 

knowledgebase should be able to capture the information from these 

dispersed sources. 

b. Dynamic Knowledgebase: Since the cyber-security domain information 

can be available at any time, the knowledgebase should be able to 

dynamically and efficiently capture the change in information or 

availability of new information. 

c. Incomplete Information: Traditional knowledgebase are designed using 

the assumption that whatever information is not explicitly stated is false 

[75]1. For example, if information about vulnerability is not stored in the 

knowledgebase then it assumes that such vulnerability does not exist. In 

the cyber-security domain, new vulnerabilities can emerge at any time. It 

is also possible that vulnerabilities exist, but the analyst encoding the 

                                                 
1  The reference paper makes these statements about closed world databases. Here the term 

knowledgebase is used a general form of database. 
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information does not know about them. There are also known unknown 

attacks and vulnerabilities. Because of these reasons, it cannot be 

assumed that whatever information is not encoded is false. The 

knowledgebase should be able to store the cyber-security domain 

information without making any assumption about the completeness of 

the information. 

3.4.2 Attacker Behavior 

Automated cyber-security risk scenario generation should incorporate the attacker 

behavior driving these scenarios. This behavior is studied by empirical attacker behavior 

research and by attacker interviews. Examples of the attacker interviews are illustrated in 

Appendix I.   

This dissertation defines three core characteristics of attacker behavior as:  

1. The attacker treats the cyber-security breach as an intellectually stimulating 

problem to be solved.  

2. The method used in compromising a system is exploratory in nature and often 

does not follow a predetermined guideline. In other words, the attack is not 

necessarily a pre-planned activity.  

3. The attack goal may be determined or changed based on the information gathered 

during this exploratory phase. Here the goal refers to high-level direction or 

intention of the attacker. These goals are achieved by gathering the information 

about the system, and launching attacks based on the attacker’s motivation, 

strategy, preferences, and knowledge.  
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3.4.3 Expert Theory 

Cyber-security risk assessment is driven by expert theories about attacker behavior. 

This is in accordance with the prevalent cyber-security strategy termed as “think like the 

attacker”. An example of expert theory is illustrated in the following email instruction by 

the security office of a University 2, “The machine located at x.x.x.x has been having 

interesting IRC conversations with Romanians. We regard this behavior with deep 

suspicion and recommend you sanitize the machine and reinstall.” Expert theories can 

also be about software’s security behavior. For example, expert theory can be about how 

the design of software leads to vulnerabilities. 

Expert theories are often formed from observed evidence. These theories, once 

formed, are used by experts to explain the new observations and to make predictions. 

According to [76], a theory makes predictions about a wide range of evidence, including 

the evidence that played no role in the construction of the theory. This can lead to a wide 

variety of unexpected predictions. Consequently, some theories will accurately predict 

future events. On the other hand, some theories would be incorrect[76]. 

Current attack risk scenarios are generated by experts using their theories of attacker 

behavior. This output (in the form of risk scenarios) abstracts the expert’s attacker 

behavior theories, while summarizing only the actions that the attacker may take in the 

risk scenario. If the risk scenarios are generated without explicitly stated underlying 

theories, then the opportunity to validate and re-use accurate theories, or to update 

inaccurate theories is lost. 

                                                 
2 To protect the identity of the security team the name of the University is not mentioned here. 
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The automated risk scenario generation framework should be able to capture these 

expert theories (and assumptions behind these theories) explicitly for generating attack 

risk scenarios.  

3.4.4 Automation 

Given the scale of today’s technology infrastructure and its dynamicity, the cyber-

security risk scenario generation should be automated to generate timely and accurate 

scenarios. This automation requirement imposes the following sub-requirements on the 

cyber-security risk scenario generation framework.  

1. Completeness: The automated cyber-security risk scenario generation 

framework should calculate all possible ways the attacker goal can be 

achieved.  

2. Repeatability: The automated cyber-security risk scenario generation should 

produce repeatable output given the same input. 

3. Scalability: The automated framework should be scalable.   

4. Analyst dependence: The automated framework should have limited analyst 

(or expert) dependence. 

3.5 Risk Scenario Generation 

This section introduces the current and proposed cyber-security risk scenario 

generation frameworks.  

3.5.1 Current Focus of Risk Scenarios 

The primary focus of cyber-security risk management has been identification and 

mitigation of vulnerabilities in the system. Consequently, current risk scenario generation 
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mainly focuses on vulnerability identification. Often these scenarios are reduced to 

capturing only the presence of a single vulnerability and how it can be exploited.   

A large number of vulnerabilities currently exist, but new vulnerabilities can be 

discovered at any time, which requires continuously gathering information and updating 

the risk scenarios. 

The use of risk scenarios to identify the presence of vulnerabilities supports the 

current reactive strategy called “penetrate and patch”. This strategy suggests patching all 

vulnerabilities that are present in the system. According to [77], “At the 1998 Security 

and Privacy conference, a panel session discussed the advances in cyber-security 

technology over the last 25 years. One dramatic conclusion of the session was that the 

current state of the art in computer cyber-security was “penetrate and patch”.” A decade 

later, the situation is still the same.  

The challenge with penetrate and patch is that new types of vulnerabilities are 

continuously identified. As indicated in Chapter 2 and emphasized by a prominent cyber-

security vulnerabilities researcher [6], “it’s safe to say that there has not been a single 

category of vulnerabilities that has been definitively eradicated”. Due to the large number 

of available vulnerabilities and limited resources, it may not be possible to patch all 

vulnerabilities. This patching effort needs to be prioritized.  

The challenge of focusing only on presence of vulnerabilities is that according to 

attacker behavior research, it is not necessary that the attacker will exploit vulnerabilities 

just because they are available. The attacker behavior research indicates that the attacker 

may prefer a certain set of vulnerabilities or attacks over others [18, 19]. The attacker 

also may choose to discover a new vulnerability then to exploit existing vulnerabilities. In 
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order to prioritize the remediation efforts, it is important to understand and use this 

attacker behavior in the risk scenario generation. Understanding attacker behavior also 

allows development of new types of countermeasures utilizing this information. These 

countermeasures are called “behavior-driven” countermeasure. These countermeasures 

use the information about attacker behavior to lead the attacker away from the protected 

information. An example of this is described in Section 10.2.2.2.    

  Vulnerabilities form a critical part of cyber-security risk scenarios, but these 

scenarios also depend on the dynamic interaction between other opportunities provided 

by the system (for example, opportunity to fingerprint, or decompose the attack goal 

etc.), the attacker (or encoded attacker behavior in the form of goals, strategy and 

preferences), and tools available to discover and exploit these opportunities. This 

dissertation proposes a framework for automatically generating the risk scenarios by 

taking into consideration this dynamic interaction and the unique requirements of the 

cyber-security domain. Section 3.5.2 describes the current manual and automated 

methods for generating cyber-security risk scenarios and their limitations. Section 3.5.3 

introduces the proposed approach. 

3.5.2 Current Methods for Generating Cyber-security Risk Scenario 

Current cyber-security risk scenarios are either generated in the form of a tree (called 

attack tree), or graph (attack graph, privilege graph, or access graph). Attack trees[72] 

capture how the attack goal can be decomposed into different ways of achieving it. The 

attack graph captures how the attacker can exploit a series of vulnerabilities to gain 

restricted privilege on the target software system [1](or can circumvent a security feature 

of the software). The access graph and privilege graph are variations of the attack graphs. 



55 
 

This section introduces these methods and describes their limitation. The proposed 

framework overcomes the limitations of these methods.  

3.5.2.1 Attack Tree Generation  

Currently attack trees are generated manually by red-team. Attack trees [72] were 

introduced in 1999 by Bruce Schneier, a renowned name in cyber-security. These are 

conceptually similar to the fault tree and event tree used in engineering risk assessment. 

According to [72] - “Basically, you represent attacks against a system in a tree structure, 

with the goal as the root node and different ways of achieving that goal as leaf nodes.” 

The process of generating the attack tree follows this progression:  [72], “First, you 

identify the possible attack goals. Each goal forms a separate tree, although they might 

share sub-trees and nodes. Then, try to think of all attacks against each goal. Add them to 

the tree. Repeat this process down the tree until you are done. Give the tree to someone 

else, and have him think about the process and add any nodes he thinks of. Repeat as 

necessary, possibly over the course of several months. Of course there's always the 

chance that you forgot about an attack, but you'll get better with time. Like any security 

analysis, creating attack trees requires a certain mindset and takes practice.” 

This method of manual attack tree generation is widely used. An example of the 

attack tree is as shown in Figure 5 below.  
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Figure 5: Attack tree - graphical example 

The branches of the attack tree can also be annotated with boolean values such as 

possible or impossible, easy or difficult, expensive or inexpensive, intrusive or 

nonintrusive, legal or illegal, special equipment required versus no special equipment 

[72]. This annotation can be used for manual encoding of the attacker behavior (using 

binary variables) on the branches of the tree. 

The limitation of this manual approach is that its quality and completeness depend on 

the analyst’s skills. 

3.5.2.2 Vulnerability Graph (Attack Graph, Access Graph, or Privilege Graph) 

Generation 

Currently “attack graph”, “access graph” or “privilege graph” can be generated 

automatically or manually [1]. These graphs represent how the known vulnerabilities of a 

software system can be exploited in a sequence to take the system from a secure state to 
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an unsecure state. Unsecure state is defined as the system state in which software’s 

security feature is circumvented. Security features are implemented to make sure that the 

software cannot be attacked. Current attack graphs (and its variations) represent scenarios 

in which security features that prevent the attackers gaining restricted privileges are 

circumvented. In other words the goal of the attack graphs is to describe how an attacker 

may obtain  normally restricted privileges on one or more target hosts  [1].  Attack graphs 

(and its variations) reflect the software developer’s point of view, who would like to 

eliminate all known vulnerabilities, whose exploitation allows the attacker to gain 

restricted privileges. To avoid confusion between terminologies, these graphs are called 

“vulnerability graph” in this dissertation. 

Current vulnerability graph generation frameworks uses automated planning 

algorithm. Automated planning [78] is a branch of artificial intelligence and is defined as 

the task of coming up with a sequence of actions that will achieve a defined goal. 

Automated planning algorithm [79, 80] uses a system model and an action model as 

input. System model defines different states of the system. Action model encodes 

planning algorithm’s actions using pre-requisite, defined by the system state in which the 

action is applicable, and effects, defined by the system state after the execution of action. 

The planning algorithms search for series of applicable actions, whose execution achieves 

the planning goal. Typical pre-requisites of vulnerability graph generation framework’s 

actions are encoded using presence of vulnerabilities, connectivity between software 

systems, attacker’s initial  privilege levels, and privileges gained by exploiting 

vulnerabilities.  
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Currently different vulnerability graph generation methods are available [1]. One of 

the primary differences (from risk scenario generation point of view) among the 

vulnerability graph generation methods is their algorithms. These algorithms search for 

applicable actions differently, or use different language to encode action’s pre-requisites 

and effects. These algorithms also have different scalability and complexity. Improving 

the scalability has been one of the primary focuses of current vulnerability graph research 

as shown in the Table 7 below. Some methods also generate the vulnerability graph 

manually by using the information about action pre-requisites and effects. Lippmann et al 

[1] describes a detailed review of current vulnerability graph generation methods. The 

major automated vulnerability graph generation methods are described in Table 7 below. 

Despite of these differences the current vulnerability graph generation methods have 

same limitations.   

Source Type of algorithm Description of algorithm 

Sheyner  [81, 
82] 

Symbolic model-
checking algorithm 

According to [2], “Model checking is a technique for 
determining whether a formal model of a system satisfies a 
given property. If the property is false in the model, model 
checkers typically produce a single counterexample. The 
developer uses this counterexample to revise the model (or the 
property), which often means fixing a bug in the design of the 
system.” Sheyner’s algorithm [81, 82] uses the formal software 
system model to generate the attack graph representing all 
possible ways the attacker can gain normally restricted 
privilege. 

Ritchey and 
Ammann [83] 

Model-checking 
algorithm 

This approach is similar to [81, 82] but it produces only one 
scenario as opposed to the entire attack graph. 
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Phillips and 
Swiler [84] 

Shortest path (near 
optimal) using 
matching algorithm 

Phillips and Swiler [84] generates near optimal shortest paths, 
by matching the information about attack templates 
(representing a generic attack step that includes necessary and 
acquired state attributes), the target configuration, and assumed 
attacker capabilities  (for example, attacker possessing a 
toolkit) [84]. The edges of the attack graph are weighted using 
some metric (for example, attacker effort or time to succeed). 
This weight has to be provided by the user[84]. The framework 
allows using a default value for unknown configuration 
information[84]. 

Ammann et 
al[85] 

Uses combination of 
algorithms that 
includes a breadth 
first search and a 
labeling algorithm. 
Assumes 
monotonicity. 

This paper [85] introduces the monotonicity assumption. Under 
this assumption 1) the precondition of an exploit, once 
satisfied, never becomes unsatisfied and 2) the negation 
operator cannot used to express the precondition[85]. Simply 
put monotonicity assumes that the attacker never 
backtracks[85]. This algorithm improves the scalability (from 
exponential time to a polynomial time) [85], but adds the 
restrictive assumption of monotonicity. The algorithm assigns 
the pre-conditions to different layers using a breadth-first 
search algorithm[85]. Each layer is numbered indicating the 
number of exploits required to satisfy the pre-requisites. These 
pre-requisites are then marked with step number corresponding 
to step in which an attack satisfies the pre-requisites[85].  

Ammann et 
al[86] 

Proposes a “host-
based approach” for 
vulnerability graph 
generation. Assumes 
monotonicity. 

This paper[86] proposes an alternative way to represent the 
attack graph structure. This approach calculates the maximal 
level of penetration possible in terms of the maximum level of 
access that can be achieved by the attacker[86]. The edges 
between nodes represent maximum level of access. The 
downside of this approach is that analyst is not presented with 
complete information about possible damage and hence may 
make sub-optimal choices when “repairing” the network [86]. 

Jajodia et al 
[87] 

According to [1]  
uses algorithm 
described in [85] 

According to Lippmann et al [1], it is one of the most 
comprehensive tools for building and analyzing attack graphs. 
This tool requires input, about connectivity and presence of 
vulnerability. This is obtained by a vulnerability scanning 
software [1]. 

Dawkins and 
Hale [88] 

Breadth-first 
algorithm with depth 
to stop. 

The breadth first algorithm starts from initial state; it then 
searches for all the states that can be reached from this initial 
state. It continues searching all immediate neighboring states 
until the goal state is reached. Dawkins and Hale [88] used a 
breadth-first search approach, which stops after a given number 
of vulnerabilities have been exploited in sequence in each path 
[1, 88]. These paths are then analyzed to identify attack paths 
that end in specific top-level goals and to find the minimum 
cut set [1].  



60 
 

Artz [89] 
 

Uses a recursive 
depth first search 
algorithm 

It describes the first version of the NetSPA (Network Security 
Planning Architecture) system. This approach computes the 
connectivity between all hosts using network topology 
information and firewall rules[1]. Attack graphs are built, using 
a depth limited forward chaining depth first search[1]. Unlike 
breadth first algorithm, depth first selects one of the states that 
can be reached from initial state; it then explores all the states 
one by one in this path as far as possible. If the goal state is not 
reached at end of exploration, it backtracks and repeats this 
search. Artz [89] [1] developed an attack definition language to 
encode the attacker actions used for generating the 
vulnerability graph. 

Dantu et al[90]  Manual generation of 
vulnerability graph 

Dantu et al [90] labels the output of the vulnerability graph 
using weighted attributes such as attacker skills, tenacity, cost 
etc. However, this information was not used as input for 
generating the vulnerability graph. Unlike proposed 
framework, this approach does not take into consideration the 
attacker’s exploratory nature, motivation, strategy, or thought 
processes. 

Dacier et al [91, 
92] 

Uses a tool called 
Automatic Security 
Advisor[91, 92]. 

Dacier et al [91, 92] refers to the attack graphs as “privilege 
graphs”. Dacier et al [91, 92]developed a tool called Automatic 
Security Advisor, to generate the privilege graphs for Unix 
operating system. The privilege graphs are converted to 
Markov chain corresponding to all possible successful attack 
scenarios[91, 92]. 

 Ortalo et al [1, 
93] 

Compares breadth-
first, depth-first, and 
shortest-path 
algorithms  

This paper describes how to use privilege graphs introduced by 
Dacier [91, 92], to describe the cyber-security of a UNIX host 
[1]. Three different models are discussed corresponding to 
three assumptions called SP, TM, and ML[1, 93]. SP assumes 
that the attacker chooses the shortest path leading to the target. 
In TM, all the possibilities of attacks are considered at each 
stage of the attack. In ML, the attacker chooses one of the 
attacks that can be executed from that node only. Ortalo et al 
[93] compares three different algorithms generating 
vulnerability graph probing 13 UNIX vulnerabilities over a 
period of 21 months. For this comparison, a four-level 
classification scale (0.1, 0.01, 0.001, 0.0001) was used to rate 
vulnerabilities as a measure of effort required to exploit the 
vulnerability. Ortalo et al [93] concludes that the security 
measure associated with TM cannot always be computed due 
to the complexity of the algorithm, the computation of the 
measure related to ML is easier, in SP the number of 
vulnerabilities and the number of paths are not sufficient to 
characterize the operational security evolution[93]. 

Li et al [94] Sequential 
association rule 
mining algorithm. 
 

Li et al [94] uses an association rule-mining algorithm to 
generate attack graphs from historical intrusion detection 
system (IDS) alert database. This algorithm uses empirical 
rules [94] (identified from the IDS logs) such as “if x → y were 
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present in a given sequence, then z was present as well”, to 
generate the attack graph.  

Zhang et al [95] Backward search 
algorithm 

Zhang et al [95] uses a backward (reverse) search algorithm to 
generate the attack graph. 

Xiao et al [96] Uses an approach 
similar to the one 
described in 
Ammann et al [86] 

Xiao et al [96] uses an approach similar to Ammann et al [86]. 
The edge between nodes not only represents the highest access 
level available but also the weakest preconditions[96]. This 
algorithm takes the transitive preconditions between hosts into 
account when handling the transitive aspect of exploits.  

Lee et al [97] Proposes an approach 
to divide and merge 
attack graph 

Most of the practical attack graphs are large. Lee et al  [97] 
proposes dividing the attack graphs into manageable sub-
graphs for conducting analysis. 

Xie et al [98] Constructs multi-
level vulnerability 
graph. Assumes 
monotonicity. 

Xie et al [98], constructs a two tiered attack graph framework, 
which includes a host access graph and sub-attack graphs. A 
sub-attack graph describes risk scenarios from one source host 
to one target host. The host access graph describes the 
attacker’s privilege transition among hosts. 

Ma et al [99] Uses a bi-directional 
search algorithm. 
Assumes 
monotonicity.  

In this bidirectional attack graphs generation algorithm, 
forward search and backward search are executed 
simultaneously using multithreading [99].  

Table 7: Current Vulnerability Graph Generation Methods 

The limitations of vulnerability graph methods are described below. The proposed 

framework overcomes these limitations. 

1. Different Type of Goal: In the cyber-security domain, it is widely accepted that 

the main objective of the attacker is to compromise the confidentiality, integrity, 

or availability of information. Current vulnerability graph methods do not capture 

how the attacker can achieve his/her goal of compromising the confidentiality, 

integrity, or availability of the information. Gaining restricted privilege (or 

circumventing a security feature) is only one of the possible ways to compromise 

information.  
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2. Difficulty Capturing Dynamic Knowledge: Current automated vulnerability 

graph generation methods (using traditional database and planning algorithms) 

assume that encoded knowledge is complete. It assumes that there are no 

unknowns in the domain, everything is known a priori, and whatever is not 

currently encoded is false. This assumption is not valid in the cyber-security 

domain. When new knowledge is available or if current knowledge change, the 

vulnerability graph generation methods need to re-encode actions and re-execute 

the planning algorithm.  

3. Use of Limited Knowledge: Vulnerability tree are generated by using limited 

knowledge. This knowledge is primarily about the presence of vulnerability, 

connectivity (reachability) between software systems, attacker’s initial privileges, 

and the privileges gained by exploiting the vulnerabilities. In real life, the 

attacker (or red-team acting as attacker) uses diverse knowledge to generate the 

risk scenarios. This knowledge can be about the software characteristics (design, 

implementation, or usage), detailed as well as abstract reasoning about the 

connectivity between software systems, known as well as potential attacks and 

vulnerabilities, theories about attacks etc. For example, the attacker (or red-team) 

may use the knowledge about the software’s design to infer that the software may 

be vulnerable to attack even if no vulnerability has yet been discovered. The 

attacker (or read-team) also uses their attack theories to discover and exploit any 

opportunity provided by the system. The connectivity between software systems 

can also be of different types, which can be used differently to launch the attack. 
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This diverse knowledge is not used by current automated vulnerability graph 

generation frameworks.  

4. Lack of Consideration of Attacker Behavior: The vulnerability graph 

generation method describes how the known vulnerabilities may be exploited, 

but it does not capture why the attacker may exploit these vulnerabilities, apart 

from the fact that they are available. These methods do not consider attacker’s 

motivation, strategy, preferences, or attacker thought process for generating risk 

scenarios.   

Attacker may also execute observation actions to gain knowledge about the target 

of the attack. This act of observation is called “fingerprinting” in cyber-security 

domain. In current vulnerability graph generation method, attacker’s 

fingerprinting action is encoded as boolean pre-requisites [81] to attack actions 

requiring fingerprinting. This encoding is done using knowledge of the target 

network. For example, if the attack action is for targeting the system inside the 

network, then fingerprinting pre-requisite is added for executing this action. This 

however, makes the actions useful only for a specific target network. Hence, the 

attack actions needs to be re-encoded if the network architecture changes. In 

addition, the current vulnerability tree generation framework use the fact that the 

fingerprinting was done, but do not explicitly capture and use the knowledge that 

was discovered (because of the fingerprinting) in the developing the attack 

scenarios.  

The execution of an attack action can have more than one effect. For example, 

buffer overflow vulnerability can be used to gain access to the system as well as 
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to crash the program against which it is executed. Attacker may choose one of 

these effects based on his/her goal. The current vulnerability graph generation 

framework assumes that execution of this multi-effect action results in both of 

these effects [81, 82]. This may be counter-intuitive from the attacker’s 

viewpoint who would not be interested in crashing the system that he/she is 

trying to access. Hence, it is important to take into consideration the attacker’s 

motivation and goal for generating risk scenarios. 

5. Lack of Consideration of Expert Theories: Cyber-security experts are a major 

source of attacker behavior information. Currently, expert uses their theories 

about attacker’s thought process and preferences to generate the risk scenarios 

manually. Current automated risk scenario generation frameworks do not use 

these expert theories to generate the risk scenarios.  

  The limitations of current manual and automated risk scenario generation 

frameworks are alleviated by the proposed framework described in next section.  

3.5.3 Proposed Cyber-security Risk Scenario Generation Framework 

This section introduces the proposed framework for generating cyber-security risk 

scenarios. The difference between the proposed framework and current risk scenario 

generation frameworks are: 

1. Goal of Compromising Information: It is widely accepted that the main 

objective of the attacker is to compromise the confidentiality, integrity, or 

availability of information. Unlike current vulnerability graph generation 

methods, the proposed framework’s risk scenarios describes all possible ways the 

attacker can compromise this confidentiality, integrity, or availability of 
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information. It is important to note that the proposed framework is not limited to 

generating risk scenarios only for these goals. New types of intentional goals can 

be also be modeled using the proposed framework if needed. 

2. Captures Domain Dynamicity: The proposed framework does not assume that 

encoded knowledge is complete. It assumes that there are unknowns in the cyber-

security domain, and new knowledge is available frequently.  

This dissertation develops a new planning framework for generating the cyber-

security risk scenarios. This planning framework is divided into two components, 

the distributed logic, and the centralized algorithms. 

Instead of relying on traditional planning algorithms to search for applicable 

actions, the proposed framework uses a mathematical logic to instantly 

accommodate dynamic information. In the proposed framework, attacker goals 

are dynamically decomposed into situation specific attack sub-goals and actions. 

In this approach, the mathematical logic attempts to classify the knowledge (about 

software systems, attacks, vulnerabilities etc.), as it becomes available, into 

logical sets representing situation specific attack sub-goals and actions. This 

classification is done by using a series of logical inferences. Each inference adds 

more knowledge that can be used for classifying attack sub-goals and actions. In 

this dissertation, whenever the classified or inferred knowledge can be used for 

generating the risk scenarios, it (the knowledge) is considered triggered. This 

mathematical logic is called distributed planning logic (or distributed logic) in this 

dissertation.  
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Given this distributed logic, the role of the centralized planning algorithm in 

proposed framework is changed to:  

a. Providing the information about attacker’s decisions (for example, 

selected goal and sub-goal), to the distributed logic that triggers the 

classification and inferences. 

b. Querying the triggered information (for example attack sub-goals and 

attacker actions) from distributed logic for graphically displaying the 

output. The order of this query is determined in real time by using the 

encoded attacker preferences and attacker’s situational decision points. 

c. Building the attacker’s knowledge state for generating risk scenarios. This 

knowledge state is used to control the knowledge that can be triggered by 

the distributed planning logic.  

3. Uses Diverse Knowledge: The proposed framework uses diverse knowledge (for 

example, the software’s use, the software’s design leading to potential 

vulnerabilities, availability of known vulnerabilities and attacks, the attacker 

behavior etc.) to generate risk scenarios. This knowledge can be generated by 

sources dispersed in time and space.  

4. Captures the Attacker Behavior: The proposed framework encodes the attacker 

thought process for decomposing goals, and discovering and exploiting 

opportunities provided by the target environment. The proposed framework also 

captures the attacker’s motivation, strategy, and preferences.  

In accordance with the attacker’s exploratory nature, the proposed framework 

assumes that the attacker may discover knowledge during the attack process. This 
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knowledge discovery not only guides the risk scenario but it also may change 

attacker’s initial goal. The type of knowledge discovered depends on the type of 

fingerprinting actions used by the attacker, and the location (in the target network) 

from which they are made. The proposed framework captures and uses the 

knowledge discovered because of fingerprinting for generating the risk scenario. 

The proposed framework uses attacker behavior, attack goal, attacker’s state of 

knowledge and decisions, to determine what fingerprinting actions the attacker 

may take. The proposed framework builds and uses the attacker’s knowledge state 

for generating the attack scenarios.  

5. Uses Expert Theories: The proposed framework also uses the red-team’s expert 

theories about attacker behavior (for example, attacker’s thought process, 

preferences etc.) for generating the risk scenarios. The proposed framework also 

supports validation and calibration of expert theories. 

The proposed framework generates two types of graphical outputs in the form of 

attack trees, and attack scenarios.  

1. Attack Tree:  Attack tree represents all possible ways the attacker’s goal can be 

achieved. The attack tree shows the goal, the decomposed sub-goals, and the 

executable attacks exploiting vulnerabilities that can accomplish these goals and 

sub-goals.  

2. Attack-scenario: The attacker may not act in the sequential order described in the 

attack tree, and may backtrack, abandon the scenario, or change the goals in 

accordance with the available opportunities. The attacker also has to acquire 

knowledge about the system in order to compromise it. This sequence of actual 
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steps taken by the attacker (or red-team acting as attacker) is called attack-

scenario in this dissertation. 

The proposed framework’s design is described in Chapter 4. Chapter 5-7 describes 

the implementation of this distributed logic and centralized algorithm. The modes of 

operations are explained further in Chapter 8. The manual and automated cyber-security 

risk scenario generation frameworks are compared using a case study in Chapter 9.
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4 Proposed Framework  

The current vulnerability graph generation framework uses traditional automated 

planning framework. The proposed framework is designed by combining the traditional 

automated planning framework, and a theory of human actions called “situated 

action”[100, 101].  

This chapter describes the design of the proposed framework. It also compares the 

proposed framework’s design with vulnerability graph generation frameworks that uses 

the traditional planning framework. This description and comparison is done by 

developing a conceptual planning framework, described in the next section.  

4.1 Conceptual Planning Framework 

The conceptual planning framework describes a generalized planning process and 

factors influencing the process. It provides a conceptual template for understanding how 

and what factors influence the functionality and design of the planning framework. The 

purpose of developing this conceptual planning framework is to describe why traditional 

planning frameworks, which include the current automated vulnerability graph generation 

frameworks, cannot be used directly to fulfill the cyber-security domain requirements. 

The conceptual planning framework is shown in Figure 6 below. Eight factors 

influence how a planning algorithm may generate the desired plan. In the context of 

automated planning terminology, the cyber-security risk scenario is the plan to be 

generated. To be consistent with the terminology of automated planning, the attack plan 

is used interchangeably to refer to cyber-security risk scenario when appropriate.  
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Figure 6 Concepual planning framework 

In this conceptual framework, planning is described as a three-stage process. The 

stages are input characterization, planning, and output generation. The eight factors either 

participate in or influence these stages. The planning algorithm is the core of the 

framework that takes the system model, goal, and action model as inputs and generates 

the plans as output. The domain knowledge, dynamicity, and planning philosophy 

influence the way the inputs are encoded, and the way the planning algorithm uses these 

inputs. Finally, the planning framework classification and plan criticality influence the 

way the planning algorithm is designed and implemented. These factors are defined in 

this section. 
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Figure 7: Conceptual framework factors  

The eight factors are used to compare the proposed planning framework to the 

traditional planning framework and a theory of human action. This comparison is done 

using a spider chart. The template of the spider chart is as shown in Figure 7 above. The 

factors of the conceptual planning framework form the axis of the spider chart.  

4.1.1 Goals 

The definition and dynamicity of the goals can be used to differentiate the planning 

frameworks. There are two types of goals: well-defined and undefined. Well-defined 

goals can be further divided in static and dynamic goals.  

1. Static Well-Defined Goals: The goals in this dissertation are considered static 

well-defined if they are well-defined, and they remain constant throughout the 

plan generation process. Here well-defined means that the goals provide clear 

understanding to the planning agent (human or machine) about how to possibly 

achieve them, and provide clear success criteria to determine if they are achieved.  
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2. Dynamic Well-Defined Goals: These goals are also well-defined goals, but they 

may change based on the information and opportunities encountered during the 

plan generation process.  

3. Undefined Goals: The undefined goals are not clear or do not provide clear 

success criteria to the planning agent (human or machine).  

The design of the planning algorithm is influenced by how the well-defined goals are 

encoded. This is explained by the system model encoding described in next section.  

4.1.2 System Model 

The majority of the planning frameworks are designed to perform a task (or to carry 

out an action). This task is defined and executed within the boundaries of the system. The 

major distinguishing aspects of the planning framework include how this system is 

represented computationally, and the amount of knowledge and effort required to create 

this system model.   

1. Stateful System: Traditional planning frameworks represent the system to be 

stateful (i.e., the system at any point in time can be described by a pre-defined 

state). Subsequently, the system behavior is modeled by a state transition system. 

In most cases, the planning goal is defined in terms of the state the system should 

reach after the plan is executed [80]. The traditional planning algorithm identifies 

which actions can be executed in what system state to achieve the planning goal 

[80]. The planning algorithm functions by searching for a path in a graph 

representing all possible states of the system. This presentation of all states of the 

system is called the search space of the algorithm. In case of a planning algorithm 

called the Hierarchical Task Network (HTN) [80] the goal is to perform tasks  . 
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Both the HTN algorithm and the proposed framework use the concept of 

hierarchical task analysis. In hierarchical task analysis, tasks are systematically 

decomposed into sub-tasks.   

2. Logical Model:  This model encodes the characteristics of the system using 

logical statements. For example, instead of encoding that the system is in a 

vulnerable state, it encodes the logic behind why the system may be in a 

vulnerable state.    

4.1.3 Action Model 

The action model defines how the actions are represented in the planning framework.  

1. Plan-driven Action: Traditionally, execution of actions leads to the system 

changing state. The role of the planning algorithm in this case is to search for 

applicable actions in each state that achieves favorable state transitions in order to 

accomplish the planning goal. The planning algorithm selects the action based on 

its applicability in the current state and its potential effects. Hence, the 

prerequisite for selecting the actions describes the system state in which they are 

applicable, and the effects describe the state the system will be in after action 

execution[79]. In traditional planning, the plan determines the sequence of actions 

to be taken.  

2. Situated Actions: A theory of human actions, known as “situated action” [102-

104]or “situated cognition”[105], suggests that all actions are ad-hoc and driven 

purely by the situation. According to this theory, the plan only weakly 

summarizes these actions [102-104]. 
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3. Opportunistic Actions: In the proposed framework, the attacker actions are 

described as opportunistic actions. This has the goal-driven characteristics of 

traditional planning framework and the situational aspect of the situated action 

theory.  

4.1.4 Planning Philosophy   

1. Tracking System States: Traditionally the system is considered stateful and is 

represented by a state transition model[80]. The objective of planning in this case 

is to track the system moving from state to state, and to determine which actions 

may be applicable in what state to achieve the planning goal. Modeling and 

tracking the system is called system-centric planning approach in this dissertation. 

2. Situational Planning: Modeling and tracking a system becomes a difficult 

problem in dynamic domains, where the system configuration changes frequently. 

The proposed framework uses situational planning. The proposed framework is 

not system-centric (i.e., it does not model or track the system states); it is attacker-

centric. The proposed framework encodes the logic behind what opportunities 

could be available due to dynamicity of the system, and the attacker thought 

process in perceiving and exploiting these opportunities. The plan in this case is 

the outcome of the attack situation, described by the dynamic interaction between 

the available opportunities, the attacker (or encoded attacker behavior in the form 

of goals, strategy and preferences), and the tools available to discover and exploit 

the opportunities. The attack situation (or plan) is built by emulating the attacker’s 

interaction with the target network. This is in accordance with the “situated 
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action”[102, 103] and “situated cognition”[105, 106] theory described in Section 

4.2.1.2. 

4.1.5 Planning Framework Classification  

The planning framework can be classified based what type of knowledge is used in 

the planning, and if planning framework observes the actual system states in order to 

execute the plans. 

4.1.5.1 Classification Based on Domain Knowledge Encoding 

Planning frameworks can be classified as domain-specific, domain-independent or 

domain-configurable[80].  

1. Domain-Independent Planning: The goal of domain-independent planning 

research is to create a general-purpose planning algorithm that is applicable to all 

planning domains. According to [80], “For nearly the entire time that automated 

planning has existed, it has been dominated by the research on domain independent 

planning.” To reduce the difficulty in devising a domain-independent planning 

framework that works well in all domains, most research assumes the system to be 

deterministic, static, and finite[80]. They also assumed that the planning framework 

has complete knowledge about the system[80], the goal is only specified as an 

explicit goal state, the plan contains a linearly ordered finite sequence of actions, and 

the actions have no durations. The planning algorithm in this case is not concerned 

with any change that may occur in the system while it is planning [80].  

2. Domain-Specific and Domain-Configurable Planning: Traditionally, states 

of the system are represented as search space, and planning is achieved by searching 

for a path in this space. The domain-specific and domain-configurable planning 
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frameworks use the knowledge about the domain to constraint the search to a small 

part of this search space [80]. This makes the planning algorithm more efficient and 

faster. In the domain-specific planning framework, domain knowledge is encoded in 

the planning algorithm [80]. In the domain-configurable planning framework, 

domain knowledge is taken as separate input[80].  

4.1.5.2 Classification Based on Ability to Observe the System 

This classification is based on how the planning framework’s ability to observe the 

system for executing the computed plans. 

1. Offline Planning Framework: The planning framework can be considered 

offline if it generates the plan using a formal model of the system, the initial state 

and the goal, and does not observe the actual system [78, 80]. Observing the 

system may be necessary because most of the time there are difference between 

the system model and the actual physical system it represents[78, 80]. 

2. Online Planning Framework: An online planning framework observes the 

system in order to identify the difference between the assumed (using a formal 

model) system state and the actual system state[78, 80]. If this difference is large, 

then corrective actions are taken or re-planning is done to get back to the original 

plan. The online planning framework observes the system, and updates the plan 

using an online controller and a scheduler mechanism with the planning 

algorithm[78, 80]. These controller and scheduler mechanisms add additional 

functional requirements to the planning algorithm.   

3. Real-Time Planning Framework: In this dissertation, a real time planning 

framework is described as a framework that can use real-time information about 
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the system to generate the plans. Instead of updating a plan generated by the 

offline planning framework using a formal system model, the real-time planning 

framework can generate the original plan itself using the information collected by 

observing the system. The proposed framework can generate plan using real-time 

planning and can also collect and use the information about the actions and 

system changes in real-time.  

4.1.6 Knowledge  

The domain can be knowledge-lean or knowledge-intensive. The effort and time 

required to develop the system model, the action model, and the planning algorithms are 

impacted by the knowledge requirements of the domain.   

1. Knowledge-Lean Domain: The domain is knowledge-lean if information 

required to generate the plan is limited and known a priori. This means that the 

information needed to generate the system model, state-transition tables and 

action models is known a priori. The knowledge-lean domain also assumes that 

this information, once encoded, does not change. This assumption holds true in 

static domains, in which the information does not change frequently. 

This is similar to the concept of the knowledge-lean problems described in 

context of problem solving. According to [106], “Most problems people face in 

daily life are not like knowledge-lean problems in which all relevant aspects of 

each problem can be given in a compact problem statement.” 

2. Knowledge Intensive Domain: The knowledge-intensive domain is defined as a 

domain in which the amount of information needed to generate the plan is not 

limited, and may not be available a priori. This requires acquisition of at least 
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some part of information during the planning. According to [80], the problem of 

knowledge acquisition is one of the most important but least appreciated problems 

in automated planning research.  According to [80], if there were good ways to 

acquire domain knowledge, planning frameworks could be much more useful for 

solving real-world problems.  This problem is further intensified in dynamic 

domains. In the knowledge-intensive planning framework, the information 

acquired during planning (in real-time) should be used for generating the plan.    

The concept of knowledge-intensive domain is adapted from the concept of the 

“knowledge-rich cognition” used for problem solving described in [106]. 

According to this [106] experts have extensive (rich) knowledge that can be used 

for problem solving. This is described as [106] , “Experts know a lot about their 

domains. Even if they cannot articulate their knowledge, they have built up 

methods for achieving their goals, dealing with hassles and breakdowns, finding 

workarounds, and more to make them effective at their tasks.” 

In summary, in the static knowledge-lean domain, the information about the system 

and the planning problem can be acquired in advance. However, in the case of the 

dynamic knowledge-intensive domain, at least some of the information acquisition has to 

occur in real time. The cyber-security domain is a dynamic knowledge-intensive domain.  

4.1.7 Dynamicity    

Section 4.1.6 described the domain from the point of view of amount of knowledge 

required to generate the plan, and if this knowledge is available a priori. Domain-

dynamicity influences the knowledge requirement of the domain. It is described by the 
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rate at which the knowledge about the system changes. It may be a reason why this 

knowledge in the knowledge-intensive domains may not be available a priori.  

1. Static Domain: In a static domain, the information needed to generate the plan 

remains static or does not change often. This allows encoding the system and 

action model a priori. 

2. Dynamic Domain:  In a dynamic domain, the information needed to generate a 

plan changes dynamically. New information relevant for planning may be 

generated frequently. This requires updating the system and action model 

correspondingly.  

4.1.8 Application of Planning for Critical Domain 

Unlike the seven factors described above, this factor is not shown on the spider 

diagram. It compares types of application of planning frameworks and not framework 

characteristics. However, it is addressed in this section because this application of 

planning frameworks influences the way the planning algorithm is designed or 

implemented. 

If the planning framework is used to generate a plan for time- or mission-critical 

operations, then it must generate the most effective plan, often in the first attempt. This 

would in turn require a priori preparation, which includes creating accurate system and 

action models. In this case, the planning framework may not be able to backtrack or 

change the course of action during the plan execution without a significant impact.  

In the cyber-security domain, the attacker often learns about the system on the go 

and has the option to backtrack and try different actions to accomplish the goal. This is 

the most commonly observed behavior of the attacker. Note that the attacker may also 
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pre-plan the attack, and may have the ability to fingerprint the system completely a priori. 

This type of attacker behavior can be incorporated as a special case of learn-as-you-go 

attacker behavior. 

4.2  Comparison of Planning Architectures 

The proposed planning architecture is compared with the traditional planning 

framework and a theory of human action using the spider diagram as shown in Figure 8. 

In this Figure, the traditional framework is shown in yellow, the proposed planning 

framework in red and situated action theory in green. 

 

 

Figure 8: Comparision of planning frameworks 

4.2.1.1 Traditional Planning 

The traditional planning framework characteristics were introduced with the 

description of the conceptual planning framework. Nearly all of the computational 

automated planning frameworks, including current vulnerability graph generation 

frameworks, are grouped together under this classification in this dissertation.   
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The planning frameworks within this classification vary considerably, but at an 

abstract level, they share the same characteristics described in this section. 

1. Static Defined Goals: Traditional planning frameworks have static, well-defined 

goals. Majority of goals are defined by a system state called goal-state [80]. The 

system should reach the goal-state after execution of all planned actions. In a type 

of domain-configurable planning algorithm called Hierarchical Task Network 

(HTN) the goal is to perform tasks[80].  

2. Tracking System State, Planning Philosophy: One of the main distinguishing 

factors among the planning frameworks is the planning philosophy. The 

traditional planning philosophy is to track the evolution of a system in the form of 

system states using a state transition model. The role of the planning algorithm is 

to determine which action can be executed in what state to achieve the desired 

outcome[80].  

3. Planning Framework Classification: The traditional planning framework 

generates the plan in offline mode or online mode[80]. The online planning 

framework observes the system to identify the difference between the assumed 

(using formal model) system state and the actual system state, and take corrective 

actions if this difference is large. The online planning framework observes the 

system by using a controller and a scheduler mechanism with the planning 

algorithm[80]. The planning framework can be domain specific, domain 

configurable, or domain independent[80].  

4. Stateful System and Plan Driven Action Model: The system is modeled as a 

stateful system and the actions are defined in terms of preconditions and effect. 
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Actions are applicable in states in which their pre-conditions are satisfied. The 

effect is defined in terms of the state that the system will be in after execution of 

the actions. 

5. Static and Knowledge-lean domain: The planning algorithm takes as input the 

system and action models, which are designed prior to planning. This requires 

acquiring the knowledge about the system a priori. According to [80], “In most 

automated planning research the information available is assumed to be static, and 

the planning framework starts with all of the information it needs.”  

4.2.1.2 Situated Action   

In contrast to traditional planning, situated cognition does not provide a 

computational planning method but suggests a theory of human actions. According to this 

theory, human actions are not necessarily driven by a preconceived plan [102-104]. This 

concept is presented under different names such as “Situated Action” [102-104] or 

“Situated Cognition”[105].  

According to[106], situated cognition does not have a theory of problem solving to 

compete with the classical view, “It offers no computational, neuropsychological, or 

mathematical account of internal processes underlying the problem cognition. Nor does it 

explain the nature of the control of external process related to problem solving." It further 

suggests that [106], “Each problem is tied to a concrete setting and is resolved by 

reasoning in situation specific ways, making use of the material and cultural resources 

locally available.” 
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1. Situated Action Model: According to situated action theory [102-104], actions 

are situated (i.e., they are taken in context of particular, concrete circumstance) 

and situated actions are essentially ad-hoc.  

This theory [102-104] suggests that the plans are best viewed as a weak resource 

for what is primarily ad hoc activity. It is only when human agents are pressed to 

account for the rationality of their actions that they invoke the guidance of a plan 

[102-104]. According to this theory [102-104], the plans when formed in advance 

are vague, as they do not take into consideration the unforeseeable contingencies 

of particular situations. These plans when reconstructed in retrospect 

systematically filter out precisely the details that characterize situated actions in 

favor of those aspects of the actions that  can be seen to accord with the plan 

[102-104]. 

2. Dynamic and Knowledge-intensive Domain: According to [102-104], advance 

planning is inversely related to prior knowledge of the environment and the 

conditions that the environment is likely to present.   

Human actions behave in accordance with the situated cognition theory because 

the circumstances around human agents are continuously changing and are never 

fully anticipated [102-104]. Consequently, the actions, although systematic, are 

never planned in a strong sense. 

The current major implementations of situated action theory are two games. These 

are called ‘Pengi’ [107] and ‘Sonja’ [108]. In these games, the agent (for example, a 

Penguin called Pengi or an Indian called Sonja) perceives the situation of the game (for 

example, a bee coming towards the Penguin or a monster attacking the Indian) and 
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chooses the encoded situated actions (for example, run away from Bee, kill the monster 

etc.). The proposed framework uses the concept of deictic representation described in 

[109]. According to [109], “Deictic representations represent things in terms of their 

relationship with the agent.” The proposed framework uses this representation to label the 

goals and sub-goals. 

4.2.1.3 Proposed Framework 

This section describes characteristics of the proposed planning framework. 

As mentioned in Section 3.4.2, a cyber-security attack is an exploratory technique 

and is not necessarily a preplanned activity. Attacker behavior is more in accordance with 

the situated action theory. To capture this attacker behavior, the definition of planning in 

this dissertation is a combination of both the traditional planning framework and the 

situated action theory, but draws more from the later. 

The objective of this dissertation is not to propose a hybrid planning theory or a 

general-purpose planning theory, but to develop a domain specific framework that is best 

suited for cyber-security risk scenario generation.  

1. Dynamic Well-defined Goals: In the proposed planning framework, the goals 

are well-defined and dynamic in nature. This framework defines two types of 

goals, intentional goals, and situational sub-goals. The high-level attacker 

objectives are defined as intentional goals. The situational sub-goals can be 

accomplished to achieve the intentional goals. These sub-goals are called 

situational because achieving them depends on 1) contextual information of the 

intentional goal, 2) available opportunities, 3) attacker behavior, and 4) tools 

available to the attacker.  
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Once the high-level intentional goals are identified, the situational sub-goals are 

characterized by the cognitive tasks that the attacker may need to carry out to 

achieve the intentional goals. These are called cognitive domain specific tasks (or 

sub-goals) in this dissertation. The opportunities provided by the system and 

attacker behavior further constrain the availability of cognitive domain specific 

tasks. The searching for opportunities itself is characterized as a situational sub-

goal.  

These situational sub-goals, however, may also change the high-level intentional 

goals of the attacker. This may occur in the following scenarios:  

a. If there are no opportunities available to accomplish the goals and sub-

goals given the attacker’s knowledge state. 

b.  If the available opportunities may enable accomplishment of a goal 

deemed not possible before. 

c. If the actions taken to accomplish the goal fail. 

d. The available opportunities may enable accomplishment of another goal 

generating higher utility for the attacker.  

2. Opportunistic Actions: The attacker actions in the proposed framework are 

opportunistic in nature. Opportunistic actions are taken by the attacker to 

accomplish the sub-goals and goals, and are dependent on the opportunities 

available in the system.  

Opportunities exist at multiple levels. There may be opportunities to decompose 

the goal into sub-goals, to fingerprint the system, to discover new vulnerabilities 

and/or attacks, to exploit existing vulnerabilities, etc.  
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These opportunities themselves are discovered by executing fingerprinting sub-

goals. Fingerprinting of the current environment triggers 1) decomposition of 

intentional goals and situational sub-goals, and 2) the availability of attack actions 

to accomplish situational sub-goals or intentional goal. The fingerprinting sub-

goals themselves are triggered based on, the attacker behavior, attacker’s 

decisions (for example selection of goals and sub-goals) and attacker’s knowledge 

state (i.e., different fingerprinting actions may be used to collect information 

about different goals and sub-goals).   

3. Planning Philosophy - Situational Modeling: The traditional planning 

framework tracks the system states, and selects the actions that can be executed in 

these states to guide the system toward the goal state. The actions and system 

models are assumed to remain static and are encoded a priori. This assumption is 

not valid in cyber-security domain.   

The proposed framework neither tracks nor models the system evolution using a 

state transition model. Plans in the proposed framework are driven by attack 

situation, characterized by the dynamic interaction between the opportunities, the 

attacker (or encoded attacker behavior – goals, strategy and preferences), and the 

tools available to discover and exploit these opportunities. The main objective of 

the proposed planning framework is to 1) encode the opportunities provided by 

the system, 2) the attacker thought processes in decomposing goals, and 

discovering and exploiting these opportunities, 3) attacker preferences and 

strategies, and 4) the available attacks. Once encoded, this knowledge is used in 

logical reasoning to generate the attack plans given the situation. In summary, the 
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objective is to emulate the attacker behavior by mimicking how the attacker 

interacts with the target environment. This is in accordance with the “situated 

action”[102, 103] and “situated cognition”[105, 106] theory. 

4. Logical System Model: The system is modeled in the form of logical sets of 

domain objects and sets of relations between these objects. These domain objects 

and the relationships between them are encoded as logical statements.  

The logic encoded in the proposed framework is more detailed (or at a lower level 

of abstraction) than describing the states of the system. For example, instead of 

encoding that the system is in a vulnerable state, it encodes the logic behind why 

the system may be in a vulnerable state. The proposed framework uses a 

knowledgebase that can capture this type of logic. This is discussed in detail in 

Section 4.3. 

5. Dynamic and Knowledge-Intensive Domain: The cyber-security domain is an 

inherently dynamic and knowledge-intensive domain. This domain dynamicity is 

captured by 1) making the knowledgebase, used to capture domain logic, dynamic 

(i.e., capable of encoding new information when it becomes available), and 2) 

designing the planning algorithm to function with the assumption that information 

may be incomplete or changing.  

6. Planning Framework Classification: This section describes how the proposed 

planning framework is classified. 

a. Domain-Specific Planning Framework: The proposed framework can be 

considered a domain-specific planning framework, as it uses the logical 

encoding of the cyber-security domain for generating attack plans. 
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However, it does not use the state transition model and therefore does not 

use the domain information to reduce the search space of the planning 

algorithm.  

b. Offline or Real-time Planning Framework: The plans are generated 

using information about the system. This information can be pre-recorded 

or can be generated in real-time. The proposed framework can work in 

offline or real-time mode. 

4.3 Proposed Planning Framework 

Section 4.2.1.3 introduced the proposed planning framework using the conceptual 

planning framework elements. This section explains these elements in detail. 

4.3.1 Goals 

There are two types of goals in the proposed framework, intentional goals and 

situational sub-goals. Intentional goals represent high-level attacker objectives, and 

situational sub-goals represent the goals that must be accomplished in order to achieve 

intentional goals.  

4.3.1.1 Intentional Goals 

In the cyber-security domain, it is widely accepted that the main objective of the 

attacker is to compromise the confidentiality, integrity, or availability of information. 

Correspondingly, the objective of the defender is to protect the confidentiality, integrity, 

and availability of the information. Security guidelines such as the NIST 800 series 

guidance  [67, 68], and regulations [69, 70] are based on this basic principle often called 

the “CIA principle”. In accordance with this, possible high-level attacker intentional 

goals in this dissertation are characterized as “information to be leaked”, “information to 
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be corrupted”, and “information to be made unavailable”. It is important to note that even 

though the intentional goals are currently characterized using the CIA principle, the 

framework is not limited to these goals. New types of intentional goals can be modeled 

using the proposed framework’s logic if needed. 

4.3.1.2 Situational Sub-Goal 

The situational sub-goals are driven by the cognitive domain-specific tasks the 

attacker has to execute to accomplish high-level intentional goals. The “cognitive task” 

aspect captures the attacker thought processes as they relate to compromising the system. 

These tasks are “domain-specific” because they are guided by the opportunities available 

in the cyber-security domain under consideration. There are three types of cognitive 

domain specific tasks. Similar to the intentional goals new types of situational sub-goals 

can be modeled using the proposed framework’s logic if needed. 

Exploit Functionality  

The high-level objective of the attacker is to compromise the confidentiality, 

integrity, and availability of the information. This “information to be compromised” is 

stored in some place, transmitted using some mechanism, and is potentially processed by 

some entity. These represent the available opportunities (to compromise the information) 

and become the logical choices for the attack. These opportunities represent the potential 

situational sub-goals. Examples of situational sub-goals are “location to which access is 

needed”, “process to be hijacked”, and “transmission to be captured”. These situational 

sub-goals have a functional relation with the goal “information to be compromised”. 

Therefore, they are called cognitive domain specific tasks to exploit functionality.  
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This dissertation uses the concept of the deictic representations described in [109] to 

label the goals and sub-goals. In deictic representations entities are described in terms of 

their relationship to the agent [109]. An example of this is “the-cup-I-am-drinking-from” 

[109]. This dissertation uses this concept of deictic representations to label the 

relationship of entities to the attacker goal. For example, a sub-goal of the attacker can be 

“location to which access is needed”, which may be storing some “information to be 

compromised”.  

Exploit Connectivity 

The software system storing, processing, and transmitting information are connected 

to each other using different connection mechanisms. These connections further provide 

an opportunity for launching attacks. The connected entities, by virtue of their 

connection, become potential situational sub-goals of the attacker. In this dissertation, 

these are called cognitive domain specific tasks to exploit connectivity.  

Exploit Attributes 

Finally, these software systems (storage location, processing applications, or 

transmission mechanism) also have their own characteristics. For example, if the storage 

location is encrypted, then “decrypt information” becomes the logical situational sub-

goal. In this dissertation, these are called cognitive domain specific tasks to exploit 

attributes. 

4.3.2 Planning Philosophy 

The proposed framework neither tracks nor models the system evolution using a 

state transition model. Plans in the proposed framework are driven by attack situation, 

characterized by the dynamic interaction between the opportunities, the attacker (or 
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encoded attacker behavior in the form of goals, strategy and preferences), and the tools 

available to discover and exploit these opportunities. The main objective of the proposed 

planning framework is to encode 1) the opportunities provided by the system, 2) the 

attacker thought processes in decomposing goals, and discovering and exploiting these 

opportunities, 3) attacker preferences and strategies, and 4) the available attacks. Once 

encoded, this knowledge is used in logical reasoning to generate the attack plans given 

the situation.  

The proposed framework, instead of relying on traditional planning algorithms to 

search for applicable actions, uses a distributed planning logic to instantly accommodate 

dynamic information. 

The distributed planning logic is designed to emulate the attacker thought processes 

for decomposing goals (and sub-goals), and discovering and exploiting opportunities 

provided by the system. The distributed logic attempts to classify the available system 

information and threat information into logical sets representing attacker’s goals, sub-

goals and actions. This classification is done by using a series of logical inferences. Each 

inference adds more knowledge that can be used for classifying sub-goals and actions. In 

this dissertation, whenever the classified or inferred knowledge becomes useful for 

generating the risk scenarios, it is considered triggered.  

The centralized planning algorithm in the proposed framework:  

1. Provides the information about attacker’s decisions (selected goal, sub-goals, and 

actions) to the distributed logic, which triggers the classification and inferences. 
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2. Queries the triggered information from the distributed logic for graphically 

displaying the output. The order of this query is determined in real time by using 

the encoded attacker preferences and attacker’s situational decision points. 

3. Builds the attacker’s knowledge state, which is used to control the knowledge that 

can be triggered by the distributed planning logic. 

4.3.3 Knowledge Representation 

Cyber-security is a knowledge-intensive domain. A large amount of knowledge may 

be required to generate the risk scenarios, and this knowledge may not be available a 

priori. This requires capturing and using knowledge dynamically while generating the 

attack plans. This section introduces the knowledge representation language used to 

encode the cyber-security domain knowledge in this dissertation. The distributed logic is 

also designed using this knowledge representation language. 

The proposed framework uses mathematical logic language to represent the cyber-

security domain knowledge. The knowledge representation technique used in the 

proposed framework is called ontology , and the mathematical logic language is called 

Web Ontology Language (OWL) [110].  

In this knowledge representation language, the domain knowledge is encoded as 

machine and human understandable logical statements. Logical reasoning, using the 

encoded logic statements, allows classifying the information relevant for attack plan 

generation.   

4.3.3.1 Knowledge Representation Language 

This section briefly introduces the OWL language used to encode the cyber-security 

domain knowledge. A detailed overview of the language is described in [110, 111]. This 
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section explains how the information can be encoded as the logical constructs of this 

language. These constructs are described below. 

Individuals 

Individuals are the basic element of this logical language and they represent objects 

of the cyber-security domain. According to [110, 111], individuals can be referred to as 

instances of a class. These are represented in Figure 9 below.   

 

 

 

 

Figure 9:  Example individuals 

Properties   

According to [110, 111], properties represent the relations between the individuals. 

For example, the property ‘isStoredIn’3  links the individual ‘Tradesecret’ to the 

individual ‘MySQLServer’4. Properties may have inverse properties[110, 111]; for 

example, ‘stores’ can be defined as the inverse property of ‘isStoredIn’.  

 

 

                                                 
3The properties in this dissertation are written using italic fonts. 

4 The individuals in this dissertation are written by using the bold font 

Tradesecret 

MySQLServer 

Windows Server‐ Archie 
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Figure 10: Example properties 

Properties with a single value are called functional properties[110, 111]. Properties 

can also be transitive or symmetric [110, 111]. A property chain can also be created by 

combining two properties together [112]. For example, if an attack called Attack A 

targets a web server called IIS Server (encoded as Attack A attackHasTarget 

IISServer), and the IIS Server is hosted on Windows Server (encoded as IISServer 

isHostedOn WindowsServer), then it can be inferred that the Windows Server is the host 

of Attack A’s target (shown as Attack A hostOfAttackTarget WindowsServer). This is 

done by defining property hostOfAttackTarget as the chain linking properties 

attackHasTarget and isHostedOn. 

 

Figure 11: Property chain example 
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Classes  

Classes are logical sets of individuals [110, 111]. They describe a collection of 

similar types of individuals. An individual can be manually assigned to a class, or its 

membership in class can be inferred by defining the criteria under which an individual 

becomes a member of a class [110, 111].   

An example of manual assignment of individuals to classes is shown below.  

 

Figure 12:  Example of class 

 

 

 

 

 

 

 

 

Figure 13: Example of class encoding using special ‘type’ property 

Membership criteria can be logically encoded either by using logical definitions or 

by using property restriction. Property restriction can be used to group together 

individuals with similar property relations [110, 111].  

Information 

Tradesecret MySQLServer 

type type 

Database 
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Set mathematics can be used to create a hierarchy of classes. This allows defining 

sub-class, super-class, intersections, and unions. Figure 14 below shows an example in 

which the individual MySQLServer is classified as a member of set Database, and the 

class Location is defined as the super-class of Database class. It can be inferred that the 

MySQLServer is a member of the class Location.  

 

Figure 14: Example class hierarchy 

Class membership can also be defined by using the properties of individuals [110, 

111]. More specifically, class membership can be defined by restricting the values the 

properties can have to a certain range or to a specific value [110, 111]. For example, this 

logic can be used to define a class whose individuals have some a functional relation with 

the selected goal. Figure 15 below shows this example. In this Figure, the class 

FunctionalGoalTriggeredSubgoal is defined as the class of individuals who are related 

to the members of selected goal class (by hasFunctionalRelation property). This is 

achieved by restricting the hasFunctionalRelation to take values as individuals who are 

members of the SelectedGoal class.   
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Figure 15: Example property restriction 

One feature of the logical language used in this dissertation is its ability to define a 

class with no name. These unnamed classes [110, 111] are defined by using property 

restriction. For example, if all individuals that can be scanned by a certain type of 

fingerprinting method need to be grouped together, then it can be achieved by defining a 

class by limiting the values of the property ‘canBeScannedBy’ to ‘DataBaseScan’. The 

act of limiting the property value is called property restriction [110]. This is shown in 

Figure 16 below. This ability to create anonymous class can be used to define a super-

class without explicitly creating a new named class.  

 

Figure 16:  Example of class hierarchy and property restriction 
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4.3.3.2 Knowledge Representation Language Usage 

The knowledge representation language used in this dissertation is the ontology 

language used for designing the Semantic Web [113]. According to [114], “The Semantic 

Web is a web of data”. It [114] also mentions that , “The Semantic Web provides a 

common framework that allows data to be shared and reused across application, 

enterprise, and community boundaries.” Semantic Web a collaborative effort led by the 

World Wide Web Consortium (W3C) [115], which is an international community that 

develop Web standards. According to [114] one of the applications of the Semantic Web 

technologies is data integration, “whereby data in various locations and various formats 

can be integrated in one, seamless application” [114]. 

The features of this knowledge representation language are used in this dissertation 

to capture diverse cyber-security domain knowledge, which may be generated from 

different sources dispersed in space and time. The knowledge representation language 

and the logical reasoning are used to design the distributed planning logic. The usage of 

the knowledge representation language is introduced below and is detailed in Section 6.1. 

1. Capture Diverse and Dispersed Cyber-security Domain Knowledge: The red-

team (and attacker) may use diverse amount of knowledge to generate the attack 

plan. This knowledge may be about the use of software system in the target 

infrastructure, the design of the software that makes it vulnerable to potential 

attacks, the attacker thought process in decomposing the goal or for discovering and 

exploiting vulnerabilities, the theories of attacker behavior etc. This knowledge can 

also be generated by sources dispersed in space and time. Example of these diverse 
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types of knowledge, and the potential (example) sources from which it is collected 

is shown in the Figure 17 below.  

 

Figure 17: Example of diverse types of knowledge 

 

The knowledge representation language used in this dissertation provides 

sufficient vocabulary to encode and combine this diverse knowledge about the 

cyber-security domain. The logical language used in this dissertation also allows 

capturing this knowledge directly from the source.  

2. Incomplete Information: The knowledge representation language (OWL) and 

logical reasoning used in this dissertation assumes that the knowledge is 

incomplete and that new knowledge can be available at any time [116]. OWL was 

designed for Semantic Web. According to [116], in Semantic Web “Anyone can 
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say Anything about Any topic” and as a result “there could be always something 

new that someone will say”. The traditional planning algorithms and traditional 

knowledgebase [117] assume that the knowledge encoded is complete and all the 

knowledge that is not encoded is false (i.e. there are no unknowns). This 

assumption is not valid in the cyber-security domain.  

3. Distributed Planning Logic: The proposed framework is divided into two 

components: centralized algorithms and distributed logic. This dissertation uses 

the knowledge representation language to design the distributed logic.  

The knowledge representation language allows building distributed logic 

incrementally. In this incremental logic building process, new distributed logic 

can be added when more understanding about the domain becomes available. This 

makes the planning logic flexible and scalable.  

4. Contextual Interpretation: In the cyber-security domain, new information 

availability may require interpreting already encoded information and inferences 

differently. The same attacks and vulnerabilities may be used differently by 

different types of attackers, and different cyber-security experts may associate the 

same attacks and vulnerabilities with different attack plans. Due to the nature of 

the cyber-security domain, it should be possible to interpret the information 

encoded differently in different contexts. The knowledge representation language 

[110] and the encoded logic allows contextual interpretation of information (i.e., it 

allows interpreting the relation between individuals differently when new 

information about individuals is available). 
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5. Information Validation: The logical language [110] used in this dissertation 

provides the ability to check for logical conflicts among the encoded information. 

This feature can be used for identifying the conflict between the encoded expert 

theories. 

This section introduced the concept of ontology, the OWL language, and described 

how it is used in this dissertation. Appendix II provides more background information 

about ontology, and describes how the ontologies are used for other applications [118] in 

cyber-security domain (for example, encoding security features requirements for 

application development; annotating the web service descriptions with security 

requirements and capabilities; developing ontology of intrusion detection system for 

communicating the information regarding an attack; developing a global security 

ontology etc.).   

4.3.4 System Model and Action Model  

The system and action model in proposed framework are encoded by a group of 

ontologies.  

Asset Ontology 

This ontology describes the software system’s characteristics, usage, and design. 

Asset ontology captures the information at two levels – abstract and specific. The abstract 

level logic consists of generic information about the software system. For example, the 

operating system is a type of software, the firewall is a cyber-security countermeasure, 

the MySQL Server is a type of database server, etc. Specific level logic captures 

information about instances of software systems. For example, Archie is the name of a 
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Windows 2003 Server, Archie hosts a MySQL Server, etc. Combining both types of logic 

enables capturing abstract reasoning that characterizes the attacker thought process.  

Threat Ontology 

The threat ontology encodes information about the known and conceptual (potential) 

attacks and vulnerabilities, definition of potential target of attack, and the impact of the 

attack. The threat ontology describes 1) how the attack can be used to exploit 

vulnerability, 2) what type of target may be vulnerable to such attack, and 3) what impact 

the threat may have on the target. The asset, threat, and planning ontology capture the 

logic of how the fingerprinting actions can be triggered.  

Attacker Behavior Ontology 

The attacker preference and strategies are encoded in attacker behavior ontology. 

Attacker strategy in turn is influenced by the attack’s environmental context and the 

attacker’s motivation. 

Planning Ontology 

The planning ontology uses the information encoded in asset and threat ontology to 

trigger the information relevant for generating the risk scenarios. 

4.3.5 Dynamicity 

Any automated framework generating the attack plan should be capable of handling 

the availability of new information. Information to be used by the planning algorithm is 

typically stored in a knowledgebase.   

4.3.5.1 Type of Reasoning to Capture Cyber-security Domain Dynamicity 

All planning algorithms use some form of logical reasoning. Two major categories of 

reasoning are reasoning assuming complete knowledge (closed world reasoning), and 
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reasoning assuming incomplete knowledge (open world reasoning). The type of 

reasoning chosen influences: 1) how the information stored (or not stored) in the 

knowledgebase is interpreted, and 2) design of the planning algorithm. This section 

describes these two types of reasoning.  

 Reasoning Assuming Complete Knowledge (Closed World Reasoning) 

Most traditional planning algorithms as well as traditional knowledgebase are 

developed by assuming whatever information is not explicitly stated is false [75, 117].  

This reasoning is called “closed world reasoning” or “closed world assumptions”. This is 

used either when the knowledgebase used by the planning algorithm is known to be 

complete, or when the knowledgebase is known to be incomplete but a best definite 

answer has to be derived from incomplete information[75, 117].5 

The “complete knowledge” assumption is appropriate in many domains[75, 117], 

since in those domains it might be natural to explicitly represent only positive knowledge, 

and assume the truth of negative facts by default. This can be illustrated by the example 

of an airline knowledgebase [75, 117] in which all the flights and the cities they connect 

are explicitly represented. In this [75, 117]  knowledge base, “Failure to find an entry 

indicating that Air Canada flight 103 connects Vancouver with Toulouse permits one to 

conclude that it does not.” 

In the absence of such assumption, one would have to explicitly encode all the 

destinations that Air Canada flight 103 connects, and which ones it does not connect. 

Depending on the type of domain, the number of negative facts may far exceed the 

                                                 
5  The reference paper makes these statements about closed world databases. Here the term 

knowledgebase is used a general form of database. 
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number of positive facts, making the requirement to encode all facts (positive and 

negative) explicitly unfeasible.  

To avoid this, many knowledgebase and planning algorithms assume that whatever 

information is not encoded explicitly is false. According to [75, 117], “Notice, however, 

that by adopting this convention, we are making an assumption about our knowledge 

about the domain, namely, that we know everything about each predicate of the domain. 

There are no gaps in our knowledge”. Furthermore, according to [75, 117], “The implicit 

representation of negative facts presumes total knowledge about the domain being 

represented. Fortunately, in most applications, such an assumption is warranted.” This 

assumption does not hold true for the cyber-security domain.  

Reasoning Assuming Incomplete Knowledge (Open World Reasoning) 

To capture the cyber-security domain information, which is characterized by 

incompleteness and continuous change, the proposed framework must use the reasoning 

that assumes incomplete knowledge (open world reasoning). This reasoning assuming 

incomplete knowledge, is used to encode distributed planning logic. 

This reasoning, unlike the “complete knowledge” assumption, does not make any 

inferences or assumptions about information that is not present (i.e., it does not assume 

that the absence of information means that the information is false). This is known as the 

“open world reasoning”. Using the example mentioned above, if it was encoded that 

flight 103 connects Vancouver to Washington DC, this information can be used in 

planning an itinerary. However, the inference that “there is only one flight out of 

Vancouver” is not supported by the open world reasoning, as another flight out of 



105 
 

Vancouver may exist (or can exist in future), and the itinerary-planning framework just 

does not know about it.   

Impact of Reasoning on Planning  

Traditional planning selects actions if the perquisites for those actions have been 

satisfied. These prerequisites are described using system states. In each system state, the 

planning algorithm searches for applicable actions using these prerequisites. The 

prerequisites (in the knowledge representation language) can be encoded by using a 

property hasPreRequiste as shown in Figure 18 below.  

 

 

Figure 18:  Open world pre-requisites 

 

Figure 18 shows an example action called BufferOverflowAttack, which needs to 

be enabled when its prerequisites are satisfied. This can be encoded by logic: if all the 

individuals, related to BufferOverflowAttack by hasPreRequiste property, are members 

of the class CurrentState, then BufferOverflowAttack has its prerequisites satisfied and 

becomes the applicable (enabled) attack in current state. However, this logic, asserting 

that all pre-requisites are satisfied, excludes the possibility of a statement in which 

BufferOverflowAttack is related to an individual by the hasPreRequiste that is not a 

member of class CurrentState. The later cannot be inferred in reasoning assuming 
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incomplete knowledge (open world reasoning) as either this statement may exist without 

knowledge of the planning framework, or can be stated anytime. Hence, it cannot be 

inferred that the prerequisites of the individual are satisfied[119]. This challenge of 

encoding pre-requisites in open world reasoning using pre-requisites was identified in 

[119]. The example shown above was adapted from an example of a semantic 

questionnaire described in [119]. 

According to [119], one way to make the reasoning framework infer that 

prerequisites are satisfied, without completely “closing the world” (i.e., assuming all non-

stated information to be false) is to assume that “partial knowledge” is available a priori. 

This “partial knowledge” states that the numbers of prerequisites are known a priori. This 

can be presented by a variable n. When these n numbers of prerequisites are met, this fact 

will remain true. The challenge in cyber-security domain is that these encoding of pre-

requisites may be driven by expert knowledge. Hence, different experts may disagree on 

the number of pre-requisites in advance. In addition, even if the number of pre-requisites 

are encoded in advance, the framework still allows adding new statements using the pre-

requisite property (i.e. a [n+1]th statement can be made by using the hasPreRequiste that 

was not previously encoded). The reasoning framework cannot be sure that these first n 

observed statements semantically represent the needed prerequisites of the action the 

expert was trying to encode. If the framework encounters a (n+1)th  statement, then it does 

not reject this statement; it infers that this is a different way of encoding one of the n 

statements. For example, if a third statement was encoded in Figure 18 as  

BufferOverflowAttack hasPreRequiste UseOfBuffer and if it was stated that the buffer 

overflow attack has two prerequisites , then the logical reasoning infers that UseOfBuffer 
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individual is another name of already encoded individuals, AvailableVulnerability or 

NoBoundaryProtection. This may lead to inferring incorrect information.  

As a result, the traditional planning algorithm structure of encoding actions in the 

form of prerequisites and effects may not be usable directly, while using open world 

reasoning. This dissertation, instead of encoding prerequisites, encodes the logic behind 

“why” the statements were selected as prerequisites. More specifically, instead of 

encoding that a system has vulnerability, this dissertation encodes logic about why the 

system may have this vulnerability. If the available system knowledge meets this logic 

then it can be inferred that the system has this vulnerability. This also better captures the 

attacker thought process for uncovering such vulnerability.  

4.3.6 Planning Algorithm  

The previous sections described the inputs of the planning algorithm, or the factors 

that influence the design of the planning algorithm. This section describes the planning 

algorithm. Logic of the proposed planning framework is divided into two core 

components: centralized algorithm and distributed logic. These are described in detail in 

this section.  

The proposed framework’s modified planning problem for cyber security domain 

generates the attack plans by trying to answer the following questions. 

Given that, the attacker selects a goal: 

1. What cognitive tasks does the attacker have to execute to accomplish this goal, 

given the opportunities provided by the system? 

2. How can the attacker discover these opportunities? 
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3. What type of attacks can be used to exploit these opportunities, to accomplish the 

selected cognitive tasks or goals? 

4. What opportunities are available to execute these attacks? 

5. How does the attacker select which cognitive tasks, opportunity discovery actions, 

and attacks to execute? 

The purpose of distributed logic in this case is to: 

1. Trigger the cognitive tasks as possible sub-goals available to the attacker, given 

the information about selected attack goals and attacker’s state of knowledge. 

2. Trigger the fingerprinting actions available to the attacker, given the information 

about selected goal, sub-goals, attacks, and attacker’s state of knowledge.  

3. Trigger the opportunities that can be targeted, given the attacker’s state of 

knowledge about the system. This knowledge can be acquired by executing the 

fingerprinting actions identified above. 

4. Trigger the available attacks that can achieve the selected goal or sub-goal given 

the attacker’s state of knowledge. 

The purpose of the centralized algorithm is to: 

1. Insert the attacker decisions in the distributed logic that triggers the sub-goals, 

fingerprinting actions, opportunities that can be targeted, and the available 

attacks. 

2. Graphically generate the attack plan by querying the triggered information and 

attacker preferences. The order of this query is determined in real time by using 

the encoded attacker preferences and attacker’s situational decision points.  
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3. Build the attacker’s knowledge state for generating the attack-scenarios. This 

knowledge state is used to control the knowledge that can be triggered by the 

distributed planning logic. 

Figure 19, shown below, describes the interaction between these two components.  

 

Figure 19: Interaction between cetralized and distributed logic 

The interaction shown in Figure 19 is described below:   

1. The centralized planning algorithm queries the distributed planning logic. The 

centralized algorithm is also used to program the graphical user interface, which 

is used to elicit the expert’s attacker behavior theories. The order of this query is 

determined in real time by using attacker preferences and attacker’s situational 

decision points encoded in the attacker behavior ontology. 
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2. The centralized algorithms insert the attacker decisions in the distributed planning 

logic. Consequently, they query the results of these decisions.  

3. The distributed logic is dynamic, in which new individuals and classes are often 

discovered. This dissertation develops a set of variables to act as the interface 

between this dynamic distributed logic and static centralized algorithms. This set 

of variables is called the “anchor set”. The class that forms the anchor set does not 

change, but its sub-classes and member individuals may change based on the 

dynamicity of the domain. The centralized algorithm queries and/or populates the 

anchor sets. 

4. The anchor sets are related to other classes (called catcher sets) and individuals in 

the distributed logic by a class or property hierarchy. This class and property 

hierarchy may change, and it can be defined in real time. New classes can be 

defined as sub-classes of the anchor set, and new individuals may become 

member of anchor sets. This increases or decreases the members of the anchor set. 

5. The catcher set representing lower level planning logic, encodes the logic about a) 

under what circumstances the individuals that are of interest for generating the 

attack plan, may become a member of this sub-class, and b) given that an 

individual becomes a member of this sub-class, what other information can be 

inferred that is relevant to planning logic. These individuals are stored in asset and 

threat ontologies, but they participate in the planning ontology by becoming 

members of classes defined in planning ontology. Due to the dynamicity of the 

domain, new individuals and relationships between individuals are often 

discovered. Furthermore, the relationship between these individuals evolves as 
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more information is available. This lower level planning logic in a way “catches” 

these individuals, which can be used in generating attack plan, as they evolve or 

become available in this dynamic pool of individuals defined by the asset and 

threat ontology. Hence, these sets are called catcher sets.  

6. The asset and threat ontology were introduced in Section 4.3.4. They represent a 

dynamic set of cyber-security domain individuals, the relationship between these 

individuals, and the classes aggregating these individuals. The combination of 

individuals in these ontologies can be described as a “pool of individuals” in 

which these individuals originate and their relationship and membership evolve.   

7. The asset and threat ontology individuals can become members of catcher set 

classes, when they satisfy their membership criteria.  

Following sections describe the centralized, distributed planning logic and its 

interaction by using an example.  

4.3.6.1 Centralized Planning Algorithm   

The centralized planning algorithm generates the graphical attack plans, and acts as 

human interface. This can be illustrated using an example, in which an attacker is trying 

to compromise an organization’s trade secret information. The centralized algorithm 

logic for this example is shown in Figure 20 and is described in this section.   
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Figure 20: Generic flow of centralized planning algorithms 

The steps below describe the flow of logic shown in Figure 20.   

1. The algorithm starts when the attacker goal is selected. In the example, the 

centralized algorithm marks trade secret as “information to be leaked” and as the 

selected goal of the attack. This is done by classifying the individual 

“TradeSecret” as a member of Anchor set class “SelectedGoal” and 

“InformationToBeLeaked”. 

2. The selected goal triggers the cognitive domain specific tasks (sub-goals), 

fingerprinting sub-goals, and attacks available to the attacker. These available 

options are queried by the centralized algorithm to generate the attack tree. 

a. Fingerprinting sub-goals (scans) to learn about opportunities available to 

achieve goals are triggered. These are represented as double dotted lines.  

(                  ). In the current example, the fingerprinting options are 

“fingerprint the location where trade secret is stored”, “fingerprint how the 

trade secret is processed”, or “fingerprint how the trade secret is 

transmitted”. 
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b. Sub-goals representing the cognitive tasks that can accomplish the 

selected goals are triggered and available as options to the attacker.  

i. These are represented as dotted lines (                      ) indicating 

that these sub-goals can possibly accomplish the selected goal but 

the information about how to accomplish (or decompose) them is 

not available. In this example, the sub-goals can be “compromise 

the location where trade secret is stored”, “compromise the 

computer processing trade secret”, or “compromise the channel 

transmitting trade secret”. 

ii. The execution of fingerprinting options further identifies the 

specific achievable sub-goals. In this example, it is assumed that 

the attacker selects the “fingerprint the location where trade secret 

is stored” option.  

iii.  If the executed fingerprinting action is able to gather specific 

information about which of the possible sub-goals are achievable, 

then these becomes the attacker’s available options. These 

available sub-goals are presented by solid lines (                    ). In 

the current example, the trade secret is stored in the MySQL 

Server. If this information is accurately fingerprinted, then the 

available sub-goal becomes “Compromise MySQL Server”. 

3. When the attacker selects an available sub-goal, the centralized algorithm inserts 

this information in the distributed logic. This is done by classifying the sub-goal 

as a member of the “selected sub-goal” anchor class. This classification further 
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triggers more sub-goals, fingerprinting sub-goals, or attacks. In the current 

example, MySQL Server is the selected sub-goal, and the “location to which 

access is needed”.  

a. Fingerprinting sub-goals are triggered to learn about available 

opportunities to accomplish the sub-goals. In the current example, 

“Database Scan” becomes the available fingerprinting sub-goal.  

b. Actions available to accomplish the sub-goals are triggered given the 

attacker’s knowledge state. In the current example, the SQL injection 

attack that can be used to compromise MySQL Server is triggered.   

4. The attacker selects available attack(s) to achieve the sub-goal(s) and goal. In the 

current example, executing the SQL injection attack achieves the selected sub-

goal of MySQL as the “location to which access is needed”, which in turn 

accomplishes the selected goal of compromising the trade secret. 

This logic is represented as sequential logic, but its implementation is more iterative. 

For example, the selected sub-goal can in turn decompose/trigger further sub-goals until 

they can be achieved by executable actions.    

4.3.6.2 Distributed Planning Logic 

Anchor sets 

Planning ontology captures the logic behind how the sub-goals, fingerprinting 

actions, and attacks are triggered. This ontology consists of layers of distributed logic. 

The first (and the highest) layer of this is described as the anchor set. The centralized 

algorithm mentioned above functions by querying or populating these anchor sets. The 

interaction between the centralized planning algorithm and the anchor sets is shown in 
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Figure 21 below. The numbers in this Figure represent the corresponding steps shown in 

Figure 20.  

 

Figure 21 Anchor set classes 

 

In anchor set logic, when an individual is classified as the selected goal (shown in 

step 1), other individuals that can help accomplish this goal are classified the “goal 

triggered sub-goals”, if the information about them is available. The sub-goals that can 

provide information about the selected goals are classified as members of “goal triggered 

fingerprinting goal” (shown in step 2-a). The information collected by selecting (shown 

in step 2-b-ii) and executing the fingerprinting sub-goal, can further trigger the available 

sub-goals (shown in step 2-b-iii) or attacks. 
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Similarly, when an individual classified as “goal triggered sub-goal” is chosen as the 

selected sub-goal (step 3), further individuals are classified as members of “sub-goal 

triggered sub-goal” and the “sub-goal triggered fingerprinting goal” (shown in step 3-a). 

Subsequently any attacks that can accomplish either the selected goal or the selected sub-

goal are classified as the triggered attacks (shown in step 3-b). The triggered attack’s 

section and execution may achieve the sub-goals and goal. 

The distributed planning logic can be described as multiple distributed triggered 

classifications.  

Catcher Sets 

The logic of how the individuals become member of the triggered anchor sets comes 

from the lower levels of the distributed logic. These lower level logic sets are also called 

catcher sets.  

Low-level distributed planning logic describes the circumstances in which 

individuals may become the members of catcher sets. The individuals in catcher sets 

further become the members of anchor sets either by virtue of class hierarchy (in which 

anchor sets are encoded as a parent class of catcher sets) or by property hierarchy (in 

which anchor sets are defined by restricting the parent properties of the properties defined 

in catcher set logic). In this manner, the catcher sets control the size of the anchor sets by 

providing individuals.  

The catcher set logic itself is dynamic and is encoded by current cyber-security 

domain understanding. This catcher set logic is illustrated with an example below.   

This example logically encodes the following thought process “Consider the case in 

which the trade secret is the information to be leaked and it becomes the selected goal. 
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The only a priori information available is that the trade secret is stored in a MySQL 

database. Hence, compromising the MySQL Server becomes the logical choice of attack. 

Since the MySQL Server is a database, more information about it may be gathered by 

using a database scan.” 

The information about individuals described in this example is stored in the asset 

ontology. This asset ontology stores specific and abstract asset information. Example of 

the specific and abstract information stored in asset ontology is shown in Figure 22. This 

example logic encodes the following information: 

 Trade secret is stored in the MySQL Server. This is encoded as- Tradesecret 

isStoredin MySQLServer6. This is an example of specific information. 

 Trade secret is a type of information. This is encoded as- Tradesecret type 

Information. This is an example of abstract information. 

 MySQL Server is a type of database, and is encoded as MySQLServer type 

Database (example of abstract information). 

 The inverse of relation “isStoredIn” is “stores (example of abstract information). 

From this encoded logic, a simple inference using the inverse relationship can be 

made, stating that the MySQL Server stores the trade secret (MySQLServer stores 

TradeSecret).  

                                                 
6 This is stored in the knowledge representation language as below: 
 <owl:Thing rdf:about="#Tradesecret"> 
        <isStoredin rdf:resource="#MySQLServer"/> 
    </owl:Thing> 
For simplifying the explanation, this dissertation abbreviates this detailed encoding to Tradesecret 

isStoredin MySQLServer. 
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Figure 22: Asset ontology example  

The high-level abstract information enables abstract reasoning. The asset ontology 

shown in Figure 23 encodes  

 The class database has a parent class called location encoded as (Database 

subClassOf Location). 

 Database class’ superclass is defined as a group of individuals that can be 

scanned by database scan. ((Database subClassOf  (canBeScannedBy hasValue 

DataBaseScan)7. 

 Database scan is a type of scan (DataBaseScan type Scan). 

 canBeScannedBy is defined as an inverse property of scans. 

                                                 
7 This is encoded in the OWL language as shown below: 
 <owl:Class rdf:about="#Database"> 
        <rdfs:subClassOf rdf:resource="#Location"/> 
        <rdfs:subClassOf> 
            <owl:Restriction> 
                <owl:onProperty rdf:resource="#canBeScannedBy"/> 
                <owl:hasValue rdf:resource="#DatabaseScan"/> 
            </owl:Restriction> 
        </rdfs:subClassOf> 
    </owl:Class> 
This dissertation abbreviates this type of detailed logical encoding for explaining the ontologies. 
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Given this ontology example, when the MySQLServer is classified as a member of 

the Database class, it is also automatically classified as a member of the parent class 

location, and the unnamed superclass mentioned above. Since all members of this 

unnamed superclass have to satisfy its definition as “a class of individuals that can be 

scanned by a database scan”, it can be inferred that the MySQLServer can be scanned by 

a database scan.   

 

 

Figure 23 Asset ontology example encoding abstract information 

 

How this asset information is used in the attack plan generation is defined by the 

planning ontology. An example of this planning ontology, shown in Figure 24 encodes 

the following information: 

 “Location to which access is needed” is a catcher class and it is defined as a class 

that stores some “information to be leaked”. This is done by restricting the 

property “stores” to individuals that are classified as “information to be leaked”. 

In other words, “location to which is access is needed” is a class describing a 

collection of individuals that have some “stores” relation with the individuals 

classified as “information to be leaked”. This is encoded as 
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(LocationToWhichAccessIsNeeded = stores someValuesFrom 

InformationToBeLeaked) 

 “Functional goal triggered sub-goal”, also a catcher class, is defined as a class 

that “has functional relation” with some selected goal. This is defined by the 

property restriction encoded as  FunctionalGoalTriggeredSubgoal = 

hasFunctionalRelation someValuesFrom SelectedGoal 

 “Sub-goal triggered fingerprinting goal” class is an anchor class and is defined as 

a class that scans some triggered sub-goal. This is encoded as 

(SubGoalTriggeredFingerpritntingGoal = scans someValuesFrom 

TriggeredSubGoal). 

 “Functional goal triggered sub-goal” is a catcher class and is defined as a sub-

class of “goal triggered sub-goal”. The “goal triggered sub-goal” is further 

defined as a subclass of “triggered sub-goal”. 

 Furthermore, the property hasFunctionalRelation is defined as a parent property 

of stores and isStoredIn. This means all individuals related to other individuals by 

the property stores or isStoredIn are also related to each other by the property 

hasFunctionalRelation. 
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Figure 24: Planning ontology examples - anchor and catcher classes 

The inferences mentioned in the scenario example can be generated by combining all 

logic captured in asset and planning ontology fragments. This is shown in Figure 25 and 

is described below.   

 

Figure 25: Combined logic of examples 
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In the combined logic shown in Figure 25, the following information is added by the 

centralized algorithm as input (i/p).   

(i/p): The trade secret is classified as a selected goal and is the information to be 

leaked. 

Given this information, the following inferences are triggered: 

1. Since the MySQL Server has a stores relation with trade secret, which is now the 

“information to be leaked”, it satisfies the membership definition of “location to 

which access is needed” class and is classified as a member of this class. 

2. Since the MySQL Server satisfies the relation hasFunctionalRelation with the 

selected goal, trade secret, it further satisfies the membership definition of the 

class “Functional goal triggered sub-goal”.  

3. “Functional goal triggered sub-goal” is classified as the subclass of the “goal 

triggered sub-goal” class. Hence, the MySQL Server becomes a “goal triggered 

sub-goal”. 

4. The “Goal triggered sub-goal” is further defined as a subclass of “Triggered sub-

goal”. Hence, the MySQL Server becomes a “Triggered sub-goal”. 

5. Given all this information, the database scan now satisfies the definition of the 

“Sub-goal triggered fingerprinting goal” class, and is classified as a member of 

this class. 

This example shows how the series of distributed classifications can trigger the sub-

goals given the selected goal. This distributed planning logic is described in detail in 

Chapter 6. 
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4.3.7 Planning Output  

The planning framework, as implemented, generates four types of graphical outputs. 

Apart from this, the distributed planning logic can be queried directly to generate custom 

outputs. These five types of outputs are generated by the following five modes of 

operations.  

Mode 1- Attack Tree Generation without Attacker Preference: This mode 

generates the attack tree. The attack tree shows the goal, the decomposed sub-

goals, and the executable attacks exploiting vulnerabilities that can accomplish 

these goals and sub-goals.  

In this mode, the proposed framework’s centralized algorithm provides the 

information about the attacker’s goal. The distributed logic triggers the sub-goals, 

and the available attacks that can achieve the attacker goal (and sub-goal). The 

centralized planning algorithm then queries this triggered information to 

graphically generate the attack tree assuming that the system has been 

fingerprinted perfectly and all possible ways of achieving the goals are selected. 

Mode 2- Attack Scenario Generation Using Red-team:  The attacker may not 

act in the sequential order described by the attack tree and may backtrack, 

abandon the scenario, or change goal in accordance with the available 

opportunities. This behavior is captured in the form of an attack-scenario, which 

indicates the actual steps taken by the attacker, including backtracking, re-

execution of the attacks, and changing goal.   

The cyber-security risk scenarios are often generated by a red-team. This mode 

provides the red-team with an interface to interact with the target network. In this 
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mode, the proposed framework’s centralized algorithm gives the red-team 

possible attack goals as options. When the red-team selects a goal from these 

options, the distributed logic triggers the fingerprinting actions (that can provide 

knowledge about how to decompose or achieve this goal) or available attacks. 

When the red-team selects one of the triggered fingerprinting actions, the 

centralized algorithm builds the red-team’s (or attacker’s) knowledge state by 

capturing the knowledge that can be discovered (using this fingerprinting action). 

The red-team’s (or attacker’s) knowledge state is used by distributed logic to 

trigger more sub-goals and attacks. The centralized algorithm gives the red-team 

triggered sub- goals as options. When the red-team selects a sub-goal from these 

options, the distributed logic triggers more sub-goals, fingerprinting actions, and 

the attack actions that can be used to achieve this sub-goal. This process continues 

until the red-team’s  goal is achieved or abandoned.  

The centralized algorithm then displays the actual steps taken by the red-team. In 

this mode, the red-team’s theories about attacker thought process and preferences 

are also elicited. 

Mode 3- Automated Attack-scenario Generation: This mode of operation uses 

the attacker behavior theories to generate the attack-scenario automatically. This 

attack-scenario represents the most likely risk scenario given the attacker’s 

preference. 

Mode 4- Ranked Attack Tree Generation Using Attacker Preferences: In this 

mode, the branches of the attack tree generated in Mode 1 are ranked according 

to the encoded attacker preferences.  



125 
 

Mode 5- Direct Query: Apart from the graphical modes of operation described 

above, the distributed logic can be directly queried to generate custom output. 

These modes of operations are detailed in Chapter 8. 

The Table 8 shown below summarizes the differences in design of the proposed 

framework and the current vulnerability graph generation algorithms. 

 

 Vulnerability Graph Framework Proposed Framework 

Planning 
Framework 

Uses traditional planning framework Uses combination of traditional planning 
framework, and the situated action theory 

Goal Static Well Defined 
 Goal: Gain restricted privileges or 

circumvent a security property. 

Dynamic Well Defined 
 Intentional Goals:  Compromise 

integrity, confidentiality, and 
availability of information 

 Situational Sub-goals: Attacker’s 
cognitive domain specific tasks to 
achieve the intentional goals. 

Planning 
Philosophy 

Planning philosophy is to track the 
evolution of a system in the form of 
system states using a state transition 
model.  
 

Plans in the proposed framework are driven 
by situation, characterized by the dynamic 
interaction between 1) the opportunities 
provided by the system, 2) the attacker 
thought processes in decomposing goals, 
and discovering and exploiting these 
opportunities, 3) attacker preferences, and 
4) the attacks available to attacker.  

System and  
Action 
Models 

 System Model: Encodes the 
system states  

 Action Model: Encodes actions 
using pre-requisites and effects. 
Action pre-requisites typically 
encodes the attacker’s initial 
privileges, presence of 
vulnerability, and connectivity 
between software systems; Action 
effects typically encodes 
attacker’s elevated privileges, 
possible crashing of software or 
change in system state. 

 Asset Ontology: Captures software 
system’s characteristics, usage, and 
design.  

 Threat Ontology: Encodes known and 
conceptual (potential) attacks and 
vulnerabilities, definition of potential 
target of attack, and the impact of the 
attack.   

 Attacker Behavior Ontology: Encodes 
attacker strategy and preferences. 

Knowledge 
and 

Assumes static and  knowledge-lean 
domain 

Assumes dynamic and  knowledge-
intensive domain 



126 
 

Dynamicity  Uses limited knowledge  
 Assumes knowledge is available a 

priori and is complete 

 Uses diverse and dispersed knowledge 
 Assumes knowledge is not available a 

priori and is incomplete 

Planning 
Algorithm 

Searches for which action can be 
executed in what state to achieve the 
desired outcome  

Instead of relying on traditional planning 
algorithms to search for applicable actions, 
uses a distributed logic to instantly 
accommodate dynamic information 
 Distributed Logic:  Designed to 

emulate the attacker thought processes; 
Uses the information, as it becomes 
available, to trigger the sub-goals, the 
fingerprinting actions, the opportunities 
that can be targeted, and potential 
attacks 

 Centralized Algorithm: Provides the 
attacker decision, and queries triggered 
information. The order of this query is 
determined in real time by using the 
encoded attacker preferences and 
attacker’s situational decision points. 
Builds the attacker’s knowledge state 
for generating the attack-scenarios  

Framework 
Classification 

Offline/Online Offline/Real-time 

Outputs Generates the vulnerability graph Generates attack tree and attack scenarios. 
Encoded and triggered information can also 
be directly queried to generate custom 
output. 

Table 8: Comparison of proposed framework and vulnerability graph framework’s design 
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5 Framework Architecture  

Chapter 4 introduced the proposed planning framework and algorithm for generating 

the attack plans. The planning algorithm has two types of logic – distributed and 

centralized –and five modes of operations generating four different types of graphical 

output. Chapters 5-8 describe how the planning algorithm is implemented. The 

distributed and centralized logic are implemented by two corresponding modules called 

Flux and CieKI, as shown in Figure 26. 

5.1 Flux  

Flux implements the distributed planning logic. Flux consists of the asset, threat 

(vulnerability and attack), and planning ontology. It is called Flux because it captures the 

dynamic information, and uses it to trigger the knowledge relevant for generating attack 

plans. Chapter 6 describes Flux in detail.  

5.2 CieKI 

CieKI (pronounced psyche) stands for Cognition Induced Kinetic Intelligence. It 

consists of centralized algorithms and the attacker behavior ontology. Its main purpose is 

to capture the attacker behavior, create the attacker behavior ontology, and generate 

attack plans given this attacker behavior. CieKI generates the attack plans by inserting the 

attacker behavior information and attacker decisions in Flux and by querying its impact 

from Flux. The order of this query is determined in real time by using the encoded 

attacker preferences and attacker’s situational decision points. Chapter 7 describes CieKI 

in detail. 
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Figure 26 Proposed framework architecture with output 

Apart from these two core modules, an attack tree graphical algorithm is developed 

that queries Flux directly to display the attack tree for the first mode of operation. This 

graphical algorithm  does not use attack preferences, and is not part of CieKI.  

5.3 Modes of Operation 

Flux and CieKI are used to support the four graphical modes of operation as shown 

in Table 9 below. Along with these graphical modes, Flux distributed can also be directly 

queried. This direct query can be used to create custom output.  
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Modes of operation Modules supporting modes of operation

1 
Attack tree generation without using 
attacker preference 

 Flux  
 Attack tree graphical algorithm 

2
2 

Attack-scenario generation using red-
team   CieKI 

o CieKI algorithms 
o Attacker behavior ontology 

 Flux 
 

3
3 

Automated attack-scenario generation  

4
4 

Ranked attack tree generation using 
attacker preference 

5
5 

Direct query of distributed planning sets  Flux 

Table 9- Proposed architecure- modes of operation to component mapping 

These two modules and the five modes of operations are explained in this 

dissertation using a case study described in next section. Chapter 8 describes these modes 

of operation in detail. The case study is also used to compare the proposed framework 

with the manual attack tree generation, and current automated vulnerability graph 

generation methods. Chapter 9 describes the comparison between frameworks in detail. 

5.4 Case Study 

The case study used in this dissertation is adopted from [81]. It is reused in this 

dissertation to compare the proposed framework with existing manual attack trees and 

automated vulnerability graph generation methods.  

The network architecture for this case study is shown below.  

 

Figure 27: Case Study Architecture  
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The case study network contains MySQL Server storing trade secret information. 

This MySQL Server, along with a proxy server called Squid and a chat program known 

as Linux Internet Chat Query (LICQ), is hosted on a Linux Server. This Linux Server is 

located inside the organization’s private network and is protected by a firewall. This 

private network also contains a Windows Server called Windows –Archie. The network 

contains a web server in the demilitarized zone (DMZ). DMZ is described as a network 

segment inserted between an organization’s private network and the Internet [120]. The 

Internet Information Services (IIS) Server application is used as the web server and it is 

hosted on a Windows Server. Initially, the attacker is assumed to be outside the network 

and the only a priori information available to him/her is that the trade secret information 

is stored in some MySQL Server. Where this MySQL Server is located is not known to 

the attacker.   

This case study’s network has been slightly modified from the one described in [81] 

by changing the definition of one vulnerability, deleting one vulnerability, and adding 

two vulnerabilities. This has been done to facilitate the comparison between frameworks.  

In this modified case study, the IIS Server has two buffer overflow vulnerabilities 

that allow the attacker to remotely gain administrative privileges to the Windows Server 

in DMZ. The buffer overflow vulnerability allows overloading a predefined amount of 

space in a buffer (a data structure used by the software), which can potentially overwrite 

and corrupt data in memory [120]. The buffer overflow attack can use this vulnerability 

to overwrite the location in memory that allows him to gain unauthorized access or it can 

corrupt data to crash the software. 
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Both the Windows Servers have buffer overflow vulnerability, in their 

implementation of the Server Management Block (SMB) protocol, which allows the 

attacker to gain unauthorized access to the server. The LICQ application has a 

vulnerability that allows the attacker to gain access to the Linux Server hosting this 

application. Finally, buffer overflow vulnerability on the Linux Server allows attacker to 

gain administrative privileges remotely. The goal of the attacker is to obtain the trade 

secret information stored in the MySQL Server.  

This case study is used as a running example to explain Flux (Chapter 6), CieKI 

(Chapter 7) and modes of operations (Chapter 8). It is also used to compare the proposed 

framework with vulnerability graph generation framework (Chapter 9) and to describe 

applications and extensions of current framework (Chapter 10).  
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6 Framework Component: Flux 

Flux was introduced in section 5.1 and is described in detail in this chapter.  

6.1 Flux: Overview 

Flux implements the distributed  planning logic and consists of the asset, threat, and 

planning ontology. Flux assumes that knowledge is incomplete (open world reasoning) 

and makes inferences only from explicitly encoded information describing the cyber-

security domain.  

Section 4.3.3 introduced the knowledge representation technique’s applications. 

These applications are detailed in this section. Subsequent sections explaining the 

different types of ontology illustrate these applications with examples.  

6.1.1 Capture Diverse and Dispersed Cyber-security Domain Knowledge 

Section 4.3.3.2 introduced that the ontology language can be used for capturing 

diverse knowledge available from dispersed sources. This section explains how this is 

achieved in Flux. 

6.1.1.1 Encoding Diverse Knowledge  

The ontology language provides a diverse set of constructs to encode the cyber-

security domain knowledge. These logical statements are machine as well as human 

readable. The cyber-security domain knowledge is captured at different levels of 

abstraction. For example, the knowledge that “System A is connected to System B” is at 

a high level of abstraction. It does not specify how exactly the two systems are 

connected. There can be different types of connections possible between the systems. 

These connection mechanisms may include physical connection, a trust mechanism, 
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connection using open ports, etc. Similarly the knowledge that “System A is physically 

connected to System B” is at a lower level of abstraction. This lower level of abstraction 

can be generalized to say that two systems are connected if needed.  

The encoding of knowledge at lower levels of abstraction allows capturing the 

diverse amount of relationships that may exist in the cyber-security domain, and 

abstracting them when needed. If the knowledge is stored only at a high level of 

abstraction, then the opportunity to use the detailed knowledge in different situations in 

the future is lost. For example, recording the knowledge that “System A is physically 

connected to System B”, can be used to infer that both System A and System B may be in 

the same geographic location. This knowledge is lost in high-level encoding “System A is 

connected to System B”.   

In this dissertation, specific detailed information is captured and summarized by a 

high level of abstraction when needed. This is illustrated with an example in Section 6.3, 

describing the asset ontology.  

Flux encodes the diverse amount of knowledge. This knowledge may be about the 

use of software system in the target infrastructure, the design of the software that makes it 

vulnerable to potential attacks, the attacker thought process in decomposing the goal or 

for discovering and exploiting vulnerabilities, the theories of attacker behavior etc. 

6.1.1.2 Capturing Dispersed Information 

Information in the cyber-security domain can be generated by multiple dispersed 

sources. These sources are often dispersed in space (across the internet) and time. For 

example, the knowledge about attacks and vulnerabilities is available through 
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vulnerability and attack databases, cyber-security forums, paid cyber-security services, 

etc.  

This presents two challenges for capturing and maintaining information. 

1. Traditionally the dispersed information is extracted from its source and stored 

locally (typically in a database or knowledgebase) so that it can be used by the 

planning algorithm. In this case, any change in information at source or new 

information availability will not be reflected in the attack plans until this 

information is extracted, encoded, and the planning algorithm is re-executed. In 

cyber-security domain, the information used for planning should be updated when 

it is changed at the source, and new information should be captured when it 

becomes available.  

2. The information encoded by different sources should be combined. This is a 

challenge, since even the same information generated from different sources may 

not use the same format or naming conventions, and often these format or naming 

conventions are not explicitly stated. This becomes more difficult when different 

types of information need to be combined, especially when the information may 

be incomplete.  

This first challenge is addressed by linking the source and local storage of 

information using logical constructs, and the second by using information fusion logic to 

combine the diverse cyber-security domain information. The ontology language [110, 

121] provides this data integration functionality [114]. This is illustrated with an example 

in section 6.3.   
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6.1.2 Incomplete Information 

 Flux uses open world reasoning. It assumes that the knowledge is incomplete and 

that new knowledge can be available at any time. In Flux, the reasoning is done only on 

the information that is explicitly encoded.  

6.1.3 Distributed Planning Logic 

 The OWL language is used to design the Flux. This knowledge representation 

language allows building distributed logic incrementally. In this incremental logic 

building process, new distributed logic can be added when more understanding about the 

domain becomes available. This makes the planning logic flexible and scalable.  

6.1.4 Contextual Interpretation  

In the cyber-security domain, the availability of new information may lead to 

interpreting previously available information and inferences in a different way. The same 

attacks and vulnerabilities can be used by different types of attackers differently. These 

attacks and vulnerabilities can also be used differently by the same attacker to accomplish 

different goals. Finally, different cyber-security experts also may associate the same 

attacks and vulnerabilities with different risk scenarios. Because of this, the information 

encoded needs to be interpreted differently in different contexts.   

This contextual interpretation is achieved in the proposed framework by defining a 

logic, which describes how the relationships and class memberships of individuals should 

be interpreted in different situation (for example, if this individual becomes a member of 

a specific class). This can be considered as one logical statement triggering the 

classification of related individuals. This triggered classification, implemented using a set 
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of logical statements to accommodate the situational characteristic of the domain, is the 

core logic of the distributed planning. 

6.1.5 Information Validation 

Traditionally, information validation is done to check syntax (i.e., the format of 

information). The traditional knowledgebase (or database) also checks for completeness 

of information. In both cases, incorrect or incomplete information is typically rejected. 

The logical language used in this dissertation performs information validation at semantic 

level. Instead of checking for syntax of the information, it checks for logical conflicts 

among encoded information. This feature can be used for determining conflicts among 

the encoded expert theories.  

6.2 Ontology Logic Representation  

In order to explain the encoded distributed logic, this dissertation explains how these 

ontologies are used, and what typical inferences are made using these ontologies. These 

typical inferences are called ontology logic patterns in this dissertation. The ontology 

logic is explained using selected examples of encoded ontologies.  

Section 6.3 explains how the information is encoded at specific and abstract levels in 

asset ontology, the inferences that can be made using this information, and the 

applications of the asset ontology.  

The threat ontology encodes the known and conceptual (potential) attacks and 

vulnerabilities, definition of potential target of attack, and the impact of the attack. This is 

described in section 6.4. 

The planning ontology describes how the distributed planning logic uses the 

information encoded in the asset and threat ontologies to trigger the information that can 
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be used in attack plan generation. The planning ontology also describes the anchor and 

catcher sets. This is described in section 6.5. 

6.3 Asset Ontology 

Asset ontology encodes the knowledge about software systems and the 

information stored, processed, or transmitted using them. This ontology encodes the 

software system’s characteristics, usage, and design. This knowledge is encoded by using 

basic logical constructs described in Section 4.3.3. The logical reasoning is used to infer 

further information from explicitly encoded information. The asset ontology captures this 

knowledge at two levels: abstract and specific.   

6.3.1 Specific Asset Information 

The specific level logic captures the information about specific instances of software 

systems. An example of asset ontology logic is as shown in Figure 28 below.     
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Figure 28: Example fragment of specific information encoding in asset ontology 

 

In the Figure 28, the knowledge that the  “trade secret” is stored in the MySQL 

Server is encoded as, “Tradesecret isStoredIn MySQLServer” 8(i.e., two individuals 

MySQLServer and Tradesecret are connected using the property isStoredIn).  

                                                 
8 This is stored in the knowledge representation language as below: 
 <owl:Thing rdf:about="#Tradesecret"> 
        <isStoredin rdf:resource="#MySQLServer"/> 
    </owl:Thing> 
This dissertation abbreviates this type of detailed logical encoding for efficiently explaining the 

ontologies. For example, the above mentioned encoding is abbreviated to Tradesecret isStoredin 
MySQLServer. 

Encoded Information 

Individual Property Individual 

Tradesecret isStoredin MySQLServer 

MySQLServer isHostedOn LinuxServer 

LICQ isHostedOn LinuxServer 

LinuxServer isProtectedBy Firewall1 

LinuxServer hasTrust WindowsServerArchie 

WindowsServerArchie isProtectedBy Firewall1 
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The asset ontology also encodes the semantics of information for more basic 

human-like reasoning. For example, it is easy for humans to understand that, if an 

application is hosted on an operating system, then it is a bi-directional relationship, 

meaning that the operating system hosts the application. This logic is encoded by 

defining an inverse relationship. For example, “isHostedOn” is defined as the inverse of 

“hosts”. This is shown in Figure 29 below. 

 

 

 

 

 

 

Figure 29:  Asset Ontology- inverse properties 

When the ontology logic patterns shown in figures 28 and 29 are combined, then 

the information shown in Figure 30 can be inferred. 

 

Encoded Information 

Property Property Construct Property 

isStoredIn inverseOf stores 

isHostedOn inverseOf hosts 

isProtectedBy inverseOf protects 

hasTrust inverseOf hasTrust 
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Figure 30 Example fragment showing inverse relations 

When the new information is available, it is added as an overlay property 

definition. This overlay information is also called as “tags”. Adding or changing 

information corresponds to adding or changing these tags. These tags can also be 

generated by using logical inference, which allows updating information in real time. 

Figure 31 shows two new types of property relations added to the asset ontology 

describing that Windows Server is connected to LICQ and MySQL Server on default 

port.   

Inferred Information 

Individual Property Individual 

MySQLServer stores Tradesecret 

LinuxServer hosts MySQLServer 

LinuxServer hosts LICQ 

Firewall1 protects LinuxServer 

Firewall1 protects WindowsServerArchie 

WindowsServerArchie hasTrust LinuxServer 
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Figure 31: Asset ontology- information addition 

6.3.2 Abstract Asset Information 

The asset ontology also encodes abstract logic consisting of conceptual 

information about the assets. This is shown in Figure 32 below.  

 

 

Encoded Information 

Individual Property Individual 

WindowsServer isConnectedOnDefaultPort LICQ 

WindowsServer isConnectedOnDefaultPort MySQLServer 
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Figure 32  Example of specific and abstract information encoding in asset ontology 

 

The asset ontology captures abstract information like “trade secret is a type of 

information” and “MySQL Server is a type of database”. The abstract information may 

encode commonly known high-level concepts that can be used for machine reasoning.  

The encoded information about a specific instance can itself be abstracted for 

high-level reasoning. This allows capturing of different types of relationships that may 

exist between individuals, and abstracting them when needed. For example, one of the 

information needed to generate the attack plan is the connectivity between software 

systems. This is important information because connected software systems can be used 

as a launching point for the attack. This is often encoded in the current vulnerability 

graph generation algorithms by a connectivity matrix [81]. Connectivity matrix encodes 

Encoded Information 

Individual Property Class 

TradeSecret type Information 

MySQLServer type Database 

DatabaseScan type Scan 

Encoded Information 

Class Property Class 

Database subClassOf Location 

Database subClassOf (canBeScannedBy 
hasValue DatabaseScan) 
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presence of a connection between two software systems by a boolean variable in the n x n 

matrix. This captures the high-level information regarding whether the two assets are 

digitally (using communication ports) or physically connected. However, different types 

of connections between entities may exist. Some types of connection relationships were 

described in Figure 29.   

It would be a simplistic representation if all the individuals were represented by a 

high-level connection relationship. This would preclude using this detailed connection 

information differently in different types of situations. This high-level abstraction, 

however, may also be needed for abstract reasoning. Both (abstract and detailed) types of 

reasoning are achieved in this dissertation by encoding the specific detailed relations and 

abstracting them when needed. This is implemented by defining a property relationships 

hierarchy in which the properties have more abstract parent properties. This is illustrated 

by the example shown in Figure 33 below.      
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Figure 33 Hierarchy of property relations 

Detail Information about connections can be used to summarize different 

relationships between individuals at different levels of abstraction. From the property 

hierarchy shown in Figure 33, if it is encoded that “TradeSecret isStoredin 

MySQLServer”, then both TradeSecret and MySQLServer have a functional relation 

Encoded Information 

Property Property 
Construct 

Property 

isStoredIn subPropertyOf hasFunctionalRelation 

Stores subPropertyOf hasFunctionalRelation 

isHostedOn subPropertyOf directlyConnectedTo 

Hosts subPropertyOf directlyConnectedTo 

isConnecedOnDefaultPort subPropertyOf hasLimitedconnection 

directlyConnectedTo subPropertyOf isConnectedTo 

hasLimitedconnection subPropertyOf isConnectedTo 

isConnectedTo subPropertyOf hasRelationWith 

hasFunctionalRelation subPropertyOf hasRelationWith 

Inferred Information 

Property Property 
Construct 

Property 

isStoredIn subPropertyOf hasRelationWith 

Stores subPropertyOf hasRelationWith 

isHostedOn subPropertyOf hasRelationWith 

Hosts subPropertyOf hasRelationWith 

isConnecedOnDefaultPort subPropertyOf hasRelationWith 
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with each other, and are connected to each other by hasFunctionalRelation and 

hasRelationWith properties. Similarly, if it is encoded that “MySQLServer isHostedon 

LinuxServer”, then it can be inferred that “MySQLServer” is directly connected to, 

(using diretclyConnectedTo property), to LinuxServer. The property 

diretclyConnectedTo itself is further abstracted by isConnectedTo property. These 

inferences are shown in Figure 34 below. 

 

 

 

Figure 34 Inferences drawn from hierarchy of property relations 

The abstract reasoning used in asset (and threat) ontology attempts to capture the 

attacker’s thought processes in discovering the opportunities. It is important to note that 

the research does not assume that if there is a connection between the computational 

Inferred Information 

Individual Property Individual 

Tradesecret hasFunctionalRelation MySQLServer 

Tradesecret hasRelationWith MySQLServer 

MySQLServer hasFunctionalRelation Tradesecret 

MySQLServer hasRelationWith Tradesecret 

MySQLServer directlyConnecedTo LinuxServer 

MySQLServer hasRelationWith LinuxServer 

LinuxServer directlyConnecedTo MySQLServer 

LinuxServer hasRelationWith MySQLServer 
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entities, then it will be used by the attacker to launch the attack. The asset and threat 

ontologies capture the “possibilities” of attacker actions. These possible actions are 

refined by the attacker’s fingerprinting actions or attacker’s knowledge state to determine 

if these are “available” to the attacker. Finally, the attacker behavior (goals, strategy, and 

preferences) will determine if they are “useable” (or “preferred”) in attack plans.  

6.3.3 Information Integration 

Information in the cyber-security domain is often generated by multiple sources 

dispersed in time and space. Traditionally, this distributed information is extracted from 

its source and stored locally (typically in a database or knowledgebase) for its use in the 

planning algorithm. The logical language used in this dissertation can be used to link the 

local storage of information directly to the source of information. This allows updating 

information as it changes at the source. Furthermore, the logical encoding is used to 

combine the information from multiple sources. The following example explains how this 

can be accomplished 

In this example: 

 The information about software systems is generated by two separate network 

management systems. 

 This information is stored in two separate network information ontologies.  

 These network management systems periodically scan the network and update the 

information in these two network information ontologies.   
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 Network information ontology 1 (NIO1) stores the information that MySQL 

Server is database server (NIO1:MySQLServer type NIO1:DatabaseServer).9 

 Network information ontology 2 encodes that the MySQL Server is a SQL Server 

(NIO2:MySQLServer type NIO2:SQLServer). 

The asset ontology has to combine the information from these two sources to use it 

for planning. This is done by linking the individuals in the asset ontology to their source 

network information ontology. Instead of copying the information about the individual to 

a new ontology, only a reference to the individual is inserted in the asset ontology. Any 

further information encoded in the asset ontology is added as an overlay tag on this 

reference. This is a convenient feature and allows using, classifying, and adding more 

information to the individual without physically copying the individual to a new 

integrated ontology.   

The two network information ontologies can also be logically combined without 

creating a new merged ontology. This is done by adding additional information about 

how the original information should be interpreted. This is explained using the examples 

below.  

The two ontologies encode that (NIO1:MySQLServer type NIO1:DatabaseServer) 

and (NIO2:MySQLServer type NIO2:SQLServer). Both of these statements are true. 

These statements can be merged by defining a class Asset:Database in the asset 

ontology, and making the NIO1:DatabaseServer and NIO2:SQLServer sub-classes of 

this Asset:Database class. This is shown in case (a) of Figure 35 below.  

                                                 
9  The notation OntologyName: (individual, class, property) indicates that the individual, 

class or property following the (:) belongs to the ontology called OntologyName. 
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Alternatively, if it is to be encoded that two classes represent different names of the 

same class, then they can be merged by defining two classes to be equivalent classes (or 

by defining NIO1:DatabaseServer and NIO2:SQLServer as sub-classes of one another), 

and making one of the these two class an equivalent class to Asset:Database class. This 

is shown in Figure 35 (b). 

It is known that SQL Servers are also a type of database servers. If it is to be encoded 

that all the members of NIO2:SQLServer are also members of NIO1:DatabaseServer, 

then it can be achieved by making NIO2:SQLServer a subclass of NIO1:DatabaseServer, 

and by making NIO1:DatabaseServer an equivalent class of Asset:Database. 

 

 

 

 

 

 

 

 



149 
 

 

 
 
 
 

Figure 35: Asset Ontology- fusion example 

The examples explained in this section are used only to illustrate different ways of 

combining information. It is important to note that the general rule of thumb for encoding 

the information in this dissertation is to “retain the detailed information and abstract the 

details when needed”. This means that while combining the information, it is important 

not to lose the fact that “SQL Server” may be vulnerable to an “SQL injection” attack, 

even though “SQL Server” is now encoded as “Database Server”. Since, the logical 

encoding allows retaining the information that the individual now classified as “Database 

Scenario Encoded Information 

Class Property Class 

(a) NIO1: DatabaseServer subClassOf Asset:Database 

 NIO2: SQLServer subClassOf Asset:Database 

(b) NIO1: DatabaseServer subClassOf NIO2: SQLServer 

 NIO2: SQLServer subClassOf NIO1: DatabaseServer 

 NIO1: DatabaseServer equivalentClass Asset:Database 

(c) NIO2: SQLServer subClassOf NIO1: DatabaseServer 

 NIO1: DatabaseServer equivalentClass Asset:Database 
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Server” is also a “SQL Server”, the information that this individual may be vulnerable to 

“SQL injection” attack is not lost.  

Similar to subClassOf relation, a subPropertyOf relation can be used to combine 

different property definitions. Finally, the individuals can also be defined as equivalent 

individuals by using the sameAs property.  

This act of combining information is called information fusion. The information 

fusion techniques mentioned in Figure 35 above are an application of the ontology 

language used in this dissertation. This language [110, 114, 116, 121] was invented to 

provide this type of functionality.  

6.4 Threat Ontology 

The previous section explained how the basic logical constructs and inferences could 

be used to encode a rich set of information about assets. This section describes how the 

information about threat is encoded. 

6.4.1 Source of Information 

Information about attacks and vulnerability is available through many sources. A 

detailed comparison of the content and structure of these data sources is beyond the scope 

of this dissertation, but they are summarized in this section. 

6.4.1.1 Vulnerability Database  

The majority of software vendors maintain their own vulnerability databases( for 

example, Microsoft publishes security advisories [122]. Many research, government, and 

open source communities also maintain public repositories/databases of vulnerability 

information [5, 123-126]. These databases may store different types of information about 
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the same vulnerability, and often reference each other so that human researchers can 

gather more information.  

6.4.1.2 Pattern  

The term “pattern” in software industry vocabulary refers to a frequently recurring 

structure or a template. The “attack patterns” are templates of common methods for 

exploiting software. These attack patterns are mainly used as information sources to 

develop more secure software. Multiple sources of knowledge about attack pattern exist 

[127, 128]. 

6.4.1.3 Attack Database 

Unlike the vulnerability and pattern databases, attack databases are not collected and 

maintained as rigorously, but this information is available on the internet. One type of 

community effort to capture and study attacks is carried out by using specialized 

networks known as “honeynets”[129] and “honeypots”[130]. The penetration testing 

tools designed to evaluate cyber-security by compromising the system also maintain their 

own repository of implemented attacks [131].   

6.4.1.4 Taxonomies, Ontology and Modeling Languages  

Several attempts to classify vulnerabilities or attacks have been made. These 

attempts have varied from trying to classify all vulnerabilities or attacks [132, 133] to 

creating a sub-classification structure for a specific class of attacks [134]. Even though a 

wide range of taxonomies exists, there is no predominant taxonomy that is widely used.  

There are also different types of cyber-security ontology available. Appendix II  

describes how the ontology are used for other applications[118, 135] in cyber-security 
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domain (for example, for encoding security features requirements for application 

development; annotating the web service descriptions with security requirements and 

capabilities; developing ontology of intrusion detection system for communicating the 

information regarding an attack; developing a global security ontology etc.). These 

ontologies can be used as information source to the proposed framework. The proposed 

framework’s ontologies also can be integrated (or map) in broader cyber-security domain 

ontology. 

The information about attacks can also be captured using different attack modeling 

languages describing different aspects of the attacks. The major attack modeling 

languages are JIGSAW [136], LAMBDA[137], and CAML [138].  According to [1] 

CAML, LAMBDA, and JIGSAW defines preconditions and effects for attack actions and 

describes the state of network components. According to [1]  the Correlated Attack 

Modeling Language (CAML) “can be used to model attack scenarios and recognize 

scenarios from intrusion-detection alerts.” CAML  [138] enables specification of 

multistage attack scenario in modular fashion. LAMDA [137] uses a declarative approach 

to encode attack pre-conditions, effects, scenarios, and detection steps. According to 

[136], “JIGSAW provides a convenient tool for describing attack components in terms of 

capabilities and concepts.” 

These taxonomies, ontology, and modeling languages are considered as information 

sources to the proposed framework. 

6.4.1.5 Information Usage 

The goal of this dissertation is not to create or support a database, taxonomy, pattern, 

or ontology but to use these as diverse knowledge sources. This dissertation uses the 
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concept of patterns, described in Section 6.4.1.2 (note that this pattern does not refer to a 

specific attack pattern database). Currently, attack pattern databases are primarily used to 

build more secure software by protecting against known vulnerabilities. Apart from using 

the attack pattern for technical understanding, this dissertation uses the information about 

potential attacker behavior to understand the decisions points available to the attacker. In 

this dissertation, the encoded information in pattern ontology may come from multiple 

vulnerability, attack, and pattern databases.  

6.4.2 Threat Ontology Logic 

The threat pattern describes a template to encode threat information. Three types of 

information are important for planning. These are the structure of the threat pattern, the 

target of the threat, and the impact of the threat.   

6.4.2.1 Structure of Threat Pattern 

The structure of the threat pattern describes how an attacker can exploit the 

vulnerability described by the pattern. At minimum, this structure encodes what type of 

vulnerability is exploited by the pattern, what attack can be used to do so, and what are 

the possible impacts of executing the pattern. This is shown in Figure 36 below: 
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Figure 36: Minimal encoding of pattern information 

  

The pattern also encodes details of the attack process when such information is 

available. An example of this encoding the information provided by [139] is shown in 

Figure 37. 

 

Encoded Information 

Individual Property Individual 

BO-IIS-SSI hasAttack IndigoPrototype 

BO-IIS-SSI hasVul CAN-2001-0506 

BO-IIS-SSI hasEffect PrivilegeEscalation  
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Figure 37: Detailed encoding of pattern information 

 

This pattern encodes that the attack can be executed in four steps. The pattern also 

encodes the sequence in which the steps should be executed by using the property 

Additional Encoded Information 

Individual Property  Individual 

BO-IIS-SSI hasStep Step_1 

BO-IIS-SSI hasStep Step_2 

BO-IIS-SSI hasStep Step_3 
BO-IIS-SSI hasStep Step_4 

Step_1 hasMethod Method_1 
Step_2 hasMethod Method_2 
Step_3 hasMethod Method_3 
Step_4 hasMethod Method_4 
Step_1 label Identification of buffer to target 
Step_2 label Identification of the injection vector 
Step_3 label Crafting the content to be injected 
Step_4 label Injecting Content 
Step_1 hasPrecedence Step_2 
Step_2 hasPrecedence Step_3 
Step_3 hasPrecedence Step_4 
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hasPrecedence. Each of the four steps has a method associated with it, and these four 

steps have descriptive labels. These are called “identification of the buffer to target”, 

“identification of the injection vector”, “crafting the connect to be injected”, and 

“injecting content’, which captures the information identified in [139].   

6.4.2.2 Target of the Threat Pattern   

Target of the threat pattern refers to a software system (or a component of a system) 

that may have a vulnerability, which can be targeted using the attack pattern. 

Traditionally, this information originates from vulnerability and attack databases. This 

information is traditionally encoded as a direct relationship stating that a certain system 

has certain vulnerabilities. Instead of encoding that the system has vulnerability, Flux 

encodes the logic behind why the system may have this vulnerability. This is done to 

better capture the attacker thought processes for uncovering the vulnerability.  

Once encoded, this logical definition is used to infer that a specific system may be 

susceptible to buffer overflow, when the available information about system 

characteristics matches the encoded logical definition.  

For example, it is known that, the buffer overflow vulnerability allows overloading a 

predefined amount of space in a buffer (a data structure used by the software), which can 

potentially overwrite and corrupt data in memory [120]. The buffer overflow attack can 

use this vulnerability to overwrite a location in memory that allows him to gain 

unauthorized access or it can corrupt data to crash the software. Buffer overflow 

vulnerability can be prevented by using a method called boundary protection, which 

checks the bounds of buffers to prevent overloading. 



157 
 

Given this, it can be stated that if the software using a data structure called a buffer, 

does not use a boundary protection, then it is potentially susceptible to buffer overflow 

attacks. Using this information, the buffer overflow target (BO-Target) is encoded by the 

property restriction that ((softThatsLacking someValuesFrom BoundryProtection) and 

(softUsesDataStructure someValuesFrom Buffer)). This is shown below.   

 

 

 

 

Figure 38: Target of the pattern logic example 

When it is discovered that a certain system matches this class membership criteria, 

the system is classified as a potential target of a buffer overflow attack. This inference is 

true even if specific buffer overflow vulnerability has not yet been discovered in the 

system, or if an attack to exploit a discovered vulnerability currently does not exist. This 

is important because not only such vulnerability or attack can be discovered in future, but 

this type of abstract reasoning is also used by the attacker to discover such vulnerability. 

Furthermore, this may be sufficient information for a leap-before-you-look type of 

attacker to launch known buffer overflow attacks against the system. 

Encoded Information 

Class Property  Class 

BO-Target equivalentClass ((softThatsLacking someValuesFrom 
BoundaryProtection) and 
(softUsesDataStructure 
someValuesFrom Buffer)) 

BO-Target subclassOf targetThatTriggers hasValue BO-
Pattern 
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The information that a system is susceptible to a certain type of vulnerability is used 

to trigger the pattern that can exploit this vulnerability. This is shown in Figure 38 and is 

described below. 

 The target class (BO-Target), shown in Figure 38 has an anonymous parent class 

defined by the restriction targetThatTriggers hasValue BO-Pattern.  

 When an individual becomes a member of this target class, the following can be 

inferred: 

o This individual is also a member of the anonymous parent class 

(targetThatTriggers hasValue BO-Pattern) 

o Since the individual is a member of this parent class, it has to meet the 

encoded restrictions, and hence the individual has to satisfy the property 

relation targetThatTriggers hasValue BO-Pattern. 

o Given this, it can further be inferred that the individual is related to BO-

Pattern by the targetThatTriggers property. 

This can be used to infer that the system that is classified as the member of the BO-

Target class triggers the BO-Pattern pattern.   

When more information about the system’s characteristics is available, more patterns 

that may target the systems can be identified. For example, if it is discovered that 

“System A” uses a buffer data structure, does not implement a boundary protection 

mechanism, and is an IIS Server, then it can be inferred that “System A” is susceptible to 

the IIS buffer overflow attack.  

If more information is available, indicating that this IIS Server uses functionality 

called ISAPI (Internet Server Application Programming Interface), then it can be further 
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inferred that this system is susceptible to a buffer overflow attack in this functionality. 

This is shown in Figure 39 below. 

 

Figure 39: Target of the threat pattern logic example when more information is available 

The target of the threat pattern logic is used in planning ontology to 1) identify the 

potential target of threat based on availability of the information about software systems, 

2) to trigger the threat pattern, and 3) to trigger the fingerprinting goals to discover the 

information about software systems. 

Encoded Information 

Class/Individual Property  Class/ Individual 

BO-Target-IIS equivalentClass BO-Target and IIS 

BO-Target-IIS subclassOf targetThatTriggers hasValue BO-IIS-SSI 

BO-Target-ISAPI equivalentClass BO-Target and IIS and (usesFunctionality 
hasValue ISAPI) 

BO-Target-ISAPI subClassOf targetThatTriggers hasValue BO-Chunkcode 

SystemA type BO-Target-IIS 

SystemA usesFunctionality ISAPI 

Inferred Information 

Class/ Individual Property  Class/ Individual 

SystemA targetThatTriggers BO-IIS-SSI 

SystemA targetThatTriggers BO-Chunkcode 
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6.4.2.3 Impact of the pattern 

The impact of the threat pattern is encoded as a part of the structure of the pattern, as 

shown in Figure 36 and 37. The planning ontology uses this impact information to trigger 

the information that can be used in attack plan generation. The planning ontology logic is 

described in next section. 

6.5 Planning Ontology 

6.5.1 Introduction 

As mentioned in Section 4.3.6, the planning logic generates the attack plans by 

trying to answer the following questions. 

Given that, an individual is classified as the selected goal of the attack: 

1. What cognitive tasks does the attacker have to execute to accomplish this goal, 

given the opportunities provided by the system? 

2. How can the attacker discover these opportunities? 

3. What type of attacks can be used to exploit these opportunities, to accomplish the 

selected cognitive tasks or goals? 

4. What opportunities are available to execute these attacks? 

5. How does the attacker select which cognitive tasks, opportunity discovery actions, 

and attacks to execute? 

To encode this information, the objective of the distributed planning ontology is to: 

1. Trigger the cognitive tasks as possible sub-goals available to the attacker, given 

the information about selected attack goals (or sub-goals) and attacker’s state of 

knowledge. 
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2. Trigger the fingerprinting actions available to the attacker, given the information 

about selected goal, sub-goals, attacks (threat patterns), and attacker’s state of 

knowledge.  

3. Trigger the opportunities that can be targeted, given the attacker’s state of 

knowledge about the system. This knowledge can be acquired by executing the 

fingerprinting actions identified above. 

4. Trigger the available attacks (threat patterns) that can achieve the selected goal or 

sub-goal. 

The attacker behavior ontology described in Chapter 7 answers the fifth question 

about how the attacker decides which cognitive tasks, opportunity discovery methods, 

attacks to choose. 

The planning ontology encodes the logic of how the information (described above) is 

triggered. This planning ontology uses the information stored in the asset and threat 

ontology. Section 6.5.3 describes how the information encoded in the asset and threat 

ontologies is used by the planning logic to trigger the four types of information identified 

above. The planning ontology is also divided into anchor and catcher sets. These are also 

described in Section 6.5.2.  

6.5.2 Planning Ontology: Anchor and Catcher Sets 

Anchor and catcher sets describe which classes will remain stable and which will 

change (due to the dynamicity of the domain) from the centralized algorithm point of 

view. 
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6.5.2.1 Anchor Sets  

Anchor sets represent the highest layer of the planning ontology logic that remains 

stable (i.e., the names, meaning and usage of an anchor set does not change or does not 

change frequently). The centralized algorithm queries and/or populates the anchor sets.   

The centralized algorithm populates the anchor sets with information about 

attacker’s decisions (selected goal, sub-goals, patterns, and attacks). Flux uses this 

information to further trigger (populate) the anchor sets.  

In anchor set logic, when an individual is classified as a “selected goal”, other 

individuals that can help accomplish this goal are classified as members of “goal 

triggered sub-goals”. The fingerprinting sub-goals that can provide information about the 

selected goals are classified as members of “goal triggered fingerprinting goals”. 

Similarly, when an individual classified as a sub-goal is chosen as the “selected sub-

goal”, more individuals are classified as members of “sub-goal triggered sub-goal” and 

the “sub-goal triggered fingerprinting goals”. Any threat patterns that can accomplish 

either the selected goal or the selected sub-goals are classified as “triggered patterns”. 

The attacks available in the “triggered patterns” are classified as “triggered attacks”. 

The vulnerabilities available in the “triggered patterns” are classified as “triggered 

vulnerabilities”. 

6.5.2.2 Catcher Sets 

The logic of how the individuals become members of the triggered anchor sets is 

derived from more detailed catcher set logic.   
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Catcher sets are dynamic and their availability, meaning, and usage may change 

based on the cyber-security domain information and the attack situation. Different catcher 

sets can become members of different anchor sets, depending on the attack situation. 

Catcher sets logic describes under what circumstances individuals will become 

members of these catcher sets. This logic is described in Section 6.5.3. Section 6.5.3 also 

describes how the individuals in catcher sets become the members of anchor sets, either 

by virtue of class hierarchy (in which anchor sets are encoded as a parent class of catcher 

sets), or by property hierarchy (in which anchor sets are defined by restricting the parent 

properties of the properties defined in catcher set logic). In this way, the catcher sets 

control the size of the anchor sets by providing individuals. 

6.5.3 Planning Ontology: Functional Description 

This section describes how the four types of information described in Section 6.5.1 

are triggered by the planning ontology. 

6.5.3.1 Trigger the Cognitive Tasks as Sub-goals 

This logic triggers the cognitive tasks as sub-goals given the information about 

attack goals (or sub-goals) and attacker’s knowledge state. There are three types of 

cognitive domain specific tasks and three types of corresponding sub-goals available to 

the attacker. These are identified as exploit functionality, exploit connectivity, and exploit 

attributes. Note that new types of intentional goals and situational sub-goals can be 

modeled using the proposed framework’s logic if needed. 
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6.5.3.1.1 Exploit Functionality   

The objective of attacker is to compromise information confidentiality, integrity, or 

availability. The information to be compromised is stored in some place, transmitted 

using some mechanism, and potentially processed by some entity. These become the 

logical choices of attack or the opportunities that the domain provides. These 

opportunities are represented as the potential situational sub-goals called “location to 

which access is needed”, “process to be hijacked”, “transmission to be captured”, etc. 

These situational sub-goals have a functional relation with the goal “information to be 

compromised”. Therefore, they are called cognitive domain specific tasks to exploit 

functionality.  

An example of how the exploit functionality type of sub-goals are triggered using the 

asset ontology information was illustrated in Section 4.3.6. This example is reproduced in 

this section. Figures 40 and 41 represent the encoded and inferred information using this 

logic. The flow of logic is described in detail in Section 4.3.6 and is reproduced here. 
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Figure 40:  Anchor and catcher sets for triggering exploit functionality subgoal 

Encoded Information 

Class Property  Class 

LocationToWhichAccessIsNeeded equivalentClass stores someValuesFrom InformationToBeLeaked 

FunctionalGoalTriggeredSubGoal equivalentClass hasFunctionalRelation someValuesFrom 
SelectedGoal 

SubGoalTriggeredFingerprintingGoal equivalentClass scans someValuesFrom TriggeredSubgoal 

FunctionalGoalTriggeredSubGoal subClassOf GoalTriggeredSubgoal 

GoalTriggeredSubgoal subClassOf TriggeredSubgoal 
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Figure 41:  Trigger logic for “exploit functionality” subgoal  

The inference flow shown in Figure 41 is described below. 

(i/p): The trade secret is classified as a selected goal and is the information to be 

leaked. 

Given this information, the following inferences are triggered: 

1. Since the MySQL Server has a stores relation with trade secret, which is now the 

“information to be leaked”, it satisfies the membership definition of “location to 

which access is needed” class and is classified as a member of this class. 

2. Since the MySQL Server satisfies the relation hasFunctionalRelation with the 

selected goal, trade secret, it further satisfies the membership definition of the 

class “Functional goal triggered sub-goal”.  
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3. “Functional goal triggered sub-goal” is classified as the subclass of the “Goal 

triggered sub-goal” class. Hence, the MySQL Server becomes a “Goal triggered 

sub-goal”. 

4. The “Goal triggered sub-goal” is further defined as a subclass of “Triggered sub-

goal”. Hence, the MySQL Server becomes a “Triggered sub-goal”. 

5. Given all this information, the database scan now satisfies the definition of the 

“Sub-goal triggered fingerprinting goal” class, and is classified as a member of 

this class. 

Apart from this, the planning ontology, also encodes how the attacker can exploit the 

functionality originated by the processing and transmission of information.   

6.5.3.1.2 Exploit Connectivity 

As described in the Section 6.3, the computational entities are connected to each 

using different connection mechanisms. These connections further provide an opportunity 

for launching attacks. The connected entities, by virtue of their connection, become 

potential situational sub-goals of the attacker. In this dissertation, these are called 

cognitive domain specific tasks to exploit connectivity.   

An example of how exploit connectivity sub-goals are triggered is shown in Figure 

42. This example uses the relation hierarchy shown in Figure 33. Figure 42 below shows 

two restriction classes. The first restriction class defines individuals that have a trusted 

connection with a selected sub-goal, encoded as (hasTrustedConnection 

someValuesFrom SelectedSubGoal). The second restriction class called 

ConnectedToSubGoal represents the class of individuals that are directly connected to 

the selected sub-goal, encoded as (directlyConnectedTo someValuesFrom 
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SelectedSubGoal). The classes defined by these restrictions are defined as a subclass of 

the SubGoalTriggeredSubGoal class. 

 

Figure 42: Trigger logic for “exploit connectivity” subgoal 

 

If the information that MySQLServer is selected as a sub-goal is added to this 

example ontology logic, then the following inferences can be made: 

 Since it is encoded that MySQLServer isHostedOn LinuxServer, given the 

property hierarchy in Figure 33, it can be inferred that MySQLServer is 

directlyConnectedTo  LinuxServer. 

Encoded Information 

Class Property  Class 

TrustWithSubGoal= hasTrusedConnection 
someValuesFrom SelectedGoal 

subClassOf SubGoalTriggeredSubGoal 

ConnectedToSubGoal=directlyConnectedTo 
someValuesFrom SelectedGoal

subClassOf SubGoalTriggeredSubGoal 
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 LinuxServer now satisfies the definition of restriction class, encoded as 

directlyConnectedTo someValuesFrom SelectedSubGoal, and is classified as a 

member of this class. 

 Since this restriction sub-class is a member of the SubGoalTriggeredSubGoal 

class, LinuxServer is also classified as a member of this class.  

6.5.3.1.3 Exploit Attribute 

Finally, the software systems (storage location, processing applications, or 

transmission mechanism) also have their own characteristics. For example, if the storage 

location or information is encrypted, then “decrypt information” becomes the logical 

situational sub-goal. In this dissertation, these are called cognitive domain specific tasks 

to exploit attributes. These sub-goals are triggered using similar planning ontology logic. 

6.5.3.2 Trigger Fingerprinting Sub-goals 

The fingerprinting sub-goals are triggered using the attacker behavior, decisions 

(selected goal, sub-goal, pattern, or attack) and attacker’s state of knowledge. Example 

logic to trigger the fingerprinting action given the selection of sub-goal was described in 

Section 6.5.3.1.1. Similar logic can be used to encode the fingerprinting sub-goal 

triggered by selecting goals and threat patterns.  

6.5.3.3 Trigger the Target of the Threat Pattern 

This logic triggers the threat pattern’s target, given the attacker’s state of knowledge. 

Section 6.4.2.2 described how system information could be used to infer that the system 

may be vulnerable to attack patterns. The logic shown in Figure 39 is extended in Figure 

43. In this logic, patternTriggeredBy is defined as the inverse property of 
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targetThatTriggers. The class GoalTriggeredPattern is defined by the property 

restriction patternTriggeredBy someValuesFrom SelectedGoal. This means that the 

“goal triggered pattern” is triggered by the selected goal. This is shown in Figure 43 

below.   

 

  



171 
 

 

Figure 43:  Ontology example describing goal triggered pattern logic 

Encoded Information 

Class/ Individual/Property Property Class/ Individual/Property 

BO-Target-IIS equivalentClass BO-Target and IIS 

BO-Target-IIS subclassOf targetThatTriggers hasValue BO-IIS-SSI 

BO-Target-ISAPI equivalentClass BO-Target and IIS and (usesFunctionality 
hasValue ISAPI) 

BO-Target-ISAPI subClassOf targetThatTriggers hasValue BO-Chunkcode 

SystemA type BO-Target-IIS 

SystemA usesFunctionality ISAPI 

targetThatTriggers inverseOf patternTriggeredBy 

SystemA type SelectedGoal 

GoalTriggeredPattern equivalentClass patternTriggeredBy someValuesFrom SelectedGoal 

Inferred Information 

Class/ Individual Property Class/ Individual 

SystemA targetThatTriggers BO-IIS-SSI 

SystemA targetThatTriggers  BO-Chunkcode 

BO-IIS-SSI patternTriggeredBy SystemA 

BO-Chunkcode patternTriggeredBy SystemA 

BO-IIS-SSI type GoalTriggeredPattern 

BO-Chunkcode type GoalTriggeredPattern 
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6.5.3.4 Trigger the Threat Pattern 

This section describes an example of how the attack patterns are triggered given the 

goal or sub-goal information with the example shown below. For ease of presentation, 

this logic is described in two Figures. Figure 44 displays steps 1-6 and Figure 45 displays 

the steps 7-9 

The numbered steps in Figure 44 are explained below.  

1. Section 6.4.2.2 described how the target of a pattern is triggered. This section 

builds on that logic. The targetThatTriggers property has an inverse property 

called patternHasTarget. 

2. Section 6.4.2.1 described the structure of the pattern. This structure encodes 

information about the effect of the pattern. This information is reproduced here as 

BO-IIS-SSI hasEffect PrivillegeEscalation.  
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Figure 44:  Example logic for triggering attack pattern – part 1 

 

Encoded Information 

Class/ Individual/Property Property Class/ Individual/Property 

IISServer targetThatTriggers BO-IIS-SSI 

targetThatTriggers inverseOf patternHasTarget 

BO-IIS-SSI  hasEffect PrivillEscalation 

ConnectedHostToWhichAccess-
IsNeeded 

subclassOf providedByEffect hasValue 
PrivilEscalation 

WindowsServer type ConnectedHostToWhichAccess-
IsNeeded 

effectProvides inverseOf providedByEffect 

patternProvides propertyChainAxiom hasEffect, effectProvides 

providedByPattern inverseOf patternProvides 

targetThatProvides propertyChainAxiom targetThatTriggers, 
patternProvides 

Inferred Information 

Class/Individual Property Class/Individual 

PrivillEscalation effectProvides WindowsServer 

WindowsServer providedByEffect PrivillEscalation 

BO-IIS-SSI patternProvides WindowsServer 

WindowsServer providedByPattern BO-IIS-SSI 

IIS-Server targetThatProvides WindowsSever 
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3. Conceptually, if an application is hosted on an operating system, one of the ways 

to gain access to this host is to execute a privilege escalation10 attack on the 

application. This conceptual information is encoded by: 

a.  Defining an anonymous class as a collection of all individual sub-goals 

that are achieved by the privilege escalation effect. This is done by 

defining a class using the property restriction providedByEffect to the 

value PrivillegeEscalation.  

b. Making the class describing the host (for example, the 

ConnectedHostToWhichAccessIsNeeded class) a sub-class of this 

anonymous superclass. 

4. In this example, when an individual, WindowsServer  becomes  a member of this 

ConnectedHostToWhichAccessIsNeeded class, the following can be inferred: 

a.  WindowsServer is member of the 

ConnectedHostToWhichAccessIsNeeded, which is declared as a sub-

class of the anonymous class defined by restriction providedByEffect 

hasValue PrivillegeEscalation. Given this, it can be inferred that 

WindowsServer meets the membership criteria of the anonymous 

superclass. Hence, WindowsServer has to satisfy the property 

relationship defined in the membership criteria. From this it can be 

inferred that WindowsServer providedByEffect PrivillegeEscalation.   

                                                 
10 The privilege escalation attack exploits any vulnerability on application or software running on an 

underlying host machine to gain an elevated access to this host which otherwise is protected from this 
application or software.  
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b. The property effectProvides is defined as the inverse property of 

providedByEffect; it can be inferred that ‘PrivillegeEscalation  

effectProvides  WindowsServer’ 

5. The property patternProvides is defined as a chain of property combining 

‘hasEffect’ and ‘effectProvides’.  

a. This leads to the inference that BO-IIS-SSI patternProvides 

WindowsServer. 

b. The providedByPattern property is defined as an inverse of 

patternProvides. Therefore it can be inferred that WindowsServer 

providedByPattern BO-IIS-SSI 

6. Finally, the targetThatProvides is defined as a chain of property combining 

targetThatTriggers and patternProvides so it can be inferred that IISServer 

targetThatProvides WindowsServer. 

For ease of presentation, steps 7-12 are described in Figure 45. This shows the 

inference of step 5, that BO-IIS-SSI patternProvides WindowsServer. 
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Figure 45: Example logic for triggering attack pattern – part 2 

 

7. The patternTargetHostedOn is defined as a property chain combining the 

paternHasTarget and isHostedOn property. It can be inferred that BO-IIS-SSI 

pattenTargetHostedOn WindowsServer. 

8. hostOfPatternTarget is defined as the inverse property of patternTargetHosteOn, 

so it can be inferred that WindowsServer hostOfPatternTarget  BO-IIS-SSI. 

9. Finally, all these inferences can be combined to define the triggered pattern as.  

TriggeredPatternLocToWhichAccessIsNeeded is defined as:  

TriggeredPatternLocToWhichAccessIsNeeded =  

( (patternHasTarget someValuesFrom TriggeredSubgoal) 

          and (patternProvides someValuesFrom                                  

(ConnectedHostLocToWhichAccessIsNeeded 

Encoded Information 

Class/ 
Individual/Property 

Property Class/ Individual/Property 

patternTargetHostedOn propertyChainAxiom patternHasTarget, isHostedOn 

hostOfPatternTarget inverseOf patternTargetHostedOn 
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                                      and (hostOfThePatternTarget 

someValuesFrom Pattern)))) 

This is equivalent to saying that the pattern (BO-IIS-SSI)  can be used to 

compromise the “connected host location to which is access is needed” 

(WindowsServer) is triggered, if: 1)  it targets a “triggered sub-goal” , 2) the IIS 

Server is hosted on the Windows Server,  and 3) the pattern’s execution can 

achieve (provide) this sub-goal.   

This example shows how the basic constructs can come together in a specific 

situation. The complexity of the attack plan is driven by the interplay of these otherwise 

simple constructs. Logic patterns similar to this one are used to define how other attack 

patterns could be triggered when information is available.   

 This Chapter described how Flux triggers the information that can be used for 

generating risk scenarios. Next chapter describes CieKI’s centralized algorithms and 

attacker behavior ontology. 
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7 Framework Component: CieKI 

CieKI (pronounced as psyche) stands for Cognition Induced Kinetic Intelligence. It 

consists of centralized algorithms and the attacker behavior ontology. The attacker 

behavior ontology encodes the attacker strategy and preferences. 

The main purpose of CieKI is to: 

1. Insert the attacker decisions in the distributed planning logic (Flux) that triggers 

the sub-goals, fingerprinting actions, and the available attacks. 

2. Graphically generate the attack plan by querying the triggered information from 

Flux, and attacker behavior ontology.  

3. Build the attacker’s knowledge state for generating the attack-scenarios. This 

knowledge state is used to control what knowledge is triggered by Flux. 

CieKI represents the attacker’s decisions points, during the attack process, using a 

situational dynamic decision tree. The attacker preferences for these decision points are 

encoded using the attacker behavior ontology. CieKI uses this situational decision tree 

and attacker preferences to determine the order in which the distributed planning logic 

(Flux) is queried.  

This chapter describes the situational dynamic decision tree and the attacker behavior 

ontology. 

7.1 Situational Dynamic Decision Tree 

It is important to study how and when the attacker makes decisions during the attack 

process, in order to replicate this behavior for automated plan generation. These attacker 

decision points are represented using a situational dynamic decision tree. The options 
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available at these decision points depend on the attack situation. The logic flow for the 

situational dynamic decision tree is shown in Figure 46 below.  

 

 

Figure 46: Situational Dynamic Decisison Tree 

In Figure 46, the trapezoids refer to the anchor set classes in Flux. If there are any 

members in the anchor set, then the corresponding decision point is enabled. Otherwise, 

the decision point is blocked until Flux discovers such members. The members of the 
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anchor sets become the decision options available to the attacker. The decision point is 

shown as the diamond-shaped decision box in Figure 46. This box is the same color as 

the trapezoidal anchor set that enables it. 

This decision tree logic is explained below. The numbers in this explanation refer to 

the component marked with the same number in Figure 46. Note that this numbering does 

not indicate the flow of decision sequences. The actual sequence in which the decisions 

are made depends on attacker preferences and the attack situation.  

1. The decision tree starts with the attacker’s (or red-team’s) selection of a goal, 

represented by the decision point “selected goal”. This selected goal may trigger 

the “goal triggered FP (fingerprinting) goal”11, “goal triggered subgoal”, or 

“goal triggered pattern”.  

2. If initially no information is available, only the fingerprinting goals may be 

triggered.  

a. In this case, the attacker (or red-team) may choose a fingerprinting goal 

from the triggered options. The information gathered by executing the 

selected fingerprinting option may further trigger the sub-goals and/or 

patterns as indicated in Figure 46 above. Note that the effect of 

fingerprinting goals is global, since they are used to learn about the 

system. The information that can be uncovered, by executing the 

fingerprinting goals, can trigger any sub-goals, patterns, or attacks even 

though the executed fingerprinting goal is classified as the “goal trigger 

fingerprint goal”. CieKI builds the attacker’s knowledge state using the 

information discovered by executing fingerprinting goals. 
                                                 
11 In the Figure 48 Fingerprinting is abbreviated to FP for ease of graphical presentation  
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3. The selected goal may trigger potential sub-goals if information about how to 

decompose the goal is available, either by executing the fingerprinting goals, or 

from a priori knowledge.  

a. These triggered sub-goals are available as options for the attacker (or red-

team). When the attacker (or red-team) selects a sub-goal, the “subGoal 

triggered FP (fingerprint) goal” is triggered. If the information about how 

to decompose the selected sub-goal, or to accomplish them is available, 

then “subgoal triggered subgoal” and “subgoal triggered Pattern” are also 

triggered.   

4. If patterns that may accomplish the selected goal are available, then “goal 

triggered patterns” are triggered. 

a. The attacker (or red-team) may select a triggered pattern to accomplish the 

selected goal based on his/her preference. 

b. If a pattern is selected, then the corresponding available attacks are 

triggered. The attacker (or red-team) then may select one of the triggered 

attacks. 

c. If the selected attack accomplishes the goal, then the goal is marked as 

accomplished. When this happens, the logic of the tree moves to the 

beginning of the decision tree if any more goals or fingerprinting actions 

(that may trigger new goals) are available. Note that the attacker (or red-

team) may choose not to use any triggered attacks, if these attacks do not 

satisfy his/her preferences.  
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5. A selected sub-goal may further trigger more sub-goals, finger printing goals, or 

patterns. 

6.  Selected fingerprinting goals may provide more information about the system, 

which can further trigger sub-goals, patterns, and attacks. Again, note that the 

effect of fingerprinting goals is global, since they are used to learn more about the 

system.  

7. Also similar to “goal triggered pattern”, the “sub-goal triggered pattern” 

selection further triggers available attacks whose execution achieves the selected 

sub-goal. The accomplishment of sub-goals in turn may achieve the selected goal. 

In this case, the control returns to the top of the decision tree if any more goals, or 

fingerprinting actions (that may trigger new goals), are available.  

CieKI also provides an interface for the red-team to interact with the target network. 

This interface is called CieKI Red-team Diary (RTD).This decision diagram is a core part 

of CieKI RTD interface. Situational decision tree is used for developing the proposed 

framework’s mode 2, 3, and 4 algorithms. Section 4.3.7 introduced these modes of 

operation, and Chapter 8 describes them in detail. 

7.2 Attacker Behavior Ontology 

Attacker strategy and preferences influences the decisions made by the attacker. 

Attacker strategy in turn is influenced by the attack’s environmental context and the 

attacker’s motivation. This is shown in Figure 47 below.   
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Figure 47: Factors influencing attacker strategy 

 

The same attacker may use a different attack strategy, for example, if the information 

to be compromised is located in a military network as opposed to a University lab 

network. The attacker strategy is also dependent on the attacker’s motivation. The 

attacker may choose different types of attacks, for example, if the motivation was 

learning as opposed to getting public attention.  

Given the environmental context and attacker motivation, this dissertation encodes 

four types of attacker strategies called direct, fastest, prudent, and stealth strategy. Note 

that even though this dissertation initially focuses on these four strategies, the proposed 

framework’s logic is scalable enough to encode new strategies, or new combinations of 

current strategies if needed. This ontology can also be used to encode technological 

preferences (for example it can encode if attacker prefers compromising Linux to 

Windows). 
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These four strategies are described as: 

1. Direct Attack Strategy:  In direct attack strategy, the attacker tries to 

compromise the system directly, and avoids using other systems as a launching 

point of the attack.  

2. Fastest Attack Strategy: In fastest strategy, the attacker tries to launch the attack 

as soon as possible. An attacker with this strategy may not try to capture detailed 

information about the system using fingerprinting, but will instead use only the 

minimum amount of information that allows selection of an attack as “good 

enough” information. The leap-before-you-look attacker is an example of this 

type of attacker. Apart from shortening the information-gathering phase, the 

fastest attack strategy may also prefer faster attacks given the option. The fastest 

attack strategy is a more constrained direct attack strategy.  

3. Prudent Attack Strategy: This strategy is the opposite of the fastest attack 

strategy. In this strategy, the attacker tries to gather as much information as 

possible before selecting and launching the attack. Given the option, the attacker 

using this strategy may select attacks that are more accurate (or reliable).  

4. Stealth Attack Strategy:  This strategy can be used with any of the above-

mentioned strategies. In this strategy, the attacker prefers stealthy attacks given 

the option.  

7.2.1 Encoding Attacker Strategy 

In order to encode the attacker preference, the attacker’s decision points are first 

identified using the situational dynamic decision tree. The attacker’s preferences are then 

encoded at these decision points, using the attacker behavior ontology.  
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7.2.1.1 Attacker Decision Points   

The attacker’s decision points are shown in Figure 48 below. The decisions made at 

these points are driven by the attacker’s strategy. Figure 48 illustrates the decision points 

as 11 blocks after removing the successor flow of logic from the decision tree shown in 

Figure 46.  

Decision points 1 and 7 allow the red-team to select the goal and sub-goal. At 

decision points 2 and 8, the red-team may select either the fingerprinting goal, or a 

pattern that accomplishes the selected goal or sub-goal, or they may choose to decompose 

the goal or sub-goal further. Decision point 6 shows that the selected goal or sub-goal can 

be further decomposed into exploiting functionality, connectivity, or attribute sub-goal 

types. The decision points 3 and 9 allow the selection of triggered fingerprinting goals. 

Decision points 4 and 10 allow the selection of triggered patterns, and decision points 5 

and 11 allow the selection of the triggered attacks.   
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Figure 48 : Attacker descision points 
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7.2.1.2 Attacker Behavior Ontology 

Attacker preferences are applicable at these decision points. These preferences are 

encoded using attacker behavior ontology. This ontology is created by encoding the 

following three logic types. 

1. The first type of logic describes the conceptual relationship among the decision 

points (or among the options within a decision point), using properties. For 

example, the information that exploiting a triggered pattern is faster than 

decomposing a goal is encoded as (GoalTriggeredPattern isFasterThan 

GoalTriggeredSubgoal). This is shown in Figure 49. 

2. The second type of logic associates the properties with a strategy. For example, 

the ‘isFasterThan’ property can be used to implement the fastest attack strategy. 

The other three strategies have corresponding properties ‘isDirectThan’, 

‘isPrudentThan’ and ‘isStealthyThan’.  

3. The third type of logic involves defining an abstract anchor property 

‘isPreferedThan’ and making one of the properties defined in step 2 a sub-

property of this anchor property, according to the selected strategy. For example, 

if the fastest attack strategy is the selected strategy, then the isFasterThan 

property is made the sub-property of the isPreferedThan property. If it is stated 

that “AttackA isFasterThan AttackB” then using the property relation and 

strategy information, it can be inferred that “AttackA isPreferedThan AttackB”. 

This ‘isPreferedThan’ property is called an anchor property (conceptually 

similar to the anchor class ) because it allows the CieKI algorithms to query this 
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fixed property every time, but the meaning of this property can be changed in real 

time to reflect the attacker strategy.  

For example, if the strategy is changed from fastest attack to stealthy attack, 

then the isStelthierThan property is made the sub-property of the isPreferedThan 

property. If it is stated that “AttackB isStelthierThan AttackA”, then it can be 

inferred that “AttackB isPreferedThan AttackA”. 

This is shown in the Figure 50 below. The blank decision option trapezoid is 

filled in real time based on the strategy chosen by the red-team or attacker. 

Technological preferences are also encoded using isPreferredThan property.   

 

 

 

Figure 49: Attacker strategy driven properties between the decsions points 

 

 

Figure 50:  isPreferredThan property 

 

Note that there is one active strategy for each decision point, but the algorithm 

supports choosing hybrid strategies (appropriate combination of the four strategies, or 

any new strategies) for different decision points. 
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7.3 Centralized Algorithms 

The centralized algorithm inserts the attacker decisions in Flux, and queries its 

outcome from Flux. The order of this query is determined by evaluating the attacker 

preferences at each decision point represented in the situational decision tree. The 

centralized algorithms generate the four types of graphical outputs. These centralized 

algorithms and the modes of operations are described in detail in Chapter 8. 
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8 Framework Modes of operation 

The proposed framework has five modes of operations. This chapter describes these 

modes in detail. 

Mode 1: Attack Tree Generation without Attacker Preference: This mode 

generates attack trees. It displays all possible ways the attacker can compromise the 

information’s confidentiality, integrity, and availability given perfect knowledge of 

the system (i.e., it is assumed that the system has been fingerprinted perfectly.) This 

mode assumes that all triggered sub-goals are selected by the attacker (i.e., it is 

assumed that all possible ways of achieving the goals are selected.) 

Mode 2 Attack Scenario Generation Using Red-team:  This mode generates the 

attack-scenario using red-team. It displays the actual steps taken by the red-team, 

given no knowledge of the system (i.e., it is assumed that the red-team has to  

fingerprint the system.) This mode provides the available goals, and triggered 

fingerprinting goals, sub-goals, patterns, and attacks, as options to the red-team. It 

observes the decisions made by red-team, and elicits their theories about attacker 

preferences. This mode builds the red-team’s knowledge state, and uses it to trigger 

the options available to the red-team.  

Mode 3- Automated Attack-scenario Generation: This mode automates 

generation of the attack-scenario. It displays the actual steps taken by the attacker, 

given no knowledge of the system (i.e., assuming that the attacker has to fingerprint 

the system.) This mode uses information about attack goal, and the attacker 

preference encoded in attacker behavior ontology to automate the generation of 



191 
 

attack-scenarios. This mode builds the attacker’s knowledge state, and uses it to 

trigger the options available to the attacker.  

Mode 4- Ranked Attack Tree Generation Using Attacker Preferences: This 

mode generates ranked attack trees. It displays attack tree, whose branches are 

ranked according to the attacker preferences encoded in attacker behavior ontology.  

Mode 5- Direct Query: In this mode, Flux can be queried directly to generate 

custom outputs.  

8.1.1 Attack Tree Generation without Attacker Preference 

This section describes the first mode of operation. This mode generates all possible 

ways the attacker can compromise the system, given perfect knowledge of the system. 

This mode of operation is implemented by: 

1. Enabling all encoded system knowledge (i.e., assuming that the system has been 

fingerprinted perfectly.) 

2. Making all “triggered sub-goals”  “selected sub-goals” (i.e., assuming all possible 

ways of achieving the goals are selected.) 

8.1.1.1 Pseudocode 

The pseudocode used for generating the outputs is as shown below: 

1. Read the ontology files  
2. Retrieve class SelectedGoal 
3. For each SelectedGoal 
4. Add tree vertex SelectedGoal 
5. Retrieve the GoalTriggeredSubGoal instances 
6. Determine the SubGoal type for all GoalTriggeredSubGoal instances 
7. Add nodes indicating the SubGoal types 
8. Add tree edge from  SelectedGoal to SubGoal types 
9. Add nodes displaying the GoalTriggeredSubGoal instances 
10. Add appropriate tree edge from  SubGoal type to GoalTriggeredSubGoal 
11. For each GoalTriggeredSubgoal instance 
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a. Retrieve the SubGoalTriggeredSubGoal instances  
b. Determine the SubGoal types for all SubGoalTriggeredSubGoal instances 
c. Add nodes indicating the SubGoal types 
d. Add tree edge from  GoalTriggeredSubGoal to SubGoal type 
e. Add nodes displaying the SubGoalTriggeredSubGoal instances 
f. Add appropriate tree edge from  SubGoal type to 

SubGoalTriggeredSubGoal instances 
12. Retrieve TriggeredPattern 

a. For each TriggeredPattern 
i. Add nodes representing TriggeredPatterns 

ii. Add appropriate edge between TriggeredPattern and the target 
(sub-goal or goal) triggering the pattern. 

iii. Retrieve the TriggeredAttacks  
iv. Add nodes representing TriggeredAttacks 
v. Add appropriate edge between TriggeredPattern and the 

TriggeredAttacks 

8.1.1.2 Output 

The first mode of operation generates the attack tree as shown in Figure 51. This 

graphical output is generated by using a Java graphical software library (and its example), 

called Java Universal Network/Graph Framework (JUNG) [140].  

In Figure 51, the red nodes represent the goals and sub-goals, orange nodes represent 

available patterns, black nodes represent available attacks, and white nodes represent the 

type of sub-goals. In order to optimize screen space, the exploit functionality sub-goal is 

called FunctionalSub-goal and ConnectedHostToWhichAccessIsNeeded is 

summarized as ConnectedHost. 

The tree-structure shown in Figure 51 can be collapsed into concentric circles 

indicating the cluster of nodes. This is shown in Figure 52. This can be used as a visual 

overview to determine which type of sub-goal provides the majority of attacks. Any part 

of the tree or graph can be zoomed in and out. The tool also uses “lens” application from 

JUNG software library [140], which allows magnification of a specific portion of the 

tree. These different features of the output are displayed in Appendix V.  
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Finally, the progression of attacks can also be presented in the form of a radial 

output, as shown in Figure 53. In Figure 53, each concentric circle represents how the 

goal is broken down to executable attacks that can accomplish the goal. These different 

graphical presentations are generated using Java Universal Network/Graph Framework’s 

examples [140].  
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Figure 51: Flux Attack Tree Output
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Figure 52: Flux Attack Tree Spiral Presentation 
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Figure 53: Flux radial output 
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8.1.2 Attack Scenario Generation Using Red-team  

This section describes Mode 2 of the proposed framework. This mode provides the 

red-team with a graphical interface that allows them to interact with the target network. It 

records and displays the actual steps taken by the red-team, given no knowledge of the 

system (i.e., assuming that the red-team has to fingerprint the system.) This interface is 

part of CieKI and is called CieKI RTD (red team diary). It implements the situational 

dynamic decision tree described in Section 7.1.This mode of operation is implemented 

by: 

1. Providing the red-team possible attack goals, triggered sub-goals, fingerprinting 

goals, patterns, and attacks as options. When the red-team selects an action, 

CieKI RTD inserts the decision in Flux, and provides the triggered outcome of 

action back to the red-team. 

2. Building the red-team’s knowledge state using the knowledge discovered 

because of red-team’s selection (execution) of a triggered fingerprinting goal. 

This knowledge state is used to trigger the sub-goals, patterns, and attacks 

(available to the red team) using Flux. 

3. Observing the decisions made by the red-team, and eliciting their theories about 

attacker strategy and preferences.  

8.1.2.1 CieKI RTD Input Interface 

This section describes the input interface of the CieKI RTD shown in Figure 54. The 

red-team interacts with this interface to make decisions and to view the options available 

to them. This interface is divided into multiple input/output panels shown by different 

colors. These panels correspond to the attacker decision points in the situational dynamic 
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decision trees. This section describes these panels and the red-team’s interaction with 

them.   
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Figure 54: CieKI RTD Interface 
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Goal Selection Panel 

The goal selection panel is the first panel that red-team interacts with. Using this 

panel, the red-team can select the goal, change the selected goal, and re-activate an old 

unaccomplished goal. This panel also displays the information about the systems 

compromised by the red-team. 

Figure 55 below shows two panels labeled “Available Goal” and “Attacker Access,” 

shown in cyan and red.   

The “Available Goal” panel displays the possible attack goals available to red-team. 

The availability of the goal depends on red-team’s knowledge about the system. This 

knowledge can be available a priori (a specific goal may be provided to red-team) or can 

be collected by executing fingerprinting goals.  

The red-team can select the goal by choosing an option from the "Available Goals" 

list and pressing the select goal button. CieKI RTD classifies this selected option as a 

member of SelectedGoal class in Flux. Flux uses this information to trigger the “goal 

triggered sub-goals”, “goal triggered fingerprinting goals”, or “goal triggered patterns”. 

This triggered information is displayed in the sub-goal selection panel (shown in Figure 

56), the fingerprinting goal selection panel (shown in Figure 57), and the pattern panel 

(displayed in Figure 58).  
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Figure 55 : CieKI RTD – Goal Panel 

The panel displaying the “Available Goal” list also contains three more lists called 

“Selected Goal”, “Goals Accomplished”, and “Back of your mind”. The goal, when 

selected, is moved from the “Available Goal” list to the “Selected Goal” list, and the 

“Select Goal” button is disabled. This is because there can be only one active goal in 

current implementations of CieKI. However, there can be more than one active selected 

sub-goal.  

If the red-team decides to change the selected goal before it is accomplished (either 

due to inability to accomplish the selected goal or to pursue another goal), by pressing the 

“Change Goal” button, it is moved to the “Back of your mind” list. This “back of your 

mind” goal can be reactivated by the red-team if needed. One of the objectives of red-

team elicitation is to capture when and why the red-team puts a selected goal on the 

“back of your mind” list, and under what circumstances it is reactivated.   
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Goals that are accomplished are moved to the “Goal Accomplished” list. The 

“Attacker Access” list shows the systems, applications, or information the red-team has 

gained access to by executing actions. At the beginning of the attack scenario, this list 

shows ‘None’, indicating attacker has not compromised any systems or information, and 

it is updated as the red-team analyst accomplishes goals and sub-goals. 

Sub-Goal Selection Panel 

 

 

Figure 56: CieKI RTD –Sub-Goal Panel 

 

There are two sub-goal selection panels in the CieKI RTD interface, the “goal 

triggered sub-goal” and “sub-goal triggered sub-goal” panel. An example of this panel 

template is shown in Figure 56. Flux’s triggered sub-goals are presented in the topmost 

text box above the select button. These sub-goals are triggered either when a goal (or sub-

goal) is selected or when fingerprinting actions are executed (i.e. when new knowledge is 

discovered by the red-team).  

When the red-team selects a sub-goal, it is moved to the selected sub-goal text box, 

and CieKI RTD classifies it as member of Flux’s “SelectedSubGoal” class. Flux uses this 

information to triggers further “sub-goal triggered sub-goals”, “sub-Goal triggered FP 
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goals”, or “sub-goal triggered patterns”. This triggered information is displayed in the 

sub-goal selection panel (shown in Figure 56), the fingerprinting goal selection panel 

(shown in Figure 57), and the pattern panel (displayed in Figure 58). 

If a sub-goal is accomplished by executing attacks, then it is moved to the 

“Accomplished Sub-goal” list. Note that only selected sub-goals can trigger the available 

patterns, but executing the attacks in the pattern can also accomplish the sub-goals that 

are triggered but not selected.  

Fingerprinting Goal Panel 

The fingerprinting goal panel is shown in Figure 57. There are four such panels in 

the CieKI input interface. The fingerprinting goals, triggered by Flux, are displayed in the 

text box above the “Execute” button. The fingerprinting goals, when executed, are moved 

to the “Accomplished FP Goal” list.  The execution of fingerprinting goals provides 

information about the target network.  CieKI RTD uses this information to build the red-

team’s knowledge state. Flux triggers the available goals, sub-goals, patterns, or attacks, 

given the red-team’s knowledge state.  

 Note that the effect of the fingerpriting goal is global  (i..e., a “sub-goal triggered 

fingerprining goal” can also trigger “goal triggered patterns”). This is because the 

purpose of fingerpriting is to collect information about the target network, and the 

usefulness of collected information may not be limilted to a specfic goal (even though the 

information collection effort may be triggered by a specific goal).   
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Figure 57: CieKI RTD – Fingerprinting Goal Panel 

Pattern and Attack Panel 

The pattern panel is shown in Figure 58 below. The triggered patterns are displayed 

in the top most textbox. These triggered patterns are further filtered by using the 

information about attacker’s access. Once the patterns are triggered, the Threat Ontology 

checks to see if the patterns are executable given the current access of the attacker. If the 

patterns are executable, then the ontology classifies them as “Executable Patterns”.  

These triggered patterns are displayed for information only and cannot be selected. 

Only the executable pattern can be selected. This executable pattern is displayed in the 

second text box in Figure 58. Once the red-team selects an executable pattern, it is moved 

to the selected pattern list, and is classified as a member of Flux’s “SelectedPattern” 

class. This classification triggers the corresponding attacks encoded in the pattern. The 

triggered attacks and vulnerabilities are shown in Figure 59.  
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Figure 58: CieKI RTD – Pattern Panel 

The triggered vulnerabilities are also displayed for information purpose only. Attacks 

can be selected to exploit these vulnerabilities. When the triggered attacks are executed, 

they are moved to the “Accomplished Attack” list, and the vulnerability exploited by this 

attack is moved to the “Exploited Vulnerability” list. The sub-goals and goals 

accomplished by executing attacks are also moved to the “Goals Accomplished” and 

“Accomplished Sub-Goals” lists. The “Attacker Access” list is also updated to reflect the 

accomplished goals and sub-goals. The attack panel is displayed below the vulnerability 

panel in Figure 59.  
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Figure 59: CieKI RTD – Attack and Vulnerability Panel 

 

 Red-team’s decisions are recorded by the CieKI-RTD as they are made. CieKI RTD 

then graphically generates the attack-scenario based on these decisions. The red-team’s 

theories about attacker preference and strategies are elicited manually at each decision 

points. This elicited information is recorded in the attacker behavior ontology. This 

elicited information can be used to automatically generate the attack-scenarios in mode 3 

and to rank the attack tree’s branches in mode 4.   

8.1.2.2 RTD Pseudocode  

The algorithm in the form of a pseudo code is shown below.  

I. SELECT: Goal 
A. ASSERT:  Selected Goal in Flux 

1. Disable select goal option 
B. Selected Goal may TRIGGER GoalTriggeredFingerprintGoal or 
TriggeredPattern  or  GoalTriggeredSubgoal  given the information in Flux 
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1. IF (GoalTriggeredFingerPrintGoal) THEN enable this as  the 
decision to  be  made ELSE declare no goal triggered fingerprint goal 
2. IF (TriggeredPattern) THEN enable this as decision to be made 
ELSE  declare no goal triggered pattern 
3. IF (TriggeredSubGoal) THEN enable this as decision to be made 
ELSE  declare no triggered subgoals 

II. Repeat 
A. IF (enabled goal triggered decisions to be made)  

1. THEN   
a) DISPLAY the enabled decisions to be made 
b) IF Selected (GoalTriggeredFingerPrintGoal) THEN 

(1)  EXECUTE the goal  
(2)  ASSERT the outcome in Flux  

(a) The fingerprint outcome may TRIGGER 
TriggeredPattern  or  TriggeredSubgoal given 
the information in Flux 
(b) Enable appropriate goal and sub-goal 
triggered decisions to be made 

c) IF Selected (GoalTriggeredSubGoal) THEN  
(1) ASSERT:  Selected Sub-Goal in Flux 
(2) Selected SubGoal may TRIGGER 
SubgoalTriggeredFingerprintGoal or TriggeredPattern 
 or  SubgoalTriggeredSubgoal  given the information 
in Flux 
(3) Enable appropriate goal and sub-goal triggered 
decisions to be made 

d) IF selected (ExecutableTriggeredPattern) THEN  
(1) ASSERT:  Selected Pattern in Flux 
(2) EXECUTE  pattern 
(3) IF (SelectedPattern provides selected Goal) THEN 

(a) Declare goal is achieved  
(b) Updated Attacker Access 

B. IF (enabled subgoal triggered decisions to be made)  
1. THEN   

a) DISPLAY the enabled decisions to be made 
b) IF selected (SubGoalTriggeredFingerPrintGoal) THEN 

(1)  EXECUTE the goal  
(2)  ASSERT the outcome in Flux  
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(a) The fingerprint outcome may TRIGGER 
TriggeredPattern  or  TriggeredSubgoal given 
the information in Flux 
(b) Enable appropriate goal and sub-goal 
triggered decisions to be made 

c) IF selected (SubGoalTriggeredSubGoal) THEN  
(1) ASSERT:  Selected Sub-Goal in Flux 
(2) Selected SubGoal may TRIGGER 
 SubgoalTriggeredFingerprintGoal or 
TriggeredPattern  or   SubgoalTriggeredSubgoal  
given the information in Flux 
(3) Enable appropriate goal and sub-goal triggered 
decisions to be made 

d) IF selected (ExecutableTriggeredPattern) THEN  
(1) ASSERT:  Selected Pattern in Flux 
(2) EXECUTE  pattern 
(3) IF (SelctedPattern provides selected SubGoal or 
Goal) THEN 

(a) Declare goal or sub-goal is achieved  
(b) Updated Attacker Access 

C. IF selected (change Selected Goal) THEN 
1. Put  current Selected Goal on Back of your Mind Buffer 
2. Enable select goal option 
3. IF selected (new available goal or Back of your Mind Buffer goal) 

a) ASSERT:  Selected Goal in Flux 
(1) Disable select goal option 

b) Selected Goal may TRIGGER 
GoalTriggeredFingerprintGoal or TriggeredPattern  or  
GoalTriggeredSubgoal  given the information in Flux 

(1) IF (GoalTriggeredFingerPrintGoal) THEN enable 
this as  the decision to  be  made ELSE declare no 
goal triggered fingerprint goal 
(2) IF (TriggeredPattern) THEN enable this as decision 
to be made ELSE  declare no goal triggered pattern 
(3) IF (TriggeredSubGoal) THEN enable this as 
decision to be made ELSE  declare no triggered subgoals 

Until (Red-team terminates execution) 
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8.1.2.3 CieKI RTD Output  

RTD generates the attacker scenario representing the actual red-team steps. An 

example of this for the case study described in Section 5.4 is as shown in Figure 60 

below. These steps are numbered according to the sequence in which they were executed. 

The loop shown in Figure 60 indicates that the initial goal was put on the back of your 

mind buffer and was reactivated later. This change and re-activation of goals and 

backtracking are important aspects of the attacker behavior that are not captured by the 

attack tree.    

In Figure 60, the red nodes indicate the goals and sub-goals, yellow nodes indicate 

fingerprinting action, orange node indicates selection of a pattern, and the black node 

indicates execution of attack.   

In the scenario displayed in Figure 60, the attacker selects “compromising trade 

secret” as the goal. The steps taken by red-team are explained below: 

1. The goal has a functional relationship with the MySQLserver, and it is selected 

as the sub-goal by the red-team. 

2. Because no other information is available, the red-team executes a network scan. 

However, because the server hosting the MySQL is in the private network and 

protected by a firewall, no information about this selected sub-goal 

MySQLServer is available. The network scan however returns information about 

a Windows Server, and the applications executing on this server.  

3. Since no information about selected sub-goal is available, the red-team analyst 

puts the TradeSecret on the “back of your mind buffer” and makes 

compromising the discovered WindowsServer a new goal.  
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4. There are executable patterns available to compromise the WindowsServer. 

From these patterns, a buffer overflow pattern called BO-SMB, targeting the 

implementation of server message block protocol, is selected by the red-team.  

5. The BO-SMB pattern and the WindowsServer goal are accomplished by 

executing a new (hypothetical) variant of Sasser attack called SasserEq.  

6. The red-team then performs a fingerprinting action again from the new locations 

they now have access to. The Windows Server in the given example has visibility 

into the internal network and provides the information that MySQL Server is 

hosted on a Linux Server.  

7. The red-team uses this newly discovered information to reactivate the 

“compromise trade secret” from the “back of your mind buffer”, making it the 

new selected goal. 

8. The MySQL Server again becomes the new selected sub-goal to achieve the 

“compromise trade secret” goal.  

9. The Linux Server hosting this MySQL Server is also triggered and further 

selected as a sub-goal. 

10.  An executable pattern providing unauthorized access to Linux Server is triggered 

and selected. 

11. This pattern is achieved by executing the “LICQ attack”. Having access to the 

Linux Server accomplishes the sub-goal of compromising “MySQL Server”, and 

accomplishes the goal of compromising the trade secret stored in it.  
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Figure 60:  CieKI RTD Output – Attack-scenario 

8.1.2.4 Benefits of CieKI RTD 

Traditionally, the red-team has to discover system information as part of the red-

teaming exercise. The red team then uses their attack launching tools to execute proof of 

concept attacks12 to achieve a pre-determined goal. The red-team may spend a significant 

amount of time discovering system information by executing fingerprinting actions, and 

executing attacks to compromise the discovered vulnerabilities.   

The main value of using the red-team, however, lies in their theories about attacker 

behavior and not in their ability to execute the fingerprinting actions and attacks.    

In the proposed framework, the red-team interacts with the target network to be 

compromised using the CieKI RTD interface. This interface isolates the underlying target 

network from the red-team.  

CieKI RTD provides the red-team available goals, and triggered sub-goals, 

fingerprinting actions, patterns, and attacks as options. When the red-team selects an 

action, it inserts the decision in Flux, and provides the triggered outcome of action back 

                                                 
12 Note that the red team carries out an attack only if it is asked to do so.  
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to the red-team. CieKI RTD can also be integrated with scanning and attack launching 

tool like Metasploit [131] .  

The advantage of this tool is: 

1. It eliminates the red-team’s burden of executing fingerprinting actions, and 

launching attacks. This allows red-teams more time to develop and test attacker 

behavior theories.  

2.  CieKI RTD facilitates expert theory elicitation. Using this interface, the 

elicitation analyst can observe and ask questions about the red-team’s selection of 

actions. This allows the elicitation analyst to develop the attacker preference 

ontology. The elicited ontology can be used for automatically generating the 

attack plans.  

3. In secured facilities, it may not be possible to give the red-team access to the 

actual target network. The proposed framework’s red-team interface allows 

abstracting the actual system information, thus giving the red-team only the need-

to-know information.   

4. New proof-of-concept attacks generated by the red-team can be added to the 

threat ontology as new actions. 

8.1.3 Attack Scenario Generation Using Encoded Attacker Behavior Theory  

This mode automates generation of the attack-scenario. It displays the actual steps 

taken by the attacker, given no knowledge of the system (i.e., assuming that the attacker 

has to fingerprint the system.) This mode uses information about attack goal, and the 

attacker preference encoded in attacker behavior ontology to automate the generation of 

attack-scenarios. 
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This mode of operation is implemented by: 

1. Querying the triggered information from Flux using the attacker’s goal and 

knowledge state. The order of query itself is determined by querying the attacker 

behavior ontology to evaluate the attacker’s preferred decisions at each decision 

point in the situational dynamic decision tree.  

2.  Building the attacker’s knowledge state using the knowledge discovered because 

of attacker’s selection (execution) of a triggered fingerprinting action. Similar to 

Mode 2, the attacker’s knowledge state is used to control the information that can 

be triggered by the distributed logic. Unlike Mode 2, the attacker’s fingerprinting 

actions are chosen by the Mode 3 algorithm based on encoded attacker’s 

preferences and need for information. 

This mode generates the attack-scenario similar to the one generated by CieKI RTD. 

However, each time a goal is changed, the scenario leading to this goal change is 

displayed in a new scenario graph window. The example scenario is displayed in three 

windows, shown in Figure 61-63, indicating that the attack goal was changed two times 

in this example. The scenario within each window (or within each goal) continues until 

either the goal is changed, or until it is accomplished, or until the algorithm declares that 

the goal cannot be accomplished. Figure 61 shows the scenario fragment in which the 

available fingerprinting goals were tried, but the information available could not 

decompose or accomplish the sub-goal “MySQL Server”. Figure 62 shows the 

continuation of this scenario after putting the “compromise trade secret” goal on the 

“back of your mind” buffer and making WindowsServer the new selected goal. This 

ends when the WindowsServer goal is accomplished. Figure 63 shows the continuation 
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of this scenario after the Windows Server is compromised, and the “compromise trade 

secret” goal is reactivated.  

 

 

Figure 61:  Automated scenario generation output showing that selected goal cannot be 

achieved 

 

 

Figure 62: Automated scenario generation output after changing goal 
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Figure 63: Automated scenario generation output after reactivating initial goal 

 

8.1.4 Attack Tree Generation Using Attacker Behavior 

This mode of operation ranks the attack tree generated in the mode described in 5.5.1 

using the attacker preference. This is shown in Figure 64. It shows which branch of the 

attack tree is preferred by the attacker. The Flux’s graphical algorithm is modified to 

query the preferences of the attacker encoded in attacker behavior ontology to rank the 

branches of the tree.  
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Figure 64 Ranked attack tree 

8.1.5 Direct Query 

Another way to retrieve information from Flux is to use query tools to extract 

specific information directly. This is shown with an example of querying the Flux sets 

directly using an ontology query tool called the “DL Query”[141]. Figure 65 (a) below 

shows the output of querying the selected goal class and (b) shows an example of 

querying a restriction class. 
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(a) 

 

(b) 

Figure 65: Direct query of Flux knowledgebase 

Figure 65 section (a) describes the members of the class SelectedGoal. In this tool, 

the individuals are called instances. Section (b) displays the outcome of the intersection 

of restriction classes encoded as (patternHasTarget hasValue IISServer), and the 

TriggeredPattern class.   

Direct queries can be used to create custom graphical presentations. One possible 

custom graphical representation allows monitoring the size of the anchor sets. The size of 
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the anchor sets increases or decreases based on the situation and information availability. 

The system administrators currently monitor the availability of new vulnerabilities or 

attacks almost on the daily basis. Using Flux, the system administrators can monitor how 

these vulnerabilities and attacks may be used in the attack plans targeting the information 

they are trying to protect.   
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9 Framework Evaluation and Comparison  

This chapter compares the proposed framework with manual attack tree and 

automated vulnerability graph generation frameworks. This comparison is done using the 

cyber-security domain requirements identified in Section 3.4, and by using the case study 

described in Section 5.4.  

9.1 Cyber-security Domain Requirements Comparison  

This section compares the proposed framework with the manual attack tree and 

automated vulnerability graph generation frameworks using the cyber-security domain 

requirements.   

9.1.1 Domain Dynamicity  

These dynamicity requirements suggest that the risk scenario generation framework 

should assume that information is incomplete and update the risk scenarios when new 

information is available. The proposed framework generates the risk scenarios using open 

world reasoning assuming that information is incomplete. The proposed framework also 

uses real-time information as it becomes available to generate these risk scenarios. 

The distributed planning logic also meets the following three knowledge 

representation requirements:  

1. Dispersed Information Sources: The cyber-security domain information (For 

example, information about software systems characteristics, vulnerabilities, and 

attacks, attack theories etc.) may be generated by multiple sources dispersed in 

space and time. The ontology language[110, 114] used in this dissertation can 

capture and combine the information from these dispersed sources.  
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The vulnerability graph frameworks capture and use limited information 

(primarily about the presence of vulnerability, connectivity between software 

systems, attacker’s initial privileges, and the privileges gained by exploiting the 

vulnerabilities). Some vulnerability graph generation frameworks [81, 82, 87, 89] 

can capture information about known vulnerabilities using vulnerability scanning 

tools, and/or vulnerability databases. 

2. Dynamic Knowledgebase: One of the challenges of the vulnerability graph 

generation methods is that they require an explicit encoding of the information a 

priori (before executing the planning algorithm). Any change in information as 

well as availability of new information is incorporated by re-capturing and re-

encoding the information, and re-executing the planning algorithm. The proposed 

framework overcomes this by using the information, as it becomes available, to 

trigger the information relevant (for example, sub-goals, the fingerprinting 

actions, the available attacks etc.) for generating the risk scenarios.  

3. Incomplete Information: Current vulnerability graph generation methods using 

traditional knowledgebase and planning algorithms assumes that information is 

complete, there are no unknowns, and whatever information is not explicitly 

stated is false. For example, if information about vulnerability is not stored in the 

knowledgebase, then it is assumed that such vulnerability does not exist. This 

assumption may not valid in the cyber-security domain.  

The proposed framework’s logic overcomes this limitation by assuming that 

information is incomplete and new information may be available. The proposed 
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framework uses only the information that is explicitly stated without making any 

assumption about the information that is not encoded.  

In summary, the proposed framework assumes that information is incomplete, when 

new information is available or if the encoded information changes, the proposed 

framework captures, combines and uses it to generate the risk scenarios in real time.   

9.1.2 Attacker Behavior 

The proposed framework captures the logic behind why the attacker may exploit any 

available opportunities. The proposed framework generates attack plans by capturing 

attacker behavior. The distributed logic captures and emulates the attacker thought 

process for decomposing goals (and sub-goals) and for discovering and exploiting 

opportunities provided by the target network. The proposed framework captures and uses 

the attacker’s motivation, strategy, and preferences for generating the risk scenarios. In 

accordance with the attacker’s exploratory nature, the proposed framework assumes that 

the attacker may discover knowledge during the attack process. This knowledge 

discovery not only guides the attack plan but it also may change attacker’s initial goal. 

The proposed framework builds the attacker’s knowledge state for controlling the 

knowledge that can be triggered by the distributed logic for generating risk scenarios. 

Current automated vulnerability graph generation methods describe how the known 

vulnerabilities may be exploited, but they do not capture why the attacker may exploit 

these vulnerabilities, apart from the fact that they are available. These methods do not 

consider attacker behavior (attacker’s motivation, strategy, preferences, thought process, 

exploratory nature) for generating risk scenarios.   
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9.1.3 Expert Theory 

The proposed framework allows eliciting and encoding expert theories about attack 

and attacker behavior. It generates the risk scenarios using these theories. This explicit 

encoding of expert theories allows communicating and validating these theories. The 

proposed framework also allows experts to test the impact of their theories, and it can be 

used to calibrate the experts. This is described in detail in Section 10.2.3. 

The main value of using the red team is in their theories about attacker behavior. 

Current manual attack risk scenarios are generated by red teams using their theories of 

attacker behavior. This output (in the form of risk scenarios) abstracts the expert’s 

attacker behavior theories, while summarizing only the actions that the attacker may take 

in the risk scenario. If the risk scenarios are generated without explicitly stated 

underlying theories, then the opportunity to validate and re-use accurate theories, or to 

update inaccurate theories is lost. The vulnerability graph generation methods does not 

elicit, use, or validate expert theories.  

9.1.4 Automation 

Today’s technology infrastructure consists of a large number of software systems. In 

addition, a large number of attacks and vulnerabilities exist. Consequently, the 

vulnerability graph may have hundreds of nodes. To capture this vast amount of 

information, the cyber-security risk scenario generation needs to be automated. 

Automation is not only required because of the scale of the risk scenario, but it is also 

needed to capture the domain dynamicity. This section compares the frameworks using 

these automation requirements. 
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1. Completeness: The vulnerability graph represents all possible ways the 

attacker can gain restricted privileges (or circumvent a security property). In 

the case of manual attack tree generation, the completeness of the attack tree 

is limited to the analyst's ability to identify the attack-scenarios. The 

proposed framework’s attack tree generates all possible ways the attack goal 

of compromising information can be achieved.  

2. Repeatability: The automated vulnerability graph generation framework  

and the proposed framework generate repeatable output given the same 

information as input. The outcome of manual attack tree generation may vary 

even with the same input information, depending on the skills and knowledge 

of the analyst generating the output.  

3. Scalability: The scalability of an algorithm is limited by increase in run time 

(the time it takes for the algorithm to execute) as more inputs are added.  

According to [1], most of the vulnerability graph generation frameworks have 

exponential run time growth (run time grows exponentially).  The algorithm 

described by Ammann et al [85]  has the polynomial run time. 

The OWL language used in this dissertation (OWL DL) has the worst-case 

exponential complexity [142]. However, new versions of OWL languages 

have already reduced this worst-case complexity to the polynomial 

time[142]. The main difference between the proposed framework and 

vulnerability graph algorithm is in how they handle new knowledge. Current 

vulnerability graph generation framework has to re-capture and re-encode the 

knowledge and re-execute the algorithm when knowledge changes. This is a 
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time consuming process. In the proposed framework, new knowledge can be 

incrementally classified into appropriate classes. This incremental reasoning 

may decrease the classification time significantly.  

The proposed framework’s logic is also scalable i.e. new logic can be added 

when new domain understanding is available.  

4. Analyst Dependence: The manual attack tree generation’s quality, 

completeness, and repeatability are dependent on the analyst. The automated 

vulnerability graph and attack plan generation framework have limited 

analyst dependence for generating the tree.  

These comparisons are summarized in Table 10.
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Table 10: Comparison of risk scenario generation frameworks

Comparison Criteria Vulnerability Graph Red team Flux CieKI 

Domain 
Dynamicity 

Distributed 
Information 

Can capture information from 
automated tools like 
vulnerability scanners and 
vulnerability database. 

Yes Can capture diverse information from distributed sources. Supports 
information fusion to combine information.  

Dynamic 
Knowledgebase 

Requires re-capturing and re-
encoding information, and re-
executing algorithm when 
information changes. 

Requires 
manually 
updating the 
attack tree 

Captures dynamic information when it becomes available. Uses this 
captured information to trigger the information relevant for 
generating risk scenarios. 

Incomplete 
Information 

Assumes information is 
complete, and available a 
priori. 

Yes Assumes information is incomplete and is not available a priori 

Attacker Behavior 
 

Does not capture or use attacker 
behavior theories. 

Yes Emulates attacker thought 
process for decomposing 
goals and sub-goals, and 
discovering and exploiting 
opportunities. 

Captures and uses the attacker’s 
motivation, strategy, and preferences. 
Assumes that the attacker discovers 
knowledge during the attack process. 
This knowledge discovery may also 
change attacker’s initial goal. It 
builds and uses the attacker’s 
knowledge state for generating 
attack-scenarios. 

Expert Theories Does not capture or use expert 
theories 

Yes Captures and uses expert theories about attacker behavior. Supports 
expert theory validation and calibration. 

Automation Completeness Displays all possible ways the 
vulnerabilities can be exploited. 

Limited to 
analyst's 
abilities. 

Displays all possible ways 
the attacker goal can be 
achieved. 

Displays all possible ways the 
attacker goal can be achieved given 
attacker preferences. 

Repeatability Yes No Yes Yes 
Scalability Best case polynomial runtime. 

New knowledge requires re-
capturing, re-encoding and re-
executing algorithms. 

Yes Best case polynomial runtime. New knowledge is captured 
incrementally. The risk scenario generation logic of the proposed 
framework is also scalable.  

Analyst 
Dependence 

No  Yes No 
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9.2 Case Study Comparison 

The algorithms of vulnerability graph generation frameworks and the proposed 

framework were compared in detail in Chapter 3 and 4. This section compares the 

proposed framework with the manual attack tree and automated vulnerability graph 

generation frameworks by their, input, and outputs, using the case study described in 

Section 5.4.  

The input and output encoding described in Sheyner [81] is used as an example to 

illustrate the vulnerability graph generation framework’s input and output. This 

framework was selected because:  

1. Even though the current vulnerability graph generation framework uses 

different algorithm or different encoding language, at high level the structure 

of their input (using prerequisites and effects) and outputs (in the form of 

attack graph) are similar.  

2. Sheyner’s  [81]  approach encodes attacker’s fingerprinting actions (using 

system state, pre-requisites, and effects). This allows comparing this 

approach with the proposed framework’s encoding of the attacker’s 

knowledge acquisition.  

3. Sheyner [81] describes input encoding of all actions and output using a 

detailed case study that can be used for comparison. This case study is reused 

in this dissertation.  
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9.2.1 Comparison of Input   

This section compares the frameworks by the type of information used as the input, 

and the process used to encode these inputs.  

9.2.1.1 Vulnerability Graph Generation Framework Input 

The vulnerability graph frameworks primarily uses information about the presence of 

vulnerability, privilege gained by exploiting these vulnerabilities, connectivity between 

software systems, actions that can exploit these vulnerabilities, and the initial system state 

(including attacker’s initial privileges). The actions are encoded using prerequisites and 

effects[1]. The action prerequisites are used to identify the system in which they are 

applicable. Action effects encode the state that the system will be in after the action 

execution.  

The challenges of encoding input in this manner are: 

 Hard coding of fingerprinting action using pre-requisite and system state is 

susceptible to errors. 

 Input encoding of current vulnerability graph generation frameworks cannot 

semantically differentiate the effects of a multi-effect action. Capturing the 

semantics of multi-effect action, and the attacker behavior associated with it 

is important to generate the real-life risk scenarios. 

 The vulnerability graph generation frameworks often make simplifying 

assumption to decrease the search space or to increase the scalability of 

algorithm. These assumptions may not reflect the real life scenario. 

 Manual input encoding might be susceptible to cognitive errors. 
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This section illustrates an example of the input and output encoding using the 

encoding described in Sheyner [81]. It then details the challenge of input encoding. 

Example of Input Encoding 

Encoding Presence of Vulnerability 

Sheyner’s framework  [81]  captures the presence of vulnerabilities by encoding 

whether a vulnerable application is executing on the software system or not. This 

information is captured using a Boolean variable, as indicated in the Table 11 below. 

Pre-requisite 
Variable 

Description

w3svch Indicates that IIS web service running on host ‘h’[81] 

squidh Indicates that Squid proxy running on host ‘h’[81] 

licqh Indicates that LICQ running on host ‘h’[81] 

scriptingh Indicates that HTML scripting is enabled on host 
‘h’[81]

vul-ath Indicates that “at” program is vulnerable to buffer 
overflow on host ‘h’[81]

 

Table 11: Vulnerabilty graph geenration method’s encoding of vulnerability information - source of 

data [81, 82] 

Encoding Connectivity between Software Systems 

The connectivity between software systems is represented using connectivity matrix. 

The connectivity matrix is shown in Table 12 below. The Table shows three type of 

connectivity between two software systems encoded using Boolean variables. These 

Boolean variables are in “x,x,x” format. In this, ‘x’ is substituted with ‘y’ (yes) if the two 
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software systems are connected and is substituted with ‘n’ if they are not. The three 

variables capture whether the two software systems are connected by 1) a physical link, 

2) port number13 80, and 3) port number 5190. In real life, the two software systems can 

be connected using more than two ports. In theory, two software systems can be 

interconnected using any of the 65,536 ports. The technology infrastructure also has 

hundreds of software systems. As a result, the connectivity matrix can grow very rapidly.  

 

Host  Intruder IIS Web Server  Windows  Linux  

Intruder  y,y,y y,y,n n,n,n n,n,n 

IIS Web 
Server  y,n,n y,y,y y,y,y y,y,y 

Windows  n,n,n y,y,n y,y,y y,y,y 

Linux  n,n,n y,y,n y,y,y y,y,y 

Table 12:  Vulnerability graph connectivity matrix - source of data [81, 82] 

Encoding Actions that Exploit the Vulnerability  

This section describes how the actions are encoded using prerequisites and effects. 

These actions have four components intruder prerequisites, network prerequisites, 

intruder effects, and network effects.  

The intruder prerequisites capture the necessary privileges that the intruder must 

have in order to execute this action. This is encoded by function plvl(x), which captures 

the intruder’s privilege level (plvl) on host x.  

                                                 
13 In transmission protocols, a port is an endpoint to a logical connection between two computers. 

These ports are numbered from 0 to 65536. Many well-known applications use a predetermined port 
number to accept connections from clients. For example, web serves uses port number 80 to accept 
connections from clients.  
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The network prerequisites encode the presence (or absence) of a vulnerable 

application, and reachability of this vulnerable application (or software system) from the 

source of attack, or any other specific conditions on target network. This reachability is  

encoded by function R(S; T; p) which captures that host ‘T’ (target) is reachable from 

host ‘S’ on port ‘p’. Some vulnerability graph generation framework calculates this 

reachability using firewall and router rules [89, 143], or by using [87] vulnerability 

scanning tools .   

Intruder and network effects are encoded by a change in system state (Example of 

system states are “scanning done”, “vulnerable service not executing”, etc.).  

Sheyner  [81]  requires the actions to be encoded in the format shown in Figure 66 

below.  

 

Figure 66: Action Template 

The encoding of four actions described in the case study used in this dissertation is 

shown in the Table 13 below. These action encoding is adapted from  [81]. 
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Action Name IIS-buffer-
overflow  

Squid-port-scan  LICQ-remote-to-
use 

Local-setuid-
buffer-overflow  

Description Gives the 
attacker root 
privilege on 
target.  

Exploits 
vulnerability in 
Squid web proxy to 
conduct a port scan 

Gives a remote user 
a user level privilege 
on the target 
machine.  

Exploits buffer 
overflow 
vulnerability on a 
setuid root file to 
gain root access 

Intruder 
preconditions 

plvl(S) ≥ user plvl(S) = user plvl(S) ≥ user plvl(T) = user 

plvl(T) < root ⌐scan plvl(T) = none  

  scan  

Network 
preconditions 

w3svcT squidT licqT vul-atT 

R(S; T; 80) R(S; T; 80) R(S; T; 5190)  

Intruder effects plvl(T) = root scan plvl(T) = user plvl(T) = root 

Network effects ⌐w3svcT    
Table 13: Action encoding - source of data  [81] 

Sheyner  [81]  uses a binary state variable to represent the system state before 

fingerprinting (represented as “⌐ scan”) and after fingerprinting (represented as “scan”). 

This state variable is encoded as a prerequisite to action LICQ-remote-to-use shown in 

Table 13.  

Encoding Initial System State 

The initial state is encoded as the system state in which 1) vulnerable applications, 

shown in Table 11, are executing, 2) the intruder has “root” access only on his own 

machine, and 3) initially no fingerprinting was performed so the ‘scan’ variable is set to 

false (⌐ scan). 

Challenges of Input Information encoding  

The challenges of encoding information in this manner are explained below.  
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Encoding Fingerprinting Actions  

Hard coding of fingerprinting action using pre-requisite and system state is 

susceptible to errors. An example of this action encoding is shown in Table 13. This 

encoding has a hidden assumption, which if removed may not generate any attack plans. 

This is explained by an example taken from  [81]  that is described below.  

In this example, it is assumed that no fingerprinting (⌐scan) was performed initially, 

and the attacker has user level access to the web server. The only action available in this 

situation is “action IIS-Buffer-Overflow” shown in Table 13. Since this is the only action 

available the vulnerability graph generation algorithm selects this action (exploits the 

buffer overflow vulnerability to gain root access on this web server). The system state 

after executing this action is still (⌐scan) and the only other action available to the 

attacker in this state is called “action squid-port-scan”. This action is available because 

its pre-requisites system state is encoded as (⌐scan). Execution of this action changes the 

state to ‘scan’. This new system state enables the execution of actions whose pre-requisite 

requires the system to be in ‘scan’ state. 

The vulnerability graph using this encoding may select the SQUID scan vulnerability 

using the above-described logic. However, in real life if the attacker was in similar 

situation, how would he/she know to target the machine running the SQUID Proxy Server 

(located in the private network protected by firewall) if he/she does not know that this 

machine exists (because no scans are done yet)? In real life, either the attacker cannot do 

anything (as he/she does not have the knowledge), or he/she will have to use some other 

scanning action to discover this SQUID proxy in first place. If the attacker uses any other 

scanning action to discover the SQUID Proxy Server may also discover other 



233 
 

opportunities for executing action (by potentially changing the state of the system to 

‘scan’), and therefore making exploiting the SQUID vulnerability unnecessary. 

The hard coding of fingerprint actions also implicitly links the action with a specific 

network configuration (i.e., the reason Linux vulnerability was hard-coded with ‘scan’ 

because they were inside the private network). This will require re-encoding the actions 

whenever the network configuration changes. For example, if the IIS Server is relocated 

to the private network from the DMZ , the actions exploiting its vulnerabilities will 

require re-encoding by adding a ‘scan’ to their prerequisites.  

Multi-effect Actions  

It is challenging to encode the actions with multiple effects in current vulnerability 

graph generation methods. For example, buffer overflow vulnerability can be used to gain 

unauthorized access to the system as well as to crash the program against which it is 

executed. These two are separate effects that can be used differently in different attacker 

goals. In the current vulnerability graph generation framework, a single action encoding 

is used to capture both effects of multi-effect actions. An example of this is shown in 

Table 13. This is true syntactically as the action can produce both the effects. However, 

in real life the attacker trying to gain remote access to the machine is doing so to use it as 

a precursor to some form of follow up activity (for example, to launch further attacks or 

to gain access to trade secret information). Crashing the program and simultaneously 

gaining access to it may counter this goal of the attacker. 

The attacker’s next applicable actions may be encoded with the pre-requisites 

requiring the service to be available and compromised. Both of these conditions may not 

be met by executing (selecting) the multi-effect action as it is currently encoded. 
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The attacker may also select both the effects when needed, but this selection is 

optional and it is driven by the goal of the attacker. Furthermore, gaining access to a 

target using buffer overflow may require higher attacker skills than crashing the service. 

The input encoding of current vulnerability graph generation framework cannot 

semantically differentiate the effects of a multi-effect action. The current syntactic model 

does not allow selecting only the appropriate effect based on the attacker’s goal and 

situation. Capturing the semantics of multi-effect action, and the attacker behavior 

associated with it is important to generate the real-life risk scenarios.  

Simplifying Assumptions 

The vulnerability graph generation frameworks often make simplifying assumptions 

to decrease the search space or to increase the scalability of algorithm. These assumptions 

may not reflect the real life scenario.  

One such assumption called monotonicty was described in Table 7. Under this 

assumption [85] , 1) the precondition of an exploit, once satisfied, never becomes 

unsatisfied, and 2) the negation operator cannot used to express the precondition. Simply 

put monotonicity assumes that the attacker never backtracks [85]. This assumption may 

not reflect the real-life attacker behavior. 

Another simplifying assumption is made for grouping information together to 

decrease the search space of the algorithm. One of the challenges of the cyber-security 

domain is that a large number of attacks and vulnerabilities exist. Sheyner addresses this 

concern by  [81]  assuming that multiple instances of vulnerabilities can be captured by 

using a single generic action. For example, under this assumption all buffer overflow 

vulnerabilities in an IIS Server can be captured by a single action. This assumption does 
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not reflect reality, where different types of vulnerabilities are available to attackers in 

different situations. These vulnerabilities can have different impacts and can be exploited 

using different attacks. 

This can be explained with an example of three buffer overflow vulnerabilities in the 

IIS Server called CAN-2002-0147[144], CAN-2001-0506 [145], and CVE-2002-0364 

[146]. CAN-2002-0147 is only applicable if the IIS Server is using ASP extensions, and 

it generates a denial of service (DoS) impact when executed. CAN-2001-0506 and CVE-

2002-0364 may lead to the same effect of privilege escalation, but are available to the 

attacker in different situations. CAN-2001-0506 is only available to the attacker when the 

IIS is using the Server Side Include (SSI) directives. It may not be possible to use these 

vulnerabilities interchangeably. 

That being said, it is possible to group together vulnerabilities and attacks, but not as 

substitutes for each other. This grouping can be done to categorize similar vulnerabilities 

and attacks in order to study and encode how they differ. Attack patterns often group 

similar vulnerabilities and attacks. These patterns describe the template of an attack and 

identify the basic steps the attacker may have to carry out to execute these types of attack.  

In summary, it is possible to group together attacks and vulnerabilities, but this 

grouping may not support the inference that the members of the group are 

interchangeable in an attack plan.  
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Encoding the Actions Manually   

The manual encoding of actions in vulnerability graphs is susceptible to the 

following types of errors.  

1. The analyst may accidently encode situation specific knowledge (or inferences) 

using his/her general cyber-security knowledge. For example, it is well known that web 

servers (especially the ones hosting the organization’s websites) in DMZ are easy to find 

(may not require much fingerprinting to locate them). Consequently, the actions attacking 

these servers in DMZ may be encoded using the pre-requisite of system state assuming 

no fingerprinting is required (described by system state ‘⌐scan’). This knowledge may 

remain hard coded even if the situation changes (for example if the web server is moved 

to the internal private network from the DMZ). This accidental encoding of situation 

specific knowledge may not reflect the reality or may limit the scope of hard-coded the 

action.  

2. The analyst may assume the algorithm to know what is commonly known in the 

cyber-security domain. This also may limit the application of the algorithm. 

3. The analyst, while making the modeling decision of what to include in the 

prerequisites, may subconsciously think through the attack plan to be generated (i.e., 

instead of encoding each action independently, the analyst may think through how these 

actions interplay with each other). This may lead to encoding hidden assumptions in 

action prerequisites and effects that may not hold true in all scenarios.  

These issues are exacerbated in real life, where the analyst or defender has to model 

hundreds of actions. Also in real world situations, the action models will be generated by 
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different analysts over a period. Hence, these actions modeled should be flexible enough 

to be accurately integrated together in any (appropriate) risk scenarios.  

9.2.1.2 Proposed Framework Input 

The proposed framework’s input encoding was explained in detail in Chapter 6. The 

proposed framework does not encode the actions by prerequisites and effects; instead, it 

encodes the logic of cyber-security domain. 

Encoding Fingerprinting Actions 

The proposed framework also captures the attacker’s exploratory more accurately. In 

accordance with this exploratory nature, the proposed framework assumes that the 

attacker may discover knowledge during the attack process. This knowledge discovery 

not only guides the risk scenario but it also may change attacker’s initial goal. The 

proposed framework builds this attacker’s knowledge state for controlling the knowledge 

that can be used for generating attack-scenarios. Fingerprinting (or knowledge 

acquisition) is also modeled as a situational sub-goal. This fingerprinting goal is triggered 

based on the attacker strategy, the decisions made by the attacker and the attacker’s 

knowledge state.   

Multi-effect Actions  

The proposed framework captures the semantics of multi-effect actions and triggers 

the action with appropriate effects based on the attacker’s goal and situation. This allows 

attacker (or red-team) to choose the effect that is needed to reflect his/her goal, strategy, 

and preferences. The example logic of triggering multi-effect buffer overflow action is 

explained in Section 6.5.3. 
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Simplifying Assumptions 

The proposed framework does not make simplifying assumptions that may restrict 

the applicability of the framework. The proposed framework assumes that the attacker 

may backtrack, abandon the scenario, or change the goals in accordance with the 

available opportunities. The proposed framework encodes the detailed logic of the 

vulnerability without grouping them together. This logic can capture how different 

vulnerabilities are available to the attacker in different situations. This encoding is 

described in detail in section 6.4.2.2, using the example of the IIS server vulnerabilities. 

Encoding the Actions Manually   

The proposed framework can captures the cyber-security domain knowledge from 

diverse sources. These sources can provide the information without having to think (or 

know) about how it will be used in the risk scenario generation. This knowledge is also 

encoded independent of the risk scenario generation logic. The risk scenarios are 

generated by dynamically combining the encoded information in accordance with the 

attacker behavior (i.e. by emulating the attacker’s interaction with the target 

environment). This avoids the challenges of encoding actions manually.  

9.2.2 Comparison of Output  

This section compares the output generated by different frameworks using the case 

study described in Section 5.4. Note that the case study described in Section 5.4 slightly 

modifies the case study described in [81]. For example, given the challenges of using the 

SQUID proxy action described in Section 9.2.1.1, this action was removed from the case 

study.  
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9.2.2.1 Manual Attack Tree Output 

A manually generated attack tree for the case study described in Chapter 5 is shown 

in Figure 67 below. This tree was drawn manually using the guidelines provided by 

Schneier [72], described in Section 3.5.2.1. This tree shows the different ways of stealing 

the “trade secret” information.   

 

 

Figure 67: Case Study - Manual Attack Tree Output 

 

9.2.2.2 Vulnerability Graph Generation Framework Output 

The output of the vulnerability graph is manually constructed using the graph 

generation algorithm and is represented in Figure 68 below. In this tree, the attacker first 

exploits vulnerabilities in the IIS Server and the Windows Server. The attacker then 
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exploits vulnerability in the LICQ application, or exploits buffer overflow vulnerability in 

a Linux Server to gain the root privileges on the Linux Server. 

 

 

Figure 68: Case study - vulnerability graph 

The vulnerability graph framework also generates a set of critical actions, whose 

elimination will isolate the end state from the initial state. However, this critical set of 

actions is generated assuming that there are no unknowns. This assumption along with 

the attacker’s adaptability may produce counter intuitive results. To explain this, SQUID 

action is added back to the scenarios. The vulnerability graph, with the addition of the 

SQUID action, is shown in Figure 69.  

Sheyner’s critical set analysis[81] of this vulnerability graph identifies SQUID 

scanning action as the single critical action to eliminate. There is “known unknown” 

knowledge in the cyber-security community that the attacker can fingerprint some 

software systems using unknown (or unknowable) methods (for example, social 

engineering, dumpster diving, network packet sniffing).This means that the conclusion 
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drawn assuming that the only fingerprinting action available to the attacker is the SQUID 

scanning action, may not be true. In reality, given this known unknown, the system 

administrators (or defenders) would prefer patching the Linux Server and LICQ 

vulnerabilities before patching the SQUID scanning action vulnerability. Hence, the 

vulnerability graph framework may produce counter-intuitive results assuming that there 

are no unknowns in cyber-security domain. 

 

 

Figure 69: Vulnerability graph after adding SQUID scan action 

The proposed framework generates the attack plans assuming that there are 

unknowns in the cyber-security domain. The proposed framework’s reasoning assuming 

incomplete knowledge (open world reasoning) does not conclude that SQUID scanning 

action is the only action available to the attacker. It however, can use this knowledge to 

generate the risk scenario showing how this action can be used, if the attacker chooses to 

use this action.  
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9.2.2.3 Proposed Framework Output 

The proposed framework’s modes of operations and outputs were described in detail 

in Chapter 8. These outputs are reproduced here.   

The attack tree generated by the first mode of operation is shown in Figure 70 below. 

This attack tree shows the goal at the top. This goal is decomposed into a functional sub-

goal compromising the MySQL Server. This MySQL Server can be attacked by using the 

trusted hosts (WindowsServer-Archie), connected applications (IIS Server, LICQ, and 

SQUID Proxy), or the connected hosts (Windows Server and the Linux Server). The red 

nodes represent the goals and sub-goals, orange nodes represent the availability of 

patterns to accomplish the goal or sub-goals, and black nodes represent the availability of 

attack to execute the patterns. The white nodes represent the type of sub-goal. 

  

 

Figure 70: Case study- attack tree 

Note that the proposed framework does not prune the branches of the tree if 

complete information is not available. For example, the WindowsServer-Archie does not 
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have a threat pattern associated with it but this branch is not pruned, because such threat 

pattern may become available in future, or it may already exist without the knowledge of 

the framework (i.e., there may be a known unknown pattern). Also note that the pattern is 

attached to the sub-goal node that of interest to the attacker. For example, the BO-IIS-SSI 

pattern technically targets the IIS Server, but it is used to achieve the attacker’s sub-goal 

of gaining unauthorized access to the Windows Server. Hence, the pattern node BO-IIS-

SSI is attached to the sub-goal Windows Server in this example. The information that 

BO-IIS-SSI technically attacks the IIS Server is not lost and can be used for patching the 

IIS server, or can also be displayed in the attack tree if needed.  

The attack scenarios showing the actual steps taken by the red-team (or attacker), are 

shown in Figure 71 below. This output is generated by modes two and three of the 

proposed framework.  

 

 

 

Figure 71: Case study - attack-scenario 

Attacker preferences are used to rank the attack tree. This output is generated by 

mode four of the operation, and is shown in Figure 72 below. 
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Figure 72: Case study - Ranked attack tree 

 

Adding Actions 

The advantage of the attack tree format is that when new attacks or opportunities are 

discovered, they are simply added as new branches of the tree. In the case of the 

vulnerability graph, however, discovery of a new action requires either regenerating the 

tree or using a node insertion algorithm, because the nodes are interconnected. This may 

be a computationally expensive task, depending on the size of the tree and the 

connectivity of the node. 

Changing Branch Definitions  

Proposed framework also allows changing the definition of branches of the tree if 

needed. This can be used for combining or splitting the branches. For example, the 

connected host in Figure 72 shows the Windows Server as well as the Linux Server. The 

Linux Server hosts the MySQL Server application, while the Windows Server is 

connected using a communication port to the MySQL Server. Due to this difference in 
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the type of connection, compromising the Linux Server provides direct access to the 

MySQL Server. Compromising the Windows Server, however, may not provide direct 

access to the MySQL Server but the Windows Server can be used for fingerprinting 

MySQL Server. This differentiation can be made by defining a new class “visible host” 

and classifying all the software systems that are indirectly connected (for example using 

communication ports) to the MySQL Server, as members of this class. This “visible host” 

can be added as a new branch to the tree. This is shown in Figure 73 below.   

 

Figure 73: Attack Tree- Adding New Branch 

 

Represents all Possible Ways the Attacker’s Goal can be achieved 

The attack tree represents all possible ways the attacker’s goal of compromising the 

information can be achieved in a single tree. For example, if it was discovered that the 

MySQL Server has an information disclosure vulnerability that allows the attacker to 

view the trade secret directly, then it can be added as a new branch in the tree. This new 

vulnerability may be exploited by an attack called MySQL Injection attack and it is 

represented by a new branch in the attack tree, shown in Figure 74 below.  
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The vulnerability graphs on the other hand only display how the attacker can gain 

restricted (root) privileges on the Linux Server. Gaining root privilege on the Linux 

Server (or MySQL Server) is only one of the ways of compromising the trade secret. As 

shown in the Figure 74 the attacker can use the MySQL Injection attack to compromise 

the trade secret without compromising the Linux server. The proposed framework can 

display all the possible ways the attack goal of stealing the Trade Secret can be achieved 

on the same attack tree. The vulnerability graph generation methods may require 

generating two separate trees in this case. 

 

 

Figure 74: Attack Tee - Adding New Attack 

Potential Attacks 

Proposed framework’s attack tree can also display potential attacks. This is done by 

using the encoded logic of vulnerability. For example, it can be stated that if the software 

using a data structure called a buffer, does not use a boundary protection, then it is 

potentially susceptible to buffer overflow attacks. When it is discovered that a certain 
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system matches this class membership criteria, the system is classified as a potential 

target of a buffer overflow attack. This inference is true even if specific buffer overflow 

vulnerability has not yet been discovered in the system, or if an attack to exploit a 

discovered vulnerability currently does not exist. Figure 75, shows this potential attack 

encoded as BO-Generic.  

 

 

 

Figure 75: Attack Tree Showing Potential Attacks 

 

Does not Assume Attacker’s Initial Location 

The vulnerability graph and the attack tree outcomes are compared in Figure 76 

below. The vulnerability graph progresses from initial state to goal state, and the attack 

tree decomposes from goals to attacks. One of the differences in the outputs is that the 

attack tree does not assume the initial location of the attacker. The same attack tree can 

be used whether the attacker is launching the attack from outside or from inside the 
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private network of the organization. However, the vulnerability graph reduces to two 

nodes (LICQ and Local-SetUID-BO) if the attacker’s initial location is assumed to be 

inside the private network of the organization.  

 

Figure 76: Attack Tree and Vulnerability Graph Comparison 

 

Directly Querying the Triggered Information 

Apart from these graphical output modes, the triggered information can also be 

directly queried from Flux to create custom graphical outputs or to use it directly to 

create automated defensive methods.  
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10 Research Contribution, Application and Extension   

This chapter explains the research contributions, applications, and extension of the 

proposed framework. 

10.1 Research Contributions 

The research contributions of this dissertation are summarized in this section. These 

contributions focus in five areas:  generating risk scenarios, assisting the red team, 

simplifying risk scenarios generation, identifying the cyber-security domain 

characteristics and requirements, and providing the core framework to enable defensive 

and expert validation applications. 

10.1.1 Generating Risk Scenarios by Incorporating the Cyber-security 

Domain Requirements 

The proposed framework overcomes the limitation of current manual and automated 

risk scenario generation frameworks. The benefits of the proposed frameworks are 

summarized below:   

1. Compromising Information is the Goal: The proposed framework generates 

the risk scenario using the attacker’s goal of compromising the confidentiality, 

integrity, or availability of information. The current vulnerability graph 

generation methods generate risk scenarios only for attacker gaining restricted 

privilege on the targeted software or for violating a security property. This 

represents only one of the ways the attacker can achieve his/her goal of 

compromising information. 

2. Uses Diverse Knowledge: The proposed framework uses diverse cyber-security 

knowledge (for example, the knowledge about software systems’ usage, the 
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software’s design leading to potential vulnerabilities, availability of known 

vulnerabilities and attacks, the attacker behavior etc.) for generating risk 

scenarios. This knowledge can be generated by sources dispersed in time and 

space. In proposed framework, these sources can provide the knowledge without 

having to think about how it may be used for generating for risk scenarios. 

Manual attack trees are generated by experts using their attacker behavior 

theories and diverse type of knowledge. The automated vulnerability graph 

generation frameworks primarily uses the information about presence of 

vulnerability, connectivity between software systems, attacker’s initial privilege, 

and privilege gained by exploiting vulnerabilities. The automated vulnerability 

graph generation frameworks do not use attacker behavior or expert theories to 

generate risk scenarios. 

3. Assumes Incomplete Knowledge: The proposed framework generates risk 

scenarios by assuming that the information is incomplete, there are unknowns in 

the cyber-security domain, and new knowledge is available frequently.  

4. Uses Attacker Behavior: Proposed framework’s distributed logic classifies the 

knowledge as it becomes available by emulating the attacker thought process for 

decomposing goals, and for discovering and exploiting opportunities provided by 

the target network. The proposed framework also captures the attacker’s 

motivation, strategy, and preferences for generating risk scenarios. In accordance 

with the attacker’s exploratory nature, the proposed framework assumes that the 

attacker may discover knowledge during the attack process. This knowledge 

discovery not only guides the attack plan but it also may change attacker’s initial 
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goal. The proposed framework builds this attacker’s knowledge state for 

controlling the knowledge that can be classified using the distributed logic. 

5. Uses Expert Theories: The proposed framework also uses the red-team’s expert 

theories about the attacker’s thought process and preferences for generating risk 

scenarios. This explicit encoding of expert theories allows communicating and 

validating these theories. 

10.1.2 Assisting the Red Teaming Process 

The proposed framework generates the risk scenarios automatically using red-team 

theories. This decreases the frequency but does not eliminate the need of using red-teams. 

Red-teams can provide important insights, especially for generating risk scenarios for a 

new type of system software. The proposed framework can also be used for assisting the 

red-teaming process.  

The red-team’s tasks include, 1) continuously updating knowledge about new 

vulnerabilities and attacks, 2) discovering knowledge of target network as part of the red-

team exercise, and 3) executing proof of concept attacks. The red-team currently spends a 

significant amount of time executing knowledge discovery and attack tools. However, the 

main value of using the red-team is in their theories about the attacker behavior and not in 

their ability to use these tools. The proposed framework provides an interface for red-

team to interact with the target network. This interface is used to observe and collect red-

team’s theories about attacker behavior. The advantages of this red-team interaction tool 

are summarized below:  
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1. It eliminates the red-team’s burden of executing knowledge discovery and attack 

tools. This allows red-team more time to develop and test attacker behavior 

theories.    

2. In secured facilities, it may not be possible to give the red-team access to the 

actual target network. The proposed framework’s red-team interface allows 

abstracting the actual system information, thus giving the red-team only the need-

to-know information.  

3. New proof-of-concept attacks generated by the red-team can be added to the 

threat ontology. 

10.1.3 Simplifying Risk Scenarios Generation, and Increasing Traceability 

and Reuse 

The proposed framework’s distributed planning logic simplifies the risk scenario 

generation without limiting the type of knowledge that can be used. The proposed 

framework automates the risk scenario generation by using the knowledge as it becomes 

available (or changes). 

According to the OMB, cyber-security risk assessment is a complex process and it 

does not improve the state of security [3]. The lack of improvement in security can also 

be attributed to lack of consideration of unique cyber-security domain requirements. An 

example of this is the assumption made by current risk scenario generation methods that 

the knowledge is completely known a priori. This assumption however produces counter-

intuitive results. This is illustrated in Section 9.2.2.2 using the case study described in 

Section 5.4. In this case study, the “SQUID Proxy Server” has a vulnerability that can be 

used to fingerprint the network. Current vulnerability graph method, assuming complete 
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knowledge, concludes that this is the only fingerprinting method available to the attacker, 

and eliminating it would secure the network. There is “known unknown” knowledge in 

the cyber-security community that the attacker can fingerprint some software systems 

using unknown (or unknowable) methods (for example, social engineering, dumpster 

diving, network packet sniffing). Hence, in real life eliminating the SQUID vulnerability 

may not secure the network. This analysis assuming the complete knowledge produces 

counter intuitive recommendations that may not improve state of security. The proposed 

framework assumes that there are unknowns in the cyber-security domain. The proposed 

framework’s reasoning assuming incomplete knowledge (open world reasoning) cannot 

conclude that SQUID proxy server’s vulnerability is the only fingerprinting action 

available to the attacker. However, it provides the defender the knowledge of how this 

vulnerability can be used for generating the risk scenario if the attacker chooses to exploit 

it.   

The distributed logic also provides traceability of why certain sub-goals and 

attacks were displayed in the risk scenarios. The distributed logic is developed using a 

language that the cyber-security and information technology community is already 

familiar with. This improves the communication of outcome, and the logic used for 

generating risk scenarios. The outcome defined in logical language, also provides 

information about why the software may have vulnerability and how it can be used to 

achieve the attacker goal. This logical definition provides information about how to 

eliminate the vulnerability or to change its use in risk scenario.  

The use of familiar ontology language also allows validation and extension of the 

distributed logic. This community participation not only may improve the accuracy of the 
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risk scenarios generated, but it may also increase the use of proposed framework for 

generating real world scenarios.  

10.1.4 Identifying the Cyber-security Domain Characteristics  

This dissertation identifies the cyber-security domain characteristics and 

requirements. Cyber-security assessment tools should be able to 1) capture domain 

dynamicity, 2) incorporate attacker behavior, and 3) elicit, encode and use expert 

theories. Cyber-security assessment techniques are often adopted from domains in which 

quantitative risk assessment is used. However, the risk assessment methods used in one 

domain may not be directly applicable to another domain.  

Currently not all cyber-security domain requirements are addressed equally. The 

intelligent nature of attacker behavior has been the focus of current research. However, 

the dynamicity of the domain often does not get much attention. These cyber-security 

assessments are driven by expert theories; little research has been done to elicit, validate, 

and calibrate these theories.   

10.1.5 Providing the Core Framework to Enable Potential Defensive and 

Expert Validation Applications 

The proposed framework’s ranked attack tree and encoded attacker behavior theories 

can be used for prioritizing vulnerability remediation based on attacker behavior. The 

proposed framework is currently being extended to develop an automate defense 

mechanism called TARA (Threat Auto Response Analysis). This is described in Section 

10.2.2. Proposed framework’s logical encoding of red-team’s attacker behavior theories 

can be used to identify the conflicts among these theories. These conflicting theories can 
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be validated and/or calibrated by analyzing their logic, and/or by collecting empirical 

attack data. This is explained in detail in Section 10.2.3 and 10.2.4. 

Finally, one of the contributions this research is trying achieve is to develop a 

framework that unifies the efforts of current cyber-security research domains. More 

specifically, it combines the efforts of attacker behavior, vulnerability assessment, attack 

analysis, and expert theory elicitation research. Traditionally, these cyber-security 

research domains are not integrated well enough to meet the need for cyber-security risk 

assessment. The proposed framework combines the outcome of these different domains. 

The lessons learned by using the proposed framework may provide the necessary 

feedback for effectively unifying these research disciplines. This unification is needed for 

performing more efficient cyber-security risk assessments.  

10.2 Applications and Extensions  

This section describes the applications and extensions of the proposed framework. 

10.2.1 Cyber-security Risk Assessment 

The current cyber-security risk assessment is nine-step process. The risk scenarios 

generated may become outdated with availability of new information by the time all risk 

assessment steps are executed. The proposed framework automates the risk scenario 

generation by using the knowledge as it becomes available (or changes). 

The proposed framework also supports current risk assessment process more 

comprehensively than the vulnerability graph frameworks. Table 14 compares how the 

NIST recommended methods [68], vulnerability graph, and proposed framework can be 

used for risk assessment.  
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This section describes how the proposed framework can be used for cyber-security 

risk assessment in detail. 

Step 1- System Characterization: The proposed framework encodes information about 

software systems logically. This logical encoding and reasoning supports the system 

characterizations and familiarization step. The proposed framework can capture and 

combine the information about software systems in the target network, as it becomes 

available. This information can be queried by the risk analyst. The proposed framework 

supports specific as well as abstract queries. For example, to support the risk analyst’s 

specific query- “Query A: List all the systems that are not physically connected to the 

MySQL Server”, the asset ontology may use its logical relationships hierarchy to infer 

this information in real time. The proposed framework also allows abstract queries such 

as “Query B: List all systems susceptible to the buffer overflow attack”. This type of 

query can be answered by using encoded information about the software system and the 

logical definition of buffer overflow vulnerability. Note that Query B would provide the 

systems susceptible to the attack even though specific buffer overflow vulnerability may 

not yet exist.  

Federal guidance, FIPS 199 [69], mandates classifying the software systems based 

on their criticality. Instead of subjectively assigning a criticality level (high, medium, or 

low), the proposed framework can be used to define the logic of why the software system 

should be classified in these categories. Once this logic is encoded, the distributed logic 

automates this classification whenever information about software system becomes 

available (or changes). The explicit encoding of classification logic can also be used to 

communicate, validate, and update this (classification) logic. Currently FIPS 
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classification is used for recommending security controls. The proposed framework’s 

logic can be extended for more objective (and automated) impact assessment and control 

recommendations.  

Step 2- Threat Identification: This step identifies threats, their motivations, and actions. 

The proposed framework’s ability to capture attacker behavior (attacker’s exploratory 

nature, thought process, motivation, strategy, and preferences), and goals supports this 

step effectively.  

Step 3- Vulnerability Identification: The proposed framework’s ontology language 

allows capturing diverse and dispersed information. This also allows capturing the 

vulnerability information more effectively than the current manual and automated 

methods of collecting this information.  

Step 4- Control Analysis: The proposed framework can also be used to capture and 

encode the information about implemented controls. 

Step 5- Likelihood determination: The proposed framework’s risk scenarios, ranked 

using attacker preferences, and encoded logic can be used to assist risk analyst generating 

qualitative assessment of the likelihood levels. These risk scenarios can also be extended 

to create probabilistic network for quantitative likelihood calculation. 

Step 6-  Impact Analysis: NIST’s cyber-security risk management [68] guidance 

describes the impact as loss in confidentiality, integrity, and availability of information. 

The proposed framework generates risk scenarios for compromising the confidentiality, 

integrity, and availability of information. Hence, the proposed framework is better suited 

for supporting impact analysis of the risk assessment process.  
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Step 7- Risk Determination:  Proposed framework’s current focus is to generate the risk 

scenarios. These risk scenarios can be extended for quantitative risk assessment. 

Step 8- Control Recommendations: The proposed framework’s logical classification 

provides information about why the software may have vulnerability and how it can be 

used in given goal. The criteria defining the whys and how’s can be used for control 

recommendations. One of the proposed framework’s extensions is to develop a module 

called Threat Auto Response Assessment (TARA), to analyze and recommend 

countermeasures using information generated by FLUX and CieKI. In this module, the 

countermeasures (or controls) are treated as changes in the situation. The attacker’s 

situational behavior is used to determine how the attacker adapts to these changes. The 

output of FLUX, CieKI, and TARA can be used for the risk determination, and control 

recommendation steps.  

Step 9- Results Documentation: The objective of the proposed framework is to update 

the risk scenarios continuously with availability of information, which provides near real-

time risk assessment and documentation.  
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Risk Assessment 
Step 

NIST recommended 
methods 

Vulnerability Graph Proposed Framework 

Step 1: System 
Characterization  

Uses a combination of 
manual and automated tools 
to collect system information; 
classifies the software 
systems using FIPS 199 
guidance. 

Encodes the 
connectivity between 
system software 
computers and 
presence of vulnerable 
applications  

Logically encodes the 
knowledge about software 
systems. Supports 
automated classification of 
software systems in 
accordance with FIPS 199.  

Step 2: Threat 
Identification 

Captures threat sources, 
motivation, and actions 

N/A Captures attacker’s 
motivation,  strategy, 
thought processes, and 
actions 

Step 3: 
Vulnerability 
Identification  

- Identifies vulnerabilities in 
the system. 
-Captures information from 
published vulnerability 
sources, cyber-security 
testing, and cyber-security 
requirements checklist. 
. 

- Identifies critical 
vulnerabilities allowing 
attacker to gain 
restricted privilege. 
- Captures information 
from published 
vulnerability sources, 
and vulnerability 
scanning tools.  

-Identifies attacker’s 
preferred vulnerabilities 
and attacks for 
compromising the 
information.  
-Captures information from 
cyber-security testing, 
published vulnerability 
sources, and vulnerability 
scanning tools. 

Step 4:  Control 
Analysis 

Generates a list of 
implemented controls. 

N/A Proposed framework can be 
used to captures the 
implemented controls.  

Step 5:  
Likelihood 
determination   

Assigns likelihood levels 
(high, medium, low) using 
expert judgment.  

Vulnerability tree 
information  can be 
used by expert for 
qualitatively assessing 
likelihood of threat. 

Risk scenarios ranked using 
attacker preferences, and 
encoded information can be 
used by expert for 
qualitatively assessing 
likelihood of threat.  

Step 6:  Impact 
Analysis   

Assigns impact levels (high, 
medium, low) against the 
loss in confidentiality, 
integrity and availability of 
information. 

Indicates different 
ways attacker can gain 
restricted privileges (or 
violate a security 
property). 

Generates risk scenarios for 
compromising the 
confidentiality, integrity 
and availability of 
information, and stores 
detailed logic of systems, 
which can be used for 
impact analysis. 

Step 7:  Risk 
Determination  

Risk is calculated using a risk 
matrix of likelihood vs. 
impact. 

N/A Proposed framework can be 
extended for quantitative 
risk determination. 

Step 8:  Control 
Recommendation 

Identifies appropriate 
controls. Uses NIST 800-53 
guidance for control 
recommendations. 

Supports vulnerability 
remediation by 
identifying critical 
vulnerabilities, 
assuming complete 
knowledge. 

Proposed framework’s 
output and encoding 
provides logical insights 
that can be used to identify 
controls. 

Step 9:  Results 
Documentation 

NIST recommends frequently 
updating risk assessment and 
documentation; OMB 
recommends evaluating 
controls once at least every 
three years. 

Vulnerability tree can 
be frequently updated 
and critical 
vulnerabilities can be 
documented. 

Updates the risk scenarios 
continuously with 
information availability, 
which provides near real-
time assessment and 
documentation. 

Table 14:  Framework’s use for cyber security risk assessment 
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10.2.2 Countermeasure Development 

The proposed framework can be used for developing countermeasures. 

10.2.2.1 Prioritizing Vulnerability Remediation using Attacker Behavior 

Due to the large number of available vulnerabilities and limited resources, it may not 

be possible to patch all vulnerabilities. Hence, this patching effort needs to be prioritized. 

Attacker behavior research [18, 19] suggests that just because vulnerability is present it 

does not necessarily mean that it will be exploited. This research also shows that 

attackers may prefer certain types of vulnerabilities to others. Thus, the prioritization of 

vulnerability remediation should be driven by attacker behavior. 

The proposed framework logically encodes the attacker behavior and uses it to 

trigger the information relevant for risk scenarios. The proposed framework also 

generates attack trees ranked according to attacker preference and the preferred attack 

scenarios. This information can be used for prioritizing vulnerability remediation using 

attacker behavior.  

10.2.2.2 Behavior Driven Countermeasure 

Apart from prioritizing the vulnerability remediation, the knowledge about attacker 

behavior can also be used to create behavior driven countermeasures, which leads the 

attacker away from the system to be protected.  

One of the challenges faced by the defender is the complex interconnectivity of the 

technology infrastructure with internet. These interconnections allow the attacker to 

launch attacks from any geographic location. However, this can be used in favor of the 

defender. Due to their geographic separation, the attackers have to rely on digital 

fingerprinting to locate the target and to perceive the opportunities. This is the reason 
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why the defender often tries to prevent the fingerprinting. Instead of preventing 

fingerprinting, the information provided can be controlled as a new defense strategy. In 

this strategy, controlled information can be used to lead the attacker away from the 

system to be protected, and to observe the attacker behavior in process.  

This behavior-driven countermeasure strategy is explained by expanding the case 

study example illustrated in this research. In this example, the attacker is trying to 

compromise the trade secret stored in the MySQL database, hosted on Linux Server but 

he/she does not know where this server is located. As described in the attack-scenario 

shown in Figure 60, the attacker has to launch fingerprinting action to locate the Linux 

Server. The attacker launches the initial fingerprinting action from outside the network, 

and only discovers the Windows Server. The fingerprinting is executed again after 

compromising the Windows Server. This second fingerprinting action discovers the 

Linux Server. Hence, exploiting the Linux Server requires a multi-step attack (i.e., 

Windows Server needs to be compromised as the first step). The attacker behavior 

determines if the attacker prefers single-step or multi-step attacks. In addition, the types 

of fingerprinting and attack actions chosen are dependent on the attacker behavior. 

When the defender tries to prevent fingerprinting efforts, the attacker may react by 

developing new types of fingerprinting actions. Instead of preventing fingerprinting 

actions, the defender can allow them while modifying the network by adding “dummy” 

Linux Servers as shown in Figure 77. 
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Figure 77: Example of behavior driven countermeasure 

 

These “dummy” Linux Servers are similar to the specialized computers known as 

honeypots [130]. These honeypots do not serve any real users in the network. Hence, any 

traffic seen by them can be assumed as unintended traffic. This traffic can be captured 

and analyzed to determine if it is from an attacker. This captured attack traffic is used to 

study the attacker behavior.  

Figure 77 shows “dummy” Linux Servers inside and outside the network. The 

attacker launching a fingerprinting action from outside the network will discover the 

dummy “Linux Server D1”. After compromising this server, the attacker may discover 

that it does not contain the trade secret. At this point, the attacker can either abandon 

his/her goal or compromise the Windows Server to launch a second fingerprinting scan. 

Some of these second fingerprinting methods can be controlled so that instead of 

discovering the actual target of the attack, the attacker may discover the “Linux Server 

D2” instead. The fingerprinting of the actual Linux Server can be constrained so that only 

the trusted computers or users can locate this server.  
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This defense mechanism will not thwart all types of attackers, but will make it 

difficult for them to locate the actual machine. Meanwhile the dummy Linux Server 

acting as honeypots can be used to observe the attacker behavior and to determine 

attacker skill sets.  

In this behavior driven countermeasure strategy, the information about attacker 

preferences can be used to determine what fingerprinting information should be provided 

and what should be constrained.  

The research described in this dissertation is currently being extended to develop a 

third module TARA (Threat Auto Response Analysis) to automate the defense 

mechanisms. TARA uses the attack plans to generate the game tree and game theoretical 

models in order to select the optimal defense mechanism.  

10.2.3 Security Expert Theory Validation 

Expert theories are one of the main inputs to the current security risk assessment 

process. Expert’s experiential knowledge influences the formation of these theories. As a 

result, different security experts tend to form new theories differently, even when they are 

based on the same evidence. The subjectivity of these concepts and theories makes the 

present risk assessment output inconsistent and non-repeatable. This also gives expert 

elicitation and calibration a different meaning. Expert elicitation traditionally focuses on 

eliciting the expert probabilities, and calibration focuses on alignment of elicited 

probabilities with observed relative frequencies. In the case of the security domain, 

elicitation entails extracting 1) the expert belief in the form of concepts and theories, and 

2) the assumptions, evidence and logic behind the formation of these concepts and 

theories. Once elicited, the consistency and accuracy of these concepts and theories has to 
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be validated and calibrated. This section discusses the psychological foundation of how 

the concepts and theories are formed by experts, how they are used for human reasoning, 

and how they can be updated. This section also, describes examples of the expert theory 

validation using the proposed framework.  

10.2.3.1 Psychological Foundations of Human Concepts, Theories and Reasoning 

This section describes the psychological foundation of expert concepts and theories. 

It also describes how to update these concepts and theories. 

Concepts  

In cognitive science, the concepts are defined as basic constituents of thoughts. Our 

understanding and interaction with the world is driven by concepts[147].  According to 

[147], we rely on our concepts of the world to help us understand what is happening.   

Concepts are related to categorization. According to  [148], a concept is a mental 

representation that picks out a set of entities, or a category. In this case the concept 

“refers” and what it “refer” are categories[148]. Categorization is defined as the process 

by which the concepts determine whether some entity is a member of a category  [148]. 

According to  [148], “…classifying something as a category member allows people to 

bring their knowledge of the category to bear on the new instance. Once people 

categorize some novel entity, for example, they can use relevant knowledge for 

understanding and prediction.” An example of this is that if we see a new chair, [147] 

using our concept of chairs, we can draw the inference that it is appropriate to sit on that 

object. This inference is made even if we may not have seen anyone sit in this specific 

chair. 
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Experience and evidence are used to form concepts in order to categorize and 

generalize the observed objects [76]. The important thing to note in this case is that these 

generalizations, categorizations, and consequent predictions are limited to the realm of 

evidence and use the same vocabulary as the evidence. For example, [76]based on the 

observed phenomenon that on many occasions moldy bread relieves infected wounds, 

one could make the generalization that the mold relieves infection. However, this 

generalization is limited to the realm and vocabulary of the evidence.   

Theories 

The latest and wide spread development in the field of cognitive science suggests 

that these concepts are not formed in isolation, but that they depend on knowledge about 

the world [149]. According to  [76] these concepts are embedded in domain-specific 

theories. This idea is represented under different titles such as “theory view” [147], 

“theory theory” [76] etc.  According to this [76] our everyday conception of the mind as 

well as children’s early conceptions of the mind are implicit naïve theories and changes 

in those conceptions are theory changes.  According to [76], there are deep similarities 

between the scientific theory change and conceptual change in child’s theory. 

According to [76], theories are always constructed with reference to evidence and 

experience, which is different from theory itself. However, the relationship between 

evidence and theory is what distinguishes “the theory theory” from concepts [76]. 

Theories, unlike concepts, are designed to explain, and not to categorize and generalize, 

the empirical phenomenon.  

The core characteristic of theory is its abstractness. Theories postulate abstract 

entities[76] and rules that explain the data, but are not limited to the realm and 
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vocabulary of the evidence. This abstraction not only gives the theories their explanatory 

power, but can also be used for prediction. For example, Kepler’s theory of planets 

allowed prediction of behavior of new celestial objects that were quite unknown at the 

time when the theory was formulated [76]. According to [76], a theory makes predictions 

about a wide range of evidence, including the evidence that played no role in the 

construction of the theory. This can lead to a wide variety of unexpected predictions. 

Consequently, some theories will accurately predict future events based on the observed 

evidence in a manner that no concept, developed using generalization, could capture. On 

the other hand, some theories would be incorrect [76]. These predictions are closely tied 

to the explanation provided by the theory.   

Updating Concepts and Theories  

The knowledge of how concepts and theories are formed can be used to update them. 

Updating Concepts 

According to [147], we rely on categories to direct our behavior despite more 

reliable information that may be directly observable. In this case, human reasoning may 

ignore this new information in favor of using already formed concept. The proposed 

framework allows encoding of the concepts logically. In this case, the machine reasoning 

is used to identify the information (which could have been ignored by human reasoning) 

that conflicts with encoded concepts and categories. This conflict analysis can be used to 

incorporate information that is more reliable and to validate or calibrate the experts.  

Updating Theories Using Ontological Commitment 

Theories can be updated by using the understanding of how the domain knowledge is 

formed by a collection of theories. According to[148], the domain knowledge may be 
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formed by the theories and their ontological commitment.  Ontological commitment 

means that by believing in a theory, the human agent commits not only to the logical 

meaning of this theory, but also to the logical inferences drawn from this theory. In other 

words, the human agent is committed to these inferences even though he intended to only 

assert the base theory. The proposed framework’s logic is also built by using this 

ontological commitment principle. The expert can use the logical inferences generated by 

the proposed framework to verify if they are consistent with his/her belief. This allows 

experts to validate and calibrate their theories by doing what-if analysis on the logical 

inferences of their original theories. Apart from calibrating experts, the proposed 

framework allows experts to determine the impact of their new theories before they are 

committed to it. This is important feature because updating human theories after they are 

formed is more challenging. This is described in next section. 

Updating Theories Using Counter-evidence 

The theories provide an interpretation of the observed evidence, as opposed to simple 

description and classification[76]. In theories driven (formed, updated, falsified) by 

evidence, the collected evidence directly and completely influences the theory. In the 

case of theories, instead of gradually incorporating evidence, the evidence has to be 

accumulated [76],to a certain extent before the theory can be changed. Part of the reason 

is that the main purpose of the theory is to explain the observed evidence. Hence, some of 

the counter evidence, unlike in the case of concepts, is explained away in terms of 

theories. Other counter evidence, similar to the case of concepts, is sometimes ignored as 

noise. According to [76], “It is notoriously true that theoretical preconceptions may lead a 

scientist to dismiss some kinds of evidence as simply noise, or to reinterpret others as 
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suspect or the results of methodical failures.” This is conceptually similar to Richard 

Heuer’s suggestion that[150], “Patterns of expectation tell analysts, subconsciously, what 

to look for, what is important and how to interpret what is seen”. In this case, one can 

suggest that these theories form the patterns of expectations.  

According to [76], the theory modification goes through following phases.  

1. Denial: Any counterevidence to the theory is treated as noise, something “not 

worth attending to” [76]. 

2. Auxiliary Hypothesis: At later stages, the theory may call on ad hoc auxiliary 

hypotheses designed to account specifically for observed counterevidence [76]. 

These auxiliary hypotheses are generated to explain the cases of the 

counterevidence in specific case and are not used generically.  

3. Alternate model:  This requires availability or formulation of alternate models to 

the theory[76]. Even in this case the potential alternatives are not considered 

immediately. At first, the new theory appears in the form of small modifications 

of an earlier theory. According to [76], “only later may it become clear that the 

new idea also provides an alternative explanation for the evidence that was central 

to the earlier theory”. 

The proposed framework can be used to update these theories in the following 

manner: 

1. The proposed framework can be used to update the expert theory by identifying 

the conflict due to observed counter-evidence. It also provides a framework in 

which the experts can form and test the logic of auxiliary hypothesis.  
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2. The proposed framework is currently being extended to generate models that 

incorporate the evidence gradually as it becomes available. These models will 

allow calibrating and updating the encoded theory. This calibrated theory, the 

observed evidence, and the model used to update the theory can be used to 

calibrate the expert. 

10.2.3.2 Examples Expert Theory Validation using Proposed Framework 

The proposed framework supports elicitation of the attacker behavior theories from 

the red-teams. These theories are generated by experts dispersed in time and space. 

Hence, there may be conflict among the theories provided by different experts. The 

proposed framework can identify the logical conflict among these theories. This 

knowledge of conflict can be used either to correct the encoded logic or to calibrate 

experts.  

In some cases, experts may be able to use this conflict information and the inferences 

drawn (using their theories) to examine the premises and conclusion of their theories. 

This understanding may lead to expert’s improving their theories.  

The empirical approach can be used when the expert theories cannot be validated or 

calibrated by analyzing their inferences and conflicts. In this empirical approach, the 

theories can be tested as hypothesis by collecting the real attack data. Such empirical 

validation has been used by [18, 19, 151]to test the prevalent security hypotheses. One of 

the challenges in this approach lies in identifying the theories that need empirical 

validation. The proposed framework can be used to generate the concepts and theories 

that need empirical validation. 
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The examples of empirical validation, conflict identification, and adaptation of 

theories are shown below.  

Example of Empirical Validation 

According to the Certified Ethical Hacker (CEH) training guide [15] and SANS 

security training guide [152], the first step of an attack is fingerprinting the system. One 

of the fundamental techniques for fingerprinting is called port scan. In this method, the 

attacker is trying to fingerprint which applications are executing on the target system by 

scanning the system’s ports. The ports are application end-points, which are used to 

communicate with other systems. One of the old myths of the security community is that 

port scans are the first step of the attack. Moreover, these port scans are sometimes 

considered difficult to protect because many court rulings have determined port scanning 

to be a legal activity [153, 154].  

Panjwani et al [151] used the empirical approach to validate if the port scans are 

precursors to the attack. According to this study, it was found that over 50% of the 

attacks were not preceded by any scans performed directly on the system to be 

compromised and only a 3.68% of the observed attacks were preceded by a port scan. 

These statistics are based on 6,203 observed attacker actions (fingerprinting and attacks). 

One of the challenges of performing the empirical validation of theories is the 

identification of the hypothesis that needs validation. The authors of this study were able 

to select this hypothesis for validation because it is a well-known theory in the security 

community, it is explicitly mentioned in the security literature, and preventing the port 

scans is used as a frequent countermeasure.  
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The proposed framework can be used for identifying the concepts and theories that 

may need validation. The proposed framework can also be extended to help collect better 

attack data. This is described in Section 10.2.4.  

Example of Theory Conflict 

In this example, the definition of buffer overflow target described in Section 6.4.2.2 

is extended. This logic is shown in Figure 38, which is reproduced below.   

 

 

 

 

 

Figure 78: Target of the pattern logic fragment -reproduced Figure 38 

The buffer overflow vulnerability allows overloading a predefined amount of space 

in a buffer (a data structure used by the software), which can potentially overwrite and 

corrupt data in memory [120]. The buffer overflow attack can use this vulnerability to 

overwrite the location in memory that allows him to gain unauthorized access or it can 

corrupt data to crash the software. Buffer overflow vulnerability can be prevented by 

method called boundary protection that checks the bounds of buffers to prevent 

overloading. 

Encoded Information 

Class Property  Class 

BO-Target equivalentClass ((softThatsLacking someValuesFrom 
BoundaryProtection) and 
(softUsesDataStructure 
someValuesFrom Buffer)) 

BO-Target subclassOf targetThatTriggers hasValue BO-
Pattern 
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Given this logic, when a system “System A” is known to have the properties 

“softThatsLacking BoundaryProtection” and “softUsesDataStructure Buffer”, then 

System A can be classified as the buffer overflow target “BO-Target”. This 

classification in turn infers that “System A” triggers the attack pattern “BO-Pattern”. 

It is known that programming languages like Java provides the ability of checking 

the buffer bounds. Hence, Java can be called a “buffer overflow safe” language (BO-

Safe-Language). This can be encoded as shown in Figure 79 below.  

In Figure 79, the definition of “buffer overflow protected system” is defined as a 

system developed using a “buffer overflow safe” language. This is encoded as BO-

ProtectedSystem equivalentClass (developedUsing someValuesFrom BO-Safe-

Language).  

Furthermore, it can be said that all “buffer overflow protected” systems have some 

type of boundary protection. This is encoded as BO-ProtectedSystem subclassOf 

(softThatHas hasValue BoundaryProtection). Finally, the information that Java is a 

“buffer overflow safe” language is encoded as Java  type BO-Safe-Language. 

Now if it is known that System A mentioned above is developed in Java encoded as    

SystemA developedUsing Java, it can be inferred that  

1. SystemA  type  BO-ProtectedSystem 

2. SystemA  softThatHas  BoundaryProtection 
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 Figure 79: Example of conflict between concepts 

In the logic shown in Figure 79, the softThatHas is defined as a disjoint property of 

softThatsLacking. This is because any software can have only one of these two relations 

with any security protection.    

When the three following statements are made at the same time, SystemA 

developedUsing Java, SystemA softThatsLacking BoundaryProtection, and SystemA 

softUsesDataStructure Buffer, the logical reasoning used in this framework will generate 

a conflict. This is because the logic framework is trying to infer that SystemA 

Encoded Information 

Class/Individual/Property Property Class/Individual/Property 

BO-ProtectedSystem equivalentClass developedUsing someValuesFrom BO-
Safe-Language 

BO-ProtectedSystem subclassOf softThatHas hasValue 
BoundaryProtection 

System A developedUsing Java 

Java  type BO-Safe-Language 

softThatHas propertyDisjointWith softThatLacks 

Inferred Information 

Individual Property Class/Individual 

System A type BO-ProtectedSystem 

System A softThatHas BoundaryProtection 
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softThatHas BoundaryProtection, which conflicts with the asserted statement SystemA 

softThatLacks BoundaryProtection.  

In this example, these three encoded statements represent the accurate information. 

The reason behind the conflict is that even though SystemA is developed using a buffer 

overflow safe language, the Java application14 version executing this SystemA is 

vulnerable to the buffer overflow attack. This is also a good example of attacker 

adaptability. In this instead of targeting the application developed using the protected 

language, the attacker targets the Java application executing the developed application.  

In this case, the conflict can be resolved by updating the encoded logic and providing 

feedback to the red-team, who may have assumed that buffer overflow is not an 

applicable vulnerability for this “safe” application.  

Example of Appropriate Adaptation of Theories: 

Another extension of the proposed framework can be used to determine if the 

theories are appropriately adapted for the specific technology infrastructure. This is 

explained by a real-life example of theory adopted by security experts of a University. To 

protect the identity of the experts this University is referred to as ABC in this dissertation. 

One of the adopted theories used to identify compromised system is shown in Figure 80. 

In Figure 80, IRC stands for Internet Chat Relay, which is an online chat program.   

                                                 
14 Here the application refers to the Java virtual machine 
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Figure 80: Example of Expert Theory 

This source of theory could be attributed to the articles depicting Romania as 

“cybercrime central”  and “global center of Internet and credit card fraud”  [155, 156]. 

This theory of the security expert can be encoded as shown below.  

 

Figure 81: Security Expert Theory Encoding 

The security expert in this case has taken the evidence that attacks originating from 

Romania were observed in security breaches, and made the conclusion that all IRC 

conversations with Romanians are malicious.   

One way to calibrate or validate this theory is to calculate the strength of this type of 

reasoning. However, theories like these can also be calibrated by providing counter 

evidence. In this case, the counter evidence can be the fact that the University in question 

does have many international students, including students from Romania. Moreover, the 
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University also has a Romanian Student Organization. The presence of students from 

Romania on campus could be potential reason behind the chat connection to computers in 

Romania.  

The logical encoding helps the security expert explicitly separate the premise and 

conclusion of their theories. This allows adding new evidence premises. This information 

can be used for qualitatively updating expert’s strength of logical reasoning. In cases 

when quantitative information is needed, this encoding of premises and conclusion can be 

extended for creating probabilistic network models.  

10.2.4 Attack Data Collection 

Honeypots are used to collect the empirical attack data. The configuration of 

honeypots can be changed to do controlled experiments. The information about conflict 

between theories can be used to identify what types of experiments can be done, or what 

hypothesis can be proved by using honeypots. 

CieKI RTD acts as an interface between the red-team and the technology 

infrastructure. The concept of this interface can be extended to create an attacker data 

collection tool to act as the interface between the attacker and honeypots. This attack data 

collection tool can be used to control the information provided back to the attacker 

through honeypots. This allows the creation of an interactive framework that can be used 

to study how the attacker may behave in different situations. 

The information encoded and generated by the proposed framework can be used to 

identify the cyber-security theories as hypothesis to be tested, and determine what type of 

system configuration may be used as honeypots to collect relevant information.  
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10.2.5 Unifying Security Assessment Efforts 

One of the contributions of this research is that it creates a framework that unifies the 

efforts of different cyber-security research domains. Current major cyber-security 

research domains are attacker behavior, attack data collection, vulnerability discovery, 

defensive mechanisms research, and expert theory elicitation research. Traditionally, 

these research domains are not as well integrated, as the cyber-security risk assessment 

process requires them to be.  

The proposed framework combines the outcome of these different security research 

domains to generate the risk scenarios. The lessons learned from this research may 

provide the necessary feedback for effectively unifying these research disciplines.  

The domains that need to be integrated are described below: 

Attacker Behavior Research   

The study of attacker behavior has been of interest in the cyber-security community. 

This study serves the “think like the hacker” defensive strategy. The main tool for 

understanding attacker behavior has been interviewing the hackers[157-159]. The 

questions these interviews try to study are: Who are the attackers? What makes an 

attacker attack? How do they attack? etc. 

These interviews are often used for profiling the attackers. One of the recent attempts 

in achieving this has been the “hackers profiling project” [158], which classifies the 

hackers into 11 different categories. This project collects data by using an online 

questionnaire about attacker behavior. 
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This attacker behavior research using attacker interviews has provided a varied 

outcome, and some interesting insights, but this outcome (and insights) are at a higher 

philosophical level.  

There also has been some research conducted to study attacker behavior using 

honeypots. The primary focus of this research has been to uncover new technical attacks. 

This method has also been used successfully used to study the attacker decisions. 

Currently honeypots are static in nature, i.e., they are made of computers that do not 

respond to the choices made by the attacker. As a result, it is difficult to understand the 

goal or the context in which these decisions were made.  

This dissertation introduces a framework that allows capturing the thought process 

and reasoning used by the red-team. This provides an insight into decision-making 

techniques used by the red-team acting as attackers. The proposed framework can also be 

extended to collect more situational attacker behavior using honeypots.  

Vulnerability and Attack Research  

Vulnerability and attack research has been traditionally devoted to developing new 

ways of discovering vulnerabilities and identifying how they can be exploited. 

Consequently, current risk scenario generation mainly focuses on vulnerability 

identification. Often these scenarios are reduced to capturing only the presence of a single 

vulnerability and how it can be exploited.   

The knowledge of existing vulnerabilities is also used to develop more secure 

software and to new patching methods. This knowledge is often encoded in the form of 

the attack patterns. This attack pattern describes the typical steps taken by the attacker to 
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exploit the vulnerability. The proposed framework uses the knowledge about 

vulnerability, attack pattern, and attack to develop the threat ontology. 

Attack Data Collection and Analysis   

This focus of this research has been identification of new types of attacks. Honeypots 

are often used to collect the attack data and to develop attack signature. The attack data is 

one of the main sources of information used to develop the threat ontology. 

Expert Elicitation and Calibration 

Expert elicitation traditionally focuses on eliciting the expert probabilities, and 

calibration focuses on alignment of elicited probabilities with observed relative 

frequencies. In the case of the security domain, elicitation entails extracting 1) the expert 

belief in the form of concepts and theories, and 2) the assumptions, evidence and logic 

behind the formation of these concepts and theories. In cyber-security domain the expert 

theories are rarely validated or calibrated. The proposed framework elicits and explicitly 

encodes the expert’s theories and uses them to generate the risk scenarios. The proposed 

framework also supports validation and calibration of these theories.  

The proposed framework creates a framework that unifies the efforts of these cyber-

security research domains for generating risk scenarios. 
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11 Conclusion   

This dissertation describes a framework for automatically generating cyber-security 

risk scenarios. The proposed framework is designed by using the unique cyber-security 

domain requirements identified in this dissertation and by overcoming the limitations of 

current risk scenario generation frameworks.  

The proposed framework generates risk scenarios by:   

 Capturing diverse cyber-security domain knowledge dispersed in space and time.  

 Assuming that there are unknowns in the cyber-security domain, and new 

knowledge is available frequently  

 Emulating the attacker’s exploratory nature, thought process, motivation, 

strategy, preferences, and his/her interaction with the target  environment. 

 Building the attacker’s knowledge state using knowledge discovered during the 

attack process 

 Encoding and using the red-team expert’s theories about attacker’s strategy and 

preferences  

The proposed framework’s distributed logic simplifies the risk scenario generation 

without limiting the type of knowledge that can be used. The proposed framework also 

generates risk scenarios assuming that knowledge is incomplete and there are unknowns 

in cyber-security domain. This incomplete knowledge assumption overcomes limitation 

of current methods producing counter-intuitive results. The proposed framework 

automates the risk scenario generation by using the knowledge as it becomes available 

(or changes). 
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The distributed logic is developed using a language that the cyber-security and 

information technology community is already familiar with. This improves the 

communication of outcome, and logic used for generating risk scenarios. The use of 

familiar ontology language also allows validation, extension, and re-use of the current 

distributed logic.  

The proposed framework can also be used for assisting red-teaming process. The 

proposed framework provides an interface for red-team to interact with the target 

network. This interface is used to observe and collect red-team’s theories about attacker 

thought process, and behavior. This interface eliminates the red-team’s burden of 

executing knowledge discovery and attack tools, allowing red-team more time to develop 

and test attacker behavior theories. In secured facilities, it may not be possible to give the 

red-team access to the actual target network. The proposed framework’s red-team 

interface allows abstracting the actual system information, thus giving the red-team only 

the need-to-know information.  

The proposed framework’s ranked attack tree and encoded attacker behavior theories 

can be used for can be used for prioritizing vulnerability remediation based on attacker 

behavior. Proposed framework’s logical encoding of red-team’s attacker behavior 

theories can be used to identify the conflicts among these theories. These conflicting 

theories can be validated and/or calibrated by analyzing the logic of these encoded 

theories and their inferences, and/or by collecting empirical attack data. The proposed 

framework unifies the efforts of different cyber-security research domains. More 

specifically, it combines the efforts of attacker behavior, vulnerability assessment, attack 

analysis, and expert theory elicitation research. Traditionally, these cyber-security 
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research domains are not integrated well enough to meet the need for cyber-security risk 

assessment.  

One of the proposed framework’s extensions is to develop a module, Threat Auto 

Response Assessment (TARA), to analyze and recommend countermeasures using 

information generated by FLUX and CieKI. TARA also contains a behavior driven 

countermeasures, which uses attacker behavior knowledge to lead the attacker away from 

the system to be protected. The proposed framework acts as an interface between the red-

team and the target network. The interface can be extended to create an attacker data 

collection tool to act as the interface between the attacker and honeypots. This attack data 

collection tool can be used to control the information provided back to the attacker 

through honeypots. This allows the creation of an interactive framework that can be used 

to study how the attacker may behave in different situations. 

Cyber-security risk assessment processes and methods are adapted from other 

domains. In these domains, the risk assessment methods were applied more rigorously 

after major incidents.  

Before the Apollo incident, NASA relied on its contractors to apply good 

engineering practices [23]. According to [23], NASA’s initiative to use more rigorous 

quantitative safety goals were not adopted because managers would not have appreciated 

the uncertainty in risk calculations. Later it was discovered that the main reason was, 

“initial estimates of catastrophic failure probabilities were so high that their publication 

would have threatened the political viability of the entire space program” [23]. Since the 

Challenger accident, NASA has instituted more robust quantitative risk analysis 

programs. According to [23], basic risk assessment methods developed by the aerospace 
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program in the 1960s were used in the 1975 Reactor Safety Study[24], published by the 

Nuclear Regulatory Commission (NRC). According to [23], “Shortly after the Three Mile 

Island accident, a new generation of PRAs appeared in which some of the methodological 

defects of the Reactor Safety Study were avoided.” 

Apart from adapting risk assessment methods from these domains, the cyber-security 

domain can use the lessons learned to improve its risk assessment methodology before an 

equivalent incident may occur.  
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Appendix I: Attacker Behavior 

 This dissertation describes and uses three core characteristics of attacker 

behavior as follow: 

1. Attackers treat attack goal as an intellectually stimulating problem to be solved.  

2. The method used in compromising a system is exploratory in nature and often 

does not follow a predetermined guideline. In other words, the attack is not 

necessarily a pre-planned activity.  

3. The goal of the attack may be determined or changed based on the information 

gathered during this exploratory phase. 

This appendix describes attacker interviews to illustrate this behavior. 

“Well, it's power at your fingertips. You can control all these computers from the 

government, from the military, from large corporations. And if you know what you're 

doing, you can travel through the internet at your will, with no restrictions. That's power; 

it's a power trip.” This was the answer [157] of a 16 year old hacker to the question 

“What is it about the computer that makes it become such an obsession for young guys?” 

asked by PBS frontline team [157]. Further Q&A between this young hacker who was 

caught breaking into NASA's computers and sentenced to six months in jail for taking 

possession of $1.7 million in software is as indicated below. These are direct transcript 

taken from the interview[157].  

“Why is that so important? 

Well, everybody likes to feel in control.  

In my time, they did it by playing hockey or football. How does the computer compare? 

It's intellectual. It stimulates my mind. It's a challenge.  

How hard was it for you to get into some blue-chip locations?  
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The government didn't take too many measures for security on most of their computers. They lack 

some serious computer security, and the hard part is learning it. I know Unix and C like the back 

of my hand, because I studied all these books, and I was on the computer for so long. But the hard 

part isn't getting in. It's learning to know what it is that you're doing. 

When you start out, you sort of poke at various cyberfences and walls. You're just looking for the 

soft spots. You don't target a place because it's got something that you want--it's just that it's a 

challenge? 

I would target a place because it looks like a challenge. Like, if I say, "The navy has a 

computer network in Jacksonville, maybe that would be fun to poke around." And then I'd target 

them. I'd look at their computers and I'd see what I can do there.” [157] 

 

Another interview done by Computer Crime Research Center [159] with a hacker called 

“Mazez Ghost” describes the dynamic interaction between the opportunities and attack 

tools.  

 “Is it hard to penetrate into the "closed" computer systems?” [159] 

 “Not always. It is a rather specific work. It depends on hacking tools. Sometimes break in 

demands application of special software, sometimes examination of protection flaws, several 

standard flaws that are widely mentioned in hacking howto's. More often it is pure chance, 

hacker's intuition and examination of system administrator's psychology.” [159] 

These interviews were used in this appendix to demonstrate the attacker behavior 

definition used in this dissertation. 
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Appendix II: Ontology 

This dissertation uses the concept of ontology extensively. This appendix provides 

more background on ontology and describes how they are used currently in cyber-

security domain. 

Background 

Ontology is a structured, logical representation of the domain being modeled in 

terms of its core concepts, properties, and relationships. It also provides the reasoning 

support to determine the consistency of the represented concepts.   

The concept of ontology has its roots in philosophy, which was later adopted by the 

field of mathematical logic and computer science. In all its application and adoptions, the 

word Ontology, still retains its basic concept of representing the things that exist. 

According to Sowa [160], in logic, the existential quantifier is a notation for asserting that 

something exists. However, logic itself has no vocabulary for describing the things that 

exist. Ontology fills this gap. It is the study of existence, of all the kinds of entities, 

abstract and concrete that makes up the world. 

This ontology has been used in the computer science for representing the domain 

knowledge- its core concepts and relationships among them. One of the well-known 

definitions of ontology  in computer science is [161], “An ontology is an explicit 

specification of conceptualization.” According to [161], the “conceptualization” means 

an abstract model of the world, taking the form of a definition of the properties of 

important concepts and relations and “explicit specification” [161] means that model 

should be specified in an “unambiguous language” [161] which can be processed by 
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machines as well as humans. In summary, ontology facilitates modeling the knowledge of 

domain in a machine understandable manner.   

The focus in this case is on modeling the representation of world in a machine-

understandable manner that can be used for logical reasoning. In addition, ontology 

provides a mean to model the multi-dimensional relation between the entities. This 

allows capturing the human understanding of the world in a more expressive manner. 

This century old concept of ontology has gained popularity in computer science in 

last twenty years [162]. According to [162], “This popularity is likely because the 

promise of ontologies targets one of the core difficulties of using computers for human 

purposes: Achieving interoperability between multiple representations of reality (e.g. data 

or business process models) residing inside computer systems, and between such 

representations and reality, namely human users and their perception of reality.” The 

ontology achieves this by providing expressive language to represent the domain, means 

to map the concepts across domain, and to define the relation among the entities across 

domains. One of the most popular applications of this is in the field of information fusion 

in which ontologies are used for combining diverse knowledgebase.  

The popular reasons of using ontologies are their ability to represent domain 

information and their information fusion capability. Apart from this, this dissertation uses 

the ontology language for the open world reasoning. This open world reasoning is used to 

generate the attack plans.  

In summary, ontology allow representing the domain knowledge in a structured, 

formal, and machine understandable form. This formalization of shareable domain 
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concepts provides communication, reusability and organization of knowledge [135], as 

well as a better computational inference. 

Ontology and Security 

In cyber-security domain too much terminology is vaguely defined [163]. As a 

result, it is difficult to communicate clearly about cyber-security incidents, not only with 

non-expert people but also between experts [118]. This becomes a bigger challenge if this 

communication has to occur in the midst of a cyber-security incident. Current cyber-

security ontology focus on improving the communication and knowledge sharing. 

Ontology research in cyber-security domain has been focused developing applied 

and general cyber-security ontology. Most of the ontologies in cyber-security are applied. 

The goal of general ontology development has been to define a global ontology capturing 

all cyber-security concepts.  

The proposed framework can be considered as an applied ontology. The focus of 

this dissertation is on using the open world reasoning capabilities and the distributed 

nature of the ontologies to generate the attack plan. Its goal is to use the cyber-security 

knowledge generated from diverse source (including the knowledge generated from other 

ontologies). Other ontologies described in this appendix can be used as information 

source to the proposed framework. The proposed framework’s ontologies also can be 

integrated (or map) in broader cyber-security domain ontology.  

This appendix introduces the cyber-security domain ontologies. The purpose of this 

appendix is not to do a comprehensive review but to give an overview of how ontologies 

are being used in cyber-security domain.  
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Applied Security Ontology  

Gomes et al [118] classifies current cyber-security ontologies in four categories 

described below: 

Application Development:   

A significant amount of ontology development has been in the requirements 

engineering field. Dobson and Sawyer introduces the use of ontologies for Requirements 

Engineering and develops ontology for Dependability Requirements Engineering[164]. 

Karyda et al addresses [165] the issue of incorporating cyber-security requirements in the 

development of secure applications using ontology. This ontology captures and cyber-

security knowledge from cyber-security experts to support and improve communication 

between cyber-security experts, users, and developers[165] [118]. Firesmith [166] 

developed reusable safety requirements ontology. Lee [167] used ontology to identify 

cyber-security requirements for certification and accreditation activities defined in 

regulatory documents.  

Semantic Web Services: 

A significant amount of research has been done to develop ontology for web 

services. According to W3C [168], the internet is more and more used for application-to-

application communication. This communication is enabled by programmatic interfaces 

called web services. These interfaces are defined using web service descriptions, which 

are encoded in a pre-determined language for providing common understanding of 

features of the web services.  

Denker et al [169]proposed using ontology to annotate the service descriptions 

with information about their cyber-security requirements and capabilities. Kagal et al 
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[170]and Denker et al [171] extended this proposal by adding cyber-security and privacy 

policies [118]. Ashri, et al. [172], further extended the web service security descriptions 

by capturing the  cyber-security implications that arise due to interactions between web 

service providers and clients that may have different cyber-security policies [118]. Ashri, 

et al [172]proposed a “Semantic Firewall”, a device that reasons about whether the 

interacting entities are able to support the required cyber-security policies. 

Security Attacks: 

  Vorobiev, et al. [173] used cyber-security ontologies for providing common 

vocabulary for a distributed system’s components to talk to each other for detecting 

attacks and devising countermeasures. 

Undercoffer et al [174] developed ontology of intrusion detection system for 

communicating the information about attacks intelligibly.    

Inter-organizational Database Access: 

According to [118], ontology are used for preserving privacy of databases 

belonging to different organizations that must provide access to users from the other 

organizations. Mitra et al [175] developed Privacy Access Control Toolkit, which enables 

privacy-preserving secure semantic access control and allows sharing of data among 

heterogeneous databases without sharing metadata. Pan et al. [176] used ontology to 

address access control challenge by creating a role-mapping table that maps one 

organization role hierarchy into the other organization role hierarchy[118].  

General Security Ontology  

The goal of general ontology development has been to define a global ontology 

capturing all cyber-security concepts.  
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Tsoumas and Gritzalis  [177] proposed general cyber-security ontology by 

extending the Distributed Management Task Force’s (DMTF) Common Information 

Model (CIM). DMTF is an industry organization that develops, maintains, and promotes 

standards for systems management in enterprise IT environments [178]. CIM is an open 

standard that defines how managed elements in an IT environment are represented [179].  

Blanco et al [135]  did a comprehensive review of current cyber-security 

ontologies, and concluded that it is impossible to formalize all existing cyber-security 

concepts. Blanco et al [135] suggested that the definition of a complete security ontology 

is not an isolated task, and recommended using community effort for joining and 

improving the developed ontologies. 
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Appendix III: Technologies used in this dissertation 

Web Ontology Language (OWL)[110] is a family of languages, which provides 

different levels of expressiveness that can be used for describing ontologies. OWL 

version 1 family includes three languages called OWL Full, OWL Lite and OWL DL 

[110]. This dissertation uses OWL DL. OWL DL was designed to provide the maximum 

expressiveness possible while retaining computational completeness, decidability, and the 

availability of practical reasoning algorithms[110]. 

Software called Protégé [180] was used as a graphical user interface for encoding the 

ontologies. Flux was designed using Protégé. 

CieKI was developed in Java programming language using a Java framework, for 

building ontology driven semantic web applications, called Jena [181]. 

An open source Java based OWL DL reasoner [141] DL Query. Pellet [182] was 

used for making inferences using open world reasoning. Pellet was used for reasoning in 

Flux (using Protégé) as well as in CieKI (using Jena)  

The graphical output of the proposed  framework were generated using a Java 

software library (and its examples) that can be used for visualization of data represented 

as a graph or network, called Java Universal Network/Graph Framework (JUNG)[140]. 
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Appendix IV: Annualized Loss Expectancy 

A risk-based loss model that is often published in cyber-security books [73] is called 

annualized loss expectancy (ALE) model. This model is very similar to EPA’s exposure 

based assessment model. Annualized loss expectancy calculates [73] the expected 

monetary loss for the asset over one year period. It is calculated [73] as:  

ALE = SLE * ARO  

Where SLE is the Single Loss Expectancy and ARO is the Annualized Rate of 

Occurrence. The SLE is calculated as multiplication of the Asset Value (AV) and the 

exposure factor (EF) [73] . Exposure factor is defined as the % of loss a realized threat 

would have on asset[73]. This exposure factor is usually calculated using expert 

judgment. 

SLE = AV * EF 
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Appendix V: Output of proposed framework 

This appendix show some features of the graphical outputs. These outputs are 

generated using JUNG graphical libraries and its examples [140].  

The output of can be manipulated with the command panel shown at the bottom of 

the window. This panel is shown in the Figure 82 below. 

.  

Figure 82: Command Panel - Graphical Output 

  

Mode 1 and 4 command panel has a “Collapse Tree” button adapted from JUNG 

examples [140], which can be used to collapse the attack tree into concentric class view. 

This concentric class view is shown in Figure 84. The command panel has a zoom utility 

adapted from JUNG examples [140], which can be used to focus in and out as needed. 

The graphical output’s nodes can be individually selected and moved by selecting the 

“PICKING” option from the drop-down menu shown in Figure 82. The 

“TRANSFORMING” option allows shifting the entire output (attack tree or scenarios). 

Finally, “My Lens” utility can be used to inspect a specific portion of the output without 

zooming in. The “PICKING”, “TRANSFORMING” and  “My Lens” utilities are adapted 

from JUNG examples [140]. This lens utility is shown in Figure 83 below. 
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Figure 83: Lens Utility 

 

 

Figure 84: Concentric Class View 
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Appendix VI: Cognitive Security Metrics  

According to[183] , “Security research is sometimes referred to as the ‘Humanities 

of Computer Science’ because, too frequently, ‘secure’ systems are built using equal 

measures of folklore and black arts. Despite the humorous intention, there is a kernel of 

truth in this jest. Computer security, at least ‘security in the large’, is not currently a 

science. This claim may seem unfair, given the progress made in security over the past 

decades. However, our present tools and methodologies are at most adequate for 

understanding systems security on a small scale.”  

The two main critiques of why security is considered unscientific are 1) lack of 

reliable metrics and 2) inability to use scientific method to study security.  

How this research can be used to identify the hypothesis to be tested, and how the 

attack data can be collected to evaluate this hypothesis, was explained in Section 10.2. 

This section focuses on discussing the current state of security metrics and proposed use 

of cognitive security metrics. 

Current security metrics can be classified into two categories 1) metrics that denote 

the maturity level of processes contributing to the security of a system [74] and 2) metrics 

that denote the extent to which security characteristics are present in a system [74]. These 

metrics are system focused. The purpose of these metrics is, directly or indirectly, to 

characterize the security enforcing mechanisms implemented in the system [74]. This is 

in accordance with one of the primary goal of the security industry, to produce more 

secure software.  

One of the shortcomings of current security metrics is their narrow focus on 

measuring only the system point of view of security. The measurability, accuracy, and 
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usefulness of the security metrics are also driven by the characteristics of security domain 

identified in Chapter 3. These security domain characteristics influence the security 

metrics in following manner: 

 Dynamicity:  Due to the dynamicity of the security domain, it becomes difficult to 

determine if the past statistics about security mechanisms, vulnerabilities, or 

attacks are useful in predicting the present or future state of the system. However, 

past statistics are frequently used to portray the system security. 

 Attacker Behavior:  Since some statistics about vulnerabilities and attacks (for 

example, the number and type of vulnerabilities discovered and exploited the 

number and types of attacks launched etc.) are dependent on the human attacker, 

it is challenging to determine the validity and usefulness of such statistics. For 

example, the attacker can possibly distort such statistics by launching a large 

number of attacks towards the system that is not his/her primary target. This may 

mislead the defender and may shift the focus of defensive allocation of resources 

away from the primary target. 

 Expert Theories: According to NIST, [74] while effort is being made to develop 

and use quantitative security metrics, current measurements are driven by expert 

judgment. In this effort, expert opinion is used to rank security characteristics 

quantified as (for example, 1=low, 2=medium, 3=high) [74]. According to [74], 

“Because of the subjectivity involved, some of the attributes sought in a good 

metric are not readily obtainable. For example, results in penetration testing or 

other methods of assessment that involve specialized skills are sometimes not 

repeatable, since they rely on the knowledge, talent, and experience of an 
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individual evaluator, which can differ from other evaluators with respect to a 

property being measured.” 

There has been an attempt to determine the severity of vulnerability and the 

vulnerabilities published by leading software companies[122]  and reporting agencies 

[124]. This provides some information needed for risk assessment, but it does not give 

much insight into how the attacker may discover or exploit these vulnerabilities.  

This dissertation proposes the use of cognitive metrics of measurement of security. 

In other words, instead of measuring the outcome of the decisions made by the attacker, 

the research suggests focusing on determining how the attacker makes the decisions and 

measuring the critical parameters that influence such decisions. Apart from measuring the 

temporal statics about vulnerabilities and the improvement of security features on 

software, it suggests measuring the temporal difficulty of discovering or exploiting 

vulnerabilities as a function of cognitive workload. Examples of workload related metrics 

include difficulty in discovering or exploiting specific types of vulnerabilities, difficulty 

in launching existing or developing new types of attacks, etc. These types of metrics will 

help quantitatively answer the question such as, even though the number of 

vulnerabilities is increasing and we still have not eradicated a single type of vulnerability, 

have we made it more difficult to discover and exploit these vulnerabilities? 

The proposed framework facilitates elicitation of the attacker preferences for 

generating the attack tree. This framework can be used/extended to evaluate the cognitive 

workload required by the red-team. Furthermore, the proposed research also provides a 

framework of using such cognitive workload related metrics in generating the attack plan.  
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Appendix VII: Automated Event Sequence Diagram Generation   

A related work in the engineering risk assessment domain has been done by [35, 

184]. This work develops a tool called SimPRA, for identifying the risks associated with 

complex systems (such as nuclear power plants, space missions, chemical plants, and 

military systems) [35]. 

The SimPRA framework has three major components: 1) a simulator that generates 

detailed scenarios, 2) a scheduler that controls the timing and occurrence of the events, 

and 3) a planner that is responsible for guiding the simulation by generating high-level 

scenarios  [35]. 

This section describes the planning module of SimPRA. This planning module offers 

a new method for capturing different types of engineering knowledge. The method is 

used for automatically generating generalized event sequence diagrams. In this planning 

framework, the engineering system hierarchy (consisting of the system, sub-systems, and 

sub-elements) is defined as a structure tree  [35]. The system and sub-system functional 

requirements are presented by a functionality tree  [35]. State transition rules are defined 

for each element of the system hierarchy  [35]. SimPRA also defines how the states of the 

system (and sub-systems) may change by changing the states of their sub-elements  [35]. 

SimPRA uses transition graph to show how each system structure provides the expected 

functionality  [35]. 

SimPRA uses a modified Hierarchical Task Network (HTN) [80] planning algorithm 

. Both the HTN algorithm and the proposed framework’s planning logic use the concept 

of hierarchical task analysis. In hierarchical task analysis, tasks are systematically 

decomposed into sub-tasks.   
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SimPRA’s planning algorithm uses the knowledge of how the engineering systems 

are decomposed into sub-systems and sub-elements [35]. This hierarchical system 

decomposition is used by the planning algorithm to understand how to change the state of 

sub-elements to lead the system (and sub-systems) to the goal state  [35].  

SimPRA also uses qualitative knowledge to prune the branches of the event 

sequence diagrams that are not interesting to the end user  [35].  
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Glossary 

Access Level:  “A category within a given security classification limiting entry or system 

connectivity to only authorized persons.” [120] 

Administrative Account: “A user account with full privileges on a computer.” [120]  

Advisory: “Notification of significant new trends or developments regarding the threat to the 

information systems of an organization. This notification may include analytical insights into trends, 

intentions, technologies, or tactics of an adversary targeting information systems.” [120]  

Alert: Notification that a specific attack has been directed at an organization’s information systems. 

[120] 

Application: “A software program hosted by an information system.” [120] 

Asset: “A major application, general support system, high impact program, physical plant, mission 

critical system, personnel, equipment, or a logically related group of systems.” [120] 

Attack: “Any kind of malicious activity that attempts to collect, disrupt, deny, degrade, or destroy 

information system resources or the information itself.” [120] 

Attacker Behavior: Attacker behavior is characterized by attacker’s exploratory nature, thought 

process, motivation, strategy, and preferences.  

Attack Graph/Vulnerability Graph: The attack graph represents how the available vulnerabilities 

can be exploited in sequence to take the system from a secure to an unsecure state. Unsecure state is 

defined as the system state in which attacker has gained restricted privileges[1].  

Attack Pattern: This attack pattern describes the typical steps taken by the attacker to exploit the 

vulnerability 

Attack Scenario: A graph representing exact steps taken by red-team or attacker. 

Audit: “Independent review and examination of records and activities to assess the adequacy of 

system controls, to ensure compliance with established policies and operational procedures, and to 

recommend necessary changes in controls, policies, or procedures” [120] 

Automated Planning: Automated planning is a branch of artificial intelligence[78] and is defined as 

the task of coming up with a sequence of actions that will achieve a defined goal. 



302 
 

Baseline: “Hardware, software, databases, and relevant documentation for an information system at a 

given point in time.” [120] 

Buffer Overflow Attack: A method of overloading a predefined amount of space in a buffer, which 

can potentially overwrite and corrupt data in memory [120]. 

Closed World Reasoning: Reasoning assuming that the knowledge about domain being modeled is 

complete. It also assumes that whatever knowledge that is not encoded is false [117].  

Client (Application): “A system entity, usually a computer process acting on behalf of a human user, 

that makes use of a service provided by a server.” [120] 

Common Vulnerabilities and Exposures (CVE): “A dictionary of common names for publicly 

known information system vulnerabilities.” [120] 

Compromise: “Disclosure of information to unauthorized persons, or a violation of the security 

policy of a system in which unauthorized intentional or unintentional disclosure, modification, destruction, 

or loss of an object may have occurred.” [120] 

Confidentiality: “Preserving authorized restrictions on information access and disclosure, including 

means for protecting personal privacy and proprietary information.” [120] 

Countermeasure: “Actions, devices, procedures, or techniques that meet or oppose (i.e., counters) a 

threat, a vulnerability, or an attack by eliminating or preventing it, by minimizing the harm it can cause, or 

by discovering and reporting it so that corrective action can be taken.” [120] 

Demilitarized Zone (DMZ): “A host or network segment inserted as a “neutral zone” between an 

organization’s private network and the Internet.” [120] 

Denial of Service (DoS): “An attack that prevents or impairs the authorized use of networks, systems, 

or applications by exhausting resources.” [120] 

Domain-specific: Specific information about a domain.  

Expert Theories: Theories of experts. In this dissertation expert theories refer to theories of security 

experts.  

Firewall: “A gateway that limits access between networks in accordance with local security policy.” 

[120] 

Fingerprinting: The act of making digital observations about software. 
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Goals: Attacker’s primary goal is to compromise confidentiality, integrity and availability of 

information. 

Hacker: “Unauthorized user who attempts to or gains access to an information system.” [120] 

Honeypot: “A system (e.g., a Web server) or system resource (e.g., a file on a server) that is designed 

to be attractive to potential crackers and intruders and has no authorized users other than its 

administrators.” [120] 

Information: “An instance of an information type.” [120] 

Integrity: “Guarding against improper information modification or destruction, and includes ensuring 

information non-repudiation and authenticity.” [120] 

Internal Network: “A network where: (i) the establishment, maintenance, and provisioning of 

security controls are under the direct control of organizational employees or contractors; or (ii) 

cryptographic encapsulation or similar security technology provides the same effect. An internal network is 

typically organization-owned, yet may be organization-controlled while not being organization-owned.” 

[120] 

Intrusion Detection Systems (IDS): “Hardware or software product that gathers and analyzes 

information from various areas within a computer or a network to identify possible security breaches, 

which include both intrusions (attacks from outside the organizations) and misuse (attacks from within the 

organizations.)” [120] 

National Vulnerability Database – (NVD):  “The U.S. government repository of standards-based 

vulnerability management data. This data enables automation of vulnerability management, security 

measurement, and compliance (e.g., FISMA).” [120] 

Network: “Information system(s) implemented with a collection of interconnected components. Such 

components may include routers, hubs, cabling, telecommunications controllers, key distribution centers, 

and technical control devices.” [120] 

Open World Reasoning: Reasoning assuming that the knowledge about domain being modeled is 

incomplete. It does not make any assumption about knowledge that is not encoded [117].  
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Port: “A physical entry or exit point of a cryptographic module that provides access to the module for 

physical signals, represented by logical information flows (physically separated ports do not share the same 

physical pin or wire).” [120] 

Port Scanning:  “Using a program to remotely determine which ports on a system are open (e.g., 

whether systems allow connections through those ports).” [120] 

Privilege: “A right granted to an individual, a program, or a process.” [120] 

Proxy: “A proxy is an application that “breaks” the connection between client and server. The proxy 

accepts certain types of traffic entering or leaving a network and processes it and forwards it. This 

effectively closes the straight path between the internal and external networks making it more difficult for 

an attacker to obtain internal addresses and other details of the organization’s internal network. Proxy 

servers are available for common Internet services; for example, a Hyper Text Transfer Protocol (HTTP) 

proxy used for Web access, and a Simple Mail Transfer Protocol (SMTP) proxy used for email.” [120] 

Red Team: “A group of people authorized and organized to emulate a potential adversary’s attack or 

exploitation capabilities against an enterprise’s security posture. The Red Team’s objective is to improve 

enterprise Information Assurance by demonstrating the impacts of successful attacks and by demonstrating 

what works for the defenders (i.e., the Blue Team) in an operational environment.” [120] 

Red Team Exercise: “An exercise, reflecting real-world conditions, that is conducted as a simulated 

adversarial attempt to compromise organizational missions and/or business processes to provide a 

comprehensive assessment of the security capability of the information system and organization.” [120] 

Remediation: “The act of correcting a vulnerability or eliminating a threat. Three possible types of 

remediation are installing a patch, adjusting configuration settings, or uninstalling a software application.” 

[120] 

Run Time: The time it takes for the algorithm to execute. 

Scanning: “Sending packets or requests to another system to gain information to be used in a 

subsequent attack.” [120] 

Secure State: “Condition in which no subject can access any object in an unauthorized manner.” 

[120] 
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Security Categorization: “The process of determining the security category for information or an 

information system. See Security Category.” [120] 

Security Category: “The characterization of information or an information system based on an 

assessment of the potential impact that a loss of confidentiality, integrity, or availability of such 

information or information system would have on organizational operations, organizational assets, or 

individuals.” [120] 

Security Controls: “The management, operational, and technical controls (i.e., safeguards or 

countermeasures) prescribed for an information system to protect the confidentiality, integrity, and 

availability of the system and its information.” [120] 

Social Engineering: “An attempt to trick someone into revealing information (e.g., a password) that 

can be used to attack systems or networks.” [120] 

Sub-goals: Represents attacker’s cognitive domain specific tasks to achieve his/her intended goal of 

compromising information. 

Threat Pattern:  A template encoding logical information about how the attack may exploit 

vulnerabilities, the effect of exploiting vulnerability,  and presence of a known vulnerability and attack. 

Trigger: The act of classification by distributed logic is called trigger. In this dissertation when any 

individuals are classified as members of sets then they are considered as “triggered”. 

Vulnerability: “Weakness in an information system, system security procedures, internal controls, or 

implementation that could be exploited or triggered by a threat source.” [120] 

Vulnerability Scanner: An automated tool for determining presence of vulnerabilities in software. 
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