

ABSTRACT

Title: CYBER-SECURITY RISK ASSESSMENT

 Susmit Azad Panjwani, Doctor of Philosophy, 2011

Dissertation directed by: Professor Gregory B. Baecher,
Department of Civil and Environmental Engineering

Cyber-security domain is inherently dynamic. Not only does system configuration

changes frequently (with new releases and patches), but also new attacks and

vulnerabilities are regularly discovered. The threat in cyber-security is human, and hence

intelligent in nature. The attacker adapts to the situation, target environment, and

countermeasures. Attack actions are also driven by attacker’s exploratory nature, thought

process, motivation, strategy, and preferences. Current security risk assessment is driven

by cyber-security expert’s theories about this attacker behavior.

The goal of this dissertation is to automatically generate the cyber-security risk

scenarios by:

 Capturing diverse and dispersed cyber-security knowledge

 Assuming that there are unknowns in the cyber-security domain, and new

knowledge is available frequently

 Emulating the attacker’s exploratory nature, thought process, motivation,

strategy, preferences and his/her interaction with the target environment

 Using the cyber-security expert’s theories about attacker behavior

The proposed framework is designed by using the unique cyber-security domain

requirements identified in this dissertation and by overcoming the limitations of current

risk scenario generation frameworks.

The proposed framework automates the risk scenario generation by using the

knowledge as it becomes available (or changes). It supports observing, encoding,

validating, and calibrating cyber-security expert’s theories. It can also be used for

assisting the red-teaming process.

The proposed framework generates ranked attack trees and encodes the attacker

behavior theories. This information can be used for prioritizing vulnerability remediation.

The proposed framework is currently being extended for developing an automated threat

response framework that can be used for analyzing and recommending countermeasures.

This framework contains behavior driven countermeasures that uses the attacker behavior

theories to lead the attacker away from the system to be protected.

CYBER-SECURITY RISK ASSESSMENT

by

 Susmit Azad Panjwani

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park, in partial fulfillment

of the requirements for the degree of
Doctor of philosophy

2011

Advisory Committee:

Professor Gregory B. Baecher, Chair
Professor Ali Mosleh
Professor Miroslaw J. Skibniewski
Professor Barney Corwin
Professor John Cable

© Copyright by

Susmit Azad Panjwani

2011

ii

Dedication

To my family - Asha, Azad, Snehal and Sonal.

iii

Acknowledgements

I owe my deepest gratitude to my adviser, Dr. Gregory B. Baecher, for his excellent

guidance, support, encouragement, and patience over the years. I truly appreciate him

helping me continuously improve the quality of my work.

It would have been next to impossible to write this dissertation without the help and

guidance of Dr. Ali Mosleh. I owe my sincere and earnest thankfulness for all his support

and suggestions for my research.

I am truly indebted and thankful to Ernest Soffronoff for keeping me on the track,

providing insightful practical knowledge, and for being my sounding board time after

time.

I would like to show my gratitude to Dr. Barney Corwin for providing his valuable

management insight for my research. I would also like to thank Professor Miroslaw

Skibniewski, Professor Jimmie West, and Professor John Cable for their guidance over

the years.

I am truly grateful to all my committee members for their time and support. I would

also like to thank Craig Morris for the intellectual discussions over the years.

I would like to thank Marta Augustyn and Misia for their support and affection.

Finally, and most importantly, I would like to thank my family, Asha, Azad, Snehal and

Sonal. Their encouragement and unwavering love have always been my source of

strength.

iv

Table of Contents
Dedication .. ii

Acknowledgements .. iii

1 Introduction ... 1

2 Characterization of the Security Domain .. 4

2.1 Introduction ... 4

2.2 State of Security .. 4

2.3 State of Cyber-security Risk Assessment and Risk-based Decision 7

2.4 Security Domain Characteristics and Impact on Risk Assessment 9

2.4.1 Expert Theories ... 10

2.4.2 Domain Dynamicity .. 10

2.4.3 Intelligent Threat ... 11

3 Requirements of Risk Assessment Methodology ... 13

3.1 Introduction ... 13

3.2 Risk Assessment Process of Different Domains ... 13

3.2.1 Engineering System Risk Assessment .. 14

3.2.2 Environmental risk assessment ... 22

3.2.3 Infrastructure Security Risk Assessment .. 28

3.2.4 Cyber-security risk assessment ... 31

3.3 Domain Characteristic Comparison and Limitation of Cyber-security Risk
Assessment .. 41

3.3.1 Engineering System Domain and Risk Assessment Method 43

3.3.2 Environmental Risk Assessment... 44

3.3.3 Infrastructure Security Domain and Risk Assessment Method 44

3.3.4 Cyber-security Domain and Risk Assessment Method 45

3.4 Detailed Cyber-Security Domain Requirements .. 47

3.4.1 Domain Dynamicity .. 47

3.4.2 Attacker Behavior ... 50

3.4.3 Expert Theory ... 51

3.4.4 Automation ... 52

3.5 Risk Scenario Generation ... 52

3.5.1 Current Focus of Risk Scenarios ... 52

3.5.2 Current Methods for Generating Cyber-security Risk Scenario 54

v

3.5.3 Proposed Cyber-security Risk Scenario Generation Framework 64

4 Proposed Framework .. 69

4.1 Conceptual Planning Framework .. 69

4.1.1 Goals ... 71

4.1.2 System Model ... 72

4.1.3 Action Model .. 73

4.1.4 Planning Philosophy ... 74

4.1.5 Planning Framework Classification .. 75

4.1.6 Knowledge .. 77

4.1.7 Dynamicity .. 78

4.1.8 Application of Planning for Critical Domain .. 79

4.2 Comparison of Planning Architectures ... 80

4.3 Proposed Planning Framework ... 88

4.3.1 Goals ... 88

4.3.2 Planning Philosophy ... 90

4.3.3 Knowledge Representation ... 92

4.3.4 System Model and Action Model ... 101

4.3.5 Dynamicity .. 102

4.3.6 Planning Algorithm ... 107

4.3.7 Planning Output .. 123

5 Framework Architecture ... 127

5.1 Flux ... 127

5.2 CieKI ... 127

5.3 Modes of Operation .. 128

5.4 Case Study .. 129

6 Framework Component: Flux ... 132

6.1 Flux: Overview ... 132

6.1.1 Capture Diverse and Dispersed Cyber-security Domain Knowledge . 132

6.1.2 Incomplete Information .. 135

6.1.3 Distributed Planning Logic ... 135

6.1.4 Contextual Interpretation .. 135

6.1.5 Information Validation .. 136

6.2 Ontology Logic Representation .. 136

6.3 Asset Ontology.. 137

vi

6.3.1 Specific Asset Information ... 137

6.3.2 Abstract Asset Information ... 141

6.3.3 Information Integration ... 146

6.4 Threat Ontology .. 150

6.4.1 Source of Information ... 150

6.4.2 Threat Ontology Logic .. 153

6.5 Planning Ontology .. 160

6.5.1 Introduction ... 160

6.5.2 Planning Ontology: Anchor and Catcher Sets 161

6.5.3 Planning Ontology: Functional Description 163

7 Framework Component: CieKI .. 178

7.1 Situational Dynamic Decision Tree .. 178

7.2 Attacker Behavior Ontology ... 182

7.2.1 Encoding Attacker Strategy .. 184

7.3 Centralized Algorithms ... 189

8 Framework Modes of operation .. 190

8.1.1 Attack Tree Generation without Attacker Preference 191

8.1.2 Attack Scenario Generation Using Red-team 197

8.1.3 Attack Scenario Generation Using Encoded Attacker Behavior Theory
 212

8.1.4 Attack Tree Generation Using Attacker Behavior 215

8.1.5 Direct Query .. 216

9 Framework Evaluation and Comparison .. 219

9.1 Cyber-security Domain Requirements Comparison 219

9.1.1 Domain Dynamicity .. 219

9.1.2 Attacker Behavior ... 221

9.1.3 Expert Theory ... 222

9.1.4 Automation ... 222

9.2 Case Study Comparison .. 226

9.2.1 Comparison of Input ... 227

9.2.2 Comparison of Output... 238

10 Research Contribution, Application and Extension 249

10.1 Research Contributions ... 249

10.1.1 Generating Risk Scenarios by Incorporating the Cyber-security
Domain Requirements ... 249

vii

10.1.2 Assisting the Red Teaming Process .. 251

10.1.3 Simplifying Risk Scenarios Generation, and Increasing Traceability
and Reuse 252

10.1.4 Identifying the Cyber-security Domain Characteristics 254

10.1.5 Providing the Core Framework to Enable Potential Defensive and
Expert Validation Applications ... 254

10.2 Applications and Extensions ... 255

10.2.1 Cyber-security Risk Assessment ... 255

10.2.2 Countermeasure Development .. 260

10.2.3 Security Expert Theory Validation ... 263

10.2.4 Attack Data Collection .. 276

10.2.5 Unifying Security Assessment Efforts .. 277

11 Conclusion .. 280

Appendix I: Attacker Behavior .. 284

Appendix II: Ontology ... 286

Appendix III: Technologies used in this dissertation .. 292

Appendix IV: Annualized Loss Expectancy ... 293

Appendix V: Output of proposed framework .. 294

Appendix VI: Cognitive Security Metrics ... 296

Appendix VII: Automated Event Sequence Diagram Generation 299

Glossary ... 301

References ... 306

viii

FIGURE 1: NUMBER OF REPORTED VULNERABILITIES IN LAST DECADE- SOURCE OF DATA [5] 5
FIGURE 2: COMPARISON OF NUMBER OF VULNERABILITIES REPORTED IN 2010 WITH TOTAL NUMBER OF

VULNERABILITIES REPORTED IN PAST DECADE - SOURCE OF DATA [5] .. 6
FIGURE 3 STATE OF CYBER-SECURITY 2011 - SOURCE OF DATA [9] .. 7
FIGURE 4: RISK ASSESSMENT DOMAIN COMPARISION ... 43
FIGURE 5: ATTACK TREE - GRAPHICAL EXAMPLE ... 56
FIGURE 6 CONCEPUAL PLANNING FRAMEWORK ... 70
FIGURE 7: CONCEPTUAL FRAMEWORK FACTORS .. 71
FIGURE 8: COMPARISION OF PLANNING FRAMEWORKS ... 80
FIGURE 9: EXAMPLE INDIVIDUALS .. 93
FIGURE 10: EXAMPLE PROPERTIES ... 94
FIGURE 11: PROPERTY CHAIN EXAMPLE ... 94
FIGURE 12: EXAMPLE OF CLASS .. 95
FIGURE 13: EXAMPLE OF CLASS ENCODING USING SPECIAL ‘TYPE’ PROPERTY ... 95
FIGURE 14: EXAMPLE CLASS HIERARCHY ... 96
FIGURE 15: EXAMPLE PROPERTY RESTRICTION .. 97
FIGURE 16: EXAMPLE OF CLASS HIERARCHY AND PROPERTY RESTRICTION ... 97
FIGURE 17: EXAMPLE OF DIVERSE TYPES OF KNOWLEDGE ... 99
FIGURE 18: OPEN WORLD PRE-REQUISITES .. 105
FIGURE 19: INTERACTION BETWEEN CETRALIZED AND DISTRIBUTED LOGIC .. 109
FIGURE 20: GENERIC FLOW OF CENTRALIZED PLANNING ALGORITHMS .. 112
FIGURE 21 ANCHOR SET CLASSES .. 115
FIGURE 22: ASSET ONTOLOGY EXAMPLE .. 118
FIGURE 23 ASSET ONTOLOGY EXAMPLE ENCODING ABSTRACT INFORMATION ... 119
FIGURE 24: PLANNING ONTOLOGY EXAMPLES - ANCHOR AND CATCHER CLASSES 121
FIGURE 25: COMBINED LOGIC OF EXAMPLES .. 121
FIGURE 26 PROPOSED FRAMEWORK ARCHITECTURE WITH OUTPUT .. 128
FIGURE 27: CASE STUDY ARCHITECTURE .. 129
FIGURE 28: EXAMPLE FRAGMENT OF SPECIFIC INFORMATION ENCODING IN ASSET ONTOLOGY 138
FIGURE 29: ASSET ONTOLOGY- INVERSE PROPERTIES ... 139
FIGURE 30 EXAMPLE FRAGMENT SHOWING INVERSE RELATIONS ... 140
FIGURE 31: ASSET ONTOLOGY- INFORMATION ADDITION .. 141
FIGURE 32 EXAMPLE OF SPECIFIC AND ABSTRACT INFORMATION ENCODING IN ASSET ONTOLOGY 142
FIGURE 33 HIERARCHY OF PROPERTY RELATIONS .. 144
FIGURE 34 INFERENCES DRAWN FROM HIERARCHY OF PROPERTY RELATIONS.. 145
FIGURE 35: ASSET ONTOLOGY- FUSION EXAMPLE ... 149
FIGURE 36: MINIMAL ENCODING OF PATTERN INFORMATION ... 154
FIGURE 37: DETAILED ENCODING OF PATTERN INFORMATION .. 155
FIGURE 38: TARGET OF THE PATTERN LOGIC EXAMPLE .. 157
FIGURE 39: TARGET OF THE THREAT PATTERN LOGIC EXAMPLE WHEN MORE INFORMATION IS AVAILABLE . 159
FIGURE 40: ANCHOR AND CATCHER SETS FOR TRIGGERING EXPLOIT FUNCTIONALITY SUBGOAL 165
FIGURE 41: TRIGGER LOGIC FOR “EXPLOIT FUNCTIONALITY” SUBGOAL .. 166
FIGURE 42: TRIGGER LOGIC FOR “EXPLOIT CONNECTIVITY” SUBGOAL ... 168
FIGURE 43: ONTOLOGY EXAMPLE DESCRIBING GOAL TRIGGERED PATTERN LOGIC...................................... 171
FIGURE 44: EXAMPLE LOGIC FOR TRIGGERING ATTACK PATTERN – PART 1 ... 173
FIGURE 45: EXAMPLE LOGIC FOR TRIGGERING ATTACK PATTERN – PART 2 .. 176
FIGURE 46: SITUATIONAL DYNAMIC DECISISON TREE ... 179
FIGURE 47: FACTORS INFLUENCING ATTACKER STRATEGY .. 183
FIGURE 48 : ATTACKER DESCISION POINTS... 186
FIGURE 49: ATTACKER STRATEGY DRIVEN PROPERTIES BETWEEN THE DECSIONS POINTS 188
FIGURE 50: ISPREFERREDTHAN PROPERTY .. 188
FIGURE 51: FLUX ATTACK TREE OUTPUT .. 194
FIGURE 52: FLUX ATTACK TREE SPIRAL PRESENTATION ... 195
FIGURE 53: FLUX RADIAL OUTPUT ... 196
FIGURE 54: CIEKI RTD INTERFACE ... 199
FIGURE 55 : CIEKI RTD – GOAL PANEL .. 201

ix

FIGURE 56: CIEKI RTD –SUB-GOAL PANEL .. 202
FIGURE 57: CIEKI RTD – FINGERPRINTING GOAL PANEL .. 204
FIGURE 58: CIEKI RTD – PATTERN PANEL .. 205
FIGURE 59: CIEKI RTD – ATTACK AND VULNERABILITY PANEL .. 206
FIGURE 60: CIEKI RTD OUTPUT – ATTACK-SCENARIO ... 211
FIGURE 61: AUTOMATED SCENARIO GENERATION OUTPUT SHOWING THAT SELECTED GOAL CANNOT BE

ACHIEVED ... 214
FIGURE 62: AUTOMATED SCENARIO GENERATION OUTPUT AFTER CHANGING GOAL 214
FIGURE 63: AUTOMATED SCENARIO GENERATION OUTPUT AFTER REACTIVATING INITIAL GOAL 215
FIGURE 64 RANKED ATTACK TREE ... 216
FIGURE 65: DIRECT QUERY OF FLUX KNOWLEDGEBASE ... 217
FIGURE 66: ACTION TEMPLATE .. 230
FIGURE 67: CASE STUDY - MANUAL ATTACK TREE OUTPUT ... 239
FIGURE 68: CASE STUDY - VULNERABILITY GRAPH .. 240
FIGURE 69: VULNERABILITY GRAPH AFTER ADDING SQUID SCAN ACTION ... 241
FIGURE 70: CASE STUDY- ATTACK TREE .. 242
FIGURE 71: CASE STUDY - ATTACK-SCENARIO ... 243
FIGURE 72: CASE STUDY - RANKED ATTACK TREE ... 244
FIGURE 73: ATTACK TREE- ADDING NEW BRANCH ... 245
FIGURE 74: ATTACK TEE - ADDING NEW ATTACK ... 246
FIGURE 75: ATTACK TREE SHOWING POTENTIAL ATTACKS ... 247
FIGURE 76: ATTACK TREE AND VULNERABILITY GRAPH COMPARISON ... 248
FIGURE 77: EXAMPLE OF BEHAVIOR DRIVEN COUNTERMEASURE ... 262
FIGURE 78: TARGET OF THE PATTERN LOGIC FRAGMENT -REPRODUCED FIGURE 38 271
FIGURE 79: EXAMPLE OF CONFLICT BETWEEN CONCEPTS .. 273
FIGURE 80: EXAMPLE OF EXPERT THEORY .. 275
FIGURE 81: SECURITY EXPERT THEORY ENCODING ... 275
FIGURE 82: COMMAND PANEL - GRAPHICAL OUTPUT .. 294
FIGURE 83: LENS UTILITY .. 295
FIGURE 84: CONCENTRIC CLASS VIEW .. 295

x

TABLE 1 FACTOR’S USED TO JUSTIFY CYBER-SECURITY INVESTMENT- SOURCE OF DATA [9] 8
TABLE 2: THREAT SOURCE TO ACTION MAPPING – SOURCE OF DATA [68] ... 35
TABLE 3: VULNERABILITY TO THREAT ACTION MAPPING - SOURCE OF DATA [68] .. 35
TABLE 4: LIKELIHOOD OF VULNERABILITY EXPLOIT - SOURCE OF DATA [68] ... 36
TABLE 5: IMPACT OF VULNERABILITY EXPLOIT – SOURCE OF DATA [68] .. 37
TABLE 6: SYSTEM RISK CACULATION - SOURCE OF DATA [68] ... 37
TABLE 7: CURRENT VULNERABILITY GRAPH GENERATION METHODS .. 61
TABLE 8: COMPARISON OF PROPOSED FRAMEWORK AND VULNERABILITY GRAPH FRAMEWORK’S DESIGN .. 126
TABLE 9- PROPOSED ARCHITECURE- MODES OF OPERATION TO COMPONENT MAPPING 129
TABLE 10: COMPARISON OF RISK SCENARIO GENERATION FRAMEWORKS .. 225
TABLE 11: VULNERABILTY GRAPH GEENRATION METHOD’S ENCODING OF VULNERABILITY INFORMATION -

SOURCE OF DATA [81, 82] ... 228
TABLE 12: VULNERABILITY GRAPH CONNECTIVITY MATRIX - SOURCE OF DATA [81, 82] 229
TABLE 13: ACTION ENCODING - SOURCE OF DATA [81] ... 231
TABLE 14: FRAMEWORK’S USE FOR CYBER SECURITY RISK ASSESSMENT .. 259

1

1 Introduction

Cyber-security domain is inherently dynamic. Not only does system configuration

changes frequently (with new releases and patches), but also new attacks and

vulnerabilities are regularly discovered. The threat in cyber-security is human, and hence

intelligent in nature. The attacker adapts to the situation, the target environment, and to

the countermeasures. Attack actions are also driven by attacker’s exploratory nature,

thought process, motivation, strategy, and preferences. Current cyber-security risk

assessment is driven by expert’s theories about attacks and attacker behavior.

The goal of this dissertation is to automatically generate the cyber-security risk

scenarios by:

 Capturing diverse and dispersed cyber-security domain (for example, the

knowledge about characteristics of software systems, their design, use, features,

known as well as potential vulnerabilities and attacks etc.).

 Assuming that there are unknowns in the cyber-security domain, and new

knowledge is available frequently

 Emulating the attacker’s exploratory nature, thought process, motivation,

strategy, preferences, and his/her interaction with the target environment

 Using cyber-security expert’s theories

Current manual risk scenarios are generated by red-team. Red-team consists of a

group of cyber-security experts emulating real attacker. Manual attack trees are generated

using cyber-security expert’s theories about attacker behavior (attacker’s exploratory

nature, thought process, motivation, strategy, and preferences) and diverse type of

2

knowledge (characteristics of software, and known as well as potential vulnerabilities and

attacks), but their quality is dependent on the analyst’s expertise. Risk scenarios

generated by current automated frameworks produce repeatable outcome but they use

limited information (primarily about presence of vulnerability, connectivity between

software systems, attacker’s initial privileges, and privileges gained by exploiting

vulnerabilities), do not capture attacker behavior, and do not use expert theories to

generate risk scenarios. Current automated framework also assumes that complete

knowledge is available a priori. This assumption is not valid in cyber-security domain.

Current automated approach requires re-encoding knowledge and re-generating risk

scenarios when new knowledge is available.

It is widely accepted in cyber-security domain that the main objective of the attacker

is to compromise the confidentiality, integrity, or availability of information. The

proposed automated framework generates risk scenarios describing how the attacker can

compromise the confidentiality, integrity, and availability of the information. However,

current automated risk scenarios are generated only for attacker gaining restricted

privilege on the target software system [1] or for violating a security property of the

software[2]. This represents only one of the ways the attacker can achieve his/her goal of

compromising the information confidentiality, integrity, and availability.

The proposed framework simplifies the risk scenario generation without limiting the

type of knowledge that can be used. The proposed framework also assumes that the

knowledge is incomplete and there are unknowns in cyber-security domain. According to

the Office of Management and Budget [3], the cyber-security risk assessment is complex

process and does not improve the state of security. The lack of improvement in security

3

can also be attributed to current risk scenario generation frameworks not identifying and

using the unique cyber-security domain characteristics and requirements. This

dissertation identifies the unique cyber-security domain characteristics, which are used as

requirements for designing the proposed framework.

Chapter 2 describes the state of cyber-security. Chapter 3 describes how risk

assessment is done in different domains, identifies the unique requirements for doing risk

assessment in cyber-security domain, introduces current risk scenario generation

frameworks and their limitations, and describes how the proposed framework overcomes

these limitations. Chapter 4 uses these unique cyber-security domain requirements to

design an automated risk scenario generation framework. It also compares the proposed

framework’s design with the current risk scenarios generation frameworks. Chapter 5

describes the proposed framework’s architecture. The implementation of proposed

framework is described in Chapter 6 and 7, and the modes of operations of the proposed

framework are described in Chapter 8. Chapter 9 compares the proposed framework with

current cyber-security risk scenario generation frameworks using a case study. Chapter

10 summarizes the research contribution, applications, and extensions of the framework.

Finally, Chapter 11 describes the conclusion.

4

2 Characterization of the Security Domain

2.1 Introduction

“Out of every IT dollar spent, 15 cents goes to security. Security staff is being hired

at an increasing rate. Surprisingly, however, enterprise security isn’t improving.”,

according to the “Global State of Security” survey [4] . Accurate cyber-security risk

assessment and investment are critical problems faced by many organizations today. One

critical part of risk assessment is risk scenario generation. Risk scenarios describe how an

undesirable outcome (for example, attacks, accidents, etc.) may occur. This dissertation

focuses on identifying the requirements for doing risk assessments in the cyber-security

domain. The identified cyber-security domain requirements are used to propose a

framework for automatically generating risk scenarios, which describe the plan an

attacker would use to compromise the system.

This chapter surveys the current state of cyber-security, and identifies the domain

characteristics that influence cyber-security risk assessment. Section 2.2 describes the

current state of cyber-security. Section 2.3 describes the state of cyber-security risk

assessment. Section 2.4 introduces the impact of cyber-security domain characteristics on

the risk assessment.

2.2 State of Security

One of the cyber-security industry’s primary goals during past decade has been to

produce more secure software, and notable improvements have occurred. A large amount

of research has been done to 1) identify and improve coding techniques that reduce

vulnerabilities and 2) discover and patch vulnerabilities more efficiently. According to

5

software manufactures, the cyber-security of software is improving. It is difficult to say

the same about overall state of the cyber-security. In last decade, the number of reported

vulnerabilities increased significantly from 1999 to 2007, with a slow decreasing trend in

the last 3 years. The total number of vulnerabilities published in the National

Vulnerability Database [5] in the past decade are shown in Figure 1.

Figure 1: Number of reported vulnerabilities in last decade- source of data [5]

Despite the efforts to make software more secure, all types of vulnerabilities

continue to exist [6]. Figure 2 compares the number of vulnerabilities reported in 2010

(for each type of vulnerability identified by the National Vulnerability Database [5]) and

the total number of vulnerabilities of that type reported in the last decade.

One of the reasons behind the failure to eradicate a single type of vulnerability

may be that the attackers are adapting to software security improvements. As a result,

new sub-categories of the same type of attacks are often discovered. Another reason is

that the technology infrastructure itself changes rapidly, introducing more vulnerabilities.

0

1000

2000

3000

4000

5000

6000

7000

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Number of Vulnerabilities

6

Figure 2: Comparison of number of vulnerabilities reported in 2010 with total number of

vulnerabilities reported in past decade - source of data [5]

According to a study conducted by Carnegie Mellon University's Computer

Emergency Response Team (CERT), the availability of automated tools capable of

launching sophisticated attacks is increasing [7]. As a result, the level of technical

knowledge needed by the attacker to launch the attacks does not need to be as high.

According to [8] the defender’s capabilities have also increased due to the availability of

better tools. Despite this increase in defender capability, the Global State of Security

Survey showed an increase in financial losses caused by cyber-security breaches, from

6% in 2007 to 20% in 2010[9]. Respondents indicated that the theft of intellectual

property increased from 5% in 2007 to 15% in 2010 [9]. The percentage of respondents

suffering a brand or reputation compromise also increased from 5% in 2007 to 14% in

2010 [9]. The Global State of Security Survey showed also indicates that [9] 23% of its

respondents did not know how many cyber-security incidents they encountered in past

0

500

1000

1500

2000

2500

3000

3500

4000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Total

2010

7

year. This is down from 40% in 2007. The number of respondents who were not aware of

the type of incidents that they encountered also decreased, from 45% in 2007 to 33% in

2010[9]. This information is shown in Figure 3. The trend suggests that the increase in

defensive capabilities is not necessarily making organizations more secure.

Figure 3 State of cyber-security 2011 - source of data [9]

2.3 State of Cyber-security Risk Assessment and Risk-based Decision

According to [9] only 30% of respondents used risk reduction to justify cyber-

security investment. This is shown in Table 1 below.

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

Don’t know
number of
incidents

Don't know
type of
incident

Financial
Losses

Theft of
intellactual
property

Brand or
reputation

compromised

2007

2008

2009

2010

8

Factors justifying cyber-security investment 2007 2008 2009 2010

Legal/regulatory environment 58% 47% 43% 43%

Client requirement 34% 31% 34% 41%

Professional judgment 45% 46% 40% 40%

Potential liability/exposure 49% 40% 37% 38%

Common industry practice 42% 37% 34% 38%

Risk reduction score 36% 31% 31% 30%

Potential revenue impact 30% 27% 26% 27%

Table 1 Factor’s used to justify cyber-security investment- source of data [9]

A case has also been made for replacing risk-driven cyber-security approach with

due-diligence driven approach [10, 11]. One of the reasons behind this viewpoint is that

current expert driven cyber-security risk assessment methods are often considered as

“folk art”, leading to inconsistent, non-repeatable outcomes. The Office of Management

and Budget (OMB) no longer requires the preparation of formal risk analyses [3].

According to the OMB [3], “In the past, substantial resources have been expended doing

complex analyses of specific risks to systems, with limited tangible benefit in terms of

improved security for the systems. Rather than continue to try to precisely measure risk,

security efforts are better served by generally assessing risks and taking actions to

manage them.”

This dissertation agrees that the current cyber-security risk assessment

methodology does need to be improved. However, the lack of improved cyber-security in

the system is not only because of the limitation of current risk assessment methods, but is

caused by a failure to understand the characteristics of the cyber-security domain. A lack

of understanding of cyber-security domain characteristics affects all cyber-security

methodologies, including the cyber-security risk assessment methods. The risk

assessment can also be accurate without being complex.

9

In addition, there is an emerging trend towards integrating cyber-security with the

central risk management framework of an organization. For example, there is a

progressive move to combine physical security with cyber-security [12]. On national

level, there is increasing focus on integrating the nation’s civil infrastructure with the

technology infrastructure connected to internet. An example of this is the ultra-

interconnected US power grid [13, 14]. This exposes the critical infrastructure to a new

type of threat. This threat can be addressed by integrating the cyber-security risk

assessment with the critical infrastructure risk assessment.

Despite these efforts, there is a fundamental misalignment between the

characteristics of the domains whose risk assessment methods are to be integrated. Risk

assessment techniques developed for a mature domain are often applied to other

developing domains without understanding why these techniques were used in a specific

way in the first domain. To efficiently integrate these different domains under a central

risk management framework, the common risk assessment techniques need to be tailored

to the specific domain requirements.

2.4 Security Domain Characteristics and Impact on Risk Assessment

Current cyber-security risk assessment focuses on identifying vulnerabilities, and

corresponding security controls. Consequently, the risk scenario generation mainly

focuses on vulnerability identification. Often these scenarios are reduced to capturing

only the presence of a single vulnerability and how it can be exploited. This type of risk

assessment focuses only on a small aspect of an otherwise complex cyber-security

domain.

10

This section introduces the impact of cyber-security domain characteristics on the

risk assessment process.

2.4.1 Expert Theories

Current cyber-security risk assessment is mainly driven by expert knowledge and

judgment. Experts are asked to identify and rank the risks. The risk scenarios are often

generated by performing a security/penetration testing. This penetration testing is carried

out by a “red-team” that attacks the system to discover vulnerabilities. The red-team

consists of a group of “ethical hackers” that compromises the system to uncover

vulnerabilities [15]. The outcomes of current expert-driven risk assessments are

subjective, and lead to inconsistencies and non-repeatable outcomes.

This dissertation proposes a framework for automatically generating risk

scenarios. The framework elicits the cyber-security theories from experts. It then uses

these theories to automatically generate risk scenarios. The framework can also be used

to validate and calibrate the expert theories. Validation can be done by using logical

reasoning and calibration can be done by using empirical data.

2.4.2 Domain Dynamicity

Cyber-security domain is inherently dynamic. In this domain, the system to be

protected changes with new versions and frequent updates. At the same time, new

vulnerabilities and attacks are also discovered.

Computer hardware trends are addressed by Moore's law [16]. This law suggests

that the number of transistors that can be placed inexpensively on an integrated circuit

increases exponentially. This number doubles approximately every two years. Software

trails behind the Moore’s law. A complete reengineering of a typical software application

11

occurs on average 3-5 years. However, there is a drive for software to follow Moore’s

law to take advantage of the availability of faster processing. That being said, software is

more dynamic than hardware. Even though a complete redesign of software takes longer,

patches and updates are released periodically. For example, Microsoft releases security

patches and updates every alternate Tuesday. This is commonly known as “Patch

Tuesday”. Unlike hardware maintenance, these patches and updates may change the

system’s behavior. This dynamic nature of software also affects the risk scenarios.

As mentioned in Section 2.3, the OMB no longer requires the preparation of

formal risk analyses [3]. According to the OMB [3], “While formal risk analyses need not

be performed, the need to determine adequate security will require that a risk-based

approach be used.” The OMB recommends [3] reviewing the security controls when

significant modifications are made to the system, but at least every three years. This

recommendation assumes that the risks and the corresponding risk-based controls are

impacted only by significant change in the system. This does not take into consideration

the impact of frequent software updates. It also ignores the change in risk levels due to

discovery of new vulnerabilities, or attacks.

Due to the domain dynamicity, the risk scenarios should be updated, whenever

new knowledge about the system, vulnerability and attack is available (or if current

knowledge changes).

2.4.3 Intelligent Threat

In traditional risk assessment (for example, engineering system risk assessment),

the threat agent (failure mode) is considered static, adhering to certain laws or rules. The

field of study to determine this type of threat of failure is often called the “physics of

12

failure” [17]. However, in the case of cyber-security, the threat is reactive and intelligent

in nature. One of the consequences is that the implementation of countermeasures may

not decrease the overall risk, even though it efficiently reduces the probability of a high

priority risk scenario. This is because the adaptive threat agent can change its strategy,

increasing the probability of another low priority risk scenario. Apart from adapting to

the implemented countermeasures, the attacker also adapts and reacts to the target

system’s environment.

The human attacker behavior is also driven by strategy and preferences. For

example, attacker behavior research [18, 19] suggests that individual attackers prefer

certain type of vulnerabilities to others. Just because vulnerability is present does not

necessarily mean that it will be exploited. Hence, it is crucial to take into consideration

attacker behavior when performing cyber-security risk assessments.

The proposed framework automates the cyber-security risk scenario generation by

capturing attacker behavior. The theories about attacker behavior can be elicited from

cyber-security experts. The proposed framework supports validation and calibration of

expert theories. Validated theories are used as an input in the automatic generation of risk

scenarios. The proposed framework also captures the domain dynamicity, and the

automation reduces the time and effort needed to generate risk scenarios.

13

3 Requirements of Risk Assessment Methodology

3.1 Introduction

Cyber-security risk assessment techniques are often adapted from mature domains

(for example, engineering risk assessment domain) in which quantitative risk assessment

methods are used. However, the risk assessment methods used in one domain may not

directly apply to another. In order to accurately adapt these risk assessment methods, it is

necessary to understand how domain characteristics influence the selection and

development of the methods.

This chapter describes the relationship between the risk assessment process and the

characteristics of the domain in which the assessment is done. It identifies the cyber-

security domain characteristics that can be used as the requirements for developing cyber-

security assessment methods (or adapting methods from other domain). The chapter

concludes with a discussion of current cyber-security risk scenario generation methods,

their limitations, and the proposed framework that overcomes these limitations.

3.2 Risk Assessment Process of Different Domains

Risk assessment is used in many domains, ranging from financial systems to

political science. This section describes the domains that lead in the development and use

of risk assessment methods. It describes their domain background, risk assessment

process, and their domain characteristics. Section 3.2.1 focuses on engineering systems

risk assessment, illustrating its use by the Nuclear Regulatory Commission (NRC) and

the National Aeronautics and Space Administration (NASA). Section 3.2.2 describes

environmental risk assessment performed by the Environmental Protection Agency

14

(EPA). Section 3.2.3 covers infrastructure-security risk assessment performed by the

Department of Homeland Security. Finally, Section 3.2.4 describes current cyber-security

risk assessment.

Section 3.3 identifies how the domain characteristics influence the risk assessment

methods. Section 3.3 also describes how the cyber-security domain characteristics differ

from the domains in which risk assessment is used predominantly. This dissertation

proposes that the cyber-security risk assessment methods can be adopted from other

domains only if they are tailored to meet the unique cyber-security domain requirements.

Section 3.4 identifies these cyber-security domain requirements.

3.2.1 Engineering System Risk Assessment

3.2.1.1 Nuclear Regulatory Commission (NRC)

 A nuclear power plant produces a controlled nuclear reaction. The nuclear

reactions take place in reactor core, which contains the nuclear fuel. One of the primary

objectives in the operation of nuclear reactors is to prevent damage to the core. Therefore,

one of the primary objectives of the risk assessment is to prevent this core damage. “The

NRC regulates commercial nuclear power plants and other uses of nuclear materials

through licensing, inspection, and enforcement of its requirements” [20]. NRC uses risk

assessment to support decision making throughout the regulatory process [21].

Background of Risk Assessment

According to [22], “The NRC initially developed many of its regulations without

considering numerical estimates of risk. Rather, those prescriptive, deterministic

regulatory requirements were primarily based on experience, test results, and expert

15

judgment. In developing those requirements, the NRC considered factors such as

engineering margins and the principle of defense-in-depth.” This approach involved

asking only “What can go wrong?” and “What are the consequences?” [22].

According to [23], “An early study released in 1957 focused on three scenarios of

radioactive releases from a 200-megawatt nuclear power plant operating 30 miles from a

large population center. Regarding the probability of such releases, the study concluded

that no one knows how or when we will ever know the exact magnitude of this low

probability.”

In 1975, the agency published the Reactor Safety Study [24], based on Probabilistic

Risk Assessment (PRA) [22]. This resulted in asking the additional question, “How likely

it is that something will go wrong?” [22].

According to [23], “Shortly after the Three Mile Island accident, a new generation of

PRAs appeared in which some of the methodological defects of the Reactor Safety Study

were avoided. The NRC released the Fault Tree Handbook in 1981 and the PRA

Procedures Guide in 1983, which shored up and standardized much of the risk assessment

methodology.” In NUREG 1150, released in 1991, NRC used structured expert judgment

to quantify uncertainty [23]. According to [22] the agency developed the PRA

Implementation Plan in 1994. By 2000, this plan was replaced by the Risk-Informed

Regulation Implementation Plan (RIRIP), which in turn was superseded in April 2007 by

the Risk-Informed, Performance-Based Plan (RPP) [22].

NRC is moving toward a risk-informed, performance-based regulatory framework.

According to [22], “Many of the present regulations are based on deterministic and

prescriptive requirements that cannot be quickly replaced. Therefore, the current

16

requirements are being maintained, while risk-informed and/or performance-based

regulations are being developed and implemented.”

Risk Assessment Methodology

The NRC uses the probabilistic risk assessment approach. PRA is used to estimate

risk by quantifying 1) what can go wrong, 2) how likely it is, and 3) what are its

consequences. PRA also provides insight into the strengths and weaknesses of the design

and operation of the nuclear plant. According to [25], the NRC uses PRA to perform a

layered risk assessment, “A Level 1 PRA estimates the frequency of accidents that cause

damage to the nuclear reactor core. This is commonly called core damage frequency

(CDF).” Second level is defined as [25], “A Level 2 PRA, which starts with the Level 1

core damage accidents, estimates the frequency of accidents that release radioactivity

from the nuclear power plant.” Finally [25], “A Level 3 PRA, which starts with the Level

2 radioactivity release accidents, estimates the consequences in terms of injury to the

public and damage to the environment.”

The steps taken to perform the PRA are as follows [25, 26]:

Step 1 Specify the hazard: This step identifies the outcome to be prevented or

reduced. The core damage is usually the outcome to be prevented [25, 26].

Step 2 Identify initiating events: In this step, the analyst identifies initiating events

that could lead to identified hazards (for example, breakage of a pipe carrying reactor

coolant) [25, 26].

Step 3 Frequency estimation: The frequency of occurrence of each initiating event

is identified in this step (for example, how often do we expect a pipe of this size to

break?) [25, 26].

17

Step 4 Scenario Identification: In this step, the analyst identifies each combination

of failures leading to the identified consequence (for example, pump failure and valve

failure) [25, 26].

Step 5 Scenario Quantification: The likelihood of each event sequences is computed

and the probabilities of all sequences leading to the same outcome are combined [25, 26].

These probabilities are then multiplied by the frequency of the initiating event(s) [25, 26].

3.2.1.2 National Aeronautics and Space Administration

Background of Risk Assessment

Before the Apollo accident in 1967, “NASA relied on its contractors to apply good

engineering practices to provide quality assurance and quality control” [23]. At the onset

of the Apollo program, NASA generally accepted the notion of using risk analysis, but

during the program, pessimistic estimates discouraged the adoption of quantitative risk

analysis[27]. This initial risk analysis used conservative values of failure frequencies,

instead of a full uncertainty analysis[27]. Furthermore, according to [27] the risk

assessment methods at that time were in infancy and software needed did not exist.

In 1969, NASA’s Office of Manned Space Flight initiated the development of

quantitative safety goals, but they were not adopted [23]. According to [23], “The reason

given at the time was that managers would not appreciate the uncertainty in risk

calculations. Following the inquiry into the Challenger accident of January 1986, we

learned that distrust of reassuring risk numbers was not the only reason that PRA was

abandoned. Rather, initial estimates of catastrophic failure probabilities were so high that

their publication would have threatened the political viability of the entire space

program.”

18

Throughout the Apollo program and until the Challenger accident, NASA relied

heavily on failure modes and effects analysis (FMEA) for safety assessment[28]. FMEA

is a qualitative process in which a group of experts identifies potential modes of failure

and their effects. These failure modes are assigned a severity and likelihood ranking,

which are used to calculate the priority ranking of the corresponding failure.

After the Challenger accident, the National Research Council committee, in Post-

Challenger Evaluation of Space Shuttle Risk Assessment and Management, [29] found

that previous quantification of shuttle risks were based almost exclusively on subjective

judgments and qualitative rationales[27]. This committee [29], recommended using that

probabilistic risk assessment approaches at the earliest possible date. The Committee on

Science and Technology of the House of Representatives [30] recommended estimating

the probability of failure of the Shuttle elements. According to [27], yet there was still

strong resistance within NASA. One of the reasons for this resistance was because the

cost to complete a PRA seemed high.

In 1995, the first attempt at a comprehensive risk assessment was taken by NASA

using the method similar to the risk assessment framework developed by the Nuclear

Regulatory Commission [27]. Currently PRA has been adopted as one of the decision

supporters for the management of the space shuttle, space station and some unmanned

space missions [27].

Risk Assessment Methodology

NASA’s risk assessment process is similar to NRC’s process. This process consists

of the following steps [31].

19

Step 1 Objectives Definition: This step identifies the objectives of risk assessment

and the undesired consequences to be evaluated [31].

Step 2 System Familiarization: In this step, analyst familiarizes himself with the

system to be evaluated. The operations, maintenance and design documents are used for

obtaining information about the system. System familiarization is a prerequisite for

development of the system model [31], which is used for the risk analysis.

Step 3 Identification of initiating events (IEs): In this step, analysts identify the

events that trigger the accident scenario. Methods like Mater Logic Diagram (MLD) and

Failure Mode and Effect Analysis (FMEA) are used to identify these events[31]. For

further information about this tools refer to [31, 32].

Step 4 Scenario Modeling: According to [31], “The modeling of each accident

scenario proceeds with inductive logic and probabilistic tools called event trees (ETs). An

ET starts with the initiating event and progresses through the scenario, a series of

successes or failures of intermediate events called pivotal events, until an end state is

reached.”

Step 5 Failure Modeling: According to [31], “Each failure (or its complement,

success) of a pivotal event in an accident scenario is usually modeled with deductive

logic and probabilistic tools called fault trees (FTs).” The Fault Trees represent the

hierarchical logic behind how a combination of low-level events leads to the undesirable

event [32].

Step 6 Data Collection, Analysis, and Development: In this step, data is collected to

quantify the accident scenarios [31].

20

Step 7 Quantification and Integration: This step quantifies the event tree and fault

tree models. The risk scenarios are also grouped by their consequences[31].

Step 8 Uncertainty Analysis: Uncertainty analysis is used to determine confidence

in quantitative results [31].

Step 9 Sensitivity Analysis: Sensitivity analysis is performed to identify elements

that most strongly affect the risk outcome[31].

Step 10 Importance Ranking: According to [31] , “In some PRA applications,

special techniques are used to identify the lead, or dominant, contributors to risk in

accident sequences or scenarios. The identification of lead contributors in decreasing

order of importance is called importance ranking.”

3.2.1.3 Engineering System Domain Characteristics and Impact on Risk

Assessment

This section describes the engineering system domain characteristics. These domain

characteristics influence why and how the risk assessment is performed in the

engineering domain.

1. System Laws: In order to conduct the risk assessment, it is assumed that the

system is characterized by well-understood rules or scientific laws (for example,

natural or defined laws like the laws of physics). The scientific law is defined as a

[33], “phenomenon of nature that has been proven to invariably occur whenever

certain conditions exist or are met”. These laws drive the system models and

failure modes used for risk assessment.

2. System Dynamics: According to [34], “An important characteristic of many

engineering system is that they behave dynamically, i.e., their response to an

21

initial perturbation evolves over time as system components interact with each

other and with the environment.” This dynamic phenomenon significantly

impacts systems like nuclear power plants. Traditional risk assessment methods

do not address such dynamics, and special techniques like dynamic reliability

analysis or simulation are used in assessment. The dynamic reliability analysis

methods include dynamic event tree and discrete state transition modeling [34]. In

both these methodologies, the analyst identifies the discrete system states and

possible transitions between the states [34]. The simulation driven methods

develop system models representing its elements and events [34]. Nejad-

Hosseinian [35]proposes a framework for capturing different types of engineering

knowledge for automatically generating event sequence diagram for dynamic

systems. This framework is described in detail in Appendix VII.

3. High reliability system: Critical engineering systems like nuclear plants and the

space shuttle are designed for high reliability. As a result, the failure data about

the system is not readily available. In this case, the risk assessment is often

conducted by taking into account the condition of the system’s failure precursor

state (degradation state) or by using expert judgment.

Expert judgment is often used to determine the probability of failure when data is

unavailable. The techniques used to extract this probability are studied under the

title of expert elicitation. Present day engineering risk assessment is also

dependent on the risk analyst’s ability to identify risk scenarios. The quality of

risk assessment is directly tied to the expertise of the analyst, which raises

22

questions about the completeness of the risk scenarios identified. This concern

was addressed by automatically generating event sequence diagrams [35].

4. Threat Agent: The leading sources of threat in the engineering domain are failure

mechanisms. These failure mechanisms are studied under the field of the physics

of failure analysis [17], which identifies the physical mechanisms leading to the

failure. Another area of concern is human error. The field of human reliability

studies the potential human performance indicators and causes of unintentional

human errors. This type of threat does not adapt to the preventative

countermeasures, or to the change in system environment.

5. Change in system: Once built, the system configuration remains mostly stable.

As a result, the system familiarization step does not need to be repeated

frequently. System models once build remains stable. System maintenance is done

to restore the original intended configuration of the system. Hence, the risk

assessment performed for original system configuration may remain valid for the

majority of useful life of the system. Due to stability of the system model and

non-adaptive nature of the threat, risk scenarios once identified does not change.

3.2.2 Environmental risk assessment

3.2.2.1 Environmental Protection Agency (EPA)

According to [36], “The mission of the EPA is to protect human health and to

safeguard the natural environment — air, water, and land — upon which life depends.

EPA fulfills this mission by, among other things, developing and enforcing regulations

that implement environmental laws enacted by Congress.”

23

The EPA uses risk assessment to provide the best possible scientific characterization

of risks [36]. The scientific implications of risks, identified as outcomes of the risk

assessment, are used by the decision maker to optimally mitigate the environmental

risks[36].

Background of Risk Assessment

According to [37], “Procedures for analyzing hazards and measuring risks existed

prior to 1970, but had been developed for purposes other than environmental protection

(for example, to determine life insurance rates or the likelihood of flooding) and had not

been widely applied to more complex environmental hazards.” Since EPA urgently

needed suitable tools to carry out its mission, it supported the development of the newly

consolidated field of risk analysis and helped to found the Society for Risk Analysis [37].

According to [37], “The Agency was among the first to apply the methods of risk

analysis to problems in environmental protection. EPA developed new procedures and

adapted methods from such disciplines as sanitary and industrial engineering,

psychology, economics, sociology, statistics, and operations research. By the mid 1970s,

EPA was conducting risk analyses to support some of its decisions.”

The EPA’s initial risk assessment studies were documented in 1975 [36]. According

to [36], these documents reflected EPA’s intent to use rigorous assessments of health risk

and economic impact as part of the regulatory process. The first EPA document, [36]

describing application quantitative procedures used in risk assessment, was published in

1980 [36]. EPA adapted their risk assessment principles from the National Academy of

Science (NAS)’s 1983 publication of “Risk Assessment in the Federal Government:

24

Managing the Process” [38] commonly referred to as the “Red Book” [36]. In 1984, the

EPA published [36] “Risk Assessment and Management: Framework for Decision

Making” [39], which “…emphasizes making the risk assessment process transparent,

describing the assessment’s strengths and weaknesses more fully, and providing plausible

alternatives within the assessment” [36].

The EPA’s risk assessment practices evolved [36] with the risk assessment principles

documented in publications like the “Science and Judgment in Risk Assessment”[40] and

“Understanding Risk: Informing Decisions in a Democratic Society” [41]. These

principles were developed to ensure that the assessments meet the intended objectives

and are understandable [36].

According to [42], “Although EPA efforts focused initially on human health risk

assessment, the basic model was adapted to ecological risk assessment in the 1990s to

deal with risks to plants, animals and whole ecosystems.”

According to [36], EPA’s risk assessment principles and practices were built on their

own risk assessment guidance’s and policies such as the Risk Characterization Policy

[43], Guidance for Cumulative Assessment, Part 1: Planning and Scoping [44], the Risk

Assessment Guidance for Superfund [45], EPA’s Information Quality Guidelines [46],

and A Summary of General Assessment Factors for Evaluating Quality of Scientific and

Technical Information [47].

Risk Assessment Methodology

The EPA [48] considers risk to be, “the chance of harmful effects to human health

or to ecological systems resulting from exposure to an environmental stressor”. A stressor

is defined [48] as, “any physical, chemical, or biological entity that can induce an adverse

25

response”. According to [48], risk assessment is a scientific process and the risk depends

on three factors: 1) how much of a chemical is present in an environmental medium, 2)

how much contact or exposure a person, or ecological receptor has with the contaminated

environmental medium, and 3) the toxicity of the chemical. The risk assessments

performed by EPA are classified in two categories: the human health risk assessment and

the ecological risk assessment.

Human Health Risk Assessment

This assessment estimates the type and probability of adverse health effects in

humans who may be exposed to chemicals in contaminated environmental [49].

According to [49], the human health risk assessment includes four basic steps.

Step 1 Hazard Identification: This step evaluates whether or not a stressor has the

potential to cause harm to humans and/or ecological systems[49]. The data regarding the

clinical studies on humans provide the most accurate evaluation, but these are difficult to

gather[50]. Hence, statistical methods are used to calculate the harm potential from

epidemiological or animal studies[50].

Step 2 Dose-Response Assessment: This assessment examines the relationship

between exposure and effects [49]. Data availability is also an issue in this step. When

data are available, they often cover only a portion of the possible range of the dose-

response relationships [51]. This issue is addressed by using extrapolation techniques.

Similar to the concept of “failure mode” in engineering risk assessment, in this case the

understanding of how the toxicity is caused is called the “mode of action”. This is defined

as a [51] “sequence of key events and processes, starting with interaction of an agent with

26

a cell, proceeding through operational and anatomical changes, and resulting in the effect,

for example, cancer formation.”

Step 3 Exposure Assessment: According to [52], “Exposure assessment is the

process of measuring or estimating the magnitude, frequency, and duration of human

exposure to an agent in the environment, or estimating future exposures for an agent that

has not yet been released”.

Step 4 Risk Characterization: This is the communication part of the process. It

examines how well the data support conclusions about the nature and extent of the risk

from exposure to environmental stressors [49]. According to [53], “A risk

characterization conveys the risk assessor's judgment as to the nature and presence or

absence of risks, along with information about how the risk was assessed, where

assumptions and uncertainties still exist, and where policy choices will need to be made.”

Ecological Risk Assessment

Similar to human health risk assessment, ecological risk assessment is the process for

evaluating the likely impact of the exposure of stressors on the environment.

Environmental stressors include chemicals, land change, disease, invasive species, and

climate change [54].

The ecological risk assessment [54] includes three phases:

Phase 1 Problem formulation: This step determines what is at risk and what needs

to be protected [54].

Phase 2 Analysis: In this step, the analyst determines 1) what plants and animals are

exposed, 2) what is the degree of exposure, and 3) the likelihood of exposure causing

harmful ecological effects [54].

27

Phase 3 Risk characterization: According to [54], this step is divided into two major

components: risk estimation and risk description. Risk estimation combines exposure

profiles and exposure effects [54]. Risk description aides in interpreting the risk results

and determines a level for harmful effects on the plants and animals[54].

3.2.2.2 Environmental Domain Characteristics

The environmental risk assessment is driven by the following domain characteristics.

1. System Laws: Similar to the engineering domain, in the environmental domain

the system model and risk assessment rely on underlying scientific laws

(biological and chemical). These are supplemented by scientific theories. The

scientific theory [55] explains empirical observations. Scientific theories must be

falsifiable. These scientific theories are derived by empirical causal analysis

indicating the impact of stressors on humans and the environment.

2. Risk Exposure: Risk exposure adds a probabilistic factor between the occurrence

of the risk factor and the impact of risk. In the environmental risk assessment, the

realization of consequence depends on the occurrence of risk, as well as the

exposure to the risk. In other words, lack of exposure can mask the occurrence of

risk.

3. Threat: The threat in this domain is any physical, chemical, or biological entity

that can induce an adverse response to the environment or human health. Similar

to the engineering domain the threat does not adapt to the preventative

countermeasures, or to the change in system environment

28

3.2.3 Infrastructure Security Risk Assessment

3.2.3.1 Department of Homeland Security (DHS)

Background of Risk Assessment

According to the National Academy of Science (NAS) review of the DHS’s

approach to risk assessment [56] ,“The scope of responsibilities of DHS is large, ranging

over most, if not all, aspects of homeland security and supporting in principle all

government and private entities that contribute to homeland security. For some functions,

DHS is responsible for all of the elements of risk analysis. For other functions for which

the responsibility is shared, effective coordination is required with owners and operators

of private facilities; with state, territorial, and local departments of homeland security and

emergency management; and with other federal agencies such as the Department of

Health and Human Services, the Environmental Protection Agency, or the Department of

Agriculture.”

The NAS review committee [56] evaluated six risk assessment models and

processes. These models included the natural hazards, critical infrastructure protection,

and homeland security grants risk models, as well as the Terrorism Risk Assessment and

Management (TRAM) model, the Biological Threat Risk Assessment (BTRA) model and

the DHS’s Integrated Risk Management Framework. The conclusion [56] of this review

was as follows.

 “Conclusion: DHS has established a conceptual framework for risk analysis (risk is

a function of threat (T), vulnerability (V), and consequence (C), or R = f(T,V,C)) that,

generally speaking, appears appropriate for decomposing risk and organizing

information, and it has built models, data streams, and processes for executing risk

29

analyses for some of its various missions. However, with the exception of risk analysis

for natural disaster preparedness, the committee did not find any DHS risk analysis

capabilities and methods that are yet adequate for supporting DHS decision making,

because their validity and reliability are untested. Moreover, it is not yet clear that DHS is

on a trajectory for development of methods and capability.” [56]

The detailed review of these risk assessment methods is mentioned in [56]. In this

dissertation, an example of infrastructure security risk assessment is described by the risk

assessment done for the Homeland Security Grant Program. The purpose of this program

[57] is to invest in the development of protection capabilities across the United States

based on the assessed terrorism risk. According to [57], “At DHS, the State Homeland

Security Grant Program is the primary tool the agency has to influence the behavior of

State and local partners to take actions that reduce what both parties agree are the risks of

a terrorist attack and to respond effectively to such an attack, or other catastrophe”.

Risk Assessment Methodology- Homeland Security Grant Program

The State Homeland Security Grant Program is established to allocate funds to state

and local partners in order to reduce risk of terrorist attack and to better prepare the state

if such attacks should occur. A risk-based approach is used to make the fund allocation

decision. This risk-based approach has evolved over the period as described below [57].

R=P formula used during 2001-2003: From 2001-2003 (during the transition of

responsibility of conducting risk assessment from DOJ to DHS) this risk was considered

to be equal to population count [57].

30

R=T+CI+PD formula used during 2004-2005: Risk was considered as weighted

summation of the threat, critical infrastructure, and the population density of the area

[57]. Probabilities were not considered during this period.

R=T*V*C formula used during 2006-2007: From 2006 onwards, probability of

occurrence of an event was incorporated in the risk assessment[57]. In this case, risk was

defined as multiplication of the threat, vulnerability, and consequences. Threat was

defined as the likelihood of an attack occurring and the product of vulnerability and

consequence considered together represent the relative exposure and expected impact of

an attack. According to [57], the DHS is treating vulnerability (V) and consequence (C)

as an amalgamated, single variable. According to [57], the DHS assigns the probability of

one to a vulnerability being present, meaning it assumes the presence of vulnerability.

This is because of the difficulties associated with differentiating vulnerability values

across areas and states.

R=T*(V&C) formula used from 2007-Current: According to GAO [58], from

2007 onwards, DHS’ presentation of the risk calculation formula used the variable

(V&C), but the combination of vulnerability and consequence is still calculated as the

product of V times C.

3.2.3.2 Infrastructure Security Domain Characteristics

Risk assessment techniques are not well developed in the infrastructure security

domain [56]. This domain has the following characteristics:

1. Adaptive Threat Agent: The risk scenarios are driven by the dynamic nature of

human threat and its ability to adapt to the countermeasures [56, 57] and the

target’s environment.

31

2. Analyst Dependence: Risk assessments in this domain are heavily driven by the

intelligence analyst’s knowledge and judgment [57]. One of the reasons behind

this reliance on experts is lack of available data. According to [57], this lack of a

rich historical database of terrorist attacks “necessitates a reliance on intelligence

and terrorist experts for probabilistic assessments of types of terrorist attacks

against critical assets and/or regions”. According to [56], “DHS has employed a

variety of methods to compensate for this lack of data, including game theory,

“red-team” analysis, scenario construction, and subjective estimates of both risks

and consequences.” However, these methods have often failed to use state-of-the-

art approach [56].

3. Lack of governing law: Unlike the engineering and environmental domains, the

system and risk models in the infrastructure security risk domain are based on

subjective analyst assessment. This assessment is driven by using expert theories,

which (unlike scientific laws or principles) may or may not hold true for present

and future assessment. Different experts can also form different theories based on

the same evidential data.

3.2.4 Cyber-security risk assessment

Background of Risk Assessment

Cyber-security risk assessment is currently driven by regulations. The importance of

cyber-security was emphasized in the “Presidential Decision Directives (PDD)” 62 [59]

and 63 [60], the executive order 13231 entitled “Critical Infrastructure Protection in the

Information Age” [61], the “Homeland Security Act of 2002” [62], the “Office of

32

Management and Budget (OMB), Circular A-130” [3], “Sarbanes-Oxley Act” [63], and

the “Federal Information Security Management Act of 2002” (FISMA) [64].

“Presidential Decision Directives (PDD)” 62 [59] and 63 [60], released in 1998 by

President Clinton address the new and nontraditional cyber-security threats against

critical infrastructure. PDD 63 [60] focuses on critical infrastructure protection from both

the physical and cyber security perspective. On October 16, 2001, President Bush

announced Executive Order 13231, entitled “Critical Infrastructure Protection in the

Information Age” [61].

OMB Circular A-130 titled “Management of Federal Information Resources” [3]

establishes policy for the management of federal information resources. The Appendix III

of this circular called “Security of Federal Automated Information Resources”

establishes a minimum set of controls to be included in federal automated information

security programs [3]. According to the OMB Circular A-130 [3] Appendix III, “The

Appendix no longer requires the preparation of formal risk analyses. In the past,

substantial resources have been expended doing complex analyses of specific risks to

systems, with limited tangible benefit in terms of improved security for the systems.

Rather than continue to try to precisely measure risk, security efforts are better served by

generally assessing risks and taking actions to manage them. While formal risk analyses

need not be performed, the need to determine adequate security will require that a risk-

based approach be used. This risk assessment approach should include a consideration of

the major factors in risk management: the value of the system or application, threats,

vulnerabilities, and the effectiveness of current or proposed safeguards.” In summary,

33

OMB does not require formal risk assessment, but recommends using a simplified risk-

based approach for control evaluation.

FISMA requires each federal agency to develop, document, and implement an

agency-wide program to provide information security[65]. FISMA applies to both

information and information systems used by the agency, contractors, and other

organizations and sources, so it has somewhat broader applicability [64]. The Federal

cyber-security requirements mentioned in OMB Circular A-130 continue to apply under

FISMA, and the agency is responsible for ensuring appropriate cyber-security controls in

accordance with the OMB Circular A-130, Appendix III, “Security of Federal Automated

Information Resources” [3].

The criticism of FISMA has been that the law focuses on the process as opposed to

the outcome i.e. it requires reporting of whether the security process were followed as

opposed to measuring if the security was improved. According to GAO [66], the FISMA

metrics do not measure how effectively agencies are performing activities. “For example,

agencies report on the number of systems undergoing test and evaluation in the past year,

but there is no measure of the quality of agencies' test and evaluation processes.

Additionally, there are no requirements to report on certain key activities such as patch

management.” [66]

The National Institute of Standards and Technology (NIST) were assigned the

responsibility to create a framework for FISMA implementation. The OMB Circular A-

130 also suggests using NIST’s risk assessment guidance. NIST produced a series of

guidelines of general interest to the cyber-security community called 800 series Special

Publications [67]. This 800 series includes the risk management guidance [68] to satisfy

34

the requirement of FISMA and OMB Circular A-130. The 800 series are the key

publications that drive today’s federal and private sector information cyber-security

initiatives.

Risk Assessment Method – National Institute of Standards and Technology

(NIST)

This risk assessment process contains the following steps [68]:

Step 1- System Characterization: This is similar to NASA’s PRA System

Familiarization (Step 2), in which detailed information about the system is identified. In

this phase, the risk analyst develops an understanding of the technology infrastructure to

be assessed [68].

Step 2- Threat Identification: In this step, a comprehensive list of potential threat

sources (for example, Natural Threats, Environmental Threats, and Human Threats) is

created. Once identified, a list of threat motivation and actions is created. According to

NIST [68], “Motivation and the resources for carrying out an attack make humans

potentially dangerous threat-sources.” The estimate of motivation, capability, and

resources may be required to determine the likelihood that a threat agent may exploit

vulnerability[68]. An example[68] given by NIST is shown in Table 2 below:

35

Table 2: Threat source to action mapping – source of data [68]
Step 3- Vulnerability Identification: In this step, a list of vulnerabilities is identified

and is mapped to potential threat sources that can exploit them [68]. An example[68]

given by NIST is shown in Table 3.

Vulnerability Threat-Source Threat Action

Terminated employees’ system
identifiers (ID) are not removed [68]

Terminated employees [68] Dialing into the company’s
network and accessing
proprietary data [68]

Company firewall allows inbound telnet,
and guest ID is enabled on ABC server
[68]

Unauthorized users (for
example,
hackers, terminated
employees, cyber
criminals, terrorists) [68]

Using telnet to ABC server
and browsing system files
with the guest ID [68]

Table 3: Vulnerability to threat action mapping - source of data [68]

NIST’s [68] recommended methods for vulnerability identification are 1) using

published vulnerability information, 2) performing system cyber-security testing, and 3)

developing a cyber-security requirements checklist.

The published vulnerability information can be collected from sources such as

previous risk assessment documentation, audit reports, vulnerability databases (for

example, national vulnerability database)[68].

Security testing involves vulnerability scanning, cyber-security test and evaluation,

or penetration testing [68]. The penetration testing is often performed by a red-team.

Threat-Source Motivation Threat Actions

Hacker/Cracker Challenge, Ego, Rebellion
Hacking, Social engineering, System intrusion,
break-ins, Unauthorized system access [68]

Cyber criminal

Destruction of information,
Illegal information,
disclosure, Monetary gain,
Unauthorized data alteration

Computer crime (for example, cyber stalking),
Fraudulent act (for example, replay,
impersonation, interception), Information bribery,
Spoofing, System intrusion [68]

36

In this step, the analyst also identifies the organizational or federal cyber-security

requirements [68]. These cyber-security requirements are documented in the form of a

checklist.

Step 4- Control Analysis: During this step, the risk analyst determines whether the

identified vulnerabilities and cyber-security requirements are being addressed by existing

or planned cyber-security controls[68].

Step 5- Likelihood Determination: Likelihood of the threat source exploiting

vulnerability is described [68] using likelihood levels (high, medium, or low). Table 4

below shows the likelihood levels described in [68].

Likelihood Level Definition of Likelihood

High
"The threat-source is highly motivated and sufficiently capable, and
controls to prevent the vulnerability from being exercised are
ineffective.” [68]

Medium
“The threat-source is motivated and capable, but controls are in place
that may impede successful exercise of the vulnerability .” [68]

Low
“The threat-source lacks motivation or capability, or controls are in place
to prevent, or at least significantly impede, the vulnerability from being
exercised .” [68]

Table 4: Likelihood of vulnerability exploit - source of data [68]

Step 6- Impact Analysis: Impact of threat exploiting vulnerability results in loss of

criticality, integrity, and availability[68]. The qualitative magnitude of impact is

identified in Table 5 below. According to [68], some tangible impacts (for example, loss

in revenue, cost of repairing system etc.) can be measured quantitatively.

37

Magnitude of
Impact

Definition of Impact

High “Exercise of the vulnerability (1) may result in highly costly loss of major
tangible assets or resources; (2) may significantly violate, harm, or impede an
organization’s mission, reputation, or interest; or (3) may result in human death or
serious injury. ” [68]

Medium “Exercise of the vulnerability (1) may result in the costly loss of tangible assets or
resources; (2) may violate, harm, or impede an organization’s mission, reputation,
or interest; or (3) may result in human injury. ” [68]

Low “Exercise of the vulnerability (1) may result in the loss of some tangible assets or
resources or (2) may noticeably affect an organization’s mission, reputation, or
interest. ” [68]

Table 5: Impact of vulnerability exploit – source of data [68]

Step 7- Risk Determination: The level of risk to the system is identified [68] by

multiplying the threat likelihood with the impact as shown in Table 6 below.

Threat

Likelihood

Impact

Low (10) Medium (50) High (100)

High (1.0) Low 10 X 1.0 = 10 Medium 50 X 1.0 = 50 High 100 X 1.0 = 100

Medium (0.5) Low 10 X 0.5 = 5 Medium 50 X 0.5 = 25 Medium 100 X 0.5 = 50

Low (0.1) Low 10 X 0.1 = 1 Low 50 X 0.1 = 5 Low 100 X 0.1 = 10

Table 6: System risk caculation - source of data [68]

The resulting risk levels can be interpreted as below:

High: According to [68], “If an observation or finding is evaluated as a high risk,

there is a strong need for corrective measures. An existing system may continue to

operate, but a corrective action plan must be put in place as soon as possible”

Medium: According to [68], “If an observation is rated as medium risk, corrective

actions are needed and a plan must be developed to incorporate these actions within a

reasonable period of time.”

38

Low: If an observation is described as low risk, a determine needs to be made to

either take corrective actions or to decide to accept the risk [68].

Step 8- Control Recommendation: The controls that can mitigate or eliminate the

identified risks are determined in this step [68]. Appropriate identified controls are

implemented to reduce the risk to an acceptable level.

Step 9- Results Documentation: A report describing the threats, vulnerabilities, risk,

and control recommendations is created in this step [68].

The risk assessment process, however, is often reduced to the three-step process

described below:

Reduced Step 1 – System Classification: FIPS Publication 199 allows classification

of the information or system (called assets in the FISMA guidance) in high, medium, or

low categories based on the potential impact on organizations or individuals should there

be a breach of cyber-security [69]. FIPS Publication 199 [69] Standards for Security

Categorization of Federal Information and Information Systems describes these system

classification criteria in detail. As an example [69], the definition of high impact

according to FIPS Publication 199 is indicated below:

“The potential impact is HIGH if-

− The loss of confidentiality, integrity, or availability could be expected to have a

severe or catastrophic adverse effect on organizational operations, organizational assets,

or individuals.”

FIPS Publication 199 [69] further mentions, “A severe or catastrophic adverse effect

means that, for example, the loss of confidentiality, integrity, or availability might: (i)

39

cause a severe degradation in or loss of mission capability to an extent and duration that

the organization is not able to perform one or more of its primary functions; (ii) result in

major damage to organizational assets; (iii) result in major financial loss; or (iv) result in

severe or catastrophic harm to individuals involving loss of life or serious life threatening

injuries.”

Reduced Step 2- Minimum Security Requirements Identification: A second

mandatory cyber-security standard, FIPS 200 [70] Minimum Security Requirements for

Federal Information and Information Systems, identifies a set of 17 cyber-security

requirements that should be met by the systems at minimum[70]. Examples of these

requirements[70] are access control, awareness and training, audit and accountability.

Reduced Step 3- Control Selection: A third standard NIST 800-53 [71]

Recommended Security Controls for Federal Information Systems can be used to identify

controls whose implementation satisfies the minimum requirements identified in FIPS

200. NIST 800-53 identifies [71] controls that can be used for each system classification

(high, medium, or low).

In summary, in reduced assessment, the system classification level and cyber-

security requirements are used to determine the controls to be used.

3.2.4.1 Cyber-Security Domain Characteristics

The cyber-security domain characteristics are explained below.

1. Lack of governing law: In the cyber-security domain, the risk assessment is

qualitative in nature and driven by the cyber-security experts. Expert theories,

unlike system laws, may or may not hold true for present and future assessments.

40

In addition, different experts may form different theories based on the same

evidential data.

2. Adaptive threat: Similar to the threat [56, 57] described in infrastructure risk

assessment domain, the threat agent in cyber-security domain is human and

considered reactive and intelligent in nature. This human threat adapts to the

system environment and the countermeasures implemented. The human attacker

actively searches for the opportunities provided by the system, and determines, or

changes the attack goal given the availability of these opportunities. The cyber-

security risk scenario should take into consideration this adaptive and exploratory

nature of the attacker.

3. Domain Dynamicity: Cyber-security domain is inherently dynamic. The system

to be protected changes frequently with new versions and updates. At the same

time, new vulnerabilities and attacks are also discovered frequently.

4. Analyst dependence: Current cyber-security risk assessment is heavily

dependent on the analyst. The expert opinion is used to identify threat sources and

vulnerabilities, to assess the likelihood and impact of the threat-vulnerability

pairs, and finally to select the controls mitigating the identified risks. This analyst

dependence makes the outcome of the risk assessment inconsistent and

unrepeatable.

41

3.3 Domain Characteristic Comparison and Limitation of Cyber-

security Risk Assessment

 This section compares the characteristics of the domains described in Section 3.2.

Six domain characteristics were selected for this comparison. These are shown in Figure

4, and are explained below.

1. Rate of System Evolution: This describes the rate at which the system

configuration changes. It is characterized as high (H), medium (M) or low (L) for

the comparison shown in Figure 4.

2. Rate of Vulnerability Evolution: This describes the rate at which new

vulnerabilities in the system are identified. It is also characterized as high (H),

medium (M) or low (L) for the comparison of different domains.

3. System Dynamics: Dynamics refers to the time evolution of physical process,

and system dynamics[34] refers to the behavior of complex systems guided by the

dynamics . There is a difference between system dynamics and the dynamicity of

domain. System dynamics is a behavior of the system (for example, nuclear

reaction), while domain dynamicity describes the frequent changes in system, and

threat. The system dynamics is characterized as high (H), medium (M) or low (L)

for the comparison of different domains.

4. Adversary Intelligence: The adversary or threat against the system varies from

domain to domain. In engineering systems, the threat is natural phenomenon that

may lead to failure of the system. The behavior of this threat, characterized as

failure modes, may be predictable. The natural phenomenon threat does not

change its behavior to adapt to the implemented countermeasures or target

42

environment. The threat behavior is also not guided by the adversary’s strategy or

preferences. This type of behavior is described as low adversary intelligence.

As described in Section 3.2.2, in environmental risk assessment, the threat may be

biological or chemical agents. In some cases, this threat may change its behavior

to adapt to the environment. This is described as medium adversary intelligence.

 In cyber-security and infrastructure security risk assessment domains, the human

attacker is characterized by high adversary intelligence. The behavior of this type

of threat may change to adapt to the situation [56, 57], target environment, and

countermeasures implemented. Human behavior may also be guided by attacker

strategy or preferences.

5. Modeling Theories: Modeling theories describe the foundation on which system

and risk assessment models are built. Modeling theories can be scientific law[33],

scientific theories, or human theories. A scientific law is defined as a [33],

“phenomenon of nature that has been proven to invariably occur whenever certain

conditions exist or are met”. Scientific laws are described using a formal

statement about such a phenomenon. A scientific theory [55] explains empirical

observations. These theories must be falsifiable. Unlike scientific laws, scientific

theories are driven by empirical observations. Finally, human theory presented

here is defined as beliefs formed by experts. This belief may be formed by an

expert’s experience and observations. Human theory may not be repeatable and

may contradict other human theories.

6. System Value: System value represents the criticality of the system or the impact

of the failure of the system. This is encoded as high, medium, or low.

43

The pink line in Figure 4 describes the engineering domain, the green line describes

environmental risk assessment domain, the yellow line describes the infrastructure

security risk assessment domain, and red line describes the cyber-security domain.

Figure 4: Risk assessment domain comparision

3.3.1 Engineering System Domain and Risk Assessment Method

The engineering system domain is characterized by a low rate of system evolution

and a low rate of vulnerability evolution. In this domain, the system and hazards once

identified accurately does not change frequently.

The adversary intelligence is low, which means that the threat does not react or adapt

to the situation, target environment, or the countermeasure implemented. Nor does it act

according to a strategy or preference. The modeling theories are driven by observable and

repeatable scientific laws.

The identification of risk scenarios is dependent on the analyst’s skills. The risk

scenarios, however, are driven by the system laws and not by expert judgment. Since the

44

value of the system is high, appropriate time and resources may be allocated to develop

and mitigate risk scenarios.

3.3.2 Environmental Risk Assessment

The risk assessment process used by the environmental domain is similar to the

process used by the engineering domain. The risk assessments in this domain are often

driven by scientific theories based on observed causal evidence. As described in Section

3.2.2, in this domain the cause-effect relationship between a stressor and consequence is

determined using empirical studies.

The threat in this domain is any physical, chemical, or biological entity that can

induce an adverse response to the environment or human health[48]. The adversary

intelligence is considered medium for this domain.

The system rate of evolution is considered medium in this dissertation as the

environment and eco-system may change even if it is at a slow pace. The rate of

vulnerability evolution is considered low, and the system dynamics are considered

medium in this domain.

The system value is considered high for the environmental domain in this

dissertation. As a result, appropriate time and resources may be allocated to develop and

mitigate risk scenarios.

3.3.3 Infrastructure Security Domain and Risk Assessment Method

In the infrastructure security risk assessment domain, the system rate of evolution is

considered as medium. This is because the civil infrastructure changes, but not as often as

the technology infrastructure.

45

The threat is human in nature and adapts [56, 57] to the situation and implemented

countermeasures. The human threat also acts in accordance with his/her strategy and

preferences.

The rate of vulnerability evolution is also considered medium, as the change in the

system provides new vulnerabilities or the adaptive threat uncovers new vulnerabilities

that can be exploited to attack the system.

The system dynamics is considered medium. The value of the system is high, so

appropriate time and resources may be allocated to develop and mitigate risk scenarios.

The modeling theories in this domain are driven by human expert theories. Expert

theories introduce subjectivity, and corresponding inconsistencies and non-

reproducibility in the risk assessment outcome.

3.3.4 Cyber-security Domain and Risk Assessment Method

The cyber-security domain is characterized by a high rate of vulnerability and system

evolution. The system configuration evolves periodically and new vulnerabilities are

often identified. New attacks are also often identified, which may enable execution of

risk scenarios previously deemed non-executable. These frequent changes make the

cyber-security domain dynamic. This domain dynamicity is different from system

dynamics, which refers to the characteristics of complex systems.

Similar to the infrastructure security domain [56, 57], the threat in cyber-security

domain is intelligent in nature. This means that the attacker has a strategy and preferences

for how to carry out an attack. The attacker also adapts to the situation, target

environment, or the implemented countermeasures.

46

Human theories are used to model cyber-security risks. Different experts may form

different theories, even if they are formed from the same observed evidence. These

theories may also conflict with each other. As a result, the risk scenarios generated by

two analysts may be different.

The value of the system can be medium to high. If the value of the system is

medium, then it may not be beneficial to spend a large amount of time and resources

doing manual risk assessment. An automated system can be used to address this issue.

Even if the value of the system were high, in order to incorporate the scale and

dynamicity of modern day technology infrastructure, the cyber-security risk assessment

needs to be automated.

Despite these differences, the current cyber-security risk assessment process is very

similar to the engineering domain. The challenge with this process is that, by the time

risk assessment is done and controls are identified (or implemented), the system

configuration may have changed or new vulnerabilities and/or attacks may have been

identified. These frequent changes shorten the usable lifespan of the risk assessment

outcome.

Cyber-security assessment techniques and processes are often adapted from other

mature risk assessment domains. Some examples of these extensions are as follows:

 There have been attempts to extend the fault tree, event tree, and failure mode and

effect analysis (FMEA) methods to model cyber-security scenarios. Event trees

are adopted as attack trees [72] for cyber-security assessment.

 A cyber-security risk assessment called Annualized Loss Expectancy (ALE) [73]

uses the concept of exposure factor similar to the EPA’s use of risk exposure.

47

This technique uses the analyst’s opinion for evaluating the exposure instead of

using the scientific or empirical quantification methods employed by agencies like

the EPA.

This dissertation proposes a framework to automatically generate risk scenarios

given the unique challenges of the cyber-security domain. The cyber-security risk

scenarios are further examined in Section 3.5 and cyber-security domain requirements are

detailed in Section 3.4.

3.4 Detailed Cyber-Security Domain Requirements

This dissertation uses the unique cyber-security domain characteristics as the

requirements for developing more effective cyber-security risk assessment tools. This

section details these requirements.

3.4.1 Domain Dynamicity

The cyber-security domain is inherently dynamic. This dynamicity manifests at three

different interconnected levels. These levels are described below:

1. System Dynamicity: The system to be protected changes as new software

versions and updates become available, and as the system configuration and

architecture changes. Consequently, one of the cyber-security countermeasures is

to control the changes made to hardware, software, and firmware throughout the

lifecycle of the system. This countermeasure is called “configuration

management” or “baseline management”. However, according to NIST [74], a

“reset of the baseline” occurs with frequent software updates and patches. This

makes the exact understanding of the initial baseline obscure and more difficult to

48

track over time [74] . As a result, revising cyber-security assessments becomes

impractical [74]. According to [74], the presumed state of security of the initial

baseline is never updated in light of increased understanding, potentially giving a

false sense of security.

These changes in the system provide new opportunities to attackers. The cyber-

security risk scenario generation framework cannot assume that the system will

remain static throughout the timeframe in which these risk scenarios are used.

Yet, this assumption is made frequently in current risk assessment.

2. Vulnerability Dynamicity: In addition to system configuration changes

introducing more vulnerabilities, new vulnerabilities in existing systems are also

discovered frequently.

3. Attack Dynamicity: New attack methods exploiting vulnerabilities are also

discovered frequently. These new attack methods may allow execution of risk

scenarios previously deemed non-executable. According to a study done by

CERT [7], the availability of automated tools capable of launching sophisticated

attacks is increasing. Consequently, the technical knowledge required by the

attacker to launch the attacks is decreasing.

This dynamicity influences the design of cyber-security risk scenario generation

framework, and the choice of knowledge representation methods capturing the

information needed for generating the risk scenarios.

1. Risk Scenario Generation Framework Requirements: The automated cyber-

security risk scenario generation framework should assume that information is

49

incomplete and new information may be available at any time. It should be able

to update the risk scenarios efficiently when new knowledge becomes available.

2. Domain Knowledge Representation Requirements: Risk scenario generation

should function by assuming that information is dynamic. The knowledgebase

used by the risk scenario generation framework may capture this dynamic

information. The domain dynamicity adds more requirements for the

knowledgebase storing this dynamic information. These requirements are

described below.

a. Dispersed Information Sources: The cyber-security domain information

can be generated by sources dispersed in space and time. The

knowledgebase should be able to capture the information from these

dispersed sources.

b. Dynamic Knowledgebase: Since the cyber-security domain information

can be available at any time, the knowledgebase should be able to

dynamically and efficiently capture the change in information or

availability of new information.

c. Incomplete Information: Traditional knowledgebase are designed using

the assumption that whatever information is not explicitly stated is false

[75]1. For example, if information about vulnerability is not stored in the

knowledgebase then it assumes that such vulnerability does not exist. In

the cyber-security domain, new vulnerabilities can emerge at any time. It

is also possible that vulnerabilities exist, but the analyst encoding the

1 The reference paper makes these statements about closed world databases. Here the term

knowledgebase is used a general form of database.

50

information does not know about them. There are also known unknown

attacks and vulnerabilities. Because of these reasons, it cannot be

assumed that whatever information is not encoded is false. The

knowledgebase should be able to store the cyber-security domain

information without making any assumption about the completeness of

the information.

3.4.2 Attacker Behavior

Automated cyber-security risk scenario generation should incorporate the attacker

behavior driving these scenarios. This behavior is studied by empirical attacker behavior

research and by attacker interviews. Examples of the attacker interviews are illustrated in

Appendix I.

This dissertation defines three core characteristics of attacker behavior as:

1. The attacker treats the cyber-security breach as an intellectually stimulating

problem to be solved.

2. The method used in compromising a system is exploratory in nature and often

does not follow a predetermined guideline. In other words, the attack is not

necessarily a pre-planned activity.

3. The attack goal may be determined or changed based on the information gathered

during this exploratory phase. Here the goal refers to high-level direction or

intention of the attacker. These goals are achieved by gathering the information

about the system, and launching attacks based on the attacker’s motivation,

strategy, preferences, and knowledge.

51

3.4.3 Expert Theory

Cyber-security risk assessment is driven by expert theories about attacker behavior.

This is in accordance with the prevalent cyber-security strategy termed as “think like the

attacker”. An example of expert theory is illustrated in the following email instruction by

the security office of a University 2, “The machine located at x.x.x.x has been having

interesting IRC conversations with Romanians. We regard this behavior with deep

suspicion and recommend you sanitize the machine and reinstall.” Expert theories can

also be about software’s security behavior. For example, expert theory can be about how

the design of software leads to vulnerabilities.

Expert theories are often formed from observed evidence. These theories, once

formed, are used by experts to explain the new observations and to make predictions.

According to [76], a theory makes predictions about a wide range of evidence, including

the evidence that played no role in the construction of the theory. This can lead to a wide

variety of unexpected predictions. Consequently, some theories will accurately predict

future events. On the other hand, some theories would be incorrect[76].

Current attack risk scenarios are generated by experts using their theories of attacker

behavior. This output (in the form of risk scenarios) abstracts the expert’s attacker

behavior theories, while summarizing only the actions that the attacker may take in the

risk scenario. If the risk scenarios are generated without explicitly stated underlying

theories, then the opportunity to validate and re-use accurate theories, or to update

inaccurate theories is lost.

2 To protect the identity of the security team the name of the University is not mentioned here.

52

The automated risk scenario generation framework should be able to capture these

expert theories (and assumptions behind these theories) explicitly for generating attack

risk scenarios.

3.4.4 Automation

Given the scale of today’s technology infrastructure and its dynamicity, the cyber-

security risk scenario generation should be automated to generate timely and accurate

scenarios. This automation requirement imposes the following sub-requirements on the

cyber-security risk scenario generation framework.

1. Completeness: The automated cyber-security risk scenario generation

framework should calculate all possible ways the attacker goal can be

achieved.

2. Repeatability: The automated cyber-security risk scenario generation should

produce repeatable output given the same input.

3. Scalability: The automated framework should be scalable.

4. Analyst dependence: The automated framework should have limited analyst

(or expert) dependence.

3.5 Risk Scenario Generation

This section introduces the current and proposed cyber-security risk scenario

generation frameworks.

3.5.1 Current Focus of Risk Scenarios

The primary focus of cyber-security risk management has been identification and

mitigation of vulnerabilities in the system. Consequently, current risk scenario generation

53

mainly focuses on vulnerability identification. Often these scenarios are reduced to

capturing only the presence of a single vulnerability and how it can be exploited.

A large number of vulnerabilities currently exist, but new vulnerabilities can be

discovered at any time, which requires continuously gathering information and updating

the risk scenarios.

The use of risk scenarios to identify the presence of vulnerabilities supports the

current reactive strategy called “penetrate and patch”. This strategy suggests patching all

vulnerabilities that are present in the system. According to [77], “At the 1998 Security

and Privacy conference, a panel session discussed the advances in cyber-security

technology over the last 25 years. One dramatic conclusion of the session was that the

current state of the art in computer cyber-security was “penetrate and patch”.” A decade

later, the situation is still the same.

The challenge with penetrate and patch is that new types of vulnerabilities are

continuously identified. As indicated in Chapter 2 and emphasized by a prominent cyber-

security vulnerabilities researcher [6], “it’s safe to say that there has not been a single

category of vulnerabilities that has been definitively eradicated”. Due to the large number

of available vulnerabilities and limited resources, it may not be possible to patch all

vulnerabilities. This patching effort needs to be prioritized.

The challenge of focusing only on presence of vulnerabilities is that according to

attacker behavior research, it is not necessary that the attacker will exploit vulnerabilities

just because they are available. The attacker behavior research indicates that the attacker

may prefer a certain set of vulnerabilities or attacks over others [18, 19]. The attacker

also may choose to discover a new vulnerability then to exploit existing vulnerabilities. In

54

order to prioritize the remediation efforts, it is important to understand and use this

attacker behavior in the risk scenario generation. Understanding attacker behavior also

allows development of new types of countermeasures utilizing this information. These

countermeasures are called “behavior-driven” countermeasure. These countermeasures

use the information about attacker behavior to lead the attacker away from the protected

information. An example of this is described in Section 10.2.2.2.

 Vulnerabilities form a critical part of cyber-security risk scenarios, but these

scenarios also depend on the dynamic interaction between other opportunities provided

by the system (for example, opportunity to fingerprint, or decompose the attack goal

etc.), the attacker (or encoded attacker behavior in the form of goals, strategy and

preferences), and tools available to discover and exploit these opportunities. This

dissertation proposes a framework for automatically generating the risk scenarios by

taking into consideration this dynamic interaction and the unique requirements of the

cyber-security domain. Section 3.5.2 describes the current manual and automated

methods for generating cyber-security risk scenarios and their limitations. Section 3.5.3

introduces the proposed approach.

3.5.2 Current Methods for Generating Cyber-security Risk Scenario

Current cyber-security risk scenarios are either generated in the form of a tree (called

attack tree), or graph (attack graph, privilege graph, or access graph). Attack trees[72]

capture how the attack goal can be decomposed into different ways of achieving it. The

attack graph captures how the attacker can exploit a series of vulnerabilities to gain

restricted privilege on the target software system [1](or can circumvent a security feature

of the software). The access graph and privilege graph are variations of the attack graphs.

55

This section introduces these methods and describes their limitation. The proposed

framework overcomes the limitations of these methods.

3.5.2.1 Attack Tree Generation

Currently attack trees are generated manually by red-team. Attack trees [72] were

introduced in 1999 by Bruce Schneier, a renowned name in cyber-security. These are

conceptually similar to the fault tree and event tree used in engineering risk assessment.

According to [72] - “Basically, you represent attacks against a system in a tree structure,

with the goal as the root node and different ways of achieving that goal as leaf nodes.”

The process of generating the attack tree follows this progression: [72], “First, you

identify the possible attack goals. Each goal forms a separate tree, although they might

share sub-trees and nodes. Then, try to think of all attacks against each goal. Add them to

the tree. Repeat this process down the tree until you are done. Give the tree to someone

else, and have him think about the process and add any nodes he thinks of. Repeat as

necessary, possibly over the course of several months. Of course there's always the

chance that you forgot about an attack, but you'll get better with time. Like any security

analysis, creating attack trees requires a certain mindset and takes practice.”

This method of manual attack tree generation is widely used. An example of the

attack tree is as shown in Figure 5 below.

56

Figure 5: Attack tree - graphical example

The branches of the attack tree can also be annotated with boolean values such as

possible or impossible, easy or difficult, expensive or inexpensive, intrusive or

nonintrusive, legal or illegal, special equipment required versus no special equipment

[72]. This annotation can be used for manual encoding of the attacker behavior (using

binary variables) on the branches of the tree.

The limitation of this manual approach is that its quality and completeness depend on

the analyst’s skills.

3.5.2.2 Vulnerability Graph (Attack Graph, Access Graph, or Privilege Graph)

Generation

Currently “attack graph”, “access graph” or “privilege graph” can be generated

automatically or manually [1]. These graphs represent how the known vulnerabilities of a

software system can be exploited in a sequence to take the system from a secure state to

57

an unsecure state. Unsecure state is defined as the system state in which software’s

security feature is circumvented. Security features are implemented to make sure that the

software cannot be attacked. Current attack graphs (and its variations) represent scenarios

in which security features that prevent the attackers gaining restricted privileges are

circumvented. In other words the goal of the attack graphs is to describe how an attacker

may obtain normally restricted privileges on one or more target hosts [1]. Attack graphs

(and its variations) reflect the software developer’s point of view, who would like to

eliminate all known vulnerabilities, whose exploitation allows the attacker to gain

restricted privileges. To avoid confusion between terminologies, these graphs are called

“vulnerability graph” in this dissertation.

Current vulnerability graph generation frameworks uses automated planning

algorithm. Automated planning [78] is a branch of artificial intelligence and is defined as

the task of coming up with a sequence of actions that will achieve a defined goal.

Automated planning algorithm [79, 80] uses a system model and an action model as

input. System model defines different states of the system. Action model encodes

planning algorithm’s actions using pre-requisite, defined by the system state in which the

action is applicable, and effects, defined by the system state after the execution of action.

The planning algorithms search for series of applicable actions, whose execution achieves

the planning goal. Typical pre-requisites of vulnerability graph generation framework’s

actions are encoded using presence of vulnerabilities, connectivity between software

systems, attacker’s initial privilege levels, and privileges gained by exploiting

vulnerabilities.

58

Currently different vulnerability graph generation methods are available [1]. One of

the primary differences (from risk scenario generation point of view) among the

vulnerability graph generation methods is their algorithms. These algorithms search for

applicable actions differently, or use different language to encode action’s pre-requisites

and effects. These algorithms also have different scalability and complexity. Improving

the scalability has been one of the primary focuses of current vulnerability graph research

as shown in the Table 7 below. Some methods also generate the vulnerability graph

manually by using the information about action pre-requisites and effects. Lippmann et al

[1] describes a detailed review of current vulnerability graph generation methods. The

major automated vulnerability graph generation methods are described in Table 7 below.

Despite of these differences the current vulnerability graph generation methods have

same limitations.

Source Type of algorithm Description of algorithm

Sheyner [81,
82]

Symbolic model-
checking algorithm

According to [2], “Model checking is a technique for
determining whether a formal model of a system satisfies a
given property. If the property is false in the model, model
checkers typically produce a single counterexample. The
developer uses this counterexample to revise the model (or the
property), which often means fixing a bug in the design of the
system.” Sheyner’s algorithm [81, 82] uses the formal software
system model to generate the attack graph representing all
possible ways the attacker can gain normally restricted
privilege.

Ritchey and
Ammann [83]

Model-checking
algorithm

This approach is similar to [81, 82] but it produces only one
scenario as opposed to the entire attack graph.

59

Phillips and
Swiler [84]

Shortest path (near
optimal) using
matching algorithm

Phillips and Swiler [84] generates near optimal shortest paths,
by matching the information about attack templates
(representing a generic attack step that includes necessary and
acquired state attributes), the target configuration, and assumed
attacker capabilities (for example, attacker possessing a
toolkit) [84]. The edges of the attack graph are weighted using
some metric (for example, attacker effort or time to succeed).
This weight has to be provided by the user[84]. The framework
allows using a default value for unknown configuration
information[84].

Ammann et
al[85]

Uses combination of
algorithms that
includes a breadth
first search and a
labeling algorithm.
Assumes
monotonicity.

This paper [85] introduces the monotonicity assumption. Under
this assumption 1) the precondition of an exploit, once
satisfied, never becomes unsatisfied and 2) the negation
operator cannot used to express the precondition[85]. Simply
put monotonicity assumes that the attacker never
backtracks[85]. This algorithm improves the scalability (from
exponential time to a polynomial time) [85], but adds the
restrictive assumption of monotonicity. The algorithm assigns
the pre-conditions to different layers using a breadth-first
search algorithm[85]. Each layer is numbered indicating the
number of exploits required to satisfy the pre-requisites. These
pre-requisites are then marked with step number corresponding
to step in which an attack satisfies the pre-requisites[85].

Ammann et
al[86]

Proposes a “host-
based approach” for
vulnerability graph
generation. Assumes
monotonicity.

This paper[86] proposes an alternative way to represent the
attack graph structure. This approach calculates the maximal
level of penetration possible in terms of the maximum level of
access that can be achieved by the attacker[86]. The edges
between nodes represent maximum level of access. The
downside of this approach is that analyst is not presented with
complete information about possible damage and hence may
make sub-optimal choices when “repairing” the network [86].

Jajodia et al
[87]

According to [1]
uses algorithm
described in [85]

According to Lippmann et al [1], it is one of the most
comprehensive tools for building and analyzing attack graphs.
This tool requires input, about connectivity and presence of
vulnerability. This is obtained by a vulnerability scanning
software [1].

Dawkins and
Hale [88]

Breadth-first
algorithm with depth
to stop.

The breadth first algorithm starts from initial state; it then
searches for all the states that can be reached from this initial
state. It continues searching all immediate neighboring states
until the goal state is reached. Dawkins and Hale [88] used a
breadth-first search approach, which stops after a given number
of vulnerabilities have been exploited in sequence in each path
[1, 88]. These paths are then analyzed to identify attack paths
that end in specific top-level goals and to find the minimum
cut set [1].

60

Artz [89]

Uses a recursive
depth first search
algorithm

It describes the first version of the NetSPA (Network Security
Planning Architecture) system. This approach computes the
connectivity between all hosts using network topology
information and firewall rules[1]. Attack graphs are built, using
a depth limited forward chaining depth first search[1]. Unlike
breadth first algorithm, depth first selects one of the states that
can be reached from initial state; it then explores all the states
one by one in this path as far as possible. If the goal state is not
reached at end of exploration, it backtracks and repeats this
search. Artz [89] [1] developed an attack definition language to
encode the attacker actions used for generating the
vulnerability graph.

Dantu et al[90] Manual generation of
vulnerability graph

Dantu et al [90] labels the output of the vulnerability graph
using weighted attributes such as attacker skills, tenacity, cost
etc. However, this information was not used as input for
generating the vulnerability graph. Unlike proposed
framework, this approach does not take into consideration the
attacker’s exploratory nature, motivation, strategy, or thought
processes.

Dacier et al [91,
92]

Uses a tool called
Automatic Security
Advisor[91, 92].

Dacier et al [91, 92] refers to the attack graphs as “privilege
graphs”. Dacier et al [91, 92]developed a tool called Automatic
Security Advisor, to generate the privilege graphs for Unix
operating system. The privilege graphs are converted to
Markov chain corresponding to all possible successful attack
scenarios[91, 92].

 Ortalo et al [1,
93]

Compares breadth-
first, depth-first, and
shortest-path
algorithms

This paper describes how to use privilege graphs introduced by
Dacier [91, 92], to describe the cyber-security of a UNIX host
[1]. Three different models are discussed corresponding to
three assumptions called SP, TM, and ML[1, 93]. SP assumes
that the attacker chooses the shortest path leading to the target.
In TM, all the possibilities of attacks are considered at each
stage of the attack. In ML, the attacker chooses one of the
attacks that can be executed from that node only. Ortalo et al
[93] compares three different algorithms generating
vulnerability graph probing 13 UNIX vulnerabilities over a
period of 21 months. For this comparison, a four-level
classification scale (0.1, 0.01, 0.001, 0.0001) was used to rate
vulnerabilities as a measure of effort required to exploit the
vulnerability. Ortalo et al [93] concludes that the security
measure associated with TM cannot always be computed due
to the complexity of the algorithm, the computation of the
measure related to ML is easier, in SP the number of
vulnerabilities and the number of paths are not sufficient to
characterize the operational security evolution[93].

Li et al [94] Sequential
association rule
mining algorithm.

Li et al [94] uses an association rule-mining algorithm to
generate attack graphs from historical intrusion detection
system (IDS) alert database. This algorithm uses empirical
rules [94] (identified from the IDS logs) such as “if x → y were

61

present in a given sequence, then z was present as well”, to
generate the attack graph.

Zhang et al [95] Backward search
algorithm

Zhang et al [95] uses a backward (reverse) search algorithm to
generate the attack graph.

Xiao et al [96] Uses an approach
similar to the one
described in
Ammann et al [86]

Xiao et al [96] uses an approach similar to Ammann et al [86].
The edge between nodes not only represents the highest access
level available but also the weakest preconditions[96]. This
algorithm takes the transitive preconditions between hosts into
account when handling the transitive aspect of exploits.

Lee et al [97] Proposes an approach
to divide and merge
attack graph

Most of the practical attack graphs are large. Lee et al [97]
proposes dividing the attack graphs into manageable sub-
graphs for conducting analysis.

Xie et al [98] Constructs multi-
level vulnerability
graph. Assumes
monotonicity.

Xie et al [98], constructs a two tiered attack graph framework,
which includes a host access graph and sub-attack graphs. A
sub-attack graph describes risk scenarios from one source host
to one target host. The host access graph describes the
attacker’s privilege transition among hosts.

Ma et al [99] Uses a bi-directional
search algorithm.
Assumes
monotonicity.

In this bidirectional attack graphs generation algorithm,
forward search and backward search are executed
simultaneously using multithreading [99].

Table 7: Current Vulnerability Graph Generation Methods

The limitations of vulnerability graph methods are described below. The proposed

framework overcomes these limitations.

1. Different Type of Goal: In the cyber-security domain, it is widely accepted that

the main objective of the attacker is to compromise the confidentiality, integrity,

or availability of information. Current vulnerability graph methods do not capture

how the attacker can achieve his/her goal of compromising the confidentiality,

integrity, or availability of the information. Gaining restricted privilege (or

circumventing a security feature) is only one of the possible ways to compromise

information.

62

2. Difficulty Capturing Dynamic Knowledge: Current automated vulnerability

graph generation methods (using traditional database and planning algorithms)

assume that encoded knowledge is complete. It assumes that there are no

unknowns in the domain, everything is known a priori, and whatever is not

currently encoded is false. This assumption is not valid in the cyber-security

domain. When new knowledge is available or if current knowledge change, the

vulnerability graph generation methods need to re-encode actions and re-execute

the planning algorithm.

3. Use of Limited Knowledge: Vulnerability tree are generated by using limited

knowledge. This knowledge is primarily about the presence of vulnerability,

connectivity (reachability) between software systems, attacker’s initial privileges,

and the privileges gained by exploiting the vulnerabilities. In real life, the

attacker (or red-team acting as attacker) uses diverse knowledge to generate the

risk scenarios. This knowledge can be about the software characteristics (design,

implementation, or usage), detailed as well as abstract reasoning about the

connectivity between software systems, known as well as potential attacks and

vulnerabilities, theories about attacks etc. For example, the attacker (or red-team)

may use the knowledge about the software’s design to infer that the software may

be vulnerable to attack even if no vulnerability has yet been discovered. The

attacker (or read-team) also uses their attack theories to discover and exploit any

opportunity provided by the system. The connectivity between software systems

can also be of different types, which can be used differently to launch the attack.

63

This diverse knowledge is not used by current automated vulnerability graph

generation frameworks.

4. Lack of Consideration of Attacker Behavior: The vulnerability graph

generation method describes how the known vulnerabilities may be exploited,

but it does not capture why the attacker may exploit these vulnerabilities, apart

from the fact that they are available. These methods do not consider attacker’s

motivation, strategy, preferences, or attacker thought process for generating risk

scenarios.

Attacker may also execute observation actions to gain knowledge about the target

of the attack. This act of observation is called “fingerprinting” in cyber-security

domain. In current vulnerability graph generation method, attacker’s

fingerprinting action is encoded as boolean pre-requisites [81] to attack actions

requiring fingerprinting. This encoding is done using knowledge of the target

network. For example, if the attack action is for targeting the system inside the

network, then fingerprinting pre-requisite is added for executing this action. This

however, makes the actions useful only for a specific target network. Hence, the

attack actions needs to be re-encoded if the network architecture changes. In

addition, the current vulnerability tree generation framework use the fact that the

fingerprinting was done, but do not explicitly capture and use the knowledge that

was discovered (because of the fingerprinting) in the developing the attack

scenarios.

The execution of an attack action can have more than one effect. For example,

buffer overflow vulnerability can be used to gain access to the system as well as

64

to crash the program against which it is executed. Attacker may choose one of

these effects based on his/her goal. The current vulnerability graph generation

framework assumes that execution of this multi-effect action results in both of

these effects [81, 82]. This may be counter-intuitive from the attacker’s

viewpoint who would not be interested in crashing the system that he/she is

trying to access. Hence, it is important to take into consideration the attacker’s

motivation and goal for generating risk scenarios.

5. Lack of Consideration of Expert Theories: Cyber-security experts are a major

source of attacker behavior information. Currently, expert uses their theories

about attacker’s thought process and preferences to generate the risk scenarios

manually. Current automated risk scenario generation frameworks do not use

these expert theories to generate the risk scenarios.

 The limitations of current manual and automated risk scenario generation

frameworks are alleviated by the proposed framework described in next section.

3.5.3 Proposed Cyber-security Risk Scenario Generation Framework

This section introduces the proposed framework for generating cyber-security risk

scenarios. The difference between the proposed framework and current risk scenario

generation frameworks are:

1. Goal of Compromising Information: It is widely accepted that the main

objective of the attacker is to compromise the confidentiality, integrity, or

availability of information. Unlike current vulnerability graph generation

methods, the proposed framework’s risk scenarios describes all possible ways the

attacker can compromise this confidentiality, integrity, or availability of

65

information. It is important to note that the proposed framework is not limited to

generating risk scenarios only for these goals. New types of intentional goals can

be also be modeled using the proposed framework if needed.

2. Captures Domain Dynamicity: The proposed framework does not assume that

encoded knowledge is complete. It assumes that there are unknowns in the cyber-

security domain, and new knowledge is available frequently.

This dissertation develops a new planning framework for generating the cyber-

security risk scenarios. This planning framework is divided into two components,

the distributed logic, and the centralized algorithms.

Instead of relying on traditional planning algorithms to search for applicable

actions, the proposed framework uses a mathematical logic to instantly

accommodate dynamic information. In the proposed framework, attacker goals

are dynamically decomposed into situation specific attack sub-goals and actions.

In this approach, the mathematical logic attempts to classify the knowledge (about

software systems, attacks, vulnerabilities etc.), as it becomes available, into

logical sets representing situation specific attack sub-goals and actions. This

classification is done by using a series of logical inferences. Each inference adds

more knowledge that can be used for classifying attack sub-goals and actions. In

this dissertation, whenever the classified or inferred knowledge can be used for

generating the risk scenarios, it (the knowledge) is considered triggered. This

mathematical logic is called distributed planning logic (or distributed logic) in this

dissertation.

66

Given this distributed logic, the role of the centralized planning algorithm in

proposed framework is changed to:

a. Providing the information about attacker’s decisions (for example,

selected goal and sub-goal), to the distributed logic that triggers the

classification and inferences.

b. Querying the triggered information (for example attack sub-goals and

attacker actions) from distributed logic for graphically displaying the

output. The order of this query is determined in real time by using the

encoded attacker preferences and attacker’s situational decision points.

c. Building the attacker’s knowledge state for generating risk scenarios. This

knowledge state is used to control the knowledge that can be triggered by

the distributed planning logic.

3. Uses Diverse Knowledge: The proposed framework uses diverse knowledge (for

example, the software’s use, the software’s design leading to potential

vulnerabilities, availability of known vulnerabilities and attacks, the attacker

behavior etc.) to generate risk scenarios. This knowledge can be generated by

sources dispersed in time and space.

4. Captures the Attacker Behavior: The proposed framework encodes the attacker

thought process for decomposing goals, and discovering and exploiting

opportunities provided by the target environment. The proposed framework also

captures the attacker’s motivation, strategy, and preferences.

In accordance with the attacker’s exploratory nature, the proposed framework

assumes that the attacker may discover knowledge during the attack process. This

67

knowledge discovery not only guides the risk scenario but it also may change

attacker’s initial goal. The type of knowledge discovered depends on the type of

fingerprinting actions used by the attacker, and the location (in the target network)

from which they are made. The proposed framework captures and uses the

knowledge discovered because of fingerprinting for generating the risk scenario.

The proposed framework uses attacker behavior, attack goal, attacker’s state of

knowledge and decisions, to determine what fingerprinting actions the attacker

may take. The proposed framework builds and uses the attacker’s knowledge state

for generating the attack scenarios.

5. Uses Expert Theories: The proposed framework also uses the red-team’s expert

theories about attacker behavior (for example, attacker’s thought process,

preferences etc.) for generating the risk scenarios. The proposed framework also

supports validation and calibration of expert theories.

The proposed framework generates two types of graphical outputs in the form of

attack trees, and attack scenarios.

1. Attack Tree: Attack tree represents all possible ways the attacker’s goal can be

achieved. The attack tree shows the goal, the decomposed sub-goals, and the

executable attacks exploiting vulnerabilities that can accomplish these goals and

sub-goals.

2. Attack-scenario: The attacker may not act in the sequential order described in the

attack tree, and may backtrack, abandon the scenario, or change the goals in

accordance with the available opportunities. The attacker also has to acquire

knowledge about the system in order to compromise it. This sequence of actual

68

steps taken by the attacker (or red-team acting as attacker) is called attack-

scenario in this dissertation.

The proposed framework’s design is described in Chapter 4. Chapter 5-7 describes

the implementation of this distributed logic and centralized algorithm. The modes of

operations are explained further in Chapter 8. The manual and automated cyber-security

risk scenario generation frameworks are compared using a case study in Chapter 9.

69

4 Proposed Framework

The current vulnerability graph generation framework uses traditional automated

planning framework. The proposed framework is designed by combining the traditional

automated planning framework, and a theory of human actions called “situated

action”[100, 101].

This chapter describes the design of the proposed framework. It also compares the

proposed framework’s design with vulnerability graph generation frameworks that uses

the traditional planning framework. This description and comparison is done by

developing a conceptual planning framework, described in the next section.

4.1 Conceptual Planning Framework

The conceptual planning framework describes a generalized planning process and

factors influencing the process. It provides a conceptual template for understanding how

and what factors influence the functionality and design of the planning framework. The

purpose of developing this conceptual planning framework is to describe why traditional

planning frameworks, which include the current automated vulnerability graph generation

frameworks, cannot be used directly to fulfill the cyber-security domain requirements.

The conceptual planning framework is shown in Figure 6 below. Eight factors

influence how a planning algorithm may generate the desired plan. In the context of

automated planning terminology, the cyber-security risk scenario is the plan to be

generated. To be consistent with the terminology of automated planning, the attack plan

is used interchangeably to refer to cyber-security risk scenario when appropriate.

70

Figure 6 Concepual planning framework

In this conceptual framework, planning is described as a three-stage process. The

stages are input characterization, planning, and output generation. The eight factors either

participate in or influence these stages. The planning algorithm is the core of the

framework that takes the system model, goal, and action model as inputs and generates

the plans as output. The domain knowledge, dynamicity, and planning philosophy

influence the way the inputs are encoded, and the way the planning algorithm uses these

inputs. Finally, the planning framework classification and plan criticality influence the

way the planning algorithm is designed and implemented. These factors are defined in

this section.

71

Figure 7: Conceptual framework factors

The eight factors are used to compare the proposed planning framework to the

traditional planning framework and a theory of human action. This comparison is done

using a spider chart. The template of the spider chart is as shown in Figure 7 above. The

factors of the conceptual planning framework form the axis of the spider chart.

4.1.1 Goals

The definition and dynamicity of the goals can be used to differentiate the planning

frameworks. There are two types of goals: well-defined and undefined. Well-defined

goals can be further divided in static and dynamic goals.

1. Static Well-Defined Goals: The goals in this dissertation are considered static

well-defined if they are well-defined, and they remain constant throughout the

plan generation process. Here well-defined means that the goals provide clear

understanding to the planning agent (human or machine) about how to possibly

achieve them, and provide clear success criteria to determine if they are achieved.

72

2. Dynamic Well-Defined Goals: These goals are also well-defined goals, but they

may change based on the information and opportunities encountered during the

plan generation process.

3. Undefined Goals: The undefined goals are not clear or do not provide clear

success criteria to the planning agent (human or machine).

The design of the planning algorithm is influenced by how the well-defined goals are

encoded. This is explained by the system model encoding described in next section.

4.1.2 System Model

The majority of the planning frameworks are designed to perform a task (or to carry

out an action). This task is defined and executed within the boundaries of the system. The

major distinguishing aspects of the planning framework include how this system is

represented computationally, and the amount of knowledge and effort required to create

this system model.

1. Stateful System: Traditional planning frameworks represent the system to be

stateful (i.e., the system at any point in time can be described by a pre-defined

state). Subsequently, the system behavior is modeled by a state transition system.

In most cases, the planning goal is defined in terms of the state the system should

reach after the plan is executed [80]. The traditional planning algorithm identifies

which actions can be executed in what system state to achieve the planning goal

[80]. The planning algorithm functions by searching for a path in a graph

representing all possible states of the system. This presentation of all states of the

system is called the search space of the algorithm. In case of a planning algorithm

called the Hierarchical Task Network (HTN) [80] the goal is to perform tasks .

73

Both the HTN algorithm and the proposed framework use the concept of

hierarchical task analysis. In hierarchical task analysis, tasks are systematically

decomposed into sub-tasks.

2. Logical Model: This model encodes the characteristics of the system using

logical statements. For example, instead of encoding that the system is in a

vulnerable state, it encodes the logic behind why the system may be in a

vulnerable state.

4.1.3 Action Model

The action model defines how the actions are represented in the planning framework.

1. Plan-driven Action: Traditionally, execution of actions leads to the system

changing state. The role of the planning algorithm in this case is to search for

applicable actions in each state that achieves favorable state transitions in order to

accomplish the planning goal. The planning algorithm selects the action based on

its applicability in the current state and its potential effects. Hence, the

prerequisite for selecting the actions describes the system state in which they are

applicable, and the effects describe the state the system will be in after action

execution[79]. In traditional planning, the plan determines the sequence of actions

to be taken.

2. Situated Actions: A theory of human actions, known as “situated action” [102-

104]or “situated cognition”[105], suggests that all actions are ad-hoc and driven

purely by the situation. According to this theory, the plan only weakly

summarizes these actions [102-104].

74

3. Opportunistic Actions: In the proposed framework, the attacker actions are

described as opportunistic actions. This has the goal-driven characteristics of

traditional planning framework and the situational aspect of the situated action

theory.

4.1.4 Planning Philosophy

1. Tracking System States: Traditionally the system is considered stateful and is

represented by a state transition model[80]. The objective of planning in this case

is to track the system moving from state to state, and to determine which actions

may be applicable in what state to achieve the planning goal. Modeling and

tracking the system is called system-centric planning approach in this dissertation.

2. Situational Planning: Modeling and tracking a system becomes a difficult

problem in dynamic domains, where the system configuration changes frequently.

The proposed framework uses situational planning. The proposed framework is

not system-centric (i.e., it does not model or track the system states); it is attacker-

centric. The proposed framework encodes the logic behind what opportunities

could be available due to dynamicity of the system, and the attacker thought

process in perceiving and exploiting these opportunities. The plan in this case is

the outcome of the attack situation, described by the dynamic interaction between

the available opportunities, the attacker (or encoded attacker behavior in the form

of goals, strategy and preferences), and the tools available to discover and exploit

the opportunities. The attack situation (or plan) is built by emulating the attacker’s

interaction with the target network. This is in accordance with the “situated

75

action”[102, 103] and “situated cognition”[105, 106] theory described in Section

4.2.1.2.

4.1.5 Planning Framework Classification

The planning framework can be classified based what type of knowledge is used in

the planning, and if planning framework observes the actual system states in order to

execute the plans.

4.1.5.1 Classification Based on Domain Knowledge Encoding

Planning frameworks can be classified as domain-specific, domain-independent or

domain-configurable[80].

1. Domain-Independent Planning: The goal of domain-independent planning

research is to create a general-purpose planning algorithm that is applicable to all

planning domains. According to [80], “For nearly the entire time that automated

planning has existed, it has been dominated by the research on domain independent

planning.” To reduce the difficulty in devising a domain-independent planning

framework that works well in all domains, most research assumes the system to be

deterministic, static, and finite[80]. They also assumed that the planning framework

has complete knowledge about the system[80], the goal is only specified as an

explicit goal state, the plan contains a linearly ordered finite sequence of actions, and

the actions have no durations. The planning algorithm in this case is not concerned

with any change that may occur in the system while it is planning [80].

2. Domain-Specific and Domain-Configurable Planning: Traditionally, states

of the system are represented as search space, and planning is achieved by searching

for a path in this space. The domain-specific and domain-configurable planning

76

frameworks use the knowledge about the domain to constraint the search to a small

part of this search space [80]. This makes the planning algorithm more efficient and

faster. In the domain-specific planning framework, domain knowledge is encoded in

the planning algorithm [80]. In the domain-configurable planning framework,

domain knowledge is taken as separate input[80].

4.1.5.2 Classification Based on Ability to Observe the System

This classification is based on how the planning framework’s ability to observe the

system for executing the computed plans.

1. Offline Planning Framework: The planning framework can be considered

offline if it generates the plan using a formal model of the system, the initial state

and the goal, and does not observe the actual system [78, 80]. Observing the

system may be necessary because most of the time there are difference between

the system model and the actual physical system it represents[78, 80].

2. Online Planning Framework: An online planning framework observes the

system in order to identify the difference between the assumed (using a formal

model) system state and the actual system state[78, 80]. If this difference is large,

then corrective actions are taken or re-planning is done to get back to the original

plan. The online planning framework observes the system, and updates the plan

using an online controller and a scheduler mechanism with the planning

algorithm[78, 80]. These controller and scheduler mechanisms add additional

functional requirements to the planning algorithm.

3. Real-Time Planning Framework: In this dissertation, a real time planning

framework is described as a framework that can use real-time information about

77

the system to generate the plans. Instead of updating a plan generated by the

offline planning framework using a formal system model, the real-time planning

framework can generate the original plan itself using the information collected by

observing the system. The proposed framework can generate plan using real-time

planning and can also collect and use the information about the actions and

system changes in real-time.

4.1.6 Knowledge

The domain can be knowledge-lean or knowledge-intensive. The effort and time

required to develop the system model, the action model, and the planning algorithms are

impacted by the knowledge requirements of the domain.

1. Knowledge-Lean Domain: The domain is knowledge-lean if information

required to generate the plan is limited and known a priori. This means that the

information needed to generate the system model, state-transition tables and

action models is known a priori. The knowledge-lean domain also assumes that

this information, once encoded, does not change. This assumption holds true in

static domains, in which the information does not change frequently.

This is similar to the concept of the knowledge-lean problems described in

context of problem solving. According to [106], “Most problems people face in

daily life are not like knowledge-lean problems in which all relevant aspects of

each problem can be given in a compact problem statement.”

2. Knowledge Intensive Domain: The knowledge-intensive domain is defined as a

domain in which the amount of information needed to generate the plan is not

limited, and may not be available a priori. This requires acquisition of at least

78

some part of information during the planning. According to [80], the problem of

knowledge acquisition is one of the most important but least appreciated problems

in automated planning research. According to [80], if there were good ways to

acquire domain knowledge, planning frameworks could be much more useful for

solving real-world problems. This problem is further intensified in dynamic

domains. In the knowledge-intensive planning framework, the information

acquired during planning (in real-time) should be used for generating the plan.

The concept of knowledge-intensive domain is adapted from the concept of the

“knowledge-rich cognition” used for problem solving described in [106].

According to this [106] experts have extensive (rich) knowledge that can be used

for problem solving. This is described as [106] , “Experts know a lot about their

domains. Even if they cannot articulate their knowledge, they have built up

methods for achieving their goals, dealing with hassles and breakdowns, finding

workarounds, and more to make them effective at their tasks.”

In summary, in the static knowledge-lean domain, the information about the system

and the planning problem can be acquired in advance. However, in the case of the

dynamic knowledge-intensive domain, at least some of the information acquisition has to

occur in real time. The cyber-security domain is a dynamic knowledge-intensive domain.

4.1.7 Dynamicity

Section 4.1.6 described the domain from the point of view of amount of knowledge

required to generate the plan, and if this knowledge is available a priori. Domain-

dynamicity influences the knowledge requirement of the domain. It is described by the

79

rate at which the knowledge about the system changes. It may be a reason why this

knowledge in the knowledge-intensive domains may not be available a priori.

1. Static Domain: In a static domain, the information needed to generate the plan

remains static or does not change often. This allows encoding the system and

action model a priori.

2. Dynamic Domain: In a dynamic domain, the information needed to generate a

plan changes dynamically. New information relevant for planning may be

generated frequently. This requires updating the system and action model

correspondingly.

4.1.8 Application of Planning for Critical Domain

Unlike the seven factors described above, this factor is not shown on the spider

diagram. It compares types of application of planning frameworks and not framework

characteristics. However, it is addressed in this section because this application of

planning frameworks influences the way the planning algorithm is designed or

implemented.

If the planning framework is used to generate a plan for time- or mission-critical

operations, then it must generate the most effective plan, often in the first attempt. This

would in turn require a priori preparation, which includes creating accurate system and

action models. In this case, the planning framework may not be able to backtrack or

change the course of action during the plan execution without a significant impact.

In the cyber-security domain, the attacker often learns about the system on the go

and has the option to backtrack and try different actions to accomplish the goal. This is

the most commonly observed behavior of the attacker. Note that the attacker may also

80

pre-plan the attack, and may have the ability to fingerprint the system completely a priori.

This type of attacker behavior can be incorporated as a special case of learn-as-you-go

attacker behavior.

4.2 Comparison of Planning Architectures

The proposed planning architecture is compared with the traditional planning

framework and a theory of human action using the spider diagram as shown in Figure 8.

In this Figure, the traditional framework is shown in yellow, the proposed planning

framework in red and situated action theory in green.

Figure 8: Comparision of planning frameworks

4.2.1.1 Traditional Planning

The traditional planning framework characteristics were introduced with the

description of the conceptual planning framework. Nearly all of the computational

automated planning frameworks, including current vulnerability graph generation

frameworks, are grouped together under this classification in this dissertation.

81

The planning frameworks within this classification vary considerably, but at an

abstract level, they share the same characteristics described in this section.

1. Static Defined Goals: Traditional planning frameworks have static, well-defined

goals. Majority of goals are defined by a system state called goal-state [80]. The

system should reach the goal-state after execution of all planned actions. In a type

of domain-configurable planning algorithm called Hierarchical Task Network

(HTN) the goal is to perform tasks[80].

2. Tracking System State, Planning Philosophy: One of the main distinguishing

factors among the planning frameworks is the planning philosophy. The

traditional planning philosophy is to track the evolution of a system in the form of

system states using a state transition model. The role of the planning algorithm is

to determine which action can be executed in what state to achieve the desired

outcome[80].

3. Planning Framework Classification: The traditional planning framework

generates the plan in offline mode or online mode[80]. The online planning

framework observes the system to identify the difference between the assumed

(using formal model) system state and the actual system state, and take corrective

actions if this difference is large. The online planning framework observes the

system by using a controller and a scheduler mechanism with the planning

algorithm[80]. The planning framework can be domain specific, domain

configurable, or domain independent[80].

4. Stateful System and Plan Driven Action Model: The system is modeled as a

stateful system and the actions are defined in terms of preconditions and effect.

82

Actions are applicable in states in which their pre-conditions are satisfied. The

effect is defined in terms of the state that the system will be in after execution of

the actions.

5. Static and Knowledge-lean domain: The planning algorithm takes as input the

system and action models, which are designed prior to planning. This requires

acquiring the knowledge about the system a priori. According to [80], “In most

automated planning research the information available is assumed to be static, and

the planning framework starts with all of the information it needs.”

4.2.1.2 Situated Action

In contrast to traditional planning, situated cognition does not provide a

computational planning method but suggests a theory of human actions. According to this

theory, human actions are not necessarily driven by a preconceived plan [102-104]. This

concept is presented under different names such as “Situated Action” [102-104] or

“Situated Cognition”[105].

According to[106], situated cognition does not have a theory of problem solving to

compete with the classical view, “It offers no computational, neuropsychological, or

mathematical account of internal processes underlying the problem cognition. Nor does it

explain the nature of the control of external process related to problem solving." It further

suggests that [106], “Each problem is tied to a concrete setting and is resolved by

reasoning in situation specific ways, making use of the material and cultural resources

locally available.”

83

1. Situated Action Model: According to situated action theory [102-104], actions

are situated (i.e., they are taken in context of particular, concrete circumstance)

and situated actions are essentially ad-hoc.

This theory [102-104] suggests that the plans are best viewed as a weak resource

for what is primarily ad hoc activity. It is only when human agents are pressed to

account for the rationality of their actions that they invoke the guidance of a plan

[102-104]. According to this theory [102-104], the plans when formed in advance

are vague, as they do not take into consideration the unforeseeable contingencies

of particular situations. These plans when reconstructed in retrospect

systematically filter out precisely the details that characterize situated actions in

favor of those aspects of the actions that can be seen to accord with the plan

[102-104].

2. Dynamic and Knowledge-intensive Domain: According to [102-104], advance

planning is inversely related to prior knowledge of the environment and the

conditions that the environment is likely to present.

Human actions behave in accordance with the situated cognition theory because

the circumstances around human agents are continuously changing and are never

fully anticipated [102-104]. Consequently, the actions, although systematic, are

never planned in a strong sense.

The current major implementations of situated action theory are two games. These

are called ‘Pengi’ [107] and ‘Sonja’ [108]. In these games, the agent (for example, a

Penguin called Pengi or an Indian called Sonja) perceives the situation of the game (for

example, a bee coming towards the Penguin or a monster attacking the Indian) and

84

chooses the encoded situated actions (for example, run away from Bee, kill the monster

etc.). The proposed framework uses the concept of deictic representation described in

[109]. According to [109], “Deictic representations represent things in terms of their

relationship with the agent.” The proposed framework uses this representation to label the

goals and sub-goals.

4.2.1.3 Proposed Framework

This section describes characteristics of the proposed planning framework.

As mentioned in Section 3.4.2, a cyber-security attack is an exploratory technique

and is not necessarily a preplanned activity. Attacker behavior is more in accordance with

the situated action theory. To capture this attacker behavior, the definition of planning in

this dissertation is a combination of both the traditional planning framework and the

situated action theory, but draws more from the later.

The objective of this dissertation is not to propose a hybrid planning theory or a

general-purpose planning theory, but to develop a domain specific framework that is best

suited for cyber-security risk scenario generation.

1. Dynamic Well-defined Goals: In the proposed planning framework, the goals

are well-defined and dynamic in nature. This framework defines two types of

goals, intentional goals, and situational sub-goals. The high-level attacker

objectives are defined as intentional goals. The situational sub-goals can be

accomplished to achieve the intentional goals. These sub-goals are called

situational because achieving them depends on 1) contextual information of the

intentional goal, 2) available opportunities, 3) attacker behavior, and 4) tools

available to the attacker.

85

Once the high-level intentional goals are identified, the situational sub-goals are

characterized by the cognitive tasks that the attacker may need to carry out to

achieve the intentional goals. These are called cognitive domain specific tasks (or

sub-goals) in this dissertation. The opportunities provided by the system and

attacker behavior further constrain the availability of cognitive domain specific

tasks. The searching for opportunities itself is characterized as a situational sub-

goal.

These situational sub-goals, however, may also change the high-level intentional

goals of the attacker. This may occur in the following scenarios:

a. If there are no opportunities available to accomplish the goals and sub-

goals given the attacker’s knowledge state.

b. If the available opportunities may enable accomplishment of a goal

deemed not possible before.

c. If the actions taken to accomplish the goal fail.

d. The available opportunities may enable accomplishment of another goal

generating higher utility for the attacker.

2. Opportunistic Actions: The attacker actions in the proposed framework are

opportunistic in nature. Opportunistic actions are taken by the attacker to

accomplish the sub-goals and goals, and are dependent on the opportunities

available in the system.

Opportunities exist at multiple levels. There may be opportunities to decompose

the goal into sub-goals, to fingerprint the system, to discover new vulnerabilities

and/or attacks, to exploit existing vulnerabilities, etc.

86

These opportunities themselves are discovered by executing fingerprinting sub-

goals. Fingerprinting of the current environment triggers 1) decomposition of

intentional goals and situational sub-goals, and 2) the availability of attack actions

to accomplish situational sub-goals or intentional goal. The fingerprinting sub-

goals themselves are triggered based on, the attacker behavior, attacker’s

decisions (for example selection of goals and sub-goals) and attacker’s knowledge

state (i.e., different fingerprinting actions may be used to collect information

about different goals and sub-goals).

3. Planning Philosophy - Situational Modeling: The traditional planning

framework tracks the system states, and selects the actions that can be executed in

these states to guide the system toward the goal state. The actions and system

models are assumed to remain static and are encoded a priori. This assumption is

not valid in cyber-security domain.

The proposed framework neither tracks nor models the system evolution using a

state transition model. Plans in the proposed framework are driven by attack

situation, characterized by the dynamic interaction between the opportunities, the

attacker (or encoded attacker behavior – goals, strategy and preferences), and the

tools available to discover and exploit these opportunities. The main objective of

the proposed planning framework is to 1) encode the opportunities provided by

the system, 2) the attacker thought processes in decomposing goals, and

discovering and exploiting these opportunities, 3) attacker preferences and

strategies, and 4) the available attacks. Once encoded, this knowledge is used in

logical reasoning to generate the attack plans given the situation. In summary, the

87

objective is to emulate the attacker behavior by mimicking how the attacker

interacts with the target environment. This is in accordance with the “situated

action”[102, 103] and “situated cognition”[105, 106] theory.

4. Logical System Model: The system is modeled in the form of logical sets of

domain objects and sets of relations between these objects. These domain objects

and the relationships between them are encoded as logical statements.

The logic encoded in the proposed framework is more detailed (or at a lower level

of abstraction) than describing the states of the system. For example, instead of

encoding that the system is in a vulnerable state, it encodes the logic behind why

the system may be in a vulnerable state. The proposed framework uses a

knowledgebase that can capture this type of logic. This is discussed in detail in

Section 4.3.

5. Dynamic and Knowledge-Intensive Domain: The cyber-security domain is an

inherently dynamic and knowledge-intensive domain. This domain dynamicity is

captured by 1) making the knowledgebase, used to capture domain logic, dynamic

(i.e., capable of encoding new information when it becomes available), and 2)

designing the planning algorithm to function with the assumption that information

may be incomplete or changing.

6. Planning Framework Classification: This section describes how the proposed

planning framework is classified.

a. Domain-Specific Planning Framework: The proposed framework can be

considered a domain-specific planning framework, as it uses the logical

encoding of the cyber-security domain for generating attack plans.

88

However, it does not use the state transition model and therefore does not

use the domain information to reduce the search space of the planning

algorithm.

b. Offline or Real-time Planning Framework: The plans are generated

using information about the system. This information can be pre-recorded

or can be generated in real-time. The proposed framework can work in

offline or real-time mode.

4.3 Proposed Planning Framework

Section 4.2.1.3 introduced the proposed planning framework using the conceptual

planning framework elements. This section explains these elements in detail.

4.3.1 Goals

There are two types of goals in the proposed framework, intentional goals and

situational sub-goals. Intentional goals represent high-level attacker objectives, and

situational sub-goals represent the goals that must be accomplished in order to achieve

intentional goals.

4.3.1.1 Intentional Goals

In the cyber-security domain, it is widely accepted that the main objective of the

attacker is to compromise the confidentiality, integrity, or availability of information.

Correspondingly, the objective of the defender is to protect the confidentiality, integrity,

and availability of the information. Security guidelines such as the NIST 800 series

guidance [67, 68], and regulations [69, 70] are based on this basic principle often called

the “CIA principle”. In accordance with this, possible high-level attacker intentional

goals in this dissertation are characterized as “information to be leaked”, “information to

89

be corrupted”, and “information to be made unavailable”. It is important to note that even

though the intentional goals are currently characterized using the CIA principle, the

framework is not limited to these goals. New types of intentional goals can be modeled

using the proposed framework’s logic if needed.

4.3.1.2 Situational Sub-Goal

The situational sub-goals are driven by the cognitive domain-specific tasks the

attacker has to execute to accomplish high-level intentional goals. The “cognitive task”

aspect captures the attacker thought processes as they relate to compromising the system.

These tasks are “domain-specific” because they are guided by the opportunities available

in the cyber-security domain under consideration. There are three types of cognitive

domain specific tasks. Similar to the intentional goals new types of situational sub-goals

can be modeled using the proposed framework’s logic if needed.

Exploit Functionality

The high-level objective of the attacker is to compromise the confidentiality,

integrity, and availability of the information. This “information to be compromised” is

stored in some place, transmitted using some mechanism, and is potentially processed by

some entity. These represent the available opportunities (to compromise the information)

and become the logical choices for the attack. These opportunities represent the potential

situational sub-goals. Examples of situational sub-goals are “location to which access is

needed”, “process to be hijacked”, and “transmission to be captured”. These situational

sub-goals have a functional relation with the goal “information to be compromised”.

Therefore, they are called cognitive domain specific tasks to exploit functionality.

90

This dissertation uses the concept of the deictic representations described in [109] to

label the goals and sub-goals. In deictic representations entities are described in terms of

their relationship to the agent [109]. An example of this is “the-cup-I-am-drinking-from”

[109]. This dissertation uses this concept of deictic representations to label the

relationship of entities to the attacker goal. For example, a sub-goal of the attacker can be

“location to which access is needed”, which may be storing some “information to be

compromised”.

Exploit Connectivity

The software system storing, processing, and transmitting information are connected

to each other using different connection mechanisms. These connections further provide

an opportunity for launching attacks. The connected entities, by virtue of their

connection, become potential situational sub-goals of the attacker. In this dissertation,

these are called cognitive domain specific tasks to exploit connectivity.

Exploit Attributes

Finally, these software systems (storage location, processing applications, or

transmission mechanism) also have their own characteristics. For example, if the storage

location is encrypted, then “decrypt information” becomes the logical situational sub-

goal. In this dissertation, these are called cognitive domain specific tasks to exploit

attributes.

4.3.2 Planning Philosophy

The proposed framework neither tracks nor models the system evolution using a

state transition model. Plans in the proposed framework are driven by attack situation,

characterized by the dynamic interaction between the opportunities, the attacker (or

91

encoded attacker behavior in the form of goals, strategy and preferences), and the tools

available to discover and exploit these opportunities. The main objective of the proposed

planning framework is to encode 1) the opportunities provided by the system, 2) the

attacker thought processes in decomposing goals, and discovering and exploiting these

opportunities, 3) attacker preferences and strategies, and 4) the available attacks. Once

encoded, this knowledge is used in logical reasoning to generate the attack plans given

the situation.

The proposed framework, instead of relying on traditional planning algorithms to

search for applicable actions, uses a distributed planning logic to instantly accommodate

dynamic information.

The distributed planning logic is designed to emulate the attacker thought processes

for decomposing goals (and sub-goals), and discovering and exploiting opportunities

provided by the system. The distributed logic attempts to classify the available system

information and threat information into logical sets representing attacker’s goals, sub-

goals and actions. This classification is done by using a series of logical inferences. Each

inference adds more knowledge that can be used for classifying sub-goals and actions. In

this dissertation, whenever the classified or inferred knowledge becomes useful for

generating the risk scenarios, it is considered triggered.

The centralized planning algorithm in the proposed framework:

1. Provides the information about attacker’s decisions (selected goal, sub-goals, and

actions) to the distributed logic, which triggers the classification and inferences.

92

2. Queries the triggered information from the distributed logic for graphically

displaying the output. The order of this query is determined in real time by using

the encoded attacker preferences and attacker’s situational decision points.

3. Builds the attacker’s knowledge state, which is used to control the knowledge that

can be triggered by the distributed planning logic.

4.3.3 Knowledge Representation

Cyber-security is a knowledge-intensive domain. A large amount of knowledge may

be required to generate the risk scenarios, and this knowledge may not be available a

priori. This requires capturing and using knowledge dynamically while generating the

attack plans. This section introduces the knowledge representation language used to

encode the cyber-security domain knowledge in this dissertation. The distributed logic is

also designed using this knowledge representation language.

The proposed framework uses mathematical logic language to represent the cyber-

security domain knowledge. The knowledge representation technique used in the

proposed framework is called ontology , and the mathematical logic language is called

Web Ontology Language (OWL) [110].

In this knowledge representation language, the domain knowledge is encoded as

machine and human understandable logical statements. Logical reasoning, using the

encoded logic statements, allows classifying the information relevant for attack plan

generation.

4.3.3.1 Knowledge Representation Language

This section briefly introduces the OWL language used to encode the cyber-security

domain knowledge. A detailed overview of the language is described in [110, 111]. This

93

section explains how the information can be encoded as the logical constructs of this

language. These constructs are described below.

Individuals

Individuals are the basic element of this logical language and they represent objects

of the cyber-security domain. According to [110, 111], individuals can be referred to as

instances of a class. These are represented in Figure 9 below.

Figure 9: Example individuals

Properties

According to [110, 111], properties represent the relations between the individuals.

For example, the property ‘isStoredIn’3 links the individual ‘Tradesecret’ to the

individual ‘MySQLServer’4. Properties may have inverse properties[110, 111]; for

example, ‘stores’ can be defined as the inverse property of ‘isStoredIn’.

3The properties in this dissertation are written using italic fonts.

4 The individuals in this dissertation are written by using the bold font

Tradesecret

MySQLServer

Windows Server‐ Archie

94

Figure 10: Example properties

Properties with a single value are called functional properties[110, 111]. Properties

can also be transitive or symmetric [110, 111]. A property chain can also be created by

combining two properties together [112]. For example, if an attack called Attack A

targets a web server called IIS Server (encoded as Attack A attackHasTarget

IISServer), and the IIS Server is hosted on Windows Server (encoded as IISServer

isHostedOn WindowsServer), then it can be inferred that the Windows Server is the host

of Attack A’s target (shown as Attack A hostOfAttackTarget WindowsServer). This is

done by defining property hostOfAttackTarget as the chain linking properties

attackHasTarget and isHostedOn.

Figure 11: Property chain example

95

Classes

Classes are logical sets of individuals [110, 111]. They describe a collection of

similar types of individuals. An individual can be manually assigned to a class, or its

membership in class can be inferred by defining the criteria under which an individual

becomes a member of a class [110, 111].

An example of manual assignment of individuals to classes is shown below.

Figure 12: Example of class

Figure 13: Example of class encoding using special ‘type’ property

Membership criteria can be logically encoded either by using logical definitions or

by using property restriction. Property restriction can be used to group together

individuals with similar property relations [110, 111].

Information

Tradesecret MySQLServer

type type

Database

96

Set mathematics can be used to create a hierarchy of classes. This allows defining

sub-class, super-class, intersections, and unions. Figure 14 below shows an example in

which the individual MySQLServer is classified as a member of set Database, and the

class Location is defined as the super-class of Database class. It can be inferred that the

MySQLServer is a member of the class Location.

Figure 14: Example class hierarchy

Class membership can also be defined by using the properties of individuals [110,

111]. More specifically, class membership can be defined by restricting the values the

properties can have to a certain range or to a specific value [110, 111]. For example, this

logic can be used to define a class whose individuals have some a functional relation with

the selected goal. Figure 15 below shows this example. In this Figure, the class

FunctionalGoalTriggeredSubgoal is defined as the class of individuals who are related

to the members of selected goal class (by hasFunctionalRelation property). This is

achieved by restricting the hasFunctionalRelation to take values as individuals who are

members of the SelectedGoal class.

97

Figure 15: Example property restriction

One feature of the logical language used in this dissertation is its ability to define a

class with no name. These unnamed classes [110, 111] are defined by using property

restriction. For example, if all individuals that can be scanned by a certain type of

fingerprinting method need to be grouped together, then it can be achieved by defining a

class by limiting the values of the property ‘canBeScannedBy’ to ‘DataBaseScan’. The

act of limiting the property value is called property restriction [110]. This is shown in

Figure 16 below. This ability to create anonymous class can be used to define a super-

class without explicitly creating a new named class.

Figure 16: Example of class hierarchy and property restriction

98

4.3.3.2 Knowledge Representation Language Usage

The knowledge representation language used in this dissertation is the ontology

language used for designing the Semantic Web [113]. According to [114], “The Semantic

Web is a web of data”. It [114] also mentions that , “The Semantic Web provides a

common framework that allows data to be shared and reused across application,

enterprise, and community boundaries.” Semantic Web a collaborative effort led by the

World Wide Web Consortium (W3C) [115], which is an international community that

develop Web standards. According to [114] one of the applications of the Semantic Web

technologies is data integration, “whereby data in various locations and various formats

can be integrated in one, seamless application” [114].

The features of this knowledge representation language are used in this dissertation

to capture diverse cyber-security domain knowledge, which may be generated from

different sources dispersed in space and time. The knowledge representation language

and the logical reasoning are used to design the distributed planning logic. The usage of

the knowledge representation language is introduced below and is detailed in Section 6.1.

1. Capture Diverse and Dispersed Cyber-security Domain Knowledge: The red-

team (and attacker) may use diverse amount of knowledge to generate the attack

plan. This knowledge may be about the use of software system in the target

infrastructure, the design of the software that makes it vulnerable to potential

attacks, the attacker thought process in decomposing the goal or for discovering and

exploiting vulnerabilities, the theories of attacker behavior etc. This knowledge can

also be generated by sources dispersed in space and time. Example of these diverse

99

types of knowledge, and the potential (example) sources from which it is collected

is shown in the Figure 17 below.

Figure 17: Example of diverse types of knowledge

The knowledge representation language used in this dissertation provides

sufficient vocabulary to encode and combine this diverse knowledge about the

cyber-security domain. The logical language used in this dissertation also allows

capturing this knowledge directly from the source.

2. Incomplete Information: The knowledge representation language (OWL) and

logical reasoning used in this dissertation assumes that the knowledge is

incomplete and that new knowledge can be available at any time [116]. OWL was

designed for Semantic Web. According to [116], in Semantic Web “Anyone can

100

say Anything about Any topic” and as a result “there could be always something

new that someone will say”. The traditional planning algorithms and traditional

knowledgebase [117] assume that the knowledge encoded is complete and all the

knowledge that is not encoded is false (i.e. there are no unknowns). This

assumption is not valid in the cyber-security domain.

3. Distributed Planning Logic: The proposed framework is divided into two

components: centralized algorithms and distributed logic. This dissertation uses

the knowledge representation language to design the distributed logic.

The knowledge representation language allows building distributed logic

incrementally. In this incremental logic building process, new distributed logic

can be added when more understanding about the domain becomes available. This

makes the planning logic flexible and scalable.

4. Contextual Interpretation: In the cyber-security domain, new information

availability may require interpreting already encoded information and inferences

differently. The same attacks and vulnerabilities may be used differently by

different types of attackers, and different cyber-security experts may associate the

same attacks and vulnerabilities with different attack plans. Due to the nature of

the cyber-security domain, it should be possible to interpret the information

encoded differently in different contexts. The knowledge representation language

[110] and the encoded logic allows contextual interpretation of information (i.e., it

allows interpreting the relation between individuals differently when new

information about individuals is available).

101

5. Information Validation: The logical language [110] used in this dissertation

provides the ability to check for logical conflicts among the encoded information.

This feature can be used for identifying the conflict between the encoded expert

theories.

This section introduced the concept of ontology, the OWL language, and described

how it is used in this dissertation. Appendix II provides more background information

about ontology, and describes how the ontologies are used for other applications [118] in

cyber-security domain (for example, encoding security features requirements for

application development; annotating the web service descriptions with security

requirements and capabilities; developing ontology of intrusion detection system for

communicating the information regarding an attack; developing a global security

ontology etc.).

4.3.4 System Model and Action Model

The system and action model in proposed framework are encoded by a group of

ontologies.

Asset Ontology

This ontology describes the software system’s characteristics, usage, and design.

Asset ontology captures the information at two levels – abstract and specific. The abstract

level logic consists of generic information about the software system. For example, the

operating system is a type of software, the firewall is a cyber-security countermeasure,

the MySQL Server is a type of database server, etc. Specific level logic captures

information about instances of software systems. For example, Archie is the name of a

102

Windows 2003 Server, Archie hosts a MySQL Server, etc. Combining both types of logic

enables capturing abstract reasoning that characterizes the attacker thought process.

Threat Ontology

The threat ontology encodes information about the known and conceptual (potential)

attacks and vulnerabilities, definition of potential target of attack, and the impact of the

attack. The threat ontology describes 1) how the attack can be used to exploit

vulnerability, 2) what type of target may be vulnerable to such attack, and 3) what impact

the threat may have on the target. The asset, threat, and planning ontology capture the

logic of how the fingerprinting actions can be triggered.

Attacker Behavior Ontology

The attacker preference and strategies are encoded in attacker behavior ontology.

Attacker strategy in turn is influenced by the attack’s environmental context and the

attacker’s motivation.

Planning Ontology

The planning ontology uses the information encoded in asset and threat ontology to

trigger the information relevant for generating the risk scenarios.

4.3.5 Dynamicity

Any automated framework generating the attack plan should be capable of handling

the availability of new information. Information to be used by the planning algorithm is

typically stored in a knowledgebase.

4.3.5.1 Type of Reasoning to Capture Cyber-security Domain Dynamicity

All planning algorithms use some form of logical reasoning. Two major categories of

reasoning are reasoning assuming complete knowledge (closed world reasoning), and

103

reasoning assuming incomplete knowledge (open world reasoning). The type of

reasoning chosen influences: 1) how the information stored (or not stored) in the

knowledgebase is interpreted, and 2) design of the planning algorithm. This section

describes these two types of reasoning.

 Reasoning Assuming Complete Knowledge (Closed World Reasoning)

Most traditional planning algorithms as well as traditional knowledgebase are

developed by assuming whatever information is not explicitly stated is false [75, 117].

This reasoning is called “closed world reasoning” or “closed world assumptions”. This is

used either when the knowledgebase used by the planning algorithm is known to be

complete, or when the knowledgebase is known to be incomplete but a best definite

answer has to be derived from incomplete information[75, 117].5

The “complete knowledge” assumption is appropriate in many domains[75, 117],

since in those domains it might be natural to explicitly represent only positive knowledge,

and assume the truth of negative facts by default. This can be illustrated by the example

of an airline knowledgebase [75, 117] in which all the flights and the cities they connect

are explicitly represented. In this [75, 117] knowledge base, “Failure to find an entry

indicating that Air Canada flight 103 connects Vancouver with Toulouse permits one to

conclude that it does not.”

In the absence of such assumption, one would have to explicitly encode all the

destinations that Air Canada flight 103 connects, and which ones it does not connect.

Depending on the type of domain, the number of negative facts may far exceed the

5 The reference paper makes these statements about closed world databases. Here the term

knowledgebase is used a general form of database.

104

number of positive facts, making the requirement to encode all facts (positive and

negative) explicitly unfeasible.

To avoid this, many knowledgebase and planning algorithms assume that whatever

information is not encoded explicitly is false. According to [75, 117], “Notice, however,

that by adopting this convention, we are making an assumption about our knowledge

about the domain, namely, that we know everything about each predicate of the domain.

There are no gaps in our knowledge”. Furthermore, according to [75, 117], “The implicit

representation of negative facts presumes total knowledge about the domain being

represented. Fortunately, in most applications, such an assumption is warranted.” This

assumption does not hold true for the cyber-security domain.

Reasoning Assuming Incomplete Knowledge (Open World Reasoning)

To capture the cyber-security domain information, which is characterized by

incompleteness and continuous change, the proposed framework must use the reasoning

that assumes incomplete knowledge (open world reasoning). This reasoning assuming

incomplete knowledge, is used to encode distributed planning logic.

This reasoning, unlike the “complete knowledge” assumption, does not make any

inferences or assumptions about information that is not present (i.e., it does not assume

that the absence of information means that the information is false). This is known as the

“open world reasoning”. Using the example mentioned above, if it was encoded that

flight 103 connects Vancouver to Washington DC, this information can be used in

planning an itinerary. However, the inference that “there is only one flight out of

Vancouver” is not supported by the open world reasoning, as another flight out of

105

Vancouver may exist (or can exist in future), and the itinerary-planning framework just

does not know about it.

Impact of Reasoning on Planning

Traditional planning selects actions if the perquisites for those actions have been

satisfied. These prerequisites are described using system states. In each system state, the

planning algorithm searches for applicable actions using these prerequisites. The

prerequisites (in the knowledge representation language) can be encoded by using a

property hasPreRequiste as shown in Figure 18 below.

Figure 18: Open world pre-requisites

Figure 18 shows an example action called BufferOverflowAttack, which needs to

be enabled when its prerequisites are satisfied. This can be encoded by logic: if all the

individuals, related to BufferOverflowAttack by hasPreRequiste property, are members

of the class CurrentState, then BufferOverflowAttack has its prerequisites satisfied and

becomes the applicable (enabled) attack in current state. However, this logic, asserting

that all pre-requisites are satisfied, excludes the possibility of a statement in which

BufferOverflowAttack is related to an individual by the hasPreRequiste that is not a

member of class CurrentState. The later cannot be inferred in reasoning assuming

106

incomplete knowledge (open world reasoning) as either this statement may exist without

knowledge of the planning framework, or can be stated anytime. Hence, it cannot be

inferred that the prerequisites of the individual are satisfied[119]. This challenge of

encoding pre-requisites in open world reasoning using pre-requisites was identified in

[119]. The example shown above was adapted from an example of a semantic

questionnaire described in [119].

According to [119], one way to make the reasoning framework infer that

prerequisites are satisfied, without completely “closing the world” (i.e., assuming all non-

stated information to be false) is to assume that “partial knowledge” is available a priori.

This “partial knowledge” states that the numbers of prerequisites are known a priori. This

can be presented by a variable n. When these n numbers of prerequisites are met, this fact

will remain true. The challenge in cyber-security domain is that these encoding of pre-

requisites may be driven by expert knowledge. Hence, different experts may disagree on

the number of pre-requisites in advance. In addition, even if the number of pre-requisites

are encoded in advance, the framework still allows adding new statements using the pre-

requisite property (i.e. a [n+1]th statement can be made by using the hasPreRequiste that

was not previously encoded). The reasoning framework cannot be sure that these first n

observed statements semantically represent the needed prerequisites of the action the

expert was trying to encode. If the framework encounters a (n+1)th statement, then it does

not reject this statement; it infers that this is a different way of encoding one of the n

statements. For example, if a third statement was encoded in Figure 18 as

BufferOverflowAttack hasPreRequiste UseOfBuffer and if it was stated that the buffer

overflow attack has two prerequisites , then the logical reasoning infers that UseOfBuffer

107

individual is another name of already encoded individuals, AvailableVulnerability or

NoBoundaryProtection. This may lead to inferring incorrect information.

As a result, the traditional planning algorithm structure of encoding actions in the

form of prerequisites and effects may not be usable directly, while using open world

reasoning. This dissertation, instead of encoding prerequisites, encodes the logic behind

“why” the statements were selected as prerequisites. More specifically, instead of

encoding that a system has vulnerability, this dissertation encodes logic about why the

system may have this vulnerability. If the available system knowledge meets this logic

then it can be inferred that the system has this vulnerability. This also better captures the

attacker thought process for uncovering such vulnerability.

4.3.6 Planning Algorithm

The previous sections described the inputs of the planning algorithm, or the factors

that influence the design of the planning algorithm. This section describes the planning

algorithm. Logic of the proposed planning framework is divided into two core

components: centralized algorithm and distributed logic. These are described in detail in

this section.

The proposed framework’s modified planning problem for cyber security domain

generates the attack plans by trying to answer the following questions.

Given that, the attacker selects a goal:

1. What cognitive tasks does the attacker have to execute to accomplish this goal,

given the opportunities provided by the system?

2. How can the attacker discover these opportunities?

108

3. What type of attacks can be used to exploit these opportunities, to accomplish the

selected cognitive tasks or goals?

4. What opportunities are available to execute these attacks?

5. How does the attacker select which cognitive tasks, opportunity discovery actions,

and attacks to execute?

The purpose of distributed logic in this case is to:

1. Trigger the cognitive tasks as possible sub-goals available to the attacker, given

the information about selected attack goals and attacker’s state of knowledge.

2. Trigger the fingerprinting actions available to the attacker, given the information

about selected goal, sub-goals, attacks, and attacker’s state of knowledge.

3. Trigger the opportunities that can be targeted, given the attacker’s state of

knowledge about the system. This knowledge can be acquired by executing the

fingerprinting actions identified above.

4. Trigger the available attacks that can achieve the selected goal or sub-goal given

the attacker’s state of knowledge.

The purpose of the centralized algorithm is to:

1. Insert the attacker decisions in the distributed logic that triggers the sub-goals,

fingerprinting actions, opportunities that can be targeted, and the available

attacks.

2. Graphically generate the attack plan by querying the triggered information and

attacker preferences. The order of this query is determined in real time by using

the encoded attacker preferences and attacker’s situational decision points.

109

3. Build the attacker’s knowledge state for generating the attack-scenarios. This

knowledge state is used to control the knowledge that can be triggered by the

distributed planning logic.

Figure 19, shown below, describes the interaction between these two components.

Figure 19: Interaction between cetralized and distributed logic

The interaction shown in Figure 19 is described below:

1. The centralized planning algorithm queries the distributed planning logic. The

centralized algorithm is also used to program the graphical user interface, which

is used to elicit the expert’s attacker behavior theories. The order of this query is

determined in real time by using attacker preferences and attacker’s situational

decision points encoded in the attacker behavior ontology.

110

2. The centralized algorithms insert the attacker decisions in the distributed planning

logic. Consequently, they query the results of these decisions.

3. The distributed logic is dynamic, in which new individuals and classes are often

discovered. This dissertation develops a set of variables to act as the interface

between this dynamic distributed logic and static centralized algorithms. This set

of variables is called the “anchor set”. The class that forms the anchor set does not

change, but its sub-classes and member individuals may change based on the

dynamicity of the domain. The centralized algorithm queries and/or populates the

anchor sets.

4. The anchor sets are related to other classes (called catcher sets) and individuals in

the distributed logic by a class or property hierarchy. This class and property

hierarchy may change, and it can be defined in real time. New classes can be

defined as sub-classes of the anchor set, and new individuals may become

member of anchor sets. This increases or decreases the members of the anchor set.

5. The catcher set representing lower level planning logic, encodes the logic about a)

under what circumstances the individuals that are of interest for generating the

attack plan, may become a member of this sub-class, and b) given that an

individual becomes a member of this sub-class, what other information can be

inferred that is relevant to planning logic. These individuals are stored in asset and

threat ontologies, but they participate in the planning ontology by becoming

members of classes defined in planning ontology. Due to the dynamicity of the

domain, new individuals and relationships between individuals are often

discovered. Furthermore, the relationship between these individuals evolves as

111

more information is available. This lower level planning logic in a way “catches”

these individuals, which can be used in generating attack plan, as they evolve or

become available in this dynamic pool of individuals defined by the asset and

threat ontology. Hence, these sets are called catcher sets.

6. The asset and threat ontology were introduced in Section 4.3.4. They represent a

dynamic set of cyber-security domain individuals, the relationship between these

individuals, and the classes aggregating these individuals. The combination of

individuals in these ontologies can be described as a “pool of individuals” in

which these individuals originate and their relationship and membership evolve.

7. The asset and threat ontology individuals can become members of catcher set

classes, when they satisfy their membership criteria.

Following sections describe the centralized, distributed planning logic and its

interaction by using an example.

4.3.6.1 Centralized Planning Algorithm

The centralized planning algorithm generates the graphical attack plans, and acts as

human interface. This can be illustrated using an example, in which an attacker is trying

to compromise an organization’s trade secret information. The centralized algorithm

logic for this example is shown in Figure 20 and is described in this section.

112

Figure 20: Generic flow of centralized planning algorithms

The steps below describe the flow of logic shown in Figure 20.

1. The algorithm starts when the attacker goal is selected. In the example, the

centralized algorithm marks trade secret as “information to be leaked” and as the

selected goal of the attack. This is done by classifying the individual

“TradeSecret” as a member of Anchor set class “SelectedGoal” and

“InformationToBeLeaked”.

2. The selected goal triggers the cognitive domain specific tasks (sub-goals),

fingerprinting sub-goals, and attacks available to the attacker. These available

options are queried by the centralized algorithm to generate the attack tree.

a. Fingerprinting sub-goals (scans) to learn about opportunities available to

achieve goals are triggered. These are represented as double dotted lines.

(). In the current example, the fingerprinting options are

“fingerprint the location where trade secret is stored”, “fingerprint how the

trade secret is processed”, or “fingerprint how the trade secret is

transmitted”.

113

b. Sub-goals representing the cognitive tasks that can accomplish the

selected goals are triggered and available as options to the attacker.

i. These are represented as dotted lines () indicating

that these sub-goals can possibly accomplish the selected goal but

the information about how to accomplish (or decompose) them is

not available. In this example, the sub-goals can be “compromise

the location where trade secret is stored”, “compromise the

computer processing trade secret”, or “compromise the channel

transmitting trade secret”.

ii. The execution of fingerprinting options further identifies the

specific achievable sub-goals. In this example, it is assumed that

the attacker selects the “fingerprint the location where trade secret

is stored” option.

iii. If the executed fingerprinting action is able to gather specific

information about which of the possible sub-goals are achievable,

then these becomes the attacker’s available options. These

available sub-goals are presented by solid lines (). In

the current example, the trade secret is stored in the MySQL

Server. If this information is accurately fingerprinted, then the

available sub-goal becomes “Compromise MySQL Server”.

3. When the attacker selects an available sub-goal, the centralized algorithm inserts

this information in the distributed logic. This is done by classifying the sub-goal

as a member of the “selected sub-goal” anchor class. This classification further

114

triggers more sub-goals, fingerprinting sub-goals, or attacks. In the current

example, MySQL Server is the selected sub-goal, and the “location to which

access is needed”.

a. Fingerprinting sub-goals are triggered to learn about available

opportunities to accomplish the sub-goals. In the current example,

“Database Scan” becomes the available fingerprinting sub-goal.

b. Actions available to accomplish the sub-goals are triggered given the

attacker’s knowledge state. In the current example, the SQL injection

attack that can be used to compromise MySQL Server is triggered.

4. The attacker selects available attack(s) to achieve the sub-goal(s) and goal. In the

current example, executing the SQL injection attack achieves the selected sub-

goal of MySQL as the “location to which access is needed”, which in turn

accomplishes the selected goal of compromising the trade secret.

This logic is represented as sequential logic, but its implementation is more iterative.

For example, the selected sub-goal can in turn decompose/trigger further sub-goals until

they can be achieved by executable actions.

4.3.6.2 Distributed Planning Logic

Anchor sets

Planning ontology captures the logic behind how the sub-goals, fingerprinting

actions, and attacks are triggered. This ontology consists of layers of distributed logic.

The first (and the highest) layer of this is described as the anchor set. The centralized

algorithm mentioned above functions by querying or populating these anchor sets. The

interaction between the centralized planning algorithm and the anchor sets is shown in

115

Figure 21 below. The numbers in this Figure represent the corresponding steps shown in

Figure 20.

Figure 21 Anchor set classes

In anchor set logic, when an individual is classified as the selected goal (shown in

step 1), other individuals that can help accomplish this goal are classified the “goal

triggered sub-goals”, if the information about them is available. The sub-goals that can

provide information about the selected goals are classified as members of “goal triggered

fingerprinting goal” (shown in step 2-a). The information collected by selecting (shown

in step 2-b-ii) and executing the fingerprinting sub-goal, can further trigger the available

sub-goals (shown in step 2-b-iii) or attacks.

116

Similarly, when an individual classified as “goal triggered sub-goal” is chosen as the

selected sub-goal (step 3), further individuals are classified as members of “sub-goal

triggered sub-goal” and the “sub-goal triggered fingerprinting goal” (shown in step 3-a).

Subsequently any attacks that can accomplish either the selected goal or the selected sub-

goal are classified as the triggered attacks (shown in step 3-b). The triggered attack’s

section and execution may achieve the sub-goals and goal.

The distributed planning logic can be described as multiple distributed triggered

classifications.

Catcher Sets

The logic of how the individuals become member of the triggered anchor sets comes

from the lower levels of the distributed logic. These lower level logic sets are also called

catcher sets.

Low-level distributed planning logic describes the circumstances in which

individuals may become the members of catcher sets. The individuals in catcher sets

further become the members of anchor sets either by virtue of class hierarchy (in which

anchor sets are encoded as a parent class of catcher sets) or by property hierarchy (in

which anchor sets are defined by restricting the parent properties of the properties defined

in catcher set logic). In this manner, the catcher sets control the size of the anchor sets by

providing individuals.

The catcher set logic itself is dynamic and is encoded by current cyber-security

domain understanding. This catcher set logic is illustrated with an example below.

This example logically encodes the following thought process “Consider the case in

which the trade secret is the information to be leaked and it becomes the selected goal.

117

The only a priori information available is that the trade secret is stored in a MySQL

database. Hence, compromising the MySQL Server becomes the logical choice of attack.

Since the MySQL Server is a database, more information about it may be gathered by

using a database scan.”

The information about individuals described in this example is stored in the asset

ontology. This asset ontology stores specific and abstract asset information. Example of

the specific and abstract information stored in asset ontology is shown in Figure 22. This

example logic encodes the following information:

 Trade secret is stored in the MySQL Server. This is encoded as- Tradesecret

isStoredin MySQLServer6. This is an example of specific information.

 Trade secret is a type of information. This is encoded as- Tradesecret type

Information. This is an example of abstract information.

 MySQL Server is a type of database, and is encoded as MySQLServer type

Database (example of abstract information).

 The inverse of relation “isStoredIn” is “stores (example of abstract information).

From this encoded logic, a simple inference using the inverse relationship can be

made, stating that the MySQL Server stores the trade secret (MySQLServer stores

TradeSecret).

6 This is stored in the knowledge representation language as below:
 <owl:Thing rdf:about="#Tradesecret">
 <isStoredin rdf:resource="#MySQLServer"/>
 </owl:Thing>
For simplifying the explanation, this dissertation abbreviates this detailed encoding to Tradesecret

isStoredin MySQLServer.

118

Figure 22: Asset ontology example

The high-level abstract information enables abstract reasoning. The asset ontology

shown in Figure 23 encodes

 The class database has a parent class called location encoded as (Database

subClassOf Location).

 Database class’ superclass is defined as a group of individuals that can be

scanned by database scan. ((Database subClassOf (canBeScannedBy hasValue

DataBaseScan)7.

 Database scan is a type of scan (DataBaseScan type Scan).

 canBeScannedBy is defined as an inverse property of scans.

7 This is encoded in the OWL language as shown below:
 <owl:Class rdf:about="#Database">
 <rdfs:subClassOf rdf:resource="#Location"/>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#canBeScannedBy"/>
 <owl:hasValue rdf:resource="#DatabaseScan"/>
 </owl:Restriction>
 </rdfs:subClassOf>
 </owl:Class>
This dissertation abbreviates this type of detailed logical encoding for explaining the ontologies.

119

Given this ontology example, when the MySQLServer is classified as a member of

the Database class, it is also automatically classified as a member of the parent class

location, and the unnamed superclass mentioned above. Since all members of this

unnamed superclass have to satisfy its definition as “a class of individuals that can be

scanned by a database scan”, it can be inferred that the MySQLServer can be scanned by

a database scan.

Figure 23 Asset ontology example encoding abstract information

How this asset information is used in the attack plan generation is defined by the

planning ontology. An example of this planning ontology, shown in Figure 24 encodes

the following information:

 “Location to which access is needed” is a catcher class and it is defined as a class

that stores some “information to be leaked”. This is done by restricting the

property “stores” to individuals that are classified as “information to be leaked”.

In other words, “location to which is access is needed” is a class describing a

collection of individuals that have some “stores” relation with the individuals

classified as “information to be leaked”. This is encoded as

120

(LocationToWhichAccessIsNeeded = stores someValuesFrom

InformationToBeLeaked)

 “Functional goal triggered sub-goal”, also a catcher class, is defined as a class

that “has functional relation” with some selected goal. This is defined by the

property restriction encoded as FunctionalGoalTriggeredSubgoal =

hasFunctionalRelation someValuesFrom SelectedGoal

 “Sub-goal triggered fingerprinting goal” class is an anchor class and is defined as

a class that scans some triggered sub-goal. This is encoded as

(SubGoalTriggeredFingerpritntingGoal = scans someValuesFrom

TriggeredSubGoal).

 “Functional goal triggered sub-goal” is a catcher class and is defined as a sub-

class of “goal triggered sub-goal”. The “goal triggered sub-goal” is further

defined as a subclass of “triggered sub-goal”.

 Furthermore, the property hasFunctionalRelation is defined as a parent property

of stores and isStoredIn. This means all individuals related to other individuals by

the property stores or isStoredIn are also related to each other by the property

hasFunctionalRelation.

121

Figure 24: Planning ontology examples - anchor and catcher classes

The inferences mentioned in the scenario example can be generated by combining all

logic captured in asset and planning ontology fragments. This is shown in Figure 25 and

is described below.

Figure 25: Combined logic of examples

122

In the combined logic shown in Figure 25, the following information is added by the

centralized algorithm as input (i/p).

(i/p): The trade secret is classified as a selected goal and is the information to be

leaked.

Given this information, the following inferences are triggered:

1. Since the MySQL Server has a stores relation with trade secret, which is now the

“information to be leaked”, it satisfies the membership definition of “location to

which access is needed” class and is classified as a member of this class.

2. Since the MySQL Server satisfies the relation hasFunctionalRelation with the

selected goal, trade secret, it further satisfies the membership definition of the

class “Functional goal triggered sub-goal”.

3. “Functional goal triggered sub-goal” is classified as the subclass of the “goal

triggered sub-goal” class. Hence, the MySQL Server becomes a “goal triggered

sub-goal”.

4. The “Goal triggered sub-goal” is further defined as a subclass of “Triggered sub-

goal”. Hence, the MySQL Server becomes a “Triggered sub-goal”.

5. Given all this information, the database scan now satisfies the definition of the

“Sub-goal triggered fingerprinting goal” class, and is classified as a member of

this class.

This example shows how the series of distributed classifications can trigger the sub-

goals given the selected goal. This distributed planning logic is described in detail in

Chapter 6.

123

4.3.7 Planning Output

The planning framework, as implemented, generates four types of graphical outputs.

Apart from this, the distributed planning logic can be queried directly to generate custom

outputs. These five types of outputs are generated by the following five modes of

operations.

Mode 1- Attack Tree Generation without Attacker Preference: This mode

generates the attack tree. The attack tree shows the goal, the decomposed sub-

goals, and the executable attacks exploiting vulnerabilities that can accomplish

these goals and sub-goals.

In this mode, the proposed framework’s centralized algorithm provides the

information about the attacker’s goal. The distributed logic triggers the sub-goals,

and the available attacks that can achieve the attacker goal (and sub-goal). The

centralized planning algorithm then queries this triggered information to

graphically generate the attack tree assuming that the system has been

fingerprinted perfectly and all possible ways of achieving the goals are selected.

Mode 2- Attack Scenario Generation Using Red-team: The attacker may not

act in the sequential order described by the attack tree and may backtrack,

abandon the scenario, or change goal in accordance with the available

opportunities. This behavior is captured in the form of an attack-scenario, which

indicates the actual steps taken by the attacker, including backtracking, re-

execution of the attacks, and changing goal.

The cyber-security risk scenarios are often generated by a red-team. This mode

provides the red-team with an interface to interact with the target network. In this

124

mode, the proposed framework’s centralized algorithm gives the red-team

possible attack goals as options. When the red-team selects a goal from these

options, the distributed logic triggers the fingerprinting actions (that can provide

knowledge about how to decompose or achieve this goal) or available attacks.

When the red-team selects one of the triggered fingerprinting actions, the

centralized algorithm builds the red-team’s (or attacker’s) knowledge state by

capturing the knowledge that can be discovered (using this fingerprinting action).

The red-team’s (or attacker’s) knowledge state is used by distributed logic to

trigger more sub-goals and attacks. The centralized algorithm gives the red-team

triggered sub- goals as options. When the red-team selects a sub-goal from these

options, the distributed logic triggers more sub-goals, fingerprinting actions, and

the attack actions that can be used to achieve this sub-goal. This process continues

until the red-team’s goal is achieved or abandoned.

The centralized algorithm then displays the actual steps taken by the red-team. In

this mode, the red-team’s theories about attacker thought process and preferences

are also elicited.

Mode 3- Automated Attack-scenario Generation: This mode of operation uses

the attacker behavior theories to generate the attack-scenario automatically. This

attack-scenario represents the most likely risk scenario given the attacker’s

preference.

Mode 4- Ranked Attack Tree Generation Using Attacker Preferences: In this

mode, the branches of the attack tree generated in Mode 1 are ranked according

to the encoded attacker preferences.

125

Mode 5- Direct Query: Apart from the graphical modes of operation described

above, the distributed logic can be directly queried to generate custom output.

These modes of operations are detailed in Chapter 8.

The Table 8 shown below summarizes the differences in design of the proposed

framework and the current vulnerability graph generation algorithms.

 Vulnerability Graph Framework Proposed Framework

Planning
Framework

Uses traditional planning framework Uses combination of traditional planning
framework, and the situated action theory

Goal Static Well Defined
 Goal: Gain restricted privileges or

circumvent a security property.

Dynamic Well Defined
 Intentional Goals: Compromise

integrity, confidentiality, and
availability of information

 Situational Sub-goals: Attacker’s
cognitive domain specific tasks to
achieve the intentional goals.

Planning
Philosophy

Planning philosophy is to track the
evolution of a system in the form of
system states using a state transition
model.

Plans in the proposed framework are driven
by situation, characterized by the dynamic
interaction between 1) the opportunities
provided by the system, 2) the attacker
thought processes in decomposing goals,
and discovering and exploiting these
opportunities, 3) attacker preferences, and
4) the attacks available to attacker.

System and
Action
Models

 System Model: Encodes the
system states

 Action Model: Encodes actions
using pre-requisites and effects.
Action pre-requisites typically
encodes the attacker’s initial
privileges, presence of
vulnerability, and connectivity
between software systems; Action
effects typically encodes
attacker’s elevated privileges,
possible crashing of software or
change in system state.

 Asset Ontology: Captures software
system’s characteristics, usage, and
design.

 Threat Ontology: Encodes known and
conceptual (potential) attacks and
vulnerabilities, definition of potential
target of attack, and the impact of the
attack.

 Attacker Behavior Ontology: Encodes
attacker strategy and preferences.

Knowledge
and

Assumes static and knowledge-lean
domain

Assumes dynamic and knowledge-
intensive domain

126

Dynamicity  Uses limited knowledge
 Assumes knowledge is available a

priori and is complete

 Uses diverse and dispersed knowledge
 Assumes knowledge is not available a

priori and is incomplete

Planning
Algorithm

Searches for which action can be
executed in what state to achieve the
desired outcome

Instead of relying on traditional planning
algorithms to search for applicable actions,
uses a distributed logic to instantly
accommodate dynamic information
 Distributed Logic: Designed to

emulate the attacker thought processes;
Uses the information, as it becomes
available, to trigger the sub-goals, the
fingerprinting actions, the opportunities
that can be targeted, and potential
attacks

 Centralized Algorithm: Provides the
attacker decision, and queries triggered
information. The order of this query is
determined in real time by using the
encoded attacker preferences and
attacker’s situational decision points.
Builds the attacker’s knowledge state
for generating the attack-scenarios

Framework
Classification

Offline/Online Offline/Real-time

Outputs Generates the vulnerability graph Generates attack tree and attack scenarios.
Encoded and triggered information can also
be directly queried to generate custom
output.

Table 8: Comparison of proposed framework and vulnerability graph framework’s design

127

5 Framework Architecture

Chapter 4 introduced the proposed planning framework and algorithm for generating

the attack plans. The planning algorithm has two types of logic – distributed and

centralized –and five modes of operations generating four different types of graphical

output. Chapters 5-8 describe how the planning algorithm is implemented. The

distributed and centralized logic are implemented by two corresponding modules called

Flux and CieKI, as shown in Figure 26.

5.1 Flux

Flux implements the distributed planning logic. Flux consists of the asset, threat

(vulnerability and attack), and planning ontology. It is called Flux because it captures the

dynamic information, and uses it to trigger the knowledge relevant for generating attack

plans. Chapter 6 describes Flux in detail.

5.2 CieKI

CieKI (pronounced psyche) stands for Cognition Induced Kinetic Intelligence. It

consists of centralized algorithms and the attacker behavior ontology. Its main purpose is

to capture the attacker behavior, create the attacker behavior ontology, and generate

attack plans given this attacker behavior. CieKI generates the attack plans by inserting the

attacker behavior information and attacker decisions in Flux and by querying its impact

from Flux. The order of this query is determined in real time by using the encoded

attacker preferences and attacker’s situational decision points. Chapter 7 describes CieKI

in detail.

128

Figure 26 Proposed framework architecture with output

Apart from these two core modules, an attack tree graphical algorithm is developed

that queries Flux directly to display the attack tree for the first mode of operation. This

graphical algorithm does not use attack preferences, and is not part of CieKI.

5.3 Modes of Operation

Flux and CieKI are used to support the four graphical modes of operation as shown

in Table 9 below. Along with these graphical modes, Flux distributed can also be directly

queried. This direct query can be used to create custom output.

129

Modes of operation Modules supporting modes of operation

1
Attack tree generation without using
attacker preference

 Flux
 Attack tree graphical algorithm

2
2

Attack-scenario generation using red-
team  CieKI

o CieKI algorithms
o Attacker behavior ontology

 Flux

3
3

Automated attack-scenario generation

4
4

Ranked attack tree generation using
attacker preference

5
5

Direct query of distributed planning sets  Flux

Table 9- Proposed architecure- modes of operation to component mapping

These two modules and the five modes of operations are explained in this

dissertation using a case study described in next section. Chapter 8 describes these modes

of operation in detail. The case study is also used to compare the proposed framework

with the manual attack tree generation, and current automated vulnerability graph

generation methods. Chapter 9 describes the comparison between frameworks in detail.

5.4 Case Study

The case study used in this dissertation is adopted from [81]. It is reused in this

dissertation to compare the proposed framework with existing manual attack trees and

automated vulnerability graph generation methods.

The network architecture for this case study is shown below.

Figure 27: Case Study Architecture

130

The case study network contains MySQL Server storing trade secret information.

This MySQL Server, along with a proxy server called Squid and a chat program known

as Linux Internet Chat Query (LICQ), is hosted on a Linux Server. This Linux Server is

located inside the organization’s private network and is protected by a firewall. This

private network also contains a Windows Server called Windows –Archie. The network

contains a web server in the demilitarized zone (DMZ). DMZ is described as a network

segment inserted between an organization’s private network and the Internet [120]. The

Internet Information Services (IIS) Server application is used as the web server and it is

hosted on a Windows Server. Initially, the attacker is assumed to be outside the network

and the only a priori information available to him/her is that the trade secret information

is stored in some MySQL Server. Where this MySQL Server is located is not known to

the attacker.

This case study’s network has been slightly modified from the one described in [81]

by changing the definition of one vulnerability, deleting one vulnerability, and adding

two vulnerabilities. This has been done to facilitate the comparison between frameworks.

In this modified case study, the IIS Server has two buffer overflow vulnerabilities

that allow the attacker to remotely gain administrative privileges to the Windows Server

in DMZ. The buffer overflow vulnerability allows overloading a predefined amount of

space in a buffer (a data structure used by the software), which can potentially overwrite

and corrupt data in memory [120]. The buffer overflow attack can use this vulnerability

to overwrite the location in memory that allows him to gain unauthorized access or it can

corrupt data to crash the software.

131

Both the Windows Servers have buffer overflow vulnerability, in their

implementation of the Server Management Block (SMB) protocol, which allows the

attacker to gain unauthorized access to the server. The LICQ application has a

vulnerability that allows the attacker to gain access to the Linux Server hosting this

application. Finally, buffer overflow vulnerability on the Linux Server allows attacker to

gain administrative privileges remotely. The goal of the attacker is to obtain the trade

secret information stored in the MySQL Server.

This case study is used as a running example to explain Flux (Chapter 6), CieKI

(Chapter 7) and modes of operations (Chapter 8). It is also used to compare the proposed

framework with vulnerability graph generation framework (Chapter 9) and to describe

applications and extensions of current framework (Chapter 10).

132

6 Framework Component: Flux

Flux was introduced in section 5.1 and is described in detail in this chapter.

6.1 Flux: Overview

Flux implements the distributed planning logic and consists of the asset, threat, and

planning ontology. Flux assumes that knowledge is incomplete (open world reasoning)

and makes inferences only from explicitly encoded information describing the cyber-

security domain.

Section 4.3.3 introduced the knowledge representation technique’s applications.

These applications are detailed in this section. Subsequent sections explaining the

different types of ontology illustrate these applications with examples.

6.1.1 Capture Diverse and Dispersed Cyber-security Domain Knowledge

Section 4.3.3.2 introduced that the ontology language can be used for capturing

diverse knowledge available from dispersed sources. This section explains how this is

achieved in Flux.

6.1.1.1 Encoding Diverse Knowledge

The ontology language provides a diverse set of constructs to encode the cyber-

security domain knowledge. These logical statements are machine as well as human

readable. The cyber-security domain knowledge is captured at different levels of

abstraction. For example, the knowledge that “System A is connected to System B” is at

a high level of abstraction. It does not specify how exactly the two systems are

connected. There can be different types of connections possible between the systems.

These connection mechanisms may include physical connection, a trust mechanism,

133

connection using open ports, etc. Similarly the knowledge that “System A is physically

connected to System B” is at a lower level of abstraction. This lower level of abstraction

can be generalized to say that two systems are connected if needed.

The encoding of knowledge at lower levels of abstraction allows capturing the

diverse amount of relationships that may exist in the cyber-security domain, and

abstracting them when needed. If the knowledge is stored only at a high level of

abstraction, then the opportunity to use the detailed knowledge in different situations in

the future is lost. For example, recording the knowledge that “System A is physically

connected to System B”, can be used to infer that both System A and System B may be in

the same geographic location. This knowledge is lost in high-level encoding “System A is

connected to System B”.

In this dissertation, specific detailed information is captured and summarized by a

high level of abstraction when needed. This is illustrated with an example in Section 6.3,

describing the asset ontology.

Flux encodes the diverse amount of knowledge. This knowledge may be about the

use of software system in the target infrastructure, the design of the software that makes it

vulnerable to potential attacks, the attacker thought process in decomposing the goal or

for discovering and exploiting vulnerabilities, the theories of attacker behavior etc.

6.1.1.2 Capturing Dispersed Information

Information in the cyber-security domain can be generated by multiple dispersed

sources. These sources are often dispersed in space (across the internet) and time. For

example, the knowledge about attacks and vulnerabilities is available through

134

vulnerability and attack databases, cyber-security forums, paid cyber-security services,

etc.

This presents two challenges for capturing and maintaining information.

1. Traditionally the dispersed information is extracted from its source and stored

locally (typically in a database or knowledgebase) so that it can be used by the

planning algorithm. In this case, any change in information at source or new

information availability will not be reflected in the attack plans until this

information is extracted, encoded, and the planning algorithm is re-executed. In

cyber-security domain, the information used for planning should be updated when

it is changed at the source, and new information should be captured when it

becomes available.

2. The information encoded by different sources should be combined. This is a

challenge, since even the same information generated from different sources may

not use the same format or naming conventions, and often these format or naming

conventions are not explicitly stated. This becomes more difficult when different

types of information need to be combined, especially when the information may

be incomplete.

This first challenge is addressed by linking the source and local storage of

information using logical constructs, and the second by using information fusion logic to

combine the diverse cyber-security domain information. The ontology language [110,

121] provides this data integration functionality [114]. This is illustrated with an example

in section 6.3.

135

6.1.2 Incomplete Information

 Flux uses open world reasoning. It assumes that the knowledge is incomplete and

that new knowledge can be available at any time. In Flux, the reasoning is done only on

the information that is explicitly encoded.

6.1.3 Distributed Planning Logic

 The OWL language is used to design the Flux. This knowledge representation

language allows building distributed logic incrementally. In this incremental logic

building process, new distributed logic can be added when more understanding about the

domain becomes available. This makes the planning logic flexible and scalable.

6.1.4 Contextual Interpretation

In the cyber-security domain, the availability of new information may lead to

interpreting previously available information and inferences in a different way. The same

attacks and vulnerabilities can be used by different types of attackers differently. These

attacks and vulnerabilities can also be used differently by the same attacker to accomplish

different goals. Finally, different cyber-security experts also may associate the same

attacks and vulnerabilities with different risk scenarios. Because of this, the information

encoded needs to be interpreted differently in different contexts.

This contextual interpretation is achieved in the proposed framework by defining a

logic, which describes how the relationships and class memberships of individuals should

be interpreted in different situation (for example, if this individual becomes a member of

a specific class). This can be considered as one logical statement triggering the

classification of related individuals. This triggered classification, implemented using a set

136

of logical statements to accommodate the situational characteristic of the domain, is the

core logic of the distributed planning.

6.1.5 Information Validation

Traditionally, information validation is done to check syntax (i.e., the format of

information). The traditional knowledgebase (or database) also checks for completeness

of information. In both cases, incorrect or incomplete information is typically rejected.

The logical language used in this dissertation performs information validation at semantic

level. Instead of checking for syntax of the information, it checks for logical conflicts

among encoded information. This feature can be used for determining conflicts among

the encoded expert theories.

6.2 Ontology Logic Representation

In order to explain the encoded distributed logic, this dissertation explains how these

ontologies are used, and what typical inferences are made using these ontologies. These

typical inferences are called ontology logic patterns in this dissertation. The ontology

logic is explained using selected examples of encoded ontologies.

Section 6.3 explains how the information is encoded at specific and abstract levels in

asset ontology, the inferences that can be made using this information, and the

applications of the asset ontology.

The threat ontology encodes the known and conceptual (potential) attacks and

vulnerabilities, definition of potential target of attack, and the impact of the attack. This is

described in section 6.4.

The planning ontology describes how the distributed planning logic uses the

information encoded in the asset and threat ontologies to trigger the information that can

137

be used in attack plan generation. The planning ontology also describes the anchor and

catcher sets. This is described in section 6.5.

6.3 Asset Ontology

Asset ontology encodes the knowledge about software systems and the

information stored, processed, or transmitted using them. This ontology encodes the

software system’s characteristics, usage, and design. This knowledge is encoded by using

basic logical constructs described in Section 4.3.3. The logical reasoning is used to infer

further information from explicitly encoded information. The asset ontology captures this

knowledge at two levels: abstract and specific.

6.3.1 Specific Asset Information

The specific level logic captures the information about specific instances of software

systems. An example of asset ontology logic is as shown in Figure 28 below.

138

Figure 28: Example fragment of specific information encoding in asset ontology

In the Figure 28, the knowledge that the “trade secret” is stored in the MySQL

Server is encoded as, “Tradesecret isStoredIn MySQLServer” 8(i.e., two individuals

MySQLServer and Tradesecret are connected using the property isStoredIn).

8 This is stored in the knowledge representation language as below:
 <owl:Thing rdf:about="#Tradesecret">
 <isStoredin rdf:resource="#MySQLServer"/>
 </owl:Thing>
This dissertation abbreviates this type of detailed logical encoding for efficiently explaining the

ontologies. For example, the above mentioned encoding is abbreviated to Tradesecret isStoredin
MySQLServer.

Encoded Information

Individual Property Individual

Tradesecret isStoredin MySQLServer

MySQLServer isHostedOn LinuxServer

LICQ isHostedOn LinuxServer

LinuxServer isProtectedBy Firewall1

LinuxServer hasTrust WindowsServerArchie

WindowsServerArchie isProtectedBy Firewall1

139

The asset ontology also encodes the semantics of information for more basic

human-like reasoning. For example, it is easy for humans to understand that, if an

application is hosted on an operating system, then it is a bi-directional relationship,

meaning that the operating system hosts the application. This logic is encoded by

defining an inverse relationship. For example, “isHostedOn” is defined as the inverse of

“hosts”. This is shown in Figure 29 below.

Figure 29: Asset Ontology- inverse properties

When the ontology logic patterns shown in figures 28 and 29 are combined, then

the information shown in Figure 30 can be inferred.

Encoded Information

Property Property Construct Property

isStoredIn inverseOf stores

isHostedOn inverseOf hosts

isProtectedBy inverseOf protects

hasTrust inverseOf hasTrust

140

Figure 30 Example fragment showing inverse relations

When the new information is available, it is added as an overlay property

definition. This overlay information is also called as “tags”. Adding or changing

information corresponds to adding or changing these tags. These tags can also be

generated by using logical inference, which allows updating information in real time.

Figure 31 shows two new types of property relations added to the asset ontology

describing that Windows Server is connected to LICQ and MySQL Server on default

port.

Inferred Information

Individual Property Individual

MySQLServer stores Tradesecret

LinuxServer hosts MySQLServer

LinuxServer hosts LICQ

Firewall1 protects LinuxServer

Firewall1 protects WindowsServerArchie

WindowsServerArchie hasTrust LinuxServer

141

Figure 31: Asset ontology- information addition

6.3.2 Abstract Asset Information

The asset ontology also encodes abstract logic consisting of conceptual

information about the assets. This is shown in Figure 32 below.

Encoded Information

Individual Property Individual

WindowsServer isConnectedOnDefaultPort LICQ

WindowsServer isConnectedOnDefaultPort MySQLServer

142

Figure 32 Example of specific and abstract information encoding in asset ontology

The asset ontology captures abstract information like “trade secret is a type of

information” and “MySQL Server is a type of database”. The abstract information may

encode commonly known high-level concepts that can be used for machine reasoning.

The encoded information about a specific instance can itself be abstracted for

high-level reasoning. This allows capturing of different types of relationships that may

exist between individuals, and abstracting them when needed. For example, one of the

information needed to generate the attack plan is the connectivity between software

systems. This is important information because connected software systems can be used

as a launching point for the attack. This is often encoded in the current vulnerability

graph generation algorithms by a connectivity matrix [81]. Connectivity matrix encodes

Encoded Information

Individual Property Class

TradeSecret type Information

MySQLServer type Database

DatabaseScan type Scan

Encoded Information

Class Property Class

Database subClassOf Location

Database subClassOf (canBeScannedBy
hasValue DatabaseScan)

143

presence of a connection between two software systems by a boolean variable in the n x n

matrix. This captures the high-level information regarding whether the two assets are

digitally (using communication ports) or physically connected. However, different types

of connections between entities may exist. Some types of connection relationships were

described in Figure 29.

It would be a simplistic representation if all the individuals were represented by a

high-level connection relationship. This would preclude using this detailed connection

information differently in different types of situations. This high-level abstraction,

however, may also be needed for abstract reasoning. Both (abstract and detailed) types of

reasoning are achieved in this dissertation by encoding the specific detailed relations and

abstracting them when needed. This is implemented by defining a property relationships

hierarchy in which the properties have more abstract parent properties. This is illustrated

by the example shown in Figure 33 below.

144

Figure 33 Hierarchy of property relations

Detail Information about connections can be used to summarize different

relationships between individuals at different levels of abstraction. From the property

hierarchy shown in Figure 33, if it is encoded that “TradeSecret isStoredin

MySQLServer”, then both TradeSecret and MySQLServer have a functional relation

Encoded Information

Property Property
Construct

Property

isStoredIn subPropertyOf hasFunctionalRelation

Stores subPropertyOf hasFunctionalRelation

isHostedOn subPropertyOf directlyConnectedTo

Hosts subPropertyOf directlyConnectedTo

isConnecedOnDefaultPort subPropertyOf hasLimitedconnection

directlyConnectedTo subPropertyOf isConnectedTo

hasLimitedconnection subPropertyOf isConnectedTo

isConnectedTo subPropertyOf hasRelationWith

hasFunctionalRelation subPropertyOf hasRelationWith

Inferred Information

Property Property
Construct

Property

isStoredIn subPropertyOf hasRelationWith

Stores subPropertyOf hasRelationWith

isHostedOn subPropertyOf hasRelationWith

Hosts subPropertyOf hasRelationWith

isConnecedOnDefaultPort subPropertyOf hasRelationWith

145

with each other, and are connected to each other by hasFunctionalRelation and

hasRelationWith properties. Similarly, if it is encoded that “MySQLServer isHostedon

LinuxServer”, then it can be inferred that “MySQLServer” is directly connected to,

(using diretclyConnectedTo property), to LinuxServer. The property

diretclyConnectedTo itself is further abstracted by isConnectedTo property. These

inferences are shown in Figure 34 below.

Figure 34 Inferences drawn from hierarchy of property relations

The abstract reasoning used in asset (and threat) ontology attempts to capture the

attacker’s thought processes in discovering the opportunities. It is important to note that

the research does not assume that if there is a connection between the computational

Inferred Information

Individual Property Individual

Tradesecret hasFunctionalRelation MySQLServer

Tradesecret hasRelationWith MySQLServer

MySQLServer hasFunctionalRelation Tradesecret

MySQLServer hasRelationWith Tradesecret

MySQLServer directlyConnecedTo LinuxServer

MySQLServer hasRelationWith LinuxServer

LinuxServer directlyConnecedTo MySQLServer

LinuxServer hasRelationWith MySQLServer

146

entities, then it will be used by the attacker to launch the attack. The asset and threat

ontologies capture the “possibilities” of attacker actions. These possible actions are

refined by the attacker’s fingerprinting actions or attacker’s knowledge state to determine

if these are “available” to the attacker. Finally, the attacker behavior (goals, strategy, and

preferences) will determine if they are “useable” (or “preferred”) in attack plans.

6.3.3 Information Integration

Information in the cyber-security domain is often generated by multiple sources

dispersed in time and space. Traditionally, this distributed information is extracted from

its source and stored locally (typically in a database or knowledgebase) for its use in the

planning algorithm. The logical language used in this dissertation can be used to link the

local storage of information directly to the source of information. This allows updating

information as it changes at the source. Furthermore, the logical encoding is used to

combine the information from multiple sources. The following example explains how this

can be accomplished

In this example:

 The information about software systems is generated by two separate network

management systems.

 This information is stored in two separate network information ontologies.

 These network management systems periodically scan the network and update the

information in these two network information ontologies.

147

 Network information ontology 1 (NIO1) stores the information that MySQL

Server is database server (NIO1:MySQLServer type NIO1:DatabaseServer).9

 Network information ontology 2 encodes that the MySQL Server is a SQL Server

(NIO2:MySQLServer type NIO2:SQLServer).

The asset ontology has to combine the information from these two sources to use it

for planning. This is done by linking the individuals in the asset ontology to their source

network information ontology. Instead of copying the information about the individual to

a new ontology, only a reference to the individual is inserted in the asset ontology. Any

further information encoded in the asset ontology is added as an overlay tag on this

reference. This is a convenient feature and allows using, classifying, and adding more

information to the individual without physically copying the individual to a new

integrated ontology.

The two network information ontologies can also be logically combined without

creating a new merged ontology. This is done by adding additional information about

how the original information should be interpreted. This is explained using the examples

below.

The two ontologies encode that (NIO1:MySQLServer type NIO1:DatabaseServer)

and (NIO2:MySQLServer type NIO2:SQLServer). Both of these statements are true.

These statements can be merged by defining a class Asset:Database in the asset

ontology, and making the NIO1:DatabaseServer and NIO2:SQLServer sub-classes of

this Asset:Database class. This is shown in case (a) of Figure 35 below.

9 The notation OntologyName: (individual, class, property) indicates that the individual,

class or property following the (:) belongs to the ontology called OntologyName.

148

Alternatively, if it is to be encoded that two classes represent different names of the

same class, then they can be merged by defining two classes to be equivalent classes (or

by defining NIO1:DatabaseServer and NIO2:SQLServer as sub-classes of one another),

and making one of the these two class an equivalent class to Asset:Database class. This

is shown in Figure 35 (b).

It is known that SQL Servers are also a type of database servers. If it is to be encoded

that all the members of NIO2:SQLServer are also members of NIO1:DatabaseServer,

then it can be achieved by making NIO2:SQLServer a subclass of NIO1:DatabaseServer,

and by making NIO1:DatabaseServer an equivalent class of Asset:Database.

149

Figure 35: Asset Ontology- fusion example

The examples explained in this section are used only to illustrate different ways of

combining information. It is important to note that the general rule of thumb for encoding

the information in this dissertation is to “retain the detailed information and abstract the

details when needed”. This means that while combining the information, it is important

not to lose the fact that “SQL Server” may be vulnerable to an “SQL injection” attack,

even though “SQL Server” is now encoded as “Database Server”. Since, the logical

encoding allows retaining the information that the individual now classified as “Database

Scenario Encoded Information

Class Property Class

(a) NIO1: DatabaseServer subClassOf Asset:Database

 NIO2: SQLServer subClassOf Asset:Database

(b) NIO1: DatabaseServer subClassOf NIO2: SQLServer

 NIO2: SQLServer subClassOf NIO1: DatabaseServer

 NIO1: DatabaseServer equivalentClass Asset:Database

(c) NIO2: SQLServer subClassOf NIO1: DatabaseServer

 NIO1: DatabaseServer equivalentClass Asset:Database

150

Server” is also a “SQL Server”, the information that this individual may be vulnerable to

“SQL injection” attack is not lost.

Similar to subClassOf relation, a subPropertyOf relation can be used to combine

different property definitions. Finally, the individuals can also be defined as equivalent

individuals by using the sameAs property.

This act of combining information is called information fusion. The information

fusion techniques mentioned in Figure 35 above are an application of the ontology

language used in this dissertation. This language [110, 114, 116, 121] was invented to

provide this type of functionality.

6.4 Threat Ontology

The previous section explained how the basic logical constructs and inferences could

be used to encode a rich set of information about assets. This section describes how the

information about threat is encoded.

6.4.1 Source of Information

Information about attacks and vulnerability is available through many sources. A

detailed comparison of the content and structure of these data sources is beyond the scope

of this dissertation, but they are summarized in this section.

6.4.1.1 Vulnerability Database

The majority of software vendors maintain their own vulnerability databases(for

example, Microsoft publishes security advisories [122]. Many research, government, and

open source communities also maintain public repositories/databases of vulnerability

information [5, 123-126]. These databases may store different types of information about

151

the same vulnerability, and often reference each other so that human researchers can

gather more information.

6.4.1.2 Pattern

The term “pattern” in software industry vocabulary refers to a frequently recurring

structure or a template. The “attack patterns” are templates of common methods for

exploiting software. These attack patterns are mainly used as information sources to

develop more secure software. Multiple sources of knowledge about attack pattern exist

[127, 128].

6.4.1.3 Attack Database

Unlike the vulnerability and pattern databases, attack databases are not collected and

maintained as rigorously, but this information is available on the internet. One type of

community effort to capture and study attacks is carried out by using specialized

networks known as “honeynets”[129] and “honeypots”[130]. The penetration testing

tools designed to evaluate cyber-security by compromising the system also maintain their

own repository of implemented attacks [131].

6.4.1.4 Taxonomies, Ontology and Modeling Languages

Several attempts to classify vulnerabilities or attacks have been made. These

attempts have varied from trying to classify all vulnerabilities or attacks [132, 133] to

creating a sub-classification structure for a specific class of attacks [134]. Even though a

wide range of taxonomies exists, there is no predominant taxonomy that is widely used.

There are also different types of cyber-security ontology available. Appendix II

describes how the ontology are used for other applications[118, 135] in cyber-security

152

domain (for example, for encoding security features requirements for application

development; annotating the web service descriptions with security requirements and

capabilities; developing ontology of intrusion detection system for communicating the

information regarding an attack; developing a global security ontology etc.). These

ontologies can be used as information source to the proposed framework. The proposed

framework’s ontologies also can be integrated (or map) in broader cyber-security domain

ontology.

The information about attacks can also be captured using different attack modeling

languages describing different aspects of the attacks. The major attack modeling

languages are JIGSAW [136], LAMBDA[137], and CAML [138]. According to [1]

CAML, LAMBDA, and JIGSAW defines preconditions and effects for attack actions and

describes the state of network components. According to [1] the Correlated Attack

Modeling Language (CAML) “can be used to model attack scenarios and recognize

scenarios from intrusion-detection alerts.” CAML [138] enables specification of

multistage attack scenario in modular fashion. LAMDA [137] uses a declarative approach

to encode attack pre-conditions, effects, scenarios, and detection steps. According to

[136], “JIGSAW provides a convenient tool for describing attack components in terms of

capabilities and concepts.”

These taxonomies, ontology, and modeling languages are considered as information

sources to the proposed framework.

6.4.1.5 Information Usage

The goal of this dissertation is not to create or support a database, taxonomy, pattern,

or ontology but to use these as diverse knowledge sources. This dissertation uses the

153

concept of patterns, described in Section 6.4.1.2 (note that this pattern does not refer to a

specific attack pattern database). Currently, attack pattern databases are primarily used to

build more secure software by protecting against known vulnerabilities. Apart from using

the attack pattern for technical understanding, this dissertation uses the information about

potential attacker behavior to understand the decisions points available to the attacker. In

this dissertation, the encoded information in pattern ontology may come from multiple

vulnerability, attack, and pattern databases.

6.4.2 Threat Ontology Logic

The threat pattern describes a template to encode threat information. Three types of

information are important for planning. These are the structure of the threat pattern, the

target of the threat, and the impact of the threat.

6.4.2.1 Structure of Threat Pattern

The structure of the threat pattern describes how an attacker can exploit the

vulnerability described by the pattern. At minimum, this structure encodes what type of

vulnerability is exploited by the pattern, what attack can be used to do so, and what are

the possible impacts of executing the pattern. This is shown in Figure 36 below:

154

Figure 36: Minimal encoding of pattern information

The pattern also encodes details of the attack process when such information is

available. An example of this encoding the information provided by [139] is shown in

Figure 37.

Encoded Information

Individual Property Individual

BO-IIS-SSI hasAttack IndigoPrototype

BO-IIS-SSI hasVul CAN-2001-0506

BO-IIS-SSI hasEffect PrivilegeEscalation

155

Figure 37: Detailed encoding of pattern information

This pattern encodes that the attack can be executed in four steps. The pattern also

encodes the sequence in which the steps should be executed by using the property

Additional Encoded Information

Individual Property Individual

BO-IIS-SSI hasStep Step_1

BO-IIS-SSI hasStep Step_2

BO-IIS-SSI hasStep Step_3
BO-IIS-SSI hasStep Step_4

Step_1 hasMethod Method_1
Step_2 hasMethod Method_2
Step_3 hasMethod Method_3
Step_4 hasMethod Method_4
Step_1 label Identification of buffer to target
Step_2 label Identification of the injection vector
Step_3 label Crafting the content to be injected
Step_4 label Injecting Content
Step_1 hasPrecedence Step_2
Step_2 hasPrecedence Step_3
Step_3 hasPrecedence Step_4

156

hasPrecedence. Each of the four steps has a method associated with it, and these four

steps have descriptive labels. These are called “identification of the buffer to target”,

“identification of the injection vector”, “crafting the connect to be injected”, and

“injecting content’, which captures the information identified in [139].

6.4.2.2 Target of the Threat Pattern

Target of the threat pattern refers to a software system (or a component of a system)

that may have a vulnerability, which can be targeted using the attack pattern.

Traditionally, this information originates from vulnerability and attack databases. This

information is traditionally encoded as a direct relationship stating that a certain system

has certain vulnerabilities. Instead of encoding that the system has vulnerability, Flux

encodes the logic behind why the system may have this vulnerability. This is done to

better capture the attacker thought processes for uncovering the vulnerability.

Once encoded, this logical definition is used to infer that a specific system may be

susceptible to buffer overflow, when the available information about system

characteristics matches the encoded logical definition.

For example, it is known that, the buffer overflow vulnerability allows overloading a

predefined amount of space in a buffer (a data structure used by the software), which can

potentially overwrite and corrupt data in memory [120]. The buffer overflow attack can

use this vulnerability to overwrite a location in memory that allows him to gain

unauthorized access or it can corrupt data to crash the software. Buffer overflow

vulnerability can be prevented by using a method called boundary protection, which

checks the bounds of buffers to prevent overloading.

157

Given this, it can be stated that if the software using a data structure called a buffer,

does not use a boundary protection, then it is potentially susceptible to buffer overflow

attacks. Using this information, the buffer overflow target (BO-Target) is encoded by the

property restriction that ((softThatsLacking someValuesFrom BoundryProtection) and

(softUsesDataStructure someValuesFrom Buffer)). This is shown below.

Figure 38: Target of the pattern logic example

When it is discovered that a certain system matches this class membership criteria,

the system is classified as a potential target of a buffer overflow attack. This inference is

true even if specific buffer overflow vulnerability has not yet been discovered in the

system, or if an attack to exploit a discovered vulnerability currently does not exist. This

is important because not only such vulnerability or attack can be discovered in future, but

this type of abstract reasoning is also used by the attacker to discover such vulnerability.

Furthermore, this may be sufficient information for a leap-before-you-look type of

attacker to launch known buffer overflow attacks against the system.

Encoded Information

Class Property Class

BO-Target equivalentClass ((softThatsLacking someValuesFrom
BoundaryProtection) and
(softUsesDataStructure
someValuesFrom Buffer))

BO-Target subclassOf targetThatTriggers hasValue BO-
Pattern

158

The information that a system is susceptible to a certain type of vulnerability is used

to trigger the pattern that can exploit this vulnerability. This is shown in Figure 38 and is

described below.

 The target class (BO-Target), shown in Figure 38 has an anonymous parent class

defined by the restriction targetThatTriggers hasValue BO-Pattern.

 When an individual becomes a member of this target class, the following can be

inferred:

o This individual is also a member of the anonymous parent class

(targetThatTriggers hasValue BO-Pattern)

o Since the individual is a member of this parent class, it has to meet the

encoded restrictions, and hence the individual has to satisfy the property

relation targetThatTriggers hasValue BO-Pattern.

o Given this, it can further be inferred that the individual is related to BO-

Pattern by the targetThatTriggers property.

This can be used to infer that the system that is classified as the member of the BO-

Target class triggers the BO-Pattern pattern.

When more information about the system’s characteristics is available, more patterns

that may target the systems can be identified. For example, if it is discovered that

“System A” uses a buffer data structure, does not implement a boundary protection

mechanism, and is an IIS Server, then it can be inferred that “System A” is susceptible to

the IIS buffer overflow attack.

If more information is available, indicating that this IIS Server uses functionality

called ISAPI (Internet Server Application Programming Interface), then it can be further

159

inferred that this system is susceptible to a buffer overflow attack in this functionality.

This is shown in Figure 39 below.

Figure 39: Target of the threat pattern logic example when more information is available

The target of the threat pattern logic is used in planning ontology to 1) identify the

potential target of threat based on availability of the information about software systems,

2) to trigger the threat pattern, and 3) to trigger the fingerprinting goals to discover the

information about software systems.

Encoded Information

Class/Individual Property Class/ Individual

BO-Target-IIS equivalentClass BO-Target and IIS

BO-Target-IIS subclassOf targetThatTriggers hasValue BO-IIS-SSI

BO-Target-ISAPI equivalentClass BO-Target and IIS and (usesFunctionality
hasValue ISAPI)

BO-Target-ISAPI subClassOf targetThatTriggers hasValue BO-Chunkcode

SystemA type BO-Target-IIS

SystemA usesFunctionality ISAPI

Inferred Information

Class/ Individual Property Class/ Individual

SystemA targetThatTriggers BO-IIS-SSI

SystemA targetThatTriggers BO-Chunkcode

160

6.4.2.3 Impact of the pattern

The impact of the threat pattern is encoded as a part of the structure of the pattern, as

shown in Figure 36 and 37. The planning ontology uses this impact information to trigger

the information that can be used in attack plan generation. The planning ontology logic is

described in next section.

6.5 Planning Ontology

6.5.1 Introduction

As mentioned in Section 4.3.6, the planning logic generates the attack plans by

trying to answer the following questions.

Given that, an individual is classified as the selected goal of the attack:

1. What cognitive tasks does the attacker have to execute to accomplish this goal,

given the opportunities provided by the system?

2. How can the attacker discover these opportunities?

3. What type of attacks can be used to exploit these opportunities, to accomplish the

selected cognitive tasks or goals?

4. What opportunities are available to execute these attacks?

5. How does the attacker select which cognitive tasks, opportunity discovery actions,

and attacks to execute?

To encode this information, the objective of the distributed planning ontology is to:

1. Trigger the cognitive tasks as possible sub-goals available to the attacker, given

the information about selected attack goals (or sub-goals) and attacker’s state of

knowledge.

161

2. Trigger the fingerprinting actions available to the attacker, given the information

about selected goal, sub-goals, attacks (threat patterns), and attacker’s state of

knowledge.

3. Trigger the opportunities that can be targeted, given the attacker’s state of

knowledge about the system. This knowledge can be acquired by executing the

fingerprinting actions identified above.

4. Trigger the available attacks (threat patterns) that can achieve the selected goal or

sub-goal.

The attacker behavior ontology described in Chapter 7 answers the fifth question

about how the attacker decides which cognitive tasks, opportunity discovery methods,

attacks to choose.

The planning ontology encodes the logic of how the information (described above) is

triggered. This planning ontology uses the information stored in the asset and threat

ontology. Section 6.5.3 describes how the information encoded in the asset and threat

ontologies is used by the planning logic to trigger the four types of information identified

above. The planning ontology is also divided into anchor and catcher sets. These are also

described in Section 6.5.2.

6.5.2 Planning Ontology: Anchor and Catcher Sets

Anchor and catcher sets describe which classes will remain stable and which will

change (due to the dynamicity of the domain) from the centralized algorithm point of

view.

162

6.5.2.1 Anchor Sets

Anchor sets represent the highest layer of the planning ontology logic that remains

stable (i.e., the names, meaning and usage of an anchor set does not change or does not

change frequently). The centralized algorithm queries and/or populates the anchor sets.

The centralized algorithm populates the anchor sets with information about

attacker’s decisions (selected goal, sub-goals, patterns, and attacks). Flux uses this

information to further trigger (populate) the anchor sets.

In anchor set logic, when an individual is classified as a “selected goal”, other

individuals that can help accomplish this goal are classified as members of “goal

triggered sub-goals”. The fingerprinting sub-goals that can provide information about the

selected goals are classified as members of “goal triggered fingerprinting goals”.

Similarly, when an individual classified as a sub-goal is chosen as the “selected sub-

goal”, more individuals are classified as members of “sub-goal triggered sub-goal” and

the “sub-goal triggered fingerprinting goals”. Any threat patterns that can accomplish

either the selected goal or the selected sub-goals are classified as “triggered patterns”.

The attacks available in the “triggered patterns” are classified as “triggered attacks”.

The vulnerabilities available in the “triggered patterns” are classified as “triggered

vulnerabilities”.

6.5.2.2 Catcher Sets

The logic of how the individuals become members of the triggered anchor sets is

derived from more detailed catcher set logic.

163

Catcher sets are dynamic and their availability, meaning, and usage may change

based on the cyber-security domain information and the attack situation. Different catcher

sets can become members of different anchor sets, depending on the attack situation.

Catcher sets logic describes under what circumstances individuals will become

members of these catcher sets. This logic is described in Section 6.5.3. Section 6.5.3 also

describes how the individuals in catcher sets become the members of anchor sets, either

by virtue of class hierarchy (in which anchor sets are encoded as a parent class of catcher

sets), or by property hierarchy (in which anchor sets are defined by restricting the parent

properties of the properties defined in catcher set logic). In this way, the catcher sets

control the size of the anchor sets by providing individuals.

6.5.3 Planning Ontology: Functional Description

This section describes how the four types of information described in Section 6.5.1

are triggered by the planning ontology.

6.5.3.1 Trigger the Cognitive Tasks as Sub-goals

This logic triggers the cognitive tasks as sub-goals given the information about

attack goals (or sub-goals) and attacker’s knowledge state. There are three types of

cognitive domain specific tasks and three types of corresponding sub-goals available to

the attacker. These are identified as exploit functionality, exploit connectivity, and exploit

attributes. Note that new types of intentional goals and situational sub-goals can be

modeled using the proposed framework’s logic if needed.

164

6.5.3.1.1 Exploit Functionality

The objective of attacker is to compromise information confidentiality, integrity, or

availability. The information to be compromised is stored in some place, transmitted

using some mechanism, and potentially processed by some entity. These become the

logical choices of attack or the opportunities that the domain provides. These

opportunities are represented as the potential situational sub-goals called “location to

which access is needed”, “process to be hijacked”, “transmission to be captured”, etc.

These situational sub-goals have a functional relation with the goal “information to be

compromised”. Therefore, they are called cognitive domain specific tasks to exploit

functionality.

An example of how the exploit functionality type of sub-goals are triggered using the

asset ontology information was illustrated in Section 4.3.6. This example is reproduced in

this section. Figures 40 and 41 represent the encoded and inferred information using this

logic. The flow of logic is described in detail in Section 4.3.6 and is reproduced here.

165

Figure 40: Anchor and catcher sets for triggering exploit functionality subgoal

Encoded Information

Class Property Class

LocationToWhichAccessIsNeeded equivalentClass stores someValuesFrom InformationToBeLeaked

FunctionalGoalTriggeredSubGoal equivalentClass hasFunctionalRelation someValuesFrom
SelectedGoal

SubGoalTriggeredFingerprintingGoal equivalentClass scans someValuesFrom TriggeredSubgoal

FunctionalGoalTriggeredSubGoal subClassOf GoalTriggeredSubgoal

GoalTriggeredSubgoal subClassOf TriggeredSubgoal

166

Figure 41: Trigger logic for “exploit functionality” subgoal

The inference flow shown in Figure 41 is described below.

(i/p): The trade secret is classified as a selected goal and is the information to be

leaked.

Given this information, the following inferences are triggered:

1. Since the MySQL Server has a stores relation with trade secret, which is now the

“information to be leaked”, it satisfies the membership definition of “location to

which access is needed” class and is classified as a member of this class.

2. Since the MySQL Server satisfies the relation hasFunctionalRelation with the

selected goal, trade secret, it further satisfies the membership definition of the

class “Functional goal triggered sub-goal”.

167

3. “Functional goal triggered sub-goal” is classified as the subclass of the “Goal

triggered sub-goal” class. Hence, the MySQL Server becomes a “Goal triggered

sub-goal”.

4. The “Goal triggered sub-goal” is further defined as a subclass of “Triggered sub-

goal”. Hence, the MySQL Server becomes a “Triggered sub-goal”.

5. Given all this information, the database scan now satisfies the definition of the

“Sub-goal triggered fingerprinting goal” class, and is classified as a member of

this class.

Apart from this, the planning ontology, also encodes how the attacker can exploit the

functionality originated by the processing and transmission of information.

6.5.3.1.2 Exploit Connectivity

As described in the Section 6.3, the computational entities are connected to each

using different connection mechanisms. These connections further provide an opportunity

for launching attacks. The connected entities, by virtue of their connection, become

potential situational sub-goals of the attacker. In this dissertation, these are called

cognitive domain specific tasks to exploit connectivity.

An example of how exploit connectivity sub-goals are triggered is shown in Figure

42. This example uses the relation hierarchy shown in Figure 33. Figure 42 below shows

two restriction classes. The first restriction class defines individuals that have a trusted

connection with a selected sub-goal, encoded as (hasTrustedConnection

someValuesFrom SelectedSubGoal). The second restriction class called

ConnectedToSubGoal represents the class of individuals that are directly connected to

the selected sub-goal, encoded as (directlyConnectedTo someValuesFrom

168

SelectedSubGoal). The classes defined by these restrictions are defined as a subclass of

the SubGoalTriggeredSubGoal class.

Figure 42: Trigger logic for “exploit connectivity” subgoal

If the information that MySQLServer is selected as a sub-goal is added to this

example ontology logic, then the following inferences can be made:

 Since it is encoded that MySQLServer isHostedOn LinuxServer, given the

property hierarchy in Figure 33, it can be inferred that MySQLServer is

directlyConnectedTo LinuxServer.

Encoded Information

Class Property Class

TrustWithSubGoal= hasTrusedConnection
someValuesFrom SelectedGoal

subClassOf SubGoalTriggeredSubGoal

ConnectedToSubGoal=directlyConnectedTo
someValuesFrom SelectedGoal

subClassOf SubGoalTriggeredSubGoal

169

 LinuxServer now satisfies the definition of restriction class, encoded as

directlyConnectedTo someValuesFrom SelectedSubGoal, and is classified as a

member of this class.

 Since this restriction sub-class is a member of the SubGoalTriggeredSubGoal

class, LinuxServer is also classified as a member of this class.

6.5.3.1.3 Exploit Attribute

Finally, the software systems (storage location, processing applications, or

transmission mechanism) also have their own characteristics. For example, if the storage

location or information is encrypted, then “decrypt information” becomes the logical

situational sub-goal. In this dissertation, these are called cognitive domain specific tasks

to exploit attributes. These sub-goals are triggered using similar planning ontology logic.

6.5.3.2 Trigger Fingerprinting Sub-goals

The fingerprinting sub-goals are triggered using the attacker behavior, decisions

(selected goal, sub-goal, pattern, or attack) and attacker’s state of knowledge. Example

logic to trigger the fingerprinting action given the selection of sub-goal was described in

Section 6.5.3.1.1. Similar logic can be used to encode the fingerprinting sub-goal

triggered by selecting goals and threat patterns.

6.5.3.3 Trigger the Target of the Threat Pattern

This logic triggers the threat pattern’s target, given the attacker’s state of knowledge.

Section 6.4.2.2 described how system information could be used to infer that the system

may be vulnerable to attack patterns. The logic shown in Figure 39 is extended in Figure

43. In this logic, patternTriggeredBy is defined as the inverse property of

170

targetThatTriggers. The class GoalTriggeredPattern is defined by the property

restriction patternTriggeredBy someValuesFrom SelectedGoal. This means that the

“goal triggered pattern” is triggered by the selected goal. This is shown in Figure 43

below.

171

Figure 43: Ontology example describing goal triggered pattern logic

Encoded Information

Class/ Individual/Property Property Class/ Individual/Property

BO-Target-IIS equivalentClass BO-Target and IIS

BO-Target-IIS subclassOf targetThatTriggers hasValue BO-IIS-SSI

BO-Target-ISAPI equivalentClass BO-Target and IIS and (usesFunctionality
hasValue ISAPI)

BO-Target-ISAPI subClassOf targetThatTriggers hasValue BO-Chunkcode

SystemA type BO-Target-IIS

SystemA usesFunctionality ISAPI

targetThatTriggers inverseOf patternTriggeredBy

SystemA type SelectedGoal

GoalTriggeredPattern equivalentClass patternTriggeredBy someValuesFrom SelectedGoal

Inferred Information

Class/ Individual Property Class/ Individual

SystemA targetThatTriggers BO-IIS-SSI

SystemA targetThatTriggers BO-Chunkcode

BO-IIS-SSI patternTriggeredBy SystemA

BO-Chunkcode patternTriggeredBy SystemA

BO-IIS-SSI type GoalTriggeredPattern

BO-Chunkcode type GoalTriggeredPattern

172

6.5.3.4 Trigger the Threat Pattern

This section describes an example of how the attack patterns are triggered given the

goal or sub-goal information with the example shown below. For ease of presentation,

this logic is described in two Figures. Figure 44 displays steps 1-6 and Figure 45 displays

the steps 7-9

The numbered steps in Figure 44 are explained below.

1. Section 6.4.2.2 described how the target of a pattern is triggered. This section

builds on that logic. The targetThatTriggers property has an inverse property

called patternHasTarget.

2. Section 6.4.2.1 described the structure of the pattern. This structure encodes

information about the effect of the pattern. This information is reproduced here as

BO-IIS-SSI hasEffect PrivillegeEscalation.

173

Figure 44: Example logic for triggering attack pattern – part 1

Encoded Information

Class/ Individual/Property Property Class/ Individual/Property

IISServer targetThatTriggers BO-IIS-SSI

targetThatTriggers inverseOf patternHasTarget

BO-IIS-SSI hasEffect PrivillEscalation

ConnectedHostToWhichAccess-
IsNeeded

subclassOf providedByEffect hasValue
PrivilEscalation

WindowsServer type ConnectedHostToWhichAccess-
IsNeeded

effectProvides inverseOf providedByEffect

patternProvides propertyChainAxiom hasEffect, effectProvides

providedByPattern inverseOf patternProvides

targetThatProvides propertyChainAxiom targetThatTriggers,
patternProvides

Inferred Information

Class/Individual Property Class/Individual

PrivillEscalation effectProvides WindowsServer

WindowsServer providedByEffect PrivillEscalation

BO-IIS-SSI patternProvides WindowsServer

WindowsServer providedByPattern BO-IIS-SSI

IIS-Server targetThatProvides WindowsSever

174

3. Conceptually, if an application is hosted on an operating system, one of the ways

to gain access to this host is to execute a privilege escalation10 attack on the

application. This conceptual information is encoded by:

a. Defining an anonymous class as a collection of all individual sub-goals

that are achieved by the privilege escalation effect. This is done by

defining a class using the property restriction providedByEffect to the

value PrivillegeEscalation.

b. Making the class describing the host (for example, the

ConnectedHostToWhichAccessIsNeeded class) a sub-class of this

anonymous superclass.

4. In this example, when an individual, WindowsServer becomes a member of this

ConnectedHostToWhichAccessIsNeeded class, the following can be inferred:

a. WindowsServer is member of the

ConnectedHostToWhichAccessIsNeeded, which is declared as a sub-

class of the anonymous class defined by restriction providedByEffect

hasValue PrivillegeEscalation. Given this, it can be inferred that

WindowsServer meets the membership criteria of the anonymous

superclass. Hence, WindowsServer has to satisfy the property

relationship defined in the membership criteria. From this it can be

inferred that WindowsServer providedByEffect PrivillegeEscalation.

10 The privilege escalation attack exploits any vulnerability on application or software running on an

underlying host machine to gain an elevated access to this host which otherwise is protected from this
application or software.

175

b. The property effectProvides is defined as the inverse property of

providedByEffect; it can be inferred that ‘PrivillegeEscalation

effectProvides WindowsServer’

5. The property patternProvides is defined as a chain of property combining

‘hasEffect’ and ‘effectProvides’.

a. This leads to the inference that BO-IIS-SSI patternProvides

WindowsServer.

b. The providedByPattern property is defined as an inverse of

patternProvides. Therefore it can be inferred that WindowsServer

providedByPattern BO-IIS-SSI

6. Finally, the targetThatProvides is defined as a chain of property combining

targetThatTriggers and patternProvides so it can be inferred that IISServer

targetThatProvides WindowsServer.

For ease of presentation, steps 7-12 are described in Figure 45. This shows the

inference of step 5, that BO-IIS-SSI patternProvides WindowsServer.

176

Figure 45: Example logic for triggering attack pattern – part 2

7. The patternTargetHostedOn is defined as a property chain combining the

paternHasTarget and isHostedOn property. It can be inferred that BO-IIS-SSI

pattenTargetHostedOn WindowsServer.

8. hostOfPatternTarget is defined as the inverse property of patternTargetHosteOn,

so it can be inferred that WindowsServer hostOfPatternTarget BO-IIS-SSI.

9. Finally, all these inferences can be combined to define the triggered pattern as.

TriggeredPatternLocToWhichAccessIsNeeded is defined as:

TriggeredPatternLocToWhichAccessIsNeeded =

((patternHasTarget someValuesFrom TriggeredSubgoal)

 and (patternProvides someValuesFrom

(ConnectedHostLocToWhichAccessIsNeeded

Encoded Information

Class/
Individual/Property

Property Class/ Individual/Property

patternTargetHostedOn propertyChainAxiom patternHasTarget, isHostedOn

hostOfPatternTarget inverseOf patternTargetHostedOn

177

 and (hostOfThePatternTarget

someValuesFrom Pattern))))

This is equivalent to saying that the pattern (BO-IIS-SSI) can be used to

compromise the “connected host location to which is access is needed”

(WindowsServer) is triggered, if: 1) it targets a “triggered sub-goal” , 2) the IIS

Server is hosted on the Windows Server, and 3) the pattern’s execution can

achieve (provide) this sub-goal.

This example shows how the basic constructs can come together in a specific

situation. The complexity of the attack plan is driven by the interplay of these otherwise

simple constructs. Logic patterns similar to this one are used to define how other attack

patterns could be triggered when information is available.

 This Chapter described how Flux triggers the information that can be used for

generating risk scenarios. Next chapter describes CieKI’s centralized algorithms and

attacker behavior ontology.

178

7 Framework Component: CieKI

CieKI (pronounced as psyche) stands for Cognition Induced Kinetic Intelligence. It

consists of centralized algorithms and the attacker behavior ontology. The attacker

behavior ontology encodes the attacker strategy and preferences.

The main purpose of CieKI is to:

1. Insert the attacker decisions in the distributed planning logic (Flux) that triggers

the sub-goals, fingerprinting actions, and the available attacks.

2. Graphically generate the attack plan by querying the triggered information from

Flux, and attacker behavior ontology.

3. Build the attacker’s knowledge state for generating the attack-scenarios. This

knowledge state is used to control what knowledge is triggered by Flux.

CieKI represents the attacker’s decisions points, during the attack process, using a

situational dynamic decision tree. The attacker preferences for these decision points are

encoded using the attacker behavior ontology. CieKI uses this situational decision tree

and attacker preferences to determine the order in which the distributed planning logic

(Flux) is queried.

This chapter describes the situational dynamic decision tree and the attacker behavior

ontology.

7.1 Situational Dynamic Decision Tree

It is important to study how and when the attacker makes decisions during the attack

process, in order to replicate this behavior for automated plan generation. These attacker

decision points are represented using a situational dynamic decision tree. The options

179

available at these decision points depend on the attack situation. The logic flow for the

situational dynamic decision tree is shown in Figure 46 below.

Figure 46: Situational Dynamic Decisison Tree

In Figure 46, the trapezoids refer to the anchor set classes in Flux. If there are any

members in the anchor set, then the corresponding decision point is enabled. Otherwise,

the decision point is blocked until Flux discovers such members. The members of the

1

2

2a

4

5

3

3a

6

7

4a

4b

5

7

7

4c

180

anchor sets become the decision options available to the attacker. The decision point is

shown as the diamond-shaped decision box in Figure 46. This box is the same color as

the trapezoidal anchor set that enables it.

This decision tree logic is explained below. The numbers in this explanation refer to

the component marked with the same number in Figure 46. Note that this numbering does

not indicate the flow of decision sequences. The actual sequence in which the decisions

are made depends on attacker preferences and the attack situation.

1. The decision tree starts with the attacker’s (or red-team’s) selection of a goal,

represented by the decision point “selected goal”. This selected goal may trigger

the “goal triggered FP (fingerprinting) goal”11, “goal triggered subgoal”, or

“goal triggered pattern”.

2. If initially no information is available, only the fingerprinting goals may be

triggered.

a. In this case, the attacker (or red-team) may choose a fingerprinting goal

from the triggered options. The information gathered by executing the

selected fingerprinting option may further trigger the sub-goals and/or

patterns as indicated in Figure 46 above. Note that the effect of

fingerprinting goals is global, since they are used to learn about the

system. The information that can be uncovered, by executing the

fingerprinting goals, can trigger any sub-goals, patterns, or attacks even

though the executed fingerprinting goal is classified as the “goal trigger

fingerprint goal”. CieKI builds the attacker’s knowledge state using the

information discovered by executing fingerprinting goals.

11 In the Figure 48 Fingerprinting is abbreviated to FP for ease of graphical presentation

181

3. The selected goal may trigger potential sub-goals if information about how to

decompose the goal is available, either by executing the fingerprinting goals, or

from a priori knowledge.

a. These triggered sub-goals are available as options for the attacker (or red-

team). When the attacker (or red-team) selects a sub-goal, the “subGoal

triggered FP (fingerprint) goal” is triggered. If the information about how

to decompose the selected sub-goal, or to accomplish them is available,

then “subgoal triggered subgoal” and “subgoal triggered Pattern” are also

triggered.

4. If patterns that may accomplish the selected goal are available, then “goal

triggered patterns” are triggered.

a. The attacker (or red-team) may select a triggered pattern to accomplish the

selected goal based on his/her preference.

b. If a pattern is selected, then the corresponding available attacks are

triggered. The attacker (or red-team) then may select one of the triggered

attacks.

c. If the selected attack accomplishes the goal, then the goal is marked as

accomplished. When this happens, the logic of the tree moves to the

beginning of the decision tree if any more goals or fingerprinting actions

(that may trigger new goals) are available. Note that the attacker (or red-

team) may choose not to use any triggered attacks, if these attacks do not

satisfy his/her preferences.

182

5. A selected sub-goal may further trigger more sub-goals, finger printing goals, or

patterns.

6. Selected fingerprinting goals may provide more information about the system,

which can further trigger sub-goals, patterns, and attacks. Again, note that the

effect of fingerprinting goals is global, since they are used to learn more about the

system.

7. Also similar to “goal triggered pattern”, the “sub-goal triggered pattern”

selection further triggers available attacks whose execution achieves the selected

sub-goal. The accomplishment of sub-goals in turn may achieve the selected goal.

In this case, the control returns to the top of the decision tree if any more goals, or

fingerprinting actions (that may trigger new goals), are available.

CieKI also provides an interface for the red-team to interact with the target network.

This interface is called CieKI Red-team Diary (RTD).This decision diagram is a core part

of CieKI RTD interface. Situational decision tree is used for developing the proposed

framework’s mode 2, 3, and 4 algorithms. Section 4.3.7 introduced these modes of

operation, and Chapter 8 describes them in detail.

7.2 Attacker Behavior Ontology

Attacker strategy and preferences influences the decisions made by the attacker.

Attacker strategy in turn is influenced by the attack’s environmental context and the

attacker’s motivation. This is shown in Figure 47 below.

183

Figure 47: Factors influencing attacker strategy

The same attacker may use a different attack strategy, for example, if the information

to be compromised is located in a military network as opposed to a University lab

network. The attacker strategy is also dependent on the attacker’s motivation. The

attacker may choose different types of attacks, for example, if the motivation was

learning as opposed to getting public attention.

Given the environmental context and attacker motivation, this dissertation encodes

four types of attacker strategies called direct, fastest, prudent, and stealth strategy. Note

that even though this dissertation initially focuses on these four strategies, the proposed

framework’s logic is scalable enough to encode new strategies, or new combinations of

current strategies if needed. This ontology can also be used to encode technological

preferences (for example it can encode if attacker prefers compromising Linux to

Windows).

184

These four strategies are described as:

1. Direct Attack Strategy: In direct attack strategy, the attacker tries to

compromise the system directly, and avoids using other systems as a launching

point of the attack.

2. Fastest Attack Strategy: In fastest strategy, the attacker tries to launch the attack

as soon as possible. An attacker with this strategy may not try to capture detailed

information about the system using fingerprinting, but will instead use only the

minimum amount of information that allows selection of an attack as “good

enough” information. The leap-before-you-look attacker is an example of this

type of attacker. Apart from shortening the information-gathering phase, the

fastest attack strategy may also prefer faster attacks given the option. The fastest

attack strategy is a more constrained direct attack strategy.

3. Prudent Attack Strategy: This strategy is the opposite of the fastest attack

strategy. In this strategy, the attacker tries to gather as much information as

possible before selecting and launching the attack. Given the option, the attacker

using this strategy may select attacks that are more accurate (or reliable).

4. Stealth Attack Strategy: This strategy can be used with any of the above-

mentioned strategies. In this strategy, the attacker prefers stealthy attacks given

the option.

7.2.1 Encoding Attacker Strategy

In order to encode the attacker preference, the attacker’s decision points are first

identified using the situational dynamic decision tree. The attacker’s preferences are then

encoded at these decision points, using the attacker behavior ontology.

185

7.2.1.1 Attacker Decision Points

The attacker’s decision points are shown in Figure 48 below. The decisions made at

these points are driven by the attacker’s strategy. Figure 48 illustrates the decision points

as 11 blocks after removing the successor flow of logic from the decision tree shown in

Figure 46.

Decision points 1 and 7 allow the red-team to select the goal and sub-goal. At

decision points 2 and 8, the red-team may select either the fingerprinting goal, or a

pattern that accomplishes the selected goal or sub-goal, or they may choose to decompose

the goal or sub-goal further. Decision point 6 shows that the selected goal or sub-goal can

be further decomposed into exploiting functionality, connectivity, or attribute sub-goal

types. The decision points 3 and 9 allow the selection of triggered fingerprinting goals.

Decision points 4 and 10 allow the selection of triggered patterns, and decision points 5

and 11 allow the selection of the triggered attacks.

186

Figure 48 : Attacker descision points

1

2

3
4

5

6

7

8

9

10

11

187

7.2.1.2 Attacker Behavior Ontology

Attacker preferences are applicable at these decision points. These preferences are

encoded using attacker behavior ontology. This ontology is created by encoding the

following three logic types.

1. The first type of logic describes the conceptual relationship among the decision

points (or among the options within a decision point), using properties. For

example, the information that exploiting a triggered pattern is faster than

decomposing a goal is encoded as (GoalTriggeredPattern isFasterThan

GoalTriggeredSubgoal). This is shown in Figure 49.

2. The second type of logic associates the properties with a strategy. For example,

the ‘isFasterThan’ property can be used to implement the fastest attack strategy.

The other three strategies have corresponding properties ‘isDirectThan’,

‘isPrudentThan’ and ‘isStealthyThan’.

3. The third type of logic involves defining an abstract anchor property

‘isPreferedThan’ and making one of the properties defined in step 2 a sub-

property of this anchor property, according to the selected strategy. For example,

if the fastest attack strategy is the selected strategy, then the isFasterThan

property is made the sub-property of the isPreferedThan property. If it is stated

that “AttackA isFasterThan AttackB” then using the property relation and

strategy information, it can be inferred that “AttackA isPreferedThan AttackB”.

This ‘isPreferedThan’ property is called an anchor property (conceptually

similar to the anchor class) because it allows the CieKI algorithms to query this

188

fixed property every time, but the meaning of this property can be changed in real

time to reflect the attacker strategy.

For example, if the strategy is changed from fastest attack to stealthy attack,

then the isStelthierThan property is made the sub-property of the isPreferedThan

property. If it is stated that “AttackB isStelthierThan AttackA”, then it can be

inferred that “AttackB isPreferedThan AttackA”.

This is shown in the Figure 50 below. The blank decision option trapezoid is

filled in real time based on the strategy chosen by the red-team or attacker.

Technological preferences are also encoded using isPreferredThan property.

Figure 49: Attacker strategy driven properties between the decsions points

Figure 50: isPreferredThan property

Note that there is one active strategy for each decision point, but the algorithm

supports choosing hybrid strategies (appropriate combination of the four strategies, or

any new strategies) for different decision points.

189

7.3 Centralized Algorithms

The centralized algorithm inserts the attacker decisions in Flux, and queries its

outcome from Flux. The order of this query is determined by evaluating the attacker

preferences at each decision point represented in the situational decision tree. The

centralized algorithms generate the four types of graphical outputs. These centralized

algorithms and the modes of operations are described in detail in Chapter 8.

190

8 Framework Modes of operation

The proposed framework has five modes of operations. This chapter describes these

modes in detail.

Mode 1: Attack Tree Generation without Attacker Preference: This mode

generates attack trees. It displays all possible ways the attacker can compromise the

information’s confidentiality, integrity, and availability given perfect knowledge of

the system (i.e., it is assumed that the system has been fingerprinted perfectly.) This

mode assumes that all triggered sub-goals are selected by the attacker (i.e., it is

assumed that all possible ways of achieving the goals are selected.)

Mode 2 Attack Scenario Generation Using Red-team: This mode generates the

attack-scenario using red-team. It displays the actual steps taken by the red-team,

given no knowledge of the system (i.e., it is assumed that the red-team has to

fingerprint the system.) This mode provides the available goals, and triggered

fingerprinting goals, sub-goals, patterns, and attacks, as options to the red-team. It

observes the decisions made by red-team, and elicits their theories about attacker

preferences. This mode builds the red-team’s knowledge state, and uses it to trigger

the options available to the red-team.

Mode 3- Automated Attack-scenario Generation: This mode automates

generation of the attack-scenario. It displays the actual steps taken by the attacker,

given no knowledge of the system (i.e., assuming that the attacker has to fingerprint

the system.) This mode uses information about attack goal, and the attacker

preference encoded in attacker behavior ontology to automate the generation of

191

attack-scenarios. This mode builds the attacker’s knowledge state, and uses it to

trigger the options available to the attacker.

Mode 4- Ranked Attack Tree Generation Using Attacker Preferences: This

mode generates ranked attack trees. It displays attack tree, whose branches are

ranked according to the attacker preferences encoded in attacker behavior ontology.

Mode 5- Direct Query: In this mode, Flux can be queried directly to generate

custom outputs.

8.1.1 Attack Tree Generation without Attacker Preference

This section describes the first mode of operation. This mode generates all possible

ways the attacker can compromise the system, given perfect knowledge of the system.

This mode of operation is implemented by:

1. Enabling all encoded system knowledge (i.e., assuming that the system has been

fingerprinted perfectly.)

2. Making all “triggered sub-goals” “selected sub-goals” (i.e., assuming all possible

ways of achieving the goals are selected.)

8.1.1.1 Pseudocode

The pseudocode used for generating the outputs is as shown below:

1. Read the ontology files
2. Retrieve class SelectedGoal
3. For each SelectedGoal
4. Add tree vertex SelectedGoal
5. Retrieve the GoalTriggeredSubGoal instances
6. Determine the SubGoal type for all GoalTriggeredSubGoal instances
7. Add nodes indicating the SubGoal types
8. Add tree edge from SelectedGoal to SubGoal types
9. Add nodes displaying the GoalTriggeredSubGoal instances
10. Add appropriate tree edge from SubGoal type to GoalTriggeredSubGoal
11. For each GoalTriggeredSubgoal instance

192

a. Retrieve the SubGoalTriggeredSubGoal instances
b. Determine the SubGoal types for all SubGoalTriggeredSubGoal instances
c. Add nodes indicating the SubGoal types
d. Add tree edge from GoalTriggeredSubGoal to SubGoal type
e. Add nodes displaying the SubGoalTriggeredSubGoal instances
f. Add appropriate tree edge from SubGoal type to

SubGoalTriggeredSubGoal instances
12. Retrieve TriggeredPattern

a. For each TriggeredPattern
i. Add nodes representing TriggeredPatterns

ii. Add appropriate edge between TriggeredPattern and the target
(sub-goal or goal) triggering the pattern.

iii. Retrieve the TriggeredAttacks
iv. Add nodes representing TriggeredAttacks
v. Add appropriate edge between TriggeredPattern and the

TriggeredAttacks

8.1.1.2 Output

The first mode of operation generates the attack tree as shown in Figure 51. This

graphical output is generated by using a Java graphical software library (and its example),

called Java Universal Network/Graph Framework (JUNG) [140].

In Figure 51, the red nodes represent the goals and sub-goals, orange nodes represent

available patterns, black nodes represent available attacks, and white nodes represent the

type of sub-goals. In order to optimize screen space, the exploit functionality sub-goal is

called FunctionalSub-goal and ConnectedHostToWhichAccessIsNeeded is

summarized as ConnectedHost.

The tree-structure shown in Figure 51 can be collapsed into concentric circles

indicating the cluster of nodes. This is shown in Figure 52. This can be used as a visual

overview to determine which type of sub-goal provides the majority of attacks. Any part

of the tree or graph can be zoomed in and out. The tool also uses “lens” application from

JUNG software library [140], which allows magnification of a specific portion of the

tree. These different features of the output are displayed in Appendix V.

193

Finally, the progression of attacks can also be presented in the form of a radial

output, as shown in Figure 53. In Figure 53, each concentric circle represents how the

goal is broken down to executable attacks that can accomplish the goal. These different

graphical presentations are generated using Java Universal Network/Graph Framework’s

examples [140].

194

Figure 51: Flux Attack Tree Output

195

Figure 52: Flux Attack Tree Spiral Presentation

196

Figure 53: Flux radial output

197

8.1.2 Attack Scenario Generation Using Red-team

This section describes Mode 2 of the proposed framework. This mode provides the

red-team with a graphical interface that allows them to interact with the target network. It

records and displays the actual steps taken by the red-team, given no knowledge of the

system (i.e., assuming that the red-team has to fingerprint the system.) This interface is

part of CieKI and is called CieKI RTD (red team diary). It implements the situational

dynamic decision tree described in Section 7.1.This mode of operation is implemented

by:

1. Providing the red-team possible attack goals, triggered sub-goals, fingerprinting

goals, patterns, and attacks as options. When the red-team selects an action,

CieKI RTD inserts the decision in Flux, and provides the triggered outcome of

action back to the red-team.

2. Building the red-team’s knowledge state using the knowledge discovered

because of red-team’s selection (execution) of a triggered fingerprinting goal.

This knowledge state is used to trigger the sub-goals, patterns, and attacks

(available to the red team) using Flux.

3. Observing the decisions made by the red-team, and eliciting their theories about

attacker strategy and preferences.

8.1.2.1 CieKI RTD Input Interface

This section describes the input interface of the CieKI RTD shown in Figure 54. The

red-team interacts with this interface to make decisions and to view the options available

to them. This interface is divided into multiple input/output panels shown by different

colors. These panels correspond to the attacker decision points in the situational dynamic

198

decision trees. This section describes these panels and the red-team’s interaction with

them.

199

Figure 54: CieKI RTD Interface

200

Goal Selection Panel

The goal selection panel is the first panel that red-team interacts with. Using this

panel, the red-team can select the goal, change the selected goal, and re-activate an old

unaccomplished goal. This panel also displays the information about the systems

compromised by the red-team.

Figure 55 below shows two panels labeled “Available Goal” and “Attacker Access,”

shown in cyan and red.

The “Available Goal” panel displays the possible attack goals available to red-team.

The availability of the goal depends on red-team’s knowledge about the system. This

knowledge can be available a priori (a specific goal may be provided to red-team) or can

be collected by executing fingerprinting goals.

The red-team can select the goal by choosing an option from the "Available Goals"

list and pressing the select goal button. CieKI RTD classifies this selected option as a

member of SelectedGoal class in Flux. Flux uses this information to trigger the “goal

triggered sub-goals”, “goal triggered fingerprinting goals”, or “goal triggered patterns”.

This triggered information is displayed in the sub-goal selection panel (shown in Figure

56), the fingerprinting goal selection panel (shown in Figure 57), and the pattern panel

(displayed in Figure 58).

201

Figure 55 : CieKI RTD – Goal Panel

The panel displaying the “Available Goal” list also contains three more lists called

“Selected Goal”, “Goals Accomplished”, and “Back of your mind”. The goal, when

selected, is moved from the “Available Goal” list to the “Selected Goal” list, and the

“Select Goal” button is disabled. This is because there can be only one active goal in

current implementations of CieKI. However, there can be more than one active selected

sub-goal.

If the red-team decides to change the selected goal before it is accomplished (either

due to inability to accomplish the selected goal or to pursue another goal), by pressing the

“Change Goal” button, it is moved to the “Back of your mind” list. This “back of your

mind” goal can be reactivated by the red-team if needed. One of the objectives of red-

team elicitation is to capture when and why the red-team puts a selected goal on the

“back of your mind” list, and under what circumstances it is reactivated.

202

Goals that are accomplished are moved to the “Goal Accomplished” list. The

“Attacker Access” list shows the systems, applications, or information the red-team has

gained access to by executing actions. At the beginning of the attack scenario, this list

shows ‘None’, indicating attacker has not compromised any systems or information, and

it is updated as the red-team analyst accomplishes goals and sub-goals.

Sub-Goal Selection Panel

Figure 56: CieKI RTD –Sub-Goal Panel

There are two sub-goal selection panels in the CieKI RTD interface, the “goal

triggered sub-goal” and “sub-goal triggered sub-goal” panel. An example of this panel

template is shown in Figure 56. Flux’s triggered sub-goals are presented in the topmost

text box above the select button. These sub-goals are triggered either when a goal (or sub-

goal) is selected or when fingerprinting actions are executed (i.e. when new knowledge is

discovered by the red-team).

When the red-team selects a sub-goal, it is moved to the selected sub-goal text box,

and CieKI RTD classifies it as member of Flux’s “SelectedSubGoal” class. Flux uses this

information to triggers further “sub-goal triggered sub-goals”, “sub-Goal triggered FP

203

goals”, or “sub-goal triggered patterns”. This triggered information is displayed in the

sub-goal selection panel (shown in Figure 56), the fingerprinting goal selection panel

(shown in Figure 57), and the pattern panel (displayed in Figure 58).

If a sub-goal is accomplished by executing attacks, then it is moved to the

“Accomplished Sub-goal” list. Note that only selected sub-goals can trigger the available

patterns, but executing the attacks in the pattern can also accomplish the sub-goals that

are triggered but not selected.

Fingerprinting Goal Panel

The fingerprinting goal panel is shown in Figure 57. There are four such panels in

the CieKI input interface. The fingerprinting goals, triggered by Flux, are displayed in the

text box above the “Execute” button. The fingerprinting goals, when executed, are moved

to the “Accomplished FP Goal” list. The execution of fingerprinting goals provides

information about the target network. CieKI RTD uses this information to build the red-

team’s knowledge state. Flux triggers the available goals, sub-goals, patterns, or attacks,

given the red-team’s knowledge state.

 Note that the effect of the fingerpriting goal is global (i..e., a “sub-goal triggered

fingerprining goal” can also trigger “goal triggered patterns”). This is because the

purpose of fingerpriting is to collect information about the target network, and the

usefulness of collected information may not be limilted to a specfic goal (even though the

information collection effort may be triggered by a specific goal).

204

Figure 57: CieKI RTD – Fingerprinting Goal Panel

Pattern and Attack Panel

The pattern panel is shown in Figure 58 below. The triggered patterns are displayed

in the top most textbox. These triggered patterns are further filtered by using the

information about attacker’s access. Once the patterns are triggered, the Threat Ontology

checks to see if the patterns are executable given the current access of the attacker. If the

patterns are executable, then the ontology classifies them as “Executable Patterns”.

These triggered patterns are displayed for information only and cannot be selected.

Only the executable pattern can be selected. This executable pattern is displayed in the

second text box in Figure 58. Once the red-team selects an executable pattern, it is moved

to the selected pattern list, and is classified as a member of Flux’s “SelectedPattern”

class. This classification triggers the corresponding attacks encoded in the pattern. The

triggered attacks and vulnerabilities are shown in Figure 59.

205

Figure 58: CieKI RTD – Pattern Panel

The triggered vulnerabilities are also displayed for information purpose only. Attacks

can be selected to exploit these vulnerabilities. When the triggered attacks are executed,

they are moved to the “Accomplished Attack” list, and the vulnerability exploited by this

attack is moved to the “Exploited Vulnerability” list. The sub-goals and goals

accomplished by executing attacks are also moved to the “Goals Accomplished” and

“Accomplished Sub-Goals” lists. The “Attacker Access” list is also updated to reflect the

accomplished goals and sub-goals. The attack panel is displayed below the vulnerability

panel in Figure 59.

206

Figure 59: CieKI RTD – Attack and Vulnerability Panel

 Red-team’s decisions are recorded by the CieKI-RTD as they are made. CieKI RTD

then graphically generates the attack-scenario based on these decisions. The red-team’s

theories about attacker preference and strategies are elicited manually at each decision

points. This elicited information is recorded in the attacker behavior ontology. This

elicited information can be used to automatically generate the attack-scenarios in mode 3

and to rank the attack tree’s branches in mode 4.

8.1.2.2 RTD Pseudocode

The algorithm in the form of a pseudo code is shown below.

I. SELECT: Goal
A. ASSERT: Selected Goal in Flux

1. Disable select goal option
B. Selected Goal may TRIGGER GoalTriggeredFingerprintGoal or
TriggeredPattern or GoalTriggeredSubgoal given the information in Flux

207

1. IF (GoalTriggeredFingerPrintGoal) THEN enable this as the
decision to be made ELSE declare no goal triggered fingerprint goal
2. IF (TriggeredPattern) THEN enable this as decision to be made
ELSE declare no goal triggered pattern
3. IF (TriggeredSubGoal) THEN enable this as decision to be made
ELSE declare no triggered subgoals

II. Repeat
A. IF (enabled goal triggered decisions to be made)

1. THEN
a) DISPLAY the enabled decisions to be made
b) IF Selected (GoalTriggeredFingerPrintGoal) THEN

(1) EXECUTE the goal
(2) ASSERT the outcome in Flux

(a) The fingerprint outcome may TRIGGER
TriggeredPattern or TriggeredSubgoal given
the information in Flux
(b) Enable appropriate goal and sub-goal
triggered decisions to be made

c) IF Selected (GoalTriggeredSubGoal) THEN
(1) ASSERT: Selected Sub-Goal in Flux
(2) Selected SubGoal may TRIGGER
SubgoalTriggeredFingerprintGoal or TriggeredPattern
 or SubgoalTriggeredSubgoal given the information
in Flux
(3) Enable appropriate goal and sub-goal triggered
decisions to be made

d) IF selected (ExecutableTriggeredPattern) THEN
(1) ASSERT: Selected Pattern in Flux
(2) EXECUTE pattern
(3) IF (SelectedPattern provides selected Goal) THEN

(a) Declare goal is achieved
(b) Updated Attacker Access

B. IF (enabled subgoal triggered decisions to be made)
1. THEN

a) DISPLAY the enabled decisions to be made
b) IF selected (SubGoalTriggeredFingerPrintGoal) THEN

(1) EXECUTE the goal
(2) ASSERT the outcome in Flux

208

(a) The fingerprint outcome may TRIGGER
TriggeredPattern or TriggeredSubgoal given
the information in Flux
(b) Enable appropriate goal and sub-goal
triggered decisions to be made

c) IF selected (SubGoalTriggeredSubGoal) THEN
(1) ASSERT: Selected Sub-Goal in Flux
(2) Selected SubGoal may TRIGGER
 SubgoalTriggeredFingerprintGoal or
TriggeredPattern or SubgoalTriggeredSubgoal
given the information in Flux
(3) Enable appropriate goal and sub-goal triggered
decisions to be made

d) IF selected (ExecutableTriggeredPattern) THEN
(1) ASSERT: Selected Pattern in Flux
(2) EXECUTE pattern
(3) IF (SelctedPattern provides selected SubGoal or
Goal) THEN

(a) Declare goal or sub-goal is achieved
(b) Updated Attacker Access

C. IF selected (change Selected Goal) THEN
1. Put current Selected Goal on Back of your Mind Buffer
2. Enable select goal option
3. IF selected (new available goal or Back of your Mind Buffer goal)

a) ASSERT: Selected Goal in Flux
(1) Disable select goal option

b) Selected Goal may TRIGGER
GoalTriggeredFingerprintGoal or TriggeredPattern or
GoalTriggeredSubgoal given the information in Flux

(1) IF (GoalTriggeredFingerPrintGoal) THEN enable
this as the decision to be made ELSE declare no
goal triggered fingerprint goal
(2) IF (TriggeredPattern) THEN enable this as decision
to be made ELSE declare no goal triggered pattern
(3) IF (TriggeredSubGoal) THEN enable this as
decision to be made ELSE declare no triggered subgoals

Until (Red-team terminates execution)

209

8.1.2.3 CieKI RTD Output

RTD generates the attacker scenario representing the actual red-team steps. An

example of this for the case study described in Section 5.4 is as shown in Figure 60

below. These steps are numbered according to the sequence in which they were executed.

The loop shown in Figure 60 indicates that the initial goal was put on the back of your

mind buffer and was reactivated later. This change and re-activation of goals and

backtracking are important aspects of the attacker behavior that are not captured by the

attack tree.

In Figure 60, the red nodes indicate the goals and sub-goals, yellow nodes indicate

fingerprinting action, orange node indicates selection of a pattern, and the black node

indicates execution of attack.

In the scenario displayed in Figure 60, the attacker selects “compromising trade

secret” as the goal. The steps taken by red-team are explained below:

1. The goal has a functional relationship with the MySQLserver, and it is selected

as the sub-goal by the red-team.

2. Because no other information is available, the red-team executes a network scan.

However, because the server hosting the MySQL is in the private network and

protected by a firewall, no information about this selected sub-goal

MySQLServer is available. The network scan however returns information about

a Windows Server, and the applications executing on this server.

3. Since no information about selected sub-goal is available, the red-team analyst

puts the TradeSecret on the “back of your mind buffer” and makes

compromising the discovered WindowsServer a new goal.

210

4. There are executable patterns available to compromise the WindowsServer.

From these patterns, a buffer overflow pattern called BO-SMB, targeting the

implementation of server message block protocol, is selected by the red-team.

5. The BO-SMB pattern and the WindowsServer goal are accomplished by

executing a new (hypothetical) variant of Sasser attack called SasserEq.

6. The red-team then performs a fingerprinting action again from the new locations

they now have access to. The Windows Server in the given example has visibility

into the internal network and provides the information that MySQL Server is

hosted on a Linux Server.

7. The red-team uses this newly discovered information to reactivate the

“compromise trade secret” from the “back of your mind buffer”, making it the

new selected goal.

8. The MySQL Server again becomes the new selected sub-goal to achieve the

“compromise trade secret” goal.

9. The Linux Server hosting this MySQL Server is also triggered and further

selected as a sub-goal.

10. An executable pattern providing unauthorized access to Linux Server is triggered

and selected.

11. This pattern is achieved by executing the “LICQ attack”. Having access to the

Linux Server accomplishes the sub-goal of compromising “MySQL Server”, and

accomplishes the goal of compromising the trade secret stored in it.

211

Figure 60: CieKI RTD Output – Attack-scenario

8.1.2.4 Benefits of CieKI RTD

Traditionally, the red-team has to discover system information as part of the red-

teaming exercise. The red team then uses their attack launching tools to execute proof of

concept attacks12 to achieve a pre-determined goal. The red-team may spend a significant

amount of time discovering system information by executing fingerprinting actions, and

executing attacks to compromise the discovered vulnerabilities.

The main value of using the red-team, however, lies in their theories about attacker

behavior and not in their ability to execute the fingerprinting actions and attacks.

In the proposed framework, the red-team interacts with the target network to be

compromised using the CieKI RTD interface. This interface isolates the underlying target

network from the red-team.

CieKI RTD provides the red-team available goals, and triggered sub-goals,

fingerprinting actions, patterns, and attacks as options. When the red-team selects an

action, it inserts the decision in Flux, and provides the triggered outcome of action back

12 Note that the red team carries out an attack only if it is asked to do so.

212

to the red-team. CieKI RTD can also be integrated with scanning and attack launching

tool like Metasploit [131] .

The advantage of this tool is:

1. It eliminates the red-team’s burden of executing fingerprinting actions, and

launching attacks. This allows red-teams more time to develop and test attacker

behavior theories.

2. CieKI RTD facilitates expert theory elicitation. Using this interface, the

elicitation analyst can observe and ask questions about the red-team’s selection of

actions. This allows the elicitation analyst to develop the attacker preference

ontology. The elicited ontology can be used for automatically generating the

attack plans.

3. In secured facilities, it may not be possible to give the red-team access to the

actual target network. The proposed framework’s red-team interface allows

abstracting the actual system information, thus giving the red-team only the need-

to-know information.

4. New proof-of-concept attacks generated by the red-team can be added to the

threat ontology as new actions.

8.1.3 Attack Scenario Generation Using Encoded Attacker Behavior Theory

This mode automates generation of the attack-scenario. It displays the actual steps

taken by the attacker, given no knowledge of the system (i.e., assuming that the attacker

has to fingerprint the system.) This mode uses information about attack goal, and the

attacker preference encoded in attacker behavior ontology to automate the generation of

attack-scenarios.

213

This mode of operation is implemented by:

1. Querying the triggered information from Flux using the attacker’s goal and

knowledge state. The order of query itself is determined by querying the attacker

behavior ontology to evaluate the attacker’s preferred decisions at each decision

point in the situational dynamic decision tree.

2. Building the attacker’s knowledge state using the knowledge discovered because

of attacker’s selection (execution) of a triggered fingerprinting action. Similar to

Mode 2, the attacker’s knowledge state is used to control the information that can

be triggered by the distributed logic. Unlike Mode 2, the attacker’s fingerprinting

actions are chosen by the Mode 3 algorithm based on encoded attacker’s

preferences and need for information.

This mode generates the attack-scenario similar to the one generated by CieKI RTD.

However, each time a goal is changed, the scenario leading to this goal change is

displayed in a new scenario graph window. The example scenario is displayed in three

windows, shown in Figure 61-63, indicating that the attack goal was changed two times

in this example. The scenario within each window (or within each goal) continues until

either the goal is changed, or until it is accomplished, or until the algorithm declares that

the goal cannot be accomplished. Figure 61 shows the scenario fragment in which the

available fingerprinting goals were tried, but the information available could not

decompose or accomplish the sub-goal “MySQL Server”. Figure 62 shows the

continuation of this scenario after putting the “compromise trade secret” goal on the

“back of your mind” buffer and making WindowsServer the new selected goal. This

ends when the WindowsServer goal is accomplished. Figure 63 shows the continuation

214

of this scenario after the Windows Server is compromised, and the “compromise trade

secret” goal is reactivated.

Figure 61: Automated scenario generation output showing that selected goal cannot be

achieved

Figure 62: Automated scenario generation output after changing goal

215

Figure 63: Automated scenario generation output after reactivating initial goal

8.1.4 Attack Tree Generation Using Attacker Behavior

This mode of operation ranks the attack tree generated in the mode described in 5.5.1

using the attacker preference. This is shown in Figure 64. It shows which branch of the

attack tree is preferred by the attacker. The Flux’s graphical algorithm is modified to

query the preferences of the attacker encoded in attacker behavior ontology to rank the

branches of the tree.

216

Figure 64 Ranked attack tree

8.1.5 Direct Query

Another way to retrieve information from Flux is to use query tools to extract

specific information directly. This is shown with an example of querying the Flux sets

directly using an ontology query tool called the “DL Query”[141]. Figure 65 (a) below

shows the output of querying the selected goal class and (b) shows an example of

querying a restriction class.

217

(a)

(b)

Figure 65: Direct query of Flux knowledgebase

Figure 65 section (a) describes the members of the class SelectedGoal. In this tool,

the individuals are called instances. Section (b) displays the outcome of the intersection

of restriction classes encoded as (patternHasTarget hasValue IISServer), and the

TriggeredPattern class.

Direct queries can be used to create custom graphical presentations. One possible

custom graphical representation allows monitoring the size of the anchor sets. The size of

218

the anchor sets increases or decreases based on the situation and information availability.

The system administrators currently monitor the availability of new vulnerabilities or

attacks almost on the daily basis. Using Flux, the system administrators can monitor how

these vulnerabilities and attacks may be used in the attack plans targeting the information

they are trying to protect.

219

9 Framework Evaluation and Comparison

This chapter compares the proposed framework with manual attack tree and

automated vulnerability graph generation frameworks. This comparison is done using the

cyber-security domain requirements identified in Section 3.4, and by using the case study

described in Section 5.4.

9.1 Cyber-security Domain Requirements Comparison

This section compares the proposed framework with the manual attack tree and

automated vulnerability graph generation frameworks using the cyber-security domain

requirements.

9.1.1 Domain Dynamicity

These dynamicity requirements suggest that the risk scenario generation framework

should assume that information is incomplete and update the risk scenarios when new

information is available. The proposed framework generates the risk scenarios using open

world reasoning assuming that information is incomplete. The proposed framework also

uses real-time information as it becomes available to generate these risk scenarios.

The distributed planning logic also meets the following three knowledge

representation requirements:

1. Dispersed Information Sources: The cyber-security domain information (For

example, information about software systems characteristics, vulnerabilities, and

attacks, attack theories etc.) may be generated by multiple sources dispersed in

space and time. The ontology language[110, 114] used in this dissertation can

capture and combine the information from these dispersed sources.

220

The vulnerability graph frameworks capture and use limited information

(primarily about the presence of vulnerability, connectivity between software

systems, attacker’s initial privileges, and the privileges gained by exploiting the

vulnerabilities). Some vulnerability graph generation frameworks [81, 82, 87, 89]

can capture information about known vulnerabilities using vulnerability scanning

tools, and/or vulnerability databases.

2. Dynamic Knowledgebase: One of the challenges of the vulnerability graph

generation methods is that they require an explicit encoding of the information a

priori (before executing the planning algorithm). Any change in information as

well as availability of new information is incorporated by re-capturing and re-

encoding the information, and re-executing the planning algorithm. The proposed

framework overcomes this by using the information, as it becomes available, to

trigger the information relevant (for example, sub-goals, the fingerprinting

actions, the available attacks etc.) for generating the risk scenarios.

3. Incomplete Information: Current vulnerability graph generation methods using

traditional knowledgebase and planning algorithms assumes that information is

complete, there are no unknowns, and whatever information is not explicitly

stated is false. For example, if information about vulnerability is not stored in the

knowledgebase, then it is assumed that such vulnerability does not exist. This

assumption may not valid in the cyber-security domain.

The proposed framework’s logic overcomes this limitation by assuming that

information is incomplete and new information may be available. The proposed

221

framework uses only the information that is explicitly stated without making any

assumption about the information that is not encoded.

In summary, the proposed framework assumes that information is incomplete, when

new information is available or if the encoded information changes, the proposed

framework captures, combines and uses it to generate the risk scenarios in real time.

9.1.2 Attacker Behavior

The proposed framework captures the logic behind why the attacker may exploit any

available opportunities. The proposed framework generates attack plans by capturing

attacker behavior. The distributed logic captures and emulates the attacker thought

process for decomposing goals (and sub-goals) and for discovering and exploiting

opportunities provided by the target network. The proposed framework captures and uses

the attacker’s motivation, strategy, and preferences for generating the risk scenarios. In

accordance with the attacker’s exploratory nature, the proposed framework assumes that

the attacker may discover knowledge during the attack process. This knowledge

discovery not only guides the attack plan but it also may change attacker’s initial goal.

The proposed framework builds the attacker’s knowledge state for controlling the

knowledge that can be triggered by the distributed logic for generating risk scenarios.

Current automated vulnerability graph generation methods describe how the known

vulnerabilities may be exploited, but they do not capture why the attacker may exploit

these vulnerabilities, apart from the fact that they are available. These methods do not

consider attacker behavior (attacker’s motivation, strategy, preferences, thought process,

exploratory nature) for generating risk scenarios.

222

9.1.3 Expert Theory

The proposed framework allows eliciting and encoding expert theories about attack

and attacker behavior. It generates the risk scenarios using these theories. This explicit

encoding of expert theories allows communicating and validating these theories. The

proposed framework also allows experts to test the impact of their theories, and it can be

used to calibrate the experts. This is described in detail in Section 10.2.3.

The main value of using the red team is in their theories about attacker behavior.

Current manual attack risk scenarios are generated by red teams using their theories of

attacker behavior. This output (in the form of risk scenarios) abstracts the expert’s

attacker behavior theories, while summarizing only the actions that the attacker may take

in the risk scenario. If the risk scenarios are generated without explicitly stated

underlying theories, then the opportunity to validate and re-use accurate theories, or to

update inaccurate theories is lost. The vulnerability graph generation methods does not

elicit, use, or validate expert theories.

9.1.4 Automation

Today’s technology infrastructure consists of a large number of software systems. In

addition, a large number of attacks and vulnerabilities exist. Consequently, the

vulnerability graph may have hundreds of nodes. To capture this vast amount of

information, the cyber-security risk scenario generation needs to be automated.

Automation is not only required because of the scale of the risk scenario, but it is also

needed to capture the domain dynamicity. This section compares the frameworks using

these automation requirements.

223

1. Completeness: The vulnerability graph represents all possible ways the

attacker can gain restricted privileges (or circumvent a security property). In

the case of manual attack tree generation, the completeness of the attack tree

is limited to the analyst's ability to identify the attack-scenarios. The

proposed framework’s attack tree generates all possible ways the attack goal

of compromising information can be achieved.

2. Repeatability: The automated vulnerability graph generation framework

and the proposed framework generate repeatable output given the same

information as input. The outcome of manual attack tree generation may vary

even with the same input information, depending on the skills and knowledge

of the analyst generating the output.

3. Scalability: The scalability of an algorithm is limited by increase in run time

(the time it takes for the algorithm to execute) as more inputs are added.

According to [1], most of the vulnerability graph generation frameworks have

exponential run time growth (run time grows exponentially). The algorithm

described by Ammann et al [85] has the polynomial run time.

The OWL language used in this dissertation (OWL DL) has the worst-case

exponential complexity [142]. However, new versions of OWL languages

have already reduced this worst-case complexity to the polynomial

time[142]. The main difference between the proposed framework and

vulnerability graph algorithm is in how they handle new knowledge. Current

vulnerability graph generation framework has to re-capture and re-encode the

knowledge and re-execute the algorithm when knowledge changes. This is a

224

time consuming process. In the proposed framework, new knowledge can be

incrementally classified into appropriate classes. This incremental reasoning

may decrease the classification time significantly.

The proposed framework’s logic is also scalable i.e. new logic can be added

when new domain understanding is available.

4. Analyst Dependence: The manual attack tree generation’s quality,

completeness, and repeatability are dependent on the analyst. The automated

vulnerability graph and attack plan generation framework have limited

analyst dependence for generating the tree.

These comparisons are summarized in Table 10.

225

Table 10: Comparison of risk scenario generation frameworks

Comparison Criteria Vulnerability Graph Red team Flux CieKI

Domain
Dynamicity

Distributed
Information

Can capture information from
automated tools like
vulnerability scanners and
vulnerability database.

Yes Can capture diverse information from distributed sources. Supports
information fusion to combine information.

Dynamic
Knowledgebase

Requires re-capturing and re-
encoding information, and re-
executing algorithm when
information changes.

Requires
manually
updating the
attack tree

Captures dynamic information when it becomes available. Uses this
captured information to trigger the information relevant for
generating risk scenarios.

Incomplete
Information

Assumes information is
complete, and available a
priori.

Yes Assumes information is incomplete and is not available a priori

Attacker Behavior

Does not capture or use attacker
behavior theories.

Yes Emulates attacker thought
process for decomposing
goals and sub-goals, and
discovering and exploiting
opportunities.

Captures and uses the attacker’s
motivation, strategy, and preferences.
Assumes that the attacker discovers
knowledge during the attack process.
This knowledge discovery may also
change attacker’s initial goal. It
builds and uses the attacker’s
knowledge state for generating
attack-scenarios.

Expert Theories Does not capture or use expert
theories

Yes Captures and uses expert theories about attacker behavior. Supports
expert theory validation and calibration.

Automation Completeness Displays all possible ways the
vulnerabilities can be exploited.

Limited to
analyst's
abilities.

Displays all possible ways
the attacker goal can be
achieved.

Displays all possible ways the
attacker goal can be achieved given
attacker preferences.

Repeatability Yes No Yes Yes
Scalability Best case polynomial runtime.

New knowledge requires re-
capturing, re-encoding and re-
executing algorithms.

Yes Best case polynomial runtime. New knowledge is captured
incrementally. The risk scenario generation logic of the proposed
framework is also scalable.

Analyst
Dependence

No Yes No

226

9.2 Case Study Comparison

The algorithms of vulnerability graph generation frameworks and the proposed

framework were compared in detail in Chapter 3 and 4. This section compares the

proposed framework with the manual attack tree and automated vulnerability graph

generation frameworks by their, input, and outputs, using the case study described in

Section 5.4.

The input and output encoding described in Sheyner [81] is used as an example to

illustrate the vulnerability graph generation framework’s input and output. This

framework was selected because:

1. Even though the current vulnerability graph generation framework uses

different algorithm or different encoding language, at high level the structure

of their input (using prerequisites and effects) and outputs (in the form of

attack graph) are similar.

2. Sheyner’s [81] approach encodes attacker’s fingerprinting actions (using

system state, pre-requisites, and effects). This allows comparing this

approach with the proposed framework’s encoding of the attacker’s

knowledge acquisition.

3. Sheyner [81] describes input encoding of all actions and output using a

detailed case study that can be used for comparison. This case study is reused

in this dissertation.

227

9.2.1 Comparison of Input

This section compares the frameworks by the type of information used as the input,

and the process used to encode these inputs.

9.2.1.1 Vulnerability Graph Generation Framework Input

The vulnerability graph frameworks primarily uses information about the presence of

vulnerability, privilege gained by exploiting these vulnerabilities, connectivity between

software systems, actions that can exploit these vulnerabilities, and the initial system state

(including attacker’s initial privileges). The actions are encoded using prerequisites and

effects[1]. The action prerequisites are used to identify the system in which they are

applicable. Action effects encode the state that the system will be in after the action

execution.

The challenges of encoding input in this manner are:

 Hard coding of fingerprinting action using pre-requisite and system state is

susceptible to errors.

 Input encoding of current vulnerability graph generation frameworks cannot

semantically differentiate the effects of a multi-effect action. Capturing the

semantics of multi-effect action, and the attacker behavior associated with it

is important to generate the real-life risk scenarios.

 The vulnerability graph generation frameworks often make simplifying

assumption to decrease the search space or to increase the scalability of

algorithm. These assumptions may not reflect the real life scenario.

 Manual input encoding might be susceptible to cognitive errors.

228

This section illustrates an example of the input and output encoding using the

encoding described in Sheyner [81]. It then details the challenge of input encoding.

Example of Input Encoding

Encoding Presence of Vulnerability

Sheyner’s framework [81] captures the presence of vulnerabilities by encoding

whether a vulnerable application is executing on the software system or not. This

information is captured using a Boolean variable, as indicated in the Table 11 below.

Pre-requisite
Variable

Description

w3svch Indicates that IIS web service running on host ‘h’[81]

squidh Indicates that Squid proxy running on host ‘h’[81]

licqh Indicates that LICQ running on host ‘h’[81]

scriptingh Indicates that HTML scripting is enabled on host
‘h’[81]

vul-ath Indicates that “at” program is vulnerable to buffer
overflow on host ‘h’[81]

Table 11: Vulnerabilty graph geenration method’s encoding of vulnerability information - source of

data [81, 82]

Encoding Connectivity between Software Systems

The connectivity between software systems is represented using connectivity matrix.

The connectivity matrix is shown in Table 12 below. The Table shows three type of

connectivity between two software systems encoded using Boolean variables. These

Boolean variables are in “x,x,x” format. In this, ‘x’ is substituted with ‘y’ (yes) if the two

229

software systems are connected and is substituted with ‘n’ if they are not. The three

variables capture whether the two software systems are connected by 1) a physical link,

2) port number13 80, and 3) port number 5190. In real life, the two software systems can

be connected using more than two ports. In theory, two software systems can be

interconnected using any of the 65,536 ports. The technology infrastructure also has

hundreds of software systems. As a result, the connectivity matrix can grow very rapidly.

Host Intruder IIS Web Server Windows Linux

Intruder y,y,y y,y,n n,n,n n,n,n

IIS Web
Server y,n,n y,y,y y,y,y y,y,y

Windows n,n,n y,y,n y,y,y y,y,y

Linux n,n,n y,y,n y,y,y y,y,y

Table 12: Vulnerability graph connectivity matrix - source of data [81, 82]

Encoding Actions that Exploit the Vulnerability

This section describes how the actions are encoded using prerequisites and effects.

These actions have four components intruder prerequisites, network prerequisites,

intruder effects, and network effects.

The intruder prerequisites capture the necessary privileges that the intruder must

have in order to execute this action. This is encoded by function plvl(x), which captures

the intruder’s privilege level (plvl) on host x.

13 In transmission protocols, a port is an endpoint to a logical connection between two computers.

These ports are numbered from 0 to 65536. Many well-known applications use a predetermined port
number to accept connections from clients. For example, web serves uses port number 80 to accept
connections from clients.

230

The network prerequisites encode the presence (or absence) of a vulnerable

application, and reachability of this vulnerable application (or software system) from the

source of attack, or any other specific conditions on target network. This reachability is

encoded by function R(S; T; p) which captures that host ‘T’ (target) is reachable from

host ‘S’ on port ‘p’. Some vulnerability graph generation framework calculates this

reachability using firewall and router rules [89, 143], or by using [87] vulnerability

scanning tools .

Intruder and network effects are encoded by a change in system state (Example of

system states are “scanning done”, “vulnerable service not executing”, etc.).

Sheyner [81] requires the actions to be encoded in the format shown in Figure 66

below.

Figure 66: Action Template

The encoding of four actions described in the case study used in this dissertation is

shown in the Table 13 below. These action encoding is adapted from [81].

231

Action Name IIS-buffer-
overflow

Squid-port-scan LICQ-remote-to-
use

Local-setuid-
buffer-overflow

Description Gives the
attacker root
privilege on
target.

Exploits
vulnerability in
Squid web proxy to
conduct a port scan

Gives a remote user
a user level privilege
on the target
machine.

Exploits buffer
overflow
vulnerability on a
setuid root file to
gain root access

Intruder
preconditions

plvl(S) ≥ user plvl(S) = user plvl(S) ≥ user plvl(T) = user

plvl(T) < root ⌐scan plvl(T) = none

 scan

Network
preconditions

w3svcT squidT licqT vul-atT

R(S; T; 80) R(S; T; 80) R(S; T; 5190)

Intruder effects plvl(T) = root scan plvl(T) = user plvl(T) = root

Network effects ⌐w3svcT
Table 13: Action encoding - source of data [81]

Sheyner [81] uses a binary state variable to represent the system state before

fingerprinting (represented as “⌐ scan”) and after fingerprinting (represented as “scan”).

This state variable is encoded as a prerequisite to action LICQ-remote-to-use shown in

Table 13.

Encoding Initial System State

The initial state is encoded as the system state in which 1) vulnerable applications,

shown in Table 11, are executing, 2) the intruder has “root” access only on his own

machine, and 3) initially no fingerprinting was performed so the ‘scan’ variable is set to

false (⌐ scan).

Challenges of Input Information encoding

The challenges of encoding information in this manner are explained below.

232

Encoding Fingerprinting Actions

Hard coding of fingerprinting action using pre-requisite and system state is

susceptible to errors. An example of this action encoding is shown in Table 13. This

encoding has a hidden assumption, which if removed may not generate any attack plans.

This is explained by an example taken from [81] that is described below.

In this example, it is assumed that no fingerprinting (⌐scan) was performed initially,

and the attacker has user level access to the web server. The only action available in this

situation is “action IIS-Buffer-Overflow” shown in Table 13. Since this is the only action

available the vulnerability graph generation algorithm selects this action (exploits the

buffer overflow vulnerability to gain root access on this web server). The system state

after executing this action is still (⌐scan) and the only other action available to the

attacker in this state is called “action squid-port-scan”. This action is available because

its pre-requisites system state is encoded as (⌐scan). Execution of this action changes the

state to ‘scan’. This new system state enables the execution of actions whose pre-requisite

requires the system to be in ‘scan’ state.

The vulnerability graph using this encoding may select the SQUID scan vulnerability

using the above-described logic. However, in real life if the attacker was in similar

situation, how would he/she know to target the machine running the SQUID Proxy Server

(located in the private network protected by firewall) if he/she does not know that this

machine exists (because no scans are done yet)? In real life, either the attacker cannot do

anything (as he/she does not have the knowledge), or he/she will have to use some other

scanning action to discover this SQUID proxy in first place. If the attacker uses any other

scanning action to discover the SQUID Proxy Server may also discover other

233

opportunities for executing action (by potentially changing the state of the system to

‘scan’), and therefore making exploiting the SQUID vulnerability unnecessary.

The hard coding of fingerprint actions also implicitly links the action with a specific

network configuration (i.e., the reason Linux vulnerability was hard-coded with ‘scan’

because they were inside the private network). This will require re-encoding the actions

whenever the network configuration changes. For example, if the IIS Server is relocated

to the private network from the DMZ , the actions exploiting its vulnerabilities will

require re-encoding by adding a ‘scan’ to their prerequisites.

Multi-effect Actions

It is challenging to encode the actions with multiple effects in current vulnerability

graph generation methods. For example, buffer overflow vulnerability can be used to gain

unauthorized access to the system as well as to crash the program against which it is

executed. These two are separate effects that can be used differently in different attacker

goals. In the current vulnerability graph generation framework, a single action encoding

is used to capture both effects of multi-effect actions. An example of this is shown in

Table 13. This is true syntactically as the action can produce both the effects. However,

in real life the attacker trying to gain remote access to the machine is doing so to use it as

a precursor to some form of follow up activity (for example, to launch further attacks or

to gain access to trade secret information). Crashing the program and simultaneously

gaining access to it may counter this goal of the attacker.

The attacker’s next applicable actions may be encoded with the pre-requisites

requiring the service to be available and compromised. Both of these conditions may not

be met by executing (selecting) the multi-effect action as it is currently encoded.

234

The attacker may also select both the effects when needed, but this selection is

optional and it is driven by the goal of the attacker. Furthermore, gaining access to a

target using buffer overflow may require higher attacker skills than crashing the service.

The input encoding of current vulnerability graph generation framework cannot

semantically differentiate the effects of a multi-effect action. The current syntactic model

does not allow selecting only the appropriate effect based on the attacker’s goal and

situation. Capturing the semantics of multi-effect action, and the attacker behavior

associated with it is important to generate the real-life risk scenarios.

Simplifying Assumptions

The vulnerability graph generation frameworks often make simplifying assumptions

to decrease the search space or to increase the scalability of algorithm. These assumptions

may not reflect the real life scenario.

One such assumption called monotonicty was described in Table 7. Under this

assumption [85] , 1) the precondition of an exploit, once satisfied, never becomes

unsatisfied, and 2) the negation operator cannot used to express the precondition. Simply

put monotonicity assumes that the attacker never backtracks [85]. This assumption may

not reflect the real-life attacker behavior.

Another simplifying assumption is made for grouping information together to

decrease the search space of the algorithm. One of the challenges of the cyber-security

domain is that a large number of attacks and vulnerabilities exist. Sheyner addresses this

concern by [81] assuming that multiple instances of vulnerabilities can be captured by

using a single generic action. For example, under this assumption all buffer overflow

vulnerabilities in an IIS Server can be captured by a single action. This assumption does

235

not reflect reality, where different types of vulnerabilities are available to attackers in

different situations. These vulnerabilities can have different impacts and can be exploited

using different attacks.

This can be explained with an example of three buffer overflow vulnerabilities in the

IIS Server called CAN-2002-0147[144], CAN-2001-0506 [145], and CVE-2002-0364

[146]. CAN-2002-0147 is only applicable if the IIS Server is using ASP extensions, and

it generates a denial of service (DoS) impact when executed. CAN-2001-0506 and CVE-

2002-0364 may lead to the same effect of privilege escalation, but are available to the

attacker in different situations. CAN-2001-0506 is only available to the attacker when the

IIS is using the Server Side Include (SSI) directives. It may not be possible to use these

vulnerabilities interchangeably.

That being said, it is possible to group together vulnerabilities and attacks, but not as

substitutes for each other. This grouping can be done to categorize similar vulnerabilities

and attacks in order to study and encode how they differ. Attack patterns often group

similar vulnerabilities and attacks. These patterns describe the template of an attack and

identify the basic steps the attacker may have to carry out to execute these types of attack.

In summary, it is possible to group together attacks and vulnerabilities, but this

grouping may not support the inference that the members of the group are

interchangeable in an attack plan.

236

Encoding the Actions Manually

The manual encoding of actions in vulnerability graphs is susceptible to the

following types of errors.

1. The analyst may accidently encode situation specific knowledge (or inferences)

using his/her general cyber-security knowledge. For example, it is well known that web

servers (especially the ones hosting the organization’s websites) in DMZ are easy to find

(may not require much fingerprinting to locate them). Consequently, the actions attacking

these servers in DMZ may be encoded using the pre-requisite of system state assuming

no fingerprinting is required (described by system state ‘⌐scan’). This knowledge may

remain hard coded even if the situation changes (for example if the web server is moved

to the internal private network from the DMZ). This accidental encoding of situation

specific knowledge may not reflect the reality or may limit the scope of hard-coded the

action.

2. The analyst may assume the algorithm to know what is commonly known in the

cyber-security domain. This also may limit the application of the algorithm.

3. The analyst, while making the modeling decision of what to include in the

prerequisites, may subconsciously think through the attack plan to be generated (i.e.,

instead of encoding each action independently, the analyst may think through how these

actions interplay with each other). This may lead to encoding hidden assumptions in

action prerequisites and effects that may not hold true in all scenarios.

These issues are exacerbated in real life, where the analyst or defender has to model

hundreds of actions. Also in real world situations, the action models will be generated by

237

different analysts over a period. Hence, these actions modeled should be flexible enough

to be accurately integrated together in any (appropriate) risk scenarios.

9.2.1.2 Proposed Framework Input

The proposed framework’s input encoding was explained in detail in Chapter 6. The

proposed framework does not encode the actions by prerequisites and effects; instead, it

encodes the logic of cyber-security domain.

Encoding Fingerprinting Actions

The proposed framework also captures the attacker’s exploratory more accurately. In

accordance with this exploratory nature, the proposed framework assumes that the

attacker may discover knowledge during the attack process. This knowledge discovery

not only guides the risk scenario but it also may change attacker’s initial goal. The

proposed framework builds this attacker’s knowledge state for controlling the knowledge

that can be used for generating attack-scenarios. Fingerprinting (or knowledge

acquisition) is also modeled as a situational sub-goal. This fingerprinting goal is triggered

based on the attacker strategy, the decisions made by the attacker and the attacker’s

knowledge state.

Multi-effect Actions

The proposed framework captures the semantics of multi-effect actions and triggers

the action with appropriate effects based on the attacker’s goal and situation. This allows

attacker (or red-team) to choose the effect that is needed to reflect his/her goal, strategy,

and preferences. The example logic of triggering multi-effect buffer overflow action is

explained in Section 6.5.3.

238

Simplifying Assumptions

The proposed framework does not make simplifying assumptions that may restrict

the applicability of the framework. The proposed framework assumes that the attacker

may backtrack, abandon the scenario, or change the goals in accordance with the

available opportunities. The proposed framework encodes the detailed logic of the

vulnerability without grouping them together. This logic can capture how different

vulnerabilities are available to the attacker in different situations. This encoding is

described in detail in section 6.4.2.2, using the example of the IIS server vulnerabilities.

Encoding the Actions Manually

The proposed framework can captures the cyber-security domain knowledge from

diverse sources. These sources can provide the information without having to think (or

know) about how it will be used in the risk scenario generation. This knowledge is also

encoded independent of the risk scenario generation logic. The risk scenarios are

generated by dynamically combining the encoded information in accordance with the

attacker behavior (i.e. by emulating the attacker’s interaction with the target

environment). This avoids the challenges of encoding actions manually.

9.2.2 Comparison of Output

This section compares the output generated by different frameworks using the case

study described in Section 5.4. Note that the case study described in Section 5.4 slightly

modifies the case study described in [81]. For example, given the challenges of using the

SQUID proxy action described in Section 9.2.1.1, this action was removed from the case

study.

239

9.2.2.1 Manual Attack Tree Output

A manually generated attack tree for the case study described in Chapter 5 is shown

in Figure 67 below. This tree was drawn manually using the guidelines provided by

Schneier [72], described in Section 3.5.2.1. This tree shows the different ways of stealing

the “trade secret” information.

Figure 67: Case Study - Manual Attack Tree Output

9.2.2.2 Vulnerability Graph Generation Framework Output

The output of the vulnerability graph is manually constructed using the graph

generation algorithm and is represented in Figure 68 below. In this tree, the attacker first

exploits vulnerabilities in the IIS Server and the Windows Server. The attacker then

240

exploits vulnerability in the LICQ application, or exploits buffer overflow vulnerability in

a Linux Server to gain the root privileges on the Linux Server.

Figure 68: Case study - vulnerability graph

The vulnerability graph framework also generates a set of critical actions, whose

elimination will isolate the end state from the initial state. However, this critical set of

actions is generated assuming that there are no unknowns. This assumption along with

the attacker’s adaptability may produce counter intuitive results. To explain this, SQUID

action is added back to the scenarios. The vulnerability graph, with the addition of the

SQUID action, is shown in Figure 69.

Sheyner’s critical set analysis[81] of this vulnerability graph identifies SQUID

scanning action as the single critical action to eliminate. There is “known unknown”

knowledge in the cyber-security community that the attacker can fingerprint some

software systems using unknown (or unknowable) methods (for example, social

engineering, dumpster diving, network packet sniffing).This means that the conclusion

241

drawn assuming that the only fingerprinting action available to the attacker is the SQUID

scanning action, may not be true. In reality, given this known unknown, the system

administrators (or defenders) would prefer patching the Linux Server and LICQ

vulnerabilities before patching the SQUID scanning action vulnerability. Hence, the

vulnerability graph framework may produce counter-intuitive results assuming that there

are no unknowns in cyber-security domain.

Figure 69: Vulnerability graph after adding SQUID scan action

The proposed framework generates the attack plans assuming that there are

unknowns in the cyber-security domain. The proposed framework’s reasoning assuming

incomplete knowledge (open world reasoning) does not conclude that SQUID scanning

action is the only action available to the attacker. It however, can use this knowledge to

generate the risk scenario showing how this action can be used, if the attacker chooses to

use this action.

242

9.2.2.3 Proposed Framework Output

The proposed framework’s modes of operations and outputs were described in detail

in Chapter 8. These outputs are reproduced here.

The attack tree generated by the first mode of operation is shown in Figure 70 below.

This attack tree shows the goal at the top. This goal is decomposed into a functional sub-

goal compromising the MySQL Server. This MySQL Server can be attacked by using the

trusted hosts (WindowsServer-Archie), connected applications (IIS Server, LICQ, and

SQUID Proxy), or the connected hosts (Windows Server and the Linux Server). The red

nodes represent the goals and sub-goals, orange nodes represent the availability of

patterns to accomplish the goal or sub-goals, and black nodes represent the availability of

attack to execute the patterns. The white nodes represent the type of sub-goal.

Figure 70: Case study- attack tree

Note that the proposed framework does not prune the branches of the tree if

complete information is not available. For example, the WindowsServer-Archie does not

243

have a threat pattern associated with it but this branch is not pruned, because such threat

pattern may become available in future, or it may already exist without the knowledge of

the framework (i.e., there may be a known unknown pattern). Also note that the pattern is

attached to the sub-goal node that of interest to the attacker. For example, the BO-IIS-SSI

pattern technically targets the IIS Server, but it is used to achieve the attacker’s sub-goal

of gaining unauthorized access to the Windows Server. Hence, the pattern node BO-IIS-

SSI is attached to the sub-goal Windows Server in this example. The information that

BO-IIS-SSI technically attacks the IIS Server is not lost and can be used for patching the

IIS server, or can also be displayed in the attack tree if needed.

The attack scenarios showing the actual steps taken by the red-team (or attacker), are

shown in Figure 71 below. This output is generated by modes two and three of the

proposed framework.

Figure 71: Case study - attack-scenario

Attacker preferences are used to rank the attack tree. This output is generated by

mode four of the operation, and is shown in Figure 72 below.

244

Figure 72: Case study - Ranked attack tree

Adding Actions

The advantage of the attack tree format is that when new attacks or opportunities are

discovered, they are simply added as new branches of the tree. In the case of the

vulnerability graph, however, discovery of a new action requires either regenerating the

tree or using a node insertion algorithm, because the nodes are interconnected. This may

be a computationally expensive task, depending on the size of the tree and the

connectivity of the node.

Changing Branch Definitions

Proposed framework also allows changing the definition of branches of the tree if

needed. This can be used for combining or splitting the branches. For example, the

connected host in Figure 72 shows the Windows Server as well as the Linux Server. The

Linux Server hosts the MySQL Server application, while the Windows Server is

connected using a communication port to the MySQL Server. Due to this difference in

245

the type of connection, compromising the Linux Server provides direct access to the

MySQL Server. Compromising the Windows Server, however, may not provide direct

access to the MySQL Server but the Windows Server can be used for fingerprinting

MySQL Server. This differentiation can be made by defining a new class “visible host”

and classifying all the software systems that are indirectly connected (for example using

communication ports) to the MySQL Server, as members of this class. This “visible host”

can be added as a new branch to the tree. This is shown in Figure 73 below.

Figure 73: Attack Tree- Adding New Branch

Represents all Possible Ways the Attacker’s Goal can be achieved

The attack tree represents all possible ways the attacker’s goal of compromising the

information can be achieved in a single tree. For example, if it was discovered that the

MySQL Server has an information disclosure vulnerability that allows the attacker to

view the trade secret directly, then it can be added as a new branch in the tree. This new

vulnerability may be exploited by an attack called MySQL Injection attack and it is

represented by a new branch in the attack tree, shown in Figure 74 below.

246

The vulnerability graphs on the other hand only display how the attacker can gain

restricted (root) privileges on the Linux Server. Gaining root privilege on the Linux

Server (or MySQL Server) is only one of the ways of compromising the trade secret. As

shown in the Figure 74 the attacker can use the MySQL Injection attack to compromise

the trade secret without compromising the Linux server. The proposed framework can

display all the possible ways the attack goal of stealing the Trade Secret can be achieved

on the same attack tree. The vulnerability graph generation methods may require

generating two separate trees in this case.

Figure 74: Attack Tee - Adding New Attack

Potential Attacks

Proposed framework’s attack tree can also display potential attacks. This is done by

using the encoded logic of vulnerability. For example, it can be stated that if the software

using a data structure called a buffer, does not use a boundary protection, then it is

potentially susceptible to buffer overflow attacks. When it is discovered that a certain

247

system matches this class membership criteria, the system is classified as a potential

target of a buffer overflow attack. This inference is true even if specific buffer overflow

vulnerability has not yet been discovered in the system, or if an attack to exploit a

discovered vulnerability currently does not exist. Figure 75, shows this potential attack

encoded as BO-Generic.

Figure 75: Attack Tree Showing Potential Attacks

Does not Assume Attacker’s Initial Location

The vulnerability graph and the attack tree outcomes are compared in Figure 76

below. The vulnerability graph progresses from initial state to goal state, and the attack

tree decomposes from goals to attacks. One of the differences in the outputs is that the

attack tree does not assume the initial location of the attacker. The same attack tree can

be used whether the attacker is launching the attack from outside or from inside the

248

private network of the organization. However, the vulnerability graph reduces to two

nodes (LICQ and Local-SetUID-BO) if the attacker’s initial location is assumed to be

inside the private network of the organization.

Figure 76: Attack Tree and Vulnerability Graph Comparison

Directly Querying the Triggered Information

Apart from these graphical output modes, the triggered information can also be

directly queried from Flux to create custom graphical outputs or to use it directly to

create automated defensive methods.

249

10 Research Contribution, Application and Extension

This chapter explains the research contributions, applications, and extension of the

proposed framework.

10.1 Research Contributions

The research contributions of this dissertation are summarized in this section. These

contributions focus in five areas: generating risk scenarios, assisting the red team,

simplifying risk scenarios generation, identifying the cyber-security domain

characteristics and requirements, and providing the core framework to enable defensive

and expert validation applications.

10.1.1 Generating Risk Scenarios by Incorporating the Cyber-security

Domain Requirements

The proposed framework overcomes the limitation of current manual and automated

risk scenario generation frameworks. The benefits of the proposed frameworks are

summarized below:

1. Compromising Information is the Goal: The proposed framework generates

the risk scenario using the attacker’s goal of compromising the confidentiality,

integrity, or availability of information. The current vulnerability graph

generation methods generate risk scenarios only for attacker gaining restricted

privilege on the targeted software or for violating a security property. This

represents only one of the ways the attacker can achieve his/her goal of

compromising information.

2. Uses Diverse Knowledge: The proposed framework uses diverse cyber-security

knowledge (for example, the knowledge about software systems’ usage, the

250

software’s design leading to potential vulnerabilities, availability of known

vulnerabilities and attacks, the attacker behavior etc.) for generating risk

scenarios. This knowledge can be generated by sources dispersed in time and

space. In proposed framework, these sources can provide the knowledge without

having to think about how it may be used for generating for risk scenarios.

Manual attack trees are generated by experts using their attacker behavior

theories and diverse type of knowledge. The automated vulnerability graph

generation frameworks primarily uses the information about presence of

vulnerability, connectivity between software systems, attacker’s initial privilege,

and privilege gained by exploiting vulnerabilities. The automated vulnerability

graph generation frameworks do not use attacker behavior or expert theories to

generate risk scenarios.

3. Assumes Incomplete Knowledge: The proposed framework generates risk

scenarios by assuming that the information is incomplete, there are unknowns in

the cyber-security domain, and new knowledge is available frequently.

4. Uses Attacker Behavior: Proposed framework’s distributed logic classifies the

knowledge as it becomes available by emulating the attacker thought process for

decomposing goals, and for discovering and exploiting opportunities provided by

the target network. The proposed framework also captures the attacker’s

motivation, strategy, and preferences for generating risk scenarios. In accordance

with the attacker’s exploratory nature, the proposed framework assumes that the

attacker may discover knowledge during the attack process. This knowledge

discovery not only guides the attack plan but it also may change attacker’s initial

251

goal. The proposed framework builds this attacker’s knowledge state for

controlling the knowledge that can be classified using the distributed logic.

5. Uses Expert Theories: The proposed framework also uses the red-team’s expert

theories about the attacker’s thought process and preferences for generating risk

scenarios. This explicit encoding of expert theories allows communicating and

validating these theories.

10.1.2 Assisting the Red Teaming Process

The proposed framework generates the risk scenarios automatically using red-team

theories. This decreases the frequency but does not eliminate the need of using red-teams.

Red-teams can provide important insights, especially for generating risk scenarios for a

new type of system software. The proposed framework can also be used for assisting the

red-teaming process.

The red-team’s tasks include, 1) continuously updating knowledge about new

vulnerabilities and attacks, 2) discovering knowledge of target network as part of the red-

team exercise, and 3) executing proof of concept attacks. The red-team currently spends a

significant amount of time executing knowledge discovery and attack tools. However, the

main value of using the red-team is in their theories about the attacker behavior and not in

their ability to use these tools. The proposed framework provides an interface for red-

team to interact with the target network. This interface is used to observe and collect red-

team’s theories about attacker behavior. The advantages of this red-team interaction tool

are summarized below:

252

1. It eliminates the red-team’s burden of executing knowledge discovery and attack

tools. This allows red-team more time to develop and test attacker behavior

theories.

2. In secured facilities, it may not be possible to give the red-team access to the

actual target network. The proposed framework’s red-team interface allows

abstracting the actual system information, thus giving the red-team only the need-

to-know information.

3. New proof-of-concept attacks generated by the red-team can be added to the

threat ontology.

10.1.3 Simplifying Risk Scenarios Generation, and Increasing Traceability

and Reuse

The proposed framework’s distributed planning logic simplifies the risk scenario

generation without limiting the type of knowledge that can be used. The proposed

framework automates the risk scenario generation by using the knowledge as it becomes

available (or changes).

According to the OMB, cyber-security risk assessment is a complex process and it

does not improve the state of security [3]. The lack of improvement in security can also

be attributed to lack of consideration of unique cyber-security domain requirements. An

example of this is the assumption made by current risk scenario generation methods that

the knowledge is completely known a priori. This assumption however produces counter-

intuitive results. This is illustrated in Section 9.2.2.2 using the case study described in

Section 5.4. In this case study, the “SQUID Proxy Server” has a vulnerability that can be

used to fingerprint the network. Current vulnerability graph method, assuming complete

253

knowledge, concludes that this is the only fingerprinting method available to the attacker,

and eliminating it would secure the network. There is “known unknown” knowledge in

the cyber-security community that the attacker can fingerprint some software systems

using unknown (or unknowable) methods (for example, social engineering, dumpster

diving, network packet sniffing). Hence, in real life eliminating the SQUID vulnerability

may not secure the network. This analysis assuming the complete knowledge produces

counter intuitive recommendations that may not improve state of security. The proposed

framework assumes that there are unknowns in the cyber-security domain. The proposed

framework’s reasoning assuming incomplete knowledge (open world reasoning) cannot

conclude that SQUID proxy server’s vulnerability is the only fingerprinting action

available to the attacker. However, it provides the defender the knowledge of how this

vulnerability can be used for generating the risk scenario if the attacker chooses to exploit

it.

The distributed logic also provides traceability of why certain sub-goals and

attacks were displayed in the risk scenarios. The distributed logic is developed using a

language that the cyber-security and information technology community is already

familiar with. This improves the communication of outcome, and the logic used for

generating risk scenarios. The outcome defined in logical language, also provides

information about why the software may have vulnerability and how it can be used to

achieve the attacker goal. This logical definition provides information about how to

eliminate the vulnerability or to change its use in risk scenario.

The use of familiar ontology language also allows validation and extension of the

distributed logic. This community participation not only may improve the accuracy of the

254

risk scenarios generated, but it may also increase the use of proposed framework for

generating real world scenarios.

10.1.4 Identifying the Cyber-security Domain Characteristics

This dissertation identifies the cyber-security domain characteristics and

requirements. Cyber-security assessment tools should be able to 1) capture domain

dynamicity, 2) incorporate attacker behavior, and 3) elicit, encode and use expert

theories. Cyber-security assessment techniques are often adopted from domains in which

quantitative risk assessment is used. However, the risk assessment methods used in one

domain may not be directly applicable to another domain.

Currently not all cyber-security domain requirements are addressed equally. The

intelligent nature of attacker behavior has been the focus of current research. However,

the dynamicity of the domain often does not get much attention. These cyber-security

assessments are driven by expert theories; little research has been done to elicit, validate,

and calibrate these theories.

10.1.5 Providing the Core Framework to Enable Potential Defensive and

Expert Validation Applications

The proposed framework’s ranked attack tree and encoded attacker behavior theories

can be used for prioritizing vulnerability remediation based on attacker behavior. The

proposed framework is currently being extended to develop an automate defense

mechanism called TARA (Threat Auto Response Analysis). This is described in Section

10.2.2. Proposed framework’s logical encoding of red-team’s attacker behavior theories

can be used to identify the conflicts among these theories. These conflicting theories can

255

be validated and/or calibrated by analyzing their logic, and/or by collecting empirical

attack data. This is explained in detail in Section 10.2.3 and 10.2.4.

Finally, one of the contributions this research is trying achieve is to develop a

framework that unifies the efforts of current cyber-security research domains. More

specifically, it combines the efforts of attacker behavior, vulnerability assessment, attack

analysis, and expert theory elicitation research. Traditionally, these cyber-security

research domains are not integrated well enough to meet the need for cyber-security risk

assessment. The proposed framework combines the outcome of these different domains.

The lessons learned by using the proposed framework may provide the necessary

feedback for effectively unifying these research disciplines. This unification is needed for

performing more efficient cyber-security risk assessments.

10.2 Applications and Extensions

This section describes the applications and extensions of the proposed framework.

10.2.1 Cyber-security Risk Assessment

The current cyber-security risk assessment is nine-step process. The risk scenarios

generated may become outdated with availability of new information by the time all risk

assessment steps are executed. The proposed framework automates the risk scenario

generation by using the knowledge as it becomes available (or changes).

The proposed framework also supports current risk assessment process more

comprehensively than the vulnerability graph frameworks. Table 14 compares how the

NIST recommended methods [68], vulnerability graph, and proposed framework can be

used for risk assessment.

256

This section describes how the proposed framework can be used for cyber-security

risk assessment in detail.

Step 1- System Characterization: The proposed framework encodes information about

software systems logically. This logical encoding and reasoning supports the system

characterizations and familiarization step. The proposed framework can capture and

combine the information about software systems in the target network, as it becomes

available. This information can be queried by the risk analyst. The proposed framework

supports specific as well as abstract queries. For example, to support the risk analyst’s

specific query- “Query A: List all the systems that are not physically connected to the

MySQL Server”, the asset ontology may use its logical relationships hierarchy to infer

this information in real time. The proposed framework also allows abstract queries such

as “Query B: List all systems susceptible to the buffer overflow attack”. This type of

query can be answered by using encoded information about the software system and the

logical definition of buffer overflow vulnerability. Note that Query B would provide the

systems susceptible to the attack even though specific buffer overflow vulnerability may

not yet exist.

Federal guidance, FIPS 199 [69], mandates classifying the software systems based

on their criticality. Instead of subjectively assigning a criticality level (high, medium, or

low), the proposed framework can be used to define the logic of why the software system

should be classified in these categories. Once this logic is encoded, the distributed logic

automates this classification whenever information about software system becomes

available (or changes). The explicit encoding of classification logic can also be used to

communicate, validate, and update this (classification) logic. Currently FIPS

257

classification is used for recommending security controls. The proposed framework’s

logic can be extended for more objective (and automated) impact assessment and control

recommendations.

Step 2- Threat Identification: This step identifies threats, their motivations, and actions.

The proposed framework’s ability to capture attacker behavior (attacker’s exploratory

nature, thought process, motivation, strategy, and preferences), and goals supports this

step effectively.

Step 3- Vulnerability Identification: The proposed framework’s ontology language

allows capturing diverse and dispersed information. This also allows capturing the

vulnerability information more effectively than the current manual and automated

methods of collecting this information.

Step 4- Control Analysis: The proposed framework can also be used to capture and

encode the information about implemented controls.

Step 5- Likelihood determination: The proposed framework’s risk scenarios, ranked

using attacker preferences, and encoded logic can be used to assist risk analyst generating

qualitative assessment of the likelihood levels. These risk scenarios can also be extended

to create probabilistic network for quantitative likelihood calculation.

Step 6- Impact Analysis: NIST’s cyber-security risk management [68] guidance

describes the impact as loss in confidentiality, integrity, and availability of information.

The proposed framework generates risk scenarios for compromising the confidentiality,

integrity, and availability of information. Hence, the proposed framework is better suited

for supporting impact analysis of the risk assessment process.

258

Step 7- Risk Determination: Proposed framework’s current focus is to generate the risk

scenarios. These risk scenarios can be extended for quantitative risk assessment.

Step 8- Control Recommendations: The proposed framework’s logical classification

provides information about why the software may have vulnerability and how it can be

used in given goal. The criteria defining the whys and how’s can be used for control

recommendations. One of the proposed framework’s extensions is to develop a module

called Threat Auto Response Assessment (TARA), to analyze and recommend

countermeasures using information generated by FLUX and CieKI. In this module, the

countermeasures (or controls) are treated as changes in the situation. The attacker’s

situational behavior is used to determine how the attacker adapts to these changes. The

output of FLUX, CieKI, and TARA can be used for the risk determination, and control

recommendation steps.

Step 9- Results Documentation: The objective of the proposed framework is to update

the risk scenarios continuously with availability of information, which provides near real-

time risk assessment and documentation.

259

Risk Assessment
Step

NIST recommended
methods

Vulnerability Graph Proposed Framework

Step 1: System
Characterization

Uses a combination of
manual and automated tools
to collect system information;
classifies the software
systems using FIPS 199
guidance.

Encodes the
connectivity between
system software
computers and
presence of vulnerable
applications

Logically encodes the
knowledge about software
systems. Supports
automated classification of
software systems in
accordance with FIPS 199.

Step 2: Threat
Identification

Captures threat sources,
motivation, and actions

N/A Captures attacker’s
motivation, strategy,
thought processes, and
actions

Step 3:
Vulnerability
Identification

- Identifies vulnerabilities in
the system.
-Captures information from
published vulnerability
sources, cyber-security
testing, and cyber-security
requirements checklist.
.

- Identifies critical
vulnerabilities allowing
attacker to gain
restricted privilege.
- Captures information
from published
vulnerability sources,
and vulnerability
scanning tools.

-Identifies attacker’s
preferred vulnerabilities
and attacks for
compromising the
information.
-Captures information from
cyber-security testing,
published vulnerability
sources, and vulnerability
scanning tools.

Step 4: Control
Analysis

Generates a list of
implemented controls.

N/A Proposed framework can be
used to captures the
implemented controls.

Step 5:
Likelihood
determination

Assigns likelihood levels
(high, medium, low) using
expert judgment.

Vulnerability tree
information can be
used by expert for
qualitatively assessing
likelihood of threat.

Risk scenarios ranked using
attacker preferences, and
encoded information can be
used by expert for
qualitatively assessing
likelihood of threat.

Step 6: Impact
Analysis

Assigns impact levels (high,
medium, low) against the
loss in confidentiality,
integrity and availability of
information.

Indicates different
ways attacker can gain
restricted privileges (or
violate a security
property).

Generates risk scenarios for
compromising the
confidentiality, integrity
and availability of
information, and stores
detailed logic of systems,
which can be used for
impact analysis.

Step 7: Risk
Determination

Risk is calculated using a risk
matrix of likelihood vs.
impact.

N/A Proposed framework can be
extended for quantitative
risk determination.

Step 8: Control
Recommendation

Identifies appropriate
controls. Uses NIST 800-53
guidance for control
recommendations.

Supports vulnerability
remediation by
identifying critical
vulnerabilities,
assuming complete
knowledge.

Proposed framework’s
output and encoding
provides logical insights
that can be used to identify
controls.

Step 9: Results
Documentation

NIST recommends frequently
updating risk assessment and
documentation; OMB
recommends evaluating
controls once at least every
three years.

Vulnerability tree can
be frequently updated
and critical
vulnerabilities can be
documented.

Updates the risk scenarios
continuously with
information availability,
which provides near real-
time assessment and
documentation.

Table 14: Framework’s use for cyber security risk assessment

260

10.2.2 Countermeasure Development

The proposed framework can be used for developing countermeasures.

10.2.2.1 Prioritizing Vulnerability Remediation using Attacker Behavior

Due to the large number of available vulnerabilities and limited resources, it may not

be possible to patch all vulnerabilities. Hence, this patching effort needs to be prioritized.

Attacker behavior research [18, 19] suggests that just because vulnerability is present it

does not necessarily mean that it will be exploited. This research also shows that

attackers may prefer certain types of vulnerabilities to others. Thus, the prioritization of

vulnerability remediation should be driven by attacker behavior.

The proposed framework logically encodes the attacker behavior and uses it to

trigger the information relevant for risk scenarios. The proposed framework also

generates attack trees ranked according to attacker preference and the preferred attack

scenarios. This information can be used for prioritizing vulnerability remediation using

attacker behavior.

10.2.2.2 Behavior Driven Countermeasure

Apart from prioritizing the vulnerability remediation, the knowledge about attacker

behavior can also be used to create behavior driven countermeasures, which leads the

attacker away from the system to be protected.

One of the challenges faced by the defender is the complex interconnectivity of the

technology infrastructure with internet. These interconnections allow the attacker to

launch attacks from any geographic location. However, this can be used in favor of the

defender. Due to their geographic separation, the attackers have to rely on digital

fingerprinting to locate the target and to perceive the opportunities. This is the reason

261

why the defender often tries to prevent the fingerprinting. Instead of preventing

fingerprinting, the information provided can be controlled as a new defense strategy. In

this strategy, controlled information can be used to lead the attacker away from the

system to be protected, and to observe the attacker behavior in process.

This behavior-driven countermeasure strategy is explained by expanding the case

study example illustrated in this research. In this example, the attacker is trying to

compromise the trade secret stored in the MySQL database, hosted on Linux Server but

he/she does not know where this server is located. As described in the attack-scenario

shown in Figure 60, the attacker has to launch fingerprinting action to locate the Linux

Server. The attacker launches the initial fingerprinting action from outside the network,

and only discovers the Windows Server. The fingerprinting is executed again after

compromising the Windows Server. This second fingerprinting action discovers the

Linux Server. Hence, exploiting the Linux Server requires a multi-step attack (i.e.,

Windows Server needs to be compromised as the first step). The attacker behavior

determines if the attacker prefers single-step or multi-step attacks. In addition, the types

of fingerprinting and attack actions chosen are dependent on the attacker behavior.

When the defender tries to prevent fingerprinting efforts, the attacker may react by

developing new types of fingerprinting actions. Instead of preventing fingerprinting

actions, the defender can allow them while modifying the network by adding “dummy”

Linux Servers as shown in Figure 77.

262

Figure 77: Example of behavior driven countermeasure

These “dummy” Linux Servers are similar to the specialized computers known as

honeypots [130]. These honeypots do not serve any real users in the network. Hence, any

traffic seen by them can be assumed as unintended traffic. This traffic can be captured

and analyzed to determine if it is from an attacker. This captured attack traffic is used to

study the attacker behavior.

Figure 77 shows “dummy” Linux Servers inside and outside the network. The

attacker launching a fingerprinting action from outside the network will discover the

dummy “Linux Server D1”. After compromising this server, the attacker may discover

that it does not contain the trade secret. At this point, the attacker can either abandon

his/her goal or compromise the Windows Server to launch a second fingerprinting scan.

Some of these second fingerprinting methods can be controlled so that instead of

discovering the actual target of the attack, the attacker may discover the “Linux Server

D2” instead. The fingerprinting of the actual Linux Server can be constrained so that only

the trusted computers or users can locate this server.

263

This defense mechanism will not thwart all types of attackers, but will make it

difficult for them to locate the actual machine. Meanwhile the dummy Linux Server

acting as honeypots can be used to observe the attacker behavior and to determine

attacker skill sets.

In this behavior driven countermeasure strategy, the information about attacker

preferences can be used to determine what fingerprinting information should be provided

and what should be constrained.

The research described in this dissertation is currently being extended to develop a

third module TARA (Threat Auto Response Analysis) to automate the defense

mechanisms. TARA uses the attack plans to generate the game tree and game theoretical

models in order to select the optimal defense mechanism.

10.2.3 Security Expert Theory Validation

Expert theories are one of the main inputs to the current security risk assessment

process. Expert’s experiential knowledge influences the formation of these theories. As a

result, different security experts tend to form new theories differently, even when they are

based on the same evidence. The subjectivity of these concepts and theories makes the

present risk assessment output inconsistent and non-repeatable. This also gives expert

elicitation and calibration a different meaning. Expert elicitation traditionally focuses on

eliciting the expert probabilities, and calibration focuses on alignment of elicited

probabilities with observed relative frequencies. In the case of the security domain,

elicitation entails extracting 1) the expert belief in the form of concepts and theories, and

2) the assumptions, evidence and logic behind the formation of these concepts and

theories. Once elicited, the consistency and accuracy of these concepts and theories has to

264

be validated and calibrated. This section discusses the psychological foundation of how

the concepts and theories are formed by experts, how they are used for human reasoning,

and how they can be updated. This section also, describes examples of the expert theory

validation using the proposed framework.

10.2.3.1 Psychological Foundations of Human Concepts, Theories and Reasoning

This section describes the psychological foundation of expert concepts and theories.

It also describes how to update these concepts and theories.

Concepts

In cognitive science, the concepts are defined as basic constituents of thoughts. Our

understanding and interaction with the world is driven by concepts[147]. According to

[147], we rely on our concepts of the world to help us understand what is happening.

Concepts are related to categorization. According to [148], a concept is a mental

representation that picks out a set of entities, or a category. In this case the concept

“refers” and what it “refer” are categories[148]. Categorization is defined as the process

by which the concepts determine whether some entity is a member of a category [148].

According to [148], “…classifying something as a category member allows people to

bring their knowledge of the category to bear on the new instance. Once people

categorize some novel entity, for example, they can use relevant knowledge for

understanding and prediction.” An example of this is that if we see a new chair, [147]

using our concept of chairs, we can draw the inference that it is appropriate to sit on that

object. This inference is made even if we may not have seen anyone sit in this specific

chair.

265

Experience and evidence are used to form concepts in order to categorize and

generalize the observed objects [76]. The important thing to note in this case is that these

generalizations, categorizations, and consequent predictions are limited to the realm of

evidence and use the same vocabulary as the evidence. For example, [76]based on the

observed phenomenon that on many occasions moldy bread relieves infected wounds,

one could make the generalization that the mold relieves infection. However, this

generalization is limited to the realm and vocabulary of the evidence.

Theories

The latest and wide spread development in the field of cognitive science suggests

that these concepts are not formed in isolation, but that they depend on knowledge about

the world [149]. According to [76] these concepts are embedded in domain-specific

theories. This idea is represented under different titles such as “theory view” [147],

“theory theory” [76] etc. According to this [76] our everyday conception of the mind as

well as children’s early conceptions of the mind are implicit naïve theories and changes

in those conceptions are theory changes. According to [76], there are deep similarities

between the scientific theory change and conceptual change in child’s theory.

According to [76], theories are always constructed with reference to evidence and

experience, which is different from theory itself. However, the relationship between

evidence and theory is what distinguishes “the theory theory” from concepts [76].

Theories, unlike concepts, are designed to explain, and not to categorize and generalize,

the empirical phenomenon.

The core characteristic of theory is its abstractness. Theories postulate abstract

entities[76] and rules that explain the data, but are not limited to the realm and

266

vocabulary of the evidence. This abstraction not only gives the theories their explanatory

power, but can also be used for prediction. For example, Kepler’s theory of planets

allowed prediction of behavior of new celestial objects that were quite unknown at the

time when the theory was formulated [76]. According to [76], a theory makes predictions

about a wide range of evidence, including the evidence that played no role in the

construction of the theory. This can lead to a wide variety of unexpected predictions.

Consequently, some theories will accurately predict future events based on the observed

evidence in a manner that no concept, developed using generalization, could capture. On

the other hand, some theories would be incorrect [76]. These predictions are closely tied

to the explanation provided by the theory.

Updating Concepts and Theories

The knowledge of how concepts and theories are formed can be used to update them.

Updating Concepts

According to [147], we rely on categories to direct our behavior despite more

reliable information that may be directly observable. In this case, human reasoning may

ignore this new information in favor of using already formed concept. The proposed

framework allows encoding of the concepts logically. In this case, the machine reasoning

is used to identify the information (which could have been ignored by human reasoning)

that conflicts with encoded concepts and categories. This conflict analysis can be used to

incorporate information that is more reliable and to validate or calibrate the experts.

Updating Theories Using Ontological Commitment

Theories can be updated by using the understanding of how the domain knowledge is

formed by a collection of theories. According to[148], the domain knowledge may be

267

formed by the theories and their ontological commitment. Ontological commitment

means that by believing in a theory, the human agent commits not only to the logical

meaning of this theory, but also to the logical inferences drawn from this theory. In other

words, the human agent is committed to these inferences even though he intended to only

assert the base theory. The proposed framework’s logic is also built by using this

ontological commitment principle. The expert can use the logical inferences generated by

the proposed framework to verify if they are consistent with his/her belief. This allows

experts to validate and calibrate their theories by doing what-if analysis on the logical

inferences of their original theories. Apart from calibrating experts, the proposed

framework allows experts to determine the impact of their new theories before they are

committed to it. This is important feature because updating human theories after they are

formed is more challenging. This is described in next section.

Updating Theories Using Counter-evidence

The theories provide an interpretation of the observed evidence, as opposed to simple

description and classification[76]. In theories driven (formed, updated, falsified) by

evidence, the collected evidence directly and completely influences the theory. In the

case of theories, instead of gradually incorporating evidence, the evidence has to be

accumulated [76],to a certain extent before the theory can be changed. Part of the reason

is that the main purpose of the theory is to explain the observed evidence. Hence, some of

the counter evidence, unlike in the case of concepts, is explained away in terms of

theories. Other counter evidence, similar to the case of concepts, is sometimes ignored as

noise. According to [76], “It is notoriously true that theoretical preconceptions may lead a

scientist to dismiss some kinds of evidence as simply noise, or to reinterpret others as

268

suspect or the results of methodical failures.” This is conceptually similar to Richard

Heuer’s suggestion that[150], “Patterns of expectation tell analysts, subconsciously, what

to look for, what is important and how to interpret what is seen”. In this case, one can

suggest that these theories form the patterns of expectations.

According to [76], the theory modification goes through following phases.

1. Denial: Any counterevidence to the theory is treated as noise, something “not

worth attending to” [76].

2. Auxiliary Hypothesis: At later stages, the theory may call on ad hoc auxiliary

hypotheses designed to account specifically for observed counterevidence [76].

These auxiliary hypotheses are generated to explain the cases of the

counterevidence in specific case and are not used generically.

3. Alternate model: This requires availability or formulation of alternate models to

the theory[76]. Even in this case the potential alternatives are not considered

immediately. At first, the new theory appears in the form of small modifications

of an earlier theory. According to [76], “only later may it become clear that the

new idea also provides an alternative explanation for the evidence that was central

to the earlier theory”.

The proposed framework can be used to update these theories in the following

manner:

1. The proposed framework can be used to update the expert theory by identifying

the conflict due to observed counter-evidence. It also provides a framework in

which the experts can form and test the logic of auxiliary hypothesis.

269

2. The proposed framework is currently being extended to generate models that

incorporate the evidence gradually as it becomes available. These models will

allow calibrating and updating the encoded theory. This calibrated theory, the

observed evidence, and the model used to update the theory can be used to

calibrate the expert.

10.2.3.2 Examples Expert Theory Validation using Proposed Framework

The proposed framework supports elicitation of the attacker behavior theories from

the red-teams. These theories are generated by experts dispersed in time and space.

Hence, there may be conflict among the theories provided by different experts. The

proposed framework can identify the logical conflict among these theories. This

knowledge of conflict can be used either to correct the encoded logic or to calibrate

experts.

In some cases, experts may be able to use this conflict information and the inferences

drawn (using their theories) to examine the premises and conclusion of their theories.

This understanding may lead to expert’s improving their theories.

The empirical approach can be used when the expert theories cannot be validated or

calibrated by analyzing their inferences and conflicts. In this empirical approach, the

theories can be tested as hypothesis by collecting the real attack data. Such empirical

validation has been used by [18, 19, 151]to test the prevalent security hypotheses. One of

the challenges in this approach lies in identifying the theories that need empirical

validation. The proposed framework can be used to generate the concepts and theories

that need empirical validation.

270

The examples of empirical validation, conflict identification, and adaptation of

theories are shown below.

Example of Empirical Validation

According to the Certified Ethical Hacker (CEH) training guide [15] and SANS

security training guide [152], the first step of an attack is fingerprinting the system. One

of the fundamental techniques for fingerprinting is called port scan. In this method, the

attacker is trying to fingerprint which applications are executing on the target system by

scanning the system’s ports. The ports are application end-points, which are used to

communicate with other systems. One of the old myths of the security community is that

port scans are the first step of the attack. Moreover, these port scans are sometimes

considered difficult to protect because many court rulings have determined port scanning

to be a legal activity [153, 154].

Panjwani et al [151] used the empirical approach to validate if the port scans are

precursors to the attack. According to this study, it was found that over 50% of the

attacks were not preceded by any scans performed directly on the system to be

compromised and only a 3.68% of the observed attacks were preceded by a port scan.

These statistics are based on 6,203 observed attacker actions (fingerprinting and attacks).

One of the challenges of performing the empirical validation of theories is the

identification of the hypothesis that needs validation. The authors of this study were able

to select this hypothesis for validation because it is a well-known theory in the security

community, it is explicitly mentioned in the security literature, and preventing the port

scans is used as a frequent countermeasure.

271

The proposed framework can be used for identifying the concepts and theories that

may need validation. The proposed framework can also be extended to help collect better

attack data. This is described in Section 10.2.4.

Example of Theory Conflict

In this example, the definition of buffer overflow target described in Section 6.4.2.2

is extended. This logic is shown in Figure 38, which is reproduced below.

Figure 78: Target of the pattern logic fragment -reproduced Figure 38

The buffer overflow vulnerability allows overloading a predefined amount of space

in a buffer (a data structure used by the software), which can potentially overwrite and

corrupt data in memory [120]. The buffer overflow attack can use this vulnerability to

overwrite the location in memory that allows him to gain unauthorized access or it can

corrupt data to crash the software. Buffer overflow vulnerability can be prevented by

method called boundary protection that checks the bounds of buffers to prevent

overloading.

Encoded Information

Class Property Class

BO-Target equivalentClass ((softThatsLacking someValuesFrom
BoundaryProtection) and
(softUsesDataStructure
someValuesFrom Buffer))

BO-Target subclassOf targetThatTriggers hasValue BO-
Pattern

272

Given this logic, when a system “System A” is known to have the properties

“softThatsLacking BoundaryProtection” and “softUsesDataStructure Buffer”, then

System A can be classified as the buffer overflow target “BO-Target”. This

classification in turn infers that “System A” triggers the attack pattern “BO-Pattern”.

It is known that programming languages like Java provides the ability of checking

the buffer bounds. Hence, Java can be called a “buffer overflow safe” language (BO-

Safe-Language). This can be encoded as shown in Figure 79 below.

In Figure 79, the definition of “buffer overflow protected system” is defined as a

system developed using a “buffer overflow safe” language. This is encoded as BO-

ProtectedSystem equivalentClass (developedUsing someValuesFrom BO-Safe-

Language).

Furthermore, it can be said that all “buffer overflow protected” systems have some

type of boundary protection. This is encoded as BO-ProtectedSystem subclassOf

(softThatHas hasValue BoundaryProtection). Finally, the information that Java is a

“buffer overflow safe” language is encoded as Java type BO-Safe-Language.

Now if it is known that System A mentioned above is developed in Java encoded as

SystemA developedUsing Java, it can be inferred that

1. SystemA type BO-ProtectedSystem

2. SystemA softThatHas BoundaryProtection

273

 Figure 79: Example of conflict between concepts

In the logic shown in Figure 79, the softThatHas is defined as a disjoint property of

softThatsLacking. This is because any software can have only one of these two relations

with any security protection.

When the three following statements are made at the same time, SystemA

developedUsing Java, SystemA softThatsLacking BoundaryProtection, and SystemA

softUsesDataStructure Buffer, the logical reasoning used in this framework will generate

a conflict. This is because the logic framework is trying to infer that SystemA

Encoded Information

Class/Individual/Property Property Class/Individual/Property

BO-ProtectedSystem equivalentClass developedUsing someValuesFrom BO-
Safe-Language

BO-ProtectedSystem subclassOf softThatHas hasValue
BoundaryProtection

System A developedUsing Java

Java type BO-Safe-Language

softThatHas propertyDisjointWith softThatLacks

Inferred Information

Individual Property Class/Individual

System A type BO-ProtectedSystem

System A softThatHas BoundaryProtection

274

softThatHas BoundaryProtection, which conflicts with the asserted statement SystemA

softThatLacks BoundaryProtection.

In this example, these three encoded statements represent the accurate information.

The reason behind the conflict is that even though SystemA is developed using a buffer

overflow safe language, the Java application14 version executing this SystemA is

vulnerable to the buffer overflow attack. This is also a good example of attacker

adaptability. In this instead of targeting the application developed using the protected

language, the attacker targets the Java application executing the developed application.

In this case, the conflict can be resolved by updating the encoded logic and providing

feedback to the red-team, who may have assumed that buffer overflow is not an

applicable vulnerability for this “safe” application.

Example of Appropriate Adaptation of Theories:

Another extension of the proposed framework can be used to determine if the

theories are appropriately adapted for the specific technology infrastructure. This is

explained by a real-life example of theory adopted by security experts of a University. To

protect the identity of the experts this University is referred to as ABC in this dissertation.

One of the adopted theories used to identify compromised system is shown in Figure 80.

In Figure 80, IRC stands for Internet Chat Relay, which is an online chat program.

14 Here the application refers to the Java virtual machine

275

Figure 80: Example of Expert Theory

This source of theory could be attributed to the articles depicting Romania as

“cybercrime central” and “global center of Internet and credit card fraud” [155, 156].

This theory of the security expert can be encoded as shown below.

Figure 81: Security Expert Theory Encoding

The security expert in this case has taken the evidence that attacks originating from

Romania were observed in security breaches, and made the conclusion that all IRC

conversations with Romanians are malicious.

One way to calibrate or validate this theory is to calculate the strength of this type of

reasoning. However, theories like these can also be calibrated by providing counter

evidence. In this case, the counter evidence can be the fact that the University in question

does have many international students, including students from Romania. Moreover, the

276

University also has a Romanian Student Organization. The presence of students from

Romania on campus could be potential reason behind the chat connection to computers in

Romania.

The logical encoding helps the security expert explicitly separate the premise and

conclusion of their theories. This allows adding new evidence premises. This information

can be used for qualitatively updating expert’s strength of logical reasoning. In cases

when quantitative information is needed, this encoding of premises and conclusion can be

extended for creating probabilistic network models.

10.2.4 Attack Data Collection

Honeypots are used to collect the empirical attack data. The configuration of

honeypots can be changed to do controlled experiments. The information about conflict

between theories can be used to identify what types of experiments can be done, or what

hypothesis can be proved by using honeypots.

CieKI RTD acts as an interface between the red-team and the technology

infrastructure. The concept of this interface can be extended to create an attacker data

collection tool to act as the interface between the attacker and honeypots. This attack data

collection tool can be used to control the information provided back to the attacker

through honeypots. This allows the creation of an interactive framework that can be used

to study how the attacker may behave in different situations.

The information encoded and generated by the proposed framework can be used to

identify the cyber-security theories as hypothesis to be tested, and determine what type of

system configuration may be used as honeypots to collect relevant information.

277

10.2.5 Unifying Security Assessment Efforts

One of the contributions of this research is that it creates a framework that unifies the

efforts of different cyber-security research domains. Current major cyber-security

research domains are attacker behavior, attack data collection, vulnerability discovery,

defensive mechanisms research, and expert theory elicitation research. Traditionally,

these research domains are not as well integrated, as the cyber-security risk assessment

process requires them to be.

The proposed framework combines the outcome of these different security research

domains to generate the risk scenarios. The lessons learned from this research may

provide the necessary feedback for effectively unifying these research disciplines.

The domains that need to be integrated are described below:

Attacker Behavior Research

The study of attacker behavior has been of interest in the cyber-security community.

This study serves the “think like the hacker” defensive strategy. The main tool for

understanding attacker behavior has been interviewing the hackers[157-159]. The

questions these interviews try to study are: Who are the attackers? What makes an

attacker attack? How do they attack? etc.

These interviews are often used for profiling the attackers. One of the recent attempts

in achieving this has been the “hackers profiling project” [158], which classifies the

hackers into 11 different categories. This project collects data by using an online

questionnaire about attacker behavior.

278

This attacker behavior research using attacker interviews has provided a varied

outcome, and some interesting insights, but this outcome (and insights) are at a higher

philosophical level.

There also has been some research conducted to study attacker behavior using

honeypots. The primary focus of this research has been to uncover new technical attacks.

This method has also been used successfully used to study the attacker decisions.

Currently honeypots are static in nature, i.e., they are made of computers that do not

respond to the choices made by the attacker. As a result, it is difficult to understand the

goal or the context in which these decisions were made.

This dissertation introduces a framework that allows capturing the thought process

and reasoning used by the red-team. This provides an insight into decision-making

techniques used by the red-team acting as attackers. The proposed framework can also be

extended to collect more situational attacker behavior using honeypots.

Vulnerability and Attack Research

Vulnerability and attack research has been traditionally devoted to developing new

ways of discovering vulnerabilities and identifying how they can be exploited.

Consequently, current risk scenario generation mainly focuses on vulnerability

identification. Often these scenarios are reduced to capturing only the presence of a single

vulnerability and how it can be exploited.

The knowledge of existing vulnerabilities is also used to develop more secure

software and to new patching methods. This knowledge is often encoded in the form of

the attack patterns. This attack pattern describes the typical steps taken by the attacker to

279

exploit the vulnerability. The proposed framework uses the knowledge about

vulnerability, attack pattern, and attack to develop the threat ontology.

Attack Data Collection and Analysis

This focus of this research has been identification of new types of attacks. Honeypots

are often used to collect the attack data and to develop attack signature. The attack data is

one of the main sources of information used to develop the threat ontology.

Expert Elicitation and Calibration

Expert elicitation traditionally focuses on eliciting the expert probabilities, and

calibration focuses on alignment of elicited probabilities with observed relative

frequencies. In the case of the security domain, elicitation entails extracting 1) the expert

belief in the form of concepts and theories, and 2) the assumptions, evidence and logic

behind the formation of these concepts and theories. In cyber-security domain the expert

theories are rarely validated or calibrated. The proposed framework elicits and explicitly

encodes the expert’s theories and uses them to generate the risk scenarios. The proposed

framework also supports validation and calibration of these theories.

The proposed framework creates a framework that unifies the efforts of these cyber-

security research domains for generating risk scenarios.

280

11 Conclusion

This dissertation describes a framework for automatically generating cyber-security

risk scenarios. The proposed framework is designed by using the unique cyber-security

domain requirements identified in this dissertation and by overcoming the limitations of

current risk scenario generation frameworks.

The proposed framework generates risk scenarios by:

 Capturing diverse cyber-security domain knowledge dispersed in space and time.

 Assuming that there are unknowns in the cyber-security domain, and new

knowledge is available frequently

 Emulating the attacker’s exploratory nature, thought process, motivation,

strategy, preferences, and his/her interaction with the target environment.

 Building the attacker’s knowledge state using knowledge discovered during the

attack process

 Encoding and using the red-team expert’s theories about attacker’s strategy and

preferences

The proposed framework’s distributed logic simplifies the risk scenario generation

without limiting the type of knowledge that can be used. The proposed framework also

generates risk scenarios assuming that knowledge is incomplete and there are unknowns

in cyber-security domain. This incomplete knowledge assumption overcomes limitation

of current methods producing counter-intuitive results. The proposed framework

automates the risk scenario generation by using the knowledge as it becomes available

(or changes).

281

The distributed logic is developed using a language that the cyber-security and

information technology community is already familiar with. This improves the

communication of outcome, and logic used for generating risk scenarios. The use of

familiar ontology language also allows validation, extension, and re-use of the current

distributed logic.

The proposed framework can also be used for assisting red-teaming process. The

proposed framework provides an interface for red-team to interact with the target

network. This interface is used to observe and collect red-team’s theories about attacker

thought process, and behavior. This interface eliminates the red-team’s burden of

executing knowledge discovery and attack tools, allowing red-team more time to develop

and test attacker behavior theories. In secured facilities, it may not be possible to give the

red-team access to the actual target network. The proposed framework’s red-team

interface allows abstracting the actual system information, thus giving the red-team only

the need-to-know information.

The proposed framework’s ranked attack tree and encoded attacker behavior theories

can be used for can be used for prioritizing vulnerability remediation based on attacker

behavior. Proposed framework’s logical encoding of red-team’s attacker behavior

theories can be used to identify the conflicts among these theories. These conflicting

theories can be validated and/or calibrated by analyzing the logic of these encoded

theories and their inferences, and/or by collecting empirical attack data. The proposed

framework unifies the efforts of different cyber-security research domains. More

specifically, it combines the efforts of attacker behavior, vulnerability assessment, attack

analysis, and expert theory elicitation research. Traditionally, these cyber-security

282

research domains are not integrated well enough to meet the need for cyber-security risk

assessment.

One of the proposed framework’s extensions is to develop a module, Threat Auto

Response Assessment (TARA), to analyze and recommend countermeasures using

information generated by FLUX and CieKI. TARA also contains a behavior driven

countermeasures, which uses attacker behavior knowledge to lead the attacker away from

the system to be protected. The proposed framework acts as an interface between the red-

team and the target network. The interface can be extended to create an attacker data

collection tool to act as the interface between the attacker and honeypots. This attack data

collection tool can be used to control the information provided back to the attacker

through honeypots. This allows the creation of an interactive framework that can be used

to study how the attacker may behave in different situations.

Cyber-security risk assessment processes and methods are adapted from other

domains. In these domains, the risk assessment methods were applied more rigorously

after major incidents.

Before the Apollo incident, NASA relied on its contractors to apply good

engineering practices [23]. According to [23], NASA’s initiative to use more rigorous

quantitative safety goals were not adopted because managers would not have appreciated

the uncertainty in risk calculations. Later it was discovered that the main reason was,

“initial estimates of catastrophic failure probabilities were so high that their publication

would have threatened the political viability of the entire space program” [23]. Since the

Challenger accident, NASA has instituted more robust quantitative risk analysis

programs. According to [23], basic risk assessment methods developed by the aerospace

283

program in the 1960s were used in the 1975 Reactor Safety Study[24], published by the

Nuclear Regulatory Commission (NRC). According to [23], “Shortly after the Three Mile

Island accident, a new generation of PRAs appeared in which some of the methodological

defects of the Reactor Safety Study were avoided.”

Apart from adapting risk assessment methods from these domains, the cyber-security

domain can use the lessons learned to improve its risk assessment methodology before an

equivalent incident may occur.

284

Appendix I: Attacker Behavior

 This dissertation describes and uses three core characteristics of attacker

behavior as follow:

1. Attackers treat attack goal as an intellectually stimulating problem to be solved.

2. The method used in compromising a system is exploratory in nature and often

does not follow a predetermined guideline. In other words, the attack is not

necessarily a pre-planned activity.

3. The goal of the attack may be determined or changed based on the information

gathered during this exploratory phase.

This appendix describes attacker interviews to illustrate this behavior.

“Well, it's power at your fingertips. You can control all these computers from the

government, from the military, from large corporations. And if you know what you're

doing, you can travel through the internet at your will, with no restrictions. That's power;

it's a power trip.” This was the answer [157] of a 16 year old hacker to the question

“What is it about the computer that makes it become such an obsession for young guys?”

asked by PBS frontline team [157]. Further Q&A between this young hacker who was

caught breaking into NASA's computers and sentenced to six months in jail for taking

possession of $1.7 million in software is as indicated below. These are direct transcript

taken from the interview[157].

“Why is that so important?

Well, everybody likes to feel in control.

In my time, they did it by playing hockey or football. How does the computer compare?

It's intellectual. It stimulates my mind. It's a challenge.

How hard was it for you to get into some blue-chip locations?

285

The government didn't take too many measures for security on most of their computers. They lack

some serious computer security, and the hard part is learning it. I know Unix and C like the back

of my hand, because I studied all these books, and I was on the computer for so long. But the hard

part isn't getting in. It's learning to know what it is that you're doing.

When you start out, you sort of poke at various cyberfences and walls. You're just looking for the

soft spots. You don't target a place because it's got something that you want--it's just that it's a

challenge?

I would target a place because it looks like a challenge. Like, if I say, "The navy has a

computer network in Jacksonville, maybe that would be fun to poke around." And then I'd target

them. I'd look at their computers and I'd see what I can do there.” [157]

Another interview done by Computer Crime Research Center [159] with a hacker called

“Mazez Ghost” describes the dynamic interaction between the opportunities and attack

tools.

 “Is it hard to penetrate into the "closed" computer systems?” [159]

 “Not always. It is a rather specific work. It depends on hacking tools. Sometimes break in

demands application of special software, sometimes examination of protection flaws, several

standard flaws that are widely mentioned in hacking howto's. More often it is pure chance,

hacker's intuition and examination of system administrator's psychology.” [159]

These interviews were used in this appendix to demonstrate the attacker behavior

definition used in this dissertation.

286

Appendix II: Ontology

This dissertation uses the concept of ontology extensively. This appendix provides

more background on ontology and describes how they are used currently in cyber-

security domain.

Background

Ontology is a structured, logical representation of the domain being modeled in

terms of its core concepts, properties, and relationships. It also provides the reasoning

support to determine the consistency of the represented concepts.

The concept of ontology has its roots in philosophy, which was later adopted by the

field of mathematical logic and computer science. In all its application and adoptions, the

word Ontology, still retains its basic concept of representing the things that exist.

According to Sowa [160], in logic, the existential quantifier is a notation for asserting that

something exists. However, logic itself has no vocabulary for describing the things that

exist. Ontology fills this gap. It is the study of existence, of all the kinds of entities,

abstract and concrete that makes up the world.

This ontology has been used in the computer science for representing the domain

knowledge- its core concepts and relationships among them. One of the well-known

definitions of ontology in computer science is [161], “An ontology is an explicit

specification of conceptualization.” According to [161], the “conceptualization” means

an abstract model of the world, taking the form of a definition of the properties of

important concepts and relations and “explicit specification” [161] means that model

should be specified in an “unambiguous language” [161] which can be processed by

287

machines as well as humans. In summary, ontology facilitates modeling the knowledge of

domain in a machine understandable manner.

The focus in this case is on modeling the representation of world in a machine-

understandable manner that can be used for logical reasoning. In addition, ontology

provides a mean to model the multi-dimensional relation between the entities. This

allows capturing the human understanding of the world in a more expressive manner.

This century old concept of ontology has gained popularity in computer science in

last twenty years [162]. According to [162], “This popularity is likely because the

promise of ontologies targets one of the core difficulties of using computers for human

purposes: Achieving interoperability between multiple representations of reality (e.g. data

or business process models) residing inside computer systems, and between such

representations and reality, namely human users and their perception of reality.” The

ontology achieves this by providing expressive language to represent the domain, means

to map the concepts across domain, and to define the relation among the entities across

domains. One of the most popular applications of this is in the field of information fusion

in which ontologies are used for combining diverse knowledgebase.

The popular reasons of using ontologies are their ability to represent domain

information and their information fusion capability. Apart from this, this dissertation uses

the ontology language for the open world reasoning. This open world reasoning is used to

generate the attack plans.

In summary, ontology allow representing the domain knowledge in a structured,

formal, and machine understandable form. This formalization of shareable domain

288

concepts provides communication, reusability and organization of knowledge [135], as

well as a better computational inference.

Ontology and Security

In cyber-security domain too much terminology is vaguely defined [163]. As a

result, it is difficult to communicate clearly about cyber-security incidents, not only with

non-expert people but also between experts [118]. This becomes a bigger challenge if this

communication has to occur in the midst of a cyber-security incident. Current cyber-

security ontology focus on improving the communication and knowledge sharing.

Ontology research in cyber-security domain has been focused developing applied

and general cyber-security ontology. Most of the ontologies in cyber-security are applied.

The goal of general ontology development has been to define a global ontology capturing

all cyber-security concepts.

The proposed framework can be considered as an applied ontology. The focus of

this dissertation is on using the open world reasoning capabilities and the distributed

nature of the ontologies to generate the attack plan. Its goal is to use the cyber-security

knowledge generated from diverse source (including the knowledge generated from other

ontologies). Other ontologies described in this appendix can be used as information

source to the proposed framework. The proposed framework’s ontologies also can be

integrated (or map) in broader cyber-security domain ontology.

This appendix introduces the cyber-security domain ontologies. The purpose of this

appendix is not to do a comprehensive review but to give an overview of how ontologies

are being used in cyber-security domain.

289

Applied Security Ontology

Gomes et al [118] classifies current cyber-security ontologies in four categories

described below:

Application Development:

A significant amount of ontology development has been in the requirements

engineering field. Dobson and Sawyer introduces the use of ontologies for Requirements

Engineering and develops ontology for Dependability Requirements Engineering[164].

Karyda et al addresses [165] the issue of incorporating cyber-security requirements in the

development of secure applications using ontology. This ontology captures and cyber-

security knowledge from cyber-security experts to support and improve communication

between cyber-security experts, users, and developers[165] [118]. Firesmith [166]

developed reusable safety requirements ontology. Lee [167] used ontology to identify

cyber-security requirements for certification and accreditation activities defined in

regulatory documents.

Semantic Web Services:

A significant amount of research has been done to develop ontology for web

services. According to W3C [168], the internet is more and more used for application-to-

application communication. This communication is enabled by programmatic interfaces

called web services. These interfaces are defined using web service descriptions, which

are encoded in a pre-determined language for providing common understanding of

features of the web services.

Denker et al [169]proposed using ontology to annotate the service descriptions

with information about their cyber-security requirements and capabilities. Kagal et al

290

[170]and Denker et al [171] extended this proposal by adding cyber-security and privacy

policies [118]. Ashri, et al. [172], further extended the web service security descriptions

by capturing the cyber-security implications that arise due to interactions between web

service providers and clients that may have different cyber-security policies [118]. Ashri,

et al [172]proposed a “Semantic Firewall”, a device that reasons about whether the

interacting entities are able to support the required cyber-security policies.

Security Attacks:

 Vorobiev, et al. [173] used cyber-security ontologies for providing common

vocabulary for a distributed system’s components to talk to each other for detecting

attacks and devising countermeasures.

Undercoffer et al [174] developed ontology of intrusion detection system for

communicating the information about attacks intelligibly.

Inter-organizational Database Access:

According to [118], ontology are used for preserving privacy of databases

belonging to different organizations that must provide access to users from the other

organizations. Mitra et al [175] developed Privacy Access Control Toolkit, which enables

privacy-preserving secure semantic access control and allows sharing of data among

heterogeneous databases without sharing metadata. Pan et al. [176] used ontology to

address access control challenge by creating a role-mapping table that maps one

organization role hierarchy into the other organization role hierarchy[118].

General Security Ontology

The goal of general ontology development has been to define a global ontology

capturing all cyber-security concepts.

291

Tsoumas and Gritzalis [177] proposed general cyber-security ontology by

extending the Distributed Management Task Force’s (DMTF) Common Information

Model (CIM). DMTF is an industry organization that develops, maintains, and promotes

standards for systems management in enterprise IT environments [178]. CIM is an open

standard that defines how managed elements in an IT environment are represented [179].

Blanco et al [135] did a comprehensive review of current cyber-security

ontologies, and concluded that it is impossible to formalize all existing cyber-security

concepts. Blanco et al [135] suggested that the definition of a complete security ontology

is not an isolated task, and recommended using community effort for joining and

improving the developed ontologies.

292

Appendix III: Technologies used in this dissertation

Web Ontology Language (OWL)[110] is a family of languages, which provides

different levels of expressiveness that can be used for describing ontologies. OWL

version 1 family includes three languages called OWL Full, OWL Lite and OWL DL

[110]. This dissertation uses OWL DL. OWL DL was designed to provide the maximum

expressiveness possible while retaining computational completeness, decidability, and the

availability of practical reasoning algorithms[110].

Software called Protégé [180] was used as a graphical user interface for encoding the

ontologies. Flux was designed using Protégé.

CieKI was developed in Java programming language using a Java framework, for

building ontology driven semantic web applications, called Jena [181].

An open source Java based OWL DL reasoner [141] DL Query. Pellet [182] was

used for making inferences using open world reasoning. Pellet was used for reasoning in

Flux (using Protégé) as well as in CieKI (using Jena)

The graphical output of the proposed framework were generated using a Java

software library (and its examples) that can be used for visualization of data represented

as a graph or network, called Java Universal Network/Graph Framework (JUNG)[140].

293

Appendix IV: Annualized Loss Expectancy

A risk-based loss model that is often published in cyber-security books [73] is called

annualized loss expectancy (ALE) model. This model is very similar to EPA’s exposure

based assessment model. Annualized loss expectancy calculates [73] the expected

monetary loss for the asset over one year period. It is calculated [73] as:

ALE = SLE * ARO

Where SLE is the Single Loss Expectancy and ARO is the Annualized Rate of

Occurrence. The SLE is calculated as multiplication of the Asset Value (AV) and the

exposure factor (EF) [73] . Exposure factor is defined as the % of loss a realized threat

would have on asset[73]. This exposure factor is usually calculated using expert

judgment.

SLE = AV * EF

294

Appendix V: Output of proposed framework

This appendix show some features of the graphical outputs. These outputs are

generated using JUNG graphical libraries and its examples [140].

The output of can be manipulated with the command panel shown at the bottom of

the window. This panel is shown in the Figure 82 below.

.

Figure 82: Command Panel - Graphical Output

Mode 1 and 4 command panel has a “Collapse Tree” button adapted from JUNG

examples [140], which can be used to collapse the attack tree into concentric class view.

This concentric class view is shown in Figure 84. The command panel has a zoom utility

adapted from JUNG examples [140], which can be used to focus in and out as needed.

The graphical output’s nodes can be individually selected and moved by selecting the

“PICKING” option from the drop-down menu shown in Figure 82. The

“TRANSFORMING” option allows shifting the entire output (attack tree or scenarios).

Finally, “My Lens” utility can be used to inspect a specific portion of the output without

zooming in. The “PICKING”, “TRANSFORMING” and “My Lens” utilities are adapted

from JUNG examples [140]. This lens utility is shown in Figure 83 below.

295

Figure 83: Lens Utility

Figure 84: Concentric Class View

296

Appendix VI: Cognitive Security Metrics

According to[183] , “Security research is sometimes referred to as the ‘Humanities

of Computer Science’ because, too frequently, ‘secure’ systems are built using equal

measures of folklore and black arts. Despite the humorous intention, there is a kernel of

truth in this jest. Computer security, at least ‘security in the large’, is not currently a

science. This claim may seem unfair, given the progress made in security over the past

decades. However, our present tools and methodologies are at most adequate for

understanding systems security on a small scale.”

The two main critiques of why security is considered unscientific are 1) lack of

reliable metrics and 2) inability to use scientific method to study security.

How this research can be used to identify the hypothesis to be tested, and how the

attack data can be collected to evaluate this hypothesis, was explained in Section 10.2.

This section focuses on discussing the current state of security metrics and proposed use

of cognitive security metrics.

Current security metrics can be classified into two categories 1) metrics that denote

the maturity level of processes contributing to the security of a system [74] and 2) metrics

that denote the extent to which security characteristics are present in a system [74]. These

metrics are system focused. The purpose of these metrics is, directly or indirectly, to

characterize the security enforcing mechanisms implemented in the system [74]. This is

in accordance with one of the primary goal of the security industry, to produce more

secure software.

One of the shortcomings of current security metrics is their narrow focus on

measuring only the system point of view of security. The measurability, accuracy, and

297

usefulness of the security metrics are also driven by the characteristics of security domain

identified in Chapter 3. These security domain characteristics influence the security

metrics in following manner:

 Dynamicity: Due to the dynamicity of the security domain, it becomes difficult to

determine if the past statistics about security mechanisms, vulnerabilities, or

attacks are useful in predicting the present or future state of the system. However,

past statistics are frequently used to portray the system security.

 Attacker Behavior: Since some statistics about vulnerabilities and attacks (for

example, the number and type of vulnerabilities discovered and exploited the

number and types of attacks launched etc.) are dependent on the human attacker,

it is challenging to determine the validity and usefulness of such statistics. For

example, the attacker can possibly distort such statistics by launching a large

number of attacks towards the system that is not his/her primary target. This may

mislead the defender and may shift the focus of defensive allocation of resources

away from the primary target.

 Expert Theories: According to NIST, [74] while effort is being made to develop

and use quantitative security metrics, current measurements are driven by expert

judgment. In this effort, expert opinion is used to rank security characteristics

quantified as (for example, 1=low, 2=medium, 3=high) [74]. According to [74],

“Because of the subjectivity involved, some of the attributes sought in a good

metric are not readily obtainable. For example, results in penetration testing or

other methods of assessment that involve specialized skills are sometimes not

repeatable, since they rely on the knowledge, talent, and experience of an

298

individual evaluator, which can differ from other evaluators with respect to a

property being measured.”

There has been an attempt to determine the severity of vulnerability and the

vulnerabilities published by leading software companies[122] and reporting agencies

[124]. This provides some information needed for risk assessment, but it does not give

much insight into how the attacker may discover or exploit these vulnerabilities.

This dissertation proposes the use of cognitive metrics of measurement of security.

In other words, instead of measuring the outcome of the decisions made by the attacker,

the research suggests focusing on determining how the attacker makes the decisions and

measuring the critical parameters that influence such decisions. Apart from measuring the

temporal statics about vulnerabilities and the improvement of security features on

software, it suggests measuring the temporal difficulty of discovering or exploiting

vulnerabilities as a function of cognitive workload. Examples of workload related metrics

include difficulty in discovering or exploiting specific types of vulnerabilities, difficulty

in launching existing or developing new types of attacks, etc. These types of metrics will

help quantitatively answer the question such as, even though the number of

vulnerabilities is increasing and we still have not eradicated a single type of vulnerability,

have we made it more difficult to discover and exploit these vulnerabilities?

The proposed framework facilitates elicitation of the attacker preferences for

generating the attack tree. This framework can be used/extended to evaluate the cognitive

workload required by the red-team. Furthermore, the proposed research also provides a

framework of using such cognitive workload related metrics in generating the attack plan.

299

Appendix VII: Automated Event Sequence Diagram Generation

A related work in the engineering risk assessment domain has been done by [35,

184]. This work develops a tool called SimPRA, for identifying the risks associated with

complex systems (such as nuclear power plants, space missions, chemical plants, and

military systems) [35].

The SimPRA framework has three major components: 1) a simulator that generates

detailed scenarios, 2) a scheduler that controls the timing and occurrence of the events,

and 3) a planner that is responsible for guiding the simulation by generating high-level

scenarios [35].

This section describes the planning module of SimPRA. This planning module offers

a new method for capturing different types of engineering knowledge. The method is

used for automatically generating generalized event sequence diagrams. In this planning

framework, the engineering system hierarchy (consisting of the system, sub-systems, and

sub-elements) is defined as a structure tree [35]. The system and sub-system functional

requirements are presented by a functionality tree [35]. State transition rules are defined

for each element of the system hierarchy [35]. SimPRA also defines how the states of the

system (and sub-systems) may change by changing the states of their sub-elements [35].

SimPRA uses transition graph to show how each system structure provides the expected

functionality [35].

SimPRA uses a modified Hierarchical Task Network (HTN) [80] planning algorithm

. Both the HTN algorithm and the proposed framework’s planning logic use the concept

of hierarchical task analysis. In hierarchical task analysis, tasks are systematically

decomposed into sub-tasks.

300

SimPRA’s planning algorithm uses the knowledge of how the engineering systems

are decomposed into sub-systems and sub-elements [35]. This hierarchical system

decomposition is used by the planning algorithm to understand how to change the state of

sub-elements to lead the system (and sub-systems) to the goal state [35].

SimPRA also uses qualitative knowledge to prune the branches of the event

sequence diagrams that are not interesting to the end user [35].

301

Glossary

Access Level: “A category within a given security classification limiting entry or system

connectivity to only authorized persons.” [120]

Administrative Account: “A user account with full privileges on a computer.” [120]

Advisory: “Notification of significant new trends or developments regarding the threat to the

information systems of an organization. This notification may include analytical insights into trends,

intentions, technologies, or tactics of an adversary targeting information systems.” [120]

Alert: Notification that a specific attack has been directed at an organization’s information systems.

[120]

Application: “A software program hosted by an information system.” [120]

Asset: “A major application, general support system, high impact program, physical plant, mission

critical system, personnel, equipment, or a logically related group of systems.” [120]

Attack: “Any kind of malicious activity that attempts to collect, disrupt, deny, degrade, or destroy

information system resources or the information itself.” [120]

Attacker Behavior: Attacker behavior is characterized by attacker’s exploratory nature, thought

process, motivation, strategy, and preferences.

Attack Graph/Vulnerability Graph: The attack graph represents how the available vulnerabilities

can be exploited in sequence to take the system from a secure to an unsecure state. Unsecure state is

defined as the system state in which attacker has gained restricted privileges[1].

Attack Pattern: This attack pattern describes the typical steps taken by the attacker to exploit the

vulnerability

Attack Scenario: A graph representing exact steps taken by red-team or attacker.

Audit: “Independent review and examination of records and activities to assess the adequacy of

system controls, to ensure compliance with established policies and operational procedures, and to

recommend necessary changes in controls, policies, or procedures” [120]

Automated Planning: Automated planning is a branch of artificial intelligence[78] and is defined as

the task of coming up with a sequence of actions that will achieve a defined goal.

302

Baseline: “Hardware, software, databases, and relevant documentation for an information system at a

given point in time.” [120]

Buffer Overflow Attack: A method of overloading a predefined amount of space in a buffer, which

can potentially overwrite and corrupt data in memory [120].

Closed World Reasoning: Reasoning assuming that the knowledge about domain being modeled is

complete. It also assumes that whatever knowledge that is not encoded is false [117].

Client (Application): “A system entity, usually a computer process acting on behalf of a human user,

that makes use of a service provided by a server.” [120]

Common Vulnerabilities and Exposures (CVE): “A dictionary of common names for publicly

known information system vulnerabilities.” [120]

Compromise: “Disclosure of information to unauthorized persons, or a violation of the security

policy of a system in which unauthorized intentional or unintentional disclosure, modification, destruction,

or loss of an object may have occurred.” [120]

Confidentiality: “Preserving authorized restrictions on information access and disclosure, including

means for protecting personal privacy and proprietary information.” [120]

Countermeasure: “Actions, devices, procedures, or techniques that meet or oppose (i.e., counters) a

threat, a vulnerability, or an attack by eliminating or preventing it, by minimizing the harm it can cause, or

by discovering and reporting it so that corrective action can be taken.” [120]

Demilitarized Zone (DMZ): “A host or network segment inserted as a “neutral zone” between an

organization’s private network and the Internet.” [120]

Denial of Service (DoS): “An attack that prevents or impairs the authorized use of networks, systems,

or applications by exhausting resources.” [120]

Domain-specific: Specific information about a domain.

Expert Theories: Theories of experts. In this dissertation expert theories refer to theories of security

experts.

Firewall: “A gateway that limits access between networks in accordance with local security policy.”

[120]

Fingerprinting: The act of making digital observations about software.

303

Goals: Attacker’s primary goal is to compromise confidentiality, integrity and availability of

information.

Hacker: “Unauthorized user who attempts to or gains access to an information system.” [120]

Honeypot: “A system (e.g., a Web server) or system resource (e.g., a file on a server) that is designed

to be attractive to potential crackers and intruders and has no authorized users other than its

administrators.” [120]

Information: “An instance of an information type.” [120]

Integrity: “Guarding against improper information modification or destruction, and includes ensuring

information non-repudiation and authenticity.” [120]

Internal Network: “A network where: (i) the establishment, maintenance, and provisioning of

security controls are under the direct control of organizational employees or contractors; or (ii)

cryptographic encapsulation or similar security technology provides the same effect. An internal network is

typically organization-owned, yet may be organization-controlled while not being organization-owned.”

[120]

Intrusion Detection Systems (IDS): “Hardware or software product that gathers and analyzes

information from various areas within a computer or a network to identify possible security breaches,

which include both intrusions (attacks from outside the organizations) and misuse (attacks from within the

organizations.)” [120]

National Vulnerability Database – (NVD): “The U.S. government repository of standards-based

vulnerability management data. This data enables automation of vulnerability management, security

measurement, and compliance (e.g., FISMA).” [120]

Network: “Information system(s) implemented with a collection of interconnected components. Such

components may include routers, hubs, cabling, telecommunications controllers, key distribution centers,

and technical control devices.” [120]

Open World Reasoning: Reasoning assuming that the knowledge about domain being modeled is

incomplete. It does not make any assumption about knowledge that is not encoded [117].

304

Port: “A physical entry or exit point of a cryptographic module that provides access to the module for

physical signals, represented by logical information flows (physically separated ports do not share the same

physical pin or wire).” [120]

Port Scanning: “Using a program to remotely determine which ports on a system are open (e.g.,

whether systems allow connections through those ports).” [120]

Privilege: “A right granted to an individual, a program, or a process.” [120]

Proxy: “A proxy is an application that “breaks” the connection between client and server. The proxy

accepts certain types of traffic entering or leaving a network and processes it and forwards it. This

effectively closes the straight path between the internal and external networks making it more difficult for

an attacker to obtain internal addresses and other details of the organization’s internal network. Proxy

servers are available for common Internet services; for example, a Hyper Text Transfer Protocol (HTTP)

proxy used for Web access, and a Simple Mail Transfer Protocol (SMTP) proxy used for email.” [120]

Red Team: “A group of people authorized and organized to emulate a potential adversary’s attack or

exploitation capabilities against an enterprise’s security posture. The Red Team’s objective is to improve

enterprise Information Assurance by demonstrating the impacts of successful attacks and by demonstrating

what works for the defenders (i.e., the Blue Team) in an operational environment.” [120]

Red Team Exercise: “An exercise, reflecting real-world conditions, that is conducted as a simulated

adversarial attempt to compromise organizational missions and/or business processes to provide a

comprehensive assessment of the security capability of the information system and organization.” [120]

Remediation: “The act of correcting a vulnerability or eliminating a threat. Three possible types of

remediation are installing a patch, adjusting configuration settings, or uninstalling a software application.”

[120]

Run Time: The time it takes for the algorithm to execute.

Scanning: “Sending packets or requests to another system to gain information to be used in a

subsequent attack.” [120]

Secure State: “Condition in which no subject can access any object in an unauthorized manner.”

[120]

305

Security Categorization: “The process of determining the security category for information or an

information system. See Security Category.” [120]

Security Category: “The characterization of information or an information system based on an

assessment of the potential impact that a loss of confidentiality, integrity, or availability of such

information or information system would have on organizational operations, organizational assets, or

individuals.” [120]

Security Controls: “The management, operational, and technical controls (i.e., safeguards or

countermeasures) prescribed for an information system to protect the confidentiality, integrity, and

availability of the system and its information.” [120]

Social Engineering: “An attempt to trick someone into revealing information (e.g., a password) that

can be used to attack systems or networks.” [120]

Sub-goals: Represents attacker’s cognitive domain specific tasks to achieve his/her intended goal of

compromising information.

Threat Pattern: A template encoding logical information about how the attack may exploit

vulnerabilities, the effect of exploiting vulnerability, and presence of a known vulnerability and attack.

Trigger: The act of classification by distributed logic is called trigger. In this dissertation when any

individuals are classified as members of sets then they are considered as “triggered”.

Vulnerability: “Weakness in an information system, system security procedures, internal controls, or

implementation that could be exploited or triggered by a threat source.” [120]

Vulnerability Scanner: An automated tool for determining presence of vulnerabilities in software.

306

References

[1] R. P. Lippmann and K. W. Ingols, "An Annotated Review of Past Papers on Attack
Graphs," Lincoln Laboratory, Massachusetts Institute of Technology, Cambridge, MA
ESC-TR-2005-054, 2005.

[2] J. M. Wing, "Scenario Graphs Applied to Security - Extended Abstract," in Proceedings
of the NATO Workshop on Verification of Infinite State Systems with Applications to
Security, Timisoara, Romania, 2005, pp. 229-234.

[3] OMB. (February 8, 1996). The Office of Management and Budget, Circular A130
[online]. Available: http://www.whitehouse.gov/omb/circulars_a130

[4] S. Berinato, "The Global State of Information Security," CIO Magazine, vol. 20, pp. 51-
64, September 2007.

[5] National Vulnerability Database [online]. Available: http://nvd.nist.gov/
[6] M. Ranum. Blog: Vulnerability Research [online]. Available:

http://www.ranum.com/security/computer_security/editorials/point-
counterpoint/vulnpimps.html

[7] J. H. Allen, "Information Security as an Institutional Priority," Carnegie Mellon Software
Engineering Institute2005.

[8] D. Dittrich, "Beyond the Noise: More Complex Issues with Network Defense," presented
at the presented at the IFIP WG Meeting, Annapolis, Maryland, USA, 2006.

[9] PWC. 2011, Respected—but still restrained [online]. Global State of Information
Security Survey. Available: http://www.pwc.com/gx/en/information-security-survey

[10] D. B. Parker, "Risks of risk-based security," Communications of the ACM - Emergency
response information systems: emerging trends and technologies, vol. 50 p. 120, March
2007.

[11] D. B. Parker, "Failed Risk-Based Security and How to Fix It," presented at the RSA
Conference, San Francisco, 2010.

[12] M. Willoughby. May 28, 2003, Bridging the divide: Information security meets physical
security [online]. Computer World. Available:
http://www.computerworld.com/s/article/81589/Bridging_the_divide_Information_securi
ty_meets_physical_security?taxonomyId=17&pageNumber=2

[13] J. King. April 27, 2009, The New Ground Zero in Internet warfare [online]. Computer
World. Available:
http://www.computerworld.com/s/article/9131043/The_new_ground_zero_in_Internet_w
arfare_

[14] S. Gorman. April 8, 2009, Electricity Grid in U.S. Penetrated By Spies [online]. Wall
Street Journal. Available: http://online.wsj.com/article/SB123914805204099085.html

[15] EC-Council, Ethical Hacking and Countermeasures: Attack Phases vol. 1. Clifton Park,
NY, USA: Course Technology Publication, September 22, 2009.

[16] R. R. Schaller, "Moore's law: past, present and future," IEEE Spectrum, vol. 34, pp. 52 -
59 June 1997.

[17] M. Pecht and A. Dasgupta, "Physics-of-Failure: An Approach to Reliable Product
Development," Journal of the Institute of Environmental Sciences vol. 38, pp. 1 - 4,
October 1995

[18] W. A. Arbaugh, W. L. Fithen, and J. McHugh, "Windows of vulnerability: a case study
analysis," Computer vol. 33, pp. 52 - 59 December 2000.

[19] M. Cukier and S. Panjwani, "Prioritizing Vulnerability Remediation by Determining
Attacker-Targeted Vulnerabilities," IEEE Security & Privacy vol. 7, pp. 42-48, Jan.-Feb.
2009.

[20] NRC. (2011). About NRC [online]. Available: http://www.nrc.gov/about-nrc.html

307

[21] NRC. NRC: How We Regulate [online]. Available: http://www.nrc.gov/about-
nrc/regulatory.html

[22] NRC. NRC: History of the NRC's Risk-Informed Regulatory Programs [online].
Available: http://www.nrc.gov/about-nrc/regulatory/risk-informed/history.html

[23] R. M. Cooke, "A Brief History of Quantitative Risk Assessment," Resources, vol. 172,
2009.

[24] "Reactor Safety Study: An Assessment of Accident Risks in U.S. Commercial Nuclear
Power Plants (WASH-1400)," NUREG-75/014 (WASH-1400), 1975.

[25] NRC. NRC: Probabilistic Risk Assessment (PRA) Explained [online]. Available:
http://www.nrc.gov/about-nrc/regulatory/risk-informed/pra.html

[26] NRC. Fact Sheet on Probabilistic Risk Assessment [online]. Available:
http://www.nrc.gov/reading-rm/doc-collections/fact-sheets/probabilistic-risk-asses.html

[27] M. E. Pate-Cornell and R. L. Dillon, "Probabilistic Risk Analysis for the NASA Space
Shuttle: A Brief History and Current Work," Reliability Engineering and System Safety,
vol. 74, pp. 345-352., 2001.

[28] M. G. Stamatelatos, "NASA Perspective on Risk Assessment," presented at the Panel on
Risk Aversion-Flying in the Face of Uncertainty NRC Workshop on Stepping Stones in
Space, 2004.

[29] Post-Challenger Evaluation of Space Shuttle Risk Assessment and Management.
Washington DC, USA: The National Academies Press, 1988.

[30] "Investigation of the Challenger accident : report of the Committee on Science and
Technology," House report / 99th Congress, 2d session, U.S. G.P.O 99-1016, 1986.

[31] M. Stamatelatos, G. Apostolakis, H. Dezfuli, C. Everline, S. Guarro, P. Moieni, A.
Mosleh, T. Paulos, and R. Youngblood, "Probabilistic risk assessment procedures guide
for NASA managers and practitioners," NASA, Washington DCAugust 2002.

[32] M. Modarres, Risk Analysis in Engineering. Boca Raton, FL, USA: Taylor & Francis,
2006.

[33] "Scientific Law," in Dictionary.com's 21st Century Lexicon, ed: Dictionary.com, LLC.
[34] N. Siu, "Dynamic Approaches- Issues and Methods: An Overview " in Reliability and

Safety Assessment of Dynamic Process Systems, NATO ASI Series. vol. 120, T. Aldemir,
N. S. Siu, A. Mosleh, P. C. Cacciabue, and B. G. Goktepe, Eds., ed New York: Springer-
Verlag Berlin Heidelerg, 1991, pp. 3-7.

[35] S. H. Nejad-Hosseinian, "Automatic Generation Of Generalized Event Sequence
Diagrams For Guiding Simulation Based Dynamic Probabilistic Risk Assessment Of
Complex Systems,," Ph.D. Dissertation, Department of Mechanical Engineering,
University of Maryland, College Park, 2007.

[36] "An Examination of EPA Risk Assessment Principles and Practices," U.S. Environmental
Protection Agency, Washington DC EPA/100/B-04/001, 2004.

[37] L. J. Schierow, "Risk Analysis and Cost-Benefit Analysis of Environmental
Regulations," Congressional Research Service, Washington DC 94-961 ENR, 1994.

[38] Risk Assessment in the Federal Government: Managing the Process. Washington DC,
USA: The National Academies Press, 1983.

[39] "Risk Assessment and Management: Framework for Decision Making," United States
Enviornmental Protection Agency, Washington DC 600/9-85-002, 1984.

[40] Science and Judgment in Risk Assessment. Washington DC, USA: The National
Academies Press, 1994.

[41] P. C. Stern and H. V. Fineberg, Understanding Risk: Informing Decisions in a
Democratic Society. Washington, D.C, USA: The National Academies Press, 1996.

[42] EPA. The History of Risk at EPA [online]. Available:
http://www.epa.gov/risk_assessment/history.htm

308

[43] "Policy for Risk Characterization," U.S. Environmental Protection Agency, Washington
DC1995.

[44] "Guidance on cumulative risk assessment. Part 1: Planning and scoping," Science Policy
Council, U.S. Environmental Protection Agency, Washington DC1997.

[45] "Ecological Risk Assessment Guidance for Superfund: Process for Designing and
Conducting Ecological Risk Assessments - Interim Final," Office of Solid Waste and
Emergency Response, U.S. Environmental Protection Agency, Washington DC EPA
540-R-97-006, 1997.

[46] "Guidelines for ensuring and maximizing the quality, objectivity, utility, and integrity, of
information disseminated by the Environmental Protection Agency," U.S. Environmental
Protection Agency, Washington DC EPA/260R-02-008, 2002.

[47] "A summary of general assessment factors for evaluating the quality of scientific and
technical information," Science Policy Council, U.S.Environmental Protection Agency,
Washington DC2003.

[48] EPA. EPA Risk Assessment Portal: Basic Information [online]. Available:
http://www.epa.gov/risk/basicinformation.htm

[49] EPA. EPA Risk Assessment Portal: Human Health Risk Assessment [online]. Available:
http://www.epa.gov/risk/health-risk.htm

[50] EPA. Step 1 - Hazard Identification [online]. Available:
http://www.epa.gov/risk/hazardous-identification.htm

[51] EPA. Step 2 - Dose-Response Assessment [online]. Available:
http://www.epa.gov/risk/dose-response.htm

[52] EPA. Step 3 - Exposure Assessment [online]. Available:
http://www.epa.gov/risk/exposure.htm

[53] EPA. Step 4 - Risk Characterization [online]. Available:
http://www.epa.gov/risk_assessment/risk-characterization.htm

[54] EPA. EPA Risk Assessment Portal: Ecological Risk Assessment [online]. Available:
http://www.epa.gov/risk/ecological-risk.htm

[55] "Scientific Theory," in WordNet® 3.0, ed: Dictionary.com, LLC.
[56] Review of the Department of Homeland Security's Approach to Risk Analysis.

Washington DC, USA: The National Academies Press, 2010.
[57] T. Masse, S. O’Neil, and J. Rollins, "The Department of Homeland Security’s Risk

Assessment Methodology: Evolution, Issues, and Options for Congress," Congressional
Research Service, Washington DC2007.

[58] "DHS Risk-Based Grant Methodology Is Reasonable, But Current Version’s Measure of
Vulnerability is Limited," United States Government Accountability Office, Washington
DC GAO-08-852, 2008.

[59] "Combating Terrorism: Presidential Decision Directive 62," ed: The White House,
Office of the Press Secretary, 1998.

[60] "Presidential Decision Directive/NSC-63," ed: The White House, Washington, 1998.
[61] "Executive Order 13231, Critical Infrastructure Protection in the Information Age," ed:

The White House, Office of the Press Secretary, 2001.
[62] "Homeland Security Act of 2002, " 107th United States Congress, Public Law 107–296,

2002.
[63] "Sarbanes-Oxley Act of 2002," 107th United States Congress, Public Law 107–204,

2002.
[64] "Federal Information Security Management Act Title III of the E-Government Act of

2002," 107th United States Congress, Public Law 107 - 347 2002.
[65] NIST. 2010, FISMA: Detailed Overview [online]. Available:

http://csrc.nist.gov/groups/SMA/fisma/overview.html

309

[66] G. C. Wilshusen, "Information Security," United States Government Accountability
Office GAO-07-935T, 2007.

[67] NIST. Special Publications (800 Series) [online]. Available:
http://csrc.nist.gov/publications/PubsSPs.html

[68] G. Stoneburner, A. Goguen, and A. Feringa, "Risk Management Guide for Information
Technology Systems," National Institute of Standards and Technology, Washington DC
800-30, 2002.

[69] "Standards for Security Categorization of Federal Information and Information Systems,"
National Institute of Standards and Technology, Gaithersburg, MD FIPS 199, 2004.

[70] C. M. Gutierrez and W. Jeffrey, "Minimum Security Requirements for Federal
Information and Information Systems," National Institute of Standards and Technology,
Gaithersburg, MD FIPS PUB 200, 2006.

[71] "Recommended Security Controls for Federal Information Systems and Organizations,"
National Institute of Standards and Technology, Gaithersburg, MD NIST 800-53, 2009.

[72] B. Schneier, "Attack Trees," Dr. Dobb's Journal of Software Tools, vol. 24, pp. 21-29,
December 1999.

[73] S. Harris, CISSP All-in-One Exam Guide. New York, USA: McGraw-Hill Osborne
Media, 2010.

[74] W. Jansen, "Directions in Security Metrics Research," National Institute of Standards and
Technology, Gaithersburg, MD2009.

[75] R. Reiter, "On closed world data bases," in Readings in artificial intelligence and
databases, ed California, USA: Morgan Kaufmann, 1987, pp. 248-259.

[76] A. Gopkin and H. M. Wellman, "The theory theory," in Mapping the Mind: Domain
Specificity in Cognition and Culture, L. A. Hirschfeld and S. A. Gelman, Eds., ed New
York, NY, USA: Cambridge University Press, 1994, pp. 257-293.

[77] W. A. Arbaugh. Vulnerability Research [online]. Available:
http://www.cs.umd.edu/~waa/vulnerability.html

[78] M. Ghallab, D. S. Nau, G. Malik, and P. Traverso, Automated Planning: Theory and
Practice. Amsterdam, Netherlands: Elsevier Morgan Kaufmann, 2004.

[79] M. Ghallab, D. S. Nau, G. Malik, and P. Traverso, "Representations for Classical
Planning," in Automated Planning: Theory and Practice, ed Amsterdam, Netherlands:
Elsevier Morgan Kaufmann, 2004, pp. 19-53.

[80] D. S. Nau, "Current trends in automated planning," AI Magazine, vol. 28, pp. 43–58,
Winter 2007.

[81] O. M. Sheyner, "Scenario Graphs and Attack Graphs," Ph.D. Dissertation, School of
Computer Science, Carnegie Mellon University, 2004.

[82] O. Sheyner and J. Wing, "Tools for Generating and Analyzing Attack Graphs," in
Proceedings of the Second International Symposium on Formal Methods for Components
and Objects, Leiden, Netherlands, 2003, pp. 344-371.

[83] R. W. Ritchey and P. Ammann, "Using model checking to analyze network
vulnerabilities," in Proceedings of the IEEE Symposium on Security and Privacy,
Oakland, California, USA, May 2001, pp. 156–165.

[84] L. P. Swiler, C. Phillips, D. Ellis, and S. Chakerian, "Computer-attack graph generation
tool " in Proceedings of DARPA Information Survivability Conference & Exposition II,
DISCEX '01. , Anaheim, CA , USA 2001, pp. 307 - 321.

[85] P. Ammann, D. Wijesekera, and S. Kaushik, "Scalable, graph-based network
vulnerability analysis," in 9th ACM Conference on Computer and Communications
Security, Washington, DC, USA, 2002, pp. 217–224.

[86] P. Ammann, J. Pamula, R. Ritchey, and J. Street, "A host-based approach to network
attack chaining analysis " in 21st Annual Computer Security Applications Conference,
Tucson, AZ, 2005, p. 10.

310

[87] S. Jajodia, S. Noel, B. O’Berry, V. Kumar, J. Srivastava, and A.Lazarevic, "Topological
Analysis of Network Attack Vulnerability," in Managing Cyber Threats: Issues,
Approaches and Challenges, ed New York, USA: Kluwer Academic Publisher, 2003, pp.
247-266.

[88] J. Dawkins and J. Hale, "A Systematic Approach to Multi-Stage Network Attack
Analysis," in Proceedings of the Second IEEE International Information Assurance
Workshop Charlotte, NC, USA, 2004, pp. 48 - 56

[89] M. Artz, "NETspa, A Network Security Planning Architecture," M.S. Thesis, Department
of Electrical Engineering and Computer Science, Massachusetts Institute of Technology,
Cambridge, MA, May 2002.

[90] R. Dantu, K. Loper, and P. Kolan, "Risk Management using Behavior based Attack
Graphs," in Proceedings of International Conference on Information Technology: Coding
and Computing, Las Vegas, Nevada, USA, 2004, pp. 445-449.

[91] M. Dacier, Y. Deswartes, and M. Kaaniche, "Quantitative assessment of operational
security models and tools," LAASMay 1996.

[92] M. Dacier, "Towards Quantitative Evaluation of Computer Security," Ph.D. Dissertation,
Institut National Polytechnique de Toulouse, Toulouse, France, December 1994.

[93] R. Ortalo, Y. Deswarte, and M. Kaaniche, "Experimenting with Quantitative Evaluation
Tools for Monitoring Operational Security," IEEE Transactions on Software
Engineering, vol. 25, pp. 633–650, Sep/Oct 1999.

[94] Z. Li, J. Lei, L. Wang, and D. Li, "A Data Mining Approach to Generating Network
Attack Graph for Intrusion Prediction," in Fourth International Conference on Fuzzy
Systems and Knowledge Discovery, Haikou, Hainan, China, 2007, pp. 307 - 311

[95] B. Zhang, K. Lu, X. Pan, and Z. Wu, "Reverse Search Based Network Attack Graph
Generation " in International Conference on Computational Intelligence and Software
Engineering, Wuhan, China, 2009, pp. 1 - 4

[96] X. Xiao, T. Zhang, and G. Zhang, "An Improved Approach to Access Graph Generation "
in International Conference on Computational Intelligence and Security, Suzhou, China,
2008, pp. 447-452

[97] J. Lee, H. Lee, and H. In, "Scalable attack graph for risk assessment," in Proceedings of
the 23rd international conference on Information Networking, Bradford, UK, 2009, pp.
78-82.

[98] A. Xie, G. Chen, Y. Wang, Z. Chen, and J. Hu, "A New Method to Generate Attack
Graphs," in Third IEEE International Conference on Secure Software Integration and
Reliability Improvement, Shanghai, China, 2009, pp. 401 - 406

[99] J. Ma, Y. Wang, J. Sun, and X. Hu, "A Scalable, Bidirectional-Based Search Strategy to
Generate Attack Graphs " in IEEE 10th International Conference on Computer and
Information Technology (CIT), Bradford, UK, 2010, pp. 2976 - 2981

[100] L. A. Suchman, "Situated Actions," in Plans and Situated Actions: The Problem of
Human-Machine Communication, ed New York, USA: Cambridge University Press,
1987, pp. 49-67.

[101] L. A. Suchman, "Situated Actions," in Human-Machine Reconfigurations: Plans and
Situated Actions, ed New York, USA: Cambridge University Press, 2006, pp. 69-84.

[102] L. A. Suchman, "Plans; Situated Actions," in Plans and Situated Actions: The Problem of
Human-Machine Communication, ed New York, USA: Cambridge University Press,
1987, pp. 27-67.

[103] L. A. Suchman, "Plans; Situated Actions," in Human-Machine Reconfigurations: Plans
and Situated Actions, ed New York, USA: Cambridge University Press, 2006, pp. 51-84.

[104] L. A. Suchman, "Preface to the 1st edition," in Human-Machine Reconfigurations: Plans
and Situated Actions, ed New York, USA: Cambridge University Press, 2006, pp. 24-28.

311

[105] P. Robbins and M. Aydede, The Cambridge Handbook of Situated Cognition. New York,
USA: Cambridge University Press, 2008.

[106] D. Kirsh, "Problem Solving and Situated Cognition," in The Cambridge Handbook of
Situated Cognition, P. Robbins and M. Aydede, Eds., ed New York, USA: Cambridge
University Press, 2008, pp. 264-306.

[107] D. Chapman, "Penguins Can Make Cake," AI Magazine, vol. 10, pp. 45-50, 1989.
[108] D. Chapman, Vision, Instruction, and Action. Cambridge, MA, USA: The MIT Press,

1991.
[109] D. Chapman, "The concrete-situated approach," in Vision, Instruction, and Action, ed

Cambridge, MA, USA: The MIT Press, 1991, pp. 17-33.
[110] W3C. 2004, OWL Web Ontology Language [online]. W3C Recommendation Available:

http://www.w3.org/TR/owl-guide/
[111] M. Horridge. 2011, A Practical Guide To Building OWL Ontologies Using Protege 4 and

CO-ODE Tools Edition 1.3 [online]. Available:
http://owl.cs.manchester.ac.uk/tutorials/protegeowltutorial/

[112] W3C. New Features and Rationale [online]. Available:
http://www.w3.org/2007/OWL/wiki/New_Features_and_Rationale

[113] W3C. 2009, OWL 2 Web Ontology Language [online]. Available:
http://www.w3.org/TR/owl2-overview/

[114] W3C. 2009, W3C Semantic Web Frequently Asked Questions [online]. Available:
http://www.w3.org/2001/sw/SW-FAQ

[115] W3C. About W3C [online]. Available: http://www.w3.org/Consortium/
[116] D. Allemang and J. Hendler, "What Is the Semantic Web?," in Semantic Web for the

Working Ontologist: Effective Modeling in RDFS and OWL, ed Burlington, MA, USA:
Morgan Kaufmann, 2008, pp. 1-14.

[117] R. Reiter, "On closed world data bases," in Readings in nonmonotonic reasoning, ed
California, USA, 1987, pp. 300 - 310.

[118] H. Gomes, A. Zúquete, and G. P. Dias, "An Overview of Security Ontologies," presented
at the Conferência da Associação Portuguesa de Sistemas de Informação (CAPSI 2009),
Viseu, Portugal 2009.

[119] D. Allemang and J. Hendler, "Basic OWL," in Semantic Web for the Working Ontologist:
Effective Modeling in RDFS and OWL, ed Burlington, MA, USA: Morgan Kaufmann,
2008, pp. 179-212.

[120] R. Kissel, "Glossary of Key Information Security Terms," 2011.
[121] D. Allemang and J. Hendler, Semantic Web for the Working Ontologist: Effective

Modeling in RDFS and OWL. Burlington, MA, USA: Morgan Kaufmann, 2008.
[122] Microsoft Security Advisories [online]. Available:

http://www.microsoft.com/technet/security/advisory/default.mspx
[123] The Open Source Vulnerability Database [online]. Available: http://osvdb.org/
[124] US-CERT Vulnerability Notes Database [online]. Available: http://www.kb.cert.org/vuls
[125] CERIAS Vulnerability Database [online]. Available:

http://www.cerias.purdue.edu/about/history/coast/projects/vdb.html
[126] Secunia Advisories [online]. Available: http://secunia.com/
[127] G. Hoglund and G. McGraw, Exploiting Software: How to Break Code. Boston, MA,

USA: Addison-Wesley, 2004.
[128] Common Attack Pattern Enumeration and Classification [online]. Available:

http://capec.mitre.org/
[129] The Honeynet Project, Know Your Enemy: Revealing the Security Tools, Tactics, and

Motives of the Blackhat Community. Boston, MA, USA: Addison-Wesley Professional,
2001.

312

[130] L. Spitzner, Honeypots: Tracking Hackers. Boston, MA, , USA: Addison-Wesley
Professional, 2002.

[131] Metasploit - Penetration Testing Resources [online]. Available:
http://www.metasploit.com/

[132] S. Hansman and R. Hunt, "A taxonomy of network and computer attacks," Computers &
Security, vol. 24, pp. 31-43 February 2005.

[133] C. Simmons, C. Ellis, S. Shiva, D. Dasgupta, and Q. Wu, "AVOIDIT: A Cyber Attack
Taxonomy," University of Memphis, Memphis Technical Report: CS-09-003, 2009.

[134] J. Mirkovic and P. Reiher, "A Taxonomy of DDoS Attack and DDoS Defense
Mechanisms," ACM SIGCOMM Computer Communication Review vol. 34, pp. 39 - 53,
April 2004.

[135] C. Blanco, J. Lasheras, R. Valencia-Garcia, E. Fernandez-Medina, A. Toval, and M.
Piattini, "A Systematic Review and Comparison of Security Ontologies," in Proceedings
of the 2008 Third International Conference on Availability, Reliability and Security,
Barcelona , Spain, 2008, pp. 813-820.

[136] S. J. Templeton and K. Levitt, "A Requires/Provides Model for Computer Attacks," in
Proceedings of the 2000 workshop on New security paradigms Cork, Ireland, 2000, pp.
31-38.

[137] F. Cuppens and R. Ortalo, "LAMBDA: A Language to Model a Database for Detection
of Attacks," in Lecture Notes in Computer Science vol. 1907/2000, H. Debar, L. Me, and
F. Wu, Eds., ed. Berlin: Springer Verlag, 2001.

[138] S. Cheung, U. Lindqvist, and M. W. Fong, "Modeling Multistep Cyber Attacks for
Scenario Recognition," in Proceedings of DARPA Information Survivability Conference
and Exposition, Washington, DC, USA, 2003, pp. 284 - 292.

[139] C. B. Chhaya. 2007, CAPEC-100: Overflow Buffers [online]. Available:
http://capec.mitre.org/data/definitions/100.html

[140] Java Universal Network/Graph Framework [online]. Available:
http://jung.sourceforge.net/

[141] M. Horridge and N. Drummond. DL Query [online]. Available:
http://protegewiki.stanford.edu/wiki/DL_Query

[142] W3C. 2009, OWL 2 Web Ontology Language Profiles [online]. Available:
http://www.w3.org/TR/owl2-profiles/

[143] K. Ingols, M. Chu, R. Lippmann, S. Webster, and S. Boyer, "Modeling Modern Network
Attacks and Countermeasures Using Attack Graphs," in Computer Security Applications
Conference, Honolulu, HI Dec. 2009, pp. 117-126.

[144] CVE. Vulnerability: Common Vulnerabilities and Exposures CVE-2002-0147 [online].
Available: http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2002-0147

[145] CVE. Vulnerability: Common Vulnerabilities and Exposures CVE-2001-0506 [online].
Available: http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2001-0506

[146] CVE. Vulnerability: Common Vulnerabilities and Exposures CVE-2002-0364 [online].
Available: http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0364

[147] G. L. Murphy, "Introduction," in The Big Book of Concepts, ed Cambridge, MA, USA:
The MIT Press, 2004, pp. 1-9.

[148] D. L. Medin and L. J. Rips, "Concepts and categories: memory, meaning, and
metaphysics," in The Cambridge Handbook of Thinking and Reasoning, K. J. Holyoak
and R. G. Morrison, Eds., ed New York, USA: Cambridge University Press, 2004, pp.
37-72.

[149] G. L. Murphy, "Theories," in The Big Book of Concepts, ed Cambridge, MA, USA: The
MIT Press, 2004, pp. 41-71.

[150] R. J. Heuer, Psychology of Intelligence Analysis. Washington, D.C, USA: Government
Printing Office, 1999.

313

[151] S. Panjwani, S. Tan, K. M. Jarrin, and M. Cukier, "An Experimental Evaluation to
Determine if Port Scans are Precursors to an Attack," in Proceedings of the 2005
International Conference on Dependable Systems and Networks Yokohama, Japan, 2005,
pp. 602-611.

[152] SANS Security Training [online]. Available: http://www.sans.org/security-
training/courses.php

[153] K. Poulsen. 2000, Port scans legal, judge says [online]. Security Focus. Available:
http://www.securityfocus.com/news/126

[154] A. N. Tennenbaum. 2004, Verdict in the case Avi Mizrahi vs. Israeli Police Department
of Prosecution [online]. Available: http://www.law.co.il/media/computer-
law/mizrachi_en.pdf

[155] I. Wylie. 2007, Romania home base for EBay scammers [online]. Los Angeles Times.
Available: http://articles.latimes.com/2007/dec/26/business/fi-ebay26

[156] Y. Bhattacharjee. 2011, How a Remote Town in Romania Has Become Cybercrime
Central [online]. Wired Magazine. Available:
http://www.wired.com/magazine/2011/01/ff_hackerville_romania/

[157] PBS. Hackers Interview [online] Available:
http://www.pbs.org/wgbh/pages/frontline/shows/hackers/

[158] R. Chiesa, S. Ducci, and S. Ciappi, Profiling Hackers: The Science of Criminal Profiling
as Applied to the World of Hacking. Boca Raton, FL, USA: Auerbach Publications, 2008.

[159] L. Goroshko. 2004, Hackers: interview with a "Ghost" [online]. Available:
http://www.crime-research.org/news/17.03.2004/138/

[160] J. Sowa, "Ontology," in Knowledge Representation: Logical, Philosophical, and
Computational Foundations, ed California, USA: Brooks / Cole, August 17, 1999, pp.
51-109.

[161] F. Baader, I. Horrocks, and U. Sattler, "Description Logics," in Handbook on Ontology,
S. Staab and R. Studer, Eds., ed New York, USA: Springer, 2004, pp. 3-28.

[162] M. Hepp, "Ontologies: State of the Art, Business Potential, and Grand Challenges," in
Ontology Management: Semantic Web, Semantic Web Services, and Business
Applications, M. Hepp, P. D. Leenheer, A. d. Moor, and Y. Sure, Eds., ed New York,
USA: Springer, 2007, pp. 3-22.

[163] M. Donner, "Toward a Security Ontology," IEEE Security and Privacy, vol. 1, pp. 6-7,
May 2003.

[164] G. Dobson and P. Sawyer, "Revisiting Ontology-Based Requirements Engineering in the
Age of the Semantic Web," presented at the International Seminar on "Dependable
Requirements Engineering of Computerised Systems at NPPs", Halden, Norway, 2006.

[165] M. Karyda, T. Balopoulos, L. Gymnopoulos, S. Kokolakis, C. Lambrinoudakis, S.
Gritzalis, and S. Dritsas, "An Ontology for Secure E-Government Applications," in
Proceedings of the First International Conference on Availability, Reliability and
Security, Vienna, 2006, pp. 1033 - 1037.

[166] D. Firesmith, "A Taxonomy of safety-related requirements," in Engineering safety-
related requirements for software-intensive systems, in Proceedings of the 27th
international conference on Software engineering, St. Louis, MO, USA., 2005.

[167] S. W. Lee, "Building problem domain ontology from security requirements in regulatory
documents," in Proceedings of the 2006 international workshop on Software engineering
for secure systems, Shanghai, China, 2006, pp. 43 - 50.

[168] W3C. Web Services Activity [online]. Available: http://www.w3.org/2002/ws/
[169] G. Denker, L. Kagal, T. Finin, M. Paolucci, and K. Sycara, "Security for Daml Web

Services: Annotation and Matchmaking," in Proceedings of International Semantic Web
Conference, Florida, USA, 2003, pp. 335-50.

314

[170] K. Lalana, M. Paolucci, N. Srinivasan, G. Denker, T. Finin, and K. Sycara,
"Authorization and Privacy for Semantic Web Services," IEEE Intelligent Systems, vol.
19, pp. 50-56, July/August 2004.

[171] G. Denker, L. Kagal, and T. Finin, "Security in the Semantic Web Using Owl,"
Information Security Technical Report, vol. 10, pp. 51-58, April 2005.

[172] R. Ashri, T. Payne, D. Marvin, M. Surridge, and S. Taylor, "Towards a Semantic Web
Security Infrastructure," in Semantic Web Services, Stanford University, Stanford
California, 2004, pp. 22 - 26.

[173] A. Vorobiev, H. Jun, and N. Bekmamedova, "An Ontology Framework for Managing
Security Attacks and Defences in Component Based Software Systems," in Proceedings
of 19th Australian Conference onSoftware Engineering, Perth, 2008, pp. 552-561.

[174] J. Undercoffer, A. Joshi, and J. Pinkston, "Modeling Computer Attacks: An Ontology for
Intrusion Detection," in The Sixth International Symposium on Recent Advances in
Intrusion Detection, Pittsburgh, PA, USA, 2003, pp. 113--135.

[175] P. Mitra, C. Pan, P. Liu, and V. Atluri, "Privacy-Preserving Semantic Interoperation and
Access Control of Heterogeneous Databases," in Proceedings of the 2006 ACM
Symposium on Information, Computer and Communications Security, Taipei, Taiwan,
2006, pp. 66-77.

[176] C. Pan, P. Mitra, and P. Liu., "Semantic Access Control for Information Interoperation,"
in Proceedings of the eleventh ACM symposium on Access control models and
technologies, Lake Tahoe, California, USA, 2006, pp. 237 - 246.

[177] B. Tsoumas and D. Gritzalis, "Towards an Ontology-Based Security Management," in
20th International Conference on Advanced Information Networking and Applications,
Vienna, Austria, 2006, pp. 985 - 992.

[178] Distributed Management Task Force [online]. Wikipedia. Available:
http://en.wikipedia.org/wiki/Distributed_Management_Task_Force

[179] Common Information Model (computing) [online]. Wikipedia. Available:
http://en.wikipedia.org/wiki/Common_Information_Model_%28computing%29

[180] Stanford. Protege [online]. Available: http://protege.stanford.edu/
[181] Jena – A Semantic Web Framework for Java [online]. Available:

http://jena.sourceforge.net/
[182] C. Parsia. Pellet: OWL 2 Reasoner for Java [online]. Available:

http://clarkparsia.com/pellet/
[183] M. Greenwald, C. A. Gunter, B. Knutsson, A. Scedrov, J. M. Smith, and S. Zdancewic,

"Computer Security is Not a Science (but it should be)," presented at the Large-Scale
Network Security Workshop, Landsdowne, VA, USA, 2003.

[184] H. S. Nejad, D. Zhu, and A. Mosleh, "Hierarchical planning and multi-level scheduling
for simulation-based probabilistic risk assessment," in Proceedings of the 39th
conference on Winter simulation, Washington, DC, USA, 2007, pp. 1189-1197.

