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Abstract

Remotely sensed imagery has been used for developing and validating var-
ious studies regarding land cover dynamics such as global carbon modeling,
biogeochemical cycling, hydrological modeling, and ecosystem response mod-
eling. However, the large amounts of imagery collected by the satellites are
largely contaminated by the effects of atmospheric particles through absorp-
tion and scattering of the radiation from the earth surface. The objective of
atmospheric correction is to retrieve the surface reflectance (that characterizes
the surface properties) from remotely sensed imagery by removing the atmo-
spheric effects. Atmospheric correction has been shown to significantly improve
the accuracy of image classification.

This problem has received a considerable attention from researchers in re-
mote sensing who have devised a number of solution approaches. Sophisticated
approaches are computationally demanding and have only been validated on
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a very small scale. We introduce a number of computational techniques that
lead to a substantial speedup of an atmospheric correction algorithm based on
using look-up tables that are generated from radiative transfer computations.
Excluding 1/0 time, the previous known implementation processes one pixel
at a time and requires about 2.63 seconds per pixel on a SPARC-10 machine,
while our implementation is based on processing the whole image and takes
about 4-20 microseconds per pixel on the same machine. We also develop a
parallel version of our algorithm that is scalable in terms of both computation
and I/O. Experimental results obtained show that a Thematic Mapper (TM)
image (36 MB per band, 5 bands need to be corrected) can be handled in less
than 4.3 minutes on a 32-node CM-5 machine, including 1/O time.

1 Introduction

Data from the Landsat series of satellites have been available since 1972. The primary
source of data from the first three satellites was the Multispectral Scanner System
(MSS ). The Thematic Mapper (TM) of Landsats 4 and 5 represents a major im-
provement compared with the MSS in terms of spectral resolution (4 wave-bands for
MSS, 7 narrower wave-bands for TM), and spatial resolution (79 meters for MSS,
and 30 meters for TM). The TM data have been widely used for resource inventory,
environmental monitoring, and a variety of other applications [1]. Since 1979, the
Advanced Very High Resolution Radiometers (AVHRR) on board of the National
Oceanic and Atmospheric Administration (NOAA) series of satellites have been in
continuous polar orbit. AVHRR data have become extremely important for global
studies because they carry multiple bands in the visible, the infrared and the thermal
spectrum, and a complete coverage of the Earth is available twice daily with 1.1 km
resolution at nadir and from two platforms. AVHRR has allowed us for the first time
to improve our studies of the earth surface from the regional scale to the global scale
using remote sensing techniques [1, 2].

The radiation from the earth surface, which highly characterizes surface inherent
properties, are largely contaminated by the atmosphere. The atmospheric particles
(aerosols and molecules) scatter and absorb the solar photons reflected by the surface
in such a way that only part of the surface radiation can be detected by the sensor. On
the other hand, atmospheric particles scatter the sunlight into the sensor’s field of view
directly, resulting in a radiation that does not contain any surface information at all.
The combined atmospheric effects due to scattering and absorption are wavelength
dependent, vary in time and space, and depend on the surface reflectance and its
spatial variation [3]. For TM band 1, it is likely that the aerosol contribution is
of the order of 50% even for relatively clear sky conditions. Although qualitative
evaluation of these remotely sensed data have been very useful, the developments of
the quantitative linkages between the satellite imagery and the surface characteristics
greatly depend on the removal of the atmospheric effects. The objective of the so-
called atmospheric correction is to retrieve the surface reflectance from remotely
sensed imagery. It has been demonstrated [4, 5] that the atmospheric correction can
significantly improve the accuracy of image classification.



Atmospheric correction algorithms basically consist of two major steps. First, the
optical characteristics of the atmosphere are estimated either by using special features
of the ground surface or by direct measurements of the atmospheric constituents [10]
or by using theoretical models. Various quantities related to the atmospheric correc-
tion can then be computed by the radiative transfer algorithms given the atmospheric
optical properties. Second, the remotely sensed imagery can be corrected by inversion
procedures that derive the surface reflectance, as we will shortly discussed in more
details.

In this paper, we will focus on the second step, describing our work on improving
the computational efficiency of the existing atmospheric correction algorithms. In
Section 2, we present background material, while a known atmospheric correction
algorithm is described in Section 3. We describe in Section 4 a substantially more
efficient version of the algorithm. In Section 5, we develop a parallel implementation
of our algorithm, that is scalable in terms of number of processors, internal memory
size, and number of /O nodes. A case study is presented in Section 6 and concluding
remarks are given in Section 7.

2 Background

2.1 Atmospheric Correction

In order to correct for the atmospheric effects, the relationship between the upward
radiance L™ measured by the satellite and the surface reflectance p has to be estab-
lished. The radiative transfer theory is used for this purpose. Assuming that the
atmosphere is bounded by a Lambertian surface (i.e., reflects solar energy isotropi-
cally), the upward radiance at the top of the cloud-free, horizontally homogeneous
atmosphere can be expressed by [6] :
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where Lg is the upward radiance of the atmosphere with zero surface reflectance,

L™= Lo+

often called path radiance, Fy is the downward fluz (total integrated irradiance) at
the ground, 7' is the transmittance from the surface to the sensor (the probability
that a photon travels through a path without being scattered or absorbed), and s
is the atmospheric albedo (the probability that a photon reflected from the surface
is reflected back to the surface). From Eqn. (1) we can see that the factor 55 18
the sum of the infinite series of interactions between the surface and the atmosphere
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In order to invert p from L™ through Eqn. (1), we need to determine the quantities
Lo, F;, T, and s which are functions of the wavelength, atmospheric optical properties,
and a set of locational parameters. The locational information includes, surface level
and observer heights, observation and solar zenith angles, and observation azimuth
angle (Figure 1). There are two main tasks involved. The first is to estimate the
atmospheric properties and the second is to calculate the functions required to invert
the surface reflectance p.
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Figure 1: Angular coordinates used in the algorithm. The X-Y plane is a horizontal
plane tangent to the earth’s surface at the observation point. The solar zenith angle
(, observation zenith angle 6, and observation azimuth angle ¢ are shown.

It is not easy to obtain simultaneous measurements of all atmospheric optical
properties operationally because of the rapid variation of the atmosphere. The es-
timation of the atmospheric optical properties from imagery itself is the only way
for operational atmospheric correction. One of the main parameters needed for TM
and AVHRR imagery is the aerosol optical depth, which is defined as 7 = —InT.
The so-called “dark object” [7] approach is used for this study. The idea behind this
approach is quite simple. We search for pixels with low surface reflectance using TM
band 7 [8] (or AVHRR band 3 [9, 10]) in which aerosol effect is very small, and then
we assign a small surface reflectance to those dark pixels and the aerosol optical depth
can be figured out from Eqn. (1). Note that in this case the deviation of the assigned
reflectance from the “true” reflectance will not result in a large uncertainty for the
estimation of aerosol optical depth since both are very small.

Given the aerosol optical depth, the determination of Lo, Fy, T', and s in Eqn. (1) is
not a simple task due to the fact that these quantities are related to the solutions of the
radiative transfer equation [6], which is an integro-differential equation from which
no analytical solution is available. There are a couple of approaches for obtaining
practical solutions. The first is to use a numerical iterative approach, such as the
discrete-ordinate algorithm [11], and the Gauss-Seidel algorithm [12]. The resulting
solutions are accurate but the methods involved are computationally very expensive
and not feasible for large scale studies. Another approach is to simplify the radiative
transfer equation by using approximations, such as the two-stream approximation
[13], and the four-stream approximation [14]. These approximation algorithms are
computationally efficient, but the accuracy is limited. An alternative is to set up
off-line look-up tables [15] for certain input values. With the additional tables, the
quantities (Lo, Fy, T, and s) can be efficiently calculated with high accuracy using
interpolations. This approach has been followed in this study and is referred to as
the look-up table approach.



2.2 Why High Performance Computing (HPC)?

The existing code [15] for atmospheric correction based on the look-up table approach
processes one pixel at a time (and meant to be used interactively), and takes 2.63
seconds to correct a single pixel on a SPARC-10 machine, excluding I/O. A single
TM image that covers an area of size 180 K'm x 180Km consists of approximately 36
million pixels per band, and will therefore require more than 15 years to correct with
the existing code, excluding the I/O time. We address this apparent intractability by
attempting to achieve the following two objectives:

e Minimize the overall computational complexity while maintaining the accuracy
of the algorithm.

e Maximize the scalability of the computation and the I/O as a function of the
available resources (computation nodes, I/O nodes, and size of internal mem-

ory).

We believe that our algorithm, to be described in the rest of this paper, achieves
both objectives simultaneously. In fact, we are able to correct a TM image in less
than 13 minutes on SPARC-10 (excluding I/O) and in less than 4.3 minutes on a
32-processor CM-5 (including 1/0).

2.3 Data Sources

In our studies, TM and AVHRR are used as the primary sources of input data to our
algorithm. The essential features of these imagery types are as follows.

The TM imagery consists of 7 channels that correspond to 7 spectral bands. The
resolution is 30m and five bands need to be corrected (band 6 corresponds to the
thermal channel and the atmosphere does not have much scattering effect on band 7)
[16]. An image covers approximately an area of size 180Km x 180K m and requires
36MB per channel.

The Pathfinder AVHRR imagery consists of 12 channels from which only 5 chan-
nels are original band information and only 2 bands need to be corrected [17]. The
remaining channels provide location, quality , cloud, and time information. Each
band requires about 20M B and the resolution is 8Kkm. Each AVHRR image covers
the entire globe.

3 Atmospheric Correction Algorithm

3.1 Description of Algorithm

A direct implementation of an atmospheric correction algorithm based on the look-
up table approach has been described in [15], where a Fortran version is given. The
overall algorithm can be sketched as follows.

Algorithm (Atmospheric Correction)



Input: N pizel values with the following information for each pixel: measurement
wavelength, atmospheric correction parameters, location information and the
day of measurement. Moreover, look-up tables for solar flux and for the func-
tions Lo, Fy, T and s are provided.

Output: The surface reflectance at each pixel.

for each pixel do:

Step A: Read input parameters and appropriate look-up tables.

Step B: Perform initializations and required normalizations.

Step C: Compute Lo, Fy, T and s by interpolation, using the look-up tables.
Step D: Compute the surface reflectance p using Eqn. (1).

end

In step B, we compute the solar flux for the measured wavelength by linear inter-
polation (using the spectral irradiances and earth-sun distance for given wavelengths).
Then we correct the solar flux for the day of the year for which the measurement is
made and we use the result to convert the measured radiance L™ from absolute units
to reflectance units. We also compute the default values of the water and gaseous
(carbon-dioxide and ozone) absorption by linear interpolation of the measured wave-
length.

All the interpolations in step B are spline interpolations of degree one. A spline
interpolation consists of polynomial pieces on subintervals joined together with certain
continuity conditions. Formally, suppose that a table of n 4+ 1 data points (z;,y;) is
given, where 0 < 2 < n and zg < 21 < ... < x, 1s satisfied. A spline function of
degree k on these n 4+ 1 points is a function, S such that, (1) S(x;) =y, (2) on each
interval [x;, 2,41), S is a polynomial of degree < k, and (3) S has a continuous (k—1)st
derivative on [z, z,]. Thus the spline interpolation of degree one is a piecewise linear
function. By interpolating at a point x, we want to find y, the value of function S at
point z, assuming that o < o < x,. Hence, for a spline interpolation of degree one,
we need to find an index 0 < j < n such that ; < 2 < 2;4; and approximate the
value y by y; + %(:p — ;).

Step €' is computationally intensive and involves both linear and nonlinear in-
terpolations. We give next the details of step C for computing Lg, a function of
wavelength, location, and atmospheric parameters.

Algorithm (Interpolate L)

Input: Wavelength, atmospheric correction parameters, location information and
look-up tables.

begin



1. Interpolate Lqy for the measured height.

2. Interpolate Ly for the wavelength and adjust for the excess and deficit of gaseous
and water absorption.

Interpolate Lo on measured solar zenith angle.
Interpolate Lo on measured observation azimuth angle.

Interpolate Lo on measured observation zenith angle.

S S

Interpolate Lo on measured optical thickness.

end

In step 1, linear interpolations and extrapolations are performed. The interpola-
tions in step 2 are piecewise exponential interpolations and those required by steps

3, 4, and 5 are spline interpolations of degree one. For piecewise exponential inter-
log(%;l)
log(747)

The interpolation on measured optical thickness required by Step 6 is non-linear and

polation at a point z, z; < & < xj41, y = elolosy;t(1=e)logy;41) \where, o =

consists of the following substeps. First we find the minimum of a non-linear func-
tion over a subinterval; a costly process given the complexity of the function to be
minimized. Second, we perform a linear or a nonlinear interpolation depending on
the outcome of the first substep.

3.2 Implementation

The direct atmospheric correction algorithm has been coded in Fortran [15] and tested
on about 20 pixels. It uses eight look-up tables, one table for each of the 2 AVHRR
bands of 0.639 and 0.845 pm and one for each of the 6 TM bands of 0.486, 0.587,
0.663, 0.837, 1.663 and 2.189 pm. Each table contains the values of Ly, Fy, T and
s for nine solar zenith angles (10,20,30,40,50,60,66,72,and 78 degree), 13 observation
zenith angles (0 to 78 degree, every 6 degree), 19 observation azimuth angles(0 to 180
degree, every 10 degree, plus 5 and 175 degrees), 4 aerosol optical thicknesses (0.0,
0.25, 0.50, and 1.0), and 3 observation heights (0.45, 4.5, and 80.0 kilometers). One
more table is used which gives the solar spectral irradiances for 60 wavelengths in the
range 0.486 to 2.189 pm.

The code corrects single pixels of an image. The wavelength, solar and observation
angles, and aerosol optical thickness data are assumed to be in the range discussed
above as no extrapolation is performed. If any of the selected parameters does not
match any of the values used to construct the look-up tables, the algorithm inter-
polates on that parameter. For observation height, the algorithm both interpolates
and extrapolates, and chooses the one that shows minimal atmospheric effect (lower
values of intensity and higher values of transmittance are selected).

The computation for each pixel begins by reading the input data and look-up
tables, followed by approximating the values of Lo, Fy, T and s by interpolations.
Finally the surface reflectance of that pixel is computed using Eqn. (1).
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The resulting algorithm takes 2.63 seconds to correct a single pixel on a SPARC-
10 system. Hence this code is not suitable for handling images as a single TM image
that covers an area of size (180km x 180km) will take more than 15 years to correct
all 5 bands. In the next section, we present our modified version of the algorithm
which runs substantially faster and is quite efficient for handling images.

4 Optimizing Overall Computational Complexity

We introduce a number of techniques that lead to a substantially more efficient version
of the atmospheric correction algorithm. We group our new techniques into 5 major
types described briefly next.

Reordering and Classifying Operations. In the previous algorithm, all opera-
tions are repeated for each pixel. We rearrange the operations into three groups (1)
image based, (2) window based, and (3) pixel based. The first group includes the
operations that are independent of pixel values. For example, reading the look-up
tables, the initializations and the interpolations based on the height of the sensor are
image based operations. The corresponding operations can be performed for one pixel
and used for all the remaining pixels. The second class of operations, window based,
are reserved for those that depend on parameters which remain fairly constant over a
window of size w x w for a suitable value of w. For example, the aerosol optical thick-
ness remains fairly constant over a small neighborhood. Atmospheric conditions and
the resolution of the image determine the value of w. It follows that the computations
and the interpolations belonging to the second group depend only on parameters that
can be considered constant over windows. These operations can be performed only
once for each window if they are performed before any pixel based computation. The
remaining computations and interpolations belong to the third group and depend on
pixel values or some other parameters that are different for each pixel. We reorga-
nized the operations of the atmospheric correction algorithm, so that the first group
(image based) operations appear first followed by those of the second group (window
based), and then by the third group operations. This has resulted in a substantial
reduction of the total number of operations used.

Performing Interpolations on Sub-cubes for Each Group. In the original al-
gorithm, each interpolation causes one of the dimensions to be removed. Moreover,
all the interpolations are piecewise interpolations. To reduce the number of oper-
ations, we first identify the appropriate indexes along all the dimensions for which
interpolations are required within a certain class (image, window, or pixel). Then we
extract the sub-cube, obtained from the intersection of those indexes. With this tech-
nique not only is the computational complexity reduced, but also the computational
complexity becomes almost independent of the size of the look-up tables.

Data Dependent Control. Another technique is to use the characteristics of differ-
ent data inputs to reduce the overall computational complexity. For high resolution
data most of the parameters are constant for the whole image while for coarse data
most parameters change from window (pixel) to window (pixel). On the other hand,



the computational complexity per pixel is much more important for high resolution
data than for coarse data due to the large difference in the amount of data involved.

Changing Nonlinear Interpolations to Linear Interpolations. We have re-
placed some of the nonlinear interpolations by linear interpolations at the expense
of increasing the sizes of the look-up tables. This technique decreases the number
of computations because those nonlinear interpolations are window based operations
and increasing the look-up table size mostly affects image based operations. For ex-
ample, we replaced the nonlinear interpolations on measured optical thickness, which
induce window based operations, with linear interpolations.

Removing Unnecessary Interpolations. We replaced the interpolations with
simpler operations whenever possible. For example, since we are only dealing with
satellite images, we do not need to do the interpolation for the observation height
since it can be assumed as constant.

These techniques were quite effective in improving the performance while pre-
serving the quality of the corrected imagery. Table 1 shows the performance of our
atmospheric correction algorithm, for different window sizes and for different types
of input data. The execution times do not include I/O time and are obtained on a
SPARC-10 machine. Clearly, the new code is substantially faster than the code in
[15] and can be used to correct all 5 bands of a TM image covering an area of size
180km x 180km with a window size of 19 x 19 in less than 13 minutes on a SPARC-10
machine (excluding 1/0).

‘ Data Type Window Size Time(usec/pixel) ‘

™ 1 x1 22.95
™ 3 x3 7.00
™ XD 4.08
™ 19 x 19 4.01
™ 99 x99 3.94
AVHRR I x1 527.50
AVHRR 3 x3 75.35
AVHRR X3 35.76
AVHRR 19 x 19 15.25

Table 1: Performance on a SPARC-10 machine.

It is interesting to notice that substantial speedups are achieved by increasing the
window size up to a certain point. After that point (5 x5 for TM), the speedups start
to level off. Also, the TM data is corrected much faster than AVHRR data by our
algorithm for the following reasons. First, most of the computations for TM are image
based operations while in AVHRR they are mostly window based operations. Second,



we can skip some of the interpolations for TM data, such as those for observation
angles.

It should be mentioned that the input for our code is raw data and does not need
any preprocessing, while the input for the code [15] is formatted and needs another
program to transform the raw data into the special formatted input.

5 Parallel implementation

Atmospheric correction of global data sets requires the extensive handling of large
amounts of data residing in external storage, and hence the optimization of the I/O
time must be considered in addition to the computation time. We seek to achieve
an efficient layout of the input imagery on the disks and an efficient mapping of the
computation across the processors in such a way the total computation and I/0 time
is minimized. We concentrate first on modeling the /O performance; we then give a
description of the parallel algorithm together with its overall theoretical performance
followed by experimental results on a 32-node CM-5.

PN PN | PN
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Figure 2: Processing nodes and 1/0 nodes are connected by an interconnection net-
work.

5.1 I/0 Model

Our parallel model consists of a number p of computation nodes Fy, Py, ..., P4
and a number d of I/O nodes, Ny, Ny, ..., Ny_1, connected by an interconnection
network (Figure 2). For our purposes, we view each I/O node as holding a large
disk (or a disk array). Data are transferred into and out of external storage in units
of blocks, each block consisting of a number b of contiguous records. Each of the d
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disks can simultaneously transfer a block into the network. Therefore the theoretical
total I/O bandwidth is d times the bandwidth provided by a single /O node. The
actual bandwidth depends on several factors including the interconnection network,
the ratio of p and d, and the network I/0O interface.

Most current parallel systems use the technique of disk striping in which con-
secutive blocks are stored on different disks. For our case, an n x n image (say, in
row-major order form) will be striped across the d disks in block units. When the
image is accessed in parallel, we can adopt the single disk model with a very large
bandwidth. In the single disk model, the time to transfer data is the sum of two
components ?, + %te, where t, is the access setup time, N the data size, and t. the
transfer time per element. Thus the 1/O time depends essentially on the two param-
eters, t, and f.. On a serial machine, the access setup time is mostly the seek time ¢
which is around 20msec but on parallel machines it is considerably larger, whereas
the transfer time per element is substantially smaller (inverse of total bandwidth).
In spite of the fact that ¢, and ¢, vary from one application to another, they can be
approximated reasonably well by constants.

The I/O performance can be estimated by using the number n, of passes through
the data and the number n, of disk accesses. In this case, the total data transfer
time is given by (n, X t,)+ (n, x N x t.). Since the access setup time is much larger
than the transfer time, minimizing the number of disk accesses is usually much more
important than minimizing the number of passes. For our implementation of the
atmospheric correction algorithm to be discussed shortly, it is possible to minimize
the I/O time by minimizing both parameters independently. For other problems (e.g.,
matrix transposition), it is possible to come up with algorithms that use more passes
but requires less total 1/O time by reducing the number of disk accesses [18]. A brief
description of the CM-5 /0 system and its relationship to our model is presented in
Appendix A.

5.2 Parallel Algorithm

We now sketch our parallel atmospheric correction algorithm and how it achieves its
computation and 1/0O scalability. The algorithm is designed in the Single Program
Multiple Data (SPMD) model using the multiblock PARTI library. Therefore each
processor runs the same code but on different parts of the image. The Multiblock
PARTI library [19, 20] is a runtime support library for parallelizing application codes
efficiently which provides a shared memory view on distributed memory machines.
This makes our code portable to a large set of parallel machines since the library is
available on the CM-5, the Intel iPSC/860 and Paragon, the IBM SP-1 and the PVM
message passing environment for networks of workstations.

A straightforward parallel implementation of the algorithm applied to each band
of a N x N image* requires only one pass through the image and can be done as
follows. We read a block of maximum possible size, (say n x n) of the image that
can fit in the internal memory with corresponding parameters for that part of the

4Here we have assumed that the numbers of columns and rows are equal for simplicity. The same
type of analysis can be carried out in the more general case.
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image. We apply our atmospheric correction procedure on the current block and
write back the results. The procedure is repeated until the entire image is processed.
This method requires n disk accesses per iteration, and hence Cn]\]j—; R~ C\/%P disk
accesses per band are required, where M is the memory size per processor and C is
some constant. However we can modify the algorithm to minimize the number of disk
accesses as follows. During each iteration, instead of reading a block, we read a slab

consisting of the maximum possible number (say r) of consecutive rows of the image
that can fit in the internal memory with corresponding parameters. We apply the
atmospheric correction procedure on the slab and write back the results and repeat
the procedure until the entire image is processed. Now we need only one disk access
per iteration and hence the total number of disk accesses is reduced to C]\]Z—; which
is clearly optimal. The new algorithm still requires only one pass through the image
and therefore the total transfer time is also optimal and is given by

TI/O ~ sz{Cl]\t;p + 02%}
where b is the number of bands that we correct (b = 5 for TM and b = 2 for AVHRR),
(' is the cost of constant number of disk accesses per pass, and (5 is the number
of bytes per pixel that we read or write. Given these relations, the I/O time can be
controlled by changing the number of processors and the number of disk 1/O nodes.
In our algorithm, interprocessor communication is only introduced by the possi-
bility of partitioning windows across processors. This can be eliminated by replacing
r with ' = LwLpJ x w x p. This can be done only if at least w rows can fit in the
internal memory of each processor, which is a realistic assumption for all reasonable
values of w (i.e. < 500).
The computation time for both TM and AVHRR can be estimated by
2 2
Teomp ~ b{Cs + C4L2 + Csﬂ}a
pw p

where (3, Cy and (5 are some machine dependent constants. In fact (3 is the required
time for image based computations, Cy is the required time per window for window
based operations and Cf5 is the required time per pixel for pixel based operations.
These constants can be accurately estimated for a given machine. As an example,
for TM data on CM-5, C5 ~ 26sec, Cy ~ 62usec, and Cs5 ~ 18usec. Note that Cj
includes the I/O time for reading all the look-up tables. These numbers are valid for
large data and agree with the observed experimental results.
Summarizing , the total time is given by
2 2 2 2
Tiotar = b{C5 + C4N—2 + 05ﬂ + Clita + Czﬂte}

w?p P Mp d
The above performance analysis indicate that our algorithm is scalable in terms of
the parameters p, M, and d because for each term with N in the numerator we have
p, M, or d in the denominator. Also, for a desired value of T}, we can derive the
number of processors and the number d of disk I/O nodes to achieve this.
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Figure 3: Atmospheric correction performance of TM imagery on CM-5, for different
image sizes, two window sizes, and a different number of processors.

The results of running our code on a 32-node CM-5 are illustrated in Figure 3.
The figure shows the total time in seconds for different image sizes, two window sizes
and a different number of processors. We have used the least squares approximation
to smooth the curves, but we have also included the real data for one of the cases
(w =5 x5 on 16 processors) to show the linearity of the experimental data. These
experimental results are consistent with the analysis carried out in our model. From
the graph, the running time scales properly with the image size and with the number
of processors for different window sizes.

6 Case Study

The application of our algorithm on a real TM imagery is presented in this section.
Figure 4 shows a subset of TM image bands 1, 3, and 7 acquired on Aug. 17, 1989
in Amazon Basin area. As we can see, a large portion of the image in bands 1
and 3 in the middle is occupied by hazy aerosols and thin clouds but band 7 is less
contaminated because it is in large wavelengths and scattering effect is negligible. In
order to remove the aerosol contamination, the first step is to implement the so-called
”dark-object” approach to estimate aerosol optical depth using band 7. We developed
a preliminary program which estimates the aerosol optical depth for TM images and
applied it to the mentioned image °.

After having obtained aerosol optical depth for each channel, the surface re-
flectance is retrieved using the new atmospheric correction algorithm described in
Section 5. The retrieved reflectance is shown in Figure 4. It is evident that most of
hazy aerosols in channels 1 and 3 have been removed. Also it is interesting to see
that the corrected channel 3 looks even more clear than channel 7. The retrieved

Details of this algorithm will be published after validation.
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Figure 4: TM imagery (512 x 512).
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surface reflectance underneath the hazy aerosols will be further evaluated with the
knowledge of the ground truth.

7 Conclusion

We have introduced a number of techniques to obtain a very efficient atmospheric
correction algorithm based on the look-up table approach. As a result our algorithm
can correct all 5 bands of a TM image, covering an area of size 180km x 180km,
in less than 13 minutes on a SPARC-10 machine (excluding I/O). A parallel version
of the algorithm that is scalable in terms of the number of processors, the number
of 1/0 nodes, and the size of internal memory, was also described and analyzed.
Experimental results on a 32-node CM-5 machine are provided.

This work constitutes a part of a large multidisciplinary grand challenge project on
applying high performance computing to land cover dynamics. Other aspects include
parallel algorithms and systems for image processing and spatial data handling with
emphasis on object oriented programming and parallel I/O of large scale images and
maps.
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Figure 5: The organization of the Connection Machine CM-5. The machine has three
networks: a data network, a control network, and a diagnostic network.The data
and control networks are connected to processing nodes, control processors, and 1/0
channels via a network interface.

A CM-51/0 System

Here we examine briefly the CM-5 1/0 system and how it relates to our model
[21, 22, 23]. The CM-5 contains three communication networks (Figure 5): a data
network, a control network and a diagnostic network. The processing nodes (PNs),
the control processors and the I/O nodes are interconnected by the three networks.
The data network provides high-performance point-to-point data communications
between system components whereas the control network provides cooperative and
system management operations. The diagnostic network allows back-door access to
all system hardware to test system integrity and to detect and isolate errors. The
Scalable Disk Array (SDA) provides striping across all the disks and communicates
with the processors via the data network using high-bandwidth 1/0 interfaces. A
basic read or write operation consists of two phases. A read’s two phases are:

o Raw data transfer: transferring data between the disks and the PNs’ user mem-
ory. The transfer rate of this phase is usually dominated by the speed of the
SDA unless the number of processing nodes is small compared to the number

of disks.

o Data routing: Reordering the data in PN memory so that every PN has the
correct data in the correct order for the application. The performance of this
phase depends on several factors such as (1) the number of processing nodes,
(2) the application’s geometry, and (3) the number of bytes per shape position
or array element.

In general data is stored in serial order on the SDA. When we read a file, data is
read as fast as possible during the first phase and sent to the PNs in such a way as to
make optimal use of the Data Network. In the second phase, the data is parallelized
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according to the specified shape and routed to the correct locations. In the write
operation we have the two phases in reverse order. It can be shown that the time
for the second phase is much smaller than the time for the first phase, and hence our
single disk model works well for the CM-5. We measured the ¢, and ¢, on a 32 node
CM-5 with two I/O nodes and the results are shown in table 2.

‘ OPERATION SHAPE to(msec) t.(microsec) ‘

READ 1 DIMENSION 230 0.098
READ 2 DIMENSION 217 0.160
READ 3 DIMENSION 235 0.166
WRITE 1 DIMENSION 700 0.212
WRITE 2 DIMENSION 755 0.210
WRITE 3 DIMENSION 757 0.214

Table 2: ¢, and ¢. for a 32 node CM-5.
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