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The mechanism of DNA replication in archaea, the third domain of life, has been 

studied for more than two decades using biochemical, structural and bioinformatic 

approaches. Historically, many of the proteins that participate in archaeal replication 

were identified via similarity to enzymes needed for DNA replication in bacteria and 

eukarya. This study uses a different approach to identify new factors that may be 

involved in replication.  

Genetic tools developed for the thermophilic archaeon Thermococcus 

kodakarensis were used to identify new replication factors that could not be 

recognized through in silico methods.  First, a network of proteins that may 

participate in replication was identified using in vivo tagging of known replication 

enzymes.  Following affinity purification the proteins that co-purified with the tagged 

enzymes were identified using mass spectrometry.  This study describes the 

identification of a number of new putative replication factors.  



  

Next, the biochemical properties of two proteins identified in the screen were 

characterized. One, the product of gene TK1525, was identified via its interaction 

with the GINS complex. This protein was predicted to be an archaeal homologue of 

the bacterial RecJ nuclease. It was found that the protein is a processive, manganese-

dependent, single strand DNA-specific exonuclease.  The protein was designated 

GAN for GINS-associated nuclease. GAN forms a complex with GINS and also 

interacts with the archaeal-specific DNA polymerase D in vivo. Subsequent 

bioinformatic analysis suggested that GAN may be the archaeal homologue of the 

eukaryotic Cdc45 protein.  

The second protein characterized is the product of TK0808. This protein was 

identified via its interactions with proliferating cell nuclear antigen (PCNA). The 

protein, upon binding to PCNA, inhibits PCNA-dependent activities. The protein was 

therefore designated TIP for Thermococcales inhibitor of PCNA. While most proteins 

that interact with PCNA do so via a PCNA-interacting peptide (PIP) motif that 

interacts with the inter domain connecting loop (IDCL) on PCNA, TIP neither 

contains the canonical PIP motif nor interacts with PCNA via the IDCL. These 

findings suggest a new mechanism for PCNA binding and suggest a new mechanism 

to regulate PCNA-dependent activities.   
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Chapter 1: Thermococcus kodakarensis DNA Replication 

Introduction 

DNA replication is required for the propagation and evolution of all life forms. 

The mechanism of DNA replication guarantees the duplication and transfer of genetic 

information during cell division. The process needs to be precise, and must occur 

once and only once per cell cycle.  

The cell cycle of archaea is a mosaic of the bacterial and eukaryal systems, with 

some archaeal-specific components. For many years the study of archaeal DNA 

replication was hindered by a lack of genetic tools, so most of the information 

regarding the replication process was derived from biochemical and limited cellular 

studies. In the last several years, however, genetic tools have become available for 

several archaeal species. In this review we summarize the recent genetic and 

biochemical studies on the replication machinery of the thermophilic euryarchaeon T. 

kodakarensis. 

T. kodakarensis is an anaerobic hyperthermophilic euryarchaea with optimal 

growth at 85°C that was isolated from a sofatara on the shore of Kodakara Island, 

Japan (1). It is an obligate heterotroph that grows on organic substrate, usually in the 

presence of elemental sulfur that is reduced to hydrogen sulfide. Its genome contains 

~2.09 Mbp with about 2,300 annotated genes (2). It was found that the organism is 

naturally competent for DNA uptake and efficiently incorporates donor DNA into its 

genome by homologous recombination (3).  
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T. kodakarensis origin of replication 

In all organisms, DNA replication starts at specific sites known as origins of 

replication. Origins contain AT-rich region(s) which are readily unwound, and 

specific inverted repeats that facilitate the binding of origin binding proteins (OBP). 

The binding of these proteins to the origin results in partial melting of the duplex 

DNA and formation of the initial replication bubble.  

Although the origin of replication in T. kodakarensis is currently unknown, one 

can predict its location and sequence based on information gained from other well-

characterized archaeal species [reviewed in (4,5)]. Most archaeal origins of 

replication are located upstream of the gene encoding the initiator protein, Cdc6 (6). 

The origins of replication from most archaeal species studied also contain origin 

recognition boxes (ORBs), inverted repeats that serve as binding sites for the Cdc6 

protein (7,8). The inverted repeats from different species share some sequence 

similarities with a consensus referred to as the mini-ORB followed by a string of G 

nucleotides refer to as a “G-string” in some origins (9-11). In addition, most archaeal 

origin sequences are several hundred bases long and are located in intergenic regions 

of the chromosome (9,11,12). The DNA sequence upstream of the gene encoding 

Cdc6 in T. kodakarensis (TK1901) resembles that of other archaeal origins of 

replication. The sequence includes a long AT-rich region flanked by a number of 

inverted repeats resembling the consensus sequence of the mini-ORB; some repeats 

also contain G-strings. It is thus likely that this region is the origin of replication in T. 

kodakarensis. Supporting evidence comes from the observation that the putative 

origin is located in close proximity to other genes encoding for replication proteins 
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[e.g. DNA polymerase D (PolD)] as has been reported for other archaeal and bacterial 

origins. 

However, several archaeal species contain multiple origins of replication, and in 

these cases some origins are not near the Cdc6 gene (13,14). It is thus possible that T. 

kodakarensis contain origins in addition to the putative origin upstream of the 

TK1901 gene.  

Initiation of DNA replication 

The mechanism by which DNA replication initiates in archaea is not yet clear. 

However, studies with a number of species suggest that the Cdc6 protein participates 

in the process and specifically binds to the ORB. This binding may facilitate the 

formation of the replication bubble (7,8) (Figure 1-1). Several studies also suggest a 

role for the Cdc6 protein in the assembly of the minichromosome maintenance (MCM) 

helicase at the origin [(15,16) and references therein]. The helicase is the first 

component of the replisome that is recruited to the origin of replication. 

A gene encoding Cdc6 has been identified in the T. kodakarensis genome 

(TK1901) located upstream of the putative origin. The T. kodakarensis Cdc6 protein 

contains all the hallmarks of Cdc6 proteins from other species, suggesting it plays a 

similar, essential, role during the initiation process. Support for an important cellular 

role comes from the observation that the gene encoding Cdc6 cannot be deleted from 

the T. kodakarensis genome (17).  

By in vivo tagging of the Cdc6 proteins it was found that the protein interacts 

with a number of known or putative replication factors including proliferating cell 

nuclear antigen (PCNA), replication factor C (RFC) and PolD (the individual proteins  
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Figure 1-1: A hypothesized schematic representation of the T. kodakarensis 
replication initiation machinery.  

Top: Cdc6 in the ATP-bound form (green) binds to the ORB and forms the initial 
replication bubble. Lower: A proposal for regulation of initiation. The replication 
machinery assembles at the origin and initiates bi-directional DNA synthesis [for 
simplicity, only the polymerase (red) and PCNA (dark yellow rings) are shown]. The 
moving replication fork removes the Cdc6 protein from the DNA. Cdc6 can re-bind 
to the newly replicated DNA, but interacts with PCNA rings left on the DNA after 
disengagement from the polymerase. The interaction between PCNA and the ATP-
bound Cdc6 stimulates ATP hydrolysis by Cdc6 and results in an inactive enzyme 
(bright yellow). If this occurs, re-initiation of replication is prevented.  

 
 

are discussed below). Cdc6 is the functional homolog of the Escherichia coli DnaA 

protein, which binds to the origin of replication to form the initial replication bubble 

and together with DnaC recruits the DnaB helicase to the DNA (18). It was also 

found that the DnaA protein interacts with the -subunit of the DNA polymerase III 



 

 
 

5 
 

(PolIII) holoenzyme. This interaction plays a major role in ensuring that the E. coli 

chromosome will replicate only once per cell cycle via a mechanism called regulatory 

inactivation of DnaA (RIDA) (19). PCNA is the archaeal functional homolog of the 

-subunit (20), and, as with many other PCNA-interacting proteins (21), the T. 

kodakarensis Cdc6 protein contains a putative PCNA interacting protein (PIP)-box. 

Thus, it is possible that archaea have a similar mechanism by which the interactions 

between Cdc6 and PCNA prevent re-initiation after origin firing (Figure 1-1).  

T. kodakarensis replisome 

The GINS complex 

T. kodakarensis, like many other archaeal species, contains a tetrameric GINS 

(go-ichi-ni-san, or 5-1-2-3, from the subunits Sld5, Psf1, Psf2 and Psf3) complex 

assembled from two molecules each of GINS15 (TK0536p) and GINS23 (TK1619p), 

proteins most closely related to the eukaryal Sld5 and Psf1, and Psf2 and Psf3 

proteins, respectively (22,23). As in many other archaeal species, the gene encoding 

GINS15 (TK0536) is in an operon with the gene encoding PCNA (TK0535) while the 

gene encoding GINS23 (TK1619) is in an operon with the gene encoding for MCM 

(TK1620) (23,24).  

The three dimensional structure of the heterotetrameric T. kodakarensis GINS is 

similar overall to the human complex, although the contacts between the GINS15 and 

GINS23 subunits differ (25). The main structural difference between the two is the 

location of the C-terminal domain of the archaeal GINS15 subunit, which is located 
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about 30 Å away from the corresponding position of Psf1 subunits in the eukaryotic 

structures (25). 

Although the function of the archaeal GINS is not yet clear it may be the 

functional homolog of the bacterial  subunit. In bacteria, and presumably eukarya, 

the leading and lagging strand polymerases form a complex with the helicase and 

primase. In E. coli the  subunit (DnaX) binds to the bacterial replicative DNA 

polymerase (PolIII), DNA helicase (DnaB) and primase (DnaG) at the replication 

fork and coordinates leading and lagging strand synthesis [reviewed in (26,27)]. Thus, 

the  subunit can be thought of as the organizer of the replisome. The protein(s) that 

couples the polymerase, helicase and primase in archaea has not yet been identified 

but may be the archaeal GINS complex. This hypothesis is based in large part on in 

vitro and in vivo observations showing that the archaeal GINS complexes, including 

that of T. kodakarensis, interact with primase, MCM, the archaeal Cdc45 protein, 

PolD and PCNA (Figure 1-2) (28-31).  

The MCM helicase 

Following the formation of the replication bubble, the replisome is assembled at 

the bubble to form two replication forks and initiate bidirectional duplication of the 

chromosome. Based on studies in bacteria and eukarya the first replisomal enzyme 

associated with the replication bubble is the helicase, which unwinds the duplex DNA 

to provide the single-stranded (ss) DNA substrate for the polymerase. In archaea, the 

replicative helicase is the MCM complex [reviewed in (15,32,33)]. The biochemical 

and structural properties of MCM helicases from several archaea have been 

extensively studied. It was shown that MCM forms a hexameric ring that can bind  
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Figure 1-2: A hypothesized schematic representation of the T. kodakarensis 
replisome.  

DNA Polymerase (PolB or PolD) is shown in red; MCM in dark green; RFC in 
pink; Primase in brown; RFC in magenta; GINS in purple; GAN in light blue; RPA in 
dark blue; and PCNA as dark yellow rings. The old strands of DNA are shown in blue 
and the newly replicated DNA in red. RNA primers are shown in black.  

 
 

and translocate along ss and double-stranded (ds) DNA, has a 3’-5’ directionality, 

requires ATP for DNA unwinding, unwinds DNA-RNA hybrids while translocating 

on the DNA strand, and can displace proteins from DNA [reviewed in (15,32,33)].  

Most archaeal species contain a single gene encoding the MCM protein. T. 

kodakarensis is unusual by having three genes encoding MCM in its genome 

(TK0096, TK1361 and TK1620 encoding for MCM1, 2 and 3, respectively) (Table 1-

1). It was found, however, that although all three genes are expressed and the proteins 

possess helicase activity, only one, MCM3, is essential for cell viability (34). Other 

observations also support the notion that MCM3 is the replicative helicase. The



 

 
 

 
 

Table 1-1. A comparison of the number of homologs of DNA replication proteins in T. kodakarensis to those in most other 
euryarchaeon and other kingdoms.   

Protein 
(or functional unit) 

T. kodakarensis Euryarchaea Crenarchaea Korarchaeaota Nanoarchaeota Thaumarchaeota

Cdc6 1 1-2 1-3 2 1 1 
MCM 3 1 1 1 1 1 
RPA (1-3) 3 1-3 - 1 1 2 
GINS (2) 1 1 1 1 1 1 
Cdc45 1 1 1 1 - - 
DNA primase (2) 1 1 1 1 1 1 
RFC (2) 1 1 1 1 1 1 
PCNA 2 1 3 1 1 2 
PolB 1 1 2-3 1 1 2 
PolD (2) 1 1 - 1 1 2 
Fen1 1 1 1 1 1 1 
DNA ligase 1 1 1 1 1 2 

 
When the active unit is a heterocomplex the number of subunits in the complex is shown in brackets. “-“ indicates no 

homolog exists.  
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location of the MCM3 gene is in an operon with the gene encoding the GINS23 

subunit (as is the case in other archaeal species) (23,24). In contrast, the genes 

encoding MCM1 and 2 are located in regions of the chromosome predicted to be of 

viral origin (2,35). It is thus possible that the proteins played a role in viral replication 

prior to integration into the T. kodakarensis genome. The MCM3 gene predicts a 

protein that looks more like a replicative helicase: the length of the MCM3 protein 

(682 residues) is similar to that of other archaeal MCM proteins, but MCM1 and 2 

have long N-terminal extensions of 210 and 140 amino acids, respectively (34). These 

long N-terminal extensions in MCM1 and 2 proteins may have participated in viral 

replication processes. It is well established that helicases from many bacteriophages 

and eukaryotic viruses are fused to other proteins needed for replication. For 

examples, the bacteriophage T7 helicase is a part of a polypeptide that also includes 

the primase (36), and the Simian virus 40 (SV40) helicase, the large-T antigen (Tag), 

is a part of a protein that also contains the SV40 origin recognition protein (37). As 

only limited studies on archaeal viruses have been reported and only a handful have 

been sequenced, it is not clear if this hypothesis regarding the N-terminal extension is 

correct or even if MCM1 and 2 are of viral origin.  

Replication protein A (RPA) 

Following the assembly of the helicase around the DNA at the origin, MCM 

unwinds the duplex and enlarges the replication bubble. All euryarchaea studied 

contain homologs of the eukaryotic trimeric ssDNA binding protein (SSB), referred 

to as RPA. The proteins from different species, however, differ in sequence, subunit 

composition, and biochemical properties. While in some archaea RPA is a single 
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protein, in others it is a hetrotrimeric complex (as in eukarya). SSB plays a major role 

in DNA replication although it is not considered a part of the replisome. SSB protects 

ssDNA from nuclease degradation, melts secondary DNA structures that hinder 

polymerase movement, and regulates the hand-off of the primers from primase to the 

polymerase on the lagging strand (38,39). 

T. kodakarensis contains three homologs of RPA (14, 31 and 41 kDa) that form 

heterotrimers like the eukaryotic complex (32). In contrast to bacteria and eukarya, 

but similar to other archaeal species, T. kodakarensis RPA inhibits DNA synthesis by 

DNA polymerase B (PolB). This may support the notion that PolB is not a replicative 

enzyme but is involved in other cellular processes such as repair and/or 

recombination.  

Cdc45 

The CMG (Cdc45, MCM, GINS) complex is the replicative helicase in eukarya 

(40). Archaeal homologs of the eukaryotic MCM and GINS proteins have been 

identified, but until recently no homolog of the Cdc45 protein was known. This has 

changed, however, as in vivo tagging of T. kodakarensis replication proteins 

identified a DNA nuclease that co-purified with the GINS complex [Chapter 2 and 

(29)]. This so-called GAN (GINS associated nuclease) [Chapter 3 and (28)] protein 

belongs to the RecJ family. Using computational analysis it was shown that the 

eukaryotic Cdc45 is an ortholog of RecJ and, by extension, the archaeal GAN (41). It 

was also shown that each archaeal species contains at least one RecJ homolog. It was 

suggested that the protein is the archaeal homolog of Cdc45. Thus, a complex of a 
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RecJ homolog, MCM and GINS (arCMG) may be homologous and functionally 

analogous to the eukaryotic CMG complex. 

DNA synthesis 

DNA primase 

DNA polymerases require a 3'-hydroxyl primed template in order to elongate 

DNA chains and these primers are synthesized by DNA primases. In bacteria and 

eukarya, DNA primases initiate replication by synthesizing small RNA primers on 

both leading and lagging strands that are used by the replicative polymerases for 

subsequent elongation events. In bacteria, DNA primase consists of a single subunit, 

the DnaG protein (42). In eukaryotes, DNA primase is a part of a tetrameric complex, 

the DNA polymerase  (Pol)-primase. The primase part is a heterodimer containing 

a catalytic p48 subunit that associates tightly with a non-catalytic regulatory subunit 

(p58) that stabilizes and modulates the activity of the catalytic subunit (42). 

Following the synthesis of a short RNA primer by the primase part the Pol catalytic 

subunit, in association with the B regulatory subunit, elongates the primers using 

dNTP to form a RNA-DNA hybrid which serves as a primer for the replicative 

polymerases.  

Archaeal genomes contain both a homolog of DnaG and a dimeric eukaryotic-

type DNA primase with a catalytic and a regulatory subunit. However, studies have 

shown that the archaeal DnaG-like primase most likely participates in RNA 

degradation rather than DNA replication (29,43-45) and genetic studies suggest that 
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while the gene encoding DnaG is dispensable for cell growth (45), each of the 

eukaryotic-like primase subunits are essential (46).  

In sharp contrast to the bacterial and eukaryal primases, the archaeal eukaryotic-

like dimeric primases, including the T. kodakarensis enzyme, can initiate 

oligonucleotide chains de novo from either ribo- or deoxynucleotides [reviewed in 

(47)]. In fact, the T. kodakarensis primase was shown to have a lower Km for 

deoxynucleotides in comparison to ribonucleotides (48). It is thus possible that the 

archaeal primase incorporated the activity of both the primase and polymerase 

activities in the eukaryotic Pol-primase complex.  

In vivo studies with several archaeal species, however, demonstrated that the 

primers on the lagging strand are made of ribonucleotides [for example see (49)]. The 

higher cellular levels of rNTPs in comparison to dNTPs may explain the apparent 

inconsistency between the in vitro and in vivo observation. Future studies will need to 

clarify these observations. 

In addition to its ability to synthesize long rNTP and dNTP chains the T. 

kodakarensis primase was shown to have another, unexpected, activity. In the 

presence of dATP or dGTP and small molecules with -OH groups the enzyme 

generates dAMP adducts including dAMP-glycerol, dAMP-Tris and dAMP-Hepes 

(50). These products can be formed by the catalytic subunit alone or the dimeric 

complex in the presence or absence of ssDNA template. In addition to these 

derivatives, dNMP is also produced in the reaction, suggesting that H2O can replace 

the other small molecule in this reaction (50). It is not yet clear if these, or similar, 

products play a role in vivo. 
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Polymerase accessory proteins 

The replicative polymerase on its own has very low processivity. High 

processivity is achieved by a ring-shaped processivity factor, PCNA, that binds to the 

polymerase and tethers it to the DNA [reviewed in: (26,51-53)]. The clamp loader, 

RFC, assembles the clamp around the DNA in an ATP-dependent reaction [reviewed 

in: (52,54)]. In the genomes of most archaea, including T. kodakarensis, two 

homologs of RFC have been identified (RFCS and RFCL), forming a pentameric 

complex containing four subunits of RFCS associated with one subunit of RFCL.  

While most euryarchaeota contain a single PCNA homolog that forms 

homotrimers, [reviewed in: (51)] the T. kodakarensis genome encodes two PCNA 

homologs (TK0535 and TK0582, encoding PCNA1 and 2, respectively) (Table 1-1). 

It was found that the two proteins form homotrimers in solution with similar three 

dimensional structures (55). However, although both PCNA1 and 2 stimulate the 

activity of PolB (55) and Fen1 (Chapter 4), only PCNA1 appears to be essential for 

cell viability (56). TK0582, encoding PCNA2, can be readily deleted from the 

chromosome, but repeated attempts to delete PCNA1 have failed.  

Supporting the idea that PCNA1 is the replicative protein in T. kodakarensis is 

the observation that PCNA1 is in an operon with gene encoding the GINS15 protein, 

as has been found in other archaeal species (23,24). TK0582 is not adjacent to a 

GINS-encoding gene but is within a region of the T. kodakarensis genome thought to 

be of viral origin (2,35). Furthermore, although the overall three-dimensional 

structures of the PCNA1 and PCNA2 complexes are similar, the details of the 
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monomer-monomer interfaces are significantly different, with the PCNA1 interfaces 

most similar to those in other archaeal PCNA complexes (55).  

DNA polymerase 

Archaeal DNA polymerases have been purified and studied for many years, 

mainly for their use in PCR. Those studies concentrated mainly on members of the 

PolB family of DNA polymerases. This is the largest group of archaeal polymerases 

and all species sequenced contain at least one member of this group. Since the three 

replicative polymerases in eukarya, DNA polymerases (Pol)　 , , and   all 　

belong to family B it was proposed that the members of this family also participate in 

chromosomal replication in archaea.  

In addition to PolB, euryarchaeota species such as T. kodakarensis contain a 

second DNA polymerase, PolD. This dimeric enzyme contains a large and small 

subunit and is archaeal-specific. In many species, including T. kodakarensis, the 

genes encoding the two subunits of PolD are in an operon and located in a close 

proximity to the origin of replication. PolD may function at the replication fork as its 

small, non catalytic subunit shares amino acid sequence similarity with several of the 

small, non-catalytic subunits of the eukaryotic Pol and Pol. In addition, it was 

shown that the large subunit of PolD shares sequence similarity with the catalytic 

subunit of the eukaryotic Pol and may be the functional homolog of Pol in archaea 

(57). Studies with halobacterium indicated that both PolB and PolD may be essential 

for cell viability (46). This may suggest that while in bacteria a single polymerase, 

PolIII, is dimerized at the replication fork to replicate the leading and lagging strands 

[reviewed in: (58)], archaea may have two different polymerases, PolB and PolD, at 
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the replication fork, similar to eukarya in which Pol replicates the leading strand 

while Pol copies the lagging strand [reviewed in: (59)].  

Okazaki fragment maturation 

The RNA primers that initiate each Okazaki fragment on the lagging strand need 

to be removed, the gap in the DNA sealed, and the newly synthesized Okazaki 

fragment needs to be ligated to the previous fragment (Figure 1-3). It is thought that 

in archaea Okazaki fragment maturation is similar to eukarya: the polymerase, upon 

reaching the previous Okazaki fragment, displaces the primer and provides the 

substrate for flap endonuclease 1 (Fen1). Following Fen1 removal of the primer, the 

polymerase fills the gap and DNA ligase joins the two adjacent Okazaki fragments. It 

was shown in several archaeal species that both Fen1 and ligase are stimulated upon 

interaction with PCNA [for example see (60)]. In vitro studies showed that the T. 

kodakarensis PCNA stimulates the activity of Fen1 but no stimulation of DNA ligase 

activity could be detected (Chapter 4). Both Fen1 and DNA ligase, however, form 

complexes with PCNA in vivo. In contrast to other archaeal DNA ligases, the T. 

kodakarensis enzyme can utilize both ATP and NAD as cofactors for the ligation 

reaction although the activity with NAD was much lower in comparison to ATP (61).  

What was learned from the study 

DNA replication mechanism is conserved in all three domains of life. However, 

the proteins involved in the process are different.  Although many replication peoteins 

could be identified via their similarities to enzymes in bacteria and eukary 

summarized in Table 1-2, some could not.   
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Figure 1-3: The steps in Okazaki fragment maturation on the lagging strand.  

PolD is shown in red; PCNA as a dark yellow ring; FEN1 in light yellow; and 
DNA ligase in light gray. See text for details.  

 
 
To identify new proteins that may participate in the replication process 19 T. 

kodakarensis strains, in which one know replication enzyme was tagged with a His6-

tag, were constractued. The proteins that form a complex, in vivo, with the tagged 

enzymes were identified, following afinity purification, using mass-spectrometry.  

This study identified severla new putative replicatoin enzymes (Chapter 2).   

Two of the identified enzymes were bichemically characterized.  One is the 

product of TK1252 which was identified via its interactions with the GINS complex.  
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The protein was shown to be a ssDNA specific exonuclease and therefore was 

designated GAN for GINS-associated nuclease (Chapter 3).  The other is a small 

protein, the product of TK0808, that interacts with PCNA and upon binding inhibits 

the PCNA-dependent enzymes (Chapter 4).  This is the first protein shown to inhibit 

the archaeal PCNA protein. 

 
Table 1-2: A comparison of homologs of DNA replication proteins among three 

domains of life.  

Function Bacteria Archaea Eukaryote 

Origin recognition DnaA ORC/CDC6 ORC1-6 

Helicase loading DnaC Unknown Cdc6 

Helicase DnaB MCM MCM2-7 

Helicase enhancing Unknown GAN* Cdc45 

Replication scaffold   GINS GINS 

Primase DnaG DnaG/Pol Pol /Primase 

DNA polymerase PolIII core PolB/PolD Pol/Pol 

Replication clamp  PCNA PCNA 

Clamp regulation Unknown TIP* P21 

Clamp loader  complex RFC RFC 

Single strand DNA binding SSB RPA RPA 

* Firstly identified in this study. 
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Chapter 2: Affinity Purification of an Archaeal DNA Replication 

Protein Network  

Introduction 

The replisome, the chromosomal DNA replication machinery, is composed of 

subcomplexes that separate the duplex DNA, prime and synthesize DNA, mature and 

ligate Okazaki fragments, and facilitate and stabilize events in replication (62). Figure 

2-1 shows the model of DNA replication fork using T. kodakarensis proteins. 

Extensive biochemical and genetic research has led to the identification of conserved 

and domain-specific protein-protein and protein-DNA interactions that direct the 

assembly, and are required for the movement, functions, and stability of bacterial and 

eukaryotic replisomes. To date, archaeal replication has received far less experimental 

attention. Archaea are prokaryotes and, in common with Bacteria, most have a single 

circular chromosome (~0.8 to 8 Mbp) that is replicated bidirectionally from an origin 

of replication. With no nuclear membrane, the archaeal replisome is also assembled 

directly from proteins in the cytoplasm, but based on sequence conservation, most of 

the archaeal proteins predicted to participate in DNA replication are more closely 

related to eukaryotic than bacterial proteins [reviewed in (63)]. Only a few of these 

archaeal proteins have, however, been functionally characterized, and there are some 

obvious and intriguing absences of archaeal homologues of conserved bacterial 

and/or eukaryotic replisome proteins. For example, there are no known archaeal 

homologues of the E. coli  subunit that couples the leading and lagging strand DNA 
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Figure 2-1: Components of the archaeal replisome.  

The T. kodakarensis numerical gene designations are listed adjacent to the 
protein subcomplexes predicted to constitute the replisome (2). It remains uncertain if 
the replicative polymerase(s) is PolB (TK0001p) and/or PolD (TK1902p and 
TK1903p).  

 

polymerases and helicase, or of Cdc45 and MCM10, proteins essential for eukaryotic 

chromosome replication. The functions of these proteins may therefore be carried out 

by unrelated archaeal proteins or by archaeal homologues with such divergent 

sequences that they are not readily identified by bioinformatics. Such divergence is 

exhibited by DNA replication processivity factors. Bacterial processivity factors (the 

 subunit of DNA PolIII) are homodimers of ~40-kDa subunits, whereas eukaryotic 

and euryarchaeal processivity factors PCNA are homotrimers of ~29-kDa subunits. 

Members of the order Crenarchaeota contain three different PCNA homologues that 

assemble into heterotrimers (64). The bacterial and eukaryotic/euryarchaeal PCNAs 

have only ~15% sequence identity but still form complexes with almost identical 

three-dimensional structures and retain the same functions (20). Here we report the 
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results of experiments that identify many of the proteins likely to participate in DNA 

replication in the euryarchaeon T. kodakarensis. With this experimentally 

documented database available, a firm foundation is established for focused research 

on individual archaeal replication components and for investigative exploitation of 

this simpler prokaryotic model for eukaryotic replication.  

Obtaining the information reported was made possible by the recent development 

of genetic tools for T. kodakarensis KOD1, a heterotrophic hyperthermophile with a 

2.09-Mbp genome that has ~2,300 annotated genes (2). T. kodakarensis is naturally 

competent for DNA uptake and incorporates added DNA into its chromosome by 

homologous recombination. By constructing DNA molecules with a target gene 

flanked by chromosomal sequences, the gene can be deleted, inactivated, or replaced 

with an allele that encodes a modified protein. For this project, we constructed 19 T. 

kodakarensis strains, each of which has a gene encoding a known or predicted 

replication protein replaced with the same gene with a hexahistidine-encoding 

sequence (His6-tag) added in frame at either the 5’ or the 3’ terminus. As the modified 

genes were expressed from the wild-type loci, they were subject to the same 

regulation as the wild-type genes. The His6-tagged proteins synthesized in vivo were 

isolated directly by Ni2+ affinity from clarified cell lysates, and the T. kodakarensis 

proteins that were co-isolated, as components of stable complexes assembled in vivo, 

were then identified by mass spectrometry. As reported and discussed, the identities 

of these proteins confirm some, but not all, of the predicted archaeal replisome 

interactions, reveal unpredicted associations, and provide experimental evidence for 

additional replication components. 
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Materials and Methods 

Construction of transforming DNAs and transformation of T. kodakarensis KW128.  

Genes encoding 19 known or putative replication proteins were amplified from T. 

kodakarensis genomic DNA (Table 2-1), and the His6-encoding sequence (5’ 

CATCATCATCATCATCAT 3’) was added, in frame, to either the 3’ or the 5’ 

terminus by overlapping PCR (65). The amplified genes were cloned into pUMT2 (3) 

using restriction sites adjacent to trpE (TK0254) and flanked by ~2 kbp DNA 

molecules that were amplified from immediately upstream and downstream of the 

gene of interest. The DNA molecules and the organization of genes cloned into 

pUMT2 to generate the plasmids used to transform T. kodakarensis KW128 are 

illustrated in Figure 2-2. Plasmid preparations were isolated from E. coli DH5 cells 

and used directly to transform T. kodakarensis KW128 (pyrF trpE::pyrF) as 

previously described (3,66). Transformants were selected by colony growth at 85°C 

on plates containing GELRITE-solidified minimal medium that lacked tryptophan. 

Cultures of representative transformants were grown to stationary phase in MA-YT 

medium (66) that contained 2 g/l sulfur. The cells were harvested, and genomic DNA 

was isolated. The presence of the desired chromosomal construction was confirmed 

by diagnostic PCR amplification and DNA sequencing as previously described (66). 

Homologous recombination within the flanking sequences directed integration of the 

transforming DNA into the T. kodakarensis chromosome. In each case, the wild-type 

gene of interest was replaced with trpE and the gene that encoded the His6-tagged 

version of the replication protein.  
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Table 2-1: T. kodakarensis proteins His6-tagged and used to isolate replisome 
components. 

1. The numerical designation of the T. kodakarensis encoding gene. 
2. Based on sequence homologies, T. kodakarensis has two GINS and PCNA proteins and three 

MCM and RPA proteins.  
3. TK1792p, although annotated as a protein with unknown function, is in an operon with the two 

subunits of primase (TK1790p and TK1791p) and therefore was tagged in the study.  
 
 
The His6-encoding sequence was also added to genes that encode a subunit of 

RPA (RPA1; TK1959), the small subunit of euryarchaeal PolD-S (TK1902), and the 

small subunit of the dimeric primase (Pri-S; TK1791). Transformation with these 

constructs failed to generate viable T. kodakarensis transformants, suggesting that the 

His6 extension resulted in defective enzymes.  

 

Protein Gene number1 Known (or predicted) Function(s) 

Cdc6 TK1901 
Binds to origin of replication; participates in 
helicase assembly  

DNA ligase TK2140 Okazaki fragment maturation 

DnaG-like TK1410 Putative DNA primase 

Fen1 TK1281 Okazaki fragment maturation 

GINS12 TK0536 
Subunit of a complex that binds primase, 
helicase and polymerase 

GINS2  TK1619 
Subunit of a complex that binds primase, 
helicase and polymerase 

MCM12 TK0096 Putative replicative helicase 

MCM2 TK1361 Putative replicative helicase 

MCM3 TK1620 Putative replicative helicase 

PCNA12 TK0535 Increases polymerase processivity 

PCNA2 TK0582 Increases polymerase processivity 

PolB TK0001 DNA polymerase B 

PolD2 TK1903 Subunit of PolD 

Primase1 TK1790 Subunit of DNA primase 

RFC1 TK2218 
Subunit of the processivity complex, 
assembles PCNA on DNA 

RFC2 TK2219 
Subunit of the processivity complex, 
assembles PCNA on DNA 

RPA22 TK1960 Subunit of the ssDNA binding protein 

RPA3 TK1961 Subunit of the ssDNA binding protein 

Function unknown3 TK1792 
Protein encoded in an operon with DNA 
primase (TK1790p + TK1791p) 
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Figure 2-2: Genetic map of the regions with His6-coding sequence.  

DNA molecules constructed and cloned into pUMT2 to produce the plasmid 
DNAs used to transform T. kodakarensis KW128. The protein that was replaced with 
a His6-tagged version and the gene that encodes it are shown to the left of each 
construct. In each construct, the target gene is shown as a blue arrow and the 5’ - or 3’ 
-terminal location of the His6-encoding sequence is indicated by a red box. A 
constitutively expressed trpE (TK0254) gene (green arrow) that conferred 
tryptophan-independent growth and provided the positive selection used to isolate the 
desired T. kodakarensis KW128 transformant was incorporated into each construct.  

 
 

Isolation of His6-tagged proteins and complexes.  

T. kodakarensis cells were harvested by centrifugation from 5-liter cultures 

grown to late exponential phase (optical density at 600 nm of ~0.8) (see Figure 2-3) at 

80°C in MA-YT medium supplemented with 5 g sodium pyruvate/liter using a 

BioFlow 415 fermentor (New Brunswick Scientific). The cells were resuspended in 

30 ml of buffer A [25 mM Tris-HCl (pH 8.0), 500 mM NaCl, 10 mM imidazole, 10% 

glycerol] and lysed by sonication. After centrifugation (10000g 15 min), the resulting 

clarified lysate was loaded onto a 1-ml HiTRAP chelating column (GE Healthcare) 

preequilibrated with NiSO4. The column was washed with buffer A, and proteins 

were eluted using a linear imidazole gradient from buffer A to 67% buffer B [25 mM 

Tris-HCl (pH 8.0), 100 mM NaCl, 150 mM imidazole, 10% glycerol]. Fractions that 

contained the tagged protein were identified by Western blotting, pooled, and 

dialyzed against buffer C [25 mM Tris-HCl (pH 8.0), 500 mM NaCl, 0.5 mM EDTA, 

2 mM dithiothreitol]. Thirty-microgram aliquots of the proteins present in solution 

were precipitated by adding trichloroacetic acid (TCA; 15% final concentration).  

Identification of proteins by mass spectrometry.  

The TCA-precipitated proteins were identified by multidimensional protein 

identification technology at the Ohio State University mass spectrometry facility 

(http://www.ccic.ohio-state.edu/MS/proteomics.htm) using the MASCOT search 

engine. A MASCOT score of >100 was considered meaningful. To obtain such a 

score, a minimum of two unique peptide fragments usually had to be identified from 
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Figure 2-3: Growth curve of T. kodakarensis KW128. 	

The average values and standard deviations are shown for optical density at 600 
nm (OD600) measurements made during the growth of three independent cultures in 
MA-YT medium supplemented with 5 g sodium pyruvate/liter.  

 
 

the same protein. Protein isolation and mass spectrometry analyses of lysates from 

two independent cultures of T. kodakarensis KW128 were also undertaken. From 

these controls, several T. kodakarensis proteins were identified that bound and eluted 

from the Ni2+ charged matrix in the absence of a His6-tagged protein. All of the 

proteins identified in the experimental samples that had MASCOT scores of >100 and 

were not also present in the control samples are listed in Appendix 1. 

Results 

Overview 

Lysates were generated from exponentially growing but not synchronized cell 
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populations and so contained complexes present at all stages of the replication cycle. 

The His6-tagged proteins (Table 2-1) were all synthesized as soluble proteins and 

were present in readily detectable amounts in the clarified lysates. All of the putative 

protein-protein interactions detected, based on the co-isolation of a protein with a 

His6-tagged protein, are documented in Appendix 1. The consistent interactions that 

remained, after the exclusion of proteins whose annotated functions argue strongly 

against a role in nucleic acid metabolic processes, are listed in Appendix 2 and 

illustrated as a network in Figure 2-4. Many of the interactions were confirmed by co-

isolation of the same proteins when different interacting partners were His6-tagged 

and used to isolate the complex. The results include both previously established and 

previously unknown interactions between documented, predicted, and previously 

unrecognized components of the archaeal replisome. In some cases, when two or 

three homologous proteins with very similar sequences were present and different 

homologues were His6-tagged, the same proteins were co-isolated, consistent with 

functional redundancy. When this was not the case, the results argue for divergence 

of the homologues to the extent that different interactions are made, suggesting 

different functions.  

Established archaeal replisome complexes.  

As some replisome complexes were already well documented, the co-isolation of 

the proteins known to be components of these complexes validated and provided a 

measure of the sensitivity of the His6-tag-dependent co-isolation technology. Some 

examples of these validating interactions are described individually below, and all are 

listed in Appendix 2 and documented in Figure 2-4. 
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Figure 2-4: The interaction network documented for protein components of the T. 
kodakarensis replisome.  

Proteins that were His6-tagged and used to isolate interacting proteins are 
identified in colored ovals (the colors used are as in Figure 2-1). Proteins that were 
co-isolated with a His6-tagged protein are identified in white ovals by the 
designations of the T. kodakarensis genes that encode them.  

 
 
(i) Polypeptide subunits of PolD, primase, RFC, and the GINS complex. It is well 

established that the archaeal replisome components PolD, primase, RFC, and the 

GINS complex are each formed by the assembly of two different polypeptides 

(63,67,68). Consistent with this, the two polypeptides annotated as the subunits of 

these replisome proteins in T. kodakarensis were co-isolated with very high 

MASCOT scores (Appendix 2). Additional experiments with recombinant proteins 

also confirmed that, as predicted, the two primase, the two GINS, and the two RFC 

subunits assembled in vitro to form a heterodimer, a heterotetramer, and a 

heteropentamer, respectively (28,34,56,69). 
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(ii) RPA [single-stranded DNA (ssDNA)-binding protein] heterotrimers. T. 

kodakarensis has three genes (TK1959, TK1960, and TK1961) that encode 

homologues of the polypeptides that form the eukaryotic trimeric RPA complex 

(RPA1, RPA2, and RPA3, respectively). In Pyrococcus furiosus, three RPA 

homologues have also been identified and shown to form an active heteromeric 

complex (70). Consistent with this, T. kodakarensis RPA1 and RPA2 were co-

isolated by Ni2+ binding of His6-tagged RPA3 (Appendix 2). 

(iii) RFC-PCNA complex formation. RFC-PCNA binding has been reported in 

all of the replication systems investigated (52). T. kodakarensis has two genes that 

encode PCNA homologues, PCNA1 and PCNA2 (TK0535p and TK0582p, 

respectively). Both the small (RFC-S; TK2218p) and large (RFC-L; TK2219p) 

subunits of RFC were co-isolated with His6-tagged PCNA1, and PCNA2 was co-

isolated with His6-tagged RFC-L (Appendix 2). These co-isolation results are 

consistent with both PCNA homologues participating in DNA replication and with 

replication complexes assembled in vivo containing a mixture of PCNA1 and PCNA2. 

In vitro experiments have also confirmed functional interactions between RFC and 

both PCNA proteins (55,56,69). 

(iv) PCNA-PolD-Fen1-ligase interactions. PCNA interactions with DNA 

polymerases increase their processivity (53). PCNA also binds and regulates the 

activity of a number of enzymes participating in Okazaki fragment maturation and 

postreplication processes [summarized in references (21,71)]. Consistent with these 

reports, PCNA1 was co-isolated in complexes with PolD-L (large subunit of 

euryarchaeon-specific PolD), Fen1, and DNA ligase (Appendix 2). There was no 
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evidence for a PCNA-PolB interaction when either PolB or the PCNA proteins were 

tagged. Such an interaction may not, however, be detectable in a soluble extract given 

that the bacterial and eukaryotic processivity factors (the  subunit and PCNA, 

respectively) must encircle the DNA to form a stable complex with the polymerase. 

PolD was also co-isolated with His6-tagged DNA ligase, adding support to the 

hypothesis that DNA ligase is associated with the archaeal replication fork (72). 

Novel interactions of archaeal replication proteins.  

(i) PCNA interactions. Many proteins have been reported to interact with 

eukaryotic PCNA (21), but only a few of these have recognizable homologues in 

Archaea. Most of the proteins that bind to PCNA do so via a PIP box sequence 

(73,74). In addition to proteins expected to co-purify with PCNA (see above), Cdc6 

(TK1901p), MCM1 (TK0096p), and MCM2 (TK1361p) were co-purified with His6-

tagged PCNA1, and these do contain PIP box-related sequences (QRAKEAFY in 

Cdc6p, QKPYENFW and QSKPGFY in MCM1p, and QERVIGFL in MCM2). Three 

additional proteins that have no known functions but also contain PIP box-related 

sequences were also routinely co-isolated in complexes with His6-tagged PCNA2, 

namely, TK0569p (QPRSPFYP), TK0953p (QALAEWYA), and TK1046p 

(QGYRESFA). MCM and PCNA are both established replisome participants, but this 

is the first experimental evidence for their copresence within a stable complex and the 

presence of the PIP box sequence suggests a direct MCM-PCNA interaction. The 

possible roles of PCNA-Cdc6 interaction are discussed below. Homologues of 

TK0569p are present in Archaea and Bacteria, and homologues of TK1046p are 

present in all three domains (discussed below). Homologues of TK0953p are present 
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in a small number of archaeal and bacterial species and each appears to have an 

ATPase domain. 

(ii) GINS interactions. In eukaryotes, the GINS complex is an assembly of four 

different polypeptides (designated Sld5, Psf1, Psf2, and Psf3) that interact with 

several replisome components, including MCM and the Pol-primase complex 

[references (23,75)]. The GINS complex plays a role in both the initiation and 

elongation phases of DNA replication. All archaeal genomes contain a single protein, 

designated GINS15, that has sequence similarity to Sld5 and Psf1. Some Archaea, 

including T. kodakarensis, also have a protein designated GINS23 that is related to 

Psf2 and Psf3 (22) and forms a tetrameric complex that contains two GINS15 and two 

GINS23 subunits (22). Both subunits of PolD were co-isolated using His6-tagged 

GINS15, and PCNA1 and PCNA2 were both co-isolated with His6-tagged GINS23, 

providing the first experimental evidence for a stable replisome association of the 

GINS complex with PolD and PCNA. 

TK1252p, a protein co-isolated with His6-tagged GINS15 (Appendix 2), is 

annotated as an ssDNA-specific exonuclease with some homology to bacterial RecJ. 

Intriguingly, a protein (SSO0295p) predicted to have a DNA-binding domain similar 

to that in RecJ, co-purified with the GINS complex from Sulfolobus solfataricus (31). 

RecJ plays a role in stalled replication fork activation in E. coli (76), suggesting that 

SSO0295p and TK1252p may similarly help in maintaining replication fork 

progression. SSO0295p and TK1252p are not, however, related proteins. These 

observations suggest that the eukaryotic GINS complex may also associate with an 

as-yet-unidentified nuclease. 
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(iii) Rad50 interactions. Eukaryotic Rad50 is part of a complex with Mre11 and 

Nbs1 that is required for double-strand DNA break repair [reviewed in reference (77)] 

and also plays a role during replication. This complex may help prevent replication 

fork-associated damage by serving as a scaffold that maintains the fork during 

replication pauses [for example, see reference (78)]. T. kodakarensis Rad50 

(TK2211p) was co-isolated in complexes using His6-tagged MCM1, primase, and 

RPA2 (Appendix 2). This is consistent with Rad50 also being present in the archaeal 

replisome and participating in a replication-related function in both eukaryotes and 

archaea. An interaction of eukaryotic Rad50 and RPA has also been reported (79), 

and based on the results obtained with T. kodakarensis Rad50, it seems reasonable to 

predict that eukaryotic Rad50 also interacts with helicase and primase. 

(iv) MCM interactions. The MCM proteins are generally considered to function 

as replicative helicases (15,80), but the co-isolation of both Rad50 and MutS 

(TK0682p) with His6-tagged MCM1 (Appendix 2) predicts that the MCM proteins 

may also participate in DNA repair. 

(v) TK1046p interactions. Homologues of TK1046p are present in all three 

domains. The function(s) of this large protein (147.4 kDa) is unknown, although it 

does share some sequence similarity with nucleases and it is predicted to have an OB 

fold, a motif often used for nucleic acid recognition. TK1046p was co-isolated in 

complexes using His6-tagged Fen1, GINS15, MCM3, PCNA2, PolB, RFC-L, RPA2, 

and TK1792p with very high MASCOT scores (Appendix 2). This large number of 

interactions with known replisome enzymes argues strongly that TK1046p is a 

component of the replication machinery. By extrapolation from the OB fold 
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prediction, TK1046p may be the first recognized example of a conserved nuclease 

that participates in DNA replication in all three domains. 

Evidence against a putative archaeal replisome component.  

TK1410p interacts with the exosome. TK1410p is predicted by sequence 

similarity to be related to the bacterial primase DnaG, and limited primase activity 

has been reported for a recombinant version of the TK1410p homologue from S. 

solfataricus (SSO0079p) (81). These observations suggested that this protein might 

be part of the replisome, but the complexes isolated using His6-tagged TK1410p did 

not contain any known replisome proteins, but rather components of the exosome 

(TK1633p and TK1634p) were isolated. TK1410p was similarly not present in any 

complex isolated using a known His6-tagged replication protein. Consistent with 

TK1410p being a part of the exosome, purified exosomes and exosome-containing 

membrane fractions from S. solfataricus also contain SSO0079p (43,44). Taken 

together, the results argue that TK1410p participates in exosome activity rather than 

in DNA replication. 

Discussion 

The interaction network (Figure 2-4) and the interactions listed in Appendix 1 

and in Appendix 2 were documented using a systematic approach to isolate and 

identify all of the proteins that co-purified with known or predicted archaeal 

replisome components in T. kodakarensis. All of the T. kodakarensis strains that 

synthesized His6-tagged proteins grew at the wild-type rate in all of the media tested, 

minimizing any concerns for the accumulation of aberrant structures or assembly into 



 

 
 

33 
 

nonnative complexes. To ensure the same regulation and expression levels, the genes 

encoding the His6-tagged proteins were expressed from the native chromosomal 

locations using the wild-type gene expression signals. The results reported provide in 

vivo confirmation and validation of archaeal replication protein interactions 

previously documented in vitro and experimental evidence for several previously 

unrecognized replisome interactions that likely contribute to archaeal and potentially, 

by extrapolation, also to eukaryotic replication fork assembly, maintenance, and 

function. 

What is the role of Cdc6-PCNA interaction?  

The archaeal Cdc6 proteins bind to the origin of replication, where they are 

thought to direct the DNA strand separation needed for the initiation of DNA 

replication and also to recruit other components of the replisome to the origin of 

replication [summarized in (67,82)]. Thus, they are functional homologues of 

bacterial DnaA proteins. The complexes isolated from T. kodakarensis using His6-

tagged Cdc6 contained PCNA1, providing the first direct experimental support for an 

archaeal Cdc6-PCNA interaction, an observation that may be of major significance. A 

regulatory event known as the regulatory inactivation of DnaA (RIDA) ensures that 

the E. coli chromosome is replicated only once per cell cycle [reviewed in (83,84)]. 

RIDA stimulates the hydrolysis of the active replication initiator ATP-DnaA complex, 

resulting in inactive ADP-DnaA complexes. The  subunit of PolIII (the functional 

homologue of PCNA) and the homologous-to-DnaA (Hda) protein are required for 

this regulation [reviewed in references (83,84)]. The co-isolation of PCNA1 and Cdc6 

is consistent with a mechanism similar to RIDA existing in Archaea. Hda belongs to 
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the AAA+ family of ATPases and has sequence similarity to the ATPase region of 

DnaA. As there is no identifiable archaeal Hda homologue, one of the proteins that 

co-isolated with His6-tagged Cdc6 or PCNA proteins may embody the Hda function. 

What is the function of the GINS complex? 

In eukaryotes, Cdc45, MCM, and GINS form a tight complex (referred to as the 

CMG complex) that moves with the replication fork and is thought to function as the 

replicative helicase. The GINS complex also interacts with the Pol-primase complex, 

which is responsible for primer synthesis on the lagging strand [reference (23) and 

references therein]. To date, no archaeal homologue of Cdc45 has been identified but 

several proteins, and so potential candidates for Cdc45 functional homologues, co-

purified with His6-tagged GINS15 or GINS23, including TK0569p, TK1046p, and 

TK1186p, which also co-purified with His6-tagged primase (Figure 2-4; Appendix 2). 

It has also been proposed that the GINS proteins maintain the integrity of the 

replisome by linking the replicative polymerase, primase, and helicases, but a direct 

interaction of GINS with DNA polymerase has not been documented. In Archaea, 

GINS was previously shown to interact with primase and MCM (31,79) but not with 

DNA polymerase. The results now reported (Figure 2-4; Appendix 2) confirm that 

both subunits of PolD form a complex with His6-tagged GINS15 and both PCNA1 

and PCNA2 interact with His6-tagged GINS23. When added to the previously 

reported interactions, these results add substantial experimental support to the 

hypothesis that GINS functions as the center of the replisome, linking the polymerase, 

helicase, and primase components. 
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Are the archaeal replication proteins modified by small proteins? 

In eukaryotes, the activities of PCNA and MCM are modulated by ubiquitination 

and sumoylation [reviewed in (85,86)]. A small protein similar in size to ubiquitin 

(~8 kDa; TK0808p) was consistently co-isolated with His6-tagged PCNA1, and a 

second similarly sized protein (~8.5 kDa; TK0590p) was co-isolated in complexes 

using His6-tagged Fen1, MCM1, MCM2, and MCM3 (Appendix 2). Currently, very 

little is known of protein modification in Archaea (87-89), but it seems possible that 

TK0590p and/or TK0808p could form protein conjugates that regulate archaeal 

replication as does ubiquitin and SUMO modification of replication proteins in 

eukaryotes. Some support for this notion is provided by the observation that PCNA in 

Haloferax volcanii is stabilized by proteosome disruption (90). 

What are the roles of the three MCM proteins in T. kodakarensis? 

MCM is a hexameric complex that assembles at the leading edge of the 

replication fork and unwinds the two DNA strands ahead of the replicative 

polymerase (15,32,33). In eukaryotes, MCM is a heterocomplex of six different 

polypeptides (MCM2 through MCM7). Most of the archaeal species studied in detail 

to date contain only one MCM polypeptide that assembles to form a homohexamer. 

Recently, some Archaea have been identified (35,91,92) with several MCM 

homologues that are thought to have resulted from gene duplication and/or lateral 

gene transfer from other Archaea (2,35,64,92). 

T. kodakarensis has three genes (TK0096, TK1361, and TK1620) encoding 

MCM homologues, MCM1, MCM2, and MCM3, respectively, that could assemble to 

form three different MCM homohexamer complexes and/or many different MCM 
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heterohexamer complexes. The co-isolation results argue for the assembly of only 

homohexameric MCM complexes. MCM2 and MCM3 were not co-isolated with 

His6-tagged MCM1, MCM1 and MCM3 were not co-isolated with His6-tagged 

MCM2, and MCM1 and MCM2 were not co-isolated with His6-tagged MCM3. The 

results obtained are consistent with both MCM1 and MCM2 being part of the 

replisome, and based on the similarity of their interactions, they may be functionally 

redundant. Ishino et al. and Pan et al. demonstrated that only MCM3, but not MCM1 

or MCM2, is essential for the viability (34,93). The genes coding MCM1 and MCM2 

located in an region of the T. kodakarensis genome where are believed to be of viral 

origin (2,35). In contrast, the results argue that MCM3 participates in complexes that 

differ from those formed by MCM1 and MCM2 (Figure 2-4; Appendix 2). Only 

proteins with unknown functions were co-isolated using His6-tagged MCM3, and 

MCM3 was never co-isolated with a known His6-tagged replication enzyme. MCM3 

appears to be a member of the McmD group (92), one of the two groups of MCM 

proteins conserved within the order Methanococcales that overall contain four to 

eight MCM homologues. In eukaryotes, MCM homologues are thought also to 

participate in transcription, DNA repair, and chromatin remodeling and it seems 

possible that the archaeal McmD group of MCM proteins might similarly participate 

in one or more of these processes in Archaea, rather than in DNA replication.  
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Chapter 3: A Novel DNA Nuclease is Stimulated by Association 

with the GINS Complex 

Introduction 

Chromosomal DNA replication has many universally conserved features, but 

there are differences in the proteins and complexes that initiate and maintain DNA 

replication forks in Bacteria, Archaea and Eukarya. Many of the proteins required for 

bacterial and eukaryal replication have been isolated and characterized extensively, 

while most of the components of the archaeal replication machinery have only been 

putatively identified by bioinformatics. When archaeal proteins with sequences in 

common with bacterial and/or eukaryal replisome proteins have been investigated, the 

results obtained have generally confirmed their predicted replication functions 

(63,67,82). This in silico approach, however, does not readily identify archaeal-

specific replisome proteins. To address this limitation, 20 T. kodakarensis strains 

were constructed, each of which synthesized an established archaeal replication 

protein with an amino- or carboxy-terminal hexahistidine extension (His6-tag). These 

proteins were purified directly by nickel-affinity from T. kodakarensis cell lysates, 

and all proteins that were consistently co-isolated with each His6-tagged replication 

protein were identified (Chapter 2). One of the co-purified proteins (encoded by 

TK1252) contains a conserved nuclease domain, providing a direct indication of its 

involvement in DNA metabolism. For this reason, we decided to select TK1252 

encoded protein as the first candidate to perform further research. Here, we report the 

characterization of this novel archaeal nuclease that was present in the complexes 
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isolated by nickel-binding of His6-tagged subunits of the T. kodakarensis GINS 

complex and the archaeal-specific PolD.  

In Eukarya, the heterotetramer GINS complex associates with the mini-

chromosome maintenance (MCM) proteins, Mcm2-7 and with Cdc45 to form the 

Cdc45, Mcm2-7, GINS (CMG) complex. This complex has a 3’ → 5’ DNA helicase 

activity and is thought to function as the replicative helicase (40,75,94). The GINS 

complex is required to establish and maintain replication forks (95-97) and also 

interacts with the Pol-primase complex that synthesizes primers on the lagging 

strand (23,75). With these features, the eukaryal GINS complex appears to be the 

functional homologue of the  subunit (DnaX) of the E. coli replisome that binds to 

the bacterial replicative DNA polymerase (PolIII), DNA helicase (DnaB) and primase 

(DnaG) at the replication fork and coordinates leading and lagging strand syntheses 

(27). Sequence homologies predict that many Archaea, including T. kodakarensis, 

have a GINS complex assembled from two molecules each of GINS15 (TK0536p) 

and GINS23 (TK1619p), proteins most closely related to the eukaryal Psf1 and Sld5, 

and Psf2 and Psf3 proteins, respectively (22,23). Consistent with GINS being an 

archaeal replisome component, investigations of [GINS152-GINS232] complexes 

from several Archaea have documented interactions with the archaeal primase, MCM, 

PolD and PCNA (29-31,98).  

In the T. kodakarensis genome annotation, the protein encoded by TK1252 is 

predicted to be a single-strand specific nuclease (2). The results reported here confirm 

that this protein does associate with the GINS complex, specifically with the GINS15 

component, and demonstrate that it is a single-strand (ss) DNA-specific 5’ → 3’ 
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exonuclease. The exonuclease activity of this protein, designated GINS-associated 

nuclease (GAN), is stimulated by its interaction with GINS15. Possible roles for the 

GAN-GINS association during archaeal DNA replication are discussed.  

Materials and Methods 

Nuclease substrates.  

[-32P]ATP was purchased from Perkin Elmer. Unlabeled, Cy3- and Cy5-labeled 

deoxy- and ribo-oligonucleotides, with the sequences listed in Appendix 4, were 

obtained from the NIST/UMD nucleic acids synthesis facility. Double-strand (ds) 

DNA substrates were generated by annealing complementary oligonucleotides 

followed by PAGE purification, as previously described (99). To obtain linear and 

circular 200-mer substrates, 1.5 nmol of the 100-mer oligonucleotides A and B 

(Appendix 4) were phosphorylated by incubation with 40 U of T4 polynucleotide 

kinase for 1 h at 37°C. The phosphorylation reaction mixture for oligonucleotide B 

also contained 71 pmol of [-32P]ATP. To construct the linear substrate, 0.5 nmol of 

phosphorylated oligonucleotides A and B plus 2.5 nmol of the bridge oligonucleotide 

AB (Appendix 4) were mixed in 20 mM HEPES (pH 7.5), 150 mM NaCl, heated to 

100°C and the mixture was then allowed to cool slowly to 22°C. This procedure was 

also used to generate the circular substrate, except that the reaction mixture also 

contained 2.5 nmol of the bridge oligonucleotide BA (Appendix 4). The reaction 

mixtures were placed at 16°C, 8000 U of T4 DNA ligase (Fermentas) were added and 

incubation continued for 14 h. The reaction products were separated by 

electrophoresis at 15 W for 75 min through 10% (w/v) polyacrylamide-8 M urea gels 
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run in TBE. The regions of the gel containing the desired 200-mer linear and circular 

ssDNAs were excised and the DNAs eluted from the gel into 0.5 M ammonium 

acetate, 10 mM magnesium acetate, 1 mM EDTA, ethanol precipitated and dissolved 

in 30 l of TE (pH 8.0). The resulting solution was passed through a S300 mini-

column filter (GE Healthcare).  

Plasmid construction 

For protein expression in E. coli, the genes encoding GAN (TK1252), GINS15 

(TK0536) and GINS23 (TK1619) were PCR-amplified from T. kodakarensis genomic 

DNA using primers (listed in Appendix 5) that added an in-frame His6-encoding 

sequence to the 3’-terminus of the amplified gene. The amplified DNAs were ligated 

with pET15b (TK1252) or pET21a (TK0536 and TK1619) linearized by digestion 

with the restriction enzyme listed in Appendix 5. A plasmid that directed the 

synthesis of GAN (D34A) was generated by site-specific mutagenesis from the 

plasmid that expressed TK1252 by using a QuikChange mutagenesis kit (Stratagene) 

using oligonucleotides with the sequences listed in Appendix 5.  

To construct a T. kodakarensis strain that synthesized GAN-His6 in vivo, TK1252 

and DNA from immediately upstream and downstream of TK1252 were separately 

amplified from T. kodakarensis genomic DNA. An overlapping PCR was used to add 

an His6-encoding sequence in-frame to the 5’-terminus of TK1252 (65). The three 

amplified DNAs were cloned into pUMT2 (3) adjacent to trpE (TK0254) to generate 

plasmid pZLE034 (Figure 3-1). In pZLE034, TK1252-His6 is positioned between 

genomic sequences that are homologous to the DNA immediately upstream and 

downstream of TK1252 in the T. kodakarensis KW128 genome. An aliquot of  
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Figure 3-1: Plasmid pZLE034 used to transform T. kodakarensis to obtain the 
synthesis of the His6-tagged GAN in vivo.  

The structure of plasmid pZLE034 used as donor DNA to transform T. 
kodakarensis KW128 is shown above the genomic locus resulting from by 
homologous recombination in the regions flanking TK1252. The GAN encoding gene 
(TK1252) is shown as a blue arrow with the His6-encoding sequence indicated by a 
red box. Transformation of T. kodakarensis KW128 with the constitutively expressed 
trpE (TK0254) gene (green arrow) confers tryptophan independent growth and was 
used as the positive selection to isolate the desired His6-GAN expressing transformant.  

 
 

pZLE034 DNA was used to transform T. kodakarensis KW128 (pyrF; trpE::pyrF) 

as previously described (3,66) and transformants were selected by growth on plates 

lacking tryptophan. The desired replacement of TK1252 with the GAN-His6 encoding 

gene was confirmed in a representative transformant, designated T. kodakarensis 34-5, 

by diagnostic PCR and sequencing (29).  

Recombinant protein purification 

The plasmids encoding GAN, GAN (D34A), GINS15 or GINS23 were 
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transformed into E. coli BL21 (DE3)-CodonPlus-RIL (Stratagene). Isopropyl--D-

thiogalactopyranoside induction, expression at 16°C for 16 h and purification of the 

recombinant N-terminal His6-tagged GAN and GAN (D34A), and C-terminal His6-

tagged GINS15 and GINS23 from E. coli cell lysates by Ni2+ affinity chromatography 

were carried out as previously described (100). Aliquots of the purified proteins were 

stored at -80°C.  

Size exclusion chromatography 

Aliquots of each experimental protein (100 g) or protein mixture and Gel 

Filtration standards (Bio-Rad) were diluted in 200 l of 25 mM Tris-HCl (pH 7.5), 

100 mM NaCl, 10% (v/v) glycerol and loaded onto a Superdex-200 column 

(HR10/30; GE Healthcare) pre-equilibrated in the same buffer. Fractions (250 l) 

were collected from the column at a flow rate of 0.5 ml/min. The proteins present in 

aliquots (80 l) of each fraction were separated by electrophoresis through a 12% 

(w/v) polyacrylamide-SDS gel and stained with Coomassie brilliant blue (R250).  

Nuclease assays 

Unless otherwise noted in the figure legends, the nuclease assay reaction 

mixtures (20 l) containing the DNA substrate, BSA (125 g/ml), 25 mM Tris-HCl 

(pH 7.5), 2 mM MnCl2 and GAN, were incubated at 70°C for 20 min. Nuclease 

digestion was stopped by adding 20 l of 95% formamide, 0.1× TBE, 10 mM EDTA 

and incubation at 100°C for 2 min. The digestion products were visualized and 

quantified by phosphorimaging after electrophoretic separation through 20% (w/v) 

polyacrylamide-8 M urea gels run in TBE for 1.25 h at 15 W. For native gels nuclease 
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reactions were stopped by adding 5 l of 50% glycerol, 20 mM EDTA. The digestion 

products were visualized and quantified by phosphorimaging after electrophoretic 

separation through 20% (w/v) polyacrylamide gels run in TBE for 2 h at 300 V.  

Liquid chromatography-mass spectrometry 

Aliquots (10 M) of the DNA templates, 5’-AAAAAAGG and 5’-GGAAAAAA, 

were incubated in reaction mixtures (50 l), with or without 20 pmol GAN, for 1 h at 

70°C in a buffer containing 5 mM ammonium formate (pH 6.5), 2 mM MnCl2. The 

products were subjected to liquid chromatography (LC)/mass spectrometry (MS) 

analyses using the negative ion mode with a Finnigan LTQ ion trap mass 

spectrometer (San Jose, CA, USA) equipped with nanospray ionization (NSI) 

interface coupled to an Agilent 1200 HPLC system (Palo Alto, CA, USA). The flow 

from the Aligent pump was split from 0.85 ml to 25 nl/min using a 75 m internal 

diameter (ID) silica capillary as the flow splitter. Separations were performed using 

50 m ID silica capillary columns (Polymicro Technology, Phoenix, AZ, USA) with 

in-house made frit packed with 15 cm of 3 m Atlantis T3 C18 aqueous reversed 

phase particles (Waters, Milford, MA, USA). The mobile phase A was 5 mM 

ammonium formate (pH 6.0) in water, and the mobile phase B was 5 mM ammonium 

formate in methanol. Analytes were eluted over 30 min using a 0-95% linear gradient 

of solvent B. The heated capillary was at 200°C. Fragmentation was activated by 

collision-induced dissociation of 35%. Selective reaction monitoring was 

implemented with the following transitions: dAMP: 330.1 to 195.1 m/z; dGMP: 346.1 

to 195.1 m/z; dAMP-dAMP: 643.1 to 330.1 m/z; and dGMP-dGMP: 675.1 to 346.1 

m/z. The instrument control, data acquisition, and data analysis were performed by 
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Xcalibur software (Thermo Electron Corporation, version 2.0.7 SP1).  

Isolation and identification of His6-tagged GAN and associated proteins from T. 

kodakarensis 

T. kodakarensis 34-5 cultures (5 liter) were grown to late exponential phase 

(OD600 of 0.8) at 80°C in MA-YT medium supplemented with 5 g sodium pyruvate/l 

in a BioFlow 415 fermentor (New Brunswick Scientific). The cells were harvested by 

centrifugation, resuspended in 30 ml of buffer A [25 mM Tris-HCl (pH 8.0), 500 mM 

NaCl, 10 mM imidazole and 10% glycerol] and lysed by sonication. After 

centrifugation, the resulting clarified lysate was loaded onto a 1 ml HiTrap chelating 

column (GE Healthcare) pre-equilibrated with NiSO4. The column was washed with 

buffer A and proteins were eluted using a linear imidazole gradient from buffer A to 

67% buffer B [25 mM Tris-HCl (pH 8.0), 100 mM NaCl, 150 mM imidazole and 

10% glycerol]. Fractions that contained the GAN protein were pooled and dialyzed 

against buffer C [25 mM Tris-HCl (pH 8.0), 500 mM NaCl, 0.5 mM EDTA, 2 mM 

DTT]. Aliquots (30 g) of the protein were precipitated by adding trichloroacetic acid 

(TCA; 15% final concentration). The TCA-precipitated proteins were identified by 

multi-dimensional protein identification technology at the Ohio State University mass 

spectrometry facility (http://www.ccic.ohio-state.edu/MS/proteomics.htm) using the 

MASCOT search engine. The protein isolation and mass spectrometry analyses were 

also repeated twice using lysates from two independent cultures of T. kodakarensis 

KW128. These control experiments identified the T. kodakarensis proteins that bound 

and eluted from a Ni2+ charged matrix in the absence of a His6-tagged protein. All 

proteins co-isolated with His6-GAN by binding to Ni2+ matrix from T. kodakarensis 
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34-5 cell lysates that had high MASCOT scores, and that were not present in the 

control samples, are listed in Table 3-1.  

Results 

Purified GAN and GINS15 form complexes in solution. 

GAN (TK1252p) was co-isolated with His6-GINS15 (TK0536p) from T. 

kodakarensis cell lysates by His6-GINS15 binding to a Ni2+ charged matrix followed 

by imidazole elution consistent with GAN forming a stable complex with GINS15 in 

vivo (Chapter 2). To determine if these proteins also interacted in vitro, recombinant 

GAN and GINS15 were mixed and the products examined by size exclusion 

chromatography. In the absence of GINS15, the GAN (52.9 kDa) elution profile was 

consistent with the presence of monomers and (GAN)2 dimers (Figure 3-2A; elution 

peaks in fractions 53 and 59). GINS15 (21.5 kDa) alone eluted almost exclusively at a 

position consistent with a (GINS15)2 dimer (Figure 3-2B, elution peak in fraction 56), 

as reported previously for GINS15 from S. solfataricus (31). When incubated 

together, GAN and GINS15 interacted to form several complexes that eluted in 

fractions consistent with the formation of complexes larger than (GAN)2 and 

(GINS15)2 dimers (Figure 3-2E, elution peaks in fractions 38 and 47). Incubation of 

GAN with GINS23 (19.2 kDa) did not result in the formation of larger complexes 

(Figure 3-2F). GAN bound the [GINS152-GINS232] complex (Figure 3-2G), 

suggesting that the GAN-GINS15 interactions did not disrupt the GINS complex 

(30,31).  



 

 
 

 
 

Table 3-1. Proteins co-purified with GAN. 
Gene # Score MW (Da) Peptide matches Percent coverage Function 

TK1903 1354 150190 54 19.5 PolD-L 
TK1902 947 80848 43 28.4 PolD-S 
TK1252 746 52858 26 37.1 GAN 
TK1619 155 19154 6 14.6 GINS23 
TK1637 105 29250 4 13.8 proteasome subunit alpha 
TK1496 97 22992 3 12.9 30S ribosomal protein S2 
TK0536 87 21583 2 14.9 GINS15 
TK1748 81 125718 3 3.5 isoleucyl-tRNA synthetase 
TK0847 79 8671 4 38.6 hypothetical protein TK0847 
TK2217 79 44001 2 3.3 2-amino-3-ketobutyrate coenzyme A ligase 
TK0593 73 45867 3 6.7 Unknown 
TK2157 54 36667 3 6 Unknown 
TK2106 50 46763 2 3.5 phosphopyruvate hydratase 
TK1940 48 39764 3 11.2 small-conductance mechanosensitive channel 
TK0171 48 41290 2 2.8 Unknown 
TK0566 45 96249 2 1.6 DEAD/DEAH box RNA helicase 
TK0714 43 74602 3 2.7 iron(II) transport protein B 
TK2253 41 28743 13 3.2 Unknown 
TK0470 40 198006 2 0.6 reverse gyrase 
TK2276 39 23395 2 16.9 orotidine 5'-phosphate decarboxylase 
TK1448 37 39518 2 2 5,10-methylenetetrahydrofolate reductase 
TK2270 29 7456 2 30.2 Unknown 
TK2255 28 48783 2 3 bifunctional phosphatase/dolichol-phosphate glucosyltransferase 
TK0263 27 43206 2 3.5 3-phosphoshikimate 1-carboxyvinyltransferase 

Proteins with at least two peptides matches are listed along with their molecular weight, MASCOT score, and the percentage of the amino acid 
sequence covered by the matching peptides. (See text for further details.)  
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Figure 3-2: Gel-filtration assay indicates GAN interacts with GINS15.   

A sample (100 g) of each protein listed to the right of the corresponding panels 
(A through G) was subjected to Superdex-200 gel filtration analysis. Aliquots (80 l) 
from each fraction were separated by electrophoresis through 12% polyacrylamide-
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SDS gels and stained with Coomassie brilliant blue (R-250). The fractions in which γ-
globulin (158 kDa), ovalbumin (44 kDa) and myoglobin (17 kDa) eluted are noted at 
the top of the figure.  

 

GAN is a ssDNA nuclease. 

Based on limited sequence similarities between GAN and E. coli RecJ (Figure 3-

3), GAN was predicted to be a ssDNA nuclease (2). As shown in Figure 3-4A, this 

was confirmed. A Cy3-labeled single stranded deoxy-oligonucleotide (30-mer) was 

fully digested by GAN in the presence of Mn2+ (Figure 3-4A; lane 2) and limited 

activity was also observed with Mg2+ (Figure 3-4A; lane 8). There was no activity in 

the absence of metal ions, or with Zn2+, Li+ or Ca2+ present. An aspartate, known to be 

important for RecJ activity (101), is conserved in the GAN-RecJ alignment (Figure 3-

3, marked by an asterisk). This was replaced by alanine, and the GAN (D34A) variant 

had minimal nuclease activity with Mn2+ present (Figure 3-4A; lane 3) and no 

detectable activity with Mg2+ (Figure 3-4A; lane 9). An E. coli RecJ variant with the 

analogous alanine for aspartate replacement similarly retained a residual nuclease 

activity, but had 400-fold lower activity than wild-type RecJ (101).  

As expected, digestion of the 30-mer ssDNA substrate was dependent on the 

GAN concentration (Figure 3-4B and C) and time of incubation at 70°C (Figure 3-4D 

and E) and, under all reaction conditions, the ssDNA substrate was digested almost 

exclusively to mononucleotides as determined by MS analysis (Figure 3-5). 

Consistent with GAN degrading the ssDNA molecules processively, there was no 

detectable accumulation of intermediate length oligonucleotides (Figure 3-4B and D). 

Providing further support for this conclusion, essentially the same pattern of digestion 

products was obtained when the 30-mer DNA was Cy3-labeled at the 3’-terminus or 
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Figure 3-3: Alignment of the amino acid sequence of the T. kodakarensis GAN 
and E. coli RecJ.  

T. kodakarensis GAN (TK1252: GI:57641187); E. coli RecJ (GI:16130794). The 
Asp residue that was replaced by Ala in the GAN (D34A) variant is marked by an 
asterisk.  

 
 

Cy5-labeled at the 5’-terminus (Figure 3-4C and E). As illustrated in Figure 3-4E, the 

30-mer ssDNA was degraded by GAN at a rate of 36.9 ± 13.3 nt/mol/min. Although 

the monomer-dimer equilibrium remains to be determined, both GAN monomers and 

dimers appeared to be active (Figure 3-6).  

GAN acts as 5’-exonuclease on ssDNA.  

GAN was incubated with the nucleic acids illustrated in Figure 3-7A to  
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Figure 3-4: GAN is a Mn2+-dependent exonuclease.  

(A) Electrophoretic separation of the products of reaction mixtures (20 l) that 
contained 7.5 pmol 3’-Cy3-labeled oligonucleotides (A4, Appendix 4), 4 pmol of 
GAN or GAN (D34A), 25 mM Tris-HCl (pH 7.5), 125 g/ml BSA and 2 mM MnCl2, 
ZnCl2, MgCl2, LiCl or CaCl2, that were incubated at 70°C for 20 min. (B) Reaction 
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mixtures (20 l) containing 7.5 pmol of 3’-Cy3 labeled oligonucleotides (A4, 
Appendix 4) in 25 mM Tris-HCl (pH 7.5), 2 mM MnCl2, 125 g BSA/ml and 0, 0.06, 
0.125, 0.25, 0.5, 1, 2 and 4 pmol (lanes 1-8) of GAN protein. In lane 9, 4 pmol of 
GAN (D34A) was added in place of wild-type GAN. The reaction mixtures were 
incubated at 70°C for 20 min and the products were separated by electrophoresis, 
visualized and quantified by phosphorimaging. (C) Quantification of the A4 digestion 
products shown in (B), and of digestion products generated from 5’-Cy5 labeled 
oligonucleotide (A1, Appendix 4) under the same reaction conditions. The data 
shown are the averages, with standard deviations, from three independent 
experiments with each substrate. (D) Separation of the reaction products generated in 
reaction mixtures (20 l) that contained 10 pmol of 3’-Cy3-labeled oligonucleotide 
(A4, Appendix 4) 1 pmol GAN or GAN (D34A), 2 mM MnCl2 and 125 g/ml BSA 
in 25 mM Tris-HCl (pH 7.5) incubated at 70°C for 0, 1, 5, 10, 20 and 30 min. (E) 
Quantification of the A4 digestion products shown in (D), and of digestion products 
generated from 5’-Cy5 labeled oligonucleotide (A1, Appendix 4) under the same 
reaction conditions. The data shown are the averages, with standard deviations, from 
three independent experiments with each substrate.  

 
 

determine the direction of exonuclease digestion and substrate specificity. No 

nuclease activity was detected with linear dsDNA (substrate III; Figure 3-7A and B). 

This inability to degrade dsDNA provided an assay to determine the direction of 

GAN digestion of ssDNA. There was no digestion of a 3’-ssDNA extension from a 

dsDNA molecule (substrate II; Figure 3-7 and B) whereas a 5’-ssDNA extension was 

rapidly hydrolyzed (substrate I; Figure 3-7 and B). Digestion of the 5’-ssDNA 

extension was then followed by a much slower separation and degradation of the two 

strands of the dsDNA. In all experiments, DNA hydrolysis yielded mononucleotides 

(Figure 3-7A; lane 4; Figure 3-7C and D). Essentially the same results were obtained 

when the substrates were [32P]-labeled rather than dye-labeled. Based on the results 

obtained, GAN is a 5’ → 3’ ssDNA-specific exonuclease, and given the almost 

simultaneous release of a label attached to either the 5’- or 3’-terminus of a ssDNA 

substrate (Figure 3-4B and D), the initial binding of GAN to the 5’-terminus is most 

likely the rate limiting step in the degradation of these substrates.  
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Figure 3-5: GAN nuclease produces mononucleotides.  

Reconstructed ion chromatograms of the products of GAN digestion of 5’-
AAAAAAGG identified by HPLC-MS/MS analysis. The products were evaluated 
specifically for the presence of (A) dAMP, (B) dGMP, (C) dAMP-dAMP and (D) 
dGMP-dGMP. The ratio of dAMP to dGMP was 9:1 and deviated from the expected 
3:1 ratio due to differences in the response factor/sensitivities of dAMP and dGMP. 
Asterisk indicates peak detection with signal to noise ratio > 20. The absence of 
dinucleotides, dAMP-dAMP (C) and dGMP-dGMP (D), are indicated by the traces. 
MS/MS transitions are: dAMP (m/z 330.1 → 195.1), dGMP (m/z 346.1 → 195.1), 
dAMP-dAMP (m/z 643.1 → 330.1) and dGMP-dGMP (m/z 675.1 → 346.1). 
Essentially, the same results were obtained when the substrate was 5’-GGAAAAAA. 
(Experiment performed by Wei Yuan and James L. Edwards.)  

 
 
To further confirm the requirements for nuclease activity, experiments were 

undertaken using linear and circular versions of a 200-mer ssDNA substrate (Figure 

3-8A and B). When linear, this oligonucleotide was readily degraded by GAN but, 

when circular, remained intact. A small amount of linear 200-mer present in the 

circular 200-mer preparations was degraded by exposure to GAN (Figure 3-8A). As 

controls, the 200-mer substrates were incubated with a mixture of E. coli 

exonucleases I and III and, as expected, these well-characterized enzymes degraded  
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Figure 3-6: Monomers and dimers of GAN possess nuclease activity.  

A GAN protein solution (100 g) was subjected to Superdex-200 gel filtration 
analysis. The protein concentration in each eluted fraction was measured by 
ultraviolet absorption at 280 nm (top) and the proteins in aliquots (80 l) from each 
fraction were separated by electrophoresis through 12% SDS-PAGE and stained with 
Coomassie Brilliant Blue (R-250). Aliquots (2 l) of each indicated fraction (inset) 
were added to reaction mixtures that contained 7.5 pmol of 3'-Cy3 labeled 
oligonucleotides (A4, Appendix 4), 25 mM Tris-HCl (pH 7.5), 2 mM MnCl2 and 125 
g/ml BSA. The reaction mixtures were incubated at 70°C for 10 min and the 
products generated were separated by electrophoresis and visualized by 
phosphorimaging.  

 
 

only the linear substrate (Figure 3-8A). GAN appears to specifically degrade DNA as 

no degradation of RNA could be observed under all conditions tested (Figure 3-8C).  

GINS15 stimulates the GAN nuclease activity.  

To determine if GINS affected the activity of GAN, its nuclease activity was 

assayed in the presence or absence of GINS15, GINS23 or the [GINS152-GINS232] 

complex. The presence of GINS15 stimulated GAN nuclease activity (Figure 3-9; 

Figure 3-10A, lanes 1-5) but had no stimulatory effects on GAN (D34A) (Figure 3-  
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Figure 3-7: GAN is a 5’ → 3’ exonuclease.  

(A) The structures of the DNA substrates, with the position of the Cy3-label 
indicated (dark circle), are illustrated above the electrophoretic separations of the 
GAN digestion products. Reaction mixtures (20 l) that contained 7.5 pmol of Cy3-
labeled substrate, 125 g/ml BSA, 25 mM Tris-HCl (pH 7.5), 2 mM MnCl2 and 0 (-), 
2, 4 or 8 pmol of GAN or 8 pmol of GAN (D34A) were incubated for 15 min at 55°C. 
The reaction products were separated by electrophoresis through 20% native 
polyacrylamide gels, visualized and quantified by phosphorimaging. (B) Average 
values from three independent repetitions of the experiments shown in (A). (C) 
Native gel electrophoretic separation of the products of digestion of substrate I in 
reaction mixtures (20 l) that contained 7.5 pmol of substrate I, 4 pmol of GAN 
(lanes 1-11) or GAN (D34A) (lane 13), 125 g BSA/ml, 25 mM Tris-HCl (pH 7.5), 2 
mM MnCl2. The reaction mixtures were incubated at 55°C for 0, 0.5, 1, 2, 4, 6, 8, 10, 
12, 14 or 16 min. (D) Average values, with standard deviations, from three 
independent repetitions of the experiments shown in C. The Cy3-labeled molecules 
indicated and quantified were a: substrate I (filled diamond); b: ds DNA product 
(filled square); c: ss oligonucleotides from substrate I (filled triangle); d: 
mononucleotides (filled circle).  

 
 

10A; lanes 11 and 12) although GINS15 and GAN (D34A) were found to interact 

(Figure 3-11). GINS15 alone had no nuclease activity (Figure 3-10A; lane 6).  



 

 55

 

Figure 3-8: GAN is an ssDNA-specific exonuclease.  

(A) Electrophoretic separation of the products of reaction mixtures (20 l) that 
contained 0.75 pmol of [32P]-labeled 200 nt linear or circular ssDNA, 25 mM Tris-
HCl (pH 7.5), 2 mM MnCl2 and 125 g/ml BSA, and 0 (-), 0.025, 0.1, 0.25 and 1 
pmol GAN incubated at 60°C for 10 min. The products of incubation of these 
substrates with a mixture of E. coli exonucleases I and III (10 and 50 units, 
respectively; Exo) for 30 min at 37°C were separated in lanes 6 and 12 (Experiment 
performed by Wiebke Chemnitz). (B) Quantification of the GAN digestion shown in 
(A). (C) Electrophoretic separation of the products of reaction mixtures (20 l) 
incubated at 55°C for 10 min that contained 7.5 pmol of Cy3-labled RNA or DNA 
(A4R and A4, respectively, Appendix 4), 2 pmol of GAN or GAN (D34A), 125 
g/ml BSA, 25 mM Tris-HCl (pH 7.5), 2 mM MnCl2 and 0.5, 1, 2 (lanes 2-4) or 4 
(lanes 5, 6, 8, and 12) pmols of GINS15 or 4 pmols of GINS23 (lanes 8-10).  

 
 

Incubation with GINS23 did not stimulate the GAN nuclease activity (Figure 3-10A; 

lane10) and the presence of [GINS152-GINS232] complexes had the same stimulatory 
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Figure 3-9: GINS15 stimulates GAN activity.  

(A) and (B). Separation of the reaction products generated in reaction mixtures 
(20 l) that contained 7.5 pmol of each 3'-Cy3 (A4, Appendix 4) and 5'-Cy5 (A1, 
Appendix 4) labeled oligonucleotides, 0.4 pmol GAN, 2 mM MnCl2 and 125 g/ml 
BSA in 25 mM Tris-HCl (pH 7.5) incubated at 70°C for 0, 2, 5, 10, 20, 30, 40, 50 and 
60 min in the absence (A) or presence (B) of 0.8 pmol GINS15 protein. No GAN 
protein was added to lane 10. Only the gels with the 3'-Cy3 labels are shown. (C) 
Quantification of the digestion products shown in panels A and B. The data shown 
are the averages, with standard deviations, from three independent experiments with 
each substrate.  

 
 

effect as the presence of GINS15 alone (Figure 3-10A; lanes 5 and 8). Incubation 

with GINS15 did not change the substrate specificity of GAN; with GINS15 present 

GAN still did not degrade dsDNA or RNA (Figure 3-8 C).   

DNA polymerase D interacts with GAN in vivo. 

GAN was identified as a protein that formed a stable complexin vivo with His6-

tagged GINS15 (Chapter 2). To determine if additional proteins formed complexes in  
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Figure 3-10: GAN nuclease activity is stimulated by GINS15.  

(A) Electrophoretic separation of the products of digestion of a 3’-Cy3-labeled 
substrate (A4, Appendix 4) in reaction mixtures (20 l) that contained 7.5 pmol of 
substrate, 125 g BSA/ml, 25 mM Tris-HCl (pH 7.5), 2 mM MnCl2 and, when 
indicated, 2 pmol GAN or GAN (D34A) in the presence of 0.5, 1, 2 (lanes 2-4) or 4 
(lanes 5, 6, 8 and 12) pmol of GINS15, or 4 pmol GINS23 (lanes 8-10 and 12). The 
reaction mixtures were incubated at 70°C for 4 min. (B) Quantification of the A4 
digestion products shown in (A), and of digestion products generated from 5’-Cy5-
labeled oligonucleotides (A1, Appendix 4) under the same reaction conditions. The 
data shown are the averages from three independent experiments with each substrate.  

 

vivo with GAN, a T. kodakarensis strain was constructed that synthesized His6-tagged 

GAN (Figure 3-1) and proteins that co-purified with this tagged protein from cell 

lysates were identified by MS (Table 3-1). Both subunits of the GINS complex 

(GINS15 and GINS23) and both subunits of the euryarchaeal specific PolD were 

predominant among the co-purified proteins. This provides strong reciprocal evidence 

for the presence of a GAN-GINS complex in vivo, and is consistent with a larger 

replisome structure in which the GAN-GINS complex also interacts with PolD.  
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Figure 3-11: GAN (D34A) interacts with GINS15.  

A sample (100 g) of each protein listed to the right of the corresponding panels 
(A through D) was subjected to Superdex-200 gel filtration analysis. The proteins in 
aliquots (80 l) from each fraction were separated by electrophoresis through 12% 
polyacrylamide-SDS gels and stained with Coomassie brilliant blue (R-250). 
Fractions in which -globulin (158 kDa), ovalbumin (44 kDa) and myoglobin (17 kDa) 
eluted are noted at the top of the figure. Panel A and C are the same gel shown in 
Figure 3-2A and 3-2E respectively.  
 
 



 

 59

Discussion 

Genes encoding well-conserved GAN homologues are widely distributed in the 

Euryarchaea but are not present in Crenarchaea, Bacteria or in the Nanoarchaeum 

equitans genome (Figure 3-12). The most parsimonious interpretation is therefore that 

the GAN nuclease evolved in the archaeal domain, and specifically in the 

euryarchaeal lineage after separation from the crenarchaeal lineage. It seems likely 

that GAN plays a conserved role in euryarchaeal DNA metabolism, and given its 

robust 5’ → 3’ exonuclease activity, stimulated by association with GINS15, GAN 

could play a role directly in euryarchaeal genome replication. In Bacteria, the 5’ 

exonuclease activity of DNA polymerase I (PolI) is required to remove the RNA 

strand. The strand displacement activity of eukaryal DNA polymerase  (Pol) can 

generate flap structures that contain the RNA primer (Figure 3-13B) and are 

recognized and cleaved by Fen1 (59,102). Dna2 helicase/nuclease may also 

participate in the resection of the flap structures (103). However, as Fen1 is not 

essential for viability (104,105), alternative mechanism(s) must exist to mature the 

eukaryal Okazaki fragments. In the Euryarchaea, which includes T. kodakarensis, 

PolD may synthesize the lagging strand (106). This polymerase does have strand 

displacement activity (106,107) which, on encountering an Okazaki fragment, could 

generate the 5’ ssDNA required for archaeal Fen1 digestion (Figure 3-13C_I). Since 

Fen1 is also not essential for Euryrachaea viability (32) it is possible that the 5’ 

ssDNA generated by the PolD displacement reaction can be removed by GAN 

(Figure 3-13C_II). While bacterial and eukaryal Okazaki fragments are initiated by 

short ribonucleotides, lagging strand synthesis in Archaea may involve only  
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Figure 3-12: Alignment of GAN in euryarchaeota.  

An alignment of the amino acid sequences of the GAN protein from six 
euryarchaeota species. Highlighted colors represent residues with 100% identity in 
red, 80% identity in yellow and 60% identity in green. The accession numbers used 
are: Methanosarcina acetivorans, NP_615782.1; Methanococcoides burtonii, 
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YP_566162.1; Methanocaldococcus jannaschii, NP_247822.1; T. kodakarensis, 
YP_183665.1; Pyrococcus abyssi, YP_183665.1; Methanothermobacter 
thermautotrophicus, NP_276538.1.  

 
 

 

Figure 3-13: Proposed role for GAN during archaeal DNA replication.  

Models for lagging strand DNA maturation in the (A) Bacteria, (B) Eukarya and 
(C) Archaea. See text for details.  
 

deoxynucleotide primers (47). If this was the case, their degradation could 

becatalyzed by the 5’ → 3’ exonuclease activity of GAN. Here, we have established 

that a 5’ ssDNA extension is required to initiate GAN activity in vitro but, in vivo, as 

a component of a replisome complex, GAN might have the ability to initiate DNA 

degradation from an unsealed nick in dsDNA. If this were the case, then GAN could 

provide a function equivalent to the 5’ → 3’ exonuclease activity of bacterial PolI 

(Figure 3-13C_III).  
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Chapter 4: Regulating PCNA activity by the binding of small 

protein.  

Introduction 

PCNA plays essential roles in DNA metabolic processes including replication, 

repair, recombination and cell cycle progression [for review see (21,108,109)]. PCNA 

is a ring-shaped trimeric protein that encircles duplex DNA (52,53) and tethers other 

enzymes to the DNA (21,110,111). To date, all activities described for the PCNA 

proteins require them to encircle the duplex; no biochemical function for PCNA off 

DNA has been reported. However, the PCNA proteins form stable rings that cannot 

assemble independently around the duplex. The RFC complex functions as the clamp 

loader and assembles the PCNA rings around the duplex [reviewed in (112)].  

Most of the proteins that interact with PCNA do so via a PIP (PCNA-interacting 

peptide) motif (73,74). The PIP motif is a fairly weak consensus sequence of 

QXXhXXaa where “h” is a moderately hydrophobic amino acid (isoleucine, leucine 

or methionine) and “a” is an aromatic residue, followed by a non-conserved sequence 

containing basic amino acids. The PIP motif interacts with the loop that connects the 

two domains in each PCNA monomer [referred to as interdomain connecting loop 

(IDCL)] (113). Biochemical and structural analysis illustrated the requirement for an 

intact PIP motif for the interactions between replication enzymes and PCNA. Other, 

less common, PCNA-binding motifs have also been reported in several PCNA 

interacting enzymes [for example see (114)].  

The -subunit is the functional homologue of PCNA in bacteria forming a ring-
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shaped structure similar to PCNA (20). Similar to PCNA, the -subunit also interacts 

with a number of enzymes involved in nucleic acid metabolic processes many of 

which bind to the -subunit via a consensus sequences, QL[S/D]LF and QLxLx[L/F], 

that resembles the PIP motif (115,116).  

Genes encoding PCNA are present in all archaeal genomes. While the genomes 

of the euryarchaeota branch of archaea contain a single gene encoding for PCNA, the 

genome of T. kodakarensis contains two genes encoding for PCNA homologues 

(TK0535 and TK0582 encoding for PCNA1 and PCNA2, respectively) (56,69). It 

was found that both proteins form trimeric structures with characteristics similar to 

those of other archaeal and eukaryal PCNA proteins (51). Both proteins were also 

shown to support processive DNA synthesis by PolB and PolD (55,56,69).  

Most, but not all, of the archaeal replication proteins were identified by their 

homology to the eukaryotic or bacterial counterparts using in silico approaches. 

Bioinformatic tools, however, cannot identify archaeal-specific replication proteins or 

proteins with similar function to the eukaryotic/bacterial counterparts but with diverse 

sequences. In the last few years, however, genetic tools have been used to expand the 

pool of putative archaeal replication factors. In one of these studies, several 

established replication proteins from the archaeon T. kodakarensis were tagged in 

vivo with an amino- or carboxy-terminal hexahistidine extension (His6-tag) (29). 

These proteins were purified using nickel-affinity column from T. kodakarensis cell 

lysates, and the proteins that co-isolated were identified (29).  

One of the proteins identified in the study was a small protein (~8.5 kDa, 

encoded by TK0808) that co-purified with PCNA1. Small PCNA binding proteins, 
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like P21, are important PCNA regulator in eukaryote. However, the PCNA regulator 

in archaea is still not known yet. So we hypothesize that this small protein may be a 

possible PCNA regulator in archaea. For this reason, we performed in detail study of 

TK0808. Bioinformatic analysis revealed that homologues proteins are present only 

in Thermococcales genomes. In vitro studies showed that the protein could bind both 

PCNA1 and PCNA2 resulting in the inhibition of PCNA dependent activities of DNA 

polymerase and Fen1 activities. Therefore the protein was designated TIP 

(Thermococcales inhibitor of PCNA). However, TIP does not contain a PIP motif or a 

sequence similar to those involved in proteins interactions with the bacterial -

subunit. In addition, using H/D exchange and site directed mutagenesis it was found 

that TIP does not interact with the IDCL on PCNA. These results suggest a new 

mechanism to bind and inhibit PCNA activity and may provide a new target for drug 

discovery.  

Materials and Methods 

Cloning and purification of recombinant proteins. 

For protein expression in E. coli the genes encoding TIP (TK0808) and Fen1 

(TK1281) were PCR-amplified from T. kodakarensis genomic DNA using the 

primers shown in Supplementary Table S1 which include an NdeI and SalI restriction 

enzymes in the forward and reverse primers, respectively. The amplified DNA was 

ligated with pET15b which include an in frame His6-tag at the N-terminus (117). The 

construction of the expression vectors for T. kodakarensis PCNA1, PCNA2, RFC, 

PolB and M. thermautotrophicus PCNA were previously described (48,55,56,118).  
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The vectors to express the mutant forms of PCNA2 were generated using site-

specific mutagenesis using a QuikChange kit (Agilent Technologies) and the 

plasmids that contain the wild-type proteins as templates. The oligonucleotides used 

are listed in Appendix 6.  

The pET based vectors encoding for the different proteins were transformed into 

BL21 DE3 Rosetta cells (Life Technologies) and protein expressions were induced at 

37°C by the addition of 0.5 mM IPTG and farther incubation for 3 h. The proteins 

were purified by absorption and elution from a Ni column as previously described for 

the PCNA proteins (55). Following purification the proteins were aliquoted and 

stored at -80°C.  

Elongation assay of singly primed M13.  

PolB catalyzed elongation of singly primed M13 ssDNA was carried out in 

reaction mixtures (20 L) containing 40 mM Tris-HCl (pH 8.0), 250 mM NaCl, 1.5 

mM DTT, 100 g/ml BSA, 10 mM magnesium acetate, 2 mM ATP, 100 M each of 

dCTP, dGTP, and dTTP, 20 M [-32P]dATP (1.2 × 104 cpm/pmol), 10 fmol of 

singly primed M13mp18, 440 fmol of RFC and 100 fmol of PolB and PCNA1, 

PCNA2 and TIP proteins as indicated in the figure legend. Reaction mixtures were 

incubated for 20 min at 70°C. Following incubation, reactions were treated with 2 μl 

of stop solution (containing 0.1M EDTA, 5% SDS, 80 g yeast tRNA, 20 g 

proteinase K) and incubated for 20 min at 37°C. For quantitation, aliquots (4 L) of 

reaction mixtures were removed, and DNA synthesis measured by adsorption to 

DE81 paper followed by liquid scintillation counting. The mixture was adjusted to 3 

M ammonium acetate and 70% ethanol and the DNA collected by centrifugation. 
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Following in vacuo drying the pellets were dissolved in 0.05 M NaOH and 1 mM 

EDTA and separated by alkaline agarose electrophoresis.  

Fen1 nuclease assay.  

Three oligonucleotides were used to generate the substrate for Fen1 assay. H7 

(5’-CTTCAATCGGCTCAGACCGAGCAGAATTCTATGTGTTTACCAAGCGCT 

G-3’) was labeled at the 5’-end with 32P using [-32P]ATP and polynucleotide kinase. 

Following the labeling the DNA was hybridized to two additional oligonucleotides, 

H2 (5’-CAGCGCTTGGTAAACACATAGAATTCTGCTCGGTCTCTCGGCAGAT 

TCTAGAAATCGACGCTAGCAAGTGAC-3’) and H5 (5’-GTCACTTGCTAGCGT 

CGATTTCTAGAATCTGCCGAG-3’). The substrate was purified from 

polyacrylamide gel as previously described (99).  

Unless otherwise noted, Fen1 nuclease assays were performed in 20 l reaction 

containing 20 fmol substrates, 25 mM Tris-HCl (pH 8.0), 10 mM MgCl2, 125 g/ml 

BSA, and proteins as indicated in the figure legends. Reactions were incubated at 

60°C for 1 hr. Following incubation the reactions were stopped by adding 20 l of 

95% formamide, 10 mM EDTA and 0.1x TBE followed by incubation at 100°C for 2 

min. The reaction products were separated on 20% polyacrylamide-8M urea gels in 

1x TBE followed by visualization and quantification using phosphorimaging (GE 

Healthcare).  

H/D exchange (HDX) mass spectrometry. 

For H/D exchange (HDX) mass spectrometry analysis the protein stock solution 

was diluted in PBS buffer (20 mmol/l sodium phosphate, 500 mM NaCl, pH 7.6) to 
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prepare a 15 μmol/L final analytical concentration and equilibrated at 4°C for 2 hr. 

PCNA-TIP complex was prepared by mixing PCNA and TIP at a ratio of 1:1 (PCNA 

monomer : TIP monomer) and equilibrated at 4 °C for 16 hr. 

HDX was conducted on an HDX PAL robot (LEAP Technologies, Carrboro, 

NC). Protein solution (5 l) was diluted into 21 μl D2O buffer (20 mmol/l sodium 

phosphate, 500 mmol/l NaCl, pD 7.6) at 3 °C. At selected times (30 sec, 5 min, 20 

min, 40 min, and 60 min) the HDX was quenched by mixing with 40 l of 3 mol/L 

urea, 1% TFA at 1°C. The quenched solution was injected into an on-line pepsin-

digestion device for 3 min. The digested protein solution was trapped on a C18 guard 

column (1.0 mm dia., 5 m, Grace Discovery Sciences). The peptide mixture was 

separated with a C18 analytical column (1.0 mm dia. x 5 cm length, 1.9 m, Hypersil 

GOLD, Thermo Scientific) via a Dionex Ultimate 3000 UPLC with a 9.5 min 

gradient operated with a binary mixture of solvent A and B at 50 l/min flow rate. 

The gradient settings were: 5% to 35% solvent B in 3 min, 35% to 70% solvent B in 5 

min, 70% to 100% solvent B in 0.5 min, and isocratic flow at 100% solvent B for 0.5 

min, then returned to 5% solvent B in 0.5 min. Solvent A was water containing 0.1% 

formic acid, and solvent B was 80% acetonitrile and 20% water containing 0.1% 

formic acid. All LC connection lines and valves were housed in the refrigerated 

compartment of the HDX PAL at 2°C. Peptides were analyzed on a Thermo LTQ 

Orbitrap Elite (Thermo Fisher, San Jose, CA). The instrument settings were: spray 

voltage, 3.7 kV; sheath gas flow rate, 25 (arbitrary units); capillary temperature, 

270°C. Three replicates were obtained for each ion-exchange time point.  
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Peptide identification and HDX data processing.  

Peptides of PCNA (PCNA1, PCNA2, PCNA2-A mutant, PCNA2-E mutant) and 

TIP were identified using tandem MS (MS/MS) on the Thermo LTQ Orbitrap Elite. 

One full mass spectral acquisition triggered six scans of MS/MS (precursor ion is 

activated by CID) whereby the most abundant precursor ions were sequenced. Peptide 

identification was achieved by submitting Thermo RAW files to both MASCOT 

(Matrix Science, Oxford, U.K.) and MassMatrix database search engines. The 

MASCOT settings were: enzyme, none; MS tolerance, 20 ppm; MS/MS tolerance, 

0.6 Da; maximum number of missed cleavages, 3; peptide charge of 1+, 2+ and 3+. 

The MassMatrix settings were: enzyme, nonspecific; precursor ion tolerance, 10 ppm; 

product ion tolerance, 0.8 Da; minimum pp score, 5.0. All identifications of peptides 

were manually confirmed. From mass spectra obtained during HDX-MS experiments 

the centroid of each deuterated peptide envelope and the relative deuterium uptake by 

each peptide were calculated with HDX Workbench (119). Corrections for back 

exchange were made by considering the values of 80% deuterium content of the 

exchange buffer and an estimated 70% deuterium recovery. Paired t-tests were used 

in verifying the deuterium uptake differences, and a value of p < 0.05 is considered 

significant.  

Size exclusion chromatography.  

Aliquots of each experimental protein (100 g) or protein mixture and Gel 

Filtration standards (Bio-Rad) were diluted in 200 l of 25 mM Tris-HCl (pH 8.0), 

200 mM NaCl, 0.5 mM EDTA and 10% (v/v) glycerol and loaded onto a Superdex-

200 column (HR10/30; GE Healthcare) pre-equilibrated in the same buffer. Fractions 
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(250 l) were collected from the column at a flow rate of 0.5 ml/min. The proteins 

present in aliquots (80 l) of each fraction were separated by electrophoresis through 

a 15% (w/v) polyacrylamide-SDS gel and stained with Coomassie brilliant blue 

(R250).  

T. kodakarensis strain construction and confirmation of genome structures.  

T. kodakarensis strains were grown in artificial sea water (ASW) with 5 g/L each 

of yeast extract (Y) and tryptone (T), and 2 g/L sulfur (S°) at 85°C with the growth of 

cultures measured by an increase in optical density at 600 nm (OD600) as previously 

described (120). Plasmids pOSU0808A, pOSU0808B, and pOSU0808D were created 

using standard molecular biology techniques as established and were maintained in E. 

coli (120). Transformation of T. kodakarensis cells were performed as previously 

described (121) and strain construction for markerless deletion of the TK0808 gene 

was performed as described in (120). Strains were constructed by transformation of T. 

kodakarensis TS559 (120) with transformants grow on media lacking agmatine for 

plasmid incorporation and then counter-selected on media containing 6-methylpurine 

to generate a strain containing the deletion of TK0808 with no selectable marker 

(120). Strain THH2 (TK0808) was generated by deleting the first 189 bp of the 

TK0808 ORF; the final 6 bp overlap with TK0807 and were thus retained.  

pTHH6 construction and confirmation.  

Sequences encoding TIP were amplified via PCR with a 5’ primer that contained 

the promoter for histone B from M. thermautotrophicus (PhmtB). The resultant 



 

 70

amplicon was cloned into pTS543 at a unique NotI restriction site using Clonetech In-

Fusion® HD cloning.  

Southern blot analysis.  

The genomic organization of strain THH2 was confirmed via Southern blots of 

Acc65I and BglII digested genomic DNA. The Acc65I and BglII restriction 

fragments that hybridized to a digoxigenin (DIG)-labeled amplicon probe, PCR-

generated from within TK0808 (probe B/C) and a flanking region (probe E/F) (Figure 

4-1), were identified by using anti-DIG antibodies coupled to alkaline phosphatase as 

previously described (122).  

T. kodakarensis growth curves.  

 T. kodakarensis strains were grown overnight in 5 ml ASW YT S° medium, and 

strains lacking pTHH6 were supplemented with 1 mM agmatine sulfate. Growth at 

85°C of triplicate cultures was monitored at OD600 nm of 1:100 inoculated cultures.  

Results 

TIP interacts with PCNA1 and PCNA2 in vitro.  

TIP protein, encoded by TK0808, was co-isolated with His6-PCNA1 (TK0535) 

from T. kodakarensis cell lysates (20). To determine if the two proteins also 

interacted in vitro, recombinant TIP and PCNA1 were mixed and the products 

examined by size exclusion chromatography. As previously been reported (69,93) 

PCNA1 protein (29.1 kDa) elute as a trimeric complex (Figure 4-2A; elution peaks in 

fraction 55). TIP (9.8 kDa) alone eluted as a monomer (Figure 4-2C, elution peak in  
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Figure 4-1: TIP is not essential for T. kodakarensis viability. 

(A). Annotated sections of the T. kodakarensis strains TS559 (top) and TK0808 
(bottom) genomes, highlighting the locations of genes (open arrows) and 
oligonucleotide primers (black arrows; labeled A-F). The approximate locations of 
relevant Acc65I and BglII restriction sites are shown. (B). Ethidium bromide-stained, 
agarose gel electrophorectic separation of amplicons generated using primers A and 
D (panel A) from chromosomal DNA templates from strains TS559 and TK0808 
results in a ~190 bp smaller amplicon from T. kodakarensis strains lacking TK0808 
than the parental strain, TS559. (C). Southern analysis confirms the genome 
structures of T. kodakarensis strains TS559 and TK0808. Probes were generated 
with primers B/C (left) and E/F (right). M = DNA markers, in bp. (D). Growth curves 
of T. kodakarensis strains TS559 and TK0808, alone and when containing plasmid 
pTHH6. The moving average (period = 2) is shown as a trend line for each curve. 
(Experiment performed by Thomas Santangelo)  

 
 

fraction 67). When incubated together, TIP and PCNA1 interacted to form a complex 

as evident by the elution of TIP at earlier fractions (Figure 4-2D, elution peak in 

fraction 58) and the elution of PCNA1 in later fractions (Figure 4-2D, elution peak in  
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Figure 4-2: TIP interacts with PCNA1 and PCNA2.  

One hundred micrograms of each protein were separated on Superdex-200 gel 
filtration column as described in “Material and Methods”. Aliquots (80 l) from the 
indicated fractions were separated on 15% SDS-PAGE and followed by Coomassie 
brilliant blue (R-250) staining. (A). PCNA1; (B). PCNA2; (C). TIP; (D), PCNA1 and 
TIP; (E), PCNA2 and TIP; (F), mtPCNA; (G), mtPCNA and TIP.  

 
 

fraction 58). These results not only illustrate that the two proteins interacts but also 

that the binding of TIP to PCNA results in the dissociation of the trimeric ring.  
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As discussed above, T. kodakarensis genome encodes for two PCNA proteins 

(69,93) with similar overall structures (55). It was reported that PCNA2 present in 

low levels in vivo [<50 molecules per cell (69,93)] which may explain the inability to 

detect PCNA2-TIP interactions in vivo. Nevertheless, the ability of TIP to interact 

with PCNA2 was also been evaluated. As shown in Figure 4-2B, PCNA2 protein 

(29.3 kDa) elute as a trimeric complex (Figure 4-2B; elution peaks in fraction 55) as 

was previously reported (69,93). Similar to PCNA1, TIP also form a complex with 

PCNA2 as evident but the elution of TIP at earlier fractions than TIP alone (Figure 4-

2E, elution peak in fraction 52).  

Homologues of TIP have been identified only in the genomes of Thermococcales. 

This may suggest that only PCNA proteins from these organisms can bind TIP. 

Therefore, as a control, a PCNA homologue from a different euryarchaeon, M. 

thermautotrophicus, was used. As previously reported (118), the M. 

thermautotrophicus PCNA protein (30.4 kDa) elutes from the sizing column as a 

trimeric complex (Figure 4-2F; elution peaks in fraction 55). The presence of TIP did 

not affect this elution profile (Figure 4-2G) and the elution profile of TIP was not 

altered in the presence of M. thermautotrophicus PCNA (compare Figure 4-2G to 4-

2C).  

TIP inhibits PCNA-dependent PolB activity.  

PCNA bind and stimulated the activity of many proteins involved in nucleic acid 

metabolic processes. The best understood function for PCNA is its role as the 

processivity factor for DNA polymerases. While the processivity of the replicative 

polymerase is low, it increased dramatically in the presence of PCNA (112). As TIP 
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binding to PCNA appears to affect PCNA oligomeric structure it may regulate PCNA 

functions. Therefore, the effect of TIP on PCNA stimulation of PolB activity was 

evaluated using a singly primed M13 template.  

As was previously reported (55,56,69) the elongation of the ssM13 template by 

PolB was detected only in the presence of RFC and either PCNA1 (Figure 4-3 

compare lanes 7-9 to lane 1) or PCNA2 (Figure 4-3 compare lanes 3 and 4 to lane 1). 

The presence of TIP, however, inhibited the stimulatory effect of both PCNA proteins 

(Figure 4-3 compare lanes 5 and 6 to lane 4; lanes 10-13 to lane 8 and lanes 14 and 15 

to lane 7). TIP alone, without PCNA did not affect PolB activity (Figure 4-3 lane 2). 

It was previously showed that higher concentrations of PCNA1 in comparison to 

PCNA2 are needed to achieve similar stimulation of PolB (51,56). This is likely due 

to the lower stability of the PCNA1 rings (55). Therefore the concentrations of 

PCNA1 used in the experiments shown in Figure 4-3 are higher than those used for 

PCNA2.  

The inhibition of PCNA effect on PolB by TIP can be due to its binding to PCNA 

or it may directly interact with PolB. The ability of TIP to bind PolB and the effect of 

TIP on PolB-PCNA interactions was evaluated using size exclusion chromatography. 

TIP (9.8 kDa) alone eluted as a monomer (Figure 4-4 panel C, elution peak in 

fraction67). PolB (89.6 kDa) alone also elute as monomer (Figure 4-4 panel D, 

elution peak in fraction 55). The elution profile does not change when TIP and PolB 

proteins are incubated together (Figure 4-4 compare panel I to panels C and D). 

PCNA1 (29.1 kDa) and PCNA2 (29.3 kDa) elute as a trimeric complex (Figure 4-4 

panels A and B; elution peaks in fraction 55). When PCNA1 and PCNA2 incubated  
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Figure 4-3: TIP inhibits PCNA stimulation of PolB.  

Reaction mixtures (20 l) were as described under “Materials and Methods” in 
the presence of 200 fmols (lanes 7, 14 and 15), 50 fmols (lanes 8 and 10-13), or 20 
fmols (lane 9) of PCNA1 or 200 fmols (lane 3), or 4.2 fmols (lanes 4-6) of PCNA2 in 
the presence of 0.6 pmols (lanes 6 and 13), 2 pmols (lanes 12 and 15), 5 pmols (lane 
11), or 10 pmols (lanes 2, 5, 10 and 14) of TIP. Reactions were incubated for 20 min 
at 70°C. An aliquot (4 l) was used to measure DNA synthesis, and the remaining 
mixture was subjected to 1.1% alkaline-agarose gel electrophoresis. After drying, gels 
were autoradiographed for 15 min at -80°C and then developed. The assay is 
schematically shown at the top. (Experiment performed by Jerard Hurwitz) 

 
 

with PolB they form a complex (Figure 4-4 panels E and G; elution peaks in fraction 

49 and 49, respectively). When TIP is added to the complex, however, the 

interactions between PCNA1 and PCNA2 and PolB are severed (Figure 4-4 panels F 

and H). These results suggest that the inhibition of PCNA effect on PolB is by 

severing the interactions between PCNA and PolB likely due to the dissociation of 

the PCNA ring. 
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 77

Figure 4-4: TIP affects the interactions of PCNA1 and PCNA2 with PolB.  

One hundred micrograms of each protein were separated on Superdex-200 gel 
filtration column as described in “Material and Methods”. Aliquots (80 l) from the 
indicated fractions were separated on 15% SDS-PAGE and followed by Coomassie 
brilliant blue (R-250) staining. (A). PCNA1; (B). PCNA2; (C). TIP; (D), PolB; (E), 
PCNA1 and PolB; (F), PCNA1, PolB and TIP; (G), PCNA2 and PolB; (H), PCNA2, 
PolB and TIP; (I), PolB and TIP. 

 

TIP inhibits PCNA-dependent Fen1 activity.  

In a number of organisms, it was found that PCNA also stimulate the activity of 

Fen1, a structure specific nuclease involved in Okazaki fragment maturation (123). 

The enzyme removes the flap structure that contains the RNA primer prior to gap 

filling by the polymerase and subsequent ligation of the two adjacent Okazaki 

fragments (124). Although PCNA effect on Fen1 activity was shown for other 

organisms it has not yet been reported for T. kodakarensis. Therefore, the effect of 

PCNA1 and PCNA2 on Fen1 activity was evaluated using a Fen1 assay 

(schematically shown in Figure 4-5A). As shown in Figure 4-5B and C while Fen1 

alone has very weak nuclease activity (Figure 4-5B lanes 1 and 7) both PCNA1 

(Figure 4-5B lanes 2-5) or PCNA2 (Figure 4-5B lanes 8-11) stimulate the activity of 

Fen1 in a concentration dependent manner. As expected, PCNA1 or PCNA2 do not 

possess nuclease activity on their own (Figure 4-5B lanes 6 and 12).  

Next the effect of TIP on Fen1 stimulation by both PCNA proteins was evaluated. 

As shown in Figure 4-5D and E, Fen1 activity was inhibited in the presence of TIP in 

a concentration dependent manner (Figure 4-5D compare lanes 3-7 to lane 2 and 

lanes 10-14 to lane 9, also see panel E). Although both PCNA stimulate Fen1 activity 

to similar extent (Figure 4-5C) TIP is more efficient in inhibiting PCNA2 than  
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Figure 4-5: TIP inhibits PCNA stimulation of Fen1 activity.  

(A). A schematic illustration of the assay. (B) and (C). The effect of PCNA on 
Fen1 activity was measured as described in “Material and Methods” in a reaction 
mixture (20 l) that contained 20 fmols substrates, 250 fmols Fen1 (lanes 1-5 and 7-
11), 188 (lane 2), 375 (lane 3), 750 (lane 4), 1500 (lanes 5 and 6) fmols of PCNA1, or 
188 (lane 8), 375 (lane 9), 750 (lane 10), 1500 (lanes 11 and 12) fmols of PCNA2. 
The reactions mixtures were incubated at 60°C for 60 min and the products were 
separated on 20% (w/v) polyacrylamide-8M urea gels, visualized and quantified by 
phosphorimaging.  A representative gel is shown in panel (B) and the averages, with 
standard deviations, from three independent experiments are shown in panel (C). (D) 
and (E). The effect of TIP on PCNA stimulation of Fen1 activity was measured as 
described in “Material and Methods” in a reaction mixture (20 l) that contained 20 
fmols substrates, 250 fmols Fen1, 1500 fmols PCNA1 (lanes 2-7), 1500 fmols 
PCNA2 (lanes 9-14) in presence of 375 (lanes 3 and 10), 750 (lanes 4 and 11), 1500 
(lanes 5 and 12), 3000 (lanes 6 and 13), 6000 (lanes 7 and 14) fmols of TIP. The 
reactions mixtures were incubated at 60°C for 60 min and the products were 
separated on 20% (w/v) polyacrylamide-8M urea gels, visualized and quantified by 
phosphorimaging. Representative gel is shown in panel (D) and the averages, with 
standard deviations, from three independent experiments are shown in panel (E).  
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Figure 4-6: TIP affects the interactions of PCNA1 and PCNA2 with Fen1.  

One hundred micrograms of each protein were separated on Superdex-200 gel 
filtration column as described in “Material and Methods”. Aliquots (80 l) from the 
indicated fractions were separated on 15% SDS-PAGE and followed by Coomassie 
brilliant blue (R-250) staining. (A). PCNA1; (B). PCNA2; (C). TIP; (D), Fen1; (E), 
PCNA1 and Fen1; (F), PCNA1, Fen1 and TIP; (G), PCNA2 and Fen1; (H), PCNA2, 
Fen1 and TIP; (I), Fen1 and TIP.  

 
 

 

Figure 4-7: Total ion chromatogram of peptides obtained from PCNA.  

PCNA1 (top) showed poor digestion efficiency and produced mainly the 
undigested protein. PCNA2 had good digestion efficiency. (Experiments were 
performed by Richard Huang) 

 
 

PCNA1 (Figure 4-5E). Nevertheless, as with the effect of TIP on PolB activity, the 

binding of TIP to PCNA inhibits Fen1 activity. Similar to PolB, the interactions 

between Fen1 and PCNA were affected in present of TIP (Figure 4-6).  

Protein dynamics of PCNA and TIP.  

While the structure of PCNA is known that of TIP is not. One approach to 
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Figure 4-8: Peptic peptides of native PCNA2 and TIP.  

An on-line digestion device provides 98% sequence coverage of PCNA2 (A) and 
99% sequence coverage of TIP (B) (125). (Experiments were performed by Richard 
Huang) 

 

understand the structural properties of these two partners is by studying their 

conformational dynamics in solution. Measurements of peptide-level HDX kinetics 

have the potential to reveal protein dynamics in solution with a spatial resolution of 6-

10 residues (126). To attain such resolution, proteolysis of the subject proteins during 

the HDX-MS measurements must efficiently produce a distribution of peptides of 

overlapping sequence and leave negligible parent protein. Immobilized pepsin digests 

PCNA2 efficiently, but it failed to adequately digest PCNA1 for study (Figure 4-7); 

hence, our HDX-MS study focuses on the PCNA2 system. Proteolytic digestion of 
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native PCNA2 and TIP with pepsin yields HDX information for 98% of the PCNA2 

backbone and 99% of the TIP backbone (Figure 4-8). 

In solution, PCNA2 is known to form trimers (55,56,69). When mapped onto the 

crystal structure of PCNA2 (PDB: 3LX2) (55), HDX-MS kinetic data show that the 

interior-helical regions near the trimer interface are structurally stable (stronger 

hydrogen bonds) (Figure 4-9A), as they exchange an extremely low amount of 

deuterium over durations ranging from seconds to hours. On the other hand, the outer 

helices and loop regions, which are close to the trimer interface, are relatively more 

flexible, as their amide sites exchange to attain substantial fractions of deuterium on a 

time scale of minutes (Figure 4-9A). The exterior, long-loop regions show milder 

dynamics in which their amide sites exchange to acquire deuterium on the time scale 

of hours. These HDX-MS results are in accord with the trimeric quaternary structure 

of PCNA2 (Figure 4-9A).  

The higher order structure of TIP is unknown. As shown by the HDX-MS 

exchange rate heat map of TIP (Figure 4-9B), amide groups of TIP, especially in the 

C-terminal region, rapidly exchange to contain over 80% deuterium within the first 

30 sec after dilution in D2O. Such fast conformational dynamics are in accord with 

the view that TIP is mostly unstructured.  

Binding interfaces between PCNA2 and TIP.  

HDX-MS has the potential to reveal binding interfaces in the protein complex 

byobserving changes in deuterium uptake rates among backbone amides in response 

to the formation of the protein complex (127-129). Pairwise comparisons of apo-

PCNA2 (PCNA2 trimer alone) and holo-PCNA2 (PCNA2-TIP complex) and apo-TIP 
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Figure 4-9: Protein dynamics of PCNA2 and TIP.  

The HDX kinetics results of native PCNA2 are plotted onto the crystal structure 
(PDB: 3LX2) (55) (A). The HDX kinetics results of TIP are plotted according to the 
peptide sequence (125). The extent of relative deuterium uptake from low to high is 
presented with color ranging from blue to red. (Experiments were performed by 
Richard Huang) 

 
 

and holo-TIP provide information regarding the interfaces located on PCNA2 and 

TIP that stabilize the holo-PCNA2 complex.  

The HDX-MS results for the PCNA2-TIP complex (PCNA monomer: TIP monomer 

= 1:1) show that peptide regions 187-204 and 243-259 of native PCNA2 (Figures 4-

10A and 4-11), located outside of the ring structure, exchange significantly less 

deuterium (p ≤ 0.03, where any value of p < 0.05 is considered significant) upon 
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Figure 4-10: Mutation in PCNA2 affects its interactions with TIP.  

HDX differences of apo-PCNA2 (red curves) vs. holo-PCNA2 (black curves). 
Regions of native PCNA2 that show significant differences in D uptake upon TIP 
binding are shown in (A) and plotted onto the crystal structure (PDB: 3LX2) (left). 
Regions show decrease in D uptake upon TIP binding are colored blue, whereas 
regions show increase in D uptake upon TIP binding are colored yellow. The HDX 
kinetics of the same regions of PCNA2-A mutant and PCNA2-E mutant are plotted in 
(B) and (C), respectively. (Experiments were performed by Richard Huang)  

 
 

TIP binding. The diminished exchange rate exhibited by peptide region 187-204 in 

native PCNA2 suggests that these amides are involved in PCNA2-TIP binding. We 

regard the diminished D-uptake rates of peptide region 243-259 somewhat more 

cautiously because these comprise mostly artificial histidine residues; thus, the 

observed decrease in solvent accessibility at this region may be caused by non- 

specific interactions. Interestingly, peptide regions 34-38 and 104-110 of native 
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Figure 4-11: Differential HDX map of PCNA2-A mutant. 

Differential HDX map of PCNA2-A mutant in which the regions having negative 
values of deuterium uptake difference (apo-PCNA2-A mutant vs. holo-PCNA2-A 
mutant) suggests the protein conformation changes toward a more protected 
conformation upon the binding of TIP. (Experiments were performed by Richard 
Huang) 

 
 

PCNA2 exchange more deuterium upon TIP binding, indicating diminished 

protection factors. Since these amides are located at the trimer interfaces, the 

diminished protection factors suggest that binding with TIP facilitates the dissociation 

of PCNA2 trimer.  

Mutational analysis of PCNA2-TIP interactions.  

The region of 187-204 of PCNA2 was selected for site directed mutagenesis to  
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examine the role of this region in regulating the PCNA2-TIP interactions. Three 

residues in this region K197, Y200, and Y204 were mutated to Ala (Figure 4-12B, 

PCNA2-A) or Glu (Figure 4-12B, PCNA2-E). First, the effect of the mutation on the 

regulation by PCNA by TIP was evaluated using the Fen1 activity assay (Figure 4- 

12A). While the stimulatory effect of wild-type and PCNA2-A on Fen1 activity was 

inhibited by TIP to similar extent (Figure 4-12C and D), PCNA2-E inhibition was 

substantially reduced (Figure 4-12C and D). Although TIP affects each mutant 

differently, the mutant proteins on their own stimulate Fen1 activity to similar extent 

(Figure 4-12D). 

The effect of the mutations on the TIP-PCNA interactions was then been 

evaluated using HDX-MS. PCNA2-A mutant showed significant decrease of 

deuterium uptake not only in region 187-204, but also in regions 39-48 and 218-229 

(Figures 4-12B, 4-13). Interestingly, these regions are composed of short loops and 

are geometrically close to each other (blue regions in Figure 4-12), suggesting 

potential binding interfaces. The HDX-MS results for the PCNA2-A mutant suggest 

that these mutations strengthen the PCNA2-TIP interactions. This observation may 

support the stronger inhibitory effect of TIP on PCNA2-A stimulation of Fen1 at low 

TIP concentrations (Figure 4-12D). Surprisingly, the PCNA2-E mutant showed 

significant decrease of deuterium uptake only in region 39-48 (Figures 4-10C and 4-

14). The absence of a deuterium uptake difference in region 187-204 indicates the 

importance of this region in modulating the PCNA2-TIP interactions.  

Turning to an examination of the differential deuterium uptake of apo- and holo-

TIP, we note that peptide regions 22-28 and 55-58 of holo-TIP (Figures 4-15A and 4- 
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Figure 4-12: Effect of TIP on mutant PCNA stimulation of Fen 1 activity. 
(A). A schematic illustration of the assay. (B). The residue mutated in PCNA2-A 

and PCNA2-E. C. The effect of TIP on PCNA wild-type and mutant proteins 
stimulation of Fen1 activity was measured as described in “Material and Methods” in 
a reaction mixture (20 l) that contained 20 fmols substrates, 250 fmols Fen1, 1500 
fmols PCNA2 (lanes 3-8), PCNA2-A (lanes 9-14) PCNA2-E (lanes15-20), in the 
presence of 375 (lanes 4, 10 and 16), 750 (lanes 5, 11 and 17), 1500 (lanes 6, 12 and 
18), 3000 (lanes 7, 13 and 19), 6000 (lanes 8, 14 and 20) fmols of TIP. 
Oligonucleotides of 49 bases and 13 bases were separated in lane 1 and marked as 
“S” and “P”, respectively. The reactions mixtures were incubated at 60°C for 60 min 
and the products were separated on 10% (w/v) polyacrylamide-8M urea gels, 
visualized and quantified by phosphorimaging.  A representative gel is shown in 
panel (C) and the averages, with standard deviations, from three independent 
experiments are shown in panel (D).  

 
 

16A) show slow deuterium uptake rates in the native PCNA2-TIP complex. These 

diminished D-uptake rates suggest that TIP engages with PCNA2 through interactions 

with peptide region 187-204 of native PCNA2. Moreover, the HDX kinetics data 

show that the deuterium uptake of peptide regions 22-28 and 55-58 of TIP in the 

presence of native PCNA2 eventually reaches the same level as that observed in the 

apo form (TIP alone), evidencing the flexible nature of TIP conformation. Not 

surprisingly, our results for the PCNA2-A mutant-TIP complex exhibit a similar trend 

of HDX kinetics in regions 22-28 and 55-58 of TIP (Figures 4-15B and 4-16B) as  
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Figure 4-13: Differential HDX map of wild-type PCNA2. 

Differential HDX map of wild-type PCNA2 in which the regions having negative 
values of deuterium uptake difference (apo-PCNA2 vs. holo-PCNA2) suggests the 
protein conformation changes toward a more protected conformation upon the 
binding of TIP. (Experiments were performed by Richard Huang) 

 

compared to the native PCNA2-TIP complex (Figure 4-15A). This similarity is in 

accord with the formation of the stable PCNA2-A mutant-TIP complex. In contrast, 

apo-TIP and holo-TIP for the PCNA2-E mutant-TIP complex exhibit no significant 

difference in deuterium uptake behaviors (Figures 4-15C and 4-16C), indicating that 

the PCNA2-E mutant interaction with TIP is weak. In summary, our HDX analyses of 

PCNA2-TIP complexes show the importance of region 187-204 in regulating the 

PCNA2-TIP interactions.  
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Figure 4-14: Differential HDX map of PCNA2-E mutant. 

Differential HDX map of PCNA2-E mutant in which the regions having negative 
values of deuterium uptake difference (apo-PCNA2-E mutant vs. holo-PCNA2-E 
mutant) suggest the protein conformation change toward a more protected 
conformation upon the binding of TIP. (Experiments were performed by Richard 
Huang)  

 
 

TIP is not essential for T. kodakarensis viability.  

PCNA is an essential protein and plays essential roles in many nucleic acid 

metabolic processes. Therefore, TIP, which regulates PCNA activity, may also be 

essential for T. kodakarensis viability. Therefore a T. kodakarensis strain in which the 

TIP encoding genes, TK0808 deleted. T. kodakarensis THH2 (ΔTK0808) was readily 

obtained with the genome structure confirmed by diagnostic PCR (Figure 4-1B) and 

Southern blots (Figure 4-1C). The growth of the deleted strain was indistinguishable 
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from the wild- type strain (Figure 4-1D) suggesting that under normal growth 

conditions, TIP is not essential for T. kodakarensis viability. 

 

 

Figure 4-15: Mutation in PCNA2 affects its interactions with TIP. 

HDX differences of apo-TIP (red curves) vs. holo-TIP (black curves). Regions of 
TIP that show significant differences in D uptake upon native PCNA2 binding are 
shown in (A). The HDX kinetics of the same regions of TIP in the presence of 
PCNA2-A mutant and PCNA2-E mutant are plotted in (B) and (C), respectively. 
(Experiments were performed by Richard Huang)  
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Figure 4-16: Differential HDX map of TIP in present of PCNAs.  

Differential HDX map of TIP in which the regions having negative values of 
deuterium uptake difference (apo-TIP vs. holo-TIP) suggest the protein conformation 
change toward a more protected conformation upon the binding of native PCNA2 (A), 
PCNA2-A mutant (B), and PCNA2-E mutant (C). (Experiments were performed by 
Richard Huang) 

 
 

Discussion 

PCNA plays an essential role in many cellular processes, and thus the protein 

requires tight spatial and temporal regulation. In eukarya, a number of mechanisms 

have been shown to regulate PCNA functions including post-translational 

modification such as phosphorylation, acetylation, ubiquitination and sumoylation 

[for reviews see: (109,130)]. Although PCNA modification has not yet been reported 

in archaea, the presence of protein kinases and small-molecule modifiers in archaea 
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[reviewed in (131,132)] may suggest that similar mechanisms to regulate PCNA may 

also exist in this domain. Binding of a small protein is another mechanism for 

regulation of the eukaryotic PCNA. For example, the cell cycle regulator p21 binds to 

the IDCL and prevents PIP-containing client proteins from associating with PCNA.  

The results presented here identified a possible new mechanism by which PCNA 

is regulated. Binding of TIP to PCNA does not involve a PIP-motif or the IDCL, yet 

it results in the inactivation of PCNA. However, TIP may regulate PCNA by two 

different mechanisms. The binding of TIP to PCNA1 appears to result in ring 

dissociation while the binding to PCNA2 does not (Figure 4-2). However, the activity 

of both PCNAs is inhibited. In one case it may be the dissociation of the ring while in 

the other TIP binding may prevent other protein interactions with the client enzyme. 

However, it was suggested that in vivo only PCNA1 may be required for cell viability 

(56,69). It is thus possible that, in vivo, ring dissociation in the main mechanism by 

which TIP regulate PCNA functions.  

Although homologues of TIP have been identified only in Thermococcales, other 

archaeal species may also contain small proteins that bind PCNA and may have 

similar effects on the integrity of the PCNA ring. 

Although PCNA is expressed in all cell types and has a long half-life, the protein 

is also overexpressed in tumor cells. It was suggested that PCNA could be a valuable 

target for cancer therapy. A number of small molecules that inhibit PCNA have been 

developed, most of which target the IDCL and thus block PCNA interactions with 

client enzymes [for examples see (133)]. The structures of PCNAs from all organisms 

are very similar (52), and therefore it is possible that the data presented here will 
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provide a new general mechanism for PCNA inhibition. One could design small 

molecule that mimic TIP, bind PCNA in the same region, and thus dissociate the 

trimeric ring. In the future, when the structure of PCNA-TIP complex is determined 

other interaction region may also be identified.  

The bacterial -subunit plays an essential role in DNA replication and it is the 

structural and functional homologue of PCNA (20). It was suggested that inhibition 

of the -subunit function either by preventing it from interaction with other proteins 

or by other means may be a good antimicrobial drug [see (134) for a detail 

discussion]. The overall structures of PCNA and the -subunit are very similar 

although -subunit is a dimer and PCNA is a timer and there is no amino acid 

similarity between the two proteins (20). It may be possible to design a small 

molecule that will bind to similar region on the -subunit as TIP binds on PCNA. 

Such binding may have similar effect resulting in the dissociation of the -subunit 

ring.  
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Chapter 5: Concluding Remarks 

Summary of results 

The mechanisms of DNA replication are conserved through all life forms. The 

proteins involved in this process have similar functional property in the three domains 

of life. By analyzing genome sequences, archaea was shown to have similar DNA 

replication machinery to eukaryotes, which are evolutionarily distinct from that of 

bacteria. At the same time, the archaeal replication machinery involved fewer 

proteins and complexes in comparison the eukayotic process.. For this reason, 

archaeal DNA replication machinery is considered a simplified form of the eukaryotic 

machinery. In vitro studies also showed that archaeal replication enzymes have 

similar functions to their eukaryotic homologues. Based on bioinformatics approaches, 

a subset of eukaryote DNA replication protein homologues in archaea were identified. 

However, some DNA replication proteins that are essential in eukaryotes and/or 

bacteria are missing in archaea, which in turn possess a number of their own unique 

replication proteins. This raises the possibility that archaea might have more specific 

DNA replication proteins that have not yet been identified by bioinformatics 

approach.  

The studies presented in this thesis aimed in identifying new proteins 

participating in archaeal DNA replication. To achieve this goal the T. kodakarensis 

was used as a model organism. In Chapter 2, AP followed by proteomic analysis was 

used to identify an archaeal DNA replication protein interaction network. In this 

network, previously documented and predicted interactions were confirmed, which 
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provides experimental evidence for unrecognized interactions between proteins with 

known and unknown functions, through which expanded the knowledge for archaeal 

replication research.  

In Chapter 3 and 4, I continued to verify the protein interactions involved. GAN 

(TK1252)-GINS was selected as the bait protein GINS is an essential DNA 

replication protein in eukaryote. The GAN protein, by sequence analysis, contains a 

conserved DNA nuclease domain, which is a strong indication of participation in 

DNA metabolism. For the above reason, the GAN-GINS interaction was verified by 

in vitro experiments, which is described in Chapter 3. GAN is predicted to be a 

homologue of bacterial RecJ-like nuclease. A protein encoded by SSO0295 in S. 

solfataricus co-purified with the GINS complex from this crenarchaeon (31) and, in 

common with GAN, SSO0295p also has some limited sequence similarity to the 

DNA-binding domain of E. coli RecJ (31). In eukaryotes, Cdc45, MCM and GINS 

form a complex (CMG) and move along with the replication fork. All components of 

the CMG are essential for the replication of eukaryotic cells and hence their viability. 

Archaea possesses both MCM and GINS but no Cdc45 homologue has been 

identified based on sequence similarity. Due to the essentiality of Cdc45, we predict 

that it should exist in archaea and that the GAN is the leading candidate for the 

archaeal version of Cdc45. After the isolation and characterization of GAN, 

colleagues using bioinformatics technology reported the similarity between GAN and 

Cdc45 (41), which strongly supported that the GAN is a functional homologue of the 

eukaryotic Cdc45. To confirm the linkage between GAN and Cdc45, more effort 



 

 96

including structural studies on Cdc45 and GAN are necessary and are currently being 

pursued.  

 

 

Figure 5-1: Phylogeny of the DHH superfamily.  

Archaeal GAN and eukaryotic Cdc45 are homologue based on secondary 
structure and HHpred predication. This picture was adapted from (41).  

 
 
To further characterize this network in Chapter 4, I investigated TIP (TK0808), a 

PCNA-binding protein from the interaction network. As a platform for a variety of 

DNA replication and repair proteins, PCNA is regulated by a series of proteins. 

However, the PCNA regulation protein in archaea has not yet been identified. In 

contrast to most other PCNA binding proteins, which interact with PCNA through 

conserved sequences (including PIP or KA motifs), the TIP does not have any known 

identified motifs. Our data suggest that TIP may act as a DNA replication negative 

regulator by disrupting the association between PCNA and its partners. A 

combination of H/D exchange and size exclusion chromatography showed that TIP 

binds to a novel interface that is distinct from classical IDCL region on PCNA.  



 

 97

Outlook for future studies  

It is necessary to pay further attention to other new proteins in this network. Two 

of the candidates were encoded by TK1313 and TK0358, which were pulled down by 

MCM (TK0096) and RFC, respectively. A recent comprehensive whole-genome 

study showed the homologues of hypothetical genes TK1313 and TK0358 were 

essential to the viability of Methanococcus maripaludis (135). Although the detailed 

functions of these genes have not been confirmed, the association of these proteins 

with known replication proteins strongly argues that they are involved in DNA 

replication. Guided by this network, more efforts are needed to explore the new 

members participating in DNA replication.  

It will be critical to determine the function of GAN’s nuclease at the replication 

fork. It has been previously observed that the Fen1 protein, which is responsible for 

removing the 5’ flap on the pre-matured Okazaki fragments, is not essential for 

viability (104). The recent progress from our collaborator indicates that the gene 

coding for GAN is not required for cell viability. This allows for speculation that 

GAN and Fen1 might have complementary function in the maturation of Okazaki 

fragments. One way to validate this possibility is to build a strain with a switch, 

which can control the expression of at least one of the GAN and Fen1 genes. 

Although inducible promoters are commonly used in bacteria and yeast the 

developing of similar switches in archaea is lagging behind.  When available, a more 

detailed study on the roles of Fen1 and GAN could be evaluated.  

Further study of the function and binding mechanism of TIP to PCNAs will also 

be necessary. The newly identified interface on PCNA has the potential to become a 
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new target for PCNA inhibitors, which have been used as drug targeting due to its up-

regulation in cancer cells. In eukaryotes, the product of oncogene p53 activates the 

expression of p21, which is a peptide serving as a PCNA inhibitor. This may suggest 

that archaea has a similar mechanism to regulate PCNA through a small protein. TIP, 

although sharing no primary sequence identity with p21, might be a good candidate to 

be an archaeal version of p21. To explore the proteins interacting with TIP is also an 

important way to reveal its function(s). The AP-MS/MS strategy used in Chapter 2 

should be interesting to be applied to expand the network involving TIP.  

DNA replication is important. The process involves the participation and 

coordination of a multitude of proteins. However, the current understandings of DNA 

replication in eukaryotes are still limited, partly due to the complexity of the 

eukaryotic DNA replication machinery. Archaea provides a similar and simple 

platform to study this process. The information provided in this study will be able to 

provide clues for studying DNA replication in eukaryotes. The strategy used in this 

study can be applied to other archaea species in order to address DNA replication 

processes. The isolation of protein complex upstream of MS is neither limited to 

affinity purification used in this study. Alternative separation methods like 

ultracentrifugation and immunoprecipitation are also expected to isolate the protein 

complexes. In addition, AP-MS/MS can be called upon to identify new proteins in 

other research fields outside DNA replication.  

This work mainly focuses on discovery and verification of new proteins and 

interactions involved in DNA replication using T. kodakarensis as a model system. 

Using genetic and biophysical methods, unknown proteins were shown to be involved 
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in DNA replication. These new proteins are strongly hypothesized to be involved in 

DNA replication. In vitro experiments were also used to verify the new identified 

interactions. Followed scientists are expected to continue expanding the study of this 

network. Plasmids for expressing fish proteins are listed in Appendix 7 and waiting 

for the new explorers.   
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Appendices 

Appendix 1: Protein-protein interactions identified in the study.  
 

Gene # Score MW(Da) 
Peptide 
matches

Percent 
coverage

Function 

TK1901 (Cdc6) was tagged 

TK1901 1259 47777 83 55 Cdc6 

TK0038 448 31444 16 29 flagellin 

TK2218 336 37170 13 13 RFC-S 

TK0535 313 28222 15 33 PCNA1 

TK2257 287 20549 12 40 deoxycytidylate deaminase 

TK0563 281 18180 19 40
6-pyruvoyl-tetrahydropterin synthase-
related protein 

TK1990 269 44387 14 23 cysteine desulfurase 

TK0040 238 27426 9 24 flagellin 

TK2106 237 46763 4 14 phosphopyruvate hydratase 

TK1314 233 50095 9 26 ATPase 

TK1903 186 150190 10 2 PolD-S 

TK2100 165 36201 7 12 thioredoxin reductase 

TK1415 162 10781 3 29 50S ribosomal protein L12P 

TK1696 156 11435 7 47 30S ribosomal protein S24e 

TK2217 152 44001 5 7
2-amino-3-ketobutyrate coenzyme A 
ligase 

TK0657 140 47268 4 10 ABC transporter periplasmic component 

TK0309 122 82109 5 6 elongation factor EF-2 

TK1981 118 34865 5 8
2-ketoisovalerate ferredoxin 
oxidoreductase subunit beta 

TK1276 115 17263 5 24 30S ribosomal protein S19e 

TK1966 100 32950 2 9 D-3-phosphoglycerate dehydrogenase 

TK0593 100 45867 2 6 Protein with unknown function 

TK2140 (DNA ligase) was 
tagged 

TK2140 3453 64042 774 82 DNA ligase 

TK1903 291 150190 13 4 PolD-S 

TK1009 250 96657 13 9
putative 5-methylcytosine restriction 
system, GTPase subunit 

TK0563 229 18180 15 40
6-pyruvoyl-tetrahydropterin synthase-
related protein 

TK0063 196 21240 12 28
nucleotidyltransferase/DNA-binding 
domain-containing protein 

TK2217 175 44001 6 9
2-amino-3-ketobutyrate coenzyme A 
ligase 

TK0361 146 16513 1 25 Protein with unknown function 

TK1481 141 48923 7 13 NADH:polysulfide oxidoreductase 

TK0455 131 37834 4 12 Protein with unknown function 
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TK2303 128 59178 4 7 chaperonin beta subunit 

TK2145 126 69683 6 3 Protein with unknown function 

TK0847 124 8671 4 59 Protein with unknown function 

TK1505 120 21184 4 13 30S ribosomal protein S4 

TK1022 117 30374 3 9 D-aminopeptidase 

TK0759 105 49864 6 7 asparaginyl-tRNA synthetase 

TK2100 105 36201 6 9 thioredoxin reductase 

TK0535 103 28222 4 13 PCNA1 

TK1410 (DnaG-like) was 
tagged 

TK0790 589 16212 35 82 Protein with unknown function 

TK1633 352 29757 15 46
exosome complex RNA-binding protein 
Rrp42 

TK2100 278 36201 13 22 thioredoxin reductase 

TK2278 268 42443 13 19 myo-inositol-1-phosphate synthase 

TK2227 235 54037 11 12 RNA-binding protein FAU-1 

TK1634 202 27668 10 23 exosome complex exonuclease Rrp41 

TK1047 194 30376 8 19
translation initiation factor IF-2B subunit 
alpha 

TK1481 186 48923 13 22 NADH:polysulfide oxidoreductase 

TK2303 132 59178 6 10 chaperonin beta subunit 

TK2074 121 39247 6 7 putative glutamate synthase subunit beta 

TK1331 121 8750 5 46 Lrp/AsnC family transcriptional regulator

TK0309 114 82109 3 4 elongation factor EF-2 

TK1254 104 23007 5 16 30S ribosomal protein S3Ae 

   

TK1281 (Fen1) was tagged 

TK1281 2608 38786 581 82 Fen1 

TK0535 1967 28222 361 89 PCNA1 

TK0038 336 31444 11 21 flagellin 

TK0643 305 13183 10 35 prefoldin subunit beta 

TK0563 304 18180 21 36
6-pyruvoyl-tetrahydropterin synthase-
related protein 

TK1005 252 16265 16 27 prefoldin subunit alpha 

TK2303 249 59178 6 10 chaperonin beta subunit 

TK2106 229 46763 7 11 phosphopyruvate hydratase 

TK0040 204 27426 10 15 flagellin 

TK0569 200 38673 7 11 Protein with unknown function 

TK1046 199 147354 5 3 Protein with unknown function 

TK1532 196 13355 8 40 30S ribosomal protein S17P 

TK0590 192 8502 10 63 Protein with unknown function 

TK1481 185 48923 5 7 NADH:polysulfide oxidoreductase 

TK0358 184 53699 5 6 Protein with unknown function TK0358 

TK2074 183 39247 10 10 putative glutamate synthase subunit beta 

TK1622 183 57145 4 7
methylmalonyl-CoA decarboxylase, alpha 
subunit 
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TK1254 182 23007 7 18 30S ribosomal protein S3Ae 

TK0330 178 14679 3 20 methylmalonyl-CoA epimerase 

TK0296 169 34405 4 9 quinolinate synthetase 

TK1500 164 15318 6 25 30S ribosomal protein S9P 

TK0309 153 82109 4 5 elongation factor EF-2 

TK0593 153 45867 5 13 Protein with unknown function 

TK0180 145 41161 3 7 acetyl-CoA acetyltransferase 

TK2049 138 72164 5 7 acylamino acid-releasing enzyme 

TK1984 132 36379 2 12
pyruvate ferredoxin oxidoreductase 
subunit beta 

TK2035 131 45164 3 8
glycine cleavage system 
aminomethyltransferase T 

TK2100 130 36201 5 7 thioredoxin reductase 

TK0657 124 47268 3 7 ABC transporter periplasmic component 

TK2278 120 42443 2 4 myo-inositol-1-phosphate synthase 

TK1542 113 39022 3 7 50S ribosomal protein L3P 

TK1083 111 127604 4 3
DNA-directed RNA polymerase subunit 
beta 

TK0814 107 47062 2 4 type A flavoprotein 

TK1840 106 58957 2 5 cobalt-activating carboxypeptidase 

TK1521 101 26487 4 13 30S ribosomal protein S5P 

TK0536 (GINS51) was tagged 

TK1903 895 150190 41 15 PolD-S 

TK1252 858 52858 25 32 ssDNA-specific exonuclease 

TK1046 659 147354 22 10 Protein with unknown function 

TK1902 488 80848 14 15 PolD-L 

TK0643 393 13183 18 52 prefoldin subunit beta 

TK0536 364 21583 14 44 GINS51 

TK1005 353 16265 11 55 prefoldin subunit alpha 

TK2278 269 42443 8 18 myo-inositol-1-phosphate synthase 

TK1619 191 19154 7 26 GINS23 

TK1696 151 11435 3 47 30S ribosomal protein S24e 

TK1521 140 26487 5 11 30S ribosomal protein S5P 

TK1505 118 21184 4 13 30S ribosomal protein S4 

TK1529 105 27753 4 7 30S ribosomal protein S4e 

TK0348 103 29743 3 13
membrane protease subunit 
stomatin/prohibitin-like protein 

TK1619 (GINS23) was tagged 

TK1619 1565 19154 141 74 GINS23 

TK0582 1119 28429 53 82 PCNA2 

TK1186 451 43957 15 26 Protein with unknown function 

TK2129 359 23756 15 25 triosephosphate isomerase 

TK2303 267 59178 7 15 chaperonin beta subunit 

TK2100 264 36201 11 20 thioredoxin reductase 

TK0535 175 28222 5 17 PCNA1 
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TK1984 143 36379 7 11
pyruvate ferredoxin oxidoreductase 
subunit beta

TK1981 134 34865 4 16
2-ketoisovalerate ferredoxin 
oxidoreductase subunit beta 

TK1618 119 18769 5 18
calcineurin superfamily 
metallophosphoesterase 

TK0569 115 38673 2 9 Protein with unknown function 

TK0664 115 24671 3 8
hypoxanthine/guanine 
phosphoribosyltransferase 

TK2021 107 32017 4 6 ParA/MinD family ATPase 

TK2074 103 39247 6 7 putative glutamate synthase subunit beta 

TK1284 100 18461 6 20 intracellular protease I 

TK0096 (MCM1) was tagged 

TK0096 676 103285 30 18 MCM1 

TK0563 395 18180 29 48
6-pyruvoyl-tetrahydropterin synthase-
related protein 

TK1313 195 23503 12 20 Protein with unknown function 

TK0063 194 21240 8 36
nucleotidyltransferase/DNA-binding 
domain-containing protein 

TK1903 174 150190 11 3 PolD-S 

TK0535 137 28222 5 14 PCNA1 

TK2211 109 102779 6 4 chromosome segregation protein 

TK0590 106 8502 3 21 Protein with unknown function 

TK1990 102 44387 5 8 cysteine desulfurase 

TK1361 (MCM2) was tagged 

TK2021 109

TK1622 108 57145 4 4
methylmalonyl-CoA decarboxylase, alpha 
subunit 

TK0664 108 24671 2 8
hypoxanthine/guanine 
phosphoribosyltransferase 

TK2074 107 39247 7 7 putative glutamate synthase subunit beta 

TK1506 106 16981 3 20 30S ribosomal protein S13P 

TK0570 106 53782 2 4
ABC-type iron(III) transport system, 
periplasmic component 

TK0765 105 37269 3 7
glyceraldehyde-3-phosphate 
dehydrogenase 

TK1840 103 58957 4 4 cobalt-activating carboxypeptidase 

TK1903(PolD-S) was tagged 

TK1903 427 150190 21 8 PolD-S 

TK1902 197 80848 9 6 PolD-L 

TK1005 181 16265 6 20 prefoldin subunit alpha 

TK0643 152 13183 6 27 prefoldin subunit beta 

TK0535 123 28222 4 12 PCNA1 

TK1252 102 52858 4 5 ssDNA-specific exonuclease 

TK1790(Pri-L) 
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was tagged 

TK1791 442 40443 26 28 Pri-S 

TK2100 342 36201 18 26 thioredoxin reductase 

TK2303 315 59178 14 18 chaperonin beta subunit 

TK1481 264 48923 12 31 NADH:polysulfide oxidoreductase 

TK1790 187 46893 9 15 Pri-L 

TK1186 185 43957 7 24 Protein with unknown function 

TK2278 176 42443 10 20 myo-inositol-1-phosphate synthase 

TK1966 172 32950 12 18 D-3-phosphoglycerate dehydrogenase 

TK0569 154 38673 5 12 Protein with unknown function 

TK0309 153 82109 5 8 elongation factor EF-2 

TK1254 139 23007 8 20 30S ribosomal protein S3Ae 

TK1415 135 10781 4 29 50S ribosomal protein L12P 

TK2211 132 102779 10 5 chromosome segregation protein 

TK0535 131 28222 5 10 PCNA1 

TK0563 122 18180 9 21
6-pyruvoyl-tetrahydropterin synthase-
related protein 

TK2217 121 44001 4 7
2-amino-3-ketobutyrate coenzyme A 
ligase 

TK2052 119 8624 6 39 Lrp/AsnC family transcriptional regulator

TK1496 113 22992 4 11 30S ribosomal protein S2 

TK1974 112 13096 6 38
carboxymuconolactone decarboxylase-
related protein 

TK1789 109 28203 4 15 ATPase 

TK1792(Primase related protein) was 
tagged 

TK1005 280 16265 13 34 prefoldin subunit alpha 

TK1046 279 147354 12 5 Protein with unknown function 

TK1481 203 48923 7 19 NADH:polysulfide oxidoreductase 

TK2074 148 39247 5 11 putative glutamate synthase subunit beta 

TK1633 133 29757 3 17
exosome complex RNA-binding protein 
Rrp42 

TK1990 125 44387 8 12 cysteine desulfurase 

TK1521 121 26487 3 9 30S ribosomal protein S5P 

TK2100 112 36201 2 9 thioredoxin reductase 

TK2218(RFC-S) was tagged 

TK2218 968 37170 58 26 RFC-S 

TK2219 388 57239 24 15 RFC-L 

TK2100 174 36201 8 13 thioredoxin reductase 

TK0330 136 14679 4 19 methylmalonyl-CoA epimerase 

TK0814 131 47062 3 6 type A flavoprotein 

TK1505 119 21184 5 13 30S ribosomal protein S4 

TK2219(RFC-L) was tagged 

TK2218 1412 37170 149 29 RFC-S 
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TK0582 885 28429 45 60 PCNA2 

TK2219 841 57239 62 32 RFC-L 

TK0643 264 13183 7 28 prefoldin subunit beta 

TK2138 198 20232 6 38 orotate phosphoribosyltransferase 

TK1496 170 22992 3 18 30S ribosomal protein S2 

TK1974 139 13096 3 38
carboxymuconolactone decarboxylase-
related protein 

TK0569 131 38673 2 9 Protein with unknown function 

TK0038 118 31444 8 8 flagellin 

TK1245 113 15009 5 15 Protein with unknown function 

TK1505 106 21184 6 13 30S ribosomal protein S4 

TK1046 105 147354 3 1 Protein with unknown function 

TK1960(RPA2) was tagged 

TK1046 1196 147354 43 17 Protein with unknown function 

TK0795 879 79742 29 34
putative 5-methylcytosine restriction 
system, GTPase subunit 

TK1521 552 26487 23 48 30S ribosomal protein S5P 

TK1005 516 16265 20 55 prefoldin subunit alpha 

TK0657 416 47268 11 19 ABC transporter periplasmic component 

TK0643 405 13183 14 44 prefoldin subunit beta 

TK2303 396 59178 13 15 chaperonin beta subunit 

TK0038 392 31444 16 29 flagellin 

TK0183 384 25316 13 37 fibrillarin 

TK0358 378 53699 10 17 Protein with unknown function 

TK0309 375 82109 11 11 elongation factor EF-2 

TK1276 369 17263 15 56 30S ribosomal protein S19e 

TK1254 343 23007 20 30 30S ribosomal protein S3Ae 

TK1532 333 13355 23 43 30S ribosomal protein S17P 

TK1496 316 22992 16 26 30S ribosomal protein S2 

TK1542 312 39022 9 20 50S ribosomal protein L3P 

TK1536 301 23340 12 35 30S ribosomal protein S3P 

TK1529 287 27753 9 33 30S ribosomal protein S4e 

TK0040 252 27426 11 16 flagellin 

TK0563 246 18180 13 20
6-pyruvoyl-tetrahydropterin synthase-
related protein 

TK1481 229 48923 10 17 NADH:polysulfide oxidoreductase 

TK1099 209 7283 8 62 30S ribosomal protein S27e 

TK2074 207 39247 6 18 putative glutamate synthase subunit beta 

TK1622 206 57145 5 10
methylmalonyl-CoA decarboxylase, alpha 
subunit 

TK1539 204 26082 6 13 50S ribosomal protein L2P 

TK2100 200 36201 7 12 thioredoxin reductase 

TK1696 179 11435 12 47 30S ribosomal protein S24e 

TK0184 174 47201 5 10
snoRNP component, Nop56p/58p-like 
protein 

TK0180 174 41161 2 9 acetyl-CoA acetyltransferase 
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TK1541 166 28695 5 10 50S ribosomal protein L4P 

TK0330 166 14679 4 19 methylmalonyl-CoA epimerase 

TK2106 164 46763 3 7 phosphopyruvate hydratase 

TK1500 160 15318 9 27 30S ribosomal protein S9P 

TK0348 158 29743 8 18
membrane protease subunit 
stomatin/prohibitin-like protein 

TK0423 158 70055 5 7 prolyl endopeptidase 

TK2278 155 42443 5 8 myo-inositol-1-phosphate synthase 

TK2021 152 32017 4 14 ParA/MinD family ATPase 

TK1078 149 16439 7 40 30S ribosomal protein S12P 

TK1633 148 29757 5 14
exosome complex RNA-binding protein 
Rrp42 

TK1981 143 34865 5 10
2-ketoisovalerate ferredoxin 
oxidoreductase subunit beta 

TK1417 142 24053 4 13 50S ribosomal protein L1P 

TK1505 140 21184 9 23 30S ribosomal protein S4 

TK1984 139 36379 3 10
pyruvate ferredoxin oxidoreductase 
subunit beta 

TK1083 138 127604 6 3
DNA-directed RNA polymerase subunit 
beta 

TK0296 138 34405 2 7 quinolinate synthetase 

TK1637 136 29250 6 12 proteasome subunit alpha 

TK0471 136 30863 5 12 transcription regulator 

TK0814 136 47062 4 10 type A flavoprotein 

TK0946 133 15865 4 19 Protein with unknown function 

TK2035 131 45164 2 5
glycine cleavage system 
aminomethyltransferase T 

TK0765 130 37269 2 6
glyceraldehyde-3-phosphate 
dehydrogenase 

TK1538 130 15411 8 11 30S ribosomal protein S19P 

TK0569 130 38673 5 8 Protein with unknown function TK0569 

TK1502 128 13764 4 20 50S ribosomal protein L18e 

TK1112 127 6556 6 35 transcription elongation factor NusA 

TK0044 124 54137 6 8
flagella-related protein D, internal 
insertion 

TK2290 123 49681 5 8 ribulose bisophosphate carboxylase 

TK2253 121 28743 9 20 Protein with unknown function 

TK1880 118 51019 3 8
succinyl-CoA synthetase (NDP forming), 
large subunit 

TK1506 110 16981 5 22 30S ribosomal protein S13P 

TK2246 110 32678 4 6 L-asparaginase 

TK0759 110 49864 4 6 asparaginyl-tRNA synthetase 

TK1186 110 43957 4 11 Protein with unknown function 

TK0719 109 39062 4 8
ABC-type molybdate transport system, 
ATPase component 

TK0664 109 24671 2 8
hypoxanthine/guanine 
phosphoribosyltransferase 

TK1579 107 33947 1 5
ABC-type multidrug transport system, 
ATPase component 

TK1596 107 11840 3 18 V-type ATP synthase subunit H 
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TK2091 107 48428 3 5
membrane bound hydrogenase, NiFe-
hydrogenase large subunit 2 

TK0593 105 45867 3 12 Protein with unknown function 

TK1960 103 14356 5 13 RPA2 

TK1548 103 42933 2 6
serine--glyoxylate aminotransferase, class 
V 

TK2211 100 102779 21 3 Rad50 

TK1961(RPA3) was tagged 

TK1959 1472 31240 267 65 RPA1 

TK0470 932 141310 67 14 reverse gyrase 

TK1960 734 14356 105 86 RPA2 

TK1188 468 46297 44 29 sugar-phosphate nucleotydyltransferase 

TK0563 168 18180 9 20
6-pyruvoyl-tetrahydropterin synthase-
related protein 

TK1017 133 135911 10 3 chromosome segregation ATPase 

TK0001 117 90030 17 3 PolB 

TK2074 112 39247 8 12 putative glutamate synthase subunit beta 

TK1083 112 127604 6 3
DNA-directed RNA polymerase subunit 
beta

TK0446 110 27210 4 9 Protein with unknown function 

TK0296 109 34405 3 6 quinolinate synthetase 

 
 
Proteins with MASCOT scores higher than 100 identified in the eluate containing 
His-tagged proteins are listed along with the proteins molecular weight, number of 
peptides matched, and the percentage of its amino acid sequence covered by the 
matching peptides. None of the listed proteins was detected in equivalent column 
fractions prepared from the untagged KW128 strain. (See text for further details.) 
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Appendix 2: A subset of the protein-protein interactions identified in the study. 
 

Gene # Score MW 
(Da) 

Peptide 
Matches 

Percent 
coverage 

Function 

Cdc6  TK1901   
    
TK1901 1259 47777 83 55 Cdc6 
TK2218 336 37170 13 13 RFC-S 
TK0535 313 28222 15 33 PCNA1 
TK1314 233 50095 9 26 ATPase 
TK1903 186 150190 10 2 PolD-S 
TK0593 100 45867 2 6 Protein with unknown function  
    
    
DNA 
ligase 

TK2140   

    
TK2140 3453 64042 774 82 DNA ligase 
TK1903 291 150190 13 4 PolD-S 
TK0063 196 21240 12 28 nucleotidyltransferase/DNA-

binding domain-containing 
protein 

TK0361 146 16513 1 25 Protein with unknown function 
TK0455 131 37834 4 12 Protein with unknown function 
TK2145 126 69683 6 3 Protein with unknown function 
TK0847 124 8671 4 59 Protein with unknown function 
TK0535 103 28222 4 13 PCNA1 
    
    
DnaG-
like 

TK1410   

    
TK0790 589 16212 35 82 Protein with unknown function 
TK1633 352 29757 15 46 exosome complex RNA-binding 

protein Rrp42 
TK2227 235 54037 11 12 RNA-binding protein FAU-1 
TK1634 202 27668 10 23 exosome complex exonuclease 

Rrp41 
    
    
Fen1 TK1281   
    
TK1281 2608 38786 581 82 Fen1 
TK0535 1967 28222 361 89 PCNA1 
TK0569 200 38673 7 11 Protein with unknown function 
TK1046 199 147354 5 3 Protein with unknown function 
TK0590 192 8502 10 63 Protein with unknown function  
TK0358 184 53699 5 6 Protein with unknown function  
TK0593 153 45867 5 13 Protein with unknown function 
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GINS51 TK0536   
    
TK1903 895 150190 41 15 PolD-S 
TK1252 858 52858 25 32 ssDNA-specific exonuclease 
TK1046 659 147354 22 10 Protein with unknown function 
TK1902 488 80848 14 15 PolD-L 
TK0536 364 21583 14 44 GINS51 
TK1619 191 19154 7 26 GINS23 
    
    
GINS23 TK1619   
    
TK1619 1565 19154 141 74 GINS23 
TK0582 1119 28429 53 82 PCNA2 
TK1186 451 43957 15 26 Protein with unknown function 
TK0535 175 28222 5 17 PCNA1 
TK0569 115 38673 2 9 Protein with unknown function 
TK2021 107 32017 4 6 ParA/MinD family ATPase 
    
    
MCM1 TK0096   
    
TK0096 676 103285 30 18 MCM1 
TK1313 195 23503 12 20 Protein with unknown function 
TK0063 194 21240 8 36 nucleotidyltransferase/DNA-

binding domain-containing 
protein 

TK1903 174 150190 11 3 PolD-S 
TK0535 137 28222 5 14 PCNA1 
TK2211 109 102779 6 4 Rad50 
TK0590 106 8502 3 21 Protein with unknown function 
    
    
MCM2 TK1361   
    
TK0535 925 28222 46 66 PCNA1 
TK1903 358 150190 21 6 PolD-S 
TK0063 230 21240 9 32 nucleotidyltransferase/DNA-

binding domain-containing 
protein 

TK0590 152 8502 11 51 Protein with unknown function 
TK0682 150 65448 11 12 MutS-like DNA mismatch repair 

ATPase 
TK0001 100 90030 17 2 PolB 
    
    
MCM3 TK1620   
    
TK1245 167 15009 8 23 Protein with unknown function 
TK0590 164 8502 7 53 Protein with unknown function  
TK0569 146 38673 5 7 Protein with unknown function  
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TK0467 124 118109 4 3 Protein with unknown function 
TK1046 100 147354 6 2 Protein with unknown function  
    
    
PCNA1 TK0535   
    
TK0535 2098 28222 828 91 PCNA1 
TK2218 265 37170 13 10 RFC-S 
TK0808 259 7606 15 48 Protein with unknown function 
TK2219 105 57239 5 6 RFC-L 
    
    
PCNA2 TK0582   
    
TK0582 1723 28429 166 84 PCNA2 
TK1046 754 147354 28 11 Protein with unknown function 
TK0569 173 38673 6 15 Protein with unknown function 
TK0535 132 28222 5 18 PCNA1 
TK0953 130 67743 5 7 ATPase 
TK1849 110 19094 2 11 Protein with unknown function 
    
    
PolB TK0001   
    
TK0001 4027 90030 556 35 PolB 
TK1046 576 147354 25 10 Protein with unknown function 
TK0569 210 38673 9 15 Protein with unknown function 
TK2021 109 32017 4 8 ParA/MinD family ATPase 
    
    
PolD-S TK1903   
    
TK1903 427 150190 21 8 PolD-S 
TK1902 197 80848 9 6 PolD-L 
TK0535 123 28222 4 12 PCNA1 
TK1252 102 52858 4 5 ssDNA-specific exonuclease 
    
    
Pri-L TK1790   
    
TK1791 442 40443 26 28 Pri-S 
TK1790 187 46893 9 15 Pri-L 
TK1186 185 43957 7 24 Protein with unknown function 
TK0569 154 38673 5 12 Protein with unknown function 
TK2211 132 102779 10 5 Rad50 
TK0535 131 28222 5 10 PCNA1 
TK1789 109 28203 4 15 ATPase 
    
    
Unknown TK1792   
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TK1046 279 147354 12 5 Protein with unknown function 
TK1633 133 29757 3 17 exosome complex RNA-binding 

protein Rrp42 
    
    
RFC-S TK2218   
    
TK2218 968 37170 58 26 RFC-S 
TK2219 388 57239 24 15 RFC-L 
    
    
RFC-L TK2219   
    
TK2218 1412 37170 149 29 RFC-S 
TK0582 885 28429 45 60 PCNA2 
TK2219 841 57239 62 32 RFC-L 
TK1245 113 15009 5 15 Protein with unknown function 
TK0569 131 38673 2 9 Protein with unknown function 
TK1046 105 147354 3 1 Protein with unknown function 
    
    
RPA2 TK1960   
    
TK1046  1196 147354 43 17 Protein with unknown function 
TK0358  378 53699 10 17 Protein with unknown function  
TK2021  152 32017 4 14 ParA/MinD family ATPase 
TK1633  148 29757 5 14 exosome complex RNA-binding 

protein Rrp42 
TK0946  133 15865 4 19 Protein with unknown function  
TK2253  121 28743 9 20 Protein with unknown function  
TK0719  109 39062 4 8 ABC-type molybdate transport 

system, ATPase component 
TK1579  107 33947 1 5 ABC-type multidrug transport 

system, ATPase component 
TK0593 105 45867 3 12 Protein with unknown function 
TK1960  103 14356 5 13 replication factor A complex, 

RPA14 subunit 
TK2211 100 102779 21 3 Rad50 
    
    
RPA3 TK1961   
    
TK1959 1472 31240 267 65 RPA1 
TK0470 932 141310 67 14 reverse gyrase 
TK1960 734 14356 105 86 RPA2 
TK1017 133 135911 10 3 chromosome segregation 

ATPase 
TK0001 117 90030 17 3 PolB 
TK0446 110 27210 4 9 Protein with unknown function 
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Proteins with MASCOT scores higher than 100 identified in the eluate containing 
His-tagged proteins are listed along with the proteins molecular weight, number of 
peptides matched, and the percentage of its amino acid sequence covered by the 
matching peptides. None of the listed proteins was detected in equivalent column 
fractions prepared from the untagged KW128 strain. 
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Appendix 3: Primers used to generate the constructs for the study in Chapter 2. 
 

Genes to 
tag 

Name Sequences 
Res. 
Sites

    
TK1619 
(GINS2) 

Zhuo_0001 5'-AGGAAGCTTAGTACCTCGAAAGGACTTCG-3' Hind III

 Zhuo_0002  5'-ATTCTGCAGTCACGATAACCCTATAAGCC-3' Pst I 

 Zhuo_0003  5'-AGCTCTAGAACTGCCCTGACAGAATGATC-3' Xba I 

 Zhuo_0006  5'-TTAGAATTCCCTCAAGAATCTTCTTGAATATG-3' EcoR I

 Zhuo_0306 5'-GAAAGGTGCAAATCATGCATCATCATCATCATCATT 
TCACGGGTAAAGC-3' 

 

 Zhuo_0307 5'-GCTTTACCCGTGAAATGATGATGATGATGATGCATGA 
TTTGCACCTTTC-3' 

 

TK0001 
(PolB) 

Zhuo_0007  5'-CAGGCATGCGAACTACGTTGAGATACCGAAG-3' Sph I 

 Zhuo_0008  5'-TGACTGCAGAAATGGAAAGGTCAATGATGATGATGAT 
GATGAGTTCCCTTCGGCTTCAGCCAAG-3' 

Pst I 

 Zhuo_0009  5'-CCATCTAGAGTTTTCCAGCGGATAACCCT-3' Xba I 

 Zhuo_0010  5'-CTCGGTACCCCGAGAACCTCATCGTAGCGCG-3' Kpn I 

TK2219 
(RFC2) 

Zhuo_0011  5'-ATGGCATGCGGTAAGTGATCCCTATGACG-3' Sph I 

 Zhuo_0012  5'-AAACTCGAGGCAATACAATTCAATGATGATGATGAT 
GATGCTTCTTGAGGAAGTCGAACAGC-3' 

 

 Zhuo_0012m 5'-AAAGCATGCGCAATACAATTCAAT-3' SphI 

 Zhuo_0013  5'-AAATCTAGAGAAAAATATAAAAACCCACT-3' Xba I 

 Zhuo_0014  5'-AAAGAATTCCGAGCATATCCCTCGCCAGCT-3' EcoR I

TK0536 
(GINS1) 

Zhuo_0015  5'-GCATAAGCATGCGCGCAAT-3' Sph I 

 Zhuo_0016  5'-TCTCTGCAGAGGACTTACTTTAATGATGATGATGATGA 
TGGAGGAATATCCTTACTCTTC-3' 

Pst I 

 Zhuo_0017  5'-CAGGGATCCTTTAAGTTGCTCCAGTTTTTATTC-3' BamH I

 Zhuo_0018  5'-TTTAAGGAATTCCGATCCGGATGGGCTGTTC-3' EcoR I

TK2218 
(RFC1) 

Zhuo_0019  5'-TATGCATGCAGTGAGCAGCGCCACTAGGCA-3' Sph I 

 Zhuo_0020  5'-GGGCTGCAGTTGTCTTCTCGTGGAACTGCA-3' Pst I 

 Zhuo_0021  5'-CCCTCTAGATGGTTGGTTGGGTACAGCGTCCCAGTGA 
GACGGCAAAAGCCTTAAACTCCGGGGGCTCATAAAGG 
TTTAG-3' 

Xba I 

 Zhuo_0022  5'-CTCATAAAGGTTTAGGTGAAAATCCATGCATCATCATC 
ATCATCATAT 
GTCCGAGGAAGTGAAGGAAGTTAAAATTC-3' 

 

 Zhuo_0023  5'-GGAGAATTCGGTCGTAGATGACGAAGTCG-3' EcoR I

TK0535 
(PCNA1) 

Zhuo_0015  5'-GCATAAGCATGCGCGCAAT-3' Sph I 

 Zhuo_0017  5'-CAGGGATCCTTTAAGTTGCTCCAGTTTTTATTC-3' BamH I

 Zhuo_0018  5'-TTTAAGGAATTCCGATCCGGATGGGCTGTTC-3' EcoR I

 Zhuo_0034  5'-AGAGTTGAGGGAGGTCAATGATGATGATGATGATG 
CTCCTCAACGCGCGGAGCGA-3' 

 

 Zhuo_0035  5'-TCGCTCCGCGCGTTGAGGAGCATCATCATCATCATCA  
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TTGACCTCCCTCAACTCT-3' 

 Zhuo_0036 5'-ATATCTGCAGAGGACTTACTTTAGAGGAATATC-3' Pst I 

TK1960 
(RPA2) 

Zhuo_0037  5'-AAGAGCATGCTCAGAGCGGCTCGTAGAAGC-3' Sph I 

 Zhuo_0040 5'-GTGTCTGCAGGCCCTATAGTTTTCCCATTTC-3' Pst I 

 Zhuo_0041  5'-GTGTTCTAGACTAGAAAAACTTCAATCGGAC-3' Xba I 

 Zhuo_0042  5'-TATGGAATTCGAGGGGATTCATGCCACCAC-3' EcoR I

 Zhuo_0043m 5'-GAGTTCTTCGGAGGTGGTGAGCATCATCATCATCATC 
ATGAATGAAGAAGCGCCTACCAG-3' 

 

 Zhuo_0044m 5'-CTGGTAGGCGCTTCTTCATTCATGATGATGATGATGAT 
GCTCACCACCTCCGAAGAACTC-3' 

 

TK1961 
(RPA3) 

Zhuo_0037  5'-AAGAGCATGCTCAGAGCGGCTCGTAGAAGC-3' Sph I 

 Zhuo_0040 5'-GTGTCTGCAGGCCCTATAGTTTTCCCATTTC-3' Pst I 

 Zhuo_0041  5'-GTGTTCTAGACTAGAAAAACTTCAATCGGAC-3' Xba I 

 Zhuo_0042  5'-TATGGAATTCGAGGGGATTCATGCCACCAC-3' EcoR I

 Zhuo_0045  5'-GAAGGAGTACGGCCTTGAGCATCATCATCATCATCAT 
TGAGGTGGTTGAAATGGAGG-3' 

 

 Zhuo_0046  5'-CCTCCATTTCAACCACCTCAATGATGATGATGATGAT 
GCTCAAGGCCGTACTCCTTC-3' 

 

TK1901 
(Cdc6)  

EJ5 5'-CCCGGTACCTTGATGTGGGTAAAACATGGGGAGG-3' Kpn I 

 EJ6 5'-CCCGGATCCGAAAACACGAACAATGATGGACAAA 
AGGG-3' 

BamH I

 Zhuo_0047  5'-GGGCTGCAGATGTATATCCCTGTTCATTCCTC-3' Pst I 

 Zhuo_0050 5'-CCCCTGCAGACCCATTCTCACTCCCGTTTTCCACTG 
GAAGGG-3' 

Pst I 

 Zhuo_0051 5'-CGAATATTGAACTGAGGTAGTCATCGTCGTGGTG 
GTGGTGGTGGTGCATCGTCCCACTCTCCACTTG-3' 

 

 Zhuo_0052 5'-CAAGTGGAGAGTGGGACGATGCACCACCACCACCA 
CCACGACGATGACTACCTCAGTTCAATATTCG-3' 

 

TK1903 
(PolD2) 

Zhuo_0053  5'-CTCGGTACCAAGAGGGCACTCAGAGAAGC-3' Kpn I 

 Zhuo_0054m 5'-GGGTCTAGACAAGAGGAGAATGTTAGTGGTGGTGG 
TGGTGGTGCGAGCCGAAGAACTCGTCGAGGCTTATGC 
CTTTCCGCTTC-3' 

Xba I 

 Zhuo_0054m1  5'-AGGCTTATGCCTTTCCGCTTC-3'  

 Zhuo_0054m2 5'-GGGTCTAGACAAGAGGAGAATGTTAGTGG-3'  

 Zhuo_0055  5'-GGGCTGCAGGTTTCCTTTTCGTGTGTTCG-3' Pst I 

 Zhuo_0056  5'-GGGCTGCAGTAACTTCCGCAAGAATGTAC-3' Pst I 

TK1281 
(Fen1) 

Zhuo_0062  5'-CTGCGCATGCAGGCTTCTGAAGGTCCCGAGAAC-3' Sph I 

 Zhuo_0063  5'-CTTCTTTTTCTCATCTTTTCCGGTGGTGAGAATGCATC 
ATCATCATCATCATGGAGTCCAGATAGGTGAGCTG-3' 

 

 Zhuo_0063m1: 5'-ACCTATCTGGACTCCATGATGATGATGATGATGCAT 
TCTCACCACCGGA-3' 

 

 Zhuo_0063m2: 5'-TCCGGTGGTGAGAATGCATCATCATCATCATCATGG 
AGTCCAGATAGGT-3' 

 

 Zhuo_0064  5'-AAAACTGCAGGGAGATACTGTACAACTGGCAGGCT 
GAGGCAAAGCCTAAATACTTCTTTTTCTCATCTTTTCC 
GG-3' 

Pst I 
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 Zhuo_0064m 5'-AAAACTGCAGGGAGATACTGTACAACTGGC-3' Pst I 

 Zhuo_0065  5'-GGGTCTAGAAAAGTGTAGAGAGTCACCCA-3' Xba I 

 Zhuo_0066 5'-CCTTTGAATTCGGCAGGTCGAGGTATGGAAC-3' EcoR I

TK1790 
(Primease1) 

Zhuo_0080: 5'-CTCGGCATGCTTCCAGATTGATATGTATCG-3' Sph I 

 Zhuo_0081: 5'-TCTGCTGCAGTCTGAACATCCAAAAGTTTTATATTG-3' Pst I 

 Zhuo_0082: 5'-ATGCTCTAGACACCATAGGGAATTTTATTGTCTTC 
ACAGTACATTATTGTGCACCTCCCAAAAAGGAAACC 
GTTTTATTGTTGATTATG-3' 

Xba I 

 Zhuo_0082m1: 5'-ATGCTCTAGACACCATAGG-3' Xba I 

 Zhuo_0083: 5'-CCGTTTTATTGTTGATTATGTCACCCATATTAGGTGGGA 
GTATGCATCATCATCATCATCATCTCGACCCCTTTGGAAA 
AAGAGCG-3' 

 

 Zhuo_0083m1: 5'-CGACCCCTTTGGAAAAAGAGCGGAGAGC-3'  

 Zhuo_0083m2: 5'- GCTCTCCGCTCTTTTTCCAAAGGGGTCG-3'  

 Zhuo_0084: 5'-TCTGGATCCCTCCGTTCAATGCTCTCCAC-3' BamH I

TK1792 
(Primease 
Related) 

Zhuo_0089: 5'-GTGCGCATGCCCAATCTGCCTCGAAGATGC-3' Sph I 

 Zhuo_0090: 5'-ATGCCTGCAGGGCCCCCTCGCCTCAATGATGATGA 
TGATGATGTCTTCTCAGAGCATCCA-3' 

Pst I 

 Zhuo_0092: 5'-GTTTGGATCCGAGGACGTTCGTTGTAGCAG-3' BamH I

 Zhuo_0301 5'-ATGCTCTAGATGAGGCGAGGGGGCCGTAGCCCG 
CCTTC-3' 

Xba I 

TK0096 
(MCM1) 

EJ14m  5'-GTCAAAATTGATGTCCTCACTGTGGTGGTGGTGGT 
GGTGCATCCTTCATCCCTCTATTTGCGCC-3' 

 

 EJ15m  5'-GGCGCAAATAGAGGGATGAAGGATGCACCACCAC 
CACCACCACAGTGAGGACATCAATTTTGAC-3' 

 

 Zhuo_0093: 5'-GCTGCATGCGAGTTAGTGGACAAATCAC-3' Sph I 

 Zhuo_0094: 5'-ATGCCTGCAGCATCATTGTGAAGAAGTGATCAC-3' Pst I 

 Zhuo_0095: 5'-ATGCTCTAGATATAAGTAAGCGCTGTTCTGTAC-3' Xba I 

 Zhuo_0096: 5'-CCCGAATTCTTCACGCCATTGCTCTTCTC-3' EcoR I

TK1410 
(DnaG like) 

Zhuo_0098: 5'-GTTGCATGCCTCCGCATTGAGGACGTCAG-3' Sph I 

 Zhuo_0099: 5'-GAAAATTAGAAAAGGAATCACTCATGATGATGATG 
ATGATGAGCGAAAGTGATGATCTTG-3' 

 

 Zhuo_0100: 5'-CAAGATCATCACTTTCGCTCATCATCATCATCATCA 
TGAGTGATTCCTTTTCTAATTTTC-3' 

 

 Zhuo_0101: 5'-GTACCTGCAGAAAGTTTAGTCCTAGTGTTC-3' Pst I 

 Zhuo_0102: 5'-ATGCTCTAGAATAACGTCCCCACCTCTTCT-3' Xba I 

 Zhuo_0103: 5'-CTCTGGATCCATGCTCCTGTCCGCGGAAGAT-3' BamH I

TK2140 
(Ligase) 

Zhuo_0114 5'-ACTCGCATGCAGACCCTCGAGTGGGTTGTC-3' Sph I 

 Zhuo_0115 5'-TTTCTGCAGGTTGAAGTTCACTCCTCAACG-3' Pst I 

 Zhuo_0116 5'-CCCTCTAGACTTCTTTCCTTTTATATCCTG-3' Xba I 

 Zhuo_0117 5'-TCAGAGTAGCGCATATCGCTATGATGATGATGATG 
ATGCATTCTCACCACCGGATAA-3' 

 

 Zhuo_0118 5'-TTATCCGGTGGTGAGAATGCATCATCATCATCATCA 
TAGCGATATGCGCTACTCTGA-3' 
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 Zhuo_0119 5'-GCGAGGTACCGCTTTATCTTCTCGCTCTCC-3' Kpn I 

TK1620 
(MCM3) 

Zhuo_0148 5'-TACCGGCATGCGGAAATGGCGAAGATGTACT-3' Sph I 

 Zhuo_0149 5'-ATCTTCTGCAGGCCATTTTTGATCATTCTG-3' Pst I 

 Zhuo_0150 5'-ATCTTCTCTAGAAGCCAATCTCGGTTCATTCAG-3' Xba I 

 Zhuo_0151 5'-ATCATCTCTTCCCTGTCATGATGATGATGATGATGCAT 
CAGGCATCACCGA-3' 

 

 Zhuo_0152 5'-TCGGTGATGCCTGATGCATCATCATCATCATCATGACA 
GGGAAGAGATGAT-3' 

 

 Zhuo_0153 5'-TAGCCGAATTCGATGAACTCTTCCCGCTCGTGTA-3' EcoR I

TK0582 
(PCNA2) 

Zhuo_0031  5'-CGCGCTGCAGGTTTGTTTTCGTGAAGATAGACTAC-3' Pst I 

 Zhuo_0033m: 5'-GCTTAGGTACCATACTTTGTCGTGAGAGGTA-3' Kpn I 

 Zhuo_0154 5'-CATTCAGCATGCCTCTCAGTC-3' Sph I 

 Zhuo_0155 5'-GAGGAGGTGATGGCATGCATCATCATCATCATCATAC 
TTTTGAGATTGTGT-3' 

 

 Zhuo_0156 5'-ACACAATCTCAAAAGTATGATGATGATGATGATGCATG 
CCATCACCTCCTC-3' 

 

 Zhuo_0242 5'-CCGTTCTAGATGCTGGCCGGCACTACATCAG-3' Xba I 

TK1361 
(MCM2) 

Zhuo_0158 5'-CTCCAGAATTCCCGCTCATAGACCGGAAGA-3' EcoR I

 Zhuo_0159 5'-GAGAGAGAGAGGGTGAGATGCATCATCATCATCATCA 
TTTAACAAAAGTTACAGACG-3' 

 

 Zhuo_0160 5'-
CGTCTGTAACTTTTGTTAAATGATGATGATGATGATGCA 
TCTCACCCTCTCTCTCTC-3' 

 

 Zhuo_0161 5'-ATGCTCTAGACTTCGGGATCCTGCTCAGG-3' Xba I 

 Zhuo_0162 5'-ATGCCTGCAGGAGATCCCTATCATGCTCC-3' Pst I 

 Zhuo_0163 5'-CTTTTGCATGCAGAGTATCTCCGCTCGCAG-3' Sph I 

 
Underlined sequences indicate the restriction sites. 
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Appendix 4. Oligonucleotides and substrates used for biochemistry study in  
Chapter 3 
 

Name Sequences Observation

A1 5’-GGGGCGAGTCCAGGTCAGGACCTTGCGGGG-3’ 
Cy5 labeled 
at 5’ end 

A2 5’-CCCCGCAAGGTCCTGACCTGGACTCGCCCC-3’  

A3 
5’-AATAATCAATACTATAAGTACATATCAATACCCCGCAAGGTC 
CTGACCTGGACTCGCCCC-3’ 

 

A4 5’-GGGGCGAGTCCAGGTCAGGACCTTGCGGGG-3’ 
Cy3 labeled 
at 3’ end 

A4R 5’-GGGGCGAGTCCAGGTCAGGACCTTGCGGGG-3’ 
RNA, Cy3 
labeled at 3’ 
end 

A5 
5’-CCCCGCAAGGTCCTGACCTGGACTCGCCCCA 
ATAATCAATACTATAAGTACATATCAATA-3’ 

 

F1 A4+A3 5’ overhang
F2 A4+A5 3’ overhang
F3 A4+A2 Blunt  

A 
5’-GCGGGCAACAGCAACCGGAGCAGCAGACGAAGGAAACCAAGG 
AGGCGAAACCAGGGCCCAAGCAGCAGGAAAGGAGCACCAGGAGC
AAAAGCAGGCACAG-3’ 

 

B 
5’-CAACAGGGAACGAGCACGGGCGCGGCAGCCACACGAGCCAGG 
AGCGACGACCGCCAGCGCGCAAACGAACGCCGAGCGCCGAAGGC 
ACGGAAAGCCAGCA-3’ 

 

Bridge AB 5’-GTTCCCTGTTGCTGTGCCTGC-3’  
Bridge BA 5’-CTGTTGCCCGCTGCTGGCTTTC-3’  
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Appendix 5: Oligonucleotides used for cloning in Chapter 3 
 

Name Sequences 
Res. 
Sites

Zhuo_0232 5'-ATATCATATGGATAAGGAGGCTTTTTTGGAGCG-3' NdeI 
Zhuo_0233 5'-GCATGTCGACTCAACCCTCGCCTTCACTTCCAC-3' SalI 
Zhuo_0314 5'-CATCTCCCACAGGGCTGCTGACGGCATCA-3'  
Zhuo_0315 5'-TGATGCCGTCAGCAGCCCTGTGGGAGATG-3'  
Zhuo_0323 5'-TGAGGAAGCTTGTTGTGTAAACACTGACCTTCG-3' HindIII
Zhuo_0324 5'-ATGCCGCATGCCGGAATGAGTTTAAAAAGG-3' SphI 
Zhuo_0325 5'-GATCATCTAGACAACGCCGATGCGAAGGGGCGGCT-3' XbaI 

Zhuo_0326 
5'-AAGCCTCCTTATCATGATGATGATGATGATGCACGCGGCATC 
AC-3' 

 

Zhuo_0327 
5'-GTGATGCCGCGTGCATCATCATCATCATCATGATAAGGAGGC 
TT-3' 

 

Zhuo_0328 5'-GCATGCGGATCCTCTCGTTGTCCACCTGGATTG-3' BamHI
Miao_029 5'-CCGCATATGGATATAGTGAAGCTCAGGGAAC-3' NdeI 

Miao_030 
5'-CCGGGATCCTTAGTGATGGTGATGGTGATGGAGGAATATCCT 
TACTCTTCGTGC-3' 

BamHI

Miao_031 5'-CCGCATATGTTCACGGGTAAAGCCCTC-3' NdeI 

Miao_032 
5'-CCGGGATCCTCAGTGATGGTGATGGTGATGGGCATCACCGAG 
CCACTCGTTTC-3' 

BamHI

 
Underlined sequences indicate the restriction sites. 
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Appendix 6: Oligonucleotides used for cloning in Chapter 4 
 

Name 
Used to 
generate 

Sequences 

Zhuo_0494 PCNA1-A 
5'-GACCGCCAGTGCCGCCGGCATAGCCGCCCTCAGCGACA 
TGG-3' 

Zhuo_0495 PCNA1-A 
5'-CCATGTCGCTGAGGGCGGCTATGCCGGCGGCACTGGCGG 
TC-3' 

Zhuo_0496 PCNA1-E 
5'-GTCGAGGAAGAGACCGAAAGTGCCGAAGGCATAGAAGAG 
CTCAGCGACATGGTC-3' 

Zhuo_0497 PCNA1-E 
5'-GACCATGTCGCTGAGCTCTTCTATGCCTTCGGCACTTTCGG 
TCTCTTCCTCGAC-3' 

Zhuo_0498 PCNA2-A 
5'-AGATGACAAAGGCGGCCAGTGCGGCCGGGGTTGCAGCC 
CTC-3' 

Zhuo_0499 PCNA2-A 
5'-GAGGGCTGCAACCCCGGCCGCACTGGCCGCCTTTGTCA 
TCT-3' 

Zhuo_0500 PCNA2-E 
5'-AGATGACAAAGGCGGAAAGTGCGGAAGGGGTTGCAGAA 
CTCGAGGACATC-3' 

Zhuo_0501 PCNA2-E 
5'-GATGTCCTCGAGTTCTGCAACCCCTTCCGCACTTTCCGCCT 
TTGTCATCT-3' 

Zhuo_0395 Fen1 5'-ATGCCATATGGGAGTCCAGATAGGTGAGC-3' 
Zhuo_0396 Fen1 5'-AATTGTCGACCTATCGACCGAACCAGCTCTC-3' 
Zhuo_0277 TIP 5'-ATGCCATATGGACAGGAAGCTCGACGAG-3' 
Zhuo_0278 TIP 5'-GTACGTCGACTTATAACTCCTCGATTTTCGCG-3' 

 
Underlined sequences indicate the restriction sites. 
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Appendix 7: Cloned plasmids for expressing proteins identified in the interaction 
network. 
 

Plasmid name Gene Current Statues 

pZF003 TK0643 Soluble protein expressed 
pZF005 TK1005 Soluble protein expressed 
pZF008 TK1252 Studied in Chapter 3 
pZF012 TK0569 Soluble protein expressed 
pZF013 TK0808 Studied in Chapter 4 
pZF016 TK2106 Soluble protein expressed 
pZF019 TK1245 Soluble protein expressed 
pZF021 TK1633 Soluble protein expressed 
pZF022 TK1634 Soluble protein expressed 
pZF023 TK0063 Soluble protein expressed 
pZF024 TK0593 Soluble protein expressed 
pZF026 TK1789 Soluble protein expressed 
pZF027 TK2021 Soluble protein expressed 
pZF028 TK2101 Soluble protein expressed 
pZF029 TK0790 Soluble protein expressed 
pZF030 TK0953 Soluble protein expressed 
pZF031 TK1281 Studied in Chapter 4 
pZF032 TK0679 Soluble protein expressed 
pZF033 TK0801 Soluble protein expressed 
pZF034 TK2250 Soluble protein expressed 
pZF035 TK2140 Soluble protein expressed 
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