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Abstract

In this paper we discuss the numerical integration of Lie-Poisson Systems using the mid-
point rule. Since such systems result from the reduction of hamiltonian systems with
symmetry by Lie group actions, we also present examples of reconstruction rules for the
full dynamics. A primary motivation is to preserve in the integration process, various
conserved quantities of the original dynamics. A main result of this paper is an O (17,3) error
estimate for the Lie-Poisson structure where  is the integration step-size. We note that
Lie-Poisson systems appear naturally in many areas of physical science and engineering,
including theoretical mechanics of fluids and plasmas, satellite dynamics, and polarization
dynamics. In the present paper we consider a series of progressively complicated examples
related to rigid body systems. We also consider a dissipative example associated to a Lie-
Poisson system. The behavior of the mid-point rule and an associated reconstruction rule
1s numerically explored.
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Almost Poisson Integration

of Rigid Body Systems

1 Introduction

Natural dynamical systems often display a variety of analytic and geometric structures
in their mathematical descriptions. Associated to such structures, there are various con-
served quantities or invariants of analytic as well as geometric character. For instance, in
hamiltonian mechanics of particles in a central force field, one has conservation of energy
and total angular momentum. The phase space volume is also conserved. The latter is
an example of a geometric conserved quantity. In the case of dissipative systems the vol-
ume decays. In the study of such systems via computer simulation, it is very desirable to
use computational schemes that admit the same set of invariants (or decay rates). More
precisely, one would like to preserve underlying geometric structures and symmetries even
in the discrete-time dynamics (computational scheme), in the interest of long-term pre-
dictions. If, as is customary, one were to use off-the-shelf schemes (e.g. fourth or higher
order explicit Runge-Kutta [21], backward Euler, diagonally implicit Runge-Kutta [2]) to
integrate the dynamics in such problems, then the computed trajectories show systematic
deviations (decay or growth) in the quantities that are physically conserved. Thus, such
numerical simulations are an unreliable guide to the long-term dynamic behavior. For

related comparisons, see Channel and Scovel [6].

For some time, there has been steady interest in the design of algorithms that have the
facility to closely mimic hamiltonian dynamics. In the work of the Beijing school [10,11], we
find a systematic exploration of symplectic schemes (via generating functions) for classical
hamiltonian systems on flat spaces. In particular, the mid-point rule plays a prorminent role
in that work, as explained below. In the present paper, we are concerned with systems that
evolve on cotangent bundles of Lie groups, a basic example being the free rigid body with
the rotation group as configuration space. If the hamiltonian is fully reducible by the group,
as 1s the case in the rigid body example, then the dynamics drops to the flat space of linear
functionals on the Lie algebra of the Lie Group, and hence the mid-point rule is well-defined
globally in the reduced variables. The hamiltonian structure of the reduced equations is

however noncanonical and is referred to as a Lie-Poisson structure. It is a principal goal of
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this paper to explore the applications of the mid-point rule and related reconstruction rules
to such Lie-Poisson equations via a series of progressively complicated examples. In general,
the mid-point rule is not exactly Poisson structure preserving (and hence the terminology
of almost Poisson integration). However, by a small miracle involving the Jacobi identity,
the mid-point rule is indeed second order accurate in the Poisson structure and to this end

we give an error formula.

The structure of the paper is as follows. In Section 2 we present the basic model of
(noncanonical) Poisson dynamics and summarize some of its properties. We also specialize
it to the classical canonical setting. In Section 3 we discuss the mid-point rule and present
an error formula for the Poisson bracket. The mid-point rule is applied to a variety of
examples in Section 4; these include rigid body dynamics, heavy top, dual spin problem,
and dual spin with damping. A key result is the derivation of a reconstruction formula for
elements in SO(3) (the rotation group), which conserves spatial angular momenta. Sections
5 and 6 discuss issues in the numerical implementation of the proposed algorithms. Finally,
numerical examples and simulation as well as animation results for rigid body systems are

presented in Section 7.

We note in the previous work of Marsden and Ge-Zhong [13] a Lie-Poisson Hamilton-
Jacobi theory has been developed. This theory leads to algorithms that preserve the Lie-
Poisson structure exactly, but do not typically conserve the Hamiltonian. Recently, Simo
and Wong [24] have used a Newmark-Based algorithm to study rigid body dynamics. When
the parameters of their algorithms are set so that energy and momentum will be conserved,
their algorithm reduces to the mid-point rule with an exponential map. We note, however,
that the work of Simo and Wong does not consider errors from the viewpoint of conserving
the Poisson structure, and has not been extended to applications with a general Lie-Poisson

setting. For other earlier work on the midpoint rule we refer the reader to Elliot [8.9].

2 The Model

In the present paper we are concerned with hamiltonian models of the form,

2 =A(z)VH(z). (1)
Here A(z), the Poisson tensor, is an n X n skew-symmetric matrix for each = and H is the
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hamiltonian. In addition, the tensor A(z) satisfies a set of differential equations (Jacobi
identity): o
52 200 gy 4 P gy 4 P g 2)
With condition (2) the operation,

{f,9} = VI A)Vy (3)

is a well-defined Poisson bracket on the space of smooth functions on R". It is remarkable
that the equations of many physical and engineering problems are based on models of the
form of (1) or perturbations thereof. We note, for example, the dynamics of dual spin
satellites [17], accelerator dynamics [7], motion of a heavy top [3], Euler’s elastica [20], and
dynamics of rods, plates and shells [23]. Also see Simo, Marsden and Krishnaprasad [23]

for infinite-dimensional examples, and Marsden et al. [19] for a general discussion.

The dynamics (1) can be re-expressed in terms of the Poisson bracket (3) as

= {=, H). (4)

When A(z) is linear in z, the bracket structure is said to be of Lie-Poisson type. Several

of the earlier mentioned examples are of this variety. In this case one sets,

AY(z) Z N (5)
where Ffj = —I"”i and the Jacobi identity (2) takes the form,
S LT + T T+ Tl =0, 1 < ik < n (6)

It is further well-known that in this case the underlying vector space R" can be given the
structure of a Lie algebra [27] with the structure constants Pf”] in a suitable basis. Now let
® : R" — R" be a diffeomorphism. ® is said to be a Poisson automorphism if it preserves

the Poisson structure, i.e. for smooth functions f, g¢.

{fi9g}o® = {fod, god},
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or alternatively its Fréchet derivative satisfies,

(DB(2)A(2)(DB(2)) " = A(B(2)), (7)

Here the superscript T denotes matrix transpose. We recall the well-known result(see

Weinstein [27]),
Proposition 1 : The flow ®' of the system (1) satisfies:

(a) It is a Poisson automorphism V ¢.
(b) H(®'(2)) = H ().
(c) HC:R" — R is a function such that

A()VC(z) =0,
then C yields a kinematic conservation law of (1).

Remark 1: Functions C as in Proposition (1) are called Casimir functions. For canonical

Az) = {_O]l 3] .

Here 1 denotes the identity transformation on R™, where m = n/2. The corresponding

hamiltonian systems,

canonical Poisson bracket is given by the well-known formula [12]

where the position coordinates ¢; and conjagate momenta p; are given by

T : ¢
z2 = (q1, *y Gm, P1y" " sDm) with n = 2m.

For canonical hamiltonian systems, Casimir functions are constants. However, in the Lie-
9
Poisson setting, nontrivial Casimir functions are common, as will be demonstrated by our

examples in Section 4.



3 The Mid-point Rule

A basic concern of this paper is to investigate numerical algorithms that closely mimic
Proposition (1). In particular, we are interested in the mid-point rule, a scheme well-known

to be symplectic in the canonical case [11]. Consider the implicit recursion,

L1 k k k41 Lk k+1
z -z 8+ z 2"+ z
[T] = A(T)“” (f) ' %)

This is a discrete analog of (1) for time-step h. It is a second order accurate integrator,

and for small enough h, defines a diffeomorphism, ®% via,

= o, (:]‘) . (10)

We compute the Fréchet derivative D(I)’}‘I (2) as follows. By definition, y = ®% (=) is the

unique solution to the implicit equation,

A 2 4+ vy A4y
Flsy) 2y — = — WA )VH( ! >

<

= 0. (11)
Differentiating F° (z, ®h (2)) = 0, we get,
D,F + Dy, F o D&% =0. (12)

where D; F') ¢ = 1,2 denote the partial Fréchet derivatives. For h small enough, D, F has

an inverse, and (12) may be rearranged to give,

D®j; (2) = — (DoF)™' - (D1 F). (13)

For the special case A(z) = A a constant, it is easy to see that,

h (.
DiF= -1 — gAH:: (_Z_i_(_f_fi_(_“_)_>

<

~ h ~

Pt}
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. b2 .
Letting Q(2) = H.. (i{%ﬂ-—(—ﬂ> denote the symmetric Hessian matrix, we get

~1
o () = [1-5a00)] |1+ 5a00). (14)

Proposition 2: (Wang Dao Liu [26]). If A(z) = A a constant, then the mid-point rule

1s a Poisson automorphism.

Proof: We need to show that,

D&Yy (:)A(DY () = A

Based on the above calculations, this reduces to showing that,

SV

[(]1 - —AQ )71+ 5 AQ ))} [(11 - —/\Q T+ —AQ(Z))}T
= A.

which is equivalent to showing that

h h T h ] g
]1+3AQ(2)A]1+-9—AQ(2) = ]L—;AQ(:)A]l—;AQ(:)
This follows from the fact that A = —AT and Q(z) = Q(2)T. The proof is now complete.
Remark 2: It follows from the above proposition that, if A(z) = A = —E)]l g ,l.e. we

are in the canonical case, then the mid-point rule preserves the classical Poisson bracket (8).
Thus we recover the well-known result that the mid-point rule is a symplectic integrator
(Feng Kang [11]). This result also follows from the observation that in the canonical case,
formula (14) becomes a Cayley transform of an infinitesimally symplectic matrix AQ(z)

and hence D®%(z) is symplectic.

When A(z) is not a constant, in general, the mid-point rule is not a Poisson automor-
phism. However, if A(z) Is linear in z - l.e. we are in the Lie-Poisson setting - then the

following theorem shows that the mid-point rule is an almost Poisson integrator in the
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sense that it preserves the Lie-Poisson structure up to second order. To this end, an error

formula is given.

Theorem 1: For Lie-Poisson systems the mid-point rule is almost a Poisson automorphism.

We have the error formula,

D34 (2)A(2)(DRY ()T — A(®Y(2))
3
= — %—K(z)/\( —Z—i—w) )K(z)T + O(h*) (15)

6)

P}

where

Here @ is the Hessian of H evaluated at the mid-point, and 2 is defined by requiring that

Qv)y = A(y)v, where v,yeR".

Proof: First note that, from the definitions for partial Fréchet derivatives, for ve IR",

lim F(z + tv, y) — F (2, y)

DyF(z, yv A

=110 ¢
lim F(z, vy + tv) — F(z, y)
Dy F(z, ‘
2 F'( )Ué £10 7
and it can be verified that,
/4./ ]' N
DlF:_[]1+ ZA( +y)DH( J;y>+§ UV H( +J)] (16)
and
! z z z
D,F = [11 — SA( J; )= Y - —Q (vaE2Y) )] (17)



In the following derivation, y in (16) and (17) will be used to denote ®%(z). The error in

the Poisson structure A due to discrete time stepping by ®% is given by,

e = Dol (2) A (2) (DY ()" — A (Bl

2
~—
~—

Substituting (13), (16), and (17) gives,

= (Dy F)™! (1) (D, F)T 1 (19)

where,
= (D1 F) A (2) (D1 F)" — (Dz F) A (y) (D2 F). (20)
Since (D F)~! = 1 + O(h), we are mainly interested in the behavior of ¢; as a function

of h. For convenience, let us denote the midpoint (2 + &% (2))/2 as «. In formula
(20), multiplying out the terms, invoking (16), (17) and the linearity of A and Q in their

respective arguments, we get,

g1 = [— A(§) + hQw)A(x) + b A(z)Qw)T]

+ [hA(=)Q A + h A(z)Q Ax)"]
n?
+[———M@QA QAmT~-me QA)]
712 T h? T
— Z— HHNw)" + —Q(w)A( ) )Q(w) (21)
Here § = y — =z = ®% (2) — =. The second square bracket in ¢; vanishes because
A = — AT. Recall from (9) that,

6 = hA(z)w. (22)

Substituting from (22) in (21) the first square bracket in (21) is linear in /, and when

multiplied by v takes the form,

10



h[=A(A(x)w) + Qw) Alz) + Az)Qw)T] v, (23)

We wish to show that the expression (23) also vanishes. Note that this is equivalent to

showing that

[~AA(2)w) + Qw) Alz) + A@)Qw) v =0, VovelR". (24)

Recalling that the definition for © is given by Q(v)y = A(y)v, the left hand side of (24)

can be re-written as,
— QA (z2)w + Qw) Qv)z + Ax) Qw) T v. (25)

k
10
of the Jacobi identity (6), the expression (25) vanishes for all v, w, x €IR". This is the

Expanding 2 and A via the structure constants I'}., one can show that precisely because

small miracle alluded to in the Introduction! Collecting together the terms in the third

square bracket in formula (21) for &; we get,

]3
g = — —j—l— [Alz) Q@ + Q(w)] A (Alz)w) [AMx) @ + Q(w)]T
3 . hor..
= — —]}4— L(z) A [A(i—t—_z?ﬁ—(—k—-)-)w} K(=)T.

It follows that

e= (Dy F)™ (&1) (D )T

= (14 0(h)™" (1) @ + O(h) ™

3 . ho(.
- _% K(2)A (A(’%?H‘))w) E(z)" + 0"

i}

This completes the proof.

Conserved Quantities of Poisson System (1): It is well-known fact that mid-point

rule is a second order algorithm. Accordingly, a conserved quantity is expected to be
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approximated accurately up to second order. In fact, letting F' be a first integral of (1), we
have
VF()TAR)VH(z) = 0, VzeR" (26.1)

Assuming F' is three times continuously differentiable, by Taylor’s theorem we can expand

F around z* as
F(MYY = FRR) + VRGN - 2k 4 EDZF(,:’") N AL P L L

+ g DPF(R) - (M=) (=20 (M) oM - ).
(26.2)

Substituting the mid-point rule (9) in (25.3), it can be checked that

F(MY —F(F) = %DgF(zk)-u-u-u+0(h4), (26.3)
where K1 Lk k41 4 ok
v = Ay )

Equation (26.3) is an error formula for conserved quantities of (1), which contains only
third or higher order terms. It follows that the mid-point rule (9) preserves exactly any
conserved quantity having only linear and quadratic terms, including Casimir functions
and the Hamiltonian for (1). As a consequence, we have the following Proposition which

will be referred to later.

Proposition 3: The discrete analog (9) conserves all Casimir functions and the Hamilto-

nian H of (1) if they contain only linear and quadratic terms.

In the next section, we consider a set of examples related to rigid body mechanies that

captures the essence of the results of this section.



4. Examples from Rigid Body Mechanics

The noncanonical hamiltonian model of this paper - in particular the Lie-Poisson case -
arises naturally in a variety of problems in rigid body mechanics. In this section, we discuss:
(a) the simple rigid body, (b) the heavy top, (¢) dual spin satellite, and (d) dual-spin with
damping.

4.1 Simple Rigid Body Spinning Freely in Space

Recall that the equations of motion for a simple rigid body in three dimensions take

the form:

A=40  where A€ SO(3) (27)
IQ =10 x 9. (28)

Here, A € SO(3) the group of 3 x 3 rotation matrices, is the matrix of direction cosines for
a body frame attached to the rigid body as viewed in an inertial frame; see Figure [1]. The

vector ) is the body angular velocity of the rigid body and 0 represents a skew-symmetric

matrix:
R 0 -0y
Q=1 Q3 0 =
—y 0

The symbol x denotes the cross-product in IR*. Notice that for an arbitrary vector y,
ﬁy =  x y. The matrix I denotes the moment of inertia tensor of the rigid body in the

body frame. If m = IQ) denotes the body angular momemtum, then we can re-write (27)

and (28) as:

A=AI"Tm (29)
m = mI tm. (30)

Several observations are in order:

[a] Equation (30) is the reduction of the full dynamics (justified by the SO(3)-invariance

of the kinetic energy), [1].
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Figure [1] : Configuration of Inertial and Body Frames

[b] Equation (30) is Lie-Poisson in the sense of Section 2 with Poisson tensor A(m) = m

and hamiltonian H(m) = 2m - I7'm. Hereafter - denotes the dot product.

[c] C(m) = %||m|® is a Casimir function associated to (29). It is a quadratic conserved

quantity.

It follows that if we can integrate (30), then the kinematic variable A can be reconstructed
by quadrature of (29). This process can be mimicked in discrete algorithms also. In
particular, one might integrate (30) numerically via the mid-point rule (thereby conserving
H and C, see Proposition 2) and then devise a reconstruction rule for updating the attitude

matriz in such a way that spatial angular momentum © = Am 1s also conserved.

4.1.1 Discrete Update in Body Momentum

A two-step process is employed to compute the discrete update in body momentum
and spatial attitude. First, let my and my, be the body momentum at timesteps hx and
h+1, respectively, and A = hr4y —hg. The discrete update in body momentum corresponds

to the mid-point rule applied to (30), i.e.:

(31)

Met1 — Tk Mk + Mkl 1| Mk T M1

14



Equations (31) are solved by iteration for the discrete update in body momentum my to

mi+1. It follows from Proposition 3 that this update scheme conserves both H{(m) and

C(m).
4.1.2 Discrete Update in Spatial Attitude (reconstruction rule)

Once equations (30) are solved, our reconstruction rule for the update in spatial atti-

tude is given by the explicit set of equations:

~1—1 ~
Argr = Ay {]l—bk} {]l+bk} (32.1)
h ! '
where by = I:;] I~! {w (32.2)

The explicit recursion (32) - Cayley Transform for SO(3) - is arrived at by requiring con-

servation of spatial angular momentum = = Am,

Thtt = T = Apprimrgr = Apmyg. (33.1)

This suggests a suitable form for the update is

Apsr = ApA; = Ay [11—57,} B [11+z?k}, (33.2)

where 5; is skew-symmetric and needs to be determined so that (33.2) closely approximates
the matrix exponential implied by A = AQ. Substituting (33.2) into (33.1) and rearranging

terms gives

.

[me + mpp1]br = [mpgq — my). (33.3)

Notice that if [my :7’;1k+1]bk = [mry1 — my] has a solution, then, by the Fredholm alter-

native theorem,

—

(mgy1 —mg) L kernel [my4q + mk]T (33.4)
= kernel [mk+:_—\!— my] (33.5)
={a[mry1 +mis] | aeR}. (33.6)
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This implies [mg + mg41]-[mig41 — mg] = 0, and thus conservation of Casimir is a necessary
condition for conservation of spatial angular momentum. The general solution to (33.3) is

given by

b = i - [mpg1 — myg] X [mpg1 + me] + ar[mesr + me). (34)

How do we choose A\ and ay 7 First, note:

[mkt1 — mi] = [mr + mep1]be (35.1)
= [mg + mpi1] X by (35.2)

= [mg + mpp1] X Ap ([mggr — mg] X [mggr +me)])  +

[mg + mpp1] X ap[mpger + myg (35.3)
= [myg + mpp1] X Ng[mpggr — mp] X [mggr + mg) (35.4)
= ||my + mk+1[[2 Ak [ — My (35.5)
This implies
1
P = . (36)
lme + Mgt

To get ay # 0, the discrete update for body momentum is substituted into (34). Rearrang-

ing terms and selecting

/ " 1] - I [y '
ap — [_z} . [y + mpg1] [m;\r)+ Mgt1] (37.1)
4 [k + mga]”
gives
I} mg '

Remark 3: Table [1] summarizes the discrete equations for Rigid Body. Notice that the

matrix product

—

[]l—l;\k] -1 []H-[)Ak} = exp []Lj—l <m_+_1_>

e}

+O(h*) (38.1)
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In fact, if I™'m in (29) is a constant vector across the timestep, then the incremental rule

for the attitude matrix becomes
Apr1 = Ag exp(h[fﬁn). (38.2)

Thus, the update rule (33.2) can be intuitively thought of as the composition of two steps.
First, the angular momentum in (29) is approximated by an intermediate value. Second, the
exponential in (38.2) is approximated in terms of by by the formula (38.1). We summarize
our energy-momentum preserving algorithm for a simple rigid body spinning freely in space

as follows.

Update for Body Momentum:

R 7

Pt} Pt}

ME41 — Mk [mk + Mgt

[ [mk + mk+1}

Update for Spatial Attitude:

~71—1 —~
:l/\'_+_1 = Ay [1—])];} []l“{—bk]

h ST
where by = [—1} ! {wﬂ}

S

Table [1] : Discrete Equations for Rigid Body



4.2 Heavy Top

Consider the motion of a rigid body fixed at a stationary point subject to the action

of a uniform gravitational field, as shown in Figure 2.

Figure [2] : Diagram for Heavy Top

If the body frame is fixed at a point O, then we define the unit vector from O to the center
of mass in the body frame as y. The spatial inertial frame is also at O with the vector
k being one of its axis. Notice that the body is acted on by a gravitational force —M gk,

where M is the mass of the rigid body, and g is the constant of acceleration due to gravity.

The kinematics of the body frame relative to the interial frame are governed by

A= 40 where A e SO(3). (39)

Moreover, if v = AT - k, then the equations of motion for the heavy top can be expressed
as
m=mx I m+ Mglvxx (40)
b=vXxI'm (41)

where m = IQ is body momentum, [ the distance between O and the body center of mass,
and I the moment of inertia of the heavy top relative to the body frame. In addition, we

note:

18



[a] Equations (40) and (41) are Lie-Poisson in the sense of Section 2 with Poisson tensor

mv

Alm) = l - 0]
and total energy
.1 -
H(m,v) = 5 I™"m+ Mglv - x.
See Marsden, Ratiu and Weinstein [18] for details.

[b] The heavy top problem has two Casimirs:

Ci(m,v) = %Hv”z

Cqy(m,v) =m-v.

(43)
(44)

Equation (43) reflects the fact that 4 € SO(3), and equation (44) says that spatial

angular momentum along the vertical axis k passing through O is conserved.

4.2.1 Discrete Update for Heavy Top

The corresponding discrete equations of motion using mid-point rule are

ME4+1 — Mg my -+ meg 1 Mg+ M4
+ = - il VY L Myl
h 2 2
Vk41 — Uk | Uk 4 Uk w [-1k + Mgy
h - 2 2 )

Uk 4 Vk41
2 = X

As noted in Proposition 3, the mid-point rule preserves exactly the Hamiltonian and

Casimirs which contain only linear and quadratic terms. The above scheme (45) conserves

both Casimir functions C'y, Cs in (43), (44) and the Hamiltonian in (42).

4.2.2 Discrete Update in Spatial Attitude

After equations (45) are solved, the discrete update and spatial attitude of the heavy

top 1s given by the equation

A = Ay {n—b}] B {]l+bﬂ

/‘ ] o »

< e}

19
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The justification of the reconstruction rule (44) is analogous to the one used for the simple

rigid body.

4.3 Dual Spin Satellite

Dual spin satellites consist of a simple rotating platform carrying one or more sym-
metric rotors spinning at constant rates about an axis fixed relative to the platform. The
purpose of the rotors is to exert internal reaction torques on the platform. Assuming there
are no external forces acting on the system, the net effect is a transfer of internal momen-
tum from the platform to the rotors. In the presence of a suitable damping mechanism
and sufficiently high rotor velocities, the spacecraft angular velocity will align itself with

the rotor axis.

Figure [3] : Schematic of Dual Spin Satellite

For the purposes of this study we are interested only in dual spin satellites where the axis
of the rotors passes through the center of mass of the platform with fixed rotors. The

attitude kinematics of the satellite relative to an inertial frame is given by

A=AQ  where A€ SO(3). (47)

The equation of motion for body angular momentum is now,

= (m+ 1) - Vi H(m) (48.1)
=[m+xI"'m (48.2)

20



where m is a vector of body angular momentum, and I is the locked moment of inertia
tensor of the body plus rotor system. The satellite has an internal rotor spinning at constant

relative angular momentum I. We also note:

[a] Equations (48) are Lie-Poisson in IR® with Poisson tensor A(m) = i + I, and hamil-

tonian H (m) = $m - I~'m. See Krishnaprasad [17] for details.
[b] The dual spin satellite has one Casimir C () = ||m + I||°.
[c] The spatial angular momentum is # = A (m + 1), and is conserved since the torques

generated by the rotors are internal torques.

4.3.1 Discrete Update in Body Momentum

The discrete update in body momentum is given by the midpoint rule:

M1 — My _ {mk + Mg n Z] o [ [mk + Mg (49)
h 2 2
4.3.2 Discrete Update in Spatial Attitude
The discrete update in spatial attitude is

~7—1 —~
Apgr = A []l—bk} []1“1”1)1\:} (50.1)

h ! .
where b, = [%] It [w . (50.2)

Remark 5: Following the steps in Section 4.1 it is easy to verify that the attitude update is
momentum conserving. Indeed, techniques for reorienting the attitude of a satellite depend
on a mechanism for transfering the balance of internal rotor and platform momenta, without
affecting spatial angular momentum. Independently, by Proposition 3, the energy H and

Casimir C are conserved by the momentum update (49).

4.4 Dual Spin Satellite with Damped Rotors

Dual spin satellites consist of a rigid body platform and several internal rotors. When
the platform is fully operational, the rotors are set to spin at a constant angular velocity

relative to the platform. Damping rotors act as dissipators of energy. Indeed. even in the
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Figure [4] : Schematic of Dual Spin Satellite with Damping

presence of mild disturbances, the transfer of momentum from the platform to the damping

rotors will result in a mechanism for attitude aquisition of the platform.

The equations of motion for a dual spin satellite with damping are composed of two parts.

As with the two previous applications, the kinematics are given by

A= AQ where A € 50(3). (51)

Let the diagonal matrix o = diag (a1, a2, a3), where a; > 0, and let I; = diag (I},13,13)
be a diagonal matrix of moments of inertia of the damping rotors with respect to their spin
axes. Note that I} >0 fori= 1,2,3. Moreover, if m and [ are as previously defined, and
d a momentum vector associated to damping rotors, then the evolution of body angular

momentum is governed by the equations

m=m+1+d)x I 'm—vym+8d (52.1)
d=~m—éd (52.2)

where v = of™! and § = aIZ{l, respectively. Although the system is not a hamiltonian
system in the form of (1), we still have the following properties (see Krishnaprasad [17] for
details):

[a] This system has one conserved quantity C (m,d) = ||m + [ + d||*.
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[b] The Lyapunov function for dual spin with damping is:

1 1
Vim,d) = gm-I—lm—f—;d-Id“l(l (53.1)

<

It is decrescent with
V = (I, d=I""m)T a(l;7 d — I 'm), (53.2)

along trajectories of (52). Again, see Krishnaprasad [17] for details.

[c] The spatial angular momentum 7 = A4 [m + [ + d] is also a conserved quantity.

4.4.1 Discrete Update in Body Momentum

The update in body momentum is given by the mid-point rule

M1 — Mk [mk + Mg i dy, + diy1 = {mk + Mg
h 2 2 2
mp + myg A dy + dy,
_7[ k . k+1 —l—(S[ k : k+1} (541)
dry1 — di mE 4+ Mp1 N di + diga
—nl R _ 9
A = 5 ) 5 . (54.2)
4.4.2 Discrete Update in Spatial Attitude
The discrete update for spatial attitude is:
~7—1 —~
Apgr = Ay {n_bk} []1+bk} (55.1)
h " :
where by = [—;} It [w (55.2)

4.4.3 Conservation Law for Dual Spin with Damping

The system (52) admits C' and 7 as conserved quantities. The Lyapunov function
V decreases at a rate quadratic in the damping vector d. The discrete scheme (54)-(55)
mimics these features, as one might expect. We leave it to the reader to verify that the

discrete version of (53.2) is satisfied.



5.1 Numerical Integration Schemes

The solution procedure for each of the applications described in Sections (4.1) through
to (4.4) is: (a) solve the implicit equations for the body momentum at timestep tg1y. (b)

solve the explicit equations for the update in spatial attitude.

5.1.1 Solution of Implicit Equations for Update in Body Momentum

Equations (31), (45), (49) and (54) are a systems of nonlinear ordinary differential

equations (in vector form) that must be solved at each timestep for mjyq.

First, each equation is written in component form and rearranged so that solving the
problem is equivalent to finding the root of an equation. This gives 6 equations for dual
spin with damping and heavy top applications, and 3 equations for rigid body and dual
spin. Equations (58) in Table [2] show, for example, the 3 component equations of body
momentum for the dual spin problem. The adopted notation for m, [ or I is timestep ¢ of
component j in the [¢, j] subscript brackets.

A damped Newton-Raphson procedure is used to solve the component equations at

th jterate of body momentum at timestep k41, then the equa-

. p . .
each timestep. Ifmj_ ; isthep
tions to be solved at each iterate are obtained by expanding ¢i(my, mi +1), go(my, m],i, Jrl)
and gg(mk,m£+1) in a Taylor series about 771‘];4_1, truncating all second order terms and

higher terms, and solving the set of equations:

?91 ?91 ?m »
R (T L (TN N AL g1 (me,miy)
5 (1?92 5 ?gg 3 (2(]2 Am? = — g.)(n]k mP ) (56)
Meg11] M kgr,2) M 41,3] g)k,Z] = ) ]l;‘-H
993 993 __0ga Amify g g3 (mr,mi )
anz[k+1’1] am[k_'_l\?] dm[k+1,3] ’
for the incremental update:
_pt+1 - P P o
My = Mg T /_\m[kﬂ (57)
where ¢ = 1,2,3. Equations (56) and (57) may be stated more concisely J.h = —g.

Iterations continue at each timestep until: (a) a preset maximum number of iterations
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I

(M) + Mg )

L

(mgrs) + M)

Iy

(mk 2 + Mgt 2]

I

‘ (k1) + Mgt

I

)
)
)
)

)
)

(58.1)

(58.2)

Table [2] : Dual Spin Equations in Rearranged Component Form

is reached, or (b) all changes in body momentum components from (57) are less than a
preset error value times the magnitude of momentum component at the beginning of the
iterations. Moreover, divergence of the iterates is avoided by ensuring ||¢g <mk, m{ii) H2 is
less than ||g(mg, m}, ;)
of the new [p + 1]

“2- When this test fails, h is divided by powers of 2 until the norm

iterate is less than ||g (my,my )|,

)
(14



5.1.2 Solution of Explicit Equations for Update in Attitude

Numerical solutions to the equations in Table [1] are found by first solving (31) im-
plicitly for mr41. From a theoretical standpoint, my4.1 can be explicitly substituted into
(32.2), and then (32.1) for Ax41. Because it is undesirable to compute the matrix inverses,

solutions to (32.1) are obtained by first solving
{n_zﬂ.] [24] = []1 +z?k} (59.1)
for the (3 x 3) matrix [z}], followed by the explicit update

Apgr = Ag - [r]. (59.2)

6. Implementation

The implementation of algorithms described in Sections 4.1-4.4 has been underway at
the Systems Research Center since 1988 [5,22]. Initially, these simulations were written on
a Silicon Graphics IRIS 3130 workstation with integrated graphical and numerical code.
While this approach is satisfactory for applications that are computationally non-intensive,
Sela [22] reports that increased computational power would be needed for computationally
intensive applications to achieve simulation in real time. Since the IRIS Workstation has
customized hardware for the Graphics, a natural solution was to develop a graphically
based user interface on the IRIS for the animation, and setting up the problem description,
and run the numerical simulation as a separate server process on a fast SUN workstation.

InterProcess Communication Facilities [16] are used to connect the processes via Ethernet.

Design of the user interface was based on a toolkit developed by NASA-AMES [25]
specifically for the Silicon Graphics IRIS workstation family. The library consists of dials,
sliders, and other mouse-sensitive actuators, and panels, which are groups of actuators that

appear as separate windows on the IRIS workstation.

When the program is first activated, the user interface process located on the IRIS es-
tablishes an IPC connection with the numerical simulation server, sets up a variety of panel
windows for the user interface, and waits for the user to initialize simulation parameters

before sending the simulation request via IPC to the numerical simulator.
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Figure [5] : User Interface for Rigid Body Simulation

Slider Name Description
Toggles Buttons to remove sliders from display.
Rotor Set 3 components of angular momentum of internal rotor.
Omegas Set. 3 components of initial body angular momentum.
Timestep Set timestep length for Midpoint Integration. Minimum and maximum startup

default values are 0.0 and 0.2 seconds, respectively.

Inertia Dual Slider to set total interia of the body, and component of rotor inertia along
each axis. In all cases the rotor inertia must be less than the inertia of satellite

with fixed rotors.

Damping Set damping ratio for rotors. Notice that although equation (52) theoretically
permits different damping ratios along each axis, here we assume all components

of damping are identical.

Output Displays output for time variation of Casimir, Total Energy, and each component

of body angular momentum.

Table [3] : Description of User Interface Sliders




Figure [5] shows a typical screen layout for the user-interface. Individual panels con-
taining single and groups of sliders are provided for: (a) setting the integration timestep,
(b) level of damping in the rotors, (¢) components of the principal moments of inertia of
the combined platform and rotors, (d) principal moments of inertia of the rotors, and (e)
components angular momentum for the rotors. In an effort to provide insight into the
dynamical behavior of dual spin satellites, we assume for the purposes of graphical display
that the satellite platform is a rectangular block whose dimensions change with adjustments
to the prinicipal inertia sliders. Thus, a user becomes immediately aware that the moment
of inertia sliders cannot be set in an arbitrary manner. This is because a solid rigid body

must satisfy the triangle inequalities

Li<h+L, L<L+L, and L <L+ 1. (60)

The interested reader is referred to Chapter 6 of Arnold [3] for details. Also displayed are
the body axes for the rectangular block, and the resultant momentum vector for the internal
rotors. Users quickly determine that adjustments to the matrix of damping coefficients, «,
have no affect on the Casimir C' (m,d) = ||m + 1+ dHQ, but do change the rate of decay for
equation (53.1). Conversly, changes to the angular momentum components for the rotors
result in an almost immediate adjustment of the Casimir, with no apparent jump in the

Lyapunov function decay rate.

7. Numerical Experiments

Results of numerical experiments are presented for two applications: (a) motion of a
rigid body spinning freely in space, and (b) dynamics of a dual spin satellite platform con-
taining high spinning internally damped rotors. In each case we are interested in verifying

that simulations of the discrete dynamics match the theoretical predictions of Section 4.

7.1 Example 1 : Rigid Body Motion

Consider the motion of a rigid body having principal moments of inertia I =
diag (1,2,3). Initially (at time t = 0) the rigid body is spinning freely about its inter-
mediate (unstable) axis with angular velocity w = [1,10,1]. 400 timesteps at At = 0.05

seconds are computed. At each timestep, iterations to solve the equations of motion for
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body momentum my4; continue until the magnitude of the incremental updates in angular
momentum components, given by equation (57), are all less than 1/100 of the component

magnitudes for load vector g at the beginning of the iterations.

Energy and Casimir Conservation. Figure 6 shows the time variation in Energy
H(mgy1) = %Tnk_*_l - I™'myy; and Casimir C(myyq) = %HmH_lHZ for the rigid body.

Both quantities are conserved to machine precision.

Spatial Attitute. Figures 7 and 8 show the time variation in attitude matrix component
A(1,1) for 400 steps of simulation at At = 0.05 seconds, and 4000 steps of simulation at
At = 0.005 seconds, respectively. We recall that the role of the attitude matrix A is to
describe the rotational orientation of the body frame relative to an inertial frame. As such,
the time variation in all components of A is bounded by the interval [—1,1]. Figures 7
and 8 match this observation. Our initial numerical experiments were with timestep At =
0.05. Although the Casimir and Energy were conserved to machine precision, we suspected
the validity of the sharp points in the plot of A(1,1) in Figure 7. To ensure that this
was not an error in coding (it happens!) the simulations were repeated for the same time
inteval using At = 0.005 seconds. The results are plotted in Figure 8. It is easy to see
that time variations in peak values of attitude component A(1,1) of Figure & are much
smoother than Figure 7. However, the dramatic contraction in the period of the attitude
components by merely decreasing the step length was not anticipated apriors. This can be
seen by counting the number of cycles of 4(1,1) over ¢t € [0,20] seconds for Figures T and
8. The former has approximately 28.5 cvcles, and Figure S approximately 29.3 cycles. We
note that this observation is consistent with period extensions in the Newmark method; for
a discussion, see Chapter 9 of Hughes [15]. Unfortunately, this observation also exposes the
main weakness of the numerical approximation. While Casimirs and Energy are conserved
to machine precision (indicating that the discrete dynamics follow the true trajectories in
reduced phase space), we know from Section 2 that the mid-point rule is only second order
accurate in computing the Poisson bracket. This translates to a systematic deviation of the
discrete attitude from time-varying attitude of the continuous system. Work is currently
underway to try and improve the attitude prediction by combining the mid-point rule with

Richardson’s Extrapolation techniques [4].



7.2 Example 2 : Dual Spin with Damping

Our second example examines the discrete time response of a dual spin statellite plat-
form containing 3 internal rotors spinning at constant angular velocity relative to the
satellite platform. Principal moments of inertia for the rotors are Iy = diag (0.1,0.1,0.1).
After the rotors are locked, the combined rotors plus satellite platform is assumed to have
principal moments of inertia I = diag (1,2,3). The internal rotor is spinning with angular
momentum components L = [0,0,10]. At time t = 0, the rigid body is spinning freely
about its intermediate (unstable) axis with angular velocity w = [1,10,1]. 2000 timesteps

at At = 0.05 seconds are computed.

Conserved Quantities. Our discrete approximation to the Lyapunov function given in
equation (51) asymptotically approaches a non-zero value as theoretically predicted. At
the same time, the Casimir C' (my4+1, dp+1) = ||mes1 + 1+ diga “2 is conserved to machine

precision.

Spatial Attitute. Our numerical experiments conserve spatial angular momentum
Tr+1 = A[mrs1 + 1+ dry1] to machine precision. As mentioned in Section 4,4, momen-
tum transfer relies on the conservation of this quantity, and an alignment of the platform
attidude along a single axis follows for high enough speeds of the driven rotors. Time
variations in components of the attitide matrix A(2,2) and A(2,3) are shown in Figures 10
and 11, respectively. Although the platform is initially tumbling in an erratic manner, the
effect of damping results in an aligninent of the rotation about a single axis. This is in-
ferred from component A(2,3) asymptotically approaching a single value, while component

A(2,2) appears to approach a steady oscillatory motion.
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Figure [7] : A(1,1) vs Time with At = 0.05 Seconds
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Figure [9] : Energy and Conserved Quantities vs Time for Dual Spin with Damping
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8 Conclusions

Exact solutions to the flow of a Lie-Poisson system correspond to a continuous succes-
sion of Poisson automorphisms [13], and conserve all Casimirs and the Hamiltonian (when
applicable). This work has been motivated by a need to find discrete approximations to
the flow that have the same properties. In particular, we have focussed on the numerical
integration of Lie-Poisson systems using the mid-point rule. We have proved that the mid-
point rule preserves the Poisson structure up to second order accuracy. An explicit error
formula has been derived, and may be used in measuring the deviations of the Poisson
structure through the approximated flow. Moreover, we have shown that any naturally
conserved quantity can be approximated up to second order by using the mid-point rule.
For conserved quantities containing only hnear and quadratic terms such as those in the

examples of this paper, the associated conservation laws are exactly satisfied.

Four rigid body systems have been studied. In each case, the dynamics in full phase
space are obtained via an explicit reconstruction rule. The result is conservation of spatial
angular momentum for the rigid body and dual spin satellites, and conservation of momen-
tum along the vertical axis for the heavy top example. Indeed, the attitude acquisition of
satellites containing damping rotors depends on an internal transfer of momentum, while
also conserving spatial angular momentumn. The behavior of dual spin satelites and rigid

body applications has been animated on an IRIS workstation.

Future applications of study will include the approximations of the motion of a satellite
in a central gravitational field and optimal control. Work is currently underway to try
and improve the attitude prediction by combining the mid-point rule with Richardson’s
Extrapolation techniques [4]. In the long term, we share the view of Simo and Wong [24]
that approximation precedures for the dynamics on SO(3) is directly applicable to transient

dynamic calculations of geometrically exact rods and shells.
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