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Abstract

Sound localization is the process of determining the position of the sound source
expressed by the azimuth and the elevation angles. Robot localization is the process of
determining a robot’s pose from sensor data. Based upon recent researches done on
binaural sound localization algorithms in the Neural Systems Laboratory at the Institute
for Systems Research, this research sought to apply localization of sound to automatically
localize the robot in a small laboratory environment. By placing three sound sources at
predetermined positions and letting the robot find the angles between the three sound
sources by rotating in place to orient itself to each source in succession, the robot was
able determine its current pose. The research successfully realized this model of robot
localization. Simulation of the localization model was created to calculate range possible
errors at different points in the map.

1 Introduction

Robot localization is the problem of finding out the pose (position and orientation) of
the robot from sensor readings. The problem has been referred to as “the most
fundamental problem to providing a mobile robot with autonomous capabilities” by some
reference[1]. There are three categories of localization problems. The first and the most
commonly pursued one is theposition tracking. Here, the initial robot pose is known, and
the problem is to compensate incremental errors in a robot’s odometry. Solving this
problem makes it necessary to input the robot’s pose only once manually. The second is
the global localization problem. This is more challenging than the first one. In this
problem the robot is not told its initial pose, but instead has to determine it from scratch.
This usually takes longer time than the first problem, because more data gathering and
more analysis need to be done. This process can be used in conjunction with the position
tracking to enable fully automated localization. The third problem is thekidnapped robot
problem. This is the hardest problem of the three. In this problem, the robot is told its
previous location but its previous location is totally off from its actual location. The robot
has to perceive its prior knowledge is wrong and do a localization process on such a
basis. This problem tests a robot’s ability to recover from catastrophic localization
failures. All these problems become extremely difficult if the robot is set in a dynamic
environment [3].
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[Figure 1 – The Process of Position Tracking]

This research seeks to solve the global localization problem by implementing
localization system such as the Global Positioning System (GPS) in lab environment.
When the robot needs to localize itself globally, it will ask for localization algorithm and
the localization algorithm will give the robot the pose in laboratory’s coordinates.
However, this research localizes the robot through a method different from the GPS.
Instead of localizing through determining the distance from three different known
positions and triangulating the three distances to find out the location, this research seeks
to localize through determining the angles between the known positions. In addition,
instead of utilizing electromagnetic waves, the research will utilize sound waves. Using
sound waves rather than electromagnetic waves may yield better results because sound
waves are 105 orders slower than electromagnetic waves, and it is easier to measure a
more precise time of travel.

2 Theoretical Background

There are many sound binaural localization algorithms available to localize sound. Two
algorithms that were considered for this research were the Jeffress algorithm and the
Stereausis algorithm. The Jeffress algorithm is a method of localizing sound solely by
Interaural Time Difference (ITD). When the sound source is at the left of the listener, the
left ear will receive the sound before the right ear does. The more the sound is to the left,
the more delay there will be before the right ear will get the sound. This delay is called
the ITD. The azimuth angle of the sound source can be determined by measuring the
delay between the arrival of the sound signals to two ears. In contrast, the Stereausis
algorithm is a biologically inspired algorithm and is more complex. It utilizes the
cochlear filters to separate the sound source to different bandwidths and calculate ITD
and Interaural Level Difference of each channel output and puts the results together with
a neural network to yield one output. The Jeffress algorithm was chosen to localize sound
in this research for its simplicity, fast computation, and easy implementation in C.
Nullifying process (making the left and right microphone input the same by orienting the
robot towards the source) was used in parallel with the Jeffress algorithm to yield better
results.

Azimuth of the sound source can be determined by ITD:
Let the speed of sound bec (about 343
m/s). Consider a sound wave from a
distant source that strikes a spherical head
of radius a from a direction specified by
the azimuth angleθ to the right as shown
in Figure 2. Clearly, the sound arrives at
the right ear before the left, because it has
to travel the extra distance to
reach the left ear. Dividing that by the
speed of sound, we obtain the following
simple (and surprisingly accurate) formula
for the Interaural Time Difference:

[Figure 2– Azimuth Calculation of Sound source]
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Thus, the ITD is zero when the source is directly ahead, and is a maximum of
when the source is off to one side. This represents a difference of arrival time

of about 0.7 ms for a typical size human head, and is easily perceived. [4]

The next thing to be considered is the derivation of the formula which will yield the
location of the robot given the azimuth of the sound. Since the robot used in this
experiment can only move on the ground, only two-dimensional position (x and y) and
orientation needs to be determined. It is proven that at least three speakers (sound
sources) of known position are needed to figure out the pose the robot. This is also
intuitive because one sound source will provide us with one-dimensional data (angle) and
will solve for one independent variable, and there are three independent variables (x, y
andθrobot).

For simplification, the three speakers are positioned perpendicular to each other.
Cartesian coordinate system is used because it is the most commonly used coordinate
systems for mobile robots. Speaker0 is placed on the origin and speaker1 and speaker2
are respectively placed on the x-axis and the y-axis. Let the distance to speaker1 and to
speaker2 from speaker0 be L1 and L2 respectively. Letφ1 be the angle between speaker0
and speaker1, and letφ2 be the angle between speaker0 and speaker2 (see the following
figure).

ROBOT

Speaker0

Speaker2

Speaker1

θ

φ2

φ1

θrobot

y

x

L1

L2

[Figure 3 – Setup of the Three Speakers]

Then the formula that govern the relationship between the two angles and the pose of the
robot will be given as the following (see APPENDIX I):

1
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It is clearly shown that the pose of the robot (x, y andθrobot) can be expressed in terms of
L1, L2, andφ1 andφ2.

3 Application

The robot used in this research was the Super Scout II by Nomadic Technologies. It is
equipped with a Pentium 233 MHz processor and runs on Linux platform. The sound
sampling was done at 44191Hz stereo through a Sound Blaster ProTM soundcard for all
experiments. The sound was picked up by two microphones and was primarily filtered
through analogue amplifier/filters that were made by Sean Andersson before being
digitally sampled.

3.1 Sound Localization

3.1.1 Generation of the Sound
Before sound can be localized, there need to be sound that can be played back from the

speakers. It is not known which sound works best for the Jeffress algorithm given the
microphones, acoustic characteristics of the room and other variables specific to the
laboratory settings so two sets of three different sounds were designed to be tested to find
out the best localizing sound. One set was created by feeding a random white noise
through band pass filters of three different bands (see Table 1). The other set was
generated by cosine functions. Noise was generated for comparison because previous
sound research has shown that white noise is best localized [2]. Tones were produced as
well because it was thought that correction can be made to the retrieved sound data with
noise due to its simplicity. The sound waves were generated in .wav format in MATLAB
with a custom-made genwav() function (see APPENDIX III). Shown below are the
passband of the bandpass filters to design the noise set and the frequency of the tones:

Noise Tones
Pass-band filename frequency Filename

Bandpass
Filter1

441~992.25Hz Low.wav 200Hz Cos1.wav

Bandpass
Filter1

2205~2756.25Hz Med.wav 400Hz Cos2.wav

Bandpass
Filter1

4410~4961.25Hz High.wav 600Hz Cos3.wav

[Table 1 – The pass band of the bandpass filters and the frequency of the tones]

The following is the frequency response of the three band pass filters that were used to
generate three different sounds.
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[Figure 4 – Frequency Response of Three Bandpass Filters]

The frequencies of the tones (cosine waves) were carefully picked to avoid any ambiguity
when calculating ITD. In other words, maximum ITD will not exceed half the period of
the highest frequency tone. As it can be seen in Figure 4, the bandpass filters were
carefully designed so that there would be little overlapping pass bands between any two
filters while keeping the amplitude of the pass band relatively flat.

3.1.2 Localization of sound using ITD
The highest sampling rate that was possible for stereo sampling for the given sound

card (44191Hz) was used to ensure the highest possible precision. Since one sampling
period is 1/44191 sec (22.6µsec) and the maximum time delay possible for one sound
source is:

0.308
0.906

340 /

Diameter m
ms

speedof sound m s
= ÿ

This time is corresponds to roughly 40 sampling periods. So there would be a maximum
of 40 sample delays between the two sets of microphone inputs in case the sound is 90°
left or right. With the coarse estimate that time delayed linearly increases as the azimuth
angle increases, there would be 41 detectable sample delays over 90° evenly. This
estimate shows that 2.25° is the minimal azimuth angle change possibly detectable. It
turns out that the time delay does not increase linearly and that this method can detect
lesser than 2.25° difference at low azimuth angles while it can’t detect more than the
angle at high azimuth angles (see Table 2). In fact at low azimuth angles it can detect up
to 1.43° of azimuth angle change while at high azimuth angles nearly 11° in change can
be unnoticed.
Index Azimuth Index Azimuth Index Azimuth

0 0
1.0000 1.4315
2.0000 2.8639
3.0000 4.2981
4.0000 5.7351
5.0000 7.1756
6.0000 8.6207
7.0000 10.0714
8.0000 11.5286
9.0000 12.9934
10.0000 14.4669

14.0000 20.4720
15.0000 22.0078
16.0000 23.5603
17.0000 25.1314
18.0000 26.7231
19.0000 28.3373
20.0000 29.9764
21.0000 31.6430
22.0000 33.3401
23.0000 35.0709
24.0000 36.8392

28.0000 44.3869
29.0000 46.4258
30.0000 48.5440
31.0000 50.7549
32.0000 53.0756
33.0000 55.5288
34.0000 58.1457
35.0000 60.9711
36.0000 64.0737
37.0000 67.5689
38.0000 71.6810
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11.0000 15.9503
12.0000 17.4447
13.0000 18.9515

25.0000 38.6494
26.0000 40.5066
27.0000 42.4167

39.0000 76.9830
40.0000 87.8341
41.0000 90.0000+

[Table 2 – The azimuth angle corresponding to the index of delays]

The ITD is measured in multiples of sampling period. Since the ITD is expressed in
integers only, we will call the integer number which pertains to ITD,index for
convenience. So the index is measured through cross correlation after the left and right
samples are collected. The correlation coefficient for the left sample and the right sample
delayed by j number of sampling period is calculated at different j (-maxshift≤ j ≤
maxshift). Since the left microphone and the right microphone input are same sound
source, the correlation coefficient will be maximum when the phase difference between
the two samples is zero. Therefore the j with maximum correlation coefficient is the time
that left signal lags or leads ahead of the right signal. If j is negative, that means that left
signal lags behind the right signal by that many sampling periods, and if j is positive, it
means that the left signal leads the right signal by that number of sampling periods. The
correlation coefficient for the two signals is calculated as the following:

1

n

j i i j
i

c x y+
=

=ÿ (-maxshift≤ j ≤ maxshift)

where x is the left signal and y is the right signal.

3.1.3 Localization Results
The localization process was tested with the robot and six different sounds. The

measurements of the index were made at azimuth angles, 0 degree, 4 degrees to the
left/right and 45 degrees to the left/right. The localizations at these angles were
performed at two different distances: at 2.5ft and at 7ft. A hundred samples were taken at
each position but sound that wasn’t strong enough were cut off from printing results by
the program so at some positions you’ll see less than a hundred data. Only ten results
from each location are printed here for succinctness.

Noise1 Noise2 Noise3
0 LEFT 4° LEFT 45° 0 LEFT 4° LEFT 45° 0 LEFT 4° LEFT 45°
0 2 27 1 2 27 -1 2 20
0 2 27 1 2 27 -1 2 20
0 3 27 1 2 27 -1 2 20
0 2 27 1 2 27 -1 2 20
0 2 27 1 2 27 -1 2 20
0 2 27 -18 2 27 -1 2 20
0 1 27 1 2 27 -1 2 20
0 1 27 1 2 27 -1 2 20
0 1 27 1 2 27 -1 2 20
0 2 27 -18 2 27 -1 2 20
Wave1 Wave2 Wave3
0 LEFT 4° LEFT 45° 0 LEFT 4° LEFT 45° 0 LEFT 4° LEFT 45°
-8 2 14 -27 2 27 4 2 27
9 0 26 -27 -14 27 3 6 27
-6 -20 27 -27 -24 -27 4 5 27
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-4 6 15 -27 -26 -27 4 3 25
7 4 27 -27 -9 -27 4 5 22
-13 -6 23 -27 -8 -27 4 5 22
7 12 18 -27 -27 -27 4 5 22
0 -7 27 -27 -25 -27 4 5 21
-11 -3 14 -27 -21 -27 4 5 20
9 8 21 -27 -21 -27 3 6 20

[Table 3 – Localization of sound at 2.5ft]

Noise1 Noise2 Noise3
0 RIGHT 4° RIGHT 45° 0 RIGHT 4° RIGHT 45° 0 RIGHT 4° RIGHT 45°
0 -2 -25 1 -2 -26 -19 -2 -20
-1 -3 -26 -1 -4 -26 -24 -3 -20
0 -2 -25 -1 -4 -26 22 24 17
0 -2 -25 -1 -4 -26 -24 -3 -20
-22 -2 -24 -1 -4 -26 22 24 17
-1 -3 -25 0 -4 -26 -24 -3 17
22 -2 -26 0 -23 -26 -24 -3 -20
-22 -2 -26 0 -4 -26 22 -3 -20
0 -2 -25 0 -4 -26 -24 -3 -20
0 -2 -25 0 -4 -26 22 -3 -20
Wave1 Wave2 Wave3
0 RIGHT 4° RIGHT 45° 0 RIGHT 4° RIGHT 45° 0 RIGHT 4° RIGHT 45°
1 1 -27 0 -6 -27 1 1 -23
-20 -1 -8 -7 -3 -25 3 1 -18
3 -27 -19 -9 -10 -27 4 3 -11
-1 6 -27 -7 -6 -27 4 1 -10
-20 -13 -13 -13 -21 -27 3 4 -13
1 -23 -27 -17 -19 -27 4 3
-11 0 -27 -18 -27 -27 3 4
-19 -17 -11 -18 -24 -27 5 5
2 -12 -27 -19 -21 -27 6 5
-15 -4 -19 -20 -27 -27 5 5

[Table 4 – Localization of sound at 7ft]

A lot can be said about the result but in short, the best sound for localization is the noise1
(low.wav) or noise2 (med.wav). Noise1 performed best at close range being the most
consistent and correct at all three angles. But it seems to falter a little bit at medium range
showing several off measurements at zero azimuth angle at 7ft. The tones seem to
perform terribly both being incorrect and oscillating back and forth between
measurements each time. It is noticeable that at seven feet away, the wave3 was only able
to output five samples due to low sound level. Also, note that when the sound is coming
from the left, the indices are positive denoting that left signal leads the right signal and
vice versa, they are negative when the sound source is coming from the right.
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3.2 Nullifying sound
The term “nullify” is used loosely in this paper to mean making left and right

microphone input equal. Nullifying sound is the process of finding the azimuth angle
from current orientation by repetitively sampling and rotating in place to orient the robot
toward the sound until the robot has succeeded in making left and right sound equal (no
phase shift, index = 0). This process was used to get accurate measurement of the
azimuth angle of the sound source. As it can be seen from Table 2 the Jeffress model of
detecting ITD for azimuth angle is very inaccurate at high azimuth angles not being able
to detect differences up to 10 degrees (see corresponding azimuth angles at index of 39
and 40). Instead of getting the azimuth angle from one measurement, if the angle is
calculated from nullifying sound precision of 1.43 degree becomes possible. The only
problem with this approach is that some error is introduced when turning to the sound,
since the measurement has to be done. The magnitude of this error is relevant, but the
specific number is not known due to lack of experiments. Other benefits of this approach
include: greater accuracy and precision by nullifying bias, being able to distinguish
whether the sound is coming from behind for front (the normal ITD algorithm cannot
distinguish this). These advantages outweigh the errors introduced by the measurement of
rotation angles.
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3.3 Robot Localization
Now that the problem of localizing the sound is solved, the only thing that remains is
localization of the robot by localizing the sound from three different locations. The three
speakers are set up as shown in Figure 3. The implementation of it in the real world is
shown in Figure 5A. The x and y axis are drawn in the picture to help seeing the
implementation. Each speaker is hooked up to a robot because process of localization of
sound can only localize to one sound at a time and sound output must be controlled. The
robot that is hooked up to a speaker acts a server that plays and stops the sound as
requested by the client robot (the robot that needs to localize). This system was also
chosen because it can be developed into many other interesting models: the groups of
robots can be moving around, and all the robots can be localized if only three robots
know their current position.

The localization process was done in the following sequence:
1. Nullify to speaker2
2. Nullify to speaker0 and record the angle that it turned to the left (φ2)
3. Nullify to speaker1 and record the angle that it turned to the left (φ1)
4. Calculate x, y, andθrobot according toφ1 andφ2

Doing localization in this fashion saves unnecessary rotations and reduces errors. For
example if speaker0 was nullified first, it needs to nullify to either speakers and make an
extra turn to speaker0 to measure the other angle. Figure 6 shows the process of the
whole process.

[Figure 5A – Nullifying to Speaker 2]

speaker0

speaker0

speaker1

φ1

φ2

x

y



12

[Figure 5B – Nullifying to Speaker 0] [Figure 5C – Nullifying to Speaker0 success]

[Figure 5D – Nullifying to Speaker1] [Figure 5E – Nullifying to Speaker1 success]

4 Simulation

4.1 Designing the Simulation Process
The formula to derive the pose of the robot is not linear to the two measurementsφ1 and

φ2. Therefore it is hard to predict what the errors will be at certain locations. To see what
it would be like through actual experimenting will take too much time and effort. So the
best solution to this problem was to design a simulation program that would estimate the
errors at various locations in the test field. To do this, I’ve designed a MATLAB function
that would plot the maximum possible error at every point of the map given L1, L2 and
the uncertainty. The algorithm of the simulator is as the following:

1. Calculate the angleφ1 andφ2, if it were at position x, y
2. Add noise (uncertainty) and recalculate positions x, y corresponding to the new

sets ofφ1 andφ2 angles.
3. Find the maximum distance error between the original position and the newly

calculated positions.
4. Iterate through steps 1-3 until it has calculated errors for all the positions
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I’ve designed another simulation program plots the average error of the whole field at
different placements of the two speakers. This was made based on the first simulation
program. The purpose of the second simulation program was to find out the optimum
placement of the two speakers.

4.2 Results of Simulation
This is what the resulting graph from the first simulation program looks like:

[Figure 6 – Error Estimation from Simulation]

Intuitively, as the robot is placed further away from the origin, the error becomes larger.
However, it is interesting to see such a large error when the robot is very close to the
speaker around 7 ft range that forms a large arc around the inner area. Theφ1 and φ2

angles at these locations are all similar varying about 2° at most. Therefore small error in
φ1 and φ2 would lead to a result in pose that is totally off from the actual pose of the
robot.

The following graph is derived from the second simulation program:
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[Figure 7 – The Error Plot at Various Combinations of L1 and L2]

This was somewhat expected, but it is reassuring that the optimum placement of the
speakers are optimum when they are farthest possible distance. The reason that error is so
low for the case when L1=12ft, L2=12ft is from the fact that the arc of high errors are not
included in the test field of 12x12 area.

5 Conclusion and Future Works

The model that was developed by Dr. Krishnaprasad—the model of localizing the robot
from three sound sources, was realized and implemented to the robots. However, because
of lack of precision of the sound localization process and relatively uncertain error
properties that the formula exhibits (the arc of huge errors around the speakers), it seems
improbable to implement the model to a laboratory use directly. The average error over
the whole region in the simulation with the optimum speaker positioning and reasonable
uncertainty (±5°) turned out to be 2.2ft, and this is too high of an error to make this
method possible to use as localization process in an environment of 12x12ft area.

Many developments can be made to the model, however. Just using a better soundcard
that can sample sound at higher frequency will yield better sound localization and yield
more accurate pose of the robot. Improvements can also be made by using better sound
localization algorithms such as stereausis algorithm, so the robot can measure more
accurate and preciseφ1 and φ2. In addition, towards the end of the experiment, it was
found that pseudorandom sound signals of sound can also be used to estimate the distance
from the sound source to the microphone. This information, if retrieved, can be also used
to correct some errors made by the model studied in this paper.
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Appendix I: Derivation of the Formula
Mathematical proof done by Dr. P.S. Krishnaprasad

Consider a laboratory environment equipped with 3 sound sources distinguishable by
spectral signatures. A binaural robot equipped with a sound localization algorithm can
localize itself within the laboratory only using source bearings. We derive the localization
formula by appealing to basic properties of triangles in the plane. It is arrived that the
robot can rotate in place to orient itself to each of the three sources in succession. The
robot can determine two anglesφ1 and φ2 between the three directions to the three
directions to the three sources. These two angles together with the fixed baselines
between the sound sources is sufficient to determine the (x,y) coordinate of the robot. We
derive below the requisite formulas to do this.

ROBOT

Speaker0
Speaker2

Speaker1

θ

φ2

φ1

θrobot

y

x

L1
L2

d1

d2

φ d0

The robot is at point P(x,y). The baselines between the sources located at the points 0, 1
and 2 are L1 and L2. The origin of the coordinate system is at 0 and 01 is the x-axis and
02 is the y-axis. The axes are assumed to be perpendicular.

It is clear that if the distances d0 and angleθ are determined then the x, y coordinates
can be determined without ambiguity. Consider the triangles 02P and 01P. Apply the sine
rule to each of these two triangles to obtain:

0 02

2 2 2

2

sin sin sin( ) sin( )

d dL d

φ φ π φ φ φ φ
= = =

− − +
…(1)

0 01

1 2 2

1

sin sin sin( ) sin( )

d dL d

φ θ π θ φ θ φ
= = =

− − +
…(2)

From (1) and (2),

2 1
0

2 1

sin( ) sin( )
2 1

sin sin
L L d

φ φ θ φ
φ φ
+ += = …(3)

Hence,

2 2 1 1
0

2 1

sin cos cos sin sin cos cos sin
2 1

sin sin
L L d

φ φ φ φ θ φ θ φ
φ φ

+ += = …(4)

But θ + φ = π/2
�sin(φ) = cos(θ)

cos(φ) = sin(θ)
Substituting in (4),
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2 2 1 1
0

2 1

1 2

2

1

cos cos sin sin sin cos cos sin
2 1

sin sin

,

sin [cot 1 2] cos [cot 2 1]

cot 2 1
tan

cot 1 2

L L d

simplifying

L L L L

L L

L L

θ φ θ φ θ φ θ φ
φ φ

θ φ θ φ
φθ
φ

+ += =

� × − = × −
× −

� =
× −

…(5)

2

1

cot 2 1
arctan( )

cot 1 2

L L

L L

φθ
φ

× −=
× −

…(6)

The actual coordinates of the robot are determined from the formulas,

0

0

cos

sin tan

x d

y d x

θ
θ θ

=
= =

…(7)

Let tanθ beη.
Then substituting d0 into (7) we get,

1
2

1 1 cot( )

1

L L
x

y x

φ η
η

η

+ × ×=
+

=

Appendix II: Correlation algorithm
The correlation coefficient is the covariance of two data sets divided by the product of
their standard deviations:

,

2 2

cov( , )

1
( )

1
cov( , ) ( )( )

X Y
x y

x i x

i x i y

X Y

where

X
n

X Y X Y
n

ρ
σ σ

σ µ

µ µ

=
×

= −

= − −

ÿ

ÿ
You can use the correlation coefficient to determine whether two ranges of data move
together — that is, whether large values of one set are associated with large values of the
other (positive correlation), whether small values of one set are associated with large
values of the other (negative correlation), or whether values in both sets are unrelated
(correlation near zero).


