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Abstract: To combat the multipath and time-variant fading of wireless communication
channels, antenna arrays are usually used to improve the quality and increase the capacity
of communication service. This paper investigates the fast blind adaptive algorithms for
the equalization and diversity combining in wireless communication systems using antenna
arrays. Two second-order statistics based algorithms, SOSA and MSOS, for equalization
and diversity combining are proposed and their convergence in noiseless and noisy channels
is analyzed. Since the proposed algorithms use only second-order statistics or correlation of
the channel outputs, they converge faster than the higher-order statistics based algorithms,
which is also confirmed by computer simulation examples.
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1 Introduction

Due to the multipath phenomena in wireless communication systems, channel equaliz-
ers have to be used to remove the intersymbol interference (ISI). Traditionally, training
sequences have been applied to estimate the channel parameters or to initialize the equal-
izers. However, when the training sequence is costly or impracticable, blind identification
or equalization algorithms have to be employed.

If the channel output of a digital communication system is sampled at baud-rate,
a single-input/single-output (SISO) system is obtained. Since second-order statistics of
a system output only carries its amplitude information, higher-order statistics has to
be used to identify or equalize the channel. Many higher-order statistics based channel
identification or equalization algorithms have been proposed in [7, 9, 10, 18, 19, 20, 22,
23, 24] and the references therein. Godard algorithm [10] or constant-modulus algorithm
(CMA)[22, 23] is one of the most popular blind equalization algorithms because of its
simplicity and effectiveness. It is proved in [8] that the CMA converges to one of its
global minima if implemented with a double-infinite-length equalizer. However, if it is
implemented with a finite-length equalizer, as is the case in practical communication
systems, an improper initial setting of the equalizer will cause ill-convergence [6, 15]. The
investigation has also indicated that for the channels with deep nulls in its spectrum or for
the channels with non-constant modulus input, the CMA equalizer converges very slowly.

To improve the quality of wireless communication systems, antenna arrays are used
for diversity reception. The digital communication systems with antenna arrays can be
modeled as single-input/multiple-output (SIMO) systems if there is only one dominant
signal received by the antenna arrays. The SIMO systems can also be view as the over-
sampled digital communication systems with single sensor. The SIMO channels satisfying

certain conditions can be identified using second-order statistics or correlation function
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of the channel outputs[l, 12, 14, 17, 21]. Once the channel parameters are estimated, the
optimum diversity combiner and equalizer [2, 3, 13] can be designed to remove intersym-
bol interference caused by channel distortion. The CMA can also be applied in SIMO
systems to exploit the channel diversity and equalize systems. In this case, it is called
fractionally-spaced CMA (FS-CMA) equalizer. Even though it has been proved that FS-
CMA equalizer is globally convergent under a length-and-zero condition [16], it converges
slowly since it is a higher-order statistics based algorithm, and it sometimes suffers from
noise amplification, especially when the signal-to-noise ratio of system is low.

As indicated before, the SIMO channels under certain conditions can be identified
using second-order statistics. Therefore, there should exist second-order statistics based
blind adaptive equalization and diversity combining algorithms for the SIMO systems
satisfying some condition. In fact, we will derive blind adaptive algorithms for the diver-
sity reception and equalization of the SIMO systems using second-order statistics of the
channel outputs, and analyze the convergence of the proposed algorithms.

The rest of this paper is organized as following. In Section 2, we will describe the
mathematical model of wireless communication systems using antenna arrays. Then we
will develop two second-order statistics based algorithms for blind equalization and di-
versity combining in Section 3. Next, in Section 4, we will prove the global convergence
of the proposed algorithms for noiseless channels and analyze their performance for noisy
channels. Finally, we will demonstrate the fast convergence of the new algorithms by

computer simulation examples.

2 Problem Formulation

Figure 1 demonstrates the scenario of a wireless communication system using antenna

arrays. Due to the multipath effect of the wireless channel, each antenna will receive a
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distorted signal. Hence, the communication system shown in Figure 1 can be described
as a single-input/multiple-output (SIMO) system shown as in Figure 2. The input se-
quence {s[n]}, with zero-mean and variance o2, is sent through M different linear channels
with impulse response {h,,[n]} for m = 1,2,---, M. Therefore, channel outputs can be
expressed as

T[] = hpln] * s[n], form=1,---, M, (2.1)

or in vector form as

x[n] = h[n] * s[n], (2.2)

where * denotes the convolution of sequences (or vectors), and h[n] and x[n] are respec-

tively defined as
hi[n] z1[n]
h[n] = : , and x[n] 2 : . (2.3)
has[n] zp[n)

In this paper, we will assume that the SIMO channels are of finite impulse response (FIR),
and furthermore, they satisfy the length-and-zero condition [16], i.e. the M subchannels

satisfy the following two conditions:

1. hm,[0] # 0 and hpy,[L — 1] # 0 for some 1 < my, ma < M, where L is the largest
length of the M subchannels.

2. {Hp(2)}¥ have no common zeros, where H,,(2) is the Z-transform of {hn[n]}.
For the SIMO FIR channels, the channel outputs can be written in matrix form as
XK['I’L] = HKSK[TL], (24)

or

XK[TL, N] :HKSK['I’L, N], (25)
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where we have used the notations

h{L -1} --- h[0] .-~ O
Hi = A (2.6)
0 h[L—l] h[O]
x([n]
Xg[n] 2 : ,  Xg[n,N]= (xk[n], -, xg[n + N —1]), (2.7)
x[n+ K — 1]
and
s[n — L +1]
sx[n] = : ,  Sk[n,N] = (sk[n],-+,sg[n+ N —1]). (2.8)
sln+ K — 1]

It is proved in {12] that if an FIR SIMO channels satisfy the length-and-zero condition,
then Hg for any K > L —1 is of full column rank, which is also the identifiable condition
[21] of the SIMO FIR channels using second-order statistics of the channel outputs. Hence,

from (2.4), there exists a KM x (K + L —1) matrix F (not necessarily unique), such that

sk(n] = Foxkn). (2.9)

Let
F= (fla f21"'a fK+L—1)7 (210)
where f, for k = 1,---, K + L — 1 are column vectors with KM elements. From the

above identities, we can implement the channel equalizer and diversity combiner as given
in Figure 3. The task of blind adaptive equalization and diversity combining is to find

algorithms to adjust the parameters fi of the filters in Figure 3 so that the system output
y[n] = es[n — ng| (2.11)

for some unit norm constant ¢ and delay ng.



Ye Li and K. J. Ray Liu: Fast Blind Adaptive Algorithms - - 6

3 Algorithm Development

Having described the system model and summarized some properties of SIMO FIR chan-
nels, we now develop blind adaptive equalization and diversity algorithms for SIMO FIR

channels using second-order statistics of the channel outputs.

3.1 Basic Principle

From the definitions of (2.8) and (2.9), we have

£l xk[n] = f,ﬁlxK[n - 1], (3.1)
fork=1,---,K + L — 2, and every integer n. Hence, using the above identity, we may
obtain fi. If the channel noise is considered, f; for k =1, -+, K + L — 1 can be estimated

by minimizing the cost function

K+L—2
C(f) = Z E|ffxk[n] — f,ﬁ_lxK[n —1]3, (3.2)
k=1
subject to
K+L—1
> I xk(n]]? = e, (3.3)
k=1

where ¢, is a positive constant. The constraint is added here to prevent from the trivial
solution fy =0 forallk=1,.--- , K + L — 1.

Based on the principle presented here, we are able to develop a second-order statis-
tics based algorithm (SOSA) and a modified second-order statistics based algorithm
(MSOSA).

3.2 Second-Order Statistics based Algorithm

From (3.2), direct calculation yields that

K+L-2
C(f) = > (FIR0f; — £ Ry[1]fiy1 — €8 R (1] + £, Rz (0] 1), (3.4)
k=1
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where we have used the definition

Ry[m] 2 E{xk[n]x{[n — m]}, (3.5)
and the identity
Ry[-m] = R;'[m]. (3.6)
Hence,
oF = 2Rz[0]fk — Rz[l]fk_H — Rf[l]fk_l, k=2,--- K+ L -2, (37)
k R:,;[O]fK+L_1 — Rg[].]fK+L_2, k=K + L—-1.
Let ¢
1
f=| : |, (3.8)
frir—1

‘then, (3.7) can also be written as
oC(f)
of
where Risa KM(K + L —1) x KM(K + L — 1) matrix defined as

— Rf, (3.9)

RJf0] -RJf1] O - ©
_RA[1] 2R,0] —RJl] . O

R= 0 —RHE[1] 2RJ0] -~ o |- (3.10)
R

Using gradient-based algorithm, we can obtain a set of iteration formula to estimate f as

following:
f+D) = g0 _  RECY (3.11)
(n+1) Co  B(n+1) (n+1) R S+ H p(n+1) 1n1pn+1)y1/2
k=1

and R;[m| in R can be estimated using

RV [m] = ARM[m] + (1 — N)xg[n]xE[n — m), (3.13)
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where p is a small step-size and ) is a forgetting factor close to 1.
The blind adaptive algorithm for equalization and diversity combining defined by
(3.11)-(3.13) is called second-order statistics based algorithm (SOSA).

3.3 Modified Second-Order based Algorithm

If we examine identities (2.8) and (2.9) carefully, we will find that
£ xk[n — ki) = £xx[n — ko] (3.14)

for ky, ko =1,2,---, K+ L —1 and all integer n. Hence, we can modify the cost function

(3.2) as
K+L-1

C(f) = > Elffxgn — ki) — fixx[n — k)% (3.15)

k1,ke=1

From this cost function, we are able to derive a modified second-order statistics based

algorithm (MSOSA), which is similar to (3.11)-(3.13), except that R there is substituted

by
(K + L — 2)R,[0] ~R,[1] v —Ry[K + L —2]
. _35[1] (K + L.— 2)R,[0] —R,[K + L -3 (3.16)
—Rf[K:+L—2] (K+L:—2)Rx[0]

Since the MSOSA exploits more information about the structure of s [n}, as comfirmed

by computer simulations, it converges faster than the SOSA.

4 Performance of the New Algorithms

Having developed the SOSA and the MSOSA in the previous section, we will investigate
their convergence in noiseless and noisy channels in this section. First, we study the global

convergence of the proposed algorithms under noiseless situation.



Ye Li and K. J. Ray Liu: Fast Blind Adaptive Algorithms - - - 9

4.1 Global Convergence for Noiseless Channels

Before investigating the convergence, we give a relevant definition. A sequence {s[n]} is
said to be K-th order persistently exciting [26] if and only if Sk (1, N) defined in (2.8) is of
full row rank for some N. Most of the existing blind equalization algorithms assume that
the channel input is with independent identical distribution (i.i.d.). Since the channel
input sequence in communication systems is often coded data, this assumption is not true
in these cases. Fortunately, the proposed algorithms only require that the channel input
is persistently exciting upto certain order, which is easily satisfied by almost all digital
signals in communication systems.

The convergence performance of the new algorithms can be expressed by the following
theorem.

Theorem 1: For digital communication systems, assume that the channel input se-
quence {s[n]} is K + 1-th order persistently ezciting for some K > L —1 and N in (2.8),

and the noiseless channel satisfies the length-and-zero condition. If for some k and n
£f7xx[n] £0, (4.1)
and for all k=1,2,---, K+ L—-2andn=12,.--,N
£fIxx[n + 1) = £ xk[n], (4.2)
then,

FEU = clgin-1 (4.3)
for some non-zero ¢, where Iy _1 is a (K + L —1) x (K + L — 1) identity matriz.
Proof: Let

g = Hife, (4.4)

for k=1,2,---,K + L — 1, then, from (4.1) and (4.2), we have

SIIg (2,N)gk = SII-{I(L N)gk+1, (4.5)




Ye Li and K. J. Ray Liu: Fast Blind Adaptive Algorithms - - - 10

fork=1,2,--+, K+ L—2. Since s[n] is K + 1-th order persistently exciting, the different
columns in §#(1, N) and SE(2,N) (K + 1 different columns) are linearly independent.

Therefore, we have

Ok, K+L-1 = Gk+1,1 = 0, Gk,m = Gk4+1,m+15 (4-6)

fork, m=1,.--,K + L — 2, where gjp, is the m-th element of g. (4.6) implies

¢ if k=m,
Gk, _{ 0 otherwise, ’ (4.7)

it follows that
H
g1

fH'HK = = CIK+L_1 (4.8)
g§+L—1

and c is non-zero since fx,[n| # 0 for some k and n.
o

Theorem 1 indicates the global convergence of the SOS and MSOS algorithms used in

noiseless channel regardless of the initial setting

4.2 Performance for Noisy Channels

In practical communication systems, channel noise always exists besides the channel dis-
tortion. For SIMO channels with additive white noise, the channel output xx[n] can be
written as

xk[n] = Hisk[n] + wk[n], (4.9)

where
K win] w1 [n]

, and wln]= , (4.10)

wi/[n] : :
wn+ K —1] wp[n]
with wp,[n] being the additive noise of m-th sensor at time n, which is assumed to be

uncorrelated for all m and n and with zero-mean and variance o2. In this case, the
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correlation function of the channel output can be expressed as

R.[m] = E{xg[n]xE[n—m]} (4.11)
= HxB{sknlskln — ml}#HE + B{wx[nlwi[n — m]}
= *HgJIJHE +2TF,
for m > 0, and
Ry[m) = Ry[-m]"” (4.12)

for m < 0, where Jy isa (K + L — 1) x (K + L — 1) backward shift matrix defined as

0 1 O 0
0 0 1 0
A | (4.13)
0 0 0 .1
0 0 O 0

and J, i1s a KM x KM block backward shift matrix defined as

o I 0 ---0
o o I ---0
Al o (4.14)
o o o .1
0O o0 o0 ---0

with 0 and I being M X M zero matrix and identity matrix respectively. Because of the

channel noise, R,[0] is positive-definite and can be decomposed as
R.[0] = US?U¥H, (4.15)
where U is a unitary matrix and
2 = diag{o?,---, 0%} (4.16)

with o2 for k = 1,---, KM being the eigenvalues of I2;[0].
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The impulse response of the channel and equalized system and mean-square-error
(MSE) of the channel output can be expressed in terms of the R,[m] as given in the
following theorem.

Theorem 2: Let

Eédiag{al"“)o-KM}) (417)
and
Sy ... 0
Q2 - . (4.18)
0 ... YSUH

Then the impulse response of the channel and equalized system is

| e e K L gy —(K+L-2)<n<K+L-2,
th=1,o" | . (4.19)
otherwise.
where
l965] = 1, £ )" Hie, (4.20)
and
1
(o) — —-1

with r being the eigenvector of Q‘lH’RQ~1 corresponding to its smallest eigenvalue. R in
the above ezpression is either R defined as (8.10) or R defined as (3.16), depending on
the discussed algorithm.

The mean-square-error (MSE) of the equalizer output is

MSE = 2(|1 — to]> + Y [tal®) + 02D |tnil?, (4.22)
n#0 n,k

i=max{l,n—K+1}

min{n,K+L—1} (0) — .
Unpk = mzmn f(n—i)M+Ic,z’ 1Sn$2K+L_2andk_1"' , M,
’ 0 otherwise.

(4.23)
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Proof : Let R be either R defined as (3.10) or R defined as (3.16), then SOS algorithm
or MSOS algorithm is to find f minimizing f¥Rf subject to S2IL~ £7 R [0]f; = (K +
L —1)o2. Let

Y. =diag{o1, -, 0kMm}, (4.24)

dy = XU, or d = Of. (4.25)

Then, the SOS or MSOS algorithm can be expressed as to find d minimizingd? Q-1"RQ-'d
subject to || d ||?= (K + L — 1)0?

Let r be the eigenvector of Q¥ RrQ-1 corresponding to its smallest eigenvalues, then

1
q4© — 4.2
os(K+L— 1)1/2r’ (4.26)
and hence
£ = 91d®, or £ =Ux1dY’ (4.27)

is the solution of SOS algorithm or MSOS algorithm, depending upon the choice of R.

Therefore, if a = m in Figure 2, then the equalizer output will be
1 K+L-1 H '
vl = 77— Z £ xkn+ L — . (4.28)

From (4.28), the impulse response of the equalized system is

= K+1L—1 Zyinm{ﬁafnjﬁnx%_l Gii-n}, —(K+L—-2)<n<K+L-2,
tp = ) (4.29)
otherwise.
Hence, the MSE of the equalizer output is
MSE £ E{lyln] - s[n’} (4.30)
= of(I1—tol*+ 3 [tal) +%Z|unk|
n#£0

with uyx defined as (4.23).
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From the above theorem, the convergence of the system can be uniquely determined
once the parameters of the channel is known, which is different from the higher-order
statistics based algorithms whose convergence depends on both the channel parameters
and equalizer initial setting.

With the formulas given by Theorem 2, we are now able to investigate the effects
of the length-and-zero condition on the convergence of our algorithms. To study how
the length-and-zero condition influences the equalizer performance, we consider a single-

input/two-output channel with impulse responses given by
{1, 0.8 +¢}, and {1, 0.8 —¢}. (4.31)

When there is no channel noise, from Theorem 1, both SOS and MSOS algorithms will
converge to the desired parameters if € # 0. However, if the channel noise exists, the
performance of the both algorithms will degenerate as € tends to zero, as demonstrated
in Figure 4 which is calculated from (4.23) for SNR = 20dB.

We can also calculate the MSE’s of SOS and MSOS algorithms in Rayleigh fading
channel using Theorem 2. Figure 5 illustrates the M SE’s of SOS and MSOS equalizers

applied in a single-input/two-output two-ray Rayleigh fading channels.

5 Computer Simulation Examples

Two Monte Carlo simulation examples have been conducted to demonstrate the perfor-

mance of the new algorithms in digital communication systems.

5.1 The SOS and MSOS Equalizers in Time-Invariant Channel

This example will demonstrate that SOSA and MSOSA equalizers have better conver-
gence performance than FS-CMA equalizer. The channel used in this example is a

single-input/two-output time-invariant linear channel with impulse response responses
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{0.6662 — 70.8427, 1.6323 — 70.2503, —0.6617 — 70.4102} and {0.4607 + 70.5789, 0.5855 —
92.6912, 1.3273 — 0.4184}. The channel noise is additive complex white Gaussian noise
with zero-mean and variance determined by SNE. In our simulation, the step-size p
and the forgetting factor A are chosen to optimize the performance of each equalization
algorithm.

If the channel input sequence {s[n]} is independent and identically distributed uni-
formly over {£1 =+ 7}, {£3 £ 3}, {£1 £ 33} and {£3 £ 3y}, Figure 6 (a), (b) and (c)
show the eye patterns of the SOSA, the MSOSA and the FS-CMA equalizers respectively
after 200 iterations, and Figure 6 (d) illustrates the convergence of the ISI of the three
algorithms with respect to the number of iterations. From Figure 6, it only takes about
250 symbols for the SOSA equalizer or about 150 symbols for the MSOSA equalizer to
converge. Both of them converge much faster than the FS-CMA equalizer.

If the CCITT trellis-coded modulated (TCM) scheme in [4, page 81] is employed in
a communication system, then the channel input sequence {s[n]} is not 4.i.d.. In this
environment, the CMA equalizer based on higher-order statistics will not converge to the
channel inverse. However, since our second-order based equalizers do not require the i.i.d
assumption, the SOSA equalizer and the MSOSA equalizer are still able to converge to

the desired equalizer parameters as illustrated in Figure 7.

5.2 The SOS and MSOS Equalizers in Time-Variant Channel

In section 4, we have already analyzed the performance of the SOS equalizer and the MSOS
equalizer in Rayleigh fading channel where we assume that the channel is time-invariant
or slowly varying compared with the convergence speed of the equalizers. In this example,
we are going to study the performance of the SOS and MSOS equalizers used in a single-
input/two-output time-variant Rayleigh fading channel. Each subchannel is a two-ray

time-variant multipath channel described as in Model 3 of [5]. Figure 8 demonstrates the
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probability of symbol error of the SOS equalizer and the MSOS equalizer used in 16-QAM
digital communication system operated at 4800 bauds, corresponding to different channel
fading bandwidth[5]. From Figure 8(a) and 8(b), the performance of the MSOS equalizer
is better than that of the SOS equalizer for time-variant channels since the former one

has faster convergence speed than the latter one.

6 Conclusion

In this paper, we have proposed two second-order statistics based algorithms for adaptive
diversity combining and equalization. The proposed algorithms have faster convergence
than higher-order statistics based algorithms. They can also be used in systems with non
ii.d. inputs, such as coded data in communication systems. The new algorithms can
be used in wireless communication systems with antenna arrays to cancel the ISI and
improve the system performance. We are currently studying how to use the proposed

algorithms in IS-54 systems to the tracking of the fast fading mobile radio channels.
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Figure 1: Wireless communication system with antenna arrays.
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Figure 2: Single-input/multiple-output channel model.
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Figure 3: Blind adaptive equalizer with diversity combining.
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Figure 4: The MSE’s of the SOS algorithm, the MSOS algorithm and optimum filter
(Wiener filter) vis the diversity of the channels.
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Figure 5: The MSE’s of the SOS algorithm, the MSOS algorithm and optimum filter for
two-ray Rayleigh fading channel.
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Figure 6: 500 symbol eye patterns of (a) the SOSA, (b) the MSOSA, and (c) the FS-CMA
after 200 iterations, and (d) the convergence of the ISI for the three algorithms, when
SNR = 20dB.
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Figure 7: 500 symbol eye patterns of (a) the SOSA, (b) the MSOSA, and (c) the FS-CMA
after 2000 iterations, and (d) the convergence of the ISI for the three algorithms, for a

TCM signal, when SNR = oo.
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Figure 8: The probability of symbol error of (a) the SOS equalizer, and (b) the MSOS
equalizer used in time-variant fading channels with different fading bandwidth B.



