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As the number of fungal pathogen outbreaks become more frequent worldwide across 

taxa, so have the number of species extirpations and communities persisting with the 

pathogen. This phenomenon raises questions, such as: “what leads to host extinction 

during an outbreak?” and “how are hosts persisting once the pathogen establishes?.” 

But the data on host populations and communities across life stages before and after 

pathogen arrival rarely exist to answer these questions. Over the past three to four 

decades, the amphibian-killing fungus Batrachochytrim dendrobatidis (Bd) spread in 

a wave-like manner across Central America, leading to rapid species extirpations and 

population declines. I collected data on tadpole and adult amphibians in El Copé, 

Panama before, during, and after the Bd outbreak to answer these questions. I used 

Bayesian statistical approaches to account for imperfect host and pathogen detection 

of marked and unmarked individuals. In the tadpole community, within 11 months of 

Bds arrival, density and occupancy rapidly declined. Species losses were 



  

phylogenetically correlated, with glass frogs disappearing first, and tree frogs and 

poison-dart frogs remaining. I found that tadpole communities resembled one another 

more strongly after the outbreak than they did before Bd invasion. I found no tadpoles 

within 22 months of the outbreak and limited signs of recovery within 10 years. In 

contrast, at the same site, for a population of male glass frogs, Espadarana 

prosopleon, I found that 10 years post-outbreak, the population was consistently half 

its historic abundance, and that the lack of recruits to the population explained why 

the population had not rebounded, rather than high pathogen-induced mortality. And 

finally, examining the entire amphibian community, I found high pathogen 

prevalence, low infection intensities, and high survival rates of uninfected and 

infected hosts. Bd transmission risk, i.e., the probability a susceptible host becomes 

infected, did not relate to host density, pathogen prevalence, or infection intensity– 

Bd transmission risk was uniform across the study area. My results are especially 

relevant to conservation biologists aiming to predict the future impacts of Bd 

outbreaks, those trying to manage persisting populations, and those interested in 

reintroducing species back into wild amphibian communities. 
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Preface 

This dissertation contains an overview chapter (Chapter I), three research chapters 

(Chapters II-IV), a synthesis chapter (Chapter V), an appendix, and a supplement. 

The research chapters (II-IV) represent primary work, the appendix provides 

additional support to each chapter in terms of figures and tables, and the supplement 

provides the explanation for additional analyses and R code. All chapters are 

presented in manuscript form and formatted depending on the journal in which they 

are intended to be published. A single reference section occurs at the end for the 

literature cited throughout the dissertation.   

  



 

 iii 

 

Dedication 

 

 

 

 

 

Para mamá y papá 

Per mamma e papà 

To mom and dad 

 

 

 

 

 

“Begin at the beginning,” the King said, very gravely, “and go on till you come to the 

end: then stop.” 

 - Lewis Carrol, Alice in Wonderland 



 

 iv 

 

Acknowledgements 

Karen Lips− I cannot thank you enough for giving me the opportunity to learn and 

grow as a scientist, and not giving up on me my first day of field work when I 

dropped the infrared temperature gun, that is not waterproof, into the stream when I 

was trying to go over a boulder [June 2011]. I thought for sure I was out of graduate 

school that moment. Thank you for your kindness, patience, and support throughout 

these five years. 

Mamá y Papà − No les puedo decir cuanto orgullo yo siento por ustedes. Son las 

personas mas fuerte que conozco y sin ustedes, yo no pudiera llevar la vida que tengo. 

Mis palabras no pueden explicar lo que yo siento por ustedes. Los quiero mucho, 

desde aquí hasta la luna. Y aunque papa no puede estar aquí, yo se que me acompaña. 

Luke Browne− You are amazing, and I couldn’t have asked for anyone more 

compassionate, patient, and loving to help and support me through my dissertation. 

Thank you for the encouragement, the meditations, and the thoughtful reminders of 

the large picture− always bringing it back to the “why?”. 

Joseph, John Paul, Emily, & Erika− My beautiful loving family. Thank you for your 

support and loving embraces. And no, I was not on vacation when I was collecting 

this data in Panama. 

Carly Muletz-Wolz− My lab sister!! I hold a special place in my heart for you. And 

thank you for your endless hours of counseling and support. I couldn’t have asked for 

anyone more wonderful to be my lab sister. 



 

 v 

 

Tate Tunstall− “what now? between you and me”, “We face each other as God 

intended… sportmanlike. No tricks, no weapons, skill against skill alone.” But, “this 

is not Nam. This is bowling. There are rules.” 

Christian Che-Castaldo− I couldn’t have completed my first chapter without your 

tremendous guidance, support, patience, pranks, and mentoring. It was always great 

to talk to you about Bayesian stats, even when you did spray me with water bottles 

and left fake notes on my desk so that I would email Bill Fagan asking when he wants 

to meet with me. After all, “Success is an accumulation of successful days.” 

I am grateful to my wonderful committee: Bill Fagan, Dan Gruner, Nathan 

Kraft, and Ken Paynter. Thank you for all of your advice in improving the quality of 

my work. 

I owe a huge debt of gratitude to all of my field assistance [Nicole Angeli, 

Alexander Cunha, and Edward Kabay], the Zamudio Lab, the Fagan Lab, BEES 

Graduate students [Alex, Novarro, Jessica Goodheart, Daniel Escobar, Maria Natalia 

Umana, Andy Simpson, Nick Caruso], the Parque Omar Torrijos Herrera guarda-

parques [Andres Gonzales, Donaciano Sanchez, and Lazaro], The Disorbo Family 

[Linda, Luigi, Lena, Joe, and Steve], and The Browne Family. 

Gracias a Macedonio Perez, Julie Ray, and Maya de Vries por su hospitalidad 

en Panama. 

I am tremendously grateful to have worked with and talked to the following 

statistical gurus: Andy Royle, Marc Kéry, Elise Zipkin, and Evan Grant. I admire 

each of you.  



 

 vi 

 

This work was generously supported by an NSF GRFP, NSF grant to Karen 

Lips and Kelly Zamudio, BISI-BEES graduate program, STRI, an NSF REU, and an 

NSF RET. 



 

 vii 

 

Table of Contents 
 

Preface........................................................................................................................... ii 

Dedication .................................................................................................................... iii 

Acknowledgements ...................................................................................................... iv 

Table of Contents ........................................................................................................ vii 

List of Tables ............................................................................................................. viii 

List of Figures ............................................................................................................. iix 

Chapter I: OVERVIEW .................................................................................................... 1 

Chapter II: COMMUNITY DISASSEMBLY OF A TADPOLE COMMUNITY BY A MULTI-HOST 

FUNGAL PATHOGEN WITH LIMITED EVIDENCE OF COMMUNITY RECOVERY ................... 11 

Introduction ............................................................................................................. 12 

Methods................................................................................................................... 16 

Results ..................................................................................................................... 28 

Discussion ............................................................................................................... 32 

Chapter III: CHANGES IN HOST DEMOGRAPHY AFTER A CHYTRIDIOMYCOSIS OUTBREAK 

OFFER INSIGHT INTO LACK OF AMPHIBIAN ABUNDANCE RECOVERY ............................. 45 

Introduction ............................................................................................................. 46 

Methods................................................................................................................... 49 

Results ..................................................................................................................... 58 

Discussion ............................................................................................................... 60 

Chapter IV: MODELING POST-OUTBREAK DISEASE DYNAMICS IN A NEOTROPICAL 

AMPHIBIAN COMMUNITY .............................................................................................. 75 

Introduction ............................................................................................................. 76 

Methods................................................................................................................... 80 

Results ..................................................................................................................... 89 

Discussion ............................................................................................................... 91 

Chapter V: SYNTHESIS .............................................................................................. 106 

Appendices ................................................................................................................ 113 

Supplement ............................................................................................................... 144 

Bibliography ............................................................................................................. 167 

 

 

 

 

 

 

 

 

 

 



 

 viii 

 

List of Tables 
 

Table 3.1 Parameter definitions and symbols.  

Table 3.2 Capture effort and infection intensity summary 

Table 3.3 Capture probability estimates 

Table 4.1 List of model parameters 

Table 4.2 Summary of amphibian captures 

Table 4.3 Summary of field samples 



 

 ix 

 

List of Figures 
 

Figure 2.1 Effects of Bd arrival on habitat weighted density of tadpoles 

Figure 2.2 Patterns of occupancy before and after Bd arrival with the odds ratio of 

tadpole declines 

Figure 2.3 Ordination of tadpole communities before and after Bd arrival 

Figure 2.4 Phylogenetic patterns of order of species losses 

Figure 2.5 Mean adult density pre-Bd arrival and odds ratio of tadpole declines 

Figure 2.6 Habitat use overlap among species and the odds of tadpole decline 

Figure 2.7 Food resource use overlap among species and the odds of tadpole decline 

 

Figure 3.1. Map of study area 

Figure 3.2. Diagram of the E. prosoblepon host-pathogen model. 

Figure 3.3. Raw infection intensity time series 

Figure 3.4. Population growth rate before and after the 2004 Bd outbreak 

Figure 3.5. Population size before and after Bd arrival in 2004. 

Figure 3.6. Monthly apparent survival probability as it relates to infection intensity 

Figure 3.7. Recruitment rate before and after the Bd outbreak in 2004 

 

Figure 4.1 Amphibian abundance across the two-year study 

Figure 4.2 Change in amphibian abundance between seasons 

Figure 4.3 Model output of predicted Bd prevalence  

Figure 4.4 Model output of average Bd transmission risk among 20-m sites 

 



 

 1 

 

Chapter I: OVERVIEW 

 

At the first World Congress of Herpetology in 1989, scientists realized that 

many once abundant, common amphibian species had started to disappear for no 

obvious reason, even in remote or protected areas (Blaustein and Wake 1990). It was 

well known that temperate pond breeding amphibian populations experienced large 

population fluctuations throughout the year, and at the time, many herpetologists 

assumed that the population declines were just part of natural population cycles 

(Alford and Richards 1999). This assumption was fuelled by the lack of long-term 

demographic data that was needed to assess whether the unnaturally low amphibian 

populations were part of natural cycles, or part of a bigger problem. Combined, these 

assumptions and lack of data hampered the early detection of a worldwide amphibian 

crisis.  

 In Central America, enigmatic amphibian declines were first noticed with the 

disappearance of the golden toad, Incilius periglenes, in Monteverde, Costa Rica in 

1986 (Crump et al. 1992). These amphibian disappearances became even more 

apparent when biologists went back to survey historic sites in Mexico and failed to 

find once-common species (Lips et al. 2004). Throughout the 1990s and 2000s, 

herpetologists reported additional declines particularly concentrated in upland forests 

of southern Costa Rica and Panama (Lips 1998, 1999; Lips et al. 2006, 2008). The 

declines appeared to be spreading from Northern Costa Rica towards the southeast 

into Panama, which gave rise to the “spreading pathogen hypothesis” (Lips et al. 

2008). 
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The pathogen that was spreading was Batrachochytrium dendrobatidis (Bd), 

first described in 1999 (Longcore et al. 1999). Bd is a basal fungal lineage in the 

phylum Chytridiomycota, which is distinct from other fungi in that they have motile, 

flagellate zoospores (Fisher et al. 2009). Bd has a free-living flagellated zoospore that 

acts as the infective stage, and upon encountering keratinized epidermal amphibian 

skin, the zoospore encysts (Pessier et al. 1999, Longcore et al. 1999). The encysted 

zoospores develop into thalli, and once mature, are referred to as zoosporangia. The 

zoosporangium produces zoospores asexually, and grows a germ tube towards the 

skin surface of the infected individual. Within two to seven days, the zoospores inside 

the zoosporangium are released onto the skin surface. There, the zoospores can 

reinfect the same individual or infect others. 

Amphibians are the only known hosts of Bd. Once a host is infected, its 

symptoms and the effects of Bd are highly variable across and within amphibian 

species, but symptoms include: lethargy, excessive skin shedding, skin thickening, 

vasodilation, hyperkeratosis, and abnormal feeding behavior (Pessier et al. 1999). It is 

hypothesized that osmotic and electrolyte imbalance across the skin leads to cardiac 

arrest of an infected host and is the cause of death (Voyles et al. 2009).  

Fungal pathogens are unlike any other infectious bacteria or viral pathogens. 

Fungal pathogens are unique because they have both macro- and micro-parasite 

attributes− where they reproduce within the host, like a microparasite, but lack an 

effective way to transmit zoospores from cell-to-cell so the infectious propagule is 

shed onto the skin surface, like a macroparasite (Briggs et al. 2010). Fungal 

pathogens are also unique in that they may also have a resting or saprophytic stage 
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external to the host, that allows them to drive their host to extinction more easily 

(Mitchell et al. 2008).  

Bd caused severe population declines and species extirpation of hundreds 

amphibians in highland Central and South America (Lips et al. 2008, Cheng et al. 

2011). The combination of Bd and amphibian ecologies contributes to the pronounced 

impacts. First, Bd grows best under environmental conditions typical of cloud forests 

found in the Neotropics: i.e., year-round high humidity and temperatures between 

15−25°C (Collins & Crump 2009). Second, many Neotropical amphibian species 

have small population sizes, narrow distributional ranges, and are habitat specialists, 

which contribute to their susceptibility to external threats (Lips et al. 2003, Whitfield 

et al. in press). And finally, high amphibian diversity and endemism in this region 

contributes to high rates of amphibian loss, with over 50% of all newly described 

species stemming from this area (Duellman 1999). 

Herein, I review our current knowledge of amphibian declines in Central 

America, focusing on how we predict amphibian declines, the impacts of Bd on 

amphibian populations and community structure, and highlight knowledge gaps in 

relation to amphibian and Bd interactions. 

 

I. How did Bd spread in Central America? 

 Starting in the late 1980s, amphibian declines spread from Monteverde, Costa 

Rica toward the southeast (Whitfield et al. in press). This spatiotemporal pattern of 

decline gave rise to the novel pathogen hypothesis (NPH), arguing that Bd was a 

novel pathogen spreading throughout Central America. These studies speculated that 
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a recent change in pathogen virulence occurred, leading to rapid spread of the 

pathogen across the regional landscape. Early genetic studies of Bd isolates supported 

this hypothesis, showing that Bd had low global variation at both microsatellite and 

sequenced loci, with both types of markers having only two alleles (James et al. 

2009).  

 The systematic, directional spread of Bd from Costa Rica into Panama was 

likely the result of human facilitation of pathogen movement (Dobson 2000), effects 

of small-scale geography, or effects of population dynamics (Lips et al. 2008). 

Landscape geography influences both amphibian and pathogen gene flow and 

movement, where certain habitats promote pathogen survival and spread (e.g., 

mountain chains and river valleys) while others slow spread (e.g., desert and 

lowlands). Alternatively, anthropogenic facilitation of Bd spread is also likely, 

perhaps along highways, seasonal routes of livestock herding, or other travel routes 

that might produce a patter of nonlinear declines (Lips et al. 2008).  

 On the local scale, Bd is transmitted via an aquatic flagellated zoospore 

(Longcore et al. 1999) either via direct frog-to-frog or indirect frog-to-environment 

contact. But little is known about Bd transmission rates (Rachowicz & Briggs, 2007) 

and Bd persistence outside of the host (Fisher et al. 2012) because it is difficult to 

track, monitor, and follow. Bd has been detected on waterfowl feet (Garmyn et al. 

2012), lizards (Kilburn et al. 2011), and surface waters (Chestnut et al. 2014). But 

none of these studies quantified the viability of zoospores or reproduction external to 

their amphibian host, leaving many questions about the transmissibility of Bd 

zoospores. 
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II. How do we predict species declines? 

In Central America, the species that are the most vulnerable to extirpations 

and declining share similar traits (Lips et al. 2003). Declining populations tend to be 

associated with riparian habitats, have small geographic ranges, restricted elevational 

ranges, and are large-bodied (Lips et al. 2003). In addition, endemic species are at 

greater risk because of small populations and habitat specialization, which tend to 

concentrate in highland areas (Lips et al. 2003, Smith et al. 2009). These traits can be 

used to predict species susceptibility to Bd infection and population declines. 

 

III. What are the impacts of Bd on amphibian population demography? 

In general, we know very little about Neotropical amphibian population 

demography (i.e., survival rates, recruitment rates, and population size) because it is 

logistically challenging to capture, mark, and track individuals over appropriate time 

periods, also known as capture-mark-recapture surveys (McCaffery and Lips 2013); 

We know even less about the impacts of Bd on Neotropical amphibian population 

demography because the species that survive the outbreak have low population 

densities and are challenging to find, making it more difficult to obtain sufficient data 

for analyses. There have been attempts to compare before and after estimates of host 

survivorship (Craugastor punctariolus, Ryan et al. 2008; Atelopus zeteki, Atelopus 

varius: McCaffery et al. 2015), but long-term analyses were generally not possible 

because these species populations declined too rapidly and in all cases were 

extirpated within 12 months of Bd arrival.  
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In other cases, capture-mark-recapture has been done at locations post-Bd 

outbreak, when data before Bd arrival is not available. These studies tend to quantify 

amphibian survivorship and recruitment but they fail to account for disease status of 

hosts (Atelopus cruciger; Lampo et al. 2011), or these studies set out with the goal to 

quantify Bd impacts, but find no Bd infected hosts (Atelopus spumarius: Tarvin et al. 

2014).  

 

IV. How does Bd change amphibian community structure? 

In Central America, Bd has reshaped patterns of amphibian biodiversity across 

the region and dissolved historical biogreographical patterns, such that larger 

distances between sites is not correlated with community composition dissimilarity 

even at 500 km distance (Smith et al. 2009). Bd outbreaks throughout the region 

eliminated the endemic species, resulting in regional homogenization of amphibian 

fauna and ecology, where particular reproductive modes and habitats experienced 

greater declines. These historic and current biogreographical patterns are essential in 

understanding why species are in their present locations, which informs conservation 

efforts.  

Despite the severity of the crisis, quantitative data on the effects of a Bd 

outbreak on amphibian communities are rare because I lack equivalent data collected 

before and after a disease outbreak. Crawford et al. (2010) is among one of the only 

studies that has collected these data, where they found that 41% of species extirpated 

in El Copé, Panama (30 of 74 species), 11 of which were undescribed cryptic species, 

and abundance declines were random with respect to community phylogeny. This is 
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among one of the only quantifications of amphibian losses, and represents important 

information for amphibian biodiversity conservation demonstrating the direct impact 

of an infectious disease on amphibian diversity and community phylogeny. Despite 

large abundance and species richness declines, amphibians persist at sites where Bd is 

present. 

 

V. What are we still missing? And what does this dissertation contribute? 

Despite substantial advances in our understanding in community and 

population level effects of this novel pathogen on amphibians within the last couple 

decades, there remain a substantial number of unresolved questions. A major 

roadblock to improving our understanding of Bd’s impact is the lack the data on 

amphibian populations and communities before and after Bd invasion, which would 

provide a direct assessment of Bd’s impact. By the time many sites in Central 

America were surveyed, it was too late to collect the before and after data needed 

because amphibians were already infected with Bd. 

One of our largest knowledge gaps pertains to what happens to tadpoles when 

Bd arrives. Clearly though, if adult amphibians decline, then tadpoles will decline, but 

their patterns of decline may be fundamentally different because adults and tadpoles 

differ in habitat and resource use, mortality rates, and interactions with other species. 

The impact of disease on the juveniles sets the stage with respect what happens to 

adult population abundances. In chapter II, I use historic data on tadpole communities 

collected directly before and after Bd arrival to determine what factors (i.e., 
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phylogeny, rarity, habitat or resource use overlap) correlate to the magnitude and 

order of species declines.  

The lack of population recoveries indicates that Bd must still be causing 

unobserved mortality or there is a lack of recruitment. To effectively manage 

amphibian species populations and understand what is limiting natural population 

recovery, we need to know how Bd has altered survivorship and recruitment of 

species. In chapter III, I use capture-mark-recapture data collected before and after Bd 

arrival for a population of male Espadarana prosoblepon to determine how host 

survivorship, recruitment, and population size is affected by pathogen presence.  

In terms of the amphibian community, we largely do not know how 

individuals are persisting in the presence Bd because amphibian species that have 

been affected by Bd tend to have extremely low abundances, making them difficult to 

study. Many Neotropical amphibian species had small population sizes before Bd 

arrival, and Bd-related population declines have made it virtually impossible to 

understand population dynamics. In chapter IV, to handle this sparse amphibian 

dataset, I created a novel multi-state disease-structured Dail-Madsen model for 

unmarked individuals that corrects for imperfect host and pathogen detection, 

allowing me to estimate the same parameters of a capture-mark-recapture analysis, 

i.e., host survivorship, recruitment, and population size, without the intensive effort of 

marking individuals. Here, I examine what processes are contributing to the 

persistence of the few remaining sparse amphibians following a Bd outbreak by 

estimating disease state-specific survivorship, arrival rates, detection probability, 
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recovery and infection probabilities, community abundance, and the change in 

abundance across years.  

In the recorded history of infectious diseases, there are no comparable 

examples that have caused catastrophic declines in any single group of animals 

(Collins & Crump 2009) and have such low host specificity that it infects all members 

of an entire class of vertebrates (Pasmans et al. 2004). However, it seems as though 

Bd is the first of many infectious diseases of this type, with the recent emergence of 

white-nose syndrome in bats, snake fungal disease in snakes, and Batrachochytrium 

salamandrivorans in salamanders, making it more critical to learn from Bd to be able 

to apply our knowledge in controlling the spread of other fatally infectious fungal 

pathogens and conserving biodiversity. 

Therefore, in an effort to build on our basic understanding of amphibian 

population biology and Bd disease ecology, and answering the questions “what leads 

to host extinction during a Bd outbreak?” to “how are hosts persisting once Bd 

becomes established?,” I designed a three part study that involved field research, lab 

work, and statistical modeling to determine the population and community level 

effects of Bd arrival, and I developed new statistical models that improve inference on 

difficult to find hosts at low abundances following pathogen invasion.  

 

VI. The study site: El Copé, Panama 

In 1998, a long-term amphibian-monitoring project was established in El 

Copé, Panama. This monitoring project created the opportunity to collect critically 

needed data on amphibian adult and tadpole populations for multiple species before 
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Bd arrival. The chapters to follow all use these datasets from before, during, and after 

the 2004 Bd outbreak in El Copé. For several species, capture-mark-recapture 

projects were started, and seven total permanent transects were created in both 

riparian and trail habitats. This is one of the only sites in the Central America with 

this type of amphibian data collected before and after Bd arrival, providing the 

opportunity to answer many unresolved questions.   
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Chapter II: COMMUNITY DISASSEMBLY OF A TADPOLE COMMUNITY BY A 

MULTI-HOST FUNGAL PATHOGEN WITH LIMITED EVIDENCE OF COMMUNITY 

RECOVERY 

 

Coauthors: CHRISTIAN CHE-CASTALDO, AMANDA RUGENSKI, ROBERTO BRENES, 

MATT R. WHILES, CATHERINE M. PRINGLE, SUSAN S. KILHAM, AND KAREN R. LIPS 

 

Abstract 

Emerging infectious diseases can cause host community disassembly, but the 

mechanisms driving the order of species declines and extirpations following a disease 

outbreak are unclear. I documented the community disassembly of a Neotropical 

tadpole community during a chytridiomycosis outbreak, triggered by the generalist 

fungal pathogen, Batrachochytrium dendrobatidis (Bd). Within the first 11 months of 

Bd arrival, tadpole density and occupancy rapidly declined. Species rarity and habitat 

or food resource use overlap among species did not predict the magnitude of declines. 

But species losses were taxonomically selective, with glass frogs (Family: 

Centrolenidae) disappearing the fastest and tree frogs (Family: Hylidae) and dart-

poison frogs (Family: Dendrobatidae) remaining. I found biotic homogenization of 

tadpole communities, with post-decline communities resembling one another more 

strongly than pre-decline communities. The entire tadpole community was extirpated 

within 22 months following Bd arrival, and I found limited signs of recovery 10 years 

post-outbreak. Because of detection issues inherent in sampling tadpoles, I used 

simulations in conjunction with our detection estimates to provide recommendations 
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for future surveys to insure adequate sampling of diverse Neotropical tadpole 

communities. Our unique dataset on tadpole community composition before and after 

Bd arrival is a valuable baseline for assessing Neotropical amphibian recovery. Our 

results are of direct interest to conservation managers and community ecologists 

trying to better understand the timing, magnitude, and consequences of disease 

outbreaks as emerging infectious diseases spread globally. 

 

Introduction 

Emerging infectious diseases can cause community disassembly (Zavaleta et 

al. 2009; Fisher et al. 2012), defined as the predictable loss of species and population 

declines. During community disassembly, the first species extirpated are generally 

rare species− species with small geographic ranges, small population size, or a narrow 

habitat tolerance (Rabinowitz, 1981; Larsen, Williams, & Kremen 2005; Gehring et 

al. 2014; Rader et al. 2014). Subsequent losses tend to include common, generalist 

species that have declined since the initial disturbance (e.g., Wright, Gonzalez, & 

Coleman 2007; Larsen, Lopera, & Forsyth 2008). The last remaining species may 

reduce patterns of community turnover across the site, increasing biotic 

homogenization (McKinney and Lockwood 1999).   

In the case of tropical amphibian declines and extirpations caused by the 

fungal pathogen Batrachochytrium dendrobatidis (hereafter Bd), many amphibian 

communities experience rapid, widespread declines and species extirpations 

following pathogen arrival (Berger et al. 1998; Lips et al. 1998, 1999, 2006). Species 

declines and extirpations are best predicted by infection intensity (Vredenburg et al. 
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2010, Savage and Zamudio 2011, Grogan et al. 2016), where high pathogen burdens 

compromise the host’s skin function, killing the host (Voyles et al. 2009). Host 

mortality and subsequent species declines are, therefore, largely dependent on 

pathogen exposure, pathogen growth rates, and pathogen re-exposure.  

Bd exposure, re-exposure, and susceptibility are related to several species-

level characteristics. First, species identity and taxonomy can predict species 

susceptibility to Bd. For example, family-level amphibian phylogenies suggest that 

families with similar traits share the same vulnerabilities to threats (Corey and Waite 

2008, Smith et al. 2009), but a species-level phylogeny showed no evidence that 

species with similar traits were equally susceptible to Bd (Crawford et al. 2010). The 

discrepancy between these results could be an artifact of taxonomic, spatial, or 

temporal scales− where rapid, widespread amphibian losses produce an illusion of no 

phylogenetic variation to Bd susceptibility. Second, habitat and food resource use 

overlap among species may affect pathogen exposure and re-exposure, where host 

aggregations increase the likelihood of gaining infection (Longo et al. 2010, Venesky 

et al. 2011). For example, when species converge on common resources or refugia, 

like Eleutherodactylus coqui during severe droughts, clumping behavior increases 

contact rates and pathogen transmission. Finally, host ecology, abundance, and 

distribution affect both host susceptibility and pathogen transmission rates (Lips et al. 

2003, Rachowicz and Briggs 2007, Briggs et al. 2010). To illustrate, the host-

pathogen interactions of Rana muscosa-Bd largely depend on density-dependent 

processes regulating pathogen exposure and re-infection (Briggs et al. 2010), where 

higher densities rapidly increase host infections and mortality rates. Similarly, 
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geographically rare species tend to experience greater Bd-related declines than 

widespread species (Smith et al. 2009)− driven by high pathogen re-infection rates 

and host susceptibility. 

But the inability to distinguish between species rarity (i.e., low density, low 

occupancy, habitat specialization) and difficult to detect species (i.e., cryptic, 

fossorial, secretive) is largely overlooked in community disassembly studies− where 

difficult to detect species tend to appear rare. For instance, cryptic amphibian species, 

like those in the families Craugastoridae or Strabomantidae, tend to be hard to find, 

but are actually widespread and abundant. This illusion of species rarity is produced 

by imperfect detection (i.e., MacKenzie et al. 2006; Kéry 2010). By underestimating 

species occupancy pre- and post- outbreaks, population declines will tend to be 

overestimated and extirpations will be biased towards difficult to find species, leading 

to false inference regarding the cause of declines.  

Here, I describe the community disassembly of a stream-dwelling tadpole 

community in response to a Bd outbreak, while taking into account imperfect species 

detection. In this system, stream tadpoles occupy semi-isolated microhabitats (e.g., 

leaf packs, isolated pools, and in-stream pools and riffles) that allow for the consistent 

quantification of tadpole occupancy, density, and species richness. Prior to the 

introduction of Bd, these tadpole assemblages were diverse (McDiarmid & Altig 

1999; Crawford, Lips, & Bermingham 2010), abundant (McDiarmid & Altig 1999) 

and structured spatially (Inger, Voris, & Frogner 1986) and temporally (Heyer 1976), 

creating an opportunity to compare several species characteristics simultaneously that 

can contribute to the order of species losses caused by disease outbreaks. I address the 
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following specific questions in this study: (1) What are the patterns of community 

disassembly following an outbreak? (2) What factors correlate to the order of species 

losses? (3) And how can we improve tadpole community sampling given imperfect 

detection? 

I expected that tadpole occupancy would decline following the mass mortality 

of adult amphibians at the site (Lips et al. 2006), and that the magnitude of tadpole 

occupancy declines would depend on their microhabitat use and season. Like most 

other multi-host pathogens, I predicted that specialist species and their relatives that 

share similar traits would be extirpated first, where the time since species divergence 

would correlate to species disappearance date, because more closely related species 

will share similar traits and pathogen susceptibility. I fit several evolutionary time 

models that each represents different rates of trait divergence, and a white noise 

model that predicts no correlation between relatedness and species disappearance 

date. I predicted that as habitat or food resource use overlap increases among tadpole 

species, the likelihood a species declines will also increase. I predicted that the 

tadpole communities that remain following the Bd outbreak will be more similar in 

species composition, mainly comprised of common, generalist species. And finally, I 

expected that Bd arrival would cause rapid changes to the tadpole community that 

would persist several years post-invasion. My results are useful to conservation and 

restoration practices considering the species vulnerability and taxonomic uniqueness 

alongside setting species action, especially as generalist fungal pathogens spread 

globally.  
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 Methods 

STUDY SITE  

The study site was located within Parque Nacional G. D. Omar Torríjos 

Herrera in Coclé Province, approximately 8 km north of the town of El Copé, Panama 

(8° 40’ N, 80° 37’ 17’’ W, Lips, Reeve, & Witters 2003). The park spans elevations 

between 500 and 1000 m, and our study sites are located at ~775 m elevation. This 

site experiences both a dry (December to April) and wet (May to November) season. 

Mean annual air temperature at the park during 2003–2005 ranged from 16−23°C, 

and mean annual rainfall was ~3709 mm (McCaffrey & Lips 2013; unpublished 

data).  

 

STUDY SYSTEM  

Starting in 1998, KRL started monitoring adult amphibian populations in El 

Copé, Panama (Lips et al. 2006) and was consistently capturing amphibians until 

September 2004 when Bd was first detected at the site. Tadpole populations were 

monitored starting 15 months prior to the adult die-off (July 2003). The system 

experienced rapid species losses and declines. I, therefore, expect minimal 

compensatory or evolutionary dynamics interfering with community disassembly 

inference. This project is part of the larger Tropical Amphibians Declines in Streams 

(TADS) project to quantify what the consequences of amphibian loss are to 

ecosystem structure and function.  

The original El Copé amphibian community consisted of 74 species (Lips, 

Reeve, & Witters 2003; Crawford, Lips, & Bermingham 2010), of which ~22 had 
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stream-dwelling tadpoles. The amphibian community was diverse with respect to life 

history (e.g., habitat use, reproductive mode), demography (e.g., survivorship, 

longevity), and ecology (e.g., clutch size, body size, dispersal distance). By 2008, 

only 44 species remained at low population densities (Crawford, Lips, & 

Bermingham 2010).  

 

FIELD SURVEYS 

 RB surveyed tadpole communities in four 200 m stream transects: Loop, 

Silenciosa, Cascada, and Guabal. RB mapped and measured the area covered by each 

of four microhabitats (riffle, pool, isolated pool, and leaf pack) at the beginning of the 

wet and dry seasons. Riffles were defined as fast-flowing, shallow sections with 

gravel and cobble substrates, pools as areas of calm water deeper than 20 cm in the 

main channel, isolated pools as small, shallow pools spatially separated from the main 

stream channel, and leaf packs as detritus accumulations at the bottom of pools.  

I used a k-means clustering analysis to divide streams into segments that were 

repeatedly visited each month throughout the study. The k-means analysis divided 

each stream transect into four segments for a total of 16 stream sites per microhabitat. 

Each segment was sampled either once, twice, or three times per month using the 

random sampling method described below. 

To sample riffles, RB used 250 μm D-nets and disturbed substrate with our 

feet while holding nets immediately downstream (Barbour et al. 1999). To sample 

leaf packs, RB used a modified stovepipe benthic corer (22 cm diameter) with a base 

of rubberized flaps that kept the sampler sealed against rough and uneven substrates. 
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RB drove the corer into the substrate and removed searched through the contents for 

tadpoles (Colón-Gaud et al. 2010). RB used a dip net to exhaustively sample pools 

and isolated pools until three consecutive scoops produced no tadpoles (Heyer et al. 

1994; Ranvestel et al. 2004). RB also measured the length, width, and depths of all 

microhabitats across each 200 m transect to account for variability in survey area.  

For leaf packs, isolated pools, and riffles, RB randomly sampled three sites 

per microhabitat per stream each month for 15 months before (June 2003–August 

2004) and 11 months following (October 2004–August 2005) Bd arrival in September 

2004. For pools, RB randomly sampled between four and eight sites per stream each 

month before Bd arrived. AR re-sampled all microhabitats in at least one stream 

annually between 2006 and 2011 and again in 2014 (Table A2.1). All analyses are 

based on the first two years of intensive sampling (2003–2005) of leaf pack, isolated 

pools, and riffles because no individuals were found in the majority of subsequent 

annual surveys.  

I excluded pools from all analyses because logistical difficulties prevented the 

sampling of pools post-decline (2004–2005) and the sampling of leaf packs from 

September to December 2003. I report data of pools pre-decline to provide baseline 

data of these understudied communities. I also did not include September 2004 in 

analyses to limit biases between pre- and post- Bd samples because Bd arrived mid-

September 2004 (Lips et al. 2006).  
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STATISTICAL ANALYSES 

I. Patterns of community disassembly 

Tadpole density 

To determine if the magnitude of tadpole declines differed among 

microhabitats or between seasons, I calculated tadpole habitat-weighted density 

(HWD) before and after Bd arrival in each microhabitat and stream by pooling 

monthly tadpole abundances across species. I used HWD to adjust for spatiotemporal 

variations in microhabitat availability caused by differences among streams and 

between seasons. HWD was calculated by dividing total tadpole abundance per 

microhabitat in each stream each month by the total area sampled and multiplying by 

the percent area each microhabitat covered in each stream that season. I reformatted 

data consisted of tadpole HWD per microhabitat per stream per month from 

2003−2005.  

To determine if tadpole HWD differed among microhabitats or between 

seasons following Bd arrival, I used a generalized linear mixed effects model, with 

monthly tadpole HWD as the response variable and microhabitat, season, disease 

state (Bd present or absent), all two-way interactions, and the three-way interaction as 

the explanatory variables. I included month as a fixed effect to account for repeated 

measures of density across months and included stream as a random effect (Gillies et 

al. 2006) to account for pseudo-replication of microhabitats within streams. I used a 

negative binomial distribution to account for over dispersion of the response variable, 

and I accessed model fit by visually inspecting the residuals. I fit this model using 
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package glmmADMB (Fournier et al. 2012, Skaug et al. 2014) in R version 3.2.1 (R 

Core Team 2015). 

To account for biases in tadpole abundance caused by detection probability, I 

fit species-specific hierarchical N-mixture models to estimate true tadpole densities 

using stream segments as the sites and monthly repeated visits to different 

microhabitat samples within stream segments as replicate surveys, but model fits 

were extremely poor. Poor model fit was probably due to large jumps in tadpole 

densities between replicate surveys at each site. The large jumps in tadpole densities 

were likely caused by clustered microhabitat use within stream segments and not 

necessarily a violation of the population closure assumption (i.e., no births, deaths, 

immigration, or emigration). Density estimates that are not adjusted for imperfect 

detection are often underestimates of the true abundance, but can still be useful to 

quantify the strength and direction of an ecological effect (i.e., Banks-Leite et al. 

2014).  

 

Species occupancy 

To determine if species occupancy differed before and after Bd arrival, I used 

a hierarchical occupancy model to quantify changes in species-specific occupancy. In 

this analysis, I was able to account for imperfect detection, by estimating microhabitat 

specific detection rates. I define the probability of occupancy as the probability a 

species occupied a stream segment, and I define detection probability as the 

probability I detect a species in a given stream segment, given that the species is 

present. I included data for all species that were detected in three or more 
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microhabitat samples within a season (Ferraz et al. 2007, Ruiz-Guiterrez et al. 2010; 

see Table A2.2). I had sufficient data to estimate occupancy for eight of the 13 

species identified to species level.  

I used microhabitat samples as repeated surveys at a stream site (Hines et al. 

2010). Since I did not know a priori species microhabitat use or breeding season, I 

ran each species occupancy model with the full set of microhabitat and season 

covariates. 

For a selected species, I estimated the true occurrence of tadpoles as, 

zi,m ~ Bernoulli(ψi,m), 

where z = 1 when the mth species occupies the ith site, and z = 0 otherwise. I 

investigated the association between species tadpole occupancy and the covariates 

microhabitat, season, disease state, and their interactions using an effects-

parameterized generalized linear mixed model where, 

logit(ψi,m) = α0,n,m + β0,mWeti + β1,mLeafPacki + β2,mRifflei + β3,mWetiLeafPacki + 

β4,mWetiRifflei+ β5,mPosti + β6,mPostiWeti + β7,mPostiLeafPacki + β8,mPostiRifflei + 

β9,mPostiWetiLeafPacki + β10,mPostiWetiRifflei + γi,m. 

I included α0,n,m to account for spatial variations of the nth stream for the mth species, 

and where γi,m ~ Normal(0, σ2) was included as a random effect to account for 

variation among sites for the mth species.  

I estimated detection probability as, 

yi,j,m ~ Bernoulli(pizi,m), 

where, 

logit(pi) = α1 + βHabi. 
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When tadpoles of the mth species were observed during the jth survey at the ith 

site then y = 1, and y = 0, otherwise. Detection was modeled as the product of pi, the 

probability of detecting a species, given that it is present at the ith site (i.e., z = 1).  

To reduce the number of parameters estimated and to increase precision, I 

combined the detection probability of leaf packs and isolated pools as the intercept of 

the model and riffles as the covariate Hab, since previous runs of the model showed 

very similar detection probability estimates between leaf packs and isolated pools 

(unpublished). I assumed that tadpole detection probability was constant between 

seasons and years because sparse data post-decline prevented us from estimating 

detection probability. 

I fit all models using Bayesian methods and estimated the posterior 

distributions for all parameters using Markov chain Monte Carlo (MCMC) methods 

implemented in JAGS 3.4.0 in R version 3.2.1 (R Core Team 2015) using the rjags 

package (Plummer, 2015). For all parameters, I used non-informative priors (i.e., 

normal(0, 0.368), gamma(0.01, 0.01), uniform(0, 1)). I ran three chains for each 

parameter, and ran each chain for 100,000 iterations with a burn-in period of 5,000 

iterations. I evaluated convergence of chains by visual inspecting trace plots, and 

using the diagnostics of Gelman (Brooks & Gelman 1998). I also assessed model fits 

using posterior predictive checks (Gelman et al. 2014). 

To determine how much more likely a species was to successfully occupy a 

microhabitat before Bd than after Bd arrival, I calculated the odds ratio (i.e., OR = 

oddspost/oddspre) by dividing the post-Bd logit output of the occupancy model by the 

pre-Bd logit output of the occupancy model. If the OR is close to one, then it suggests 
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that there was no change in occupancy. If the OR is below one, then it suggests that 

the odds of occupancy are greater pre-Bd than post-Bd then occupancy has declined. 

And if the OR is above one, then the odds of occupancy are lower pre-Bd than post-

Bd, indicating an increase in occupancy. I considered the effect of Bd biologically 

meaningful if the 95% credible interval fell below or above one− interpreted as a 95% 

probability that the OR significantly changed. 

 

Community composition 

To determine if tadpole communities post-Bd invasion were more similar to 

one another than tadpole communities before Bd arrival, I used a permutational 

analysis of multivariate dispersion (PERMDISP2; Anderson et al. 2006) in R version 

3.2.1 (R Core Team 2015). I used the Bray-Curtis metric, which allows dispersion 

distance to reflect variability in community structure. I visualized the data using non-

metric multidimensional scaling (NMDS). I defined communities as the tadpole 

assemblages sampled in each microhabitat-stream-season-year combination, for a 

total of 48 communities (3 microhabitats x 4 streams x 2 seasons x 2 years). I only 

included data between 2003 and 2005. 

 

II. The order of species losses 

Species relatedness 

To determine if the order of species disappearances was correlated with their 

phylogenetic relationship, I fit several macro-evolutionary likelihood models to the 

last Julian day a species was seen at the site. I fit Brownian, Ornstein-Uhlenbeck, 
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Lambda, and white noise models using the package ‘geiger’ in the R version 3.2.1 

(Harmon et al. 2008; R Core Team 2015). I used our observational field data to 

determine the last Julian Day each species was detected at the site. I did not interpret 

results as the true date of species extirpations because our data likely reflect the date 

of last species detection. 

I set 01 January 2003 as Julian Day 0, and 31 December 2005 as Julian Day 

1095.  Bd likely arrived between Julian Day 609 and 638 in September 2004 (Lips et 

al. 2006). I used a rooted, time-calibrated El Copé amphibian tree (Crawford, Lips, & 

Bermingham 2010). All species differed from sister lineages by a genetic distance at 

the COI gene or 16S gene by at least eight or two percent, respectively. The length of 

basal branches may be underestimated because of the use of the relatively fast-

evolving mitochondrial DNA markers used to infer evolutionary history. Crawford et 

al. (2010) used several temporal constraints to calibrate evolutionary time on the 

entire amphibian phylogeny using the MPL algorithm. First, the age of the most 

recent common ancestor (MRCA) of Lissamphibia was placed at 332.6 million years 

ago (Ma). And, they added the minimum and maximum ages of three nested nodes: 

the MRCA of Craugastor + Lithobates (Phtanobatrachia) to the interval 143.3 to 

179.9 Ma, the MRCA of Lithobates + Nelsonophyrne (Ranoidea) to the interval 106.2 

to 130.9 Ma, and the MRCA of Craugastor + Rhinella (Nobleobatrachia minus 

Rhinoderma) to the interval 50.9 to 75.5 Ma. 

I excluded any individuals that were not classified to species level (e.g., 

Centrolene spp. and Colostethus spp.). I also did not include any pool samples or pool 

habitat specialist (i.e., Atelopus zeteki) because the last Julian Day those species were 
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seen would have reflected the last day pools were sampled. I included all species that 

were found pre-Bd arrival for a total of 11 species, representing four families (i.e., 

Ranidae, Centrolenidae, Hylidae, Dendrobatidae), and I compared the fit of each 

model using AICc and model weights. I considered the model with the lowest AICc 

as the model of best fit, unless within 2 units (Schwarz, 2011). 

 

Rarity 

To determine if species rarity was a predictor of occupancy decline, I used 

two metrics: (1) tadpole seasonal microhabitat occupancy from the species occupancy 

model outlined above and (2) raw field data from transects of adult densities 

(Crawford et al. 2010). I used both tadpole occupancy and adult density to reflect 

species’ variations in rarity across life stages. I calculated the species-specific habitat-

weighted OR as the product of the odds ratios for each microhabitat in each season 

from the occupancy model outlined above and the average percent habitat available to 

adjust for variations in microhabitat cover among streams. To quantify the strength of 

the relationships between adult density and OR and between tadpole pre-Bd 

occupancy versus OR, I tested for an association between paired samples by 

calculating Pearson’s correlation coefficient using the function cor.test() in R.  

 

Habitat and resource use overlap 

To determine if habitat overlap, defined as the average proportion of habitat 

shared by a species with all other species, affected the odds of decline for the mth 

species, I averaged the occupancy probability for all other species, except the mth 
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species, in each microhabitat and season from the model outlined above. Then, to 

quantify the strength of the correlation between habitat overlap and OR, I calculated 

Pearson’s correlation coefficient. 

To determine if resource use overlap, defined as the average proportion of 

habitat shared by a species with all other species in the same feeding guild, affected 

the odds of decline for the mth species, I averaged the occupancy probability of all 

other species in the same feeding guild, following Verburg et al. (2007), in each 

microhabitat and season from the model outlined above. Again, I used Pearson’s 

correlation coefficient to quantify the strength of the correlation between the mth 

species resource use overlap and their OR. 

 

III. Imperfect detection and sampling biases 

Not adjusting for imperfect detection in occupancy models  

I compared all the results from our detection-adjusted occupancy model (i.e., 

species occupancy declines, habitat and resource use overlap, and rarity analyses) to 

the results of a logistic regression, which does not adjust for detection probability, 

using a slightly modified dataset and the model outlined above. I modified the dataset 

by collapsing the site by visit matrix for each species, such that if a species was ever 

detected at a site it was considered present. I assigned the detection probability, p, for 

all microhabitat equal to one. I then used the same statistical approach using Markov 

chain Monte Carlo (MCMC) methods implemented in JAGS 3.4.0 in R version 

3.2.1. (R Core Team 2015) using the “rjags” package (Plummer, 2015).  
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Optimizing species sampling  

To determine how sampling effort affected occupancy estimates for a range of 

tadpole ecologies, I used a single-season single-species occupancy model to analyze 

simulated data under different scenarios (Supplement 2.1). I simulated occupancy 

data for a single species under scenarios spanning high to low detection and 

occupancy probabilities (range = 0.1 to 0.9) and varied the number of sites sampled 

(range: 5 to 200 sites by 20) and the number of surveys per site (range: 1 to 9 surveys 

per site by 2). I generated a total of 5,000 unique scenarios to test how variations in 

occupancy, detection, number of sites sampled, and number of surveys per site 

affected the precision of occupancy estimates. 

I fit all models using Bayesian methods using the same procedure outlined 

above for species occupancy. For each unique combination of occupancy, detection, 

sites and surveys, I simulated 25 occupancy datasets and analyzed each dataset under 

a Bayesian framework. For each analysis, I ran three chains for each parameter, and 

ran each chain for 10,000 iterations with a burn-in period of 1,000 iterations.  

To determine how well models performed under different sampling schemes, I 

calculated the root mean square error between true and recovered occupancy 

estimates for each of the 25 datasets per scenario. The root mean square error 

represents the sample standard deviation of the difference between predicted and true 

estimates. Based on occupancy and the degree of precision I wanted in model 

estimates, I decided a priori that my maximum acceptable root mean square error was 

0.10 (i.e., Guillera-Arroita et al. 2010, Guillera-Arroita 2011).  
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Results 

Field summary 

 We captured 2,021 individuals of 14 species across four microhabitats 15 

months prior to Bd’s arrival. Of those, 1,123 individuals were found in pools. We 

found 11 species during the wet season and 12 species during the dry season, with 9 

species common to both (Table A2.2). During the 11 months following Bd’s arrival, 

we captured 249 individuals of eight species across three microhabitats, representing 

a 72% decrease in captures and a 43% decrease in species richness.  

Species that had >75% of captures during the dry season, included: Atelopus 

varius, Colostethus panamensis, Lithobates warszewitschii, Espadarana prosoblepon, 

Sachatamia albomaculata, Hyloscirtus colymba, and Hyalinobatrachium 

colymbiphyllum. Species with >75% of captures in the wet season included: 

Colostethus spp., Hyloscirtus palmeri, Sachatamia ilex and Teratohyla spinosa. 

Species with >98% of captures in a single microhabitat included: A. varius (pools), L. 

warszewitschii (pools), most centrolenid species (leaf packs), and Colostethus spp. 

(isolated pools; Table A2.2).  

Post-decline, the highest abundances of tadpoles were found in isolated pools, 

mostly of the families Dendrobatidae (Silverstoneia flotator, C. panamensis, S. 

nubicola, A. talamancae, and Colostethus spp.) or Hylidae (H. palmeri, H. colymba). 

Only two species had >75% of captures in the dry season: Allobates talamancae and 

L. warszewitschii, and only Hyalinobatrachium colymbiphyllum had >75% of 

captures during the wet season (Table A2.2). Five species were never seen post-

decline (A. varius, E. prosoblepon, S. albomaculata, S. ilex, T. spinosa; Table A2.2).  
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I. Patterns of community disassembly 

Tadpole density 

Before Bd arrival, during the dry season, average monthly HWD per 

microhabitat ranged from 0.00 to 20.08 individuals m-2, while during the wet season, 

average monthly HWD ranged from 0.00 to 6.69 individuals m-2 (Fig. 2.1). Within 11 

months of Bd arrival, habitat-weighted density decreased from an average HWD of 

4.53 ± 1.19 individuals m-2 (mean ± SE) to 0.34 ± 0.08 individuals m-2 after Bd (z = 

4.12, p < 0.001; Fig. 1). The magnitude of declines did not differ between 

microhabitats or seasons (p > 0.05).  

Idid not detect any tadpoles during any of the annual surveys conducted from 

2006 to 2011, precluding further analyses. In April 2014, Ifound several pools and 

isolated pools with tadpoles of Silverstoneia nubicola and an unidentified species, 

ranging in HWD between 0.95 to 4.49 individuals m-2.  

 

Species occupancy  

About half of the species in any microhabitat or season declined after Bd 

arrival (Fig. 2.2). Ialso found that detection probability was significantly higher for 

tadpoles in leaf packs and isolated pools (0.41±0.20), than for tadpoles found in 

riffles during the entire study (0.13±0.03; Table A3). 

 

Community composition  
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Our evidence for biotic homogenization was that post-decline El Copé tadpole 

communities were more similar to one another than the pre-decline El Copé tadpole 

communities were to each other (Fig. 2.3; PERMDISP2, F1,46 = 15.02, p < 0.001). 

Pre-decline tadpole community dissimilarity among microhabitat and between 

seasons was 65% greater than their post-decline counterparts (Pre-decline average 

distance to median = 0.35; Post-decline average distance to median = 0.12).  

 

II. The order of species losses 

Species relatedness 

Ifound that the Brownian model best fit the timing of species disappearance 

dates, indicating a taxonomic signal to the order of species losses and taxonomic 

homogenization (Fig. 2.4; Table A2.4), with centrolenids disappearing first− 

sometimes without ever being seen post-Bd arrival− and hylids, dendrobatids, and the 

ranids still seen several months post-Bd arrival. All other models increased the AICc 

score by at least 3 points (Table A2.4). No tadpoles were seen during the survey in 

2006. 

 

Rarity 

Neither adult density nor tadpole occupancy predicted probability of decline 

among tadpole species (Fig. 2.2 & 2.5; Pearson’s correlation coefficient = -0.13, t = -

0.33, df = 6, p = 0.75; Pearson’s correlation coefficient = -0.07, t = -0.53, df = 46, p = 

0.59, respectively).  
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Habitat and resource use overlap 

Ifound no trend in species decline odds by habitat overlap (Fig. 2.6; Pearson’s 

correlation coefficient = 0.26, t = 1.89, df = 46, p = 0.06) or food resource overlap 

(Fig. 2.7; Pearson’s correlation coefficient = -0.07, t = -0.48, df = 46, p = 0.63).  

 

III. Imperfect detection and sampling biases 

Not adjusting for imperfect detection in occupancy models 

Using the logistic regression, Ifound that over half (~ 58%) of tadpole species, 

regardless of microhabitat or season, declined following Bd arrival (Table A2.5). 

Similar to the detection-adjusted model results, Ifound no relationship between food 

resource use overlap and the odds of species decline (Pearson’s correlation coefficient 

= 16, t = 1.16, df = 46, p = 0.24) and no relationship between adult density and the 

odds of species decline (Pearson’s correlation coefficient = -0.11, t = -0.27, df = 6, p 

= 0.78). But, in contrast to the detection-adjusted model, Ifound that as habitat 

overlap among species increased, then the likelihood a species declined also increased 

(Pearson’s correlation coefficient = 0.39, t = 2.93, df = 46, p = 0.005) and that as 

tadpole pre-Bd occupancy increased, then the likelihood of species decline also 

increased (Pearson’s correlation coefficient = 0.96, t = 25.69, df = 46, p < 0.001). 

 

Optimizing species sampling 

Our simulations showed that a biologist would need to survey at least 25 sites 

of each microhabitat at least three times each to obtain an occupancy estimate with a 

maximum error of 0.10 (Fig. A2.2; Table A2.6).  
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Discussion 

Bd caused rapid, widespread declines in the tadpole community that were 

immediate and persistent. Tadpoles declined in abundance and occupancy rapidly 

within the first 11 months of the adult outbreak, and by the second year, all tadpoles 

had been extirpated. Sampling between 2006 and 2011 produced no tadpoles, even 

for species with adults that persisted post-Bd invasion. In 2014, the first tadpoles were 

detected but at very low densities and in few habitats.  

Within 11 months of Bd invasion, tadpole community disassembly− the order 

of species declines and losses− was marked by taxonomic and ecologic 

homogenization with the disappearance of centrolenid habitat-specialists, resembling 

the regional pattern of adult community disassembly (Smith, Lips, & Chase 2009). 

Centrolenids were mainly found in leaf packs and were the first ones that 

disappeared, likely driving the homogenizing pattern across the site, whereas at the 

regional scale, geographically restricted endemic species drove the homogenizing 

pattern of adults (Smith, Lips, & Chase 2009). Homogenization in both adults and 

tadpoles resulted in higher than expected taxonomic and ecological similarity among 

communities post-Bd.  

Species rarity, in terms of either adult density or tadpole occupancy, did not 

predict the magnitude of species declines caused by Bd, indicating that all naïve 

species were susceptibile to Bd. Both, rare and common species, experienced 

comparably large occupancy declines from Bd invasion. Rarity is a widely accepted 

indicator of species vulnerability for many taxa (Zavaleta et al. 2009), but the 



 

 33 

 

mechanism (i.e., ecology versus rarity) driving species susceptibility can vary by 

disturbance. In this system, where Bd is highly virulent and hosts are naïve to 

infection, species rarity, of either tadpoles or adults, did not influence vulnerability to 

Bd. Host susceptibility to pathogen-related declines is more complicated than relating 

them to host population size, where aspects of host ecology may also contribute to 

species vulnerability (Lips et al. 2003). For example, riparian species are more 

vulnerable to declines than terrestrial species (Lips et al. 2003, Brem and Lips 2008). 

In our system, Ionly examined stream-dwelling tadpoles; if Ihad surveyed the entire 

landscape for tadpoles (i.e., bromeliads, canopy, refuges, etc.), Imay have detected 

more pronounced variations in susceptibility. Within a single habitat type though, 

Idid not find that species rarity predicted the magnitude of declines.  

Ihypothesize that low adult abundance and low reproductive output during the 

disease outbreak may have contributed to the large tadpole declines− causing the 

rapid decline in abundance. Ifound little evidence that tadpole communities were 

recovering within the decade after Bd invasion, although Ilikely did not sample 

enough to detect all species of tadpoles. For tadpole abundance to increase, adult 

abundance and reproductive output needs to increase. It is possible that infected 

tadpoles have reduced growth rates (Parris and Cornelius 2004, Garner et al. 2009, 

Venesky et al. 2012) and higher disease-related mortality, or that metamorphs and 

subadults have high mortality rates (Berger et al. 1998, Rachowicz et al. 2006, 

Langhammer et al. 2014) but evidence for the latter is lacking. The few tadpoles 

detected in 2014 suggest that the amphibian community is starting to recover. 
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It seems that both isolated and heavily occupied communities had the same 

likelihood of declining, since habitat and food resource use overlap among species 

were not correlated with tadpole declines. If the presence of an infectious individual 

in a microhabitat increases the likelihood of pathogen exposure (e.g., Reeder et al. 

2012, DiRenzo et al. 2014), then Iwould expect that tadpoles overlapping with 

infectious hosts would be more likely to decline (Lips 1998, Lips 1999). Likewise, if 

the probability of being exposed to Bd as a tadpole increases if infected individuals 

are sharing a food resource in the same habitat (e.g., Venesky et al. 2011), then 

species overlapping with an infectious species are more likely to decline. However, 

our results suggest that neither habitat or food resource overlap correlated with 

species declines, indicating that tadpole co-occurrence might not affect the likelihood 

of declining. A stronger predictor of declines might have been tadpole density, where 

as the proportion of infected tadpoles increases the likelihood of infection increases 

(Rachowicz and Briggs 2007), although Ihad no data to estimate infection intensity. 

Very little is known about how tadpole density affects the likelihood of contracting 

Bd (e.g., Rachowizc and Briggs 2007, Venesky et al. 2011). Yet, there are too many 

possible explanations for this scenario, where the lack of tadpoles could be because 

tadpole mortality increased, adults reproduction decreased, or post-metamorphosis 

survival decreased.   

 The magnitude of tadpole density declines reported here were much greater 

than the adult density declines described at this site (Crawford, Lips, & Bermingham 

2010). The higher tadpole rate of loss is likely driven by both decreased recruitment 

and lower detection probability than adults. Tadpoles have naturally high mortality 
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rates (Calef 1973, Heyer et al. 1975) and when the additional chytrid-related mortality 

(Garner et al. 2009) is added to the system, the likelihood of tadpole survival is slim− 

explaining the discrepancy between the tadpole and adult magnitudes of decline. It 

may also be that tadpoles were still present but Idid not detect them− especially given 

that some centrolenid adults are present at the site and Idid not find their tadpoles 

(Crawford, Lips, & Bermingham 2010).  

By not sampling pools after Bd arrival, Iwere unable to quantify the impact of 

Bd invasion on that microhabitat. However, our main conclusions would not have 

changed because amphibian adult mass mortality was widespread across the site (Lips 

et al. 2006). Iresampled pools in 2006, and Ifound no individuals, similar to the 

patterns in the other microhabitats. 

 

Sampling recommendations 

Iprovide the first estimates of Neotropical tadpole detection probabilities, 

which could replace vague priors traditionally used in Bayesian analyses to make 

more precise occupancy estimates. Most Neotropical regions have experienced 

widespread losses of amphibians from Bd (James et al. 2015), making it difficult to 

estimate unbiased tadpole detection probabilities. Tadpoles, like amphibian adults, are 

cryptic, secretive, and difficult to detect (Heard, Robertson, & Scroggie 2006; Smith 

et al. 2007), but monitoring tadpoles may provide a better solution to monitoring 

amphibian community dynamics post-Bd because stream-dwelling tadpoles are 

spatially constrained, whereas amphibian adults are not.  
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Our study was not designed with the intent of using N-mixture or occupancy 

models, but Iwere able to analyze the majority of species using occupancy models. If 

Ihad not accounted for imperfect species detection in this analysis, Iwould have 

overestimated occupancy declines and Iwould have incorrectly interpreted the 

correlations between tadpole declines and both rarity and habitat overlap. 

Observational error, in this case, can lead to misclassifying species as extirpated or 

having greater odds of decline. Irecommend for future studies to survey at least 25 

sites of each microhabitat, three times each per season, to adequately sample a 

tadpole community for both rare and common species.   

Occupancy studies should be designed carefully to ensure efficient use of 

available resources. To avoid wasted effort, biologists should anticipate the quality of 

their data (MacKenzie and Royle 2005, Guillera-Arroita et al. 2011). The precision 

and bias of occupancy estimates will also depend highly on the species biology and 

the system in general. For example, when working with rare species, the best 

sampling designs will tend to have more replication than in cases where only the 

precision of occupancy is of interest. Therefore, thought and care should be given to 

designing sampling schemes before collecting data to prevent loss of time, money, 

and resources. 

 

Conclusions 

Three traits associated with adult amphibian declines played no role in the 

declines of their tadpole counterparts. While the decline and extirpation of adult 

amphibians were predicted by (1) taxonomy (Corey and Waite 2008), (2) species 
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aggregation (Longo et al. 2010, Venesky et al. 2011), and (3) species abundance and 

distribution (Smith et al. 2009, Briggs et al. 2010), Idid not find evidence for two of 

these three for tadpoles, where closely related species did share their vulnerability to 

Bd. The discrepancy between order of extirpations and declines of adult and tadpoles 

may be attributed to when in the life cycle hosts are gaining infection and dying. If 

hosts are dying before reproduction, the patterns of species declines and extirpations 

will be greater than after they reproduce. For example, the mountain yellow-legged 

frog, Rana muscosa, develops fatal Bd infection post-metamorphosis, creating the 

illusion of healthy abundant tadpole populations but severely declined juvenile and 

adult populations (Briggs et al. 2010). 

Ifound that tadpole communities were taxonomically and ecologically 

homogenized within 11 months of Bd invasion and communities collapsed within 22 

months. Bd drove hosts to extirpation, and Ihave not seen signs or evidence of 

substantial tadpole community recovery within 10 years post outbreak. Our results are 

directly relevant to researchers interested in improving sampling methods of diverse 

communities, disease ecologists interested in understanding how multi-host fungal 

pathogens impact different life stages, community ecologists interested in pathogen-

driven community disassembly of vertebrates, and conservation practitioners in 

charge of culling, vaccinating, and sterilizing wild populations experiencing declines 

and extirpations caused by multi-host fungal pathogens. 
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Figure 2.1 Effects of Bd arrival on habitat weighted density (individuals per meter2) 

of tadpoles in each of three microhabitats (leaf pack, isolated pool, riffle) for 15 

months before and 11 months after Bd arrival in September 2004 (Lips et al. 2006). 

The solid black line represents the rolling average of tadpole habitat weighted density 

for the entire tadpole community. The heavy black horizontal lines represent the dry 

season, and the heavy black vertical line represents the arrival of Bd in September 

2004.  
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Figure 2.2 Patterns of occupancy by species, microhabitat, and season pre- (left) and 

post- (middle) Bd arrival with the odds ratio (i.e., OR = oddspost/oddspre; right). All 

points represent the mean ± 95% credible interval. Tadpole pre-Bd occupancy rarity 

was not a significant predictor of decline (Pearson’s correlation coefficient = -0.07, t 

= -0.53, df = 46, p = 0.59). Odds ratios less than one indicate occupancy declines 

post-Bd. Species codes: Hc = H. colymba; Hp = H. palmeri; Sf = S. flotator; Sn = S. 

nubicola; Cp = C. panamensis; Lw = L. warszewitschii; Hcol = H. colymbiphyllum; 

Ep = E. prosoblepon.  
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Figure 2.3 Non-metric multidimensional scaling (NMDS) ordination of tadpole 

communities− tadpole samples from each microhabitat-stream-season combination− 

pre- and post-Bd using Bray-Curtis dissimilarity. After Bd arrival, tadpole 

communities became more similar to one another, represented by the nested circles. 

Lines connect communities to the centroid of each group (i.e., pre- or post-Bd). 

Ellipses represent 95% confidence intervals around group centroids.  
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Figure 2.4 Phylogenetic patterns of order of species losses in stream-dwelling 

tadpoles with last Julian Day a species was seen mapped onto branches. Our rooted, 

time-calibrated, and trimmed phylogenetic tree was comes from the El Copé 

amphibian tree (Crawford, Lips, & Bermingham 2010). The x-axis represents 

divergence time in million of years ago (Ma). Julian Day zero corresponds to 01 

January 2003, and Julian day 1095 corresponds to 31 December 2005. Bd arrived 

between Julian day 609 and 638. Most glass frog species were the first to disappear 

from the site− with many not seen post-Bd arrival; while treefrogs and poison-dart 

frogs remained detectable at the site after Bd arrival (model of best fit: Brownian; 

Table A4).
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Figure 2.5 Mean adult species density pre-Bd arrival (left; 2000-2004; Crawford et al. 

2010) by habitat-weighted odds ratio of tadpole declines (right). Adult rarity was not 

a significant predictor of the odds of tadpole decline (Pearson’s correlation coefficient 

= -0.13, t = -0.33, df = 6, p = 0.75). Species codes: Hc = H. colymba; Hp = H. 

palmeri; Sf = S. flotator; Sn = S. nubicola; Cp = C. panamensis; Lw = L. 

warszewitschii; Hcol = H. colymbiphyllum; Ep = E. prosoblepon.  
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Figure 2.6 Habitat use overlap among species in each season and microhabitat (left) 

did not predict the odds of decline (right; Pearson’s correlation coefficient = 0.26, t = 

1.89, df = 46, p = 0.06). Habitat use overlap close to zero indicates less habitat 

overlap with other species, while values close to one represent more habitat overlap 

with other species. Species codes: Hc = H. colymba; Hp = H. palmeri; Sf = S. 

flotator; Sn = S. nubicola; Cp = C. panamensis; Lw = L. warszewitschii; Hcol = H. 

colymbiphyllum; Ep = E. prosoblepon.
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Figure 2.7 Food resource use overlap among species in each season and microhabitat 

(left) did not predict the odds of decline (right; Pearson’s correlation coefficient = 

0.20, t = 1.42, df = 46, p = 0.15). Resource use overlap close to zero indicate less 

resource overlap with other species in the same feeding guild, while values close to 

one represent more resource overlap with other species in the same feeding guild. 

Species codes: Hc = H. colymba; Hp = H. palmeri; Sf = S. flotator; Sn = S. nubicola; 

Cp = C. panamensis; Lw = L. warszewitschii; Hcol = H. colymbiphyllum; Ep = E. 

prosoblepon. 
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Chapter III: CHANGES IN HOST DEMOGRAPHY AFTER A CHYTRIDIOMYCOSIS 

OUTBREAK OFFER INSIGHT INTO LACK OF AMPHIBIAN ABUNDANCE 

RECOVERY 

Coauthors: REBECCA MCCAFFERY, ANA V. LONGO, KELLY R. ZAMUDIO, & KAREN R. 

LIPS 

Abstract 

After an emerging infectious disease (EID) arrives into a naïve host population and 

causes rapid, widespread host mortality, then the host population must maintain its 

abundance to avoid extirpation as the pathogen establishes. In the case of the EID 

chytridiomycosis, caused by the pathogenic fungus Bactrachochytrium dendrobatidis 

(Bd), it has caused amphibian mass mortality, species extirpations, and population 

declines worldwide. For most amphibian populations, we lack demographic data to 

determine if populations are declining, increasing, or stabilizing. I analyzed five-years 

(2010−2014) of post-outbreak capture-mark-recapture data for a population of male 

glass frogs, Espadarana prosoblepon, whose population dynamics were studied from 

2000−2004 directly before the 2004 chytridiomycosis outbreak in El Copé, Panama. I 

developed a novel multi-state Jolly-Seber model that accounts for imperfect host and 

pathogen detection to estimate: monthly pathogen prevalence, population size and 

growth, monthly apparent host survivorship, and recruitment. Between 2010 and 

2014, I captured 202 unique males a total of 426 times. Contrary to our expectations 

that a hyper-virulent novel pathogen would continue to cause negative effects on host 

survivorship 10 years post-outbreak, monthly apparent survivorship post-outbreak 

(~92 − 99%) was nearly identical to survivorship estimates before Bd arrival (~ 92 − 
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94%). Pathogen prevalence ranged between 30 − 90%, while mean infection intensity 

was consistently low, 56.79 ± 27.43 ZGE. During the dry season, as host infection 

intensity increased, host survivorship decreased, supporting the hypothesis that higher 

infection intensity contributes to host mortality. Monthly average E. prosoblepon 

male population size was 111 individuals (95% Credible interval: 97 − 124), which is 

approximately half of this population’s abundance before Bd arrival. Mean population 

growth between sampling occasions varied from 0.92 −1.48. I also found that the per 

capita entry probability, which quantifies the proportion of new animals entering the 

population via immigration or reproduction, was less than half of the pre-decline 

estimate. I conclude that this population has not recovered to pre-decline abundances 

because of a lack of entries into the population and not mortality of adults. I 

hypothesize that high survivorship of hosts coupled with low-level chronic infections 

is best explained by host tolerance to Bd infection and resistance to infection build up. 

My results suggest that wild amphibian populations can adapt via tolerance and 

resistance to Bd presence, but populations may not recover to pre-decline abundances 

if there are insufficient recruits. 

Introduction 

The rapid emergence of a virulent fungal pathogen into naïve ecosystems 

worldwide has decimated amphibian populations (e.g., Lips et al. 2006, Crawford et 

al. 2010, Fisher et al. 2012). Some of these same host populations, however, continue 

to persist in the presence of the pathogen after the outbreak. Ideally, to understand 

how these host populations are affected by pathogen presence, we would compare 

host survival, recruitment rates, and population sizes before and after pathogen 
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invasion; but these data rarely exist because either the pathogen has been present for 

decades (e.g., Murray et al. 2009, Rodriguez et al. 2014) or it is not clear when the 

pathogen will enter a naïve population. So, the most common approach has been to 

compare host survival, recruitment, and population sizes between two populations, 

where one population has the pathogen present and the other population does not 

(e.g., Muths et al. 2011, Tobler et al. 2012). In this circumstance, though, 

confounding site effects and host population histories can bias conclusions and makes 

it unclear how host populations are persisting in the presence of the pathogen.  

There are at least two mechanisms that can help explain how host populations 

are avoiding extirpation when the pathogen establishes. First, the host population can 

offset pathogen-induced abundance declines with increased recruitment, via 

reproduction or immigration (e.g., Lampo et al. 2011, Muths et al. 2011). In this case, 

recruitment rates are high and host survival rates are low, but population size is 

maintained. Alternatively, the host can cope with pathogen infection by tolerating 

and/or resisting infection (e.g., Roy and Kirchner 2000, Woodworth et al. 2005, 

Schneider and Aryes 2008). Host resistance− where the host actively eliminates or 

limits increases in infection intensity through either adaptive or innate immune 

defenses– is measured as the inverse of infection intensity, because more resistant 

hosts should have lower infection intensities. Host tolerance, on the other hand, is the 

ability to persist with an infection by compensating for any tissue damage caused by 

the pathogen; it is measured as how quickly the odds of host survivorship change with 

respect to infection intensity changes. Tolerance is assumed when increases in 

infection intensity do not produce higher rates of mortality. But host tolerance and 
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resistance are influenced by seasonality because weather contributes to shifts in host 

and pathogen biology (Altizer et al. 2006). 

 In the case of the emerging pathogenic fungus Batrachochytrium 

dendrobatidis (Bd), seasonality determines how quickly the pathogen reproduces on 

an infected host (e.g., Longo et al. 2010). Seasonally lower host survivorship can lead 

to population declines by at least one of two mechanisms that are not mutually 

exclusive. First, seasonal weather changes, such as temperature or rainfall, can 

increase or decrease pathogen growth rates on infected individuals. In the instance of 

Bd in the wet tropics, though, infectious Bd zoospores may be mainly affected by 

temperature variations between seasons because, during the drier season, rainfall may 

not be low enough to cause pathogen desiccation. This would be measured as both 

higher host infection intensities and mortality during the cooler season than the hotter 

season. Alternatively, though, seasonal changes in host social behavior, such as 

aggregations or activities, can affect pathogen growth on infected hosts (e.g., Altizer 

et al. 2006, Longo et al. 2010). Less active individuals may be clumping in refugia 

that assist in pathogen growth (Longo et al. 2010), whereas active individuals may be 

able to cope minimize or eliminate pathogen infections more readily by 

thermoregulatory behavior.  

The most basic data requirement to make inferences on host survivorship, 

recruitment, and population size is to identify disease state without error for each 

individual because state assignment errors can bias model estimates (Kendall 2008, 

Kéry and Schaub 2012). In the case of Bd, infected hosts tend to be misidentified 

more often as uninfected host when their infection intensities are low (i.e., false 
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negatives; Lachish et al. 2012, Miller et al. 2012). Low infection intensities are 

especially common post-outbreak, making this type of error especially problematic 

(Briggs et al. 2010). But, when pathogen detection probability is available, we can 

integrate imperfect pathogen detection into the modeling approach by adjusting the 

observation matrix.  

I conducted a capture-mark-recapture study of a population of male 

Espadarana prosoblepon for five years (2010 – 2014) in El Copé, Panama 10 years 

after the 2004 Bd outbreak (Lips et al. 2006). I estimated host survival, recruitment 

rates, population size, and population growth rate in the presence of Bd and 

determined how host infection intensity affects survivorship seasonally. The ability to 

understanding how host populations are maintaining abundance in the presence of 

disease will help reintroduction programs and recovery plans to help boost population 

recovery. 

Methods 

Study Species.— Espadarana prosoblepon is a small, nocturnal, arboreal glass frog 

distributed from Honduras to Ecuador. It inhabits elevations between 20 to 1900 m in 

humid lowland, premontane, and lower montane zones of wet forests and rainforests 

(Savage 2002). Within the last several decades, E. prosoblepon has declined 

throughout its range because of deforestation and chytridiomycosis (Lips et al. 2003, 

Kubicki et al. 2010).  

Male E. prosoblepon establish territories on overhanging stream vegetation 

(Savage 2002) where they call to attract females. Amplectic pairs deposit egg 

clutches onto leaves overhanging the stream. Males are present year-round and often 
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inhabit the same territories year-round (Robertson et al. 2008; McCaffery and Lips, 

2013). Males can live at least five years (McCaffery and Lips, 2013). 

Espadarana prosoblepon is one of the most well studied species in El Copé, 

Panama. In 2004, the arrival of Bd at this site caused population declines and 

extirpations of many species, including E. prosoblepon (Lips et al. 2006, Crawford et 

al. 2010). By the peak of the outbreak, approximately 48% of E. prosoblepon 

individuals were infected and carried average infections of 139 zoospores (Longo et 

al. in prep), and four dead individuals had been found (Tunstall et al. in prep). 

Following the outbreak, E. prosoblepon density declined by ~ 70% at this site (Angeli 

et al. 2014).  

 

Field surveys.— I surveyed four 200-m permanent stream transects in Parque 

Nacional G. D. Omar Torríjos H., El Copé, Coclé Province, Panama (8°39’57’’N, 

80°35’33’’W; 600−900 m) established as part of a long-term amphibian monitoring 

project (Lips et al. 2003; Figure 3.1). The four stream transects, Casacada, Guabal, 

Loop, and Silenciosa, are part of the same drainage network, and all streams are < 5 

m wide and bordered by dense vegetation. These transects were established in 1998 

and were monitored annually from 2000 to 2005. Streams were not monitored in the 

years following the Bd outbreak in 2004, but we resumed surveys in 2010 following 

similar field methodology to the pre-Bd surveys. 

 Between 2010 and 2014, I surveyed each transect either one or two months 

during both or one of the wet and dry seasons: July 2010, July 2011, June 2012, July 

2012, February 2013, March 2013, June 2013, July 2013, and March 2014. These 
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months represent our primary sampling periods. Within each month, I surveyed each 

transect 2–7 times on consecutive nights (mean ± SE: 3.94 ± 0.24; Table A3.1). 

Field teams surveyed transects by slowly walking in the middle of streams and 

capturing amphibians by hand with a fresh pair of latex gloves. Captured individuals 

were sexed, weighed (g), measured (snout-to-vent length; mm), and swabbed. To test 

for Bd infection, I swabbed the ventral skin surface with a sterile cotton tip swab. 

Swabs were stored in a capped 2.5 mL tube with 30 μL of 70% ethanol.  

I double swabbed a subset of all captured individuals, which included other 

species, during the sampling occasions: June 2012, July 2012, February 2013, March 

2013, and March 2014, twice in sequence and labeled samples as “swab1” and 

“swab2”. These replicate swabs were used to calculate imperfect pathogen detection 

(Supplement 3.2).  

Newly captured individuals were given a unique toe clip combination ranging 

between one to four toe clips with no more than one toe clip per limb (McCaffery and 

Lips 2013). I recorded toe clip codes for all recaptured individuals and all individuals 

were immediately released at the point of capture. I only recorded recaptures on the 

last sampling occasion following McCaffery and Lips (2013). Ionly analyzed male 

captures because females were rarely (i.e., < 5% of captures). Females come down 

from the canopy to the stream to breed and may move across the site more frequently 

than males (Savage, 2002).  

 

Molecular Analysis.— I tested all skin swabs collected for the presence of Bd using 

PrepMan Ultra® to extract DNA. I tested swabs for Bd in singlicate using Taqman 
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qPCR (Boyle et al. 2004, Hyatt et al. 2007) running 50 cycles. I ran each plate with 

the Panamanian Bd isolate (JEL 423) standards of 0.1, 1, 10, 100, and 1000 Bd 

zoospore genomic equivalents (ZGE) to determine Bd presence and infection 

intensity. I included negative and positive controls in each qPCR plate to estimate 

rates of false-positives. I categorized individuals as Bd positive if amplification 

occurred before cycle 50 (Briggs et al. 2010). If I captured and swabbed an individual 

more than once within a month, I calculated the individual’s mean infection intensity 

among swabs for the analysis. Approximately 81% of those individuals had zero 

ZGE. If I exclude those individuals, the average difference between zoospore loads 

between the first and last swab collected for a single individual within a month 11.70 

± 8.04 ZGE. I refer to ZGE as infection intensity hereafter.  

 

Statistical Analysis.— I analyzed a five-year (2010-2014) post-outbreak capture-

mark-recapture dataset for male E. prosoblepon collected during wet and dry seasons 

using a multi-state Jolly-Seber model within a hierarchical Bayesian framework 

(Kéry and Schaub 2012). For each disease state (i.e., infected and uninfected), the 

model quantifies: monthly host survivorship, per-capita entry probability, transition 

probabilities between disease states, population size, and population growth rates, 

while accounting for imperfect host and pathogen detection (Figure 3.2).  

The multi-state formulation of the Jolly-Seber model includes both state and 

observation processes to account for imperfect host detection (Kéry and Schaub 

2012). The state process describes the true disease state of an individual where the ith 

state is described as: 1 = not entered, 2 = uninfected, 3 = infected, and 4 = dead, and 



 

 53 

 

assumes that an individual moves between the H disease states over a finite number 

of sampling occasions t = 1, 2, … , n (Figure 3.2). For any given individual, the 

successive disease state is described by a discrete first-order Hidden Markov Model 

(HMM), where the probability of an individual transitioning from disease state j to i 

at time t−1 to t only depends on the true state at time t−1. 

 

Population size 

Using the same modeling approach as McCaffery and Lips 2013, I used a data 

augmentation method to calculate the true population size of male E. prosoblepon 

along the four sampled transects, ��, at time t as �� =  ∑ ��,�	�
� , where ��,� is the 

latent state variable (i.e., the unobserved true state) of the ith host at time t (Kéry and 

Schaub 2012), where  ��,� = 1 if the ith host is alive and present in the population, 

and zero otherwise. I augmented the observed data set Y with a large number of all-

zero capture-histories, resulting in a larger data set of fixed dimension M, where M 

was much greater than N, the true population size, to account for individuals never 

observed but likely present at the site. I estimate population size for June 2011 to July 

2013 because there were few captures June 2010 and no new individuals were 

marked March 2014, precluding us from estimating population size. 

 

Recruitment 

I denote the number of new recruits at t as 
� =  ∑ (1 − ��,���)	�
� ��,�, and I express 

the recruitment process as a per-capita entry probability, f, computed as �� = ���� (Kéry 

and Schaub 2012). This expresses the fraction of new individuals at t per individual 



 

 54 

 

alive at t. The recruitment process consists of both immigration and reproduction, 

which are not distinguishable in our modeling approach.  

 

Survival and disease dynamics 

To estimate monthly survival, colonization, and transition rates using a multi-

state Jolly-Seber model, I used the transition matrix, Ψ, where the rows represent the 

past state at t−1 and the columns represent the state at the current time step, t: 

Ψ��,���,��,�,�,� =

���
���
1 − � ,�	!,� − �",�	!,� � ,�	!,� �",�	!,� 00 Φ ,�,�	!,� (1 − %	!,�) Φ ,�	!,�%	!,� 1 − Φ ,�,�	!,�

0 Φ",�,�	!,� &	!,� Φ",�,�	!,� (1 − &	!,�) 1 − Φ",�,�	!,�0 0 0 1 '((
((). 

 
For ease of presentation, I dropped the third and fourth index of the matrix used in 

model formulation and summarized parameter names and definitions (Table 3.1). 

States in the transition matrix, Ψ, are read from top to bottom and left to right in the 

order: not entered yet, uninfected, infected, dead. The “not entered yet” category 

consists of individuals that are not part of the population but may enter, where the 

parameter γ�,� is the state-specific removal entry probability, the probability that an 

individual in state i enters the population at time t. The parameter Φ� is the state-

specific apparent monthly survival probability for uninfected (i = 2) and infected (i = 

3) hosts from t−1 to t because I cannot distinguish between emigration and death. 

Given that the number of months varied between sampling occasions, I adjusted 

estimates for the cumulative survival across all month between t−1 to t using the 

notation ,�,�. 
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The parameters c and r are the infection and recovery probabilities, 

respectively. Conditional on the jth host’s survival from t−1 to t, a host can become 

infected, if they were uninfected at t−1, or recover from infection, if there were 

infected at time t−1, with probabilities c and r.  I also assume that at most only one 

state transition occurs between sampling occasions. 

For infected individuals, I include the association between survival probability 

(-",�) from time t−1 to t and the jth host’s infection intensity at time t−1 (./0�,���) 

during the wet and dry seasons (123456���) as: 

7589:;-",�,�< =  =� + ?�./0�,���123456���, 

where =�is the y-intercept and ?�is the slope, representing the strength and 

directionality of the relationship.  

 

Imperfect host and pathogen detection 

To estimate monthly host recapture probabilities, I mapped the observation 

process of the four true states, represented by the rows, onto the three observed states, 

the columns (i.e., “seen uninfected”, “seen infected”, and “not seen”), using the 

observation matrix, @: 

@ = A 0 0 1B ,�,� 0 1 − B ,�,�B",�,�2�,� B",�,�(1 − 2�,�) 1 − B",�,�0 0 1 C. 

I modified the traditional observation matrix used in multi-state Jolly-Seber 

models to account for the probability of misclassifying the disease state of the jth host 

at time t, 2�,�, by multiplying the traditional observation matrix by a misclassification 

matrix (Supplement 3.2; Titman and Sharples 2010).  
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I define the probability of misclassifying an individual (2�,�) as 1− the 

probability of detecting the pathogen on the jth host given that it is infected at time t. 

In my specification, host misclassification occurring at t is conditional host detection 

from t−1 to t. I estimated the probability of misclassifying the disease status of an 

individual by fitting a separate hierarchical Bayesian model using the double swab 

samples I collected to calculate pathogen detection probability (D�,�) as a function of 

host infection intensity (./0�,�) following Miller et al. (2012; Supplement 3.3). 

Pathogen detection probability (i.e., probability of correctly identifying an infected 

host when infected) is the complement of misclassification probability (i.e., 

probability of incorrectly identifying an infected host when infected) where:  

2�,� = 1 − 7589:;D�,�<  
7589:;D�,�< =  = + ? ./0�,� 

I also included variation in the state-specific detection probability, B�,�,�, as a 

function of the number of surveys conducted in a given sampling occasion (Table 

A3.1), where: 

7589:;B�,�,�< =  =2� + ?21F&G2H4�,� 

 

State-space model formulation 

Because there are more than two possible true and observed states, parameter 

likelihood is based on the categorical distribution, where the state-space model is: 

��,�,�|��,�,��� =  %3:285&9%37(Ψ��,!,���,�:K,�,� ), 

where ��,�,�is the latent variable state of the jth host at time t. And the observation 

equation linking the true and observed states is: 
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H�,�,�|��,�,� =  %3:285&9%37(@��,!,�,�:",�,�). 

 

Model limitations.— By using a Hidden Markov Model, I assume individuals do not 

develop acquired immunity and that the only information influencing state changes 

are the current states and not an individual’s entire infection history (Cashins et al. 

2013, Ellison et al. 2014, but see McMahon et al. 2014). I also did not include stream 

transect as a covariate, given that it is a well-mixed population (Robertson et al. 2008, 

McCaffery and Lips 2013). 

 Our use of the Jolly-Seber model does not account for the possibility that 

infection could influence the emigration rate rather than the survival rate (Schmidt 

2010), but most individuals move very little over their lifetime and tend to move 

upstream (Robertson et al. 2008), so I attributed the loss of individuals to death rather 

than emigration. 

 

Parameter comparisons.— To test our predictions and assess potential differences 

between parameter estimates of infected and uninfected hosts (i.e., survival and 

recapture probabilities), I compared the posterior distributions of the parameters. I 

investigated whether the parameter values were equal by computing the proportion of 

iterations in the posterior distribution in which one parameter is greater than the other. 

Extreme proportions (i.e., ≥ 0.95) suggest little overlap in posterior distributions, and 

I interpreted it as a 95% probability that the first parameter is significantly higher than 

the second. I considered regression coefficients significant if the 95% credible 

interval did not overlap with zero on the logit scale.  
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To estimate population growth rate, I used the equation: L� = ��M��� , where L� > 

1 suggests population growth, L�< 1 indicates population declines, and L�= 1 suggests 

population stability (Kéry and Schaub 2012). I estimated the population growth rate 

for the population from 2011 to 2013.  

 

Model fit.— I fit the model using Bayesian methods and estimated the posterior 

distributions for all parameters using Markov chain Monte Carlo (MCMC) methods 

implemented in JAGS 4.0.0 in the R environment (R Core Team 2015) using the 

“jagsUI” package (Kellner, 2015). For all parameters, I used vague priors with a 

normal distribution (normal(0, 0.368); Lunn et al. 2000). I ran three chains for each 

parameter, and ran each chain for 20,000 iterations, with a burn-in period of 2,000 

iterations, and thinned by 50. I evaluated convergence of chains by visual inspecting 

trace plots, and using the diagnostics of Gelman, where Rhat < 1.1 (Brooks & 

Gelman 1998). I also assessed model fits using posterior predictive checks (Gelman 

et al. 2004), where a value close to 0.5 indicates adequate model fit. 

 

Results 

Field summary.— I captured 202 individuals 426 times between 2010 and 2014 

(Table 3.2). I captured 143 individuals once, 61 individuals twice, 20 individuals 

three times, 13 individuals four times, 9 individuals five times, 8 individuals eight 

times, and 1 individual seven times. I captured several individuals in 2011 and 2014, 

indicating that individuals live at least four years post-Bd.  
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Approximately 75% of our captures were uninfected (320/426), and all 

infected individuals had low infection intensities (average infection intensity = 2.93 ± 

1.44 ZGE; Figure 3.3). I documented 23 infection events, where an uninfected 

individual became infected, and 26 recovery events, where an infected host lost an 

infection.  

Our multi-state Jolly-Seber model adjusting for misclassification of disease 

state fit the data well (Figure A3.1; Bayesian p-value = 0.61). 

 

Population growth and abundance.— Most population growth rate estimates 

overlapped one or were slightly above one, indicating stable population size (Figure 

3.3 & 3.4). Monthly estimates of the number of infected individuals each month 

ranged between 27 and 94 individuals and that of uninfected individuals was between 

2 – 60 individuals. Monthly mean prevalence ranged between 30 – 99% (Figure 3.4). 

Host infection intensity during the dry seasons ranged was 0.23 to 51.89 ZGE, and 

during the wet season, average monthly infection intensity ranged between 0.13 to 

1988.23 (Table 3.2). 

 

Demographic rates.— During the dry season, infection intensity decreased the 

probability of survival of infected hosts but not during the wet season (95% Credible 

interval: β1wet = -0.81 − -0.03, β1dry = -0.10 – 0.20; Figure 3.6). Average monthly 

survival probability of infected hosts was 93.76% (95% Credible Interval = 89.46 –

96.02%), and 92.10% for uninfected hosts (95% Credible Interval = 88.38 – 94.77%), 

and did not differ significantly (Pr(infected > uninfected) = 0.70). 
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 Monthly infection probability was higher (84.53–99.14%) than monthly 

recovery probability (14.39–76.63%; Pr(infection > recovery) = 1).  

 Between 2011 to 2014, the average monthly per-capita entry probability, 

defined as the proportion of new individuals added to the population per individual 

already present, was 0.06 – 0.34 (Figure 3.6), and the average per-capita entry 

probability across all sampling occasions was 0.21 (95% Credible interval: 0.16 – 

0.26), which is less than half of the average pre-decline estimate (mean: 0.56; 95% 

Credible interval: 0.54 – 0.58; McCaffery and Lips 2013). 

 

Imperfect pathogen and host detection.— For uninfected hosts, capture probabilities 

were similar between wet and dry seasons (Pr(wet > dry)  = 0.90), but capture 

probabilities differed between seasons for infected hosts (Pr(wet > dry)  = 1; Table 

3.3). Capture probability did not differ between infected and uninfected hosts during 

the wet season (Pr(infected > uninfected) = 0.34) but did differ during the dry season 

(Pr(infected > uninfected) = 1). For each additional survey conducted each month, the 

odds of capturing an individual increased by 1.53 (95% Credible interval: 1.22 – 

1.98).  

Discussion 

Male E. prosoblepon survivorship post-outbreak was similar to survivorship 

pre-outbreak (McCaffery and Lips 2013), despite high infection prevalence. Because 

infected hosts with low-level infections and uninfected hosts had similar survival 

rates and most individuals had low-level infections, this suggests that animals are not 

dying from infection. 
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Espadarana prosoblepon may be tolerating mild infections or limiting 

pathogen build-up because either extrinsic conditions during the outbreak amplified 

Bd’s impact or this species has adapted to Bd via tolerance or resistance. During the 

chytridiomycosis outbreak in 2004, high species diversity may have caused pathogen 

amplification (~74 species; Crawford et al. 2010), high host density may have caused 

high host-to-host Bd transmission, and pathogen naivety may have made the 

amphibian immune system inadequate to fight the pathogen. But, today, in the field 

and in the lab, when E. prosoblepon is infected, they maintain low-level infections 

(Tunstall et al. in prep), suggesting adaptation. If E. prosoblepon has managed to 

adapt to Bd infection, it is surprising that their population size is only half of its 

historic size (McCaffrey and Lips 2013). It is possible, however, that the population is 

slowly increasing over time and the length of our study only captured a small 

snapshot. Alternatively, if the population continues increasing and high host density 

caused large population declines, then I expect that the abundance will plateau rather 

than producing a large Bd outbreak.  

The lack of mortality of infected E. prosoplepon may be explained by host 

resistant or tolerance because of a strong innate and/or adaptive immune system that 

can combat Bd growth. Before Bd’s arrival in El Copé in 2004, E. prosoplepon 

produced some of the strongest Bd inhibitory anti-microbial peptides (AMPs) among 

all other species tested (Woodhams et al. 2006). Other innate or acquired immune 

defense against Bd that can aid in tissue repair or immunological defense are 

mutualistic anti-fungal bacteria (e.g., Bell 2012) and MHC expression (Savage and 

Zamudio 2011, Ellison et al. 2014). Neither of which have been characterized for E. 
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prosoplepon. The AMPs that E. prosoplepon produces may not have been enough to 

prevent the large declines during the outbreak because of other extrinsic factors that 

amplified Bd’s impact (e.g., high species diversity and high host density). 

I hypothesize that the primary reason preventing the population from 

rebounding to its pre-decline size is lower recruitment rates and not high mortality of 

infected hosts. Recruitment rates may be lower for one of two reasons. First, before 

Bd arrival, lowland E. prosoplepon may have colonized our upland population 

(Robertson et al. 2008), and if the lowland population declined, then it may lead to 

lower immigration rates. This, however, is unsupported by any of our data, and lower 

population sizes do not necessarily translate to lower immigration rates. Alternatively, 

high pathogen-induced mortality of juveniles might decrease recruitment rates to the 

adult population (e.g., Langhammer et al. 2013, Rachowicz et al. 2006). Because I 

was unable to mark and track other life stages (e.g., larvae, metamorphs, juveniles), I 

cannot separate immigration and reproduction from the recruitment process.  

During the dry season, higher host mortality was explained by higher host 

infection intensities, but not during the wet season, which I hypothesize is a result of 

differences in host activity between seasons. For example, in Puerto Rico during the 

dry season, Eleutherodactylus coqui are less active and clump in humid refugia, 

where the Bd infection intensities of infected hosts rapidly increase (Longo et al. 

2010). In El Copé E. prosoblepon reproduce less, call less, and are more difficult to 

detect during the dry season (Lips pers. obs.), which was reflected in the lower 

detection probability. The difference in host mortality between seasons may be the 

result of differences in habitat use. During the dry season, amphibians are still present 
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at the site, since they are territorial, but I am not finding them. The next steps to 

explaining this pattern would be to collect data on seasonal activity, behavioral 

clumping, and identifying habitat use differences between seasons. 

 

Modeling advances  

I developed a novel Jolly-Seber model that allows us to adjust for imperfect 

pathogen detection. I modified the traditional observation matrix used in Jolly-Seber 

models by accounting for the misclassification probability of disease state 

(Supplement 3.2) and provide code (Supplement 3.3) for future studies. Imperfect 

pathogen detection is a large problem for many host-pathogen systems (e.g., 

Thompson 2007, Lachish et al. 2012, Miller et al. 2012), and, if I had not included 

imperfect pathogen detection, my results would have underestimated pathogen 

prevalence, overestimated mean infection intensity, and introduced bias in both 

infection and recovery probability estimates (e.g., Lachish et al. 2012, Miller et al. 

2012). 

 

Conclusions 

 Ten years after a chytridiomycosis outbreak, evidence suggests that male E. 

prosoblepon populations are stable, at half their historic abundance, and have not 

recovered to pre-Bd population sizes because of lower recruitment rates rather than 

high pathogen-induced mortality. These frogs may be tolerating low-level infections 

and may be resistant to pathogen build up. To understand the evolutionary ecology of 

host defense, the costs to pathogen defense, and defense-cost trade-offs, the next step 
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would be understand how this species is tolerating mild infections and resisting 

pathogen build-up. Conservation biologists trying to preserve amphibian species face 

the big challenge of reducing Bd’s impacts to prevent rapid extinction but not 

compromising the host adaption to the pathogen.  
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FIGURES & TABLES 

 

 
Figure 3.1 Map of study area located in Parque Nacional G. D. Omar Torríjos H., El 

Copé, Coclé Province, Panama. The four surveyed streams are color-coded in the 

embedded map.   

Panama
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Figure 3.2 Diagram of the E. prosoblepon host-pathogen model. The parameters Φ 

(state-specific monthly survivorship), γ (entry probabilities), and c/r (transition 

probabilities) are all estimated using monthly capture-mark-recapture for the jth 

individual the tth season. 
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Figure 3.3 Raw infection intensity time series for 13 E. prosoblepon male individuals. 

Each color represents an individual, where lines connect infection histories. Although 

most infections reach close to zero, there is a ~ 90% chance of missing infections at 

low infection intensities, making it likely that individuals maintain low-level 

infections rather than gaining and losing infections. 
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Figure 3.4 Population growth rate before and after the 2004 Bd outbreak, identified 

by the vertical dashed line. Overlap with one, indicated by the horizontal dashed line, 

suggests consistent population size between sampling occasions, values lower than 

one indicate declining populations, and values greater than one suggest increasing 

population size. Pre-Bd estimates come from McCaffery and Lips (2013). 



 

 69 

 

 

Figure 3.5 Male E. prosoblepon population size before (2001-2003; McCaffery and 

Lips 2013) and after (2011 to 2013) Bd arrival in 2004. Bd arrival is marked by the 

vertical dashed line, and total, uninfected, and infected disease states are indicated by 

colors. Pre-Bd estimates come from McCaffery and Lips (2013).   
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Figure 3.6 Monthly apparent survival probability of infected hosts as it relates to host 

infection intensity during the (A) dry season and (B) wet season.  
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Figure 3.7 The fraction of new individuals entering the population, per capita entry 

probability, before and after the Bd outbreak in 2004, represented by the vertical 

dashed line. The fraction of individuals entering the population, via immigration and 

reproduction, across all post-outbreak years is approximately half the rate it was 

before the Bd outbreak. Pre-Bd estimates come from McCaffery and Lips (2013).
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Table 3.1 Parameter definitions and symbols.  

 

Parameter Symbol Definition 

Apparent 

survival Φi,t Probability that an individual in state i survives from time t-1 to time t 

Capture pi,t Probability that an individual in state i at time t is detected 

Infection c Probability that an uninfected individual time t-1 will become infected time t 

Recovery r Probability that an infected individual time t-1 will become uninfected time t 

Misclassification ej,t Probability that the jth “uninfected” individual at time t is incorrectly classified as uninfected 

   

Per-capita entry 

probability ft The fraction of new individuals at t per individual alive at t  
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Table 3.2 Capture effort and infection intensity summary of individuals captured and marked. Few individuals were partially 

observed, and a majority of individuals were captured not infected. Mean infection1 and mean infection2 provide estimates of average 

host infection intensity without and with including hosts of zero infections, respectively. 

  2010 2011 2012 2013 2014   

 Jul Jul Jun Jul Feb Mar Jun Jul Mar Totals 

Uninfected 10 33 52 23 23 38 60 46 35 320 

Infected 6 11 26 4 16 2 13 14 3 95 

Unknown 1 0 2 0 0 4 1 2 1 11 

           

Total No. of 

individuals 17 44 80 27 39 44 74 62 39 426 

           

Min infection 0.94 0.13 0.20 0.42 0.21 0.23 0.22 0.29 0.22 0.13 

Max infection 1988.23 24.37 612.18 8.05 51.89 0.23 40.06 4.41 1.59 1988.23 

Mean infection1 595.92 5.30 56.12 4.24 5.17 0.42 1.54 0.92 4.52 53.61 

Mean infection2 17.70 0.28 7.88 0.08 0.40 0.01 0.27 0.06 0.01 2.96 
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Table 3.3. Capture probability estimates of infected and uninfected hosts during the 

dry and wet seasons.  

Disease 

status 
Season Mean 95% Credible interval 

Uninfected Dry 0.24 0.01 0.80 

 
Wet 0.03 0.01 0.15 

Infected Dry 0.38 0.28 0.48 

  Wet 0.62 0.52 0.73 
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Chapter IV: MODELING POST-OUTBREAK DISEASE DYNAMICS IN A 

NEOTROPICAL AMPHIBIAN COMMUNITY.  

Coauthors: ELISE ZIPKIN, J. ANDREW ROYLE, ANA V. LONGO, EVAN H. Campbell 

GRANT, KELLY R. ZAMUDIO, & KAREN R. LIPS  

Abstract 

As fungal pathogen outbreaks become more frequent worldwide across taxa, the 

number of host communities that must cope with pathogen persistence also increases. 

This rapid shift from outbreak to post-outbreak disease states of host communities has 

shifted the focus of phenomena from: “what leads to host extinction during a fungal 

outbreak?” to “how are hosts persisting once the pathogen becomes established?.” In 

the case of chytridiomycosis, the disease caused by the amphibian-killing fungus 

Batrachochytrim dendrobatidis (Bd), invasions into naïve populations caused 

amphibian mass mortality, population declines, and species extirpations, but after the 

epidemic, the remaining hosts persist at a new stable state with no obvious signs of 

abundance declines. This pattern can be explained by at least one of three processes: 

(1) increased host mortality is compensated by increased arrival rates, (2) hosts cope 

with infections via tolerance and/or resistance and thereby increase their survivorship, 

or (3) Bd transmission risk− the probability a susceptible host becomes infected− 

varies locally, creating hot- and cold-spots of pathogen transmission and host refugia. 

To determine which of these processes is contributing to amphibian persistence 10 

years after a chytridiomycosis outbreak, I quantified amphibian survival, arrival rates, 

abundance, change in abundance, and infection processes. I conducted 195 surveys 

and made 1,700 amphibian captures over a two-year field study along streams and 
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traits during the wet and dry seasons. Because of sparse data and difficulty in 

recapturing hosts, I developed a novel multi-state disease-structured Dail-Madsen 

model to quantify disease dynamics in a multi-species amphibian community of 

unmarked individuals. I found high Bd prevalence, low infection intensities, and high 

survivorship of uninfected and infected hosts. Contrary to expectations, Bd 

transmission risk did not relate to host density, pathogen prevalence, or infection 

intensity. I conclude that Bd transmission risk is constant across the study site and 

that infected hosts do not suffer from high rates of pathogen-induced mortality, 

indicating that hosts cannot avoid Bd infection but they need to cope with infections 

to persist, challenging any future reintroductions of susceptible species. 

Introduction 

During a multi-host fungal pathogen outbreak, rapid species extinctions and 

population declines lead to depauperate host communities, where a subset of species 

remain at lower densities as the pathogen establishes endemically (e.g., Lips et al. 

2006). As the numbers of multi-host fungal pathogen outbreaks become more 

frequent worldwide− such as white-nose syndrome outbreaks, snake fungal disease 

epidemics, and chytridiomycosis (Fisher et al. 2012)− so have the number of host 

communities persisting with the pathogen post-outbreak. This particular phenomenon 

raises the question of how hosts persist alongside a highly virulent fungal pathogen 

(e.g., Fisher et al. 2012), which would aid in conservation efforts to preserve the hosts 

remaining in these communities and provide baseline information for communities 

where species reintroductions are planned.  
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After a severe disease outbreak, hosts may persist with the pathogen through 

at least one of three possible processes. First, the number of arriving hosts, via 

immigration or reproduction can counterbalance high pathogen-induced mortality of 

infected host. Under this scenario, I expect to see that the number of individuals 

arriving compensates for the number of individuals lost due to infection, such that 

there are no changes in host abundance (e.g., Lampo et al. 2011, Maslo et al. 2015). 

This type of compensation is similar to either source-sink dynamics or the ‘rescue 

effect’, where site colonization prevents host extinction. Alternatively, if the host is 

either resistant or tolerant to the pathogen (Roy and Kirchner 2000), then the health of 

the infected host is no longer significantly affected by infection (e.g., Gonzalez et al. 

2013, Vander Wal et al. 2013). This would be reflected as similar survivorship 

between infected and uninfected hosts. And lastly, if pathogen transmission risk− the 

probability that a susceptible becomes infected− varies locally, then hot- and cold-

spots of pathogen infections and host refugia can act as primary breeding sites (i.e., 

pathogen growth on infected hosts or host reproduction) to promote both pathogen 

and host persistence in spatially separate locations.  

In the case of the amphibian-killing fungal pathogen, Bactrachochytrium 

dendrobatidis (Bd), before invasion, tropical amphibian communities are 

characterized by high abundance and diversity (Crawford et al. 2010), and when Bd 

arrives, we repeatedly observe a rapid rise in pathogen prevalence among hosts and 

high host infection intensity >1,000 ZGE (Longo et al. in prep, Tunstall et al. in 

prep). At high Bd infection intensities, host mortality increases (e.g., Savage and 

Zamudio 2011, Heard et al. 2015, Grogan et al. 2016), and within several months, 
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these amphibian communities are left with a subset of species at lower densities as the 

pathogen establishes (Smith et al. 2009, Crawford et al. 2010, Angeli et al. 2014). To 

identify how hosts are coping with infection and offsetting possible pathogen-induced 

abundance declines, ideally, we would mark hosts and track their survival and 

infection status over time for several species to obtain estimates of survival, arrival, 

and abundance, while correcting for imperfect host detection− the probability of 

detecting an individual given it is present (e.g., capture-mark-recapture analysis). 

However, most of the remaining communities post-outbreak are characterized by a 

few remaining species at such low abundances that require extensive investment of 

time to capture, mark, and recapture enough individuals to generate reliable estimates. 

This makes it increasingly difficult to obtain survival, arrival, and abundance 

estimates.  

This clash between ecological difficulty in tracking individuals (i.e., low 

counts and lots of zeros) and statistical challenges (i.e., inability to estimate 

parameters) was partially reconciled by Royle (2004) when he showed that it was 

possible to estimate population size from temporally repeated counts of organisms 

and to account for imperfect detection without having to uniquely identify 

individuals, commonly referred to as the N-mixture model. The key idea was to view 

site-specific population sizes as independent random variables scattered according to 

a probability distribution (e.g., Poisson) and that populations at each sampling 

location are closed with respect to migration, births, and deaths throughout the study. 

In 2011, Dail and Madsen further generalized the N-mixture model to estimate open 

population abundances, while accounting for imperfect detection. They did this by 
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assuming that the abundance for any site depends only on the abundance the previous 

time step and that the difference between abundances across time is the sum of two 

processes: survival and arrivals. Although these estimates do not technically estimate 

parameter rates the same way of capture-mark-recapture models, both modeling 

approaches estimate related quantities. Zipkin et al. (2014) further proposed that this 

class of model could also accommodate populations structured by age, size, sex, or 

disease, representing a valuable advance in the estimation of population dynamics for 

multistate data from unmarked individuals.  

 To determine which of the three processes listed above are contributing to the 

persistence of the few remaining sparse amphibians following a chytridiomycosis 

outbreak in El Copé, Panama, I created a multi-state disease-structured Dail-Madsen 

model for unmarked individuals that corrects for imperfect host and pathogen 

detection probability to estimate: disease state-specific survivorship, arrival rates, 

detection probability, recovery and infection probabilities, community abundance, 

and the change in abundance across years. I conducted 195 surveys and made 1,700 

amphibian captures over a two-year field study along streams and trails during the 

wet and dry seasons. I hypothesized that amphibian persistence was driven by local 

variation in transmission risk, rather than higher arrival rates or host 

resistance/tolerance. I predicted that areas with higher host density would have higher 

rates of Bd infection because as host density increases, the number of host contacts 

increases and may drive the rise in Bd infections. Spatial variation in host density 

would create host refugia and Bd infection hot- and cold-spots, allowing for host and 

pathogen persistence. Our study provides a new way of understanding population and 
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disease dynamics of rare species in species-rich communities, which are typically 

underrepresented and difficult to study, that help conservation agencies target 

recovery efforts intended to buffer or stop species declines.  

Methods 

Study site.— I sampled four-200 m stream and three-400 m trail transects in Parque 

Nacional G. D. Omar Torríjos Herrera, Coclé Province, El Copé, Panama (8° 40’ N, 

80° 37’ 17’’ W, Lips et al. 2003). The park spans elevations from 500 – 1000 m and 

is located on the continental divide.  

This site experiences both a dry (December to April) and wet (May to 

November) season. I recorded daily minimum/ maximum temperatures and rainfall 

using a min/max thermometer and rain gauge along the continental divide, and I 

recorded hourly temperatures every 60 to 80 meters along each transects using 

ibuttons®.  

The total seasonal rainfall during the wet seasons in 2012 and 2013 was 

259.98 cm and 245.92 cm, respectively, while the 2013 and 2014 dry seasons 

experienced 120.21 cm and 121.46 cm (Table A4.1; Figure A4.1). The average daily 

minimum/maximum temperatures during the 2012 and 2013 wet seasons were 

19.75°C /26.27°C and 19.70°C /28.56°C, respectively, while the 2013 and 2014 dry 

seasons were 19.57°C /23.98°C and 18.57°C /25.14°C (Figure A4.1). Temperatures 

along stream and trail transects were similar within a season, and mean maximum 

daily temperature was higher during the wet season than the dry season (Figure A4.2 

and A4.3). 
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Field surveys.— I surveyed all amphibians along seven pre-established 200 or 400 m 

transects (Lips et al. 2006), and I divided the transects in 20 m adjacent sections 

called “sites” for a total of 40 riparian and 59 terrestrial sites. I assumed that no births, 

deaths, immigration, or emigration occurred within each site within seasons but that 

these factors could change between seasons (MacKenzie and Royle 2005).  

Field teams of two to three people conducted visual encounter surveys by 

slowly walking each transect and using visual and audio cues to locate all amphibians 

within 2 m of the stream bank or trail. I used a fresh pair of latex powder-free gloves 

when handling each individual. To estimate Bd infection status, upon capture, I 

swabbed all individuals following the swabbing technique described by Hyatt et al. 

(2007) using a sterile cotton tipped swab, and I stored the swabs in capped tubes with 

30 μL of 70% ethanol. All individuals were released at the original point of capture. 

 I surveyed each transect six to eight times (1900 hrs to 0100 hrs) over two wet 

and two dry seasons, which constitute our primary sampling periods. Within each 

primary sampling period, I aggregated surveys into two secondary sampling periods 

of 3−4 consecutive nights each. To determine if the site-closure assumption was 

violated between the secondary periods within each primary period, I calculated site-

specific differences in the number of captured infected and uninfected hosts between 

the first and second set of secondary surveys. I found no differences in the number of 

captures for either infected or uninfected hosts (Figure A4.4 & Figure A4.5), 

indicating that the closure assumption was reasonable based on the patterns in our 

observed capture data.  
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Molecular Analysis.— I tested all skin swabs collected for the presence of Bd using 

PrepMan Ultra® to extract DNA. I tested swabs for Bd in singlicate using Taqman 

qPCR (Boyle et al. 2004, Hyatt et al. 2007) running 50 cycles. I ran each plate with 

the Panamanian Bd isolate (JEL 423) standards of 0.1, 1, 10, 100, and 1000 Bd 

zoospore genomic equivalents (ZGE) to determine Bd presence and infection 

intensity. I included negative and positive controls in each qPCR plate to ensure that 

false-positives were negligible. I categorized individuals as Bd-positive if 

amplification occurred before cycle 50 (Briggs et al. 2010). I considered low-level 

zoospore detections on the skin surface (ZGE 0.001−1) as Bd+. I refer to ZGE as 

infection intensity hereafter.  

 

Multi-state disease-structured Dail-Madsen model.— I developed a multi-state 

disease-structured model to estimate survivorship, arrival rates, abundance, changes 

in abundance, transmission risk and recovery, and individual detection probability of 

uninfected and infected hosts (Table 4.1).  

Over 75% of amphibians captures were from four species of two families: 

Espadarana prosoblepon and Sachatamia albomaculata of Family Centrolenidae, 

and Pristimantis cruentus and Pristimantis cerasinus of Family Craugastoridae. I 

collected less than 15 samples for over 65% of species (24 of 37 species; Table 4.1). I 

provide a summary of species-specific estimates of pathogen prevalence and mean 

zoospore load across the entire two-year study (Table 4.1). Because most of these 

species share habitats and likely transmit Bd infections, I pooled all species data into 

the model. This modeling approach assumes that all species have a similar response 
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to Bd infection and transmission risks. By doing so, I lose inference on species-

specific responses and contributions to disease dynamics, such as pathogen 

amplification (e.g., DiRenzo et al. 2014) or dilution (e.g., Searle et al. 2011), but this 

approach better evaluates how the persisting amphibian community copes with 

infection.  

I extended the open N-mixture model (Dail and Madsen 2011) to incorporate 

disease state-structured dynamics following Zipkin et al. (2014). Our interest lies in 

modeling Ni,j,t, the true abundance of each host by disease state i (1 = uninfected, 2 = 

not infected) at site j during each season t. I assume that changes in abundance occur 

monthly through births, deaths, immigration, and emigration.  

 I model initial abundance for uninfected (i = 1) and infected (i = 2) states 

during the first season (t = 1) using a positive discrete distribution: 

��,�,� ~ O594(L�), 

such that the expected abundance L� was the same across all j sites but differed by 

disease state. Although parameter estimates in the model likely vary between stream 

and trails, the low number of individuals detected during sampling did not allow for 

habitat-specific covariates in the model to be identifiable. I provide raw estimates of 

differences between habitats and seasons (Table 4.2). 

I modeled subsequent seasons (t ≥ 2) by considering the number of individuals 

that are gained (Gi) at each site j, the number of individuals that survived (Si) in each 

disease state i, and the number of individuals that transition between disease states 

(Ti). I thus assume that the local abundance at site j follows a Markovian process 

where local abundance at season t and site i is only dependent upon the abundance at 
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all sites during the previous season. The number of uninfected and infected 

individuals that are gained at each site in each season, t ≥ 2, was specified as:  

/�,�,� ~ O594;��,�< 

where �� is the expected number of uninfected (i = 1) and infected (i = 2) individuals 

that arrive between seasons t−1 and t. Note that our model cannot distinguish 

between immigration and reproduction, or between emigration and death.  

To estimate the number of individuals that survive and transition disease 

states monthly, I developed a transition matrix, Ψ, where the rows represent the 

current state (uninfected, infected, and dead) and the columns represent the state at 

the following time step: 

Ψ = AΦ�	!,�(1 − %�	!,�) Φ�	!,�%�	!,� 1 − Φ�	!,�
Φ 	!,�&�	!,� Φ 	!,�(1 − &�	!,�) 1 − Φ 	!,�0 0 1 C. 

The parameter Φ� is the monthly survival probability for uninfected (i = 1) and 

infected (i = 2) individuals with expected state-specific survival from season t−1 to t 

the cumulative survival for all month during that time period (,�,�). The number of 

months between seasons varied, with 7, 3−4, and 7−8 months between the end of 

sampling in season t =1, 2, 3 and the start of sampling in season t+1. I accounted for 

the difference in time between seasons, here and in all subsequent state transitions, by 

assuming that all transitions were constant and equal across each time period by 

including the variable ,�,� as the number of months between seasons t−1 and t at site 

j. The parameters cj and rj are the transmission risk and recovery probabilities, 

respectively, at each site j. With this specification, individuals experience the survival 

probability associated with their disease state from season t−1 to t, and conditional on 
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their survival, individuals can become infected (if they were uninfected at t−1) or 

recover (if they were infected at time t) with probabilities c and r.  Thus, the number 

of individuals that survive (Si) within each disease state i:  

1�,�,� ~ 
96;��,�,���Ψ�,�< 

and the number of individuals that transition between disease state i to ii (Ti(ii),j,t) 

follow: 

P�(��),�,� ~ 
96;��,�,���Ψ�,��< 

where the notation i(ii) represents a transition from state i to ii (e.g., state 1 to 2 or 

state 2 to 1, where 1 = uninfected and 2 = infected). Finally, I assumed that the 

number of individuals gained within each disease state i, site j, and season t (Gi) is 

described by a Poisson process, where: 

/�,�,� ~ O594456;γ�,�<. 

with γ�,�are the state-specific arrival rates each season t.  

To test our hypotheses related to transmission risk, I modeled infection 

probability in relation to: host density (��,�), infection intensity (Q�,�), pathogen 

prevalence (O&2G�,�), and site-specific variation (?�). Each covariate (%5G�,�) was run 

in a separate model, such that:  

7589:(%�) =  =1 +  ?1%5G�,�. 

I derived host density and pathogen prevalence from the model as: ��,� =  ��,�,� +
 � ,�,� and O&2G�,� =  �R,!,��!,� , respectively. I specified site-specific variation in infection 

probability as a random effect: ?�  ~ 65&D37(0, S ). I calculated infection intensity 

(Q�,�) as the sum of the infection intensities of all infected hosts captured at site j 
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during replicate survey k in season t, and then, averaging the total number of 

zoospores across replicate surveys 1:k. Here, I assume that the sum of all host 

infection intensities correlates to the total amount of shed free-living Bd because host 

infection intensity correlates strongly to Bd shedding rates (Reeder et al. 2012, 

DiRenzo et al. 2014). 

The state-specific total abundances for individuals in disease state i at a given 

site j each season t is then determined by: 

��,�,� =  /�,�,� + 1�,�,� − P�(��),�,� + P��(�),�,� 

where the average abundance at a site j is the sum of arrival, survival, transition to the 

disease state, and the loss of individuals transitioning to the other disease state. I 

assume that the transition between disease states occurs monthly with a fixed 

probability.  

 

Imperfect host and pathogen detection.—I consider the observation process consisting 

of two parts− imperfect detection of the host and of the pathogen. First, I model the 

state-specific detection probability at each site j during replicate survey k and season t 

as: 

H�,�,T,� ~ 
96;��,�,�B�,�,�<, 

where H�,�,T,� is the apparent number of individuals in each state after correcting for 

misclassified hosts, and pi,j,t is the state-specific detection probability. I included the 

number of observers (UV4�,�) as a covariate of the state-specific detection probability 

using the logit transformation and specifying: 

 7589:(B�,�,�) =  =2� +  ?2UV4�,� 
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Next, I accounted for pathogen detection probability, specifically incorrectly 

classifying infected hosts as uninfected caused by qPCR error. I modeled the 

observed number of infected individuals (D ,�,T,�)as: 

D ,�,T,� ~ 
96;H ,�,T,�W�,T,�< 

where H ,�,T,� is the apparent number of infected individuals at site j survey replicate k 

and season t, and WX,�is the probability of correctly assigning disease state as a 

function of infection intensity: 

7589:;W�,T,�< =  =3 +  ?3./0�,T,� 

I estimated W�,T,� by averaging the ln(infection intensity + 0.01) of all individuals at 

site j replicate k and season t, and using informative priors, where 

=3 ~ ZF69�(0.25, 1.32) and ?3 ~ ZF69�(0.14, 0.51), following Miller et al. (2012).  

The observed number of uninfected individuals is then the sum of the number 

of misclassified individuals and the true observed uninfected individuals: 

D�,�,T,� = ;H ,�,T,� − D ,�,T,�< +  H�,�,T,�. 

I did not include hosts with partially observed state detections (i.e., found 

alive, but disease state unknown; Conn and Cooch 2009, Zipkin et al. 2015) because I 

could not identify the two latent partially observed variables in the model.  

 

Parameter comparisons.—To determine significant differences between parameter 

estimates of infected and uninfected hosts, I compared the posterior distributions for 

the parameters of interest (Ruiz-Gutierrez et al. 2010). I investigated whether the 

parameter values were equal by computing the proportion of iterations in the posterior 

distribution in which one parameter is greater than the other. Extreme proportions 
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(i.e., ≥ 0.95) suggest little overlap in posterior distributions, and I interpreted it as a 

95% probability that the first parameter is significantly higher than the second. I also 

considered regression coefficients meaningful if the 95% credible interval did not 

overlap with zero on the logit scale.  

To estimate the change in community abundance, I used the equation: L� =
��M��� , where L� > 1 suggests abundance growth, L�< 1 indicates abundance declines, 

and L�= 1 suggests abundance stability (Kéry and Schaub 2012). I estimated the 

change in community and disease state abundance between each season.  

 

Model fit.— I fit my model using Bayesian methods and estimated the posterior 

distributions for all parameters using Markov chain Monte Carlo (MCMC) methods 

implemented in JAGS 4.0.0 in the R environment (R Core Team 2015) using the 

“jagsUI” package (Kellner, 2015). For most parameters, I used vaguely informative 

normal priors (normal(0, 0.368)). I ran three chains for each parameter, and ran each 

chain for 50,000 iterations, with a burn-in period of 10,000 iterations, and thinned by 

50. I evaluated convergence of chains by visual inspecting trace plots, and using the 

diagnostics of Gelman, where Rhat < 1.1 (Brooks & Gelman 1998). I also assessed 

model fits using posterior predictive checks (Gelman et al. 2004), where a value close 

to 0.5 indicates adequate model fit and extreme values close to either 0 or 1 indicate 

poor model fit. 
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Results 

Field summary.— I made 1,700 amphibian captures, of which 1,129 were uninfected, 

366 were infected, and 205 were unknown (Table 4.2). Each season, the total number 

of infected hosts captured ranged between 43−160 (17−28% of captures), while the 

number of uninfected host captures were between 191−410 (71−82% of captures). 

Between zero and seven hosts were caught during a single survey at each 20 m site 

(Table 4.3). Iconducted a total of 45 to 53 surveys per season, with six to eight 

surveys per 20 m site. 

 I captured 37 species, of which 26 species were found in both streams and 

trails, while the other 11 were only found in one habitat. I caught 23−24 species in the 

wet seasons and 25−28 species in the dry seasons, of which 32 species were caught in 

both wet and dry seasons and 5 were only found in one season (Table 4.3; Figure 

A4.6).  

 Infection intensities were uniformly low across species. Average species-level 

infection intensities were less than 100 ZGE for 89% of species (Table 4.1), and 98% 

of individuals had infection intensities less than 100 ZGE (Table 4.2). At the site 

level, average host infection intensity ranged between 82 to 202 ZGE, and pathogen 

prevalence ranged between 62 to 69%, when uncorrected for imperfect pathogen 

detection (Table 4.3).  

 

Multi-state disease-structured Dail-Madsen model.— My model fit the data well 

(Figure A4.7 & A4.8). Apparent monthly survival probability of infected hosts was 

greater than the apparent monthly survival probability of uninfected hosts (Table 4.4; 
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Pr(infected > uninfected) = 0.97), likely because most infected individuals captured 

had infections < 100 ZGE that do not substantially impact host survivorship (e.g., 

Savage and Zamudio 2011, Heard et al. 2015, Grogan et al. 2016). 

 The amphibian site arrival rates (number of frogs season-1) did not differ 

between the infected and uninfected classes during either of the dry to wet season 

transition (Table 4.4; Pr(infected > uninfected) = 0.48), but site arrival rates were 

higher for the infected class than the uninfected class from the dry to wet transition 

(Pr(infected > uninfected) = 0.96). 

Amphibian abundance was higher during the wet season than in the dry 

season (Figure 4.1). From the wet to dry season transition, amphibian abundance fell 

by approximately 100 individuals, suggesting abundance declines between seasons 

(L < 1), whereas community abundance gained those individuals back from the dry to 

wet season (Figure 4.1 & 4.2). Annually, however, amphibian abundance was similar 

between wet 2012 and wet 2013 (L = 1.03; 95% Credible interval: 0.82−1.24) and 

between dry 2013 and dry 2014 (L = 1.05; 95% Credible interval: 0.87−1.22). After 

correcting for imperfect pathogen detection, pathogen prevalence was consistently 

between 50 − 90% among sites (Figure 4.3). 

Host density, pathogen prevalence, and infection intensity did not predict Bd 

infection probability (Supplement 4.1), although these factors varied among sites 

(Figure A4.9). I found little variation in average monthly Bd transmission risk among 

sites, where it was consistently between 16 − 17% when site was included as a 

random effect in the model (Figure 4.4; Table A4.1). Average monthly transmission 
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risk and recovery probabilities did not differ (Table 4.1; Pr(infection > recovery) = 

0.51). 

I found that individual detection probability of uninfected hosts differed 

between seasons (Pr(wet > dry) = 0.96; Table 4.1), but not for infected hosts (Pr(wet 

> dry) = 0.63; Table 4.4). I also found that individual detection probability did not 

differ between infected and uninfected hosts during either the wet or dry seasons 

(Pr(wet infected > wet uninfected) = 0.72; Pr(dry infected > dry uninfected) = 0.94). 

For each every additional person searching on a survey, the odds of detecting an 

amphibian increased by 1.47 (95% Credible interval: 1.17 − 1.85). 

Discussion 

Within 10 years after a chytridiomycosis outbreak in El Copé, Panama, less 

than half of the original amphibian species are persisting at low abundances and 

suffering little to no negative direct impacts on survivorship (Crawford et al. 2010). 

Among adults, Bd prevalence was high, but average infection intensity tended to be 

low. Amphibian abundance did not change annually, and given that host monthly 

survivorship was high and arrival rates reflected seasonal fluctuations, regardless of 

host infection status, it seems unlikely that Bd is causing significant declines in 

abundance or that infected host mortality is compensated by higher arrival rates, 

implying that the persistence of amphibians alongside the fungal pathogen Bd may be 

due to the hosts ability to cope with pathogen infection. 

The low pathogen-induced mortality rates are typical of low-level infections, 

and these are the norm for most species and individuals across habitats and seasons. I 

propose that these hosts are able to limit the build of disease through resistance or 
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they are able to compensate for disease-induced damage through tolerance (Roy and 

Kirchner 2000). During the outbreak, host infection intensities were orders of 

magnitude higher than those reported here, reaching over 100,000 ZGE for some 

species (Longo et al. in prep, Tunstall et al. in prep). The rapid rise and spread of Bd 

throughout this amphibian community could have been the results of naivety to the 

pathogen, high species diversity, and/or high host density. Today, however, ten years 

after the outbreak, species diversity is less than half of the original 74 species 

community (Crawford et al. 2010) and abundance is much lower, making it likely that 

Bd infection of susceptible hosts does not occur as rapidly or repeatedly as it use to. 

Because infection intensity is low, pathogen prevalence is high among hosts, and 

monthly recovery probability is less than 50%, this indicates that hosts are able to 

tolerate low-level infections and prevent the amplification of their infections.  

The high host survival estimates for each disease class, the high pathogen 

prevalence, and low-level infection intensities I report are similar to the estimates for 

the amphibians remaining in the Sierra Nevada of California post-Bd outbreaks 

(Briggs et al. 2010). In the California system, a single species, Rana muscosa, 

dominates the landscape where isolated lakes may create literal zoospore pools where 

amphibians bathe. In contrast, the El Copé system has > 35 species that occupy 

primarily leaf litter and vegetation in forest and riparian habitats where temperatures 

in most habitats are ideal for Bd growth year-round (i.e., 17°−24°C; Piotrowski et al. 

2004). In both cases, amphibians occupy habitats that may promote abiotic 

persistence of Bd in an environmental reservoir. 
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Bd transmission risk did not relate to host density or pathogen prevalence, 

indicating that transmission risk may not entirely operate by direct host-to-host 

contacts. For most infectious diseases, host-to-host contacts are the primary 

mechanism that drives transmission risk (McCallum et al. 2001), but in the Bd 

system, environmental Bd reservoirs, where the pathogen can persist outside of the 

host, may be regulating Bd transmission risk. Given the consistency in Bd 

transmission risk among sites, the Bd environmental reservoir may by uniformly 

distributed across the study area because the cloud forest is consistently cool and 

moist year-round, offering optimal Bd growth (e.g., Piotrowski et al. 2004). Previous 

evidence confirms that Bd can occur outside the host (e.g., Johnson and Speare 2003, 

2005, Mitchell et al. 2008, Chesnut et al. 2015), but I do not know how long or if Bd 

can reproduce outside the host. From our analysis, if Bd only persisted outside of the 

host for short periods of time, then Bd transmission risk should have correlated to 

infection intensity, a quantity directly proportional to Bd shedding rates (e.g., Reeder 

et al. 2012, DiRenzo et al. 2014), but I did not find support for this hypothesis. I also 

did not find support for the hypothesis that Bd transmission risk is correlated with 

host density or pathogen prevalence, which leads us to conclude that the idea of an 

environmental Bd reservoir may persist for longer periods of time or Bd reproduces 

outside of the host. The next steps to understanding Bd environmental reservoirs and 

transmission risk are to collect environmental samples of Bd, test for zoospore 

viability (Maguire et al. 2016), and monitor samples overtime for evidence of 

zoospore reproduction.  
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Seasonal changes in abundance, where wet season abundance was higher than 

dry season abundance, may be attributed to seasonal breeding or behavior changes in 

some amphibian species. First, some species may be entering the site between the dry 

to wet season to reproduce and leave the site between the wet to dry season (Wells, 

2007), which would manifest as seasonal fluctuations in amphibian abundance. 

Unfortunately, since individuals of many Neotropical species are difficult to track, 

especially over long distances, we lack information on the breeding biology of most 

species. Alternatively, individuals may be remaining at the site year-round, but their 

behavior changes seasonally, where they may be seeking refugia (e.g., Longo & 

Burrowes 2010). By doing so, the detection portion of the model must consider host 

availability: i.e., the proportion of time the individual is active and available to be 

detected (e.g., Diefenbach et al. 2007). However, because I found almost all species 

in both wet and dry seasons, I hypothesize that individuals are remaining at the site 

and are not available for detection during the dry season. A priori I did not consider 

host availability and did not collect appropriate data, which would have consisted of 

monitoring individuals and recording the proportion of time they are active, i.e., 

available to be detected.  

 

Modeling limitations 

Our original approach to understanding host persistence following the 

pathogen outbreak was to collect capture-mark-recapture data of eight focal species to 

estimate species-specific estimates of survival, arrival, and abundance for each 

disease class. Because two years of intensive surveys yielded low recapture rates, I 
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was unable to pursue this analysis. Therefore, the modeling approach taken here 

represents a valuable advance towards estimating disease dynamics from unmarked 

individuals when data are sparse and hosts are difficult to detect (e.g., Dail and 

Madsen 2011, Zipkin et al. 2014). Ideally, I would have used a multi-species multi-

state disease-structured open population model, allowing estimates for species-

specific survival, arrival, and abundance for each disease class. Again, the sparse data 

prevented modeling species separately to identify species-specific effects, such as 

pathogen amplification, dilution, or transmission risk. For communities that have 

experienced mass mortality where few hosts remain and capture-mark-recapture is 

impractical and costly, the ability to extract parameter estimates for survival, arrival, 

and abundance from unmarked individuals provides the opportunity to study these 

difficult to monitor persisting hosts.  

 

Conclusions 

Similar to other post-outbreak communities, such as bats affected by white-

nose syndrome (Hoyt et al. 2015), the persisting host community is represented by 

fewer species at lower abundances. During the outbreak, high prevalence and 

infection intensity lead to host extinction and declines, but post-outbreak, high 

prevalence and low infection intensity allow the remaining hosts to persist alongside 

the pathogen. These consistent patterns worldwide bring up new questions on host 

persistence, such as: how long will the persisting hosts remain? Are the populations 

stable or unstable? Will future outbreaks abolish the persisting hosts? And are species 

community composition or host density the key to explaining the differences between 



 

 96 

 

outbreak and post-outbreak disease dynamics? Here, I have taken the first steps to 

understanding the patterns and processes contributing to host persistence after a 

severe multi-host fungal pathogen outbreak. These results, data, and modeling 

approach are of interest to conservation biologists interested in obtaining unbiased 

estimates of amphibian abundance, to epidemiologists dealing with sparse datasets 

and difficult to detect species, and to amphibian reintroduction programs that need to 

evaluate the health of amphibian populations prior to species reintroductions.
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Table 4.1 List of parameters in the model along with definitions and units. Note that apparent survival does not distinguish 

between death and emigration, and arrival rates do not separate births and immigration. 

 

Parameter Name Units Definition 

Si 

Apparent 

survival 

Monthly 

probability (0-1) Apparent monthly survival probability in state i from time t-1 to t 

γi,t Arrival rate 

Number of frogs 

arriving season-1 Seasonal arrival rate from season t-1 to t 

pi,j,t  Detection 

Individual 

probability (0-1) Individual detection probability during survey j at site i in season t 

cj 

Transmission 

risk 

Monthly 

probability (0-1) 

Monthly probability that an individual gains infection from time t-1 to t given it was not 

infected at t-1 

rj Recovery 

Monthly 

probability (0-1) 

Monthly probability that an individual loses infection from time t-1 to t given it was 

infected at t-1 

Ni,j,t Abundance Number of frogs Abundance of amphibians in state i at site j at time t  

λt 

Change in 

abundance 

Seasonal rate of 

increase Change in community abundance from season t-1 to t 
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Table 4.2 Summary of amphibian captures with the number of samples collected, mean zoospore load, number of Bd positive and 

negative swabs, and pathogen prevalence for each species. The majority of samples were collected from four species of two families 

highlighted in bold.  

Genus Species Family 
No. of 

samples 

Mean 

zoospore load 

No. Bd 

positive 

No. Bd 

negative 

Pathogen 

prevalence 

Agalychnis callidryas Hylidae 1 0.00 0 1 0.00 

Bolitaglossa schizodactyla Plethodontidae 16 106.78 4 10 0.25 

Centrolene sp. Centrolenidae 1 0.59 1 0 1.00 

Chaunus marinus Bufonidae 6 0.00 0 5 0.00 

Cochorenella eukenemos Centrolenidae 6 0.12 1 5 0.17 

Craugastor bransfordi Craugastoridae 1 0.00 0 1 0.00 

Craugastor crassidigitus Craugastoridae 25 5.41 3 21 0.12 

Craugastor fitzingeri Craugastoridae 11 3.70 4 6 0.36 

Craugastor mask Craugastoridae 1 0.00 0 1 0.00 

Craugastor sp. Craugastoridae 3 0.48 1 0 0.33 

Diasporus “orange” 
Eleutherodactylida

e 
55 66.28 11 33 0.20 

Diasporus “peep” 
Eleutherodactylida

e 
19 14.56 3 13 0.16 

Diasporus sp. 
Eleutherodactylida

e 
17 0.25 1 9 0.06 

Diasporus “tock” 
Eleutherodactylida

e 
10 1.63 3 6 0.30 

Espadarana prosoblepon Centrolenidae 729 6.64 133 537 0.18 

Hyalinobatrachium colymbiphyllum Centrolenidae 31 15.14 3 24 0.10 

Hyalinobatrachium sp. Centrolenidae 1 0.00 0 1 0.00 
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Hyalinobatrachium vireovittatum Centrolenidae 5 -- 0 0 -- 

Hyloscurtis colymba Hylidae 4 555.75 3 0 0.75 

Hyloscurtis palmeri Hylidae 13 76.87 6 6 0.46 

Lithobates warszewitschii Ranidae 1 6.35 1 0 1.00 

Oedipina sp. Plethodontidae 2 0.00 0 2 0.00 

Pristimantis caryophyllaceus Craugastoridae 6 4.20 2 4 0.33 

Pristimantis cerasinus Craugastoridae 227 49.56 63 145 0.28 

Pristimantis cruentus Craugastoridae 188 176.13 51 123 0.27 

Pristimantis educatoris Craugastoridae 1 0.00 0 1 0.00 

Pristimantis museosus Craugastoridae 10 776.94 5 5 0.50 

Pristimantis pardalis Craugastoridae 43 1.70 13 28 0.30 

Pristimantis ridens Craugastoridae 9 0.49 2 5 0.22 

Pristimantis sp. Craugastoridae 65 102.92 7 11 0.11 

Pristimantis talamancae Craugastoridae 1 0.00 0 1 0.00 

Rhaebo haematiticus Bufonidae 13 0.45 3 6 0.23 

Sachatamia albomaculata Centrolenidae 155 89.74 39 98 0.25 

Sachatamia ilex Centrolenidae 15 0.17 2 13 0.13 

Silverstoneia sp. Dendrobatidae 2 0.22 1 1 0.50 

Smilisca phaeota Hylidae 1 0.00 0 1 0.00 

Smilisca silia Hylidae 6 0.00 0 6 0.00 

        
  Total   1700 57.31 366 1129 0.32 
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Table 4.3 Summary of field samples. For each habitat and season-year, I include host density, pathogen prevalence, host 

infection intensity, and microclimate minimum, maximum, mean, and standard error.  

 

No. of host per 20 m site 

Pathogen 

prevalence Host infection intensity Microclimate 

Habitat Min Max Mean SE Mean SE Min Max Mean SE Min Max Mean SE 

Trail 0.00 6.00 1.23 0.06 0.65 0.02 0.00 8738.79 69.46 38.49 18.51 24.06 21.08 0.23 

Stream 0.00 7.00 2.33 0.11 0.68 0.01 0.00 19107.08 188.48 121.19 18.64 24.15 21.14 0.27 

No. of host per 20 m site 

Pathogen 

prevalence Host infection intensity Microclimate 

Season Min Max Mean SE Mean SE Min Max Mean SE Min Max Mean SE 

Wet 2012 0.00 7.00 2.33 0.15 0.69 0.02 0.00 1733.40 82.09 26.70 19.04 23.84 21.36 0.25 

Dry 2013 0.00 3.00 1.16 0.09 0.62 0.04 0.00 1839.62 26.30 19.83 18.64 22.54 20.50 0.24 

Wet 2013 0.00 7.00 1.79 0.14 0.66 0.03 0.00 8738.79 158.92 92.43 19.07 24.15 21.62 0.25 

Dry 2014 0.00 6.00 1.42 0.11 0.69 0.03 0.00 19107.08 202.88 193.09 19.30 22.68 21.00 0.35 
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Table 4.4 Summary of model output. Monthly survival, detection, recovery, and 

transmission risk of infected and uninfected hosts. Site arrival rates are reported as the 

number of frogs per season. For parameter units and definitions, see Table 1. 

  Mean 
Standard 

deviation 

95% Credible 

interval 

Uninfected host         

Apparent 

survival 
0.90 0.02 0.86 0.95 

Arrival rate  

wet to dry 
0.07 0.07 0.01 0.21 

Arrival rate  

dry to wet 
0.83 0.21 0.43 1.24 

Detection  

Dry 
0.07 0.02 0.03 0.12 

Detection  

Wet 
0.12 0.02 0.08 0.17 

     
Infected 

host 
        

Apparent 

survival 
0.95 0.01 0.92 0.97 

Arrival rate  

wet to dry 
0.08 0.09 0.01 0.28 

Arrival rate  

dry to wet 
1.53 0.35 0.87 2.22 

Detection  

Dry 
0.13 0.02 0.08 0.19 

Detection  

Wet 
0.14 0.02 0.1 0.19 

     
Infection 

dynamics 
        

Recovery 0.16 0.12 0.01 0.43 

Transmission  

risk 
0.16 0.13 0.01 0.47 

Between site  

variation 
0.44 0.45 0.00 1.39 
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Figure 4.1 Amphibian abundance by disease class across the two-year study during 

each season. Abundance was lower during the dry season than the wet season, but 

pathogen prevalence was consistently between 50−90%, regardless of season. 
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Figure 4.2 Change in abundance over the two-year study by disease class. Abundance 

decreased from wet to dry season transitions but showed signs of increasing from the 

dry to wet season transitions. 
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Figure 4.3 Model output of predicted pathogen prevalence each season at each site. 

Each point represents a 20-m site. Size and color of points indicate the average 

pathogen prevalence. Habitat type is color coded by blue (stream) and green (trails).  
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Figure 4.4 Model output of average Bd transmission risk among 20-m sites. Each 

point represents a 20-m site. Size and color of points represents the average infection 

probability. Habitat type is color coded by blue (stream) and green (trails).  
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Chapter V: SYNTHESIS 

 

In this dissertation, I answered several unresolved questions (Chapter I) and 

provided new analytical tools to estimate host survival, recruitment, and abundance 

populations using both marked and unmarked individuals, using a Neotropical 

amphibian community as an example. Herein, I provide a synthesis of the chapters, 

expanding how they fit together and in a larger scientific context. 

 

I. Adults and tadpole community declines 

 Previous studies have documented the decline of the amphibian adult 

community in El Copé, Panama (e.g., Lips et al. 2006, Crawford et al. 2010). Here, I 

document the loss of the larval stages of those species (Chapter I), showing that 

tadpole declines were much more rapid, severe, and long lasting than the adult 

declines. The decline of tadpoles was more severe because of both direct and indirect 

effects. Indirectly, tadpole abundance declined because of the loss of adults to 

disease, which would reduce larval abundance. Directly, tadpoles can also be affected 

by Bd infection, and although mortality was not observed, infection does affect 

feeding and likely causes sublethal effects, such as reduced body fitness. It is likely 

that tadpoles persist at the site at extremely low abundances because adults still 

persist, but this does not take away from the large discrepancy in declines between 

adults and tadpoles. These results also corroborate the explanation for the lack of 

Espadarana prosoblepon abundance recovery, which I hypothesize, is caused by the 

lack of recruits and not pathogen-induced mortality (Chapter II).  
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Within 10 years of the Bd outbreak in El Copé, Panama, it is also clear that 

neither adults (Chapter II & IV) nor tadpoles (Chapter I) have recovered to pre-Bd 

abundance estimates. It is unclear if a full recovery is even possible. In Chapter IV, I 

found that individuals in El Copé are infected at low infection intensities and that 

infected hosts have high survivorship, therefore it seems as though the lack of 

recovery is occurring somewhere in-between the egg to the adult stage. To better 

understand where the population size bottleneck is occurring, the next steps would be 

to track number of egg clutches, quantify egg clutch size, and monitor hatching and 

metamorphosis success. With this information, initiating reintroduction programs 

could help aid in population recovery. 

 

II. How are amphibians persisting where Bd is present? 

 From this dissertation, we now know that amphibians in at least one site in the 

Neotropics can persist in the presence of Bd at stable abundances over time and that 

they do not show signs of a slow drift to extinction, which before was unclear 

(Chapters III & IV). Our analyses and data suggest that adult amphibians are no 

longer suffering high mortality rates from Bd infections (Chapters III & IV). 

Therefore, the next steps to determine how adults are surviving would be to 

disentangle between host adaptation via tolerance/resistance to pathogen infection 

and decreases in pathogen virulence.  

Currently, there are efforts to quantify host adaptive immune responses (i.e., 

quantifying MHC expression) using amphibian samples in museums and the field 

before, during, and after Bd outbreak. This research will elucidate evolutionary 
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mechanisms of amphibians to Bd infection. Specifically, examining if MHC diversity 

correlates with species survival. This type of information would help predict the 

potential for evolutionary resistance or tolerance in other wild populations.  

Alternatively, it is possible that Bd virulence has decreased since the outbreak, 

but there is mixed evidence from laboratory cultures showing both pathogen 

virulence attenuation and amplification over time (Langhammer et al. 2013, Voyles et 

al. 2014). Interestingly, Brem et al. (2013) showed that Bd virulence can increase 

when it is transmitted among frogs in the laboratory. Fortunately, during the Bd 

outbreak in El Copé, several samples of the pathogen were collected from dying 

amphibians and cryopreserved. Therefore, if I collect a sample of Bd today in El 

Copé, Panama from a dying individual, I could compare the virulence between the 

two isolates, providing insights to if Bd virulence has changed over time in this 

population. 

 

III. Advances to statistical models 

The multi-state disease-structured model presented in Chapter IV enables the 

estimation of survivorship, recruitment, and population size for unmarked infected 

and uninfected individuals, while accounting for imperfect host and pathogen 

detection. The data required for this modeling approach is typical of any long-term 

monitoring program where individual are not marked, such as data routinely collected 

by individual researchers of the United States Geological Survey (USGS). This 

analysis provides them with the opportunity to extract critical information, such as 

survivorship, recruitment, and population size over time, without the extra effort or 
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costs of intensive capture-mark-recapture studies. These new methods also allow non-

profit organizations and government agencies to gather data on more species for less 

money with statistically robust conclusions that have the potential to increase their 

success rates on species conservation and biodiversity.  

 

IV. What are other species-specific patterns of Bd infection and survival post-

outbreak? 

My goal here is to place the patterns I documented for E. prosoblepon 

infection and survivorship (Chapter III) in a larger context, posing the question: 

“what are other species-specific patterns of Bd infection and survival post-outbreak?” 

I recognize that there is not enough data or published studies to create a complete 

diagram on all post-outbreak species responses, but I synthesize what I know so far. I 

only include amphibian-Bd capture-mark-recapture studies that report infected and 

uninfected host survivorship, and infection and recovery probabilities; and, I 

distinguished three general host-pathogen post-outbreak patterns: where infected 

hosts carry seasonal, acute, or chronic Bd infections. Throughout, this section, I relate 

how the combination of species infection patterns and their survivorship may 

translate to species Bd tolerance or resistance.  

First, Bd infections were characterized by seasonal fluctuations in Bd infection 

probability and host survivorship that may be driven by fluctuations in temperature, 

precipitation, host density, or breeding behavior differences between seasons. The 

Australian frog Litoria rheocola falls into this category, where it experiences seasonal 

Bd infections, with higher infection probabilities during the cooler winter months 
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when pathogen growth is favored (Sapford et al. 2015, Grogan et al. 2016). As 

infection probability peaks, host survivorship drops to its lowest. Interestingly, 

though, this species also has high Bd recovery rates, where the host clears or loses 

their infections rapidly, suggesting that there may be host resistance or that high 

temperatures help the host clear their infection. Therefore, it seems as though the 

combination of seasonal infection fluctuations, high Bd recovery, and low host 

density may be preventing severe pathogen outbreaks for this species in Australia. 

Next, the host-pathogen post-outbreak pattern I identified was characterized 

by acute Bd infections and high host mortality, likely a result of sustained Bd 

virulence despite more than 30 years of host-pathogen co-occurrence (Murray et al. 

2009). Here, infected cascade treefrogs, Litoria pearsoniana, in Australia rapidly gain 

and lose Bd infections year-round, and infected hosts experience a 38% decrease in 

survivorship if they maintain infection. Because individuals do not sustain infections 

through time, there is little evidence that these hosts are tolerant, but because 

individuals do repeatedly lose their infections, this suggests at least some host 

resistance or use of hotter microhabitats to clear infections. The host-pathogen 

interactions at this site resembles outbreak dynamics, where Bd causes high rates of 

host mortality, more than typical post-outbreak dynamics, given that there is still high 

pathogen-induced mortality rates despite more than 30 years of host-pathogen co-

occurrence.  

And finally, the third Bd-amphibian pattern I characterized was chronic low-

level Bd host infections, likely a result of host tolerance and resistance, decreased 

pathogen virulence, or the prevention of pathogen-build up in hot, dry environments. 
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These amphibians may have strong innate and/or acquired immune defenses that 

include: anti-fungal bacteria (e.g., Bell et al. 2013, Belden et al. 2015), anti-microbial 

peptides (e.g., Woodhams et al. 2006), and MHC gene expression (e.g., Savage and 

Zamudio 2011, Ellison et al. 2014, Savage and Zamudio 2016). Both Rana muscosa 

(Briggs et al. 2010) and Espadarana prospoblepon fall into this category. For both of 

these species, Bd prevalence among hosts is consistently high and adults do not suffer 

pathogen-induced mortality, likely because infection intensities are low or pathogen 

virulence has decreased since the outbreak. From a conservation perspective, ideally, 

after an outbreak, most Bd-amphibian interactions would fall into this category, 

where the host and pathogen can co-occur without substantial negative impacts on 

host population persistence. 

 

V. Conservation implications 

Nearly one-third (32%) of the world’s amphibian species are known to be 

threatened or extinct, 43% are not threatened, and 25% have insufficient data to 

determine their threat status (2008 IUCN Red List of Threatened Species). As many 

as 159 amphibian species may already be extinct, where at least 38 species are known 

to be extinct, one is extinct in the wild, and the other 120 species have not been found 

in recent years and are possibly extinct. At least 42% of all species have declining 

populations, suggesting that the number of threatened species is expected to rise. In 

contrast, less than one percent of species show population increases. The largest 

numbers of threatened species occur in the Neotropics, especially in Colombia (214), 

Mexico (211), and Ecuador (171).  
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Governments and conservation organizations use estimates of population 

abundance provided by scientists to inform their decisions. In a world where Bd is 

widespread, though, amphibian population estimates are even more difficult to obtain 

for many Neotropical species or communities, creating the problem where the limited 

resources we have are not necessarily going to the species or communities that need 

them the most. Therefore, having robust estimates of population size helps identify 

the most at-risk species, prioritize conservation actions, and design management 

strategies for the recovery of wild amphibian populations. Our current species 

conservation approach does not necessarily align with providing resources to areas 

that need it the most (e.g., McClananhan and Rankin 2016). I provide new analytical 

tools to help deal with evaluating the impacts of Bd on amphibian adults and tadpoles 

at other locations that are plagued by low counts and difficult to recapture amphibians 

(Chapter IV). And for the first time, I provide a data on the responses of two life 

stages for the El Copé amphibian community following Bd invasion, and I describe 

how adults are persisting alongside a hyper-virulent pathogen. 
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Appendices 
 

Figure A2.1 Bayesian posterior predictive check, where I compare our data set and 

simulated data sets to expected values. The average difference between our data set 

and the simulated data set to expected values should be close to 0.5, indicating that 

the model fits well. Extreme differences between our data set and the simulated data 

set to the expected values (i.e., 0.05 or 0.95) indicate poor model fit.   

 

Figure A2.2 Summary results from the simulation model used to determine the 

number of sites to sample and the number of times to survey a site. As root mean 

squared error increases (y-axis), parameter precision estimates decrease. I vary 

species rarity (occupancy probability = 0.1 to 0.9) and detectability (detection 

probability = 0.1 to 0.9), and determine the number of surveys (thick lines) to conduct 

per site, when a different number of sites are sampled (x-axis, range: 5 – 50).  

 

Figure A3.1 Depiction of the Bayesian posterior predictive check (i.e., Bayesian p-

value) for the multi-state Jolly-Seber model, where values near 0.5 represent the 

model fits the data well and extreme values (i.e., 0.05 or 0.95) is poor model fit. Tobs 

is the Freeman-Tukey test statistic from the observed data, while Trep is Freeman-

Tukey test statistic from the replicated dataset. 
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Figure A4.1 Difference in the number of observed individuals infected between the 

second and first aggregated sampling occasions within a season. Panels A, B, C, and 

D represent the four seasons I sampled individuals.  

 

Figure A4.1 Weather patterns at the site from a weather station located along the 

continental divide. Black bars represent total rainfall (cm) on the left y-axis, while the 

red (maximum daily temperature) and blue (minimum daily temperature) lines 

correspond to the daily extreme temperature on the right y-axis. 

 

Figure A4.2 Summary of daily minimum (blue) and maximum (red) habitat 

temperatures along each stream transect each season surveyed.  

 

Figure A4.3 Summary of daily minimum (blue) and maximum (red) habitat 

temperatures along each trail transect each season surveyed. 

 

Figure A4.4 Difference in the number of observed individuals uninfected between the 

second and first aggregated sampling occasions within a season. Panels A, B, C, and 

D represent the four seasons I sampled individuals.  

 

Figure A4.5 Difference in the number of observed individuals infected between the 

second and first aggregated sampling occasions within a season. Panels A, B, C, and 

D represent the four seasons I sampled individuals.  
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Figure A4.6 Community composition differences between (A) seasons and (B) 

habitats. There were very few differences in seasonal community composition, 

suggested by the large overlap in ellipses, while streams and trails shared few 

common species. NMDS stress was 0.17. Ellipses represent 95% confidence intervals 

around the centroid. Points represent community assemblage per transect in each 

season each year.  

 

Figure A4.7 Bayesian posterior predictive check for the (A) infected and (B) 

uninfected models, where values near 0.5 suggest good model fit. Extreme values 

(i.e., ≤ 0.05 or ≥ 0.95) suggest poor model fit to data. 

 

Figure A4.8 Bayesian posterior predictive check for the infected model during (A) 

wet 2012, (B) dry 2013, (C) wet 2013, and (D) dry 2014.  

 

Figure A4.9 Host density, pathogen prevalence, and infection intensity variation 

between wet (o) and dry (+) seasons for each 20 m site. Host density and pathogen 

prevalence estimates are from the model output, while pathogen density- the sum of 

host infection intensity at each 20 m site- was calculated from the raw data. 
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Figure A2.1
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Figure A2.2 
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Figure A3.1   
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WET DRY WET DRY

0

25

50

75

2012-07 2013-01 2013-07 2014-01
Date (Year-Mo)

T
o
ta

l 
ra

in
fa

ll 
(c

m
)

WET DRY WET DRY

15

20

25

30

35

2012-07 2013-01 2013-07 2014-01
Date (Year-Mo)

T
e

m
p

e
ra

tu
re

 (
C

)



 

 120 

 

 

Figure A4.2  
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Figure A4.3
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Figure A4.4  
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Figure A4.5
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Figure A4.6  
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Figure A4.7  
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Figure A4.8  
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Figure A4.9  
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APPENDIX TABLES 

Table A2.1 Summary of months and years that streams were sampled. The adjacent 

stream is a stream section located between Guabal and Silenciosa. Monthly sampling 

of microhabitats occurred for the first two years, and annually thereafter, excluding 

2012 and 2013. 

Month year Guabal Silenciosa Cascada Loop 
Adjacent 

stream 

June 2003 - August 2004 X X X X  

September 2004 Bd arrives X X X X  

October 2004 - August 2005 X X X X  

July 2006     X 

July 2007     X 

August 2008     X 

August 2009 X     

March/April 2010 X     

February 2011 X     

March 2014 X X  X   
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Table A2.2. Summary of the percent occurrence of species in each microhabitat for sampling seasons 2003-2004 and 2004-2005. n equals the total number of 

samples collected. The number in parentheses represents the raw number of samples the species occurred in. September 2004 was not included in the table. NA 

indicated no samples taken. --- indicates no individuals found. 

  June 2003 - August 2004 October 2004 - August 2005 

Genus species Microhabitat Wet (n = 248) Dry (n = 172) Total (n = 420) Wet (n = 224) Dry (n = 156) Total (n = 380) 

Atelopus varius Leaf Pack --- --- --- --- --- --- 

 Isolated Pool --- --- --- --- --- --- 

 Riffle --- --- --- --- --- --- 

 Pool --- 100(2) 100(2) NA NA NA 

Silverstoneia flotator Leaf Pack 27.52(1) --- 14.73(1) --- --- --- 

 Isolated Pool 66.7(46) 70.86(37) 68.63(83) 100(10) 96.53(22) 97.56(32) 

 Riffle 0.18(2) 4.00(6) 1.95(8) --- 3.47(1) 2.44(1) 

 Pool 5.6(12) 25.14(4) 14.68(16) NA NA NA 

Colostethus panamensis Leaf Pack 16.55(1) 74.06(6) 61.75(7) --- --- --- 

 Isolated Pool 63.26(21) 15.95(19) 26.07(40) 100(2) 100(1) 100(3) 

 Riffle --- --- --- --- --- --- 

 Pool 20.19(9) 9.99(4) 12.17(13) NA NA NA 

Silverstoneia nubicola Leaf Pack --- --- --- --- --- --- 

 Isolated Pool 70.9(12) 56.81(11) 63.95(23) 100(5) 100(4) 100(9) 
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 Riffle --- 17.48(4) 8.62(4) --- --- --- 

 Pool 29.1(12) 25.71(5) 27.43(17) NA NA NA 

Allobates talamancae  Leaf Pack --- --- --- --- --- --- 

 Isolated Pool --- --- --- --- 100(1) 100(1) 

 Riffle --- --- --- --- --- --- 

 Pool --- --- --- NA NA NA 

Colostethus spp. Leaf Pack --- --- --- --- --- --- 

 Isolated Pool 100(1) --- 100(1) --- --- --- 

 Riffle --- --- --- --- --- --- 

 Pool --- --- --- NA NA NA 

Hyloscirtus colymba Leaf Pack 72.95(2) 92.33(9) 89.74(11) --- 86.48(2) 39.56(2) 

 Isolated Pool 8.19(12) 2.99(18) 3.68(30) 99.79(15) 9.14(14) 58.32(29) 

 Riffle 2.49(12) 1.06(9) 1.25(21) 0.21(1) 4.38(3) 2.12(4) 

 Pool 16.37(12) 3.62(6) 5.33(18) NA NA NA 

Hyloscirtus palmeri Leaf Pack 48.56(2) --- 37.45(2) --- 88.95(1) 79.54(1) 

 Isolated Pool 40.84(7) 9.7(5) 33.71(12) 92.8(5) 1.99(2) 11.6(7) 

 Riffle 0.89(6) 27.53(9) 6.99(15) 7.2(1) 9.06(3) 8.87(4) 

 Pool 9.7(13) 62.77(5) 21.85(18) NA NA NA 

Lithobates warszewitschii Leaf Pack --- --- --- --- --- --- 

 Isolated Pool 26(3) --- 0.49(3) --- 100(2) 100(2) 
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 Riffle --- 0.04(1) 0.04(1) --- --- --- 

 Pool 74(6) 99.96(2) 99.48(8) NA NA NA 

Espadarana prosoblepon Leaf Pack --- 99.68(8) 99.53(8) --- --- --- 

 Isolated Pool 100(1) 0.32(2) 0.47(3) --- --- --- 

 Riffle --- --- --- --- --- --- 

 Pool --- --- --- NA NA NA 

Sachatamia 

albomaculata Leaf Pack --- 99.82(1) 99.82(1) --- --- --- 

 Isolated Pool --- 0.18(1) 0.18(1) --- --- --- 

 Riffle --- --- --- --- --- --- 

 Pool --- --- --- NA NA NA 

Sachatamia ilex Leaf Pack --- --- --- --- --- --- 

 Isolated Pool 100(1) --- 100(1) --- --- --- 

 Riffle --- --- --- --- --- --- 

 Pool --- --- --- NA NA NA 

Hyalinobatrachium 

colymbiphyllum  Leaf Pack 100(1) 99.66(3) 99.7(4) --- --- --- 

 Isolated Pool --- 0.34(1) 0.3(1) 100(1) --- 100(1) 

 Riffle --- --- --- --- --- --- 

 Pool --- --- --- NA NA NA 
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Teratohyla spinosa Leaf Pack --- --- --- --- --- --- 

 Isolated Pool 100(1) --- 100(1) --- --- --- 

 Riffle --- --- --- --- --- --- 

 Pool --- --- --- NA NA NA 

Centrolene spp Leaf Pack 98.89(1) 99.53(2) 99.19(3) --- --- --- 

 Isolated Pool 1.11(2) 0.47(1) 0.81(3) --- --- --- 

 Riffle --- --- --- --- --- --- 

 Pool --- --- --- NA NA NA 
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Table A2.3 Summary of tadpole detection probabilities in microhabitats from 

occupancy model.  

Microhabitat Mean Median SD Lower Upper 

IsoPool + LeafPack 0.41 0.41 0.02 0.36 0.47 

Riffle 0.13 0.13 0.03 0.08 0.20 
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Table A2.4 Summary of AICc, differences in AICc (dAICc) scores, and model 

weights for macro-evolutionary model of species vulnerability to Bd, quantified using 

last Julian Day a species was last observed at the site. The Brownian model was the 

model of best fit, indicating a phylogenetic signal to the order of species losses. 

Model name AICc dAICc 

Model 

weights 

Brownian 149.48 0 0.71 

OU 152.77 3.28 0.13 

Lambda 153.25 3.76 0.10 

White noise 155.31 5.83 0.03 
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Table A2.5 Summary of logistic regression results next to summary of occupancy model results. In general, the logistic regression 

results were less than the occupancy model results. 

    Logistic Occupancy 

Species Year Microhabitat Season Mean Lower Upper Mean Lower Upper 

Hyalinobatrachium colymbiphyllum  Pre Isolated pool Dry 0.05 0.01 0.11 0.1 0.02 0.20 

Lithobates warszewitschii Pre Isolated pool Dry 0.05 0.01 0.11 0.11 0.02 0.22 

Espadarana prosoblepon Pre Isolated pool Dry 0.08 0.02 0.15 0.15 0.04 0.29 

Hyloscirtus palmeri Pre Isolated pool Dry 0.13 0.05 0.21 0.25 0.11 0.41 

Silverstoneia nubicola Pre Isolated pool Dry 0.25 0.14 0.37 0.46 0.26 0.65 

Hyloscirtus colymba Pre Isolated pool Dry 0.36 0.24 0.49 0.65 0.48 0.82 

Colostethus panamensis Pre Isolated pool Dry 0.41 0.28 0.54 0.66 0.48 0.83 

Silverstoneia flotator Pre Isolated pool Dry 0.65 0.53 0.78 0.9 0.81 0.97 

Lithobates warszewitschii Pre Leaf pack Dry 0.01 0 0.03 0.02 0 0.06 

Silverstoneia nubicola Pre Leaf pack Dry 0.02 0 0.04 0.03 0 0.09 

Hyloscirtus palmeri Pre Leaf pack Dry 0.04 0 0.09 0.09 0.01 0.2 

Silverstoneia flotator Pre Leaf pack Dry 0.04 0 0.1 0.09 0.01 0.21 

Hyalinobatrachium colymbiphyllum  Pre Leaf pack Dry 0.06 0.01 0.13 0.13 0.01 0.29 

Colostethus panamensis Pre Leaf pack Dry 0.17 0.06 0.3 0.33 0.11 0.57 

Espadarana prosoblepon Pre Leaf pack Dry 0.17 0.06 0.3 0.37 0.12 0.62 

Hyloscirtus colymba Pre Leaf pack Dry 0.24 0.11 0.38 0.46 0.21 0.73 

Hyalinobatrachium colymbiphyllum  Pre Riffle Dry 0.01 0 0.03 0.04 0 0.12 

Espadarana prosoblepon Pre Riffle Dry 0.01 0 0.03 0.05 0 0.16 

Lithobates warszewitschii Pre Riffle Dry 0.02 0 0.04 0.07 0 0.21 

Colostethus panamensis Pre Riffle Dry 0.02 0 0.05 0.09 0 0.27 
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Silverstoneia nubicola Pre Riffle Dry 0.06 0.01 0.13 0.28 0.04 0.58 

Silverstoneia flotator Pre Riffle Dry 0.13 0.04 0.22 0.56 0.23 0.91 

Hyloscirtus palmeri Pre Riffle Dry 0.18 0.08 0.29 0.67 0.37 0.96 

Hyloscirtus colymba Pre Riffle Dry 0.22 0.11 0.34 0.9 0.72 1 

Hyalinobatrachium colymbiphyllum  Pre Isolated pool Wet 0.01 0 0.03 0.02 0 0.06 

Espadarana prosoblepon Pre Isolated pool Wet 0.01 0 0.03 0.02 0 0.06 

Lithobates warszewitschii Pre Isolated pool Wet 0.03 0 0.07 0.06 0.01 0.14 

Hyloscirtus palmeri Pre Isolated pool Wet 0.1 0.04 0.17 0.21 0.07 0.36 

Silverstoneia nubicola Pre Isolated pool Wet 0.17 0.08 0.27 0.36 0.16 0.57 

Hyloscirtus colymba Pre Isolated pool Wet 0.2 0.11 0.31 0.4 0.2 0.62 

Colostethus panamensis Pre Isolated pool Wet 0.32 0.2 0.44 0.64 0.43 0.86 

Silverstoneia flotator Pre Isolated pool Wet 0.63 0.5 0.76 0.91 0.81 0.99 

Lithobates warszewitschii Pre Leaf pack Wet 0 0 0.01 0.01 0 0.03 

Silverstoneia nubicola Pre Leaf pack Wet 0 0 0.02 0.01 0 0.04 

Espadarana prosoblepon Pre Leaf pack Wet 0.01 0 0.03 0.02 0 0.06 

Hyalinobatrachium colymbiphyllum  Pre Leaf pack Wet 0.01 0 0.04 0.03 0 0.08 

Silverstoneia flotator Pre Leaf pack Wet 0.02 0 0.06 0.04 0 0.11 

Colostethus panamensis Pre Leaf pack Wet 0.03 0 0.07 0.07 0 0.17 

Hyloscirtus palmeri Pre Leaf pack Wet 0.03 0 0.07 0.07 0 0.17 

Hyloscirtus colymba Pre Leaf pack Wet 0.04 0 0.09 0.08 0.01 0.18 

Hyalinobatrachium colymbiphyllum  Pre Riffle Wet 0 0 0.01 0.01 0 0.04 

Espadarana prosoblepon Pre Riffle Wet 0 0 0.01 0.01 0 0.04 

Lithobates warszewitschii Pre Riffle Wet 0 0 0.02 0.02 0 0.09 

Colostethus panamensis Pre Riffle Wet 0.01 0 0.02 0.04 0 0.13 

Silverstoneia nubicola Pre Riffle Wet 0.01 0 0.03 0.05 0 0.17 

Silverstoneia flotator Pre Riffle Wet 0.04 0 0.09 0.24 0.01 0.58 
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Hyloscirtus palmeri Pre Riffle Wet 0.11 0.04 0.2 0.55 0.21 0.95 

Hyloscirtus colymba Pre Riffle Wet 0.17 0.07 0.27 0.79 0.49 1 

Hyalinobatrachium colymbiphyllum  Post Isolated pool Dry 0.01 0 0.03 0.02 0 0.06 

Lithobates warszewitschii Post Isolated pool Dry 0.02 0 0.06 0.05 0 0.13 

Espadarana prosoblepon Post Isolated pool Dry 0.01 0 0.03 0.02 0 0.06 

Hyloscirtus palmeri Post Isolated pool Dry 0.05 0.01 0.11 0.12 0.02 0.24 

Silverstoneia nubicola Post Isolated pool Dry 0.08 0.02 0.15 0.17 0.04 0.32 

Hyloscirtus colymba Post Isolated pool Dry 0.25 0.14 0.38 0.08 0.01 0.19 

Colostethus panamensis Post Isolated pool Dry 0.04 0 0.1 0.53 0.29 0.78 

Silverstoneia flotator Post Isolated pool Dry 0.42 0.27 0.57 0.78 0.58 0.96 

Lithobates warszewitschii Post Leaf pack Dry 0 0 0.01 0.01 0 0.03 

Silverstoneia nubicola Post Leaf pack Dry 0 0 0.01 0.01 0 0.02 

Hyloscirtus palmeri Post Leaf pack Dry 0.02 0 0.05 0.01 0 0.05 

Silverstoneia flotator Post Leaf pack Dry 0.01 0 0.03 0.04 0 0.1 

Hyalinobatrachium colymbiphyllum  Post Leaf pack Dry 0.01 0 0.02 0.01 0 0.04 

Colostethus panamensis Post Leaf pack Dry 0.01 0 0.02 0.01 0 0.04 

Espadarana prosoblepon Post Leaf pack Dry 0.02 0 0.05 0.04 0 0.11 

Hyloscirtus colymba Post Leaf pack Dry 0.07 0.01 0.14 0.13 0.02 0.29 

Hyalinobatrachium colymbiphyllum  Post Riffle Dry 0 0 0.01 0.01 0 0.04 

Espadarana prosoblepon Post Riffle Dry 0 0 0.01 0.01 0 0.04 

Lithobates warszewitschii Post Riffle Dry 0 0 0.02 0.02 0 0.1 

Colostethus panamensis Post Riffle Dry 0 0 0.01 0.01 0 0.03 

Silverstoneia nubicola Post Riffle Dry 0.01 0 0.02 0.05 0 0.17 

Silverstoneia flotator Post Riffle Dry 0.02 0 0.06 0.19 0 0.55 

Hyloscirtus palmeri Post Riffle Dry 0.06 0.01 0.12 0.46 0.08 0.91 

Hyloscirtus colymba Post Riffle Dry 0.06 0.01 0.13 0.61 0.2 1 
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Hyalinobatrachium colymbiphyllum  Post Isolated pool Wet 0.01 0 0.02 0 0 0.01 

Espadarana prosoblepon Post Isolated pool Wet 0 0 0.01 0.01 0 0.04 

Lithobates warszewitschii Post Isolated pool Wet 0 0 0.02 0.01 0 0.03 

Hyloscirtus palmeri Post Isolated pool Wet 0.07 0.02 0.13 0.14 0.03 0.27 

Silverstoneia nubicola Post Isolated pool Wet 0.07 0.02 0.13 0.15 0.03 0.29 

Hyloscirtus colymba Post Isolated pool Wet 0.22 0.12 0.33 0.45 0.24 0.68 

Colostethus panamensis Post Isolated pool Wet 0.06 0.01 0.11 0.12 0.02 0.24 

Silverstoneia flotator Post Isolated pool Wet 0.19 0.1 0.29 0.44 0.19 0.69 

Lithobates warszewitschii Post Leaf pack Wet 0 0 0 0 0 0.01 

Silverstoneia nubicola Post Leaf pack Wet 0 0 0.01 0 0 0.01 

Espadarana prosoblepon Post Leaf pack Wet 0 0 0 0 0 0.01 

Hyalinobatrachium colymbiphyllum  Post Leaf pack Wet 0 0 0.01 0 0 0.02 

Silverstoneia flotator Post Leaf pack Wet 0 0 0.01 0 0 0.01 

Colostethus panamensis Post Leaf pack Wet 0 0 0.01 0 0 0.02 

Hyloscirtus palmeri Post Leaf pack Wet 0.01 0 0.04 0.03 0 0.08 

Hyloscirtus colymba Post Leaf pack Wet 0.01 0 0.02 0.01 0 0.04 

Hyalinobatrachium colymbiphyllum  Post Riffle Wet 0 0 0 0 0 0.01 

Espadarana prosoblepon Post Riffle Wet 0 0 0 0.01 0 0.03 

Lithobates warszewitschii Post Riffle Wet 0 0 0 0 0 0.02 

Colostethus panamensis Post Riffle Wet 0 0 0.01 0.01 0 0.03 

Silverstoneia nubicola Post Riffle Wet 0 0 0.01 0.01 0 0.05 

Silverstoneia flotator Post Riffle Wet 0 0 0.01 0.01 0 0.05 

Hyloscirtus palmeri Post Riffle Wet 0.05 0.01 0.11 0.42 0.07 0.91 

Hyloscirtus colymba Post Riffle Wet 0.02 0 0.06 0.26 0 0.79 
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Table A2.6 Summary of simulation results for species that vary in occupancy and detection probability. The first and 

second numbers represent the recommended number of sites and number of repeated surveys per site to conduct if 0.1 is 

the desired root mean squared error of estimates. Bold values represent number of sites, while the value directly below the 

bold number represents the number of surveys per site.

  Occupancy Probability 

  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

 0.1 145 45 5 5 85 85 45 65 65 

  9 1 1 1 3 3 5 9 9 

 0.2 45 45 25 5 65 5 25 25 25 

  9 9 1 1 9 7 7 5 9 

Detection 

Probability 

0.3 25 25 25 25 25 25 25 25 25 

 9 7 7 1 1 7 9 5 5 

0.4 25 25 25 25 5 25 25 25 25 

  7 7 7 1 1 1 3 3 3 

 0.5 25 25 25 25 25 25 25 25 25 

  5 7 5 1 1 1 5 3 3 

 0.6 25 25 25 25 25 5 25 25 25 

  5 5 3 3 1 1 1 3 3 

 0.7 25 25 25 25 25 25 5 25 25 

  5 3 3 3 3 1 1 1 3 

 0.8 25 25 25 25 25 5 5 25 25 

  3 3 3 3 3 1 1 1 1 

 0.9 25 25 25 25 25 25 5 5 25 

    3 3 3 3 3 3 1 1 1 
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Table A3.1 Number of surveys per month in each stream.  

 

Stream Year Month Surveys 

Cascada 2010 Jul 2 

Cascada 2011 Jul 4 

Cascada 2012 Jun 6 

Cascada 2012 Jul 2 

Cascada 2013 Feb 5 

Cascada 2013 Mar 2 

Cascada 2013 Jun 4 

Cascada 2013 Jul 3 

Cascada 2014 Mar 7 

Guabal 2010 Jul 3 

Guabal 2011 Jul 4 

Guabal 2012 Jun 6 

Guabal 2012 Jul 2 

Guabal 2013 Feb 3 

Guabal 2013 Mar 4 

Guabal 2013 Jun 3 

Guabal 2013 Jul 4 

Guabal 2014 Mar 7 

Loop 2010 Jul 4 

Loop 2011 Jul 4 

Loop 2012 Jun 6 

Loop 2012 Jul 2 

Loop 2013 Feb 6 

Loop 2013 Jun 4 

Loop 2013 Jul 3 

Loop 2014 Feb 3 

Loop 2014 Mar 5 

Silenciosa 2010 Jul 3 

Silenciosa 2011 Jul 4 

Silenciosa 2012 Jun 5 

Silenciosa 2012 Jul 2 

Silenciosa 2013 Feb 3 

Silenciosa 2013 Mar 4 

Silenciosa 2013 Jun 3 

Silenciosa 2013 Jul 4 

Silenciosa 2014 Mar 7 
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Table A4.1 Random effect summary for between site variations in Bd transmission 

risk.  

Transect Meter Mean 
Standard 

deviation 
95% Credible interval 

Cascada 0 -0.04 0.63 -1.54 1.28 

Cascada 100 -0.04 0.60 -1.33 1.20 

Cascada 120 -0.03 0.60 -1.36 1.27 

Cascada 140 0.01 0.62 -1.20 1.46 

Cascada 160 0.02 0.67 -1.31 1.48 

Cascada 180 0.00 0.63 -1.58 1.24 

Cascada 20 -0.04 0.61 -1.38 1.15 

Cascada 40 -0.04 0.56 -1.33 1.11 

Cascada 60 -0.02 0.59 -1.32 1.17 

Cascada 80 0.01 0.64 -1.32 1.44 

Guabal 0 -0.03 0.60 -1.27 1.25 

Guabal 100 -0.01 0.62 -1.41 1.34 

Guabal 120 -0.02 0.62 -1.18 1.30 

Guabal 140 0.00 0.58 -1.20 1.37 

Guabal 160 -0.02 0.59 -1.29 1.28 

Guabal 180 0.00 0.61 -1.52 1.19 

Guabal 20 0.01 0.62 -1.37 1.32 

Guabal 40 0.01 0.63 -1.53 1.28 

Guabal 60 -0.02 0.64 -1.45 1.34 

Guabal 80 -0.01 0.61 -1.47 1.21 

LoopStream 0 0.01 0.65 -1.44 1.34 

LoopStream 100 -0.01 0.63 -1.48 1.23 

LoopStream 120 0.01 0.63 -1.27 1.41 

LoopStream 140 0.00 0.62 -1.36 1.36 

LoopStream 160 -0.01 0.64 -1.18 1.56 

LoopStream 180 -0.02 0.59 -1.45 1.21 

LoopStream 20 -0.01 0.63 -1.49 1.32 

LoopStream 40 -0.01 0.62 -1.34 1.44 

LoopStream 60 0.00 0.59 -1.30 1.38 

LoopStream 80 -0.01 0.61 -1.39 1.35 

LoopTrail 0 0.00 0.64 -1.40 1.41 

LoopTrail 100 -0.01 0.61 -1.35 1.36 

LoopTrail 120 0.02 0.65 -1.36 1.46 

LoopTrail 140 0.00 0.64 -1.28 1.42 

LoopTrail 160 0.01 0.61 -1.18 1.45 

LoopTrail 180 -0.01 0.62 -1.28 1.43 

LoopTrail 20 0.01 0.64 -1.48 1.21 
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LoopTrail 200 -0.01 0.64 -1.48 1.24 

LoopTrail 220 0.02 0.64 -1.21 1.47 

LoopTrail 240 0.01 0.63 -1.34 1.42 

LoopTrail 260 -0.02 0.67 -1.36 1.54 

LoopTrail 280 0.02 0.62 -1.22 1.44 

LoopTrail 300 0.01 0.64 -1.30 1.46 

LoopTrail 320 -0.02 0.64 -1.32 1.52 

LoopTrail 340 0.01 0.64 -1.36 1.40 

LoopTrail 360 0.01 0.68 -1.36 1.52 

LoopTrail 40 0.00 0.66 -1.31 1.46 

LoopTrail 60 0.01 0.66 -1.46 1.30 

LoopTrail 80 -0.02 0.60 -1.26 1.37 

MainTrail 0 0.02 0.63 -1.41 1.42 

MainTrail 100 -0.01 0.69 -1.47 1.37 

MainTrail 120 -0.01 0.68 -1.59 1.30 

MainTrail 140 0.01 0.66 -1.30 1.40 

MainTrail 160 0.00 0.62 -1.16 1.52 

MainTrail 180 -0.01 0.66 -1.47 1.35 

MainTrail 20 0.02 0.63 -1.25 1.64 

MainTrail 200 0.02 0.63 -1.25 1.52 

MainTrail 220 0.01 0.65 -1.37 1.55 

MainTrail 240 0.02 0.65 -1.26 1.46 

MainTrail 260 0.01 0.59 -1.18 1.37 

MainTrail 280 0.00 0.68 -1.32 1.53 

MainTrail 300 0.03 0.64 -1.49 1.30 

MainTrail 320 -0.01 0.62 -1.53 1.18 

MainTrail 340 -0.02 0.60 -1.41 1.13 

MainTrail 360 -0.01 0.62 -1.35 1.29 

MainTrail 380 0.00 0.65 -1.34 1.33 

MainTrail 40 0.01 0.63 -1.28 1.49 

MainTrail 60 -0.02 0.63 -1.46 1.20 

MainTrail 80 0.02 0.60 -1.20 1.41 

Silenciosa 0 0.00 0.63 -1.29 1.35 

Silenciosa 100 -0.02 0.61 -1.41 1.28 

Silenciosa 120 -0.02 0.61 -1.31 1.22 

Silenciosa 140 -0.01 0.62 -1.50 1.26 

Silenciosa 160 -0.02 0.63 -1.55 1.06 

Silenciosa 180 -0.02 0.65 -1.51 1.26 

Silenciosa 20 0.01 0.66 -1.42 1.32 

Silenciosa 40 0.02 0.64 -1.34 1.33 

Silenciosa 60 0.03 0.62 -1.23 1.23 

Silenciosa 80 0.02 0.64 -1.25 1.47 

Verrugosa 0 -0.03 0.64 -1.38 1.50 
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Verrugosa 100 0.00 0.63 -1.31 1.38 

Verrugosa 120 -0.02 0.62 -1.34 1.40 

Verrugosa 140 -0.01 0.64 -1.60 1.26 

Verrugosa 160 0.02 0.63 -1.31 1.45 

Verrugosa 180 -0.01 0.58 -1.24 1.30 

Verrugosa 20 -0.02 0.60 -1.26 1.52 

Verrugosa 200 -0.01 0.64 -1.40 1.30 

Verrugosa 220 0.00 0.63 -1.57 1.27 

Verrugosa 240 -0.02 0.64 -1.32 1.49 

Verrugosa 260 -0.02 0.63 -1.36 1.42 

Verrugosa 280 -0.01 0.64 -1.41 1.27 

Verrugosa 300 0.00 0.61 -1.34 1.23 

Verrugosa 320 0.00 0.66 -1.40 1.32 

Verrugosa 340 -0.01 0.63 -1.38 1.34 

Verrugosa 360 0.03 0.63 -1.38 1.38 

Verrugosa 380 -0.01 0.69 -1.38 1.61 

Verrugosa 40 -0.02 0.62 -1.25 1.39 

Verrugosa 60 0.00 0.63 -1.39 1.30 

Verrugosa 80 -0.01 0.62 -1.26 1.35 
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Supplement 

SUPPLEMENT 2.1 

STATISTICAL ANALYSIS 

Optimizing species detection and sampling schemes 

 
# Define function to simulate data  
 
data.fn <- function(R = h, T = n, 
                    psi = g, 
                    p = f){ 
   
  # Create empty data frames 
  y <- array(NA, dim = c(R, T))   
   
  z <- rbinom(R, 1, psi) 
   
  prob <- z * p   
   
  for(j in 1:T){ 
     
    y[,j] <- rbinom(R, 1, prob) 
     
  } 
   
  return(list(R = R, T = T, 
              psi = psi, p = p, 
              z = z, y = y)) 
} 
 
# Define model in BUGS language 
 
sink("model.txt") 
cat(" 
model{ 
 
# Priors 
 
psi ~ dunif(0,1) 
p ~ dunif(0,1) 
 
# Ecological model for the true abundance  
  
for(i in 1:R){      
 
  z[i] ~ dbern(psi)            
 
}  
                
# Obervational model 
 
for(i in 1:R){ 
 
 for(j in 1:T){   
   
   p.eff[i,j] <- z[i] * p       
   
   y[i,j] ~ dbern(p.eff[i,j])    # Detection 
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    y.new[i,j] ~ dbern(p.eff[i,j])  # Simulated data    
  
  } #js          
   
} #is 
 
} 
", fill = TRUE) 
sink() 
 
# Monitor Parameters 
params <- c("psi", "p") 
 
# MCMC settings 
ni <- 10000 
nt <- 10 
nb <- 100 
nc <- 3 
 
# Create vectors with parameters for simulated data 
Tpsi <- seq(from = 0.1, to = 1, by = 0.1) 
   
Tp <-  seq(from = 0.1, to = 1, by = 0.1) 
 
sit <- seq(from = 5, to = 200, by = 20) 
 
surv <- seq(from = 1, to = 10, by = 2) 
 
 
nsheet <- length(Tpsi) * length(Tp) * length(sit) * length(surv) 
nrow <- 25 
ncol <- 8 
 
# Create empty matrix to store data 
store <- array(NA, dim = c(nrow, ncol, nsheet)) 
 
colnames(store) <- c("True_psi", "True_p", "Nsurveys", "Nsites", 
"Psi_Mean", "SD", "ylo", "yhi") 
 
Nsheet <- 1 
 
 
for(g in Tpsi){     # Psi    
 
 for(f in Tp){    # p      
 
  for(h in sit){   # site  
 
  for(n in surv){   # Number of surveys  (4)  
 
        for(q in 1:25){  # number of simulated data sets 
 
# Simulate the data 
sodata <- data.fn(R = h, T = n, 
                  psi = g, 
                  p = f)  
 
# Bundle the data 
win.data <- list(y = sodata$y, R = nrow(sodata$y), T = 
ncol(sodata$y)) 
 
# Create initial values 
zst <- apply(win.data$y, 1, max, na.rm = T)  
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inits <- function() {list(z = zst)} 
 
# Run the model 
output2 <- run.jags(data = win.data,  inits = inits, monitor = 
params, burnin = nb, model = "model.txt", sample = ni, n.chains = 
nc, method = "parallel") 
 
 # Save the output 
 
 store[q, 1, Nsheet] <- sodata$psi 
 
 store[q, 2, Nsheet] <- sodata$p 
 
 store[q, 3, Nsheet] <- sodata$T 
 
 store[q, 4, Nsheet] <- sodata$R 
 
 store[q, c(5,6,7,8), Nsheet] <- c(output2$summaries[1,4], 
output2$summaries[1,5], output2$summaries[1,1], 
output2$summaries[1,3]) 
 
    }     
Nsheet <- Nsheet + 1  
   } 
  } 
 } 
} 
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SUPPLEMENT 3.1 

To correct for misclassification of individual disease state, I multiplied the traditional 

host observation matrix (d) used to correct for host detection probability by a 

misclassification matrix (g) used to adjust for imperfect pathogen detection 

probability on the host, where: 

 

Z = A 0 0 1B ,�,� 0 1 − B ,�,�0 B",�,� 1 − B",�,�0 0 1 C  

 8 = ] 1 0 02�,�^� (1 − 2�,�^�) 00 0 1_ 
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SUPPLEMENT 3.2 

Methods 

 I double swabbed a subset of all individuals captured in streams, including 

other species, twice in sequence and labeled samples as “swab1” and “swab2” (Table 

S1). By including all species in the analysis, I am assuming that pathogen detection 

probability does not vary by species identification, and that pathogen detection 

heterogeneity is only attributed to the number of zoospores a host carries. 

These replicate swabs were used to estimate imperfect pathogen detection that was 

used in the multi-state Jolly-Seber model. 

 I tried to run this analysis with only the double swabs collected for E. 

prosoblepon, but there were not enough samples to calculate imperfect pathogen 

detection, where credible intervals were very large. I double swabbed 70 E. 

prosoblepon. Of the 70 double swabs, 21 individuals tested Bd positive at least once, 

with 17 individuals testing positive once and four individuals testing positive twice.  

 

Statistical analysis 

First, I modeled Bd prevalence (ψ) as the proportion of individuals that are 

infected. The probability that the ith individual is infected is a Bernoulli random 

variable where: 

VV ~ VVVV(VV). 

I included season and habitat covariates in the prevalence model, where I expected 

that the proportion of individuals infected differ between seasons and habitat, such 

that: 
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VVVVV(VV) =  V1 +  V1VVVV + V2VVVVVVV. 

I modeled pathogen detection probability on the ith infected host on the jth 

swab sample as: 

VV,V|VV~ VVVV;VV,V<, 

so that pathogen detection probability is Bernoulli distributed with probability if the 

individual is infected, , and zero if it is not. I included the relationship between 

detection probability and infection intensity of the ith host (modeled below) as:   

VVVVV;VV,V< =  V2 +  V3VV. 

 Next, I considered host infection intensity. If the ith individual is infected 

(VV= 1), then the log-transformed infection intensity (VV) is a random sample from a 

normal distribution with mean VV, and standard deviation, V: 

VV| VV~ VVVVVV(VV, V). 

I allowed the average infection intensity of the ith infected host to vary by season and 

habitat: 

VV = V3 +  V4VVVV + V5VVVVVVV. 
I also accounted for measurement error in host infection intensity, where multiple 

swabs of the same individual can give different estimates of infection intensity. I 

assumed that infection intensity measurement error of the jth sample on the ith host is 

a draw from a normal distribution with error, V: 

VV~ VVVVVV(VV, V). 

 

Model fit 
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I fit our model using Bayesian methods and estimated the posterior 

distributions for all parameters using Markov chain Monte Carlo (MCMC) methods 

implemented in JAGS 4.0.0 in the R environment (R Core Team 2015) using the 

“jagsUI” package (Kellner, 2015). I log transformed the data. For all parameters, 

Iused non-informative normal priors (i.e., normal(0, 0.368); Lunn et al. 2000). I ran 

three chains for each parameter and ran each chain for 50,000 iterations, with a burn-

in period of 10,000 iterations, and thinned by 50. I evaluated convergence of chains 

by visual inspecting trace plots, and using the diagnostics of Gelman, where Rhat < 

1.1 (Brooks & Gelman 1998). I also assessed model fits using posterior predictive 

checks (Gelman et al. 2004), where a value close to 0.5 indicates adequate model fit. 
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Results 

 I swabbed 434 individuals from 23 species (Table S1). I collected 148 and 286 

in streams during the dry season and during the two wet seasons. I double swabbed 99 

individuals during the entire study, with 53 during the dry and 46 during the two wet 

seasons. Of the 99 double swabbed individuals, a total of 34 individuals tested 

positive at least once, with 26 testing positive once, and 8 were positive twice, where 

qPCR was > 0 ZGE. Our data fit the detection-adjusted models well (Fig S1). 

Pathogen detection probability increased as individual infection intensity 

increased (Fig. S2). Detection probability reached ~99.99% around 54 ZGE.  
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Table S1 Summary of species included in the imperfect pathogen detection analysis 

and the number of samples collected for each. All of these species are primarily 

riparian.  

Genus Species 
No. of 

samples 

Boltiglossa schizodactyla 2 

Centrolene sp. 2 

Craugastor sp. 2 

Diasporus "orange" 2 

Espadarana prosoblepon 261 

Hyalinobatrachium colymbiphyllum 18 

Hyalinobatrachium vireovittatum 1 

Hyloscirtus colymba 2 

Hyloscirtus palmeri 4 

Oedipina sp. 1 

Pristimantis cerasinus 4 

Pristimantis cruentus 17 

Pristimantis museosus 7 

Pristimantis pardalis 1 

Pristimantis ridens 2 

Pristimantis sp. 3 

Rhaebo haematiticus 2 

Sachatamia albomaculata 55 

Sachatamia ilex 7 

Silverstoneia sp. 29 

Silverstoneia flotator 8 

Smilisca silia 2 

Smilisca sp. 2 

   
  Total 434 
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Table S2 Summary of the posterior distributions from the model. All parameters were 

back transformed to their original scale, except detection probability on the logit 

scale. Bold values are the ones I used in the multi-state Jolly-Seber model. 

  Mean 95% Credible interval 

Infection intensity 

(ZGE)    

Dry 0.77 0.23 0.97 

Wet 0.56 0.1 0.95 

Stream 0.8 0.28 0.97 

Standard deviation 16.25 4.57 43.2 

Prevalence 
   (Infected/Total) 

Dry 0.65 0 1887 

Wet 1.39 0 3663 

Stream 0.33 0 16.03 

Measurement error 
   

Error 4.55 2.82 9.52 

Detection 

probability (logit)    

Alpha -0.37 -1.26 0.42 

Beta 0.89 0.34 1.41 

 

  



 

 154 

 

 

Figure S1 Bayesian posterior predictive check, where I compare our data set and 

simulated data sets to expected values. The average difference between our data set 

and the simulated data set to expected values should be close to 0.5, indicating that 

the model fits well. Extreme differences between our data set and the simulated data 

set to the expected values (i.e., 0.05 or 0.95) indicate poor model fit.   
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Figure S2 The relationship between pathogen detection probability and individual 

infection intensity on the natural log scale caused by swabbing error. The dark line is 

the mean posterior distribution estimates, and light gray lines represent model 

iterations. 
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SUPPLEMENT 3.3 

Code to analyze a multi-state Jolly-Seber model with imperfect host and pathogen 

detection in JAGS. 

#------------- Analysis of the model 
 
sink("CJS.txt") 
cat(" 
model{ 
 
# Priors and constraints 
 
for(t in 1:(n.occasions-1)){ 
     
    gamma1[t] ~ dunif(0, 1)  
    gamma2[t] ~ dunif(0, 1) 
     
} 
     
alpha_A1 ~ dnorm(0, 0.368) 
alpha_A2 ~ dnorm(0, 0.368) 
 
alpha_AB ~ dnorm(0, 0.368) 
alpha_BA ~ dnorm(0, 0.368) 
 
beta_p ~ dnorm(0, 0.368) 
 
for(m in 1:2){ 
 
  alpha_muB[m] ~ dnorm(0, 0.368) 
  alpha_muA[m] ~ dnorm(0, 0.368) 
 
  beta_A[m] ~ dnorm(0, 0.368) 
 
} 
 
#------- Logit scale 
 
for(i in 1:nind){ 
 
  for(t in 1:(n.occasions - 1)){ 
 
    lphiA[i, t] <- alpha_A1 
    lphiB[i, t] <- alpha_A2 + beta_A[det2[i, t]] * II[i,t] 
 
    lpsiAB[i, t] <- alpha_AB  
    lpsiBA[i, t] <- alpha_BA  
    lpA[i, t] <- alpha_muA[det2[i, t]] + beta_p * survs[i,t] 
    lpB[i, t] <- alpha_muB[det2[i, t]] + beta_p * survs[i,t] 
   
  } 
 
} 
 
#----- Misclassification probability 
 
#---- Priors based off double swab analysis 
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mu ~ dunif(-3.650, -3.075) 
sigma ~ dunif(1.753, 2.339) 
sigma.error ~ dunif(1.359, 1.765) 
 
tau <- 1/ (sigma * sigma) 
tau.error <- 1/ (sigma.error * sigma.error) 
 
alpha_I ~ dunif(-0.468, 0.690) 
beta_I ~ dunif(0.604, 1.045) 
 
for(t in 1:n.occasions){ 
 
  for(i in 1:nind){ 
 
  # True infection 
    x[i, t] ~ dnorm(mu, tau) 
 
  # Observed infection 
    II[i, t] ~ dnorm(x[i, t], tau.error) 
 
    leI2[i,t] <- alpha_I + beta_I * x[i, t] 
 
  } 
} 
 
#--------- Probability scale 
 
for(i in 1:nind){ 
 
  for(t in 1:(n.occasions - 1)){ 
 
    phiA[i, t] <- exp(lphiA[i, t]) / (1+ exp(lphiA[i, t])) 
    phiB[i, t] <- exp(lphiB[i, t]) / (1+ exp(lphiB[i, t]))  
 
    psiAB[i, t] <- exp(lpsiAB[i, t]) / (1+ exp(lpsiAB[i, t])) 
    psiBA[i, t] <- exp(lpsiBA[i, t]) / (1+ exp(lpsiBA[i, t]))  
 
    pA[i, t] <- exp(lpA[i, t]) / (1+ exp(lpA[i, t])) 
    pB[i, t] <- exp(lpB[i, t]) / (1+ exp(lpB[i, t]))  
  } 
 
  for(t in 1:n.occasions){ 
 
    eI[i, t] <- 1 - (exp(leI2[i, t]) / (1 + exp(leI2[i, t]))) 
 
  } 
 
} 
 
#----------- Define state-transition and observational matrix 
 
for(i in 1:nind){ 
 
  for(t in 1:(n.occasions-1)){ 
 
# Define probabilities of state S(t+1) given S(t) 
 
    ps[1, i, t, 1] <- 1 - gamma1[t] - gamma2[t] 
    ps[1, i, t, 2] <- gamma1[t] 
    ps[1, i, t, 3] <- gamma2[t] 
    ps[1, i, t, 4] <- 0 
 
    ps[2, i, t, 1] <- 0 
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    ps[2, i, t, 2] <- phiA[i, t]^days[i,t] * (1- psiAB[i, 
t]^days[i,t]) 
    ps[2, i, t, 3] <- phiA[i, t]^days[i,t] * psiAB[i, t]^days[i,t] 
    ps[2, i, t, 4] <- 1-phiA[i, t]^days[i,t] 
 
    ps[3, i, t, 1] <- 0 
    ps[3, i, t, 2] <- phiB[i, t]^days[i,t] * psiBA[i, t]^days[i,t] 
    ps[3, i, t, 3] <- phiB[i, t]^days[i,t] * (1 - psiBA[i, 
t]^days[i,t]) 
    ps[3, i, t, 4] <- 1 - phiB[i, t]^days[i,t] 
 
    ps[4, i, t, 1] <- 0 
    ps[4, i, t, 2] <- 0 
    ps[4, i, t, 3] <- 0 
    ps[4, i, t, 4] <- 1 
 
# Define probabilities of O(t) given S(t) 
 
# Seen in A 
    po[1, i, t, 1] <- 0      
    po[1, i, t, 2] <- 0                                   
    po[1, i, t, 3] <- 1  
 
# Seen in B 
    po[2, i, t, 1] <- pA[i, t]^days[i,t]      
    po[2, i, t, 2] <- 0                                 
    po[2, i, t, 3] <- (1 - pA[i, t]^days[i,t])  
 
# Dead 
    po[3, i, t, 1] <- pB[i, t]^days[i,t] * eI[i, t+1] 
    po[3, i, t, 2] <- pB[i, t]^days[i,t] * (1- eI[i, t+1]) 
    po[3, i, t, 3] <- (1 - pB[i, t]^days[i,t]) 
 
    po[4, i, t, 1] <- 0 
    po[4, i, t, 2] <- 0 
    po[4, i, t, 3] <- 1 
 
 
  } #ts 
 
} # is 
 
#----------------- Likelihood 
 
for(i in 1:nind){ 
   
#---------- Define latent state at first capture 
 
 z[i, 1] <- 1   # Everyone is in state 1 at first 
occasion # Not entered 
 
   for(t in 2:n.occasions){ 
 
    # Observation process: draw O(t) given S(t) 
 
        y[i, t] ~ dcat(po[z[i, t], i, t-1, ]) 
      y.new[i, t] ~ dcat(po[z[i, t], i, t-1, ]) 
   
      # State process: draw S(t) given S(t-1) 
 
        z[i, t] ~ dcat(ps[z[i, t-1], i, t-1, ]) 
 } 
  
} # is 
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#--------- Calculate derived population parameters 
 
for (t in 1:(n.occasions-1)){ 
 
  qgammaN[t] <- 1-gamma1[t] 
  qgammaI[t] <- 1-gamma2[t] 
 
} 
 
cprobN[1] <- gamma1[1] 
cprobI[1] <- gamma2[1] 
 
 
for (t in 2:(n.occasions-1)){ 
 
    cprobN[t] <- gamma1[t] * prod(qgammaN[1:(t-1)]) 
    cprobI[t] <- gamma2[t] * prod(qgammaI[1:(t-1)]) 
 
} #ts 
 
psiN <- sum(cprobN[])           # Inclusion probability 
psiI <- sum(cprobI[])         # Inclusion probability 
 
for (t in 1:(n.occasions-1)){ 
    bN[t] <- cprobN[t] / psiN      # Entry probability 
    bI[t] <- cprobI[t] / psiI      # Entry probability 
} #t 
     
for (i in 1:nind){ 
   for (t in 2:n.occasions){ 
    alN[i,t-1] <- equals(z[i,t], 2) 
    alI[i,t-1] <- equals(z[i,t], 3) 
   } #t 
  for (t in 1:(n.occasions-1)){ 
    dN[i,t] <- equals(z[i,t]-alN[i,t],0) 
    dI[i,t] <- equals(z[i,t]-alI[i,t],0) 
  } #t    
    aliveN[i] <- sum(alN[i,]) 
    aliveI[i] <- sum(alI[i,]) 
} #i 
     
for (t in 1:(n.occasions-1)){ 
 
NN[t] <- sum(alN[,t])        # Actual population size 
NI[t] <- sum(alI[,t])        # Actual population size 
 
BN[t] <- sum(dN[,t])         # Number of entries 
BI[t] <- sum(dI[,t])         # Number of entries 
 
Ntot[t] <- NN[t] + NI[t] 
 
} #t 
 
for (i in 1:nind){ 
    wN[i] <- 1-equals(aliveN[i],0) 
    wI[i] <- 1-equals(aliveI[i],0) 
} #i 
    NsuperN <- sum(wN[])            # Superpopulation size 
    NsuperI <- sum(wI[])            # Superpopulation size 
 
 Nsuper <- sum(NsuperN, NsuperI) 
  
#---- Calculate average infection intensity 
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for(t in 1:(n.occasions-1)){ 
 
    inf[t] <- mean(alI[,t] * x[,t]) 
      # All the ones that were alive + infected = alI[,t] 
      # The corrected infection intensity = x[, t] 
} 
 
#----- These are the ones you want it to report 
  
#---------------- Calculate Bayesian posterior predictive check 
 
for(t in 1:(n.occasions-1)){ 
 
  for(i in 1:nind){ 
  
    for(s in 1:state){ 
 
       r[s, i, t] <- ifelse(y[i, t+1] == s, 1, 0) 
 
   r.new[s, i, t] <- ifelse(y.new[i, t+1] == s, 1, 0) 
 
    } 
  } 
} 
 
 
for(t in 1:(n.occasions-1)){ 
 
  for(s in 1:state){ 
 
    # sum across individuals in each state, each time period 
 
    R_state[s, t] <- sum(r[s, , t]) 
 
    R_state.new[s, t] <- sum(r.new[s, , t]) 
 
  } 
 
} 
 
for(t in 1:(n.occasions-1)){ 
 
  for(s in 1:state){ 
 
      for(i in 1:nind){ 
      
          muy[i, t, s] <-  ps[z[i, t], i, t, z[i, t+1]] * po[z[i, t], 
i, t, s] 
 
      } 
 
      PO_expt[s, t] <- sum(0.01, sum(muy[ , t, s])) 
 
  } 
 
} 
 
#--------- Posterior predictive check 
 
for(t in 1:(n.occasions-1)){ 
 
  for(s in 1:state){ 
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    E.act[s, t] <- pow(pow(R_state[s, t], 0.5) - pow(PO_expt[s, t], 
0.5), 2) 
 
    E.new[s, t] <- pow(pow(R_state.new[s, t], 0.5) - pow(PO_expt[s, 
t], 0.5), 2) 
 
 
  } 
 
} 
 
 
zzz.fit <- sum(E.act[,]) 
zzz.fit.new <- sum(E.new[,]) 
 
 
} 
", fill = TRUE) 
sink() 
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SUPPLEMENT 4.1 

 

Model output for (1) null model, (2) host density, (3) pathogen prevalence, and (4) 

infection intensity effects on Bd transmission risk.  

 

(1) Infection ~ 1 
 

JAGS output for model 'model2.txt', generated by jagsUI. 

Estimates based on 3 chains of 70000 iterations, 

burn-in = 20000 iterations and thin rate = 50, 

yielding 3000 total samples from the joint posterior.  

MCMC ran in parallel for 30.804 minutes at time 2016-04-09 08:54:31. 

 

                mean     sd    2.5%     50%   97.5% overlap0     f  Rhat n.eff 

alpha.lamN     0.187  0.184  -0.155   0.183   0.581     TRUE 0.857 1.012  1177 

alpha.lamI     1.082  0.135   0.821   1.080   1.353    FALSE 1.000 1.004   472 

alpha_N        2.659  0.509   1.818   2.592   3.818    FALSE 1.000 1.007  3000 

alpha_I        2.858  0.379   2.220   2.820   3.681    FALSE 1.000 1.007  1771 

gammaN[1]     -2.382  1.198  -4.776  -2.194  -0.548    FALSE 0.999 1.024    92 

gammaN[2]     -0.763  0.752  -3.175  -0.584   0.101     TRUE 0.948 1.072    64 

gammaI[1]     -2.951  1.243  -4.898  -3.025  -0.556    FALSE 0.995 1.005  1100 

gammaI[2]      0.272  0.648  -1.048   0.378   0.957     TRUE 0.818 1.059   439 

alpha_IN      -1.610  0.973  -3.848  -1.462  -0.145    FALSE 0.989 1.000  3000 

mu            -1.422  1.024  -3.736  -1.270   0.100     TRUE 0.957 1.000  3000 

alpha.pN[1]   -1.968  0.213  -2.417  -1.965  -1.568    FALSE 1.000 1.014   317 

alpha.pN[2]   -2.461  0.315  -3.159  -2.452  -1.869    FALSE 1.000 1.020   278 

alpha.pI[1]   -1.778  0.178  -2.130  -1.777  -1.442    FALSE 1.000 1.001  1665 

alpha.pI[2]   -1.795  0.211  -2.230  -1.781  -1.412    FALSE 1.000 1.009  2555 

beta.pN        0.490  0.147   0.209   0.489   0.780    FALSE 1.000 1.002   886 

zzzfitN      296.042 14.293 270.473 295.279 326.615    FALSE 1.000 1.017   619 

zzzfitN.new  282.662 23.666 239.295 281.690 332.927    FALSE 1.000 1.004   711 

zzzfitI2     632.938 17.711 600.198 632.363 669.215    FALSE 1.000 1.004   799 

zzzfitI2.new 660.024 34.337 595.248 658.559 731.584    FALSE 1.000 1.003   517 

NT[1]        416.593 41.815 346.000 412.000 512.000    FALSE 1.000 1.008   560 

NT[2]        288.685 45.022 212.000 285.000 389.000    FALSE 1.000 1.013   819 

NT[3]        433.347 51.391 345.000 430.000 543.000    FALSE 1.000 1.002  2380 

NT[4]        305.442 47.366 228.000 300.000 410.000    FALSE 1.000 1.008  2891 

NNT[1]       121.705 20.847  91.000 119.000 168.000    FALSE 1.000 1.047   635 

NNT[2]        86.478 27.108  49.000  82.000 148.025    FALSE 1.000 1.042   331 

NNT[3]       123.340 23.502  87.000 120.500 177.000    FALSE 1.000 1.027   197 

NNT[4]        92.588 27.424  55.975  88.000 161.000    FALSE 1.000 1.028   542 

NIT[1]       294.888 35.995 233.000 291.500 375.000    FALSE 1.000 1.005   354 

NIT[2]       202.207 38.328 144.000 197.000 296.000    FALSE 1.000 1.018   662 

NIT[3]       310.007 44.293 236.000 306.000 411.025    FALSE 1.000 1.001  2696 

NIT[4]       212.853 40.444 153.000 206.000 307.000    FALSE 1.000 1.015  1214 
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deviance       0.000  0.000   0.000   0.000   0.000    FALSE 1.000   NaN     1 

 

Successful convergence based on Rhat values (all < 1.1).  

Rhat is the potential scale reduction factor (at convergence, Rhat=1).  

For each parameter, n.eff is a crude measure of effective sample size.  

 

overlap0 checks if 0 falls in the parameter's 95% credible interval. 

f is the proportion of the posterior with the same sign as the mean; 

i.e., our confidence that the parameter is positive or negative. 

 

DIC info: (pD = var(deviance)/2)  

pD = 0 and DIC = 0  

DIC is an estimate of expected predictive error (lower is better). 

 

 

(2) Infection ~ Host density 
JAGS output for model 'model2.txt', generated by jagsUI. 

Estimates based on 3 chains of 70000 iterations, 

burn-in = 20000 iterations and thin rate = 50, 

yielding 3000 total samples from the joint posterior.  

MCMC ran in parallel for 35.828 minutes at time 2016-04-09 09:31:07. 

 

                mean     sd    2.5%     50%   97.5% overlap0     f  Rhat n.eff 

alpha.lamN     0.177  0.176  -0.158   0.172   0.534     TRUE 0.844 1.001  2977 

alpha.lamI     1.086  0.142   0.822   1.081   1.378    FALSE 1.000 1.035    63 

alpha_N        2.775  0.538   1.889   2.708   3.994    FALSE 1.000 1.004   555 

alpha_I        2.972  0.435   2.289   2.915   3.990    FALSE 1.000 1.043    56 

gammaN[1]     -2.263  1.194  -4.778  -2.030  -0.452    FALSE 0.999 1.007   289 

gammaN[2]     -0.877  0.861  -3.632  -0.656   0.030     TRUE 0.965 1.008  1149 

gammaI[1]     -2.705  1.387  -4.881  -2.787  -0.142    FALSE 0.985 1.055    46 

gammaI[2]      0.032  0.878  -2.772   0.264   0.884     TRUE 0.686 1.092    48 

alpha_IN      -1.627  0.988  -4.003  -1.453  -0.177    FALSE 0.992 1.000  3000 

mu            -1.278  1.113  -3.761  -1.109   0.424     TRUE 0.888 1.001  3000 

alpha_H       -0.933  0.991  -3.126  -0.844   0.781     TRUE 0.823 1.001  1869 

alpha.pN[1]   -1.941  0.214  -2.370  -1.942  -1.541    FALSE 1.000 1.002  1029 

alpha.pN[2]   -2.510  0.316  -3.132  -2.507  -1.887    FALSE 1.000 1.001  3000 

alpha.pI[1]   -1.769  0.165  -2.095  -1.768  -1.458    FALSE 1.000 1.035    74 

alpha.pI[2]   -1.858  0.254  -2.405  -1.836  -1.408    FALSE 1.000 1.062    40 

beta.pN        0.481  0.146   0.193   0.481   0.763    FALSE 0.999 1.003   700 

zzzfitN      295.308 13.963 270.333 294.238 324.580    FALSE 1.000 1.002  1160 

zzzfitN.new  282.697 23.213 239.879 282.053 331.137    FALSE 1.000 1.000  3000 

zzzfitI2     635.190 18.892 600.712 634.624 674.676    FALSE 1.000 1.030    79 

zzzfitI2.new 663.292 36.508 597.599 661.416 741.909    FALSE 1.000 1.017   129 

NT[1]        415.994 44.042 341.975 413.000 514.000    FALSE 1.000 1.031    73 

NT[2]        307.160 59.751 215.000 297.000 454.025    FALSE 1.000 1.052    45 

NT[3]        428.001 48.043 344.000 424.000 530.025    FALSE 1.000 1.020   118 
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NT[4]        321.180 59.521 229.000 311.000 462.000    FALSE 1.000 1.039    57 

NNT[1]       119.800 18.593  91.000 117.000 165.000    FALSE 1.000 1.001  1162 

NNT[2]        90.062 25.033  50.000  87.000 147.025    FALSE 1.000 1.002  3000 

NNT[3]       121.193 22.386  86.000 118.000 172.025    FALSE 1.000 1.004  1163 

NNT[4]        96.379 26.941  55.000  92.000 161.000    FALSE 1.000 1.003  2206 

NIT[1]       296.194 39.420 233.000 291.000 382.025    FALSE 1.000 1.044    58 

NIT[2]       217.097 52.262 145.000 206.000 349.025    FALSE 1.000 1.081    34 

NIT[3]       306.807 41.507 237.000 302.000 397.000    FALSE 1.000 1.042    68 

NIT[4]       224.801 50.761 153.000 215.000 353.050    FALSE 1.000 1.075    37 

deviance       0.000  0.000   0.000   0.000   0.000    FALSE 1.000   NaN     1 

 

Successful convergence based on Rhat values (all < 1.1).  

Rhat is the potential scale reduction factor (at convergence, Rhat=1).  

For each parameter, n.eff is a crude measure of effective sample size.  

 

overlap0 checks if 0 falls in the parameter's 95% credible interval. 

f is the proportion of the posterior with the same sign as the mean; 

i.e., our confidence that the parameter is positive or negative. 

 

DIC info: (pD = var(deviance)/2)  

pD = 0 and DIC = 0  

DIC is an estimate of expected predictive error (lower is better). 

 

(3) Infection ~ infection intensity 

 

JAGS output for model 'model2.txt', generated by jagsUI. 

Estimates based on 3 chains of 1e+05 iterations, 

burn-in = 30000 iterations and thin rate = 100, 

yielding 2100 total samples from the joint posterior.  

MCMC ran in parallel for 47.164 minutes at time 2016-04-09 15:17:35. 

 

                mean     sd    2.5%     50%   97.5% overlap0     f  Rhat n.eff 

alpha.lamN     0.193  0.179  -0.150   0.188   0.558     TRUE 0.863 1.011   269 

alpha.lamI     1.073  0.138   0.822   1.072   1.358    FALSE 1.000 1.019   117 

alpha_N        2.729  0.536   1.881   2.674   3.927    FALSE 1.000 1.023   168 

alpha_I        2.896  0.390   2.249   2.853   3.813    FALSE 1.000 1.026   156 

gammaN[1]     -2.378  1.228  -4.831  -2.194  -0.529    FALSE 1.000 1.005   405 

gammaN[2]     -0.792  0.771  -3.046  -0.614   0.111     TRUE 0.947 1.021   242 

gammaI[1]     -2.849  1.264  -4.893  -2.894  -0.561    FALSE 0.998 1.010   225 

gammaI[2]      0.225  0.525  -1.075   0.319   0.936     TRUE 0.756 1.039    85 

alpha_IN      -1.639  0.987  -3.907  -1.498  -0.161    FALSE 0.990 1.000  2100 

mu            -1.633  1.023  -3.951  -1.517   0.028     TRUE 0.973 1.003   728 

alpha_I2      -0.597  0.977  -2.732  -0.450   0.992     TRUE 0.694 1.001  1952 

alpha.pN[1]   -1.967  0.229  -2.434  -1.960  -1.544    FALSE 1.000 1.005  2078 

alpha.pN[2]   -2.492  0.319  -3.158  -2.487  -1.903    FALSE 1.000 1.014   247 

alpha.pI[1]   -1.761  0.179  -2.121  -1.755  -1.424    FALSE 1.000 1.023   103 
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alpha.pI[2]   -1.796  0.225  -2.285  -1.777  -1.398    FALSE 1.000 1.027   237 

beta.pN        0.489  0.151   0.191   0.491   0.785    FALSE 1.000 1.006   286 

zzzfitN      296.430 14.555 269.664 295.895 327.666    FALSE 1.000 1.011   229 

zzzfitN.new  283.311 23.932 237.789 282.262 332.383    FALSE 1.000 1.001  2100 

zzzfitI2     631.863 18.024 598.309 631.158 669.172    FALSE 1.000 1.015   184 

zzzfitI2.new 659.297 34.964 597.606 656.875 732.834    FALSE 1.000 1.008   393 

NT[1]        414.170 42.014 343.000 410.000 506.000    FALSE 1.000 1.027    95 

NT[2]        293.380 48.343 215.000 288.000 406.525    FALSE 1.000 1.053    79 

NT[3]        428.745 52.938 338.000 423.000 543.000    FALSE 1.000 1.012   207 

NT[4]        308.802 51.219 226.000 303.000 425.000    FALSE 1.000 1.030   168 

NNT[1]       121.742 19.527  92.000 119.000 168.050    FALSE 1.000 1.021   193 

NNT[2]        88.602 25.403  49.000  86.000 150.000    FALSE 1.000 1.022   186 

NNT[3]       123.565 24.685  84.475 121.000 181.000    FALSE 1.000 1.014   932 

NNT[4]        95.201 27.418  55.000  91.000 163.525    FALSE 1.000 1.019   255 

NIT[1]       292.429 36.887 232.000 289.000 376.000    FALSE 1.000 1.034    82 

NIT[2]       204.778 42.973 143.475 197.000 311.000    FALSE 1.000 1.061   117 

NIT[3]       305.180 44.295 232.000 300.000 405.000    FALSE 1.000 1.027   103 

NIT[4]       213.601 44.176 150.000 206.000 324.525    FALSE 1.000 1.043   214 

deviance       0.000  0.000   0.000   0.000   0.000    FALSE 1.000   NaN     1 

 

Successful convergence based on Rhat values (all < 1.1).  

Rhat is the potential scale reduction factor (at convergence, Rhat=1).  

For each parameter, n.eff is a crude measure of effective sample size.  

 

overlap0 checks if 0 falls in the parameter's 95% credible interval. 

f is the proportion of the posterior with the same sign as the mean; 

i.e., our confidence that the parameter is positive or negative. 

 

DIC info: (pD = var(deviance)/2)  

pD = 0 and DIC = 0  

DIC is an estimate of expected predictive error (lower is better). 

 

(4) Infection ~ Prevalence 

JAGS output for model 'model2.txt', generated by jagsUI. 

Estimates based on 3 chains of 5e+05 iterations, 

burn-in = 20000 iterations and thin rate = 100, 

yielding 14400 total samples from the joint posterior.  

MCMC ran in parallel for 248.43 minutes at time 2016-04-09 17:38:36. 

 

                mean     sd    2.5%     50%   97.5% overlap0     f  Rhat n.eff 

alpha.lamN     0.185  0.181  -0.166   0.181   0.547     TRUE 0.847 1.000  8476 

alpha.lamI     1.076  0.135   0.822   1.073   1.353    FALSE 1.000 1.010   220 

alpha_N        2.753  0.524   1.871   2.696   3.951    FALSE 1.000 1.002  1425 

alpha_I        2.907  0.382   2.271   2.870   3.760    FALSE 1.000 1.025    91 

gammaN[1]     -2.194  1.236  -4.790  -1.937  -0.386    FALSE 0.999 1.003   789 

gammaN[2]     -0.997  0.975  -4.098  -0.720   0.062     TRUE 0.960 1.010   324 
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gammaI[1]     -2.683  1.303  -4.868  -2.661  -0.317    FALSE 0.992 1.009   252 

gammaI[2]      0.166  0.643  -1.437   0.289   0.909     TRUE 0.740 1.035   148 

alpha_IN      -1.624  0.981  -3.933  -1.473  -0.146    FALSE 0.988 1.000 14400 

mu            -0.906  1.339  -3.623  -0.856   1.472     TRUE 0.733 1.000 14400 

alpha_P       -1.025  1.450  -3.838  -1.030   1.830     TRUE 0.761 1.000 14400 

alpha.pN[1]   -1.946  0.224  -2.393  -1.942  -1.515    FALSE 1.000 1.001  1654 

alpha.pN[2]   -2.527  0.317  -3.135  -2.529  -1.899    FALSE 1.000 1.004   595 

alpha.pI[1]   -1.755  0.176  -2.115  -1.753  -1.420    FALSE 1.000 1.004   617 

alpha.pI[2]   -1.823  0.225  -2.295  -1.814  -1.408    FALSE 1.000 1.045    53 

beta.pN        0.478  0.150   0.179   0.478   0.773    FALSE 0.999 1.004   455 

zzzfitN      296.241 14.316 269.283 295.896 325.414    FALSE 1.000 1.001  4452 

zzzfitN.new  283.818 23.533 240.487 282.771 333.062    FALSE 1.000 1.000  6712 

zzzfitI2     632.979 18.221 599.075 632.427 670.377    FALSE 1.000 1.015   145 

zzzfitI2.new 660.628 34.799 596.891 659.231 732.100    FALSE 1.000 1.009   231 

NT[1]        413.924 41.630 342.000 410.000 504.000    FALSE 1.000 1.012   207 

NT[2]        301.076 49.638 219.000 296.000 410.000    FALSE 1.000 1.051    46 

NT[3]        425.629 51.808 336.000 422.000 539.000    FALSE 1.000 1.005   599 

NT[4]        315.114 51.881 232.000 309.000 432.000    FALSE 1.000 1.040    58 

NNT[1]       121.060 19.306  91.000 119.000 166.000    FALSE 1.000 1.001  5551 

NNT[2]        92.330 26.376  51.000  89.000 151.000    FALSE 1.000 1.007   367 

NNT[3]       121.215 23.583  83.000 119.000 175.000    FALSE 1.000 1.001  2069 

NNT[4]        97.676 27.327  56.000  94.000 162.000    FALSE 1.000 1.004   694 

NIT[1]       292.864 36.309 233.000 289.000 374.000    FALSE 1.000 1.013   190 

NIT[2]       208.747 41.999 144.000 203.000 307.000    FALSE 1.000 1.053    49 

NIT[3]       304.415 43.791 232.000 300.000 403.000    FALSE 1.000 1.007   482 

NIT[4]       217.438 43.791 152.000 211.000 321.025    FALSE 1.000 1.048    57 

deviance       0.000  0.000   0.000   0.000   0.000    FALSE 1.000   NaN     1 

 

Successful convergence based on Rhat values (all < 1.1).  

Rhat is the potential scale reduction factor (at convergence, Rhat=1).  

For each parameter, n.eff is a crude measure of effective sample size.  

 

overlap0 checks if 0 falls in the parameter's 95% credible interval. 

f is the proportion of the posterior with the same sign as the mean; 

i.e., our confidence that the parameter is positive or negative. 

 

DIC info: (pD = var(deviance)/2)  

pD = 0 and DIC = 0  

DIC is an estimate of expected predictive error (lower is better). 
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