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Quasiparticle descriptions are a powerful tool in condensed matter physics as

they provide an analytical treatment of interacting systems. In this thesis we will

apply this tool to theoretically describe two systems: a superconductor interacting

with cavity photons and a flowing Bose-Einstein condensate forming a sonic black

hole.

First we will consider a two-dimensional s-wave BCS superconductor coupled

to microwave cavity photons. We show how a nonequilibrium occupation of the

photons can induce a nonequilibrium distribution of superconductor Bogoliubov

quasiparticles, yielding an enhancement of the superconducting gap. The analytic

dependence of this enhancement is provided in terms of the photon spectral and

occupation functions, offering a large parameter space over which enhancement

exists.

Next, we analyze the equilibrium properties of a similar superconductor-cavity

structure which has strong sub-dominant d-wave pairing interaction. In this case

there is a collective mode known as the Bardasis-Schrieffer mode, which is essen-

tially an uncondensed d-wave Cooper pair. We show that by driving an external



supercurrent through the sample the Bardasis-Schrieffer mode can be hybridized

with cavity photons, forming exotic Bardasis-Schrieffer-polaritons.

We then turn to consider a flowing Bose-Einstein condensate. In the presence of

inhomogeneous flow, the long-wavelength motion of quasiparticles can be mapped

onto the kinematics of matter fields in a curved spacetime. This mapping allows for

the simulation of a black hole and its interactions with quantum fields via analogy.

We show that in the case of a step-like jump in the condensate flow the emission of

analogue Hawking radiation is accompanied by evanescent modes which are pinned

to the event horizon.

Finally, we generalize this setup to include pseudo-spin half spinor Bose con-

densates. In this case, we show that the analogue spacetime the quasiparticles

experience can be of the exotic Newton-Cartan type. Newton-Cartan gravity –

the geometric formulation of Newtonian gravity – is realized when the Goldstone

mode disperses quadratically as opposed to linearly. The nature of the analogue

spacetime is controlled by the presence or absence of an easy-axis anisotropy in the

boson spin-exchange interaction. We conclude by arguing that this Newton-Cartan

spacetime can be experimentally realized in current platforms.
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Chapter 1: Introduction

The concept of a quasiparticle is ubiquitous in condensed matter and Atomic,

Molecular, and Optical (AMO) physics, owing to its great success in allowing for the

treatment of interacting quantum systems. Indeed, many of the phenomena which

arise in quantum many-body systems can be explained by invoking a quasiparticle

description. This includes such varied examples as Bloch band-theory, Landau-

Fermi liquid theory [1], spin-wave descriptions of magnetic order [2], the BCS theory

of superconductivity [3], and the Bogoliubov theory of a weakly interacting Bose-

Einstein-Condensate (BEC) [1]. Each of these topics, taken on their own, are the

subjects of numerous books and research tomes and this thesis is not intended to be a

comprehensive authority on any of these phenomena. Nor is it the aim of this thesis

to provide an in-depth survey of the foundations of quasiparticle theory or study

its (often fascinating) limitations. Rather, it is the aim of this thesis to propose a

number of new phenomena in various systems in condensed matter which may be

understood easily through a quasiparticle description—in some sense, attesting to

the wide applicability and success of the quasiparticle picture.

As this thesis is particularly broad in scope, we will begin by introducing a few

basic concepts underlying the systems we will theoretically study. In doing so, we

will also introduce and formalise the idea of a quasiparticle and demonstrate how

it may be employed to help understand the considered physical systems. Concep-

tually, this thesis may be roughly split in two, with Chapters 2 and 3 considering

a superconductor-cavity microstructure and Chapters 4 and 5 focusing on Bose-

Einstein condensed gases of ultra-cold atoms. While each chapter is roughly based

on an independent, self-contained publication, we will provide a broad overview

of background of each topic given the anticipated disparate audience this thesis is
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intended for.

As the first two chapters cover material under the purview of the BCS theory of

superconductivity, we will begin by introducing the fundamentals of conventional

superconductivity. Then, as the third and fourth chapters focus on the Bogoliubov

theory of Bose-Einstein condensates, we will briefly outline the basics of this subject

before providing a more detailed treatment in the chapters themselves. Finally, as

the subject of these two chapters is “analogue gravity” of BECs, we will introduce

some introductory concepts from general relativity, with an emphasis on requiring

as little mathematical technology as possible.

As far as conventions are concerned, this thesis will throughout set ℏ = 𝑘𝐵 = 1

but in general we will retain 𝑐 and 𝜀0 as unitfull parameters, unless specifically

indicated. We will employ the Einstein summation convention, unless otherwise

indicated, and reserve Latin indices (e.g. 𝑗, 𝑘, 𝑙, 𝑚) for spatial dimensions while Greek

indices (e.g. 𝜇, 𝜈, 𝛼, 𝛽) are reserved for spacetime. Boldface letters (e.g. r,x,q)

indicated spatial vectors while italic letters (e.g. 𝑟, 𝑦, 𝑞) will indicate spacetime

vectors. For a Minkowski metric, we use the (−, +, +, +) signature. In Fourier

space, we use the convention that in 𝑑 dimensional space

∑
k

... = Vol∫ 𝑑𝑑𝑘
(2𝜋)𝑑

is an extensive, unitless sum over momenta, with Vol being the quantization volume

in 𝑑 dimensions. In the Matsubara formalism, we will use

∑
𝑞

= ∑
q

∑
𝑖𝜔

where the sum over Matsubara frequencies is of the appropriate parity (even for

bosons and odd for fermions).

We begin by introducing the BCS theory of superconductivity.

2



1.1 BCS Theory of Superconductivity

In their pioneering work authors BCS laid out the microscopic mechanism behind

conventional electron-phonon superconductivity [3]. This can be understood using

the treatment of Bogoliubov and Valatin [1, 4, 5] which emphasizes the quasiparticle

description over BCS’s original variational calculation. As a simple model, one

begins by considering an isotropic Fermi gas of electrons which experience an overall

attractive interaction between time-reversal partners [6, 7], presumably originating

from exchange of virtual phonon. The Hamiltonian (in 𝑑 spatial dimensions) can be

written in the second-quantized notation as

𝐻𝐵𝐶𝑆 = ∫ 𝑑𝑑𝑟 [∑
𝜎

Ψ̂†
𝜎(r) (− ∇2

2𝑚
− 𝐸𝐹) Ψ̂𝜎(r) − 𝑔Ψ̂†

↑(r)Ψ̂†
↓(r)Ψ̂↓(r)Ψ̂↑(r)] .

(1.1)

In the second-quantized notation, we indicate the electron field operator Ψ̂𝜎(r) by a

hat, which acts on the many-body wavefunction to annihilate an electron from the

system at location r with spin quantum number 𝜎 along the quantization axis. In

this simple model, the electrons are taken to have quadratic dispersion with mass 𝑚

and Fermi energy 𝐸𝐹. The constant 𝑔 > 0 is the attractive BCS interaction constant

and here we assume a local interaction between electrons in the singlet channel.

In order to obtain superconductivity, we perform mean-field theory by looking

for an order parameter

Δ(r) = −𝑔⟨Ψ↓(r)Ψ↑(r)⟩. (1.2)

If this order parameter is non-zero the 𝑈(1) global symmetry associated to the

conservation of electron number has been spontaneously broken, which characterizes

the onset of superconductivity1 We assume the ground state is characterized by a
1Technically, in the presence of a gauged symmetry, as is the case for electrons in a metal, all of

these statements require modification, but in the basic mean-field treatment this is a satisfactory
stance to take [8–11]. In the case of ultrasmall granular superconductivity, where charge quantization
becomes important there are also interesting subtleties [12].
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homogeneous order parameter Δ(r) = Δ, in which case the mean-field Hamiltonian

can be written in real space as

𝐻 = ∫ 𝑑𝑑𝑟 [∑
𝜎

Ψ̂†
𝜎(r) (− ∇2

2𝑚
− 𝐸𝐹) Ψ̂𝜎(r) + ΔΨ̂↓(r)Ψ̂↑(r) + Ψ̂†

↑(r)Ψ̂†
↓(r)Δ] .

(1.3)

The last two terms describe the interactions of electrons with the “condensate” of

Cooper pairs, and allow for the apparent creation and annihilation of electrons in

pairs (in reality they are transferring to and from the condensate).

This Hamiltonian is translationally invariant and can be diagonalized in momen-

tum space. In this case it reads

𝐻BdG = ∑
k

∑
𝜎

𝑐†
k𝜎𝜉k𝑐k𝜎 + Δ𝑐−k↓𝑐k↑ + Δ𝑐†

k↑𝑐†
−k↓, (1.4)

where 𝜉k = k2
2𝑚 − 𝐸𝐹 is the normal-state electron dispersion relation. This Hamilto-

nian is solved by means of a Bogoliubov transformation, which is a linear canonical

transformation of the fermion operators [1, 4, 5]. We write

𝑐k↑ = 𝑢k𝛾k,+ + 𝑣k𝛾
†
−k,− (1.5a)

𝑐†
−k↓ = 𝑢∗

−k𝛾
†
−k,+ + 𝑣∗

−k𝛾k,−, (1.5b)

with 𝛾k𝛼 a new set of fermion operators which are indexed by a species quantum

number 𝛼 = ±. Just as the electron operators obey canonical anti-commutation

relations, so too do the Bogoliubov quasiparticle operators 𝛾. This imposes a

constraint on the coefficients 𝑢 and 𝑣, requiring

|𝑢k|2 + |𝑣k|2 = 1. (1.6)

One may view the quasiparticles described by the 𝛾’s as a coherent superposition
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of electrons and holes. We choose the Bogoliubov coefficients 𝑢, 𝑣 so as to bring the

mean-field Hamiltonian to a diagonal form

𝐻BdG = ∑
k,𝛼

𝐸k𝛾
†
k,𝛼𝛾k,𝛼 (1.7)

with the famous gapped dispersion relation for the quasiparticles of

𝐸k = √𝜉2
k + |Δ|2. (1.8)

The coefficients 𝑢, 𝑣 can be obtained with some effort and enter in to the calculation

of various matrix elements as “coherence factors,” which will be required when

expressing the electron observables (e.g. charge density, current) in terms of the

quasiparticles 𝛾.

Alternatively, one can envision the Bogoliubov-de Gennes (BdG) Hamiltonian (1.4)

as describing a collection of two-level pseudo-spin systems, one for each momentum

k [13]. The precise mapping is

̂𝑆𝑧
k = 1

2 [𝑐†
k↑𝑐k↑ − 𝑐−k↓𝑐†

−k↓] (1.9a)

̂𝑆+
k = 𝑐†

k↑𝑐−k↓. (1.9b)

If the Kramers pair (k ↑, −k ↓) is occupied then the pseudo-spin for k is +1
2 , and if

it is empty it is −1
2 . A superposition of the pair being filled and empty corresponds

to a non-zero ⟨ ̂𝑆+
k ⟩, which may be interpreted as the BCS Cooper pair condensate

in momentum space. The BdG Hamiltonian (1.4) then becomes

𝐻BdG = ∑
k

2𝜉k ̂𝑆𝑧
k + Δ ̂𝑆+

k + Δ̄ ̂𝑆−
k

which describes a system of pseudo-spins precessing in an effective magnetic field
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Bk = (2𝜉k, ℜΔ, −ℑΔ). In the disordered phase, Δ = 0 and the stationary states

correspond to the pseudo-spins aligning with the 𝑧 axis, corresponding to a filled

Fermi sea. In the ordered phase, Δ ≠ 0 and the stationary states require the pseudo-

spins to align along the direction of the effective magnetic field, which in general

points in a different direction everywhere in momentum space.

The final ingredient in the BCS theory is the self-consistency, or “gap” equation.

This ensures that the Δ we use to compute the quasiparticle spectrum indeed

satisfies the original definition Δ = −𝑔⟨Ψ̂↓(r)Ψ̂↑(r)⟩. We choose the equilibrium

ensemble which implies the density matrix is ̂𝜌 ∝ exp (−𝛽𝐻). Thus, the Bogoliubov

quasiparticles are distributed according to the Fermi-Dirac occupation function. If

we express the order parameter in terms of the Bogoliubov quasiparticles, we obtain

the condition

Δ = −𝑔
2

∫ 𝑑𝑑𝑘
(2𝜋)𝑑

1 − 2𝑛𝐹(𝐸k)
𝐸k

Δ. (1.10)

This always has Δ = 0 as a trivial solution. Below a certain critical temperature,

𝑇𝑐 this develops another non-trivial solution (which can be verified to have lower

free-energy). This can be manipulated into the simple form

1
𝑔𝜈𝐹

= ∫
Ω𝐷

Δ

𝑑𝐸√
𝐸2 − Δ2

(1 − 2𝑛(𝐸)) (1.11)

where 𝜈𝐹 is the density of states at the Fermi level, and Ω𝐷 is the Debye-frequency

cutoff on pairing2. Here 𝑛(𝐸) is the occupation function of the Bogoliubov quasipar-

ticles. The first work of this thesis essentially demonstrates how one can specially

tailor the fluctuations of an electromagnetic resonator in order to manipulate the

occupation function 𝑛(𝐸) away from the equilibrium Fermi-Dirac form and obtain a

more favorable solution of Eq. (1.11). This ultimately arises from the fact that in the
2More appropriately, in the weak-coupling regime that BCS theory resides in, this acts as a cutoff

in momentum space on the attractive part of the effective interaction. However, in the strong-coupling
Migdal-Eliashberg framework, this in fact acts as a cutoff in frequency space, which reduces to the
momentum space cutoff in the weak-coupling limit [14, 15].
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gap equation (1.11), the most detrimental effect on the gap comes from quasiparticle

which reside near 𝐸 ∼ Δ, where the density of states is singular. This is shown

in Fig. 1.1, which plots the energy dependent Density of States (DOS) around the

Fermi level in both the normal state and the superconducting state. Reducing the

number of quasiparticles which reside near 𝐸 = Δ is therefore the objective to bear

in mind when trying to tailor a nonequilibrium occupation function.

-3 -2 -1 1 2 3
E/Δ

1

2

3
ν(E)/νF

Figure 1.1: Density of states 𝜈(𝐸)/𝜈𝐹 near the Fermi level (𝐸 = 0) in the normal
state (gray curve) and in the BCS superconducting state (blue curve). We see clearly
the emergence of a gap and accompanying divergence at |𝐸| = Δ.

1.1.1 Multiple Pairing Channels

The model we have used here qualitatively captures many aspects of BCS super-

conductors correctly, but in general a more nuanced treatment is required. One such

refinement is the inclusion of multiple different pairing channels for the electrons.

To see how this is incorporated, we return to the original BCS Hamiltonian (1.1)

and focus on the interaction part. In general, the spin-singlet attractive interaction

can be written in momentum space as

𝐻int = ∑
q,k,k′

𝑐†
k′+ 1

2q,↑
𝑐†

−k′+ 1
2q,↓

𝑉 (k,k′;q)𝑐
−k+ 1

2q,↓
𝑐
k+ 1

2q,↑
. (1.12)
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In practice, the matrix elements of the interaction 𝑉 (k,k′;q) can be approxi-

mated as independent of the total center-of-mass momentum q of the pair, so that

𝑉 (k,k′;q) = 𝑉 (k,k′). Furthermore, if the interaction between electrons is of the

density-density type, then this only depends on the relative momentum exchanged

k− k′. In practice, the interaction is not purely density-density since the phonon

interaction matrix elements 𝑀p,p′ may depend on both the momenta. Thus, the

interaction can in general depend on both relative momenta of each participating

pair. We can expand then expand the interaction 𝑉 in scattering channels depending

on the symmetries of the problem and the relative interaction strengths. The lowest

harmonic for a singlet-pairing (as we assume here) is the 𝑠-wave channel and this

is often the dominant interaction. It produces the term 𝑉 (k,k′) = −𝑔𝑠, which is

simply the interaction we had before, expressed in momentum space.

More generally, we can expand the interaction 𝑉 (k,k′) in terms of irreducible

representations of the point-group symmetries of the model. In the case of full

rotational symmetry, we can use the spherical harmonics to write

𝑉 (k,k′) =
∞

∑
𝑙=0

𝑙
∑

𝑚=−𝑙
𝑔𝑙𝑌 𝑚∗

𝑙 ( ̂k)𝑌 𝑚
𝑙 ( ̂k′),

expressed as a functions of the unit vectors k̂, ̂k′. In practice, solids don’t have the

full 𝑆𝑂(3) rotational symmetry. Nevertheless, many materials still posses a discrete

inversion symmetry. In this case, the next-lowest harmonic allowed (beyond the

simple 𝑠-wave) should correspond to a remnant of the 𝑑-wave pairing channel. If we

consider the generic pairing interaction 𝑉 (k,k′) we will find a gap equation

Δk = − ∫ 𝑑𝑑𝑘′

(2𝜋)𝑑 𝑉 (k,k′)Δk′

𝐸k′
[1 − 2𝑛𝐹(𝐸k′)] . (1.13)

The solution to this is the gap Δk which in all but the simplest cases is also dependent

on the relative momentum k. This in turn leads to a quasiparticle spectrum given
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by

𝐸k = √𝜉2
k + |Δk|2. (1.14)

The quasiparticle dispersion is depicted in Fig. 1.2 for the case of an 𝑠 wave gap, as

well as a 𝑑𝑥2−𝑦2 gap. Notably, the 𝑑𝑥2−𝑦2 gap exhibits nodes where the spectrum

for Bogoliubov quasiparticles remains gapless.

Figure 1.2: (Left) Bogoliubov quasiparticle dispersion relation for two-dimensional
Fermi surface with an isotropic 𝑠-wave gap, with color indicating the size of the gap
(red is smaller, and blue is larger). The two curves are showing the particle-hole
symmetric dispersions for the two degenerate species of quasiparticle. (Right) The
dispersion relation for the Bogoliubov quasiparticles in the presence of an anisotropic
𝑑𝑥2−𝑦2 gap. We emphasize the four nodes located on the locus of the Fermi surface
p2 = 𝑝2

𝐹 and the pairing nodes 𝑝2
𝑥 − 𝑝2

𝑦 = 0. At these points the gap goes to zero,
as it must change sign in accordance with the 𝑑-wave form factor. All scales are
exagerated for clarity.

In Chapter 3, we will consider the effects of competing pairing interactions in a

two dimensional electron gas of the form, with the pairing interaction of the form

𝑉 (k,k′) = −𝑔𝑠 − 𝑔𝑑2 cos(2𝜃k) cos(2𝜃k′). (1.15)

The first term is assumed to dominate, with an interaction strength 𝑔𝑠 ≫ 𝑔𝑑. The

second term describes sub-dominant pairing fluctuations, in this case in the 𝑑𝑥2−𝑦2

channel (because the problem is two-dimensional, the relevant harmonics are not

the spherical harmonics but the polar harmonics, corresponding to irreps of 𝑆𝑂(2)).
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We will show how this additional 𝑑-wave term can produce higher-angular mo-

mentum bound states of Bogoliubov quasiparticles, essentially forming the analogue

of excitons in a superconductor [16]. These uncondensed Cooper pairs are essentially

precursors to the eventual formation of a 𝑑-wave superconductor, which emerges

upon increasing the anisotropic pairing to the point where 𝑔𝑑 ≫ 𝑔𝑠. After intro-

ducing the Bardasis-Schrieffer mode, we will then show how the collective mode

associated to these quasiparticles can be hybridized with photons in an enclosing

microcavity, in analogy with exciton-polariton systems involving semiconductor

excitons.

As mentioned before, Chapters 2 and 3 of this thesis concern BCS superconduc-

tivity, the salient aspects of which have been reviewed here. The remaining two

chapters consider the dynamics of ultra-cold atoms which form a BEC. As such, we

will review this subject in the next section.

1.2 Bose-Einstein Condensates

In many ways, the theory of Bose-Einstein condensates in ultra-cold atoms is

like the BCS theory of superconductivity, but many matters simplify since the

constituent degrees of freedom are themselves bosons, whereas in BCS theory they

are still fermions. The “standard model” of Bose-Einstein condensation is the dilute

Bogoliubov gas, which considers a weakly interacting gas of spinless bosons in

𝑑 spatial dimensions. In the second quantized notation this is described by the

Hamiltonian

𝐻 = ∫ 𝑑𝑑𝑟Φ̂†(r) [− ∇2

2𝑚
− 𝜇 + 1

2
𝑔Φ̂†(r)Φ̂(r)] Φ̂(r) (1.16)

with an 𝑠-wave density-density interaction of strength 𝑔 > 0. The operator Φ̂(r)

annihilates a spinless boson from location r. Unlike fermions, which have to con-
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dense in pairs, bosons can condense individually. This is characterized by an order

parameter

𝜙0(r, 𝑡) = ⟨Φ̂(r, 𝑡)⟩ (1.17)

which, when it is non-zero, spontaneously breaks the 𝑈(1) symmetry generated by

boson number conservation.

From the full Hamiltonian we can derive Heisenberg equations of motion for the

boson field operator Φ̂, which reads

[𝑖𝜕𝑡 + 1
2𝑚

∇2 + 𝜇] Φ̂(r, 𝑡) = 𝑔Φ̂†(r, 𝑡)Φ̂(r, 𝑡)Φ̂(r, 𝑡). (1.18)

In the simplest approximation, we simply replace the operator Φ̂ by its expectation

value 𝜙0, which characterizes the dynamics of the condensate. One thus arrives at

the time-dependent Gross-Pitaevskii Equation (GPE)

[𝑖𝜕𝑡 + 1
2𝑚

∇2 + 𝜇 − 𝑔|𝜙0|2] 𝜙0(r, 𝑡) = 0. (1.19)

The simplest solution, in the absence of an external potential, is obtained by assum-

ing a time-independent and homogeneous solution. In this case, this reduces to an

algebraic equation

[𝜇 − 𝑔|𝜙0|2] 𝜙0 = 0. (1.20)

For 𝜇 < 0 this only has a trivial solution of 𝜙0 = 0 and there is no condensate.

For 𝜇 > 0 on the other hand, we find a non-trivial solution with |𝜙0|2 = 𝜌 = 𝜇/𝑔,

corresponding to a uniform condensate. This then spontaneously breaks the 𝑈(1)

symmetry, since only the amplitude is fixed by the saddle-point equation, while the

phase remains arbitrary. Since there is a spontaneously broken continuous symmetry,

we expect there to be a corresponding gapless Golstone mode, characterizing long-

wavelength phase modulations.
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To see the emergence of this mode, we must go beyond the saddle-point level.

We expand the Hamiltonian around the saddle-point solution, writing

Φ̂ = √
𝜇
𝑔

+ ̂𝜙

with ̂𝜙 describing quantized fluctuations around the mean-field. Since we are ex-

panding around the saddle-point, terms linear in ̂𝜙 vanish. If we then truncate the

expansion to quadratic order, we will obtain a theory of quasiparticles which can be

solved exactly.3

We obtain the quasiparticle Hamiltonian

𝐻(2) = ∫ 𝑑𝑑𝑟 [ 1
2𝑚

∇ ̂𝜙† ⋅ ∇ ̂𝜙 + 𝑔𝜌 ̂𝜙† ̂𝜙 + 1
2

𝑔𝜌 ̂𝜙† ̂𝜙† + 1
2

𝑔𝜌 ̂𝜙 ̂𝜙] . (1.21)

We note the appearance of the off-diagonal terms ̂𝜙2 and its conjugate. These again

describe the violation of the particle conservation in the presence of a condensate,

as we saw for the case of electrons in BCS theory.

We write this in momentum space, with ̂𝜙 = ∑p
1√
Vol ̂𝑎p𝑒𝑖p⋅r. This produces

𝐻(2) = ∑
p

̂𝑎†
p ( p

2

2𝑚
+ 𝑔𝜌) ̂𝑎p + 1

2
𝑔𝜌 ̂𝑎p ̂𝑎−p + 1

2
𝑔𝜌 ̂𝑎†

p ̂𝑎†
−p. (1.22)

We again can diagonalize this via a Bogoliubov transformation

̂𝑎p = 𝑢p ̂𝑏p + 𝑣p ̂𝑏†
−p. (1.23)

Unlike the BCS case, which had two independent spin species, there is only one

species of boson here, so we only need one transformation. More importantly, unlike

fermions which obey canonical anti-commutation relations, bosons obey canonical
3This assumes that we can neglect interactions between quasiparticles, or at least treat them

perturbatively. For bosons, we expect this to occur in the regime of low excitation density, hence
the occasional description of this system as a dilute Bogoliubov gas.
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commutation relations.4 Thus, in order for the 𝑏 operators to satisfy the same

canonical relations, we must have the coefficients satisfy

|𝑢p|2 − |𝑣p|2 = 1. (1.24)

This seemingly innocuous alteration can in fact have dramatic consequences, some

of which we will explore later in later chapters. For the problem at hand, we can

see that (after some tedious algebra), the Hamiltonian is brought to the diagonal

form 𝐻(2) = ∑p 𝐸p𝑏̂†
p ̂𝑏p with excitation spectrum

𝐸p = √( p
2

2𝑚
+ 𝑔𝜌)

2

− (𝑔𝜌)2 ∼ √𝑔𝜌
𝑚

|p|, (1.25)

with the last equality holding in the long-wavelength expansion. In that case, we

see the quasiparticles are in fact describing sound waves which propagate with a

speed of sound 𝑐 = √𝑔𝜌
𝑚 . Thus, through Bogoliubov analysis we have recovered the

Goldstone mode.

In Chapter 4 we will examine the case of a spatially-varying mean-field 𝜙0(𝑥).

This is motivated by the observation, initially due to W.G. Unruh [17], that in some

cases the response of quantized sound waves in a flowing (i.e. spatially varying)

condensate can be mapped on to the propagation of light rays through an analogue

curved spacetime. Even more surprising perhaps, is that it is theoretically possibly

to engineer a condensate profile which exhibits an apparent event horizon in the

analogue metric. This then allows for the possibility of simulating the kinematics of

quantum fields in curved spacetime through laboratory scale experiments on ultra-

cold atomic gases. We will now briefly delve into the background of the analogue
4While it is beyond the scope of this thesis, this simple fact has very interesting consequences on

the eigenvalue structure of bosonic systems which exhibit “pairing” terms ∼ 𝑎̂𝑎̂, 𝑎̂†𝑎̂†. In the case of
fermions these terms lead to level-repulsion in the Bogoliubov-de Gennes spectrum and formation of
superconducting gaps, while for bosons they can lead to level-attraction and dynamical instabilities.
See Chapter 4 for a slightly more in depth discussion.
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gravity construction for BECs [18–20].

1.2.1 Analogue Gravity in Bose-Einstein Condensates

To see at a simple level how this works, we rewrite the GPE in the Madelung

representation, with

𝜙0(𝑥) = √𝜌(𝑥)𝑒𝑖Θ(𝑥). (1.26)

We then separate out the real and imaginary parts, obtaining the continuity equation

and Bernoulli equation, respectively

𝜕𝜌
𝜕𝑡

+ ∇ ⋅ (𝜌v) = 0 (1.27a)

− 𝜕Θ
𝜕𝑡

+ 𝜇 − 𝑔𝜌(𝑥) − 1
2

𝑚v2 + 1
2𝑚√𝜌

∇2√𝜌 = 0. (1.27b)

Here we have introduced the velocity field

v = 1
𝑚

∇Θ. (1.28)

In the absence of vorticity, this is incompressible, obeying ∇⋅v = 0 and the continuity

equation can be rewritten as the Euler equation

[ 𝜕
𝜕𝑡

+ v ⋅ ∇] 𝜌 = 0. (1.29)

Now, consider a slowly varying solution to these equations 𝜌0(𝑥) and v0(𝑥) =
1
𝑚∇Θ0. We then study the behavior of small perturbations around this solution [20–

22], writing 𝜌 = 𝜌0 + 𝛿𝜌 and Θ = Θ0 + 𝛿Θ. Linearizing these equations in the
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perturbations produces two coupled first-order equations

[ 𝜕
𝜕𝑡

+ v0 ⋅ ∇] 𝛿𝜌 + (∇𝜌0)
𝑚

⋅ ∇𝛿Θ = 0 (1.30a)

[ 𝜕
𝜕𝑡

+ v0 ⋅ ∇] 𝛿Θ + 𝑔𝛿𝜌 = 0. (1.30b)

where we have used the fact that the velocity field (in the absence of vortices) is

incompressible and dropped the “quantum pressure” term ∝ ∇2√𝜌√𝜌 from the Bernoulli

equation. These can be combined in to one second order wave equation for the phase

fluctuations

[(𝜕𝑡 + v0 ⋅ ∇)2 − ∇ ⋅ 𝑐2∇] 𝛿Θ = 0, (1.31)

with the local speed of sound given by 𝑐2 = 𝑔𝜌0(𝑥)/𝑚. We see that in the case of

a stationary (v0 = 0) and homogeneous (∇𝑐2 = 0) medium, the phase fluctuations

(phonons) obey the standard relativistic wave equation �𝛿Θ = 0 with � = 𝜕2
𝑡 −𝑐2∇2

the usual d’Alembertian operator.

In the case of a non-trivial background, we instead find that this can be mapped

on to a wave equation in curved spacetime, with form

1
√−𝑔

𝜕𝜇
√−𝑔𝑔𝜇𝜈𝜕𝜈𝛿Θ = 0. (1.32)

We can read off the components of the inverse metric tensor, up to an overall

constant factor. Inverting the matrix, we find the metric tensor is (again up to

overall constant factor)

𝑔𝜇𝜈𝑑𝑥𝜇𝑑𝑥𝜈 = −(1 − v2
0

𝑐2 )𝑑𝑡2 + 2v0
𝑐2 ⋅ 𝑑x𝑑𝑡 + 1

𝑐2 𝑑x2. (1.33)

In the eikonal approximation, the quantized sound waves in the BEC will propagate
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as particles along the null geodesics of the metric

𝑑𝑠2 = 𝑔𝜇𝜈𝑑𝑥𝜇𝑑𝑥𝜈 = 0. (1.34)

Unruh’s insight was that, for certain flowing condensates the velocity field v0 and

index of refraction 𝑐2 can be chosen to simulate the metric tensor of a black hole.

The simplest type of black hole is the Schwarzschild black hole, which has mass

𝑀 and no angular momentum or electric charge. Spacetime around the black

hole (which in general relativity is essentially a point mass) is described using the

Schwarzschild metric, which reads

𝑑𝜏2 = (1 − 2𝐺𝑀/𝑐2

𝑟
) 𝑑𝑡2 − (1 − 2𝐺𝑀/𝑐2

𝑟
)

−1 𝑑𝑟2

𝑐2 − 𝑟2

𝑐2 𝑑Ω2. (1.35)

Here 𝐺 is Newton’s gravitational constant and 𝑐 is the speed of light, with 𝑑Ω the

differential of solid area. In particular, there is an apparent coordinate singularity

at 𝑟 = 𝑅𝑠 = 2𝐺𝑀/𝑐2, commonly known as the Schwarzschild radius. While it is

known that there is no actual singularity in spacetime at this location (a coordinate

transformation exists which renders it locally Minkowski), this does delineate the

event horizon, which is a non-local causal partitioning of spacetime.

To see this, consider two points in the vicinity of the horizon, one at 𝑟 and one

at 𝑟 + 𝑑𝑟. The proper time interval separating these two points, when the observer

time is zero (so that an observer at spatial infinity judges the two events to be

simultaneous) is given by

𝑑𝜏2 = − 𝑟
𝑟 − 𝑅𝑠

𝑑𝑟2

𝑐2 . (1.36)

This changes sign at the horizon. For two points which are both outside of the

horizon this is negative, indicating the two events are space=like separated, as

one would expect. On the other hand, for two points on the interior, this is is

16



positive, indicating a time-like separation. This signifies that the causality requires

trajectories on the interior of the horizon eventually flow towards the singularity at

𝑟 = 0.

Classically, black holes only ever increase in size as they consume in falling

matter5. Remarkably, Hawking showed [24, 25] that this is not necessarily true

once one considers the quantum nature of matter. In the presence of quantum

fields, a black hole emits Hawking radiation, which is observed by a distant observer

as a featureless, outgoing flux of particles distributed according to the thermal

distribution. The temperature of the radiation is set by the black hole’s mass via

the famous Hawking relation

𝑇𝐻 = 𝑐3

8𝜋𝐺𝑀
= 𝑐

4𝜋𝑅𝑠
. (1.37)

While the theoretical basis for this result is relatively sound, it leads to the

striking prediction that black holes will eventually radiate their mass away via

black body radiation, and evaporate (or perhaps explode, as Hawking suggested

in his original manuscript title). Estimates of the Hawking temperature for any

astrophysical black hole yield astronomically small numbers, far smaller than the

temperature of the cosmic microwave-backgroun radiation. It is in this context

that we turn our attention to analogue gravity models. In 1981 W.G. Unruh [17]

showed that quantum sound waves in a flowing fluid can be made to propagate as

if they were in the spacetime of a Schwarzschild black hole, via the argument we

outlined culminating in Eq. (1.31). The exact same principles which lead to Hawking

radiation apply to these systems and following this line of reasoning, Unruh predicted

that one can engineer an analogue event horizon by producing a fluid flow which

breaks the sound barrier in the system. The quantized sound waves will then
5This connects to the so-called “second-law” of black hole thermodynamics, which draws an

analogy between the surface area of a black hole 𝐴 = 4𝜋𝑅2
𝑠 ∝ 𝑀2 and the entropy of a closed

system, 𝑆 both of which may never decrease (classically) [23].
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be emitted by the Hawking mechanism and will be thermally distributed with an

analogue temperature given by

𝑇 = 1
2𝜋

∣𝜕𝑣
𝜕𝑟

∣
𝑟ℎ

(1.38)

assuming the velocity field of the fluid v is spherically symmetric and passes the

local speed of sound at the event horizon radius 𝑟ℎ.

In Chap. 4, we investigate corrections to the analogue gravity description due to

the non-linear Bogoliubov dispersion relation

𝜔(k) = √𝑐2k2 + (k2/2𝑚)2. (1.39)

At a characteristic momentum scale of 𝑘𝑐 = 𝑚𝑐 = √𝑚𝑔𝑝 the apparent Lorentz

invariance, which lead to the effective curved space decsription in terms of Eq. (1.31),

is lost. We show one consequence of this is the emergence of evanescent modes, which

decay exponentially out of the event horizon and describe a finite depth tunneling

of states out from the black hole. Heuristically, this is because the dispersion

relation (1.39) is quartic in k. Thus, in determining the solutions to a scattering

problem, we are tasked with solving for the allowed k at a given frequency 𝜔.

This becomes an algebraic root-finding problem and since Eq. (1.39) is a quartic

polynomial in 𝑘, there are four roots over the whole complex plane. One of these is

exponentially growing and not permissible by boundary conditions, but the other

is evanescent and in general will therefore enter in to the 𝑆-matrix for the problem,

which is what we emphasize in Chapter 4.

In Chapter 5 we will generalize the treatment above by introducing an internal

pseudo-spin degree of freedom. It turns out that the physics becomes much richer

when we investigate the analogue gravity of spinor condensates.
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1.2.2 Analogue Newton-Cartan geometry

Generically, one might expect the above analogue gravity picture to apply to

any Goldstone mode, which will respond to long-wavelength variations in the speed

of sound and Doppler shifts in the same way as the Bogoliubov sound mode does

in the flowing BEC. However, it turns out this is only the case for so-called “Type

I” Goldstone modes, which have dispersion relations of the form 𝜔2 ∼ 𝑐2|k|2. In

particle physics, Lorentz invariance ensures that this is the only type of Goldstone

mode, but in condensed matter physics there are also the “Type II” Goldstone

modes [26, 27], which exhibit dispersion relations like 𝜔 ∼ k2. While each Type I

Goldstone mode has a one-to-one correspondence with a broken generator of the Lie

algebra, each Type-II Goldstone mode corresponds to two broken generators, which

end up describing the same mode. In Chap. 5 we demonstrate how these modes

may arise in more complicated flowing spinor BECs, and find that in the presence

of long-wavelength variations in the background condensate, they also propagate in

an analogue spacetime. In this case, the analogue spacetime is not like Einstein’s

theory of gravity, but instead it realizes the Newton-Cartan [28, 29] geometry which

arises from gauging Galilean invariance.

Let us briefly outline the idea behind Newton-Cartan (NC) geometry. We start

with an action describing a free gapless 𝑈(1) charged scalar (Bose) field in a flat

spacetime, as might describe the low-energy theory of magnons in a homogeneous

ferromagnet.6 The scalar field 𝜙(𝑥) is assumed to exhibit Galilean invariance [30],

which leads to the action in 𝑑 + 1 spacetime dimensions

𝑆flat = ∫ 𝑑𝑑+1𝑥 ( 𝑖
2 [ ̄𝜙𝜕𝑡𝜙 − (𝜕𝑡

̄𝜙)𝜙] − 1
2𝑚 |∇𝜙|2) . (1.40)

6In a Heisenberg ferromagnet, if the spin orders along the ̂𝑧 axis, there are two modes of spin
fluctuation, describing pertubations in the 𝑥̂ and ̂𝑦 directions. These two modes are in fact canonically
conjugate, and combine together into a single 𝑈(1) charged Goldstone mode. This is the essence of
the Type-II mode we investigate further in Chapter 5.
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We would like to promote this to a theory in the presence of a curved spacetime

metric. This is accomplished by introducing the metric tensor ℎ𝜇𝜈, along with the

clock one-form 𝑛𝜇 and the velocity field 𝑣𝜇. These objects are not all independent

but must obey the contraints

𝑛𝜇ℎ𝜇𝜈 = 0 (1.41a)

𝑛𝜇𝑣𝜇 = 1. (1.41b)

Together, these objects make up the Newton-Cartan geometry, which may be in-

terpreted as follows. In NC geometry, spacetime is foliated into spacelike surfaces

which are described by the (degenerate) metric tensor ℎ𝜇𝜈, or technically its inverse

(when restricted to the non-null directions). These spacelike surfaces are in fact

one-forms determined by the clock one-form 𝑛𝜇. If 𝑑𝑥𝜇 is an infinitesimal displace-

ment between two spacetime events, then 𝑑𝜏 = 𝑛𝜇𝑑𝑥𝜇 serves as an invariant notion

of the elapsed time. The flow of time is essentially determined to be normal to

the spacelike surfaces and is locally generated by the velocity vector field 𝑣𝜇. We

therefore see that the causal structure of Newton-Cartan geometry is very different

than that of the Einsteinian relativity, and is closer to our naïve notion of “absolute

time.”

We can use these objects to upgrade the field theory action 𝑆flat to the curved

space action

𝑆curved = ∫ 𝑑𝑑+1𝑥√−𝑔 ( 𝑖
2 [ ̄𝜙𝑣𝜇𝜕𝜇𝜙 − (𝑣𝜇𝜕𝜇

̄𝜙)𝜙] − 1
2𝑚ℎ𝜇𝜈 (𝜕𝜇

̄𝜙) (𝜕𝜈𝜙)) . (1.42)
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Here the determinant √−𝑔 is the determinant of the induced metric

𝑔𝜇𝜈 = 𝑛𝜇𝑛𝜈 + ℎ𝜇𝜈 (1.43a)

ℎ𝜈
𝜇 = 𝛿𝜈

𝜇 − 𝑣𝜈𝑛𝜇. (1.43b)

The second equation defines the inverse of the degenerate metric ℎ𝜇𝜈 through its

projection onto the spacelike hyper-surfaces. The curved space action can then be

used to study the behavior of quantum fluctuations in the presence of a non-trivial

background metric. Additionally, variations with respect to the Newton-Cartan

metric can be used to isolate the energy-current, momentum-density, and stress

tensor (momentum current) of the non-relativistic field7, in the spirit of Luttinger’s

method [31–34].

In Chap. 5 we will go on to show how one can realize an analogue NC geometry

in a flowing spinor BEC by using an extension of Goldstone’s theorem for condensed

matter systems. We will then present an explicit model which allows to tune the

nature of the analogue geometry (at the mean-field level) between the Lorentz-

invariant and Newton-Cartan types. We will also use Luttinger’s method to isolate

the energy and momentum transport quantities for the Goldstone modes in the

analogue spacetime.

7In a relativistic theory these are all unified into the symmetric stress-energy tensor 𝑇 𝜇𝜈. In a non-
relativistic system, this four-tensor is no longer required to be symmetric and thus the energy-current
is no longer equal to the momentum-density.
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Chapter 2: Cavity non-equilibrium enhancement of super-

conductivity

This chapter is based on the publication Curtis, Raines, Allocca, Hafezi, and

Galitski [35, © American Physical Society].

2.1 Introduction

The topic non-equilibrium superconductivity is an old and rich subject, dat-

ing back to at least the 1960’s, when it was found that subjecting a conventional

superconductor to strong microwave radiation can lead to an enhancement of su-

perconductivity [36, 37]. The explanation of this effect, sometimes known as the

“Wyatt-Dayem effect, ”was first provided by Eliashberg et. al. [38–40], who showed

that the irradiation yields a non-thermal distribution of the Bogoliubov excitations

with an effectively colder band edge. This theoretical mechanism was then confirmed

experimentally by Klapwijk, et. al. [41]. Further theoretical developments include an

analysis of the thermodynamic stability of the radiation-enhanced superconducting

state [42, 43], and a full kinetic treatment including the non-equilibrium dynamics

of the phonons which are responsible for superconductivity in the first place [44].

Recently, there has been renewed interest in this effect including its theoretical

application to systems of ultra-cold atoms [45, 46], and a full exploration of the

phase diagram using Keldysh path integral methods [47]. A brief, but comprehensive

overview of this subject in the context of microwave enhanced superconductivity

can be found in Ref. [48].

A large degree of the recent interest stems from a number of remarkable “pump-

probe” experiments, which involve subjecting materials to intense THz radiation

pulses (the “pump”) and studying the subsequent out-of-equilibrium dynamics (the
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“probe”). These experiments allow for the experimental study of otherwise elusive

non-equilibrium phases and phase transitions [49, 50]. Applying this method to

superconductors has uncovered a wide array of elusive and surprising phenomena

including the detection of various Higgs modes1 in superconductors [51–54] and

apparent transient superconductivity [55–58] up to very high effective temperatures.

Attempts to theoretically understand these experiments have led to wide array of

models and calculations, most of which go beyond the the quasiparticle redistribution

effect [52, 58–73].

All of these works essentially investigate effects on quantum matter degrees

of freedom (e.g. electrons or phonons) due to the presence of external, classical

electromagnetic fields. It is the aim of this work to extend some of these results into

the regime where quantum and statistical fluctuations of the electromagnetic field

become relevant.

Quickly, let us recapitulate why this is an interesting, but challenging regime.

Generically, the electromagnetic field can be decomposed in to two contributions.

One is from the scalar gauge potential 𝜙, while the other is from the vector gauge

potential A. We write the electric field E and magnetic field B in terms of the

gauge potentials as

E = −∇𝜙 − 𝜕
𝜕𝑡
A (2.1a)

B = ∇ ×A. (2.1b)

The gauge fields 𝜙,A are not directly observable due to gauge invariance. We

must impose a gauge constraint in order to use the gauge fields to describe config-

uration space. Unless otherwise explicitly specified, in this thesis we will use the
1This is particularly remarkable because in a superconductor the Higgs mode is both optically

inert, as it has no dipole-transition matrix elements, and gapped to twice the quasiparticle gap. It is
also damped due to its overlap with the Bogoliubov quasiparticle continuum.
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so-called Coulomb gauge2, which corresponds to choosing ∇ ⋅A = 0, along with the

requirement that gauge fields vanish at spatio-temporal infinity.

This naturally partitions the electric field E into a longitudinal part E∥ = −∇𝜙,

and a transverse part E⟂ = −𝜕A
𝜕𝑡 . Application of Gauss’ law for electrostatics then

reduces to Poisson’s equation

−∇2𝜙 = 1
𝜖0

𝜌, (2.2)

which shows that the scalar potential can be eliminated in favor of the instantaneous

Coulomb interaction (in other words, the scalar potential is slaved to the charge

distribution by Gauss’ law). In a metal, the static Coulomb interaction is then

screened due to the presence of mobile charge carriers, and this remains the case

in most superconductors [7, 9, 13, 74]. Furthermore, the longitudinal photon mode

does not propagate at frequencies below the plasma frequency, which for a bulk metal

is very large. Thus, at low frequencies and long wavelengths, we can essentially

neglect the Coulomb interaction.

In a metal, at low frequencies (below the plasma frequency), transverse electro-

magnetic fields also do not propagate. The primary distinction however is that in

a metal there is no screening of the static transverse field, as there is for a static

longitudinal field. As such, long-range magnetostatic interactions are still present at

low frequencies. However, in metals, which are gapless, the low-frequency excitations

feature electrons with a typical velocity of order 𝑣𝐹 ≪ 𝑐. Thus, radiative corrections

arising from the exchange of virtual photons are expected to be small, as they em-

anate from magnetic interactions which involve current-current interactions and are

thus of order (𝑣𝐹/𝑐)2.3 In superconductors, magnetostatic fields are screened, due
2Also referred to as the radiation or London gauge occasionally.
3In principle, gauge-field mediated interactions are important but in real quantum electrodynamics

the very small coupling renders them essentially unimportant. However, theories which exhibit
emergent gauge fields are not plagued by this problem and in general are quite interesting, albeit
complicated to describe [75–78].
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to the Meissner effect. As such, we expect we can similarly ignore the transverse

interactions, as in this case photons acquire a gap and are irrelevant.

While they are often neglected in solid-state physics, radiative interactions—in-

teractions which involve the exchange of virtual photons—between quantum emitters

(such as atoms or ions) are central to the field of AMO physics [79]. In the simplest

case, the emitters are characterized by a dipole moment operator 𝑒 ̂r, which couples

linearly to the electromagnetic field in the standard way through 𝐻int = −𝑒r̂ ⋅ E.

Provided that retardation effects can be neglected, it is then straightforward to

integrate out the electric field and obtain an effective dipole-dipole interaction be-

tween the emitters. For this purpose, the electromagnetic field can often be treated

classically. Dating back to seminal work by Purcell [80], Dicke [81], and Jaynes and

Cummings [82], a major focus of the field of quantum optics has been the design

and study of systems which push the electrodynamics of matter into the quantum

realm. Often, resonant electromagnetic cavities are employed in order to increase

the light-matter coupling-strength and coherence time-scales. Recently, there has

been a great deal of interest in bringing these phenomena into the regime of solid-

state physics [83, 84], largely inspired by recent breakthroughs involving systems of

exciton-polaritons [85–87].

We will discuss the connection with exciton-polariton systems in more detail in

Chap. 3. In this chapter we focus more on non-equilibrium effects in the spirit of the

Eliashberg effect.4 To understand the proposed enhancement mechanism, consider

the BCS self-consistency equation for the superconducting order parameter Δ. In

its most basic form, this reads

Δ(r, 𝑡) = −𝑔⟨Ψ↓(r, 𝑡)Ψ↑(r, 𝑡)⟩ (2.3)

where the correlation function is evaluated in a possibly non-equilibrium state,
4Not to be confused with the Migdal-Eliashberg theory for strongly-coupled superconductors.
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described by density matrix ̂𝜌, which in turn depends on the order parameter Δ.

Here 𝑔 > 0 is the attractive BCS interaction constant. In a homogeneous steady-

state this can usually be rewritten in terms of the quasiparticle DOS 𝜈qp(𝐸) and

occupation function 𝑛(𝐸) as

1 = 𝑔 ∫ 𝑑𝐸
𝐸

𝜈qp(𝐸) [1
2 − 𝑛(𝐸)] . (2.4)

In BCS theory for a clean 𝑠-wave gap, the density of states is taken as

𝜈qp(𝐸) = 2𝜈𝐹|𝐸|/
√

𝐸2 − Δ2𝜃(|𝐸| − Δ) (2.5)

with 𝜈𝐹 the density of states per spin at the Fermi level5 and 𝜃(𝑥) is the Heaviside

step-function, which enforces that there are no subgap states. Since 𝜈qp depends on

the gap, Eq. 2.4 is in fact a non-linear equation which essentially defines the gap

as a functional of the occupation function, so that Δ = Δ[𝑛(𝐸)]. In equilibrium,

this occupation is simply the Fermi-Dirac distribution, 1
2 − 𝑛(𝐸) = tanh 1

2𝛽𝐸, and

thus the full functional dependence of Δ reduces to a one-parameter dependence

on the temperature. The insight of Eliashberg and company [38–40] is that in

general the thermal occupation function is not optimal and Δ[𝑛] can be increased

by appropriately choosing a non-equilibrium distribution function.6

We will approach the problem as follows. We will first compute the supercon-

ducting mean-field state in terms of Bogoliubov quasiparticles for an equilibrium

gap Δ[𝑛𝐹] with 𝑛𝐹 the Fermi-Dirac distribution at a prescribed temperature. Then

we will couple the electrons to a fluctuating electromagnetic field and determine
5In two dimensions this is explicitly given by 𝜈𝐹 = 𝑚∗/2𝜋 for the non-interacting Fermi gas,

with 𝑚∗ the effective mass.
6However, the gap is still ultimately bounded from above by the zero-temperature occupation

function with 𝑛(𝐸) = 0. Thus, the effect we predict is expected to vanish as we approach zero
temperature, as we essentially run out of available unpaired electrons. Other effects which renormalize
the coupling constant or density of states may still have an effect at 𝑇 = 0.
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how the Bogoliubov quasiparticles are redistributed, computing the correction to

the occupation function 𝛿𝑛(𝐸) = 𝑛(𝐸) − 𝑛𝐹(𝐸). We will then use the gap equation

to determine the correction to the gap, 𝛿Δ = Δ[𝑛𝐹 + 𝛿𝑛] − Δ[𝑛𝐹]. This will be used

to diagnose when the cavity is beneficial, or detrimental, to the superconducting

gap, assumed to be a proxy variable for observables such as the critical temperature

or critical current [41–43]. The remainder of the chapter will be structured similarly.

In Sec. 5.3 we will describe the system we consider and in particular, derive the

spectral function for our model of electromagnetic cavity. In Sec. 2.3 we will use

a kinetic equation to determine the effect that cavity photons have on the occupa-

tion function 𝑛(𝐸). Then, in Sec. 2.4 we will use this correction to the occupation

function to determine the correction to the gap, showing that it can be increased

by appropriate tuning of the cavity spectral and occupation function.

2.2 Model

We begin by considering a model of a 2-Dimensional Electron Gas (2DEG) plus

attractive BCS interaction described by the Hamiltonian

𝐻 = ∫ 𝑑2𝑟 [∑
𝜎

Ψ̂†
𝜎(r) (− ∇2

2𝑚
− 𝜇) Ψ̂𝜎(r) − 𝑔Ψ†

↓(r)Ψ†
↑(r)Ψ↑(r)Ψ↓(r)] . (2.6)

We will couple this to the radiative electromagnetic field in an enclosing cavity,

depicted in Fig. 2.1. This is accomplished by the minimal coupling prescription,

which entails upgrading the regular derivative −𝑖∇ to a covariant derivative D =

−𝑖∇ − A where A is the electromagnetic gauge potential (we set the charge of

the electron to unity). We then supplement the Hamiltonian with the Maxwell

Hamiltonian for the electromagnetic field [79]. For the moment, we will leave the
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Figure 2.1: Schematic depiction of the system. The superconducting sample itself
is oriented in the 𝑥 − 𝑦 plane at 𝑧 = 𝐿/2 and is of a thickness 𝑑 which is much less
than the length scale 𝐿 governing the cavity fundamental harmonic. The cavity is
modeled by a pair of metallic boundary conditions at 𝑧 = 0, 𝐿 and is of an area
𝐴 = 𝐿2

𝑥 ≫ 𝐿2 which is large enough to ignore finite-size effects in the transverse
direction. The fundamental transverse harmonic is shown, which has an anti-node
located 𝑧 = 𝐿/2 and frequency 𝜔0 = 𝜋𝑐/𝐿.

Maxwell Hamiltonian unspecified, so that the total system Hamiltonian is

𝐻 = ∫ 𝑑2𝑟 [Ψ̂†
𝜎 (D

2

2𝑚
− 𝜇) Ψ̂𝜎 − 𝑔Ψ̂†

↑Ψ̂†
↓Ψ̂↓Ψ̂↑] + 𝐻Maxwell. (2.7)

In this chapter we will work with units where the electronic charge 𝑒 = 1. Through-

out we will employ the radiation gauge ∇ ⋅A = 0. A detailed solution to Maxwell’s

equations for the planar cavity geometry and the quantization of the electromagnetic

field can be found in Appendix A.

The BCS interaction is decoupled via standard mean-field theory, and the re-

sulting BdG Hamiltonian is diagonalized with a Bogoliubov transformation. In
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momentum space, with ̂𝑐p, the second-quantized electron operators, we find

⎛⎜⎜
⎝

̂𝑐p,↑

̂𝑐†
−p,↓

⎞⎟⎟
⎠

= ⎛⎜⎜
⎝

𝑢p −𝑣p

𝑣p 𝑢p

⎞⎟⎟
⎠

⎛⎜⎜
⎝

̂𝛾p,+

̂𝛾†
−p,−

⎞⎟⎟
⎠

(2.8a)

𝑢p = √1
2

(1 +
𝜉p
𝐸p

) (2.8b)

𝑣p = √1
2

(1 −
𝜉p
𝐸p

), (2.8c)

where ̂𝛾p± are the Bogoliubov quasiparticle annihilation operators, 𝐸p = √𝜉2
p + Δ2

is the quasiparticle dispersion, and 𝜉p = p2/2𝑚 − 𝜇 is the normal state electron

dispersion.

Likewise, we diagonalize the cavity Hamiltonian, finding the normal modes in

the absence of the electrons. The details of this can be found in Appendix A. One

important effect the cavity has is that the frequencies of the electromagnetic modes

become quantized by finite-size boundary conditions. This leads to a dispersion

relation for photons with in-plane momentum q of

𝜔𝑛,q = √(𝑛𝜋𝑐
𝐿

)
2

+ 𝑐2q2 ≡ √𝑛2𝜔2
0 + 𝑐2q2 (2.9)

where 𝑛 = 1, 2, 3, ... indexes the harmonic of the confined mode.

The interaction between the Bogoliubov quasiparticles and photons is treated

perturbatively. To lowest order, the coupling between the two is given by the

paramagnetic interaction

𝐻 int = − ∫ 𝑑𝑑𝑟j(r) ⋅A(r, 𝑡) (2.10)
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where the paramagnetic current is given in terms of the electron fields by

j = ∑
𝜎

1
2𝑚

Ψ̂†
𝜎 [−𝑖 ⃡⃡⃡⃡⃡∇⃡] Ψ̂𝜎. (2.11)

We use the “symmetrized” derivative notation to mean 𝑓 ⃡𝜕𝑔 = 𝑓(𝜕𝑔) − (𝜕𝑓)𝑔.

Crucially, the mean-field we evaluate the current matrix elements in is not the

Fermi sea background, but the BCS state. As such, the interaction which is diagonal

in electron operators is no longer diagonal when written in terms of Bogoliubov

quasiparticles. We apply the momentum space rotation matrix from Eq. 2.8 to the

momentum-space current in order to obtain the matrix elements in terms of the

quasiparticles. This produces the result

jq = ∫
𝑝

p− 1
2q

𝑚
[(𝑢p−q𝑢p + 𝑣p−q𝑣p) (𝛾†

p−q,+𝛾p,+ + 𝛾†
p−q,−𝛾p,−)

+ (𝑢p−q𝑣p − 𝑣p−q𝑢p) (𝛾†
p−q,+𝛾†

−p,− − 𝛾p,+𝛾−(p−q),−)] , (2.12)

where we use the shorthand ∫
𝑝
⋯ = ∫ 𝑑2𝑝⋯ /(2𝜋)2. We see there are three types of

matrix element appearing in Eq. (3.7), corresponding to scattering (by both emis-

sion and absorption of photons), pair-breaking, and pair-recombination respectively.

Through these processes, the fluctuating cavity photon field will induce transitions

amongst the quasiparticle eigenstates, resulting in a redistribution of the quasipar-

ticle occupations. In order to calculate the effect of this redistribution, we will use

a kinetic equation.

2.3 Kinetic Equation

We are interested in the non-equilibrium occupation of Bogoliubov quasiparticles

due to the cavity photons. To model this, we consider a kinetic equation for the

occupation function 𝑛p. In general, the occupation function is obtained by the
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Wigner transform of the two-argument Keldysh Green’s function and is function of

both space and momentum.

In the absence of collisions, the kinetic equation only has streaming (one-body)

terms, which arise from the Liouville equation for conservation of phase-space volume

𝑑𝑛
𝑑𝑡

≡ [ 𝜕
𝜕𝑡

+ vp ⋅ 𝜕
𝜕r − Fext ⋅ 𝜕

𝜕p] 𝑛 = 0 (2.13)

where vp = 𝜕p𝐸p is the quasiparticle group velocity and Fext models the external

one-body forces.

In addition to the streaming terms, we also model inelastic scattering processes

(e.g. due to phonons) by a relaxation-time approximation, with rate 1
𝜏in
, which draws

the quasiparticle distribution back towards the equilibrium distribution 𝑛𝐹, held at

temperature 𝑇qp. Including this term, we get

𝑑𝑛
𝑑𝑡

= − 1
𝜏in

(𝑛 − 𝑛𝐹) . (2.14)

The relaxation time approximation used here is the same that was used in the

original work of Eliashberg [40–42].

We incorporate the effect of cavity through a collision integral ℐcav[𝑛], which

will be calculated using Fermi’s Golden Rule (FGR). This produces the full kinetic

equation

[ 𝜕
𝜕𝑡

+ vp ⋅ 𝜕
𝜕r − Fext ⋅ 𝜕

𝜕p] 𝑛 = ℐcav[𝑛] − 1
𝜏in

(𝑛 − 𝑛𝐹) . (2.15)

We aim to solve this for a homogeneous steady-state in the absence of external

forces. In this case, we can set the 𝑑𝑛
𝑑𝑡 to zero. In the limit where 𝜏in is small, we

can proceed further by perturbatively solving for the deviation from equilibrium
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𝛿𝑛 = 𝑛 − 𝑛𝐹.7 To lowest order, the correction is

𝛿𝑛 = 𝜏inℐcav[𝑛𝐹]. (2.16)

To compute the cavity-induced collision integral, we rely on FGR, applied to

both the pairing/de-pairing and scattering processes implied by the paramagnetic

coupling. The result is

ℐcav[𝑛] = ∫
𝑝′

{Γpair
p,−p′[(1 − 𝑛p)(1 − 𝑛−p′)𝑁(𝐸p + 𝐸−p′)

− (𝑛p𝑛−p′ (𝑁(𝐸p + 𝐸−p′) + 1)) ]

+ (Γscat
p′→p[𝑛p′ (1 − 𝑛p) (𝑁(𝐸p′ − 𝐸p) + 1)

− (1 − 𝑛p′) 𝑛p𝑁(𝐸p′ − 𝐸p)] − (p ↔ p′) )}

(2.17)

with the Γ’s given by

Γpair
p,−p′ = 1

2𝜖0𝜔p−p′
∑

𝛼
∣ ⃗𝜖𝛼,p−p′ ⋅ (p+ p′

2𝑚
) ∣

2

× (𝑢p𝑣−p′ − 𝑢−p′𝑣p)2 𝒜p−p′ (𝐸p + 𝐸−p′)

(2.18a)

Γscat
p→p′ = 1

2𝜖0𝜔p−p′
∑

𝛼
∣ ⃗𝜖𝛼,p−p′ ⋅ (p+ p′

2𝑚
) ∣

2

× (𝑢p𝑢p′ + 𝑣p′𝑣p)2 𝒜p−p′ (𝐸p − 𝐸p′) .

(2.18b)

These contain the dependence on the cavity mode polarization vectors ⃗𝜖𝛼q(𝑧 = 𝐿/2),
7We require that 𝜏in be small compared to the other relaxational time scales, so that to leading

order the solution to the kinetic equation is thermal, with a small correction of 𝑂(𝜏in). However,
we still impose the “Eliashberg” limit, which requires that 𝜏in = 1/𝛾in be large compared to other
spectral energy scales. In particular, this is because at 𝑂(𝐴2) there is also a correction to the
density-of-states due to depairing energy. In the Eliashberg limit of small 𝛾in, this can be neglected
in comparison to the large kinetic effect. See Appendix B or Ref. [41].
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the (momentum resolved) photon spectral function

𝒜q(𝜔) = 1/𝜏cav
(𝜔 − 𝜔q)2 + (1/2𝜏cav)2 , (2.19)

with photon lifetime 𝜏cav, and the squares of BCS coherence factors

(𝑢p𝑣−p′ − 𝑣−p′𝑢p)2 = 1
2

(1 −
𝜉p𝜉−p′ + Δ2

𝐸p𝐸−p′
) (2.20)

(𝑢p𝑢p′ + 𝑣p𝑣p′)2 = 1
2

(1 +
𝜉p𝜉p′ + Δ2

𝐸p𝐸p′
) . (2.21)

Utilizing the detailed balance properties of thermal equilibrium, we will show that

in fact this correction depends only the deviation of the photon occupation function

𝑁(𝜔) from being in equilibrium with the quasiparticles

𝛿𝑁cav(𝜔) ≡ 𝑁(𝜔) − 𝑛𝐵 ( 𝜔
𝑇qp

) , (2.22)

where 𝑛𝐵(𝑧) = (𝑒𝑧 − 1)−1 is the Bose occupation function.

Up until this point we have assumed that the system is translationally invariant,

with momentum being a good quantum number. A consequence of this is that in

addition to energy conservation, the matrix elements also must obey conservation of

momentum. This dramatically restricts the phase space available for interaction. We

incorporate impurity scattering within the quasiclassical approximation, essentially

following the prescription of Mattis and Bardeen [88]; a more rigorous treatment in

terms of the Keldysh Nonlinear 𝜎-Model [47, 89, 90] and related Usadel equation [91]

can be found, e.g. in Appendix B. The end result is that we may replace the FGR

rates appearing in the collision intergrals with the 𝜏el/𝜈𝐹 times the Fermi-surface
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averaged rates. Explicitly, these read

Γpair(𝐸, 𝐸′) = ∫ 𝑑2𝑞
(2𝜋)2 ∑

𝛼

𝒜q (𝐸 + 𝐸′)
2𝜖0𝜔q

𝜏el
𝜈𝐹

∣ ⃗𝜖𝛼,q ⋅ (p+ p′

2𝑚
) ∣

2

× 1
2

(1 − Δ2

𝐸𝐸′ )
2

(2.23a)

Γscat(𝐸, 𝐸′) = ∫ 𝑑2𝑞
(2𝜋)2 ∑

𝛼

𝒜q (𝐸 − 𝐸′)
2𝜖0𝜔q

𝜏el
𝜈𝐹

∣ ⃗𝜖𝛼,q ⋅ (p+ p′

2𝑚
) ∣

2

(1 + Δ2

𝐸𝐸′ )
2

.

(2.23b)

Here 𝐸, 𝐸′ are the energies of the participating quasiparticle states (previously la-

beled by their momenta p,p′). We have discarded terms in the coherence factors

which are odd in 𝜉, the quasiparticle kinetic energy, as these vanish in the qua-

siclassical approximation. The overline indicates an angular averaging of the

velocity operator matrix element. Since q, the photon momentum, and p,p′ the

quasiparticle momenta, are decoupled we can easily average this.

The result of this procedure is a collision integral which is a function of the

quasiparticle energy only. The integral over the quasiparticle momentum p′ becomes

an integral over the quasiparticle energy, weighted by the density of states. We insert

the transition rates from Eq. (2.23a) in to Eq.(2.16) to obtain the correction to the

occupation function. Evaluating the correction to the quasiparticle distribution

function and manipulating the resulting expression, we find

𝛿𝑛(𝐸) = 𝜏in ∫
∞

−∞
𝑑Ω𝐽cav(Ω)𝛿𝑁cav(Ω)𝐾(Ω, 𝐸), (2.24)

where 𝐾(Ω, 𝐸) = 𝑓(Ω, 𝐸) + 𝑓(−Ω, 𝐸) − 𝑓(−Ω, −𝐸), with

𝑓(Ω, 𝐸) =
𝜈qp(𝐸 − Ω)

𝜈𝐹
×

1
2

(1 + Δ2

𝐸(𝐸 − Ω)
) [𝑛𝐹 (𝐸 − Ω

𝑇qp
) − 𝑛𝐹 ( 𝐸

𝑇qp
)] . (2.25)
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Figure 2.2: Depiction of the three processes taken into account in the occupation
function correction in Eq. (2.24). These are shown alongside the equilibrium occupa-
tion function 𝑛𝐹(𝐸/𝑇qp). The top red arrows correspond to 𝑓(−Ω, 𝐸) and describe
the absorption of a photon of energy Ω and subsequent scattering out of state 𝐸 and
into state 𝐸′ = 𝐸 + Ω, along with the detailed-balance partner. The middle green
arrows correspond to 𝑓(Ω, 𝐸) and describe the absorption of a photon of energy Ω
and subsequent scattering into state 𝐸 from state 𝐸′ = 𝐸 + Ω, along with the
detailed-balance partner. Finally, there are the blue arrows showing pair breaking
processes, corresponding to 𝑓(−Ω, −𝐸). These occur via absorption of a photon of
energy Ω = 𝐸 + 𝐸′ > 2Δ, resulting in the population of both states 𝐸 and 𝐸′, and
the detailed balance partner which describes annihilation of states 𝐸 and 𝐸′ by
emission of a photon of energy Ω = 𝐸 + 𝐸′ > 2Δ.
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Here 𝜈qp is the quasiparticle density of states from Eq. (2.5), which includes the

Heaviside step-function corresponding to the gap. The three 𝑓 terms appearing in

𝐾(Ω, 𝐸) are depicted schematically in Fig. 2.2, alongside the various processes they

describe.

After the Fermi-surface average, the coupling to the cavity is effectively charac-

terized by the coupling function

𝐽cav(Ω) = 4𝜋𝛼𝑐𝐷 ∫ 𝑑2q
(2𝜋)2

𝒜q(Ω)
2𝜔𝑞

∑
𝛼

| ⃗𝜖𝛼q,∥|2, (2.26)

where 𝐷 = 𝑣2
𝐹𝜏el/2 is the electronic diffusion constant and ⃗𝜖𝛼q,∥ indicates that only

the in-plane components of the polarization vector contribute. It is instructive to

consider estimating 𝐽cav(Ω) for the case of the planar cavity model (see Appendix A).

In this case, we can convert the integral over q into an integral over the frequency

using 𝑞𝑑𝑞 = 𝜔𝑑𝜔/𝑐2. We approximate the polarization vectors by ∑𝛼 | ⃗𝜖𝛼q,∥|2 ∼
1
𝐿 ∼ 𝜋𝜔0/𝑐 with 𝜔0 the lower cutoff frequency on the cavity. Finally, the integral

over the spectral function is essentially a step function 𝜃(Ω − 𝜔0), consistent with

the fact that the density of states of a parabolic band in two dimensions is constant.

We ultimately see that

𝐽cav(Ω) ∼ 𝛼𝐷𝜔0/𝑐2𝜃(Ω − 𝜔0).

All else equal, decreasing the cavity size increases 𝜔0 and therefore the strength of

the effect. However, we also need to take care that 𝜔0 remains at relevant energy

scales.

For a BCS gap of order Δ = 10K we find a corresponding resonance frequency

𝜔0 ∼ 200GHz. Recently, a number of advances have lead to large enhancements in

the strength and tunability of the light-matter coupling strength in this frequency

regime, such that 𝐽cav(Ω) may potentially exceed what is expected from our simple
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planar cavity model by many orders of magnitude [92–96]. We incorporate this

fact by re-scaling the spectral function 𝐽 by a phenomenological factor 𝑋2, so that

𝐽(Ω) → ̃𝐽(Ω) = 𝑋2𝐽cav(Ω).8

We illustrate the change in quasiparticle occupation in Fig. 2.3. To compute this,

we choose the enhancement factor 𝑋2 = 133, corresponding to roughly a 10-fold

enhancement of the electric field strength relative to our model, which essentially is

to counteract the fine structure constant 𝛼 = 1/137. We use parameters 𝑣𝐹/𝑐 = .02,

𝜏el𝑇𝑐 = .2, and 𝜏in𝑇𝑐 = 100.0. We hold the quasiparticle temperature fixed at

𝑇qp/𝑇cav = .95, and use the Ginzburg-Landau formula for the equilibrium value of

the gap of

Δ0 = √ 8𝜋2

7𝜁(3)
𝑇𝑐(𝑇𝑐 − 𝑇qp). (2.27)

We then study the correction to the occupation function 𝛿𝑛(𝐸) for two different

cavity frequencies 𝜔0/Δ0 (indicated), while holding the cavity temperature fixed at

𝑇cav/𝑇qp = .5. For the “multi-mode” case, with 𝐽cav described by the planar mirror

model, we set 𝜅 = 0 so that the spectral function is essentially a momentum-averaged

delta function. This is possible since in the multi-mode case, the effect we predict

turns out to not depend strongly on the amount of cavity broadening.

The kinks in 𝛿𝑛(𝐸) (labeled A,B, and C, see Fig. 2.3) are due to the step-function

𝜃(𝑥) in the function 𝑓(𝐸, Ω), which in turn reflects the sharp cutoff in the electronic

DOS at the gap. In the presence of a finite quasiparticle lifetime (which we have

neglected here) this would be smoothed out.

We see that when the cavity frequency 𝜔0 is too small relative to Δ0 (orange

curve in Fig. 2.3), there is a build-up of low-energy excitations and a corresponding

depletion of the higher-lying states. In essence, the quasiparticles are cooled by
8The fact that this is 𝑋2 rather than 𝑋 is largely convention. If we assume that the enhancement

comes from the electric field strength being larger than predicted by our model by a factor of 𝑋,
so that Eactual ∼ 𝑋Emodel, then we would expect the spectral function 𝐽 to receive an enhancement
factor of 𝑋2, since the spectral function 𝐽 ∼ ⟨𝐸𝐸⟩ is related to the auto-correlation function of the
electric field.
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Figure 2.3: Change in quasiparticle distribution function due to cavity photons. This
depends on the overall constant 𝜋𝛼𝑋2𝐷𝜏in/𝑐2. We choose parameters 𝑋2 = 133,
corresponding to roughly a 10-fold enhancement of the electric field strength relative
to our model, and set 𝜋𝛼𝐷𝜏in𝑇 2

𝑐 /𝑐2 = 9.17 × 10−5 with 𝑇𝑐 set to unity. The two
curves are at the same temperature (𝑇cav/𝑇qp = 0.5) but different cavity frequencies
𝜔0/Δ0. For low cavity frequency (orange), the gap Δ is diminished due to an
accumulation of cooler quasiparticles near the gap-edge, due to a down-scattering of
particles. For higher cavity frequency (blue), the recombination processes are more
dominant and lead to a net reduction in quasiparticles, enhancing the gap Δ. The
kink-features labeled 𝐴 and 𝐶 reflect the onset of the term 𝑓(Ω, 𝐸) in Eqn. (2.24),
which is only non-zero for 𝐸 > 𝜔0 + Δ0. At higher cavity frequencies (𝜔0 > 2Δ0) an
additional kink-feature (located at 𝐵) emerges at 𝐸 = 𝜔0 − Δ0. For 𝐸 < 𝜔0 − Δ0,
the term 𝑓(−Ω, 𝐸) (which represents the pair-processes) contributes over the entire
integration region of Ω > 𝜔0, while for 𝐸 > 𝜔0 − Δ0 the integral only captures some
of the frequencies where this term contributes.
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the cavity (which has a lower temperature) primarily through the loss of kinetic

energy. Since the number of photons at a given frequency drops off rapidly with

energy, most of the photons have energy 𝜔 ∼ 𝜔0, which is not enough to stimulate

recombination of Bogoliubov quasiparticles.

On the other hand, for larger cavity frequencies 𝜔0 relative to Δ0 (blue curve in

Fig. 2.3), the dominant effect is an overall reduction in the number of quasiparticles,

especially at low frequencies. In this case, the quasiparticles are cooled primarily

through an enhanced recombination rate and subsequent depletion of total quasi-

particle number.9 This reduction in quasiparticle occupation will now be shown to

enhance the superconducting gap, as outlined in the introduction and Sec. 2.1.

2.4 Results

In order to simplify the calculation, we will study the system in the Ginzburg-

Landau (GL) regime (𝑇qp ≲ 𝑇𝑐), which allows us to expand the gap equation in

powers of Δ. Including the non-equilibrium distribution function contribution [42,

43], this results in

(
𝑇𝑐 − 𝑇qp

𝑇𝑐
− 7𝜁(3)

8𝜋2
Δ2

𝑇 2
𝑐

− 2 ∫
∞

Δ

𝑑𝐸
𝐸

𝜈qp(𝐸)
𝜈𝐹

𝛿𝑛(𝐸)) Δ = 0. (2.28)

To leading order in the gap change, we obtain the correction to the BCS gap

𝛿Δ
Δ0

= − 𝑇𝑐
𝑇𝑐 − 𝑇qp

∫
∞

Δ0

𝑑𝐸
𝐸

𝜈qp(𝐸)
𝜈𝐹

𝛿𝑛(𝐸). (2.29)

This is plotted in Fig. 2.4(a) as a function of the cavity frequency 𝜔0 for different

photon temperatures relative to the quasiparticle temperature 𝑇qp. The enhancement

is ultimately driven by the enhanced BQP recombination rate which, for a cold
9We note that Bogoliubov quasiparticles are not conserved in general, and thus can be annihilated

(in pairs). As such, there is no chemical potential to fix their total density.

39



1 2 3 4 5 6 7 8
ω0/∆0

0.00

0.02

0.04

0.06

0.08

0.10

0.12

δ∆
/∆

0

0.50
0.75
0.90
1.00

Figure 2.4: Relative enhancement of the gap function as a function of cavity fre-
quency 𝜔0 for a particular value of the overall scaling constant 𝜋𝛼𝑋2𝐷𝜏in/𝑐2 (we
take 𝑋2 = 133 and 𝜋𝛼𝐷𝜏in𝑇 2

𝑐 /𝑐2 = 9.17 × 10−5 with 𝑇𝑐 set to unity). Curves are
colored and labeled according to the ratio 𝑇cav/𝑇qp, comparing the photon and quasi-
particle temperatures. The enhancement is seen set in after the cavity frequency
surpasses the pair-breaking energy 2Δ0.
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photon reservoir serves to remove detrimental quasiparticles. While the effect we

predict here essentially relies on the cooling ability of the cold photon reservoir, we

also remark that our formula for 𝛿𝑛(𝐸), presented in Eq. (2.24), is valid for a wide-

variety of photon spectral functions. In particular, we can replace the multi-mode

planar cavity, original envisioned in the model and depicted in Fig. 2.1, with a single-

mode cavity. The main difference between these two is that the multi-mode spectral

function only has a lower-cutoff on frequency, while the single-mode spectral function

is peaked around a finite frequency and thus also has an upper-cutoff frequency.

We therefore also calculate the effect on the gap for the case of a single-mode

spectral function. The multi-mode cavity spectral function is evaluated in the limit

of vanishing cavity line-width 𝜅 → 0, which gives

𝐽multi−mode(Ω) = 𝛼𝐷𝑋2𝜔0
𝜋𝑐2 𝜃(Ω − 𝜔0) (1 + 𝜔2

0
Ω2 ) , (2.30)

where we have replaced 1/𝐿 with 𝜔0/(𝜋𝑐) and included the phenomenological en-

hancement parameter 𝑋2 explicitly10. We may also consider a single-mode cavity,

in which there is finite-size quantization in all three dimensions. If we consider a

simple model of a cubic cavity, with linear dimension 𝐿 ∼ 𝜋𝑐/𝜔0, and assume this is

larger than the relevant electronic length-scales, then the relevant spectral function

𝐽cav will instead be

𝐽single−mode(Ω) = 4𝛼𝐷𝑋2𝜔2
0

𝜋2𝑐2
2𝜅

(Ω − 𝜔0)2 + 𝜅2 , (2.31)

where we see that now the cavity linewidth 𝜅 is more important as it smoothes the
10The last factor, 1 + 𝜔2

0/Ω2, varies from 2 at Ω = 𝜔0 to 1 at high-frequencies, and essentially
counts the number of modes with in-plane polarization. In the planar cavity model, one polarization
is always in-plane, while one rotates as a function of momentum from in-plane at low frequencies to
out-of-plane at high-frequencies. This will in general be non-universal and model dependent, as it
depends on the magnitude of the projection of the electric field onto the sample, which is in general
not as simple as the planar-mirror model.
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other-wise delta-function resonance into a Lorentzian. Here we have used that the

lowest mode of the cubic cavity has a frequency which scales as 𝜔0 = 𝜋𝑐/𝐿 (again,

this is partially decoupled from the actual volume through the enhancement factor

𝑋2, which is determined by the effective mode-volume).

In particular, switching from a multi-mode planar cavity, where 𝐽cav(Ω) ∼ 𝜔0(1+

𝜔2
0/Ω2)𝜃(Ω − 𝜔0) is roughly constant for Ω > 𝜔0, to a simpler single-mode cavity,

where 𝐽cav ∼ 𝜔2
0

2𝜅
(Ω−𝜔0)2+𝜅2 is peaked at the resonant frequency, will allow for an

enhancement in 𝛿Δ even when the photon reservoir is hotter than the sample. This

is explicitly demonstrated in Fig. 2.5, where we plot 𝛿Δ against 𝜔0 for the case of a

single-mode 𝐽cav(Ω). The enhancement in 𝛿Δ due to hot photons is now qualitatively

similar to the classical Eliashberg effect, albeit with a narrow spectral broadening

applied to the driving. For cold photons, the enhancement is similar to that seen in

the multi-mode system and results from the photons cooling the sample via enhanced

BQP recombination.

In conclusion, we have generalized the classical Eliashberg effect to include both

quantum and thermal fluctuations, as realized by a thermal microwave resonator

cavity. In the appropriate parameter regime, we show that the photonic reservoir can

be used to drive the quasiparticles into a non-equilibrium state which enhances the

superconducting gap Δ. In our calculation, we assumed that the cavity relaxation

rate 𝜏−1
cav was fast, allowing us to essentially ignore the dynamics and kinetics of the

photons themselves, treating them as a quenched reservoir. We should not expect

this to remain the case when we go to the limit of a high-quality cavity, in which

the relaxation rate 𝜏−1
cav is no longer small compared to all the other energy scales in

the problem. In the high-quality limit, a more elaborate treatment which treats the

joint evolution of fermion-photon system is required. Though potentially much more

complicated, the inclusion of photons as a participating dynamical degree of freedom

may unveil many new and interesting phenomena. These range from the formation
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Figure 2.5: Gap enhancement 𝛿Δ0 for a single-mode cavity, for both cold and hot
photons. The y-axis is determined by the overall scale 4𝜋

(𝜋
√

3)3 𝛼𝑋2 𝐷𝜏in𝑇 2
𝑐

𝑐2 with the
same values chosen for 𝑋2 and 𝜏in, 𝜏el, 𝑣𝐹/𝑐 as in Fig. 2.4. Curves are colored and
labeled according to the ratio 𝑇cav/𝑇qp, comparing the photon and quasiparticle
temperatures. Here the cavity width is held fixed at 1/2𝜏cav = 10𝜔0.
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of new collective modes (including polaritons) [97, 98], superradiant phases [83, 99],

and potentially photon-mediated superconductivity [100]. The prospect of exploring

the full breadth of these joint matter-gauge systems is an exciting development in

the fields of quantum optics and condensed matter physics.
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Chapter 3: Cavity Bardasis-Schrieffer superconducting po-

laritons

This chapter is based on the publication Allocca, Raines, Curtis, and Galitski

[98, © American Physical Society].

3.1 Introduction

Strong light-matter interaction has been a field of continuing interest for many

years [101], with exciton polaritons [102] in particular garnering much attention.

Formed from strong coupling between microcavity photons and excitons within a

semiconductor, exciton-polaritons and their condensation at high temperatures are

by now a well-established experimental milestone [86, 103–106]. These systems have

recently seen application in the quantum simulation of solid state physics [107–

110], acoustic black hole physics [111], and topological properties of quasicrystal

states [112].

Recently, there has been some activity in trying to extend the ideas of exciton-

polariton systems into the realm of superconducting systems. At a base level, the

motivation for this is simple; if one can achieve comparable condensation tempera-

ture and superfluidity in a superconductor as one can in exciton-polariton systems,

one would effectively have a room-temperature superconductor. Pursuing this line

of reasoning, some works have proposed that semiconductor exciton-polariton con-

densates may be used as the “pairing-glue” for Cooper pairs in a nearby metal [113,

114], while even more recent proposals have raised the possibility of the cavity

electromagnetic field directly enabling, or enhancing, superconductivity [35, 83, 97,

100]. However, though there is a superficial similarity between the quasiparticle

spectra of semiconducting and (𝑠-wave) superconducting systems, the off-diagonal
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order of a superconductor complicates the matter of realizing a direct analogy of

exciton-polaritons in superconductor systems.

As it turns out, the existence of exciton-like objects in a superconductor has

already been investigated, dating back to work by Bardasis and Schrieffer not long

after the development of BCS theory [16]. In this work, the authors found that

in general superconductors support collective modes, dubbed BS modes,1 which

can be thought of as Cooper-pairs forming in excited bound-states with respect to

the condensate. More precisely, BS modes are un-damped collective modes which

reside within the BCS gap, and are due to fluctuations of the superconducting order

parameter in a subdominant pairing channel. Furthermore, due to Landau damping,

the phase of this collective mode is pinned to 𝜋/2 relative to that of the background

condensate.2 Typically 𝑑-wave fluctuations are considered about an 𝑠-wave ground

state, since these both belong to the same spin multiplet. This is what we will

consider in this chapter.

Experimental evidence of the BS mode has been long sought, but historically it

has been difficult to detect since it does not linearly couple to the electromagnetic

field; only recently has it been observed through Raman spectroscopy in iron-based

materials [115–117]. In reality, and in particular in iron-based superconductors,

a variety of multiband effects are known to complicate the identification of BS

modes [118]. For simplicity, we will neglect these effects.

In this chapter we will instead show how one can use a cavity setup, illustrated

in Fig. 3.1, to hybridize photons with these BS modes, realizing the superconducting

analogy of exciton-polaritons. In Sec. 3.2 we will introduce the model we study and
1While the acronym may imply a degree of skepticism, the physics behind this is very solid.
2At zero momentum and zero temperature the Bardasis-Schrieffer collective mode

satisfies the linear equation [𝑔𝑠
−1 − 𝑔𝑑

−1 − 1
2 ∫ 𝑑𝐸

|𝐸| 𝜈qp(𝐸) (Ω𝐵𝑆)2−2Δ2

(Ω𝐵𝑆)2−(2𝐸)2 ] Δ𝑑(Ω𝐵𝑆) +
Δ2 ∫ 𝑑𝐸

|𝐸| 𝜈qp(𝐸) 1
(Ω𝐵𝑆)2−(2𝐸)2 Δ̄𝑑(−Ω𝐵𝑆) = 0, with 𝜈qp(𝐸) the Bogoliubov quasiparticle den-

sity of states. For 𝑔−1
𝑠 − 𝑔−1

𝑑 < 0, in order for us to find ΩBS < Δ (that is, a collective mode which
cannot decay in to quasiparticle pairs), we must have Δ𝑑(Ω𝐵𝑆) + Δ̄𝑑(−Ω𝐵𝑆) = 0. This fixes the
relative phase to 𝜋/2.
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Figure 3.1: Schematic depiction of the cavity-superconductor system. This is similar
to the setup used in Chapter 2, but now the superconductor has strong sub-dominant
pairing fluctuations in the 𝑑𝑥2−𝑦2 channel, shown in the figure against the 𝑠-wave
pair condensate. The flowing supercurrent (see Sec. 3.3) is also depicted.

show how Bardasis-Schrieffer modes arise. Then, in Sec. 3.3 we will show how to

derive the hybridization and compute the Hamiltonian for the resulting polaritonic

system. Finally, we will present an outlook in Sec. 3.4.

3.2 Model

We will begin with a model similar to the one discussed in Chap. 2, but now

with the inclusion of a subdominant pairing interaction in the 𝑑𝑥2−𝑦2 channel. We

describe the system using a Matsubara action 𝑆[Ψ̄, Ψ], with Grassmann fields Ψ, Ψ̄

describing the electron fields. The partition function of the system is then given by

the functional integral 𝑍 = ∫ 𝒟[Ψ, Ψ̄]𝑒−𝑆. The action is most compactly written in

momentum space as

𝑆 = ∑
𝑝𝜎

Ψ̄𝑝𝜎 (−𝑖𝜀𝑛 + 𝜉p) Ψ𝑝𝜎 − ∑
𝑞

∑
ℓ=𝑠,𝑑

𝑔ℓ𝜑ℓ
𝑞𝜑ℓ

𝑞, (3.1)
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with 𝑝 = (𝑖𝜀𝑛,p) the fermionic four-momentum3 of the electron, 𝑞 = (𝑖Ω𝑚,q) is the

bosonic four-momentum of what will become the superconducting order parameter,

and 𝜎 labels the 𝑧-projection of the electron spin. Here 𝑔ℓ is the interaction strength

of the ac interaction in the ℓ-th channel. We have written the interaction in terms

of the bilinears,

𝜑ℓ
𝑞 = 1√

𝛽Vol
∑

𝑘
𝑓ℓ(𝜙k)𝜓−𝑘+ 𝑞

2 ,↓𝜓𝑘+ 𝑞
2 ,↑. (3.2)

Here we have normalized according to the 2 + 1𝑑 spacetime quantization volume

𝛽Vol.4 Importantly, following Bardasis and Schrieffer [16] we assume the interaction

is sizable in both 𝑠-wave and 𝑑-wave channels, but a stronger 𝑠-wave component,

𝑔𝑠 > 𝑔𝑑, leads to a purely 𝑠-wave superconducting ground state. The form factors

are 𝑓𝑠(𝜙k) = 1 and 𝑓𝑑(𝜙k) =
√

2 cos(2𝜙k), where 𝜙k is the angle the momentum

k makes to the 𝑥-axis. This form of the 𝑓𝑑 interaction breaks the full rotational

symmetry of the Fermi surface by choosing an explicit reference axis from which 𝜙𝑘

is measured. This is presumably generated from some anisotropy in the underlying

crystal structure of the system—not explicitly present in our continuum model.

We switch to the description in terms of the Nambu spinor 𝜓𝑝 = (Ψ𝑝↑, Ψ−𝑝↓)𝑇 and

decouple the BCS interaction in both angular momentum channels simultaneously

with a Hubbard-Stratonovich transformation. The resulting action is written in

momentum space as

𝑆 = ∑
𝑘

̄𝜓𝑘 (−𝑖𝜀𝑛 + 𝜉k ̂𝜏3) 𝜓𝑘 + ∑
𝑞

1
𝑔𝑠

|Δ𝑠
𝑞|2 + ∑

𝑞

1
𝑔𝑑

|Δ𝑑
𝑞 |2

+ ∑
𝑘,𝑞

𝜓𝑘+ 𝑞
2

∑
ℓ

1√
𝛽Vol

𝑓ℓ(𝜙k) [Δℓ
−𝑞 ̂𝜏 + Δℓ

𝑞 ̂𝜏†] 𝜓𝑘− 𝑞
2
, (3.3)

3We call it the “four-momentum” since it group the energy and spatial momentum together into
a single momentum as we would in a 3 + 1 dimensional relativistic theory, even though the spatial
dimension is 2 and thus only has 3 = 2 + 1 components.

4In this expression, we have associated q/2 of the total pair-momentum to each electron. However,
this is not a valid procedue for dividing the bosonic Matsubara frequency, which must be associated
as 𝑖𝜔 to one or the other electron. This regularization is understood when evaluating the bubble
diagrams.
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where Ψ𝑘 = (𝜓𝑘,↑, ̄𝜓−𝑘,↓) are Nambu spinors, ̂𝜏𝑖 are the Pauli matrices in Nambu

space with ̂𝜏0 the identity, and Δℓ
𝑞 are the complex Hubbard-Stratonovich decoupling

fields labeled by angular momentum channel. In fact, such a model has been consid-

ered before in, e.g. Ref. [119] as a simplified single-band model of superconductors

with competing 𝑠- and 𝑑-wave instabilities. We now show how to couple these BS

modes to the photons in an enclosing cavity.

The cavity is treated as perfectly reflecting boundaries at 𝑧 = 0, 𝐿. The action

for photons inside the empty cavity is

𝑆cav = 1
2

𝜖0
𝑒2 ∑

𝑞,𝑛,𝛼
𝐴𝛼,𝑛,−𝑞 [(𝑖Ω𝑚)2 − 𝜔2

𝑛(q)] 𝐴𝛼,𝑛,𝑞. (3.4)

The discrete quantum numbers are 𝛼, which indexes the two cavity polarizations

and 𝑛, which labels the transverse modes resulting from the finite-size quantization

in 𝑧, and 𝜔𝑛(q)2 = 𝜔2
𝑛 + 𝑐2q2, with 𝜔𝑛 = 𝑛𝜋𝑐/𝐿, is the dispersion of photons inside

the cavity. We have incorporate the electric charge and dielectric 𝜖0 in to the photon

propagator.

We consider just the 𝑛 = 1 mode and drop the index; all other modes are

higher in energy and far from the resonance we tune to later. We will therefore

suppress the transverse quantum number 𝑛, with 𝜔q understood as being 𝜔1(q),

and so on. The vector potential is written in terms of the polarization vectors as

A𝑞(𝑧) = ∑𝛼 ⃗𝜖𝛼, ⃗𝑞(𝑧)𝐴𝛼,𝑞, with ⃗𝜖𝛼, ⃗𝑞(𝑧) the polarization vectors inside the cavity. For

a detailed derivation of the solution to Maxwell’s equations in the cavity geometry,

see Appendix A. The electron system is located in the middle of the cavity, so only

𝑧 = 𝐿/2 must be considered. Minimal coupling between the cavity photon and

the electron system generates a paramagnetic term proportional to vk ⋅A𝑞, with

the electron velocity operator vk = k/𝑚, and a diamagnetic term proportional to

A2
𝑞 . We will henceforth ignore the diamagnetic term for a number of reasons. In
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particular, it will not allow for hybridization with the solid-state collective modes

at the level of linear response [94], and ultimately only contributes a constant

contribution to the photon polarization operator. This constant is fixed by a sum

rule and is uninteresting for the finite-frequency and momentum scales we are

probing, especially in the presence of any finite amount of disorder [90, 120].

Note that our cavity geometry is chosen for calculation simplicity, but in real

microwave cavities the transverse nature of the of photon amplitude envelope is

more complicated. The effect of this is to increase the strength of the paramagnetic

coupling, which we include via a phenomenological enhancement in the light-matter

coupling term [92–96, 100]. Specifically, we will replace 𝜖0
𝑒2 in the bare electromagnetic

photon propagator with
𝜖0
𝑒2 → 𝜖0

𝑋2𝑒2

corresponding to an enahncement in the electric field strength of a photon mode

due to, e.g. a smaller mode volume.

3.3 Hybridization

In this section we calculate the hybridization energy between the cavity photons

and the BS mode of the enclosed superconducting sample. We first argue that in

order to generate this coupling, we must run a supercurrent through the sample.

3.3.1 Supercurrent

It turns out that due a number of symmetries5, the naive linear coupling between

photons and the BS mode vanishes. In fact, all of these selection rules can be

circumvented by applying a finite supercurrent to the 𝑠-wave condensate, a technique
5These symmetries include Nambu spin-symmetry, rotational symmetry, and inversion symmetry.

Under spatial symmetries, the vector potential 𝐴 transforms as a vector and is obviously trivial
under Nambu-spin rotation. On the other hand, the Bardasis-Schrieffer vertex is off-diagonal in
Nambu space and involves a 𝑑-wave vertex which does not transform as a vector.
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which has already been applied to similar effect in engineering a linear coupling

between photons and the Higgs mode of a superconductor [121].

We now include the effect of this external supercurrent by first applying a uniform

phase gradient to the 𝑠-wave condensate, so that

Δ𝑠 = 𝑒−2𝑖𝑚v𝑆⋅r|Δ𝑠| (3.5)

where 2𝑚 is the effective mass of the Cooper pair and v𝑆 is the superfluid velocity

in the lab-frame. This phase gradient is gauge equivalent to a uniform background

supercurrent, which is seen by applying the unitary transformation 𝒰̂ = 𝑒−𝑖𝑚v𝑆⋅r ̂𝜏3 on

the Nambu spinors. This essentially implements a Galilean transformation into the

frame co-moving with the supercurrent. The action for the electrons (neglecting their

interaction with collective modes) then acquires a Doppler shifting term, becoming

𝑆qp = ∑
𝑝

𝜓†
𝑝 (−𝑖𝜀𝑛 + [ 1

2𝑚
(p+ 𝑚v𝑆 ̂𝜏3)2 − 𝜇] ̂𝜏3 + Δ𝑠 ̂𝜏1) 𝜓𝑝. (3.6)

We have ignored fluctuations of the 𝑠-wave gap and chosen the phase to be real.

Doppler shifting produces two additional terms. One of these, 1
2𝑚v2

𝑆, merely shifts

the chemical potential and for |v𝑆| ≪ 𝑣𝐹 this is much smaller than the Fermi energy

and will henceforth be ignored. The other term generates a linear coupling between

the momentum p and the superfluid velocity v𝑆. Notably, this is in the 𝜏0 channel,

and so each species of quasiparticle will see an opposite shifting (similar to a Zeeman

splitting would).

In addition to the speed of the supercurrent 𝑣𝑆 we can also control the angle the

current flows. In particular, an important parameter is the angle v𝑆 makes with

respect to the axis defined by 𝑓𝑑(𝜙k), as depicted in the inset in Fig. 3.2. This angle

is henceforth denoted 𝜃𝑆. Later we will show this is another important parameter.

Upon minimal coupling to the electromagnetic vector potential, implemented as
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p → p+ 𝜏3A, we see the emergence of new photon-interaction vertices due to the

Doppler shift.6 In particular, we find the interaction

𝑆𝜓−𝐴 = ∑
𝑘,𝑞

̄𝜓𝑘+ 𝑞
2

(( k
𝑚

̂𝜏3 + v𝑆 ̂𝜏0) ⋅ ̂𝜏3
A𝑞√
𝛽Vol

) 𝜓𝑘− 𝑞
2
. (3.7)

As mentioned earlier factors of 𝑒, the electric charge, as well as the phenomeno-

logical electric field strength enhancement factor 𝑋 [92–96, 100] are absorbed into

the photon propagator. Crucially the Nambu structure for the paramagnetic and

supercurrent-induced terms are different, since particle and hole velocities are shifted

oppositely, ultimately allowing the coupling of the BS mode to light.

3.3.2 Mean-Field Expansion

To proceed, we make the mean-field approximation for the 𝑠-wave gap. We then

obtain an effective action describing the 𝑑-wave fluctuations and their interaction

with the cavity photons in terms of the Bogoliubov quasiparticles as

𝑆eff = 𝑆𝑠 + 𝑆𝑑 + 𝑆cav + 𝑆qp (3.8a)

𝑆𝑠 = 𝛽Vol× 1
𝑔𝑠

Δ̄𝑠Δ𝑠 (3.8b)

𝑆𝑑 = ∑
𝑞

1
𝑔𝑑

Δ̄𝑑
𝑞Δ𝑑

𝑞 (3.8c)

𝑆cav = −1
2

𝜖0
𝑒2𝑋2 ∑

𝑞𝛼
𝐴−𝑞𝛼 ((𝑖Ω𝑚)2 − 𝜔2

q) 𝐴𝑞𝛼 (3.8d)

𝑆qp = − ∑
𝑘

̄𝜓𝑘
̂𝐺−1
𝑘 𝜓𝑘 + ∑

𝑘,𝑞

̄𝜓𝑘+ 𝑞
2

( ̂𝐴𝑘,𝑞 + Δ̂𝑑
𝑘,𝑞) 𝜓𝑘− 𝑞

2
, (3.8e)

6Alternatively, this interaction can be obtained by linearizing the diamagnetic term, which is
quadratic in A = A1 +𝑚v𝑆, about the homogeneous supercurrent. This is because the supercurrent
can either be ascribed to the canonical momentum of the Cooper pairs or to a homogeneous gauge
potential. Viewed in this way, the linear coupling we generate is essentially a Raman process with a
probe field being provided by the twisted boundary conditions of the pair condensate.
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with ̂𝐺−1
𝑘 = (𝑖𝜖𝑛 −k ⋅v𝑆) ̂𝜏0 − 𝜉𝑆

k ̂𝜏3 − Δ𝑠 ̂𝜏1 the inverse Gor’kov Green’s function and

the 𝑑-wave fluctuation and photon vertices

Δ̂𝑑
𝑘,𝑞 = 1√

𝛽Vol
𝑓𝑑(𝜙𝑘) [ ̂𝜏†Δ𝑑

𝑞 + Δ̄𝑑
−𝑞 ̂𝜏 ] (3.9a)

̂𝐴𝑘,𝑞 = 1√
𝛽Vol

A𝑞 ⋅ ( k
𝑚

̂𝜏0 + v𝑆 ̂𝜏3) . (3.9b)

In the above we have restricted to the case of a homogeneous, static, real 𝑠-wave

order parameter, which we treat at the saddle-point level in the absence of ⃗𝐴 and

Δ𝑑 but in the presence of the supercurrent, in keeping with the approximation that

Δ𝑠 is unaffected by 𝑑-wave fluctuations and photons.

We can now integrate out the fermions and expand the resulting “trace log” to

second order in Δ̂𝑑 and ̂𝐴, giving

𝑆eff = 𝑆𝑑 + 𝑆𝐴 + 𝑆𝑑−𝐴. (3.10)

𝑆𝑑 describes the 𝑑-wave fluctuations, 𝑆𝐴 describes the cavity photons (including

the polarization due to the superconductor), and 𝑆𝑑−𝐴 describes the quasiparticle-

mediated interaction between the fluctuations and photons. We now go in to these

parts in more detail.

3.3.3 Bardasis-Schrieffer Mode

Since the 𝑑-wave fluctuations have much greater kinetic mass than photons,

we approximate them with a flat dispersion: their energy in the limit ⃗𝑞 → 0.

Additionally, we will evaluate the collective mode dispersion relation within the

quasiclassical 𝜉 approximation, which means we neglect energy dependence of the

density of states and drop all terms which are odd in 𝜉. Furthermore, we will split

Δ𝑑
𝑞 into its real and imaginary components, Δ𝑑

𝑞 = 𝑟𝑞 + 𝑖𝑑𝑞 with real fields 𝑟𝑞 = ̄𝑟−𝑞
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and 𝑑𝑞 = ̄𝑑−𝑞. The real mode is within the Bogoliubov quasiparticle continuum,

and is therefore overdamped [16, 119]. It also remains decoupled from photons

despite the supercurrent so we do not consider it further. The imaginary mode 𝑑𝑞

is the in-gap Bardasis-Schrieffer mode. We approximate it as a flat band which is

described by the effective action at Random Phase Approximation (RPA) level

𝑆𝑑 = ∑
𝑞

𝑑−𝑞 [ 1
𝑔𝑑

+ ∫ 𝑑2𝑘
(2𝜋)2 𝑓𝑑(𝜙k)2 2𝜆k 𝛿𝑛k

(𝑖Ω𝑚)2 − (2𝜆k)2 ] 𝑑𝑞, (3.11)

where 𝑞 = (𝑖Ω𝑚,q) is the four-momentum of the collective mode, 𝜆k = √(𝜉𝑆
k )2 + Δ2

is the quasiparticle energy in the co-moving frame, 𝛿𝑛k = 𝑛𝐹(𝐸−
k ) − 𝑛𝐹(𝐸+

k ), where

𝑛𝐹 is the Fermi function, and 𝐸±
k = k ⋅ v𝑆 ± 𝜆k are the Doppler-shifted locations of

the poles for Bogoliubov particles and holes, respectively.

3.3.4 Photon Mode

In addition to the coupling to the Bardasis-Schrieffer mode, the photon also

receives a polarization contribution from the superconductor which renormalizes the

RPA propagator. The action in this case consists of the of the empty cavity action

𝑆cav plus a self-energy term due to the superconductor, so that

𝑆𝐴 = −1
2

∑
𝑞,𝛼,𝛽

𝐴𝛼,−𝑞 [ 𝜖0
𝑒2𝑋2 ((𝑖Ω𝑚)2 − 𝜔2

𝑞) 𝛿𝛼𝛽 − Π𝛼𝛽(𝑞)] 𝐴𝛽,𝑞. (3.12)

The polarization matrix Π𝛼𝛽,𝑞 encodes the linear response of the superconductor to

the electromagnetic field. The detailed structure of this can be found in Appendix C.

Importantly, translational invariance implies it is only a function of the photon

four-momentum 𝑞 = (𝑖Ω𝑚,q) and since the two polarizations of the photon are

linearly independent they form a basis for vectors in the 𝑥 − 𝑦 plane. As such, the

polarization tensor is a two-by-two matrix in the basis of the polarization vectors.
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We note however that the rotational symmetry which is normally present in a

2DEG is absent due to both the 𝑑-wave form factor and the orientation of the

supercurrent. It turns out that only the component of 𝐴 along the direction of the

supercurrent receives a non-negligible self-energy (see Appendix C). Therefore, it

will be convenient to calculate the components of Π𝛼𝛽 in the basis dictated by the

orientation of the supercurrent.

3.3.5 Hybridization Term

Finally, we calculate the hybridization between the photon and the BS mode,

which is encapsulated in the term in the effective action

𝑆𝑑−𝐴 = ∑
𝑞,𝛼

∫ 𝑑2𝑘
(2𝜋)2 𝑓𝑑(𝜙k)

𝑖Ω𝑚
(𝑖Ω𝑚)2 − (2𝜆𝑘)2

𝛿𝑛k
𝜆k

(v𝑆 ⋅ ⃗𝜖𝛼,𝑞) 𝑖Δ (𝐴𝛼,𝑞 𝑑−𝑞 − 𝐴𝛼,−𝑞 𝑑𝑞) .

(3.13)

Note this is linear in the supercurrent v𝑆, which is consistent with the known result

that the BS mode does not normally couple linearly to light. As a consequence,

the BS mode only couples to the component of the vector potential parallel to the

supercurrent.

The action for all three of the bosonic modes of interest can then compactly be

written in terms of a hybrid inverse Green’s function

𝑆eff = 1
2

∑
𝑞

(𝑑−𝑞, 𝐴𝛼,−𝑞) ⎛⎜⎜
⎝

𝐷−1
BS,𝑞 𝑔𝛼,𝑞𝛿𝛼𝛽

𝑔∗
𝛼,𝑞𝛿𝛼𝛽 𝐷−1

𝛼𝛽,𝑞

⎞⎟⎟
⎠

⎛⎜⎜
⎝

𝑑𝑞

𝐴𝛽,𝑞

⎞⎟⎟
⎠

, (3.14)

with sums over repeated indices and with 𝐷−1
BS,𝑞, 𝐷−1

𝛼𝛽,𝑞, and 𝑔𝛼,𝑞 defined implicitly

through Eqs. (3.11)–(3.13). A more intuitive description can be obtained by first

making a harmonic approximation to the BS action: continue 𝐷−1
BS to complex

frequency, expand around the saddle point solution ΩBS, then restrict back to

imaginary frequency. In our clean model ΩBS is purely real, so the BS mode is
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undamped. We then expand in terms of BS and photon mode operators, 𝑑𝑞 =

(𝑏𝑞 +𝑏̄−𝑞)/√2𝐾ΩBS and 𝐴𝛼,𝑞 = (𝑎𝛼,𝑞 + ̄𝑎𝛼,−𝑞)/√2𝜔𝑞, where 𝐾 is a constant coming

from the harmonic expansion. We make the standard approximation of dropping the

counter-rotating terms (𝑎𝑎, ̄𝑎 ̄𝑎) – an approximation we verify post-hoc – and perform

a change of basis from photon polarizations to components parallel and perpendicular

to the supercurrent. Inside the coupling and photon terms, we analytically continue

to real frequency 𝑖Ω𝑚 → Ω + 𝑖0, then expand around relevant frequencies. The

imaginary parts exactly vanish, and the action becomes

𝑆eff ≈ ∑
𝑞

(𝑏̄𝑞, ̄𝑎∥
𝑞, ̄𝑎⟂

𝑞 ) (−𝑖Ω𝑚𝟙̌ + 𝐻̌eff
q )

⎛⎜⎜⎜⎜⎜⎜
⎝

𝑏𝑞

𝑎∥
𝑞

𝑎⟂
𝑞

⎞⎟⎟⎟⎟⎟⎟
⎠

, (3.15)

now written in terms of an effective Hamiltonian

𝐻̌eff
q =

⎛⎜⎜⎜⎜⎜⎜
⎝

ΩBS 𝑔q 0

𝑔q 𝜔q + Π𝑆
q 0

0 0 𝜔q

⎞⎟⎟⎟⎟⎟⎟
⎠

, (3.16)

where 𝑞 = |q|, Π𝑆
q is a self-energy shift of the photon mode which is polarized parallel

to the supercurrent, coming from a supercurrent-dependent term in Π𝛼𝛽,𝑞, and

𝑔q = 𝑣𝑆Δ√ 2ΩBS
𝐿𝐾𝜔q

∫
k

𝑓𝑑(𝜙k)
𝜆k

𝛿𝑛k
Ω2

BS − (2𝜆k)2 . (3.17)

We keep only to lowest order in |q|. Only one photon mode hybridizes with the

BS mode in the Hamiltonian approximation. The photon mode which couples and

the BS mode can be made resonant by tuning parameters of the system, most

straightforwardly the cavity size 𝐿, allowing them to strongly hybridize. For more

details about the evaluation of these terms, see Appendix C.
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3.4 Results

Having derived the hybridization term between the photons and BS mode, we

now present the results and discuss them. Since BS modes are a result of competing

𝑠- and 𝑑-wave instabilities, they are most prominent in systems with nearly degen-

erate interactions in the two channels. This is in fact the case in many iron-based

superconductors [122–125], where BS modes have been experimentally detected. We

thus use these systems as guides in our choice of parameters for calculations.

We set the Fermi energy 𝜖𝐹 = 100 meV, the effective mass 𝑚∗ = 4𝑚𝑒
7, where 𝑚𝑒

is the electron mass, and critical temperature 𝑇𝑐 = 35 K. We put 1/𝑔𝑑−1/𝑔𝑠 = 0.1𝜈𝐹,

where 𝜈𝐹 = 𝑚∗/2𝜋 is the density of states, and tune the size of the cavity 𝐿 so

that 𝜔0 = 𝜋/𝐿 = 0.96 ΩBS(𝜃𝑆 = 0), putting photons and the BS mode very near

resonance. Finally, we set the phenomenological coupling enhancement to 𝑋 = 10,

although enhancements of 𝑋 = 102 or greater have been predicted in similar cavity

systems [92–96, 100].

We first consider the dependence of coupling strength 𝑔𝑞 on temperature, super-

fluid velocity 𝑣𝑆, and supercurrent angle 𝜃𝑆, as shown in Fig. 3.2. The coupling is

mediated by thermally excited quasiparticles and so vanishes for 𝑇 → 0. It also

vanishes for 𝑇 → 𝑇𝑐 since Δ → 0. The result is a unique maximum of 𝑔(𝑇 ) at an

intermediate temperature, 𝑇max ≈ 0.42𝑇𝑐, which we use for all other computations.

Similarly, 𝑔 vanishes for small 𝑣𝑆 — this can be verified by expansion of 𝛿𝑛k —

and also as 𝑣𝑆 approaches a value corresponding to the critical current, where the

superconducting state vanishes. We set 𝑣𝑆 = 0.9Δ(𝑣𝑆 = 0)/𝑘𝐹 in our calculations,

near the value giving the maximum coupling but not too near the critical value 8.
7In the quasiclassical approximation the value of the effective mass cancels everywhere, since only

𝑣𝑆 ∝ 1/𝑘𝐹 ∝ 1/
√

𝑚∗, 𝐾 ∝ 𝜈 = 𝑚∗/2𝜋, and ∑k ∼ 𝜈𝐹 ∫ 𝑑𝜉 depend on it. Therefore, the choice of
effective mass is mostly unimportant.

8The value Δ(𝑣𝑆 = 0)/𝑘𝐹 yields an approximate critical current consistent with values measured
in iron-based systems, though in type II materials the current is limited by vortex pinning rather
than condensate depletion [126, 127].
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Figure 3.2: The hybridization matrix element 𝑔 in the effective Hamiltonian as a
function of temperature, superfluid velocity, and 𝜃𝑆, the angle between the direction
of the supercurrent and the axis defined implicitly by the 𝑑-wave form factor 𝑓𝑑(𝜙𝑘),
all scaled by their respective maxima. (Left) 𝑔(𝑇 ) is maximized for a temperature
𝑇max ≈ 0.42𝑇𝑐. (Center) 𝑔(𝑣𝑆) is sharply peaked for large superfluid velocity around
𝑣𝑆 ≈ 0.96Δ(𝑣𝑆 = 0)/𝑘𝐹. (Note, Δ0 ≡ Δ(𝑣𝑆 = 0).) (Right) 𝑔(𝜃𝑆) is maximal for
𝜃𝑆 = 𝑚𝜋/2, 𝑚 ∈ ℤ, and vanishes when the supercurrent runs along a node of
𝑓𝑑, 𝜃𝑆 = (2𝑚 + 1)𝜋/4. Inset — the orientation of the supercurrent with respect
to the 𝑑-wave form factor. The color of the lobes gives the relative sign of 𝑓𝑑 for
different angles, and the dashed lines are the nodes where 𝑓𝑑 = 0. The plots use
𝑇 = 𝑇max, 𝑣𝑆 = 0.9Δ(𝑣𝑆 = 0)/𝑘𝐹, and 𝜃𝑆 = 0 where applicable, and fixed detuning
𝜔0 = 0.96ΩBS.
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Dependence on the supercurrent angle 𝜃𝑆 comes through the 𝑑-wave form factor.

The coupling is strongest when the supercurrent is along an antinode of the form

factor – 𝜃𝑆 = 𝑚𝜋/2, 𝑚 ∈ ℤ – and vanishes when the supercurrent is along a node –

𝜃𝑆 = (2𝑚 + 1)𝜋/4. We use 𝜃𝑆 = 0 for all other calculations.

To obtain the polariton modes we both directly solve for the poles of the hy-

bridized Green’s function (3.14) and calculate the eigenvalues of the effective Hamil-

tonian (3.16), which can be diagonalized analytically C. A discussion of the method

used to numerically calculate the roots of the dispersion relation can be found in

Appendix D. The results of both approaches are in excellent agreement; the dis-

persions are plotted for both methods in Fig. 3.3. One of the photon modes can

be made to strongly hybridize with the BS mode, while the other “dark” photon

remains distinct. This is made especially clear by examining the BS component

of the eigenvectors of the effective Hamiltonian, as shown in Fig. 3.4. Because the

strength of the hybridization is controlled exclusively by 𝑔, any of the parameters on

which it depends, namely 𝑇 , 𝑣𝑆, or 𝜃𝑆, can be used to directly control the strength

of the effect.

In this work we have shown that driving a supercurrent through a superconductor

in a planar microcavity leads to hybridization of cavity photons with a collective

mode of the superconductor. In particular two polariton bands form which have

significantly mixed character. This provides a means for observation and control

of the Bardasis-Schrieffer mode, and, as for exciton-polaritons, these dispersions

could in principle be measured with 𝑘-space imaging of the photonic component

of the polariton states [86]. The nature of the construction allows for tuning of

the hybridization strength, and therefore the polariton states, in situ through the

externally applied supercurrent.

We speculate that the condensation observed in exciton-polariton systems [104–

106] suggests proper driving of these superconductor-polariton modes could lead to
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Figure 3.3: The dispersion of the Bardasis-Schrieffer-polariton modes (dot-dashed),
calculated both numerically and with a simplified analytic method C – the two give
visually identical results. An external supercurrent causes the BS mode and cavity
photons to hybridize, and the polariton states have significant overlap with each.
The “dark” photon mode (dashed) remains decoupled. The splitting of otherwise
degenerate photon modes is a result of a supercurrent-induced self-energy contri-
bution. Temperature and supercurrent angle are chosen to maximize hybridization
(see Fig. 3.2). Inset — schematic of the system: a 2-dimensional superconductor
with an applied supercurrent 𝐼𝑆 at the center of a planar cavity.

their condensation and the formation of a non-equilibrium 𝑠 ± 𝑖𝑑 superconducting

state.9 There is reason to suspect that condensation is a reasonable prospect;

interactions giving thermalization arise at quartic order in perturbation theory, and

the polariton lifetime is set by the cavity photon lifetime — the BS mode is in-gap and
9In addition to the argument based on Landau damping of the real part of the 𝑑-wave mode, we

may understand the relative phase of ±𝜋/2 as originating from the fact that a mixed gap of the form
𝑠 ± 𝑖𝑑 does not break any additional spatial symmetries and has a larger gap, since the two terms
add exactly in quadrature to produce |Δ𝑠±𝑖𝑑

k |2 = |Δ𝑠|2 + |𝑓𝑑
k |2|Δ𝑑|2. On the other hand, in the

𝑠 ± 𝑑 states, the two gap symmetries compete with each other since they add coherently to produce
|Δ𝑠±𝑑

k |2 = |Δ𝑠 ± 𝑓𝑑
k Δ𝑑|2. This will not only break the 𝐶4 rotational symmetry but will also reduce

the effective gap the quasiparticles see. For a more complete treatment, see e.g. Ref. [128]
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Figure 3.4: The Bardasis-Schrieffer component of the eigenvectors of the effective
Hamiltonian, Eq. (3.16) C. The upper (solid) and lower (dot-dashed) polaritons have
significant photon and Bardasis-Schrieffer character, indicating strong hybridization
between the systems. One can also clearly see the “dark” photon mode (dashed)
which does not hybridize with the superconductor’s collective mode.
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therefore undamped in this clean model. For a high enough 𝑄-factor it is in principle

possible for polaritons to thermalize before decaying, allowing for a transient quasi-

thermal ensemble. More work must be done, however, before definitive statements

can be made about a condensed state, especially regarding spontaneous coherence

of the condensate. Finally, we note that finite polariton density with coherence

imposed externally, e.g. from a coherent drive, would produce a non-equilibrium

state with 𝑠 ± 𝑖𝑑 character, which one would expect to be distinct in nature from a

thermodynamic 𝑠 ± 𝑖𝑑 state.
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Chapter 4: Evanescent modes near analogue black-hole hori-

zons in Bose-Einstein condensates

This chapter is based on the publication Curtis, Refael, and Galitski [129].

4.1 Introduction

The existence of black holes was one of the first surprising and novel predictions to

emerge from Einstein’s geometric theory of gravity. Though initially their existence

was a point of contention, it is now well established that black holes exist and play

a formative role in the large-scale dynamics of the universe [130]. The interplay

between quantum mechanics and these exotic spacetime solutions has uncovered a

number of important open problems, with fundamental consequences for theories

of quantum gravity an cosmology [131]. Perhaps nowhere is this more evident than

in Stephen Hawking’s 1974 semiclassical calculation which predicted that black

holes constantly emit a flux of thermal quanta [24, 25]. Consequences of this

thermal radiation have since raised a number of fundamental questions regarding

the interplay of quantum mechanics and gravity, including what is known as the

black hole information paradox [132, 133].

Though it is grounded in widely accepted physical principles, observation of

astrophysical Hawking radiation seems to be impossible in the near-future at least.

In 1981, W.G. Unruh proposed that in lieu of observation of Hawking radiation

by an astrophysical black hole, the process of Hawking radiation and black-hole

evaporation could be effectively simulated in a laboratory [17]. This proposal,

expanded upon extensively by G.E. Volovik as pertaining to superfluid Helium [134],

relies on the observation that at long wavelengths sound waves propagating through

a fluid are described by the same equations of motion as a scalar boson propagating
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through a curved spacetime [20–22, 135]. A simple model which illustrates this

physics is that of a BEC, where the condensate flow plays the role of the spacetime

metric while the quantum fluctuations (e.g. phonons) are mapped onto matter fields

residing in this spacetime. If the condensate velocity exceeds the local speed of sound

this effective spacetime develops an event horizon, forming a sonic black/white hole.

In exact analogy with Hawking’s calculations for an astrophysical black hole, the

sonic horizon formed in a condensate should then emit a thermal flux of phonons.

Since Unruh’s initial observation, there have been numerous proposals for testing-

by-analogy various predictions of semiclassical gravity and cosmology using table-top

scale experiments. These employ a range of media including liquid Helium [134,

136, 137], trapped BECs and ultra-cold atoms [18, 135, 138–145], electromagnetic

waveguides [146], spintronic materials [147, 148], exciton-polariton condensates [111],

non-linear optical media [149, 150], and even water wave-tanks, where signatures of

Hawking radiation still manifest themselves through the classical correlation func-

tions [151]. Recent experiments by Jeff Steinhauer have purportedly generated and

observed signatures of self-amplifying Hawking radiation [152, 153] and its entan-

glement [154] in an ultra-cold BEC. Crucially, these experiments do not attempt to

detect the Hawking radiation by directly measuring its temperature (which is typi-

cally too small to effectively measure), but instead measure non-local density-density

correlations which arise due to the Hawking emission [155–157]. These observables,

which may be measured in the lab, cannot be measured for real black holes since

they involve measuring correlations across the event horizon.

It is an interesting question to consider how all these disparate theories, none

exhibiting true Lorentz invariance, differ in their low-energy effective descriptions.

Often, the absence of Lorentz invariance at the UV scale manifests itself through

the quasiparticle dispersion relations which exhibit either superluminal [158–161]

or subluminal propagation at higher momenta [140, 143, 162–168]. At low energies,
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all models seem to predict the same thermal occupation function first obtained by

Hawking [141, 169–171]. Deviations become apparent only at higher energies/mo-

menta, where departures from this thermal occupation can be observed [141, 160,

163, 170].

In this work we will consider a BEC model of analogue gravity, with the goal

being to study how the emergent spacetime responds to regions of large effective

spacetime curvature. A major conclusion of ours is that when the background

metric varies over a sufficiently abrupt length scale it becomes possible to observe

the emergence of evanescent field modes outside the sonic event horizon, which in

turn can effect local observables. To motivate this, consider identifying a sonic

black hole with an actual astrophysical black hole of equal Hawking temperature.

In a Schwarzschild black hole, the temperature 𝑇astro (in units with ℏ = 𝑘𝐵 = 1) is

related to the mass 𝑀 by Hawking’s formula

𝑇astro = 𝑐3

8𝜋𝐺𝑁𝑀

where 𝑐 is the speed of light and 𝐺𝑁 is the Newton gravitational constant. For a

sonic black hole, we invoke Unruh’s result [17], whereby we find that the temperature

of the sonic black hole 𝑇sonic is related to the fluid velocity gradient by

𝑇sonic = 1
2𝜋

∣𝜕𝑣
𝜕𝑟

∣
horizon

where the derivative is understood as being taken in the direction normal to the

event horizon, at the horizon. Thus, identifying these two temperatures implies that

the mass of the black hole is related to the inverse of the velocity gradient. If we

wish to study the analogue of black holes which are evaporating towards the Planck

mass scale, we must understand what happens to the sonic horizon as the velocity

gradient increases towards the UV dispersion scale. In the sonic black hole model,
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large flow gradients may be modeled most simply by considering a step-like system.

In fact, such configurations have been studied before [157, 160, 171], though typically

the emphasis is placed on obtaining the form of the universal low-energy Hawking

distribution function, which is by now well understood. In this work, we will instead

primarily focus on the near-horizon physics, which has seen comparatively little

attention due to its generically non-universal nature.

Having motivated the step-like model, the remainder of this paper will be struc-

tured as follows. In Section 4.2, we will introduce our model and the associated

Bogoliubov-de Gennes formalism used to analyze it. We will then proceed on to

consider first the case of a homogeneous flow, presented in Section 4.3. In Section 5.4

we will set up the step-like system and solve it, extracting both the S-matrix and

the actual eigenfunctions of the problem, which contain the evanescent modes. We

will study the properties of these evanescent modes in more detail in Section 4.5,

before moving on to the Conclusion in Sec. 5.6, where we highlight some interesting

consequences and potential future avenues of research.

4.2 Formalism

We begin our discussion by considering a model for weakly interacting spinless

bosons described by the Hamiltonian

𝐻̌ = ∫ 𝑑𝑑𝑟 ( 1
2𝑚

∇Ψ̌† ⋅ ∇Ψ̌ − 𝜇Ψ̌†Ψ̌ + 1
2

𝑔Ψ̌†Ψ̌†Ψ̌Ψ̌) , (4.1)

where 𝑑 is the spatial dimension, 𝑔 > 0 is the s-wave interaction constant, and 𝜇 is

the chemical potential [172]. Here and throughout we use units in which ℏ = 𝑘𝐵 = 1

and we will distinguish between quantum many-body operators and single-particle

differential operators with the use of a check ( ̌) and hat ( ̂), respectively. The only
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non-trivial equal-time commutator for the boson field operators Ψ̌(r, 𝑡) is

[Ψ̌(r, 𝑡), Ψ̌†(r′, 𝑡)] = 𝛿𝑑(r− r′).

The resultant many-body dynamics may be described by the Heisenberg equation

of motion

(𝑖𝜕𝑡 + 1
2𝑚

∇2 + 𝜇 − 𝑔Ψ̌†Ψ̌) Ψ̌ = 0. (4.2)

Next, we partition the operator field Ψ̌ into a classical condensate 𝜓 = √𝜌𝑒𝑖Θ and

fluctuations about the condensate via

Ψ̌(r, 𝑡) = 𝜓(r, 𝑡) ( ̌1 + ̌𝜙(r, 𝑡)) . (4.3)

Note the fluctuations are rescaled by the local condensate so that the equal time

commutator for the 𝜙 field reads

[ ̌𝜙(r, 𝑡), ̌𝜙†(r′, 𝑡)] = 1
𝜌(r, 𝑡)

𝛿𝑑(r− r′). (4.4)

Next, we define the superfluid velocity v = 1
𝑚∇Θ, in terms of which the mean-

field equations of motion become

𝜕𝑡𝜌 + ∇ ⋅ (𝜌v) = 0 (4.5a)

𝜇 − 𝜕𝑡Θ − 1
2

𝑚v2 − 𝑔𝜌 + 1
2𝑚√𝜌

∇2√𝜌 = 0. (4.5b)

We insert the ansatz (4.3) into the Heisenberg equation and apply the mean-field

equations of motion (4.5). To linear order in the operator fields ̌𝜙, ̌𝜙† we get the

Bogoliubov-de Gennes (BdG) equation

(𝑖𝜕𝑡 + 𝑖v ⋅ ∇ + 1
2𝑚𝜌

∇ ⋅ 𝜌∇ − 𝑔𝜌) ̌𝜙 − 𝑔𝜌 ̌𝜙† = 0. (4.6)
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This is written compactly in terms of the Nambu spinor Φ̌ = ( ̌𝜙, ̌𝜙†)
𝑇

and the

Nambu Pauli matrices 𝜏1, 𝜏2, 𝜏3, 𝜏0 as 𝐾̂BdGΦ̌ = 0 with the BdG kernel given by

𝐾̂BdG = (𝑖𝜕𝑡 + 𝑖v ⋅ ∇) 𝜏3 − (𝑔𝜌 − 1
2𝑚𝜌

∇ ⋅ 𝜌∇) 𝜏0 − 𝑔𝜌𝜏1. (4.7)

Additionally, the Nambu spinor has the particle-hole conjugation symmetry

Φ̌(r, 𝑡) ≡ 𝜏1Φ̌(r, 𝑡)† = Φ̌(r, 𝑡). (4.8)

Finally, we have the equal time canonical commutator

[Φ̌𝛼(r, 𝑡), Φ̌†
𝛽(r′, 𝑡)] = 1

𝜌(r, 𝑡)
𝛿𝑑(r− r′)[𝜏3]𝛼𝛽 (4.9)

where 𝛼, 𝛽 explicitly index the Nambu components. Note that the presence of 𝜏3

reflects the fact that bosonic BdG dynamics generate symplectic transformations,

whereas fermionic dynamics generate unitary dynamics.

We may verify that, provided the background condensate satisfies the continuity

equation (4.5), the quasiparticle charge

̌𝒬qp(𝑡) = ∫ 𝑑𝑑𝑟𝜌(𝑥)(Φ̌†(𝑥))𝑇𝜏3Φ̌(𝑥) (4.10a)

̌𝒥qp(𝑥) = 𝜌(𝑥)(Φ̌†(𝑥))𝑇 [v(𝑥)𝜏3 + −𝑖
2𝑚

⃡⃡⃡⃡⃡∇⃡] Φ̌(𝑥) (4.10b)

are conserved under the BdG equations of motion (here the left-right over-arrow

has the standard definition introduced in previous chapters). Throughout we will

carefully distinguish between Hermitian/complex conjugation (which acts element-

wise on the spinor components) and Nambu spinor tranposition (which exchanges

spinor columns and rows).

We will further restrict our analysis to systems which have time-translational
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invariance. In this case, the lab-frame energy 𝜔 is a good quantum number and the

BdG kernel takes the form

𝐾̂BdG(𝜔) = 𝜏3 (𝜔 − Ω̂BdG) , (4.11)

which effectively defines the BdG Hamiltonian as the linear differential operator

Ω̂BdG = 𝜏3 (− 1
2𝑚𝜌

∇ ⋅ 𝜌∇ + 𝑔𝜌) + 𝑖𝜏2𝑔𝜌 − 𝑖v ⋅ ∇. (4.12)

In general, the operator Ω̂BdG may have complex energy eigenvalues, leading to

dynamical instabilities [159, 168, 172, 173]. Though potentially interesting, we will

assume that our system does not exhibit these instabilities and that the energy

eigenvalues are real.

In order to describe the many-body quantum dynamics of the system, we will

first obtain the classical normal modes of the BdG Hamiltonian. To produce an

expansion for the operator Φ̌ we will then second-quantize these classical modes.

Utilizing conservation of the charge defined in Eqn. (4.10), we define a conserved

pseudo-inner product [141, 158, 174]

(𝐹 , 𝐺) = ∫ 𝑑𝑑𝑟𝜌(r)𝐹 ∗𝑇(r)𝜏3𝐺(r), (4.13)

where 𝐹 and 𝐺 are two c-number spinor fields. This product obeys the properties

(𝐹 , 𝜏1𝐺) = −(𝜏1𝐹, 𝐺)

(𝐹 , 𝜏2𝐺) = −(𝜏2𝐹, 𝐺)

(𝐹 , 𝜏3𝐺) = +(𝜏3𝐹, 𝐺)

(𝐹 , 𝐺)∗ = (𝐺, 𝐹) = (𝐹 ∗, 𝐺∗).

(4.14)

Due to the presence of 𝜏3 this is not a bona fide inner product, since we may have
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(𝐹 , 𝐹) < 0 for some modes.

The sign of the norm (𝐹 , 𝐹), as we will now explain, is closely connected to the

creation and annihilation of particles. To see this, we construct a time-dependent

many-body “wavepacket” operator

̌𝔞𝑡[𝐹 ] ≡ (𝐹 , Φ̌(𝑡)) = ∫ 𝑑𝑑𝑟𝜌(r)𝐹 ∗𝑇(r)𝜏3Φ(r, 𝑡) (4.15)

from the c-number spinor 𝐹. The Hermitian conjugate of this operator may be

shown to be

̌𝔞†
𝑡 [𝐹 ] = ̌𝔞𝑡[−𝜏1𝐹 ∗] = ̌𝔞𝑡[−𝐹]. (4.16)

In this sense, the creation operator for wavepacket 𝐹 is equivalent to the annihilation

operator for the conjugate wavepacket 𝐹, up to a minus sign. Similarly, the equal-

time commutation relations for two wavepacket operators are

[ ̌𝔞𝑡[𝐹 ], ̌𝔞†
𝑡 [𝐺]] = (𝐹 , 𝐺) . (4.17)

Thus, if (𝐹 , 𝐹) > 0, ̌𝔞𝑡[𝐹 ] is a canonical annihilation operator and if (𝐹 , 𝐹) < 0, it

is a creation operator.

Evolving these operators in time may now be performed by employing the BdG

kernel since

𝑖 𝑑
𝑑𝑡

̌𝔞𝑡[𝐹 ] = (𝐹 , 𝑖𝜕𝑡Φ̌(𝑡)) = (𝐹 , Ω̂BdGΦ̌(𝑡)) .

We now observe that with respect to this inner product, the BdG Hamiltonian

obeys (𝐹 , Ω̂BdG𝐺) = (Ω̂BdG𝐹, 𝐺), provided we respect the stationary-flow condition

∇ ⋅ (𝜌v) = 0. Using this property, we have

𝑖𝑑 ̌𝔞𝑡[𝐹 ]
𝑑𝑡

= ̌𝔞𝑡[Ω̂BdG𝐹]. (4.18)
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In particular, if we consider an energy eigenspinor 𝑊𝜔 with eigenvalue 𝜔, then we

can solve Eqn. (4.18) with

̌𝔞𝑡[𝑊𝜔] = 𝑒−𝑖𝜔𝑡 ̌𝔞[𝑊𝜔] (4.19)

from which we may obtain, e.g. the retarded and time-ordered correlation functions.

We may restrict ourselves to looking for only positive-frequency modes 𝑊𝜔𝜈

(with 𝜈 indexing different degenerate modes) since the BdG Hamiltonian obeys the

symmetry

Ω̂BdG ≡ 𝜏1Ω̂∗
BdG𝜏1 = −Ω̂BdG. (4.20)

Thus up to a linear transformation amongst the degenerate eigenmodes, the mode

with eigenvalue −𝜔 is the conjugate of the mode with eigenvalue +𝜔. By judiciously

choosing the basis elements 𝑊𝜔𝜈 in each subspace, we can ensure that

𝑊−𝜔𝜈 = −𝑊𝜔𝜈 ⇔ ̌𝔞𝑡[𝑊−𝜔𝜈] = ̌𝔞†
𝑡 [𝑊𝜔𝜈]. (4.21)

Rather than continue to analyze the problem at a general, abstract level, it will

be beneficial to see how these ideas are applied to specific problems. In particular,

we will begin by considering the case of a homogeneous condensate, which may also

be solved by means of the standard Bogoliubov transformation [1, 172]. We will

then move on to consider cases where the condensate possesses an event horizon.

4.3 Homogeneous Condensate

We begin by consider a translationally invariant stationary condensate. The BdG

Hamiltonian is diagonalized in momentum space by the plane wave eigenmodes

𝑊k𝜎(r) = 𝑤k𝜎𝑒𝑖k⋅r, (4.22)
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where 𝜎 indexes independent modes with the same momentum. The BdG Hamilto-

nian is now a 2 × 2 matrix in momentum space which reads

ΩBdG(k) = 𝜏0v ⋅ k+ 𝜏3 ( k
2

2𝑚
+ 𝑔𝜌) + 𝑖𝜏2𝑔𝜌. (4.23)

At fixed energy 𝜔 > 0 we must solve the equation

[𝜏0v ⋅ k+ 𝜏3 ( k
2

2𝑚
+ 𝑔𝜌) + 𝑖𝜏2𝑔𝜌] 𝑤k𝜎 = 𝜔𝑤k𝜎 (4.24)

for k and the corresponding spinor 𝑤k𝜎. Setting the determinant to zero produces

the well-known Bogoliubov dispersion relation

det [ΩBdG(k) − 𝜔] = 0 ⇒ (𝜔 − k ⋅ v)2 = 𝑔𝜌
𝑚
k2 + ( k

2

2𝑚
)

2

, (4.25)

from which we recognize the speed of sound 𝑐2 = 𝑔𝜌
𝑚 . In the long-wavelength limit,

Eqn. (4.25) reduces to the Lorentz invariant dispersion (𝜔 − v ⋅ k)2 − 𝑐2k2 ∼ 0.

We will henceforth restrict ourselves to the case of a one-dimensional system. In

this case, Eqn. (4.25) becomes a quartic polynomial with roots 𝑘𝜈(𝜔), which must

be real by normalizeability. In solving this equation, it is convenient to introduce

the unitless variables
𝑧 = 𝑘

𝑚𝑐

𝛽 = 𝑣
𝑐

𝜆 = 𝜔
𝑚𝑐2

(4.26)

so that the eigenvalue problem now reads

[𝛽𝑧 − 𝜆 + 𝜏3 (1 + 1
2

𝑧2) + 𝑖𝜏2] 𝑤 = 0

(1 + 1
2

𝑧2)
2

− 1 = (𝜆 − 𝛽𝑧)2 .
(4.27)
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Figure 4.1: Dispersion relations solved graphically at fixed lab-frame energy (dashed
line) for (a) subsonic case 𝛽 = .8 and (b) supersonic case 𝛽 = 1.8. For 𝛽2 > 1 there
is a positive 𝜆𝑐 such that within the window 0 < 𝜆 < 𝜆𝑐 there are four real solutions
to the dispersion relation. For 𝛽2 > 1 but 𝜆 > 𝜆𝑐, or when 𝛽2 < 1 there are only
two real roots.

The real roots can be found graphically by plotting the two functions

Λ±(𝑧) = 𝛽𝑧 ± √𝑧2 + 𝑧4/4 (4.28)

and finding their intersections with the prescribed lab-frame energy 𝜆, as depicted

in Fig. 4.1. In Eqn. (4.28) the ± sign determines the sign of the co-moving frequency

𝜆 − 𝛽𝑧 and, as we will see later, the sign of the norm of the mode as defined in

Eqn. (4.13).

For 𝛽2 < 1 the curve Λ±(𝑧) is convex, as seen in Fig. 4.1(a). Thus there are only

ever two real solutions, 𝑧±𝑝, both of which have positive co-moving frequency/norm

but differ in their group velocity. The other two roots (𝑧±𝑛) are complex conjugates

and end up having negative norm (see Appendix E).

In contrast, for 𝛽2 > 1 the curve Λ±(𝑧) develops extrema at finite ±𝑧𝑐, found by
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solving the equation 𝜕Λ−(𝑧)
𝜕𝑧 ∣

𝑧𝑐

= 0. For 𝛽 > 0 this produces

𝑧𝑐 =
√√√

⎷

𝛽2

2
(1 + √1 + 8

𝛽2 ) − 2. (4.29)

As shown in Fig. 4.1(b), for 0 < 𝜆 < 𝜆𝑐(𝛽) ≡ Λ−(𝑧𝑐) there will be four real roots to

the dispersion relation. These additional roots are due to the effectively superluminal

dispersion, which exhibits a group velocity that increases as momentum increases.

These two new roots 𝑧±𝑛 have negative co-moving frequency/norm and are again

further labeled by the sign of their group velocity (we use positive for right-movers

and negative for left-movers). Generically, one of the negative norm roots also

linearly disperses at low energies (for 𝛽 > 0 it is 𝑧+𝑛), identifying it as the phonon

which travels upstream, though now it has been Doppler shifted to such a degree

that its lab-frame energy and co-moving energy differ in sign.

We now show that for real momenta the co-moving frequency indeed determines

the norm of the mode. First, we obtain expressions for the eigenspinor

𝑤𝜈 = ⎛⎜⎜
⎝

𝑢𝜈

𝑣𝜈

⎞⎟⎟
⎠

= 1
√|1 − |ℎ𝜈|2|

⎛⎜⎜
⎝

1

ℎ𝜈

⎞⎟⎟
⎠

, (4.30)

with ℎ𝜈 = 𝜆 − 𝛽𝑧𝜈 − (1 + 𝑧2
𝜈/2). We normalize this spinor to the inner product

introduced in Eqn. (4.13). When the momentum 𝑧 is real, this produces the result

𝑤𝜈 = 1
√2|𝜆 − 𝛽𝑧𝜈|

⎛⎜⎜
⎝

(−ℎ𝜈)− 1
2

− (−ℎ𝜈)+ 1
2

⎞⎟⎟
⎠

. (4.31)

Explicit calculation then confirms

𝑤†
𝜈𝜏3𝑤𝜈 = sign(𝜆 − 𝛽𝑧𝜈) (4.32)
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which we recognize is simply the sign of the co-moving frequency, as claimed.

To conclude, we return to the position space eigenmodes and consider the inner

product

(𝑊𝜔′𝜈′ , 𝑊𝜔𝜈) = ∫ 𝑑𝑥𝜌𝑒𝑖(𝑘𝜈(𝜔)−𝑘𝜈′(𝜔′))𝑥𝑤†
𝜔′𝜈′𝜏3𝑤𝜔𝜈,

which evaluates to a delta function

(𝑊𝜔′𝜈′ , 𝑊𝜔𝜈) = 2𝜋𝜌𝛿 (𝑘𝜈(𝜔) − 𝑘𝜈′(𝜔′)) .

Note the appearance of the overall factor of the density. This implies the second-

quantized operators for these momentum modes have the commutator

[ ̌𝔞𝑡[𝑊𝜔′,𝜈′ ], ̌𝔞†
𝑡 [𝑊𝜔,𝜈]] = 2𝜋𝜌𝛿 (𝑘𝜈(𝜔) − 𝑘𝜈′(𝜔′)) . (4.33)

In order for this to match the canonical commutator we must divide by this factor

of the density, so that the appropriately normalized position-space eigenmodes are

in fact

𝑊𝜔𝜈(𝑥) = 1
√𝜌

𝑒𝑖𝑘𝜈(𝜔)𝑥𝑤𝜔𝜈. (4.34)

This appearance of the factor of the density will prove to be important in the next

section, where the density is spatially varying.

4.4 Step-Like Horizon

4.4.1 Set Up

Having examined the homogeneous system, we will now consider the “simplest”

generalization; a step-like discontinuity between two otherwise homogeneous regions.

75



Specifically, the fluid profile considered is

𝑣(𝑥) =
⎧
{
⎨
{
⎩

𝑣𝑟 𝑥 ≥ 0

𝑣𝑙 𝑥 < 0
(4.35a)

𝜌(𝑥) =
⎧
{
⎨
{
⎩

𝜌𝑟 𝑥 ≥ 0

𝜌𝑙 𝑥 < 0.
(4.35b)

Though momentum is no longer a good quantum number, the lab-frame energy

still is provided we maintain the stationary-flow condition. In one dimension this

requires

𝜕𝑥 (𝜌(𝑥)𝑣(𝑥)) = 0 ⇒ 𝜌(𝑥)𝑣(𝑥) = constant.

This constrains the step-profile from Eqn. (4.35) to obey

𝜌𝑙𝑣𝑙 = 𝜌𝑟𝑣𝑟. (4.36)

It will be helpful to rewrite the local density 𝜌(𝑥) in terms of the local speed of

sound 𝑐(𝑥) = √𝑔𝜌(𝑥)/𝑚 which then implies that 𝑐 obeys

𝑐2
𝑙 𝑣𝑙 = 𝑐2

𝑟𝑣𝑟. (4.37)

Thus, there are only three independent parameters amongst 𝑣𝑙, 𝑐𝑙, 𝑣𝑟, 𝑐𝑟. We will

parameterize these by the two independent unitless variables 𝛽𝑙 = 𝑣𝑙/𝑐𝑙, 𝛽𝑟 = 𝑣𝑟/𝑐𝑟

and 𝑐𝑙. This then fixes 𝑐𝑟 = ( 𝛽𝑙
𝛽𝑟

)
1
3 𝑐𝑙.

The one dimensional BdG Hamiltonian which governs the step system is

Ω̂BdG = (− 1
2𝑚𝜌(𝑥)

𝜕𝑥𝜌(𝑥)𝜕𝑥 + 𝑔𝜌(𝑥)) 𝜏3 + 𝑔𝜌(𝑥)𝑖𝜏2 − 𝑖𝑣(𝑥)𝜕𝑥𝜏0. (4.38)

Given the piecewise homogeneous nature of the Hamiltonian, we can solve for the
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eigenmodes of Eqn. (4.38) by finding the appropriate plane-wave solutions in each

half-space and then gluing them together at the interface, as is done for e.g. a particle

reflecting off of a barrier. The appropriate matching conditions may obtained by

integrating Eqn. (4.38) across the discontinuity (after multiplying by a factor of the

density), and are

[𝑊(𝑥)]0
+

0− = 0 (4.39a)

[𝜌(𝑥)𝜕𝑥𝑊]0
+

0− = 0. (4.39b)

Each of these in turn produces two equations (recall that 𝑊 has two components)

so that in total, Eqn. (4.39) presents four constraints.

We write the energy eigenmode as

𝑊𝜈(𝑥) = ∑
𝛼

⎧
{
⎨
{
⎩

𝐶𝛼𝑙
𝜈√𝜌𝑙

𝑤𝑙
𝛼 exp (𝑖𝑘𝑙

𝛼𝑥) 𝑥 < 0

𝐶𝛼𝑟
𝜈√𝜌𝑟

𝑤𝑟
𝛼 exp (𝑖𝑘𝑟

𝛼𝑥) 𝑥 ≥ 0
(4.40)

where 𝛼 now runs over all four solutions to the half-space homogeneous problem.

Crucially, this includes the modes with complex momentum which have negative

norm (see Appendix E). Within each half-space one of the complex negative-norm

modes will describe an evanescent mode which is allowed by boundary conditions

and must be included in order to solve the matching problem [157, 158, 160, 175].

The other complex mode will describe an exponentially growing mode, which is

forbidden (it will be formally convenient to include this mode but always set the

coefficient to zero).

The coefficients 𝐶𝛼𝑙/𝑟
𝜈 (whose dependence on 𝜔 has been suppressed for brevity)

must now be chosen to satisfy the matching conditions Eqn. (4.39). We classify

the eight 𝐶 coefficients by whether they are ingoing or outgoing. For modes of

real momentum, this is based on whether the lab-frame group velocity is directed
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towards or away from the step [170]. For modes of complex momentum, which don’t

have a group velocity, we instead treat a mode as outgoing if it is evanescent and

ingoing if it is growing.

If we hold 𝛽𝑙 < 1 fixed then irrespective of 𝜔 > 0, the +𝑝𝑙, +𝑛𝑙 modes are ingoing

while the −𝑝𝑙, −𝑛𝑙 modes are outgoing. Of these, the +𝑛𝑙 mode is growing, while

the −𝑛𝑙 mode is evanescent. As we vary 𝛽𝑟 on the other hand, we encounter two

cases. The first case applies when either 0 < 𝛽𝑟 < 1 or 𝛽𝑟 > 1 but the frequency

𝜔 > 𝜔𝑐, with

𝜔𝑐 = 𝑚𝑐2
𝑟Λ−(𝑧𝑐(𝛽𝑟)) (4.41)

the cutoff frequency in the right half-plane. In this case, the flow is effectively

subsonic and the ingoing modes are −𝑝𝑟, −𝑛𝑟 while the +𝑝𝑟, +𝑛𝑟 modes are outgoing,

with +𝑛𝑟 evanescent and −𝑛𝑟 growing. This case is summarized in Table 4.1.

The second possibility is that 𝛽𝑟 > 1 and 0 < 𝜔 < 𝜔𝑐(𝛽𝑙, 𝛽𝑟). In this case the

±𝑛𝑟 momenta become real and a new scattering channel opens. This regime is

summarized in Table 4.2.

Mode Norm Left Half-Space Right Half-Space
+𝑝 +1 Right-mover (in) Right-mover (out)
−𝑝 +1 Left-mover (out) Left-mover (in)
+𝑛 −1 Growing (in) Evanescent (out)
−𝑛 −1 Evanescent (out) Growing (in)

Table 4.1: Mode classification for step between two effectively subsonic regions at
positive energy.

78



Mode Norm Left Half-Space Right Half-Space
+𝑝 +1 Right-mover (in) Right-mover (out)
−𝑝 +1 Left-mover (out) Left-mover (in)
+𝑛 −1 Growing (in) Right-mover (out)
−𝑛 −1 Evanescent (out) Left-mover (in)

Table 4.2: Mode classification for step between two subsonic regions at positive
energy. Note that in the right-hand side, an “ingoing” growing mode was converted
into an ingoing scattering mode with real flux, and the corresponding outgoing
evanescent mode was converted into an outgoing scattering mode with real flux.

4.4.2 Solution

We now apply the matching conditions in Eqn. (4.39), which imposes four con-

straints. This linear system may be written as

Mout

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝐶+𝑝𝑟

𝐶−𝑝𝑙

𝐶+𝑛𝑟

𝐶−𝑛𝑙

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= Min

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝐶+𝑝𝑙

𝐶−𝑝𝑟

𝐶+𝑛𝑙

𝐶−𝑛𝑟

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (4.42)

with the two matrices defined by

Mout =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝛽
1
3
𝑟 𝑢+𝑝𝑟 −𝛽

1
3
𝑙 𝑢−𝑝𝑙 𝛽

1
3
𝑟 𝑢+𝑛𝑟 −𝛽

1
3
𝑙 𝑢−𝑛𝑙

𝛽
1
3
𝑟 𝑣+𝑝𝑟 −𝛽

1
3
𝑙 𝑣−𝑝𝑙 𝛽

1
3
𝑟 𝑣+𝑛𝑟 −𝛽

1
3
𝑙 𝑣−𝑛𝑙

𝛽− 2
3

𝑟 𝑧+𝑝𝑟𝑢+𝑝𝑟 −𝛽− 2
3

𝑙 𝑧−𝑝𝑙𝑢−𝑝𝑙 𝛽− 2
3

𝑟 𝑧+𝑛𝑟𝑢+𝑛𝑟 −𝛽− 2
3

𝑙 𝑧−𝑛𝑙𝑢−𝑛𝑙

𝛽− 2
3

𝑟 𝑧+𝑝𝑟𝑣+𝑝𝑟 −𝛽− 2
3

𝑙 𝑧−𝑝𝑙𝑣−𝑝𝑙 𝛽− 2
3

𝑟 𝑧+𝑛𝑟𝑣+𝑛𝑟 −𝛽− 2
3

𝑙 𝑧−𝑛𝑙𝑣−𝑛𝑙

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(4.43)

Min =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝛽
1
3
𝑙 𝑢+𝑝𝑙 −𝛽

1
3
𝑟 𝑢−𝑝𝑟 𝛽

1
3
𝑙 𝑢+𝑛𝑙 −𝛽

1
3
𝑟 𝑢−𝑛𝑟

𝛽
1
3
𝑙 𝑣+𝑝𝑙 −𝛽

1
3
𝑟 𝑣−𝑝𝑟 𝛽

1
3
𝑙 𝑣+𝑛𝑙 −𝛽

1
3
𝑟 𝑣−𝑛𝑟

𝛽− 2
3

𝑙 𝑧+𝑝𝑙𝑢+𝑝𝑙 −𝛽− 2
3

𝑟 𝑧−𝑝𝑟𝑢−𝑝𝑟 𝛽− 2
3

𝑙 𝑧+𝑛𝑙𝑢+𝑛𝑙 −𝛽− 2
3

𝑟 𝑧−𝑛𝑟𝑢−𝑛𝑟

𝛽− 2
3

𝑙 𝑧+𝑝𝑙𝑣+𝑝𝑙 −𝛽− 2
3

𝑟 𝑧−𝑝𝑟𝑣−𝑝𝑟 𝛽− 2
3

𝑙 𝑧+𝑛𝑙𝑣+𝑛𝑙 −𝛽− 2
3

𝑟 𝑧−𝑛𝑟𝑣−𝑛𝑟

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (4.44)
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Note we have used the unitless variables introduced in Eqn. (4.26), now given on

each half-space (though the continuity relation constrains them, in general). Nor-

malizeability requires the coefficients of the ingoing negative norm modes (−𝑛𝑟, +𝑛𝑙)

be set to zero if their momentum is complex. This is always the case for the +𝑛𝑙

mode, but for the −𝑛𝑟 mode this depends on whether 𝜔 is less than the cutoff 𝜔𝑐

or not.

Inverting the Mout matrix produces

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝐶+𝑝𝑟

𝐶−𝑝𝑙

𝐶+𝑛𝑟

𝐶−𝑛𝑙

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= 𝒜

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝐶+𝑝𝑙

𝐶−𝑝𝑟

𝐶+𝑛𝑙

𝐶−𝑛𝑟

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (4.45)

with the 𝒜 matrix defined by

𝒜 ≡ M −1
outMin, (4.46)

which determines the amplitudes of the various outgoing modes present in a partic-

ular energy eigenmode, given the initial ingoing amplitudes.

When the step is between two subsonic flows, both the 𝐶+𝑛𝑙 and 𝐶−𝑛𝑟 co-

efficients must be set to zero. Thus, there are only two degenerate eigenmodes

which correspond to a modes incident from the left and right. In this sense, the

subsonic-subsonic step may be considered as being “adiabatically” connected to the

homogeneous system, where the matrix 𝒜 becomes a trivial identity map.

For a step between a subsonic flow and a supersonic flow, when the energy is below

the cutoff 𝜔𝑐 an event horizon appears and the ±𝑛𝑟 modes become scattering states.

These new scattering channels produce a third degenerate eigenmode, increasing the

rank of the scattering matrix at this energy from two to three. Because this mode
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converts an incident negative norm wave into an outgoing positive norm component,

it is responsible for producing Hawking radiation [157, 160]. It would interesting

to determine under what general circumstances the rank of the scattering matrix

may be related to the presence of event horizons in the spacetime. In addition, the

nature of the transition from rank two to rank three may be interesting to study, as

it seems impossible for it to occur in a smooth manner. We will leave these questions

open for future studies.

Though not our main focus, for completeness we will now explicitly obtain the

scattering (𝒮) matrix. This matrix is obtained from the matrix 𝒜 by weighting

each mode by its asymptotic conserved current, as per equation (4.10). Since the

current is defined as the value at spatial infinity, evanescent modes do not carry a

well-defined flux, nor do they enter into the unitarity expression. For a scattering

mode, the asymptotic current it carries is

𝐽𝛼 = 𝑤†
𝛼 (𝑣𝜏3 + 𝑘𝛼

𝑚
𝜏0) 𝑤𝛼. (4.47)

It may be shown (see Appendix F) that this current is equal to the group velocity

of the mode, weighted by its norm. Thus, the direction of current flow may be

determined graphically as well. For the subsonic-subsonic configuration, unitarity

requires

∣𝐽
+𝑝𝑟

𝐽+𝑝𝑙 ∣|𝒜+𝑝𝑟
+𝑝𝑙 |2 + ∣𝐽

−𝑝𝑙

𝐽+𝑝𝑙 ∣|𝒜−𝑝𝑙
+𝑝𝑙|2 = 1

∣𝐽
+𝑝𝑟

𝐽−𝑝𝑟 ∣|𝒜+𝑝𝑟
−𝑝𝑟|2 + ∣ 𝐽−𝑝𝑙

𝐽−𝑝𝑟 ∣|𝒜−𝑝𝑙
−𝑝𝑟|2 = 1.

(4.48)

In Fig. 4.2, the reflection and transmission coefficients are plotted as functions of

the lab-frame energy for a mode incident from the left (exterior).

For the subsonic-supersonic configuration (below threshold) we take into account
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βl = .2 βr = .7

(a)
ω/mc2l

(b)
ω/mc2l

(c)

Figure 4.2: (a) Scattering coefficients as functions of energy for a step between two
subsonic flows, and the corresponding evanescent mode amplitudes (b). A schematic
describing the process (c), with dark arrows representing positive norm modes and
light gray arrows representing evanescent modes. The direction of the arrowhead
signifies whether the mode is considered ingoing or outgoing.

the additional negative norm scattering modes, producing the unitarity relations

∣𝐽
+𝑝𝑟

𝐽+𝑝𝑙 ∣|𝒜+𝑝𝑟
+𝑝𝑙 |2 + ∣𝐽

−𝑝𝑙

𝐽+𝑝𝑙 ∣|𝒜−𝑝𝑙
+𝑝𝑙|2 − ∣𝐽

+𝑛𝑟

𝐽+𝑝𝑙 ∣|𝒜+𝑛𝑟
+𝑝𝑙 |2 = 1

∣𝐽
+𝑝𝑟

𝐽−𝑝𝑟 ∣|𝒜+𝑝𝑟
−𝑝𝑟|2 + ∣ 𝐽−𝑝𝑙

𝐽−𝑝𝑟 ∣|𝒜−𝑝𝑙
−𝑝𝑟|2 − ∣𝐽

+𝑛𝑟

𝐽−𝑝𝑟 ∣|𝒜+𝑛𝑟
−𝑝𝑟 |2 = 1

∣ 𝐽
+𝑝𝑟

𝐽−𝑛𝑟 ∣|𝒜+𝑝𝑟
−𝑛𝑟|2 + ∣ 𝐽−𝑝𝑙

𝐽−𝑛𝑟 ∣|𝒜−𝑝𝑙
−𝑛𝑟|2 − ∣𝐽

+𝑛𝑟

𝐽−𝑛𝑟 ∣|𝒜+𝑛𝑟
−𝑛𝑟|2 = −1

. (4.49)

Similar relations have been obtained in, e.g. [157, 159, 170, 171]. Note that the

third scattering channel has an overall minus sign, due to the incoming mode having

overall negative norm. The presence of the outgoing negative norm states implies

that the reflection and transmission coefficients together sum to a value larger than

unity, a hallmark of supperradiance.

In Fig. 4.3 we depict the scattering coefficients for each ingoing configuration as

a function of energy. Below the cutoff energy there are three ingoing configurations,

each scattering into the three possible outgoing channels. Of these three ingoing

channels, two have an overall positive norm, while the third describes the Hawking

channel and an has overall negative norm. The Hawking radiation spectrum is

determined by the transmission coefficient which describes the scattering of this
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(a) (b) (c)

ω

(d) (e) (f)

βr = 2.5βl = .2 βr = 2.5βl = .2βr = 2.5βl = .2

ω/mc2l ω/mc2l ω/mc2l

Figure 4.3: Scattering coefficients for subsonic-supersonic step as a function of lab-
frame energy. (a) Scattering of a particle incident from the left. The anomalous
mode corresponds to conversion into an outgoing negative norm mode. Above the
threshold energy, this coefficient goes to zero, as the outgoing channel becomes
evanescent. (b) Scattering of a particle incident from the right, a process which
can occur due to the superluminal dispersion. (c) The Hawking mode, whereby an
incident negative norm mode scatters off of the event horizon. This ingoing channel
becomes an exponentially growing mode above the threshold energy, where all the
coefficients go to zero. In the schematics (d-f), the large grey arrows indicate the
negative norm scattering states.

mode into the outgoing positive norm mode outside the horizon (the −𝑝𝑙 mode).

This Hawking flux exiting the black hole is depicted in more detail in Fig. 4.4,

where it is also compared to the magnitude of the evanescent mode present in this

eigenmode. While the evanescent mode amplitude vanishes at zero energy, the

Hawking flux diverges as 1/𝜔 at low frequencies, reflecting its effectively thermal

distribution at low energies. As claimed earlier, the distribution function departs

from thermality at higher energies before vanishing at the cutoff energy 𝜔𝑐. We now

shift our focus to the evanescent mode, which only exists close to the event horizon.
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ω/mc2l

ωc = .964

ω/mc2l(a) (b)

Figure 4.4: (a) The squared-amplitudes of the various modes comprising the Hawking
eigenmode for 𝑥 < 0 (𝛽𝑙 = .7, 𝛽𝑟 = 2.5). We see that they both go to zero at the
cutoff energy, which is also depicted. (b) The computed Hawking flux compared to
an approximation by ∼ 1/𝜔, the classical (low energy) approximation to thermal
occupation. The proportionality coefficient is extracted and represents (up to an
overall greybody absorption factor) the effective black hole temperature. While the
two curves agree at low frequencies, they clearly disagree at higher energies.

4.5 Evanescent Modes

In the previous section we argued that evanescent modes do not contribute to the

scattering relations since they carry no asymptotic flux. One may then wonder under

what conditions they are physically important. We will now demonstrate that if one

considers observables which depend on the near-horizon correlation functions [155,

156, 160], the evanescent modes will be important as they will modify quantities

measured near the horizon. As a simple example, we consider the norm density

of a particular eigenmode, a quantity which is related to the quantum density

fluctuations.

Specifically, we will study the Hawking (−𝑛𝑟) mode, which only has one scatter-

ing mode outside of the horizon. As such, far from the horizon the norm density is

a featureless constant, with value 1
𝑐2

𝑙
|𝒜−𝑝𝑙

−𝑛𝑟|2. However, near the horizon the evanes-

cent mode is non-zero and can exhibit quantum interference with the outgoing
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Figure 4.5: Plot of 𝑊 †(𝑥)𝜏3𝑊(𝑥) as a function of 𝑥 for a particular eigenvalue
(𝜔 = .260, 𝛽𝑙 = .7, 𝛽𝑟 = 2.5). (a) The near horizon density of the +𝑝𝑙 mode, which
is incident from the left. The inset of (a) shows the same, but plotted over a larger
range of 𝑥. (b) The near horizon density of the −𝑝𝑟 mode, which is a superluminal
positive norm mode incident from right. The inset shows a larger range of 𝑥. The
evanescent mode is seen as the modulation of the density at 𝑥 ≲ 0 away from its
asymptotic value. (c) The near horizon density of the −𝑛𝑟 mode, which is the
Hawking mode with a negative norm mode incident from the right. The inset shows
a larger range of 𝑥. The evanescent mode is again noticeable here as a modulation
of the density for 𝑥 ≲ 0. The horizontal and vertical dashed lines indicate zero for
𝑊 †𝜏3𝑊 and 𝑥, where the horizon is located, respectively. It should be noted that
the true conserved density is 𝜌𝑊 †𝜏3𝑊, rather than 𝑊 †𝜏3𝑊 which has been plotted
instead for clarity. Statements made about the evanescent mode are unaffected by
this distinction.

Hawking flux, leading to a deviation of the norm density from its value inferred by

an observer at spatial infinity. This interference is clearly visible in Fig. 4.5(b),(c)

where the density for 𝑥 → −∞ is constant and featureless, while the density near

𝑥 ≲ 0 deviates from this value quite significantly just outside the event horizon.

When considering near-horizon physics, the evanescent modes will have impor-

tant contributions which would otherwise be overlooked if the horizon curvature

is small, or if the observer is sufficiently far from the horizon. Such behavior is

not permissible by the equivalence principle, which implies that observers crossing

the event horizon experience a locally flat spacetime. It is not surprising therefore

that these modes decay over a length scale governed by the scale at which Lorentz

invariance is violated. Using the Bogoliubov dispersion relation we find that the
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imaginary part of the evanescent mode momentum is related to the real part by

(Im(𝑧−𝑛𝑙))
2 = (Re(𝑧−𝑛𝑙))

2 + 2(1 − 𝛽2
𝑙 ) + 2𝛽𝑙𝜆𝑙

Re(𝑧−𝑛𝑙)
. (4.50)

The first term and third terms can be shown to be non-negative for 𝛽, 𝜆 > 0. Thus,

we can bound the imaginary part from below by

Im(𝑧−𝑛𝑙) ≥ √2(1 − 𝛽2
𝑙 ). (4.51)

Replacing units, we find that the evanescent modes are forced to decay over a length

scale 𝐿−𝑛𝑙 such that

𝐿−𝑛𝑙 ≤ 1
√

2𝑚𝑐𝑙√(1 − 𝛽2
𝑙 )

. (4.52)

For any finite subsonic flow this scale is finite and furthermore, as 𝑚 → ∞ (at fixed

𝑐𝑙), this length scale goes to zero, completely removing the evanescent modes from

the spectrum. This is inline with our intuition since the mass 𝑚 effetively sets the

scale at which the superluminal dispersion ruins Lorentz invariance; thus, this limit

corresponds to enforcing Lorentz symmetry throughout the entire spectrum. In this

case, the equivalence principle requires the evanescent modes to disappear, as they

do.

To emphasize the potential importance of these evanescent modes, we recall that

in the presence of an event horizon the energy eigenbasis becomes three-dimensional.

In this case, we can form the linear combination of ingoing-eigenmodes

𝑊confined(𝑥) ≡
𝒜−𝑝𝑙

−𝑝𝑟𝑊−𝑛𝑟(𝑥) − 𝒜−𝑝𝑙
−𝑛𝑟𝑊−𝑝𝑟(𝑥)

𝒜−𝑝𝑙
−𝑝𝑟𝒜−𝑛𝑙

−𝑛𝑟 − 𝒜−𝑝𝑙
−𝑛𝑟𝒜−𝑛𝑙

−𝑝𝑟
, (4.53)

which describes a coherent superposition of the Hawking mode and an incident

superluminal particle. This particular combination of modes has no flux escaping
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the black hole as the two incident amplitudes coherently cancel outside the event

horizon. Nevertheless, due to the evanescent modes it is seen to have finite support

outside of the event horizon. This is illustrated in Fig. 4.6, which depicts the

norm density and individual components of a particular confined eigenmode, indeed

confirming that it is exponentially localized to the interior of the black hole. It

appears that if we were to extend the black hole interior to include a white hole,

this confined mode would represent “half” of a black hole bound state, which are

the modes responsible for black-hole-lasing and dynamical instability [152, 159, 165,

168]. Analyzing the stability and evolution of this confined mode with and without

the accompanying white hole may uncover interesting instabilities which develop

conditioned on the nature of the black hole interior.

4.6 Conclusion

In this work we have systematically studied the step-like horizon formed in a quasi-

one dimensional flowing BEC, which we argue serves as a model for acoustic black

holes of very large curvature. In addition to computing the scattering coefficients of

this system (including the Hawking flux coefficient), we have also highlighted and

studied the properties of the evanescent modes which form at the event horizon

and result from model’s non-linear dispersion. These evanescent modes have been

conclusively shown to modify near-horizon observables, despite the fact that they

do not affect the scattering relations.

Given that the evanescent modes are effectively negative norm states tunneling

across the event horizon, and have no flux out to infinity, it is interesting to speculate

on what role, if any, these modes may serve in resolving the black hole information

paradox. Through their effect on observables (such as the density and current

fluctuations) near the horizon, it is conceivable that they may provide a route for

information trapped behind the horizon to escape. In particular, though they cannot
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asymptotically carry any information away as they are only a virtual process, it may

be possible to retrieve information from the interior via an “external measurement”

of the system (e.g. a projective measurement of the density). This is especially

important since, in our model we have neglected interactions between the Bogoliubov

quasiparticles, truncating the Heisenberg equations to linear order in fluctuations.

In the presence of quasiparticle interactions, it is plausible that the system will “self-

measure,” as the virtual evanescent modes collide and interact with the outgoing

Hawking flux, leading to a genuine leakage of information out of the event horizon.

In a similar vein, it is interesting to note that even though the condenate varies

in an abrupt step-like manner, the evanescent modes seem to modulate observables

on a longer length scale which is comparable to their decay length. If we assume that

the quasiparticle correction to the physical boson density behaves similarly, then

we should expect that an initially sharp step-like condensate will become dressed

by the evanescent modes, smearing it into a less abrupt horizon. This is interesting

since it potentially provides an example where the quasiparticle back-reaction on

the condensate modifies the event horizon itself. When quasiparticle interactions

are included this may generate entanglement between the event horizon and the

outgoing Hawking radiation.

Finally, we note that evanescent modes have been seen in other contexts, e.g. the

AdS-CFT correspondence [176], where evanescent modes are also seen to emanate

from an apparent AdS black hole event horizon. Given that the model we consider

only has emergent Lorentz invariance, it is interesting to consider whether it is

possible to connect the analogue of the AdS-CFT correspondence for a theory with

only emergent Lorentz invariance, i.e. one with a sonic black hole in its bulk and

some form of approximate-CFT on the boundary. Similarly, whether it is possible to

see these evanescent features in models of quantum gravity with emergent Lorentz

invariance (e.g. Hořava gravity [153, 177] ) is another interesting avenue of research.
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Figure 4.6: Confined mode for horizon with 𝛽𝑙 = .7, 𝛽𝑟 = 2.5 for a particular
eigenenergy (𝜔 = .260). (a) The density (modulus squared) of each component
of the mode confined to the interior of the horizon. Note that both components
independently decay to zero for 𝑥 < 0 (outside the event horizon). (b) The same
quantity, plotted over a smaller y-scale, emphasizing the scale of the decay for 𝑥 < 0.
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Chapter 5: Analogue Newton-Cartan spacetime in flowing

spinor Bose-Einstein condensates

This chapter is based on the publication Wilson, Curtis, and Galitski [178], which

is currently under review.

5.1 Introduction

The marriage of quantum mechanics and general relativity is one of the greatest

outstanding problems in modern physics. This is in part due to the fact that this

theory would only become truly necessary under the most extreme conditions—the

singularity of a black-hole or the initial moments after the big bang. As such, it is

extremely difficult to theoretically describe, let alone physically probe.

Despite the seeming intractability, some headway may be made in the under-

standing of such extreme theories by way of analogy. This idea traces back to Unruh,

who in 1981[17] suggested that a flowing quantum fluid could realize a laboratory

scale analog of a quantum field theory in a curved spacetime. Access to even the

most rudimentary quantum simulator for such a curved spacetime could provide

valuable insights into this otherwise inaccessible regime.

Since Unruh’s initial proposal, many systems have been advanced as candi-

dates for realizing analog spacetimes [20], including liquid helium [134, 136, 137],

Bose-Einstein condensates [18, 19, 22, 138–142, 145, 152, 154], nonlinear optical

media [149], electromagnetic waveguides [146], magnons in spintronic devices [148],

semi-conductor microcavity polaritons [111], Weyl semi-metals [179, 180], and even

in classical water waves [151]. Analog gravity systems are no longer a theoretical

endeavor; recent experiments have realized the stimulated Hawking effect [150], and

in the case of a Bose-Einstein condensate a spontaneous Hawking effect [152, 154].
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Goldstone mode Dispersion Analog spacetime Lagrangian
Type-I 𝜔 ∼ 𝑘 Einstein-Hilbert Eq. (5.37)
Type-II 𝜔 ∼ 𝑘2 Newton-Cartan Eq. (5.42)

Table 5.1: Analog spacetimes which appear for the different Goldstone modes in
the presence of a background condensate flow. These spacetimes emerge as effective
field theories governing the long-wavelength behavior. As we demonstrate in this
work, the emergent geometry is determined by the flow profile of the background
condensate. This is explicitly demonstrated in Sec. 5.2.4 for the Type-I modes
and Sec. 5.2.5 for the Type-II modes, where we also provide an overview of the
Newton-Cartan formalism.

In this chapter we will introduce a new kind of analog gravity system, one

which exhibits Newton-Cartan geometry [28, 29, 34]. This geometry naturally arises

from a full analysis of all Goldstone modes in a flowing spinor (or multicomponent)

condensate. Spinor condensates [181] have been studied in the context of analog

curved space before [26, 27]; however a full accounting of all gapless modes has

not been done to the best of our knowledge. The Goldstone modes which realize

the Newton-Cartan geometry exhibit a quadratic 𝜔 ∼ k2 dispersion, known as

“Type-II” Goldstone modes [26, 27]. For example, the spin wave excitations about

an SU(2) symmetry breaking ferromagnetic mean-field are such a mode. Distinct

from the linearly dispersing case (called “Type-I” modes), Newton-Cartan spacetimes

implement local Galilean invariance, as opposed to local Lorentz invariance. These

results are general and summarized in Table 5.1, where we give a general prescription

for separating out all Goldstone modes into either Type-I (linearly dispersing) or

Type-II (quadratically dispersing) modes and assigning them either an Einstein-

Hilbert or Newton-Cartan spacetime geometry.

Newton-Cartan geometry was developed by Cartan [28, 29] and refined by others

[182] as a geometric formulation and extension of Newtonian gravity. It has since

found application across different areas of physics, including in quantum Hall systems

[32, 34, 183] and effective theories near Lifshitz points [184, 185] with interest to the

high-energy community with implications for quantum gravity [186, 187]. We extend
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these applications here to flowing condensates for the case of Type-II Goldstone

modes.

Heuristically, one may view the quadratic dispersion relation 𝜔 ∼ |k|2 + ...

as the limit of a linear dispersion relation 𝜔 ∼ 𝑣|k| + ... with vanishing group

velocity 𝑣 → 0. In terms of the analog spacetime, this corresponds to an apparent

vanishing of the speed of light. As such, the formation of event horizons and their

corresponding Hawking radiation ought to be ubiquitous in such spacetimes; however

our results contradict this intuition. Specifically, we find that fields propagating in

Newton-Cartan geometries exhibit an additional conservation law which precludes

the emission of Hawking radiation.

The immediate implication of this is that any Type-I mode can have an effective

event horizon and therefore a Hawking effect (similar things have been noticed

for specific other Type-I modes), and further, no Hawking effect can occur for

Type-II modes, at least not without introducing quasiparticle interactions (which

corresponds to going being a quadratic treatment of fluctuations).

Finally, we discuss the relationship between transport phenomena and gravi-

tational metrics in our theory [31–34]. Specifically, we obtain the stress-tensor,

energy flux, and momentum density for theories both with the Einstein-Hilbert and

Newton-Cartan geometries. In particular, we relate the energy-momentum tensor

calculated in an analog Einstein-Hilbert geometry to its nonrelativistic counterparts

through the use of Newton-Cartan geometry. This helps identify how the analog

Hawking effect results in nontrivial energy and momentum currents in the underlying

nonrelativistic system.

The outline of the remaining sections are as follows. Section 5.2 shows that in the

presence of a flowing background condensate Type-I and -II Goldstone modes couple

to Einstein-Hilbert (Section 5.2.4) and Newton-Cartan (Section 5.2.5) geometries

respectively. In Section 5.3, we present a minimal model for these space-times and
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the phase transition that connects them. In Sec. 5.3.1 we develop the Bogoliubov-de

Gennes framework which we then use to analyze this system. In Sec. 5.4 we apply

this to a specific step-like flow geometry and show the effect of the geometry on the

emitted Hawking radiation. We then discuss transport of energy and momentum

in these different analog spacetimes systems in Sec. 5.5. We conclude the chapter

in Section 5.6. Our two appendices include Appendix G where we put the full

fluctuation calculation of the Lagrangian and Appendix H where we review the

Hawking calculation for the phonon problem.

5.2 Relationship between spacetime and Goldstone’s theorem

In this work we consider models of ultra-cold bosonic spinor quantum gases

described by an 𝑁-component field variable Ψ(r, 𝑡) = [Ψ1, Ψ2, … , Ψ𝑁]𝑇 residing in

𝑑 spatial dimensions (we do not make the distinction between “spinor” and higher

multiplet fields in this work). The Lagrangian describing this system is taken to be

of the general form

ℒ = 𝑖
2(Ψ† ⃗⃗⃗ ⃗⃗ ⃗⃗𝜕𝑡Ψ − Ψ† ⃖⃖⃖ ⃖⃖ ⃖⃖𝜕𝑡Ψ) − 1

2𝑚∇Ψ† ⋅ ∇Ψ − 𝑉 (Ψ†, Ψ), (5.1)

where 𝑚 is the mass of the atoms in the gas and 𝑉 (Ψ†, Ψ) is a general potential energy

function that includes interactions with an external potential as well as local inter-

particle interactions. Such a system may be realized by cold-atoms, where in addition

to the inter-particle interactions external potentials such as a harmonic trap, optical

lattice, or magnetic field may be present. For a comprehensive review regarding the

theory and experimental realization of spinor condensates see Ref. [181].

We consider the case where the Lagrangian exhibits invariance under an internal

symmetry described by a Lie group 𝐺, according to which Ψ transforms via a linear

unitary representation ℛ(𝐺) such that the action 𝒮 = ∫ ℒ 𝑑𝑑+1𝑥 remains invariant.
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That is,

Ψ(𝑥) → 𝑈Ψ(𝑥) ⇒ 𝒮 → 𝒮 ∀𝑈 ∈ ℛ(𝐺). (5.2)

Recall that a Lie group 𝐺 is generated by its corresponding Lie algebra 𝔤, and this

has a representation of ℛ(𝔤) when acting on the field Ψ. For ease of calculations,

we use the mathematical convention that Lie algebras consist of anti-Hermitian

elements. Hence, if 𝐴 is an element of ℛ(𝔤), then 𝐴 = −𝐴† and the corresponding

group element is 𝑒𝐴 = ((𝑒𝐴)−1)†.

We pursue a semi-classical analysis of our system by first obtaining the classical

equations of motion (i.e. the saddle-point of the action). Then we linearize the

action around the saddle-point, obtaining a description of the symmetry-broken

phases in terms of their Goldstone modes. The primary point of our work is that

this linearized action admits a simple description in terms of different emergent

analog spacetimes and depending on the nature of the saddle-point, this analog

spacetime may develop non-trivial curved geometry.

The rest of this section is organized as follows. We perform a quadratic fluctua-

tion analysis in Section 5.2.1. In Section 5.2.2 we review the proof of the Goldstone

theorem in non-relativistic settings [26, 27] and show how this allows us to classify

Goldstone modes into Type-I and Type-II. Section 5.2.3 then presents the full La-

grangian for the Goldstone modes while Sections 5.2.4 and 5.2.5 make explicit the

connection to curved space geometry.

5.2.1 Saddle-Point Expansion

We begin by looking for saddle-points of the Lagrangian Eq. (5.1), the spinor

Gross-Pitaevskii equation

𝑖𝜕𝑡Ψ = − 1
2𝑚

∇2Ψ + 𝜕𝑉
𝜕Ψ† . (5.3)
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Suppose that we have found a mean-field solution to this equation Ψ0(r, 𝑡) ≡ ⟨Ψ(r, 𝑡)⟩

which describes the dynamics of a mean-field condensate (neglecting fluctuation

back-reaction); for a general out-of-equilibrium system, the space-time dependence

of Ψ0(r, 𝑡) may be non-trivial [22, 181, 188].

The presence of a non-zero mean-field solution Ψ0 spontaneously breaks the

internal symmetry group 𝐺 down to a subgroup 𝐻 ⊂ 𝐺. Let 𝔥 be the Lie algebra

that generates the subgroup 𝐻. This is defined by the set of generators

𝔥 = { ̂𝜏 ∈ 𝔤 | ̂𝜏Ψ0 = 0}. (5.4)

We can form a complete basis for 𝔥 = span{𝜏𝑘}. The original Lie algebra then

separates into two sub-spaces; 𝔤 = 𝔥 ⊕ 𝔥𝑐, where 𝔥𝑐 is simply the complement of 𝔥.

It is useful to form an explicit basis for 𝔥𝑐 ≡ span{𝜎𝑙} so that 𝔤 = span{𝜏𝑘}∪{𝜎𝑙} =

span{𝜎𝑙, 𝜏𝑘}. Formally, 𝔥𝑐 is isomorphic to the quotient algebra 𝔤/𝔥, and the basis

elements 𝜎𝑙 are isomorphic to coset spaces.

It is important to emphasize that, although in general the mean-field Ψ0(𝑥)

may break the symmetry group 𝐺 down to different subgroups 𝐻 = 𝐻(𝑥) at each

spacetime point, we do not consider this in full generality since it leads to a very

complicated (but interesting) structure involving a non-Abelian connection on the

spacetime. However, we later consider flowing condensates which inhomogeneously

break the 𝑈(1) subgroup of 𝐺.

We now examine the quadratic fluctuations of the field Ψ about the mean-field by

expanding the Lagrangian in powers of 𝛿Ψ(𝑥) = Ψ(𝑥) − Ψ0(𝑥). This separates into

two distinct contributions; the massless Goldstone modes 𝜃𝑙(𝑥) which correspond to

spontaneously broken symmetries, and massive fields 𝛽𝑛(𝑥) which describe all the

remaining modes. Each Goldstone mode corresponds to a broken generator 𝜎𝑙 ∈ 𝔥̄

acting on the mean-field condensate Ψ0(𝑥). These contribute to the fluctuation
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action as

(𝛿Ψ(𝑥))Goldstone = ∑
𝑙

𝜃𝑙(𝑥)𝜎𝑙Ψ0(𝑥) ≡ 𝜎̂(𝑥)Ψ0(𝑥), (5.5)

which serves to define the Goldstone matrix field 𝜎̂(𝑥). The remaining degrees of

freedom are generically massive and are not amenable to a description in terms of

the Lie algebra’s generators. It is advantageous to parameterize the fluctuations 𝛿Ψ

in terms of real fields with massive terms orthogonal to the massless terms in the

sense described below. Within the quadratic theory, this implies the fluctuations

reside within a real vector space ℝ2𝑁 ∼ ℂ𝑁. The Goldstone modes 𝜎𝑙Ψ0(𝑥) form a

subspace of this manifold while the remaining basis elements are generically massive

and are written as 𝜉𝑛(𝑥). We note that in general the basis elements are spacetime

dependent simply because the mean-field is also spacetime dependent.

In order to make the notion of orthogonality precise we lift the standard complex

(ℂ𝑁) inner product onto our real vector space ℝ2𝑁 to obtain the real inner product

𝑔 defined by

𝑔(𝜉, 𝜒) ≡ 1
2(𝜉†𝜒 + 𝜒†𝜉). (5.6)

In terms of the Goldstone manifold and its complement, the variation 𝛿Ψ(𝑥) takes

the compact form

𝛿Ψ(𝑥) = 𝜎̂(𝑥)Ψ0(𝑥) + 𝜉(𝑥), (5.7)

where we have defined the massive modes by

𝜉(𝑥) = ∑
𝑛

𝛽𝑛(𝑥)𝜉𝑛(𝑥). (5.8)

We proceed to the expansion of the Lagrangian in terms of the variation 𝛿Ψ.

First, we consider the potential. It is locally invariant under under 𝐺, so we can

write

𝑉 (Ψ†, Ψ) = 𝑉 (Ψ†𝑒𝜎̂(𝑥), 𝑒−𝜎̂(𝑥)Ψ). (5.9)
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Furthermore, we can use our expansion of Ψ(𝑥) to obtain

𝑒−𝜎̂Ψ ≈ 𝑒−𝜎̂[Ψ0 + 𝜎̂Ψ0 + 𝜉]

≈ (1 − 𝜎̂ + 1
2 𝜎̂2)[Ψ0 + 𝜎̂Ψ0 + 𝜉]

≈ Ψ0 + 𝜉 − 𝜎̂𝜉 − 1
2 𝜎̂2Ψ0,

(5.10)

keeping terms up to quadratic order in fluctuations. This allows us to expand the

potential energy up to quadratic order (dropping the terms constant and linear in

the variation)

𝑉 (Ψ†, Ψ) = − [ 𝜕𝑉
𝜕Ψ

⋅ (1
2 𝜎̂2Ψ0 + 𝜎̂𝜉) + c.c.]

+ 1
2

𝜉∗𝜉∗ ⋅ 𝜕2𝑉
𝜕Ψ†𝜕Ψ† + 𝜉∗ ⋅ 𝜕2𝑉

𝜕Ψ†𝜕Ψ
⋅ 𝜉 + 1

2
𝜕2𝑉

𝜕Ψ𝜕Ψ
⋅ 𝜉𝜉, (5.11)

where all derivatives of the potential are understood as being evaluated at the mean-

field. The terms quadratic in 𝜉, 𝜉∗ represent massive terms, and the first line of

Eq. (5.11) drops out when combined on-shell with similar terms from the kinetic

part of the Lagrangian. Deriving the full fluctuation Lagrangian is not instructive,

and has been relegated to Appendix G; the final result is given below.

Focusing on the Goldstone modes, written in terms of the “angle fields” 𝜃𝑙(𝑥),

the resulting Lagrangian for fluctuations is given by

ℒfluc = 𝜃𝑚𝑃 𝜇
𝑚𝑛(𝜕𝜇𝜃𝑛) + 𝛽𝑚𝑄𝜇

𝑚𝑛(𝜕𝜇𝜃𝑛)

+ (𝜕𝑗𝜃𝑛)𝑇 𝑗𝑘
𝑚𝑛(𝜕𝑘𝜃𝑛) + ℒmass(𝛽𝑚, 𝜕𝜇𝛽𝑚), (5.12)

where we have instituted the Einstein summation convention. In this and the

following, Roman indices 𝑖, 𝑗, 𝑘, … run over spatial dimensions while Greek indices

𝜇, 𝜈, … run over both temporal and spatial dimensions (with 𝜇 = 0 = 𝑡 the temporal

index). The Roman indices 𝑛, 𝑚, … enumerate the different Goldstone modes or
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massive modes and are similarly summed. The terms 𝑃 𝜇
𝑚𝑛, 𝑄𝜇

𝑚𝑛, and 𝑇 𝑗𝑘
𝑚𝑛 depend

on both space and time, and are given by

𝑃 𝑡
𝑚𝑛 = 𝑖

2Ψ†
0[𝜎𝑛, 𝜎𝑚]Ψ0,

𝑃 𝑗
𝑚𝑛 = 1

4𝑚(𝜕𝑗Ψ
†
0[𝜎𝑚, 𝜎𝑛]Ψ0 − Ψ†

0[𝜎𝑚, 𝜎𝑛]𝜕𝑗Ψ0),

𝑄𝑡
𝑚𝑛 = 𝑖(Ψ†

0𝜎𝑛𝜉𝑚 + 𝜉†
𝑚𝜎𝑛Ψ0),

𝑄𝑗
𝑚𝑛 = 1

2𝑚(𝜉†
𝑚𝜎𝑛𝜕𝑗Ψ0 − 𝜕𝑗Ψ

†
0𝜎𝑛𝜉𝑚

+ Ψ†
0𝜎𝑛𝜕𝑗𝜉𝑚 − 𝜕𝑗𝜉

†
𝑚𝜎𝑛Ψ0),

𝑇 𝑗𝑘
𝑚𝑛 = 1

2𝑚𝛿𝑗𝑘Ψ†
0𝜎𝑛𝜎𝑚Ψ0.

(5.13)

As mentioned previously, it is also important to keep track of the massive modes in

the full Lagrangian and we offer that full analysis in Appendix G.

5.2.2 Proof of the nonrelativistic Goldstone theorem

Before proceeding to simplify the Lagrangian and derive the curved space ana-

logues, we need to understand and make use of the nonrelativistic Goldstone theo-

rem [26, 27], providing a complementary proof in the process.

We consider the following ansatz for the mean-field

Ψ0(𝑥) = √𝜌(𝑥)𝑒𝑖𝜗(𝑥)𝜒, 𝜒†𝜒 = 1, 𝜕𝜇𝜒 = 0. (5.14)

Importantly the spinor structure given by 𝜒 is independent of space and time. The

global 𝑈(1) symmetry implies the phase and density obey a continuity relation

which can be conveniently written as

𝜕𝜇𝐽𝜇 = 0, (5.15)

with the condensate four-current given by 𝐽𝜇 = 𝜌𝑣𝜇
𝑠 , where the superfluid four-
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velocity field is 𝑣𝜇
𝑠 = (1, 1

𝑚∇𝜗). This simplifies the term

𝑃 𝜇
𝑚𝑛 = − 𝑖

2𝐽𝜇𝜒†[𝜎𝑛, 𝜎𝑚]𝜒, (5.16)

which dictates which real fields 𝜃𝑛 are canonically conjugate to each other. In

non-relativistic systems, the relationship between broken symmetry generators and

Goldstone modes is not one-to-one. Instead, we must separate out our modes into

Type-I and Type-II Goldstone modes, which is done by going to the preferred basis

of the matrix 𝑃 𝜇
𝑚𝑛.

To understand this, we return to the real vector space defined by the Goldstone

mode manifold, which we label 𝒜ℝ. That is,

𝒜ℝ = spanℝ{𝜎𝑙Ψ0(𝑥)}. (5.17)

The real dimension 𝐷ℝ of this subspace is simply equal to the number of broken

generators. We can complexify this vector space by allowing for complex-valued

coefficients

𝒜ℂ ≡ spanℂ{𝜎𝑛Ψ0}. (5.18)

It may be the case that two generators which are linearly independent under real

coefficients are linearly dependent when multiplied by complex coefficients. For

this reason, this vector space has an associated complex dimension 𝐷ℂ ≤ 𝐷ℝ. The

essence of the Goldstone mode theorem is that 𝐷ℝ is the number of broken generators

and 𝐷ℂ is the number of modes, and these two quantities can be formally related

by classifying each basis element 𝜎𝑙Ψ0(𝑥) ∈ 𝒜ℝ due to whether 𝑖𝜎𝑛Ψ0 ∈ 𝒜ℝ or not.

To establish this we need to return to our real inner product 𝑔(⋅, ⋅). We can use

the operation of multiplication by 𝑖 to define a symplectic bilinear form 𝜔(⋅, ⋅) by

𝜔(𝜂, 𝜉) ≡ 𝑔(𝑖𝜂, 𝜉) = 𝑖
2(𝜉†𝜂 − 𝜂†𝜉). (5.19)

99



The multiplication by 𝑖 (acting on the basis vectors 𝜎𝑙Ψ0(𝑥)) can be restricted to

the real vector space 𝒜ℝ, which we define by the notation

𝑖|𝒜ℝ
≡ 𝐼 ∶ 𝒜ℝ → 𝒜ℝ. (5.20)

Similarly, we define range 𝐼 ≡ 𝒜II ⊂ 𝒜ℝ as the range of 𝐼. The null space of 𝐼 is

then defined to be 𝒜I and represents states 𝜂 ∈ 𝒜ℝ which leave the real vector space

upon multiplication by 𝑖. As a simple example, consider unit vectors ̂𝑒1 = (1, 0)𝑇

and ̂𝑒2 = (𝑖, 0)𝑇. As elements of a real vector space these are linearly independent,

however 𝑖 ̂𝑒1 = ̂𝑒2 and so these are not linearly independent in a complex vector space.

In this case, we have 𝐷ℝ = 2, 𝐷ℂ = 1 and range 𝐼 = 𝒜ℝ, null 𝐼 = 0. However, if

̂𝑒1 = (1, 0)𝑇 and ̂𝑒2 = (0, 1)𝑇 then 𝐷ℝ = 2 = 𝐷ℂ and range 𝐼 = 0, null 𝐼 = 𝒜ℝ.

The classification of basis elements may be accomplished by taking the real inner

product of 𝑖𝜂 with the other elements of 𝒜—if this vanishes, then 𝜂 is in the kernel

of 𝐼. But this is exactly given by the symplectic bilinear form defined above so that

𝒜I ≡ null 𝐼 = {𝜂 ∈ 𝒜ℝ | 𝜔(𝜂, 𝜒) = 0, ∀𝜒 ∈ 𝒜}. (5.21)

This condition can be simplified into a matrix condition if we note that we can let

𝜂 = ∑𝑛 𝑎𝑛𝜎𝑛Ψ0 and 𝜒 = ∑𝑚 𝑏𝑚𝜎𝑚Ψ0, so that

0 = 𝜔(𝜂, 𝜒) = − 𝑖
2𝑎𝑛Ψ†

0[𝜎𝑛, 𝜎𝑚]Ψ0𝑏𝑚. (5.22)

This relates the null-space of 𝐼 to the null-space of the matrix Ψ†
0[𝜎𝑛, 𝜎𝑚]Ψ0 ∝ 𝑃 𝜇

𝑚𝑛,

the term appearing in our Lagrangian which determines the canonically conjugate

pairs of modes. Using the rank-nullity theorem, we have

𝒜ℝ = 𝒜I ⊕ 𝒜II. (5.23)
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Since the matrix given by elements − 𝑖
2Ψ†

0[𝜎𝑛, 𝜎𝑚]Ψ0 is real and antisymmetric, we

can block-diagonalize the matrix with a special orthogonal transformation. Going to

this basis and using our ansatz for the flowing mean-field Ψ0 = √𝜌𝑒𝑖𝜗𝜒, the result

is

− 𝑖
2Ψ†

0[𝜎𝑛, 𝜎𝑚]Ψ0 = − 𝑖
2𝜌𝜒†[𝜎𝑛, 𝜎𝑚]𝜒 = 𝜌

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝒜II

⏞⏞⏞⏞⏞⏞⏞
0 𝜆1 0 0

𝒜I

⏞

−𝜆1 0 0 0 ⋯ 0 ⋯

0 0 0 𝜆2

0 0 −𝜆2 0

⋮ ⋱

0 0

⋮ ⋱

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠
(5.24)

with 𝜆𝑗 > 0. This defines a preferred basis for the broken generators {𝜎𝑙} which

we henceforth assume is the basis we are in. Note that in this basis 𝒜II takes the

form of a direct sum of decoupled symplectic forms.

This matrix provides a natural way to break up the generators. First, we can

define 𝜎II𝑛 and its conjugate generator 𝜎II𝑛 via − 𝑖
2Ψ†

0[𝜎II𝑛 , 𝜎II𝑛 ]Ψ0 = 𝜌𝜆𝑛. This implies

that 𝜎II𝑛Ψ0 = 𝑖𝜎II𝑛Ψ0 (however 𝜎II𝑛 ≠ 𝑖𝜎II𝑛). Let 𝑛II be the number of 𝜆𝑗’s, so that

dim(𝒜II) = 2𝑛II. As the coefficient of the temporal derivative term in the Lagrangian,

this matrix tells us that the two Goldstone fields described by 𝜎II𝑛Ψ0(𝑥) and 𝜎II𝑛Ψ0(𝑥)

are canonically conjugate to each other and therefore describe the same mode, a

Type-II Goldstone mode. Finally, let dim(𝒜I) = 𝑛I be dimension of the null-space

of 𝐼. This is the number of Type-I Goldstone modes; they represent modes which

are canonically conjugate to a massive mode. It is evident by the rank-nullity result

that

2𝑛II + 𝑛I = 𝐷ℝ (5.25)
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is the number of broken generators, while

𝑛II + 𝑛I = 𝐷ℂ (5.26)

is the number of Goldstone modes in the system.

With this particular grating into 𝑛II basis elements 𝜎II𝑛Ψ0 and 𝑛I basis elements

𝜎I𝑛Ψ0, we can rewrite our real vector space

𝒜ℝ = span{𝜎II𝑛Ψ0, 𝜎II𝑛Ψ0, 𝜎I𝑛Ψ0}, (5.27)

and similarly, we can write the complexified vector space in two equivalent ways

𝒜ℂ = spanℂ{𝜎II𝑛Ψ0, 𝜎I𝑛Ψ0},

𝒜ℂ = span{𝜎II𝑛Ψ0, 𝜎II𝑛Ψ0, 𝜎I𝑛Ψ0, 𝑖𝜎I𝑛Ψ0}.
(5.28)

The modes represented by 𝑖𝜎I𝑛Ψ0 are exactly the massive modes conjugate to 𝜎I𝑛Ψ0

(by definition, they are not in 𝒜 and are thus not associated with a broken generator).

At low energies (below the relevant mass gaps), massive modes that are not

conjugate to Goldstone modes can be trivially integrated out and do not contribute

in the IR. This then leaves the Goldstone modes, which are gapless, and a few

massive modes which are canonically conjugate to the Type-I Goldstone modes.

These massive modes cannot be trivially integrated out and they are to be included

in the low-energy theory. Doing so amounts to adding the basis elements 𝑖𝜎I𝑛Ψ0 to

our fluctuation manifold.

5.2.3 Lagrangian for Goldstone Modes

We now employ this classification into Type-I and -II modes to our benefit by

using it to simplify the fluctuation Lagrangian. Recall that in this work we restrict
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ourselves to flowing condensates which have a spatial texture to the phase mode

(and thus inhomogeneously break the global 𝑈(1) part of the symmetry group), but

have a homogeneous and static spinor texture. For instance, one may consider a

condensate of pseudo-spin-1
2 atoms in its ferromagnetic phase which has a definite

homogeneous magnetization ⟨𝑆𝑧⟩ = 𝜒†𝑆𝑧𝜒 = 1
2 but a non-zero density and phase

profile. As remarked earlier, this flow produces a non-zero spatial component for the

Noether current 𝐽𝜇(𝑥). Going to the preferred basis of 𝑃 𝜇
𝑚𝑛, obtained in Sec. 5.2.2

then yields the partitioning into the Goldstone modes given by {𝜎II𝑛Ψ0, 𝜎II𝑛Ψ0, 𝜎I𝑛Ψ0}.

Let us remind the reader that Type-I modes are those for which 𝑖𝜎𝑛Ψ0 cannot be

written as a broken generator 𝜎′
𝑛Ψ0 and therefore, the associated real field comes

with a massive term in the Lagrangian.

The basis elements {𝜎II𝑛Ψ0, 𝜎I𝑛Ψ0} have the property that they are orthogonal in

the conventional sense (e.g. 𝜂†𝜒 = 0). As a result of this,

Ψ†
0𝜎I𝑛𝜎II𝑚Ψ0 = 0,

−Ψ†
0𝜎II𝑛𝜎II𝑚Ψ0 = 𝜆𝑛𝛿𝑛𝑚𝜌(𝑥),

−Ψ†
0𝜎I𝑛𝜎I𝑚Ψ0 = 𝜇𝑛𝛿𝑛𝑚𝜌(𝑥),

(5.29)

where we have defined 𝜇𝑛 ≡ −𝜒†(𝜎I𝑛)2𝜒 > 0 and used the fact that 𝜆𝑛 = −𝜒†(𝜎II𝑛)2𝜒 >

0.

In this basis, the field variation 𝛿Ψ(𝑥) may be described by three real Goldstone

fields 𝜃𝑛, ̄𝜃𝑛, and 𝜙𝑛 along with the real massive field 𝛽𝑛 via

𝜎̂ =
𝑛II
∑
𝑛=1

(𝜃𝑛𝜎II𝑛 + ̄𝜃𝑛𝜎II𝑛) +
𝑛I

∑
𝑛=1

𝜙𝑛𝜎I𝑛,

𝜉 =
𝑛I

∑
𝑛=1

𝛽𝑛𝑖𝜎I𝑛Ψ0 + ⋯ ,
(5.30)

where “⋯” represents other massive modes that can be trivially integrated out. In
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this basis, the coefficient 𝑃 𝜇
𝑚𝑛 simplifies to

𝑃 𝜇
𝑚𝑛 = 𝛿𝑛𝑚̄𝜆𝑛𝜌(𝑥)𝑣𝜇

𝑠 , (5.31)

where 𝑚̄ is defined as the index of the conjugate field to the field labeled by 𝑚.

Similarly, we may simplify 𝑄𝜇
𝑚𝑛 which connects Type-I Goldstone modes to their

conjugate massive fields. We indeed find

𝑄𝜇
𝑚𝑛 = 2𝛿𝑛𝑚𝜇𝑛𝜌(𝑥)𝑣𝜇

𝑠 , (5.32)

where the massive field with index 𝑚 is indicated by the basis element 𝑖𝜎I𝑚Ψ0. Lastly,

we have the kinetic energy term which we can separate out into its contribution to

Type-I and Type-II fields

𝑇 𝑗𝑘
𝑚𝑛|I = − 1

2𝑚𝛿𝑗𝑘𝜌(𝑥)𝜇𝑛𝛿𝑚𝑛

𝑇 𝑗𝑘
𝑚𝑛|II = − 1

2𝑚𝛿𝑗𝑘𝜌(𝑥)𝜆𝑛𝛿𝑚𝑛

(5.33)

Notice that 𝜆𝑛 or 𝜇𝑛 multiplies all elements in the Lagrangian where that field (or

its conjugate) appears, so we can simply absorb this constant into a re-definition of

𝜃𝑛, ̄𝜃𝑛, 𝜙𝑛, and 𝛽𝑛. Then, substituting the form of our fluctuations, the Lagrangian

is

ℒfluc =
𝑛I

∑
𝑛=1

𝜌(𝑥) [−2𝛽𝑛𝑣𝜇
𝑠 (𝑥)𝜕𝜇𝜙𝑛 − 1

2𝑚 [(∇𝜙𝑛)2 + (∇𝛽𝑛)2] − 2𝑚𝑐2
𝑛(𝑥)𝛽2

𝑛]

+
𝑛II
∑
𝑛=1

𝜌(𝑥) {−𝑣𝜇
𝑠 (𝑥)( ̄𝜃𝑛

⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝜕𝜇𝜃𝑛 − ̄𝜃𝑛
⃖⃖⃖ ⃖⃖ ⃖⃖ ⃖𝜕𝜇𝜃𝑛) − 1

2𝑚 [(∇𝜃𝑛)2 + (∇ ̄𝜃𝑛)2]} . (5.34)

Since the basis for Type-I modes is not uniquely fixed by the canonical conjugate

structure of Eq. (5.24), this leaves us free to diagonalize the mass tensor produced by

the variation of the potential in Eq. (5.11). Doing so produces the effective chemical
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potential terms, 𝑚𝑐2
𝑛(𝑥).

We end this section with a note about the validity of this fluctuation Lagrangian:

it can be seen that the overall size of this action is set by the condensate density 𝜌(𝑥),

which uniformly multiplies all terms. Thus, the condensate density 𝜌(𝑥) acts to

enforce the saddle-point in the sense that if it is large, the fluctuation contribution

from ℒfluc is suppressed. This tells us that our approach ought not be valid if

either the condensate density is strongly fluctuating or vanishing all-together, as

might happen at finite temperatures or near e.g. the core of a vortex. Additionally,

there may be breakdowns in smaller dimensional systems, where long-range order is

prohibited by Mermin-Wagner [189–191]. Barring these considerations, we proceed

on to study the properties of the effective field theory described in Eq. (5.34). We

first consider the case where the Goldstone mode is Type-I, and then we study the

case of a Type-II mode.

5.2.4 Type-I Goldstones: Relativistic Spacetime

Consider an isolated Type-I Goldstone mode, with Lagrangian

ℒI = 𝜌(𝑥)[−2𝛽𝑣𝜇
𝑠 (𝑥)𝜕𝜇𝜙 − 1

2𝑚 [(∇𝜙)2 + (∇𝛽)2] − 2𝑚𝑐2(𝑥)𝛽2], (5.35)

we assume that 𝑚𝑐2(𝑥) is large enough to dominate over the kinetic energy for 𝛽, so

that 𝛽 can be easily integrated out via 𝑚𝑐2(𝑥)𝛽 = −2𝑣𝜇
𝑠 𝜕𝜇𝜙. We get the resulting

Lagrangian, valid at long wavelengths and times

ℒeff
I = 𝜌(𝑥)

2𝑚
⎡⎢
⎣

(
𝑣𝜇

𝑠 (𝑥)𝜕𝜇𝜙
𝑐(𝑥)

)
2

− (∇𝜙)2⎤⎥
⎦

. (5.36)

This describes a scalar field propagating along geodesics of an emergent space-time

metric 𝒢𝜇𝜈 with

ℒeff
I = 1

2√−𝒢𝒢𝜇𝜈𝜕𝜇𝜙𝜕𝜈𝜙, (5.37)
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and 𝒢𝜇𝜈 given by the line-element

𝑑𝑠2 = 𝜌
𝑐

[𝑐2𝑑𝑡2 − (𝑑x− v𝑑𝑡)2] = 𝒢𝜇𝜈𝑑𝑥𝜇𝑑𝑥𝜈. (5.38)

This was first observed by Unruh in Ref. [17] where he showed that metrics of the

form given above can possess non-trivial features including event-horizons. Indeed,

the metric for a Schwarschild black hole can take a very similar form in certain

coordinate systems. One of the central results of this chapter is the extension of this

analog to include the Type-II modes, which do not have emergent Lorentz invariance.

This is shown below.

5.2.5 Type-II Goldstones: Non-relativistic Spacetime

We focus on a single Type-II Goldstone mode, for which there is no massive field

to integrate out. We are left with the fluctuation Lagrangian

ℒII = 𝜌(𝑥) [−𝑣𝜇
𝑠 (𝑥) ( ̄𝜃𝜕𝜇𝜃 − 𝜃𝜕𝜇

̄𝜃) − 1
2𝑚 [(∇𝜃)2 + (∇ ̄𝜃)2]] . (5.39)

To simplify things, we group the two real fields into one complex field 𝜓 = 𝜃 + 𝑖 ̄𝜃 so

that we have

ℒII = 𝜌[ 𝑖
2𝑣𝜇

𝑠 (𝜓∗ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝜕𝜇𝜓 − 𝜓∗ ⃖⃖⃖ ⃖⃖ ⃖⃖ ⃖𝜕𝜇𝜓) − 1
2𝑚 |∇𝜓|2]. (5.40)

It turns out this too has a simple geometric description in terms of an emer-

gent curved space-time. However, instead of being an “Einsteinian” geometry, the

resulting description is in terms of a Newton-Cartan geometry [28, 29, 32–34, 183].

Newton-Cartan geometry consists of three key objects: (𝑛𝜇, 𝑣𝜇, ℎ𝜇𝜈). These are

not all independent, but rather must satisfy the constraints

𝑛𝜇𝑣𝜇 = 1, 𝑛𝜇ℎ𝜇𝜈 = 0. (5.41)
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Also note that the indices on these objects are given as covariant and contravariant

specifically and cannot be freely raised/lowered without the definition of a metric

tensor (which we describe how to construct in Sec. 5.5).

To understand the geometry these objects encode, we begin with the fundamental

object that enforces time’s special status within a nonrelativistic theory: 𝑛𝜇. As a

one-form, 𝑛𝜇 (colloquially, we call it the “clock” one-form) can be imagined as a series

of surfaces (foliations), and when a spacetime displacement vector is contracted with

it, it gives the elapsed time in a covariant manner. In conjunction with the clock

one-form, we have the velocity field 𝑣𝜇, which must go forward a unit of time (hence

the constraint 𝑛𝜇𝑣𝜇 = 1) as a four-velocity; flow along 𝑣𝜇 causally connects spatial

surfaces. Lastly, the spatial metric ℎ𝜇𝜈 is degenerate (𝑛𝜇ℎ𝜇𝜈 = 0) since it solely

describes the geometry confined to the 𝑑-dimensional spatial foliations. While in

what follows we describe ℎ𝜇𝜈 emerging from intrinsic properties of the fluid flow,

it can also inherit extrinsic contributions (i.e. if the fluid is flowing on an actual

curved manifold).

In the presence of this curved Newton-Cartan geometry, the Lagrangian for a

massless scalar field takes the form

ℒ = 𝑛0
√

ℎ[ 𝑖
2𝑣𝜇(𝜓∗ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝜕𝜇𝜓 − 𝜓∗ ⃖⃖⃖ ⃖⃖ ⃖⃖ ⃖𝜕𝜇𝜓) − ℎ𝜇𝜈

2𝑚 𝜕𝜇𝜓∗𝜕𝜈𝜓] (5.42)

where ℎ = (| detℎ𝑖𝑗|)−1.

The Lagrangian of a Type-II Goldstone mode may be brought into this form.

Relating Eq. (5.40) to Eq. (5.42), we can extract the geometric objects 𝑛𝜇, 𝑣𝜇, and

ℎ𝜇𝜈. We see that in our systems ℎ00 = 0 = ℎ0𝑖, and that ℎ𝑖𝑗 = ℎ−1/𝑑𝛿𝑖𝑗 in 𝑑 spatial
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dimensions. Therefore, we know 𝑛𝑖 = 0; hence, 𝑛0𝑣0 = 1. Relating terms, we have

√
ℎ = 𝜌,

𝑛0
√

ℎ𝑣𝑖 = 𝜌𝑣𝑖
s,

𝑛0ℎ(𝑑−2)/(2𝑑) = 𝜌.

(5.43)

This gives us the geometric quantities

ℎ = 𝜌2, 𝑛0 = 𝜌2/𝑑, (5.44)

and hence

𝑛𝜇 = [𝜌2/𝑑, 0],

𝑣𝜇 = 𝜌−2/𝑑𝑣𝜇
𝑠 ,

ℎ𝑖𝑗 = 𝜌−2/𝑑𝛿𝑖𝑗.

(5.45)

One important aspect of Newton-Cartan geometry is the notion of “torsion” [192].

Regarded as a differential form, the clock one-form 𝑛 = 𝑛𝜇𝑑𝑥𝜇 is in general not an

exact differential. This is seen by taking the exterior derivative, which defines the

“torsion tensor” 𝜔 = 𝑑𝑛. Explicitly,

𝜔𝜇𝜈 = 𝜕𝜇𝑛𝜈 − 𝜕𝜈𝑛𝜇. (5.46)

It is straightforward to see that in general, the torsion tensor in our geometry is

non-zero;

𝜔0𝑗 = 𝜕𝑗𝑛0 = 𝜕𝑗𝜌2/𝑑. (5.47)

Were the torsion zero, we could define an absolute time coordinate 𝑇, from which we

would get the clock one-form as 𝑛 = 𝑑𝑇. While the non-zero torsion implies there is
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no such absolute time, we may confirm that the more general condition

𝑛 ∧ 𝑑𝑛 = 0 (5.48)

is satisfied. This is a necessary and sufficient condition for the foliation of spacetime

into “space-like” sheets which are orthogonal to the flow of time [192]. As such, there

is still a notion of causality in this geometry.

We conclude by commenting that the Newton-Cartan geometry we find here is

in fact intimately related to the gravitational field first considered by Luttinger in

the context of calculating heat transport [31]. In that limit 𝑛𝜇 ∝ [𝑒Φ, 0], and so the

gravitational potential (up to scale factor in the logarithm) would be

Φ = 2
𝑑
log(𝜌). (5.49)

Using this connection, quantities like energy current and the stress-momentum tensor

can be calculated as we discuss in Sec. 5.5. First, we explore a minimal realization

of these geometries and the associated quantum phases in Sec. 5.3 as well as the

fate of the Hawking effect across such a transition in Sec. 5.4.

5.3 Minimal Theoretical Model

In this section, we introduce a minimal model which exhibits a transition between

an Einstein-Hilbert and Newton-Cartan spacetime. We begin by analyzing the

ground state within mean-field theory. Once this is understood, we study the

behavior of fluctuations about the mean-field by employing a BdG description.

The model is that of a pseudospin 1
2 bosonic field Ψ(𝑥) = (Ψ↑(𝑥), Ψ↓(𝑥))𝑇 with
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the following Lagrangian density

ℒ = Ψ† (𝑖𝜕𝑡 + 1
2𝑚

∇2 + 𝜇) Ψ − 1
2

𝑔0 (Ψ†Ψ)2

− 1
2

𝑔3 (Ψ†𝜎3Ψ)2 (5.50)

where 𝜎𝑗 are the Pauli matrices for the pseudo-spin and 𝜇 is the chemical potential,

which controls the conserved density of the bosons, 𝜌 = Ψ†Ψ. The coupling 𝑔0 >

0 describes a 𝑈(2) = 𝑈(1) × 𝑆𝑈(2) invariant repulsive density-density contact

interaction, as may be expected in a typical spinor BEC, while the 𝑔3 parameter

introduces anisotropy into the spin exchange interaction. The 𝑔3 coupling explicitly

breaks the 𝑆𝑈(2) symmetry down to 𝑈(1) ⊗ ℤ2 comprised of rotations of the Bloch

vector by any angle about the 𝑧 axis and reflections of the Bloch vector through the

𝑥𝑦 mirror plane. Note that stability requires that 𝑔3 > −𝑔0.

Let us briefly comment that, while Lagrangian (5.50) is a perfectly valid model,

a more natural set-up may be realized by the more experimentally available spin-1

systems such as condensed 7Li, 23Na, or 87Rb. All of these atoms are bosons which

have a total hyperfine spin 𝐹 = 1 manifold [181]. In this case, the phase transition is

between two phases which both respect the full 𝑆𝑈(2) spin-rotation symmetry—the

ferromagnetic phase and polar (nematic) phase [188, 193, 194]. In this case, rather

than being driven by anisotropy, the transition is driven by the overall sign of the

spin-exchange interaction. It turns out that the different ground-state phases have

different types of Goldstone modes and therefore exhibit different analog spacetimes

for the spin waves once condensate flow is introduced. The relevant coupling constant

is the spin-exchange coupling 𝑐2, which is given in terms of the scattering lengths by

𝑐2 = 4𝜋
𝑚

𝑎2 − 𝑎0
3

.
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For 7Li and 87Rb,𝑐2 < 0 while for 23Na 𝑐2 > 0 [181]. Thus, all else equal we can

realize both the polar (nematic) phase (which occurs for 𝑐2 > 0) as well as the

ferromagnetic phase (𝑐2 < 0) by using two different species of trapped atom. All

this is to say that, while Eq. (5.50) is not as easily realized experimentally, there

may be more experimentally feasible models which realize the same physics. We

now move on to the analysis of the technically simpler model proposed above.

The mean-field ground state of Eq. (5.50) is identified as the homogeneous

minimum of the energy density

𝑉 = 1
2

𝑔0 (Ψ†Ψ)2 + 1
2

𝑔3 (Ψ†𝜎3Ψ)2 − 𝜇Ψ†Ψ.

For 𝜇 < 0 the ground state is trivial and there is no condensate. For 𝜇 > 0

there is Bose-Einstein condensation and the ground state is a BEC with a uniform

condensate density which obeys the equation of state

𝜌 = Ψ†Ψ =
⎧
{
⎨
{
⎩

𝜇
𝑔0

, 𝑔3 > 0,

𝜇
𝑔0−|𝑔3| , −𝑔0 < 𝑔3 < 0.

A non-zero condensate density always spontaneously break the overall 𝑈(1) phase

symmetry. The corresponding Goldstone mode corresponds to the broken generator

𝑖𝜎0 = 𝑖1 where 1 is the 2 × 2 identity matrix.

Depending on the value of 𝑔3, additional symmetries may be broken, resulting

in the phase diagram illustrated in Fig. 5.1. We write the condensed Ψ in the

density-phase-spinor representation as

Ψ = √𝜌𝑒𝑖Θ𝜒, 𝜒†𝜒 = 1 (5.51)

where 𝜒 yields the local magnetization density. It may be parameterized in terms
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SU(2) 
Ferromagnet

Easy-plane 
Ferromagnet

Ising
Ferromagnet

Figure 5.1: Illustration of the different ground-state Bloch-vector manifolds as the
parameter 𝑔3 is tuned. For 𝑔3 < 0 the ground state manifold consists of the north
and south poles and thus the system realizes an Ising ferromagnet, spontaneously
breaking the ℤ2 symmetry while maintaining the 𝑈(1) symmetry. For 𝑔3 = 0 the
full 𝑆𝑈(2) symmetry is realized and the ground-state manifold consists of the entire
Bloch sphere. Thus, the system is a Heisenberg ferromagnet which spontaneously
breaks the full 𝑆𝑈(2) down to 𝑈(1) ⊂ 𝑆𝑈(2). Finally, for 𝑔3 > 0 the ground state
manifold consists of the equatorial plane, rendering the system an XY (easy-plane)
ferromagnet. Thus, the initial symmetry is 𝑈(1) which is spontaneously broken to
the trivial group.

Phase Sound waves Spin waves
Ising Ferromagnet 𝜔 ∼ 𝑘 Gapped
SU(2) Ferromagnet 𝜔 ∼ 𝑘 𝜔 ∼ 𝑘2

Easy-plane Ferromagnet 𝜔 ∼ 𝑘 𝜔 ∼ 𝑘

Table 5.2: Goldstone modes associated to each phase shown in Fig. 5.1. All phases
have a Type-I Goldstone mode associated to the spontaneous breaking of the global
𝑈(1) phase, corresponding to the conventional sound mode. Additionally, there may
also be Goldstone modes associated with spontaneous breaking of spin symmetries,
leading to spin waves. In the Ising phase, the broken symmetry is discrete and
there are no Goldstone modes. In the SU(2) invariant Heisenberg phase there is
a Type-II Goldstone mode describing transverse fluctuations of the magnetization,
while in the XY easy-plane phase there is a Type-I Goldstone describing equatorial
fluctuations of the magnetization.
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of one complex parameter 𝜁 via

𝜒 = 1
√2(1 + |𝜁|2)

⎛⎜⎜
⎝

1 + 𝜁

1 − 𝜁
⎞⎟⎟
⎠

, 𝜁 ∈ ℂ. (5.52)

Alternatively, it may be represented in the more canonical Euler angle representation

as

𝜒 = ⎛⎜⎜
⎝

cos 𝜃
2

sin 𝜃
2𝑒𝑖𝜑

⎞⎟⎟
⎠

, 𝜑 ∈ [0, 2𝜋) 𝜃 ∈ [0, 𝜋).

We use both of these representations throughout. In terms of 𝜁 and 𝜃, 𝜑 the

anisotropic interaction is

𝑉 = 1
2

𝑔3𝜌2 (𝜁 + 𝜁∗)2

(1 + |𝜁|2)2 = 1
2

𝑔3𝜌2 cos2 𝜃.

We now proceed to study the mean-field phase diagram of the ground state.

Ising phase.—We begin by considering the case of 𝑔3 < 0, i.e. the “Ising fer-

romagnet” phase. The interaction has a 𝑈(1) × ℤ2 symmetry generated by 𝑖
2𝜎3

composed with inversion of the 𝑧 component of the magnetization. In this case it

is energetically favorable for the Bloch vector to align with the 𝑧 axis. This breaks

the ℤ2 symmetry and preserves 𝑈(1) so the ground state manifold is the symmetric

space 𝑈(1) × ℤ2/𝑈(1) ∼ ℤ2. This is depicted in the left-most panel of Fig. 5.1,

which shows the ground-state manifold for the spinor 𝜒 for various couplings. The

Goldstone modes associated with the broken-symmetry ground-state, along with

their dispersions are shown in Table 5.2. As the ground-state manifold is discrete

there is no additional Goldstone mode in this phase and we no longer consider this

portion of the phase diagram in this work.

Heisenberg phase.—When 𝑔3 = 0 the interaction term is isotropic and the model

has the full 𝑆𝑈(2) invariance. The ground state then spontaneously break the 𝑆𝑈(2)
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symmetry down to 𝑈(1) so that the ground state manifold is the symmetric space

𝑆𝑈(2)/𝑈(1) ∼ 𝑆2—the full Bloch sphere. This is illustrated in the middle panel of

Fig. 5.1. Without loss of generality, we take the ground state magnetization to point

along the positive 𝑥 direction. Thus, 𝜁 = 0 and 𝜒 = 1√
2(1, 1)𝑇. Then the unbroken

generators are { 𝑖
2(𝜎1 − 1)} and the broken generators are { 𝑖

2(𝜎1 + 1), 𝑖
2𝜎2, 𝑖

2𝜎3, }.

Using the formalism from Sec. 5.2, we find that the 𝑃 matrix appearing in the

Goldstone mode Lagrangian is

𝑃 𝑡 = 𝜌
⎛⎜⎜⎜⎜⎜⎜
⎝

0 0 0

0 0 1
4

0 −1
4 0

⎞⎟⎟⎟⎟⎟⎟
⎠

, (5.53)

where the columns refer, in order, to the generators {1
2𝑖𝜎0 + 1

2𝑖𝜎1, 1
2𝑖𝜎2, 1

2𝑖𝜎3}. In

this case, we have one Type-II Goldstone mode associated with the two generators

{1
2𝑖𝜎2, 1

2𝑖𝜎3} which exhibits a quadratic dispersion relation and hence realize the

Newton-Cartan geometry in the presence of inhomogeneous condensate flow. This

is summarized in Table 5.2.

XY phase.—We now move on to the case where 𝑔3 > 0. In this case there is an

energy penalty associated with a non-zero 𝑧 component of the magnetization and

thus the ground state lies in the manifold defined by cos 𝜃 = 0 ⇒ 𝜃 = 𝜋/2. Thus,

the ground state breaks the 𝑈(1) symmetry but remains invariant under reflections

through the 𝑧 = 0 plane. As such, the ground state resides in the symmetric space

𝑈(1) × ℤ2/ℤ2 = 𝑈(1) ∼ 𝑆1, as depicted in the right panel of Fig. 5.1. Without loss

of generality we again take the Bloch vector to lie along the +𝑥 direction. Thus, only

two generators remain unbroken in the Lagrangian {𝑖1, 1
2𝑖𝜎3} and the mean-field

breaks both of them. We again refer to Eq. (5.24) to obtain

𝑃 𝑡
𝑚𝑛 = 0. (5.54)
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Thus, there are no Type-II Goldstone modes in this system, but instead two Type-I

modes which are linearly dispersing and therefore exhibit an analog Einstein-Hilbert

spacetime, summarized in Table 5.2.

5.3.1 Bogoliubov-de Gennes Analysis

We now proceed to examine the fluctuations about the mean-field by obtaining

and diagonalizing the Bogoliubov-de Gennes equations of motion. To see how

the analog spacetime emerges we consider a mean-field condensate 𝜓0 which is

inhomogeneous, but has a constant magnetization density. Taking the spin to point

in the +𝑥 direction, we obtain

𝜓0 = √𝜌(𝑥)𝑒𝑖Θ(𝑥)𝜒0 = √𝜌(𝑥)𝑒𝑖Θ(𝑥) ⎛⎜⎜
⎝

1√
2

1√
2

⎞⎟⎟
⎠

. (5.55)

In this case, the mean-field describes a flowing condensate with superfluid density

𝜌(𝑥) = 𝜓†
0(𝑥)𝜓0(𝑥) and superfluid velocity v𝑠 = 1

𝑚∇Θ(𝑥). Fluctuations about this

mean-field can be fully parameterized in terms of the two complex fields 𝜙 and 𝜁 as

𝛿Ψ = (𝜙𝜎0 + 𝑖𝜁𝜎2) 𝜓0. (5.56)

To quadratic order, the Lagrangian from Eq. (5.50) decouples into two quadratic

BdG Lagrangians

ℒ𝜙 = 𝜌 [ 𝑖
2(𝜙∗𝐷𝑡𝜙 − 𝜙𝐷𝑡𝜙∗) − |∇𝜙|2

2𝑚 + 1
2𝑔0𝜌(𝜙 + 𝜙∗)2] (5.57a)

ℒ𝜁 = 𝜌 [ 𝑖
2(𝜁∗𝐷𝑡𝜁 − 𝜁𝐷𝑡𝜁∗) − |∇𝜁|2

2𝑚 + 1
2𝑔3𝜌(𝜁 + 𝜁∗)2] (5.57b)

with 𝐷𝑡 = 𝜕𝑡 + v𝑠 ⋅ ∇ the material derivative in the frame co-moving with the

superfluid flow. These two Lagrangians are specific examples of the more general
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Eq. (5.34). In particular, for 𝑔3 > 0 at long wavelengths we can apply the analysis

of Sec. 5.2.4 to obtain the relativistic analog spacetime. If on the other hand,

𝑔3 = 0, then at long wavelengths we can apply the analysis of Sec. 5.2.5 to obtain

the nonrelativistic Newton-Cartan analog spacetime. Nevertheless, it is instructive

to instead follow Ref. [129, 170], and directly employ the BdG equations when

determining the consequences of the changing spacetime structure. This is because

the BdG equations provide us with a single unified description with which we may

capture both phases, as well as the transition between them.

The BdG equations are obtained as the Euler-Lagrange equations of Lagrangians

ℒ𝜙, ℒ𝜁 and are most transparently expressed in terms of the Nambu spinors

Φ0 = ⎛⎜⎜
⎝

𝜙

𝜙∗

⎞⎟⎟
⎠

, Φ3 = ⎛⎜⎜
⎝

𝜁

𝜁∗

⎞⎟⎟
⎠

(5.58)

for condensate and spin wave fluctuations, respectively. We then find the BdG

equations 𝐾̂0Φ0 = 0, and 𝐾̂3Φ3 = 0, with the BdG differential operators

𝐾̂0 = 𝜏3 (𝑖𝜕𝑡 + 𝑖v𝑠 ⋅ ∇) + 1
2𝑚𝜌

∇ ⋅ 𝜌∇𝜏0 − 𝑔0𝜌 (𝜏0 + 𝜏1) (5.59a)

𝐾̂3 = 𝜏3 (𝑖𝜕𝑡 + 𝑖v𝑠 ⋅ ∇) + 1
2𝑚𝜌

∇ ⋅ 𝜌∇𝜏0 − 𝑔3𝜌 (𝜏0 + 𝜏1) , (5.59b)

written in terms of the Nambu particle-hole Pauli matrices 𝜏𝑎. Let us emphasize

that the only difference between 𝐾̂0 and 𝐾̂3 is the coupling constant appearing in

front of the 𝜏0 + 𝜏1 term. For sound waves it is 𝑔0, while for the spin waves it is 𝑔3.

Thus, both Goldstone modes end up coupling to the same background condensate

density and velocity, albeit with different speeds of sound. Sound waves end up

propagating with the local group velocity 𝑐0(𝑥) = √𝑔0𝜌(𝑥)
𝑚 while the spin waves have

the local group velocity 𝑐3(𝑥) = √𝑔3𝜌(𝑥)
𝑚 . Thus, we see that the coupling 𝑔3 allows

us to independently tune the two speeds of sound relative to each other.
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For generic values of 𝑔3 > 0 and arbitrary condensate flows we cannot find

quantum numbers with which we can diagonalize 𝐾̂3. However, at the 𝑆𝑈(2)

symmetric point 𝑔3 = 0 we observe that the BdG kernel for spin waves obeys

𝐾̂3 = 𝜏3 (𝑖𝜕𝑡 + 𝑖v ⋅ ∇) + 1
2𝑚𝜌

∇ ⋅ 𝜌∇𝜏0 ⇒ [𝜏3, 𝐾̂3] = 0. (5.60)

Since 𝜏3 now commutes with the kernel, the two components of the BdG spinor

decouple and each independently obeys a Galilean-invariant dispersion relation.

This also results in an additional 𝑈(1) symmetry generated by 𝜏3 which imposes

a selection rule for the allowed Bogoliubov transformations. In particular, there is

no matrix element which scatters a “particle-like” Bogoliubov quasiparticle into a

“hole-like” particle. this process is the one responsible for Hawking radiation and as

such we find, counter-intuitively, that it is impossible to generate Hawking radiation

in the Newton-Cartan spacetime despite the fact that all flow velocities v𝑠 are now

supersonic. This is explicitly demonstrated for the case of a step-like horizon, which

we analyze in the following section.

5.4 Step-Like Horizon

In order to get a more quantitative understanding of how the changing spacetimes

affect observable physics, we imagine a specific flow profile and use the BdG equations

to solve for the spin-wave scattering matrix. We imagine a quasi-one-dimensional

stationary condensate flow with a superfluid density and velocity which obeys 𝜕𝑡𝜌 =

𝜕𝑡𝑣𝑠 = 0. The continuity equation for the condensate then implies

𝜕𝑥(𝜌𝑣𝑠) = 0 ⇒ 𝜌(𝑥)𝑣𝑠(𝑥) = const. (5.61)

The local speed of sound for the spin-waves (henceforth simply written as 𝑐) is

therefore 𝑐(𝑥) = √𝑔3𝜌(𝑥)/𝑚.
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To further simplify calculations, we consider the case of a step-like profile for

𝜌(𝑥), 𝑣(𝑥) of the form

𝜌(𝑥) =
⎧
{
⎨
{
⎩

𝜌𝑙 𝑥 < 0

𝜌𝑟 𝑥 ≥ 0
(5.62a)

𝑣(𝑥) =
⎧
{
⎨
{
⎩

−|𝑣𝑙| 𝑥 < 0

−|𝑣𝑟| 𝑥 ≥ 0.
(5.62b)

Note that continuity requires 𝑣𝑙𝜌𝑙 = 𝑣𝑟𝜌𝑟 ⇔ 𝑣𝑙𝑐2
𝑙 = 𝑣𝑟𝑐2

𝑟 . In this work we adopt the

convention that 𝑣 is negative, so that the condensate flows from the right to the

left. With this set-up, we can employ the BdG techniques usually used for phonon

modes to these spin waves [129, 170].

This step-like potential has the advantage that away from the jump, momentum

eigenstates solve the BdG equations, and the scattering matrix reduces to a simple

plane-wave matching condition at the boundary. The details of this procedure may

be found, e.g. in Appendix H. Here we simply discuss the results of the calculation.

We start by considering 𝑔3 > 0 to be large and then decrease down to zero. As we

do so, while keeping the flow profile fixed, we pass through three regimes.

The first regime occurs for large 𝑔3 so that 𝑐𝑙 > |𝑣𝑙| and 𝑐𝑟 > |𝑣𝑟|. Thus, there

is no sonic horizon and no Hawking radiation.

Eventually as we continue decreasing 𝑔3 we enter the regime where |𝑣𝑟| < 𝑐𝑟

but 𝑐𝑙 < |𝑣𝑙|. This exhibits a sonic horizon at 𝑥 = 0 and is thus accompanied by

Hawking radiation.

Finally, we reach the regime where |𝑣𝑙| > 𝑐𝑙 and |𝑣𝑟| > 𝑐𝑟. This is a novel

regime wherein both the interior and exterior of the jump are supersonic. However,

due to the non-linear Bogoliubov dispersion, there are still some short-wavelength

modes for which one or both sides of the flow are not supersonic (this is due to
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the convex dependence of the group-velocity on momentum). Thus there is still

Hawking radiation, however we find that as we decrease 𝑔3 further, the total “flux”

of modes which are emitted decreases until we recover the result that at 𝑔3 = 0

there is no radiation at all.

To see this, we define the “total number of Hawking modes” at a given frequency

to be 𝑁(𝜔) (see Eqs. (H.20) and (H.22)). This is obtained by calculating the

“Hawking” element of the scattering matrix for the BdG equations. From 𝑁(𝜔) we

can then define the total “luminosity” [162] leaving the horizon by

𝐿H = ∫
∞

0
𝑑𝜔 𝜔

2𝜋
𝑁(𝜔). (5.63)

Note that in the conventional black hole case, 𝑁(𝜔) is the number of photons at

frequency 𝜔 seen at asymptotic infinity and thus this is simply the number flux per

unit frequency of the radiation.

The upshot is given by Fig. 5.2 which plots 𝐿H as a function of (𝑐𝑟/𝑣𝑟)2 =

𝑔3𝜌𝑟/𝑚𝑣2
𝑟 . Thus, for fixed flow density and velocity, this is essentially plotting

as a function of the control parameter 𝑔3. We see the three distinct regions and

importantly at 𝑔3 = 0 we see the Hawking effect vanish.

To understand this effect, we consider the dispersion relation of the waves away

from the horizon, for which momentum is a good quantum number. In the right

and left half-spaces we have the relations

(𝜔 − 𝑣𝛼𝑘)2 = 𝑐2
𝛼𝑘2 + 𝑘4

4𝑚2 , (5.64)

where 𝛼 = 𝑙, 𝑟 for the left and right regions respectively. This relates the lab-frame

frequency of a wave 𝜔 to the lab-frame momentum 𝑘. This dispersion relation is

plotted in Figs. 5.3 and 5.4. Due to the presence of a discontinuity at 𝑥 = 0 modes

with different momenta mix and only 𝜔 can be fixed globally. Thus, the dispersion

119



0 1 2 3 4
(cr/vr)2

0.0

0.1

0.2

H
aw

ki
ng

 L
um

in
os

ity
, 2

L H supersonic
to

supersonic

subsonic
to

supersonic

subsonic
to

subsonic

Figure 5.2: The total luminosity due to the Hawking radiation for a fixed density
profile 𝜌(𝑥) and velocity profile 𝑣(𝑥). We see that there is no Hawking radiation
when 𝑐𝑟 is sufficiently large so that 𝑐𝑙 > 𝑣𝑙 (recall these are constrained by the
continuity equation). When 𝑐𝑙 < 𝑣𝑙 but 𝑐𝑟 > 𝑣𝑟 we get a region of subsonic flow that
flows into a supersonic region and we begin seeing traditional Hawking radiation.
As we further tune 𝑔3, 𝑐𝑟 drops below 𝑣𝑟 and both regions become supersonic at
low frequencies. Evidently, there is still a channel for Hawking radiation emission
as seen by the non-zero integrated flux. However, as 𝑐𝑟 drops to zero this channel
closes, vanishing precisely at the quantum phase transition into the Newton-Cartan
geometry (𝑐𝑟 = 0 = 𝑔3). In this plot, 𝑣𝑙 = 1.3, 𝑣𝑟 = 0.9, 𝑚 = 10, and 𝜌(𝑥)𝑣(𝑥) = 1.
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relation is to be solved by finding the allowed momenta at each fixed lab-frame

frequency. This amounts to finding the roots of a quartic polynomial with real

coefficients, and as such there are always four solutions (which are either real or

complex conjugate pairs). The real momenta represent propagating modes while we

later find that the complex roots describe evanescent modes localized around the

horizon.

5.4.1 Subsonic-Supersonic Jump

First, we consider the case of a jump between a subsonic and supersonic flow,

depicted graphically in Fig. 5.3. In this case, we recover the well-known result that

there is Hawking radiation emitted. The dispersion relation in each half-plane is

plotted and intercepts with a constant 𝜔 > 0 are found. These intercepts yield the

momenta of the propagating modes in each region for the given frequency. Each

curve is depicted with a color indicating the sign of the group velocity in the co-

moving frame, which is what is used to distinguish between “particle-like” (red)

and “hole-like” (blue), in accordance with the BdG norm (see Appendix H and

in particular Eq. (H.3) for definition). We see that the outgoing Hawking mode

(combined with an evanescent piece at the horizon) is connected to three incoming

waves, one of which is a negative norm state originating from the interior of the

horizon. This particle-hole conversion processes is the origin of the Hawking effect,

as this induces a Bogoliubov transformation which connects the vacuum of the

asymptotic past to a one-particle state in the asymptotic future (and vice-versa).

We see that due to the convex non-linear Bogoliubov dispersion relation, there

is a maximum frequency of the emitted Hawking radiation obtained by finding the

local maximum of the negative norm dispersion relation. Above this frequency, the

flow is no longer supersonic since the group velocity of modes depends non-trivially

on the frequency.
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Figure 5.3: The Hawking effect for 𝑔3 such that 𝑐𝑟 > 𝑣𝑟 and 𝑐𝑙 < 𝑣𝑙 (sub-sonic to
super-sonic). In this situation, one side (left) flows faster than the speed of some
excitations, and the other side (right) flows slower than the speed of any excitation.
The dashed line represents the constant lab frame energy 𝜔. The mode that carries
away energy from the horizon is the “Hawking mode,” shown by the star marker.
Tracing this mode back in time (bottom of figure), we find that it comes from a
scattering process that includes positive (red) and negative (blue) norm states. It
is the negative norm state to the left of the horizon that is responsible for particle
creation in the Hawking channel. Notice that for frequencies larger than those in
the labeled “Hawking region,” there is no Hawking effect due to lack of negative
energy modes to have scattered from at earlier times.
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5.4.2 Supersonic-Supersonic Jump

As we decrease 𝑔3 beyond a critical value the system enters a parameter regime

where both sides of the jump are supersonic flows. In this case, the dispersion

relation still exhibits a Hawking-like region, as we see in Fig. 5.4. However, we also

see a new region emerge at low energies (labeled “super-Hawking” in the figure) in

which now both a positive and negative norm mode can be scattered into. This opens

a new channel in the scattering matrix which leads to a reduction in the amplitude

for scattering into the Hawking channel, as per generalized unitarity constraints.

This is seen in Fig. 5.5, which compares 𝑁(𝜔) for the case of a subsonic-supersonic

(red) and supersonic-supersonic jump (blue). Both curves are qualitatively similar at

high frequencies, corresponding to the “Hawking” region of frequencies in Figure 5.4.

On the other hand, we see that at low 𝜔, when we have subsonic-to-supersonic

flow, 𝑁(𝜔) diverges in the universal thermal manner, while in the supersonic-to-

supersonic regime, there is a noticeable change in behavior between the Hawking

and super-Hawking regimes, cutting off this low 𝜔 divergence.

There are two effects occurring which are responsible for decreasing the Hawking

luminosity 𝐿H. First, in the Hawking region the incoming negative norm states now

begin to more strongly backscatter into their corresponding negative norm state,

occupying the evanescent mode on the right side of the horizon. Second, in this

super-Hawking region, the appearance of an outgoing negative-norm mode provides

an opportunity for the ingoing negative norm channel to avoid scattering into the

positive norm channel. We indeed find that the two channels begin to decouple from

each other, diminishing the amount of Hawking radiation that can be produced.

5.4.3 Absence of Hawking Radiation for Type-II modes

This takes us directly into the point where 𝑔3 = 0, which exhibits the new Newton-

Cartan spacetime geometry. One might expect that there should be something akin
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Figure 5.4: The Hawking effect for 𝑔3 such that 𝑐𝑟 < 𝑣𝑟 and 𝑐𝑙 < 𝑣𝑙 (super-sonic
to super-sonic). With both regions flowing faster than the speed of excitations
(relative to the horizon), we still have a Hawking region, but now we also have a
“Super-Hawking” region where the positive and negative normalization modes from
both regions can scatter between one another.
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Figure 5.5: Hawking flux 𝑁(𝜔) as a function of frequency for the subsonic-to-
supersonic case (red) and the supersonic-to-supersonic case (blue). As we approach
the Heisenberg symmetric point 𝑔3 = 0, we find the Hawking flux disappears both in
its overall magnitude and singular behavior. The black arrow indicates the onset of
the “super-Hawking region” responsible for the absence of the singular distribution.
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to a Hawking effect since some modes “see” a horizon for any difference in |𝑣𝑙| and

|𝑣𝑟|. However, this horizon does not translate into a Hawking effect. As explained

earlier, at this point the BdG kernel 𝐾̂3 commutes with 𝜏3. In terms of the BdG

Lagrangian of Eq. (5.57), we find that there is now a new global 𝑈(1) symmetry

𝜁 → 𝑒𝑖𝜗𝜁. We can see explicitly from the BdG analysis that this conserved charge

density is given by

𝑄BdG = ∫ 𝑑3𝑥 𝜌|𝜁|2.

On the other hand, by applying Noether’s theorem directly on the general Newton-

Cartan action of Eq. (5.42), in the limit where 𝑛0 is the only nonzero component of

𝑛𝜇 and the Lagrangian is independent of the 𝑥0, we find

𝑄BdG = ∫ 𝑑3𝑟
√

ℎ|𝜓|2. (5.65)

If we identify 𝜓 = 𝜁 and use the results of Eq. (5.45) we find that these two indeed

match each other. In particular, Eq. (5.65) describes a conserved charge for the field

𝜓 on a curved manifold given by ℎ𝜇𝜈.

Since, unlike the charge in Eq. (H.3), this density is positive definite it can be

genuinely interpreted as the number of BdG quasiparticles. This symmetry then

imposes a selection rule on the scattering matrix which prohibits the scattering

processes responsible for the Hawking process, which leads to a creation of BdG

quasiparticles. This is evident if we see that when 𝑔3 = 0,

[𝑖 (𝜕𝑡 + v ⋅ ∇) + 1
2𝑚𝜌

∇ ⋅ 𝜌∇] 𝜁 = 0, (5.66)

and hence 𝜁 and 𝜁∗ do not mix. Indeed, as Fig. 5.6 illustrates, though Hawking

radiation is permissible by conservation of energy and momentum, as seen by the

dispersion relation in Fig. 5.6, there is no permissible matrix element for any scatter-
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ing process which mixes positive and negative norm modes. Thus, at low frequencies

(below the cutoff frequency on the right), negative norm modes may be transmitted

across the horizon but only as outgoing negative norm modes. This is analogous to

the “super-Hawking” regime earlier, but since there is no conversion between positive

and negative norm modes, there is no Hawking radiation effect.

Above the cutoff frequency on the right (in what we refer to as the “regular

Hawking regime”), all negative norm modes incident from the interior of the horizon

must be reflected back. Even in this case, there is still a finite penetration of the

negative norm state across the event horizon in the form of an evanescent mode

which is decaying away from the horizon, as originally predicted in Ref. [129]. In

fact, this evanescent tail is also present when 𝑔3 > 0, but now it is not accompanied

by any other outgoing mode. Again, let us emphasize that this evanescent mode

is associated with a negative norm mode and therefore does not couple to positive

norm modes. Thus, it cannot be spontaneously excited from the ingoing vacuum.

Ultimately, as the negative norm mode must be reflected, all the amplitude which

initially went into the outgoing positive norm states when 𝑔3 > 0 is now transferred

into the reflected negative norm state and the evanescent tail.

5.5 Transport in Newton-Cartan Geometry

In this section we take up the issue of energy transport in systems exhibiting

Newton-Cartan geometry. Building on Luttinger’s work on computing heat transport

via coupling to a gravitational field [31], there has been a well-established method

of coupling systems to Newton-Cartan geometry in order to extract their heat

transport properties [32–34, 183]. With these methods, we can begin with the

results in Sec. 5.2.5 and find the stress tensor 𝑇 𝜇𝜈, energy current 𝜖𝜇, and momentum

density 𝑝𝜇. However, as we have mentioned previously, we can also reformulate the

relativistic Lagrangian in Sec. 5.2.4 in terms of a Newton-Cartan geometry with an
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Figure 5.6: For 𝑔3 = 0 in the Newton-Cartan geometry there is an excitation number
conservation that protects negative norm states from scattering into positive norm
states and as a result, if we scatter a negative norm state in what used to be the
“Hawking region,” we find it fully back scatters into a negative norm state and
leaks past the horizon only with an evanescent tail characteristic to a “classically
forbidden” region.
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additional external field. Therefore, in the bulk of this section, we make that precise

and use the energy transport machinery to relate the relativistic stress-energy tensor

of Type-I modes to its non-relativistic counterparts.

We begin by noting that the variations in the geometry are not independent

as they must satisfy the constraints imposed by Newton-Cartan geometry that

𝑛𝜇𝑣𝜇 = 1 and 𝑛𝜇ℎ𝜇𝜈 = 0. Parameterizing the variations so as to respect these

constraints is done by introducing the perturbations 𝛿𝑛𝜇, 𝛿𝑢𝜇 and 𝛿𝜂𝜇𝜈 such that

𝛿𝑣𝜇 = −𝑣𝜇𝑣𝜆𝛿𝑛𝜆 + 𝛿𝑢𝜇,

𝛿ℎ𝜇𝜈 = −(𝑣𝜇ℎ𝜈𝜆 + 𝑣𝜈ℎ𝜇𝜆)𝛿𝑛𝜆 − 𝛿𝜂𝜇𝜈,
(5.67)

where 𝑛𝜇𝛿𝑢𝜇 = 0, and 𝑛𝜇𝛿𝜂𝜇𝜈 = 0 so that 𝛿𝑢𝜇 and 𝛿𝜂𝜇𝜈 are orthogonal to the clock

one-form 𝑛𝜇.

To find the full Lagrangian it is useful to formally define a non-degenerate metric

in the full spacetime by

𝑔𝜇𝜈 ≡ 𝑣𝜇𝑣𝜈 + ℎ𝜇𝜈. (5.68)

Note that unlike relativistic metrics, this Newton-Cartan has no invariant distinc-

tion between space-like and time-like separations (simultaneity is a global concept

imposed by 𝑛𝜇). As 𝑔𝜇𝜈 is non-degenerate, we may proceed to take the inverse

which is defined by

𝑔𝜇𝛼𝑔𝛼𝜈 = 𝛿𝜈
𝜇, (5.69)

where 𝛿𝜈
𝜇 is the usual Kronecker delta. This also serves to define the inverse of the

degenerate metric ℎ𝜇𝜈 by

𝑔𝜇𝜈 ≡ 𝑛𝜇𝑛𝜈 + ℎ𝜇𝜈. (5.70)

Note that the constraints on the geometry then imply ℎ𝜇𝜈 obeys

ℎ𝜇𝜎ℎ𝜎𝜈 = 𝛿𝜇
𝜈 − 𝑣𝜇𝑛𝜈. (5.71)
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The right hand side essentially acts to project onto the manifold upon which ℎ𝜇𝜈

is not degenerate. These are the “spatial” three-surfaces which are in some sense

“iso-temporal.”

Introducing 𝑔 is helpful in particular because we then find that if take the

determinant 𝑔 = det(𝑔𝜇𝜈), we find that √𝑔 = 𝑛0
√

ℎ 1. This is exactly the volume

measure of the Lagrangian Eq. (5.42). This assists in taking the variation

𝛿[√𝑔] = √𝑔[𝑣𝜇𝛿𝑛𝜇 + 1
2ℎ𝜇𝜈𝛿𝜂𝜇𝜈]. (5.72)

We can then use the variations to find the stress tensor 𝑇𝜇𝜈, energy current 𝜖𝜇, and

momentum density 𝑝𝜇 via [33]

𝛿𝑆 = ∫ 𝑑𝑑+1𝑥√𝑔 (1
2𝑇 𝜇𝜈𝛿𝜂𝜇𝜈 − 𝜖𝜇𝛿𝑛𝜇 − 𝑝𝜇𝛿𝑢𝜇) . (5.73)

Due to the constraints on 𝛿𝑢𝜇 and 𝛿𝜂𝜇𝜈, these values of 𝑝𝜇 and 𝑇 𝜇𝜈 are not unique.

In fact, we can make any substitution 𝑝𝜇 → 𝑝𝜇 + 𝑎𝑛𝜇 or 𝑇 𝜇𝜈 → 𝑇 𝜇𝜈 + 𝑏𝜇𝑣𝜈 + 𝑏𝜈𝑣𝜇.

We impose uniqueness by requiring 𝑝𝜇𝑣𝜇 = 0 and 𝑇 𝜇𝜈𝑛𝜈 = 0. Lastly, one can derive

continuity equations for these quantities by considering how these objects change

under a diffeomorphism (see Ref. [33]).

We now compute these quantities for both the Type-I and Type-II modes. It is

worth noting that these models describe the free propagation of Goldstone modes

and thus are in a sense “non-interacting.” By this, we mean there are no additional

terms due to interactions [195]. For Type-II modes, the resulting transport quantities

are known [32, 34, 183]. We briefly recapitulate this calculation here.
1This is derived more directly using 𝑔−1 defined by 𝑔𝜇𝜈. If one locally takes 𝑛𝜇 = (𝑛0,0), then

𝑔00 = (𝑣0)2 ≡ 𝐴00, 𝑔0𝑖 = 𝑔𝑖0 = 𝑣0𝑣𝑖 ≡ 𝐵0𝑖 and 𝑔𝑖𝑗 = 𝑣𝑖𝑣𝑗 + ℎ𝑖𝑗 ≡ 𝐷𝑖𝑗. One can take the
Schur complement of this inverse metric 𝑔−1/𝐴 to compute the determinant; then 1/𝑔 = det(𝑔−1) =
det(𝐴) det(𝐷 − 𝐵𝑇𝐴−1𝐵) = 1/(𝑛2

0ℎ).
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5.5.1 Energy transport for Type-II modes

We proceed to vary the Newton-Cartan geometry in action Eq. (5.42). This

straightforwardly yields the momentum density as

𝑝𝜇 = − 𝑖
2 [ ̄𝜓(𝜕𝜇 − 𝑛𝜇𝑣𝛼𝜕𝛼)𝜓 − 𝜓(𝜕𝜇 − 𝑛𝜇𝑣𝛼𝜕𝛼) ̄𝜓] . (5.74)

The limit works out as expected: if we let 𝑛𝜇 = (1,0) and 𝑣𝜇 = (1,0)𝑇, only

the spatial components survive and we obtain the momentum current for a non-

relativistic theory with conserved density |𝜓|2. Next, we compute the stress tensor,

which describes the momentum flux. We find

𝑇 𝜇𝜈 = − 𝑖
4𝑣𝛼 [ ̄𝜓𝜕𝛼𝜓 − 𝜓𝜕𝛼

̄𝜓] ℎ𝜇𝜈 + 1
4𝑚𝜕𝛼

̄𝜓𝜕𝛽𝜓(ℎ𝛼𝜇ℎ𝛽𝜈 + ℎ𝛼𝜈ℎ𝛽𝜇 − ℎ𝜇𝜈ℎ𝛼𝛽) (5.75)

and the energy current as

𝜖𝜇 = − 1
2𝑚(𝜕𝛼

̄𝜓)(𝜕𝛽𝜓) [𝑣𝛼ℎ𝛽𝜇 + 𝑣𝛽ℎ𝛼𝜇 − 𝑣𝜇ℎ𝛼𝛽] . (5.76)

Both have sensible flat-space limits as well.

5.5.2 Energy transport for Type-I modes

For Type-I modes, an analog relativistic theory emerges from a nonrelativistic

theory, and in both the cases, we can compute energy densities, momentum densities,

and the stress-tensor. The objective of this section is to compute how the quantities

in the analog relativistic system are related to their nonrelativistic counterparts,

motivated by the spacetime relations derived in Sec. 5.2.

We have shown the Type-I modes can be thought of as residing in a relativistic

analog spacetime, equipped with an analog metric tensor 𝒢𝜇𝜈. If we vary with respect

to this tensor, we obtain a Lorentz-invariant stress-energy-momentum tensor, 𝒯𝜇𝜈.
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Note Lorentz invariance constrains this to be symmetric, relating the energy current

and momentum densities to each other.

On the other hand, we have shown that one can obtain the Type-I modes by

gapping out one of the generators of a Type-II mode. Thus, we can also consider

varying the Newton-Cartan geometry that the Type-II mode resides in before in-

cluding a mass gap. This yields for us the Newton-Cartan stress tensor, momentum

density, and energy current and provide for us a general relationship between the

relativistic energy-momentum tensor and the non-relativistic counterparts.

First, we return to Eq. (5.36) and rewrite the Lagrangian in terms of the Newton-

Cartan geometry prior to integrating out the massive mode (recall that unlike a

Type-II mode, a Type-I mode is canonically conjugate to a massive mode). We

obtain

ℒ = √𝑔( − 2𝛽𝑣𝜇𝜕𝜇𝜙 − ℎ𝜇𝜈

2𝑚 [𝜕𝜇𝜙𝜕𝜈𝜙 + 𝜕𝜇𝛽𝜕𝜈𝛽] − 2𝑚𝐶2(𝑥)𝛽2), (5.77)

where 𝑐2 = 𝜌2/𝑑𝐶2 is the speed of sound of the Goldstone mode (the factor of density

essentially accounts for the units of ℎ𝜇𝜈). If we integrate out the massive mode 𝛽 in

the limit where we can neglect the dispersion (i.e. at long wavelengths), we recover

the Type-I relativistic Lagrangian

ℒeff =
√𝑔
2𝑚

(
(𝑣𝜇𝜕𝜇𝜙)2

𝐶2 − ℎ𝜇𝜈𝜕𝜇𝜙𝜕𝜈𝜙) . (5.78)

From this, we can identify the relativistic metric 𝒢𝜇𝜈 by observing that this La-

grangian must be of the form in Eq. (5.6) such that

√−𝒢𝒢𝜇𝜈 =
√𝑔
𝑚 (𝑣𝜇𝑣𝜈

𝐶2 − ℎ𝜇𝜈) . (5.79)

This yields an equation relating the relativistic metric to the Newton-Cartan object
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and the gap of the massive mode. We find

𝒢𝜇𝜈 = (𝑚𝐶)− 2
𝑑−1 (𝐶2𝑛𝜇𝑛𝜈 − ℎ𝜇𝜈) ,

𝒢𝜇𝜈 = (𝑚𝐶) 2
𝑑−1 (𝑣𝜇𝑣𝜈

𝐶2 − ℎ𝜇𝜈) ,
(5.80)

where 𝑑 is the spatial dimension. As we can see, the relativistic metric depends

crucially on the potential 𝐶(𝑥).

This is helpful since, on the one hand, we can easily obtain the stress-energy

tensor in the relativistic theory by varying 𝛿𝒢𝜇𝜈. On the other hand, we can use

the above formulae to connect this result to the actual stress tensor and energy

current/momentum density of the non-relativistic model. In particular,

𝛿𝒢𝜇𝜈 = (𝑚𝐶) 2
𝑑−1 [(𝑣𝜇ℎ𝜈𝜆 + 𝑣𝜈ℎ𝜇𝜆 − 2𝑣𝜇𝑣𝜈

𝐶2 𝑣𝜆)𝛿𝑛𝜆

+ 1
𝐶2 (𝑣𝜇𝛿𝜈

𝜆 + 𝑣𝜈𝛿𝜇
𝜆)𝛿𝑢𝜆 + 𝛿𝜂𝜇𝜈]. (5.81)

Thus, we can directly relate the relativistic energy-momentum tensor 𝒯𝜇𝜈 to its

non-relativistic counterparts by expanding

𝛿𝑆 = ∫ 𝑑𝑑+1𝑥1
2√−𝒢𝒯𝜇𝜈𝛿𝒢𝜇𝜈 (5.82)

in terms of the geometric objects in the NC geometry. Doing so, we obtain

𝑇 𝜇𝜈 = 1
𝑚(𝑚𝐶)

4
𝑑−1

(𝛿𝜇
𝛼 − 𝑛𝛼𝑣𝜇)𝒯𝛼𝛽(𝛿𝜈

𝛽 − 𝑛𝛽𝑣𝜈),

𝜖𝜆 = 1
𝑚(𝑚𝐶)

2
𝑑−1

𝑣𝜇𝒯 𝜆
𝜇 ,

𝑝𝜆 = − 1
𝑚𝐶2 (𝒯𝜆𝜇𝑣𝜇 − 𝑣𝜇𝒯𝜇𝜈𝑣𝜈𝑛𝜆).

(5.83)

where the indices on 𝒯𝜇𝜈 and 𝒯 𝜆
𝜇 are raised with 𝒢𝜇𝜈 while all Newton-Cartan

objects use the metric 𝑔𝜇𝜈. Ignoring the factors in front of these expressions, one
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can think of 𝑣𝜈 as a timelike vector with respect to the metric 𝒢𝜇𝜈. In this case,

𝑣𝜇 is directly related to the field of the fluid flow and the object ℰ𝜆 ∝ 𝑣𝜈𝒯 𝜆
𝜇 is

the energy current measured by an observer comoving with that flow (not the lab

observer). By the same token 𝒫𝜆 ∝ 𝒯𝜆𝜈𝑣𝜈 is the momentum density measured by the

comoving observer as well. Relativistically, these are strictly related ℰ𝜆 = 𝒢𝜆𝜇𝒫𝜇.

However, momentum is imposed by the underlying non-relativistic field theory to

be orthogonal to flow 𝑣𝜆𝑝𝜆 = 0. The form of 𝑝𝜆 that accomplishes this includes

the comoving energy density 𝑣𝜇𝒯𝜇𝜈𝑣𝜈 and subtracts it off. Lastly, 𝑇 𝜇𝜈 is directly

related to 𝒯𝛼𝛽 projected to live only on spatial slices 𝑛𝜇𝑇 𝜇𝜈 = 0, again as imposed

by the underlying non-relativistic theory.

In effective, relativistic, analog systems, there is a preferred (lab) frame that is

captured by the Newton-Cartan geometry (in particular 𝑛𝜇 specifies the lab frame’s

“clock”). This preference is hidden in the high frequency dispersion of the type-I

modes and, as we have shown here, results in non-trivial momentum currents and

stress-tensors.

As a particular example, a Hawking flux against the flow in an analog system

should result in a real energy and momentum current away from the analog black

hole. Far from the horizon (considering the effective 1+1D problem where the other

two spatial dimensions are trivial) we obtain

𝒯𝜇𝜈 = ⎛⎜⎜
⎝

𝒯H −𝒯H

−𝒯H 𝒯H

⎞⎟⎟
⎠

, (5.84)

for a constant 𝒯H [196] (for the radiation flowing to +∞). If we apply this to the

above, and assume that at +∞ we have no velocity so that 𝑣𝜇 = (𝑣0,0) and a flat
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ℎ𝑖𝑗 = 𝛿𝑖𝑗/ℎ1/3
0 , we have

𝑇 𝑥𝑥 = 1
𝑚ℎ2/3

0
𝒯H,

𝜖𝜆 = 𝑣0

𝑚 𝒯H [ (𝑣0)2

𝐶2 , ℎ−1/3
0 , 0, 0] ,

𝑝𝜆 = 𝑣0

𝑚𝐶2 𝒯H[0, 1, 0, 0].

(5.85)

Importantly, we see that there is a finite energy current 𝜖1 and momentum 𝑝1 away

from the horizon; there is no 𝑝0 component due to the constraint 𝑝𝜇𝑣𝜇 = 0. While

related to what is computed relativistically, these quantities are not exactly the

same.

5.6 Discussion and Conclusions

The primary result of this work is establishing the connection between the

different types of Goldstone modes and different types of analog spacetimes, as

summarized in Table 5.1. This is done by revisiting the proof of the non-relativistic

Goldstone theorem and allowing for the possibility of an inhomogeneous mean-

field solution. We then find that the conventional Type-I Goldstone modes come

equipped with an Einstein-Hilbert metric as appears in general relativity while Type-

II Goldstone modes couple to a Newton-Cartan geometry. The geometry itself is

determined by the spacetime dependence of symmetry-breaking mean-field—inho-

mogeneous symmetry breaking ultimately produces the non-trivial spacetime metric.

In this work we have restricted ourselves to the case where only the overall 𝑈(1)

symmetry is inhomogeneously broken. This corresponds to an overall condensate

flow.

Another key result is establishing the connection between quantum phase tran-

sitions and changes in the nature of the spacetime. To elucidate this, we present a

simple model where the analog geometry can be tuned by a single parameter. This
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drives a quantum phase transition which accompanies the transition between the

Einstein-Lorentz geometry and Newton-Cartan geometry. As the phase transition

is approached, the Hawking radiation produced by an event horizon changes, as en-

capsulated in Fig. 5.2. One key result is that the Newton-Cartan geometry exhibits

no Hawking radiation, even though all fluid flows are supersonic (the group velocity

of Goldstone modes vanishes at long wavelengths).

While Sec. 5.3 is a minimal theoretical model, the experimental system that

most readily realizes these geometries are spin-1 condensates. In this case, for

the scattering lengths 𝑎0 and 𝑎2 (for 𝑠-wave collisions into the spin-0 and spin-2

channels respectively), there are two phases that break the spin SU(2) symmetry:

𝑎0 > 𝑎2 gives a ferromagnetic phase with one Type-II magnon and 𝑎0 < 𝑎2 gives a

polar phase (antiferromagnetic interactions) with two Type-I magnons. Upon flow,

these two phases naturally realize the two different spacetimes described here. In

fact, 7Li, 41K, and 87Rb realize the ferromagnetic phase [181] with 87Rb specifically

already being used for Hawking-like experiments with the phonon mode [152, 154].

Additionally, 23Na realizes the polar phase and critical spin superflow has been

studied [197] (necessary for Hawking-like experiments). The magnon excitations

in these systems can be probed by observing correlations in the spin-density, and

the most basic proposal, would be to establish the vanishing Hawking radiation in

the ferromagnetic phase. The progress in current spinor condensate experiments

highlights that these more exotic analog spacetimes may already be in reach.

Finally, by considering the response of the Goldstone modes to variations in the

analog geometries, we relate the analog stress-energy-momentum tensor in relativistic

geometries directly to their non-relativistic counterpart. This is summarized by the

equations below, which shows how the metric tensor in both analog spacetimes

may be constructed from the underlying geometric objects of the Newton-Cartan
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geometry along with an additional field 𝐶 = 𝐶(𝑥):

𝑔𝜇𝜈 = 𝑛𝜇𝑛𝜈 + ℎ𝜇𝜈, Non-relativistic,

𝒢𝜇𝜈 ∝ 𝐶2𝑛𝜇𝑛𝜈 − ℎ𝜇𝜈, Relativistic.
(5.86)

We also provide a direct connection between the energy and momentum currents of

an analog relativistic system and the more fundamental Newton-Cartan geometry

which describes the lab-frame.

Within spinor Bose-Einstein condensates, there are other phenomena to include

such as inhomogeneous broken non-Abelian symmetry (including textures like spiral

magnetization, Bloch domain walls, and skyrmions) and synthetic gauge fields. The

construction presented here also considers just the quadratic excitations, but these

Goldstone modes realize more complicated nonlinear sigma models for which there

is extra intrinsic geometry at play and would need to be incorporated into a full

theory of these excitations. This new analog also raises questions of the so-called

back-reaction effects of quantum fields on the corresponding analog spacetime. This

has been studied in the relativistic case [22, 198], and the non-relativistic case leaves

us with the tantalizing prospect of a system with a dynamical Newtonian gravity.

Finally, while in this work we exclusive focused on the context of flowing spinor Bose-

Einstein condensates, the phenomenon should be more general. An interesting future

direction to pursue would be to try and extend these results to include more diverse

platforms including electrons in solid-state systems, liquid Helium, superconductors,

magnetic systems. The wide variety of systems which exhibit symmetry-breaking

means there is a wide variety of systems which might exhibit this analog spacetime

and its consequences.
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Chapter 6: Conclusion

In this thesis we addressed a variety of interacting quantum systems by means

of a description in terms of quasiparticles. In Chapters 2 and 3 we focused on BCS

superconductors and their interactions with microwave cavity photons, while in

Chapters 4 and 5 we turned our attention towards flowing Bose-Einstein condensates.

More specifically, in Chapter 2 we showed how microwave cavity photons in-

teracting with the Bogoliubov quasiparticles in an enclosed superconductor can be

used to drive a nonequilibrium occupation of quasiparticles. This nonequilibrium

occupation can then be engineered such that it leads to an enhancement in the BCS

gap. This is most easily seen for the case of a clean sample, in which case the result

follows straightforwardly from the application of Fermi’s Golden Rule expressed in

the quasiparticle basis and the application of detailed balance.

In Chapter 3 we considered the case of cavity photons interacting with an

enclosed two-dimensional BCS superconductor with competing 𝑠- and 𝑑-wave pairing

instabilities. This system hosts a sub-gap collective mode (known as the Bardasis-

Schrieffer mode) which is essentially an uncondensed 𝑑-wave Cooper pair atop

the condensed 𝑠-wave superconducting background. We show that these Bardasis-

Schrieffer modes can be treated as bosonic quasiparticles and that by driving a

uniform background supercurrent they can be hybridized with the cavity photons,

forming Bardasis-Schrieffer polaritons.

Then, in Chapter 4 we studied a flowing BEC which realized an analogue black

hole for the Bogoliubov quasiparticles describing quantum fluctuations of the conden-

sate. In the extreme limit of a step-like change in the condensate flow, corresponding

to an analogue black hole with large surface gravity, we found that evanescent modes

accompany the emitted analogue Hawking radiation. These evanescent modes be-
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come pinned to the exterior of the event horizon with a length scale determined

by the microscopic Lorentz invariance violation and may allow for information to

propagate across the event horizon.

Finally, in Chapter 5 we considered the analogue gravity that is realized by a

flowing pseudo-spin half spinor BEC. In this case, the Goldstone modes associated

to the broken 𝑆𝑈(2) spin-rotation symmetry exhibit a quadratic dispersion relation

and in the presence of an inhomogeneous condensate flow experiences an analogue

spacetime with local Galilean invariance—the exotic Newton-Cartan spacetime. We

find that the same step-like flow which exhibits Hawking radiation in the standard

Lorentz-invariant analogue gravity setup emits no Hawking radiation in the Newton-

Cartan spacetime, despite a nominally superluminal background flow. By adding

an easy-axis anisotropy to the spin exchange interaction, we can drive system out of

the analogue Newton-Cartan spacetime and into the conventional Lorentz-invariant

analogue spacetime. It may be possible to observe this Newton-Cartan geometry

in current-generation ultra-cold atom experiments using a pseudo-spin one Bose

condensate.
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Appendix A: Cavity Model

The model of the photonic sector used in this work is that of a parallel mirror

cavity consisting of two conducting plates of infinite extent in the 𝑥 − 𝑦 plane

and separated by a distance 𝐿 along the 𝑧 axis. We solve for the electromagnetic

normal modes by solving Maxwell’s equations in the Coulomb gauge, assuming

no electrostatic potential. We then have Ampere’s law producing the equation of

motion for A

[ 1
𝑐2

𝜕2

𝜕𝑡2 − ∇2]A = 0 (A.1)

which is supplemented by the Coulomb gauge constraint ∇ ⋅A = 0 and boundary

conditions, which are taken to be those of a perfect metal (so that the normal

component of B and the tangential components of E vanish at the surface). We

make the ansatz that

A(𝑥, 𝑦, 𝑧, 𝑡) = 𝑒−𝑖𝜔𝑡+𝑖q⋅r⟂
√
Area

⃗𝜖q(𝑧),

with ⟂ indicating the vector components in the 𝑥, 𝑦 plane and Area being the

normalizing area of the 𝑥−𝑦 momentum summation. In this context, q is understood

to be a vector with components only in the 𝑥 − 𝑦 plane, and the ⟂ will be omitted

for brevity. We introduce ⃗𝜖q(𝑧) as the 𝑞-dependent polarization texture of the

electromagnetic field. Due to the finite size effects in 𝑧, this is spatially varying in

the 𝑧 direction.

The gauge constraint then implies

𝑖q ⋅ ⃗𝜖⟂
q (𝑧) + 𝜕

𝜕𝑧
𝜖𝑧
q(𝑧) = 0 (A.2)

140



and the boundary conditions imply that

⃗𝜖⟂
q (𝑧 = 0, 𝐿) = 0. (A.3)

These boundary conditions are compatible with a Fourier sine series, so that

⃗𝜖⟂
q (𝑧) ∝ sin(𝑛𝜋𝑧

𝐿
) .

with the proportionality constant being a two-component vector which can in prin-

ciple depend on q and 𝑛. On the other hand, the 𝑧-component should have a

Fourier cosine series in order to comply with boundary conditions. We see that

this cosine series is related to the ⃗𝜖⟂(𝑧) sine series by the gauge constraint, so that

𝜕𝑧𝜖𝑧(𝑧) ∝ q⟂ ⋅ ⃗𝜖⟂
q . We thus make the ansatz

⃗𝜖q(𝑧) = ⃗𝜖⟂
q,𝑛𝛼√ 2

𝐿
sin(𝑛𝜋𝑧

𝐿
) + 𝜖𝑧

q,𝑛𝛼ê𝑧√ 2
𝐿
cos(𝑛𝜋𝑧

𝐿
) .

The gauge constraint then implies

−𝑛𝜋
𝐿

𝜖𝑧
q,𝑛𝛼 + 𝑖q ⋅ ⃗𝜖⟂

q,𝑛𝛼 = 0. (A.4)

We therefore have only two independent degrees of freedom, determined by the

in-plane components of the polarization. Often, it is convenient to choose these to

lie along, and normal, to the momentum q. Thus, we have two polarizations ⃗𝜖⟂
q,𝑛𝛼

with 𝛼 = 1, 2. We are free to choose the two polarization vectors to obey

⃗𝜖q,𝑛𝛼 ⋅ ⃗𝜖∗
q,𝑛𝛽 = 𝛿𝛼𝛽 (A.5a)

⃗𝜖∗
q,𝑛𝛼 = ⃗𝜖−q,𝑛𝛼. (A.5b)

We choose ⃗𝜖⟂
q,𝑛1 ∝ q × ê𝑧, which is transverse to the propagation direction, and
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⃗𝜖⟂
q,𝑛2 ∝ q which is along the propagation direction. Normalizing and enforcing the

time-reversal condition we get the polarization textures (including the 𝑧 dependence)

⃗𝜖q,𝑛1(𝑧) = 𝑖q× ̂e𝑧
|q|

√ 2
𝐿
sin(𝑛𝜋𝑧

𝐿
) (A.6a)

⃗𝜖q,𝑛2(𝑧) = ̂e𝑧
|q|

√q2 + (𝑛𝜋
𝐿 )2

√ 2
𝐿
cos(𝑛𝜋𝑧

𝐿
) − 𝑖 q

|q|
𝑛𝜋/𝐿

√q2 + (𝑛𝜋
𝐿 )2

√ 2
𝐿
sin(𝑛𝜋𝑧

𝐿
) .

(A.6b)

The second-quantized electromagnetic field admits a normal mode decomposition

(in the Schrodinger picture) as

Â(r) = ∑
q𝑛𝛼

𝐶q𝑛𝛼 [ 𝑒𝑖q⋅r⟂
√
Area

̂𝑎q,𝑛𝛼 ⃗𝜖q,𝑛𝛼(𝑧) + h.c.]

where the operators ̂𝑎q,𝑛𝛼 are canonical boson annihilation operators and the coeffi-

cients 𝐶 must be chosen such that 𝐴, 𝐸 obey the canonical commutation relations.

Incorporating the charge and enhancement factor 𝑋2 into the effective dielectric

constant we find that the constant 𝐶 = √ 𝑒2𝑋2

2𝜖0𝜔𝑛(q) so that in full

Â(r) = ∑
q𝑛𝛼

√ 𝑒2𝑋2

2𝜖0𝜔𝑛(q)
[ 𝑒𝑖q⋅r⟂

√
Area

̂𝑎q,𝑛𝛼 ⃗𝜖q,𝑛𝛼(𝑧) + h.c.] (A.7)

with the dispersion relation

𝜔𝑛(q) = √(𝑛𝜋𝑐
𝐿

)
2

+ 𝑐2q2. (A.8)

In particular, for a two dimensional sample in the 𝑥−𝑦 plane located at 𝑧 = 𝐿/2
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the polarization textures projected onto the 𝑥 − 𝑦 plane are

⃗𝜖⟂
q,𝑛1(𝑧 = 𝐿

2
) = 𝑖q× ̂e𝑧

|q|
√ 2

𝐿
sin(𝑛𝜋

2
) (A.9a)

⃗𝜖⟂
q,𝑛2(𝑧 = 𝐿

2
) = −𝑖 q

|q|
𝑛𝜋/𝐿

√q2 + (𝑛𝜋
𝐿 )2

√ 2
𝐿
sin(𝑛𝜋

2
) . (A.9b)

Since sin(𝑛𝜋/2) = 0 if 𝑛 = 2, 4, 6, ... and (−1)(𝑛−1)/2 for 𝑛 = 1, 3, 5, ... we find that

only the 𝑛 = 1, 3, 5, ... modes couple to the sample when it is placed at the midpoint.

Hence we focus on the 𝑛 = 1 mode, bearing in mind that this is a simplified model

which won’t be applicable in a realistic device geometry anyways.

Finally, let us comment on how to express the polarization vectors in a different

choice of basis, with an intended application to the Bardasis-Schrieffer problem,

in which case it is convenient to express the polarization in terms of a component

parallel and perpendicular to the external supercurrent. We note that any two

combinations of the two polarization functions ⃗𝜖q,𝑛𝛼(𝑧) will also satisfy the boundary

conditions and gauge constraint. Therefore, we can consider the combinations

𝐴 ⃗𝜖q,𝑛1(𝑧) + 𝐵 ⃗𝜖q,𝑛2(𝑧) = [𝐴𝑖q× ê𝑧
|q| − 𝑖𝐵 q

|q|
𝑛𝜋/𝐿

√q2 + (𝑛𝜋
𝐿 )2

] √ 2
𝐿
sin(𝑛𝜋𝑧

𝐿
)

+ 𝐵 ̂e𝑧
|q|

√q2 + (𝑛𝜋
𝐿 )2

√ 2
𝐿
cos(𝑛𝜋𝑧

𝐿
) .

The in plane projections have 𝑥 and 𝑦 components at 𝑧 = 𝐿/2 of

ê𝑥 ⋅ (𝐴 ⃗𝜖q,𝑛1 + 𝐵 ⃗𝜖q,𝑛2) = [𝐴
𝑖𝑞𝑦

|q| − 𝑖𝐵 𝑞𝑥
|q|

𝑛𝜋/𝐿
√q2 + (𝑛𝜋

𝐿 )2
] √ 2

𝐿
sin(𝑛𝜋

2
)

ê𝑦 ⋅ (𝐴 ⃗𝜖q,𝑛1 + 𝐵 ⃗𝜖q,𝑛2) = [−𝐴𝑖𝑞𝑥
|q| − 𝑖𝐵

𝑞𝑦

|q|
𝑛𝜋/𝐿

√q2 + (𝑛𝜋
𝐿 )2

] √ 2
𝐿
sin(𝑛𝜋

2
) .

We would like to find a normalized set of 𝐴, 𝐵 such that the projections are constant

and either purely along 𝑥 (e.g. the direction of the supercurrent) or 𝑦 (the direction
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perpendicular to the supercurrent). This gives us a linear system of equations

⎛⎜⎜
⎝

𝑖𝑞𝑦
|q| −𝑖𝑞𝑥

|q|
𝑛𝜋/𝐿

√q2+( 𝑛𝜋
𝐿 )2

− 𝑖𝑞𝑥
|q| −𝑖 𝑞𝑦

|q|
𝑛𝜋/𝐿

√q2+( 𝑛𝜋
𝐿 )2

⎞⎟⎟
⎠

⎛⎜⎜
⎝

𝐴

𝐵
⎞⎟⎟
⎠

∝ ⎛⎜⎜
⎝

1

0
⎞⎟⎟
⎠

or ⎛⎜⎜
⎝

0

1
⎞⎟⎟
⎠

. (A.10)

The determinant of the matrix is 𝑛𝜋/𝐿
√q2+(𝑛𝜋/𝐿)2 ≠ 0 and thus there is a solution to

the problem. That is to say, we can choose some basis in which the polarization

textures respect the orthonormality, Coulomb gauge, and time-reversal symmetry

constraints, while being polarized along two fixed external axes in the 𝑥 − 𝑦 plane.
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Appendix B: Keldysh Non-Linear Sigma Model

In order to derive the correction to the quasiparticle distribution functions in

the presence of disorder, we employ the Keldysh nonlinear 𝜎 model (KNL𝜎M) as

derived by Feigelman, et. al. [89]. This is an alternative to the Mattis-Bardeen

method [88] result from the main text, and is essentially the Supplemental material

from publication [35].

B.0.1 Schematic derivation of the model

We first briefly outline the derivation of the Keldysh nonlinear sigma model

before describing the calculations performed in our work. For more details on the

KLN𝜎M we refer the reader to Refs. [89, 90].

The derivation of the sigma model begins with a minimally coupled BCS action

on the Keldysh contour in the presence of a random impurity potential

𝑆 = ∮
𝐶

𝑑𝑡𝑑x [ ̄𝜓 (𝑖𝜕𝑡 − ̂𝜖 (−𝑖∇ + 𝑒
𝑐
A) + 𝜇 − 𝑉imp) 𝜓 + 𝜆

𝜈
̄𝜓↑

̄𝜓↓𝜓↓𝜓↑] (B.1)

with ̂𝜖 being the quasielectron energy, 𝜇 the chemical potental, 𝜈 the density of states

at the Fermi surface, 𝜆 the BCS coupling strength, 𝑉imp is the impurity potential.

∮
𝐶

denotes integration over the Keldysh contour. One now averages over gaussian

disorder which induces an effective disorder interaction in the usual manner

𝑖𝑆dis = − 1
4𝜋𝜈𝜏

∫
𝐶

𝑑𝑡𝑑𝑡′𝑑x ̄𝜓(𝑡)𝜓(𝑡) ̄𝜓(𝑡′)𝜓(𝑡′). (B.2)

The bilinears ̄𝜓(𝑡)𝜓(𝑡) describe rapidly varying modes on the length scales of the

impurities. However, the bilinears ̄𝜓(𝑡)𝜓(𝑡′) describe slowly varying degrees of

freedom. Therefore a Hubbard-Stratonovich field 𝑄 dual to ̄𝜓(𝑡)𝜓(𝑡′) is introduced
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to decouple the disorder interaction. The BCS interaction is also decoupled via

the Hubbard-Stratonovich field Δ in the usual fashion. Coupling to the 𝐴-field is

handled via the paramagnetic coupling j ⋅A ≈ 𝑒
𝑐v𝐹 ⋅A. At this point one performs

the Larkin-Ovchinnikov rotation and integrates out the fermions. This leads to an

action for the Hubbard-Stratonovich fields 𝑄 and Δ

𝑖𝑆 = −𝜋𝜈
8𝜏
Tr 𝑄̌2 + Tr ln [ ̌𝐺−1 + 𝑖

2𝜏
𝑄̌ − 𝑒

𝑐
v𝐹 ⋅ Ǎ+ Δ̌] (B.3)

where 𝐺 is the Bogoliubov-de Gennes Green’s function. One then performs an

expansion about the saddle-point solution for 𝑄 as well as a gradient expansion.

One notes that the Tr𝑄2 vanishes on the soft manifold 𝑄2 = 1 —where we must

keep in mind that the unit matrix must have the proper analyticity structure

—indicating that such modes are massless. The result of these expansions along

with the non-linear constraint gives the KNL𝜎M

𝑖𝑆𝑁𝐿𝑆𝑀 = −𝜋𝜈
8
Tr [𝐷( ̂𝜕𝑄̌)

2
+ 4𝑖 (𝑖 ̂𝜏3𝜕𝑡𝑄̌ + Δ̌𝑄̌)] − 𝑖 𝜈

2𝜆
Tr Δ̌† ̂𝛾𝑞Δ̌. (B.4)

B.0.2 Our system

We employ a slightly modified NLSM which includes coupling to a thermal bath

𝑖𝑆𝑁𝐿𝑆𝑀 = −𝜋𝜈
8
Tr [𝐷( ̂𝜕𝑄̌)

2
+ 4𝑖 (𝑖 ̂𝜏3𝜕𝑡𝑄̌ + 𝑖𝛾

2
𝑄̌rel𝑄̌ + Δ̌𝑄̌)] − 𝑖 𝜈

2𝜆
Tr Δ̌† ̂𝛾𝑞Δ̌

(B.5)

where 𝐷 = 𝑣𝑓𝜏2
imp/2 is the diffusion constant, 𝜈 = 𝜈↑ + 𝜈↓ is the total electronic

density of states at the Fermi surface, and 𝜆 is the strength of the BCS type coupling.

Tr in the above indicates a trace over all indices: both matrix and spacetime. The

notation 𝑋̌ indicates a matrix in Nambu and Keldysh spaces. The matrix 𝑄̌,

describing the soft electronic degrees of freedom, is a function of position r and
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two time coordinates 𝑡, 𝑡′ and is subject to the non-linear constraint 𝑄̌2 = ̌1. The

photon field A couples to the model through the covariant derivative

̂𝜕𝑋̌ = ∇𝑋̌ + 𝑖[Ǎ, 𝑋̌] (B.6)

where we have absorbed the paramagnetic coupling strength into the definition of

the A field. All matrices in the model are 4 × 4 in the product of Keldysh and

Nambu spaces. In what follows we employ the conventions used in Ref. kamenev.

Explicitly

𝑄̌rel(𝜖) = ⎛⎜⎜
⎝

1 2𝐹eq(𝜖)

0 −1
⎞⎟⎟
⎠𝐾

Ǎ = ∑
𝛼
a𝛼 ̂𝛾𝛼 ⊗ ̂𝜏3

Δ̌ = ∑
𝛼

(Δ𝛼 ̂𝛾𝛼 ⊗ ̂𝜏+ − Δ∗
𝛼 ̂𝛾𝛼 ⊗ ̂𝜏−)

(B.7)

where the index 𝛼 runs over (cl, q) and 𝛾cl = 𝜎0 and 𝛾q = 𝜎1 are matrices in Keldysh

space. We model inelastic relaxation through a linear coupling to a bath 𝑄̂rel with

temperature 𝑇 [47]. This is equivalent to the relaxation (1/𝜏) approximation in the

kinetic equation. In particular 𝛾 = 1
𝜏in

is the inelastic scattering rate.

The saddlepoint equations of Eq. (B.5) for Δ∗
𝑞 and 𝑄̌ respectively correspond

to the BCS gap equation and the Usadel equation[91] for the quasiclassical Green’s

function 𝑄̌. In the absence of the cavity photon field this describes the supercon-

ducting state of the electronic system without the cavity. Our strategy will be to

obtain the lowest order in A correction to the action which is linear in Δ∗
𝑞. This

corresponds to the lowest order correction to the gap equation. In the absence of A

the saddle point of 𝑄̌ is

̂𝜕 (𝐷𝑄̌ ̂𝜕𝑄̌) + 𝑖{𝑖 ̂𝜏3𝜕𝑡, 𝑄̌} + 𝑖 [𝑖𝜏2Δ0 + 𝑖𝛾
2

𝑄̌rel, 𝑄̌] = 0 (B.8)
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where we have assumed Δ𝑐𝑙 to be homogenous and real. Assuming a homogeneous,

steady state solution 𝑄̌𝑠𝑝(𝑡 − 𝑡′) we may Fourier transform to obtain

𝑖𝜖[ ̂𝜏3, 𝑄̌(𝜖)] + 𝑖[𝑖𝜏2Δ0, 𝑄̌(𝜖)] + 𝛾/2 [𝑄̌rel(𝜖), 𝑄̌(𝜖)] = 0. (B.9)

At the saddle point 𝑄̌ will have the structure

𝑄̌ = ⎛⎜⎜
⎝

𝑄̂𝑅 𝑄̂𝑅 ̂𝐹 − ̂𝐹 𝑄̂𝐴

0 𝑄̂𝐴

⎞⎟⎟
⎠

as governed by fluctuation-dissipation.

B.1 Gaussian Fluctuations

Gaussian fluctuations about the saddle point can be parametrized

𝑄̌ = ̌𝑈 ̌𝑉 −1𝑒−𝑊̌/2𝜎̂3 ̂𝜏3𝑒𝑊̌/2 ̌𝑉 ̌𝑈 . (B.10)

with

𝑈(𝜖) = ⎛⎜⎜
⎝

1 𝐹eq(𝜖)

0 −1
⎞⎟⎟
⎠𝐾

̂𝜏0

̌𝑉 (𝜖) = ⎛⎜⎜
⎝

𝑒𝜏1𝜃/2 0

0 𝑒𝜏1𝜃∗/2

⎞⎟⎟
⎠𝐾

.

(B.11)

Here, 𝜃(𝜖) is a complex angle which is determined by the Usadel equation, and

satisfies 𝜃(−𝜖) = −𝜃∗(𝜖). The matrices 𝑈 and 𝑉 are a change of basis which allows

us to separate the equilibrium and saddle point properties from the fluctuation

effects: 𝑈 describes the fluctuation dissipation relation, while 𝑉 parametrizes the

solution to the retarded Usadel equation. The matrix 𝑊̌ is then composed of fields

multiplying the generators of the algebra which describes rotations on the soft
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manifold imposed by the nonlinear constraint 𝑄̌2 = 1. In particular, the matrix

𝑊̌ anticommutes with 𝜎3𝜏3 and for 𝑊̌ = 0 Eq. (B.10) reduces to the saddlepoint

solution. By expanding the exponential in this parametrization we can capture the

Gaussian fluctuations along the soft manifold. 𝑊̌ has 4 independent components

that couple to the vector potential

𝑊̌ (r, 𝑡, 𝑡′) = 𝑖 ⎛⎜⎜
⎝

𝑐𝑅(r, 𝑡, 𝑡′)𝜏1 𝑑𝑐𝑙(r, 𝑡, 𝑡′)𝜏0

𝑑𝑞(r, 𝑡, 𝑡′)𝜏0 𝑐𝐴(r, 𝑡, 𝑡′)𝜏1

⎞⎟⎟
⎠𝐾

, (B.12)

the cooperon (𝑐𝑅, 𝑐𝐴) and diffuson (𝑑𝑐𝑙, 𝑑𝑞) fields.

We now expand Eq. (B.5) to quadratic order in the cooperon and diffuson fields

𝑐 and 𝑑. Doing so we generate three types of terms. The simplest is the quadratic

diffusive mode action

𝑖𝑆𝑐𝑑 = 𝜋𝜈
4

∫ 𝑑𝜖
2𝜋

∫ 𝑑𝜖′

2𝜋
tr [ ⃗𝑑𝜖′𝜖𝒟̂−1

𝜖𝜖′
⃗𝑑𝜖𝜖′ + ⃗𝑐𝜖′𝜖

̂𝒞−1
𝜖𝜖′ ⃗𝑐𝜖𝜖′] (B.13)

where we have defined the vector notation

⃗𝑑 = (𝑑𝑐𝑙, 𝑑𝑞)

⃗𝑐 = (𝑐𝑅, 𝑐𝐴)

𝐷̂−1
𝜖𝜖′ = 𝒟−1

𝜖′𝜖𝜎+ + 𝒟−1
𝜖𝜖′𝜎−

̂𝒞−1
𝜖𝜖′ = diag ([𝒞𝑅

𝜖𝜖′ ]−1, [𝒞𝐴
𝜖𝜖′ ]−1) ,

(B.14)
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and the diffuson and cooperon propagators

𝒟−1
𝜖𝜖′ = ℰ𝑅(𝜖) + ℰ𝐴(𝜖′)

[𝒞𝑅/𝐴]−1
𝜖𝜖′ = ℰ𝑅/𝐴(𝜖) + ℰ𝑅/𝐴(𝜖′)

ℰ𝑅(𝜖) = 𝑖 (𝜖 + 𝑖𝛾
2

) cosh 𝜃𝜖 − 𝑖Δ sinh 𝜃𝜖

ℰ𝐴(𝜖) = (ℰ𝑅(𝜖))∗ .

(B.15)

At linear order we then have a coupling between diffusive modes and the gap

𝑖𝑆Δ−𝑐𝑑 = 𝜋𝜈 ∫ 𝑑𝜖
2𝜋

[ ⃗𝑐𝜖𝜖 ⋅ ⃗𝑠𝑐
𝜖 + ⃗𝑑𝜖𝜖𝜎̂1 ⃗𝑠𝑑

𝜖 ] (B.16)

where we have taken Δ𝑞 to be homogeneous and real. Finally, there is a coupling of

the diffusons and cooperons to the photon field

𝜋𝜈𝐷 ∫ 𝑑𝜔
2𝜋
A𝛼

−𝜔 ⋅A𝛽
𝜔 ∫ 𝑑𝜖

2𝜋
[ ⃗𝑐𝜖𝜖 ⋅ ⃗𝑟𝑐;𝛼𝛽

𝜖 + ⃗𝑑𝜖𝜖𝜎̂1 ⃗𝑟𝑑;𝛼𝛽
𝜖 ] (B.17)

The ⃗𝑟𝑖;𝛼𝛽 are matrices in the photon Keldysh space and vectors in the sense

induced by Eq. B.14. They determined by the structure of the saddlepoint solution

and arise from expanding to covariant derivative term in Eq. (B.5) to lowest order

in the 𝑊 matrix fields.

The coupling to the diffusive modes may be removed by making a shift of the

fields

⃗𝑐𝜖𝜖 → ⃗𝑐𝜖𝜖 − 2Δ𝑞 ̂𝒞𝜖𝜖 ⃗𝑠𝑐
𝜖 − 2𝐷 ̂𝒞𝜖𝜖 ∫ 𝑑𝜔

2𝜋
A𝛼

−𝜔A𝛽
𝜔 ⃗𝑟𝑐;𝛼𝛽

𝜖 (B.18)

⃗𝑑𝜖𝜖 → ⃗𝑑𝜖𝜖 − 2Δ𝑞𝒟̂𝜖𝜖 ̂𝜎1 ⃗𝑠𝑑
𝜖 − 2𝐷 ∫ 𝑑𝜔

2𝜋
A𝛼

−𝜔A𝛽
𝜔𝒟̂𝜖𝜖 ̂𝜎1 ⃗𝑟𝑑;𝛼𝛽

𝜖 . (B.19)

This shift has three effects. The first two are to create a nonlinear term in the

photon action, which we will ignore as we are not considering non-linear effects, and
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to create term at second order Δ𝑞 which we can ignore as Δ𝑞 will be taken to 0 at

the end. The important effect is that a coupling between photons and Δ∗
𝑞 is induced

𝑖𝑆Δ−𝐴 = 2𝜋𝜈𝐷Δ𝑞 ∫ 𝑑𝜔
2𝜋

∫ 𝑑q
(2𝜋)2A

𝛼
−𝜔(−q)⋅A𝛽

𝜔(q) ∫ 𝑑𝜖
2𝜋

[ ⃗𝑠𝑐
𝜖

̂𝒞𝜖𝜖 ⃗𝑟𝑐;𝛼𝛽
𝜖 + ⃗𝑠𝑑

𝜖 𝜎̂1𝒟̂𝜖𝜖𝜎̂1 ⃗𝑟𝑑;𝛼𝛽
𝜖 ] .

(B.20)

At this point we may safely integrate out the 𝑑 modes and henceforth ignore

them.1

Making the definition

−𝑖Π𝛼𝛽 = 2𝜋𝜈𝐷Δ𝑞 ∫ 𝑑𝜖
2𝜋

[ ⃗𝑠𝑐
𝜖

̂𝒞𝜖𝜖 ⃗𝑟𝑐;𝛼𝛽
𝜖 + ⃗𝑠𝑑

𝜖 𝒟̂𝜖𝜖 ⃗𝑟𝑑;𝛼𝛽
𝜖 ] (B.21)

we can write the photon action as

𝑖𝑆𝐴 = 𝑖 ∫ 𝑑𝜔
2𝜋

∫ 𝑑q
(2𝜋)2A

𝛼
−𝜔,−q ( ̌𝑆−1

0 (𝜔,q) − Π̌(𝜔,q))A𝛽
𝜔,q. (B.22)

Integrating out a we obtain

𝑖𝑆 = −1
2
Tr ln [−𝑖 ( ̌𝑆−1

0 − Π̌)] ≈ 1
2
Tr [ ̌𝑆0Π̌] (B.23)

where we have expanded to linear order in Δ𝑞. Since the momentum q appears only

in 𝑆 we can immediately integrate over it. Similarly we can trace over the in plane

components of A. We thus define

𝐷̂(𝜔) = ∑
𝑖∈{𝑥,𝑦}

∫ 𝑑q
(2𝜋)2

̂𝑆𝑖𝑖(𝜔,q) (B.24)

We assume the photon modes to be governed by a density matrix which is diagonal
1We are free to ignore the residual coupling to Δ as the saddlepoint equation guarantees that it

vanishes.
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in energy. 𝐷 can then be written in the usual form

𝐷̂(𝜔) = ⎛⎜⎜
⎝

𝑁(𝜔)(𝐷𝑅(𝜔) − 𝐷𝐴(𝜔)) 𝐷𝑅(𝜔)

𝐷𝐴(𝜔) 0
⎞⎟⎟
⎠

(B.25)

Defining −2𝜋𝑖𝐽(𝜔) = 𝐷𝑅(𝜔) − 𝐷𝐴(𝜔) and using the analytic properties of 𝐷 this

can be written

𝑖𝑆 = −𝑖
2

∫ 𝑑𝜔𝐽(𝜔) [𝑁(𝜔)Π0,0(𝜔) − (Π𝑅(𝜔) − Π𝐴(𝜔))] (B.26)

where we have defined Π𝑅/𝐴 as the retarded/analytic part of Π01/10. Defining

𝜈Δ𝑞 (𝑃 𝑐
𝛼𝛽(𝜔) + 𝑃 𝑑

𝛼𝛽(𝜔)) = −𝑖Π𝛼𝛽 (B.27)

ℬ(𝜔) =
𝑃 𝑑

𝑅(𝜔) − 𝑃 𝑑
𝐴(𝜔)

𝑃 𝑑
0 (𝜔)

(B.28)

with 𝑃 0 = 𝑃00 and 𝑃 𝑅/𝐴 defined analogously to Π𝑅/𝐴 the correction can be broken

into two terms. The first is the equilibrium self-energy correction to to the cavity

photons

𝑖𝑆𝑒𝑞
𝑐 = 𝜈Δ𝑞

2
∫ 𝑑𝜔𝐽(𝜔) [ℬ(𝜔)𝑃 𝑐

0 (𝜔) − (𝑃 𝑐
𝑅(𝜔) − 𝑃 𝑐

𝐴(𝜔))] . (B.29)

This term should be included in the bare equilibrium result as it is a property of the

equilbrium cavity-superconductor system and we therefore subtract it off henceforth.

The other term

𝑖𝑆𝑓𝑙𝑢𝑐 = 𝜈Δ𝑞

2
∫ 𝑑𝜔𝐽(𝜔)(𝑁(𝜔) − ℬ(𝜔))(𝑃 𝑐

0 (𝜔) + 𝑃 𝑑
0 (𝜔)) (B.30)

is the fluctuation induced enhancement to superconductivity. This is to be compared

with the correction term due to a classical monochromatic field (i.e. the original
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Eliashberg effect)

𝑖𝑆 = (−𝑖Π0,0(𝜔)−𝑖Π0,0(−𝜔))|A𝜔|2 = 𝜈Δ𝑞(𝑃0(𝜔)+𝑃0(−𝜔))|A𝜔|2 ≡ 𝜈Δ𝑞𝑌 (𝜔)|A𝜔|2.

(B.31)

Using the functional dependence of the classical Eliashberg effect on frequency 𝑌 (𝜔)

the quantum Eliashberg effect can be written in a Fluctuation-Dissipation like form

𝑖𝑆fluc = 𝜈Δ𝑞

2
∫

∞

0
𝑑𝜔𝐽(𝜔)(𝑁(𝜔) − ℬ(𝜔))𝑌 (𝜔). (B.32)

It should be noted that in the linearized regime 𝑃 𝑑
0 goes as 𝛾−1 while 𝑃 𝑐

0 goes as 𝛾0.

Thus, in the limit of 𝛾 → 0 we expect the diffuson contribution to be dominant.

B.2 Gap Equation

As mentioned previously, the BCS gap equation is the saddlepoint equation

of our action with respect to the source field Δ𝑞. Including the correction term

Eq. (B.32) the gap equation then becomes

0 = 𝛿𝑖𝑆
𝛿Δ𝑞

∣
Δ𝑞=0

= −4𝑖 𝜈
𝜆

Δ+ 𝜋𝜈
2
Tr 𝑄̂𝐾 ̂𝜏2 + 𝜈

2
∫

∞

0
𝑑𝜔𝐽(𝜔)(𝑁(𝜔)−ℬ(𝜔))𝑌 (𝜔) (B.33)

We therefore define

𝐹BCS = 1
𝜆

+ 𝑖𝜋
8Δ

Tr 𝑄̂𝐾 ̂𝜏2

𝐹phot = 𝑖𝜈
8Δ

∫
∞

0
𝑑𝜔𝐽(𝜔)(𝑁(𝜔) − ℬ(𝜔))𝑌 (𝜔)

(B.34)

Which allows us to write the gap equation as 𝐹BCS = −𝐹phot. Furthermore, 𝐹phot can

be broken up into a kinetic contribution 𝐹 kin arising from modification of the quasi-

particle occupation function and a spectral contribution 𝐹 spec due to modification

of the density of states from self energy effects, as discussed above. Most notably,
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because the gap equation is linearly related to the action, the corrections to the gap

equation are related to the conventional via the same fluctuation-dissipation-like

relation.

B.2.1 Effective photonic spectral function

The function 𝐽(𝜔) can be can be calculated by relating the field A to the cavity

mode operators 𝑎, ̄𝑎.

Multimode Cavity

As an example of a multimode cavity we take the cavity mode Keldysh action

to be given by

𝑖𝑆 = 𝑖 ∫ 𝑑𝜔
2𝜋

∫ 𝑑q
(2𝜋)2 𝑎†

𝑞;𝛼
⎛⎜⎜
⎝

0 𝜔 − 𝑖𝜅 − 𝜔𝑞

𝜔 + 𝑖𝜅 − 𝜔𝑞 2𝑖𝜅𝑁(𝜔)
⎞⎟⎟
⎠⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

̂𝐺−1(𝜔,q)

𝑎𝑞;𝛼. (B.35)

to describe a cavity coupled to the environment.[199] Using the fact that we can

expression A in terms of 𝑎 and ̄𝑎 (in Gaussian units) as

A𝑞(𝑧) = √2𝜋𝑐2

𝜔𝑞
(𝑎𝑞;𝛼𝜖q;𝛼(𝑧) + 𝑎†

−𝑞;𝛼𝜖∗
−q;𝛼(𝑧)) (B.36)

we can relate the Keldysh component of 𝑆 and 𝐺

2𝑆𝐾
𝜔,q;𝑖𝑖(𝐿/2, 𝐿/2) = 2𝜋𝑐2

𝜔𝑞
∑

𝛼
|𝜖𝑖
q;𝛼(𝐿/2)|2 (𝐺𝐾

−𝑞 + 𝐺𝐾
𝑞 ) (B.37)

After some calculation we therefore find

𝐽MM(𝜔) = ∫ 𝑑q
(2𝜋)2

𝜅𝑐2

𝜔𝑞
∑

𝛼
∣𝜖q;𝛼 (𝐿

2
)∣

2
( 1

(𝜔 − 𝜔𝑞)2 + 𝜅2 − 1
(𝜔 + 𝜔𝑞)2 + 𝜅2 )

(B.38)
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where we have used the fact that 𝜖(𝐿/2) is in plane. Now with the explicit forms of

𝜖𝑖 from the main text

̂𝜖1,q(𝐿/2) = −𝑖√ 2
𝐿

𝜔0
𝜔q

q
|q|

̂𝜖2,q(𝐿/2) = √ 2
𝐿
e3 × q

|q|

(B.39)

we can immediately evaluate the angular integral

∫ 𝑑𝜃
2𝜋

∑
𝑖∈𝑥,𝑦,𝛼

|𝜖𝑖
𝜃,𝛼(𝐿/2)|2 = 2

𝐿
(1 + 𝜔2

0
𝜔2
q

) . (B.40)

We now make a change of variables from |q| → 𝜔′ = 𝜔q. The dispersion relation

𝜔2
𝑞 = 𝜔2

0 + 𝑐2𝑞2 implies
𝑞𝑑𝑞

2𝜋𝜔′ = 𝑑𝜔′

2𝜋𝑐2 . (B.41)

This allows us to write 𝐽 as

𝐽MM(𝜔) = 2𝜅
𝐿

∫
∞

𝜔0

𝑑𝜔′ ( 1
(𝜔 − 𝜔′)2 + 𝜅2 − 1

(𝜔 + 𝜔′)2 + 𝜅2 ) (1 + 𝜔2
0

𝜔′2 ) . (B.42)

This integral may be performed exactly to find

𝐽MM(𝜔) = 2
𝐿

[(1 + 𝜔2
0

𝜔2 − 𝜅2

(𝜔2 + 𝜅2)2 ) (tan−1 𝜔 − 𝜔0
𝜅

+ tan−1 𝜔 + 𝜔0
𝜅

)

+ 𝜅𝜔𝜔2
0

(𝜔2 + 𝜅2)2 log(
((𝜔 − 𝜔0)2 + 𝜅2) ((𝜔 + 𝜔0)2 + 𝜅2)

𝜔4
0

)] . (B.43)

We will, however, introduce a factor 𝑋2 into 𝐽 which describes enhancement of the

electron-photon coupling due to e.g. squeezing of mode volume, one factor of 𝑋

coming from the enhancement of each vertex. In principle this enhancement should

come from a detailed study of the structure of the photon modes. However, this

physics is not captured within our simple parallel plate model and so we include the
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coupling enhancement phenomenonlogically via the factor 𝑋

𝐽eff(𝜔) = 𝑋2𝐽(𝜔). (B.44)

Single mode cavity

We can also consider the effective photonic spectral function for a single mode

cavity

𝑖𝑆 = 𝑖 ∫ 𝑑𝜔
2𝜋

𝑎†
𝛼(𝜔) ⎛⎜⎜

⎝

0 𝜔 − 𝑖𝜅 − 𝜔0

𝜔 + 𝑖𝜅 − 𝜔0 2𝑖𝜅𝑁(𝜔)
⎞⎟⎟
⎠⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

̂𝐺−1(𝜔)

𝑎𝛼(𝜔). (B.45)

Following the steps outlined above we find that

𝐽eff;SM(𝜔) = 𝜅𝑐2𝑋
𝜔0

∑
𝛼

∣𝜖𝛼 (𝐿
2

)∣
2

( 1
(𝜔 − 𝜔0)2 + 𝜅2 − 1

(𝜔 + 𝜔0)2 + 𝜅2 ) . (B.46)

B.2.2 Photonic corrections to the distribution function

To lowest order in 𝜏in = 1/𝛾, which corresponds to taking a linearized expansion

of the collision integral in the deviation of the occupation function from Fermi-Dirac,

and using the fact that 𝐽(𝜔) is an odd function of 𝜔 we can write 𝐹 kin
phot = 𝐹pair +𝐹scat

with the recombination contribution

𝐹pair = 𝛼𝐷
𝛾𝑐

∫
∞

2Δ
𝑑𝜔𝐽 (𝜔) (𝑁(𝜔) − ℬ(𝜔))

∫
𝜔−Δ

Δ

𝑑𝜖
𝜖

(𝐹(𝜖) + 𝐹(𝜔 − 𝜖)) 𝑃(𝜖, 𝜔 − 𝜖)𝜌𝑞𝑝(𝜖)𝜌𝑞𝑝(𝜔 − 𝜖)

(B.47)
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and scattering contribution

𝐹scatter = 𝛼𝐷
𝛾𝑐

∫
∞

0
𝑑𝜔 𝜔𝐽 (𝜔) (𝑁(𝜔) − ℬ(𝜔))

∫
∞

Δ

𝑑𝜖
𝜖(𝜖 + 𝜔)

(𝐹(𝜖) − 𝐹(𝜔 + 𝜖)) 𝐿(𝜖, 𝜔 + 𝜖)𝜌𝑞𝑝(𝜖)𝜌𝑞𝑝(𝜔 + 𝜖), (B.48)

where the fine-structure constant 𝛼 appears due to reinstating the electron charge

in the paramagnetic coupling which we had previously absorbed into the A field.

With our particular form of 𝐽(𝜔) (𝐺(𝑤, 𝑘)) the correction to the gap equation

become

𝐹pair = 𝛼𝐷𝑋2

𝑐𝛾
∫

∞

2Δ
𝑑𝜔𝐽 (𝜔) (𝑁(𝜔) − ℬ(𝜔))

∫
𝜔−Δ

Δ

𝑑𝜖
𝜖

(𝐹(𝜖) + 𝐹(𝜔 − 𝜖)) 𝑃(𝜖, 𝜔 − 𝜖)𝜌𝑞𝑝(𝜖)𝜌𝑞𝑝(𝜔 − 𝜖) (B.49)

and

𝐹scatter = 𝛼𝐷𝑋2

𝑐𝛾
∫

∞

0
𝑑𝜔 𝜔𝐽 (𝜔) (𝑁(𝜔) − ℬ(𝜔))

∫
∞

Δ

𝑑𝜖
𝜖(𝜖 + 𝜔)

(𝐹(𝜖) − 𝐹(𝜔 + 𝜖)) 𝐿(𝜖, 𝜔 + 𝜖)𝜌𝑞𝑝(𝜖)𝜌𝑞𝑝(𝜔 + 𝜖). (B.50)

In the above we have used the definitions

𝑃(𝜖, 𝜖′) = 1 − Δ2

𝜖𝜖′ , 𝐿(𝜖, 𝜖′) = 1 + Δ2

𝜖𝜖′

𝐹(𝜖) = tanh 𝜖
2𝑇

, 𝑁(𝜔) = coth 𝜔
2𝑇𝑝

, ℬ(𝜔) = coth 𝜔
2𝑇

(B.51)

We have assumed the photons to be at temperature 𝑇𝑝 while the Fermions are

coupled to a bath of temperature 𝑇.
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The correction terms can be rewritten as

𝐹pair + 𝐹scat = 𝛼𝐷𝑋2

𝛾𝑐
∫

∞

Δ
𝑑𝜖

𝜌𝑞𝑝(𝜖)
𝜖

∫
∞

0
𝑑𝜔𝐽(𝜔) (𝑁(𝜔) − ℬ(𝜔))

× [(𝐹(𝜖) + 𝐹(𝜔 − 𝜖)) 𝑃(𝜖, 𝜔 − 𝜖)𝜌𝑞𝑝(𝜔 − 𝜖)Θ(𝜖 − Δ)Θ(𝜔 − Δ − 𝜖)

+ (𝐹(𝜖) − 𝐹(𝜖 + 𝜔)) 𝐿(𝜖, 𝜖 + 𝜔)𝜌qp(𝜖 + 𝜔)Θ(𝜖 − Δ)

+ (𝐹(𝜖 − 𝜔) − 𝐹(𝜖)) 𝐿(𝜖 − 𝜔, 𝜖)𝜌qp(𝜖 − 𝜔)Θ(𝜖 − 𝜔 − Δ)] = 2 ∫
∞

Δ
𝑑𝜖

𝜌𝑞𝑝(𝜖)
𝜖

𝑛1(𝜖)

(B.52)

which allows us to move this term to the left hand side to obtain

1
𝜆

− ∫
∞

Δ
𝑑𝜖

1 − 2𝑛𝑓(𝜖) − 2𝑛1(𝜖)
√

𝜖2 − Δ2
= 0 (B.53)

and therefore identify the correction to the occupation function

𝑛1 = 𝛼𝐷𝑋2

2𝛾𝑐
∫

∞

0
𝑑𝜔𝐽(𝜔) (𝑁(𝜔) − ℬ(𝜔))

× [(𝐹(𝜖) + 𝐹(𝜔 − 𝜖)) 𝑃(𝜖, 𝜔 − 𝜖)𝜌𝑞𝑝(𝜔 − 𝜖)Θ(𝜖 − Δ)Θ(𝜔 − Δ − 𝜖)

+ (𝐹(𝜖) − 𝐹(𝜖 + 𝜔)) 𝐿(𝜖, 𝜖 + 𝜔)𝜌qp(𝜖 + 𝜔)Θ(𝜖 − Δ)

+ (𝐹(𝜖 − 𝜔) − 𝐹(𝜖)) 𝐿(𝜖 − 𝜔, 𝜖)𝜌qp(𝜖 − 𝜔)Θ(𝜖 − 𝜔 − Δ)] . (B.54)

Defining the power spectral density of absorption (𝛼𝐷/𝑐)𝐽(𝜔), our result can be

written

𝑛1(𝜖) = 𝛾−1 ∫
∞

0
𝑑𝜔 𝑆(𝜔)𝑁(𝜔) − ℬ(𝜔)

2
𝐼el

𝜖 (𝜔) (B.55)

where 𝐼el
eps(𝜔) is the related to the conventional Eliashberg expression [40] for a

classical microwave field A𝜔 by

𝑛conv.
1 (𝜖, 𝜔) = 𝛼𝐷|A𝜔|2

𝛾𝑐
𝐼el

𝜖 (𝜔). (B.56)
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Appendix C: Effective Hamiltonian

Here we detail the first of two methods we used to solve for the dispersion

relations depicted in Fig. 3.3 of the main text. We essentially expand the frequency-

dependent dispersion of the Bardasis-Schrieffer and two photon modes and derive

an effective Hamiltonian description, from which we can analytically obtain the

polariton dispersions and eigenvalues. In the next section we discuss the numer-

ical methods used to solve for the polariton dispersion directly from the hybrid

inverse Green’s function. In this section we will frequently employ the notation that

∫
k

∫ 𝑑2𝑘
(2𝜋)2 .

As explained in the main text, we begin with the fermionic mean field model

𝑆 = 𝑆Δ,𝑠 + 𝑆Δ,𝑑 + 𝑆cav − ∑
𝑘

̄𝜓𝑘
̂𝐺−1
𝑘 𝜓𝑘

+ ∑
𝑘,𝑞

̄𝜓𝑘+ 𝑞
2

1√
𝛽Vol

([ k
𝑚

+ v𝑆𝜏3] ⋅A𝑞 + ̂𝜏2𝑓𝑑(𝜙k)𝑑𝑞) 𝜓𝑘− 𝑞
2
, (C.1)

which has been obtained via Hubbard-Stratonovich decoupling the interaction terms

in the Cooper channel and where ̂𝐺 is the Nambu Green’s function of the 𝑠-wave

state. Integrating out fermions and keeping to second order in the photon and

Bardasis-Schrieffer fields we obtain a description in terms of only bosonic variables

𝑆eff = 𝑆𝑑 + 𝑆𝐴 + 𝑆𝑑−𝐴, (C.2)
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where

𝑆𝑑 = ∑
𝑞

𝑑−𝑞 [ 1
𝑔𝑑

+ ∫
k

𝑓𝑑(𝜙k)2 2𝜆k 𝛿𝑛k
(𝑖Ω𝑚)2 − (2𝜆k)2 ] 𝑑𝑞 (C.3a)

𝑆𝐴 = −1
2

∑
𝑞,𝛼,𝛽

𝐴𝛼,−𝑞 [ 𝜖0
𝑒2𝑋2 ((𝑖Ω𝑚)2 − 𝜔2

𝑞) 𝛿𝛼𝛽 − Π𝛼𝛽,𝑞] 𝐴𝛽,𝑞 (C.3b)

𝑆𝑑−𝐴 = 𝑖Δ ∑
𝑞,𝛼

∫
k

𝑓𝑑(𝜙k)
𝑖Ω𝑚 𝛿𝑛k

(𝑖Ω𝑚)2 − (2𝜆k)2
v𝑆 ⋅ ⃗𝜖𝛼,𝑞

𝜆k
(𝐴𝛼,𝑞 𝑑−𝑞 − 𝐴𝛼,−𝑞 𝑑𝑞) , (C.3c)

and ⃗𝜖𝛼 are the in plane components of the polarizations described in Appendix A,

evaluated at 𝑧 = 𝐿/2.

C.0.1 Bardasis-Schrieffer Sector

We begin by rewriting 𝑆𝑑 using the mean field equation for the 𝑠-wave Δ,

𝑆𝑑 = ∑
𝑞

𝑑−𝑞
⎡
⎢⎢
⎣

1
𝑔𝑑

+ ∫
k

𝑓𝑑(𝜙k)2 𝛿𝑛k
(𝑖Ω𝑚)2 − (2𝜆k)2 2𝜆k − 1

𝑔𝑠
+ ∫

k

𝛿𝑛k
2𝜆k⏟⏟⏟⏟⏟⏟⏟

=0

⎤
⎥⎥
⎦

𝑑𝑞

= ∑
𝑞

𝑑−𝑞 [ 1
𝑔𝑑

− 1
𝑔𝑠

+ ∫
k

𝛿𝑛k
2𝜆k

((𝑖Ω𝑚)2 + (2𝜆k)2(𝑓𝑑(𝜙k)2 − 1)
(𝑖Ω𝑚)2 − (2𝜆k)2 )] 𝑑𝑞

= ∑
𝑞

𝑑−𝑞 [ 1
𝑔𝑑

− 1
𝑔𝑠

+ ∑
k

((𝑖Ω𝑚)2

2𝜆k
+ 2𝜆k cos(4𝜙k))

𝛿𝑛k
(𝑖Ω𝑚)2 − (2𝜆k)2 ] 𝑑𝑞

≡ −1
2

∑
𝑞

𝑑−𝑞𝐷−1
BS,𝑞𝑑𝑞. (C.4)

In the first line we employ the gap equation for Δ. This rewriting regulates the inte-

gration and also allows us to straightforwardly parametrize the Bardasis-Schrieffer

frequency in terms of the relative strength of the 𝑠-wave and 𝑑-wave interactions.

In the last line we define the BS inverse Green’s function 𝐷−1
BS . In order to change

to the mode operator basis the inverse Green’s function must be rewritten in a

harmonic approximation. We first analytically continue the imaginary frequency to

the entire complex plane, 𝑖Ω𝑚 → 𝑧 ∈ ℂ, then expand the inverse Green’s function
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to second order in 𝑧 around the saddle point solution, which we identify as ΩBS

(𝐷−1
BS (𝑧 = ΩBS,q) = 0), and finally restrict back to Matsubara frequency. This is

simply finding the saddle point solution by the method of steepest descent. Note

that because our model has no disorder, the BS frequency is real, and so the BS

mode cannot decay. The result of this expansion is

𝑆𝑑 ≈ −𝐾
2

∑
𝑞

𝑑−𝑞 ((𝑖Ω𝑚)2 − Ω2
BS) 𝑑𝑞, (C.5)

where the constant 𝐾 ≡ 𝜕2𝐷−1
BS (𝑧,q)/𝜕𝑧2|𝑧=ΩBS

is a coefficient resulting from the

expansion. From this form the transformation to mode operators can be performed

without further difficulty:

𝑆𝑑 → 𝑆𝑏 = ∑
𝑞

𝑏̄𝑞(−𝑖Ω𝑚 + ΩBS)𝑏𝑞 with 𝑑𝑞 =
𝑏𝑞 + 𝑏̄−𝑞

√2𝐾ΩBS
. (C.6)

C.0.2 Photon Sector

The self-energy part of the photon action arises from

𝑆Π = 1
2
Tr ( ̂𝐺𝜒̂ ̂𝐺𝜒̂) ≡ 1

2
∑

𝑞
A−𝑞Π̂𝑞A𝑞 = 1

2
∑
𝑞,𝛼,𝛽

𝐴𝛼,−𝑞Π𝛼𝛽,𝑞𝐴𝛽,𝑞. (C.7)

In the last equality, reproducing the term in the action above, the response function

Π has been rewritten in the basis of cavity polarizations from the original Cartesian

basis of the vector potential,

Π𝛼𝛽,𝑞 = ∑
𝑖,𝑗

𝜖𝑖
𝛼,−qΠ

𝑖𝑗
𝑞 𝜖𝑗

𝛽,q. (C.8)

Though the polarization basis is useful for the change to mode operators, an appro-

priately chosen Cartesian basis is far more convenient for the evaluation of the Π̂.

We choose this basis to be defined as the directions parallel and perpendicular to
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the axis of the supercurrent because we know that this is the basis most relevant for

the hybridization problem; only the component of A𝑞 parallel to the supercurrent

hybridizes with the BS mode. This can be done because there are two linearly

independent polarizations which have non-zero components of the polarization in

the plane (see Appendix A).

The form of Π̂ can be extracted from the trace above,

Π𝑖𝑗
𝑞 = 1

𝛽
∑
𝑖𝜀𝑛

∫
k
tr [ ̂𝐺𝑘+ 𝑞

2
(𝑣𝑖
k ̂𝜏0 + 𝑣𝑖

𝑆 ̂𝜏3) ̂𝐺𝑘− 𝑞
2

(𝑣𝑗
k ̂𝜏0 + 𝑣𝑗

𝑆 ̂𝜏3)] , (C.9)

where ̂𝐺𝑘 = [(𝑖𝜖𝑛 − k ⋅ ⃗𝑣𝑆) ̂𝜏0 − 𝜉𝑆
k ̂𝜏3 − Δ ̂𝜏1]−1 is the Nambu Green’s function. Un-

like for the Bardasis-Schrieffer mode, here we keep the 𝑞 dependence of the Green’s

functions. Upon inserting resolutions of the identity to diagonalize the Green’s

function with the appropriate Bogoluibov transformation, ̂𝑈k = ⎛⎜⎜
⎝

𝑢k −𝑣k

𝑣k 𝑢k

⎞⎟⎟
⎠

with

𝑢k, 𝑣k = √1
2 (1 ± 𝜉𝑆

k
𝜆k

), and performing the Matsubara summation we have

Π𝑖𝑗
𝑞 = ∫ 𝑑2𝑘

(2𝜋)2 ∑
𝛼,𝛼′

𝑛𝐹 (𝐸𝛼′

k−q/2) − 𝑛𝐹 (𝐸𝛼
k+q/2)

𝑖Ω𝑚 − (𝐸𝛼
k+q/2 − 𝐸𝛼′

k−q/2)
{𝑣𝑖

k𝑣
𝑗
k (ℓ2

k,q𝛿𝛼,𝛼′ − 𝑝2
k,q𝛿𝛼,−𝛼′)

+𝑣𝑖
𝑆𝑣𝑗

𝑆 (𝑛2
k,q𝛿𝛼,𝛼′ + 𝑚2

k,q 𝛿𝛼,−𝛼′)

+ (𝑣𝑖
k𝑣

𝑗
𝑆 + 𝑣𝑖

𝑆𝑣𝑗
k) ℓk,q𝑛k,q 𝛼 𝛿𝛼,𝛼′

+ (𝑣𝑖
k𝑣

𝑗
𝑆 − 𝑣𝑖

𝑆𝑣𝑗
k) 𝑝k,q𝑚k,q 𝛼 𝛿𝛼,−𝛼′} , (C.10)

where we have defined the superconductor coherence factors

ℓk,q = 𝑢+𝑢−+𝑣+𝑣− 𝑝k,q = 𝑢+𝑣−−𝑣+𝑢− 𝑛k,q = 𝑢+𝑢−−𝑣+𝑣− 𝑚k,q = 𝑢+𝑣−+𝑣+𝑢−,

(C.11)

using the shorthand notation for the Bogoliubov amplitudes 𝑢± = 𝑢k±q/2 and
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𝑣± = 𝑣k±q/2.

Analytic evaluation of this function keeping the full momentum and frequency

dependence is unfeasible, so now, after analytic continuation to real frequency

𝑖Ω𝑚 → 𝜔 + 𝑖0, we expand to first order in the small deviation of the frequency from

the cavity resonant frequency, 𝛿Ω = 𝜔 − 𝜔0 + 𝑖0, which is the most that could be

needed in the mode operator picture, and to second order in |q|. Furthermore, we

note that 𝑣k ≫ 𝑣𝑆 and use this to make some further approximations, dropping

terms with 𝑣𝑆 when there is a corresponding term appearing with 𝑣k. We write the

result of this expansion as

Π𝑖𝑗
𝑞 ≈ 𝑥10,𝑖𝑗

𝑃 (𝜙𝑞) 𝑞 (1 − 𝛿Ω
𝜔0

) + 𝑥20,𝑖𝑗
𝑃 (𝜙𝑞) 𝑞2

+ (𝑥00
𝑆 + 𝑥01

𝑆 𝛿Ω + 𝑥10
𝑆 (𝜙𝑞) 𝑞 + 𝑥11

𝑆 (𝜙𝑞) 𝑞 𝛿Ω + 𝑥20
𝑆 (𝜙𝑞) 𝑞2) 𝛿𝑖𝑗𝛿𝑖,∥

+ [(𝑥10,𝑖
𝑆𝑃𝑠(𝜙𝑞) + 𝑥10,𝑖

𝑆𝑃𝑎(𝜙𝑞)) 𝑞 + (𝑥11,𝑖
𝑆𝑃𝑠(𝜙𝑞) + 𝑥11,𝑖

𝑆𝑃𝑎(𝜙𝑞)) 𝑞 𝛿Ω] 𝛿𝑗,∥

+ [(𝑥20,𝑖
𝑆𝑃𝑠(𝜙𝑞) + 𝑥20,𝑖

𝑆𝑃𝑎(𝜙𝑞)) 𝑞2] 𝛿𝑗,∥

+ [(𝑥10,𝑗
𝑆𝑃𝑠(𝜙𝑞) − 𝑥10,𝑗

𝑆𝑃𝑎(𝜙𝑞)) 𝑞 + (𝑥11,𝑗
𝑆𝑃𝑠(𝜙𝑞) − 𝑥11,𝑗

𝑆𝑃𝑎(𝜙𝑞)) 𝑞 𝛿Ω] 𝛿𝑖,∥

+ [(𝑥20,𝑗
𝑆𝑃𝑠(𝜙𝑞) − 𝑥20,𝑗

𝑆𝑃𝑎(𝜙𝑞)) 𝑞2] 𝛿𝑖,∥. (C.12)

The thirteen coefficients that appear in this expansion are given in Eq. (C.13).

Many of them are functions of the 𝜙𝑞, the angle q makes with ⃗𝑣𝑆. They are

labeled with a subscript showing the type of vertices they arise from, 𝑃 for two

paramagnetic vertices ⃗𝑣𝑘, 𝑆 for two supercurrent vertices ⃗𝑣𝑆, and 𝑆𝑃 for one of

each. The secondary indices 𝑠 and 𝑎 on the 𝑆𝑃 coefficients label whether the term

it is found in is symmetric or antisymmetric under exchange of the indices 𝑖 and 𝑗.

The superscript indices keep track of the powers of |q| (first index) and 𝛿Ω (second
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index) that the coefficient multiplies.

𝑥10,𝑖𝑗
𝑃 (𝜙𝑞) = −𝑣𝑆 ∫

k

1
𝜔0

𝑁 ′
k𝑣𝑖
k𝑣

𝑗
k cos𝜙𝑞 (C.13a)

𝑥20,𝑖𝑗
𝑃 (𝜙𝑞) = − 1

𝜔2
0

∫
k

[(
𝜉𝑆
k

𝜆k
)

2

𝑁 ′
k + Δ2

𝜆3
k

𝜔2
0

𝜔2
0 − (2𝜆k)2 𝛿𝑛k] 𝑣𝑖

k𝑣
𝑗
k 𝑣2

k cos2(𝜙𝑘 − 𝜙𝑞)

(C.13b)

𝑥00
𝑆 = 4𝑣2

𝑆 ∫
k

Δ2

𝜆2
k

𝜆k
𝜔2

0 − (2𝜆k)2 𝛿𝑛k (C.13c)

𝑥01
𝑆 = −2𝑣2

𝑆𝜔0 ∫
k

Δ2

𝜆2
k

𝜆k
[𝜔2

0 − (2𝜆k)2]2 𝛿𝑛k (C.13d)

𝑥10
𝑆 (𝜙𝑞) = 𝜔0𝑣3

𝑆 ∫
k

Δ2

𝜆2
k

[ 8𝜆k
[𝜔2

0 − (2𝜆k)2]2 𝛿𝑛k − 1
𝜔2

0 − (2𝜆k)2 𝑁 ′
k] cos𝜙𝑞 (C.13e)

𝑥11
𝑆 (𝜙𝑞) = −𝑣3

𝑆 ∫
k

Δ2

𝜆2
k

[8𝜆k
3𝜔2

0 + (2𝜆k)2

[𝜔2
0 − (2𝜆k)2]3 𝛿𝑛k − 𝜔2

0 + (2𝜆k)2

[𝜔2
0 − (2𝜆k)2]2 𝑁 ′

k] cos𝜙𝑞

(C.13f)

𝑥20
𝑆 (𝜙𝑞) =

𝑣2
𝑆
2

∫
k

Δ2

𝜆2
k

𝑣2
k cos2(𝜙𝑘 − 𝜙𝑞) (C.13g)

× [Δ2

𝜆3
k

𝜔2
0 + (2𝜆k)2

[𝜔2
0 − (2𝜆k)2]2 𝛿𝑛k − ( Δ

𝜆k
)

2 𝑁 ′
k

𝜔2
0 − (2𝜆k)2 + (

𝜉𝑆
k

𝜆k
)

2 𝜆k
𝜔2

0 − (2𝜆k)2 𝛿𝑛″
k]

(C.13h)
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𝑥10,𝑖
𝑆𝑃𝑠(𝜙𝑞) = −𝑣𝑆

𝜔0
∫
k

(
𝜉𝑆
k

𝜆k
)

2

𝑁 ′
k𝑣𝑖
k 𝑣k cos(𝜙𝑘 − 𝜙𝑞) (C.13i)

𝑥11,𝑖
𝑆𝑃𝑠(𝜙𝑞) = 𝑣𝑆 ∫

k
(

𝜉𝑆
k

𝜆k
)

2 1
𝜔2

0
𝑁 ′
k𝑣𝑖
k 𝑣k cos(𝜙𝑘 − 𝜙𝑞) (C.13j)

𝑥20,𝑖
𝑆𝑃𝑠(𝜙𝑞) = −𝑣𝑆 ∫

k
(

𝜉𝑆
k

𝜆k
)

2 2
𝜔2

0
𝑁 ′
k𝑣𝑖
k 𝑣k cos(𝜙𝑘 − 𝜙𝑞) cos𝜙𝑞 (C.13k)

𝑥10,𝑖
𝑆𝑃𝑎(𝜙𝑞) = 𝑣𝑆

𝜔0
∫
k

Δ2

𝜆3
k

𝜔2
0

𝜔2
0 − (2𝜆k)2 𝛿𝑛k 𝑣𝑖

k 𝑣k cos(𝜙𝑘 − 𝜙𝑞) (C.13l)

𝑥11,𝑖
𝑆𝑃𝑎(𝜙𝑞) = −𝑣𝑆 ∫

k

Δ2

𝜆3
k

𝜔2
0 + (2𝜆k)2

[𝜔2
0 − (2𝜆k)2]2 𝛿𝑛k 𝑣𝑖

k 𝑣k cos(𝜙𝑘 − 𝜙𝑞) (C.13m)

𝑥20,𝑖
𝑆𝑃𝑎(𝜙𝑞) = 𝑣𝑆 ∫

k

Δ2

𝜆3
k

[ 𝜔2
0 + (2𝜆k)2

[𝜔2
0 − (2𝜆k)2]2 𝛿𝑛k − 𝜆k

𝜔2
0 − (2𝜆k)2 𝑁 ′

k] 𝑣𝑖
k 𝑣k cos(𝜙𝑘 − 𝜙𝑞) cos𝜙𝑞

(C.13n)

In these expressions we have used the shorthand notation 𝛿𝑛k = 𝑛𝐹(𝐸−
k ) −

𝑛𝐹(𝐸+
k ), 𝛿𝑛″

k = 𝑛″
𝐹(𝐸−

k ) − 𝑛″
𝐹(𝐸+

k ) and 𝑁 ′
k = 𝑛′

𝐹(𝐸+
k ) + 𝑛′

𝐹(𝐸−
k ), where 𝑛′

𝐹(𝐸) =

𝜕𝑛𝐹(𝜖)/𝜕𝜖|𝜖=𝐸. Because of the angular dependence inside the Fermi functions due

to the Doppler shift in the energy, even the simplest of these coefficients cannot be

evaluated analytically. After numerical evaluation and comparing the size of the

terms in the expression for Π𝑖𝑗
𝑞 , it so happens that only a single one of these terms is

large enough to be of any importance–the constant 𝑥00
𝑆 term in Eq. (C.13c), which

affects just the component of A𝑞 parallel to the supercurrent. This contribution to

the photon action is then

𝑆Π = 1
2

∑
𝑞

𝑥00
𝑆 𝐴∥

−𝑞𝐴∥
𝑞 = 1

2
∑
𝑞,𝛼,𝛽

𝑥00
𝑆 𝜖∥

𝛼,−q𝜖∥
𝛽,q𝐴𝛼,−𝑞𝐴𝛽,𝑞. (C.14)

We now change to the mode basis using the transformation defined with the

empty cavity part of the action, 𝐴𝛼,𝑞 = (𝑎𝛼,𝑞 + ̄𝑎𝛼,−𝑞)/√2𝜔𝑞. After the usual
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approximation of discarding counterrotating terms ( ̄𝑎 ̄𝑎 and 𝑎𝑎) the result is

𝑆𝐴 → 𝑆𝑎 = ∑
𝑞,𝛼,𝛽

̄𝑎𝛼,𝑞 [−𝑖Ω𝑚𝛿𝛼𝛽 + 𝜔q𝛿𝛼𝛽 + 𝑥00
𝑆

𝜖∥
𝛼,−q𝜖∥

𝛽,q

2𝜔q
] 𝑎𝛽,𝑞. (C.15)

The last two terms comprise the effective photonic Hamiltonian in the polarization

basis. In our approximations the transformation between modes and Cartesian

components induced by the polarization vectors is unitary up to an overall constant

factor, so changing back from the polarization basis to the basis defined relative to

the supercurrent direction diagonalizes the Hamiltonian,

𝑆𝑎 = ∑
𝑞

( ̄𝑎∥
𝑞, ̄𝑎⟂

𝑞 ) ⎡
⎢
⎣

−𝑖Ω𝑚𝟙̂ + ⎛⎜⎜
⎝

𝜔q + Π𝑆
q 0

0 𝜔q

⎞⎟⎟
⎠

⎤
⎥
⎦

⎛⎜⎜
⎝

𝑎∥
𝑞

𝑎⟂
𝑞

⎞⎟⎟
⎠

, (C.16)

where we define the only remaining part of the photon self-energy Π𝑆
q = 𝑥00

𝑆 /(𝐿 𝜔q).

C.0.3 Coupling Term

Finally we consider the coupling term in the action. We replace 𝐴𝛼,𝑞 and 𝑑𝑞

with their definitions in terms of the mode operators 𝑎𝛼,𝑞 and 𝑏𝑞 and then perform

the same transformation as above, from the polarization basis back to the Cartesian

supercurrent basis. We then perform an analytic continuation 𝑖Ω𝑚 → 𝜔 + 𝑖0 and

expand around the BS frequency to lowest order (i.e. we set 𝜔 = ΩBS), since that is

the frequency at which the BS mode and photon bands would cross and therefore

where the hybridization is most important. The imaginary part of the coupling term

resulting from the infinitesimal shift off the real axis identically vanishes. The result

is

𝑆𝑑−𝐴 → 𝑆𝑏−𝑎 = 𝑣𝑆Δ ∑
𝑞

∫
k

√ 2 ΩBS
𝐿 𝐾𝜔q

𝑓𝑑(𝜙q)
𝜆k

𝛿𝑛k
Ω2

BS − (2 𝜆k)2 (𝑏̄𝑞𝑎∥
𝑞 + ̄𝑎∥

𝑞𝑏𝑞) , (C.17)
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from which we then extract the coupling matrix element 𝑔q as in the main text. Alto-

gether this gives the effective Hamiltonian for the coupled cavity photon-superconductor

system,

𝐻̌eff
q =

⎛⎜⎜⎜⎜⎜⎜
⎝

ΩBS 𝑔q 0

𝑔q 𝜔q + Π𝑆
q 0

0 0 𝜔q

⎞⎟⎟⎟⎟⎟⎟
⎠

. (C.18)

We see that this 3 × 3 Hamiltonian decouples into a 2 × 2 block and a single state.

The block describes the hybridization of the BS mode with one photon mode, and

the remaining state is the decoupled “dark” photon with the empty cavity dispersion

𝜔q, which is unseen by the BS mode and is unaffected by the superconductor within

our approximations. Since all 2 × 2 matrices can be trivially diagonalized, the

polariton dispersion in this Hamiltonian picture can immediately be written

𝐸(±)
𝑞 =

ΩBS + 𝜔q + Π𝑆
q

2
±

√√√

⎷
(

ΩBS − (𝜔q + Π𝑆
q)

2
)

2

+ 𝑔2
q. (C.19)

These energies have corresponding eigenstates defined through

𝐻̌eff
q |𝐸(±)

q ⟩ = 𝐸(±)
q |𝐸(±)

q ⟩ , (C.20)

which each have nontrivial overlap with both the uncoupled photon and BS states.
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Appendix D: Methods for Numerical Solution

Here we detail how the direct numerical evaluation of the dispersion relation

was implemented. This was used to verify that the results of the analytic model

are faithful to the exact solutions determined by the poles of the bosonic Green’s

function.

The numerical method begins again with the effective Gaussian Matsubara action

describing the coupled Bardasis-Schrieffer cavity-photon system. Schematically this

is

𝑆 = −1
2

∑
𝑞

(𝑑−𝑞 A−𝑞) ⎛⎜⎜
⎝

𝐷BS(𝑞)−1 g(𝑖Ω𝑚)

g(−𝑖Ω𝑚) 𝐷̂−1
phot

⎞⎟⎟
⎠

⎛⎜⎜
⎝

𝑑𝑞

A𝑞

⎞⎟⎟
⎠

, (D.1)

where the cavity propagator 𝐷̂−1
𝑝ℎ𝑜𝑡 = 𝐷̂−1

0 − Π̂ includes the self energy due to the

superconductor. At this stage the polariton modes can be found by solving for the

frequency 𝑧 = 𝑖Ω𝑚 at which the inverse of the Green’s function matrix vanishes. To

do so, we numerically solve for the roots of the determinant of the inverse Green’s

function det 𝐷̂−1(Ωq𝑖,q) = 0. In particular the following algorithm was employed

at each q: noting that there are three roots that we are searching for

1. An interval [𝜔𝑙, 𝜔𝑢] is chosen within which to search for solutions.

2. An extremum 𝑓 of det 𝐷̂−1(Ω,q) with respect to Ω is located by finding the

roots of the first derivative with respect to Ω using the Newton-Raphson

method in the vicinity of the Bardasis-Schrieffer frequency ΩBS.

3. The other extremum is found by searching for the root of the first derivative

in the interval (𝜔𝑙, 𝑓) or (𝑓, 𝜔𝑢) as determined by the sign of the function at

the endpoints. This gives us two extrema {𝑓0, 𝑓1}.

4. Roots of det 𝐷̂−1(Ω,q) are searched for using the Brent-Dekker method in the
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intervals (𝜔𝑙, 𝑓0), (𝑓0, 𝑓1), and (𝑓1, 𝜔𝑢)

Comparing the results of this procedure with the energies given in Eq. (C.19),

we find that the two methods are in excellent agreement, as can be seen in the first

figure of the main text.

Numerical integration and root-finding were performed using the GSL Scientific

Library[200].
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Appendix E: Norm of Complex Modes

Here we demonstrate that for the homogeneous system the complex momentum

modes have negative norm. We begin with the unitless BdG equation

[(1 + 1
2

𝑧2)𝜏3 + 𝑖𝜏2 + 𝛽𝑧 − 𝜆] 𝑤 = 0. (E.1)

There are four roots to the characteristic equation, 𝑧±𝑝 which are the two positive

norm roots, and 𝑧±𝑛 which are either negative norm and real or complex conjugate

pairs. The corresponding spinors are

𝑤𝜈 = 1
√|1 − |ℎ𝜈|2|

⎛⎜⎜
⎝

1

ℎ𝜈

⎞⎟⎟
⎠

(E.2)

where ℎ𝜈 = 𝜆 − 𝛽𝑧 − (1 + 1
2𝑧2), as is the case for the real-momentum modes. These

modes have negative norm whenever

|ℎ𝜈|2 > 1 ⇒ |𝜆 − 𝛽𝑧𝜈 − (1 + 1
2

𝑧2
𝜈)|2 > 1. (E.3)

If we relax the constraint that 𝑧 = 𝑧𝜈, one of the roots, we can study the regions

defined by this inequality in the complex 𝑧 plane, for fixed values of 𝛽 > 0, 𝜆 > 0.

We can then determine, for this 𝛽, 𝜆, what 𝑧𝜈 is and see which region of the complex

plane it falls in. This is depicted in Fig. E.1, for a number of different parameter

values.
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Figure E.1: Regions in the complex 𝑧 (momentum) plane where the spinor has
positive norm are colored green. Figures (a), (b) are for a subsonic flow at low and
high frequencies, respectively. Figures (c), (d) are for a supersonic flow at low and
high frequencies. Each of the four roots for the given 𝛽, 𝜆 are shown in the complex
plane. Two are real and always fall in the green region (the ±𝑝 roots) while two
always fall outside (the ±𝑛 roots). When the ±𝑛 momenta are not real, this shows
that they still have negative norm.
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Appendix F: Current and Group Velocity

Here we show that for a scattering mode the group velocity and current are

equivalent. We first consider a momentum eigenmode,

𝑊k(r) = 𝑒𝑖k⋅r 𝑤k√𝜌

which obeys the momentum space BdG equation

(𝜏3 ( k
2

2𝑚
+ 𝑚𝑐2) + 𝑖𝜏2𝑚𝑐2 + v ⋅ k− 𝜔) 𝑤k = 0.

We differentiate with respect to the wave-vector to get

(𝜏3 k
𝑚

+ v− 𝜕𝜔
𝜕k) 𝑤k + (𝜏3 ( k

2

2𝑚
+ 𝑚𝑐2) + 𝑖𝜏2𝑚𝑐2 + v ⋅ k− 𝜔) 𝜕𝑤k

𝜕k = 0. (F.1)

We now apply 𝑤†
k𝜏3 from the left and use the Hermiticity of the BdG Hamiltonian

with respect to the 𝜏3 inner-product to eliminate the term involving 𝜕𝑤
𝜕k . This then

produces the result

𝑤†
k𝜏3𝑤k

𝜕𝜔
𝜕k = 𝑤†

k [v𝜏3 + k
𝑚

] 𝑤k, (F.2)

which is the desired relation between group-velocity (LHS), and norm current (RHS).

This also will potentially generalize the concept of group velocity to the evanescent

modes, which still have a well-defined norm current.
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Appendix G: Calculating the fluctuation Lagrangian

In this section, we put all of the algebra and Lagrangian manipulation that we

left out of Section 5.2.

Our starting point is Eq. (5.1) upon substituting Ψ = Ψ0 + 𝛿Ψ where Ψ0 solves

the Euler-Lagrange equations Eq. (5.3) and 𝛿Ψ can be written in terms of broken

generators and massive fields Eq. (5.7).

Most of the simplifying algebra comes from 𝑔(𝜎̂Ψ, 𝜉) = 0 and integration-by-

parts. To facilitate the integration by parts, all equalities are be understood to be

up to a full derivative. Furthermore, by construction the linear terms cancel, so we

keep second-order terms only, indicated by fluc= .

To deal with the term linear in derivatives, we use the object

𝑓 ⃡⃡⃡ ⃡⃡ ⃡𝜕𝑡𝑔 ≡ 𝑓(𝜕𝑡𝑔) − (𝜕𝑡𝑓)𝑔, (G.1)

and for simplicity we sometimes replace 𝜕𝑡𝑓 with ̇𝑓 for time derivatives. We further

take advantage of the Einstein summation convention (sum over indices is implied)

for simplicity. The first term we investigate is

𝑖
2Ψ† ⃡⃡⃡ ⃡⃡ ⃡𝜕𝑡Ψ

fluc= − 𝑖
2Ψ†

0(𝜎̂ ⃡⃡⃡ ⃡⃡ ⃡𝜕𝑡𝜎̂)Ψ0

+ 𝑖(−Ψ†
0𝜎̂ ̇𝜉 + 𝜉† ̇𝜎̂Ψ0 + 𝜉†𝜎̂Ψ̇0)

− 𝑖
2Ψ†

0𝜎̂2Ψ̇0 + 𝑖
2Ψ̇†

0𝜎̂2Ψ0. (G.2)
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Performing integration-by-parts on the Ψ†
0𝜎̂ ̇𝜉 term, we get

𝑖
2Ψ† ⃡⃡⃡ ⃡⃡ ⃡𝜕𝑡Ψ

fluc= − 𝑖
2Ψ†

0(𝜎̂ ⃡⃡⃡ ⃡⃡ ⃡𝜕𝑡𝜎̂)Ψ0 + 𝑖(Ψ†
0

̇𝜎̂𝜉 + 𝜉† ̇𝜎̂Ψ0)

+ 𝑖Ψ̇†
0(1

2 𝜎̂2Ψ0 + 𝜎̂𝜉) − 𝑖(1
2Ψ†

0𝜎̂2 − 𝜉†𝜎̂)Ψ̇0. (G.3)

The kinetic energy term takes the form

𝜕𝑗Ψ†𝜕𝑗Ψ
fluc= −1

2𝜕𝑗Ψ
†
0𝜎̂2𝜕𝑗Ψ0 − 𝜕𝑗Ψ

†
0𝜎̂𝜕𝑗𝜎̂Ψ0 − 𝜕𝑗Ψ

†
0𝜎̂𝜕𝑗𝜉

− 1
2𝜕𝑗Ψ

†
0𝜎̂2𝜕𝑗Ψ0 − Ψ†

0(𝜕𝑗𝜎̂)𝜎̂𝜕𝑗Ψ0 + 𝜕𝑗𝜉†𝜎̂𝜕𝑗Ψ0

− Ψ†
0𝜕𝑗𝜎̂𝜕𝑗𝜎̂Ψ0 + 𝜕𝑗𝜉†𝜕𝑗𝜉 − Ψ†

0𝜕𝑗𝜎̂𝜕𝑗𝜉 + 𝜕𝑗𝜉†𝜕𝑗𝜎̂Ψ0. (G.4)

We perform integration by parts on the two instances of −1
2𝜕𝑗Ψ

†
0𝜎̂2𝜕𝑗Ψ0 above in

opposite ways to obtain

𝜕𝑗Ψ†𝜕𝑗Ψ
fluc= 1

2∇2Ψ†
0𝜎̂2Ψ0 − 1

2𝜕𝑗Ψ
†
0𝜎̂𝜕𝑗𝜎̂Ψ0 + 1

2𝜕𝑗Ψ
†
0(𝜕𝑗𝜎̂)𝜎̂Ψ0 + 1

2Ψ†
0𝜎̂2∇2Ψ0

− 1
2Ψ†

0(𝜕𝑗𝜎̂)𝜎̂𝜕𝑗Ψ0 + 1
2Ψ†

0𝜎̂(𝜕𝑗𝜎̂)𝜕𝑗Ψ0

− 𝜕𝑗Ψ
†
0𝜎̂𝜕𝑗𝜉 + 𝜕𝑗𝜉†𝜎̂𝜕𝑗Ψ0 − Ψ†

0𝜕𝑗𝜎̂𝜕𝑗𝜎̂Ψ0 + 𝜕𝑗𝜉†𝜕𝑗𝜉 − Ψ†
0𝜕𝑗𝜎̂𝜕𝑗𝜉 + 𝜕𝑗𝜉†𝜕𝑗𝜎̂Ψ0.

(G.5)

If we further use integration by parts on −𝜕𝑗Ψ
†
0𝜎̂𝜕𝑗𝜉 and 𝜕𝑗𝜉†𝜎̂𝜕𝑗Ψ0, we obtain (after

some reordering)

𝜕𝑗Ψ†𝜕𝑗Ψ
fluc= −Ψ†

0𝜕𝑗𝜎̂𝜕𝑗𝜎̂Ψ0 − 1
2𝜕𝑗Ψ

†
0𝜎̂𝜕𝑗𝜎̂Ψ0 + 1

2𝜕𝑗Ψ
†
0(𝜕𝑗𝜎̂)𝜎̂Ψ0

− 1
2Ψ†

0(𝜕𝑗𝜎̂)𝜎̂𝜕𝑗Ψ0 + 1
2Ψ†

0𝜎̂(𝜕𝑗𝜎̂)𝜕𝑗Ψ0

+ 𝜕𝑗𝜉†𝜕𝑗𝜉 + 𝜕𝑗Ψ
†
0𝜕𝑗𝜎̂𝜉 − 𝜉†𝜕𝑗𝜎̂𝜕𝑗Ψ0 − Ψ†

0𝜕𝑗𝜎̂𝜕𝑗𝜉 + 𝜕𝑗𝜉†𝜕𝑗𝜎̂Ψ0

+ ∇2Ψ†
0(1

2 𝜎̂2Ψ0 + 𝜎̂𝜉) + (1
2Ψ†

0𝜎̂2 − 𝜎̂𝜉)∇2Ψ0. (G.6)
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We observe that, along with Eq. (5.11), the equation of motion cancels the last lines

in Eqs. (G.3) and (G.6) with the first line of Eq. (5.11).

All together, we can combine these equations to get the full fluctuation La-

grangian

ℒ fluc= − 𝑖
2Ψ†

0(𝜎̂ ⃡⃡⃡ ⃡⃡ ⃡𝜕𝑡𝜎̂)Ψ0 + 𝑖(Ψ†
0

̇𝜎̂𝜉 + 𝜉† ̇𝜎̂Ψ0) − 1
2𝜕𝑗Ψ

†
0𝜎̂𝜕𝑗𝜎̂Ψ0 + 1

2𝜕𝑗Ψ
†
0(𝜕𝑗𝜎̂)𝜎̂Ψ0

− 1
2Ψ†

0(𝜕𝑗𝜎̂)𝜎̂𝜕𝑗Ψ0 + 1
2Ψ†

0𝜎̂(𝜕𝑗𝜎̂)𝜕𝑗Ψ0

+𝜕𝑗𝜉†𝜕𝑗𝜉+𝜕𝑗Ψ
†
0𝜕𝑗𝜎̂𝜉−𝜉†𝜕𝑗𝜎̂𝜕𝑗Ψ0 −Ψ†

0𝜕𝑗𝜎̂𝜕𝑗𝜉+𝜕𝑗𝜉†𝜕𝑗𝜎̂Ψ0 −Ψ†
0𝜕𝑗𝜎̂𝜕𝑗𝜎̂Ψ0 +𝜕𝑗𝜉†𝜕𝑗𝜉

− 1
2

𝜉∗
𝑎

𝜕2𝑉
𝜕Ψ†

𝑎𝜕Ψ†
𝑏
∣
0

𝜉∗
𝑏 − 𝜉∗

𝑎
𝜕2𝑉

𝜕Ψ†
𝑎𝜕Ψ𝑏

∣
0

𝜉𝑏 − 1
2

𝜉𝑎
𝜕2𝑉

𝜕Ψ𝑎𝜕Ψ𝑏
∣
0

𝜉𝑏. (G.7)

We can now expand our fluctuations in terms of their fields 𝜎̂Ψ0 = 𝜃𝑛𝜎𝑛Ψ0 and

𝜉 = 𝛽𝑛𝜉𝑛, and we obtain

ℒ fluc= − 𝑖
2Ψ†

0[𝜎𝑚, 𝜎𝑛]Ψ0𝜃𝑚𝜕𝑡𝜃𝑛 + 1
4𝑚𝜃𝑚𝜕𝑗𝜃𝑛(𝜕𝑗Ψ

†
0[𝜎𝑚, 𝜎𝑛]Ψ0 − Ψ†

0[𝜎𝑚, 𝜎𝑛]𝜕𝑗Ψ0)

+𝑖𝛽𝑛𝜕𝑡𝜃𝑛(Ψ†
0𝜎𝑚𝜉𝑛+𝜉†

𝑛𝜎𝑚Ψ0)+ 1
2𝑚𝛽𝑚𝜕𝑗𝜃𝑛(𝜉†

𝑚𝜎𝑛𝜕𝑗Ψ0−𝜕𝑗Ψ
†
0𝜎𝑛𝜉𝑚+Ψ†

0𝜎𝑛𝜕𝑗𝜉𝑚−𝜕𝑗𝜉
†
𝑚𝜎𝑛Ψ0)

+ 1
2𝑚Ψ†

0𝜎𝑛𝜎𝑚Ψ0𝜕𝑗𝜃𝑛𝜕𝑗𝜃𝑚

+ 𝑖
2𝛽𝑚𝜕𝑡𝛽𝑛(𝜉†

𝑚𝜉𝑚 − 𝜉†
𝑛𝜉𝑚) + 𝑖

2𝛽𝑛𝛽𝑚(𝜉†
𝑚𝜕𝑡𝜉𝑛 − 𝜕𝑡𝜉

†
𝑚𝜉𝑛) + 𝛽𝑚𝜕𝑗𝛽𝑛(𝜉†

𝑛𝜕𝑗𝜉𝑚 + 𝜕𝑗𝜉
†
𝑚𝜉𝑛)

− 1
2𝑚𝜉†

𝑛𝜉𝑚𝜕𝑗𝛽𝑚𝜕𝑗𝛽𝑛−1
2𝛽𝑛𝛽𝑚 [𝜉†

𝑛
𝜕2𝑉

𝜕Ψ†𝜕Ψ† ∣
0

𝜉∗
𝑚 + 𝜉𝑇

𝑛
𝜕2𝑉

𝜕Ψ𝜕Ψ
∣
0

𝜉𝑚 + 2𝜉†
𝑚

𝜕2𝑉
𝜕Ψ†𝜕Ψ

∣
0

𝜉𝑛] .

(G.8)

The first three lines of Eq. (G.8) lead to the Lagrangian presented in the text

Eq. (5.12) while the last two lines represent the massive modes neglected in the

main text.

One can then easily check that once the full Lagrangian in Eq. (5.34) is derived

that the massive modes conjugate to Goldstone modes no longer have the term

that goes as 𝛽𝑚𝜕𝜇𝛽𝑛, only keeping the kinetic term and mass matrix (which we
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diagonalize to find the type-I basis states).
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Appendix H: Bogoliubov Theory for Hawking Emission

As per Eq. (5.59), the magnon field (written in terms of the complexified spinor

Φ3(𝑥) = (𝜁, 𝜁∗)𝑇) obeys the BdG equation

[𝑖𝜏3𝐷̂𝑡 + 1
2𝑚𝜌

∇ ⋅ 𝜌∇ − 𝑔3𝜌 (𝜏0 + 𝜏1)] Φ3(𝑥) = 0, (H.1)

written in terms of the co-moving frame material derivative 𝐷̂𝑡 = 𝜕𝑡 + v𝑠 ⋅ ∇.

Before proceeding, there are two properties of this equation that prove useful.

First is the charge conjugation symmetry: if Υ solves Eq. (H.1), then so does

Υ ≡ 𝜏1Υ∗. (H.2)

In particular, this is important since the Nambu spinor should obey the self-conjugate

property that Φ3 = (𝜁, 𝜁∗)𝑇 = Φ3. Thus, it is important that this is respected by

the equations of motion, which we see it is.

Furthermore, provided the density 𝜌(𝑥) is time independent, we can define the

conserved pseudo-scalar product on the solution space

(Υ1, Υ2) ≡ ∫ 𝑑𝑑𝑟 𝜌(r)Υ†
1(r)𝜏3Υ2(r). (H.3)

This scalar product has a number of useful features including that the charge

conjugation operation changes the sign, so that

(Υ1, Υ2) = −(Υ2, Υ1). (H.4)

We use this pseudo-inner product to define a notion of norm for solutions. Because

of the 𝜏3, this is not the usual 𝐿2(ℝ𝑑) norm, and in fact is not a norm at all since it
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is not positive semi-definite. There are non-trivial negative norm states which we

loosely refer to as “hole-like” states, in contrast to the “particle-like” solutions with

positive norm. As remarked earlier, hole-like solutions can be related to particle-like

solutions by charge conjugation since if Υ has negative norm we find

(Υ, Υ) < 0 ⇒ (Υ, Υ) > 0.

To proceed further, we utilize the (assumed) time-independence of the kernel to

further separate the solution Υ(𝑥) = Υ(r, 𝑡) into energy eigenmodes

Υ(𝑥) = ∫ 𝑑𝜔
2𝜋

𝑊𝜔(r)𝑒−𝑖𝜔𝑡, (H.5)

where 𝑊𝜔(r) = [𝑈𝜔(r), 𝑉𝜔(r)]𝑇 is a two-component spinor which obeys the eigenvalue

problem

[𝜔 + 𝑖v𝑠 ⋅ ∇ + 1
2𝑚𝜌

∇ ⋅ 𝜌∇𝜏3 − 𝑔3𝜌 (𝜏3 + 𝑖𝜏2)] 𝑊𝜔(r) = 0. (H.6)

We refer to [129, 141] for more details of solving this system. What is important for

our discussion are the details of the dispersion relation, which are used to analyze

the asymptotic scattering states at spatial infinity.

We now focus on the case of a one-dimensional homogeneous flow. In this case

both the momentum 𝑘 and lab-frame frequency 𝜔 are good quantum numbers and

obey the standard Bogoliubov dispersion relation (using that 𝑚𝑐2 = 𝑔3𝜌) of

𝜔 = 𝑣𝑠𝑘 ± √𝑐2𝑘2 + ( 𝑘2

2𝑚
)

2

≡ 𝜔±(𝑘), (H.7)

where the last equality is used to define the lab frequency 𝜔±(𝑘). At a particular

frequency 𝜔 > 0, we may determine which scattering states are available by finding
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the real momenta 𝑘 which obey 𝜔 = 𝜔±(𝑘).

Considering a step-like variation in the flow, the flow profile is as given in

Eq. (5.62). For 𝑥 < 0 and 𝑥 > 0 the solutions to the BdG equations are still

plane-waves which obey the Bogoliubov dispersion relation, albeit with different

parameters 𝜌 and 𝑣. These two dispersion relations are shown Figs. 5.3 and 5.4 for

fixed values of the condensate velocities |𝑣𝑙| > |𝑣𝑟| and densities 𝜌𝑙, 𝜌𝑟.

Instead of the lab frame, we may measure frequency with respect to the frame

co-moving with the fluid flow. This is implemented by Doppler shifting to the

(positive) comoving frequency

Ω(𝑘) ≡ √𝑐2𝑘2 + 𝑘4

4𝑚2 , (H.8)

so that 𝜔±(𝑘) = 𝑣𝑘 ± Ω(𝑘) (𝑣𝑘 amounts to a Galilean boost).

For |𝑣| < 𝑐 (right dispersion in Fig. 5.3), there are only two real-momenta at

any positive frequency, which correspond to a right- and left-moving quasiparticle.

For |𝑣| > 𝑐 (left dispersion in Fig. 5.3) a new scattering channel opens whereby a

wavepacket with negative free-fall frequency [𝜔−(𝑘)] may have positive lab-frame

frequency 𝜔.

We find the eigenfunctions for the step potential by employing matching equa-

tions at the step. These impose the continuity requirements

[𝑊𝜔(𝑥)]𝑥=0+

𝑥=0− = 0

[𝜌𝜕𝑥𝑊𝜔(𝑥)]𝑥=0+

𝑥=0− = 0.
(H.9)

Additionally, we choose them to satisfy (𝑊𝜔, 𝑊𝜔) = 0 and can be normalized such

that (𝑊𝜔, 𝑊𝜔) > 0 if 𝜔 = 𝜔+(𝑘) (positive comoving frequency) and (𝑊𝜔, 𝑊𝜔) < 0

if 𝜔 = 𝜔−(𝑘) (negative comoving frequency).

Combining all of this, we can express the full solution in terms of positive-
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frequency components only via

Φ3(𝑥, 𝑡) = ∫
∞

0

𝑑𝜔
2𝜋

∑
𝛼

[𝐴(𝑊𝜔𝛼)𝑊𝜔𝛼(𝑥)𝑒−𝑖𝜔𝑡 + 𝐴∗(𝑊𝜔𝛼)𝑊𝜔𝛼𝑒+𝑖𝜔𝑡], (H.10)

where the 𝐴(𝑊𝜔,𝛼) are the Fourier coefficients of the expansion and 𝛼 is a set of

quantum numbers which are used to label the different degenerate modes at each

energy 𝜔 > 0. At this point, we can second quantize the system and promote Υ to

an operator. In such a case, the operator equation looks like

Υ̂(𝑥, 𝑡) = ∫
∞

0

𝑑𝜔
2𝜋

∑
𝛼

[𝑎(𝑊𝜔𝛼)𝑊𝜔𝛼(𝑥)𝑒−𝑖𝜔𝑡 + 𝑎†(𝑊𝜔𝛼)𝑊𝜔𝛼𝑒+𝑖𝜔𝑡], (H.11)

where now 𝑎(𝑊𝜔𝛼) are operators satisfying

[𝑎(𝑊𝜔𝛼), 𝑎†(𝑊𝜔′𝛼′)] = (𝑊𝜔𝛼, 𝑊𝜔′,𝛼′). (H.12)

All 𝑊𝜔𝛼 are orthogonal with respect to this inner product, and so 𝑎(𝑊𝜔𝛼) is either

a creation or annihilation operator based on the sign of the norm.

The system may be exactly solved when the flow is homogeneous, in which case

the momentum 𝑘 is also a good quantum number. Assuming a solution of the form

𝑊𝜔(𝑥) = 𝑤𝑘𝑒𝑖𝑘𝑥

produces the momentum space eigenvalue problem

[𝜔 − 𝑣𝑘 − 1
2𝑚

𝑘2𝜏3 − 𝑔3𝜌 (𝜏3 + 𝑖𝜏2)] 𝑤𝑘 = 0. (H.13)

In principle, the momentum 𝑘 depends in the energy 𝜔, but we usually suppress this

dependence for brevity.

To evaluate (𝑊𝜔𝛼, 𝑊𝜔′𝛼′), we establish a couple of facts. If we let 𝑤𝑘 = [𝑢𝑘, 𝑣𝑘]𝑇,
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then we have

𝑚𝑐2𝑣𝑘 = (±Ω(𝑘) − 𝑘2

2𝑚
− 𝑚𝑐2) 𝑢𝑘, (H.14)

and hence

𝑚2𝑐4|𝑣𝑘|2 = {𝑚2𝑐4 ∓ 2Ω(𝑘) [𝑚𝑐2 + 𝑘2

2𝑚
∓ Ω(𝑘)]} |𝑢𝑘|2, (H.15)

this relation between |𝑢𝑘|2 and |𝑣𝑘|2 allows us to evaluate

(𝑊𝜔𝛼, 𝑊𝜔′𝛼′) = ±Ω(𝑘) 2𝜌
𝑚2𝑐4 [𝑚𝑐2 + 𝑘2

2𝑚
∓ Ω(𝑘)] |𝑢𝑘|2𝛿𝛼𝛼′𝛿[𝑘𝛼(𝜔) − 𝑘𝛼′(𝜔′)]

= ±Ω(𝑘)
2𝜌|𝑣𝑔|
𝑚2𝑐4 [𝑚𝑐2 + 𝑘2

2𝑚
∓ Ω(𝑘)] |𝑢𝑘|2𝛿𝛼𝛼′𝛿(𝜔 − 𝜔′).

(H.16)

The term in brackets 𝑚𝑐2 + 𝑘2

2𝑚 −Ω(𝑘) > 0, so the sign of the normalization depends

exclusively on whether we have positive (+Ω(𝑘)) or negative (−Ω(𝑘)) comoving

frequency. The terms with negative comoving frequency (or negative norm) are

represented by the blue curves in Figs. 5.3 and 5.4.

We can now perform the Hawking calculation to determine the Bogoliubov

transformation giving rise to excitation production. This is presented first in Fig. 5.3,

where we consider a wavepacket moving away from the horizon to +∞ and frequency

𝜔, this is the Hawking mode. If we trace it back in time, it was related to a scattering

process at the horizon itself, so in terms of three other positive frequency modes

𝑊H = 𝛼𝑅𝑊𝑅,1 + 𝛼𝐿𝑊𝐿,2 + 𝛽𝐿𝑊𝐿,1, (H.17)

where 𝑊H includes the far propagating right-moving mode along with the evanescent

near horizon solution, 𝑊𝑅,1 is the left-moving mode on the right, and 𝑊𝐿,(1,2) are the

right-moving modes on the left (counted left-to-right in Fig. 5.3). This immediately
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gives us how to relate the creation operators of the out-vacuum to the in-vacuum

𝑎(𝑊H) = 𝛼𝑅𝑎(𝑊𝑅,1) + 𝛼𝐿𝑎(𝑊𝐿,2) + 𝛽𝐿𝑎†(𝑊𝐿,1). (H.18)

This implies that for 𝑊𝐻 at a particular frequency 𝜔, we can find the number of

Hawking modes leaving the horizon by considering the expectation value

⟨0in|𝑎(𝑊H)†𝑎(𝑊H)|0in⟩ = |𝛽𝐿|2(𝑊𝐿,1, 𝑊𝐿,1). (H.19)

With the proper normalization and putting back in the dependence on frequency,

the number of particles leaving the horizon at frequency 𝜔 is

𝑁(𝜔) = |𝛽𝐿(𝜔)|2
(𝑊𝐿,1(𝜔), 𝑊𝐿,1(𝜔))
(𝑊𝐻(𝜔), 𝑊𝐻(𝜔))

. (H.20)

This same analysis can be done for the supersonic-to-supersonic case presented

in Fig. 5.4. For lack of a better term, we call the region where there are multiple

positive and negative norm channels the “super-Hawking” region. In this case, we

have two modes in the Hawking process that need to be backwards scattered: one

positive norm and the other negative norm. The result of the scattering process is

𝑊H = 𝛽𝑅𝑊𝑅,1 + 𝛼𝑅𝑊𝑅,2 + 𝛽𝐿𝑊𝐿,1 + 𝛼𝐿𝑊𝐿,2,

𝑊H′ = 𝛼′
𝑅𝑊𝑅,1 + 𝛽′

𝑅𝑊𝑅,2 + 𝛼′
𝐿𝑊𝐿,1 + 𝛽′

𝐿𝑊𝐿,2.
(H.21)

These equations can be similarly related to a Bogoliubov transformation, and we

can find the number of Hawking particles leaving the horizon at frequency 𝜔 by
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considering

𝑁(𝜔) = |𝛽𝐿(𝜔)|2 (𝑊𝐿,1(𝜔),𝑊𝐿,1(𝜔))
(𝑊𝐻(𝜔),𝑊𝐻(𝜔)) + |𝛽𝑅(𝜔)|2 (𝑊𝑅,1(𝜔),𝑊𝑅,1(𝜔))

(𝑊𝐻(𝜔),𝑊𝐻(𝜔))

+ |𝛽′
𝐿(𝜔)|2 (𝑊𝐿,2(𝜔),𝑊𝐿,2(𝜔))

(𝑊𝐻′(𝜔),𝑊𝐻′(𝜔)) + |𝛽′
𝑅(𝜔)|2 (𝑊𝑅,2(𝜔),𝑊𝑅,2(𝜔))

(𝑊𝐻′(𝜔),𝑊𝐻′(𝜔)) . (H.22)

Despite there being more terms, there is generally less of a Hawking flux due to a

decoupling of the negative and positive norm channels as we can see in Fig. 5.2.
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