
WRITING DISTRIBUTED PROGRAMSIN POLYLITHChristine HofmeisterJoanne AtleeJames PurtiloComputer Science Department andInstitute for Advanced Computer StudiesUniversity of Maryland
This document corresponds to Version 1.0 of thePolylith Software Interconnection System.November 1990.

The Polylith e�ort has been supported by O�ce of Naval Research under contract N0014-90-J4091, and is currently part of the DARPA/ISTO Common Prototyping Language project.

Contents1 OVERVIEW 12 BASIC FEATURES 72.1 CREATING AN APPLICATION : 72.1.1 MIL PROGRAM FOR MODULE main : 92.1.2 SOURCE PROGRAM FOR MODULE main : : : : : : : : : : : : : : : : : 102.1.3 MIL PROGRAM FOR MODULE print : 112.1.4 SOURCE PROGRAM FOR MODULE print : : : : : : : : : : : : : : : : : 112.1.5 MIL PROGRAM FOR THE APPLICATION : : : : : : : : : : : : : : : : : 122.1.6 COMPILING, LINKING, AND RUNNING THE APPLICATION : : : : : 152.2 ENHANCING THE APPLICATION : 152.2.1 MODULE DUP : 162.2.2 MIL PROGRAM FOR THE APPLICATION : : : : : : : : : : : : : : : : : 172.3 SENDING STRUCTURED MESSAGES : 182.3.1 SOURCE PROGRAM FOR MODULE main : : : : : : : : : : : : : : : : : 182.3.2 SOURCE PROGRAM FOR MODULE book : : : : : : : : : : : : : : : : : 212.3.3 MIL PROGRAM FOR THE APPLICATION : : : : : : : : : : : : : : : : : 212.4 SUMMARY OF BASIC POLYLITH FEATURES : : : : : : : : : : : : : : : : : : : 231

2.4.1 MIL STATEMENTS : 232.4.2 POLYLITH BUS CALLS : 262.4.3 COMPILING, LINKING, RUNNING : 273 ADVANCED FEATURES 293.1 MESSAGE PASSING : 293.2 MANIPULATING INTERFACE NAMES : 323.2.1 QUERYING THE BUS FOR INTERFACE NAMES : : : : : : : : : : : : : 323.2.2 RECEIVING MESSAGES ON ANY INTERFACE : : : : : : : : : : : : : : 343.3 ATTRIBUTES : 353.3.1 OBJECT ATTRIBUTES : 353.3.2 INTERFACE ATTRIBUTES : 383.4 NON-BLOCKING CHECK FOR MESSAGES : 393.4.1 QUERYING A PARTICULAR INTERFACE : : : : : : : : : : : : : : : : : 393.4.2 QUERYING ANY INTERFACE : 413.5 POLYLITH BUS RUNTIME OPTIONS : 413.5.1 DIRECT CONNECT : 413.5.2 KEEP-ALIVE : 433.5.3 VERBOSE, LOGFILE : 433.6 SUMMARY OF ADVANCED FEATURES : 433.6.1 MIL STATEMENTS : 433.6.2 POLYLITH BUS CALLS : 453.6.3 POLYLITH BUS RUNTIME OPTIONS : 47BIBLIOGRAPHY 49

A MIL SUMMARY 50A.1 MODULE DESCRIPTION : 50A.1.1 IMPLEMENTATION STATEMENT : 51A.1.2 OBJECT ATTRIBUTE STATEMENT : 51A.1.3 INTERFACE STATEMENT : 51A.2 APPLICATION DESCRIPTION : 53A.2.1 TOOL STATEMENT : 53A.2.2 BIND STATEMENT : 54B BUS CALLS 55B.1 GENERAL COMMANDS : 55B.2 MESSAGE PASSING : 56B.2.1 SENDING MESSAGES : 57B.2.2 RECEIVING MESSAGES ON NAMED INTERFACE : : : : : : : : : : : : 57B.2.3 RECEIVING MESSAGES ON ANY INTERFACE : : : : : : : : : : : : : : 57B.2.4 NON-BLOCKING CHECK FOR MESSAGES : : : : : : : : : : : : : : : : 58B.3 ATTRIBUTES : 59B.3.1 NAME ATTRIBUTES : 59B.3.2 OTHER ATTRIBUTES : 59C USING POLYLITH TOOLS 61C.1 COMPILING MODULES : 61C.2 COMPILING THE MIL DECLARATION : 61C.3 RUNNING THE APPLICATION : 62C.4 BUS OPTIONS : 62C.4.1 DIRECT CONNECT : 62

C.4.2 KEEP-ALIVE : 63C.4.3 VERBOSITY AND LOGGING : 63D SYSTEM NOTES 64

Chapter 1OVERVIEWPolylith is a software interconnection system. It allows programmers to con�gure applicationsfrom mixed-language software components (modules), and then execute those applications indiverse environments. Communication between components can be implemented with TCP/IPor XNS protocols in a network; via shared memory between light-weight threads on a tightly-coupled multiprocessor; using custom-hardware channels between processors; or using simply a`branch' instruction within the same process space.The principle feature of Polylith is that the components can be implemented separately fromthe implementation of interfacing between those components. In turn, this provides a `divide andconquer' capability for software engineers, who know that simultaneous treatment of functionaland interfacing requirements within the same program makes it costly to maintain and di�cultto reuse elsewhere. Polylith represents a software organization where interfacing decisions canbe encapsulated separately, using a software bus. The bibliography lists several papers wherePolylith has been either described or utilized in other research. A key description of theabstract result is given in [Purt90].To date, Polylith has been in greatest demand by programmers who wish to use one particularsoftware bus | the TCP/IP-based network bus. Polylith helps these users write applicationsfor distribution across mixed-architecture host processors. This document is written for suchusers. All examples are presented in terms of distributed applications to be executed in a network.In this context, the Polylith bus provides message-passing primitives to handle communicationbetween the processes, performing data transmission and any necessary coercion. This use ofPolylith makes several assumptions:� There is no shared memory between processes.� Communication between processes is implemented exclusively via channels de�ned andcontrolled by Polylith.� The basic communication operation provided by Polylith is message passing. These1

messages can be used to build remote procedure call (RPC), for sending and receivingvariables of any data type (structured or atomic), or for synchronization (by passing emptymessages).� Since Polylith controls the communication channels, it provides any necessary data coer-cion between modules written in di�erent languages, or between modules which are instan-tiated on di�erent hosts.Later forms of this manual will be written to help users who wish to implement interfacing deci-sions that involve shared memory or other organizations. Moreover, there are several additionaltools that make using Polylith much easier. These tools | such as the packager [CaPu90] andlanguages for manipulating interface declarations [PuAt91] | are not described here. We focusonly upon Polylith-ic organization. Finally, for simplicity in presentation, we give most of ourexamples in the C language. This may seem strange for something purporting to be a `mixedlanguage programming system' but it simpli�es the preparation of a manual such as this docu-ment. Examples of how Polylith interconnects components from other programming languagesappear in the distribution, which will be expanded as re�ned language interfaces accumulate overtime.The remainder of this chapter sketches the major steps a user must perform to create a simpleapplication in Polylith. Then Chapter 2 goes through the sketch �lling in the details. Chapter 3describes how to use more `advanced' features of our system. The appendices of this documentcontain much of the same material as the earlier chapters, except they are organized for use as areference guide.SKETCH OF SAMPLE APPLICATION IN POLYLITHA module is `any identi�able program unit'. For now, think of them as self-contained C programshaving communication channels that can be bound to corresponding ports on other programs.Each module can be invoked many times within an application con�guration | the runningforms of these modules are called processes. Each process is given a unique instance name.A note on terminology: Sometimes we refer to processes as being `modules' since in the generalPolylith formulation an instantiated module might not be a separate process. Hopefully thecontext of use will make this usage unambiguous. Other times we slip and call the processes tasks,and long-time Polylith users will know to call these services too. Finally, since the abstractdescription of this system uses a graph model of interconnection | modules correspond to nodesin the application graph, and bindings between interfaces correspond to arcs in the graph | wesometimes refer to the modules as being nodes.Modules are said to have an `interface' for each communication channel upon which the processwill send or receive messages. Processes communicate through a software bus by invoking mes-sage passing routines provided by a Polylith library, linked into the application. Calls to thePolylith message-passing routines require the programmer to reference one of its interfaces.2

::::::::::::::a.c (executable in a.out):::::::::::::::main(argc,argv){ char str[80];..mh_write ("out", ... ,"msg1");..mh_read ("in", ... ,str);..}
::::::::::::::b.c (executable in b.out):::::::::::::::main(argc,argv){ char str[80];..mh_read ("in", ... ,str);..mh_write ("out", ... ,"msg2");..}Figure 1.1: Source code for the application.Ultimately, users would not want to install these `bus calls' manually, but rather they wouldallow an automatic packager tool to create appropriate network stubs for interfacing to the bus.Once the program code for the modules of the application are written, the programmer describesthe con�guration of the application using the Polylith module interconnection language (MIL).The MIL declaration includes:� A de�nition of each module in the application, describing where the program code for thismodule resides; where the module is to execute; and what communication interfaces themodule has.� A de�nition of the application itself, describing what modules are included in the applicationplus how those module interfaces are bound together to form a communication channel.Figure 1.1 shows an example of two programs that are used as modules in an application. Theseare C programs that each call the Polylith message passing routines mh write using interfaceout, andmh read using interface in. Program a.c sends a message containing the string "msg1"and receives a message into variable str. Program b.c receives a message into its variable str,and sends a message containing the string "msg2". Although we intend to attach interface outin one program to interface in in the other, that fact is not in any way encoded in the programcode.Figure 1.2 (left) describes the information contained in the MIL de�nitions of the two modules.Module A is instantiated by program a.c and declares interfaces in and out, while module B usesprogram b.c and interfaces in and out. There is still no connection between the two modules,but now the modules can be used in a Polylith application.Figure 1.2 (right) depicts what information the application portion of the MIL de�nition contains.The application has three nodes: node foo is instantiated with module A, and both nodes bar and3

module A :implementation : "a.out"outgoing interface: "out" sends a stringincoming interface: "in" receives a stringmodule B :implementation : "b.out"outgoing interface: "out" sends a stringincoming interface: "in" receives a string out

in

out

in
out

in
(module A)

(module B)

(module B)

node
foo

node
bartoo

node
bar

Figure 1.2: Information provided by the application's MIL program; module de�nitions (left);application de�nition (right).service "A" : {implementation : { binary : "a.out" }source "out" : { string }sink "in" : { string }}service "B" : {implementation : { binary : "b.out" }source "out" : { string }sink "in" : { string }} orchestrate "example" : {tool "foo" : "A"tool "bar" : "B"tool "bartoo" : "B"bind "foo out" "bar in"bind "bar out" "bartoo in"bind "bartoo out" "foo in"}Figure 1.3: The actual MIL program; module de�nitions (left); application de�nition (right).4

"msg2"

out

in

"msg1"

out

in
out

in

"msg2"

foo bar

bartoo

Polylith bus

Figure 1.4: Runtime instantiation of the application.bartoo use module B. We bind interface out of node foo to interface in of node bar, bind bar'sout to bartoo's in, and bind bartoo's out to foo's in. Figure 1.3 shows the actual PolylithMIL program that corresponds to the description given in Figure 1.2. Now the application iscomplete.An application runs under Polylith by invoking an appropriate implementation of the Polylithbus | in this case, the TCP/IP-based `network bus' is what is appropriate. The bus is given aMIL program (module de�nitions and application de�nition) as input, which it uses to start upthe appropriate UNIX process for each of the nodes, and to set up the communication channelsbetween these nodes.Since each node is a separate process, each has its own thread of control and each starts executingas soon as it is created. These nodes are just concurrent processes until one of them issues aPolylith command to read a message from an interface; at that point the node blocks untila message arrives on the interface. In the application described in Figures 1.1 and 1.2, nodesbar and bartoo block immediately, waiting for a message to arrive. Node foo sends a message,then blocks. The messages passed in this application act to synchronize the concurrent nodes,which causes the ow of control to start in node foo, pass to node bar when foo sends the string"msg1", pass to node bartoo when bar sends the string "msg2", and return to node foo whenbartoo sends the string "msg2".Coordination of the message passing is also the responsibility of the Polylith bus. Messages5

are not sent directly to other nodes, but are sent to the bus to be forwarded to the appropriatenode. Figure 1.4 shows the runtime instantiation of the application, with the bus coordinatingand channeling communication between nodes.

6

Chapter 2BASIC FEATURESIn this chapter we explain the basic Polylith features by using these features in three di�erentapplications. The �rst example starts with a very simple program that we modify to run ona Polylith bus. The next example is an enhancement of the �rst application; we use it todemonstrate how Polylith makes it easy to reuse modules. The third example shows how tosend complex, structured messages in Polylith. We end with a summary of the features thatwere introduced in this chapter.2.1 CREATING AN APPLICATIONOur goal is to create an application in Polylith which behaves like the program shown in Figure2.1, where the main routine passes a string to an external routine print, which writes the stringto standard output. We will use Polylith to invoke the print routine as a remote procedurecall: we put the two routines into separate modules and run the print module on a remote host,using the Polylith bus to communicate between the modules (Figure 2.2).::::::::::::::Basic/Hello0/main.c::::::::::::::extern print();main(){ print ("Hello, world");} ::::::::::::::Basic/Hello0/print.c::::::::::::::#include <stdio.h>print(s)char *s;{ printf("%s\n", s);}Figure 2.1: Simple Hello0 example.7

print

"Hello, world"

(empty msg)

print

prog

(module
 main)

print

(module
 print)Figure 2.2: Hello1, the Polylith version of simple Hello0 example.::::::::::::::Basic/Hello/hello.cl::::::::::::::service "main" : {implementation : { binary : "./hello.exe" }client "print" : {string} accepts { }} Figure 2.3: MIL program for module main in Hello1 application.To implement a remote procedure call (RPC), the caller sends a message containing the param-eters of the call, and the remote procedure returns an empty message when it has �nished. Ourobligations are to modify the main and print routines, and to create a Polylith MIL programfor the application. For this application, we ful�ll these obligations incrementally by:� creating a Polylith MIL program to describe the main module� modifying the main module to interact with the bus instead of directly with module print� creating an MIL program for module print� modifying module print to communicate with the bus� creating a third MIL program to bind the interfaces of the two modules� compiling, linking, and running the applicationFor exibility we are writing the MIL program in three separate pieces: a description for each ofthe two modules, and the application description. These three will be compiled separately butlinked into a single Polylith MIL program prior to running the application. The three piecescould be combined into a single physical �le if the modules were to run on the same host, or ifthey were not expected to be used in any other application; this is an application design decision.8

::::::::::::::Basic/Hello/hello.c::::::::::::::#include <stdio.h>main(argc,argv)int argc;char **argv;{ mh_init (&argc, &argv, NULL, NULL);mh_write("print", "S", NULL, NULL, "Hello, world");mh_read("print", "", NULL, NULL);mh_shutdown(0, 0, "");} Figure 2.4: Source program for module main in Hello1 application.2.1.1 MIL PROGRAM FOR MODULE mainThe purpose of the MIL program for module main is to specify certain of its properties for thePolylith bus, including the location of the executable code and the communication interfacesthe module uses. Figure 2.3 shows the complete MIL program for module main. The module isnamed immediately following the keyword service, and the description of the module is enclosedin braces (Figure 2.3). The implementation statement ties this abstract module descriptionto an executable program by giving the executable's pathname from the current directory; theexecutable is named following the keyword binary. Any remaining statements describe thecommunication interfaces that the module (thus the executable program) uses; here we have justone interface.Since module main will no longer call the print routine directly, we create a communicationinterface to act as a substitute for the call/return. We name this communication interface \print",and describe the data that can be sent and received via this interface: our intention is to usethis interface to communicate with module print, so we want to be able to send a string and weexpect an empty message in return. This information is conveyed in the statementclient \print" : fstringg accepts f gwhich de�nes \print" as an interface that initiates communication by sending something ofdatatype string, and receives an empty message in return. The interface we have just de�ned isbidirectional; Chapter 3 describes how to de�ne a one-way interface.9

2.1.2 SOURCE PROGRAM FOR MODULE mainFigure 2.4 shows the changes we make to convert our original main routine into the sourceprogram needed for module main. The key change involves replacing the call to routine printwith calls to the Polylith bus to e�ect a call to the module print (which we haven't yet written).We invoke module print by sending it a message containing the parameter \Hello, world", butdon't send the message directly to module print. Instead we use themh write bus call to instructthe bus to forward our message to the module at the other end of the interface. Usingmh write,we send the bus:\print" the name of the interface we're using\S" the format of the message we're sending; here it's string\Hello, world" the message itself; the string parameter for printNotice in Figure 2.4 that there are two NULL parameters between the message format parameterand the message string; these are placeholders for features that will appear in a future release ofPolylith. The interface name \print" and the message format \S" match the interface declaredin the client statement of our MIL program1.We intend to attach module print to the other end of the interface \print", where it will wait fora message from its caller, then print the string it received, then return an empty message on thesame interface in place of an ordinary procedure return. The mh read bus call completes thecommunication with module print; we specify:\print" the name of the interface\ " the format of the message we expect to receive: an empty messageNotice in Figure 2.4 that the mh read also has two NULL parameters that refer to featuresnot available in this release of Polylith. The mh read is a blocking call: execution will notcontinue past that point until a message is received on the named interface. Here our reason forblocking to wait for an empty message is to synchronize with the other module, thus completingthe remote procedure call to that module.The remaining requirements for module main are to pass the command line arguments tomh init:main(argc,argv)int argc;char **argv;f ... mh init (&argc, &argv, NULL, NULL) ...1Compare the message pattern fstringg used in de�ning the \print" interface in Figure 2.3 with the messageformat "S" used in the mh write statement in Figure 2.4. The message patterns used in the MIL are moredescriptive, making the MIL programs more readable. The message formats used in Polylith bus calls areabbreviated to streamline the bus calls. Normally, a packager tool will automatically generate these bus calls, sothe programmer will not see a discrepancy between message patterns and message formats.10

::::::::::::::Basic/Hello/print.cl::::::::::::::service "print" : {implementation : { binary : "/jteam/crh/print.exe" machine : "konky.cs.umd.edu" }function "print" : {string} returns { }} Figure 2.5: MIL program for module print in Hello1 application.which sets up a communication channel between the module and the bus (this is something eachmodule must do). The main module must also call mh shutdown(0,0,"") to terminate theapplication. When the application is running, the �rst mh shutdown(0,0,"") encounteredshuts down all nodes in the application, i.e. the entire application.2.1.3 MIL PROGRAM FOR MODULE printThe MIL program for the printmodule is shown in Figure 2.5. Again we use the implementationstatement to specify the executable program for this module: the �le name follows the keywordbinary, and the machine where the process will run follows the keyword machine. Naminga remote host for the machine attribute allows us to distribute the application. When themachine attribute is not speci�ed, by default the module runs on the same host as the Polylithbus. When running a module on a remote host, you must make sure that the .rhosts �le on theremote machine contains the name of the machine where the bus is executing.Now we must declare a interface so that this module can communicate with module main: weexpect this interface to receive a string and return an empty message, so that it matches theinterface declared in module main. The statementfunction \print" : fstringg returns f gde�nes \print" as an interface that receives something of datatype string, and returns an emptymessage. This function interface is bidirectional, and must be bound to a client interface likethe one in module main. Although we gave this interface the same name as the interface inmodule main, we could have named it something di�erent. The binding between the interfaceswill be explicitly stated in the third MIL program, and does not depend on the names of theinterfaces being identical.2.1.4 SOURCE PROGRAM FOR MODULE printThe �rst di�erence between the original print routine and the new print module in Figure2.6 is that the C procedure in the module is not named \print" but is named \main". Recall11

::::::::::::::Basic/Hello/print.c::::::::::::::#include <stdio.h>main(argc,argv)int argc;char **argv;{ char s[256];mh_init (&argc, &argv, NULL, NULL);mh_read("print", "S", NULL, NULL, s);printf("%s\n", s);mh_write("print", "", NULL, NULL);} Figure 2.6: Source program for module print in Hello1 application.that when a Polylith application starts up, it creates at each node an independent process,so each module associated with a node must contain a procedure \main". When a C programis compiled, linked, and loaded into a process, execution starts at procedure \main". But wewant this particular module to behave like a procedure that is called by another, so we put anmh read bus call immediately following the mh init. The mh read blocks the module untilanother module sends a message, thereby initiating a \procedure call" to this print module. Themh read parameters we use are:\print" interface name\S" message format is strings a variable of type string; used to receive the messageThe two NULL parameters refer to features not available in this release of Polylith. Predictably,these parameters match the parameters of the corresponding mh write call in module main.After printing the string to standard output, we make the mh write bus call that the mainmodule is waiting for. Note that we do not need an mh shutdown call here, since this moduleis behaving as a remote procedure, and expects another module to do the bus shutdown.2.1.5 MIL PROGRAM FOR THE APPLICATIONFigure 2.7 shows the last part of the MIL program for our application. First we give theapplication the name \one hello" using the keyword orchestrate, then enclose the applicationdescription in brackets. The nodes comprising our application are listed one by one using thetool statement, which lists the node name and the module that will instantiate the node:12

::::::::::::::Basic/Hello/hello1.cl::::::::::::::orchestrate "one_hello" : {tool "prog" : "main"tool "print"bind "prog print" "print print"} Figure 2.7: MIL program for the application description in Hello1.tool \node" : \module"Our �rst node is named \prog" and instantiated with module main, and our second node is named\print" and instantiated with module print:tool \prog" : \main"tool \print"The general form of the tool statement speci�es both a node and a module, but if the two namesare the same, we can specify just the module. The following two statements are equivalent:tool \print"tool \print" : \print"The bind statement speci�es two interfaces that are to be connected by the Polylith bus. The�rst interface listed is the initiating interface, the one that will issue the �rst mh write bus call.Both the node name and the interface name must be speci�ed, since interface names are uniqueonly within a module:bind \nodei interfaceij" \ noder interfacerk"where nodei has a jth interface interfaceij which matches the kth interface of noder. In thisapplication, node \prog" was instantiated with module main, which contains interface \print";and node \print" was instantiated with module print, which contains interface \print". So we bind\prog print" to \print print". The compiler just assumes that such module descriptions exist,but when we later link these three MIL programs together, the linker must �nd a descriptionfor a module named main which has an interface named \print", and another description for amodule named print which has an interface named \print".13

::::::::::::::Basic/Hello/Makefile::::::::::::::all: hello1 hello2hello1: hello1.mh hello.exe print.exehello2: hello2.mh hello.exe print.exe dup.exehello1.mh: hello.co print.co hello1.cocsl hello.co print.co hello1.co -o hello1hello2.mh: hello.co print.co dup.co hello2.cocsl hello.co print.co dup.co hello2.co -o hello2hello.exe: hello.occ -o hello.exe hello.o -lithprint.exe: print.occ -o print.exe print.o -lithdup.exe: dup.occ -o dup.exe dup.o -lithhello.co: hello.clcsc hello.clhello1.co: hello1.clcsc hello1.clhello2.co: hello2.clcsc hello2.clprint.co: print.clcsc print.cldup.co: dup.clcsc dup.clinstall:cp print.exe /jteam/crh/print.execlean: rm -f *.o *.exe *.co hello1 hello2Figure 2.8: Make�le for applications Hello1 and Hello2.14

2.1.6 COMPILING, LINKING, AND RUNNING THE APPLICATIONThe Make�le in Figure 2.8 contains the commands needed to compile and link this application,called hello1 in the Make�le. We compile and link each of our modules with the commandscc hello.c -ccc -o hello.exe hello.o -lith(for module main)cc print.c -ccc -o print.exe print.o -lith(for module print)creating the executable �les hello.exe and print.exe. The make install copies print.exeto /jteam/crh/print.exe, because the executable �les must reside in the same �le directory asthat speci�ed in the implementation ... binary attribute in our MIL program. Note in the cccommand that the Polylith library routines are linked into the modules by specifying the library-lith. Then we compile each of the three parts of the MIL program using the command csc.File hello.cl contains the description of module main, �le print.cl contains the description ofmodule print, and �le hello1.cl contains the application description (Figures 2.3, 2.5, and2.7). We execute:csc hello.clcsc print.clcsc hello1.clcreating the compiled versions in �les hello.co, print.co, and hello1.co. Next we link thesethree �les with the csl command:csl hello.co print.co hello1.co -o hello1creating the output �le hello1; this is the �le we pass to the Polylith bus. Finally, to run theapplication, we start up a Polylith bus, passing it this �le hello1:bus hello12.2 ENHANCING THE APPLICATIONIn this section we build a new application that is based on the application just presented. Wewill reuse modules main and print, and show how Polylith allows us to rebind their interfaces15

DUP

print1

print2

print server

"Hello, world"

(empty msg)

"Hello, world"

(empty msg)

"Hello, world"

(empty msg)

print

print

print2

print1

main

(module
 main)

(module
 DUP)

(module
 print)

(module
 print)Figure 2.9: Hello2, an enhanced version of Hello1.without making changes to the modules themselves. The new application is shown in Figure2.9: we have inserted a new module, called DUP, between the main and print modules. ModuleDUP serves as a duplicator by taking the message from module main and sending it to two printmodules. This example also shows us how Polylith lets us use multiple instantiations of amodule in an application. We are not simply invoking the print module twice; we are creatingtwo independent nodes from the print module, each of which has its own binding to the DUPmodule.2.2.1 MODULE DUPThe MIL program and source program for module DUP is shown in Figure 2.10. We continueto structure the interactions between modules as remote procedure calls: module DUP is invokedwhen it receives a string on its \server" interface. It initiates remote procedure calls on the\print1" and \print2" interfaces by sending the string received from the \server" interface. Themh read commands for \print1" and \print2" signal the completion of the remote procedurecalls, and module DUP ends by sending an empty message on interface \server", signaling to thecaller that it has �nished.Remember that module DUP has no knowledge of where the string sent on interfaces \print1"and \print2" will end up. We intend to bind these interfaces to print modules, but we couldinstead bind them each to another DUP module and print out four copies of the string. Or wecould bind \print1" and \print2" to di�erent kinds of print modules, one printing to standardoutput and the other printing to a �le. We could even bind both interfaces to the same module,provided the module had two matching interfaces.16

::::::::::::::Basic/Hello/dup.cl::::::::::::::service "DUP" : {implementation : { binary : "./dup.exe"}function "server" : {string} returns { }client "print1" : {string} accepts { }client "print2" : {string} accepts { }} ::::::::::::::Basic/Hello/dup.c::::::::::::::#include <stdio.h>main(argc,argv)int argc;char **argv;{ char s[256];mh_init (&argc, &argv, NULL, NULL);mh_read("server", "S", NULL, NULL, s);mh_write("print1", "S", NULL, NULL, s);mh_write("print2", "S", NULL, NULL, s);mh_read("print1", "", NULL, NULL);mh_read("print2", "", NULL, NULL);mh_write("server", "", NULL, NULL);}Figure 2.10: Module DUP for Hello2 application; MIL program (left), source program (right).2.2.2 MIL PROGRAM FOR THE APPLICATIONThe MIL program for this application is again composed of four parts: three module descriptionsand an application description. We can reuse the module descriptions for main and print fromthe previous application (Figures 2.3 and 2.5); we just saw the module description for DUP(Figure 2.10), and the new application description is shown in Figure 2.11.The four tool statements describe the nodes of the application: node \main" uses module main,node \DUP" uses the new module DUP, node \print1" uses module print, and node \print2" alsouses module print. Now it's clear why the node name can't always be the same as the modulename. The bind statements connect node \main" interface \print" to node \DUP" interface\server", and connect the remaining interfaces of node \DUP" to the two print nodes. We wereable to reuse the main and print modules without making any changes to their source or MILprograms.Now that we're assured that the \print1" and \print2" interfaces of module DUP are connectedto separate printmodules, we can see that our duplicator does not guarantee that the output fromthe two print modules will not be interleaved. The second print module is invoked before waitingfor the return from the �rst. If we were to change the duplicator to wait for the return from the�rst before invoking the second, we could be sure that the output would not be interleaved.17

::::::::::::::Basic/Hello/hello2.cl::::::::::::::orchestrate "hellohello" : {tool "main"tool "DUP"tool "print1" : "print"tool "print2" : "print"bind "main print" "DUP server"bind "DUP print1" "print1 print"bind "DUP print2" "print2 print"} Figure 2.11: MIL program for Hello2 application.2.3 SENDING STRUCTURED MESSAGESThe application in this section demonstrates how to send and receive a message containing some-thing other than a character string. Not only can we send variables of many data types, includingstructures and arrays, but we can also send several variables in one message.The simple Phonebook application interacts with the user to get a name, looks up the phonebookentry corresponding to the name, and then displays that entry. The application graph andMake�le in Figure 2.12 show the two modules we use, main and book. Module book contains thephonebook database and provides the lookup function: it waits to receive a string containing aperson's name, then it looks in the database for the corresponding phone extension and returnsthe database entry to the caller. Module main is the caller: it prompts interactively for a name,sends the name to module book, and receives and prints the phone extension. Typing an emptystring at the prompt terminates the application.2.3.1 SOURCE PROGRAM FOR MODULE mainThe source program for module main is given in Figure 2.13. When an empty string is enteredfor the name prompt, the while loop ends and the mh shutdown is executed, so this modulecontrols the termination of the application. Within the loop, the mh write is no di�erent fromwhat we've seen before: we're sending a character string. But the mh read incorporates newfeatures: we're receiving values for two variables in the message, found and entry. The messageformat (in the second parameter) indicates the number of and type of variables that are to beincluded in the message. These variables are listed in the mh read call starting at the �fthparameter.The message format for this particularmh read call is "bfSIg", indicating that the �rst variableis a pointer to a boolean and the second is a pointer to a structure containing a string and an18

::::::::::::::Basic/Phonebook/Makefile::::::::::::::all: phonebookphonebook: phonebook.mh main.exe book.exephonebook.mh: phonebook.cocsl phonebook.co -o phonebookmain.exe: main.occ -o main.exe main.o -lithbook.exe: book.occ -o book.exe book.o -lithphonebook.co: phonebook.clcsc phonebook.clclean: rm -f *.o *.exe *.co phonebook book

(module
 book)

lookup

lookup

main

(module
 main)

Figure 2.12: Phonebook application Make�le (left); graph (right).integer. A complete list of message format types is provided in the next section's summary. Toreceive multiple variables, you concatenate their types in the message format; for example, toreceive values for four boolean variables and two strings, you would use a message format of"bbbbSS". Since C does not have a boolean native type, we declare the boolean variables to beinteger. The variable received for a "b" message format must be int, not char, because whenthe program is written in C, the bus expects a boolean to be the same size as an int. The buswill transmit the message incorrectly if the variables do not correspond to the message format.It is important to note that all parameters corresponding to variables in an mh read call mustbe pointers to the variables, and not the variables themselves. This is a constraint imposed bythe C language, which allows only value parameters; other languages do not necessarily havethis constraint. So we pass the address of found and the address of entry, and the mh readcommand sets the values of the variables at these addresses. Also remember that the storage forthese pointer variables must be allocated; if you declarestruct table *pand callmh read ("lookup", "fSIg", NULL, NULL, p)19

::::::::::::::Basic/Phonebook/main.c::::::::::::::#include <stdio.h>struct table {char *key;int value;};char key[256];struct table entry;main(argc,argv)int argc;char **argv;{ int found;mh_init (&argc, &argv, NULL, NULL);printf("Name? ");while (strcmp(gets(key),"")) {mh_write("lookup", "S", NULL, NULL, key);mh_read("lookup","b{SI}",NULL,NULL,&found,&entry);if (found)printf("Ext. %d\n", entry.value);elseprintf("%s not found.\n", key);printf("Name? ");}mh_shutdown(0, 42, "");}
#include <stdio.h>struct table {char *key;int value;};char key[256];struct table entry;main(){ int found;printf("Name? ");while (strcmp(gets(key),"")) {lookup (key, &found, &entry);if (found)printf("Ext. %d\n", entry.value);elseprintf("%s not found.\n", key);printf("Name? ");}}Figure 2.13: Source code for module main in Phonebook application; Polylith version (left);original (right).

20

you will overwrite whatever p points to, whether or not it was declared as struct table. Herewe allocate storage for entry by declaring it to be of type table, which we de�ne at the top ofthe �le.2.3.2 SOURCE PROGRAM FOR MODULE bookSince we expect module book to send a database entry to module main, we must use the samestructure de�nition in both modules. Following the struct table de�nition in module book(Figure 2.14) is the declaration and initialization of the database db, an array of type structtable. The �rst entry in the database is a dummy entry for the module to pass back when noentry is found to match the key, because the mh read in module main must receive somethingof type struct table in all cases.Notice that the while loop does not terminate, or rather does not terminate until the applicationitself is terminated by themh shutdown in module main. Inside the while loop, we usemh readto get the key, then search the database for an entry to match that key. The message format"BfSIg" for the mh write indicates that the �fth parameter is a boolean variable (int in C),and the sixth is a pointer to a structure containing a string and an integer. Since here we arepassing the variables to the bus, the value parameter restriction in C is not a problem; we canpass the value of variable found, instead of passing a pointer to the variable as we had to dowith mh read. If a matching entry was not found, we send &db[0] to �ll in the sixth parameterwith something of the correct data type. If we were to send &db[4], which is initialized to NULL,the message format would not match the variables, and the bus could not successfully deliver themessage.2.3.3 MIL PROGRAM FOR THE APPLICATIONThe MIL program for the phonebook application, shown in Figure 2.15, combines the two moduledescriptions and the application description in one �le. The description of interface lookupin module main contains a message pattern we haven't seen before: f ^boolean; <string;integer> g. This message pattern matches the message format parameter of the mh read callin module main, although the data type names di�er. In a MIL message pattern, the type nameis written out in full, pointer types are preceded by the symbol ^ (except that a pointer to astructure uses the symbols <message pattern>), and concatenation is indicated by a semicolon.The MIL message pattern types are summarized in the next section. This particular messagepattern indicates that the message will contain a pointer to a boolean variable, and a pointerto a structure containing a string and an integer. Compare this pattern to its correspondent onthe lookup interface of module book, which sends a boolean variable instead of a pointer to aboolean. As we just discussed, the mh write in module book passes the value of the booleanvariable, not a pointer to the boolean variable, so the message pattern in our MIL program mustreect that.22In fact, the message patterns in the MIL program do not need to match the message actually sent. Our MILprogram could have declared interface lookup to read and write f string g everywhere, leaving the mh read21

::::::::::::::Basic/Phonebook/book.c::::::::::::::#include <stdio.h>struct table {char *key;int value;};char key[256];static struct table db[] = {{"dummy entry", 0},{"Jo Atlee", 1566},{"Christine Hofmeister", 1732},{"Jim Purtilo", 1832},NULL};main(argc,argv)int argc;char **argv;{ int i, found;mh_init (&argc, &argv, NULL, NULL);while (1) {mh_read("lookup", "S", NULL, NULL, key);found = 0;for (i=0; db[i].key != NULL; i++) {if (strcmp(key, db[i].key) == 0) {found = 1;break;}}if (!found) i = 0;mh_write("lookup","B{SI}",NULL,NULL,found,&db[i]);}}

#include <stdio.h>struct table {char *key;int value;};static struct table db[] = {{"dummy entry", 0},{"Jo Atlee", 1566},{"Christine Hofmeister", 1732},{"Jim Purtilo", 1832},NULL};lookup (key, f, e)char *key;int *f;struct table *e;{ int i, found;found = 0;for (i=0; db[i].key != NULL; i++) {if (strcmp(key, db[i].key) == 0) {found = 1;break;}}if (!found) i = 0;*f = found;*e = db[i];}Figure 2.14: Source code for module book in Phonebook application; Polylith version (left);original (right). 22

::::::::::::::Basic/Phonebook/phonebook.cl::::::::::::::service "main" : {implementation : { binary : "./main.exe" }client "lookup" : { string } accepts { ^boolean ; <string ; integer> }}service "book" : {implementation : { binary : "./book.exe" }function "lookup" : { string } returns { boolean ; <string ; integer> }}orchestrate "phonebook" : {tool "main"tool "book"bind "main lookup" "book lookup"} Figure 2.15: MIL program for Phonebook application.2.4 SUMMARY OF BASIC POLYLITH FEATURESThis section summarizes the Polylith features that are presented in Chapter 2. A completesummary of features is presented in the appendices.2.4.1 MIL STATEMENTSThe Polylith MIL program consists of a description for each module and a description of theapplication. These can be in separate �les, combined in a single �le, or a mix of both.module description1module description2...module descriptionmapplication descriptionand mh write commands in both modules exactly as they are, and the bus would correctly pass what is stated inthe modules. The message formats in the mh read and mh write calls must match the rest of their parameters;the bus uses these, not the declarations in the MIL program, to decode the parameters. In the next chapter wewill see how to use the declarations from the MIL program to avoid coding the message formats explicitly in themh read and mh write calls; we can instead query the bus to �nd out the message format stated in the MILprogram. 23

MODULE DESCRIPTION A description must appear for each module used in the application.The module name given to the module is used to identify it in the application description. Thisname is not referred to in the source program for the module.service \module name" : fimplementation statementinterface statement1interface statement2...interface statementkgIMPLEMENTATION STATEMENT The implementation statement names the program whichimplements this module and the host on which the module is to be created.implementation : f impl attr name1 : \impl attr value1" : : : impl attr namej :\impl attr valuej" gTable A.1 shows the attributes that can be used in the implementation statement. We've onlydiscussed two implementation attributes so far: binary and machine. The value of the binaryattribute is the pathname of the executable program, and the value of the machine attribute isthe name of the host where the module will run. If the machine attribute is not speci�ed, themodule will run on the same host as the Polylith bus.INTERFACE STATEMENT An interface statement must appear for each interface that themodule expects to use; these statements declare the interface name and de�ne what type of datawill be passed. The message patterns used to describe each interface have the format:msg pattern � t1; t2; : : : ; tnwhere ti is the pattern type of the ith variable in the message, and n is the number of variablespassed in each message (n can be zero). Note that the semicolon is used to concatenate thepattern types into a message pattern. The interface pattern types are shown in Table A.2.The client and function interface statements are used in this chapter:client \interface name" : f msg patternout g accepts f msg patternin g24

where interface name is the name of a bidirectional interface that initiates communication withmsg patternout, the outgoing message pattern, and accepts a message in return withmsg patternin,the incoming message pattern. This type of interface must be bound to a function interface:function \interface name" : f msg patternin g returns f msg patternout gwhere interface name is the name of a bidirectional interface that accepts communication usingmsg patternin, the incoming message pattern, and returns a message with msg patternout, theoutgoing message pattern.APPLICATION DESCRIPTION The application description uses the tool statement to namethe nodes of the application and instantiate them with modules, then uses the bind statement tobind the interfaces of these nodes.orchestrate \application name" : ftool statement1tool statement2...tool statementnbind statement1bind statement2...bind statementzgTOOL STATEMENT The tool statement de�nes a node in the application by naming the nodeand specifying which module instantiates the node:tool \node name" : \module name"Another version of the tool statement speci�es that the node name is the same as the name ofthe module that instantiates it:tool \module name"One of these tool statements must be included for each node in the application.25

BIND STATEMENT The purpose of the bind statement is to connect the interfaces of thenodes.bind \node namei interface nameij" \ node namer interface namerk"where node namei initiates the communication, and has a jth interface interface nameij . Thisinterface matches the kth interface of node namer.2.4.2 POLYLITH BUS CALLSThe source program for each module calls routines from the Polylith bus library to send orreceive communication on its interfaces. Before using these interfaces, the program must get thecommand line arguments and pass them to mh init:main(argc,argv)int argc;char **argv;f ... mh init (&argc, &argv, outfaces, infaces) ...to declare its interfaces to the bus. Parameters outfaces and infaces should be set to NULL unlessyou are using the direct connect (-d) bus option (see Section C.4.1).In this chapter, we use mh write and mh read to send and receive messages. A messagecontains a set of variables or expressions that are passed to the bus. The bus either copies theseinto its memory (for sending), or uses them as addresses where data is to be put (for receiving). Amessage format must accompany each message to indicate the type of every variable or expressionin the message:msg format � t1t2 � � � tnwhere ti is the type of the ith variable in the message, and n is the number of variables passedin each message (n can be zero). The types are concatenated to form a message format. Thesemessage format types are shown in Table B.2. Because C has only value parameters,msg formatin(the incoming message format) can contain only the pointer types, and msg formatout (the out-going message format) can contain either the pointer or the value types.To send a message, use:mh write (\interface name", \msg formatout", NULL, NULL, w1; w2; : : : ; wn)26

where interface name is the name of an outgoing interface declared in the MIL description ofthe module, each ti in msg formatout is the data type of variable (or expression) wi, and n isthe number of variables in the message (can be zero). The NULL parameters are placeholders forfeatures which will be available in a future release of Polylith.To receive a message, use:mh read (\interface name", \msg formatin", NULL, NULL, r1; r2; : : : ; rn)where interface name is the name of an interface declared in the MIL description of the module,ri is a pointer variable or the address of a variable, each ti in msg formatin is the pointer type ofvariable ri, and n is the number of variables in the message (can be zero). The NULL parametersare placeholders for features which will be available in a future release of Polylith.To terminate an application or a node, use:mh shutdown(level, exit code, exit string)When level=0, this command noti�es the bus that the application is �nished. The bus terminatesexecution at each node and releases all the application's communication channels. If the applica-tion is not terminated, all nodes could �nish execution, but the bus would keep the applicationrunning and hold its communication channels open.When level=1, themh shutdown command terminates just the node issuing the command, andnot the entire application. When level=2, the command acts like an exit command, terminatingthe process at the node without notifying the bus.For shutdown levels of 0 or 1, the exit code and exit string parameters are written in the logfilewhen the logging option -l is turned on (see section C.4.3). The exit code is an integer value,and the exit string is a character string.2.4.3 COMPILING, LINKING, RUNNINGEach module must be compiled and linked using its native language compiler and including thePolylith library (with the -lith ag). The executable �le that is created must be named inthe binary attribute of the implementation statement in that module's MIL description. Forexample,cc main.c -ccc -o main.exe main.o -lith 27

compiles main.c into main.o, and links main.o with the routines it uses from the Polylithlibrary, creating the executable �le main.exe.The components of the MIL program are the module descriptions and the application description;they can be compiled in separate �les or in one �le.csc phonebook.clcsc main.clcompiles the MIL program phonebook.cl into phonebook.co. These compiled components arelinked using:csl phonebook.co main.co -o phonebookHere the two compiled MIL components phonebook.co and main.co are linked, creating theoutput �le phonebook.To run an application, we start up a Polylith bus, passing it our compiled and linked MILprogram:bus phonebookAn application that does not terminate voluntarily can always be terminated with a control-C.
28

Chapter 3ADVANCED FEATURESThis chapter describes the advanced Polylith features by presenting six variations of an appli-cation. The basic version of the application introduces one-way interfaces. The next two versionsshow two di�erent ways to avoid explicitly naming the interfaces in a module's source code; theinterfaces are named only in the MIL program. The fourth application shows how the MIL is usedto specify additional attributes for a module, and how to query the Polylith bus for attributeinformation instead of coding it directly in a module. The last two versions demonstrate twoways of doing a non-blocking read to receive messages. A summary of the features presented inthis chapter appears at the end of the chapter.3.1 MESSAGE PASSINGIn chapter 2, we used bidirectional interfaces because each interface both sent and receivedmessages. The application in this section, called Source sink, introduces one-way interfacesand shows how a node can query the bus for its name. The application, shown in Figures 3.1,3.2, and 3.3 uses a module called hello, which just sends its name on interface \send". Thismodule is used to instantiate three nodes of the application, hello, hi, and greetings. The printmodule instantiates node print; it reads a string from each of its interfaces \msg1", \msg2", and\msg3" and prints the strings.First we discuss the one-way communication interfaces. The interfaces in this application eithersend messages or receive messages, but do not both send and receive. We could use bidirectionalinterfaces here, even though each interface communicates in only one direction, but one-wayinterfaces are su�cient. The mh read and mh write calls are exactly the same as for a bi-directional interface; the only di�erence is that a module does not call both mh read andmh write on a particular interface.One-way interfaces are declared in the module description portion of the MIL program with the29

print

hello

hi

greetings

send

send

send

msg1

msg2

msg3

(module
 print)

(module
 hello)

(module
 hello)

(module
 hello)Figure 3.1: Basic application structure (used in �rst three examples).::::::::::::::Advanced/greet.c::::::::::::::#include <stdio.h>main(argc,argv)int argc;char **argv;{ char objname_buf[256];mh_init(&argc, &argv, NULL, NULL);mh_identity(objname_buf, sizeof(objname_buf));mh_write("send", "S", NULL, NULL, objname_buf);} Figure 3.2: Module greet (used in all six examples).30

::::::::::::::Advanced/source_sink.cl::::::::::::::service "hello" : {implementation : { binary : "./greet.exe" }source "send" : {string}}service "print" : {implementation :{ binary : "./pr_source_sink.exe" }sink "msg1" : {string}sink "msg2" : {string}sink "msg3" : {string}}orchestrate "source_sink" : {tool "hello"tool "hi" : "hello"tool "greetings" : "hello"tool "print"bind "hello send" "print msg1"bind "hi send" "print msg2"bind "greetings send" "print msg3"}
::::::::::::::Advanced/pr_source_sink.c::::::::::::::#include <stdio.h>main(argc,argv)int argc;char **argv;{ char s[256];mh_init(&argc, &argv, NULL, NULL);mh_read("msg1", "S", NULL, NULL, s);printf(" %s, world\n", s);mh_read("msg2", "S", NULL, NULL, s);printf(" %s, world\n", s);mh_read("msg3", "S", NULL, NULL, s);printf(" %s, world\n", s);mh_shutdown(0, 42, "");}Figure 3.3: One-way interfaces (application Source sink); MIL program (left), print module(right).

31

source and sink interface statements (Figure 3.3 (left)). Just as with the client and functionstatements, these statements declare the interface name and de�ne what type of data will bepassed. Module hello is initiating the communication by sending a string on interface \send", soit declares its interface \send" with the source statement:source \send" : f string gA source interface must be bound to a sink interface; the receiving module print declares threeof these, one for each of the nodes instantiated with module hello:sink \msg1" : f string gsink \msg2" : f string gsink \msg3" : f string gNext we explain how a module can query the bus for its node name. Module hello (using programgreet.c) declares objname buf as a character array and calls:mh identity (objname buf, sizeof(objname buf))The name the bus returns in objname buf is the node name, not the module name speci�ed inthe MIL module description. So this application prints out \hello" \hi" and \greetings", not\hello" \hello" \hello". Note that the order in which the messages are received and printedout is statically determined by module print (Figure 3.3 (right)). The nodes hello, hi, andgreetings send their messages as soon as the nodes are created, so the messages are sent in anon-deterministic order. Even if the message \hello" is the last to arrive, it will be the �rst tobe read by module print.3.2 MANIPULATING INTERFACE NAMESThe next two applications are almost identical to the previous; the three di�er only in theprogram that implements module print. The two new versions of the print module do not nametheir interfaces anywhere within the module.3.2.1 QUERYING THE BUS FOR INTERFACE NAMESThe program in Figure 3.4 shows how application Query objnames does this by querying thebus for its interface names: 32

::::::::::::::Advanced/query_objnames.cl::::::::::::::service "hello" : {implementation : { binary : "./greet.exe" }source "send" : {string}}service "print" : {implementation :{ binary : "./pr_query_objnames.exe" }sink "msg1" : {string}sink "msg2" : {string}sink "msg3" : {string}}orchestrate "query_objnames" : {tool "hello"tool "hi" : "hello"tool "greetings" : "hello"tool "print"bind "hello send" "print msg1"bind "hi send" "print msg2"bind "greetings send" "print msg3"}
::::::::::::::Advanced/pr_query_objnames.c::::::::::::::#include <stdio.h>char s[256], interface_names[256];char *iface[20];main(argc,argv)int argc;char **argv;{ int i, n;char *p;mh_init(&argc, &argv, NULL, NULL);/* put interface names in array iface */mh_query_objnames(interface_names,sizeof(interface_names));printf("interfaces are: %s\n", interface_names);p = interface_names;n = 0;while (*p) {iface[n] = p;n++;while ((*p != ',') && (*p)) p++;if (*p) *(p++) = NULL;}for (i=0; i<n; i++) {mh_read(iface[i], "S", NULL, NULL, s);printf(" %s, world\n", s);}mh_shutdown(0, 42, "");}Figure 3.4: Querying for interface names (application Query objnames); MIL program (left),print module (right). 33

::::::::::::::Advanced/readselect.cl::::::::::::::service "hello" : {implementation : { binary : "./greet.exe" }source "send" : {string}}service "print" : {implementation :{ binary : "./pr_readselect.exe" }sink "msg1" : {string}sink "msg2" : {string}sink "msg3" : {string}}orchestrate "readselect" : {tool "hello"tool "hi" : "hello"tool "greetings" : "hello"tool "print"bind "hello send" "print msg1"bind "hi send" "print msg2"bind "greetings send" "print msg3"}
::::::::::::::Advanced/pr_readselect.c::::::::::::::#include <stdio.h>char s[256], msgbuf[256], *iface_name;main(argc,argv)int argc;char **argv;{ int n;char *p;mh_init(&argc, &argv, NULL, NULL);while (1) {iface_name = (char *)mh_readselect(NULL,NULL,msgbuf,sizeof(msgbuf));mh_readback(msgbuf, "S", NULL, s);printf("%s: %s, world\n", iface_name, s);}}Figure 3.5: Application Readselect; MIL program (left), print module (right).mh query objnames (interface names, sizeof(interface names))where interface names is declared as a character array. The bus puts the names of all of moduleprint's interfaces into the bu�er interface names. The names are separated by commas in thebu�er, with no intervening blanks, so the next section of code uses a while loop to place pointersto these names into the array iface. Then the program loops through the list of interface names,calling mh read on each one and printing the resulting message. Once again, the print modulereads the messages in a predetermined order, letting other messages queue up while it waits forthe current one.3.2.2 RECEIVING MESSAGES ON ANY INTERFACEThe program in Figure 3.5 shows how application Readselect avoids directly naming anyinterfaces in module print. Here we use a Polylith command that allows us to read the nextmessage to arrive on any interface, instead of reading from a particular interface:iface name = (char *)mh readselect (NULL, NULL, msgbuf, sizeof(msgbuf))34

where msgbuf is declared as a character array, and iface name, a character pointer, receivesa pointer to the name of the interface where the message arrived. The NULL parameters areplaceholders for features which will be available in a future release of Polylith.The module will block at themh readselect command until a message arrives on some interface,or will proceed immediately if a message is already queued. After the mh readselect call iscomplete, msgbuf will contain the message. To pull the variables comprising the message frommsgbuf, we use:mh readback (msgbuf, "S", NULL, s)where s is declared as a character array, and the message format is \S". The mh readbackis similar to the mh read in that a message format and a list of variables must be supplied.The di�erence between them is that mh read expects an interface name, while mh readbackexpects the name of a bu�er that was �lled by a prior call to mh readselect. You do not needto know the interface name to do a mh readback because mh readselect has already pulledthe message o� the interface; mh readback is just used to interpret the message.In this version of module print we put themh readselect andmh readback in an in�nite loop.This time, since at each iteration we are reading a message from the next available interface,the messages are printed in an indeterminate order, probably but not necessarily in the sameorder in which they were sent. Because the loop does not terminate, there is no point in puttingan mh shutdown at the end of the print module. The application must be terminated bycontrol-C.3.3 ATTRIBUTESThe fourth version of the application (Figure 3.6) is structurally somewhat di�erent from theprevious three. The application still has nodes hello, hi, and greetings instantiated with modulehello, but we have added two new nodes: number, which is almost identical to module helloexcept that it sends an integer instead of a string, and goodbye, which is instantiated withmodule timer. The timer module sleeps for while then sends its node name to module print, whichshuts down when it receives a message from the timer. Figures 3.7 and 3.8 show the MILprogram and source code for application Attributes.3.3.1 OBJECT ATTRIBUTESWe do not want to hardcode the sleep time in the timer module, so we use an object attribute tospecify the number of second to sleep. The object attribute is declared and given a value in thealgebra statement of the MIL module de�nition:35

print

hello

hi

greetings

send

send

send

msg1

msg2

msg3
shutdown

send

number

send

number

(module
 print)

(module
 timer)

(module
 number)

(module
 hello)

(module
 hello)

(module
 hello)

goodbye Figure 3.6: Application Attributes.service \timer" : fimplementation : : :algebra : f \SECONDS=3" gsource : : :gThis creates an attribute named SECONDS for module timer, and gives the attribute a value of \3".This attribute value is a string containing the character `3', and not the integer 3. The algebrastatement accepts any number of attributes; see the summary at the end of this chapter if youwant to use more than one object attribute.Now the program instantiating the module (Figure 3.8) can query the bus at runtime for thevalue of the SECONDS attribute:mh query objattr (\SECONDS", time buf, sizeof(time buf))where time buf, which is declared as a character array, receives the attribute value. Since wewant to pass an integer to sleep, we use atoi to convert the string in time buf to an integer.We have just seen how to explicitly specify object attributes; there are other object attributesthat are implicitly speci�ed by your MIL program. The NAME attribute is one example, and othersare listed in Table B.3. The mh identity command provides a simple way of getting the valueof the NAME attribute; the following two commands are equivalent:36

::::::::::::::Advanced/attributes.cl::::::::::::::service "hello" : {implementation : { binary : "./greet.exe" }source "send" : {string}}service "number" : {implementation : { binary : "./number.exe" }source "send" : {integer}}service "timer" : {implementation : { binary : "./timer.exe" }algebra : {"SECONDS=3"}source "send" : {string}}service "print" : {implementation :{ binary : "./pr_attributes.exe" }sink "msg1" : {string}sink "msg2" : {string}sink "msg3" : {string}sink "number" : {^integer}sink "shutdown" : {string}}orchestrate "attributes" : {tool "hello"tool "hi" : "hello"tool "greetings" : "hello"tool "number"tool "goodbye" : "timer"tool "print"bind "hello send" "print msg1"bind "hi send" "print msg2"bind "greetings send" "print msg3"bind "number send" "print number"bind "goodbye send" "print shutdown"}

::::::::::::::Advanced/number.c::::::::::::::#include <stdio.h>main(argc,argv)int argc;char **argv;{ mh_init(&argc, &argv, NULL, NULL);mh_write("send", "I", NULL, NULL, 5280);}::::::::::::::Advanced/pr_attributes.c::::::::::::::#include <stdio.h>char s[256], msgbuf[256], msg_format[256];char *iface_name;main(argc,argv)int argc;char **argv;{ int i;mh_init(&argc, &argv, NULL, NULL);while (1) {iface_name = (char *)mh_readselect(NULL, NULL, msgbuf,sizeof(msgbuf));mh_query_ifattr(iface_name, "PATTERN",msg_format, sizeof(msg_format));if (strcmp(msg_format,"S")==0) {mh_readback(msgbuf, msg_format, NULL, s);printf(" %s, world\n", s);}else if (strcmp(msg_format,"i")==0) {mh_readback(msgbuf, msg_format, NULL, &i);printf(" %d\n", i);}else printf("ERROR. Invalid format: '%s'\n",msg_format);if (strcmp(iface_name,"shutdown")==0)mh_shutdown(0, 42, "");}}Figure 3.7: Application Attributes; MIL program (left), number and print modules (right).37

::::::::::::::Advanced/timer.c::::::::::::::#include <stdio.h>main(argc,argv)int argc;char **argv;{ char objname_buf[256], time_buf[256];int seconds;mh_init(&argc, &argv, NULL, NULL);mh_identity(objname_buf, sizeof(objname_buf));mh_query_objattr("SECONDS", time_buf, sizeof(time_buf));seconds = atoi(time_buf);sleep(seconds);mh_write("send", "S", NULL, NULL, objname_buf);} Figure 3.8: Module timer (used in last three examples).mh identity (objname buf, sizeof(objname buf))mh query objattr (\NAME", objname buf, sizeof(objname buf))3.3.2 INTERFACE ATTRIBUTESAs before, module print is looping and doing an mh readselect and mh readback, but beforedoing the mh readback, the module queries the bus for the value of an interface attribute(Figure 3.7 (right)). An interface attribute is identical to an object attribute, except that it isspeci�c to an interface. Here we use an implicit interface attribute, PATTERN, that is speci�ed asa result of the sink statement in the MIL module de�nition. The value of the PATTERN attributeis the message pattern declared in the interface statement (source, sink, client, or function).mh query ifattr (iface name, \PATTERN", msg format, sizeof(msg format))puts either the string \S" or \i" into msg format, depending on the interface named in iface name.Then we use msg format to decide the datatype of the variable that will receive the message,and proceed with the mh readback.Because the timer module eventually sends a message on interface \shutdown", we can callmh shutdown at that point, allowing the application to terminate normally instead of witha control-C. 38

print

hello

hi

greetings

send

send

send

msg1

msg2

msg3
shutdown

send

msg4

self

(module
 timer)

(module
 print)

(module
 hello)

(module
 hello)

(module
 hello)

goodbyeFigure 3.9: Application structure for last two examples.3.4 NON-BLOCKING CHECK FOR MESSAGESWe change the application structure again for these last two applications. Module number isno longer used, but now the print module is sending a message to itself (Figure 3.9). Theprint module still loops until it receives a message from the timer module, and it sends itselfone message per loop. If print tried to read its message with an mh read, to avoid deadlock itwould have to be very careful about not reading a message from itself before the message hadbeen sent. The two versions presented in this section avoid making a blocking read (mh reador mh readselect) by �rst querying the bus to �nd out if any messages are queued.3.4.1 QUERYING A PARTICULAR INTERFACEThe printmodule in the �rst version (Figure 3.10) gets its interface names usingmh query objnames.Note that not all interfaces are incoming any more; interface \self" is an outgoing interface, andit is included in the list of interface names. We can still query this outgoing interface for incomingmessages, although it will not have any.Within the while loop, print queries the bus for messages on each of the interfaces using:mh query ifmsgs (iface[i])where i loops over all the interfaces. The mh query ifmsgs command returns the number ofmessages queued, although here we read one at a time even if more are available. This commanddoes not read any messages from the interface, so we follow it with an mh read.39

::::::::::::::Advanced/query_ifmsgs.cl::::::::::::::service "hello" : {implementation : { binary : "./greet.exe" }source "send" : {string}}service "timer" : {implementation : { binary : "./timer.exe" }algebra : {"SECONDS=10"}source "send" : {string}}service "print" : {implementation :{ binary : "./pr_query_ifmsgs.exe" }source "self" : {string}sink "msg1" : {string}sink "msg2" : {string}sink "msg3" : {string}sink "msg4" : {string}sink "shutdown" : {string}}orchestrate "query_ifmsgs" : {tool "hello"tool "hi" : "hello"tool "greetings" : "hello"tool "goodbye" : "timer"tool "print"bind "hello send" "print msg1"bind "hi send" "print msg2"bind "greetings send" "print msg3"bind "print self" "print msg4"bind "goodbye send" "print shutdown"}

::::::::::::::Advanced/pr_query_ifmsgs.c::::::::::::::#include <stdio.h>char status[256], s[256];char objname_buf[256], interface_names[256];char *iface[20];main(argc,argv)int argc;char **argv;{ int i, n;char *p;mh_init(&argc, &argv, NULL, NULL);mh_identity(objname_buf,sizeof(objname_buf));sprintf(status, "%s is alive", objname_buf);/* put interface names in array iface */mh_query_objnames(interface_names,sizeof(interface_names));printf("%s's known interfaces are: %s\n",objname_buf, interface_names);p = interface_names;n = 0;while (*p) {iface[n] = p;n++;while ((*p != ',') && (*p)) p++;if (*p) *(p++) = NULL;}while (1) {for (i=0; i<n; i++) {if (mh_query_ifmsgs(iface[i])) {mh_read(iface[i], "S", NULL, NULL, s);printf(" %s, world\n", s);if (strcmp(iface[i],"shutdown")==0)mh_shutdown(0, 42, "");}}mh_write("self", "S", NULL, NULL, status);}}Figure 3.10: Querying an interface (application Query ifmsgs); MIL program (left), print mod-ule (right). 40

3.4.2 QUERYING ANY INTERFACEThe print module in this last version (Figure 3.11) queries the bus for the number of messagesqueued on all of the module's interfaces:mh query objmsgs ()The mh query objmsgs command returns the total number of messages queued on all inter-faces. It does not read any of these messages, so we follow it with a mh readselect if one ormore messages are available. We cannot usemh read, because we have no way of knowing whichinterface has a message queued.Note that the value of timer's SECONDS attribute is 4 here but it was 10 in the previous example.Because the mh readselect version is a more e�cient approach than querying the bus at eachinterface, we reduced the number of seconds for the shutdown timer.3.5 POLYLITH BUS RUNTIME OPTIONSPolylith has options available that allow you to invoke di�erent versions of the Polylith bus:bus -d -k -v -l bus input �leThese options may be used in any combination. The next three sections describe -d (directconnect), -k (keep-alive), -v (verbose), and -l (log�le).3.5.1 DIRECT CONNECTWith the direct connect (-d) option, the bus binds interfaces directly to each other. Thusmessages are not sent to the bus to be forwarded but are sent directly to another module,making communication faster. To use direct connect on an application, you must pass additionalinformation to the mh init call:mh init (&argc, &argv, outfaces, infaces)where outfaces and infaces are arrays of strings. The arrays contain the names of the outgoingand incoming interfaces respectively, and are terminated by a NULL string:char *outfaces[j + 1] = f \out1", \out2", : : : , \outj", NULL g;char *infaces[k+ 1] = f \in1", \in2", : : : , \ink", NULL g;41

::::::::::::::Advanced/query_objmsgs.cl::::::::::::::service "hello" : {implementation : { binary : "./greet.exe" }source "send" : {string}}service "timer" : {implementation : { binary : "./timer.exe" }algebra : {"SECONDS=4"}source "send" : {string}}service "print" : {implementation :{ binary : "./pr_query_objmsgs.exe" }source "self" : {string}sink "msg1" : {string}sink "msg2" : {string}sink "msg3" : {string}sink "msg4" : {string}sink "shutdown" : {string}}orchestrate "query_objmsgs" : {tool "hello"tool "hi" : "hello"tool "greetings" : "hello"tool "goodbye" : "timer"tool "print"bind "hello send" "print msg1"bind "hi send" "print msg2"bind "greetings send" "print msg3"bind "print self" "print msg4"bind "goodbye send" "print shutdown"}

::::::::::::::Advanced/pr_query_objmsgs.c::::::::::::::#include <stdio.h>char status[256], s[256];char objname_buf[256], msgbuf[256];char *iface_name;main(argc,argv)int argc;char **argv;{ int n;char *p;mh_init(&argc, &argv, NULL, NULL);mh_identity(objname_buf,sizeof(objname_buf));sprintf(status, "%s is alive", objname_buf);while (1) {while (mh_query_objmsgs()) {iface_name = (char *)mh_readselect(NULL, NULL, msgbuf,sizeof(msgbuf));mh_readback(msgbuf, "S", NULL, s);printf(" %s, world\n", s);if (strcmp(iface_name,"shutdown")==0)mh_shutdown(0, 42, "");}mh_write("self","S",NULL,NULL,status);}}Figure 3.11: Querying for any message (application Query objmsgs); MIL program (left), printmodule (right). 42

where j is the number of outgoing interfaces, and k is the number of incoming interfaces. (Abidirectional interface must be named as both an outgoing interface and an incoming interface.)Because the bus does not keep track of messages passed between modules that are directlyconnected, the mh readselect, mh readback, mh query objmsgs, and mh query ifmsgscommands are not available with direct connect.3.5.2 KEEP-ALIVEWith the keep-alive (-k) option, the bus keeps all communication channels open between mes-sages. (Normally, the channels are opened when a message is sent, and closed after it has beenreceived.) The keep-alive option allows for faster communication, but can only be used whenthe total number of bindings in the application is small. The exact limit is determined by thenumber of UNIX �le descriptors available, usually around ten to �fteen.3.5.3 VERBOSE, LOGFILEWith the verbose (-v) option, the bus writes information about each bus transaction to standardoutput as the application executes. It can be used for debugging an application. The log�le (-l)option captures similar information, but writes this information to a �le named logfile in yourlocal directory.3.6 SUMMARY OF ADVANCED FEATURESThis section summarizes the Polylith features that were presented in this chapter. A completesummary of features is presented in the appendices.3.6.1 MIL STATEMENTSMODULE DESCRIPTION In this chapter, we introduced the object attribute statement asthe way to specify attributes and values for a module. The obj attribute statement belongs inyour module description:
43

service \module name" : fimplementation statementobj attribute statement1...obj attribute statementainterface statement1...interface statementkgOBJECT ATTRIBUTE STATEMENT The object attribute statement lets you specify attributesand their values in your module description. Then, using the mh query objattr command, anode can query the Polylith bus for the value of a particular attribute. The object attributestatement is:algebra : f \obj attr name1=obj attr value1 : : : : : obj attr namej=obj attr valuej"gWhen obj attr namei is passed to themh query objattr command, it returns obj attr valuei tothe caller.INTERFACE STATEMENT This chapter describes how to specify one-way communicationinterfaces with the source/sink interface statements. These statements declare the interfacename and de�ne what type of data will be passed. The message patterns used to describe eachinterface have the format:msg pattern � t1; t2; : : : ; tnwhere ti is the pattern type of the ith variable in the message, and n is the number of variablespassed in each message (n can be zero). Note that the semicolon is used to concatenate thepattern types into a message pattern. The interface pattern types are shown in Table A.2.The module that initiates communication declares its interface with the source statement:source \interface name" : f msg patternout gwhere interface name is the name of an outgoing interface, and msg patternout is an interfacemessage pattern (as described above). A source interface must be bound to a sink interface,which is declared by the receiving module: 44

sink \interface name" : f msg patternin gwhere interface name is the name of an incoming interface, and msg patternin is an interfacemessage pattern.3.6.2 POLYLITH BUS CALLSRECEIVING MESSAGES ON ANY INTERFACE A message contains a set of variables that arepassed to the bus; the bus uses these variables as addresses where data is to be put. A messageformat must accompany each message to indicate the type of every variable in the message:msg formatin � t1t2 � � � tnwhere ti is the type of the ith variable in the message, and n is the number of variables passedin each message (can be zero). The types are concatenated to form a message format. Thesemessage format types are shown in Table B.2. Because C has only value parameters,msg formatin(the incoming message format) can contain only the pointer types.To receive a message on any interface, use:iface name = (char *)mh readselect (NULL, NULL, message bu�er, sizeof(message bu�er))where message bu�er is declared as a character array, and iface name is declared as a characterpointer. The NULL parameters are placeholders for features which will be available in a futurerelease of Polylith.The module will block at the mh readselect command until a message arrives on any interface,or will proceed immediately if a message is already queued. After the mh readselect call iscomplete, message bu�er will contain the message, and iface name will point to the name of theinterface along which the message arrived. To pull the variables comprising the message frommessage bu�er, use:mh readback (message bu�er, \msg formatin", NULL, r1; r2; : : : ; rn)where ri is a pointer variable or the address of a variable, each ti in msg formatin is the pointertype of variable ri, and n is the number of variables in the message (can be zero). The NULLparameter is a placeholder for features which will be available in a future release of Polylith.45

NON-BLOCKING CHECK FOR MESSAGES A module can avoid making a blocking read(mh read or mh readselect) by �rst querying the bus to �nd out if any messages are queued.To �nd out how many messages are queued on a particular interface, use:mh query ifmsgs (\interface name")where interface name is the name of an interface declared in the MIL description of the module.The mh query ifmsgs command returns the number of messages queued. It does not read anymessages from the interface, so it is generally followed by amh read when one or more messagesare available.To �nd out how many messages are queued on all of the module's interfaces, use:mh query objmsgs ()The mh query objmsgs command returns the total number of messages queued on all inter-faces. It does not read any of these messages, so it is generally followed by a mh readselectwhen one or more messages are available.ATTRIBUTES A module can query the bus for values of its attributes. The standard at-tributes, such as names or interface message patterns, are implicitly speci�ed in the PolylithMIL program; these are listed in Table B.3. You may also query the bus for values of attributesthat were explicitly declared in the MIL program.NAME ATTRIBUTES Your Polylith MIL program gives name attributes to the nodes andinterfaces in your application. An object can query the bus for its name using:mh identity (objname bu�er, sizeof(objname bu�er))where objname bu�er is declared as a character array. The name the bus returns to the objectis the node name, not the module name speci�ed in the MIL module description. (The modulename may not be unique within the application, but the node name is.)An object can query the bus for its interface names using:mh query objnames (ifname bu�er, sizeof(ifname bu�er))where ifname bu�er is declared as a character array. The bus puts the names of all of themodule's interfaces in the bu�er, whether the interfaces are strictly incoming, strictly outgoing,or bidirectional. The names are separated by commas in the bu�er, with no intervening blanks.46

OTHER ATTRIBUTES An object can query the bus for the value of any of its attributes using:mh query objattr (\obj attr name", attr value bu�er, sizeof(attr value bu�er))where attr value bu�er is declared as a character array; the value is always a character string.The attribute speci�ed in obj attr name is either one that was explicitly declared in your MILprogram, or an attribute like NAME or BINARY that your MIL program implicitly speci�es.Note that the following two commands are equivalent:mh identity (objname bu�er, sizeof(objname bu�er))mh query objattr (\NAME", objname bu�er, sizeof(objname bu�er))The command to query the bus for the value of an interface attribute is identical to the objectattribute command, except that you also specify an interface:mh query ifattr (\if name", \if attr name", attr value bu�er, sizeof(attr value bu�er))where if name is the name of an interface declared in the MIL description of the module. YourMIL program implicitly speci�es a PATTERN attribute for each interface; its value is a stringcontaining the interface message pattern from your MIL program.3.6.3 POLYLITH BUS RUNTIME OPTIONSPolylith has options available that allow you to invoke di�erent versions of the Polylith bus:bus -d -k -v -l bus input �leThese options may be used in any combination. The following three sections describe -d (directconnect), -k (keep-alive), -v (verbose), and -l (log�le).DIRECT CONNECT With the direct connect (-d) option, the bus binds interfaces directly toeach other. Since the messages are not sent to the bus to be forwarded but are sent directly toanother module, communication is faster. To use direct connect on an application, you must passadditional information to the mh init call:mh init (&argc, &argv, outfaces, infaces)47

where outfaces and infaces are arrays of strings. The arrays contain the names of the outgoingand incoming interfaces respectively, and are terminated by a NULL string:char *outfaces[j + 1] = f \out1", \out2", : : : , \outj", NULL g;char *infaces[k+ 1] = f \in1", \in2", : : : , \ink", NULL g;where j is the number of outgoing interfaces, and k is the number of incoming interfaces. (Abidirectional interface must be named as both an outgoing interface and an incoming interface.)Because the bus does not keep track of messages passed between modules, the mh readselectand mh query objmsgs commands are not available with direct connect.KEEP-ALIVE With the keep-alive (-k) option, the bus keeps all communication channels openbetween messages. (Normally, the channels are opened when a message is sent, and closed afterit has been received.) The keep-alive option allows for faster communication, but can only beused when the total number of bindings in the application is small. The exact limit is determinedby the number of UNIX �le descriptors available, usually around ten to �fteen.VERBOSE, LOGFILE With the verbose (-v) option, the bus writes information about eachbus transaction to standard output as the application executes. It can be used for debugging anapplication. The log�le (-l) option captures similar information, but writes this information toa �le named logfile in your local directory.

48

BIBLIOGRAPHY[Purt90] The Polylith Software Bus. J. Purtilo. University of Maryland CSD Technical Report2469, (1990).[CaPu90] A packaging system for heterogeneous execution environments. J. Callahan andJ. Purtilo. University of Maryland CSD Technical Report 2542, (1990).[PuRG88] Environments for prototyping parallel algorithms. J. Purtilo, D. Reed and D. Grun-wald. Journal of Parallel and Distributed Computing, vol. 5, (1988), pp. 421-437.[PuCa89] Parse tree annotations. J. Purtilo and J. Callahan. Communications of theACM, vol. 32, (1989), pp. 1467-1477.[PuJa91] An environment for developing fault tolerant software. J. Purtilo and P. Jalote.IEEE Transactions on Software Engineering, vol. 17, (1991), pp. 1-7.[PuJa91] An environment for prototyping distributed applications. J. Purtilo and P. Jalote.To appear, Computer Languages.[PuAt91] Module reuse by interface adaptation. J. Purtilo and J. Atlee. To appear, Software:Practice & Experience.
ACKNOWLEDGEMENTWe appreciate the suggestions, editorial comments and sense of humor from Jack Callahan,Larry Herman, Elizabeth White and Anne Wilson. Their experiments with the early form of thisdocument and distribution helped us immensely.49

Appendix AMIL SUMMARYThe Polylith MIL program consists of a description for each module and a description of theapplication. These can be in separate �les, combined in a single �le, or a mix of both.module description1module description2...module descriptionmapplication descriptionA.1 MODULE DESCRIPTIONA description must appear for each module used in the application. The module name given tothe module is used to identify it in the application description. This name is not referred to inthe source program for the module.service \module name" : fimplementation statementobj attribute statement1...obj attribute statementainterface statement1...interface statementkg 50

attribute name attribute valuebinary pathname of the executable program which implements this modulesource pathname of the source program which implements this modulemachine name of host where the module will runTable A.1: Polylith MIL Module Implementation AttributesA.1.1 IMPLEMENTATION STATEMENTThe implementation statement names the program which implements this module and the hoston which the module is to be executed.implementation : f impl attr name1 : \impl attr value1" : : : impl attr namej :\impl attr valuej" gTable A.1 shows the attributes that can be used in the implementation statement. You mustspecify either the binary or the source attribute, but not both. The machine attribute isoptional; by default the module will run on the same host as the Polylith bus.A.1.2 OBJECT ATTRIBUTE STATEMENTThe object attribute statement provides a way of specifying attributes and their values in yourmodule description. Then, using the mh query objattr command, a node can query thePolylith bus for the value of a particular attribute. The object attribute statement is:algebra : f \obj attr name1=obj attr value1 : : : : : obj attr namej=obj attr valuej"gWhen obj attr namei is passed to themh query objattr command, it returns obj attr valuei tothe caller.A.1.3 INTERFACE STATEMENTAn interface statement must appear for each interface that the module expects to use; thesestatements declare the interface name and de�ne what type of data will be passed. The messagepatterns used to describe each interface have the format:msg pattern � t1; t2; : : : ; tn 51

Pointer Types (for incoming or outgoing interfaces) Value Types (for outgoing interfaces only)pattern type description pattern type descriptionstring string (pointer to char)^integer pointer to integer integer integer^boolean pointer to boolean (ptr to int) boolean boolean (int in C)^oat pointer to oat (ptr to double) oat oat (double in C)< msg pattern > pointer to a structure f msg pattern g structurepattern type(n) array of size n, type pattern typeTable A.2: Polylith MIL Interface Pattern Typeswhere ti is the pattern type of the ith variable in the message, and n is the number of variablespassed in each message (n can be zero). Note that the semicolon is used to concatenate thepattern types into a message pattern. The interface pattern types are shown in Table A.2.The source and sink interface statements are used when you intend to send messages in onedirection only. The initiating module declares its interface with the source statement:source \interface name" : f msg patternout gwhere interface name is the name of an outgoing interface, and msg patternout is an interfacemessage pattern (as described above). A source interface must be bound to a sink interface,which is declared by the receiving module:sink \interface name" : f msg patternin gwhere interface name is the name of an incoming interface, and msg patternin is an interfacemessage pattern.The client and function interface statements are used when you intend to send messages backand forth. The module that initiates the �rst message declares its interface with the clientstatement:client \interface name" : f msg patternout g accepts f msg patternin gwhere interface name names a bidirectional interface that initiates communication withmsg patternout,the outgoing message pattern, and accepts a message in return with msg patternin, the incomingmessage pattern. A client interface must be bound to a function interface:function \interface name" : f msg patternin g returns f msg patternout g52

where interface name is the name of a bidirectional interface that accepts communication usingmsg patternin, the incoming message pattern, and returns a message with msg patternout, theoutgoing message pattern.A.2 APPLICATION DESCRIPTIONThe application description uses the tool statement to name the nodes of the application andinstantiate them with modules, then uses the bind statement to bind the interfaces of thesenodes.orchestrate \application name" : ftool statement1tool statement2...tool statementnbind statement1bind statement2...bind statementzgA.2.1 TOOL STATEMENTThe tool statement de�nes a node in the application by naming the node and specifying whichmodule instantiates the node:tool \node name" : \module name"Another version of the tool statement speci�es that the node name is the same as the name ofthe module that instantiates it:tool \module name"One of these tool statements must be included for each node in the application.53

A.2.2 BIND STATEMENTThe purpose of the bind statement is to connect the interfaces of the nodes.bind \node namei interface namei;j" \ node namer interface namer;k"where node namei has a jth interface interface namei;j declared in a source or client statement.The message pattern(s) for this interface match those of the kth interface of node namer, whichis declared in a sink or function statement.

54

Appendix BBUS CALLSThemh commands are a collection of library routines which allow a module to send and receivecommunication over the Polylith bus, and to query the bus for information about itself. Thecommands available from the C language are listed in Table B.1. Suitable alternative are availablefor other application languages as well.B.1 GENERAL COMMANDSThe source program for each module calls routines from the Polylith bus library to send orreceive communication on its interfaces. Before using these interfaces, the program must passthe command line arguments to mh init:command levelobject object-to-interface interfacegeneral mh initmh shutdownwriting mh writereading mh readselect mh readmh readbackmh query objmsgs mh query ifmsgsattributes mh identity mh query objnamesmh query objattr mh query ifattrTable B.1: Polylith Commands55

main(argc,argv)int argc;char **argv;f ...mh init (&argc, &argv, outfaces, infaces) ... gto declare its interfaces to the bus. Parameters outfaces and infaces should be set to NULL unlessyou are using the direct connect (-d) bus option (see Section C.4.1).To terminate an application or a node, use:mh shutdown(level, exit code, exit string)When level=0, this command noti�es the bus that the application is �nished. The bus terminatesexecution at each node and releases all the application's communication channels. If the applica-tion is not terminated, all nodes could �nish execution, but the bus would keep the applicationrunning and hold its communication channels open.When level=1, themh shutdown command terminates just the node issuing the command, andnot the entire application. When level=2, the command acts like an exit command, terminatingthe process at the node without notifying the bus.For shutdown levels of 0 or 1, the exit code and exit string parameters are written in the logfilewhen the logging option -l is turned on (see section C.4.3). The exit code is an integer value,and the exit string is a character string.B.2 MESSAGE PASSINGA message contains a set of variables or expressions that are passed to the bus. The bus eithercopies these into its memory (for sending), or uses them as addresses where data is to be put(for receiving). A message format must accompany each message to indicate the type of everyvariable or expression in the message:msg format � t1t2 � � � tnwhere ti is the type of the ith variable in the message, and n, which can be zero, is the number ofvariables passed in each message. The types are concatenated to form a message format. Thesemessage format types are shown in Table B.2. Because C has only value parameters,msg formatin(the incoming message format) can contain only the pointer types, and msg formatout (the out-going message format) can contain either the pointer or the value types.56

Pointer Types (for sending or receiving) Value Types (for sending only)message type description message type descriptionS string (pointer to char)i pointer to integer I integerb pointer to boolean (ptr to int) B boolean (int in C)f pointer to oat (ptr to double) F oat (double in C)f msg format g pointer to a structure [msg format] structureVnt array of size n, message type tTable B.2: Polylith Message TypesB.2.1 SENDING MESSAGESThere is only one way to send a message:mh write (\interface name", \msg formatout", NULL, NULL, w1; w2; : : : ; wn)where interface name is the name of an outgoing interface declared in the MIL description of themodule, each ti in msg formatout is the data type of variable (or expression) wi, and n, whichcan be zero, is the number of variables in the message. The NULL parameters are used with thecapability-based network bus; while available, they are not described in current version of thisdocument.B.2.2 RECEIVING MESSAGES ON NAMED INTERFACETo receive a message on a particular interface, use:mh read (\interface name", \msg formatin", NULL, NULL, r1; r2; : : : ; rn)where interface name is the name of an interface declared in the MIL description of the module,ri is a pointer variable or the address of a variable, each ti in msg formatin is the pointer typeof variable ri, and n is the number of variables in the message (can be zero). The module willblock at themh read command until a message arrives on the speci�ed interface, or will proceedimmediately if a message is already queued on the interface. The NULL parameters are used withthe capability-based network bus; while available, they are not described in the current versionof this document.B.2.3 RECEIVING MESSAGES ON ANY INTERFACETo receive a message on any interface, use: 57

iface name = (char *)mh readselect (NULL, NULL, message bu�er, sizeof(message bu�er))where message bu�er is declared as a character array, and iface name is declared as a characterpointer. The NULL parameters used for are placeholders for features which will be available in afuture release of Polylith.The module will block at the mh readselect command until a message arrives on any interface,or will proceed immediately if a message is already queued. After the mh readselect call iscomplete, message bu�er will contain the message, and iface name will point to the name ofthe interface where the message arrived. To pull the variables comprising the message frommessage bu�er, use:mh readback (message bu�er, \msg formatin", NULL, r1; r2; : : : ; rn)where ri is a pointer variable or the address of a variable, each ti in msg formatin is the pointertype of variable ri, and n is the number of variables in the message (can be zero). The NULLparameter is a placeholder for features which will be available in a future release of Polylith.B.2.4 NON-BLOCKING CHECK FOR MESSAGESA module can avoid making a blocking read (mh read or mh readselect) by �rst querying thebus to �nd out if any messages are queued. To �nd out how many messages are queued on aparticular interface, use:mh query ifmsgs (\interface name")where interface name is the name of an interface declared in the MIL description of the module.The mh query ifmsgs command returns the number of messages queued. It does not readany messages from the interface, so it is generally followed by an mh read when one or moremessages are available.To �nd out how many messages are queued on all of the module's interfaces, use:mh query objmsgs ()The mh query objmsgs command returns the total number of messages queued on all inter-faces. It does not read any of these messages, so it is generally followed by an mh readselectwhen one or more messages are available. 58

Attribute Speci�ed in Attributeof object of interface descriptionNAME tool statement node nameSOURCE implementation statement module implementation attributeBINARYMACHINE PATTERN interface statement interface message patternRETURN return pattern for bidirectional interfaceTable B.3: Attributes Implicitly Speci�ed by MIL ProgramB.3 ATTRIBUTESA module can query the bus for values of its attributes. The standard attributes, such as namesor interface message patterns, are implicitly speci�ed in the Polylith MIL program; these arelisted in Table B.3. You may also query the bus for values of attributes that were explicitlydeclared in the MIL program.B.3.1 NAME ATTRIBUTESYour Polylith MIL program gives name attributes to the nodes and interfaces in your applica-tion. An object can query the bus for its name using:mh identity (objname bu�er, sizeof(objname bu�er))where objname bu�er is declared as a character array. The name the bus returns to the objectis the node name, not the module name. (The module name may not be unique within theapplication, but the node name is.)An object can query the bus for its interface names using:mh query objnames (ifname bu�er, sizeof(ifname bu�er))where ifname bu�er is declared as a character array. The bus puts the names of all of themodule's interfaces in the bu�er, whether the interfaces are strictly incoming, strictly outgoing,or bidirectional. The names are separated by commas in the bu�er, with no intervening blanks.B.3.2 OTHER ATTRIBUTESAn object can query the bus for the value of any of its attributes using:59

mh query objattr (\obj attr name", attr value bu�er, sizeof(attr value bu�er))where attr value bu�er is declared as a character array; the value is always a character string.The attribute speci�ed in obj attr name is either one that was explicitly declared in your MILprogram, or an attribute like NAME or BINARY that your MIL program implicitly speci�es.Note that the following two commands are equivalent:mh identity (objname bu�er, sizeof(objname bu�er))mh query objattr (\NAME", objname bu�er, sizeof(objname bu�er))The command to query the bus for the value of an interface attribute is identical to the objectattribute command, except that you also specify an interface:mh query ifattr (\if name", \if attr name", attr value bu�er, sizeof(attr value bu�er))where if name is the name of an interface declared in the MIL description of the module. YourMIL program implicitly speci�es a PATTERN attribute for each interface; its value is a stringcontaining the interface message pattern from your MIL program.

60

Appendix CUSING POLYLITH TOOLSC.1 COMPILING MODULESEach module must be compiled and linked using its native language compiler and including thePolylith library (with the -lith ag). The executable �le that is created must be named inthe binary attribute of the implementation statement in that module's MIL description. Forexample,cc main.c -c main.occ -o main.exe main.o -lithcompiles main.c into main.o, and links main.o with the routines is uses from the Polylithlibrary, creating the executable �le main.exe.C.2 COMPILING THE MIL DECLARATIONThe components of the MIL program are the module descriptions and the application description;they can be compiled in separate �les or in one �le.csc phonebook.clcompiles the MIL program phonebook.cl into phonebook.co. These compiled components arelinked using: 61

csl phonebook.co main.co -o phonebookHere the two compiled MIL components phonebook.co and main.co are linked, creating theoutput �le phonebook. This output is a text �le that contains all the information the Polylithbus needs to run the application. You may want to look at this �le to see what your MIL programproduced: lines starting with O contain object attributes; lines starting with I list an object'sinterfaces; lines starting with B contain binding information; and lines starting with A containinterface attributes.C.3 RUNNING THE APPLICATIONTo run an application, we start up a Polylith bus, passing it our compiled and linked MILprogram:bus bus input �leAn application that does not terminate voluntarily can always be terminated with a control-C.C.4 BUS OPTIONSPolylith has options available that allow you to invoke di�erent versions of the Polylith bus:bus -d -k -v -l bus input �leThese options may be used in any combination. The next three sections describe -d (directconnect), -k (keep-alive), -v (verbose), and -l (log�le).C.4.1 DIRECT CONNECTWith the direct connect (-d) option, the bus binds interfaces directly to each other. Sincethe messages are not sent to the bus to be forwarded but are sent directly to another module,communication is faster. To use direct connect on an application, you must pass additionalinformation to the mh init call:mh init (&argc, &argv, outfaces, infaces)62

where outfaces and infaces are arrays of strings. The arrays contain the names of the outgoingand incoming interfaces respectively, and are terminated by a NULL string:char *outfaces[j + 1] = f \out1", \out2", : : : , \outj", NULL g;char *infaces[k+ 1] = f \in1", \in2", : : : , \ink", NULL g;where j is the number of outgoing interfaces, and k is the number of incoming interfaces. (Abidirectional interface must be named as both an outgoing interface and an incoming interface.)Because the bus does not keep track of messages passed between modules, the mh readselectand mh query objmsgs commands are not available with direct connect.C.4.2 KEEP-ALIVEWith the keep-alive (-k) option, the bus keeps all communication channels open between mes-sages. (Normally, the channels are opened when a message is sent, and closed after it has beenreceived.) The keep-alive option allows for faster communication, but can only be used whenthe total number of bindings in the application is small. The exact limit is determined by thenumber of UNIX �le descriptors available, usually around ten to �fteen.C.4.3 VERBOSITY AND LOGGINGWith the verbose (-v) option, the bus writes information about each bus transaction to standardoutput as the application executes. It can be used for debugging an application. The log�le (-l)option captures similar information, but writes this information to a �le named logfile in yourlocal directory.
63

Appendix DSYSTEM NOTESThis chapter of the manual is the most volatile, as it is the repository of system notes ... scrapsof information that describe the current state of our distribution system. However, whereas thischapter is also the least organized, we hope its inclusion will also prove to be the most useful tothose of you who are known to be building upon Polylith as a base.1. Distribution: In case you did not receive this document via a standard Polylith distribu-tion tape, you can �nd it on Internet by anonymous ftp fromflubber.cs.umd.eduThere are README �les therein that should guide you to what you need. Plenty of othersoftware is available at the same site | take your �ll! Tar images are typically suppliedwith makefiles that `do the right thing.' (They also typically have make install andmake clean features too.)This distribution is suitable for use upon Sun 3 workstations, with SunOS versions 3.4through 4.0.3 (and probably more); DEC Vaxes with BSD-derivative implementations ofUnix; and Decstation (and MIPS) workstations. The system `mostly' works on all Encoremultiprocessors, except there is a continuing bug in their Unix implementation havingto do with how interrupted system calls are treated (if you pause your application thenresume it, then you're likely to �nd the bus will complain about system calls returning inindeterminant states). The system works on Sun 4 and other sparcstations as long as youdon't compile your applications with extensive optimizations enabled. If you don't haveour packager to generate exactly the correct stubs, then you must limp along with a hackedtreatment of varargs in our mh calls; this hack fails in the case that you turn on extensiveoptimization typical for sparc architectures, since all the assumptions about location ofparameters within an activation record (or register window) then break.All examples used in this document are packaged as-is with the distribution. Follow alongthe manual as you try the programs!2. Need help? Send questions, suggestions and editorials to polylith@cs.umd.edu64

3. include/endian.h If your site is closely tracking BSD source modi�cations, then you will�nd some of the network structures and macros have been reorganized. In particular, somecompilations will fail for lack of having the correct de�nitions. This should only a�ectconstruction of the bus | if it fails for these reasons, then check whether you have asystem include �le called endian.h. If so, then you can just change the bus con�guration�le called config.h| go ahead and de�ne the symbol called MARYLAND (you'll �nd the linealready there, commented out ... just uncomment it).4. Floating data: The automata that are responsible for coercion of oating representationhas been gutted | we could not bear to inict a slapstick piece of code to the world. Thismeans that for the short run, vaxes can only transact oats with other vaxes, suns withsuns, etc. This will change once we complete a robust version of our converter. Those ofyou who read source for recreation will see from where it has been removed. Of course, thisis not a trivial component to build, as not everything is representable across all machines |the code must know to step around the vax's terrible treatment of exponents (generatingthe `right' exceptions when trying to transmit a value too large); it must know how toaddress the IEEE oating representation for values like NAN; and it must certainly notcrap out at extreme values.5. Mixed-language examples: To date this distribution contains relatively few mixed-language examples. This will change with time as we gradually re�ne examples to thepoint where it would not be criminal to inict them upon the world. We have Pascal, Ada,Franz Lisp, Common Lisp and many other examples, each in various degrees of re�nement.If you have very pressing needs for a particular language, then contact us directly to learnwhat to do.6. TCP NODELAY:We have discovered some dialects of BSD Unix (such as earlier Sequentreleases) do not support all of the network socket options we originally assumed. One ofthese is the TCP NODELAY option. Right now this is compiled in to our bus code |you'll see the bus complain about this on each operation when messages are sent. It is onlyan annoyance (and performance loss), not a fault. Edit the messages out and you're onyour way. The next release will have these conditionally compiled, and you can �x it withjust a �x to the con�g �le.7. Volatility of Polylith syntax: The current syntax represents a six year old engineeringdecision, balancing the expressiveness of interconnection structures against the need to getrapid experience with bus organization. With the advent of CPL/CPS funding, we are�nally improving the language. When this occurs we will provide an upgrade path for mostapplications written in the old (current) MIL syntax. We know the current notation isawkward, especially for associating object attributes with particular instances of modules.8. Trivia: Where did the names of our tools come from? Originally we followed the time-honored tradition of making up brand new names to describe otherwise normal CS objects.One of these objects is a program graph, that we called a \cluster". The names for ourMIL-processing tools were therefore \cluster speci�cation compiler" (or csc) and \clusterspeci�cation linker" (or csl). The tool names have stayed even though we know refer to the65

MIL structures as just MIL structures. Similarly, our �rst implementation of the TCP/IP-based bus (earlier called \toolbus") was referred to as a \message handler" hence all themh pre�xes and su�xes.9. Bus con�guration options: For simplicity of design in this experimental platform wehave chosen to compile in some statically-�xed table sizes. These include such things asthe maximum size of any given message (measured in `at' number of bytes), the maximumnumber of messages that can be queued for other tools within the bus, and so forth. Youcan examine and control these from within the bus config.h �le. Probably our release hassome of these turned down fairly small for performance of the demo problems. If you �ndyourself limited, then you need only change the declarations and recompile. If you do, thenbe sure to rebuild the Polylith library and relink your binaries.10. Remote process startup: It is di�cult to give one release of software that can demon-strate how remote startup of tasks could be done on all sites | everyone has di�erentprotection domains. The most e�cient way is to add your own rexec-like capability toinetd and distribute some bus responsibilities across all named hosts. However, we don'tthink many site managers viewing our distribution will look upon such changes kindly!Therefore, for this release we have contrived a `more portable' way of starting up remotetasks, which uses the fairly-robust BSD tool rsh. But while common to most sites, rsh isalso fairly dumb about the �ner-grained needs of clients like Polylith: in some cases youwill need to worry about ensuring that remotely-invoked tasks are correctly terminated(since the bus cannot always �nd the right remote pid's through rsh); remote printf's willnot always get ushed to your local stdout as your intuition might like; and remote readsare de�nitely not sequenced correctly with the read-ahead of your local tty. We anticipateinstalling a bus design change that will use rsh to start up a remote copy of the bus tospawn all tasks just for that site; this will allow both IO and process cleanup to be handledmuch more neatly. Related to the startup problem is the task of ensuring you have the rightbinaries on the right host to be started up. Again, there is great variety in how this can beaccomplished (you might have NFS, you might not ... you might have compilers that knowhow to generate code for your target machine, but you might need to remotely execute amake instead ... and so on.) All the overhead needed to ensure binaries are where you wantthem points to the need for a CCM system that is knowledgeable about the diversity |exactly as our Honeywell colleagues on this e�ort are working on.11. Writing coercion routines: When trying to interface a new language to the Polylith bus,you need to show how control structures from your language correspond to the abstractPolylith bus calls. (Or rather, correspond to this particular bus's functionality ... after all,the general Polylith result is that you can de�ne an abstract interconnection media once,then separately de�ne how particular application domains map into the abstraction. Thenetwork bus de�ned here is an implementation of only one of many possible interconnectionabstractions.) An important part of this task is showing how your data correspond toPolylith-support primitive data types. This correspondence for C is implemented in a �lecalled fa c.c, whose compiled form is stored in the library libith.a. When you need tocreate these maps, you might consider following our heuristic | �rst �gure out how to map66

your new language to a C-level at all, then �gure out how to adapt your control structureto suit the interfaces in our existing C fa c library. This lets you avoid having to wadethrough the obligations of matching the bus protocol directly! We have planned a toolkitto assist in this activity should it be needed, but until it is completed the bus protocol forinteroperation is cryptic at best.12. A classic fault for new users: Once creation of concurrent processes is made trivial, astandard surprize encountered by our users is when they build a simple reader and writertoy (one process simply spins sending out a message, the other process spins in a loopreading those messages). Simple? Seems so until you run it and watch the communicationmedia | including the bus | complain. Users learn about such toys in OS classes thatcover timesharing in a di�erent chapter of the course. What happens on Unix machines witha bus that supports bu�ering of messages is that the writer will get a timeslice and pumpout messages unchecked. Thousands of messages later | perhaps hundreds of thousands,depending on the host | the reader might �nally get its slice. Meanwhile, the communica-tion media is stuck trying to bu�er a deluge of information. With our automatic packagingtool, you could have an easy option of declaring certain interfaces as being synchronous,and all stubs between components would be created for you appropriately, eliminating thisproblem. Until we distribute this tool, however, the user must know to build in `acks'manually.13. Another classic fault: Often users will build demo applications that are heavy on commu-nication and light on processing demands. Depending on your usage and host architecture,you may occasionally see messages (displayed by individual processes) that notify you ofClient retry...). Narrowlyly, this means that one of your underlying Unix hosts mayhave run out of free IP ports (or that your kernel is so slow in processing TCP requests thatone of the requests for connections within the Polylith protocol failed to succeed within areasonable amount of time). By default, this bus implementation opens and closes eachsocket as it is needed, in order to minimize the number of open �le descriptors for each pro-cess. Remember that Unix imposes a small upper bound on fd's, so the size and complexityof applications would be limited if open connections had to be maintained. The tradeo�is that better than 95% of your network communication costs will be spent in open, closeand connect. If you know that the maximum number of interfaces on each process (includ-ing the bus) is less than the maximum number of fd's available to each process, then youcan warrant that to the bus when you invoke it (the -k option ... \keep alive"), and yourperformance will improve signi�cantly. In general, Polylith beats on Unix in many waysit was never expected to be used, and frequency with which ports are acquired and thendiscarded is one of these ways.14. Stu� we should have written in this manual but didn't: Based upon internal reviewsof this report, with comments on the drafts by several CPL sites, we are aware of severaloversights:� In the current Polylith syntax, comments are expressed using the pound sign `#'.This can occur anywhere, and all text from that point to the end of the line is consid-67

ered comment text. CSC is rumored to behave unsociably if given C-style commentdelimiters.� We have implmented many busses for evaluation and testing. Recently, an bus basedupon capabilities | thought of as pointers to objects or speci�c interfaces to objects| was completed and found to be e�cient. This bus is a superset of the originalbus intended for this manual, and hence is what you �nd in the current distribution.We have updated the syntax of all examples and all text in this manual to match theaccessors to the new bus, but we have not yet written a chapter on how to utilize theadded functionality. You will �nd some of this in the examples, but we recognize theneed for another chapter or three in the manual.� The current class of network busses have a poor protocol for `direct connection' |an option where, for purposes of increased performance, the bus invokes all appli-cation processes, introduces them to one another, and then allows all processes tocommunicate directly with one another. At this time, processes that intend to partic-ipate in such an application must have additional data structures provided to the businitialization call. We know this is unnecessary, and will be improving it.� In response to popular demand | yes, we plan a data dictionary of all bus structures,plus a manual for how to write new presentations of an abstract bus to particularlanguage implementations.As the saying goes, \Fixed in version two ..."

68

