WRITING DISTRIBUTED PROGRAMS
IN POLYLITH

Christine Hofmeister
Joanne Atlee

James Purtilo

Computer Science Department and
Institute for Advanced Computer Studies
University of Maryland

This document corresponds to Version 1.0 of the
Polylith Software Interconnection System.

November 1990.

The Polylith effort has been supported by Office of Naval Research under contract N0014-90-
J4091, and is currently part of the DARPA/ISTO Common Prototyping Language project.

Contents

1 OVERVIEW 1
2 BASIC FEATURES 7
2.1 CREATING AN APPLICATION o o o o . 7
2.1.1 MIL PROGRAM FOR MODULE main 9

2.1.2 SOURCE PROGRAM FOR MODULE main 10

2.1.3 MIL PROGRAM FOR MODULE print 11

2.1.4 SOURCE PROGRAM FOR MODULE print 11

2.1.5 MIL PROGRAM FOR THE APPLICATION 12

2.1.6 COMPILING, LINKING, AND RUNNING THE APPLICATION 15

2.2 ENHANCING THE APPLICATION oo o o oo .. 15
221 MODULEDUP e 16

2.2.2 MIL PROGRAM FOR THE APPLICATION 17

2.3 SENDING STRUCTURED MESSAGES o ... 18
2.3.1 SOURCE PROGRAM FOR MODULE main 18

2.3.2 SOURCE PROGRAM FOR MODULE book 21

2.3.3 MIL PROGRAM FOR THE APPLICATION 21

2.4 SUMMARY OF BASIC POLYLITH FEATURES 23

2.4.1 MIL STATEMENTS e e 23

2.4.2 POLYLITH BUS CALLS o 26
2.4.3 COMPILING, LINKING, RUNNING 27

3 ADVANCED FEATURES 29
3.1 MESSAGE PASSING e 29
3.2 MANIPULATING INTERFACE NAMES, 32
3.2.1 QUERYING THE BUS FOR INTERFACE NAMES 32
3.2.2 RECEIVING MESSAGES ON ANY INTERFACE 34

3.3 ATTRIBUTES e 35
3.3.1 OBJECT ATTRIBUTES 35
3.3.2 INTERFACE ATTRIBUTES, 38

3.4 NON-BLOCKING CHECK FOR MESSAGES 39
3.4.1 QUERYING A PARTICULAR INTERFACE 39
3.4.2 QUERYING ANY INTERFACE 41

3.5 POLYLITH BUS RUNTIME OPTIONS 41
3.5.1 DIRECT CONNECT e 41
3.5.2 KEEP-ALIVE 0 43
3.5.3 VERBOSE, LOGFILE o o 43

3.6 SUMMARY OF ADVANCED FEATURES 43
3.6.1 MIL STATEMENTS e 43
3.6.2 POLYLITH BUS CALLS o 45
3.6.3 POLYLITH BUS RUNTIME OPTIONS 47

BIBLIOGRAPHY 49

A MIL SUMMARY

Al MODULE DESCRIPTION oo

A.1l.1 IMPLEMENTATION STATEMENT

A.1.2 OBJECT ATTRIBUTE STATEMENT

A.1.3 INTERFACE STATEMENT

A2 APPLICATION DESCRIPTION o oo

A2.1 TOOL STATEMENT e

A.2.2 BIND STATEMENT oo o e

BUS CALLS

B.1 GENERAL COMMANDS e

B.2 MESSAGE PASSING o e

B.2.1 SENDING MESSAGES o

B.2.2 RECEIVING MESSAGES ON NAMED INTERFACE

B.2.3 RECEIVING MESSAGES ON ANY INTERFACE

B.2.4 NON-BLOCKING CHECK FOR MESSAGES

B.3 ATTRIBUTES e

B.3.1 NAME ATTRIBUTES o o s

B.3.2 OTHER ATTRIBUTES o .

USING POLYLITH TOOLS

C.1 COMPILING MODULES e e

C.2 COMPILING THE MIL DECLARATION

C.3 RUNNING THE APPLICATION e s

C.4 BUS OPTIONS . . . o o e e e

C.4.1 DIRECT CONNECT e

50

50

51

51

51

53

53

54

55

55

56

57

57

57

58

59

59

59

61

D

C.4.2 KEEP-ALIVE

C.4.3 VERBOSITY AND LOGGING

SYSTEM NOTES

64

Chapter 1

OVERVIEW

POLYLITH is a software interconnection system. It allows programmers to configure applications
from mixed-language software components (modules), and then execute those applications in
diverse environments. Communication between components can be implemented with TCP /TP
or XNS protocols in a network; via shared memory between light-weight threads on a tightly-
coupled multiprocessor; using custom-hardware channels between processors; or using simply a
‘branch’ instruction within the same process space.

The principle feature of POLYLITH is that the components can be implemented separately from
the implementation of interfacing between those components. In turn, this provides a ‘divide and
conquer’ capability for software engineers, who know that simultaneous treatment of functional
and interfacing requirements within the same program makes it costly to maintain and difficult
to reuse elsewhere. POLYLITH represents a software organization where interfacing decisions can
be encapsulated separately, using a software bus. The bibliography lists several papers where
PoryrLiTH has been either described or utilized in other research. A key description of the
abstract result is given in [Purt90].

To date, POLYLITH has been in greatest demand by programmers who wish to use one particular
software bus — the TCP/IP-based network bus. POLYLITH helps these users write applications
for distribution across mixed-architecture host processors. This document is written for such
users. All examples are presented in terms of distributed applications to be executed in a network.
In this context, the POLYLITH bus provides message-passing primitives to handle communication
between the processes, performing data transmission and any necessary coercion. This use of
PoryLiTH makes several assumptions:

e There is no shared memory between processes.

e Communication between processes is implemented exclusively via channels defined and
controlled by POLYLITH.

e The basic communication operation provided by POLYLITH is message passing. These

messages can be used to build remote procedure call (RPC), for sending and receiving
variables of any data type (structured or atomic), or for synchronization (by passing empty
messages).

e Since POLYLITH controls the communication channels, it provides any necessary data coer-
cion between modules written in different languages, or between modules which are instan-
tiated on different hosts.

Later forms of this manual will be written to help users who wish to implement interfacing deci-
sions that involve shared memory or other organizations. Moreover, there are several additional
tools that make using POLYLITH much easier. These tools — such as the packager [CaPu90] and
languages for manipulating interface declarations [PuAt91] — are not described here. We focus
only upon POLYLITH-ic organization. Finally, for simplicity in presentation, we give most of our
examples in the C language. This may seem strange for something purporting to be a ‘mixed
language programming system’ but it simplifies the preparation of a manual such as this docu-
ment. Examples of how POLYLITH interconnects components from other programming languages
appear in the distribution, which will be expanded as refined language interfaces accumulate over
time.

The remainder of this chapter sketches the major steps a user must perform to create a simple
application in POLYLITH. Then Chapter 2 goes through the sketch filling in the details. Chapter 3
describes how to use more ‘advanced’ features of our system. The appendices of this document
contain much of the same material as the earlier chapters, except they are organized for use as a
reference guide.

SKETCH OF SAMPLE APPLICATION IN POLYLITH

A module is ‘any identifiable program unit’. For now, think of them as self-contained C programs
having communication channels that can be bound to corresponding ports on other programs.
Each module can be invoked many times within an application configuration — the running
forms of these modules are called processes. Fach process is given a unique instance name.

A note on terminology: Sometimes we refer to processes as being ‘modules’ since in the general
PoryLiTH formulation an instantiated module might not be a separate process. Hopefully the
context of use will make this usage unambiguous. Other times we slip and call the processes tasks,
and long-time POLYLITH users will know to call these services too. Finally, since the abstract
description of this system uses a graph model of interconnection — modules correspond to nodes
in the application graph, and bindings between interfaces correspond to arcs in the graph — we
sometimes refer to the modules as being nodes.

Modules are said to have an ‘interface’ for each communication channel upon which the process
will send or receive messages. Processes communicate through a software bus by invoking mes-
sage passing routines provided by a PoLYLITH library, linked into the application. Calls to the
POLYLITH message-passing routines require the programmer to reference one of its interfaces.

main(argc,argv) main(argc,argv)
{ char str[80]; { char str([80];
mh_w:‘rite ("out", ... ,"msgl"); mh_r‘ead ("in", ... ,str);
mh_réad ("in", ... ,str); mh_w:‘rite (Mout", ... ,"msg2");
} ‘ }

Figure 1.1: Source code for the application.

Ultimately, users would not want to install these ‘bus calls” manually, but rather they would
allow an automatic packager tool to create appropriate network stubs for interfacing to the bus.

Once the program code for the modules of the application are written, the programmer describes
the configuration of the application using the POLYLITH module interconnection language (MIL).
The MIL declaration includes:

¢ A definition of each module in the application, describing where the program code for this
module resides; where the module is to execute; and what communication interfaces the
module has.

¢ A definition of the application itself, describing what modules are included in the application
plus how those module interfaces are bound together to form a communication channel.

Figure 1.1 shows an example of two programs that are used as modules in an application. These
are C programs that each call the POLYLITH message passing routines mh_write using interface
out, and mh_read using interface in. Program a.c sends a message containing the string "msg1"
and receives a message into variable str. Program b.c receives a message into its variable str,
and sends a message containing the string "msg2". Although we intend to attach interface out
in one program to interface in in the other, that fact is not in any way encoded in the program
code.

Figure 1.2 (left) describes the information contained in the MIL definitions of the two modules.
Module A is instantiated by program a.c and declares interfaces in and out, while module B uses
program b.c and interfaces in and out. There is still no connection between the two modules,
but now the modules can be used in a POLYLITH application.

Figure 1.2 (right) depicts what information the application portion of the MIL definition contains.
The application has three nodes: node foo is instantiated with module A, and both nodes bar and

module A :
implementation : "a.out"
outgoing interface: "out" sends a string
incoming interface: "in" receives a string

module B
implementation : "b.out"
outgoing interface: "out" sends a string
incoming interface: "in" receives a string

node
bart oo

(rodul e B)

Figure 1.2: Information provided by the application’s MIL program; module definitions (left);
application definition (right).

gservice "A" : { orchestrate "example" : {
implementation : { binary : "a.out" } tool "foo" : M"A"
source "out" : { string } tool "bar" : "B"
sink "in" : { string } tool "bartoo'" : "B
¥ bind "foo out" "bar in"
bind "bar out'" "bartoo in"
service "B" : { bind "bartoo out" "foo in"
implementation : { binary : "b.out" } }
source "out" : { string }
sink "in" : { string }
}

Figure 1.3: The actual MIL program; module definitions (left); application definition (right).

Pol ylith bus

"negl”
_ 7
- in
out
in out
/
"sg2" /
N I
\
\
N "nmeg2"
out .
in
bart oo

Figure 1.4: Runtime instantiation of the application.

bartoo use module B. We bind interface out of node foo to interface in of node bar, bind bar’s
out to bartoo’s in, and bind bartoo’s out to foo’s in. Figure 1.3 shows the actual POLYLITH
MIL program that corresponds to the description given in Figure 1.2. Now the application is
complete.

An application runs under POLYLITH by invoking an appropriate implementation of the POLYLITH
bus — in this case, the TCP/IP-based ‘network bus’ is what is appropriate. The bus is given a
MIL program (module definitions and application definition) as input, which it uses to start up
the appropriate UNIX process for each of the nodes, and to set up the communication channels
between these nodes.

Since each node is a separate process, each has its own thread of control and each starts executing
as soon as it is created. These nodes are just concurrent processes until one of them issues a
PoLyLITH command to read a message from an interface; at that point the node blocks until
a message arrives on the interface. In the application described in Figures 1.1 and 1.2, nodes
bar and bartoo block immediately, waiting for a message to arrive. Node foo sends a message,
then blocks. The messages passed in this application act to synchronize the concurrent nodes,
which causes the flow of control to start in node foo, pass to node bar when foo sends the string
"msgl", pass to node bartoo when bar sends the string "msg2", and return to node foo when
bartoo sends the string "msg2".

Coordination of the message passing is also the responsibility of the POLYLITH bus. Messages

are not sent directly to other nodes, but are sent to the bus to be forwarded to the appropriate
node. Figure 1.4 shows the runtime instantiation of the application, with the bus coordinating
and channeling communication between nodes.

Chapter 2

BASIC FEATURES

In this chapter we explain the basic POLYLITH features by using these features in three different
applications. The first example starts with a very simple program that we modify to run on
a PorvyLITH bus. The next example is an enhancement of the first application; we use it to
demonstrate how POLYLITH makes it easy to reuse modules. The third example shows how to
send complex, structured messages in POLYLITH. We end with a summary of the features that
were introduced in this chapter.

2.1 CREATING AN APPLICATION

Our goal is to create an application in POLYLITH which behaves like the program shown in Figure
2.1, where the main routine passes a string to an external routine print, which writes the string
to standard output. We will use POLYLITH to invoke the print routine as a remote procedure
call: we put the two routines into separate modules and run the print module on a remote host,
using the POLYLITH bus to communicate between the modules (Figure 2.2).

Basic/HelloO/main.c Basic/HelloO/print.c
extern print(); #include <stdio.h>
main() print(s)
{ char *s;
print ("Hello, world"); {
} printf("%s\n", s);
}

Figure 2.1: Simple Hello0 example.

"Hell o, worl d"

(enpty msQ)

Figure 2.2: Hellol, the POLYLITH version of simple HelloO example.

service "main" : {
implementation : { binary : "./hello.exe" }
client "print" : {string} accepts { }

}

Figure 2.3: MIL program for module main in Hellol application.

To implement a remote procedure call (RPC), the caller sends a message containing the param-
eters of the call, and the remote procedure returns an empty message when it has finished. Our
obligations are to modify the main and print routines, and to create a PorLyLITH MIL program
for the application. For this application, we fulfill these obligations incrementally by:

e creating a PoLyrLiTH MIL program to describe the main module

¢ modifying the main module to interact with the bus instead of directly with module print

e creating an MIL program for module print

¢ modifying module print to communicate with the bus

e creating a third MIL program to bind the interfaces of the two modules

e compiling, linking, and running the application
For flexibility we are writing the MIL program in three separate pieces: a description for each of
the two modules, and the application description. These three will be compiled separately but
linked into a single PoryLiTH MIL program prior to running the application. The three pieces

could be combined into a single physical file if the modules were to run on the same host, or if
they were not expected to be used in any other application; this is an application design decision.

#include <stdio.h>

main(argc,argv)

int argc;
char **argv;

mh_init (&argc, &argv, NULL, NULL);
mh_write("print", "S", NULL, NULL, "Hello, world");
mh_read("print", "", NULL, NULL);

mh_shutdown(0, 0, "'");

Figure 2.4: Source program for module main in Hellol application.

2.1.1 MIL PROGRAM FOR MODULE main

The purpose of the MIL program for module main is to specify certain of its properties for the
PoryLiTH bus, including the location of the executable code and the communication interfaces
the module uses. Figure 2.3 shows the complete MIL program for module main. The module is
named immediately following the keyword service, and the description of the module is enclosed
in braces (Figure 2.3). The implementation statement ties this abstract module description
to an executable program by giving the executable’s pathname from the current directory; the
executable is named following the keyword binary. Any remaining statements describe the
communication interfaces that the module (thus the executable program) uses; here we have just
one interface.

Since module main will no longer call the print routine directly, we create a communication
interface to act as a substitute for the call/return. We name this communication interface “print”,
and describe the data that can be sent and received via this interface: our intention is to use
this interface to communicate with module print, so we want to be able to send a string and we
expect an empty message in return. This information is conveyed in the statement

client “print” : {string} accepts { }

which defines “print” as an interface that initiates communication by sending something of
datatype string, and receives an empty message in return. The interface we have just defined is
bidirectional; Chapter 3 describes how to define a one-way interface.

2.1.2 SOURCE PROGRAM FOR MODULE main

Figure 2.4 shows the changes we make to convert our original main routine into the source
program needed for module main. The key change involves replacing the call to routine print
with calls to the POLYLITH bus to effect a call to the module print (which we haven’t yet written).
We invoke module print by sending it a message containing the parameter “Hello, world”, but
don’t send the message directly to module print. Instead we use the mh_write bus call to instruct
the bus to forward our message to the module at the other end of the interface. Using mh_write,
we send the bus:

“print” the name of the interface we’re using
“S” the format of the message we’re sending; here it’s string
“Hello, world” the message itself; the string parameter for print

Notice in Figure 2.4 that there are two NULL parameters between the message format parameter
and the message string; these are placeholders for features that will appear in a future release of
PoryrLiTH. The interface name “print” and the message format “S” match the interface declared
in the client statement of our MIL program®.

We intend to attach module print to the other end of the interface “print”, where it will wait for
a message from its caller, then print the string it received, then return an empty message on the
same interface in place of an ordinary procedure return. The mh_read bus call completes the
communication with module print; we specify:

“print” the name of the interface
“r the format of the message we expect to receive: an empty message

Notice in Figure 2.4 that the mh_read also has two NULL parameters that refer to features
not available in this release of POLYLITH. The mh_read is a blocking call: execution will not
continue past that point until a message is received on the named interface. Here our reason for
blocking to wait for an empty message is to synchronize with the other module, thus completing
the remote procedure call to that module.

The remaining requirements for module main are to pass the command line arguments to mh_init:

main(argc,argv)

int argc;

char **argv;

{ ... mh_init (&argc, &argv, NULL, NULL) ...

!Compare the message pattern {string} used in defining the “print” interface in Figure 2.3 with the message
format "8" used in the mh_write statement in Figure 2.4. The message patterns used in the MIL are more
descriptive, making the MIL programs more readable. The message formats used in POLYLITH bus calls are
abbreviated to streamline the bus calls. Normally, a packager tool will automatically generate these bus calls, so
the programmer will not see a discrepancy between message patterns and message formats.

10

gervice "print" : {
implementation : { binary : '"/jteam/crh/print.exe" machine : "konky.cs.umd.edu" }
function "print" : {string} returns { }

}

Figure 2.5: MIL program for module print in Hello1l application.

which sets up a communication channel between the module and the bus (this is something each
module must do). The main module must also call mh_shutdown(0,0,"") to terminate the
application. When the application is running, the first mh_shutdown(0,0,"") encountered
shuts down all nodes in the application, i.e. the entire application.

2.1.3 MIL PROGRAM FOR MODULE print

The MIL program for the print module is shown in Figure 2.5. Again we use the implementation
statement to specify the executable program for this module: the file name follows the keyword
binary, and the machine where the process will run follows the keyword machine. Naming
a remote host for the machine attribute allows us to distribute the application. When the
machine attribute is not specified, by default the module runs on the same host as the PoLYLITH
bus. When running a module on a remote host, you must make sure that the .rhosts file on the
remote machine contains the name of the machine where the bus is executing.

Now we must declare a interface so that this module can communicate with module main: we
expect this interface to receive a string and return an empty message, so that it matches the
interface declared in module main. The statement

function “print” : {string} returns { }

defines “print” as an interface that receives something of datatype string, and returns an empty
message. This function interface is bidirectional, and must be bound to a client interface like
the one in module main. Although we gave this interface the same name as the interface in
module main, we could have named it something different. The binding between the interfaces
will be explicitly stated in the third MIL program, and does not depend on the names of the
interfaces being identical.

2.1.4 SOURCE PROGRAM FOR MODULE print

The first difference between the original print routine and the new print module in Figure
2.6 is that the C procedure in the module is not named “print” but is named “main”. Recall

11

#include <stdio.h>

main(argc,argv)

int argc;
char **argv;
{ char s[256];

mh_init (&argc, &argv, NULL, NULL);
mh_read("print", "S", NULL, NULL, s);
printf("%s\n", s);

mh_write("print", """, NULL, NULL);

Figure 2.6: Source program for module print in Hellol application.

that when a PoLYLITH application starts up, it creates at each node an independent process,
so each module associated with a node must contain a procedure “main”. When a C program
is compiled, linked, and loaded into a process, execution starts at procedure “main”. But we
want this particular module to behave like a procedure that is called by another, so we put an
mh _read bus call immediately following the mh_init. The mh_read blocks the module until
another module sends a message, thereby initiating a “procedure call” to this print module. The
mh_read parameters we use are:

“print” interface name
“S” message format is string
8 a variable of type string; used to receive the message

The two NULL parameters refer to features not available in this release of PoLYLITH. Predictably,
these parameters match the parameters of the corresponding mh_write call in module main.
After printing the string to standard output, we make the mh_write bus call that the main
module is waiting for. Note that we do not need an mh_shutdown call here, since this module
is behaving as a remote procedure, and expects another module to do the bus shutdown.

2.1.5 MIL PROGRAM FOR THE APPLICATION

Figure 2.7 shows the last part of the MIL program for our application. First we give the
application the name “one_hello” using the keyword orchestrate, then enclose the application
description in brackets. The nodes comprising our application are listed one by one using the
tool statement, which lists the node name and the module that will instantiate the node:

12

orchestrate "one_hello" : {
tool "prog" : "main"
tool "print"
bind "prog print" "print print"

Figure 2.7: MIL program for the application description in Hellol.

tool “node” : “module”

Our first node is named “prog” and instantiated with module main, and our second node is named
“print” and instantiated with module print:

tool “prog” : “main”
tool “print”

The general form of the tool statement specifies both a node and a module, but if the two names
are the same, we can specify just the module. The following two statements are equivalent:

tool “print”
tool “print” : “print”

The bind statement specifies two interfaces that are to be connected by the PoLYLITH bus. The
first interface listed is the initiating interface, the one that will issue the first mh_write bus call.
Both the node name and the interface name must be specified, since interface names are unique
only within a module:

bind “node; interface;;” “ node, interface,,”

where node; has a jth interface interface;; which matches the k" interface of node,. In this
application, node “prog” was instantiated with module main, which contains interface “print”;
and node “print” was instantiated with module print, which contains interface “print”. So we bind
“prog print” to “print print”. The compiler just assumes that such module descriptions exist,
but when we later link these three MIL programs together, the linker must find a description
for a module named main which has an interface named “print”, and another description for a
module named print which has an interface named “print”.

13

all: hellol hello2
hellol: hellol.mh hello.exe print.exe

hello2: hello2.mh hello.exe print.exe dup.exe

hellol.mh: hello.co print.co hellol.co
csl hello.co print.co hellol.co -o hellol

hello2.mh: hello.co print.co dup.co hello2.co
csl hello.co print.co dup.co hello2.co -o hello2

hello.exe: hello.o
cc -0 hello.exe hello.o -1ith

print.exe: print.o
cc -o print.exe print.o -lith

dup.exe: dup.o
cc -o dup.exe dup.o -lith

hello.co: hello.cl
csc hello.cl

hellol.co: hellol.cl
csc hellol.cl

hello2.co: hello2.cl
csc hello?2.cl

print.co: print.cl
csc print.cl

dup.co: dup.cl
csc dup.cl

install:
cp print.exe /jteam/crh/print.exe

clean:
rm -f *.0 *.exe *.co hellol hello?2

Figure 2.8: Makefile for applications Hellol and Hello2.

14

2.1.6 COMPILING, LINKING, AND RUNNING THE APPLICATION

The Makefile in Figure 2.8 contains the commands needed to compile and link this application,
called hellol in the Makefile. We compile and link each of our modules with the commands

cc hello.c -c

cc -o hello.exe hello.o -lith
(for module main)

cc print.c -c

cc -o print.exe print.o -1lith
(for module print)

creating the executable files hello.exe and print.exe. The make install copies print.exe
to /jteam/crh/print.exe, because the executable files must reside in the same file directory as
that specified in the implementation ... binary attribute in our MIL program. Note in the cc
command that the POLYLITH library routines are linked into the modules by specifying the library
-1ith. Then we compile each of the three parts of the MIL program using the command csc.
File hello.cl contains the description of module main, file print.cl contains the description of
module print, and file hellol.cl contains the application description (Figures 2.3, 2.5, and
2.7). We execute:

csc hello.cl
csc print.cl
csc hellol.cl

creating the compiled versions in files hello.co, print.co, and hellol.co. Next we link these
three files with the csl command:

csl hello.co print.co hellol.co -o hellol

creating the output file hello1; this is the file we pass to the POLYLITH bus. Finally, to run the
application, we start up a Polylith bus, passing it this file hello1:

bus hellol

2.2 ENHANCING THE APPLICATION

In this section we build a new application that is based on the application just presented. We
will reuse modules main and print, and show how PoLyLITH allows us to rebind their interfaces

15

"Hell o, world"

printl

(rmodul e
print)

"Hel | o, worl d"

(enpty nsQ)

"Hell o, world"

(enpty nsQ)

(enpty msg)

Figure 2.9: Hello2, an enhanced version of Hellol.

without making changes to the modules themselves. The new application is shown in Figure
2.9: we have inserted a new module, called DUP, between the main and print modules. Module
DUP serves as a duplicator by taking the message from module main and sending it to two print
modules. This example also shows us how POLYLITH lets us use multiple instantiations of a
module in an application. We are not simply invoking the print module twice; we are creating
two independent nodes from the print module, each of which has its own binding to the DUP
module.

2.2.1 MODULE DUP

The MIL program and source program for module DUP is shown in Figure 2.10. We continue
to structure the interactions between modules as remote procedure calls: module DUP is invoked
when it receives a string on its “server” interface. It initiates remote procedure calls on the
“print1l” and “print2” interfaces by sending the string received from the “server” interface. The
mh_read commands for “printl” and “print2” signal the completion of the remote procedure
calls, and module DUP ends by sending an empty message on interface “server”, signaling to the
caller that it has finished.

Remember that module DUP has no knowledge of where the string sent on interfaces “print1”
and “print2” will end up. We intend to bind these interfaces to print modules, but we could
instead bind them each to another DUP module and print out four copies of the string. Or we
could bind “printl” and “print2” to different kinds of print modules, one printing to standard
output and the other printing to a file. We could even bind both interfaces to the same module,
provided the module had two matching interfaces.

16

service "DUP" : { #include <stdio.h>
implementation : { binary : "./dup.exe"}
function "server" : {string} returns { } main(argc,argv)
client "printl" : {string} accepts { } int argc;
client "print2" : {string} accepts { } char **argv;

} { char s[256];

mh_init (&argc, &argv, NULL, NULL);
mh_read("server", "S", NULL, NULL, s);

mh_write("printl", "S", NULL, NULL, s);
mh_write("print2", "S", NULL, NULL, s);

mh_read("print1", "", NULL, NULL);
mh_read("print2", "", NULL, NULL);
mh_write("server", "", NULL, NULL);

}

Figure 2.10: Module DUP for Hello2 application; MIL program (left), source program (right).

2.2.2 MIL PROGRAM FOR THE APPLICATION

The MIL program for this application is again composed of four parts: three module descriptions
and an application description. We can reuse the module descriptions for main and print from
the previous application (Figures 2.3 and 2.5); we just saw the module description for DUP
(Figure 2.10), and the new application description is shown in Figure 2.11.

The four tool statements describe the nodes of the application: node “main” uses module main,
node “DUP” uses the new module DUP, node “print1” uses module print, and node “print2” also
uses module print. Now it’s clear why the node name can’t always be the same as the module
name. The bind statements connect node “main” interface “print” to node “DUP” interface
“server”, and connect the remaining interfaces of node “DUP” to the two print nodes. We were
able to reuse the main and print modules without making any changes to their source or MIL
programs.

Now that we’re assured that the “print1” and “print2” interfaces of module DUP are connected
to separate print modules, we can see that our duplicator does not guarantee that the output from
the two print modules will not be interleaved. The second print module is invoked before waiting
for the return from the first. If we were to change the duplicator to wait for the return from the
first before invoking the second, we could be sure that the output would not be interleaved.

17

orchestrate "hellohello" : {
tool "main"

tool "DUP"
tool "printl" : "print"
tool "print2" : "print"

bind "main print'" "DUP server"
bind "DUP printl" "printl print"
bind "DUP print2" "print2 print"

Figure 2.11: MIL program for Hello2 application.

2.3 SENDING STRUCTURED MESSAGES

The application in this section demonstrates how to send and receive a message containing some-
thing other than a character string. Not only can we send variables of many data types, including
structures and arrays, but we can also send several variables in one message.

The simple Phonebook application interacts with the user to get a name, looks up the phonebook
entry corresponding to the name, and then displays that entry. The application graph and
Makefile in Figure 2.12 show the two modules we use, main and book. Module book contains the
phonebook database and provides the lookup function: it waits to receive a string containing a
person’s name, then it looks in the database for the corresponding phone extension and returns
the database entry to the caller. Module main is the caller: it prompts interactively for a name,
sends the name to module book, and receives and prints the phone extension. Typing an empty
string at the prompt terminates the application.

2.3.1 SOURCE PROGRAM FOR MODULE main

The source program for module main is given in Figure 2.13. When an empty string is entered
for the name prompt, the while loop ends and the mh_shutdown is executed, so this module
controls the termination of the application. Within the loop, the mh_write is no different from
what we’ve seen before: we’re sending a character string. But the mh_read incorporates new
features: we’re receiving values for two variables in the message, found and entry. The message
format (in the second parameter) indicates the number of and type of variables that are to be
included in the message. These variables are listed in the mh_read call starting at the fifth
parameter.

The message format for this particular mh_read call is "o{SI}", indicating that the first variable
is a pointer to a boolean and the second is a pointer to a structure containing a string and an

18

all: phonebook

phonebook: phonebook.mh main.exe book.exe

phonebook.mh: phonebook. co
csl phonebook.co —o phonebook

main.exe: main.o
cc -0 main.exe main.o -1lith

book.exe: book.o
cc -o book.exe book.o -1lith

phonebook.co: phonebook.cl
csc phonebook.cl

clean:
rm —-f *.0 *.exe *.co phonebook

Figure 2.12: Phonebook application Makefile (left); graph (right).

integer. A complete list of message format types is provided in the next section’s summary. To
receive multiple variables, you concatenate their types in the message format; for example, to
receive values for four boolean variables and two strings, you would use a message format of
"bbbbSS'". Since C does not have a boolean native type, we declare the boolean variables to be
integer. The variable received for a "b" message format must be int, not char, because when
the program is written in C, the bus expects a boolean to be the same size as an int. The bus
will transmit the message incorrectly if the variables do not correspond to the message format.

It is important to note that all parameters corresponding to variables in an mh_read call must
be pointers to the variables, and not the variables themselves. This is a constraint imposed by
the C language, which allows only value parameters; other languages do not necessarily have
this constraint. So we pass the address of found and the address of entry, and the mh_read
command sets the values of the variables at these addresses. Also remember that the storage for
these pointer variables must be allocated; if you declare

struct table *p

and call

mh_read ("lookup", "{SI}", NULL, NULL, p)

19

#include <stdio.h>

struct table {
char *key;
int value;
};
char key[256];
struct table entry;

main(argc,argv)
int argc;

char **argv;

{ int found;

mh_init (&argc, &argv, NULL, NULL);

printf ("Name? ");
while (strcmp(gets(key),"")) {

mh_write("lookup", "S'", NULL, NULL, key);
mh_read("lookup","b{SI}",NULL,NULL,&found,&entry) ;

if (found)

printf ("Ext. %d\n", entry.value);

else
printf ("%s not found.\n", key);
printf ("Name? '");
}
mh_shutdown (0, 42, "'");

Figure 2.13: Source code for module main in Phonebook application; POLYLITH version (left);

original (right).

#include <stdio.h>

struct table {
char *key;
int value;
};
char key[256];
struct table entry;

main()

{ int found;

printf ("Name? ");
while (strcmp(gets(key),"")) {

lookup (key, &found, &entry);
if (found)

printf ("Ext. %d\n", entry.value);

else
printf ("%s not found.\n",
printf ("Name? ");

}

20

you will overwrite whatever p points to, whether or not it was declared as struct table. Here
we allocate storage for entry by declaring it to be of type table, which we define at the top of
the file.

2.3.2 SOURCE PROGRAM FOR MODULE book

Since we expect module book to send a database entry to module main, we must use the same
structure definition in both modules. Following the struct table definition in module book
(Figure 2.14) is the declaration and initialization of the database db, an array of type struct
table. The first entry in the database is a dummy entry for the module to pass back when no
entry is found to match the key, because the mh_read in module main must receive something
of type struct table in all cases.

Notice that the while loop does not terminate, or rather does not terminate until the application
itself is terminated by the mh_shutdown in module main. Inside the while loop, we use mh_read
to get the key, then search the database for an entry to match that key. The message format
"B{SI}" for the mh_write indicates that the fifth parameter is a boolean variable (int in C),
and the sixth is a pointer to a structure containing a string and an integer. Since here we are
passing the variables to the bus, the value parameter restriction in C is not a problem; we can
pass the value of variable found, instead of passing a pointer to the variable as we had to do
with mh_read. If a matching entry was not found, we send &db[0] to fill in the sixth parameter
with something of the correct data type. If we were to send &db[4], which is initialized to NULL,
the message format would not match the variables, and the bus could not successfully deliver the
message.

2.3.3 MIL PROGRAM FOR THE APPLICATION

The MIL program for the phonebook application, shown in Figure 2.15, combines the two module
descriptions and the application description in one file. The description of interface lookup
in module main contains a message pattern we haven’t seen before: { “boolean; <string;
integer> }. This message pattern matches the message format parameter of the mh_read call
in module main, although the data type names differ. In a MIL message pattern, the type name
is written out in full, pointer types are preceded by the symbol ~ (except that a pointer to a
structure uses the symbols <message pattern>), and concatenation is indicated by a semicolon.
The MIL message pattern types are summarized in the next section. This particular message
pattern indicates that the message will contain a pointer to a boolean variable, and a pointer
to a structure containing a string and an integer. Compare this pattern to its correspondent on
the lookup interface of module book, which sends a boolean variable instead of a pointer to a
boolean. As we just discussed, the mh_write in module book passes the value of the boolean
variable, not a pointer to the boolean variable, so the message pattern in our MIL program must
reflect that.?

?In fact, the message patterns in the MIL program do not need to match the message actually sent. Our MIL
program could have declared interface lookup to read and write { string } everywhere, leaving the mh _read

21

#include <stdio.h> #include <stdio.h>

struct table { struct table {
char *key; char *key;
int value; int value;

}s }s

char key[256];

static struct table db[] = { static struct table db[] = {
{"dquumy entry", 0}, {"dquumy entry", 0},
{"Jo Atlee", 1566}, {"Jo Atlee", 1566},
{"Christine Hofmeister", 1732}, {"Christine Hofmeister'", 1732},
{"Jim Purtilo'", 1832}, {"Jim Purtilo", 1832},
NULL NULL

}s }s

main(argc,argv) lookup (key, f, e)

int argc; char *key;

char **argv; int *f;

{ int i, found; struct table *e;

{ int i, found;
mh_init (&argc, &argv, NULL, NULL);

while (1) {
mh_read("lookup", "S", NULL, NULL, key);

found = 0; found = 0;
for (i=0; db[i].key !'= NULL; i++) { for (i=0; db[i].key != NULL; i++) {
if (strcmp(key, dbl[i].key) == 0) { if (strcmp(key, db[il.key) == 0) {
found = 1; found = 1;
break; break;
¥ ¥
¥ ¥
if ('found) i = 0; if ('found) i = 0;
mh_write("lookup","B{SI}",NULL,NULL,found,&db[i]); #*f = found;
e = db[i];
¥
¥ ¥

Figure 2.14: Source code for module book in Phonebook application; POLYLITH version (left);
original (right).

22

service "main" : {

implementation : { binary : '"./main.exe" }

client "lookup" : { string } accepts { "boolean ; <string ; integer> }
}
service "book" : {

implementation : { binary : '"./book.exe" }

function "lookup" : { string } returns { boolean ; <string ; integer> }
}
orchestrate "phonebook" : {

tool "main"

tool "book"

bind "main lookup'" '"book lookup"
}

Figure 2.15: MIL program for Phonebook application.

24 SUMMARY OF BASIC POLYLITH FEATURES

This section summarizes the POLYLITH features that are presented in Chapter 2. A complete
summary of features is presented in the appendices.

2.4.1 MIL STATEMENTS

The PoryrLiTH MIL program consists of a description for each module and a description of the
application. These can be in separate files, combined in a single file, or a mix of both.

module_description,
module_descriptions

module_description,,
application_description

and mh_write commands in both modules exactly as they are, and the bus would correctly pass what is stated in
the modules. The message formats in the mh_read and mh_write calls must match the rest of their parameters;
the bus uses these, not the declarations in the MIL program, to decode the parameters. In the next chapter we
will see how to use the declarations from the MIL program to avoid coding the message formats explicitly in the
mh _read and mh_write calls; we can instead query the bus to find out the message format stated in the MIL
program.

23

MODULE DESCRIPTION A description must appear for each module used in the application.
The module_name given to the module is used to identify it in the application description. This
name is not referred to in the source program for the module.

service “module_name” : {
implementation_statement
interface_statement;
interface_statements

interface_statementy,

IMPLEMENTATION STATEMENT The implementation statement names the program which
implements this module and the host on which the module is to be created.

implementation : { implatir_name; : “impl_attr_value;” ... impl_attr_name; :
“impl_attr_value;” }

Table A.1 shows the attributes that can be used in the implementation statement. We’ve only
discussed two implementation attributes so far: binary and machine. The value of the binary
attribute is the pathname of the executable program, and the value of the machine attribute is
the name of the host where the module will run. If the machine attribute is not specified, the
module will run on the same host as the POLYLITH bus.

INTERFACE STATEMENT An interface statement must appear for each interface that the
module expects to use; these statements declare the interface name and define what type of data
will be passed. The message patterns used to describe each interface have the format:

msg_pattern = {15195 .. .51,

where ¢; is the pattern type of the i** variable in the message, and n is the number of variables
passed in each message (n can be zero). Note that the semicolon is used to concatenate the
pattern types into a message pattern. The interface pattern types are shown in Table A.2.

The client and function interface statements are used in this chapter:

client “interface_name” : { msg_patterny,; } accepts { msg_pattern;, }

24

where interface_name is the name of a bidirectional interface that initiates communication with
msg_patterng,, the outgoing message pattern, and accepts a message in return with msg_pattern;,,
the incoming message pattern. This type of interface must be bound to a function interface:

function “interface_name” : { msg_pattern;, } returns { msg_patterny,: }

where interface_name is the name of a bidirectional interface that accepts communication using
msg_pattern;,, the incoming message pattern, and returns a message with msg_pattern,,:, the
outgoing message pattern.

APPLICATION DESCRIPTION The application description uses the tool_statement to name
the nodes of the application and instantiate them with modules, then uses the bind_statement to
bind the interfaces of these nodes.

orchestrate “application_name” : {
tool_statementy
tool_statementy

tool_statement,
bind_statementy
bind_statements

bind_statement,

TOOL STATEMENT The tool statement defines a node in the application by naming the node
and specifying which module instantiates the node:

tool “node_name” : “module_name”

Another version of the tool statement specifies that the node name is the same as the name of
the module that instantiates it:

tool “module_name”

One of these tool statements must be included for each node in the application.

25

BIND STATEMENT The purpose of the bind statement is to connect the interfaces of the
nodes.

1Y

bind “node_name; interface_name;; node_name, interface_name,”

where node_name; initiates the communication, and has a j* interface interface_name;;. This
interface matches the k" interface of node_name,.

2.4.2 POLYLITH BUS CALLS

The source program for each module calls routines from the PoOLYLITH bus library to send or
receive communication on its interfaces. Before using these interfaces, the program must get the
command line arguments and pass them to mh_init:

main(argc,argv)

int argc;

char **argv;

{ ... mh_init (&argc, &argv, outfaces, infaces) ...

to declare its interfaces to the bus. Parameters outfaces and infaces should be set to NULL unless
you are using the direct connect (-d) bus option (see Section C.4.1).

In this chapter, we use mh_write and mh _read to send and receive messages. A message
contains a set of variables or expressions that are passed to the bus. The bus either copies these
into its memory (for sending), or uses them as addresses where data is to be put (for receiving). A
message format must accompany each message to indicate the type of every variable or expression
in the message:

msg_format = t1ty - - -1,

where t; is the type of the i variable in the message, and n is the number of variables passed
in each message (n can be zero). The types are concatenated to form a message format. These
message format types are shown in Table B.2. Because C has only value parameters, msg_format;,
(the incoming message format) can contain only the pointer types, and msg_format,,; (the out-
going message format) can contain either the pointer or the value types.

To send a message, use:

mh_write (“interface_name”, “msg_format,,,”, NULL, NULL, wy,ws,...,w,)

26

where interface_name is the name of an outgoing interface declared in the MIL description of
the module, each t; in msg_format,,, is the data type of variable (or expression) w;, and n is
the number of variables in the message (can be zero). The NULL parameters are placeholders for
features which will be available in a future release of POLYLITH.

To receive a message, use:

mh_read (“interface_name”, “msg_format;,”, NULL, NULL, ri,7g,...,7y)

where interface_name is the name of an interface declared in the MIL description of the module,
r; 18 a pointer variable or the address of a variable, each t; in msg_format;, is the pointer type of
variable r;, and n is the number of variables in the message (can be zero). The NULL parameters
are placeholders for features which will be available in a future release of POLYLITH.

To terminate an application or a node, use:

mh_shutdown(level, exit_code, exit_string)

When level=0, this command notifies the bus that the application is finished. The bus terminates
execution at each node and releases all the application’s communication channels. If the applica-
tion is not terminated, all nodes could finish execution, but the bus would keep the application
running and hold its communication channels open.

When level=1, the mh_shutdown command terminates just the node issuing the command, and
not the entire application. When level=2, the command acts like an exit command, terminating
the process at the node without notifying the bus.

For shutdown levels of 0 or 1, the exit_code and exit_string parameters are written in the logfile
when the logging option -1 is turned on (see section C.4.3). The exit_code is an integer value,
and the exil_string is a character string.

2.4.3 COMPILING, LINKING, RUNNING

Each module must be compiled and linked using its native language compiler and including the
PorvyriTH library (with the -1ith flag). The executable file that is created must be named in
the binary attribute of the implementation statement in that module’s MIL description. For
example,

cc main.c -c
cc -0 main.exe main.o -lith

27

compiles main.c into main.o, and links main.o with the routines it uses from the PoOLYLITH
library, creating the executable file main.exe.

The components of the MIL program are the module descriptions and the application description;
they can be compiled in separate files or in one file.

csc phonebook.cl
csc main.cl

compiles the MIL program phonebook.cl into phonebook.co. These compiled components are
linked using:

csl phonebook.co main.co -o phonebook

Here the two compiled MIL components phonebook.co and main.co are linked, creating the
output file phonebook.

To run an application, we start up a POLYLITH bus, passing it our compiled and linked MIL
program:

bus phonebook

An application that does not terminate voluntarily can always be terminated with a control-C.

28

Chapter 3

ADVANCED FEATURES

This chapter describes the advanced POLYLITH features by presenting six variations of an appli-
cation. The basic version of the application introduces one-way interfaces. The next two versions
show two different ways to avoid explicitly naming the interfaces in a module’s source code; the
interfaces are named only in the MIL program. The fourth application shows how the MIL is used
to specify additional attributes for a module, and how to query the POLYLITH bus for attribute
information instead of coding it directly in a module. The last two versions demonstrate two
ways of doing a non-blocking read to receive messages. A summary of the features presented in
this chapter appears at the end of the chapter.

3.1 MESSAGE PASSING

In chapter 2, we used bidirectional interfaces because each interface both sent and received
messages. The application in this section, called Source_sink, introduces one-way interfaces
and shows how a node can query the bus for its name. The application, shown in Figures 3.1,
3.2, and 3.3 uses a module called hello, which just sends its name on interface “send”. This
module is used to instantiate three nodes of the application, hello, hi, and greetings. The print
module instantiates node print; it reads a string from each of its interfaces “msgl”, “msg2”, and
“msg3” and prints the strings.

First we discuss the one-way communication interfaces. The interfaces in this application either
send messages or receive messages, but do not both send and receive. We could use bidirectional
interfaces here, even though each interface communicates in only one direction, but one-way
interfaces are sufficient. The mh_read and mh_write calls are exactly the same as for a bi-
directional interface; the only difference is that a module does not call both mh_read and
mh_write on a particular interface.

One-way interfaces are declared in the module description portion of the MIL program with the

29

greetings

(nodul e
hel | 0)

Figure 3.1: Basic application structure (used in first three examples).

#include <stdio.h>

main(argc,argv)

int argc;

char **argv;

{ char objname_buf[256];

mh_init(&argc, &argv, NULL, NULL);
mh_identity(objname_buf, sizeof (objname_buf));

mh_write("send", "S", NULL, NULL, objname_buf);
¥

Figure 3.2: Module greet (used in all six examples).

30

service "hello" : { #include <stdio.h>
implementation : { binary : "./greet.exe" }
source "send" : {string} main(argc,argv)
¥ int argc;
char **argv;
gervice "print" : { { char s[256];
implementation :
{ binary : "./pr_source_sink.exe" } mh_init(&argc, &argv, NULL, NULL);
sink "msgl" : {string}
sink "msg2" : {string} mh_read("msgl", "S", NULL, NULL, s);
sink "msg3" : {string} printf (" %s, world\n", s);
} mh_read("msg2", "S", NULL, NULL, s);
printf (" %s, world\n", s);
orchestrate "source_sink" : { mh_read("msg3", "S", NULL, NULL, s);
tool '"hello" printf (" %s, world\n", s);
tool "hi" : "hello"
tool "greetings" : "hello" mh_shutdown(0, 42, "");
tool "print" }

bind "hello send" "print msgl"
bind "hi send" "print msg2"
bind "greetings send" "print msg3"

Figure 3.3: One-way interfaces (application Source_sink); MIL program (left), print module
(right).

31

source and sink interface statements (Figure 3.3 (left)). Just as with the client and function
statements, these statements declare the interface name and define what type of data will be
passed. Module hello is initiating the communication by sending a string on interface “send”, so
it declares its interface “send” with the source statement:

source “send” : { string }

A source interface must be bound to a sink interface; the receiving module print declares three
of these, one for each of the nodes instantiated with module hello:

sink “msgl” : { string }
sink “msg2” : { string }
sink “msg3” : { string }

Next we explain how a module can query the bus for its node name. Module hello (using program
greet.c) declares objname_buf as a character array and calls:

mh_identity (objname buf, sizeof (objname buf))

The name the bus returns in objname buf is the node name, not the module name specified in
the MIL module description. So this application prints out “hello” “hi” and “greetings”, not
“hello” “hello” “hello”. Note that the order in which the messages are received and printed
out is statically determined by module print (Figure 3.3 (right)). The nodes hello, hi, and
greetings send their messages as soon as the nodes are created, so the messages are sent in a
non-deterministic order. Even if the message “hello” is the last to arrive, it will be the first to
be read by module print.

3.2 MANIPULATING INTERFACE NAMES

The next two applications are almost identical to the previous; the three differ only in the
program that implements module print. The two new versions of the print module do not name
their interfaces anywhere within the module.

3.2.1 QUERYING THE BUS FOR INTERFACE NAMES

The program in Figure 3.4 shows how application Query_objnames does this by querying the
bus for its interface names:

32

service "hello" : {
implementation : { binary : "./greet.exe" }
source "send" : {string}
}
gervice "print" : {
implementation :
{ binary : "./pr_query_objnames.exe" }

sink "msgl" : {string}
sink "msg2" : {string}
sink "msg3" : {string}

}

orchestrate "query_objnames" : {
tool "hello"
tool "hi" "hello"

tool "greetings" : "hello"
tool "print"

bind "hello send" "print msgl"
bind "hi send" "print msg2"

bind "greetings send" "print msg3"

#include <stdio.h>

char s[256], interface_names[256];
char *iface[20];

main(argc,argv)
int argc;

char **argv;

{ int i, n;

char *p;
mh_init(&argc, &argv, NULL, NULL);

/* put interface names in array iface */
mh_query_objnames (interface_names,
sizeof (interface_names));

printf("interfaces are: %s\n'", interface_names);
p = interface_names;
n = 0;
while (*p) {

iface[n] = p;

n++;
while ((#p !'= ’,7) && (*p)) pt++;
if (*p) *(p++) = NULL;

}

for (i=0; i<n; i++) {
mh_read(iface[i], "S", NULL, NULL, s);
printf (" %s, world\n", s);

¥

mh_shutdown(0, 42, "");

Figure 3.4: Querying for interface names (application Query_objnames); MIL program (left),

print module (right).

33

gervice "hello" : { #include <stdio.h>
implementation : { binary : "./greet.exe" }
source "send" : {string} char s[256], msgbuf[256], #iface_name;
}
main(argc,argv)
service "print" : { int argc;
implementation : char **argv;
{ binary : "./pr_readselect.exe" } { int n;
sink "msgl" : {string} char *p;
sink "msg2" : {string}
sink "msg3" : {string} mh_init(&argc, &argv, NULL, NULL);
}
while (1) {
orchestrate "readselect" : { iface_name = (char *)
tool '"hello" mh_readselect (NULL,NULL,msgbuf,sizeof (msgbuf)) ;
tool "hi" : "hello" mh_readback(msgbuf, "S", NULL, s);
tool "greetings" : "hello" printf ("%s: %s, world\n", iface_name, s);
tool "print" }
bind "hello send" "print msgl" ¥
bind "hi send" "print msg2"

bind

"greetings send" "print msg3"

Figure 3.5: Application Readselect; MIL program (left), print module (right).

mh_query_objnames (interface names, sizeof (interface names))

where interface names is declared as a character array. The bus puts the names of all of module
print’s interfaces into the buffer interface names. The names are separated by commas in the

buffer,

with no intervening blanks, so the next section of code uses a while loop to place pointers

to these names into the array iface. Then the program loops through the list of interface names,
calling mh_read on each one and printing the resulting message. Once again, the print module
reads the messages in a predetermined order, letting other messages queue up while it waits for
the current one.

3.2.2

RECEIVING MESSAGES ON ANY INTERFACE

The program in Figure 3.5 shows how application Readselect avoids directly naming any
interfaces in module print. Here we use a POLYLITH command that allows us to read the next
message to arrive on any interface, instead of reading from a particular interface:

ifacename = (char *)mh_readselect (NULL, NULL, msgbuf, sizeof (msgbuf))

34

where msgbuf is declared as a character array, and iface name, a character pointer, receives
a pointer to the name of the interface where the message arrived. The NULL parameters are
placeholders for features which will be available in a future release of POLYLITH.

The module will block at the mh_readselect command until a message arrives on some interface,
or will proceed immediately if a message is already queued. After the mh_readselect call is
complete, msgbuf will contain the message. To pull the variables comprising the message from
msgbuf, we use:

mh_readback (msgbuf, "S", NULL, s)

where s is declared as a character array, and the message format is “S”. The mh_readback
is similar to the mh_read in that a message format and a list of variables must be supplied.
The difference between them is that mh_read expects an interface name, while mh_readback
expects the name of a buffer that was filled by a prior call to mh_readselect. You do not need
to know the interface name to do a mh_readback because mh_readselect has already pulled
the message off the interface; mh_readback is just used to interpret the message.

In this version of module print we put the mh_readselect and mh_readback in an infinite loop.
This time, since at each iteration we are reading a message from the next available interface,
the messages are printed in an indeterminate order, probably but not necessarily in the same
order in which they were sent. Because the loop does not terminate, there is no point in putting
an mh_shutdown at the end of the print module. The application must be terminated by
control-C.

3.3 ATTRIBUTES

The fourth version of the application (Figure 3.6) is structurally somewhat different from the
previous three. The application still has nodes hello, hi, and greetings instantiated with module
hello, but we have added two new nodes: number, which is almost identical to module hello
except that it sends an integer instead of a string, and goodbye, which is instantiated with
module timer. The timer module sleeps for while then sends its node name to module print, which
shuts down when it receives a message from the timer. Figures 3.7 and 3.8 show the MIL
program and source code for application Attributes.

3.3.1 OBIJECT ATTRIBUTES

We do not want to hardcode the sleep time in the timer module, so we use an object attribute to
specify the number of second to sleep. The object attribute is declared and given a value in the
algebra statement of the MIL module definition:

35

greetings

goodbye

(rodul e
hel | 0)

(rmodul e
timer)

Figure 3.6: Application Attributes.

service “timer” : {

implementation ...
algebra : { “SECONDS=3" }
source ...

This creates an attribute named SECONDS for module timer, and gives the attribute a value of “3”.
This attribute value is a string containing the character ‘3’, and not the integer 3. The algebra
statement accepts any number of attributes; see the summary at the end of this chapter if you
want to use more than one object attribute.

Now the program instantiating the module (Figure 3.8) can query the bus at runtime for the
value of the SECONDS attribute:

mh_query _objattr (“SECONDS”, time buf, sizeof (time buf))

where time buf, which is declared as a character array, receives the attribute value. Since we
want to pass an integer to sleep, we use atoi to convert the string in time_buf to an integer.

We have just seen how to explicitly specify object attributes; there are other object attributes
that are implicitly specified by your MIL program. The NAME attribute is one example, and others
are listed in Table B.3. The mh_identity command provides a simple way of getting the value
of the NAME attribute; the following two commands are equivalent:

36

service "hello" : { #include <stdio.h>
implementation : { binary : "./greet.exe" }
source "send" : {string} main(argc,argv)
¥ int argc;
char **argv;
service "number" : { {
implementation : { binary : "./number.exe" } mh_init(&argc, &argv, NULL, NULL);
source "send" : {integer} mh_write("send", "I'", NULL, NULL, 5280);
¥ ¥
service "timer" : {
implementation : { binary : "./timer.exe" } S S E R
algebra : {"SECONDS=3"} Advanced/pr_attributes.c
source "send" : {string} N
} #include <stdio.h>
gervice "print" : { char s[256], msgbuf[256], msg_format[256];
implementation : char *iface_name;
{ binary : "./pr_attributes.exe" }
sink "msgl" : {string} main(argc,argv)
sink "msg2" : {string} int argc;
sink "msg3" : {string} char **argv;
sink "number" : {"integer} { int i;
sink "shutdown" : {string}
} mh_init(&argc, &argv, NULL, NULL);
orchestrate "attributes" : { while (1) {
tool "hello" iface_name = (char *)
tool "hi" : "hello" mh_readselect (NULL, NULL, msgbuf,
tool "greetings" : "hello" sizeof (msgbuf)) ;
tool "number" mh_query_ifattr(iface_name, "PATTERN",
tool "goodbye" : "timer" msg_format, sizeof (msg_format));
tool "print" if (strcmp(msg_format,"S")==0) {
bind "hello send" "print msgl" mh_readback (msgbuf, msg_format, NULL, s);
bind "hi send" "print msg2" printf (" %s, world\n", s);
bind "greetings send" "print msg3" ¥
bind "number send" "print number" else if (strcmp(msg_format,"i")==0) {
bind "goodbye send" "print shutdown" mh_readback (msgbuf, msg_format, NULL, &i);
¥ printf (" %d\n'", i);
¥
else printf ("ERROR. Invalid format: ’%s’\n",
msg_format) ;
if (strcmp(iface_name,'"shutdown")==0)
mh_shutdown(0, 42, "'");
¥
¥

Figure 3.7: Application Attributes; MIL program (left), number and print modules (right).

37

#include <stdio.h>

main(argc,argv)

int argc;

char **argv;

{ char objname_buf[256], time_buf[256];
int seconds;

mh_init(&argc, &argv, NULL, NULL);
mh_identity(objname_buf, sizeof (objname_buf));

mh_query_objattr ("SECONDS", time_buf, sizeof (time_buf));
seconds = atoi(time_buf);

sleep(seconds) ;
mh_write("send", "S", NULL, NULL, objname_buf);

Figure 3.8: Module timer (used in last three examples).

mh_identity (objname buf, sizeof (objname buf))
mh_query _objattr (“NAME”, objname_buf, sizeof (objname buf))

3.3.2 INTERFACE ATTRIBUTES

As before, module print is looping and doing an mh_readselect and mh_readback, but before
doing the mh_readback, the module queries the bus for the value of an interface attribute
(Figure 3.7 (right)). An interface attribute is identical to an object attribute, except that it is
specific to an interface. Here we use an implicit interface attribute, PATTERN, that is specified as
a result of the sink statement in the MIL module definition. The value of the PATTERN attribute
is the message pattern declared in the interface statement (source, sink, client, or function).

mh_query _ifattr (iface name, “PATTERN”, msg format, sizeof (msg format))

puts either the string “S” or “i” into msg_format, depending on the interface named in iface name.

Then we use msg_format to decide the datatype of the variable that will receive the message,
and proceed with the mh_readback.

Because the timer module eventually sends a message on interface “shutdown”, we can call
mh_shutdown at that point, allowing the application to terminate normally instead of with
a control-C.

38

greetings

goodbye
(rodul e
hel | 0)

(rodul e
timer)

Figure 3.9: Application structure for last two examples.

3.4 NON-BLOCKING CHECK FOR MESSAGES

We change the application structure again for these last two applications. Module number is
no longer used, but now the print module is sending a message to itself (Figure 3.9). The
print module still loops until it receives a message from the timer module, and it sends itself
one message per loop. If print tried to read its message with an mh_read, to avoid deadlock it
would have to be very careful about not reading a message from itself before the message had
been sent. The two versions presented in this section avoid making a blocking read (mh_read
or mh_readselect) by first querying the bus to find out if any messages are queued.

3.4.1 QUERYING A PARTICULAR INTERFACE

The print module in the first version (Figure 3.10) gets its interface names using mh_query_objnames.
Note that not all interfaces are incoming any more; interface “self” is an outgoing interface, and

it is included in the list of interface names. We can still query this outgoing interface for incoming
messages, although it will not have any.

Within the while loop, print queries the bus for messages on each of the interfaces using;:
mh_query _ifmsgs (iface[i])

where i loops over all the interfaces. The mh_query_ifmsgs command returns the number of
messages queued, although here we read one at a time even if more are available. This command
does not read any messages from the interface, so we follow it with an mh_read.

39

gervice "hello" : { #include <stdio.h>
implementation : { binary : "./greet.exe" }
source '"send" : {string} char status[256], s[256];
8
¥ char objname_buf[256], interface_names[256];
char *iface[20];
gervice "timer" : {
implementation : { binary : "./timer.exe" } main(argc,argv)
algebra : {"SECONDS=10"} int argc;
source "send" : {string} char **argv;
} { int i, n;
char *p;
gervice "print" : {
implementation : mh_init(&argc, &argv, NULL, NULL);
{ binary : "./pr_query_ifmsgs.exe" }
source "self" : {string} mh_identity(objname_buf,sizeof (objname_buf));
sink "msgl" : {string} sprintf(status, "%s is alive'", objname_buf);
sink "msg2" : {string}
sink "msg3" : {string} /* put interface names in array iface */
sink "msg4" : {string} mh_query_objnames (interface_names,
sink "shutdown" : {string} sizeof (interface_names));
} printf("%s’s known interfaces are: %s\n",
objname_buf, interface_names);
orchestrate "query_ifmsgs" : { p = interface_names;
tool "hello" n = 0;
tool "hi" : "hello" while (*p) {
tool "greetings" : "hello" iface[n] = p;
tool "goodbye" : "timer" n++;
tool "print" while ((#p !'= ’,7) && (*p)) pt++;
bind "hello send" "print msgl" if (*p) *(p++) = NULL;
bind "hi send" "print msg2" ¥
bind "greetings send" "print msg3"
bind "print self" "print msg4" while (1) {
bind "goodbye send" "print shutdown" for (i=0; i<n; i++) {
} if (mh_query_ifmsgs(iface[il)) {
mh_read(iface[i], "S", NULL, NULL, s);
printf (" %s, world\n", s);

if (strcmp(iface[i],"shutdown")==0)
mh_shutdown(0, 42, "'");
¥
¥
mh_write("self", "S", NULL, NULL, status);
¥
¥

Figure 3.10: Querying an interface (application Query_ifmsgs); MIL program (left), print mod-
ule (right).

40

3.4.2 QUERYING ANY INTERFACE

The print module in this last version (Figure 3.11) queries the bus for the number of messages
queued on all of the module’s interfaces:

mh_query_objmsgs ()

The mh_query_objmsgs command returns the total number of messages queued on all inter-
faces. It does not read any of these messages, so we follow it with a mh_readselect if one or
more messages are available. We cannot use mh_read, because we have no way of knowing which
interface has a message queued.

Note that the value of timer’s SECONDS attribute is 4 here but it was 10 in the previous example.
Because the mh_readselect version is a more efficient approach than querying the bus at each
interface, we reduced the number of seconds for the shutdown timer.

3.5 POLYLITH BUS RUNTIME OPTIONS

PoryLiTH has options available that allow you to invoke different versions of the POLYLITH bus:
bus -d -k -v -1 bus_input_file

These options may be used in any combination. The next three sections describe -d (direct
connect), -k (keep-alive), -v (verbose), and -1 (logfile).

3.5.1 DIRECT CONNECT
With the direct connect (-d) option, the bus binds interfaces directly to each other. Thus
messages are not sent to the bus to be forwarded but are sent directly to another module,

making communication faster. To use direct connect on an application, you must pass additional
information to the mh_init call:

mh_init (&argc, &argv, outfaces, infaces)

where outfaces and infaces are arrays of strings. The arrays contain the names of the outgoing
and incoming interfaces respectively, and are terminated by a NULL string:

char *outfaces[j + 1] = { “outy”, “outy”, ..., “out;”, NULL };
char *infaces[k+ 1] = { “iny”, “iny”, ..., “ingy”, NULL };

41

service "hello" : { #include <stdio.h>
implementation : { binary : "./greet.exe" }
source "send" : {string} char status[256], s[256];
} char objname_buf[256], msgbuf[256];
char *iface_name;
service "timer" : {
implementation : { binary : "./timer.exe" } main(argc,argv)
algebra : {"SECONDS=4"} int argc;
source "send" : {string} char **argv;
} { int n;
char *p;
gervice "print" : {
implementation : mh_init(&argc, &argv, NULL, NULL);
{ binary : "./pr_query_objmsgs.exe" }
source "self" : {string} mh_identity(objname_buf,sizeof (objname_buf));
sink "msgl" : {string} sprintf(status, "%s is alive'", objname_buf);
sink "msg2" : {string}
sink "msg3" : {string} while (1) {
sink "msg4" : {string} while (mh_query_objmsgs()) {
sink "shutdown" : {string} iface_name = (char *)
} mh_readselect(NULL, NULL, msgbuf,
sizeof (msgbuf));
orchestrate "query_objmsgs" : { mh_readback (msgbuf, "S", NULL, s);
tool '"hello" printf (" %s, world\n", s);
tool "hi" : "hello" if (strcmp(iface_name,'"shutdown")==0)
tool "greetings" : "hello" mh_shutdown (0, 42, "'");
tool "goodbye" : "timer" ¥
tool "print" mh_write("self","S",NULL,NULL,status);
bind "hello send" "print msgl" ¥
bind "hi send" "print msg2" ¥
bind "greetings send" "print msg3"
bind "print self" "print msg4"
bind "goodbye send" "print shutdown"

Figure 3.11: Querying for any message (application Query_objmsgs); MIL program (left), print
module (right).

42

where j is the number of outgoing interfaces, and k is the number of incoming interfaces. (A
bidirectional interface must be named as both an outgoing interface and an incoming interface.)

Because the bus does not keep track of messages passed between modules that are directly
connected, the mh_readselect, mh_readback, mh_query objmsgs, and mh_query_ifmsgs
commands are not available with direct connect.

3.5.2 KEEP-ALIVE

With the keep-alive (-k) option, the bus keeps all communication channels open between mes-
sages. (Normally, the channels are opened when a message is sent, and closed after it has been
received.) The keep-alive option allows for faster communication, but can only be used when
the total number of bindings in the application is small. The exact limit is determined by the
number of UNIX file descriptors available, usually around ten to fifteen.

3.5.3 VERBOSE, LOGFILE

With the verbose (-v) option, the bus writes information about each bus transaction to standard
output as the application executes. It can be used for debugging an application. The logfile (-1)
option captures similar information, but writes this information to a file named logfile in your
local directory.

3.6 SUMMARY OF ADVANCED FEATURES

This section summarizes the POLYLITH features that were presented in this chapter. A complete
summary of features is presented in the appendices.

3.6.1 MIL STATEMENTS
MODULE DESCRIPTION In this chapter, we introduced the object attribute statement as

the way to specify attributes and values for a module. The obj_attribute_statement belongs in
your module_description:

43

service “module_name” : {
implementation_statement
obj_attribute_statementy

obj_attribute_statement,
interface_statement;

interface_statementy,

OBJECT ATTRIBUTE STATEMENT The object attribute statement lets you specify attributes
and their values in your module description. Then, using the mh_query _objattr command, a
node can query the POLYLITH bus for the value of a particular attribute. The object attribute
statement is:

algebra : { “obj_attr_name;=obj_attr_value; : ... : obj_attr_name;=obj_attr_value;”

}

When obj_attr_name; is passed to the mh_query _objattr command, it returns obj_attr_value; to
the caller.

INTERFACE STATEMENT This chapter describes how to specify one-way communication
interfaces with the source/sink interface statements. These statements declare the interface
name and define what type of data will be passed. The message patterns used to describe each
interface have the format:

msg_pattern = {15195 .. .51,

where t; is the pattern type of the " variable in the message, and n is the number of variables
passed in each message (n can be zero). Note that the semicolon is used to concatenate the
pattern types into a message pattern. The interface pattern types are shown in Table A.2.

The module that initiates communication declares its interface with the source statement:
source “interface_name” : { msg_patterngy,; }

where interface_name is the name of an outgoing interface, and msg_pattern,,; is an interface
message pattern (as described above). A source interface must be bound to a sink interface,
which is declared by the receiving module:

44

sink “interface_name” : { msg_pattern;, }

where interface_name is the name of an incoming interface, and msg_pattern;, is an interface
message pattern.

3.6.2 POLYLITH BUS CALLS

RECEIVING MESSAGES ON ANY INTERFACE A message contains a set of variables that are
passed to the bus; the bus uses these variables as addresses where data is to be put. A message
format must accompany each message to indicate the type of every variable in the message:

msg_format;, = tits---t,

where ; is the type of the i** variable in the message, and n is the number of variables passed
in each message (can be zero). The types are concatenated to form a message format. These
message format types are shown in Table B.2. Because C has only value parameters, msg_format;,
(the incoming message format) can contain only the pointer types.

To receive a message on any interface, use:

iface_name = (char *)
mh _readselect (NULL, NULL, message_buffer, sizeof(message_buffer))

where message_buffer is declared as a character array, and iface_name is declared as a character
pointer. The NULL parameters are placeholders for features which will be available in a future
release of POLYLITH.

The module will block at the mh_readselect command until a message arrives on any interface,
or will proceed immediately if a message is already queued. After the mh_readselect call is
complete, message_buffer will contain the message, and iface_name will point to the name of the
interface along which the message arrived. To pull the variables comprising the message from
message_buffer, use:

mh_readback (message_buffer, “msg_format;,”, NULL, 71, 72,...,7,)

where r; is a pointer variable or the address of a variable, each t; in msg_format;, is the pointer
type of variable r;, and n is the number of variables in the message (can be zero). The NULL
parameter is a placeholder for features which will be available in a future release of POLYLITH.

45

NON-BLOCKING CHECK FOR MESSAGES A module can avoid making a blocking read
(mh_read or mh_readselect) by first querying the bus to find out if any messages are queued.
To find out how many messages are queued on a particular interface, use:

mh_query _ifmsgs (“interface_name”)

where interface_name is the name of an interface declared in the MIL description of the module.
The mh_query_ifmsgs command returns the number of messages queued. It does not read any
messages from the interface, so it is generally followed by a mh_read when one or more messages
are available.

To find out how many messages are queued on all of the module’s interfaces, use:
mh_query_objmsgs ()

The mh_query_objmsgs command returns the total number of messages queued on all inter-
faces. It does not read any of these messages, so it is generally followed by a mh_readselect
when one or more messages are available.

ATTRIBUTES A module can query the bus for values of its attributes. The standard at-
tributes, such as names or interface message patterns, are implicitly specified in the POLYLITH
MIL program; these are listed in Table B.3. You may also query the bus for values of attributes
that were explicitly declared in the MIL program.

NAME ATTRIBUTES Your PoryrLiTe MIL program gives name attributes to the nodes and
interfaces in your application. An object can query the bus for its name using;:

mh_identity (objname_buffer, sizeof(objname_buffer))

where objname_buffer is declared as a character array. The name the bus returns to the object
is the node name, not the module name specified in the MIL module description. (The module
name may not be unique within the application, but the node name is.)

An object can query the bus for its interface names using:
mh_query_objnames (ifname_buffer, sizeof (ifname_buffer))

where ifname_buffer is declared as a character array. The bus puts the names of all of the
module’s interfaces in the buffer, whether the interfaces are strictly incoming, strictly outgoing,
or bidirectional. The names are separated by commas in the buffer, with no intervening blanks.

46

OTHER ATTRIBUTES An object can query the bus for the value of any of its attributes using;:

mh_query_objattr (“obj_attr_name”, attr_value_buffer, sizeof(attr_value_buffer))

where attr_value_buffer is declared as a character array; the value is always a character string.
The attribute specified in obj_attr_name is either one that was explicitly declared in your MIL
program, or an attribute like NAME or BINARY that your MIL program implicitly specifies.
Note that the following two commands are equivalent:

mh_identity (objname_buffer, sizeof(objname_buffer))
mh_query_objattr (“NAME”, objname_buffer, sizeof(objname_buffer))

The command to query the bus for the value of an interface attribute is identical to the object
attribute command, except that you also specify an interface:

mh_query _ifattr (“if-name”, “if_attr_name”, attr_value_buffer, sizeof (attr_value_buffer))

where if_name is the name of an interface declared in the MIL description of the module. Your
MIL program implicitly specifies a PATTERN attribute for each interface; its value is a string
containing the interface message pattern from your MIL program.

3.6.3 POLYLITH BUS RUNTIME OPTIONS

PoryLiTH has options available that allow you to invoke different versions of the POLYLITH bus:

bus -d -k -v -1 bus_input_file

These options may be used in any combination. The following three sections describe -d (direct
connect), -k (keep-alive), -v (verbose), and -1 (logfile).

DIRECT CONNECT With the direct connect (-d) option, the bus binds interfaces directly to
each other. Since the messages are not sent to the bus to be forwarded but are sent directly to
another module, communication is faster. To use direct connect on an application, you must pass
additional information to the mh_init call:

mh_init (&argc, &argv, outfaces, infaces)

47

where outfaces and infaces are arrays of strings. The arrays contain the names of the outgoing
and incoming interfaces respectively, and are terminated by a NULL string:

char *outfaces[j + 1] = { “outy”, “outy”, ..., “out;”, NULL };
char *infaces[k+ 1] = { “iny”, “iny”, ..., “ingy”, NULL };

where j is the number of outgoing interfaces, and k is the number of incoming interfaces. (A
bidirectional interface must be named as both an outgoing interface and an incoming interface.)

Because the bus does not keep track of messages passed between modules, the mh_readselect
and mh_query _objmsgs commands are not available with direct connect.

KEEP-ALIVE With the keep-alive (-k) option, the bus keeps all communication channels open
between messages. (Normally, the channels are opened when a message is sent, and closed after
it has been received.) The keep-alive option allows for faster communication, but can only be
used when the total number of bindings in the application is small. The exact limit is determined
by the number of UNIX file descriptors available, usually around ten to fifteen.

VERBOSE, LOGFILE With the verbose (-v) option, the bus writes information about each
bus transaction to standard output as the application executes. It can be used for debugging an
application. The logfile (-1) option captures similar information, but writes this information to
a file named logfile in your local directory.

48

BIBLIOGRAPHY

[Purt90] The Polylith Software Bus. J. Purtilo. University of Maryland CSD Technical Report
2469, (1990).

[CaPu90] A packaging system for heterogeneous execution environments. J. Callahan and
J. Purtilo. University of Maryland CSD Technical Report 2542, (1990).

[PuRGS88] Environments for prototyping parallel algorithms. J. Purtilo, D. Reed and D. Grun-
wald. Journal of Parallel and Distributed Computing, vol. 5, (1988), pp. 421-
437.

[PuCa89] Parse tree annotations. J. Purtilo and J. Callahan. Communications of the
ACM, vol. 32, (1989), pp. 1467-1477.

[PuJa91] An environment for developing fault tolerant software. J. Purtilo and P. Jalote.
IEEE Transactions on Software Engineering, vol. 17, (1991), pp. 1-7.

[PuJa91l] An environment for prototyping distributed applications. J. Purtilo and P. Jalote.
To appear, Computer Languages.

[PuAt91] Module reuse by interface adaptation. J. Purtilo and J. Atlee. To appear, Software:
Practice & Experience.

ACKNOWLEDGEMENT

We appreciate the suggestions, editorial comments and sense of humor from Jack Callahan,
Larry Herman, Elizabeth White and Anne Wilson. Their experiments with the early form of this
document and distribution helped us immensely.

49

Appendix A

MIL SUMMARY

The PoryrLiTH MIL program consists of a description for each module and a description of the
application. These can be in separate files, combined in a single file, or a mix of both.

module_description,
module_descriptions

module_description,,
application_description

A.1 MODULE DESCRIPTION

A description must appear for each module used in the application. The module_name given to
the module is used to identify it in the application description. This name is not referred to in
the source program for the module.

service “module_name” : {
implementation_statement
obj_attribute_statementy

obj_attribute_statement,
interface_statement;

interface_statementy,

50

attribute name attribute value
binary pathname of the executable program which implements this module
source pathname of the source program which implements this module
machine name of host where the module will run

Table A.1: PorvyrLiTH MIL Module Implementation Attributes

A.1.1 IMPLEMENTATION STATEMENT

The implementation statement names the program which implements this module and the host
on which the module is to be executed.

implementation : { implatir_name; : “impl_attr_value;” ... impl_attr_name; :
“impl_attr_value;” }

Table A.1 shows the attributes that can be used in the implementation statement. You must
specify either the binary or the source attribute, but not both. The machine attribute is
optional; by default the module will run on the same host as the POLYLITH bus.

A.1.2 OBJECT ATTRIBUTE STATEMENT

The object attribute statement provides a way of specifying attributes and their values in your
module description. Then, using the mh_query objattr command, a node can query the
PoryLiTH bus for the value of a particular attribute. The object attribute statement is:

algebra : { “obj_attr_name;=obj_attr_value; : ... : obj_attr_name;=obj_attr_value;”

}

When obj_attr_name; is passed to the mh_query _objattr command, it returns obj_attr_value; to
the caller.

A.1.3 INTERFACE STATEMENT

An interface statement must appear for each interface that the module expects to use; these
statements declare the interface name and define what type of data will be passed. The message
patterns used to describe each interface have the format:

msg_pattern = {15195 .. .51,

51

Pointer Types (for incoming or outgoing interfaces) | Value Types (for outgoing interfaces only)
pattern type description pattern type description
string string (pointer to char)
"integer pointer to integer integer integer
“boolean pointer to boolean (ptr to int) boolean boolean (int in C)
“float pointer to float (ptr to double) float float (double in C)
< msg_pattern > pointer to a structure { msg_pattern } structure
pattern_type(n) array of size n, type pattern_type

Table A.2: PorvyrLiTH MIL Interface Pattern Types

where t; is the pattern type of the " variable in the message, and n is the number of variables
passed in each message (n can be zero). Note that the semicolon is used to concatenate the
pattern types into a message pattern. The interface pattern types are shown in Table A.2.

The source and sink interface statements are used when you intend to send messages in one
direction only. The initiating module declares its interface with the source statement:

source “interface_name” : { msg_patterngy,; }

where interface_name is the name of an outgoing interface, and msg_pattern,,; is an interface
message pattern (as described above). A source interface must be bound to a sink interface,
which is declared by the receiving module:

sink “interface_name” : { msg_pattern;, }

where interface_name is the name of an incoming interface, and msg_pattern;, is an interface
message pattern.

The client and function interface statements are used when you intend to send messages back
and forth. The module that initiates the first message declares its interface with the client
statement:

client “interface_name” : { msg_patterny,; } accepts { msg_pattern;, }

where interface_name names a bidirectional interface that initiates communication with msg_pattern,,:,
the outgoing message pattern, and accepts a message in return with msg_pattern;,, the incoming
message pattern. A client interface must be bound to a function interface:

function “interface_name” : { msg_pattern;, } returns { msg_patterny,: }

52

where interface_name is the name of a bidirectional interface that accepts communication using
msg_pattern;,, the incoming message pattern, and returns a message with msg_pattern,,:, the
outgoing message pattern.

A.2 APPLICATION DESCRIPTION

The application description uses the tool_statement to name the nodes of the application and
instantiate them with modules, then uses the bind_statement to bind the interfaces of these
nodes.

orchestrate “application_name” : {
tool_statementy
tool_statementy

tool_statement,
bind_statementy
bind_statements

bind_statement,

A.2.1 TOOL STATEMENT

The tool statement defines a node in the application by naming the node and specifying which
module instantiates the node:

tool “node_name” : “module_name”

Another version of the tool statement specifies that the node name is the same as the name of
the module that instantiates it:

tool “module_name”

One of these tool statements must be included for each node in the application.

53

A.2.2 BIND STATEMENT

The purpose of the bind statement is to connect the interfaces of the nodes.
bind “node_name; interface_name; ;” “ node_name, interface_name, ;”

where node_name; has a j*" interface interface_name; ; declared in a source or client statement.
The message pattern(s) for this interface match those of the k" interface of node_name,, which
is declared in a sink or function statement.

54

Appendix B

BUS CALLS

The mh_ commands are a collection of library routines which allow a module to send and receive
communication over the POLYLITH bus, and to query the bus for information about itself. The
commands available from the C language are listed in Table B.1. Suitable alternative are available

for other application languages as well.

B.1 GENERAL COMMANDS

The source program for each module calls routines from the PoOLYLITH bus library to send or
receive communication on its interfaces. Before using these interfaces, the program must pass

the command line arguments to mh_init:

command level

object object-to-interface interface
general | mh_init

mh_shutdown
writing mh _write
reading | mh_readselect mh _read

mh_readback

mh_query_objmsgs mh_query _ifmsgs
attributes | mh_identity mh _query_objnames

mh _query_objattr mh _query _ifattr

Table B.1: PoryriTHa Commands

55

main(argc,argv)
int argc;
char **argv;

mh_init (&argc, &argv, outfaces, infaces) ... }

to declare its interfaces to the bus. Parameters outfaces and infaces should be set to NULL unless
you are using the direct connect (-d) bus option (see Section C.4.1).

To terminate an application or a node, use:
mh_shutdown(level, exit_code, exit_string)

When level=0, this command notifies the bus that the application is finished. The bus terminates
execution at each node and releases all the application’s communication channels. If the applica-
tion is not terminated, all nodes could finish execution, but the bus would keep the application
running and hold its communication channels open.

When level=1, the mh_shutdown command terminates just the node issuing the command, and
not the entire application. When level=2, the command acts like an exit command, terminating
the process at the node without notifying the bus.

For shutdown levels of 0 or 1, the exit_code and exit_string parameters are written in the logfile
when the logging option -1 is turned on (see section C.4.3). The exit_code is an integer value,
and the exil_string is a character string.

B.2 MESSAGE PASSING

A message contains a set of variables or expressions that are passed to the bus. The bus either
copies these into its memory (for sending), or uses them as addresses where data is to be put
(for receiving). A message format must accompany each message to indicate the type of every
variable or expression in the message:

msg_format = t1ty - - -1,

where t; is the type of the i** variable in the message, and n, which can be zero, is the number of
variables passed in each message. The types are concatenated to form a message format. These
message format types are shown in Table B.2. Because C has only value parameters, msg_format;,
(the incoming message format) can contain only the pointer types, and msg_format,,; (the out-
going message format) can contain either the pointer or the value types.

56

Pointer Types (for sending or receiving) Value Types (for sending only)
message type description message type description
S string (pointer to char)

i pointer to integer I integer

b pointer to boolean (ptr to int) B boolean (int in C)

f pointer to float (ptr to double) I' float (double in C)
{ msg format } pointer to a structure [msg format | structure

Vnt array of size n, message type t

Table B.2: PorLyLiTH Message Types

B.2.1 SENDING MESSAGES

There is only one way to send a message:

mh_write (“interface_name”, “msg_format,,,”, NULL, NULL, wy,ws,...,w,)

where interface_name is the name of an outgoing interface declared in the MIL description of the
module, each ¢; in msg_format,, is the data type of variable (or expression) w;, and n, which
can be zero, is the number of variables in the message. The NULL parameters are used with the
capability-based network bus; while available, they are not described in current version of this
document.

B.2.2 RECEIVING MESSAGES ON NAMED INTERFACE

To receive a message on a particular interface, use:

mh_read (“interface_name”, “msg_format;,”, NULL, NULL, ri,7g,...,7y)

where interface_name is the name of an interface declared in the MIL description of the module,
r; 18 a pointer variable or the address of a variable, each t; in msg_format;, is the pointer type
of variable r;, and n is the number of variables in the message (can be zero). The module will
block at the mh_read command until a message arrives on the specified interface, or will proceed
immediately if a message is already queued on the interface. The NULL parameters are used with
the capability-based network bus; while available, they are not described in the current version
of this document.

B.2.3 RECEIVING MESSAGES ON ANY INTERFACE

To receive a message on any interface, use:

57

iface_name = (char *)
mh _readselect (NULL, NULL, message_buffer, sizeof(message_buffer))

where message_buffer is declared as a character array, and iface_name is declared as a character
pointer. The NULL parameters used for are placeholders for features which will be available in a
future release of POLYLITH.

The module will block at the mh_readselect command until a message arrives on any interface,
or will proceed immediately if a message is already queued. After the mh_readselect call is
complete, message_buffer will contain the message, and iface_name will point to the name of
the interface where the message arrived. To pull the variables comprising the message from
message_buffer, use:

mh_readback (message_buffer, “msg_format;,”, NULL, 71, 72,...,7,)

where r; is a pointer variable or the address of a variable, each t; in msg_format;, is the pointer
type of variable r;, and n is the number of variables in the message (can be zero). The NULL
parameter is a placeholder for features which will be available in a future release of POLYLITH.

B.2.4 NON-BLOCKING CHECK FOR MESSAGES

A module can avoid making a blocking read (mh_read or mh_readselect) by first querying the
bus to find out if any messages are queued. To find out how many messages are queued on a
particular interface, use:

mh_query _ifmsgs (“interface_name”)

where interface_name is the name of an interface declared in the MIL description of the module.
The mh_query_ifmsgs command returns the number of messages queued. It does not read
any messages from the interface, so it is generally followed by an mh_read when one or more
messages are available.

To find out how many messages are queued on all of the module’s interfaces, use:

mh_query_objmsgs ()

The mh_query_objmsgs command returns the total number of messages queued on all inter-
faces. It does not read any of these messages, so it is generally followed by an mh_readselect
when one or more messages are available.

58

Attribute Specified in Attribute
of object of interface description
NAME tool_statement node name
SOURCE implementation_statement module implementation attribute
BINARY
MACHINE
PATTERN interface_statement interface message pattern
RETURN return pattern for bidirectional interface

Table B.3: Attributes Implicitly Specified by MIL Program

B.3 ATTRIBUTES

A module can query the bus for values of its attributes. The standard attributes, such as names
or interface message patterns, are implicitly specified in the PorLyriTa MIL program; these are
listed in Table B.3. You may also query the bus for values of attributes that were explicitly
declared in the MIL program.

B.3.1 NAME ATTRIBUTES

Your PoLyrLiTH MIL program gives name attributes to the nodes and interfaces in your applica-
tion. An object can query the bus for its name using:

mh_identity (objname_buffer, sizeof(objname_buffer))

where objname_buffer is declared as a character array. The name the bus returns to the object
is the node name, not the module name. (The module name may not be unique within the
application, but the node name is.)

An object can query the bus for its interface names using:
mh_query_objnames (ifname_buffer, sizeof (ifname_buffer))

where ifname_buffer is declared as a character array. The bus puts the names of all of the
module’s interfaces in the buffer, whether the interfaces are strictly incoming, strictly outgoing,
or bidirectional. The names are separated by commas in the buffer, with no intervening blanks.

B.3.2 OTHER ATTRIBUTES

An object can query the bus for the value of any of its attributes using:

59

mh_query_objattr (“obj_attr_name”, attr_value_buffer, sizeof(attr_value_buffer))

where attr_value_buffer is declared as a character array; the value is always a character string.
The attribute specified in obj_attr_name is either one that was explicitly declared in your MIL
program, or an attribute like NAME or BINARY that your MIL program implicitly specifies.
Note that the following two commands are equivalent:

mh_identity (objname_buffer, sizeof(objname_buffer))
mh_query_objattr (“NAME”, objname_buffer, sizeof(objname_buffer))

The command to query the bus for the value of an interface attribute is identical to the object
attribute command, except that you also specify an interface:

mh_query _ifattr (“if-name”, “if_attr_name”, attr_value_buffer, sizeof (attr_value_buffer))

where if_name is the name of an interface declared in the MIL description of the module. Your
MIL program implicitly specifies a PATTERN attribute for each interface; its value is a string
containing the interface message pattern from your MIL program.

60

Appendix C

USING POLYLITH TOOLS

C.1 COMPILING MODULES

Each module must be compiled and linked using its native language compiler and including the
PorvyriTH library (with the -1ith flag). The executable file that is created must be named in
the binary attribute of the implementation statement in that module’s MIL description. For
example,

cc main.c -c main.o
cc -0 main.exe main.o -lith

compiles main.c into main.o, and links main.o with the routines is uses from the POLYLITH
library, creating the executable file main.exe.

C.2 COMPILING THE MIL DECLARATION

The components of the MIL program are the module descriptions and the application description;
they can be compiled in separate files or in one file.

csc phonebook.cl

compiles the MIL program phonebook.cl into phonebook.co. These compiled components are
linked using:

61

csl phonebook.co main.co -o phonebook

Here the two compiled MIL components phonebook.co and main.co are linked, creating the
output file phonebook. This output is a text file that contains all the information the PoLyLITH
bus needs to run the application. You may want to look at this file to see what your MIL program
produced: lines starting with O contain object attributes; lines starting with I list an object’s
interfaces; lines starting with B contain binding information; and lines starting with A contain
interface attributes.

C.3 RUNNING THE APPLICATION

To run an application, we start up a POLYLITH bus, passing it our compiled and linked MIL
program:

bus bus_input_file

An application that does not terminate voluntarily can always be terminated with a control-C.

C.4 BUS OPTIONS

PoryLiTH has options available that allow you to invoke different versions of the POLYLITH bus:
bus -d -k -v -1 bus_input_file

These options may be used in any combination. The next three sections describe -d (direct
connect), -k (keep-alive), -v (verbose), and -1 (logfile).

C.4.1 DIRECT CONNECT

With the direct connect (-d) option, the bus binds interfaces directly to each other. Since
the messages are not sent to the bus to be forwarded but are sent directly to another module,
communication is faster. To use direct connect on an application, you must pass additional
information to the mh_init call:

mh_init (&argc, &argv, outfaces, infaces)

62

where outfaces and infaces are arrays of strings. The arrays contain the names of the outgoing
and incoming interfaces respectively, and are terminated by a NULL string:

char *outfaces[j + 1] = { “outy”, “outy”, ..., “out;”, NULL };
char *infaces[k+ 1] = { “iny”, “iny”, ..., “ingy”, NULL };

where j is the number of outgoing interfaces, and k is the number of incoming interfaces. (A
bidirectional interface must be named as both an outgoing interface and an incoming interface.)

Because the bus does not keep track of messages passed between modules, the mh_readselect
and mh_query _objmsgs commands are not available with direct connect.

C.4.2 KEEP-ALIVE

With the keep-alive (-k) option, the bus keeps all communication channels open between mes-
sages. (Normally, the channels are opened when a message is sent, and closed after it has been
received.) The keep-alive option allows for faster communication, but can only be used when
the total number of bindings in the application is small. The exact limit is determined by the
number of UNIX file descriptors available, usually around ten to fifteen.

C.4.3 VERBOSITY AND LOGGING

With the verbose (-v) option, the bus writes information about each bus transaction to standard
output as the application executes. It can be used for debugging an application. The logfile (-1)
option captures similar information, but writes this information to a file named logfile in your
local directory.

63

Appendix D

SYSTEM NOTES

This chapter of the manual is the most volatile, as it is the repository of system notes ... scraps
of information that describe the current state of our distribution system. However, whereas this
chapter is also the least organized, we hope its inclusion will also prove to be the most useful to
those of you who are known to be building upon POLYLITH as a base.

1. Distribution: In case you did not receive this document via a standard Polylith distribu-
tion tape, you can find it on Internet by anonymous ftp from
flubber.cs.umd.edu
There are README files therein that should guide you to what you need. Plenty of other
software is available at the same site — take your fill! Tar images are typically supplied
with makefiles that ‘do the right thing.” (They also typically have make install and
make clean features too.)

This distribution is suitable for use upon Sun 3 workstations, with SunOS versions 3.4
through 4.0.3 (and probably more); DEC Vaxes with BSD-derivative implementations of
Unix; and Decstation (and MIPS) workstations. The system ‘mostly’ works on all Encore
multiprocessors, except there is a continuing bug in their Unix implementation having
to do with how interrupted system calls are treated (if you pause your application then
resume it, then you’re likely to find the bus will complain about system calls returning in
indeterminant states). The system works on Sun 4 and other sparcstations as long as you
don’t compile your applications with extensive optimizations enabled. If you don’t have
our packager to generate exactly the correct stubs, then you must limp along with a hacked
treatment of varargs in our mh calls; this hack fails in the case that you turn on extensive
optimization typical for sparc architectures, since all the assumptions about location of
parameters within an activation record (or register window) then break.

All examples used in this document are packaged as-is with the distribution. Follow along
the manual as you try the programs!

2. Need help? Send questions, suggestions and editorials to polylith@cs.umd.edu

64

. include/endian.h If your site is closely tracking BSD source modifications, then you will
find some of the network structures and macros have been reorganized. In particular, some
compilations will fail for lack of having the correct definitions. This should only affect
construction of the bus — if it fails for these reasons, then check whether you have a
system include file called endian.h. If so, then you can just change the bus configuration
file called config.h — go ahead and define the symbol called MARYLAND (you’ll find the line
already there, commented out ... just uncomment it).

. Floating data: The automata that are responsible for coercion of floating representation
has been gutted — we could not bear to inflict a slapstick piece of code to the world. This
means that for the short run, vaxes can only transact floats with other vaxes, suns with
suns, etc. This will change once we complete a robust version of our converter. Those of
you who read source for recreation will see from where it has been removed. Of course, this
is not a trivial component to build, as not everything is representable across all machines —
the code must know to step around the vax’s terrible treatment of exponents (generating
the ‘right’” exceptions when trying to transmit a value too large); it must know how to
address the IEEE floating representation for values like NAN; and it must certainly not
crap out at extreme values.

. Mixed-language examples: To date this distribution contains relatively few mixed-
language examples. This will change with time as we gradually refine examples to the
point where it would not be criminal to inflict them upon the world. We have Pascal, Ada,
Franz Lisp, Common Lisp and many other examples, each in various degrees of refinement.
If you have very pressing needs for a particular language, then contact us directly to learn
what to do.

. TCP_NODELAY: We have discovered some dialects of BSD Unix (such as earlier Sequent
releases) do not support all of the network socket options we originally assumed. One of
these is the TCP_NODELAY option. Right now this is compiled in to our bus code —
you’ll see the bus complain about this on each operation when messages are sent. It is only
an annoyance (and performance loss), not a fault. Edit the messages out and you’re on
your way. The next release will have these conditionally compiled, and you can fix it with
just a fix to the config file.

. Volatility of Polylith syntax: The current syntax represents a six year old engineering
decision, balancing the expressiveness of interconnection structures against the need to get
rapid experience with bus organization. With the advent of CPL/CPS funding, we are
finally improving the language. When this occurs we will provide an upgrade path for most
applications written in the old (current) MIL syntax. We know the current notation is
awkward, especially for associating object attributes with particular instances of modules.

. Trivia: Where did the names of our tools come from? Originally we followed the time-
honored tradition of making up brand new names to describe otherwise normal CS objects.
One of these objects is a program graph, that we called a “cluster”. The names for our
MIL-processing tools were therefore “cluster specification compiler” (or csc) and “cluster
specification linker” (or ¢sl). The tool names have stayed even though we know refer to the

65

10.

11.

MIL structures as just MIL structures. Similarly, our first implementation of the TCP /IP-
based bus (earlier called “toolbus”) was referred to as a “message handler” hence all the
mh prefixes and suffixes.

. Bus configuration options: For simplicity of design in this experimental platform we

have chosen to compile in some statically-fixed table sizes. These include such things as
the maximum size of any given message (measured in ‘flat’ number of bytes), the maximum
number of messages that can be queued for other tools within the bus, and so forth. You
can examine and control these from within the bus config.h file. Probably our release has
some of these turned down fairly small for performance of the demo problems. If you find
yourself limited, then you need only change the declarations and recompile. If you do, then
be sure to rebuild the Polylith library and relink your binaries.

Remote process startup: It is difficult to give one release of software that can demon-
strate how remote startup of tasks could be done on all sites — everyone has different
protection domains. The most efficient way is to add your own rexec-like capability to
inetd and distribute some bus responsibilities across all named hosts. However, we don’t
think many site managers viewing our distribution will look upon such changes kindly!
Therefore, for this release we have contrived a ‘more portable’ way of starting up remote
tasks, which uses the fairly-robust BSD tool rsh. But while common to most sites, rsh is
also fairly dumb about the finer-grained needs of clients like Polylith: in some cases you
will need to worry about ensuring that remotely-invoked tasks are correctly terminated
(since the bus cannot always find the right remote pid’s through rsh); remote printf’s will
not always get flushed to your local stdout as your intuition might like; and remote reads
are definitely not sequenced correctly with the read-ahead of your local tty. We anticipate
installing a bus design change that will use rsh to start up a remote copy of the bus to
spawn all tasks just for that site; this will allow both IO and process cleanup to be handled
much more neatly. Related to the startup problem is the task of ensuring you have the right
binaries on the right host to be started up. Again, there is great variety in how this can be
accomplished (you might have NF'S, you might not ... you might have compilers that know
how to generate code for your target machine, but you might need to remotely execute a
make instead ... and so on.) All the overhead needed to ensure binaries are where you want
them points to the need for a CCM system that is knowledgeable about the diversity —
exactly as our Honeywell colleagues on this effort are working on.

Writing coercion routines: When trying to interface a new language to the Polylith bus,
you need to show how control structures from your language correspond to the abstract
Polylith bus calls. (Or rather, correspond to this particular bus’s functionality ... after all,
the general Polylith result is that you can define an abstract interconnection media once,
then separately define how particular application domains map into the abstraction. The
network bus defined here is an implementation of only one of many possible interconnection
abstractions.) An important part of this task is showing how your data correspond to
Polylith-support primitive data types. This correspondence for C is implemented in a file
called fa_c.c, whose compiled form is stored in the library 1ibith.a. When you need to
create these maps, you might consider following our heuristic — first figure out how to map

66

12.

13.

14.

your new language to a C-level at all, then figure out how to adapt your control structure
to suit the interfaces in our existing C fa_c library. This lets you avoid having to wade
through the obligations of matching the bus protocol directly! We have planned a toolkit
to assist in this activity should it be needed, but until it is completed the bus protocol for
interoperation is cryptic at best.

A classic fault for new users: Once creation of concurrent processes is made trivial, a
standard surprize encountered by our users is when they build a simple reader and writer
toy (one process simply spins sending out a message, the other process spins in a loop
reading those messages). Simple? Seems so until you run it and watch the communication
media — including the bus — complain. Users learn about such toys in OS classes that
cover timesharing in a different chapter of the course. What happens on Unix machines with
a bus that supports buffering of messages is that the writer will get a timeslice and pump
out messages unchecked. Thousands of messages later — perhaps hundreds of thousands,
depending on the host — the reader might finally get its slice. Meanwhile, the communica-
tion media is stuck trying to buffer a deluge of information. With our automatic packaging
tool, you could have an easy option of declaring certain interfaces as being synchronous,
and all stubs between components would be created for you appropriately, eliminating this
problem. Until we distribute this tool, however, the user must know to build in ‘acks’
manually.

Another classic fault: Often users will build demo applications that are heavy on commu-
nication and light on processing demands. Depending on your usage and host architecture,
you may occasionally see messages (displayed by individual processes) that notify you of
Client retry...). Narrowlyly, this means that one of your underlying Unix hosts may
have run out of free IP ports (or that your kernel is so slow in processing TCP requests that
one of the requests for connections within the Polylith protocol failed to succeed within a
reasonable amount of time). By default, this bus implementation opens and closes each
socket as it is needed, in order to minimize the number of open file descriptors for each pro-
cess. Remember that Unix imposes a small upper bound on fd’s, so the size and complexity
of applications would be limited if open connections had to be maintained. The tradeoff
is that better than 95% of your network communication costs will be spent in open, close
and connect. If you know that the maximum number of interfaces on each process (includ-
ing the bus) is less than the maximum number of fd’s available to each process, then you
can warrant that to the bus when you invoke it (the -k option ... “keep alive”), and your
performance will improve significantly. In general, Polylith beats on Unix in many ways
it was never expected to be used, and frequency with which ports are acquired and then
discarded is one of these ways.

Stuff we should have written in this manual but didn’t: Based upon internal reviews
of this report, with comments on the drafts by several CPL sites, we are aware of several
oversights:

o In the current Polylith syntax, comments are expressed using the pound sign ‘#’.
This can occur anywhere, and all text from that point to the end of the line is consid-

67

ered comment text. CSC is rumored to behave unsociably if given C-style comment
delimiters.

o We have implmented many busses for evaluation and testing. Recently, an bus based
upon capabilities — thought of as pointers to objects or specific interfaces to objects
— was completed and found to be efficient. This bus is a superset of the original
bus intended for this manual, and hence is what you find in the current distribution.
We have updated the syntax of all examples and all text in this manual to match the
accessors to the new bus, but we have not yet written a chapter on how to utilize the
added functionality. You will find some of this in the examples, but we recognize the
need for another chapter or three in the manual.

e The current class of network busses have a poor protocol for ‘direct connection’ —
an option where, for purposes of increased performance, the bus invokes all appli-
cation processes, introduces them to one another, and then allows all processes to
communicate directly with one another. At this time, processes that intend to partic-
ipate in such an application must have additional data structures provided to the bus
initialization call. We know this is unnecessary, and will be improving it.

e In response to popular demand — yes, we plan a data dictionary of all bus structures,
plus a manual for how to write new presentations of an abstract bus to particular
language implementations.

As the saying goes, “Fixed in version two ...”

68

