
  

 
ABSTRACT 

 
 
Title of Document: THE EFFECT OF BENTHIC 

MICROALGAL PHOTOSYSNTHETIC 
OXYGEN PRODUCTION ON NITROGEN 
FLUXES ACROSS THE SEDIMENT-
WATER INTERFACE IN A SHALLOW, 
SUB-TROPICAL ESTUARY 
 

  
 Jessica Landis Burton Evans, Master of Science, 

2005  
  
Directed By: Dr. Jeffrey C. Cornwell,  Marine, Estuarine and 

Environmental Science Program 
 
 

Benthic microalgae (BMA) are a highly productive component of benthic 

ecosystems.  BMA production and nitrogen fluxes were examined in four sub-basins of 

Florida Bay, in both seagrass and seagrass-free patches, as well as seasonally in a 

persistent seagrass-free patch in eastern Florida Bay.  BMA biomass and oxygen 

production was highest in seagrass-free sediments with little seasonal variability.  Despite 

high porewater NH4
+ concentrations there was little NH4

+ efflux.  As in temperate 

estuaries, sub-tropical BMA production and N-assimilation act as a filter to prevent the 

release of nutrients to the water column.    

Microelectrode measurements revealed that BMA production causes a doubling 

of the depth to which O2 penetrates, increasing suitable conditions for nitrification and 

coupled denitrification.  However, the presence of H2S in surface sediments can inhibit 

nitrification, and there is little nitrogen removal from Florida Bay by denitrification. As a 

result, BMA N-assimilation is an important nutrient sink in this oligotrophic estuary.  
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Introduction: Benthic microalgae in sub-tropical estuaries 
 
 

In shallow estuarine and littoral systems worldwide a number of different types of 

benthic photoautotrophs are important to net ecosystem productivity.  Seagrass, 

macroalgae, and microalgae inhabit the benthos from the high arctic to the tropics, as 

long as there is sufficient light to support primary production (MacIntyre et al. 1996 and 

references therein, Glud et al. 2002, Sand-Jensen & Nielsen 2004).   All benthic primary 

producers are important in mediating biogeochemical processes and fluxes at the 

sediment-water interface.  The benthic microalgae (BMA) community, composed of 

photosynthetic microalgae and cyanobacteria inhabiting surface sediments, is a highly 

productive component in shallow water ecosystems, especially those that lack 

macrophytes (MacIntyre et al. 1996).  Rates of primary production in BMA communities 

are comparable to those of macrophytes and phytoplankton (MacIntyre et al. 1996), and 

as a result, BMA are likely to have important effects on ecosystem-scale nutrient cycling 

processes (Sand-Jensen & Nielsen 2004).  The effects of BMA production on N-cycling 

are largely known from temperate systems (e.g. Pinckney & Zingmark 1993, 

Risgaard-Petersen et al. 1994, Sundback & Miles 2000, Dalsgaard 2003).  Understanding 

how benthic primary production affects denitrification and dissolved inorganic nitrogen 

(DIN) fluxes in sub-tropical and tropical systems is important to develop useful coastal 

zones models.  This is especially true in the context of nutrient remediation in 

oligotrophic sub-tropical and tropical habitats that are highly sensitive to small increases 

in nutrients. 
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Unlike macroalgae and seagrasses, BMA growth and production is not limited by 

extreme temperatures or ice cover (Sundback et al. 2000, Glud et al. 2002) even though 

shallow temperate estuaries can experience large daily and seasonal temperature shifts.  

Sediment type, tidal exposure, grain size, bottom water velocity, sediment resuspension, 

and organic matter loading are key drivers of BMA biomass variability in temperate 

estuaries (Sundback et al. 2000, Thornton et al. 2002), not daily or seasonal temperature 

variability.  The composition of the BMA community changes seasonally in temperate 

systems, but the function of BMA community remains largely the same.  Located at the 

sediment-water interface, BMA have been shown to function as a filter that prevents the 

release of sediment-derived nutrients to the water column in temperate estuaries (Krom 

1991, Risgaard-Petersen et al. 1994, Sundback et al. 2000).  This filtering action can 

delay or prevent the formation of macroalgal blooms in some systems (Sundback et al. 

2000).   

Aside from functioning as filter at the sediment surface, BMA can also indirectly 

alter many nutrient cycling processes. BMA primary production has been shown to alter 

oxygen penetration into surface sediments (Revsbech et al. 1983, Risgaard-Petersen et al. 

1994). and nutrient dynamics at the sediment-water interface  (e.g. Krom 1991, Rysgaard 

et al. 1995, McGlathery et al. 2001) (Fig. 1).  Decreased nutrient effluxes from the 

sediment to the water are often attributed to BMA production, but early studies were not 

designed to directly measure the effect of BMA production on nutrient fluxes.  More 

recent studies have shown that oxygen production in shallow temperate systems can 

stimulate nitrogen removal through coupled nitrification-denitrification, if ammonium is 

available, (Risgaard-Petersen et al. 1994, An & Joye 2001, Dalsgaard 2003) and thereby  
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Figure 1. A conceptual diagram of diurnal nitrogen dynamics in the top 5 cm of a 
BMA-dominated sediment patch in a sub-tropical lagoon. 
 



 4 
 

decrease DIN fluxes to the water column (Dalsgaard 2003, Sundback et al. 2004). 

Conversely, other studies have shown that primary production inhibits dentrifiers by 

increasing sediment oxygen concentrations, thereby decreasing nitrogen removal by  

denitrification (Tiedje et al. 1989, Risgaard-Petersen et al. 1994, An & Joye 2001).  Few 

studies have investigated how BMA primary production, and its effects on nutrient 

cycling, in a sub-tropical estuary are different than the temperate estuaries from which 

our knowledge is currently based.   

The studies in this thesis used Florida Bay as a representative, shallow, 

sub-tropical estuary to test the effect of BMA production on N-cycling at the 

sediment-water interface.  BMA in seagrass-free sediments of Florida Bay often receive 

irradiances greater than 500 μmol photons m-2 s-1, unlike temperate systems of similar 

depth.  As a result of increased irradiance, I expected Florida Bay BMA to be more 

productive in relation to temperate estuarine systems.  As in temperate systems, this 

increased productivity could have either a positive or negative effect on N-cycling.  

Multiple sites in Florida Bay were initially surveyed to determine the spatial 

variability in BMA biomass, production and N-cycling.   A second study focused on 

N-cycling in an extensive and persistent BMA-dominated sediment patch in Sunset Cove, 

near Key Largo.  The objective of this detailed study was to quantify seasonal variability 

of the effect of BMA oxygen production on nitrogen fluxes within a single sub-basin.  

Finally, sediment oxygen dynamics related to BMA production were investigated using 

microelectrodes on Sunset Cove sediments (e.g. Revsbech et al. 1983, Jorgensen & 

Revsbech 1985, Glud et al. 1992, Kuhl et al. 1996, Berg et al. 2001).  I investigated the 

effects of irradiance on porewater high-resolution oxygen profiles and estimated 
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photosynthetic oxygen production and community respiration from the profiles 

(Revsbech & Jorgensen 1983, Berg et al. 1998).   All of the present studies were designed 

to further our understanding on the effects of BMA oxygen production on N-cycling in 

Florida Bay, a shallow, oligotrophic, sub-tropical estuary. 
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Methods and Materials 
 

Study Site 

Florida Bay is a semi-enclosed, shallow, sub-tropical estuary located off the 

southern tip of Florida.  It is bound to the north by the Everglades and to the east and 

south by the Florida Keys (Fig. 2).  Through out most of the 1900’s, dense seagrass and 

sparse benthic macroalgae were the dominant primary producers in Florida Bay (Zieman 

et al. 1989).  Large-scale seagrass die-off occurred in 1987 and seagrass biomass 

continued to decline through the 1990’s (Robblee et al. 1991, Hall et al. 1999).  As a 

result, there are large sediment  patches that are nearly dominated by BMA (Robblee et 

al. 1991).  

 The average depth of Florida Bay is ~1 m.  It is divided into deeper basins (3-4 

m) separated by shallow (<1 m) calcium carbonate mud banks which serve to restrict 

hydrologic exchange between basins.  Freshwater inputs are primarily from Everglades 

runoff that enters through Taylor Slough in the north central basins of Florida Bay.  

Despite this freshwater input, hypersaline conditions during the summer are typical 

through out most of the bay due to restricted exchange between basins (Nuttle et al. 

2000).  The average annual temperature is 24.5 °C with mean monthly low typically 

occurring in January and the mean monthly high in August (Fourqurean & Robblee 

1999). Seasonal temperature variation in this study ranged from 20 to 32ºC. 

Four sites were used in a bay-wide survey to represent the regions of Florida Bay as 

described in Fourqurean and Roblee (1999). Barnes Key basin (South), Rabbit Key Basin 

(West), Rankin Bight (North/Central), and Sunset Cove (East) have all experienced 
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seagrass decline, and have both healthy seagrass beds and seagrass-free sediment patches 

(Fig 2).  Although Florida Bay is generally considered to be oligotrophic, nitrogen and 

phosphorus water column concentrations in Sunset Cove are slightly elevated and 

generally attributed anthropogenic sources on Key Largo (Kemp et al. 2001).  These four 

sites were surveyed in June 2003 to quantify the spatial variability of BMA biomass, 

oxygen, and nitrogen fluxes.  Different BMA habitats, within a dense seagrass beds and 

in a seagrass-free sediment patches, were also examined in each of the sub-basins.  

Sunset Cove (N 25 05.737, W 80 27.476) was also used for a detailed annual study in 

2004 and for source sediments used as a sediment source for the microelectrode 

porewater profiling. 

 

Experimental Design: Spatial distribution of BMA biomass, production and nitrogen 

fluxes in Florida Bay 

In June 2003, four cores were collected by diver each from within a healthy 

seagrass bed (Veg.) and from a seagrass-free sediment patch (BMA) at Barnes Key 

Basin, Rabbit Key Basin, Rankin Bight, and Sunset Cove (Fig 2).  Each core consisted of 

a 15 cm depth of sediment with 15 cm of overlying water (Fig. 3).  Cores from within the 

seagrass beds were collected between vegetative shoots to exclude seagrass biomass.  

Prior to incubation, the head water of each core was fully exchanged with aerated site 

water during an overnight dark acclimation period (10-12 h).  Within 24 hours of 

collection, six batch cores (n=3 Veg., n=3 BMA) were sealed and incubated in a tank of 

site water, at in situ temperatures (Fig 3).  Two cores containing water only were  
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Figure 2.   Map of Florida Bay, Florida, bound to the north by the Everglades on the 
Florida peninsula and  to the south and east by the Florida Keys.  Four study sites are 
shown: A) Barnes Key Basin, B) Rabbit Key Basin, C)Rankin Bight, and D) Sunset 
Cove.  Calcium carbonate mud banks (light blue) are visible between the smaller 
mangrove keys (light green islands) within Florida Bay. (Satellite image of Florida Bay 
courtesy of NOAA)  
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Figure 3. Schematic of A) experimental incubation tank containing sample cores 
surrounding a central magnetic turntable, and  B) a sediment core and C) a water column 
blank core, each with dual sampling ports in the lid and an internal magnetic stir bar.  
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incubated simultaneously to quantify water column metabolic activity and used to correct 

for water column activity in experimental sediment cores. 

The cores were incubated for 2-4 hours each under dark and natural sunlight.  

Dark/light treatments were timed to coincide with natural diel light cycles with dark 

incubation in the early morning immediately followed by light incubations under ambient 

natural light.  PAR at the sediment surface of experimental cores was continuously 

monitored for the duration of each experiment with two submersible photosynthetic 

irradiance recording systems (Dataflow Systems PTY, Ltd.) in the experimental tank.  

Irradiance during illuminated periods typically ranged from approximately 50 to 

2000 μmol photons m-2 s-1 of natural sunlight.  Approximately 40 ml of water was 

removed at each sampling point, with an equal volume of site water replacing the sample 

from a head tank such that the cores remained sealed.  Samples for dissolved N2(g) and 

O2(g), NH4
+, NO3

- + NO2
-, and soluble reactive phosphorus (SRP) were collected through 

sampling ports in the core lids (Fig. 3) every 0.5-1 hour, for a total of four sampling 

times.  Dissolved N2(g) and O2(g) samples were collected in 5 ml glass test tubes free of all 

air bubbles and preserved with 10 μl  50% saturated HgCl to prevent further metabolic 

activity.  Nutrient samples were collected with a 20 ml syringe, filtered to 0.45 μm, and 

frozen in 5 ml aliquots for later analysis.  Overlying water in each core was mixed using 

an externally driven  magnetic stir bars (~30 rpm) suspended from the core lids during 

the incubations (Fig. 3).  

 The extra acclimated cores (1 Veg., 1 BMA) were sectioned for porewater 

profiles of H2S, NH4
+, NO3

- + NO2
-, and SRP, and benthic chlorophyll a (chl-a) at the 
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start of the incubation period.  Following batch core incubations, two cores, one 

vegetated and one BMA, were randomly selected to be sectioned for the same porewater 

analysis for comparison.   Cores were sectioned at depth intervals of 0-0.5, 0.5-1.0, 

1.0-1.5, 1.5-2.0, 2.0-3.0, 3.0-4.0, 4.0-7.0 and 7.0-10.0 cm, and packed in a 50 ml 

centrifuge tubes under a N2 atmosphere in a glove bag to maintain anoxic conditions 

within the sediments.  Porewater was separated from the sediments by centrifugation 

(2500 rpm, 10 min), then filtered (0.45 μm) and frozen for later analysis of NH4
+, NO3

- + 

NO2
-, and SRP.  Prior to freezing, a 1 ml sub-sample of the porewater was fixed with a 

mixed diamine reagent and stored at room temperature for later sulfide analysis (Cline 

1969).  Chl-a was randomly sub-sampled (10 ml syringe core to 1 cm depth) from each 

experimental core to estimate of BMA biomass.  Chl-a samples were stored frozen 

(-25°C), in the dark, until analyzed with in one month of collection. 

 

Experimental Design: Nitrogen cycing in Sunset Cove, Florida Bay 

Sediment cores were collected from Sunset Cove in January, March, June and 

August 2004.   Incubations were done as described previously, in this case to relate 

nutrient flux rate to photosynthetic oxygen production by BMA during each of the 

sampling months.  Intact sediment cores (n=9) were collected by diver from a BMA 

dominated sediment patch and acclimated as described previously.  Following 

acclimation, three cores were sectioned for initial porewater characteristics and six cores 

were incubated in a tank of site water at in situ temperatures.  Three (15 cm) water 

column-only cores were incubated as blanks.   
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To investigate the effects of oxygen production on a diurnal time scale, ambient 

light conditions for the core incubations were manipulated by covering the cores in  either 

black plastic (dark), or  two, one or no layers of neutral density screening.  This shading 

regime resulted in 3 light treatments: 0, <100, and >500 μmol photon m-2 s-1 of natural 

sunlight.  Again, light treatments were timed to coincide with natural irradiance cycles 

with the dark treatment at or before sunrise and the shade treatments decreased serially to 

full ambient irradiance (no screen) at approximately solar noon.  The exterior sediment 

portion of each core was wrapped in aluminum foil and secured with electrical tape at the 

sediment surface to eliminate light exposure for deep sediments on the circumference of 

the clear acrylic cores . PAR at the sediment surface of experimental cores was 

continuously monitored for the duration of each experiment with two submersible 

photosynthetic irradiance recording systems (Dataflow Systems PTY, Ltd.) in the 

experimental tank.  Full, ambient light readings were verified with independently 

monitored PAR measurements (Kemp and Cornwell, unpublished data).  Cores were 

incubated at each light level for 1-2 hours with a total incubation time of 6-8 hours.  

During incubation at each light manipulation, the water column was sampled a minimum 

of 3 times at intervals of 0.5-1.0 hour with samples for dissolved N2(g) and O2(g), NH4
+, 

NO3
- + NO2

-, and SRP collected  in the same manner as previously described.   

 As in the previous experiment, the three additional acclimated cores were 

sectioned for initial porewater profiles of H2S, NH4
+, NO3

- + NO2
-, and SRP, and chl-a at 

the start of the incubation period.  Following batch core incubations, the six experimental 

cores were sampled for chl. a, and sectioned porewater nutrients (n=3) or sediment bulk 

density and porosity (n=3).  Chl-a was randomly sub-sampled (10 ml syringe core to 
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1 cm depth) from each core as an estimate of BMA biomass.  Chl-a samples were stored 

frozen (-25°C), in the dark,  and analyzed within one month of collection.  Porewater was 

extracted at the depth intervals as described previously. 

Sediment bulk density and porosity were sampled from the three remaining 

experimental cores at the same depth intervals as the porewater.  Wet sediment volume 

was determined by the gravimetric volume of deionized water added to the wet sediments 

in a known volume container.  Sediments were dried to constant weight at 80°C.  

Sediment bulk density (ρ) was calculated as grams dry weight of sediment per unit 

volume.  Porosity (φ) was estimated in June and August 2004, as the porewater volume 

per (total wet sediment volume plus porewater volume).  The average porosity at each 

depth from June and August 2004 was assumed to represent the average porosity at each 

depth across all sampling dates.  The average porosity was used to correct sediment bulk 

density for salt content assuming that at each date the porewater salinity was equal to the 

salinity of the overlying water column.   

 

Dissolved gas, nutrient and chlorophyll a analyses 

Dissolved concentrations were determined using membrane inlet mass 

spectrometry (MIMS) (Kana et al. 1994, Kana et al. 1998).  With this method, high 

precision N2(g) and O2(g) concentrations are determined relative to the inert gas, argon.  

N2:Ar and O2:Ar ratios were used to detect small concentration changes of N2  and O2 

relative to Ar during the incubation period.   Since changing oxygen concentration during 

the course of a batch core experiment alters the analytical detection of N2 and Ar (Eyre et 

al. 2002), MIMS was calibrated with water samples ranging from 0-100% O2 saturation 
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and N2:Ar ratios were corrected for the oxygen interference (Kana & Weiss 2004).  N2 

concentrations were determined based on oxygen corrected N2:Ar values as described by 

Kana et al (1998).  Dissolved inorganic water column and porewater nutrients (NH4
+, 

SRP, NO3
- + NO2) and hydrogen sulfide were analyzed using standard seawater methods 

described in Parsons et al. (1984).  Benthic chl-a samples were extracted in 10 ml 90% 

acetone for 24 hours at 0°C following 1 hour of sonication.  The supernatant was filtered 

(0.45 μm) and chl-a concentrations were determined using HPLC (Van Heukelem et al. 

(1994).  

 

Oxygen, nitrogen and nutrient fluxes 

Oxygen and nitrogen gases, and dissolved inorganic nutrient flux rates were 

determined by the change in water column concentration between each sampling time.  

Individual sediment core flux rates were corrected for water column production by 

subtracting the average (n= 2 or 3) concentration change in cores with water only.  All 

fluxes were normalized to sediment surface area in each core.  A positive flux was an 

efflux from the sediments to the water column, while a negative flux was a flux out of the 

water column into BMA or the sediments.  Fluxes determined by this method represent 

the net processes across the sediment-water interface. 

Net benthic microalgal oxygen production was estimated based on the observed 

oxygen flux.  Oxygen fluxes in the dark were used as an estimate of community 

respiration (CRox) and included the net respiration of both BMA and microbial 

communities.  Light oxygen fluxes were used as a measure of benthic net primary 

production (NPPox).  BMA gross primary production (GPPox) was calculated as the sum 
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of NPPox and CRox.  Daily primary production rates were calculated by extrapolating the 

observed NPPox and CRox hourly rates to daylight (January = 11 h, March = 12 h, June = 

14 h, August = 13 h) and dark hours, respectively, in a day.     

Net denitrification rates were the measured N2 (μmol N2-N m-2 h-1) flux rate, 

corrected for oxygen effects, in all dark incubated cores (Kana et al. 1994, Kana & Weiss 

2004).  Although N2-N flux rates were measured during light incubations, they indicate 

net N-fixation rates that are biologically impossible.  These fluxes do not accurately 

represent net N2-N fluxes due to gas stripping associated with bubble formation from 

benthic primary production (Kana, personal communication).  

Diffusive NH4
+ fluxes (Jsed) were estimated for all Sunset Cove N-cycling 

experimental cores.  Fick’s First Law of Diffusion (eq. 1) was applied to the NH4
+ 

concentration in the surface 2 cm of sediment to estimate the hourly diffusive 

NH4
+fluxes: 

z
CDJ sedsed ∂

∂
⋅⋅−= ϕ        Equation 1 

where φ is the porosity and 
z
C

∂
∂  is the linear concentration gradient in the top 2 cm of 

sediments.  Dsed is the diffusivity of NH4
+, corrected for tortuosity  (Boudreau 1997), at 

the experimental temperature.   

 

Estimating benthic microalgal nitrogen assimilation 

Benthic microalgal nitrogen assimilation was calculated as nitrogen demand 

necessary to support the observed GPPox.  A photosynthetic quotient (PQ) of 1.2 was 

used to convert GPPox to GPPc  since PQ was not directly measured in this study 
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(Sundback & Miles 2000, Wetzel & Likens 2000).  Other studies have found a 1.2 ratio 

of O2:TCO2 for arctic sediments (Glud et al. 2002) and 0.23-1.82 for autotrophic 

sub-tropical sediments (Ferguson et al. 2003).  Carbon assimilation (GPPc) was corrected 

for autotrophic respiration, assumed to be 10% GPP (Cloern 1987), and N-demand was 

estimated based on a C:N ratio of 9 (Sundback & Miles 2000). Daily N-demand was 

calculated by extrapolating the observed hourly N-demand to daylight hours per day 

(January = 11 h, March = 12 h, June = 14 h, August = 13 h). Dark periods, during which 

there is no BMA production, were assumed to have no nitrogen demand.  This method 

can underestimate actually BMA nitrogen assimilation because it does not include the 

potential uptake and storage of N by BMA during dark periods.  

 

Statistical Analyses 

For the bay-wide survey on the spatial distribution of BMA biomass and fluxes in 

Florida Bay, Pearsons linear correlation was used to examine the relationship between the 

dependent variables, BMA biomass, and N2(g), O2(g) and NH4
+ fluxes.  Spatial variability 

of BMA biomass and fluxes was tested with a nested ANOVA using site as main 

grouping variable.  Habitat (Veg. vs. BMA) and experimental irradiance (dark vs. light) 

were the variables used for sub-groups.  As there was no treatment effect at the site level, 

all sites were pooled to compare the effects of habitat and irradiance treatments.  Post-hoc 

multiple pair-wise comparisons were conducted between experimental treatments and 

interactions using Tukey-Kramer adjusted least square means.  For this and all 

subsequent analyses, differences were accepted at p<0.05. 
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Repeated measures ANOVA, with depth as the repeated variable, was performed 

on porewater profiles to assess differences between initial and final profiles for each 

month in Sunset Cove (January-August 2004). No differences were found between initial 

and final porewater conditions.  Initial and final profiles were pooled to a single mean 

profile to compare differences between months.  Multiple pair-wise comparisons (Least 

Square Means with Tukey-Kramer adjustment) between months were assessed at each 

depth interval in the porewater profile.  

The effect of irradiance on fluxes in Sunset Cove was tested with a 2-way 

ANOVA using light and experimental date as main factors.  Multiple pair-wise 

comparisons between the means of each light level at each date were tested with least 

square means (Tukey-Kramer adjustment).  All statistical analysis was conducted with 

SAS 8.2 (SAS Institute). 

 

Experimental Design: Oxygen microelectrode profiling in a controlled light environment 

Thirteen sediment cores were collected by diver from Sunset Cove, Florida Bay 

between two sampling campaigns in late October and early November 2004.  Upon 

collection, the cores were stored in a temporary tank of aerated ambient seawater.  Within 

24-hours of collection, the cores were sealed, and placed in a small cooler for 

transportation by air from Key Largo, Florida to Horn Point Laboratory, Cambridge, MD.  

The corrs arrived at Horn Point Laboratory within 48 hours of collection, and were 

carefully opened and inspected for disturbance during transportation and for the presence 

of gastropod grazers immediately upon arrival.  Grazers were carefully removed if they 

were visible on the sediment surface.  The sediment portion of the cores was wrapped in 
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aluminum foil, ~1 mm below the sediment surface, to prevent illumination of the side of 

the cores.  The cores were then gently immersed in a bath of aerated seawater that had 

been collected previously from Sunset Cove in August 2004.  During the acclimation and 

experimental periods, salinity in the seawater bath was adjusted to, and maintained at 

ambient salinity with deionized water.  The sediment cores were acclimated in an 

environmental growth chamber at ambient temperature (25-26°C) for 36-48 hours.  Since 

benthic diatoms can exhibit endogenous vertical migrations after collection and 

acclimation (Pinckney & Zingmark 1991, Mitbavkar & Anil 2004), a natural light cycle 

was maintained for the duration of the experiment. 

 The sediment porewater oxygen concentration was profiled with an oxygen 

microelectrode (OX-25fast Uniscence, Denmark) using a motorized micromanipulator 

(MM33-M, Uniscence) with 100 μm steps under dark, low and high irradiances (0, 

500-700, and 1000-1200 μmol photons m-2 s-1, respectively).  The microelectrode current 

was read with a picoammeter and recorded with Profix (v. 3, Uniscence).  All profiling 

was completed under controlled irradiances and temperature in the environmental growth 

chamber.  The cores were acclimated at each light level for 2 hours prior to profiling, and 

light/dark profiling was timed to correspond with natural irradiance cycles.  Each core 

was profiled individually, in two randomly selected locations at each light level.  The 

sediment-water interface was visually determined with the aide of a magnifying glass 

(10x).   Each profile was started 2000 μm above the sediment-water interface and 

continued to nearly the maximum depth of oxygen penetration.  Profiles were aborted 

prior to anoxic boundary because the microelectrode tips are easily contaminated by the 

presence of hydrogen sulfide.   
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Profile interpretation and oxygen production estimates 

Sediment porewater O2 profiles were interpreted with PROFILE v. 1 (Berg et al. 

1998) to determine the depth of maximum oxygen concentration and associated zones of 

O2 production and consumption.  PROFILE is based on the following one-dimensional 

mass conservation equation that accounts for molecular diffusion, bioturbation and 

irrigation:  

( ) ( ) 00 =+−+⎟
⎠
⎞

⎜
⎝
⎛ + RCC

dx
dCDD

dx
d

BS ϕαϕ     Equation 2 

where C is the porewater concentration, C0 is the bottom water concentration, x is depth, 

φ is porosity, DS is the molecular diffusivity corrected for tortuosity, DB is the 

biodiffusivity, α is the irrigation coefficient, and R is the net rate of production.  

Concentrations measure with the oxygen microelectrode were used to estimate 
dx
dC .  The 

estimated 
dx
dC , along with known values of φ, Ds, DB, α, and established boundary 

conditions (C0), were then to calculate oxygen production for each sediment volume.  In 

the present study, φ was determined to be 0.96 in the top 0-0.5 cm of sediment and 0.94 

from 0.5-1.0 cm sediment depth.  Irrigation and bioturbation parameters were ignored 

(α=0 and Db=0) in all PROFILE interpretations.  PROFILE creates concentration and 

production profiles in the sediments through a using two-steps with piecewise-constant 

functions with uniform production rates in a given sediment zone.  In the first step, 

PROFILE uses the parameterized numerical solution to equation 2 to determine the 

lowest number of equally spaced depth zones to explain the observed concentration 
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profile data.  The number of zones reduced in the second step, where a series of statistical 

F-tests to determine if some of the adjacent zones can be combined without losing the 

quality of fit to the observed data.  In this manner, the numerical solution to equation 2 

was calculated for each sediment volume of the measured porewater oxygen 

concentration profile to create a modeled oxygen production and consumption profile.   

In this study, each measured porewater oxygen concentration profile was 

interpreted individually in a two-fold interpretation process.  Initially, each profile was 

interpreted with the boundary conditions of the calculation domain set to be the measured 

oxygen concentration at the sediment surface and at the maximum depth of the profile.  

The output of the first interpretation resulted in an estimate of O2 flux that the top and 

bottom of the calculation domain.  For the second profile interpretation, the boundary 

conditions were reset to the bottom concentration (as measured) and the bottom flux (as 

modeled) of O2.  All points were included in the PROFILE interpretation, but outliers 

were not allowed to determine zone of extreme production or consumptions.  
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Results 

 

Spatial distribution of water column nutrients, BMA biomass, and oxygen and nitrogen 

fluxes in Florida Bay 

Water column salinity, temperature and nutrient concentrations were similar at all 

sites within Florida Bay in June 2003 (Table 1).  Barnes Key Basin, Rabbit Key Basin, 

Rankin Bight, and Sunset Cove had salinity range of 32-33 and temperature range of 

28-30 °C.  Water column NH4
+ concentrations were low (1.18 – 1.78 μM) at Barnes Key 

Basin, Rabbit Key Basin and Rankin Bight, and elevated (5.95 μM) at Sunset Cove.  SRP 

in the water column was <0.01 μM at Rabbit Key Basin and Ranking Bight.  SRP was 

low, but detectable, at both Barnes Key Basin and Sunset Cove (0.12 μM and 0.14 μM, 

respectively).  Water column NO3
- concentrations were not quantified in June 2003.   

For both habitat types (BMA and Veg.), there was no significant difference 

among sites for BMA biomass or fluxes(Appendix 1), and the data for each habitat type 

were pooled across all sites.  BMA biomass was significantly higher in sediment patches 

without seagrass than in healthy, dense seagrass beds (p=0.0008) (Table 2).  This habitat 

difference can also be thought of as a natural treatment factor of high or low BMA 

biomass.  Net sediment oxygen consumption was observed in the dark and net production 

was observed in the light (Fig. 4).  BMA production was significantly higher in seagrass-

free sediment patches than in sediments with seagrass present (5674.21 and 722.80 

μmol O2 m-2 h-1 respectively, p<0.0001). Oxygen consumption rates, representing 

community respiration, were similar in sediments with and without  
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Table 1.  Mean water column characteristics ± standard error, n=9 unless otherwise noted 
by parenthetical value, for each sampling date.  

  Salinity 
 

Temp 
(ºC) 

NH4
+ 

(μM) 
SRP 
(μM) 

NO3
-  

(μM) 
Barnes Key 

Basin 
June 
2003 

 

33.1 30.1 1.48 ± 0.14 
(16) 

0.12 ± 0.06 
(16) 

-- 

Rabbit Key 
Basin 

June 
2003 

 

33.5 30.5 1.18 ± 0.34 
(8) 

<0.01  
(8) 

-- 

Rankin Bight June 
2003 

 

32.8 28.2 1.78 ± 0.51 
(8) 

<0.01 
 (8) 

-- 

Sunset Cove June 
2003 

32.6 29.9 5.95 ± 0.36 
(16) 

0.14 ± 0.07 
(16) 

-- 
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  Benthic Chl a. 
  (mg m-2) 

BMA 42.5 ± 11.4 Barnes Key Basin 
 
 

Veg.        6.0 ±   1.9 

BMA 26.9 ± 14.7 Rabbit Key Basin 
 
 

Veg.        8.5 ±   0.4 

BMA 27.9 ± 10.0 Rankin Bight 
 
 

Veg.        6.8 ±   0.9 

BMA     23.3 ±   4.1   Sunset Cove 
 
 

Veg.      10.0 ±   1.9 

BMA 30.2 ±   5.1 (12) Mean of all sites 
Veg.  7.8 ±   2.7 (12) 

 
Table 2.  Mean BMA biomass ± SE (n=3 unless noted) for each habitat sampled, 
seagrass-free patches and within dense, healthy seagrass beds, at each site in June 2003. 
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 seagrass present (-4077.78 and -2799.49 μmol O2 m-2 h-1 respectively).  BMA biomass 

was also positively correlated with oxygen production during illuminated incubations 

(p<0.0001, Fig. 5). 

Similarly, both habitats displayed a net NH4
+ release (47.74 - 51.62 μmol NH4

+ 

m-2 h-1) from the sediments during dark periods and net NH4
+ uptake (-16.58 to -22.16 

μmol NH4
+ m-2 h-1 ) by the sediments during light periods (Fig. 4) although light NH4

+ 

fluxes are not significantly different than zero.  Dark sediment oxygen fluxes (community 

respiration) were positively correlated with NH4
+ release, suggesting heterotrophic 

remineralization of organic matter.  Concentrations of SRP and NO3
- + NO2

- were at or 

below the analytical detection limit (0.01 μM) and fluxes could not be calculated.  Dark 

denitrification rates, as indicated by the net N2-N fluxes, were small, not significantly 

different between seagrass or seagrass-free sediment habitats (13.01 and -17.28 μmol 

N2-N m-2 h-1, respectively), and were not significantly different from zero (Fig. 4). 

Vertical profiles of mean porewater nutrient concentrations reveal clear differences 

between sediments with and without seagrass when pooled across sites (Fig. 6, 

Appendix 2).   Seagrass-free sediment patches had higher porewater H2S, NH4
+ and SRP 

concentrations and more distinct gradients in the surface sediments than those from dense 

seagrass beds.  Analytical interference by H2S prevented the determination of porewater 

NO3
- concentrations.    
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Figure 5.  The correlation between mean oxygen flux and BMA biomass, as measured by 
benthic chl-a, during light and dark periods.  There is a strong positive correlation 
between BMA biomass and net oxygen production during illuminated periods.  Dark 
rates of oxygen consumption are not significantly correlated with BMA biomass. 
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Figure 6.  Mean porewater characteristics for a) hydrogen sulfide, b) ammonium, and 
c) soluble reactive phosphorus between seagrass (Veg.) and seagrass-free (BMA) 
patches.  Porewater concentrations are averaged across all sites, data from individual 
cores is presented in Appendix 2.  

0
1

2

3
4

5

6
7

8

9
10

0 400 800 1200 1600

H2S (μM)
D

ep
th

 (c
m

)

0

1
2

3

4

5
6

7

8
9

10

0.0 1.0 2.0

SRP(μM)

D
ep

th
 (c

m
)

BMA Veg.

A) B) 

C) 

0
1
2
3
4
5
6
7
8
9

10

0 400 800 1200 1600

NH4 (μM)

D
ep

th
 (c

m
)



 28 
 

BMA biomass and sediment characteristics in Sunset Cove 

Benthic microagal biomass ranged from 24.5-110 mg chl-a m-2, with an annual 

mean of 58 mg chl-a m-2, over all experiments in Sunset Cove during 2004 (Table 3, 

Appendix 3).   The highest standing stock of BMA biomass was observed in June, but 

there was no significant difference in the BMA biomass present during January, March, 

and June.  Several days of sustained winds associated with the passing of Hurricane 

Charley over southern Florida resulted in low benthic chl-a values in August 2004.  If the 

mean BMA biomass from January, March and June is assumed to represent undisturbed 

conditions, it would appear that hurricane disturbance significantly reduced BMA 

biomass (α=0.05, p=0.0027).  The effects of sediment resuspension in August were also 

reflected in elevated water column NH4
+ concentrations (Table 3).  Resuspension of 

surface sediments would have mixed the high nutrient porewater with the nutrient deplete 

water column. The near-vertical gradient for all porewater nutrient profiles in August also 

suggests porewater flushing was forced by hurricane-related turbulence (Fig 7). 

There was no significant difference between pre- and post-incubation porewater 

profiles or H2S, NH4
+, and SRP for each sampling date (Appendix 4), and all profiles 

from a given date are presented as a mean profile (Fig. 7).  H2S concentrations range 

from 73-100 μM in the surface 2 cm of sediments and increased substantially with depth.  

There was a significant difference between January and March (p=0.009), August and 

March (p=0.0004), and August and June (p=0.0374) in H2S concentrations at 7-10 cm 

depth.  The differences may be attributed to exchange of anoxic porewater with 

oxygenated bath water around the bottom stopper during the experimental incubation or 

to H2S oxidation during the core slicing process.  As a core was prepared for porewater 
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Salinity 

 
Temp  
(ºC) 

Benthic Cal.-a 
(mg chl-a m-2) 

NH4
+  

(μM) 
SRP  
(μM) 

NO3
-  

(μM) 

January   26    20 60.7 ±   8.9 (9)ab 4.27 ± 0.50 0.26 ± 0.06 
1.89 ± 0.07 

(9) 
March   30  21.9 63.6 ± 10.1 (9)ab 3.98 ± 0.24  0.20 ± 0.03 1.34 (2) 
June    35.8  31.2 74.7 ±   8.6 (9)a 2.79 ± 0.20 0.24 ± 0.03 0.94 (2) 
August    40.9  31.1 38.3 ±   4.3 (11)b 7.91 ± 1.43 0.02 ± 0.02 2.58 (2) 
       
January-
June 

  66.3 ±   5.2 (27)a   3.68 ± 0.24 
(18) 

0.23 ± 0.02  
(18) 

 1.66 ± 0.11
(13) 

 
Table 3.   Salinity, temperature, BMA biomass, and water column nutrients on each 
sampling date in Sunset Cove.  Benthic biomass and water column nutrients are presented 
as the mean ± standard error, n=6 unless otherwise denoted by parenthetical value. The 
mean benthic biomass and water quality parameters for January, March, and June 
represent undisturbed conditions, while August reflects wind-driven disturbance from 
hurricane Charley.  Different letters represent statistical difference between the means 
(α=0.05).   
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extraction, the bottom incubation stopper was replaced with a smaller rubber stopper, 

used to extract the core.  During the stopper exchange process, the bottom portion of the 

sediment core was exposed to oxic conditions and some porewater may have been lost.  

The oxidation of H2S during preparation of the sediment core for slicing should be taken 

into consideration when looking at profiles below 7 cm depth.    

Sediment porewater concentrations of NH4
+ also display a pattern of increasing 

concentration with depth (Fig. 7).  In the surface sediments (0-0.5 cm), January is 

significantly different from March and August (p=0.0013 and 0.0072, respectively) as is 

June (p<0.0001 and 0.0003, respectively).  March NH4
+ concentrations were consistently 

higher than other months at all depths and were significantly different than August below 

4 cm depth (p=0.0091 at 4-7cm and p=0.0058 at 7-10cm), and from January below 7 cm 

(p=0.0487).  Porewater SRP profiles were more difficult to interpret due to analytical 

detection limits.  Observed concentrations of phosphorus were near the analytical 

detection limit (0.01 μM), and it was difficult to determine if the variability shown in the 

January and June profiles was a true signature of the porewater or if it was an artifact of 

the analytical method.   No data are available for March.   

The bulk density of Sunset Cove sediments was very low in the surface sediments 

and increased with depth (Fig. 7).   Overall, the sediment bulk density profiles were very 

similar between sampling dates (Appendix 4), with slight significant differences 

occurring at 0.5-1.0 cm between January and August (p=0.0421), and at 2-3 cm between 

January and June (p=0.0496). Sediment porosity was only measured in June and August 

and the mean porosity at each depth interval, from these dates, was assumed to be the 

average sediment porosity for all experimental dates at Sunset Cove (Fig. 7).  This is a 
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reasonable assumption considering the similarity in sediment bulk density between 

experimental dates.  The surface layer (0-0.5 cm) was 96% water, and characterized by 

loose, easily resuspended material.  Sediment porosity decreased by 10% with depth, and 

the bottom portion (7-10 cm) of the cores has an average porosity of 0.86.  

 

Oxygen fluxes and production in Sunset Cove 

Oxygen fluxes across the sediment-water interface were related to BMA primary 

production and community respiration.  There was a significant effect of light on the 

oxygen flux, with the BMA community becoming net autotrophic at the onset of 

illumination in January, March and August (Fig. 8).  NPPox at high light levels in August 

(2886 μmol O2 m-2 h-1) was significantly less than the mean high light production 

observed in January, March and June (6714, 7868, and 7659 μmol O2 m-2 h-1, p=0.0003, 

<0.0001, and <0.0001 respectively).  Oxygen fluxes normalized to benthic chl-a (Fig. 9) 

are not significantly different from each other at high light, showing that production per 

unit BMA biomass is uniform.  Estimating the daily oxygen flux from these experiments 

was a useful indicator of net heterotrophy or autotrophy for the BMA community.  GPPox 

was highest in March at low light levels and in June at high light levels (Table 4).  When 

irradiances were greater than 500 μmol photon m-2 s-1 (High Light), the BMA community 

was always found to be net autotrophic (2 – 61 mmol O2 m-2 h-1).  The BMA community 

was also net autotrophic with light levels less than 100 μmol photon m-2 s-1 (Low Light) 

in the winter and early spring (1.8 and 11.5 mmol O2 m-2 h-1, respectively) but net 
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Figure 9.   Oxygen fluxes normalized to benthic microalgal biomass in each 
experimental core.  At high light levels, there is no significant difference in oxygen 
production per unit chlorophyll.
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 Light January March June August 
 
Community 
Respiration 
(μmol O2 m-2 h-1) 
 

 
Dark 

  
2334 ± 321   

   
2792 ± 167 

  
5008 ± 443 

  
3410 ± 298 

Low  2906 ± 1222   4105 ± 654 -3706 ± 854 -183 ± 834 Net Primary 
Production 
(μmol O2 m-2 h-1) 
 

High 6611 ± 1442   8062 ± 642   7348 ± 770 2059 ± 241 

Low  5240 ± 1380   6896 ± 690   1301 ± 552 3202 ± 685 Gross Primary 
Production 
(μmol O2 m-2 h-1) 
 

High  8944 ± 1515 10854 ± 685 12356 ± 855 5444 ± 337 

Low 1.80 11.45 -93.63 -24.49 Daily Oxygen Flux 
 (mmol O2 m-2 d-1) High 43.21 47.82 61.02 2.04 
 
Table 4.  Values represent mean  ± SE for community respiration (CR), and net primary 
production (NPPox), gross primary production (GPPox) at each light level.  Community 
respiration is assumed to be constant at all light levels.  Mean daily oxygen fluxes are 
normalized for hours of daylight during each sampling period, assuming either low or 
high light for the entire daylight period.   
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heterotrophic during summer and early fall (-93.6 and -24.5 mmol O2 m-2 h-1, 

respectively) (Table 4).  Low net production, at both low and high light levels, in August 

was due to low BMA biomass from hurricane-related disturbance. 

 

Nutrient fluxes and BMA nitrogen demand in Sunset Cove 

Fluxes of dissolved inorganic nutrients could not be calculated for all analytes.  

Water column NO3
-/NO2 and SRP were at or near the analytical detection limits 

(0.01 μM) for the duration of most of the incubations, making detection of concentration 

changes difficult.  Changes in water column NH4
+ concentration were detectable and 

fluxes were calculated (Fig. 8).  The mean observed NH4
+ fluxes were not significantly 

different from each other or from zero, partially due to high variability between cores at 

each light treatment.  Under high light conditions more of the individual cores displayed 

negative fluxes, as would be expected from increased NH4
+ uptake by BMA with higher 

production rates.  Observed dark NH4
+ fluxes in August were larger than in previous 

months while the porewater NH4
+ profiles indicated a small concentration gradient in the 

top 10 cm (Fig. 7).  This is consistent with what would be expected following a 

disturbance event, such as sustained winds from a hurricane.   

Nitrogen demand during illuminated periods was calculated for both low and high 

light conditions (Table 5).  Either consistent low light or high light rates were assumed to 

be constant for the average daylight hours per day of each month.   For example, daily 

N-demand of BMA under low light conditions in January was estimated as the hourly 

rate multiplied by 11 hours of illumination per day.  Nitrogen demand on an hourly basis 

increases by 35-41% between low and high light, with the exception of June where the 
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 Light January March June August 
Diffusive NH4

+ Flux 
(mmol m-2 d-1) 
 

 0.62 0.67 0.88 0.33 

Low -0.63 -0.15 -0.01 0.93 Observed NH4
+ Flux 

(mmol m-2 d-1) 
 

High -0.27 -0.54 0.12 0.17 

Low 4.80 6.90 1.52 4.21 N-demand 
(mmol m-2 d-1) 
 

High 8.20 10.85 14.42 6.46 

 
Table 5.   A comparison of daily predicted and observed NH4

+ fluxes with the estimated 
daily N-assimilation by BMA.  Diffusive NH4

+ fluxes were assumed to be constant for a 
24-hour period.  The daily observed NH4

+ fluxes were estimated the average flux rate 
from dark and low or high light, normalized to the respective hours of dark and daylight. 
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BMA N-demand increases by 89% between low and high light.  Daily BMA N-demand 

was lowest in June (1.5 mmol NH4
+ m-2 d-1) when GPPox was lowest under low light 

conditions.  Maximum BMA N-demand was during high light conditions in March and 

June (10.9 and 14.4 mmol NH4
+ m-2 d-1, respectively) when GPPox was highest. 

Diffusive NH4
+ fluxes were estimated as a function of porewater NH4

+ 

concentrations in the top 2 cm of sediments and with an average porosity of 0.94.  Based 

on these conditions, a diffusive efflux of NH4
+ from the sediments ranging from 13.8 to 

36.8 μmol NH4
+ m-2 h-1 should have been observed.  On a daily scale, assuming a 

constant diffusive flux at the estimated hourly rate, 0.33 to 0.88 mmol NH4
+ m-2 d-1 could 

have been released from the sediment by diffusive flux alone (Table 5).  The estimated 

diffusive releases of NH4
+ were much greater than the observed NH4

+ flux, suggesting 

that the diffusive flux was intercepted by the BMA to suppport a portion of the its 

N-demand. Surface regeneration of NH4
+, at very fine scales, therefore can provide a 

portion of the N necessary to support the observed rates of production.  

 

Denitrification in Sunset Cove Microelectrode oxygen profiles 

Denitrification, estimated from dark incubations, displayed seasonal variability in 

2004 (Fig. 8).  The lowest denitrification rates in Sunset Cove were observed in June 

(21.6 ± 20.4 μmol N2-N m-2 h-1), and were similar to the denitrification rates observed 

through out Florida Bay in June 2003 (Fig. 4).  Denitrification rates in January, March 

and August 2004 (272.7 ± 53.1, 180.0 ± 82.7, and 171.2 ± 132.1 μmol N2-N m-2 h-1, 

respectively) were an order of magnitude greater than those observed in both June 2003 
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and June 2004.  Although denitrification in June was much lower than other months, 

there was no significant difference between the monthly mean denitrification rates.  

When the dark denitrification rates were extrapolated to a daily denitrification, with the 

assumption that the observed dark rates were constant over a 24 h period, estimates for 

January, March and August range from 4.11 to 6.55 mmol N2-N m-2 d-1.  Estimated daily 

denitrification in June was much lower (0.52 mmol N2-N m-2 d-1).  However, estimating 

daily denitrification under this assumption can overestimate denitrification during 

illuminated periods because it does not account for competition between BMA and 

denitrifying bacteria for nitrogen substrates. 

 

Microelectrode oxygen profiles 

  To compare oxygen concentration and rates of production and consumption, the 

individual profiles were pooled into a single, composite porewater oxygen profile for 

each light treatment (Fig. 10).  Despite variability within and between individual profiles 

in experimental cores, modeled porewater oxygen concentrations agreed with observed 

data.  Variations in the total depth of oxygen penetration result in ‘bumps’ in the 

compilation profiles where there were large changes in the profile slope and oxygen 

concentrations.  Although these features were not observed in the individual profiles 

(Appendix 5), they were not excluded when interpreting the compilation profiles.  Rather, 

the modeled composite profiles estimated a smoothed concentration gradient which was 

then used to estimate rates and zones of oxygen production and consumption (Fig 10).   

Porewater oxygen concentrations increased with irradiance in the observed and 

modeled data.  In dark periods, maximum oxygen concentrations were at the sediment  
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Figure 10.  Observed (symbols) and modeled (lines) compilation profiles of porewater 
oxygen concentration and production in the surface sediments of Sunset Cove. 
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surface and were similar to water column oxygen concentrations.  BMA primary 

production clearly increased the porewater oxygen concentrations under low irradiance 

(500 μmol m-2 s-2), where the average maximum oxygen concentration was 385 μM at 1.2 

mm below the sediment-water interface.  Similarly, in high light conditions 

(1000 μmol m-2 s-2), the maximum oxygen concentration was 377 μmol l-1 at 0.14 cm 

depth (Fig. 10).  Peak oxygen consumption in the dark and peak production under low 

and high irradiances occurred in a narrowly constrained zone 0.7-1.7 mm below the 

sediment surface (Fig. 10). 

Oxygen fluxes at the sediment surface were substantially less than those observed 

with previous flux experiments when estimated from the sediment O2 profiles (Fig 11).  

Microelectrode determination of primary production in sediments can be underestimated 

in sediments with high rates of bubble formation (Revsbech et al. 1981, Revsbech & 

Jorgensen 1983).  Field observations of floating mats of BMA in Sunset Cove, as well as 

high productivity, suggest that high rates of bubble formation were a common occurrence 

at the sediment surface.  Flux rates observed in batch core incubations integrated oxygen 

production and consumption of the entire sediment column, and a net flux across the 

sediment-water interface is observed over several hour incubations.  On the other hand, 

flux rates estimated from modeled concentration profiles are extrapolated from fine-scale 

spatial and temporal measurements.  Large scale processes of bioturbation and 

bioirrigation were initially ignored in the flux rate calculation and therefore excluded 

when fluxes were extrapolated to the sediment patch scale.  Oxygen flux rates modeled 

from microelectrode oxygen profiles underestimate next oxygen fluxes across the 

sediment-water interface in comparison to flux rates observed in batch core experiments.   
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Figure 11. Oxygen flux rates across the sediment-water interface observed in batch core 
incubations (n=27) (observed) and modeled from microelectrode porewater oxygen 
concentration profiles (n=13) (modeled).  Error bars represent standard error. In the 
observed fluxes, low light is irradiances <100 μmol photons m-2 s-1 and high light is 
>500 μmol photons m-2 s-1 of natural sunlight.  The modeled fluxes are based on 
porewater oxygen profiles collected under artificial light for low and high intensities of 
~500 μmol photons m-2

 s-1 and 1000 μmol photons m-2 s-1, respectively. 
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Discussion 

Methods – Estimating denitrification during periods of primary production 

 There are several methods by which denitrification has been estimated in 

submerged sediments.  Acetylene block, isotope-pairing, direct N2, N2:Ar ratios, and 

stochiometric balance have all been used to estimate dark dentrification rates in a 

diversity of marine and estuarine environments (see Cornwell et al. 1999 for review).  

N2:Ar ratios specifically, as measured with membrane inlet mass spectrometry, have been 

used to estimate denitrification rates in many different kinds of environments – including 

estuarine and marsh sediments with and without macrophytes, and aquaculture waste 

water – but primarily under dark conditions (e.g. Kana et al. 1998, McCarthy & Gardner 

2003, Poe et al. 2003, Gardner et al. 2005).  This study attempted to estimate 

denitrification by applying the MIMS technique to illuminated sub-tropical sediments.  

We found that, once illuminated, N2-N fluxes in most cores indicated net N2(g)  loss, with 

loss rates ranging from moderate  (~1 μmol N2-N m-2 h-1) to impossibly large (~2600 

μmol N2-N m-2 h-1).   

A plausible explanation of N2(g) loss is the gas stripping effect from the presence 

of bubbles inside the sealed experimental cores.  The supersaturation of oxygen, as a 

result of BMA primary production, is likely to have resulted in the creation of 

microbubbles in the cores.  As a subsequent result, dissolved gases would have diffused 

in to the microbubbles and given the same signal as N-fixation or dissolved gas loss from 

the water column (Kana, personal communication).  I attempted to correct for degassing 

by using the measured changes in dissolved Ar concentrations to estimate bubble volume 
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and solubility ratios to estimate the volume of N2 stripped in each core (adapted from 

Blicher-Mathiesen et al. 1998).  The bubble approximation correction used did not 

correct the illuminated N2-N flux rates to biologically expected rates and nor does it 

account for the loss of N2(g) that was observed. (Appendix 3) 

 In this study, experimental oxygen concentrations during high light periods 

exceeded the calibration range of MIMS and results presented here might actually 

represent an underestimation of primary production.  But, changes in oxygen 

concentrations were large during the incubation period in comparison with initial 

dissolved gas concentrations, and primary production would not have been 

underestimated until the experimental cores became saturated with respect to dissolved 

gases.  Using the MIMS method to estimate primary production simultaneously with 

denitrification is a reasonable and cost effective approach when changes in dissolved gas 

concentrations can be easily detected.  Further experimentation is needed to determine 

the effectiveness of MIMS at measuring small changes in dissolved gases against a large 

background concentration, such as with N2(g), when total gas concentrations are 

supersaturated with respect to temperature and salinity.  The dark denitrification rates 

measured in this study were extrapolated daily rates from dark measurements, assuming 

equal rates in the light and dark.  These extrapolated rates estimate maximum daily 

nitrogen removal, but may overestimate true denitrification because of possible inhibition 

of nitrification in the presence of sulfide and  by competition between denitrifying 

bacteria and BMA, and must be interpreted with caution. 
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Methods – Microelectrode profiling  

Accurate determination of the sediment-water interface is a common problem in 

the application of microelectrodes for sediment profiling, but accurately locating the 

sediment-water interface is imperative to the interpretation of porewater oxygen profiles 

(Jorgensen & Revsbech 1985).  In the present study, the sediment-water interface was 

visually determined with a post-hoc adjustment to the location sediment surface as 

necessary.  The post-hoc adjustment of the sediment surface was conduction on 

individual profiles such that the sediment-water interface was assumed to be at the shift 

in oxygen concentration gradient (Glud et al. 1994).  With this adjustment, the interpreted 

profiles likely included both the sediment oxygen profile and the diffusive boundary 

layer—which can exceed 1 mm above the sediment surface in low flow conditions 

(Jorgensen & Revsbech 1985).  The respiration observed in the top 0.07 cm of 

experimental cores under illumination may be accounted for if the diffusive boundary 

layer was included in the interpretation.  Although the sediment-water interface could not 

be precisely determined, the sediment surface location presented here is the best available 

approximation.   

 

BMA primary production in Florida Bay 

 Benthic microalgal production and nutrient cycling are tightly linked in Florida 

Bay with benthic chl.-a and oxygen fluxes being significantly correlated in both seagrass 

beds and sediment patches free of seagrass.  BMA biomass (Table 2) and net benthic 

oxygen production were in seagrass beds was, on average, 25% and 87% less than in 
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seagrass-free sediment patches.  Although seagrass-free sediments had higher BMA 

biomass and oxygen production, NH4
+ fluxes were similar in both habitats.  This suggests 

that BMA biomass drives differences in production, and subsequently nutrient fluxes, 

between the two habitats rather than site-scale differences in environmental factors such 

as currents, carbon availability or nutrient input and regeneration.  The availability of 

labile organic matter is important to consider in relation to nutrient availability, both in 

support of primary production through mineralization and for removal by denitrification. 

Seagrass and mangrove detritus was observed in sediments both with and without 

seagrass, as dead leaves were transported from on habitat to another.  Similarly, BMA 

were observed form mats that float to the sediments surface during periods of high 

productivity due to bubbles trapped within the mat.  The floating BMA mats are 

hypothesized to a vector to return labile organic matter to seagrass beds.  Mineralization 

of BMA derived organic matter is an internal source of NH4
+, and potentially dynamic 

between seagrass beds and sediment patches.     In the present study, the sample size was 

too small to detect site-specific variation beyond the variation expressed in the 

experimental treatment of sediments with or without seagrass. Armitage et al. (2005) 

found that seagrass and epiphytes production was related to nutrient availability in 

Florida Bay but there was no general pattern between sites through out Florida Bay. 

In the seagrass-free sediment patches of Sunset Cove BMA biomass is a strong 

driver of benthic primary production.  Rather than changes in seasonal factors, such as 

temperature, salinity, or irradiance, a large-scale disturbance event had the largest impact 

on standing stocks of BMA biomass.  Benthic microalgal production in temperate 

estuaries tends to follow the accumulation and decline of BMA biomass on an annual 
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basis (Pinckney & Zingmark 1993).  Florida Bay, on the other hand is sub-tropical and 

there is little change in BMA biomass on an seasonal basis with sediments free of 

seagrass having consistently higher BMA biomass than when seagrass is present 

(Table 3).  This is similar to shallow temperate systems where sediment type, and the 

associated susceptibility to physical disturbance, rather than seasonal factors control 

BMA biomass (Sundback et al. 1990, Sundback et al. 2000, Thornton et al. 2002, 

Sundback et al. 2003).  In areas free of seagrass, surface sediments in Florida Bay are 

more easily resuspended by events that cause high shear stress, such as sustained high 

winds, and disturb the BMA community (Krenn 2003). Despite biomass loss, there was 

no annual variation in BMA production when normalized per unit chl.-a (Appendix 3). 

The benthic microalgal communities in Florida Bay are more productive than 

many other temperate estuaries (Table 6).  Under low levels of irradiance (<500 μmol 

photons m-2 s-1), BMA oxygen production in Florida Bay is comparable to that of other 

shallow temperate estuaries.  Low attenuation of light by the water column in Florida Bay 

means that the benthic communities receive incident irradiances much greater than 

temperate systems of similar depth.  Typical daily irradiance received by the benthos in 

temperate estuaries ranges from 50 to 600 μmol photons m-2 s-1 (i.e. Sundback et al. 

2000, Dalsgaard 2003), where as the benthos in Florida Bay regularly receive irradiances 

greater than 1000 μmol photons m-2 s-1.   

Furthermore, BMA primary production directly alters nitrogen cycling through 

N-assimilation to support production.  In Florida Bay, this nutrient removal may be an 

important driver of nutrient limitations in the water column.  Long-term trends of high 

TN:TP and DIN:SRP in the water column (Boyer et al. 1999), seagrass, phytoplankton  



 48 
 

  Hourly Production 
 (mg C m-2

 h-1) 
Chl-a 

(mg chl m-2) 
Source 

Temperate Systems     
 Chukchi Sea, Alaska, USA a 71º 16’N <5 - 57 14C  Matheke & Horner 1974 
 Ragardsvik, Sweden bcd 58º 12’N <1 - 5 O2   60 - 130 Sundback et al. 2003 
 Gulmar Fjord, Sweden bde 58º 22’N   2 - 20 O2   90 - 100 Sundback et al. 2004 
 Yithan Estuary, Scotland a 57º 20’N   2 - 23 14C  Leach 1970 
 Lovns Broad, Denmark bcd 56º 37’N 10 - 180 O2   50 - 275 Dalsgaard 2003 
 Kertinge Nor, Denmark bcd 55º N <1 - 7 O2  Rysgaard et al. 1995 
 Ems-Dollard Estuary, Netherlands a 53º 30’N   <10 - 115 14C   10 - 420 Colijn & de Jonge 1984 
 Colne River Estuary, England bcd 51º 45’N   1 - 78 O2  Dong et al. 2000 
 River Lynher, England a 51º 15’N   5 - 115 14C  Joint 1978 
 Netarts Bay, Oregon, USA a 45º 25’N <5 - 88 O2  Davis & McIntire 1983 
 Golfe de Fos, France a 43º 23’N   1 - 21 O2  Plante-Cuny & Bodoy 1987 
 Ria de Arosa, Spain a 42º 24’N   3 - 44 14C  Varela & Penas 1985 
 Sippewissett Marsh, Massachuesetts, USA a 41º 33’N <5 - 85 14C  Van Raalte et al. 1976 
 Block Island Sound, Rhode Island, USA a 41º 25’N <5 - 105 14C  Marshall et al. 1971 
 Block Island Sound, Rhode Island, USA a 41º 25’N   0 - 164 14C  Marshall et al. 1972 
 Long Island Sound, Connecticut, USA a 41º 17’N   4 - 33 O2  Baille 1986 
 Hog Island Bay, Virginia, USA bc 37º 30’N   5 - 10 DIC   10 - 85 McGlathery et al. 2001 
 Chesapeake Bay, Virginia, USA a 37º 17’N <2 - 68 O2     5 - 65 Rizzo & Wetzel 1985 
 Mugu Lagoon, California, USA a 34º 06’N   8 - 36 O2  Shaffer & Onuf 1983 
 Bolsa Bay, California, USA a 33º 47’N   5 - 125 14C  Riznyk et al. 1978 
 North Inlet Estuary, South Carolina, USA a 33º 20’N 19 - 180 O2  Pinkney & Zingmark 1993a 
 Graveline Bay Mississippi, USA a 30º 24’N <5 - 56 14C  Sullivan & Moncrieff 1988 
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  Hourly Production 
 (mg C m-2

 h-1) 
Chl-a 

(mg chl m-2) 
Source 

Sub-tropical andTropical Systems     
 Galveston Bay, Texas, USAbcd 29º 23’N <0 - 7  O2  An & Joy 2001 
 San Antonio Bay, Texas, USA a 29º 19’N <1 - 11 14C     2 - 36 MacIntyre & Cullen 1996 
 Sydney Lagoons, Australiabc 35º 55’S   0 - 10 O2  Eyre & Ferguson 2003 
 Brunswick and Sandon Rivers, New South 

Wales, Australia cd 
28º 35’S 
29º 41’S 

12 - 46 O2 3 - 45 Ferguson et al. 2003 

 Sunset Cove, Florida, USA cd 25º 05’N    Present Study 
     January 2004  25 – 110 O2 24 – 104  
     March 2004  64 – 121 O2 33 – 110  
     June 2004  13 – 150 O2 46 – 108  
     July 2004  26 – 64 O2    25 – 78  
a Adapted from MacInytre et al. 1996, PQ=1 
b Estimated from a figure 
c GPP estimate from NPP and CR (light and dark oxygen fluxes, respectively) 
d PQ=1.2 
e Range of values presented from stations at ≤5m depth 

  

 
Table 6.  Range of semi-annual to annual variability in BMA gross primary production (presented at carbon uptake) and biomass 
(where available) in temperate and subtropical-tropical estuaries and lagoons.  The original method of quantifying BMA production is 
indicated to the right of the hourly production rates:14C uptake (14C), DIC uptake (DIC), or oxygen evolution (O2). 
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and epiphyte tissue (Zieman et al. 1989, Forqurean et al. 1992, Fourqurean et al. 1993, 

Fourqurean & Zieman 2002, Armitage et al. 2005) show P-limitation in northeastern 

Florida Bay.  However, relative P availability increases in the western portions of Florida 

Bay due to exchange with the Gulf of Mexico (Zieman et al. 1989, Fourqurean & 

Zieman 2002) and  there is evidence of N-limitation in some regions (Fourqurean & 

Zieman 2002).  The observed rates of BMA production in the present study occur despite 

P-limitation in the eastern areas of Florida Bay.  The large amount of N required to 

support the observed rates of BMA primary production (1.5-14.4 mmol N m-2 d-1) may 

help induce N-limitation in some areas of Florida Bay, especially those with relatively 

higher P availabiltiy.   

If the N-demand to support the observed rates of primary production is fully 

realized, BMA assimilation of the diffusive NH4
+ flux would account for 8-58% of the 

BMA N-demand under low light conditions and less than 10% of the total BMA 

N-demand during high light conditions (Table 5).  Nitrogen fixation in Florida Bay 

ranges from 7.13 - 478 μmol N m-2 d-1 (Nagel 2004), and would only meet a small 

fraction of the total BMA nitrogen demand.  Furthermore, the estimated N-demand 

during all light conditions also exceeds the observed NH4
+ flux and the net flux to the 

sediment surface (Diffusive + |Observed|).  Fick’s First law is a reasonable approximation 

for diffusive fluxes in coarse sediments but may underestimate the diffusive flux in the 

presence of bioirrigation and bioturbation (Lavery et al. 2001).  Additional fluxes of 

nitrogen from bioirrgation or bioturbation could provide additional nutrients to support 
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BMA production.  If these additional fluxes do not exceed the BMA N-demand, they 

would not have been observed in the batch core incubations.   

 

 Zones of BMA production and sulfide interactions 

Oxygen dynamics in surface sediment are controlled by benthic microalgae (e.g. 

Rysgaard et al. 1995) and rooted macrophytes (Lee & Dunton 2000) on a diel scale, but 

seagrass and BMA have very different depth zones which they affect.  While the seagrass 

rhizosphere is 5-10 cm below the sediment surface, oxygen production by benthic 

microalgae is limited to the top centimeter of sediment and the maximum oxygen 

penetration depth varies.  BMA production causes diurnal variation in sediment oxygen 

concentration, particularly in the surface 1.5 mm of sediment (Rysgaard et al. 2000), and 

can increase sediment O2 penetration (Revsbech et al. 1983).  When sediments from 

Florida Bay were incubated under artificial light, porewater O2 concentrations increased 

but there was little diurnal variation in the zones of maximum oxygen production.  In 

dark and light incubations, the zones of maximum O2 consumption and production 

overlapped between 0.7 and 1.7 mm of sediment depth.  The overlap of these zones 

suggests that mobile BMA are constrained to a 2 mm zone just below the sediment 

surface. The observed respiration at the surface during light incubations in this study 

(Fig.8) suggests either inaccurate determination of the sediment-water interface (Glud et 

al. 1992) or stimulated production by heterotrophic bacteria on the surface sediment 

(Jorgensen & Revsbech 1985).  Detritus from adjacent seagrass beds as well as excess 

production by the BMA (Middelburg et al. 2000) may support a heterotrophic surface 

community.  Community respiration consumes oxygen during dark periods and diffusion 
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from oxygenated bottom waters is important to maintain a veneer of aerobic sediments.  

However, when comparing the penetration depth of compilation profiles, the oxygen 

penetration depth increased by almost 2mm from low to high irradiances and ~4 mm 

from dark to high irradiance indicating a spatial heterogeneity in the oxygen penetration 

depth between replicate cores.  This spatial heterogeneity may be important to sediment 

oxygen dynamics the BMA sediment patch scale. 

 The maximum depth of the oxygen penetration in sediment porewater doubled 

between dark and high irradiance (1000μmol photons m-2 s-1) periods, from 4 mm to 

8 mm.  The dynamic zone of the oxic-anoxic boundary in the surface sediments has 

strong implications for nutrient cycling on a diurnal scale.  The increased oxic zone 

during periods of illumination can stimulate nitrification (Risgaard-Petersen et al. 1994, 

Rysgaard et al. 1995, An & Joye 2001), provided ample substrate diffuses from deeper 

sediments.   However, within this dynamic zone of the oxic-anoxic boundary, sulfide 

diffuses upward from deeper sediments when oxygen production ceases (Nelson et al. 

1986) and can inhibit nitrification (Joye & Hollibaugh 1995).  Joye and Hollibaugh 

(1995) found that nitrification remains inhibited for up to 24 hours after a brief exposure 

to hydrogen sulfide.  The presence of H2S was observed as shallow as 5 mm sediment 

depth in Florida Bay, and may play an important role in preventing nitrogen removal 

through coupled nitrification-denitrification.  In this study, nitrification rates were not 

quantified and the degree to which sulfide inhibits nitrification could not be fully 

determined.  Furthermore, denitrification could not be used as an indicator of nitrification 

inhibition because it was not be accurately measured during periods of production. 
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Nutrient fluxes and denitrificaiton 

 Benthic microalgae act as filters to control the release of inorganic nitrogen from 

sediment to the water column (e.g. Krom 1991, Anderson et al. 2003, Sundback et al. 

2003) .  Although the porewater in Florida Bay is highly enriched with respect to NH4
+, 

there is very little NH4
+ efflux to the water column, suggesting several mechanisms of 

internal N-recycling in the surface sediments.  N-assimilation at the sediment-water 

interface can consume mineralization products and high rates of mineralization are not 

always reflected as an efflux to the water column (Rysgaard et al. 1996, Sundback et al. 

2000, Anderson et al. 2003).  The N-demand to support the observed rates of oxygen 

production is sufficient to prevent the release of NH4
+ to the water column (Table 5).  

The observation of low inorganic N fluxes to the water column further supports BMA 

assimilation of remineralized nutrients as a key mechanism to internal N-cycling.   

Sediments can act as either a nutrient source or sink depending on many 

biogeochemical parameters of an estuary.  Benthic microalgae are also in competition 

with the bacterial community for inorganic nitrogen.  Coupled nitrification-denitrificaion 

(Rysgaard et al. 1995), nitrate reduction by sulfur oxidizing bacteria (Revsbech et al. 

1983, Lee & Dunton 2000), dissimilatory nitrate reduction to ammonium (DNRA) 

(Gardner et al. 2005), and assimilation by BMA (e.g. Thornton et al. 2002) all compete 

for available nitrate.  Although there is the potential for such competition to reduce BMA 

productivity through N-limitation, this study suggest that BMA N-assimilation and 

oxygen production limits microbial N-cycling processes. 
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Conclusion 
 

Benthic microalgae in Florida Bay are a highly productive component of the 

benthic community in both seagrass and macrophyte-free habitats.   Production at 

irradiances less than 500 μmol photons m-2 s-1 is comparable to that observed in 

temperate systems.  When irradiances exceed 500 μmol photons m-2 s-1   BMA in Florida 

Bay are substantially more productive than their temperate counterparts, despite the 

potential for nutrient limitation.  Compared to temperate systems, Florida Bay BMA 

fulfills similar ecological functions by acting like a filter at the sediment-water interface.  

N-assimilation to support BMA production reduces the release of NH4
+ from the 

sediments to the water column, and suggests closed nutrient cycling within the surface 

centimeter of sediments and BMA.  Oxygen production by the BMA deepens the 

oxic-anoxic boundary in the surface sediments with strong implications for sulfide 

dynamics.  As a result, nitrification and coupled nitrification-denitrification may be 

inhibited there by reducing nitrogen removal from the sediments.  Further competition 

between bacteria and BMA may also be import in maintaining N-limiting conditions in 

some areas of Florida Bay.  Before nutrient cycling rates can be extrapolated to an 

ecosystem scale, estimates of mineralization, nitrification and dissimilarity nitrate 

reduction in Florida Bay are needed.   
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Appendices 
 

 Appendix 1. Bay-wide BMA production and nutrient flux rates 

The bay-wide survey of BMA biomass, production and nutrient fluxes was 
conducted in June 2003.  Three replicate cores were collected in each habitat type at each 
site.  The observed fluxes of oxygen, ammonium and nitrogen are presented for each 
individual core. 
 

BMA 
Biomass 

O2  
Flux 

NH4
+ 

Flux 
N2-N 
Flux 

Incubation treatment 
Habitat type and site 

  
  

(mg chl-a m-2) (μmol O2 
m-2 h-1) 

(μmol NH4
+ 

m-2 h-1) 
(μmol N2-N 

m-2 h-1) 
Dark Incubated:      

Seagrass-free patches:     
Barnes Key Basin 1 34.4 -3976.50 6.23 -9.26 

 2 65.0 -5694.41 1.38 -23.64 
 3 

 
28.0 -7503.84 88.90 198.06 

Rabbit Key Basin 1 10.4 -3949.60 153.62 -256.33 
 2 56.2 -3216.24 -18.20 -88.75 
 3 

 
14.2 -2457.68 -4.61 6.77 

Rankin Bight 1 8.1 -2529.49 19.30 187.08 
 2 40.2 -2113.24 -41.87 8.18 
 3 

 
35.4 -2478.29 -5.94 -234.30 

Sunset Cove 1 21.5 -3237.23 50.11 -56.89 
 2 31.1 -5261.32 69.13 26.83 
 3 

 
17.2 -6515.47 254.81 34.88 

Within seagrass beds:     
Barnes Key Basin 1 9.6 -6193.58 149.05 27.97 

 2 4.9 -3819.01 159.33 8.52 
 3 

 
3.3 -5016.36 37.27 18.11 

Rabbit Key Basin 1 8.3 -2432.96 74.78 25.73 
 2 9.2 -1630.63 9.48 57.76 
 3 

 
7.8 -1848.74 -19.78 33.94 

Rankin Bight 1 6.6 -3370.56 154.99 -198.95 
 2 8.4 -1474.37 13.52 25.03 
 3 

 
5.5 -2019.00 27.74 -166.43 



 56 
 

BMA 
Biomass 

O2  
Flux 

NH4
+ 

Flux 
N2-N 
Flux 

Incubation treatment  
Habitat type and site 

(mg chl-a m-2) (μmol O2 
m-2 h-1) 

(μmol NH4
+ 

m-2 h-1) 
(μmol N2-N 

m-2 h-1) 
Dark Incubated:      

Within seagrass beds:     
Sunset Cove 1 11.1 -1435.98 -38.59 46.12 

 2 12.6 -3092.57 67.87 53.57 
 3 

 
6.3 -1260.14 -16.19 224.76 

Light Incubated:      
Seagrass-free patches:     

Barnes Key Basin 1 34.4 9243.09 -12.21  
 2 28.0 8995.58 -55.71  
 3 

 
65.0 6252.53 -21.16  

Rabbit Key Basin 1 10.4 1204.71 -66.42  
 2 14.2 4227.91 -73.37  
 3 

 
56.2 8704.33 -32.87  

Rankin Bight 1 8.1 1201.21 -37.99  
 2 35.4 10223.23 -33.80  
 3 

 
40.2 4679.09 -16.64  

Sunset Cove 1 21.5 6700.44 -8.05  
 2 17.2 -1496.81 116.39  
 3 

 
31.1 8155.28 42.84  

Within seagrass beds:     
Barnes Key Basin 1 9.6 2180.77 -152.11  

 2 3.3 2135.00 -45.41  
 3 

 
4.9 1419.28 -72.16  

Rabbit Key Basin 1 8.3 -245.94 -14.64  
 2 7.8 732.92 -51.60  
 3 

 
9.2 -367.98 -35.10  

Rankin Bight 1 6.6 873.62 -9.63  
 2 5.5 320.97 -33.65  
 3 

 
8.4 2115.58 -54.09  

Sunset Cove 1 11.1 -1053.83 33.87  
 2 6.3 -1281.01 46.76  
 3 12.6 1844.24 121.85  
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Appendix 2. Bay-wide porewater nutrient profiles 

 Porewater nutrient profiles were collected in June 2003 from within seagrass-free 
sediment patches and from within seagrass beds at four sites in Florida Bay.  The values 
presented here represent the mean of analytical reps taken from one or two cores 
collected within each habitat type.   
 
 Depth  Interval 

(cm) 
H2S  
(μM) 

NH4
+ 

(μM) 
SRP 
(μM) 

Within a seagrass-free sediment patch   
 Barnes 0.0-0.5     398.97 58.30         -- 
  0.5-1.0   1266.79 149.19 1.37 
  1.0-1.5   1793.33 353.67 1.63 
  1.5-2.0   2031.41 562.37 1.73 
  2-3   2077.73 1171.63 1.85 
  3-4   1892.46 471.49 1.54 
  4-7   1963.97 1631.94 2.23 
  7-10 

 
  1940.41 2010.62 2.59 

 Rabbit 0.0-0.5 352.65 134.04         -- 
  0.5-1.0 890.57 245.12 0.76 
  1.0-1.5 1111.59 309.07 0.85 
  1.5-2.0 1332.61 327.59 1.33 
  2-3 1633.26 399.96 1.01 
  3-4 1916.03 443.72 1.35 
  4-7 1992.41 686.07 1.77 
  7-10 

 
1855.90 946.95 2.93 

 Rankin 0.0-0.5 266.52     --         -- 
  0.5-1.0 156.01 49.89 0.27 
  1.0-1.5 307.15 134.04 0.39 
  1.5-2.0 388.41 219.87 0.46 
  2-3 983.20 302.34 0.83 
  3-4 957.20 374.71 0.83 
  4-7 1301.73 479.06 0.94 
  7-10 

 
1254.60 532.92 0.87 

 Sunset 0.0-0.5 29.25 28.01        -- 
  0.5-1.0 22.75 38.11 0.22 
  1.0-1.5 24.38 41.47 0.26 
  1.5-2.0 26.00 57.46 0.21 
  2-3 34.94 59.98 0.23 
  3-4 49.57 68.40 0.24 
  4-7 133.26 84.39 0.28 
  7-10 

 
86.94 69.24 0.24 
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 Depth  Interval 
(cm) 

H2S  
(μM) 

NH4
+ 

(μM) 
SRP 
(μM) 

Within a seagrass-free sediment patch   
 Mean of all 0.0-0.5 289.27 54.09         -- 
 sites 0.5-1.0 604.28 111.60 0.70 
  1.0-1.5 842.36 205.57 0.84 
  1.5-2.0 972.64 297.85 0.95 
  2-3 1114.57 444.28 1.04 
  3-4 1187.97 549.75 1.06 
  4-7 1248.10 766.30 1.29 
  7-10 

 
1194.20 939.93 1.58 

Within a seagrass bed   
 Barnes 0.0-0.5 101.57 37.26        -- 
  0.5-1.0 129.20 46.52 0.28 
  1.0-1.5 182.01 59.14 0.36 
  1.5-2.0 182.83 59.98 0.35 
  2-3 319.34 70.92 0.47 
  3-4 422.53 80.18 0.46 
  4-7 654.93 76.82 0.78 
  7-10 

 
945.83 127.31 1.14 

 Rabbit 0.0-0.5 104.01 43.15        -- 
  0.5-1.0 705.31 108.79 0.71 
  1.0-1.5 848.32 145.82 0.82 
  1.5-2.0 1101.84 157.60 0.90 
  2-3 988.08 147.50 0.84 
  3-4 968.58 122.26 0.73 
  4-7 1101.84 102.06 1.61 
  7-10 

 
1378.11 95.33 2.02 

 Rankin 0.0-0.5 8.13 66.72          -- 
  0.5-1.0 55.25 115.53 0.51 
  1.0-1.5 65.01 108.79 0.28 
  1.5-2.0 60.13 120.57 0.32 
  2-3 266.52 105.43 0.38 
  3-4 404.66 157.60 0.46 
  4-7 466.41 405.01  
  7-10 

 
 
 
 
 
 
 

581.80 251.85 0.72 
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 Depth  Interval 
(cm) 

H2S  
(μM) 

NH4
+ 

(μM) 
SRP 
(μM) 

Within a seagrass bed    
 Sunset 0.0-0.5 19.50 13.70         -- 
  0.5-1.0 29.25 23.80 0.38 
  1.0-1.5 63.38 38.11 0.28 
  1.5-2.0 87.76 48.20 0.77 
  2-3 165.76 57.46 0.30 
  3-4 264.90 68.40 0.41 
  4-7 417.66 110.48 0.59 
  7-10 

 
543.61 137.40 0.63 

 Mean of all 0.0-0.5 59.05 35.30        -- 
 sites 0.5-1.0 179.58 60.83 0.42 
  1.0-1.5 234.02 74.85 0.40 
  1.5-2.0 283.86 82.43 0.58 
  2-3 370.80 84.95 0.46 
  3-4 458.02 96.17 0.49 
  4-7 611.70 160.97 0.89 
  7-10 

 
798.59 149.86 1.03 
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Appendix 3. Sunset Cove production and nutrient flux rates 

Experimental data from the annual survey of Sunset Cove are presented in this 
appendix.  Six replicate cores were collected from a persistent seagrass-free sediment 
patch during January, March, June and August 2004.  The first table presents the BMA 
biomass observed in experimental cores, including cores sacrifices for initial porewater 
characterization. The second table presents the incubation time, shade treatments, and 
actual observed irradiance in the experimental chamber are presented in this table.  The 
incubation time is the actual time during which the cores were incubated at the given 
shade treatment.  It is presented in Eastern Standard Time for January and March, and 
Eastern Daylight Savings Time for June and August.  Irradiance was observed inside the 
incubation chamber with submersible photosynthetic irradiance recording systems 
(Dataflow systems PTY, Ltd.).  During high light periods, the observed irradiance in the 
incubation chamber was very unlike irradiances observed in other locations in and around 
Florida Bay.  Instances were the experimental irradiance was approximated are noted in 
the table.  Additionally, the observed fluxes of oxygen, ammonium, and nitrogen are 
normalized to both per unit area and per unit benthic chl-a for each replicate core.  All 
fluxes presented here have been corrected for water column activity. 
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 Core BMA Biomass 

(mg chl-a m-2) 
January Initial 1 52.71 
 Initial 2 70.63 
 Initial 3 39.29 
 1 100.36 
 2 103.86 
 3 24.51 
 4 48.52 
 5 56.96 
 6 

 
49.31 

March Initial 1 33.34 
 Initial 2 43.35 
 Initial 3 35.00 
 1 95.79 
 2 99.47 
 3 65.87 
 4 42.28 
 5 47.17 
 6 

 
110.40 

June Initial 1 88.70 
 Initial 2 51.54 
 Initial 3 108.98 
 1 75.86 
 2 46.16 
 3 50.26 
 4 90.62 
 5 108.78 
 6 

 
51.26 

August Initial 1 29.32 
 Initial 2 29.63 
 Initial 3 37.69 
 1 30.40 
 2 39.11 
 3 38.78 
 5 33.32 
 6 42.67 
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 Incubation 
Time 

Shade 
Trt. 

Observed 
Light Rep. O2 Flux NH4

+ Flux N2-N Flux O2 Flux NH4
+ Flux N2-N Flux

   (μmol photons 
m-2 s-1) 

 (μmol O2
 

m-2 h-1) 
(μmol NH4

+ 

m-2 h-1) 
(μmol N2-N 

m-2 h-1) 
(μmol O2   

mg chl-1 h-1) 
(μmol NH4

+ 
mg chl-1 h-1) 

(μmol N2-N 
mg chl-1 h-1) 

January 2004         
 0710-0820 Dark 0 1 -2861.33 102.00 163.80 -28.51 1.02 1.63 
    2 -3454.33 110.12 148.43 -33.26 1.06 1.43 
    3 -2785.51 -197.42 112.09 -113.66 -8.06 4.57 
    4 -2839.45 34.30 55.57 -58.52 0.71 1.15 
    5 

 
-2078.87 18.13 120.25 -36.50 0.32 2.11 

 0820-0915 Dark 0 1 -3408.62 207.88 349.75 -33.96 2.07 3.49 
    2 -2923.01 -16.80 428.01 -28.14 -0.16 4.12 
    3 -1307.24 -74.14 388.49 -53.34 -3.03 15.85 
    4 -278.99 -26.97 464.05 -5.75 -0.56 9.56 
    5 

 
-1637.45 -92.95 496.71 -28.75 -1.63 8.72 

 0915-1010 2 Screens 53 1 563.17 -120.44 -78.60 5.61 -1.20 -0.78 
    2 3530.45 -47.08 65.88 33.99 -0.45 0.63 
    3 279.20 0.39 -72.46 11.39 0.02 -2.96 
    4 -1059.49 18.90 -87.29 -21.83 0.39 -1.80 
    5 

 
-129.39 -4.24 24.76 -2.27 -0.07 0.43 

 1010-1115 2 Screens 98 1 7626.83 -226.15 17766.56 76.00 -2.25 177.03 
    2 11621.67 -60.90 10820.11 111.90 -0.59 104.18 
    3 2768.82 -77.26 387.21 112.98 -3.15 15.80 
    4 2137.08 -87.84 364.80 44.04 -1.81 7.52 
    5 

 
 

2159.08 -40.76 332.96 37.91 -0.72 5.85 
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 Incubation 
Time 

Shade 
Trt. 

Observed 
Light Rep. O2 Flux NH4

+ Flux N2-N Flux O2 Flux NH4
+ Flux N2-N Flux

   (μmol photons 
m-2 s-1) 

 (μmol O2
 

m-2 h-1) 
(μmol NH4

+ 

m-2 h-1) 
(μmol N2-N 

m-2 h-1) 
(μmol O2   

mg chl-1 h-1) 
(μmol NH4

+ 
mg chl-1 h-1) 

(μmol N2-N 
mg chl-1 h-1) 

January 2004         
 1115-1217 1 Screen 1290 1 8870.90 -33.70 -4349.66 88.39 -0.34 -43.34 
    2 11274.98 -17.39 -5538.83 108.56 -0.17 -53.33 
    3 2678.79 -59.82 -486.93 109.31 -2.44 -19.87 
    4 2647.35 -52.92 -808.81 54.56 -1.09 -16.67 
    5 

 
4916.89 -38.50 -454.91 86.32 -0.68 -7.99 

 1217-1258 1 Screen 1438 1 13075.75 9.76 -6052.69 130.29 0.10 -60.31 
    2 5073.98 -92.61 -3003.59 48.85 -0.89 -28.92 
    3 2752.52 9.50 -293.58 112.31 0.39 -11.98 
    4 11170.14 9.10 -4586.17 230.20 0.19 -94.52 
    5 

 
12351.80 22.31 -6989.07 216.85 0.39 -122.70 

 1258-1344 Ambient Apx. 2000 1 12180.98 22.20 -4807.00 121.37 0.22 -47.90 
    2 17921.76 22.40 -2935.30 172.55 0.22 -28.26 
    3 4504.03 -83.78 -3319.06 183.78 -3.42 -135.43 
    4 10430.76 -83.17 -3480.76 214.97 -1.71 -71.73 
    5 

 
8916.23 -29.96 -2195.49 156.54 -0.53 -38.54 

 1344-1417 Ambient Apx. 2000 1 13685.36 -54.82 -6551.43 136.36 -0.55 -65.28 
    2 -584.33 -71.23 -6064.79 -5.63 -0.69 -58.39 
    3 2252.02 -18.86 118.25 91.89 -0.77 4.83 
    4 -9736.08 -89.28 7553.65 -200.65 -1.84 155.67 
    5 

 
 
 

-94.26 -9.35 1380.16 -1.65 -0.16 24.23 
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 Incubation 
Time 

Shade 
Trt. 

Observed 
Light Rep. O2 Flux NH4

+ Flux N2-N Flux O2 Flux NH4
+ Flux N2-N Flux

   (μmol photons 
m-2 s-1) 

 (μmol O2
 

m-2 h-1) 
(μmol NH4

+ 

m-2 h-1) 
(μmol N2-N 

m-2 h-1) 
(μmol O2   

mg chl-1 h-1) 
(μmol NH4

+ 
mg chl-1 h-1) 

(μmol N2-N 
mg chl-1 h-1) 

March 2004         
 0656-0800 Dark 0 1 -3315.11 -164.45 -254.06 -34.61 -1.72 -2.65 
    2 -3434.71 29.62 126.92 -34.53 0.30 1.28 
    3 -3673.44 -69.20 124.53 -55.77 -1.05 1.89 
    4 -2967.86 -79.08 203.66 -70.20 -1.87 4.82 
    5 -1863.83 -22.81 200.89 -39.51 -0.48 4.26 
    6 

 
-3179.58 -71.67 190.27 -28.80 -0.65 1.72 

 0800-0856 Dark 0 1 -2517.22 12.47 1000.17 -26.28 0.13 10.44 
    2 -3619.35 46.98 136.89 -36.39 0.47 1.38 
    3 -3044.60 11.84 131.78 -46.22 0.18 2.00 
    4 -2827.79 -3.84 176.39 -66.89 -0.09 4.17 
    5 -2117.16 31.29 34.19 -44.88 0.66 0.72 
    6 

 
-2981.33 12.47 88.74 -27.00 0.11 0.80 

 0856-1000 2 Screens 47 1 6153.48 -77.65 -1148.05 64.24 -0.81 -11.98 
    2 2444.66 45.33 -270.01 24.58 0.46 -2.71 
    3 1710.97 -47.18 -269.29 25.97 -0.72 -4.09 
    4 3361.95 -30.98 -299.33 79.52 -0.73 -7.08 
    5 1614.94 -14.51 -244.21 34.23 -0.31 -5.18 
    6 

 
5405.47 -49.10 7735.61 48.96 -0.44 70.07 

 1000-1100 2 Screens 89 1 7807.62 168.22 11192.81 81.50 1.76 116.84 
    2 2105.33 -48.45 1033.18 21.17 -0.49 10.39 
    3 

 
 

3024.43 68.38 -431.89 45.92 1.04 -6.56 



 65 
 

 Incubation 
Time 

Shade 
Trt. 

Observed 
Light Rep. O2 Flux NH4

+ Flux N2-N Flux O2 Flux NH4
+ Flux N2-N Flux

   (μmol photons 
m-2 s-1) 

 (μmol O2
 

m-2 h-1) 
(μmol NH4

+ 

m-2 h-1) 
(μmol N2-N 

m-2 h-1) 
(μmol O2   

mg chl-1 h-1) 
(μmol NH4

+ 
mg chl-1 h-1) 

(μmol N2-N 
mg chl-1 h-1) 

March 2004         
 1000-1100 2 Screens 89 4 4872.60 37.93 -403.45 115.26 0.90 -9.54 
    5 1404.55 -43.76 -322.76 29.77 -0.93 -6.84 
    6 

 
7084.04 107.32 -2084.53 64.17 0.97 -18.88 

 1000-1132 1 Screen 659 1 9873.89 -305.02 -3675.37 103.08 -3.18 -38.37 
    2 5633.48 -107.38 -1347.77 56.63 -1.08 -13.55 
    3 5916.89 -34.37 636.82 89.83 -0.52 9.67 
    4 -278.70 -32.17 -1307.46 -6.59 -0.76 -30.93 
    5 4283.36 59.51 544.49 90.80 1.26 11.54 
    6 

 
10374.19 -219.38 -2652.63 93.97 -1.99 -24.03 

 1132-1159 1 Screen 829 1 11620.19 -33.10 -3693.22 121.30 -0.35 -38.55 
    2 6642.42 -18.13 -3358.88 66.78 -0.18 -33.77 
    3 7826.00 -46.76 1813.27 118.81 -0.71 27.53 
    4 9170.90 -78.64 11529.50 216.93 -1.86 272.72 
    5 3629.02 -1.87 1082.06 76.93 -0.04 22.94 
    6 

 
11757.16 34.57 -3137.77 106.49 0.31 -28.42 

 1229-1300 Ambient Apx. 2000 1 8858.44 112.32 -2713.24 92.47 1.17 -28.32 
    2 6580.09 21.65 10409.21 66.15 0.22 104.65 
    3 9565.93 111.19 -2882.08 145.22 1.69 -43.75 
    4 9034.40 66.42 367.54 213.70 1.57 8.69 
    5 5135.83 114.59 270.58 108.87 2.43 5.74 
    6 

 
 

8391.90 82.85 -1311.34 76.01 0.75 -11.88 
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 Incubation 
Time 

Shade 
Trt. 

Observed 
Light Rep. O2 Flux NH4

+ Flux N2-N Flux O2 Flux NH4
+ Flux N2-N Flux

   (μmol photons 
m-2 s-1) 

 (μmol O2
 

m-2 h-1) 
(μmol NH4

+ 

m-2 h-1) 
(μmol N2-N 

m-2 h-1) 
(μmol O2   

mg chl-1 h-1) 
(μmol NH4

+ 
mg chl-1 h-1) 

(μmol N2-N 
mg chl-1 h-1) 

March 2004         
 1159-1229 Ambient Apx. 2000 1 13726.69 69.18 -7926.45 143.30 0.72 -82.75 
    2 8462.71 -68.44 -3239.67 85.08 -0.69 -32.57 
    3 9279.73 -67.27 -5448.82 140.88 -1.02 -82.72 
    4 6563.38 -52.63 -8673.13 155.25 -1.24 -205.15 
    5 4468.99 -134.61 -3180.43 94.73 -2.85 -67.42 
    6 

 
11834.85 -22.17 -5066.99 107.20 -0.20 -45.90 

June 2004         
 0835-0940 Dark 0 1 -7071.53 -81.37 68.92 -93.21 -1.07 0.91 
    2 -4513.59 -53.31 15.58 -97.79 -1.15 0.34 
    3 -4102.55 66.22 75.73 -81.63 1.32 1.51 
    4 -6948.60 129.80 130.27 -76.68 1.43 1.44 
    5 -6147.39 99.07 -18.36 -56.51 0.91 -0.17 
    6 

 
-5541.41 81.51 21.12 -108.11 1.59 0.41 

 0940-1040 Dark 0 1 -4690.14 93.56 -156.66 -61.82 1.23 -2.06 
    2 -2137.96 42.56 -18.09 -46.32 0.92 -0.39 
    3 -2798.00 -36.40 3.41 -55.67 -0.72 0.07 
    4 -3780.73 96.62 54.54 -41.72 1.07 0.60 
    5 -3629.48 -8.87 23.96 -33.36 -0.08 0.22 
    6 

 
-4091.03 108.08 58.99 -79.82 2.11 1.15 

 0730-0835 Ambient 63 1 -5720.13 -101.46 -190.75 -75.40 -1.34 -2.51 
    2 -2374.93 96.97  -51.45 2.10  
    3 -774.32 -99.09 -17.51 -15.41 -1.97 -0.35 
    4 -6039.87 -28.44 -229.69 -66.65 -0.31 -2.53 
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 Incubation 
Time 

Shade 
Trt. 

Observed 
Light Rep. O2 Flux NH4

+ Flux N2-N Flux O2 Flux NH4
+ Flux N2-N Flux

   (μmol photons 
m-2 s-1) 

 (μmol O2
 

m-2 h-1) 
(μmol NH4

+ 

m-2 h-1) 
(μmol N2-N 

m-2 h-1) 
(μmol O2   

mg chl-1 h-1) 
(μmol NH4

+ 
mg chl-1 h-1) 

(μmol N2-N 
mg chl-1 h-1) 

June 2004         
 0730-0835 Ambient 63 5 -3258.13 -36.56 -17.42 -29.95 -0.34 -0.16 
    6 

 
-2154.69 -29.10 450.58 -42.04 -0.57 8.79 

 1040-1135 2 Screens 616 1 3375.83 -48.95 -10462.44 44.50 -0.65 -137.91 
    2 1398.01 163.36 847.54 30.29 3.54 18.36 
    3 6081.11 -19.25 -0.14 120.99 -0.38 0.00 
    4 2127.14 62.26 10.55 23.47 0.69 0.12 
    5 5869.07 5.90 -8878.39 53.95 0.05 -81.62 
    6 

 
167.15 27.28 13.67 3.26 0.53 0.27 

 1135-1235 2 Screens 1079 1 8560.92 -22.64 146.33 112.85 -0.30 1.93 
    2 4025.49 -197.41 -525.88 87.21 -4.28 -11.39 
    3 10262.26 -16.62 14225.12 204.18 -0.33 283.03 
    4 10414.95 -226.16 260.14 114.93 -2.50 2.87 
    5 9327.82 100.67 148.15 85.75 0.93 1.36 
    6 

 
1148.74 176.42 215.26 22.41 3.44 4.20 

 1325-1405 1 Screen 1427 1 12066.14 17.63 14561.08 159.05 0.23 191.94 
    2 -464.78 -28.45 141.76 -10.07 -0.62 3.07 
    3 8662.17 -41.48 -3840.86 172.35 -0.83 -76.42 
    4 8246.68 -124.02 14281.27 91.00 -1.37 157.59 
    5 13676.74 -13.06 -4968.55 125.72 -0.12 -45.67 
    6 

 
 
 

6623.20 34.90 212.99 129.22 0.68 4.16 
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 Incubation 
Time 

Shade 
Trt. 

Observed 
Light Rep. O2 Flux NH4

+ Flux N2-N Flux O2 Flux NH4
+ Flux N2-N Flux

   (μmol photons 
m-2 s-1) 

 (μmol O2
 

m-2 h-1) 
(μmol NH4

+ 

m-2 h-1) 
(μmol N2-N 

m-2 h-1) 
(μmol O2   

mg chl-1 h-1) 
(μmol NH4

+ 
mg chl-1 h-1) 

(μmol N2-N 
mg chl-1 h-1) 

June 2004         
 1235-1325 1 Screen 1758 1 14540.93 -27.60 77.09 191.67 -0.36 1.02 
    2 4617.02 -27.77 107.29 100.03 -0.60 2.32 
    3 12359.36 21.49 -4851.26 245.91 0.43 -96.52 
    4 9733.23 8.81 -238.68 107.40 0.10 -2.63 
    5 14471.16 -140.30 11582.29 133.03 -1.29 106.47 
    6 

 
6142.36 -311.03 108.41 119.84 -6.07 2.12 

 1446-1526 Ambient 2129 1 11795.40 18.24 -4026.15 155.48 0.24 -53.07 
    2 812.10 18.19 7.49 17.59 0.39 0.16 
    3 2485.71 -37.48 -469.32 49.46 -0.75 -9.34 
    4 13308.34 -45.68 -4859.12 146.85 -0.50 -53.62 
    5 10336.74 2.47 -2670.80 95.02 0.02 -24.55 
    6 

 
5639.73 -62.33 129.06 110.03 -1.22 2.52 

 1405-1446 Ambient 2740 1 16892.60 -40.94 -5822.90 222.67 -0.54 -76.76 
    2 2704.05 -71.19 92.18 58.58 -1.54 2.00 
    3 10606.88 74.39 -3743.05 211.04 1.48 -74.47 
    4 10889.32 3.46 -2636.46 120.16 0.04 -29.09 
    5 8142.14 -87.32 -3256.25 74.85 -0.80 -29.93 
    6 

 
8684.85 3.33 68.87 169.44 0.06 1.34 

August 2004         
 0755-0855 Dark 0 1 -2708.47 370.72 -130.45 -89.10 12.20 -4.29 
    2 -4694.88 376.11 -25.52 -120.05 9.62 -0.65 
    3 -3235.31 362.85 484.91 -83.43 9.36 12.50 
    4 -2406.85 174.16 57.93    
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 Incubation 
Time 

Shade 
Trt. 

Observed 
Light Rep. O2 Flux NH4

+ Flux N2-N Flux O2 Flux NH4
+ Flux N2-N Flux

   (μmol photons 
m-2 s-1) 

 (μmol O2
 

m-2 h-1) 
(μmol NH4

+ 

m-2 h-1) 
(μmol N2-N 

m-2 h-1) 
(μmol O2   

mg chl-1 h-1) 
(μmol NH4

+ 
mg chl-1 h-1) 

(μmol N2-N 
mg chl-1 h-1) 

August 2004         
 0755-0855 Dark 0 5 -2885.58 -463.11 34.45 -86.61 -13.90 1.03 
    6 

 
-3561.41 394.89 43.57 -83.47 9.25 1.02 

 0855-0955 Dark 1 1 -2589.24 82.45 52.68 -85.18 2.71 1.73 
    2 -4361.40 -23.33 75.97 -111.52 -0.60 1.94 
    3 -2443.99 -134.50 1515.52 -63.03 -3.47 39.08 
    4 -2437.92 -249.89 82.99    
    5 -3134.06 8.27 -261.16 -94.07 0.25 -7.84 
    6 

 
-4246.03 -309.25 123.18 -99.51 -7.25 2.89 

 0955-1055 2 Screens 59 1 525.38 36.46 -287.44 17.28 1.20 -9.46 
    2 -2472.52 176.81 -133.03 -63.22 4.52 -3.40 
    3 -1209.04 134.55 -1202.18 -31.18 3.47 -31.00 
    4 660.90 -7.23 -107.37    
    5 -149.54 -189.91 258.32 -4.49 -5.70 7.75 
    6 

 
-719.18 215.11 -345.13 -16.86 5.04 -8.09 

 1055-1155 2 Screens 76 1 4699.06  -112.47 154.58  -3.70 
    2 110.31 49.51 -62.28 2.82 1.27 -1.59 
    3 311.71 -1.18 -29.42 8.04 -0.03 -0.76 
    4 3565.52 -64.69 9.68    
    5 3631.63 -50.44 250.77 109.01 -1.51 7.53 
    6 

 
1193.21  -102.48 27.96  -2.40 

 1155-1240 1 Screen 880 1 2642.09 -116.00 -157.20 86.92 -3.82 -5.17 
    2 2468.58 26.77 111.76 63.12 0.68 2.86 
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 Incubation 
Time 

Shade 
Trt. 

Observed 
Light Rep. O2 Flux NH4

+ Flux N2-N Flux O2 Flux NH4
+ Flux N2-N Flux

   (μmol photons 
m-2 s-1) 

 (μmol O2
 

m-2 h-1) 
(μmol NH4

+ 

m-2 h-1) 
(μmol N2-N 

m-2 h-1) 
(μmol O2   

mg chl-1 h-1) 
(μmol NH4

+ 
mg chl-1 h-1) 

(μmol N2-N 
mg chl-1 h-1) 

August 2004         
 1155-1240 1 Screen 880 3 1486.86 -142.61 -120.23 38.34 -3.68 -3.10 
    4 2524.48 -2.81 -31.28    
    5 1891.89 -17.02 -78.85 56.79 -0.51 -2.37 
    6 

 
1928.42  56.01 45.20  1.31 

 1240-1325 1 Screen 919 1 3542.81 27.73 125.93 116.55 0.91 4.14 
    2 1784.55 -1.27 32.96 45.63 -0.03 0.84 
    3 2554.10 97.14 -121.30 65.86 2.50 -3.13 
    4 3597.50 -0.11 42.92    
    5 3365.54  -66.35 101.02  -1.99 
    6 

 
2509.35 109.78 630.85 58.81 2.57 14.78 

 1325-1355 Ambient 1664 1 3654.15 240.75 61.13 120.21 7.92 2.01 
    2 4638.58 109.87 474.58 118.61 2.81 12.14 
    3 3410.23 204.31 273.49 87.94 5.27 7.05 
    4 3980.92 310.65 348.98    
    5 1760.62  305.84 52.85  9.18 
    6 

 
3714.86 327.75 -135.10 87.06 7.68 -3.17 

 1355-1435 Ambient 1917 1 3408.92 -318.10 -155.76 112.14 -10.46 -5.12 
    2 3650.03 -330.09 -189.24 93.33 -8.44 -4.84 
    3 2498.55 -304.99 -119.44 64.43 -7.87 -3.08 
    4 4358.09 -427.13 -556.62    
    5 1660.32  -184.76 49.84  -5.55 
    6 

 
2231.20 -369.13 -392.92 52.29 -8.65 -9.21 
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Appendix 4. Sunset Cove porewater nutrient profiles and sediment characteristics 

Porewater nutrient profiles were collected from Sunset Cove 2004 within 
seagrass-free sediment patch.  The values presented here represent the mean of 
analytical replicates taken individual cores.  Initial porewater characteristics were 
sample on three cores following the acclimation period but immediately prior to the 
incubation periods.  Final porewater characteristics were measured on three, 
randomly selected, experimental sediment cores following the incubation period. 
There was no significant difference between initial and final porewater characteristics 
and the cores were ultimately pooled for a sample size of 6 cores for each month. 
Bulk density and porosity were measured on different cores than final porewater 
characteristics. 
 

   
Depth Interval 

(cm) 

 
H2S

(μM)
NH4

+

(μM)
SRP  
(μM)

Bulk 
Density 

(gdw ml-1) 

 
Porosity 
(ml/ml) 

January 2004    
 Initial 1 0.0-0.5 13.00 19.90   
  0.5-1.0 50.38 57.23 0.418   
  1.0-1.5 108.88 140.51 0.260   
  1.5-2.0 56.88 159.18 0.438   
  2-3 214.52 209.43 0.616   
  3-4 451.79 265.42 0.655   
  4-7 1062.84 327.16 1.387   
  7-10 

 
476.16 433.41 1.604   

 Initial 2 0.0-0.5 24.38 12.73 0.459   
  0.5-1.0 19.50 32.83   
  1.0-1.5 45.75 0.418   
  1.5-2.0 234.02 54.36 0.438   
  2-3 53.63 60.11 0.141   
  3-4 19.50 60.11   
  4-7 40.63 62.98 0.319   
  7-10 

 
53.63 67.29 0.695   

 Initial 3 0.0-0.5 120.26 32.83   
  0.5-1.0 183.64 71.59 0.392   
  1.0-1.5 160.89 94.56 0.141   
  1.5-2.0 60.13 98.87 0.912   
  2-3 199.89 121.84 0.240   
  3-4 303.90 157.74 0.912   
  4-7 845.07 297.01 0.299   
  7-10 

 
672.80 219.48 1.743   
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Depth Interval 

(cm) 

 
H2S

(μM)
NH4

+

(μM)
SRP  
(μM)

Bulk 
Density 

(gdw ml-1) 

 
Porosity 
(ml/ml) 

January 2004    
 Final 1 0.0-0.5 81.26 74.46 0.514 0.10  
  0.5-1.0 141.39 114.67 0.432 0.12  
  1.0-1.5 253.52 139.07 0.446 0.14  
  1.5-2.0 360.78 166.35 0.459 0.19  
  2-3 503.79 190.76 0.622 0.26  
  3-4 583.42 0.432 0.33  
  4-7 687.43 219.48 0.473 0.40  
  7-10 

 
536.29 192.20 0.446 0.38  

 Final 2 0.0-0.5 34.13 22.78 0.798   
  0.5-1.0 56.88 54.36 0.432 0.13  
  1.0-1.5 50.38 68.72 0.446 0.18  
  1.5-2.0 42.25 78.77 0.446 0.23  
  2-3 107.26 93.13 0.459 0.24  
  3-4 198.27 130.46 0.405 0.26  
  4-7 533.04 183.58 0.378 0.35  
  7-10 

 
516.79 189.33 0.432 0.39  

 Final 3 0.0-0.5 19.50 17.03 0.446 0.11  
  0.5-1.0 45.50 41.44 0.419 0.12  
  1.0-1.5 78.01 71.59 0.042 0.12  
  1.5-2.0 84.51 84.51 0.299 0.14  
  2-3 172.26 100.31 0.339 0.20  
  3-4 308.77 137.64 0.200 0.31  
  4-7 589.92 180.71 0.042 0.40  
  7-10 

 
466.41 203.68 0.319 0.45  

March 2004    
 Initial 1 0.0-0.5 30.88 72.44   
  0.5-1.0 45.50 72.44   
  1.0-1.5 63.38 118.55   
  1.5-2.0 60.13 114.36   
  2-3 108.88 135.31   
  3-4 95.88 138.11   
  4-7 269.77 168.85   
  7-10 

 
193.39 175.83   

 Initial 2 0.0-0.5 27.63 62.66   
  0.5-1.0 32.50 78.03   
  1.0-1.5 48.75 96.19   
  1.5-2.0 35.75 114.36   
  2-3 86.13 131.12   
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Depth Interval 

(cm) 

 
H2S

(μM)
NH4

+

(μM)
SRP  
(μM)

Bulk 
Density 

(gdw ml-1) 

 
Porosity 
(ml/ml) 

March 2004    
 Initial 2 3-4 131.64 164.65   
  4-7 515.17 237.31   
  7-10 

 
682.55 312.76   

 Initial 3 0.0-0.5 47.13 85.01   
  0.5-1.0 55.25 97.59   
  1.0-1.5 65.01 124.14   
  1.5-2.0 66.63 122.74   
  2-3 102.38 142.30   
  3-4 370.53 212.16   
  4-7 568.80 255.47   
  7-10 

 
550.92 249.88   

 Final 1 0.0-0.5 34.13 85.01 0.11  
  0.5-1.0 71.51 119.94 0.16  
  1.0-1.5 196.64 189.80 0.25  
  1.5-2.0 292.52 242.90 0.28  
  2-3 809.31 308.57 0.31  
  3-4 767.06 351.88 0.34  
  4-7 1322.86 438.51 0.35  
  7-10 

 
1441.49 518.15 0.35  

 Final 2 0.0-0.5 56.88 117.15 0.11  
  0.5-1.0 266.52 206.57 0.15  
  1.0-1.5 308.77 256.87 0.19  
  1.5-2.0 456.66 263.86 0.26  
  2-3 555.79 265.25 0.26  
  3-4 970.20 367.25 0.24  
  4-7 1472.37 520.94 0.32  
  7-10 

 
1677.13 731.92 0.41  

 Final 3 0.0-0.5 43.88 66.85 0.12  
  0.5-1.0 42.25 93.40 0.20  
  1.0-1.5 34.13 111.56 0.32  
  1.5-2.0 39.00 107.37 0.35  
  2-3 52.00 110.16 0.38  
  3-4 97.51 154.87 0.43  
  4-7 459.91 242.90 0.41  
  7-10 

 
 
 

1035.21 364.45 0.49  
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Depth Interval 

(cm) 

 
H2S

(μM)
NH4

+

(μM)
SRP  
(μM)

Bulk 
Density 

(gdw ml-1) 

 
Porosity 
(ml/ml) 

June 2004    
 Initial 1 0.0-0.5 22.12 7.00 0.460   
  0.5-1.0 55.31 34.35 0.622   
  1.0-1.5 123.51 78.80 0.608   
  1.5-2.0 258.09 124.96 0.581   
  2-3 481.15 152.31 1.495   
  3-4 554.89 160.86 0.568   
  4-7 438.75   
  7-10 

 
0.554   

 Initial 2 0.0-0.5 9.22 10.42   
  0.5-1.0 16.59 27.52 0.541   
  1.0-1.5 20.28 34.35   
  1.5-2.0 20.28 41.19 0.554   
  2-3 20.28 46.32 0.554   
  3-4 44.24   
  4-7 304.18 155.73 0.554   
  7-10 

 
654.44 236.08 1.078   

 Initial 3 0.0-0.5 44.24 5.29   
  0.5-1.0 68.21 12.13 0.595   
  1.0-1.5 125.36 30.94 0.527   
  1.5-2.0 331.83 87.35 0.917   
  2-3 647.07 142.05 0.796   
  3-4 875.66 181.37 0.917   
  4-7 962.31 234.37 1.629   
  7-10 

 
571.49 261.72   

 Final 1 0.0-0.5 25.81 20.68 0.21 0.96 
  0.5-1.0 29.50 22.39 0.514 0.33 0.94 
  1.0-1.5 22.12 41.19 0.487 0.38 0.95 
  1.5-2.0 29.50 51.45 0.35 0.92 
  2-3 47.93 54.87 0.514 0.38 0.87 
  3-4 51.62 51.45 0.622 0.41 0.85 
  4-7 116.14 118.12 0.42 0.82 
  7-10 

 
0.42 0.84 

 Final 2 0.0-0.5 40.56 27.52 0.420 0.16 0.96 
  0.5-1.0 103.24 78.80 0.541 0.25 0.91 
  1.0-1.5 302.33 142.05 0.554 0.32 0.91 
  1.5-2.0 376.07 191.63 0.29 0.89 
  2-3 711.59 258.30 0.648 0.49 0.82 
  3-4 807.45 271.98 0.54 0.81 
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Depth Interval 

(cm) 

 
H2S

(μM)
NH4

+

(μM)
SRP  
(μM)

Bulk 
Density 

(gdw ml-1) 

 
Porosity 
(ml/ml) 

June 2004    
 Final 2 4-7 859.07 295.91 0.756 0.52 0.80 
  7-10 

 
671.03 273.69 0.581 0.51 0.78 

 Final 3 0.0-0.5 25.81 1.87 0.12 0.94 
  0.5-1.0 70.05 30.94 0.568 0.18 0.88 
  1.0-1.5 103.24 54.87 0.487 0.23 0.87 
  1.5-2.0 164.07 94.19 0.514 0.22 0.84 
  2-3 368.70 152.31 0.689 0.37 0.85 
  3-4 543.83 198.47 0.958 0.46 0.85 
  4-7 890.41 278.82 1.912 0.46 0.85 
  7-10 

 
801.92 283.94 0.514 0.44 0.82 

August 2004    
 Initial 1 0.0-0.5 18.44 57.29   
  0.5-1.0 486.68 45.47 0.130   
  1.0-1.5 44.24 73.56 0.101   
  1.5-2.0 40.56 69.12 0.101   
  2-3 42.40 85.39 0.101   
  3-4 95.86 114.96 0.115   
  4-7 270.99 143.05 0.231   
  7-10 

 
381.60 174.10 0.231   

 Initial 2 0.0-0.5 22.12 49.90   
  0.5-1.0 23.97 76.51 0.101   
  1.0-1.5 46.09 51.38 0.115   
  1.5-2.0 46.09 61.73 0.159   
  2-3 64.52 63.21 0.101   
  3-4 73.74 82.43 0.115   
  4-7 101.39 86.86 0.115   
  7-10 

 
136.42 135.65 0.259   

 Initial 3 0.0-0.5 22.12 54.34   
  0.5-1.0 20.28 36.59 0.043   
  1.0-1.5 22.12 55.81 0.086   
  1.5-2.0 46.09 69.12 0.101   
  2-3 66.37 83.91 0.086   
  3-4 81.11 110.52 0.187   
  4-7 280.21 150.44 1.023   
  7-10 

 
 
 

455.34 209.58 0.865   
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Depth Interval 

(cm) 

 
H2S

(μM)
NH4

+

(μM)
SRP  
(μM)

Bulk 
Density 

(gdw ml-1) 

 
Porosity 
(ml/ml) 

August 2004    
 Final 1 0.0-0.5 14.75 80.95 0.16 1.00 
  0.5-1.0 27.65 82.43 0.058 0.23 0.97 
  1.0-1.5 29.50 79.47 0.101 0.27 0.96 
  1.5-2.0 35.03 104.61 0.086 0.33 0.90 
  2-3 60.84 106.08 0.101 0.35 0.88 
  3-4 95.86 128.26 0.101 0.33 0.89 
  4-7 258.09 85.39 0.159 0.37 0.88 
  7-10 

 
339.20 159.31 0.418 0.39 0.93 

 Final 2 0.0-0.5 35.03 67.64 0.26 0.95 
  0.5-1.0 40.56 86.86 0.130 0.35 0.92 
  1.0-1.5 22.12 86.86 0.130 0.53 0.85 
  1.5-2.0 70.05 92.78 0.115 0.56 0.83 
  2-3 92.18 112.00 0.115 0.51 0.85 
  3-4 108.77 134.18 0.130 0.55 0.85 
  4-7 84.80 101.65 0.159 0.55 0.83 
  7-10 

 
36.87 103.13 0.144 0.48 0.85 

 Final 3 0.0-0.5 55.31 123.83 0.15 1.00 
  0.5-1.0 197.75 0.115 0.22 0.97 
  1.0-1.5 228.59 187.40 0.144 0.25 0.96 
  1.5-2.0 293.12 231.76 0.173 0.25 0.93 
  2-3 352.11 202.19 0.173 0.31 0.92 
  3-4 261.78 157.83 0.245 0.38 0.92 
  4-7 447.97 154.88 0.231 0.41 0.91 
  7-10 

 
127.20 117.91 0.259 0.28 0.90 

 Final 4 0.0-0.5 0.24 0.86 
  0.5-1.0 0.30 0.93 
  1.0-1.5 0.36 0.93 
  1.5-2.0 0.35 0.93 
  2-3 0.36 0.92 
  3-4 0.39 0.89 
  4-7 0.43 0.89 
  7-10 

 
0.33 0.81 

 Final 5 0.0-0.5 0.17 0.99 
  0.5-1.0 0.24 0.96 
  1.0-1.5 0.30 0.94 
  1.5-2.0 0.37 0.91 
  2-3 0.37 0.90 
  3-4 0.41 0.96 
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Depth Interval 

(cm) 

 
H2S

(μM)
NH4

+

(μM)
SRP  
(μM)

Bulk 
Density 

(gdw ml-1) 

 
Porosity 
(ml/ml) 

August 2004    
 Final 5 4-7 0.36 0.88 
  7-10 

 
0.30 0.92 

 Final 6 0.0-0.5 0.15 1.00 
  0.5-1.0 0.20 0.99 
  1.0-1.5 0.23 0.87 
  1.5-2.0 0.26 0.95 
  2-3 0.38 0.89 
  3-4 0.34 0.91 
  4-7 0.34 0.91 
  7-10 

 
0.35 0.88 
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Appendix 5. Microelectrode profiles 

Porewater oxygen concentration profiles measured with a Clarke type 
microelectrode (OX-25 fast ,  Uniscence, Denmark).  Cores were collected from 
Sunset Cove, Florida Bay and returned to Cambridge, Maryland within 48-hours of 
collection.  Incubation and profiling was conducted under artificial lighting in an 
environmental growth chamber.  Each core was profiled in two or three randomly 
chosen location at each light level.  The measured oxygen concentration profile is 
presented for each core, with replicate locations, at each light level. 
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Dark porewater O2 profiles:  
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Low light (500 μmol photons m-2 s-1) porewater O2 profiles: 
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High light (1000 μmol photons m-2 s-1) porewater O2 profiles: 
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