

Abstract-- In recent years, wireless ad hoc networks have been a growing area of research. While there has

been considerable research on the topic of routing in such networks, the topic of topology creation has not
received due attention. This is because almost all ad hoc networks to date have been built on top of a single
channel, broadcast based wireless media, such as 802.11 or IR LANs. For such networks the distance
relationship between the nodes implicitly (and uniquely) determines the topology of the ad hoc network.

Bluetooth is a promising new wireless technology, which enables portable devices to form short-range wireless
ad hoc networks and is based on a frequency hopping physical layer. This fact implies that hosts are not able to
communicate unless they have previously discovered each other by synchronizing their frequency hopping
patterns. Thus, even if all nodes are within direct communication range of each other, only those nodes which
are synchronized with the transmitter can hear the transmission. To support any-to-any communication, nodes
must be synchronized so that the pairs of nodes (which can communicate with each other) together form a
connected graph.

Using Bluetooth as an example, this paper first provides deeper insights into the issue to link establishment in
frequency hopping wireless systems. It then introduces the Bluetooth Topology Costruction Protocol (BTCP), an
asynchronous distributed protocol for constructing scatternets which starts with nodes that have no knowledge
of their surroundings and terminates with the formation of a connected network satisfying all connectivity
constraints posed by the Bluetooth technology. To the best of our knowledge, the work presented in this paper is
the first attempt at building Bluetooth scatternets using distributed logic and is quite “practical” in the sense
that it can be implemented using the communication primitives offered by the Bluetooth 1.0 specifications.

Index terms—Frequency hopping, Bluetooth, topology construction, scatternet.

1. INTRODUCTION

An ad hoc network is a wireless network formed by nodes that cooperate with each other to forward

packets in the network. Almost all experimental ad hoc networks to date have been built on top of single
channel, broadcast based 802.11 wireless LANs or IR LANs. In such networks, all nodes within direct
communication range of each other share a common channel using a CSMA style MAC protocol. In
addition, multi-hop routing is used as a means for forwarding packets beyond the communication range of
the source’s transmitter. Since a single channel is used throughout the network, the topology of the ad hoc
network is implicitly (and uniquely) determined by distance relationship among the participating nodes.

This paper is aimed at addressing a new problem which arises when multiple channels are available for
communication in an ad hoc network. The problem is that of determining which subgroup of nodes should
share a common channel and which nodes should act as relays and forward traffic from one channel to
another. The channel assignment should be done so that all constraints posed by the underlying physical
layer are satisfied while ensuring that the resultant graph formed by all nodes is connected.
We address an instance of the above problem which occurs in Bluetooth based ad hoc networks, known as
scatternets [8]. Bluetooth is a promising new technology which is aimed at supporting wireless connectivity
among cell phones, headsets, PDAs, digital cameras, and laptop computers. Initially, the technology will be
used as a replacement for cables, but in due course of time solutions for point-to-multipoint and multi-hop
networking over Bluetooth will evolve.

Bluetooth is a frequency hopping system which defines multiple channels for communication (each channel
defined by a different frequency hopping sequence). A group of devices sharing a common channel is
called a piconet. Each piconet has a master unit which selects a frequency hopping sequence for the piconet

 This work is supported by an IBM University Partnership Award.

Proximity awareness and ad hoc network establishment in Bluetooth

 thsalon@glue.umd.edu, pravinb@research.att.com, leandros@glue.umd.edu, lamaire@us.ibm.com

1Electrical and Computer Engineering Department, University of Maryland at College Park.
2AT&T-Labs Research, Florham Park NJ.

3IBM T.J. Watson Research Center, Hawthorne NY.

Theodoros Salonidis 1, Pravin Bhagwat2, Leandros Tassiulas1, and Richard LaMaire3

and controls the access to the channel. Other participants of the group known as slave units are
synchronized to the hopping sequence of the piconet master. Within a piconet, the channel is shared using a
slotted time division duplex (TDD) protocol where a master uses a polling style protocol to allocate time-
slots to slave nodes. The maximum number of slaves that can simultaneously be active in a piconet is
seven.

Multiple piconets can co-exist in a common area because each piconet uses a different hopping sequence.
Piconets can also be interconnected via bridge nodes to form a bigger ad hoc network known as a
scatternet. Bridge nodes are capable of timesharing between multiple piconets, receiving data from one
piconet and forwarding it to another. There is no restriction on the role a bridge node can play in each
piconet it participates in. A bridge can be a master in one piconet and slave in another (termed as M/S
bridge) or a slave in all piconets (termed as S/S bridge).

It is possible to organize a given set of Bluetooth devices in many different configurations. Figures 1b and
1c show two example configurations in which nodes in a Bluetooth network can be arranged. All nodes are
assumed to be in radio proximity of each other. Fig. 1b shows an example in which all nodes are part of a
single piconet1. Figure 1c illustrates another configuration in which node A is master of piconet 1, node E
is master of piconet 3, node B is an M/S bridge (master of piconet 2 and a slave of piconet 1), node D is a
slave of piconet 1 and node C is an S/S bridge (slave in piconets 2 and 3). In contrast to the above two
configurations the node interconnection topology in a single channel system will be a complete graph (Fig.
1a) since all nodes will hear each other’s transmission.

Figure 1: (a) Single channel model. (b),(c) Different configurations according to the Bluetooth multiple
channel model.

Given a collection of Bluetooth devices, an explicit topology construction protocol is needed for forming
piconets, assigning slaves to piconets, and interconnecting them via bridges such that the resulting
scatternet is connected. Such a protocol should be asynchronous, totally distributed and nodes should start
with no information about their surroundings. The problem of constructing distributed self-organizing
networks has been addressed in the past ([3][4][5][9]), but all the efforts so far were aimed at solving the
problem by assuming a single broadcast channel and a CSMA style MAC protocol. The problem is
significantly harder for frequency hopping based wireless systems as will be evident in the later discussion.

This paper is a first attempt to address the topology construction problem in the multiple FH channel setting
imposed by the Bluetooth technology. In order to solve it, we design our protocol in a bottom-up fashion:
First, in section 2 we examine the wireless link provided by Bluetooth by presenting the asymmetric
“sender-receiver” point to point link establishment protocol as defined in the Bluetooth specifications. In
section 3 we enhance this protocol by proposing a symmetric variant of the link establishment protocol
where two devices alternate independently between the “sender” and “receiver” state until they discover
and connect to each other. Such a protocol is necessary for establishing a connection between a pair of
identical devices or in situations when any external means for selecting initial device states are not
available. Section 4 introduces the Bluetooth Topology Construction Protocol (BTCP), which is an

1 Note there is no edge among slave nodes since slaves cannot hear each other’s transmission.

A

B

C D

E

A

B

C D

E

A

B

C D

E

Piconet 3

Piconet 1

Piconet 2

(a) (b) (c)

asynchronous distributed connection establishment protocol that extends the point to point symmetric
protocol to the case of many nodes. This protocol is based on a leader election process where each node
uses a timeout to independently decide about the leader election termination. The timeout delay factor
introduces a correctness-delay tradeoff of the network formation. By using the delay analysis of section 3
we show in section 5 how to best choose the protocol parameters in order to maximize the probability of
forming a connected scatternet while minimizing delays. Finally, section 6 provides a future work
discussion and conclusions.

2. LINK ESTABLISHMENT IN BLUETOOTH : BACKGROUND

The Bluetooth Baseband Specification [1] defines the Bluetooth point to point connection establis hment as
a two-step procedure. First neighborhood information is collected through the Inquiry Procedure. The
Paging procedure is subsequently used to establish the connections between neighboring devices. Both the
Inquiry and Paging procedures are asymmetric processes; they involve two types of nodes (which we call
senders and receivers) each performing different actions. During Inquiry, “senders” discover and collect
neighborhood information provided by “receivers”. During Paging, “senders” connect to “receivers”
discovered during a previous inquiry procedure.

During the inquiry or paging procedure, although senders and receivers use the same (inquiry or paging)
frequency hopping sequence2, it is likely that they will be out of phase since each unit starts at a different
hop frequency derived from its local clock value. This (unavoidable) phase difference introduces a phase
uncertainty among the devices participating in the procedure. To overcome this phase uncertainty, senders
and receivers hop at different speeds. A receiver hops at a slow rate over the common frequency pattern
listening on each hop for sender messages and the sender transmits at a much higher rate listening in
between transmissions for an answer, in hope of discovering the frequency a receiver is currently listening
to. Given two units, one operating as a sender and the other as a receiver, the term Frequency
Synchronization delay (or FS delay) refers to the time until the sender transmits at the frequency the
receiver is currently listening on3.

Even if the two procedures have the same synchronization mechanism, a difference is that during the
paging procedure the sender tries to bypass the FS delay by estimating the phase of the receiver. If paging
is performed directly after the Inquiry procedure, the sender has acquired the clock value of the receiver
unit and can use it to determine its phase and connect to it instantaneously.

The functional difference between the Inquiry and Paging Procedures lies in the use of a universal FH
sequence in the first and a common point to point FH sequence in the second. Using a universal inquiry
hopping sequence, a sender node effectively “broadcasts” an Inquiry Access Code (IAC) packet that can be
heard only by receiver nodes that listen for such a packet. During the paging procedure, by using the
receiver’s page hopping sequence a sender node initiates connection establishment by effectively
“unicasting” a Device Access Code (DAC) packet that can be heard only by the corresponding receiver
device. Thus the Inquiry Procedure involves many units, where a sender can discover more than one
receivers while the paging procedure involves only two units, where a sender pages and connects to a
specific receiver.

2.1. The Bluetooth Asymmetric protocol for link formation

According to the Bluetooth Baseband specification the protocol starts by the sender starting in the
INQUIRY state and the receiver in the INQUIRY SCAN state. As was described in the previous section
there is an initial FS delay until the sender hits the frequency the receiver is listening to. Upon receiving the
IAC packet, the receiver backs off for an amount of time that is uniformly distributed between 0 and

2 Nf, the number of frequencies in the inquiry or page hopping set, is equal to 32 for systems operating in

Europe and US and 16 for systems operating in Japan, Spain and France.
3 The sender can cover the entire inquiry hopping frequency set in time T coverage = Nf x 625us which is 10ms (20ms) for
the 16 (32) hop system.

639.375ms. This happens in order to prevent the contention problem that would arise if there were two
receivers listening on the same hop frequency. If both of them responded immediately, the response
message would get garbled and the sender would not receive it. We call the time while the receiver backs
off the Random Backoff delay (or RB delay). When the receiver unit wakes up, it starts listening again at
the hop it was listening to before backing off. After a second FS delay (same as the first one), a second IAC
packet is received from the sender. Then the receiver sends back to the sender an FHS packet that contains:

1. The receiver’s address: This is used by the sender to derive the DAC of the receiver and the page

hopping sequence it will use later in order to page the receiver.
2. The receiver’s clock value: This is used to estimate the phase of the receiver and thus eliminate the FS

delay during the paging procedure that follows.

The timing diagram in Figure 2, summarizes the point to point connection establishment procedure between
the two units. The dashed arrows denote events on each unit’s timeline and each event is numbered in the
order it happens during the connection establishment procedure. The timing diagram shows that the
receiver enters the PAGE SCAN state after sending the inquiry response FHS packet to the sender. When
the sender receives the FHS packet, it enters the PAGE state and uses the clock information in the FHS
packet to send a DAC packet on the frequency the receiver is listening to in the PAGE SCAN state. Then
the receiver responds immediately with a DAC packet and the sender sends an FHS packet to the receiver.
The receiver uses the FHS information to determine the channel hopping sequence and the phase of the
sender and becomes the slave of the point to point connection. It then acknowledges the FHS packet with
another DAC packet. As soon as the sender receives the acknowledgment, it becomes the master of the
connection and may start exchanging data with the synchronized receiver-slave.

Figure 2: The Bluetooth asymmetric link formation protocol.

By observing Figure 2, we can easily identify the link formation delay components. The inquiry procedure
delay consists of a first FS delay, the RB delay and a second FS delay that is taking place when the receiver
waits for the second IAC packet after it wakes up. The paging procedure delay is negligible since it
immediately follows the inquiry procedure. (As soon as the first DAC packet is received by the receiver the
rest of the steps are happening in consecutive 625µs slots). Thus we can approximate the link formation
delay R using the following equation:

(6) Enter the
PAGE state

(5) Respond and enter
PAGE SCAN state

(4) Wake up

(3) Go to sleep

(2) Start in INQUIRY
SCAN state

(1) Start in the
INQUIRY state IAC

…
....

F
S

de
la

y
R

B
de

la
y

FHS
DAC

IAC

DAC

(7) Connection
Established

L
in

k
F

or
m

at
io

n
D

el
ay

Sender Receiver
F

S
de

la
y

(7) Connection
Established

P
ag

in
g

de
la

y

(7) Connection
Established

FHS
DAC

0
-6

39
. 3

75
 m

s
0

-
20

 m
s

0
-

20
 m

s
4

x
0

. 6
25

 m
s(6) Enter the

PAGE state
(5) Respond and enter

PAGE SCAN state

(4) Wake up

(3) Go to sleep

(2) Start in INQUIRY
SCAN state

(1) Start in the
INQUIRY state IAC

…
....

F
S

de
la

y
R

B
de

la
y

FHS
DAC

IAC

DAC

(7) Connection
Established

L
in

k
F

or
m

at
io

n
D

el
ay

Sender Receiver
F

S
de

la
y

(7) Connection
Established

P
ag

in
g

de
la

y

(7) Connection
Established

FHS
DAC

0
-6

39
. 3

75
 m

s
0

-
20

 m
s

0
-

20
 m

s
4

x
0

. 6
25

 m
s

RBFSR += 2 (1)

where FS and RB are uniform random variables in []erageTcov,0 and []max,0 r respectively. According to

equation (1), the link formation delay can be at most msmsmsrT erage 375.659375.639202 maxcov =+=+ for

the 32-hop system and 649.375ms for the 16-hop system.

3. A SYMMETRIC PROTOCOL FOR LINK FORMATION

The asymmetric protocol provided by the Bluetooth specification, yields a very short connection
establishment delay provided that the sender and receiver roles are pre-assigned. When two or more users
are trying to establish links between their Bluetooth devices in an ad hoc fashion, they will not be able to
explicitly assign sender and receiver roles. They will just press a button and expect to connect with their
peers. Thus there should be a symmetric mechanism that forms connections in an ad hoc fashion without
any explicit sender or receiver role pre-assignment. A way to do this, is by forcing the two nodes to
alternate independently between the sender (INQUIRY state) and receiver (INQUIRY SCAN state) roles
and try to connect according to the asymmetric protocol during an overlap interval where they meet in
opposite states.

In Figure 3, Unit A has already started alternating, and Unit B starts alternating at some arbitrary time

0t .

The merged schedule is produced by merging the state switching times of the two units into a single one,
which can be seen as an “on-off” process.
By using state alteration, a connection will be established after a random delay, which in principle will be
larger than the one of the asymmetric protocol. The reason is that starting at each “on” interval of the
merged process, the two units will connect after a random interval RBFSR += 2 , given that they both
remain fixed at their (complementary) states for an amount of time greater than R. Otherwise, they have to
wait for the next “on” interval. The time Tc from time

0t up to the point where the two units come to a

complementary state for a sufficient amount of time is essentially the link formation delay between the two
units.

Figure 3: A symmetric link formation protocol: Nodes alternate between sender and receiver state until
they connect.

There are some interesting questions arising from the proposed “alternating states” technique. First of all
what should the alternating schedule be? Should the states alternate in a periodic or random fashion? It can
be analytically proven that the mean connection time is infinite when each unit changes states

R

S

I

S S S

I I

I II

S S

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11

0t

...

cT

Merged
Schedule

Unit 1

Unit 2

R

S

I

S S S

I I

I II

S S

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11

0t

...

cT

Merged
Schedule

Unit 1

Unit 2

deterministically (see Appendix A). Intuitively, if the state residence intervals are fixed, the intervals of the
merged process in Figure 3 will be fixed as well. Then the connection time will depend on the fixed phase
difference of the two devices. If this phase is very small, then the “on” intervals in the merged process will
be very small and the link formation delay very large since the units will use arbitrarily many “on” intervals
until they finally connect.

Alternatively, a random schedule can be imposed on the state residence times. In Appendix B we provide
an ad hoc link formation delay model, and show that when each unit alternates independently between
INQUIRY and INQUIRY SCAN with the state residence times following a common random distribution,
we can analytically calculate the mean and variance of the link formation delay.
The way to calculate the connection set up delay is to determine the cdf and pdf of the merged schedule
process X given that the two nodes alternate independently according to an identical distribution Z. In
Appendix B we show that the mean and variance of the link formation delay of the symmetric protocol are
given by:

[] [] [] []()() []RE
p

pXEXRXEXE
TE c +−+>+= 1|

2
 (2.1)

[] [] [] []()() []RVar
p

pXVarXRXVarXVar
TVar c +

−+>
+=

1|

2
 (2.2)

where []XRPp ≤= . (2.3)

The “alternating states” technique is a mechanism that guarantees an ad hoc point to point connection
between two Bluetooth devices. When more than two devices exist and wish to form a scatternet “on the
fly”, a protocol should be devised on top of this mechanism, that ensures that the resulting network will
fulfill the requirements and structure of a Bluetooth scatternet. This protocol should also be efficient in
terms of network establishment delay. We will use the symmetric link formation delay model derived in
Appendix B in order to achieve this.

4. BTCP: A DISTRIBUTED SCATTERNET FORMATION PROTOCOL

Our motivation for the scatternet formation problem arises from a “conference-scenario” of an ad hoc
network establishment. Suppose that there are many users in a room that wish to form an ad hoc network
using their Bluetooth enabled devices. Each user presses a “start” button and waits for the device to show
on the screen a “network connection established” message after a short period of time. After this message
appears, the user will be able to exchange information with any other user in the room. The description of
this application actually contains the elements of a successful connection establishment protocol:

• Network connection establishment should be performed in a totally distributed fashion. This means

that each device starts operating asynchronously on its own and it initially does not have any
knowledge about the identities or number of nodes in the room.

• After completion, the protocol must guarantee a connected scatternet. “Connected” means that there
should be at least one path between any two nodes in the network.

• The network set up delay should be minimized such that it is tolerable by the end user.

In general there are no restrictions regarding the final form of the scatternet. The only requirements are
that:

• There should be piconets that have one master and less than seven slaves and that piconets are

interconnected through S/S or M/S bridge nodes.
• Every node must be able to reach every other node in the resulting network i.e. the network must be

connected.

In addition to satisfying connectivity, a desirable feature of the protocol would be to be able to shape the
network topology according to scatternet formation criteria imposed by specific applications. For example
the same node may need to have different roles in different applications. Also it may be possible for a node
to have more restrictive degree constraints than seven due to its own nature as a device; for example a palm
pilot would not have the processing power to be a master of a seven slave piconet. Scatternet formation
criteria could also be in the form of traffic demands that need to be satisfied by the nodes participating in
the network construction process. These criteria should be taken into account during the topology
construction process if they exist. The problem of defining scatternet forrmation criteria is itself an open
research issue that is heavily dependent on the envisioned applications. Although we do not address it in
this paper, our approach takes it into account by collecting information about all nodes participating in the
process at a single point before actual connection happens.
BTCP is based on a leader election process. Leader election is generally an important tool for breaking
symmetry in a distributed system. Since the nodes start asynchronously and without any knowledge of the
total number of participating nodes in the network construction process, an elected coordinator will be able
to control the network formation and ensure that the resulting topology will satisfy the connectivity
requirements of a Bluetooth scatternet.
In the absence of any scatternet formation criteria, and in order to design a simpler and faster protocol, we
propose and justify the following default properties that the resulting network will satisfy:

1. A bridge node may connect only two piconets. (Bridge degree constraint): A bridge node forwards

data from one piconet to another by switching between them in a time division manner. Given that
each portable device may have limited processing capabilities, a maximum bridge degree of two
relieves a node of being an overloaded crossroad of multiply originated data transfers.

2. Given the number of nodes N, the resulting scatternet should consist of the minimum number of
piconets possible. The impact of this is similar to the motivation of solving the problem in [5] of
finding the minimum number of routers in an ad hoc network. A minimum number of piconets yields
an easier network to control.

3. The resulting scatternet should be fully connected. This means that every master will be connected
to all other masters through bridge nodes. Scatternets are expected to change and be reformed over
time. A fully connected scatternet in its initial state provides higher robustness against topology
changes. Also no routing is needed in this original state since every master can reach every other
master through a bridge node and every slave can reach everybody else through its own master.

4. Two piconets share only one bridge (Piconet overlap constraint). This condition is used in order to
provide a means of terminating easily the connection establishment protocol and calculating the
minimum number of piconets. If two masters later wish to share another bridge between them they can
do so by means of a bridge negotiation protocol.

 The protocol consists of three phases:

Phase I: Coordinator Election

During this phase, there is an asynchronous, distributed election of a coordinator node that will eventually
know the count, identities and clocks of all the nodes participating in the network construction process.
Each node x has a variable called VOTES which is set to 1 as soon as the node is powered up. After
initialization, the node starts alternating between the INQUIRY and INQUIRY SCAN state.
Any two nodes x and y that discover each other will form a point to point connection, enter a “one-to-one
confrontation” and compare their VOTES variables. The node with the larger variable is the winner of the
confrontation. If the two nodes have equal VOTES variables the winner is the node with the larger
Bluetooth address.

Without loss of generality, suppose that x is the winner and y is the loser. The loser y sends all the device
FHS packets of the nodes it has won so far to the winner x, it tears down the connection and enters the
PAGE SCAN state. In this way it will not be able to hear inquiry messages any more but only page
messages from nodes that will page it in the future. This action has the effect of eliminating the loser from
the coordinator election process and preparing it for the next phases of the protocol.

The winner x increases its VOTES variable by VOTES(y) and continues on the leader election process by
resuming alternating between INQUIRY and INQUIRY SCAN.
If there are N nodes participating in the scatternet formation, there will be N-1 one-to-one confrontations.
The winner of the N-1st confrontation will be the coordinator node and the rest of the nodes will be in the
PAGE SCAN state waiting to be paged by a node that has information about them.

Phase II: Role Determination

The coordinator that was elected during phase I, has the FHS packets (i.e. identities+clocks) of all the
nodes and hence knows the total number of nodes N that participate in the network connection
establishment.

At the start of phase II, the coordinator checks if the number of nodes that it has discovered during phase I
is less than eight. If this is the case, it pages and connects to all of the nodes in PAGE SCAN and one
piconet is formed with the coordinator as the master and all the other nodes as its slaves. In this special case
the protocol terminates at this point.
If the number of nodes is greater than seven then more than one piconet must be formed and interconnected
via bridge nodes. Given the global view of the network the coordinator can decide on the role that each
node will perform in the final scatternet. If the participating nodes impose specific scatternet formation
criteria, they can be communicated to the coordinator during the election process in addition to the FHS
information, and can aid it in determining the roles of the nodes in the final scatternet. By using the default
criteria cited at the start of this section the coordinator first calculates the number of piconets P. The
minimum number of masters P in order for the resulting scatternet to be fully connected can be calculated
by the following relation (see Appendix C):

 361,
2

828917 ≤≤






 −−= N
N

P (3)

As we observe from the above relation, the default scheme works for a number of nodes less than or equal
to 36 due to the desired properties 2-4 described at the beginning of this section. A larger number of nodes
may lead to a default scheme that does not require a fully connected scatternet.
After calculating P, the coordinator selects itself and P-1 nodes to be the designated masters and ()

2
1−PP

other nodes to be the scatternet bridges. Consequently, the coordinator equally distributes to the designated
masters the remaining nodes to be their “pure” slaves.
After the role assignment, for each master x (including itself), the coordinator has a connectivity list set
(SLAVESLIST(x), BRIDGELIST(x)) consisting of the master’s assigned slaves and bridges. Each entry of
these lists contains FHS packets (identities+clocks) so that the designated master can later page its
connectivity list set instantaneously.
Then the coordinator connects to the designated masters it selected by paging them. (Recall that at the end
of phase I all remaining nodes were in the PAGE SCAN state). Thus a temporary piconet is formed
instantly with the coordinator as the “master” and the designated masters as the “slaves”4. The coordinator
transmits to each designated master its connectivity list set, instructs the designated masters to start phase
III, and consequently tears down the temporary piconet and starts phase III as a master node itself.

Phase III: The actual connection establishment

During this phase, each master x pages and connects to the slaves and bridges defined in its
SLAVESLIST(x) and BRIDGELIST(x) respectively.
As soon as a node is notified by its master that it is a bridge, it waits to be paged by its second master.
When this happens, the bridge node sends a CONNECTED notification to both masters.

4 Note that according to equation (3), P is always less than seven. Thus the temporary piconet can always

be formed.

When a master receives a CONNECTED notification from all its assigned bridges, a fully connected
scatternet of P piconets is guaranteed to be formed and the protocol terminates.

It is evident that the most time consuming part of the protocol is the leader election phase. Phase II and
Phase III involve only paging and connecting which is happening almost instantaneously due to the
previous discovery phase. The tricky part of the protocol is actually the phase I termination. Ideally it
should stop as soon as the coordinator is found. But how does a node know that it is the final winner of the
election process? All nodes have a “state alternation” timeout period ALT_TIMEOUT that is set once a
node is powered up and reset each time it wins an “one to one confrontation”.
When ALT_TIMEOUT expires, the node assumes it is the elected coordinator and that all other nodes are
in the PAGE SCAN state waiting to be paged.

Figure 4: The connection establishment protocol for a set of N=16 nodes. (a) Start of Phase I: All nodes
start alternating trying to discover their neighborhood. (b) At the end of phase I the coordinator has been
elected. Since N=16 the coordinator computes P=3 and selects the masters, bridges and slaves accordingly

(c) Phase II: Coordinator forms a temporary piconet with the designated masters and sends them their
connectivity lists. (d) Phase III: Each master pages the nodes specified within its connectivity list. (e) Final

scatternet formation.

The question that is raised now is “what is a good value for ALT_TIMEOUT”? A very large value will
result in a node having won the competition and continuing alternating without knowing it is the only one
left. This will result in a very slow phase I (and hence a very slow connection establishment protocol). On
the other hand a very small timeout value may result in a case where more than one nodes assume they are
the coordinator and hence a protocol that will result in a disconnected scatternet.
We address the above problem by making the following observation. When there are N nodes alternating
and trying to discover and connect to each other, the time for the first connection to happen is generally less
than the time it takes if there were only two of them trying to connect. According to the link model derived
in Appendix B, given a distribution and the mean state residence time, the mean connection establishment
time can be analytically calculated for the two-node case and this value can be used to determine the
ALT_TIMEOUT timer of each node.

(a) (c)(b)

(d) (e)

A B
B is a slave of A

Node in PAGE SCAN / Slave

Coordinator/Master

Alternating node

Bridge Node

5. EXPERIMENTS

5.1. Emulating Bluetooth

We have implemented BTCP on top of an existing prototype implementation that emulates the Bluetooth
environment on a Linux platform. The reason for using an emulator instead of the Bluetooth devices
themselves is because current Bluetooth units do not support the piconet switching function and hence
cannot operate as bridges. In addition, an emulator provides a higher degree of flexibility in testing the
system for various parameters and can afford testing the protocol for a large number of nodes.
Each Bluetooth host is implemented as a process that mainly consists of two interacting modules. The
Bluetooth Baseband (BB) module emulates in software the Inquiry, Paging and piconet switching
procedures as defined in the Bluetooth Baseband specification [1]. The BTCP module interacts with the BB
module through the HCI control specification functions as defined in [2]. The use of HCI functions allows
us to later replace the Bluetooth software module with a hardware module, when the bridging capabilities
become available in hardware.
The wireless medium is simulated by a Nf -hop channel process which is used for the exchange of IAC and
FHS packets during the inquiry and paging procedures. The Nf -hop channel process also determines the
frequency hopping collisions that are happening between the devices and emulates the FS delays. Note that
this channel process is not similar to a CSMA channel since the senders or receivers cannot perform carrier
sensing or any kind of intelligent backoff.
We also assume that all the devices are within range of each other. This is a logical assumption for
networking many short-range wireless devices in a single room. This fact is mapped in our architecture by
having all Bluetooth host processes initially connected to the Nf -hop wireless channel process and
executing the topology construction protocol.

5.2. Determining ALT_TIMEOUT

Using the the Periodic_Inquiry_Mode HCI command [2], it is possible to program Bluetooth units to

alternate between INQUIRY and INQUIRY SCAN states with uniformly distributed state residence times.
In this case the cdf of the merged process X (see Figure 3) when each unit has state residence times
uniformly distributed in [0,b] is:

() [] bxx
b

x
b

x
b

xXPxFx ≤≤⋅+⋅−⋅=≤= 0,
331 2

2
3

3
 (4)

by using (4) and (1) in (2.1),(2.2),(2.3) we can calculate analytical expressions for the mean and variance of
the link formation time Tc of the symmetric protocol as a function of the mean state residence time

[]
2
b

ZE ==µ of each unit (given by equations (B.34) and (B.37) in Appendix B respectively):

[]
[]

[] () ()
() ()









≥+







−+−

+−






 +<+

≤≤+
−






 +<+

=

2
,

282432

824
2

|
4

2
0,

2

2

2
|

4

maxmax
3
max

2
max

2
max

3

3
max

2
max

2
max

maxmaxmax

rr

rrr

rrr
RXXE

rrr
RXXE

TE c

µ
µµµ

µµµµ

µ
µ

µµµ

 (5)

where []RXXE <| is given by the relation (B.33), Appendix B:

[] ()
max

2
max

max

max

6
34

6

362
arctan

3
8

3

2
|

r

r

r

r
RXXE

πµ
µ

µµµ −








 −
−+=< (6)

[]
[]

[] () ()
() ()










≥+







−+−

+−








+<+

≤≤+
−









+<+

=

max

2
max

3
max

2
max

2
max

3

3
max

2
max

2
max

22

max

2
maxmax

22

,
12464

46
80
3

|
160
3

0,
12

4
80
3

|
160
3

rb
r

rbrbrb
rbrbrb

RXXVar
b

rb
r

b
brb

RXXVar
b

TVar c

where []RXXVar <| is given by (B.36), Appendix B:

[] ()

()

()
2

max

2
max

max

max

max

max

3

max

3

max

3

2
max

2
max

max

32
maxmax

2

6
3

3
332

arctan
2

3
8

3
4

3
332

arctan
5

34
ln

2
3ln

5
3

15
34

33ln
10

3
520

3
10

|











−









 −
−+−

−








 −
+






 ++−

−+−+++=<

r
b

b
br

r
brb

b
br

r
b

b
r
b

r
b

bbrr
r
brbrb

RXXVar

π

π

Given (2.1) and (2.2), we choose ALT_TIMEOUT according to the empirical relation:

[] [] max_ rTVarTETIMEOUTALT cc ++= (5)

Figure 5 shows the mean connection establishment time and the standard deviation in the connection
establishment time in the point to point case when the state residence times are uniformly distributed. We
observe that for every alternating mean state residence time the resulting standard deviation is almost equal
to the mean connection time. This means that the link formation time distribution is not centered around the
mean. This justifies the inclusion of the ()cTVar term in our empirical formula.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

200 400 600 800 1000 2000 3000 4000 5000 6000 7000 8000 9000

alt_mean (ms)

Ta
vg

+T
st

d
(m

s)

mean standard deviation

Figure 5: Means and standard deviation delays for the point to point connection establishment time

where nodes alternate with state residence times according to a uniform distribution.

The term rmax was more subtle and was determined only after performing experiments and observing the
protocol behavior on many runs. It seems like the following case was happening very frequently: After the
N-2nd confrontation the winner A would start alternating by resetting ALT_TIMEOUT while there was one
node B in SLEEP mode (and all the rest in PAGE SCAN). The two nodes A and B would start trying to
form the N-1st connection only after node B woke up! The additional term rmax is the upper limit for the
backoff interval and thus eliminates the concern about this case.
In our experiments we choose a mean state residence time of 600ms which according to equation (5) and
Figure 5 yields the smallest ALT_TIMEOUT value of 2527.223ms

5.3. Protocol Performance

The performance metrics associated with the protocol are the network connection set up delay and the
probability of protocol correctness which depends on the value of ALT_TIMEOUT. The higher this value
is, the higher the probability of protocol correctness but also the longer it will take the network to connect.
The network connection set up delay measured in the experiments is always the time to elect the leader
(phase I duration) since phase II and III include only instantaneous paging and connections.

Figure 6: Average ideal connection establishment time for various application scenarios. Units alternate
according to uniformly distributed state residence times with mean 1000ms.

The “no offset” curve in Figure 6, shows the mean network connection establishment delay Tideal when all
nodes start alternating at the same time

0t . By “ideal” we mean the time where the coordinator is actually

elected. The node itself will assume it is the coordinator when its timer expires after time ALT_TIMEOUT.
Thus the actual network connection time Tactual will be:

TIMEOUTALTTT idealactual _+= (6)

The curve shows a delay that is increasing slowly with the number of nodes that participate in the network
formation. The reason is that there are many one-to-one confrontations occurring in parallel until the
coordinator is elected. This is actually a desirable asset of a network establishment protocol. We wouldn’t
for example like the delay increasing linearly with the number of nodes. We observe that the delay ranges
from 1sec to 3sec for a set of nodes that span from N=2 to N=30.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

N

T
id

ea
l (

m
s)

No offset exp1000 exp2000

The “no offset” curve yields very small delays partly because all nodes start participating in the network
formation at the same time instant. In a more realistic scenario where human users push buttons in order to
connect to the network, the nodes will not necessarily start alternating at the same time. We model the
“button pushing” as a Poisson process in a W=10sec application window. After the first user, each user i
will “arrive” within an iid (truncated) exponentially distributed time 1,,1, −= NiL i K in the 10sec

application window as shown in Figure 7.

The graphs “exp1000” and “exp2000” in Figure 6, show the ideal network formation delay when each user
is expected to “arrive” after the first user within 1s and 2s in the average according to the truncated
exponential distribution. As the mean value increases, the system becomes more asynchronous and less
parallel one-to-one confrontations occur at each time instant. This has an effect of increasing the delay of
connection establishment. Nevertheless, the protocol’s immunity to the increase of N is preserved. This is
illustrated by a constant delay offset between the curves for the same number of N.

Figure 7: The “push button” arrival process.

The timeout may be viewed as a penalty that has to be paid in order to have a distributed algorithm. A large
ALT_TIMEOUT value will satisfy the “correctness” condition with higher probability (higher “timeout
efficiency”) but will accumulate a larger extra overhead in the actual network connection time Tactual .
Figure 8 illustrates this trade-off by demonstrating the timeout efficiency as a function of different
candidate values of ALT_TIMEOUT5. For all application scenarios, the timeout efficiency initially
increases rapidly as a function of the timeout and then reaches a steady state. It is clear that the value of
ALT_TIMEOUT where the curves start stabilizing, is at 2500ms which is very close to the value
2527.223ms chosen by our empirical formula (5).
The combination of Figures 6 and 8 provide practical guidelines to the designer using the topology
construction protocol.

5 These percentages are the average of the timeout efficiency in the cases of N=5,10,20,30 nodes.

1st arrival

0t

2nd arrival 3rd arrival Nth arrival...
...

L1 L2 LN-1

W

0

10

20

30

40

50

60

70

80

90

100

1000 1500 2000 2500 3000 3500 4000 4500 5000

Timeout (ms)

Ti
m

eo
ut

 E
ff

ic
ie

nc
y

(%
)

No offset
exp1000
exp2000

Figure 8: Timeout efficiency for the three conference application scenarios.

For example if there are 30 nodes envisioned participating in the protocol and we choose an
ALT_TIMEOUT equal to 2500ms, Figure 6 shows that the average delay experienced by each user will be
roughly 3000ms+2500ms=5.500sec and Figure 8 shows that a connected scatternet will be formed with a
probability of 96.13% in the case of the “no offset” application scenario.

6. CONCLUSIONS AND DISCUSSION

In ad hoc networks using frequency hopping technology, nodes can be grouped into multiple
communication channels. This physical layer setting provides a new way of viewing higher layer functions
like topology construction algorithms. Motivated by this environment and using the Bluetooth technology
as our research vehicle, we first study the Bluetooth standard asymmetric “sender-receiver” point to point
link establishment scheme and then propose a symmetric mechanism for establishing a connection without
any role pre-assignment. Based on the ad hoc link formation mechanism we present BTCP, a distributed
topology construction protocol where nodes start asynchronously without any prior neighborhood
information and result in a network satisfying the connectivity constraints imposed by the Bluetooth
technology. The protocol is centered on a leader election process where a coordinator is elected in a
distributed fashion and consequently assigns roles to the rest of the nodes in the system.

BTCP was tested under a conference-scenario where users arrive in a room and try to form a scatternet by
pressing a “button” on their Bluetooth enabled devices. A nice feature of the protocol is that the network
formation delay is sub-linear with the number of participating nodes (implying that the users don’t need to
wait proportionately longer when more users are present). Although, the delay is small, each node must
have an estimate of how long it must participate in the protocol before assuming protocol termination. A
conservative estimate of the timeout will introduce unnecessary delays in network formation while an
aggressive estimate may leave the network disconnected. Our analysis of the delay statistics of the
symmetric link formation protocol provides a tight estimate of the appropriate timeout value, making the
protocol fast while ensuring high probability of scatternet connectedness.

Throughout the design of BTCP our aim has been to build a protocol which can be implemented on top of
Bluetooth hardware. Although our implemention runs in a Bluetooth emulated environment, when the
inter-piconet communication feature is made available in the next release of the Bluetooth hardware, we
can test our protocol in an actual setting.

We would like to emphasize that the work presented here is the first approach towards tackling the
topology construction problem and providing a fully functional protocol in the Bluetooth frequency
hopping environment. There is still much work that remains to be done.
For example, the protocol needs to be extended for the case when not all nodes are within communication
range of each other. In this case, after completion of the election process, the coordinator will learn about
all participating nodes but not all of them will actually be within its range. Fortunately, the scatternet can
still easily be formed by keeping the election phase I while replacing phases II and III by the following
simple procedure: After the coordinator is elected, it pages and connects only to the nodes it confronted and
won, since these are the nodes guaranteed to be within its wireless range. Once it has connected to its “one
hop” neighbors as a master, it instructs them to start paging, assume the role of masters and repeat the same
steps recursively until all nodes are covered. The resulting scatternet is guaranteed to be connected and will
have a tree structure rooted at the leader.

Given a set of nodes with zero knowledge of each other that need to form quickly an initial connnected ad
hoc network, BTCP focuses on minimizing the connection delay while providing connectedness with high
probability. This is a desired property in application scenarios where ad hoc networks continuously connect
(birth), perform a coordinated function for a short amount of time (live) and disconnect, since the
connection setup delays should be a small fraction of these "birth-live-die" cycles. Keeping this network
operation model in mind, alternative methods for topology construction need to be studied and compared in
terms of delay with the one presented here.

Finally, in addition to zero-knowledge network initialization, the reformation of an existing network in the
face of dynamic changes can be viewed as a separate but equally important issue. After network
connection, a separate topology maintenance and optimization protocol needs to run, in order to take care
of mobility and/or nodes entering and leaving the network and make sure that the scatternet is reformed
accordingly. Such a protocol, although out of the scope of the current paper should be the subject of future
resarch efforts.

7. REFERENCES

[1] J. Haartsen, “Bluetooth Baseband Specification, version 1.0”, www.Bluetooth.com.
[2] K. Fleming, “Bluetooth Host Controller Interface Functional Specification, version 1.0”, www.Bluetooth.com.
[3] D. Baker and A. Ephremides, “The architectural organization of a packet radio network via a distributed algorithm”, IEEE

Transactions on Communications, COM-29 (1981), pp. 1694-1701.
[4] T.G. Robertazzi, P.E. Sarachik, “Self-Organizing Communication Networks”, IEEE Communications Magazine, Vol 24,

No1, Jan 1986.
[5] A. K. Parekh, “Selecting Routers in Ad Hoc Wireless Networks”, SBT/IEEE International Telecommunications Symposium

(August 1994).
[6] R.G. Gallager, P.A. Humblet and P.M. Spira, ”A Distributed Algorithm for Minimum Weight Spanning Trees”, ACM Trans.

on Program. Lang. and Systems, Vol. 5, pp 66-77, January 1983.
[7] M. Harcol-Balter, T. Leighton, D. Lewin, “Resource Discovery in Distributed Networks”, PODC 1999: p. 229-237.
[8] J. Haartsen, “Bluetooth-The universal radio interface for ad hoc wireless connectivity”, Ericsson Review, no3, 1998.
[9] R. Ramanathan, R. Hain, “Topology Control of Multihop Wireless Networks using transmit power adjustment.”,
[10] K. Trivedi, “Probability & Statistics with reliability queuing and computer science applications”, Prentice Hall, Nov. 1992.

APPENDIX A: SYMMETRIC PROTOCOL CONNECTION ESTABLISHMENT DELAY WHEN THE UNITS ALTERNATE

DETERMINISTICALLY.

Suppose that each node alternates between Sender (I) and Receiver (S) state, remaining in each state for a
fixed period T. Referring to Figure A.1, Unit A has already started alternating at some time in the past, and

unit B starts alternating at some random time 0t after unit 1 started alternating. Since 0t is random, the

connection establishment delay cT which is the delay starting at 0t up to the point where the two units

connect will also be random. We will show that the expected value of cT is infinite.

Figure A.1: Units A and B try to connect by alternating deterministically between INQUIRY and SCAN
states with period T.

()tN2

S

I

S

I

I I

S S
0t

...

Merged
Schedule

Unit A

Unit B

T T

θ θ−T θ

T T

R

cT

θθ−T
()tN2

S

I

S

I

I I

S S
0t

...

Merged
Schedule

Unit A

Unit B

T T

θ θ−T θ

T T

R

cT

θθ−T

During the connection process, two units will be in opposite states for a fixed interval θ , and in the same

state for a fixed interval T-θ . The phase differenceθ depends on 0t , and since 0t is arbitrary, θ is a

uniform random variable in [0, T]:

[] () T
T

FP ≤≤==≤Θ Θ θθθθ 0, (A.1).

Let us now fix 0t (and hence θ) and assume without loss of generality that unit B finds unit A in an

opposite state at time 0t . Referring to Figure A.1, the two devices will have a chance to connect only

during the fixed “on” intervals of length θ where they are in opposite states. During an “on” interval the
units will try to form a connection according to the asymmetric Bluetooth point to point connection
establishment protocol. The delay of the asymmetric protocol is R = 2FS+RB where FS is a uniform r.v. in
[] msTT erageerage 10,,0 covcov = and RB is a uniform r.v. in [] msrr 375.639,,0 maxmax = (see section 2).

Since the back-off delay is much greater than the FS delay, the delay R of the asymmetric protocol can be
approximated by RBR ≈ and hence:

[] () max
max

0, rr
r

r
rFrRP R ≤≤==≤ and []

2
maxr

RE = (A.2).

During an “on” interval, if R is less thanθ then the units will connect otherwise they will have to wait until
the next “on” interval. Thus the connection establishment process can be seen as a coin toss with a
“success” probability being:

[]θ≤= RPp ()
maxr

FR

θ
θ == (A.3).

Given θ , the number N of “on” intervals that will be needed before a connection happens is a geometric
random variable having cdf:

[] ()kpkNP −=≤ 1|θ (A.4).

Then the connection establishment time in this case will be equal to N unsuccessful periods T (“on”+”off”
intervals) plus the last successful interval whose delay is equal to R:

RTNT r
c +⋅=≤ maxθ

, for θ being fixed.

Taking the expectations we have:

[] [] []RETNETE c +⋅= θθ || (A.5).

Using the fact that []
p

p
NE

−
=

1
|θ , and using relation (A.1) and (A.3), the average connection

establishment time will be:

[]
2

| maxmax r
T

r
TE c +⋅

−
=

θ
θ

θ (A.6)

The average connection establishment delay can now be found by taking the expectation over all possible
values of θ and using equations (A.6) and (A.1):

[] [][] [] () ⇒⋅







+⋅

−
=⋅⋅== ∫∫

==
Θ θ

θ
θ

θθθθ
θθ

d
r

T
r

T
dfTETEETE

TT

ccc

0

maxmax

0 2
1

||

[] ∫
=

⋅⋅++=
T

c dr
r

TTE
0

max
max 1
2 θ

θ
θ

 (A.7).

The integral ∫
=

⋅
T

d
0

1

θ

θ
θ

 in the RHS of (A.7) tends to ∞+ and hence the average connection

establishment delay []cTE is infinite.

APPENDIX B: SYMMETRIC PROTOCOL CONNECTION ESTABLISHMENT DELAY WHEN THE UNITS ALTERNATE

RANDOMLY.

B.1: GENERAL MODEL

Assume that each node alternates between Sender (I) and Receiver (S) state randomly. More specifically,

for each node, the inquiry (I) and inquiry scan (S) intervals consist a random process { }nZ of independent

and identically distributed (iid) random variables each having a distribution ()zFz and finite mean value
E[Z]. Referring to Figure B.1, Unit 1 has already started alternating at some time in the past, and Unit 2

starts alternating at some arbitrary time 0t after unit 1 started alternating.

Figure B.1: Units A and B try to connect by alternating between INQUIRY and SCAN states according to a

random distribution with mean E[Z].

For Bluetooth unit i, we denote by ()tN i the number of state switches from 0t up to time t. Thus ()tN i

can be seen as a renewal process with an underlying distribution between switches of ()zFz . Since the two

units alternate independently the corresponding renewal processes ()tN1 and ()tN2 are independent.

Now consider the process ()tN that results from merging the two independent renewal processes ()tN1

and ()tN2 . ()tN is a process (not necessarily a renewal one) that consists of all the state switches of both

R

S

I

S S S

I I

I II

S S

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11

()tN1

()tN 2

()tN

0t

...

cT

nodes from time 0t up to time t. We denote by { }nX the “underlying” random process consisting of the

iid intervals between the merged state switches of ()tN .

In general, the two units have a chance of discovering and connecting to each other only during the time
intervals where they are in complimentary states. As is shown in Figure B.2 this happens every other

interval of the process ()tN .

There are two equiprobable cases which we take into account:

• At time 0t the units are in opposite states. In this case they will have the chance to discover each other

only on odd intervals 0,12 ≥+ iX i . On intervals 1,2 ≥iX i , the two units are in the same state

and cannot discover each other.

• At time 0t the units are in the same state. This means that in the first time interval of the merged

process there will be no chance for the two units to meet and hence this interval is a pure delay factor
in the connection time. After this delay, the two units will start having the chance to discover each
other like the previous case.

Assume that at time 0t , the units start in opposite states as depicted in Figure B.1.

The cdf ()xFx of the merged process nX given the iid ()tN1 and ()tN2 is given by Trivedi in [10]:

[] () () ()
[] ()[]∫ −

−
+==≤

x

z
z

zx dzzF
ZE

xF
xFxFxXP

0

1
1

 (B.1)

then the corresponding pdf will be equal to:

() () () ()
[] ()[] ()[]

[]ZE

xF
dzzF

ZE

xf
xfxF

dx

d
xf z

x

z
z

zxx

2

0

1
1

−
+−⋅−== ∫ (B.2)

and

[] ()∫ ⋅= dttftXE x
 (B.3)

Let us now set 1,1 ≥+= + iXXY iii

. (B.4)

{ }nY is an iid random process of composite intervals iY each consisting of an “on” first interval iX and

an “off” second interval 1+iX . During the connection establishment process, the two units start trying to

connect in a composite interval iY . Then they will have the chance to connect after a random delay R

which is given by:

RBFSR += 2 (B.5)

where FS and RB are uniform random variables in [] msTT erageerage 10,,0 covcov = and

[] msrr 375.639,,0 maxmax = respectively. The units will connect only if R is less than the “on”

interval iX of composite interval iY . If not, they will have to wait until the start of the next composite

interval 1+iY . Thus the connection time opp
cT for the case where the units start at opposite states is given

by:

RYYYYT NN
opp

c +++++= −121 L (B.6)

where N is a random variable. The sum of Y variables in the RHS denotes the time of unsuccessful
discovery attempts and the last term R is the portion of the last “on” interval which corresponds to the

successful connection attempt. Each “on” interval within a composite iY interval may be seen as a coin

toss. A success in the coin toss means that the two units have sufficient time to form a connection
according to the asymmetric Bluetooth connection establishment protocol. Hence N is a geometric random
variable denoting the number of failures before the success-connection occurs. Thus the probability of

success is []XRPp ≤= and the mean of N is simply []
p

p
NE

−
=

1
.

The mean discovery time []opp
cTE will be:

[] [][] [] [] [] []

[] [] [] [] []

[] [] [] [] [] []
[] [] []() []⇒⋅+>+=

⋅++=⋅+=

=⋅⋅+==⋅







+=

=⋅=+=+=

+

∞

=

∞

= =

∞

=

∑∑ ∑

∑

NEXEXRXERE

NEXXERENEYERE

nNPYEnREnNPYERE

nNPnNTERERENTEETE

iii

n
i

n

n

i
i

n

opp
c

opp
c

opp
c

|

||

1

00 1

0

[] [] [] []()()
p

pXEXRXE
RETE opp

c

−+>
+=⇒

1|
 (B.7)

The quantity []XRXE >| is calculated as follows:

First we find the cdf () ()
() rx
rF
xF

rxxF
x

x
x <=< ,| . (B.8)

Then the corresponding pdf is given by:

() ()
() rx
rF
xf

rxxf
x

x
x <=< ,| . (B.9)

Then, [] [][] () () drdxrfrxxfxrXXEERXXE
erageTr

r

r

x

Rx∫ ∫
⋅+

= =

⋅<⋅=<=<
covmax 2

0 0

||| . (B.10)

In the case where the two units start at the same state, the first interval is an “off” one and the units must
wait until the next interval (which will be “on”). Thus the connection establishment delay in this case will
be:

 opp
cNN

same
c TXRYYYYXT +=++++++= −121 L (B.11)

The two cases are equiprobable so the random variable describing the connection establishment time in any
case is:

opp
c

opp
c

same
cc TXTTT +⋅=⋅+⋅=

2
1

2
1

2
1

 (B.12)

Using (B.7) and taking expectations over (B.12) we finally get the expression for the mean connection
establishment delay:

[] [] [] []()() []RE
p

pXEXRXEXE
TE c +

−+>
+=

1|
2

 (B.13)

Also starting from (B.12) and (B.7) and applying the variance operator on both sides, we get the expression
for the variance of the connection establishment delay:

[] [] [] []()() []RVar
p

pXVarXRXVarXVar
TVar c +

−+>
+=

1|
2

 (B.14)

We now proceed in deriving the analytical expressions for the mean and variance of the connection
establishment delay for specific dis tributions. We will use the approximation RBR ≈ (instead of the

exact RBFSR += 2) since the backoff delay is one order of magnitude greater than FS. Without using

the approximation much more complicated expressions can be obtained for []cTE and []cTVar .

According to the approximation:

() () [] []
12

,
2

0,
1

,
2
maxmax

max

maxmax

r
RVar

r
REandrr

r
rf

r
r

rF RR ==≤≤== (B.15)

B.1. Z IS EXPONENTIALLY DISTRIBUTED WITH PARAMETER λ .

Assume that ()tN1 and ()tN2 are Poisson processes with parameter λ :

()[] ()
2,1,

!
=

⋅
==

−

i
k

et
ktNP

tk

i

λλ
 (B.16)

We know that by merging two Poisson processes with parameter λ yields a Poisson process with

parameter 2λ . Thus the random process { }nX is exponentially distributed with parameter 2λ :

() () [] ()
2

22

4
1

,
2
1

,2,1
λλ

λ λλ ==⋅=−= −− XVarXEandexfexF x
x

x
x . (B.17)

Using the approximation (B.15):

[] [] [] () ⇒=⋅≥=≥=≤= ∫∫ −
maxmax

0 max

2

0

1r
r

r

R dr
r

edrrfrXPRXPXRPp λ

[] max
2 ,1

2
1

rge
g

p g ⋅=−= − λ (B.18)

Using (B.9) and approximation (B.15) in (B.10) we get:

[] ()
() ⇒

−
⋅

⋅=⋅=< ∫ ∫∫ ∫
= =

−

−

= =

drdx
e
e

x
r

drdx
rF
xf

x
r

RXXE
r

r

r

x
r

xr

r

r

x x

x
maxmax

0 0
2

2

max0 0max 1
211

| λ

λλ

[] () ()
max

2

,
4

12log
| rg

g
ggedi

RXXE
g

⋅=
++

=< λ
λ

 (B.19)

Using (B.15), (B.17), (B.18), (B.19) in (B.13) we finally have for the average connection establishment
delay:

[] () ()
max

max
2

22

,
21

12
2
1

4
12log

4
1

rg
r

e
eg

g
ggedi

TE g

gg

c ⋅=+
−

−+
⋅








+

++
+= −

−

λ
λλλ

 (B.20)

In order to calculate the variance we must first find the quantity []RXXVar <| :

[] ()
() ⇒

−
⋅

⋅=⋅=< ∫ ∫∫ ∫
= =

−

−

= =

drdx
e
e

x
r

drdx
rF
xf

x
r

RXXE
r

r

r

x
r

xr

r

r

x x

x
maxmax

0 0
2

2
2

max0 0

2

max

2

1
211

| λ

λλ

[] max

0
2

22

2

2 ,
1

122
2

1
| rgdt

e
ett

g
RXXE

g

t
t

t

⋅=
−

−++
=< ∫

=

λ
λ

 (B.21)

Using the fact that [] [] []()22 ||| RXXERXXERXXVar <−<=< and using (B.19) and

(B.21) we get:

[] () ()
max

22

0
2

22

2 ,
4

12log

1
122

2
1

| rg
g

ggedi
dt

e
ett

g
RXXVar

gg

t
t

t

⋅=






 ++
−

−
−++=< ∫

=

λ
λλ

 (B.22)

Using (B.15), (B.17) and (B.22) in (B.14) we finally have the expression for the variance of the connection
establishment delay:

[] () ()

max

2
max

2

2

22

0
2

22

22

,
121

12

4
12log

1
122

2
1

8
1

rg
r

e
eg

g
ggedi

dt
e

ett
g

TVar

g

g

gg

t
t

t

c

⋅=+
−

−+
⋅

⋅




















 ++
−

−
−++

+=

−

−

=
∫

λ

λλλ
 (B.23)

By setting []
λ

µ
1

== ZE and replacing into (B.20) and (B.23), we finally have the expressions for the

mean and variance of the connection establishment delay as a function of the mean state residence time of
each unit:

[] () ()
µ

µ maxmax
2

22

,
21

1222log
1

4
r

g
r

e
eg

g
ggedi

TE
g

gg

c =+










−
−+

⋅






 ++
+=

−

−

 (B.24)

[] () ()

µ

µ
µµ

max
2

max

2

2

22
2

0
2

2222

,
121

12

4
12log

1
122

28

r
g

r
e
eg

g
ggedi

dt
e

ett
g

TVar

g

g

gg

t
t

t

c

=+
−

−+
⋅

⋅




















 ++
−

−
−++

+=

−

−

=
∫

 (B.25)

B.2. Z IS UNIFORMLY DISTRIBUTED IN [0,B].

Assume that the units’ state residence time Z is uniformly distributed in [0, b] as follows:

()
b

bz
zFz

−
= and ()

b
zf z

1
= for []bz ,0∈ and ()

2
b

ZE ==µ (B.26)

by substituting (B.26) to (B.1) we find the cdf of X:

() [] bxx
b

x
b

x
b

xXPxFx ≤≤⋅+⋅−⋅=≤= 0,
331 2

2

3

3
 (B.27)

and

() [] bxx
b

x
b

x
b

xXPxFx ≤≤⋅−⋅+⋅−=>=− 0,
331

11 2

2

3

3
 (B.28)

The pdf will be:

() () bx
b

x
b

x
b

xF
dx
d

xf xx ≤≤+⋅−⋅== 0,
363

2

2

3
 (B.29)

and then

[] ()
4

363

0

2

2

3

3
0

b
dxx

b
x

b
x

b
dxxfxXE

bb

x =⋅



 ⋅+⋅−⋅=⋅= ∫∫ (B.30)

Also [] ()
10

363 2

0

23

2

4

3
0

22 b
dxx

b
x

b
x

b
dxxfxXE

bb

x =⋅



 ⋅+⋅−⋅=⋅= ∫∫ (B.31)

And since [] [] []()22 XEXEXVar −= we get:

[]
80
3

1610

222 bbb
XVar =−= (B.32)

The next quantity we need to derive is []XRPp ≤= . In order to do this we have to distinguish between

two cases:

Case 1: max0 rb ≤≤

[] [] () () []
max

maxmax0 max0

0,
4

rb
r
b

r
XE

dxxf
r
x

dxxfxRPXRP
b

x

b

x ≤≤==⋅⋅=⋅⋅≤=≤ ∫∫ (B.31)

Case 2: maxrb ≥

[] [] () ⇒⋅



 ⋅−⋅+⋅−=⋅⋅≥=≤ ∫∫ drr

b
r

b
r

br
drrfrXPXRP

rr

r

maxmax

0

2

2

3

3
max0

331
1

1

[] maxmax
2

max2

3
max3

,
2
33

4
1

1 rbr
b

r
b

r
b

XRP ≥⋅−⋅+⋅−=≤ (B.32)

To calculate []RXXE <| Using (B.9), (B.27), (B.29) and approximation (B.15) in (B.10) we get:

[] ()
()

⇒
+−

+−
⋅=⋅=< ∫ ∫∫ ∫

= == =

drdx

b
r

b
r

b
r

bb
x

b
x

x
r

drdx
rF
xf

x
r

RXXE
r

r

r

x

r

r

r

x x

x
maxmax

0 0
2

2

3

3

23

2

max0 0max 33

363
11

|

[] ()
max

2
max

max

max

6
3

3
332

arctan
2

3
8

3
4

|
r

b
b

br
r

brb
RXXE

π
−









 −
−+=< (B.33)

Using (B.30), (B.31), (B.32), (B.33) in (B.13) we get the expression for the average connection
establishment delay:

 (B.34)

In order to find the expression about the variance we first calculate:

[]

()

() () ()
() ()












≥+







−+−

+−










+−









 −
−++

≤≤+





 −











+−









 −
−++

=

max
max

3
max

2
max

2
max

3

3
max

2
max

2
max

max

2
max

max

max

max
maxmax

max

2
max

max

max

,
2464

46
46

3
3

332
arctan

2
3

8
3

48

0,
2

4
46

3
3

332
arctan

2
3

8
3

48

rb
r

rbrbrb

rbrbrb
r

b
b

br
r

brbb

rb
r

b
brb

r
b

b
br

r
brbb

TE c
π

π

[] ()

()









 −
+






 ++−

−+−+++=<

b
br

r
b

b
r
b

r
b

bbrr
r
brbrb

RXXE

3
332

arctan
5

34
ln

2
3ln

5
3

15
34

33ln
10

3
520

3
10

|

max

max

3

max

3

max

3

2
max

2
max

max

32
maxmax

2
2

π
 (B.35)

Then from (B.33) and (B.35):

[] ()

()

()
2

max

2
max

max

max

max

max

3

max

3

max

3

2
max

2
max

max

32
maxmax

2

6
3

3
332

arctan
2

3
8

3
4

3

332
arctan

5
34

ln
2
3ln

5
3

15
34

33ln
10

3
520

3
10

|











−









 −
−+−

−








 −
+






 ++−

−+−+++=<

r
b

b
br

r
brb

b

br

r
b

b
r
b

r
b

bbrr
r
brbrb

RXXVar

π

π
 (B.36)

The variance is then given by (B.14):

[] [] [] []()() []⇒+
−+>

+= RVar
p

pXVarXRXVarXVar
TVar c

1|
2

[]
[]

[] () ()
() ()










≥+







−+−

+−






+<+

≤≤+
−







+<+

=

max

2
max

3
max

2
max

2
max

3

3
max

2
max

2
max

22

max

2
maxmax

22

,
12464

46

80

3
|

160

3

0,
12

4

80
3

|
160
3

rb
r

rbrbrb

rbrbrb
RXXVar

b

rb
r

b

brb
RXXVar

b

TVar c

(B.37)

where []RXXVar <| is given by (B.36).

By setting []
2
b

ZE ==µ and replacing into (B.34) and (B.36)&(B.37), we can get the expressions for the

mean and variance of the connection establishment delay as a function of the mean state residence
time µof each unit.

APPENDIX C: PROOF OF EQUATION (3)

Any scatternet consists of master nodes, slave nodes that belong only in one piconet (termed as “pure
slaves”), and slave nodes that belong to multiple piconets (termed as bridges).

Given a number of Bluetooth nodes Nand the following conditions:

1. The resulting scatternet is fully connected (Every master is connected to all other masters via a
bridge).

2. Two masters share only one bridge node.
3. A bridge node may connect only two piconets.
4. The maximum number of slaves per piconet is seven.

we will prove that the minimum number of piconets P is given by the relation:

361,
2

828917 ≤≤






 −−= N
N

P

Proof:

Suppose we fix P the number of piconets (masters) in the scatternet. Each piconet i has ni slaves, consisting
of si pure slaves and bi bridges. Thus:

 Pibsn iii ≤≤+= 1, (C.1)

where P is the number of piconets in the scatternet.

Due to the Bluetooth specification degree constraints, the maximum number of slaves per piconet is seven :

(Pini ≤≤≤ 1,7). (C.2)

According to conditions 1 and 2, each master should be connected to all other masters (condition 1)
through only one bridge node (condition 2).

Thus each master will have bi =P-1 bridges and ()1−−= Pns ii

 pure slaves.

Also the total number of masters in the scatternet is P and the total number of bridges should be ()
2

1−PP

(condition 2). Therefore the following relation holds:

()
iPsN

PP
sP i

P

i
i ∀−−≤≤=−++ ∑

=

)1(70,
2

1

1

 (C.3)

Where the sum terms of the LHS are the total number of assigned masters, pure slaves and bridge slaves in
the scatternet respectively.

Equation (C.3) reflects the allowable values for P and N based on the scatternet formation conditions 1-4.
We see that for a fixed P, there is an associated range of values of N that can be covered depending on the
possible sets of values s i.

For example P=1 piconet can accommodate from N=1 up to N=8 nodes. P=2 masters can cover from N=9
to N=15 nodes (where the two masters are connected by a common bridge and each master has six pure
slaves). N=16 nodes cannot be supported by only 2 masters because the conditions 1-4 will be violated and
equation (1) will not hold.

The “maximal” set () PiPs i ≤≤−−= 1,17 yields the maximum N that can be supported by a specific

P. For the values of the maximal set, equation (C.3) becomes:

()[] ()

0217

2

1
17

max
2

max
1

=+−

⇒=−+−−+ ∑
=

NPP

N
PP

PP
P

i
 (C.4)

Solving (C.4) for Nmax we get the maximum number of nodes that can be supported by a specific minimum
number of piconets P without violating equation (C.3):

() ()
2

17
max

PP
PfN

−
== (C.5)

According to conditions 1-4, we wish each master to be connected to all other masters through exactly one
bridge node. Hence the maximum number of piconets is P=8 which is the case of every master having
seven bridge slaves to all other (seven) masters. Thus the maximum number Nmax is given by (C.5) to be
Nmax = 36. Using (C.5) for P=1 up to to 8 we generate the ordered set Nmax of corresponding numbers Nmax:

Nmax = {8, 15, 21, 26, 30, 33, 35, 36} (C.6)

Solving (C.5) for P and keeping the “-“ root solution we get:

() maxN∈
−−

== −
max

max
max

1 ,
2

828917
N

N
NfP (C.7)

Since (C.7) is the inverse function of (C.5), for any value in the set Nmax , (C.7) yields an integer P. Also we
can easily see that P is a strictly increasing (discrete) function of Nmax. Therefore any two consecutive
numbers

1maxN and
2maxN in Nmax will correspond to two values P1 and P2 respectively with P2=P1+1.

Since P is strictly increasing function of N, any values of N not in Nmax in the ordered set

{ }1,,1
21 maxmax −+= NN KS that are used in (C.7) will yield a real number P between P1 and

P2=P1+1. Thus the values of S along with
2maxN are actually the values of N that can be supported by a

minimum number of piconets P2.

Hence, by using any value of N in (C.7) and rounding the resulting real number to the next integer will
always yield the desired value P of the minimum number of piconets that can support N:

361,
2

828917 ≤≤






 −−= NNP

