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Pointing, acquisition, and tracking (PAT) systems have been widely applied

in many applications, from short-range (e.g. human motion tracking) to long-haul

(e.g. missile guidance) systems. This dissertation extends the PAT system into

new territory: free space optical (FSO) communication system alignment, the most

important missing ingredient for practical deployment.

Exploring embedded geometric invariances intrinsic to the rigidity of actuators

and sensors is a key design feature. Once the configuration of the actuator and sensor

is determined, the geometric invariance is fixed, which can therefore be calibrated in

advance. This calibrated invariance further serves as a transformation for converting

the sensor measurement to actuator action.

The challenge of the FSO alignment problem lies in how to point to a 3D

target by only using a 2D sensor. Two solutions are proposed: the first one exploits

the invariance, known as the linear homography, embedded in the FSO applications

which involve long link length between transceivers or have planar trajectories. The

second one employs either an additional 2D or 1D sensor, which results in invariances



known as the trifocal tensor and radial trifocal tensor, respectively. Since these

invariances have been developed upon an assumption that the measurements from

sensors are free from noise, including the uncertainty resulting from aberrations, a

robust calibrate algorithm is required to retrieve the optimal invariance from noisy

measurements.

The first solution is sufficient for most of the PAT systems used for FSO

alignment since a long link length constraint is generally the case. Although PAT

systems are normally categorized into coarse and fine subsystems to deal with differ-

ent requirements, they are proven to be governed by a linear homography. Robust

calibration algorithms have been developed during this work and further verified

by simulations. Two prototype systems have been developed: one serves as a fine

pointing subsystem, which consists of a beam steerer and an angular resolver; while

the other serves as a coarse pointing subsystem, which consists of a rotary gimbal

and a camera. The average pointing errors in both prototypes were less than 170

and 700 µrads, respectively.

PAT systems based on the second solution are capable of pointing to any target

within the intersected field-of-view from both sensors because two sensors provide

stereo vision to determine the depth of the target, the missing information that

cannot be determined by a 2D sensor. They are only required when short-distance

FSO communication links must be established. Two simulations were conducted to

show the robustness of the calibration procedures and the pointing accuracy with

respect to random noise.
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Chapter 1

Introduction

Pointing, acquisition and tracking (PAT) systems have been widely applied in

numerous industrial, military, and commercial applications. Typical examples in-

clude robotic arm positioning [4], laser ranging [37], satellite ranging, virtual reality

user interaction [55], missile guidance [38] and directional communication systems

alignment [26]. This work explores the geometric invariance of the configuration and

further applies it to solve the alignment problem in free-space optical (FSO) commu-

nications. In general, a PAT system is capable of acquiring remote targets, aiming

the local lasers toward the acquired targets, and further locking the laser on the

acquired targets despite disturbances induced by the target’s motion, atmospheric

turbulence, or random jitter.

1.1 Overview of Free Space Optical Communications

With the deployment of third generation (3G) communication systems, the

search for next generation communication systems, commonly referred to as fourth

generation (4G) systems, has begun, and its goal is to provide ubiquitous connec-

tivity and seamlessly integrated operations among different scenarios ranging from

short-range, high-mobility cellular systems, to long-range, high data-rate directional

systems. It is commonly agreed that 4G systems will not be based on a single access
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technique but will encompass a number of different complementary access technolo-

gies [51].

Free space optical communication systems have emerged as a viable technol-

ogy in this next generation indoor and outdoor broadband revolution. A free space

optical (FSO) link is commonly described as a direct line-of-sight (LOS), point-to-

point, long-haul, optical communications link. It utilizes a laser or light emitting

diode (LED) to transmit signals through the atmosphere. Because of light’s great

capacity to carry information, FSO systems can provide services ranging from short-

distance, broadcasting networks connecting high-mobility terminals (known as dif-

fusive systems), to long-haul, point-to-point links bridging the fiber backbone and

local network, and even between the ground station and a spaceship orbiting Mars

(known as LOS systems) [1].

Diffusive systems provide omnidirectional data access by utilizing a wide line-

of-sight (WLOS) transceiver or a diffuse reflection from obstacles, where the trans-

ceiver alignment is redundant since no direct line-of-sight (LOS) path is required

from the transmitter to the receiver. Several systems have been proposed includ-

ing WLOS systems composed of quadratic transceivers by Trisno et.al. [67] and

compound parabolic concentrators (CPC) by Carruther et.al. [11], and a diffuse-

reflection system composed of white LEDs and power line by Kaverhrad et.al.[3].

LOS systems are capable of supporting long-distance communication because

the small beam divergence of the optical signal prevents the transmitted power

from being dissipated. A small beam divergence offers essentially very secure chan-

nels with low probability of interception and simultaneously enhances the signal-to-
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noise ratio (SNR) of the received signals which therefore improves the bit-error rate

(BER). Recently, a 80 Gbps FSO system over a few kilometers was demonstrated by

a joint project between the Applied Physics Laboratory and AOptix Technologies

[60].

The drawback of a LOS system is the requirement of LOS paths between

transceivers. The establishment and maintenance of the LOS paths are subject to

a PAT system whose performance depends on a seamless collaboration among: (1)

optical/electrical, (2) closed-loop control, and (3) geometric mapping subsystems,

as shown in figure 1.1.

Sense Target’s coordinates on the sensorDrive Actuators
Maintain the pointing accuracyMaintain the best receiving power Provide an accurate mapping between sensor and actuator frame

Optical / Electrical  Subsystems

Closed-loop Control Subsystems Geometric Mapping
Figure 1.1: Tasks of the three essential subsystems including (1)optical/electrical,

(2)closed-loop control, and (3)geometric mapping in a PAT system
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The objective of this research is to investigate and develop a systematic PAT

design method for LOS systems. Among many of the FSO applications, we put

the emphasis on the PAT system used in LOS transceivers for solving the last-

mile problem since it is one of the toughest challenges for such 4G communication

systems.

1.1.1 Last Mile Problem and Its Solutions

Bandwidth is a scarce and exhaustible resource and can therefore be over-

utilized. When the bandwidth use is above capacity, congestion occurs and networks

can no longer run efficiently. The current solution is to form individual cells, also

known as local area networks (LANs), for frequency reuse. However, the infrastruc-

ture of the connection between the LANs to the fiber backbone or among the LANs

is still inadequate because of the significant mismatch between available backbones

(Gb/s to Tb/s) and current broadband wireless networks (Kb/s to Mb/s). This

mismatch problem is also known as the last-mile problem. It has been estimated

that over 90% of U.S. businesses fall less than a mile short of a fiber backbone [2].

The IEEE developed standard IEEE 802.16 [15] in October 2001 known as the

Worldwide Interoperability for Microwave Access (WiMAX) standard for solving

the last-mile problem. The original 802.16a specifies WiMAX at 10 to 66 GHz, and

the later version 802.16-2004 added support for 2 to 11 GHz. Ironically, from 10

to 66 GHz, only 24.125 ± 0.125 and 61.25 ± 0.25 GHz are for industrial, scientific,

and medical (ISM) use and 59− 64 GHz is for unlicensed devices. All other bands
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are licensed and are regulated by the Federal Communications Commission (FCC).

However, the two license-free bands at 24 GHz and 61 GHz are strongly attenuated

by water vapor and oxygen, respectively, which implies large powers to support

long-haul communications [12]. Also, the long wavelength of radio-frequency (RF)

waves leads to a large diffraction angle, which further results in poor reception since

the received power varies with the inverse square of the diffraction angle.

In comparison to WiMAX systems, FSO technology offers the potential of

broadband communication capacity over unlicensed optical wavelengths along with

its narrow beam divergence and the immunity from being absorbed by water and

oxygen. We believe that by equipping it with PAT capability, the FSO system can

be a competitive alternative for solving the last-mile problem.

1.1.2 Last Mile Networks

Compared to individual FSO links among backbones and LANs, an FSO-

based last-mile network promises better quality of service (QoS) and higher avail-

ability through its capability of autonomous reconfigurability to deal with changing

atmospheric and traffic conditions in dynamic environments. The new topology,

defined as the physical link configuration of the network, is generated from an opti-

mization process subject to multi-objective cost functions regarding several network

parameters, such as throughput, packet loss, or power consumption. In FSO com-

munication systems, these network parameters must be retrieved from the PAT

system.
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Therefore, an ideal PAT system, capable of supporting a last mile network,

must have (1) a wide field-of-view (around 2π steradians) to probe the potential

targets, (2) a high alignment resolution (around 1 milli-rads) to establish the LOS

connectivity, and (3) a short settling time of the tracking loop to compensate for

undesired motion. However, these requirements involve tradeoffs, which cannot be

satisfied simultaneously within a single design. Lambert [41] and Gibson[21] have

both suggested an integrated PAT structure based on two systems:

1. Fine angular PAT (FPAT) system: Building and maintaining an FSO link are

the main tasks of an FPAT system, which needs a high pointing resolution

and a short settling time. The two criterions can be satisfied much easier by

narrowing down the range of uncertainty, defined as the angular aperture of a

cone, with its apex at the center of transmitter or receiver of the host, covering

the area where the target may reside, through a CPAT system.

2. Coarse angular PAT (CPAT) system: Probing potential targets and reducing

the range of uncertainty are the responsibilities of an CPAT system. The for-

mer depends on a sensor with a wide view and the latter depends on estimating

the pointing vector between the target and the actuator.

A finite-state diagram, plotted in figure 1.2, describes a possible integration

between the coarse and fine pointing systems.
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IdentifyPotential Targets Retrieve   the target coordniateset flag=0 Map the coordinate to gimbal angle Rotate the Gimbal
Scan the beam steererMonitor PSD Rcv power (P)If P>thresholdset flag=1

Flag=0
Compute the laser position from image coordinatesMove the laser to the computed position
Reset laser position Image coordinates >boundary

Feedback Loop

Coarse AngularPAT Systems

Fine Angular PAT Systems
Image coordinates <boundaryCompute the RX position from image coordinatesMove the photodiode to the computed position Feedback Loop

Figure 1.2: Finite state diagram of a PAT system: the upper is the CPAT system

and the bottom is the FPAT system.
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1.2 Overview of Pointing, Acquisition, and Tracking Systems

1.2.1 Previous Work

Pointing, acquisition, and tracking systems have been successfully implemented

in many applications ranging from short-distance cases such as human motion track-

ing to long distance applications such as missile guidance systems. Different appli-

cations may adapt different principles of operation into the PAT system design.

Rolland et.al [71] reviewed these techniques and further classified them into seven

categories including time of flight (TOF), spatial scan, inertial sensing, mechanical

linkages, phase-difference sensing, direct-field sensing, and hybrid methods.

Among these techniques, the spatial scan method, which is based on analyzing

the incoming light ray to determine the orientation of a target, is the best match

to the capabilities of an FSO system. The sensor of the spatial scan method is

usually a combination of a front-end optical system and a position sensing diode

(PSD), including coupled charge detectors (CCD), quadrant detectors (QD), and

lateral effect detectors (LEP). The CCD-based sensor can simultaneously measure

the incident angles for multiple rays, whereas the QD-based and LEP-based sensor

can only measure the angle of one ray.

1.2.2 Fine Angular Pointing, Acquisition, and Tracking Systems

The goal of the FPAT system is to complete the link, which implies that the

alignment procedure must take the received power into consideration. Also, the

FSO system, incorporated with the FPAT system, must be compact enough to be
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carried by the actuator of the CPAT system. These two conditions make the spatial

scan method the best candidate, because this method (1) determines the orientation

of the targets from the same light ray that carries the information bits and (2) can

be easily incorporated into a traditional transceiver.

1.2.2.1 Enhanced FSO Transceivers

An FSO transceiver consists of a transmitter and a receiver to achieve duplex

transmission. The data in the transmitter is first modulated onto an optical carrier,

typically a laser, then the laser beam is collimated through an optical system, and

finally transmitted as an optical field into the atmospheric channel. In order to

comply with the PAT requirement, beam steering capability must be incorporated

into the design, which converts a simple transmitter into a beam steerer. Gibson[21]

categorized the fine laser beam steering systems into (1) mechanical and (2) non-

mechanical. Mechanical Beam steerers have advantages in their large steering range

and inexpensive design. Non-mechanical beam steerer are useful for eliminating

potentially bulky mechanical components and can have a high pointing accuracy.

At the receiver, the arriving optical field is first collected through an optical

front-end and projected onto a photodiode for signal detection. For a high-speed

FSO application, the power collected from the front-end optics may not be focused

onto the photodiode because of pointing errors resulting from turbulence or mis-

alignment. A better strategy is to utilize a PSD to first determine the location of

the focused spot and then move the photodiode to optimize the received power using
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feedback control. An FSO receiver capable of estimating azimuthal and elevation

angles is defined as an angular resolver (AR).1

The combination of the beam steerer and AR enhances the FSO transceiver

with fundamental pointing and tracking capability. If the beam steerer and AR

are combined such that their optical axes are identical, the resulting transceiver is

denoted as mono-static as in figure 1.3 (a); otherwise it is denoted as bi-static as in

figure 1.3 (b).

Generally, mono-static transceivers suffer from strong interference resulting

from strong energy coupled from self-reflection between the forward and backward

links. Most mono-static transceivers require additional power-isolation devices (e.g.

a polarizing beam splitter) to prevent this effect, called narcissus.

1.2.2.2 Introduction to Transceiver Alignment

An FSO link is established if the optical axes of the local/remote beam steerer

and the remote/local AR are aligned to the vector connecting between the lo-

cal/remote beam steerer and remote/local AR, respectively. Since aligning a vector

to the other vector in general takes 2 rotations (one in azimuth and the other in

elevation), it requires 4 rotations to complete a link and 8 rotations to develop a

duplex channel (2 from each beam steerer and AR). In general, the image position

in the local AR is capable of providing only the rotation angles for the local AR

1A new generation of image sensor with a photoreceiver capability was fabricated in Japan by

Kagawa et.al. [34], which can select the best photoreceiver based on the image position without

additional motion.
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Photodiode PSD ActuatorBeamSplitter Field of View
LaserDiode Actuator Beam divergenceBeamExpandingOpticsController DAC x 2DAC x 2 DAC x 2 ADC x 2ADC x 2

LaserDiode Actuator BeamExpandingOpticsDAC x 2 ADC x 2Controller PolarizingBeam splitterBeam splitterPSDDAC x 2 (a) Mono-Static
(b) Bi-Static

Photodiode

Figure 1.3: Schematic of an FSO transceiver following (a) a mono-static design (b)

a bi-static design
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which optimizes the received power but not the rotation angles which leads the local

beam steerer to the remote AR. A theoretical proof is given in section 2.2. Since

each link must be aligned individually, we therefore define this alignment problem

as the single alignment problem. The details are depicted in figure 1.4 (a).

If the transceivers are mono-static, and since the optical axes for the local beam

steerer and AR are identical, the alignment takes only 4 rotations. Most importantly,

the image position in the local AR is sufficient to determine the rotation angles for

both the AR and beam steerer, which implies that once either one of the two links

is built, the other link can be automatically aligned. Such an alignment problem

is defined as a coupled alignment problem because the two links are geometrically

related. The details are shown in figure 1.4 (b).

In this work, we propose a scenario where the alignment can still be treated

as a coupled alignment problem even though the transceivers are not mono-static.

In this scenario, once either one of the two links is built, the other link can be

formed since the two links are related by a linear mapping, which can be calibrated

in advance. Such a scenario takes place if the following inequality is satisfied (shown

in figure 1.4 (c)):

‖L‖ >
‖T‖ sin (θbdiv + θTL)

sin θbdiv

(1.1)

where ‖L‖ is the distance from the local AR to the remote beam steerer, ‖T‖ is the

displacement between the local beam steerer and AR, θdiv is the beam divergence of

the beam steerer, and θTL = arccos TL
‖T‖‖L‖ is the angle between the vector T and L.

For example, let us consider a duplex communication channel formed by a
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pair of bi-static FSO transceivers. Normally, the displacement between the AR and

beam steerer of a bi-static transceiver is about 10 cm and the beam divergence is

about 1 mrad. Then, a single alignment problem for the bi-static transceivers can

be converted into a coupled alignment problem if the distance from the local AR to

the remote beam steerer is more than 100 m. Since most of the link lengths of FSO

systems are greater than 100 m, it is safe to assume that most FSO transceivers fall

into this particular scenario.

(a)
BS

BS AR
AR BSAR

BSAR(b) (c)
BS

BS
AR

ARLT өbdivөTLOptical axis Optical axis
Figure 1.4: Different alignment problems for a pair of FSO transceivers: (a) Single

alignment (between two bi-static transceivers with a short link length), (b) Coupled

alignment (between two mono-static transceivers), and (c) Coupled alignment (be-

tween two bi-static transceivers with a long link length). Note that BS uses as an

abbreviation for ”beam steerer”.

Therefore, we can assume that most FSO transceiver alignments are coupled

alignment problems that can always be solved in three steps:
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1. Apply a scanning process and point the local beam steerer to the remote AR

by trial-and-error.

2. Compute the rotation angles for the remote AR and beam steerer according

to the focused spot on the remote AR. Point the remote beam steerer back to

the local AR.

3. Compute the rotation angles for the local AR and beam steerer according to

the focused spot in the local AR. Point the local beam steerer back to the

remote AR.

1.2.2.3 Limitations and Challenges

In the coupled alignment problem, since the pointing angle is computed by

transforming the detected image position on the AR with a pre-calibrated mapping,

the pointing resolution is directly bounded by the accuracy of the pre-calibrated

mapping and AR measurements. The former is determined by the robustness of the

algorithm and the latter is affected by (1) quality of the image point, (2) sensitivity

of the PSD, (3) range of uncertainty of the AR, and (4) linearity of the AR.

We summarize the limitations of the pointing accuracy below:

1. Robustness of algorithms: The robustness is a performance indicator of an

algorithm in the presence of measurement noise. If the algorithm is not ro-

bust, the estimated mapping can be far from the true mapping because of

measurement errors.
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2. Quality of the image spot: If no turbulence is present, the planar wavefront of

the incident field produces a tight spot on the PSD through a front-end optical

system and the size of the spot defines the image quality. The aberrations of

the front-end optical system affect the image position in two ways: (1) the

distortion displaces the image position in the radial direction, and (2) other

aberrations produce an asymmetric image spot that shifts the centroid of the

spot. The theoretical analysis is in section 2.1.2.

3. Sensitivity of the PSD: The sensitivity is a measure of the weakest signal a

PSD is able to detect, which is limited by the noise originating in the internal

impedance of the detector and the associated electronic circuitry. Given the

same received power, a PSD with a higher sensitivity has a higher signal-to-

noise ratio (SNR), which usually implies a better resolution. A sensitivity

analysis with respect to the QD and LEP is provided in section 3.3.2.3.

4. Range of uncertainty of the AR: The range of uncertainty of the AR is normally

equal to its field-of-view and can be approximated as θrou ∼ D
f
, where D

is the width of the PSD and f is the focal length of the front-end optical

system. Given the same sensor resolution, the pointing resolution is inversely

proportional to the range of uncertainty.

5. Linearity of the AR: The linearity of the AR is controlled by both the optical

system and PSD, including the linear relations embedded (1) between the

incident angle and the focused image position and (2) between the focused

image position and the digitized position.
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Besides the pointing resolution, the other important consideration is the set-

tling time, usually written as n% of settling time, which is a measure of the time to

stabilize an actuator within ±n% of a given position [19]. The settling time must be

short enough to prevent the target from disappearing from the field-of-view of the

AR or the region covered by the beam steerer. The limitation of the settling time

is formulated in section 2.3. The feedback and feedforward control systems which

are used to achieve this requirement are introduced in sections 2.4 and 2.5.

1.2.3 Coarse Angular Pointing, Acquisition, and Tracking Systems

The goal of the CPAT system is to (1) probe potential targets for network

optimization and (2) narrow down the range of uncertainty for the FPAT system.

Unlike the FPAT system, which must be incorporated into the FSO transceiver, the

design of the CPAT system allows external hardware, which provides more flexibility.

Among the 7 methodologies proposed by Rolland et.al. [71], to the author’s

knowledge, only the spatial scan method [21] and the hybrid method, a combination

of the time-of-flight and the inertial sensing methods [16, 57], have been realized as

CPAT systems for FSO transceivers, which may due to the long link length between

FSO transceivers.

1.2.3.1 Camera Based Systems

The most popular CPAT systems for commercial FSO transceivers are based

on the spatial scan method, including the DT series from Canobeam, FlightLite
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series from LightPointe, and TeraScope series from MRV, because of its simplicity

and reliability. These transceivers are equipped with a pre-calibrated telescope

parallel to the FSO transceiver for coarse alignment. By moving the transceiver

until the target overlaps the pre-determined position in the telescope, the coarse

alignment is completed. Although the telescope provides a narrow fov, it is still a

spatial scanning sensor.

Our efforts focus on improving the previous CPAT system in three areas,

namely: (1) a wider field-of-view (∼ 2π steradians), (2) controllability over multiple

transceivers, and (3) capability of solving the single alignment problem by using

multiple sensors.

The current CPAT system is based on a combination of cameras and mechan-

ical rotary gimbals, also known as the camera-based CPAT system. Compared to

the narrow field-of-view telescope, off-the-shelf perspective or fisheye cameras are

capable of acquiring more potential targets. The main idea is to first explore the

geometric invariance among the cameras and the gimbals, calibrate it in advance,

and then apply it to the pointing process.

1.2.3.2 GPS and ISS Hybrid Systems

Recently, with the improvement of inertial sensing systems, several papers [16,

57] have investigated a CPAT system, belonging to the hybrid method, consisting

of global positioning systems (GPS) and inertial sensing systems (ISS).

GPS sensors determine a target’s 3D position by measuring the propagation
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time of pulsed signals from the target to at least three references. Two GPS sensors

installed in both transceivers provide an accurate measurement of the pointing vec-

tor in the frame of the GPS sensors, also known as the earth-centered earth-fixed

(ECEF) frame [64]. The pointing vector is in the ECEF frame, which requires a

mapping from the ECEF frame to the beam steerer frame. An ISS system consists of

three accelerometers and three gyroscopes providing 6 dimensional information for

updating any changes in the mapping. The pointing resolution is mostly determined

by the accuracy of the estimated mapping from the ISS system.

1.3 Organization

The remainder of this dissertation is organized as follows: Chapter 2 reviews in

depth the theoretical analysis and the characterization of an FPAT system. Chap-

ter 3 describes the design, construction, and characterization of a prototype FPAT

system based on focal plane motion (FPM). Simulations and experimental investiga-

tion are applied to evaluate the beam divergence and pointing resolution. Chapter

4 provides the theoretical framework for the CPAT systems, with an emphasis on

the estimation error characterization and wide-angle projective geometry. Chapter

5 introduces robust algorithms to develop prototype CPAT systems based on single

or coupled cameras for different FSO scenarios. This dissertation concludes with

chapter 6, which summarizes the contributions of this work and suggests several

possible directions for future improvement.
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Chapter 2

Theoretical Studies of Fine Angular Pointing, Acquisition, and

Tracking System

This section provides a theoretical background for a fine angular PAT system

design. It covers five important topics, which include:

1. Paraxial Imaging and Aberration theory: The paraxial approximation charac-

terizes a ray transformation by taking the zero, first, and second order deforma-

tion of the wavefront into account, including piston, x-tilt, y-tilt, and defocus

in the Zernike polynomial [10]. It provides a linear relationship between the

image position and incident angles. It has been shown that the paraxial ap-

proximation characterizes the performance of the optical system better when

the optical paths of the system are closer to the optical axis. Besides, since

this approximation matches with human visual perception, known as the per-

spective view since the Renaissance [30], most optical imaging systems, used

to reproduce the human view, can be modelled by this approximation with

high accuracy.

The paraxial approximation characterizes the first three orders of the wave-

front. The rest of the components of the wavefront, defined as the wavefront

aberrations, result in the difference between the paraxial and true image posi-

tions, known as the ray aberrations. The design of an optical imaging system
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is to minimize the aberrations in order to reproduce the perspective images

seen in human vision.

In this section, the main aberrations, known as Seidel aberrations, are char-

acterized to provide a general understanding. Notice that the compensation

of the aberrations is not the focus of this dissertation since the aberrations

are relatively small and vary with respect to the environment and setup (e.g.

ambient light or shadows). Instead, the ray aberrations are treated as additive

noise, which affects the estimation accuracy of the geometric parameters and

our goal is to investigate estimation algorithms that are still robust in the

presence of noise.

2. Homography Mapping: This section distinguishes our FPAT system from oth-

ers. Most FPAT systems operate on an ideal assumption that both the the

beam steerer and AR have parallel optical axes, where the mapping between

the local AR and beam steerer is only an Euclidean transformation [23], in-

cluding only the scaling factors in the X and Y direction and a centroid

translation. This assumption is only true through a deliberate pre-alignment.

In this section, we prove that the mapping between the local AR and beam

steerer is a linear homography as long as the FSO transceivers satisfy the

inequality in 1.1. Adapting this homography concept into the FPAT design

can improve the pointing resolution and reduce the design complexity.

3. Image Motion Analysis: The LOS paths between FSO transceivers may be

blocked by the motion of the remote or local transceivers. These motions can
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be divided only into rotation and translation because the transceivers are rigid

bodies. This analysis provides solutions to two questions: (1) What kind of

motion most likely results in loss of LOS path? and (2) How quickly should

the LOS path be re-established before the induced motion breaks it again?

4. Feedback Control: Linear Feedback controllers provide their desired output

by feeding errors back to the actuator. The dynamics of most actuators can

be characterized as a linear model with different states [14]. The states are

often considered as kinematic parameters (e.g. position, velocity and acceler-

ation) in the modelling process. Those states affecting the control input must

be updated by referring to the measurements and the actuator model. The

estimator gain is a weighting parameter, which estimates the state parameters

from the current measurement. The major task of the feedback can be divided

in three steps:

• Apply a control input to the actuator and measure the difference between

the desired and measured sensor output.

• Update the state parameters with the product of the difference and the

estimator gain.

• Update the control input with the product of state parameters and the

control gain.

In general, overwhelming control and estimator gains produce instability whereas

a small feedback gain results in a slow response. The best control gain can be
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selected using optimal control theory and the best estimator gain is normally

determined through a Kalman estimation process, which provides the esti-

mated state parameters maximizing the likelihood function if the noises are

Gaussian. Most importantly, a Kalman estimation process updates the states

recursively, which minimizes the computational load of the microprocessor.

5. Feed-Forward Control Theorem: Feedback control usually assumes the noise

in the model or the measurements is white, which is defined as a sequence

whose autocorrelation is a delta function. For colored noise, a linear dynamic

model can be created to whiten the colored noise. By augmenting this new

linear model into the original dynamics, a feed-forward controller is created.

The name feed-forward is given because the computed control input, delivered

to the actuator, contains a component that can cancel the output produced by

the colored noise. For example, building sway results in random disturbances

in FSO alignment; however, these disturbances are not purely random but

can be modelled by a second-order spring system. The feed-forward controller

can better reject such disturbances. Applying feedforward control into a PAT

system was proposed by Skormin et.al. [58].
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2.1 Optical Imaging Theory

2.1.1 Paraxial Imaging

In general, ray tracing in an optical system depends on solving Snell’s law or

using Fermat’s principle [10], whose solution depends on perfect knowledge of each

element of the system and the overall configuration. Normally, this information

is unavailable for most commercial optical systems. Also, the nonlinearity of the

solution results in one-to-many correspondences between the incident ray vector and

the image position, which implies a spot on the image may result from rays with

different incident angles.

By introducing the paraxial approximation, Snell’s law and propagation law

describing the optical ray path can be approximated by [13]
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where (r, θ)T , (r
′
, θ

′
)T are the position and angle of the ray before and after propa-

gation, d is the propagation distance, (n1, n2) are the refractive indices of the two

media, h is the incident height, and R is the radius of the conic interface.

These equations imply that the nonlinear ray propagation process can be sim-

plified as the product of the 2 ray transfer matrices. Without loss of generality, let

the ray transfer matrix of an imaging system be

(
a b

c d

)
, which can be decomposed
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as 


a b

c d


 =




1 h2

0 1







1 0

c 1







1 h1

0 1




where h1 = d−1
c

represents the first principal plane, where the ray passing through

the first focal point F1 travels parallel to the axis, and h2 = a−1
c

represents the

second principal plane where the ray parallel to the optical axis passes through the

second focal point F2. F1, F2 are shown in figure 2.1

If an object is placed far from the imaging system, according to the paraxial

approximation, its image is produced at F2, the intersection between the optical

axis and the current paraxial marginal rays. This focusing property helps to solve

d2 = −a/c and the relation between the incident rays and projected distances can

be determined as:



ri

θi


 =




1 d2

0 1







a b

c d







1 d1

0 1







ro

θo


 (2.2)

=




0 b− ad
c

c d







ro + d1θo

θo


 , (2.3)

where (ro, θo) is the radius and angle at the object plane, and (ri, θi) is the radius

and angle at the image plane.

Generally, the media of the image plane and the object plane are identical,

which provides a constraint that the determinant of the ray transfer matrix is 1.

Applying this constraint, the previous equation can be cast as



ri

θi


 =




0 −1
c

c d







ro + d1θo

θo


 . (2.4)
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By defining the focal length f = −1
c
, the linear model between the projected

image position and the incident angle can be drawn as:

ri = fθo (2.5)Chief ray Entrance PupilAperturestopMarginal Ray InputPlane OutputPlane
d1 d2h1 h2

Image PlaneImage PlaneF1 F2 d c

b a  1 c

0 1Principal plane 1 Principal plane 2
Figure 2.1: Imaging model geometry

This result provides a linear and one-to-one mapping between the incident an-

gles and the projected image position and the mapping contains only one unknown.

This implies that by estimating f from limited measurements, all the incident angles

and image position pairs are uniquely determined.

2.1.2 Aberration Theory

The aberrations, resulting from high-order residues of the wavefront, produce

the difference between the true and paraxial image position. The residues of the
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wavefront and the displacement between the true and paraxial image position are

known as the wavefront and ray aberrations, respectively. In general, aberrations

can be categorized into monochromatic and chromatic and only the former exists in

FPAT system since the operating laser is a monochromatic source.

Let V be the optical path length, defined as
∫

n(s)dr(s), where r(s) is the

ray path. According to Maxwell equations, if the two rays have an identical origin

but experience two optical paths lengths V1, V2 in the same uniform medium, the

difference between the two ray vectors can be cast as

dr =
1

n
(
δ(V1 − V2)

δx
,
δ(V1 − V2)

δy
,
δ(V1 − V2)

δz
) (2.6)

where n is the refractive index of the medium.

The third order primary aberrations, known as the Seidel aberrations, can be

characterized by two paraxial rays, the paraxial chief ray and the axial ray [59].

Figure 2.2 shows the optical path difference between the paraxial chief ray (from O

to P0) and one of the oblique rays (from O1 to P ). Note that O, O0, O1 are on the

same wavefront. The wavefront aberrations (up to third order) can be formulated

as

W = n(O0Q−O1Q) = 4n(O1Q)

∼ 4n(OP0 −QP0)

where 4 represents the increment of the optical path.

Let the coordinates of O and Q be (0, ȳ, z̄) and (x, y1, z), respectively. The

phase difference W is

W = 4n(((l − z̄)2 + (η − ȳ)2)
1
2 − ((l − z)2 + (η − y1)

2 + x2)
1
2 ) (2.7)
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QO ζ'η' PGaussian image pointP0 xy
Refractive surface

O1O0
l

l

),,0( lη

Figure 2.2: Optical path difference in the approximation of the primary aberrations

After plugging into the spherical equation of the refractive surface along with

the Lagrange invariant (4n(ηy
l
) = 0) and refractive invariant (4n(c− 1

l
) = 0), the

constant and second order terms of W are eliminated. ȳ is the paraxial chief ray and

η is its corresponding image, which can be determined by η
l

= ȳ(1
l
− 1

l̄
). By replacing

η, y1 with their paraxial equivalents, the Seidel aberrations passing through a single

surface can be derived as

W = 4n(1
8
− c

4l2
+ 1

8l3
)(x2 + y2)2

+4n( c3

2
− c

2ll̄
− c

2l2
+ 1

2l2 l̄
)ȳy(x2 + y2)

+4n( c2

2
− c

ll̄
+ 1

2ll̄2
)ȳ2y2

+4n( c3

4
− c

4l̄2
− c

4l2
+ 1

4ll̄2
)ȳ2(x2 + y2)

+4n( c3

2
− c

2ll̄
− c

2l̄2
+ 1

2l̄3
)ȳ3y

After summarizing the aberrations from all the surfaces and introducing the

maximum image height (ηmax) and maximum height at the exit pupil (hp) from the
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paraxial chief ray and axial ray, respectively, the Seidel wavefront aberrations are

cast as [74]

W =
1

8
SI

(x2
p + y2

p)
2

h4
p

+
1

2
SII

yp(x
2
p + y2

p)

h3
p

η

ηmax

+
1

2
SIII

y2
p

h2
p

η2

η2
max

+
1

4
(SIII + SIV )

x2
p + y2

p

h2
p

η2

η2
max

+
1

2
SV

yp

hp

η3

η3
max

SI = −
∑

A2h4(
u

n
)

SII = −
∑

ĀAh4(
u

n
)

SIII = −
∑

Ā2h4(
u

n
)

SIV = −
∑

H2c4(
1

n
)

SV = −
∑ Ā

A
h4(

u

n
) +

Ā

A
H2c4(

1

n
)

where (xp, yp) represent the location of the ray at the exit pupil, (η) is the

image height, A = nh(c − 1/l) represents the paraxial marginal angle times the

refractive index of the medium, Ā = nh̄(c− 1/l̄) represents the incident angle of the

chief ray times the refractive index of the medium, and H represents the Lagrange

invariant, which can be expressed as n(h̄u− hū).

The ray vector resulting from the wavefront aberration can be formulated as

equation 2.6. If the propagation distance from exit pupil to the image plane is R, the

corresponding image shifts, defined as the ray aberrations, are summarized below:

Spherical aberration:

(
δζ δη

)
=

(
−R

n
SI

r2
p

2h4
p
x −R

n
SI

r2
p

2h4
p
y

)

Coma:

(
δζ δη

)
=

(
−R

n
SII

2xpyp

h3
p

η
ηmax

−R
n
SII

x2+3y2

h3
p

η
ηmax

)
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Astigmatism and coma:

(
δζ δη

)
=

(
R
2n

(SIII + SIV ) x
h2

p

η2

η2
max

−R
n
SIII

y
h2

p

η2

η2
max

+ R
2n

(SIII + SIV ) y
h2

p

η2

η2
max

)

Distortion:
(

δζ δη

)
=

(
0 − R

2n
SV

η3

η3
max

)

We plot the Seidel ray aberrations, obtained from different optical systems,

in figure 2.3. It can be seen clearly from the plot that the aberrations, except for

spherical aberrations, produce a non-symmetrical beam shape, which result in the

shift of the centroid.

2.2 Homography Mapping

Most alignment problems can be categorized as coupled alignment problems

since the link distance satisfies the inequality in 1.1. The displacement between

the beam steerer and AR of the PAT system is negligible in the coupled alignment

problem, which implies only an unknown rotation matrix between the beam steerer

and AR. Let the imaging system satisfy the paraxial approximation. Any ray vector

expressed in the frame of AR and beam steerer is related by

vBS = RvAR (2.8)

where R = RαRβRγ and Rα, Rβ, Rγ represent rotation matrices with respect to

yaw, pitch, and roll angles. Note that R is an identity matrix in the mono-static

transceiver.
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Figure 2.3: Spot diagrams resulting from the Seidel aberrations (a) spherical aber-

rations (b) coma (c) astigmatism (d) distortions (barrel and pin-cushion). Except

for the spherical aberrations, any other aberrations result in an asymmetric spot

diagram and a centroid shift.
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The transmitted ray vector in the beam steerer results from moving a laser

diode, preferred to be a pig-tailed fiber laser for its light weight, on a plane parallel

to the focal plane of the collimator. If the fiber is close to the optical axis, the

resulting transmitted vector can be approximated as

vBS =




1
fcoll

0

0 1
fcoll


 (




dx
LA

dy
LA


−




ox

oy


)




dx
LA

dy
LA

1




=




fcoll 0 ox

0 fcoll oy

0 0 1




vBS

where fcoll is the focal length of the collimator, (dx
LA, dy

LA) are the fiber coordinates,

and (ox, oy) is the coordinates of the intersection between the optical axis and the

motion plane.

The motion of the fiber may be provided by a two-axis moving platform whose

moving axes are not necessarily orthogonal. Also, the sensors used to measure the

fiber position may have different axial gains and a different zero position. Taking

these into consideration, the mapping between the sensor output and the transmitted

ray vector can be generalized to be an affine transformation matrix MLA, a 3 × 3

upper triangular matrix, instead of the Euclidean transformation matrix used in the

last equation.

The PSD used to measure the received ray vector also suffers from similar

problems, such as different axial gains and zero positions. Analogously, the image

readout from the AR and the received ray vector can also be related by an affine

transformation matrix. Combined with equation 2.8, the readouts from the AR and
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the laser position sensors can be described by a 3× 3 linear homography:




dx
LA

dy
LA

1




= λMLARM−1
PSD




dx
PSD

dy
PSD

1




(2.9)

where (MLA,MPSD) are affine transformation matrices with form




a b c

0 d e

0 0 1




and

λ is an unknown scaling factor.

MLARM−1
PSD is a 3×3 matrix and can be calibrated in advance. The calibration

procedure and algorithm are listed in section 3.3.3 and algorithm 5.1, respectively.

With a pre-calibrated homography and a readout from AR indicating the

target location, the desired output from the laser position sensor is

dx
LA =

H1

0@ dx
PSD dy

PSD 1

1AT

H3

0@ dx
PSD dy

PSD 1

1AT

dy
LA =

H2

0@ dx
PSD dy

PSD 1

1AT

H3

0@ dx
PSD dy

PSD 1

1AT

(2.10)

where H i is the ith row of H and H = MLARM−1
PSD.

As for received power optimization, since there is generally no displacement

between the photodiode and the AR, the mapping between the AR and the best

photodiode position shares the same relationship, a linear homography.

One then concludes that once the incoming ray vector is revealed from the

AR output, the positions of the laser diode and the photodiode can be found from
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equation 2.10. The linear homography required in equation 2.10 can be calibrated

in advance by algorithm 5.1.

2.3 Image Motion Analysis

Define a coordinate system with origin at the local transceiver and let the re-

mote transceiver be at (X, Y, Z). The remote and local transceivers have translation

velocities of tr, tl and angular velocity of ωr, ωl, respectively. The relative velocity

with respect to the local host can be cast as

dP

dt
= (tr − tl) + ωr ×R− ωl × P (2.11)

where P = (X, Y, Z) represents the vector from the local to the remote transceiver

and R represents the distance from the object centroid to the remote rotation center.

Assuming the imaging system has a focal length of f , the location of the

remote transceiver in the local image frame can be approximated as

p = f
P

Z
+ O

where O : (ox, oy) is the origin shift between the camera and image frame.

The image velocity can be computed by taking the derivative of p with respect

to t. By putting the terms related to the link length (Z) together, the image motion

can be cast as follows

dp
dt

=




f((trx−tlx)+Rzωr
y−Ryωr

z)−px((trz−tlz)+Ryωr
x−Rxωr

y)

Z

f((try−tly)+Rxωr
z−Rzωr

x)−py((trz−tlz)+Ryωr
x−Rxωr

y)

Z




+




ωl
x

pxpy

f
− ωl

y(f + p2
x

f
) + ωl

zyp

ωl
x(f +

p2
y

f
)− ωl

y
pxpy

f
− ωl

zyp




(2.12)
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where (px, py) are the image coordinates.

2.3.1 Pointing Induced Tracking Errors

The link length between two FSO systems is normally long, which implies that

the image motion in the local AR is only affected by the local angular velocity since

the first term of equation 2.12 is negligible. In other words, the motion from the

target is immeasurable in the local AR, which is known as the pointing induced

tracking errors (PITE) problem, commonly described by FSO engineers.

LOS paths are kept once the transceiver stays within the beam divergence of

the other transceiver and a tracking loop must be applied to the link maintenance

because of the limited beam divergence. Since the AR in each transceiver only

provides half of the motion, the LOS paths can only be maintained by cooperation

between the transceiver pair.

2.3.2 Minimum Settling Time

Generally, once an image spot is imaged on the PSD, the image’s coordinates

are mapped to a desired output from the laser position sensor in the beam steerer.

However, because of the errors coupled from the measurement, calibration and target

motion, the computed position may be off from the true position. As long as the

offset is within the region created by the beam divergence of the beam steerer, the

link can still be established.

The back-projection of this region in the PSD frame is the tolerance region,
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which serves as a bound for the aberrations and the image motion caused by mobility.

In other words, the control loop in the beam steerer must settle the laser diode to the

computed steering angles before the image spot drifts out of the tolerance region.

It can be seen that a large tolerance region is beneficial to the link alignment but

may simultaneously damage the quality of the link because a large tolerance region

implies a large beam divergence.

Assuming the tolerance region is a small circle, the minimum settling time is

defined as

Tset =
rtol∥∥dp
dt

∥∥

where rtol is the radius of the tolerance region.

2.4 Feedback Controller

Once the positions of the laser/photodiode are determined from the image

position at the AR, actuators must be applied to move the laser/photodiode toward

the computed location fast and accurately, which relies on a feedback controller.

This section provides the concepts of the digital feedback control, including the

optimal control theory and the Kalman estimator, an optimal estimator for Gaussian

noise [20]. Throughout this section, the digitized actuator model is assumed to be

linear and accepts control input (e.g. voltage or current) from an external port.

Sensors, also suffering from additive random noises, are attached to the actuator to
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probe the current status (e.g. displacement, velocity). The overall model is cast as

x(k + 1) = Φx(k) + Γu(k)

y(k) = Cx(k)

(2.13)

where k is the time constant, x is the state of the actuator, u is the control input,

y is the sensor output, Φ is the state transition matrix for the evolution of x, Γ is

the gain of the control input, and C is the response of the sensor, known as the

observation matrix.

2.4.1 Optimal Control

Optimal control is attractive for its ability to select the desired pole locations

for the single input single output (SISO) system and handle the multi-input multi-

output (MIMO) system.

The optimal control is to select the control input that minimizes the control

power as well as the difference between the desired output and the measurements.

If the desired output is 0, the cost function ζ is best cast as

ζ = min
u

1

2

N∑

k=0

xT (k)Q1x(k) + uT (k)Q2u(k) (2.14)

subject to x(k + 1) = Φx(k) + Γu(k)

where k is the time index, (Q1, Q2) are symmetrical and nonnegative definite weight-

ing matrices and Q1 = CT C.

Using the Lagrange method, we can derive the Euler-Lagrange equations,
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whose state transition matrix is known as the control Hamiltonian matrix.



x(k + 1)

λ(k + 1)


 =




Φ + ΓQ−1
2 ΓT Φ−T Q1 −ΓQ−1

2 ΓT Φ−T

−Φ−T Q1 Φ−T







x(k)

λ(k)


 (2.15)

where λ(k) is the Lagrange coefficient at time k.

By imposing an innovative constraint, λ(k) = S(k)x(k), to the last equation,

the Riccati equation describing the evolution of S(k) and the optimal control gain

K(k) relating u(k) and x(k) can both be derived as follows.

S(k) = ΦT (S(k + 1)− S(k + 1)ΓR−1ΓT S(k + 1))Φ + Q1

K(k) = (Q2 + ΓT S(k + 1)Γ)−1ΓT S(k + 1)Φ

(2.16)

These equations show that the optimal gain can only be solved backwards in

time since the appropriate boundary condition exists only after reaching the steady

state.

If the controller runs for a long period, instead of computing the time-varying

gain, the steady state S(∞) can be solved directly from the quadratic algebraic

Riccati equation, and the positive definite root is the desired solution for S(∞).

The algebraic Riccati equation is listed below

S(∞) = ΦT (S(∞)− S(∞)ΓR−1ΓT S(k + 1))Φ + Q1

A better algorithm to solve S∞ is through eigendecomposition of the control

Hamiltonian matrix. Since the eigenvalues are reciprocal, the state transition matrix
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in the Euler-Lagrange equation can be decomposed as

Hc = WH∗
c W−1

=




XI X0

ΛI Λ0







E−1 0

0 E







XI X0

ΛI Λ0




−1

where Hc =




Φ + ΓQ−1
2 ΓT Φ−T Q1 −ΓQ−1

2 ΓT Φ−T

−Φ−T Q1 Φ−T


, E−1 is a diagonal matrix

containing the stable eigenvalues (z < 1), (XT
I , ΛT

I )T are the eigenvectors associated

with the stable eigenvalues, and (XT
0 , ΛT

0 )T are the eigenvectors associated with the

unstable eigenvalues.

Therefore, a new state (x∗(k), λ∗(k)) is obtained by multiplying the inverse of

the eigenvectors (W ) to the old state, and equation 2.15 becomes



x∗(k + 1)

λ∗(k + 1)


 = H∗

c




x∗(k)

λ∗(k)




The convergence of λ∗(k) concludes that the initial condition of λ∗(0) = 0. After

converting this result to the original state, the S(∞) and optimal gain in steady-

state can be derived as

S(∞) = ΛIX
−1
I

K(∞) = (Q2 + ΓT S(∞)Γ)−1ΓT S(∞)Φ (2.17)

2.4.2 Kalman Estimator

From equation 2.17, the optimum control input is the product of the optimum

gain constant and the current state information. The former is computed from
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optimal control theory and the latter must be from an optimal estimator for two

reasons: (1) sensor capabilities are limited and insufficient for probing all the states

for most systems and (2) the measurements are inevitably affected by noise (e.g.

circuit thermal noises). The Kalman filtering process provides an optimal estimator

for all the states if the measurement noises are additive Gaussian. Most importantly,

it provides a recursive updating process that is crucial for real-time implementation.

A noise source is further added into equation 2.13 to evaluate the best estima-

tor, as

x(k + 1) = Φx(k) + Γu(k) + Γ1w(k)

y(k) = Hx(k) + v(k)

(2.18)

where Γ1w(k) is the state disturbance resulting from a Gaussian distribution N(0, Rw)

and v(k) is the measurement error with a Gaussian distribution N(0, Rv).

The two noise sources result in the prediction and estimation stages of the

Kalman filtering process. The former is to estimate the best current state, defined

as the prior state, based on the previous states and the latter is to update the prior

state to estimate the best posterior state from the measurement. Three notations

are first defined before introducing the recursive algorithm.





x(k), the true state at time k;

x̂k|k−1, the prior state at time k;

x̂k|k, the posterior state at time k.
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2.4.2.1 Prediction

Since w(k) is independent of x(k), the best prior state can be estimated as

x̂k+1|k = Φx̂k|k + Γu(k) (2.19)

Comparing the best estimator to the state space model, the error covariance

matrix, defined as M(k + 1), is equal to

M(k + 1) = E((x(k + 1)− x̂k+1|k)(x(k + 1)− x̂k+1|k)
T ) (2.20)

= ΦΣxk|kΦ
T + Γ1RwΓT

1 (2.21)

2.4.2.2 Estimation

Given a linear model Y = HX + V , where V is independent to X, the linear

least squares estimator of X and the error covariance matrix are as follows [54]. A

detailed explanation can be found in the appendix.

X̂ = E(X|Y ) (2.22)

= µX + ΣXY Σ−1
Y (Y − µY )

ΣX̂ = ΣX − ΣXHT Σ−1
Y HΣX (2.23)

where ΣXY is the covariance between X and Y , ΣY is the variance of Y , µX is the

mean of X and µY is the mean of Y.

Given all the previous measurements from y(0) to y(k), recorded as yk
0 , this

optimal posterior state can be formulated as

x̂k|k = E(x|yk
0)

= E(x|yk−1
0 | y(k)|yk−1

0 ) (2.24)
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Since (w(k), v(k)) are Gaussian processes and v(k) is independent of yk−1
0 ,

P (x(k)|yk−1
0 , y(k)|yk−1

0 ) can be verified to be a jointly Gaussian distribution and

expressed as

P

(
x(k)|yk−1

0 y(k)|yk−1
0

)
= N(




x̂k|k−1

Hx̂k|k−1


 ,




M(k) M(k)HT

HM(k) HM(k)HT + Rv


)

where N(a, b) is a Gaussian distribution with mean a and covariance matrix b.

According to equations 2.22 and 2.24, the optimal posterior state and its error

covariance matrix are

xk|k = x̂k|k−1 + M(k)HT (HM(k)HT + Rv)
−1(y −Hx̂k|k−1)

= x̂k|k−1 + L(k)(y −Hx̂k|k−1) (2.25)

Σxk|k = M(k)−M(k)HT (HM(k)HT + Rv)
−1HM(k) (2.26)

L(k) is the gain of the estimator, which updates the prediction states with the

measurement.

Equations 2.21 and 2.26 form a recursive process for updating the error co-

variance matrices; while equations 2.19 and 2.25 provide the values of the prior and

posterior states.

2.4.2.3 Steady State Gain

Since equations 2.21 and 2.26 have a structure analogous to equation 2.16, the

estimator Hamiltonian matrix can be derived by comparing the coefficients as

He =




ΦT + HT R−1
v HΦ−1Γ1RwΓT

1 −HT R−1
v HΦ−1

−Φ−1Γ1RwΓT
1 Φ−1


 (2.27)
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Using the eigen-decomposition algorithm described in optimal gain, the steady

state Kalman filter gain is

L∞ = M∞HT (HM∞HT + Rv)
−1 (2.28)

where M∞ = ΛIX
−1
I and (XT

I , ΛT
I )T are the eigenvectors of He associated to the

stable eigenvalues.

Note that, the selection of Γ1 must assure that the estimator tracks all the

states, which provides the feedback mechanism to correct these states from mea-

surements. The states without feedback will drift away from reality because of the

imperfect model of the actuator or disturbances in use.

2.5 Feed-Forward Control

Feed-forward control is commonly used if the state-space model for the dy-

namics of the motion are known or can be estimated. The two most common forms

are disturbance rejecter and reference follower. The former is to better reject colored

noise and the latter is to better drive the actuator according to a pre-determined

moving trajectory. By incorporating the dynamics, the control input then contains

the components capable of neutralizing the dynamics induced from disturbances and

reference commands.
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2.5.1 Disturbance Rejecter

Assuming that the actuator has a linear model as equation 2.18, the colored

noise model of the actuator and sensor can be formulated as follows:



ρd(k + 1)

ρs(k + 1)


 =




Φd 0

0 Φs







ρd(k)

ρs(k)







w(k)

v(k)


 =




Hd 0

0 Hs







ρd(k)

ρs(k)


 +




wr(k)

vr(k)




where (ρd, ρs) are the states, (Φd, Φs) are the state transition matrices, (Hd, Hs) are

the observation matrices of the noise, and (wr(k), vr(k)) are the residual noise in

the actuator and sensor, respectively,

The augmented model can then be represented as

xd(k + 1) = Φwxd(k) + Γwu(k)

y(k) = Hwxd(k)

(2.29)

where xd(k) =

(
x(k)T ρd(k)T ρs(k)T

)T

, Φw =




Φ ΓHd 0

0 Φd 0

0 0 Φs




,

Hw =

(
H 0 Hs

)
, and Γw =

(
ΓT 0 0

)T

.

The augmented model is only applied to the optimal estimator gain compu-

tation because the focus of the feedforward control is to estimate the noise states

and incorporate those into the control input. Since the noise states do not alter the

control input u, the optimal control gain is identical to the one computed from the
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original state-space model and the control input is

u = −Kx(k)−Hdρd(k) + N̄r(k)

where r(k) is the reference signal, N̄ = (K(Im×m−Φ)−1Γ+In×n)(H(Im×m−Φ)−1Γ)−1

is the steady-state gain, and (m,n) are the number of the actuator’s states and

observations.

An estimator, including model prediction and measurement refinement, are

applied to retrieve the true states, which can be formulated as

x̂d(k + 1) = Φwx̂d(k) + Γwu(k) + L(y(k)−Hwx̂d(k)) + ΓwN̄r(k)

= (Φw − LHw − ΓwKa)x̂d(k) + Ly(k) + ΓwN̄r(k)

(2.30)

where x̂d(k) represents the estimation of

(
x(k)T ρd(k)T ρs(k)T

)T

and Ka =
(

K Hd 0

)
.

By combining equations 2.29 and 2.30, the overall model can be expressed as




x(k + 1)

x̂d(k + 1)


 =




Φ −ΓKa

LH Φw − LHw − ΓwKa







x(k)

x̂d(k)


 + Γawr(k) + Lavr(k) + N̄ar(k)

e(k) =

(
H −Hw

)



x(k)

x̂d(k)


 (2.31)

where Γa =

(
ΓT 0

)T

, La =

(
0 LT

)T

, and N̄a =

(
ΓT ΓT

a

)T

N̄ .

The frequency responses of the residue with respect to the disturbance at the
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actuator and the reference signal can be expressed as

e(z)

wr(z)
=

(
H −Hw

)
(zI −




Φ −ΓKa

LH Φw − LHw − ΓwKa


)−1Γa

e(z)

r(z)
=

(
H −Hw

)
(zI −




Φ −ΓKa

LH Φw − LHw − ΓwKa


)−1N̄a

A detailed model plotted in Simulink is shown in figure 2.4.

u
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White noise1

White noise

y(n)=Cx(n)+Du(n)
x(n+1)=Ax(n)+Bu(n)
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Model
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Scope

-K-

Reference
Gain

1

Reference

y(n)=Cx(n)+Du(n)
x(n+1)=Ax(n)+Bu(n)

Plant
Disturbance

Model

K*u

Observation for disturbance

y(n)=Cx(n)+Du(n)
x(n+1)=Ax(n)+Bu(n)

Estimator

K*u

Controller Gain

y(n)=Cx(n)+Du(n)
x(n+1)=Ax(n)+Bu(n)

Actuator

Figure 2.4: Block diagram of a disturbance rejecter

2.5.2 Reference Follower

Generally, a linear controller drives the output to zero when the system is

stabilized. In order to follow a reference signal, a set of new state parameters are

defined whose output represents the difference between the measurement and the

reference signal. Thus, the change of the reference signal can be regarded as the

disturbance in this new system model.
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Let the dynamics of the reference signal model be

ρ(k + 1) = Φrρ(k)

r(k) = Hrρ(k)

By augmenting the reference model, the model can be written as

xr(k + 1) = Φwrxr(k) + Γwru(k)

e(k) = Hwrxr(k)

(2.32)

where xr(k) =

(
x(k)T ρ(k)T

)T

, Φwr =




Φ ΓHr

0 1


, Hwr =

(
H 0

)
, and

Γwr =

(
ΓT 0

)T

.

This form is analogous to the state space model for the disturbance rejector.

Therefore, the estimator design is similar to equation 2.30. The difference is that

the current estimator uses errors between the reference and output signals to update

the state.

x̂r(k + 1) = (Φwr − LHwr)x̂r(k) + Γwru(k) + L(y(k)− r(k)) (2.33)

where x̂r(k) represents the estimations of

(
x(k)T ρ(k)T

)T

.

Similar to the disturbance rejecter, the control signal is the summation of

both the actuator and augmented states, formulated as u(k) = −Krax̂r(k), where

Kra =

(
K Hr

)T

. Therefore, the overall system model, including the actuator
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and the estimator, can be written as




x(k + 1)

x̂r(k + 1)


 =




Φ −ΓwrKra

LH Φwr − LHwr − ΓwrKra







x(k)

x̂r(k)


− Lrar(k) + Γraw(k)

ê(k) =

(
0 Hwr

)



x(k)

x̂r(k)


 (2.34)

where Lra =

(
0 LT

)T

, Γra =

(
ΓT 0

)T

, and w(k) is the disturbance in the

actuator.

The frequency responses of the residue with respect to the disturbance at the

plant and the reference signal are

ê(z)
w(z)

=

(
0 Hwr

)
(zI −




Φ −ΓKra

LH Φwr − LHwr − ΓwrKra


)−1Γra

ê(z)
r(z)

= −
(

0 Hwr

)
(zI −




Φ −ΓKra

LH Φwr − LHwr − ΓwrKra


)−1Lra

Figure 2.5 shows the design diagram using Simulink.
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Figure 2.5: Block diagram of a voltage follower
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Chapter 3

Design and Analysis of Fine Angular Pointing, Acquisition, and

Tracking Systems

Research in fine angular pointing and tracking (FPAT) systems has blossomed

since the 1980s after the appearance of satellite communication. Although several

companies have brought commercial systems for long-haul point-to-point links to the

market since the 1990s, such as Canon, Terabeam, MRV, fSONA and LightPointe,

not until recent years have the new generation of FSO transceivers been equipped

with a FPAT system, such as the DS series from Canon and Compass (compact

airborne stabilization system) from NovaSol. Currently, many research groups are

still working on improving such systems to have: (1) a faster tracking rate, (2) a

higher accuracy, (3) a larger tracking range, and (4) a low cost.

Gibson [21] categorized fine laser beam steering systems into mechanical and

non-mechanical. Their pros and cons are discussed in the previous chapter. Me-

chanical systems have been the favorite in this field and several FPAT systems

were developed by different research groups, including fast-steering mirrors (FSM)

based systems by UCLA [5], the Canada Space Agency [39], and NovaSol, and

Risley prism based systems by Ball Aerospace and Technologies Corp [56]. As for

the non-mechanical systems, Nikulin et.al [50] implemented a beam steerer with

acoustic-optical Bragg cells. Arnon et.al [53] proposed using gratings to steer the
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beam. McManamon [47] demonstrated a beam steering device with a liquid crystal.

A FPAT system is usually integrated with traditional FSO transceivers to

achieve reliable connectivity. Its objective is to (1) complete the alignment to es-

tablish a link, (2) reject the disturbance induced by unknown noise sources, and

(3) track the angular motion from the transceiver pair. The FPAT system is nor-

mally triggered after two FSO transceivers have been roughly pointed with a CPAT

system.

An FPAT system consists of three subsystems, which are

1. Beam Steerer: points the beam precisely according to a set of computed az-

imuthal and elevation angles provided by the AR.

2. Angular Resolver (AR): resolves the incident angle of the incoming beam and

optimizes the received power. The AR in the FPAT system mainly consists of

a small field-of-view imaging system (reflective or refractive), a PSD (QD or

LEP), and a two-axis actuator.

3. Internal Controller: provides a feedback control signal, which rejects the dis-

turbance resulting from unknown noise sources; and a feedforward control

signal, which cancels the angular change induced by the jitter or follows a

pre-determined scanning pattern.

3.1 A PAT System using Focal Plane Motion

The linear relationship between the incident angle and the projected image

position on the focal plane is revealed in section 2.1.1. According to the reciprocal of
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the optical rays, once an optical source is placed at any image spot on the focal plane,

the transmitted ray will produce the outgoing angle analogous to the corresponding

incident angle. Moving the optical source on the focal plane is the beam steering

mechanism used in the proposed FPAT system, also known as the focal plane motion

(FPM) based system.

Some questions wait to be answered before implementing the system. For ex-

ample, if the moving plane is the focal plane, the transmitted beam is too collimated

to be used in real FSO applications. How can we retrieve a desired beam divergence

without affecting the beam steering capability? Some preliminary simulations and

experiments for this new FPAT system using a focal plane motion are reported to

demonstrate its capability. Compared to the system based on the fast-steering mir-

rors (FSM), the proposed system is very low-cost, which is an important incentive

for popularizing FSO products.

The major difference between the FPM-based and the FSM-based system is

the mechanism to determine the incident angle. An FPM-based system determines

the incident angle from the position of the focused spot using the paraxial approxi-

mation; whereas an FSM-based system physically rotates the two-axis mirror until

the beam re-focused at a pre-determined position and then the incident angle is

measured by the sensor of the FSM after the mirror is stabilized. To summarize,

the FPM-based system is capable of providing faster angular information to the

beam steerer with slight errors, and the FSM-based system provides accurate angu-

lar information but at a slower rate.

It occurs to us that an FPM-based system can outperform the FSM-based
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system if the aberrations can be minimized to a level that does not affect the pointing

accuracy of the beam steerer, since a correct incident angle can lead the beam steerer

to point at the target much faster. A detailed investigation of the aberrations in the

optical system is listed below.

Besides affecting the pointing accuracy, aberrations also result in the photodi-

ode being slightly displaced from the optimal receiving position, which may degrade

the link quality. This problem can be easily solved by a non-imaging system, such

as an compound parabolic concentrator (CPC). A study is described in the fol-

lowing section to show that a CPC can expand the effective receiving area of the

photodiode, which effectively mitigates the position offset from the aberrations.

Figure 3.1 shows a diagram of the FPM-based FPAT system and figure 3.2

describes its function flow chart. Notice that the current implementation applies two

PSDs to measure the incoming angle of the other transceiver and the motions of

the local beam steerer. The PSD used at the beam steerer can be freely replaced by

other compact sensors, such as strain gauge sensors or linear variable displacement

transducers (LVDT).

Each part of the FPM-based system has been either simulated or implemented

for further verification. This is mainly divided into three sections: (1) beam steerer,

(2) angular resolver, and (3) controller design.
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Figure 3.1: Proposed fine angular PAT system diagram: angular resolver is on the

left and beam steerer is on the right. The PSD in the beam steerer measures the

position of the fiber, which can be replaced by other compact sensors.

Imaging position shift on the PSD
Beam Steerer enters a closed-loop

DecisionModule
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Figure 3.2: Flow chart for the proposed FPAT system
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3.2 Beam Steerer

The current moving mechanism is provided by a two-axis moving stage, which

moves a fiber tip near the focal plane of a collimator for beam steering. The objective

of the beam steerer is to: (1) move the laser to the pre-determined position quickly

and accurately, and (2) provide an accurate outgoing angle and a sufficiently large

beam divergence for the transmitted beam after passing the optical system. The

former depends on the actuators and the control loop and the latter depends on

the optical system used for the collimation. Figure 3.3 shows a beam steerer in the

laboratory.

Figure 3.3: A beam steerer consisting of a two-axis moving platform, an achromatic

lens, and a fiber.
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The current specifications of the beam steerer are selected as: a beam diver-

gence of 2 mrad, a steering range of ±25 mrad (±1.5◦), and a steering resolution of

1 mrad.

3.2.1 Optical Systems

Given a steering range of ±25 mrad and a ±1 mm actuator, the collimator

optical system must have a focal length of 40 mm according to the imaging equation

2.5 derived from the paraxial approximation and offer a good image quality for

beam steering. A suitable lens is the achromatic lens (026-0190) from Optosigma.

Combined with a single mode fiber (Thorlabs SM600) whose field diameter is 4.5

µm at 660 nm as well as a two-axis moving platform, a beam steerer is produced.

This section evaluates if the optical system provides the desired beam divergences

as well as accurate steering angles.

3.2.1.1 Beam Divergence

The guided field in a step-index monomode fiber is in the LP01 mode, whose

field distribution in the core and cladding can be modelled by Bessel and modified

Bessel functions, respectively [13]. For most monomode fibers, the guided wave at

the fiber tip can be accurately approximated by a Gaussian beam with an infinite

radius of curvature and a waist size of [9]

W = (0.65 + 1.619V −1.5 + 2.879V −6)a
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where a is the fiber radius, V is the normalized frequency, and 2W is normally

defined as the mode fiber diameter (MFD).

The propagation of the Gaussian beam through an optical paraxial ABCD

systems is usually characterized by

q(z) =
Aq(0) + B

Cq(0) + D

where q(z) = 1
R(z)

− iλ
πw(z)2

is the beam parameter at distance z, R(z) is the radius

of curvature, w(z) is the beam waist, and λ is the wavelength.

If the fiber is placed at a distance d1 in front of a collimator with a ABCD ray

transfer matrix, the new minimum beam waist can be cast as

wo =
wf√

(D + Cd1)2 − C2q2
f

where qf = iλ
πwf

is the beam parameter at the fiber tip and wf is half of the mode

fiber diameter.

Generally, qf is negligible and the new minimum beam waist can therefore be

simplified as wo =
wf

D+Cd1
. Since the beam divergence and minimum beam waist are

related by θ = λ
πwo

, a linear relation between the beam divergence and d1 can be

derived as

θo =
θf

D
(1 +

Cd1

D
) (3.1)

where θf is the beam divergence at the fiber output.

Because C is the inverse of the focal length of the collimator, equation 3.1

reveals two important pieces of information for the beam steerer design:

1. The beam divergence resulting from a collimator increases linearly with the
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distance from the fiber to the front focal plane for an on-axis gaussian beam.

2. Choosing a collimator with a long focal length can reduce the variation of the

beam divergence induced by the motion.

Beam Divergence Simulation

This simulation was conducted to answer two questions associated with the current

beam steerer consisting of an achromatic lens (Optosigma 26-0190) with 40 mm

focal length and a single mode fiber (Thorlabs SM600) with a mode field diameter

of 4.5 µm at 660 nm: (1) where should the fiber be placed to produce the beam

divergence according to the specification? and (2) how does the beam divergence

vary as the fiber moves?

Since the fiber tip may be off-axis when applying the focal plane motion,

instead of taking the on-axis approximation as shown in the previous derivation, a

simulation was conducted using the CodeV optical simulator from Optical Research

Associates, where the beam divergence of an off-axis Gaussian beam was evaluated

by a general algorithm proposed by Arnaud et.al [6].

The answer to the first question can be found by placing the fiber on the

optical axis within a ±1 mm span near the front focal plane, 39 mm in front of

the first element of the collimator. The results, plotted in figure 3.4, show a linear

relation between the fiber’s displacement and the beam divergence, as predicted in

the derivation. From the plot, it can be seen that the best location to place the

fiber is between 38.6 to 39.4 mm in order to achieve the 2 mrad specification.

Since the beam divergence varies linearly with the distance from the fiber to
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the front focal plane, the resulting beam divergences suffer from smaller impacts

from the fiber motion if the moving plane has a distance farther away from the front

focal plane. The current selection is to place the fiber at z = 38.6 mm, 0.4 mm away

from the front focal plane.
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Figure 3.4: Horizontal and vertical beam divergences on a ±1 mm span on both Y

and Z axes at x = 0 mm.

The variation of the beam divergence was evaluated by moving the fiber within

a ±1 mm span on the XY plane at z = 38.6 mm and the results as shown in figure

3.5. The results indicate that the beam divergence of the fiber is 20% smaller at the
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corner than at the centroid, which must be taken into consideration in the FPAT

system design.
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Figure 3.5: The variation of the horizontal and vertical beam divergences from a

planar motion at z = 38.6 mm

3.2.1.2 Steering Angle

According to the paraxial approximation in section 2.1.1 and the reciprocal of

the optical rays, the relation between the location of the fiber (xf , yf ) on the focal

plane and the steering angle (α, β) in azimuthal and elevation can be described by
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a scaling matrix M as 


α

β


 = M




xf

yf


 (3.2)

This simulation investigated the validity of this relation when the fiber motion

is not on the focal plane. The experimental setup was identical to the previous

simulation and the fiber was placed at z = 38.6 mm and moved on a ±1 mm

span. Real ray tracing techniques were applied and the angles of the chief ray at

different fiber locations were recorded and further compared with the computed

angles according to equation 3.2.

The residual angular errors, defined as the difference between the simulated

and computed beam divergence using equation 3.2, are shown in figure 3.6. The

maximum residual error is (0.575, 0.575) µrads and the average residual error is

(0.144, 0.144) µrads in both azimuthal and elevation directions. The results imply

that the steering angle is linearly associated with the position of the fiber, even

though it was not on the focal plane.

3.2.2 Actuators

Two different actuators, a piezo bender (PI-PL140) and a voice coil actuator

(H2W-NCM02), were selected for building the two-axis moving platform because of

the unbalanced load from each axis (one actuator carries only a fiber and the other

actuator carries the load of the fiber and the first actuator) and their displacement

ranges are ±1mm and ±1.9 mm, respectively.
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Figure 3.6: Residual angular errors by using the paraxial approximation model at

different fiber positions. The length of the arrow represents the magnitude of the

angular error.
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3.2.2.1 Piezo Actuators

The piezoelectric effect was first observed by Jacques and Pierre Curie in

1880 [29]. They discovered that pressure applied to a quartz crystal can create an

electrical charge in the crystal. In addition, they also verified that an electrical

field applied to the crystal would lead to a strain of the material, defined as the

geometrical expression of deformation caused by the action of stress on a physical

body. It was also known as converse piezoelectricity. In general, the deformation

relation can be characterized as [61]

Di = diJTJ + εT
ijEj (3.3)

SI = sE
IJTJ + djIEj (3.4)

where D represents the electric displacement, T represents the stress, S represents

the strain, sE represents the elastic compliance when subjected to a constant electric

field, d represents the strain coefficient (m/V), εT represents permittivity measured

at a constant stress, and E represents electric field. I, J : 1 to 6 and i, j : 1 to 3. The

number 1 → 6 represent six axes. 1 → 3 are X,Y, Z axes and 4 → 6 are rotation

axes with respect to X, Y, Z.

A piezo-bender, also known as a piezo-bimorph, consists of two attached beams

of piezo material in d31 mode. The d31 mode piezo-material contracts or expands

in the X-axis when the electric field is applied in the polarization axis Z if its

polarization direction is in the Z axis. Combining two d31 piezo beams in the

opposite or same polarization directions results in two types of piezo-benders, serial

or parallel and both types have similar dynamic models.
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Let us assume a serial piezo bender consisting of two symmetric d31 beams

with opposite polarization directions and each beam has a thickness h, as shown in

figure 3.7. The resulting strain and electric displacement can be modelled as

DU
3 = −d31T

U
1 − εT

33E3

SU
1 = sE

11T
U
1 − d31E3

DL
3 = d31T

L
1 + εT

33E3

SL
1 = sE

11T
L
1 + d31E3

(3.5)

where (DU , DL) are the displacements, (TU , TL) are the stresses, (SU , SL) are the

strains, and (−E3, E3) are the applied electrical fields in the upper and lower beams.R FUFU FdFdMU MUMdMd Polarizationh L
Figure 3.7: A serial piezo bender structure

The stress can be expressed as the combination of the force and bending mo-

ment as

T =
F

wh
+

hM

2I

where (w, h) is the width and thickness of a beam, (F,M) is the force and bending

moment, and I = wh3

12
is the moment of inertia of the rectangular cross-section.
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Since the two layers are identical and attached adhesively, four equilibria can

be retrieved as

F UsE
11

wh
+

hMUsE
11

2I
− d31E3 =

F LsE
11

wh
− hMLsE

11

2I
+ d31E3 ; strain equilibrium

MU + ML = h
2
(FU − FL) ; moment equilibrium

FU = −FL ; force equilibrium

MU = ML ; bending curvature equilibrium

(3.6)

And the force and bending moment can be solved as:

FU = −FL = d31E3wh
4sE

11

MU = ML = d31E3wh2

8sE
11

The strains in the upper and lower beams result from force, bending moment,

and the E-field, equal to

SU =
d31E3

4
− 3d31E3

2h
(z − h

2
)− d31E3

SL = −d31E3

4
− 3d31E3

2h
(z − h

2
) + d31E3

Plugging the last two equations back to equation 3.5, the stress T is

TU = (
d31E3

4
− 3d31E3

2h
(z − h

2
))/sE

11 (3.7)

TL = (−d31E3

4
− 3d31E3

2h
(z − h

2
))/sE

11 (3.8)

Since the energy density of an infinitesimally small element is u = 1
2
(ST +DE),

plugging the stress and strain into this equation and integrating over the three axes,

the total energy of the two layer bender with no external force is expressed as

U = LwhE2
3(ε

T
33 −

d2
31

4sE
11

) (3.9)
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If an additional force F1 is applied to the bender at distance x away from the

free end, an additional moment is created, which results in an additional stress of

T1 =
3F1(L− x)z

2wh3

Taking the additional stress to compute the energy density and integrating

over three axes, the total energy is equal to

U =
sE
11F

2
1 L3

4wh3
+

3F1E3d31L
2

4h
+ LwhE2

3(ε
T
33 −

d2
31

4sE
11

) (3.10)

Since E3 = −V
2h

, according to the Castigliano’s second theorem [28], the dis-

placement (δ) is obtained by taking derivatives of the total energy with respect to

the related parameters as

δ =
sE
11L

3

2wh3
F1 − 3d31L

2

8h2
V

If the additional force working toward the piezo-bender is applied by an ex-

ternal force (Fext), the dynamics of the piezo-bender can be expressed by Newton’s

law as

Fext = F1 + mδ̈ + bδ̇

Thus, the bender model can be formulated as a second-order system

mδ̈ + bδ̇ +
2wh3

3sE
11L

3
δ = Fext − d31wh

2sE
11L

V (3.11)

The previous equation does not take hysteresis into consideration. Several

methods are proposed to model this nonlinear behavior, which are:

1. Boun-Wen hysteresis model [76]: This model describes the hysteresis as a

differential equation, where

ż = αẋ− β|ẋ|z|z|n−1 − γẋ|z|n
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where z represents the state variable, x represents the excitation, α controls

the input force amplitude, β, γ control the shape of the hysteresis loop, and n

represents the smoothness of the transition from the elastic to plastic response.

The advantage of the Boun-Wen model is that the state variable z can be

regarded as an additional strain and incorporated into equation 3.11 [42].

2. Preisach model [46]: The Preisach model is based on two important observa-

tions of the hysteretic actuator.

(a) The wipe-out property describes that the output from a hysteretic actua-

tor is determined not only by the current input but also by the alternating

series of dominant input extrema.

(b) The congruency property suggests that all minor hysteresis loops cor-

responding to back-and-forth variation of inputs between the same two

consecutive extremum values are congruent.

The Preisach model contains a set of known Preisach operators and an un-

known Preisach function. The model is

f(t) =

∫ ∫

α>β

µ(α, β) ˆγαβdαdβ (3.12)

where ˆγαβ, known as the hysteresis operators, can be interpreted as a two-

position unit relay operator with an on switch at α and an off switch at β

and µ(α, β), known as the Preisach function, includes the parameters of the

Preisach model.
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3. Prandtl-Ishlinskii (PI) Model [40]: The PI model behaves similarly to the

Preisach model. Instead of using Preisach operators, a set of PI operators,

similar to regular backlash operators, are applied to describe the hysteresis

loop. The PI model has an analytical solution for the hysteresis compensator

compared to the numerical solution in the Preisach model.

Incorporating hysteresis into the bender’s model promises a more stable control

loop but increases the implementation cost as well as the complexity. Normally, the

hysteresis affects about 7 ∼ 15% of the motion range, which can simply be treated

as actuator noise in feedback control.

3.2.2.2 Piezo-Bender Model Identification

The identification of the current piezo-bender (PI-PL140) utilizes a pseudo

random binary sequence (PRBS) to probe its open-loop response. The PRBS is a

set of binary sequences, whose spectrum is close to white within a pre-determined

bandwidth. Since the current piezo-bender has a natural frequency at 160 Hz (un-

load), the bandwidth of the PRBS is set to 200 Hz.

As shown in the previous section, a two-layer piezo-bender can be described

by a linear model, known as the ARX model, which can be written as

A(z)y(n) = B(z)u(n− nk) + e(n)

where y(n) is the output at time n, u(n) is the input at time n, e(n) is the es-

timation error at time n, nk is the delay between input and output, and A(z) =

1 +
∑na

k=1 akz
−k, B(z) =

∑nb
k=1 bkz

−k are two linear discrete filters whose order are
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na and nb, respectively.

Our goal was to estimate all the coefficients from a1 to ana, b1 to bnb, and nk to

characterize the piezo-bender. Considering the estimation results and the physical

model of the piezo-bender derived above, an ARX(3,1,1) model was selected and

expressed below

MPB =
0.2365z−1

1− 1.929z−1 + 1.604z−2 − 0.4161z−3
(3.13)

After identification, a synthesized output was generated by the model coeffi-

cients and the input samples and the residue between the real and synthesized output

was computed. The residue mainly resulted from imperfect modelling caused by the

hysteresis. The standard deviation of the residual signal for the piezo-bender was

0.34 V for a ±3 V output, about 11% of the entire range.

3.2.2.3 Voice Coil Actuators

The voice coil actuator is driven by the Lorentz force resulting from the field

current and magnetic field.

The input voltage equals the sum of potential on the resistance, inverse po-

tential coupled from the moving speed, and the potential stored in the inductance,

Vin = IfR + Kc
mẋL + Lİf (3.14)

where If represents the current in the VCA, L represents the equivalent inductance,

and Kc
m represents the coupling coefficient.

The acceleration results from the magnetic force produced by the field current,
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which equals

F = L×BIf = KmIf = mLẍL + αẋL + (k1 + k2)xL (3.15)

where B : magnetic field, L : the vector of the current path, α : friction coefficient,

k1, k2 : the spring coefficients, and Km represents the gain between the current and

the induced torque.

xn+1 = Axn + Bun (3.16)

Combining the two equations, the frequency response between Vin and xL can

be written as

xL

Vin

=
Km

s3LmL + s2(αL + RmL) + s(KmKc
m + Rα + L(k1 + k2)) + R(k1 + k2)

Also, its state-space model can be written as

ẋ =




0 1 0

0 0 1

−R(k1+k2)
LmL

−KmKc
m+Rα+L(k1+k2)

LmL
−RmL+Lα

LmL




x +




0

0

Km

LmL




Vin(3.17)

Y =

(
M 0 0

)
x (3.18)

where x =

(
x ẋ ẍ

)T

, M : magnification of the lens set.

If L is relatively small compared to other coefficients, the resulting state-space

can be simplified to a second-order model as

ẋ =




0 1

−k1+k2

mL
−Rα+KmKc

m

RmL


x +




0

Km

RmL


 Vin (3.19)

where x =

(
x ẋ

)T
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3.2.2.4 VCA Model Identification

The H2W-NCM02 VCA has a maximum stroke length of 3.8 mm, a maximum

force of 6.6 N, and a continuous force of 2.2 N. The load on the VCA is around 32

grams, including a piezo-bender, a ball bearing stage, and the VCA moving weight.

Two identical springs, each with a spring constant of 7.8 lbs/in (1366 N/m), are

attached on each side of the shaft to conserve kinetic energy. The natural frequency

can be computed as

f =
1

2π

√
k1 + k2

mL

= 46.5

Considering the estimated results along with the physical model derived above,

an ARX (2,1,2) was selected and expressed as follows:

MV CA =
0.1066z−2

1− 1.826z−1 + 0.9043z−2
(3.20)

The identified model has a natural frequency of 45.9 Hz, close to the natural

frequency (46.5 Hz) computed from the specifications. The residual noise from

the difference between the synthesized signal and the measurement has a standard

deviation of 0.22 V for a ±5 V output, about 4% of the entire range, which results

from the static friction of the ball bearing.

3.3 Angular Resolver

The angular resolver (AR), consisting of an optical imaging system and a

position sensing diode (PSD), is mainly to resolve the incident angle of the beam

from the other FSO transceiver in order to optimize the received power. According
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to the derivation in section 2.2, the location of the beam transformed by a pre-

calibrated linear homography serves as the reference to move the beam steerer.

The objectives of the angular resolver are to: (1) project the incident angle

to the image position using the paraxial approximation, (2) digitize and report the

image position accurately, and (3) move the photodiode toward the pre-determined

position fast and accurately.

The current specification of the AR is the following: an angular resolution

of 1 mrad, a half field-of-view of 30 mrad (2◦), chosen to be slightly larger than

the steering range of the beam steerer, and a receiving aperture greater than the

lateral correlation length (∼
√

λL), mitigating jitter from turbulence, where λ is the

wavelength and L is the link length [80].

3.3.1 Optical Systems

To meet described specifications, an achromatic lens from Optosigma (26-1460)

is used, which has a 25 mm radius aperture, a focal length of 100 mm, and a 10

mm LEP. The resulting AR has a semi field-of-view of 2.85◦, an aperture of 25 mm

greater than the correlation length (17.8 mm) when applied to a 500 m link distance.

This section is dedicated to evaluating the validity of the paraxial approximation

on the current AR, equivalent to studying the aberration errors. As described in

section 2.1.2, two different errors are produced by the aberrations: the chief ray

displacement, resulting from the distortion, and the centroid shift, caused by other

aberrations.
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One may ask why we do not evaluate the Seidel aberrations directly. Our

explanation is that the magnitude of each of the Seidel aberrations only represents

their individual largest displacement from the paraxial position, which does not

provide the centroid information. For example, if an optical system suffers from

strong aberrations but the resulting spot diagram is close to symmetric, its perfor-

mance can be superior than another optical system with smaller but asymmetrical

aberrations.

In addition, a combined design including a photodiode and a compound par-

abolic concentrator, used to optimize the received power, is proposed and analyzed,

which compensates for a small position shift of the photodiode caused by aberra-

tions.

3.3.1.1 Chief Ray Displacement

This simulation evaluated the magnitude of the distortion from the residual

errors, defined as the displacement between the true positions of the chief ray and

the image positions computed from the paraxial model. The incident angles move

from 0◦ to 2.8◦ with a 0.4◦ spacing in both X and Y axes.

Besides, the additional errors resulting from the defocus of the image plane

were also evaluated by placing the image plane at 0, 1 and 5 mm away from the best

focus position to estimate the additional residual errors. The results are summarized

at Table 3.1.

The results indicate that the maximum residual error is only 0.8 µm on a 10
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Sensor Location

(mm)

Maximum residual error (um) Average residual error (um)

X Y X Y

0 0.8132 0.8132 0.1805 0.1805

1 0.8179 0.8180 0.1815 0.1815

5 0.8369 0.8371 0.1858 0.1858

Table 3.1: Residual errors for PSD at different distances away from the best focus

mm sensing area. Also, the additional error resulting from the defocus of the image

plane is around 0.01 µm and increases with the defocus length. The equivalent

angular error was around 8 µrads, which was negligible in this prototype.

3.3.1.2 Image Centroid Shift

In general, the sensor reports the centroid position of the beam instead of

the position of the chief ray. As described in section 2.1.2, the Seidel aberrations

produce irregular spot diagrams and further result in centroid shift. By tracing 316

rays in the current optical system, the centroid position can be estimated as well as

the difference between that and the position of the chief ray. Three angles, 0◦, 1.42◦,

and 2.85◦ were investigated as well as the additional errors introduced by defocus.

The upper part of figure 3.8 shows the displacement between the chief ray and the

estimated centroid and the bottom part shows the radius of the spot diagram.

These results indicate that the projection error of the current AR is mainly

from the centroid shift instead of the chief ray displacement. The magnitude of the

error is around 0.1 mm on the PSD, corresponding to 100 µrad for an incident angle
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Figure 3.8: The upper plot shows the displacement between the centroid of the

beam and the location of the chief ray, and the bottom plot shows the radius of the

spot diagram.
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of 2.85◦. Its magnitude decreases with smaller incident angles.

3.3.1.3 Compound Parabolic Concentrator

As described in the beginning of the chapter, a compound parabolic concen-

trator (CPC) can be incorporated into the photodiode to solve for the slight offset

from the power optimization operation because it expands the effective receiving

aperture of the photodiode. In addition, a larger effective receiving aperture can

mitigate the angular fluctuations induced by turbulence [66, 73].

A CPC consisting of two off-axis parabolic mirrors has a larger entrance pupil

and a smaller exit pupil. Once the incident ray enters the entrance pupil with an

angle smaller than the acceptance angle of the CPC, it reflects back to the exit

pupil. The detailed geometric description is given by Winston and Welford book

[75]. A CPC structure can be uniquely determined by its maximum acceptance

angle, inversely proportional to the f-number of the focusing lens, and the receiving

aperture, equivalent to the radius of the photodiode in the design.

sin θma = r
R

L = (R + r) cot θma

(3.21)

where θms represents the maximum acceptance angle, (R, r) represents the aperture

of the entrance and exit pupil of the CPC respectively, and L represents the total

length of the CPC.

The f-number of the current achromatic lens corresponds to a maximum inci-

dent angle of 14◦. The exit aperture was set to be 100 µm, equivalent to the radius

of the photodiode. The entrance aperture of the CPC was therefore 387 µm, which

75



is much larger than the shift resulting from the aberrations (around 18 to 70 µm).

Since the effective aperture was increased by 4 times, the current AR can receive

the entire power from misaligned rays up to ±3.9 mrad. The design is shown in

figure 3.9.

Figure 3.9: Compound parabolic concentrator integrated design: (Top:) A combi-

nation of an imaging system and a compound parabolic concentrator (Bottom:) A

zoomed in view of the compound parabolic concentrator and the acceptance angles
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3.3.2 Sensors

The incident rays from the remote transceiver produce a spot on the focal

plane and the position is digitized by a position sensing diode. Three different

position sensing diodes, (1) quadrant detectors (QD), (2) lateral effect photodiodes

(LEP), and (3) charge coupled detectors (CCD), are available off-the-shelf. The

first two diodes give an output which corresponds to the centroid of the total light

quantity distribution on the active area, while the CCD samples the light quantity

distribution at each pixel and outputs them sequentially. The QD and LEP are

preferred in the FPAT system for their fast output data rate, whereas the CCD is

often applied in the CPAT system for its multi-target acquisition capability.

3.3.2.1 Operating Principle

The QD utilizes four photodiodes positioned symmetrically around the center

of the detector and separated by a narrow gap. If the focused beam is circularly

symmetric, position information can be estimated by normalizing the intensity dif-

ference among the four photodiodes with the sum of the photodiodes.

In order to determine the displacement of the beam, all four photodiodes have

to be illuminated by the focused beam. In other words, the size of the beam decides

the measurable range (figure 3.10 (a)) and the beam must be expanded on purpose

through defocusing to measure a larger displacement.

The displacement of the beam centroid on the QD in X and Y axes can be
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formulated by

σx
QD

d
= kQD

((Pa+Pb)−(Pc+Pd))
Pa+Pb+Pc+Pd

σy
QD

d
= kQD

(Pa+Pd)−(Pb+Pc)
Pa+Pb+Pc+Pd

(3.22)

where d represents the lateral span of the beam at the QD and kqd represents the

scaling factor converting the normalized voltage to the normalized distance.

The LEP consists of a single large-area photodiode with a uniform resistive

sheet on both its cathode and anode. Two ohmic contacts are positioned at the

opposite edges of each sheet, and the contact pairs are oriented perpendicularly

to each other [78]. The photocurrent divided between the contacts is inversely

proportional to the distance from the beam to each contact, which determines the

position of the beam.

The centroid is estimated by normalizing the difference of the photocurrents,

collected from the two contacts at each sheet, to their sum.

σx
LEP

d
= kLEP (Pa−Pc)

Pa+Pc

σy
LEP

d
= kLEP (Pd−Pb)

Pd+Pb

(3.23)

where d represents the lateral span of the LEP, and kLEP represents the scaling

factor converting the normalized voltage to the normalized distance.

3.3.2.2 Signal-To-Noise Ratio

It is well known that in order to achieve a bit-error-rate of 10−9 in a communi-

cation system, the SNR ratio of the photodiode must be at least 21.5 db [13]. How

about the signal-to-noise ratio of the PSD?

If the output of each photocurrent is a Gaussian variable whose variance results
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Figure 3.10: (a) Quadrant detectors (b) Lateral effect photodiodes

from additive noise, a correct output can be estimated by taking the average of

multiple outputs because the distribution provides an unbiased estimator. However,

the output of the PSD is the quotient between the difference of the photocurrents

and the sum of the photocurrents. The average is a biased estimator to this quotient

in a low signal-to-noise ratio scenario, which is shown below.

Let the output of each photocurrent be a Gaussian variable and the difference

and sum of the photocurrents be X and Y , which are joint Gaussian.

Theorem 3.3.1. Given two jointly Gaussian variables, X and Y, their joint distri-

bution can be expressed as

f(X,Y ) = N(




mx

my


 ,




n2
x rnxny

rnxny n2
y


)

where r represents the cross correlation coefficients between X and Y .

For the quotient, Z = X/Y , its distribution can be derived as

f(Z = z) =
nxny

√
1− r2/π

n2
y(z − rnx/ny)2 + n2

x(1− r2)
exp

−C

2(1− r2)
(3.24)

+
B/A√

2πAnxny

erf(
B√

2(1− r2)A
) exp

−m2
y(z − mx

my
)2

2(n2
x − 2zrnxny + n2

yz
2)
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where

A =
n2

y(z − nx

ny
r)2 + n2

x(1− r2)

n2
xn

2
y

,

B =
(mxn

2
y − nxnymyr)(z − nx

ny
r) + n2

xmy(1− r2)

n2
xn

2
y

,

C =
(nymx − nxmyr)

2 + n2
xm

2
y(1− r2)

n2
xn

2
y

erf(x) =
2√
π

∫ x

0

exp−t2dt

The previous equation is a sum of two terms and the first term is negligible in

normal operation. The second term provides a maximum likelihood position equal

to mx

my
at two operating scenarios: (1) the displacement is close to the centroid and

(2) a sufficient high SNR ratio, which can be derived from the probability function

given in equation 3.24.

This probability density function of X
Y

was verified by a Monte-Carlo simula-

tion and also compared to the Gaussian N(mx

my
, n2

x

m2
y
) distribution, one usually used

to model the PSD output. The results are shown in figure 3.11, where the SNR of

the upper and lower plots are 141 and 10 dB.

The weighting function in the picture refers to the B/A√
2πAnxny

in the second

term of equation 3.24, which causes the mean shift in a low SNR ratio. The results

from the Monte-Carlo simulation show that the proposed probability distribution is

closer to reality and it converges to the commonly used Gaussian with an increment

of the SNR.

The bias of the average estimator is further investigated by using Monte-

Carlo methods with 20, 000 samples to reduce the variance. Figure 3.12 shows the

difference between the mean position and the position of mx

my
at different SNRs. The
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results indicate that in order to have an unbiased estimation < 0.5% over the whole

region, the minimum SNR must be above 24 dB.
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Figure 3.12: Mean shift from the normalization process for different SNRs

3.3.2.3 Comparison between QD and LEP

The comparisons are mainly in three aspects:

• Resolution: Assuming the SNR is sufficient for both QD and LEP, the stan-

dard deviation of the output is inversely proportional to the SNR of each

photocurrent.

In general, the noise sources of the photocurrent are from the preamplifier

noise, such as shot noise and thermal (Johnson) noise [13] and the amplifier

noise. In general, Johnson noise is regarded as the baseline noise, which bounds

the resolution of the PSD, and can be represented as

VN =

√
4kT4f

R
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where R represents the equivalent resistance of the sensor and k represents

Boltzmann’s constant.

The effective resistances of the LEP and QD are determined by the inter-

electrode resistance of 10KΩ and the feedback resistance of 10MΩ, respec-

tively. Since the baseline noise is inversely proportional to the maximum

resolution, it implies that QD has about 40 times better resolution than the

LEP.

• Response Time: The response time of the PSD is determined by (1) the tran-

sit time of the photocarriers in the depletion region, (2) the diffusion time

of the photocarriers generated outside the depletion region, and (3) the RC

time constant used to guide the photocurrent to the associated circuit [36].

Generally, the RC time constant is dominant for both QD and LEP.

The RC time constant of the pre-amplification circuitry is determined by the

poles and zeros of the feedback loop used to stabilize the operation. This

constant is inversely proportional to the operating bandwidth, formulated as

f = 1
2πRC

, where R, C are the dominant resistance and capacitance of the

diode. Normally, a stray capacitance across the feedback resistance is applied

to compensate for the phase lag created by the internal capacitance.

In a QD, since the small stray capacitance (1 ∼ 2 pF) is sufficient to compen-

sate for the internal capacitance (< 20 pF/quadrant), a feedback resistance

of 10MΩ can provide an operating bandwidth of 10 KHz. In a LEP, since

the inter-electrode resistance (10KΩ) and internal capacitance (100 pF) are
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dominant, the operating bandwidth can be designed to be above 150 KHz.

• Linearity: The linearity of the QD is simulated by moving a uniformly illu-

minated circle toward the edge of the QD. The estimated displacement from

the QD is computed from equation 3.22 and compared with the real beam

displacement. The results are plotted in figure 3.13.

It can be seen that the linearity of the QD between the estimated displacement

and real displacement only exist within 20% of the beam radius. In other

words, if the displacement of the beam is larger than that, the output of the

QD does not correctly represent the image position.

As for the LEP, the linearity of the whole sensor region is determined by the

inter-resistance between the image spot on two electrodes. The linearity error

is about 0.3% according to the specifications.

In conclusion, the QD is superior to the LEP in the resolution but worse

in response time and linearity. In the FPM-based FPAT system, correct angular

information on the AR is important since it determines the pointing angle of the

beam steerer. Therefore, the FPM-based system must choose the LEP over the QD

despite its larger noise, whereas the FSM-based system can select QD over LEP

since the angular information is provided by the mirror sensors instead of the PSD.

3.3.2.4 Sensor Noise Measurement

This experiment characterized the sensor noise in an indoor environment. A

pigtailed He-Ne laser was placed in front of a collimator and the parallel beam was
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Figure 3.13: (a) The beam displacement with respect to the normalized output

voltage (b) The error between the normalized output and its linear approximation
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focused onto the PSD through a doublet. An attenuator and an interference filter

were placed in front of the PSD to prevent saturation and background noise. The

received laser power was 43.37 µW, which produced a photocurrent of 17.35 µA.

According to the specifications, the preamplifier noise is 1.3 pA√
Hz

and the

response time is 5.66 µs, equivalent to 177 KHz, which results in the total noise

of 0.54 nA and a sensitivity of −58.7 dbm for a responsivity at 0.4. The current

amplifier has a current/voltage ratio of 64000, which amplifies the preamplifier noise

to 34.6 µV for a unity noise figure.

Compared to the current measurement, the standard deviation of the signal

fluctuation is 2.4 mV, which may result from (1) preamplifier noise, (2) amplification

noise, and (3) background noise. Since the background noise is negligible because

of the interference filter, it implies that the amplification noise has a noise figure

around 18.42 db and the resulting sensitivity is −40.28 dbm. These fluctuations in

the measurements contribute 12 µrad of angular uncertainty.

3.3.3 Calibration

As shown in section 2.2, the spot location of the AR and the transmitted ray

vector is related by a linear homography. The calibration of the homography is the

crucial step in the FPAT system since the beam steering process is an open-loop,

which only relies on the spot position and the pre-calibrated homography without

any feedback control. If the homography is erroneous, the beam steerer may never

point to the target.
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The goal of the calibration is to find the homography between the beam steerer

and AR equivalent to MLARM−1
PSD in equation 2.9, where (MLA,MPSD) are affine

transformation matrices with a form of




a b c

0 d e

0 0 1




and R is the rotation matrix

between the beam steerer and AR.

The homography calibration algorithm is listed in algorithm 5.1, which requires

at least four corresponding vector pairs, from the fiber position as well as the focused

image position. The main challenge is that the four transmitted rays from the fiber

and the incident rays to the AR must be parallel. Figure 3.14 shows one alignment

scheme which applies a corner cube reflector (CCR) to ensure parallellism between

the transmitted and reflected ray. By moving the fiber to several locations, the

corresponding AR outputs can be measured and the homography can be further

estimated.

Figure 3.14: Simulation setup for the homography calibration
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This scheme was implemented in CodeV, where the distance from the corner

cube reflector to the beam splitter was 10cm and the fiber was moved in a 1 × 1

mm2 area, at z = 38.6 mm. The optical systems of the collimator and AR are

Optosigma 026-0190 and 026-1460, identical to the previous selections. Figure 3.15

shows the angular residual errors by dividing the difference between the estimated

beam steerer angles and the real beam steerer angles by the focal length of the

collimator. The maximum and average residual angular results are presented in

table 3.2.
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Figure 3.15: Residual errors obtained from the PAT optical system

A lab experiment was also conducted to verify the calibration accuracy and

the setup was shown in figure 3.17. The PSD was selected to be the LEP from

Ontrak. The distance from the beam splitter to the PSD was 10 cm and the fiber
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moved in a 1× 1 mm2 area close to the focal plane. The output from the PSD was

measured by taking an average over 1500 samples to reduce the uncertainty. The

residual errors are plotted in figure 3.16 and the maximum and average errors are

listed in table 3.2.
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Figure 3.16: Residual errors from the homography experiment

The results show that the current homography is capable of providing an

accuracy of 600 µrad to the beam steerer, which is within the range of the beam

divergence (2 mrad). Compared to the simulation, the additional residual errors are

about 3 times larger, which may result from the ambient light noise coupled from

the transmitter since the combination of beam steerer and AR is mono-static.
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Figure 3.17: Experimental setup for the homography calibration

Maximum Residual

Angular Error(µrad)

Average Residual Angular

Error(µrad)

X Y X Y

Experiment 428.5 613.8 147.4 159.6

Simulation 183.5 183.5 44.47 44.47

Table 3.2: Experimental homography mapping errors
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3.4 Control Systems

The PSD is responsible for providing reference positions to the moving stages

in the beam steerer and AR to complete and optimize the FSO link. Given a

reference position, the two-axis moving stage must settle fast enough before the

image drifts off from the tolerance region, as described in section 2.3.2, which relies

on a control system.

3.4.1 Axial Decouple

Should the two actuators be designed as either two separate SISO systems or

one MIMO system? This question is entirely determined by the motion coupling be-

tween the two axes of the moving stage, which is verified by using the measurements

obtained from the actuator model identification.

When the VCA in the X-axis was driven by a ±1 V PRBS sequence, a span

of ±5 V in the X axis and a coupled signal in the Y-axis with a magnitude 0.25 V

were produced. When the piezo-bender in Y-axis was driven by the same signal,

it produced a span ±3.4 V in the Y axis and the coupled signal in the X-axis of

0.2 volts. Therefore, the motion coupling between two axes are 2% and 3.68%,

respectively, which is even smaller than the modelling error. Thus, we can conclude

that the two axial motions are uncoupled.
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3.4.2 Step Reference Follower

A step reference follower must be designed to move the fiber to a reference

position computed from the AR. According to sections 2.4 and 2.5, a step reference

follower can adapt either the disturbance rejecter or the reference follower structure

[20]. An evaluation is provided in this section using the two identified models of the

actuators.

3.4.2.1 Optimal Control

The controller gain can be determined from the optimal control theory in

section 2.4.1 and the locus of the gain is identical to both the disturbance rejecter

and reference follower since the augmented states do not alter the control input. The

only question is to select a meaningful Q1 and Q2 for the cost function. Assuming

the system model is

x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k)

After Q1 is selected to be CT C, this minimizes the difference between the

output signal to the reference signal and the optimal locus of poles can be computed

by varying Q2. We also assume that the settling time of the system must be less

than 15 ms, which implies that all the desired poles in the unit circle must be within

Z < 0.7356 if the controller is operated at 1 kHz. Thus, Q2 of the VCA and piezo-

bender are selected to be 0.2042 and 0.4677, respectively. The locus of the poles

and the settling time criterion are both plotted in figure 3.18.
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3.4.2.2 Kalman Estimator

Incorporating a constant reference signal into the disturbance rejecter and

reference follower structures are quite different. In the former, a steady-state gain

(N̄) for the reference signal must first be computed from equation 2.31 and then

a constant disturbance model is augmented into the system model to reject the

difference between the computed and the real steady-state gain resulting from an

imperfect model. In the latter, the constant reference model is directly augmented

into the system model as shown in equation 2.32.

The key to applying Kalman estimators is to select the following parameters:

the error covariance matrices of the two actuators and two-axis sensor and the

coupling constant of the actuator noise that determines the impact of the actuator

noise on the actuator states.

The error covariance matrices of the VCA and piezo-bender were estimated

from the residual errors in the identification experiments (sections 3.2.2.4 and 3.2.2.2)

since the main actuator noises were mainly from imperfect models. The two-axis

sensor error is dominanted by the coupled motion from other axis, around 0.2 V.

The coupling constant for both actuators was selected to be an identity matrix,

which implies that the noise affects both the original and augmented states.

3.4.2.3 Step Reference Follower Simulations

Two controllers, based on disturbance rejecter and reference follower struc-

tures, were implemented by combining their individual optimal controller and Kalman
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estimator. The frequency response of the actuator output with respect to the refer-

ence signal and the disturbance signals are plotted in figure 3.19.
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Figure 3.19: The simulated frequency response of the transfer function: (Left) be-

tween the reference signal and the resulting output and (Right) between the noise

signal and the resulting output.

The results indicate that both structures provide identical disturbance rejec-

tion capability but the disturbance rejecter structure has a much smoother response

for the constant reference signal. This advantage is from the complexity we paid
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to compute the steady-state reference gain, which greatly reduces the magnitude of

the constant disturbance because the close estimation of the actuator models leads

to that of the real steady-state reference gain.

Besides, the results also indicate the capability of the piezo-bender and VCA.

The VCA has a slower response compared to the piezo-bender because of a heavier

load, which results in a 10 Hz bandwidth deficiency. However, since the VCA

model is better estimated, a smaller Kalman gain is required to update the state

parameters, which yields 5 db gain over high-frequency disturbance noise.

3.4.2.4 Step Reference Follower Experiment

The previous results showed the superiority of the disturbance rejecter struc-

ture and therefore it was selected to be implemented in the real FPAT system. The

experimental setup is identical to the calibration experiment, shown in figure 3.17,

without the corner cube reflector. Figure 3.20 shows that the 5% settling time of

the VCA and piezo-bender are around 20 and 18 ms. It implies that the pointing

errors of the VCA and piezo-bender are both smaller than 50 µrad after the fiber

settles.

A white noise sequence, with 50 Hz 3-dB bandwidth, is applied to probe the

noise rejection capability of the controller. The spectrum of the residual noise,

defined as the difference between the output and reference signal, with/without

applying the step reference controller is shown in figure 3.21.

The results show that the 3 db noise rejection bandwidth of the VCA is greater
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than 50 Hz and that of the piezo-bender is around 50 Hz. Compared to the sim-

ulation, the piezo-bender performs much worse than expectations, which requires

further investigation.

3.4.3 Notch Controller

The previous design assumes a constant disturbance to model the difference

between the estimated and real steady state reference output and treats other dis-

turbances as white, which is not true in general. The residual error of the actuator

clearly indicates that the disturbance errors resulting from the imperfect model nor-

mally produce large magnitude errors near the actuator’s natural frequency, which

motives us to test a notch controller design.

The idea is to convert the desired notch filter into a state-space form and

augment it to the previous step reference follower model. The augmented model

creates additional zeros at the desired frequencies resulting in a deep rejection band.

3.4.3.1 Notch Controller Simulation

Figure 3.22 shows the frequency response of the actuator output with respect

to the reference and disturbance signals. The notch is assigned at the natural

frequencies of the VCA and piezo-bender, 45 Hz and 112.5 Hz, respectively.

Compared to the disturbance rejecter, the notch controller produces a deep

rejection band at the desired frequency with about 3 dB cost at the low frequencies

and also provides an identical output response with respect to the reference signal.
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Figure 3.22: Simulated frequency response of the actuator output with respect to

the reference and disturbance signals of a notch controller
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3.4.3.2 Notch Controller Experiment

The notch filter was also implemented on the current two-axis moving plat-

form. Except for the augmented states, all other coefficients are identical to the

step reference follower.

A pseudo random binary disturbance with an input voltage ±0.3 V was applied

to probe the noise rejection performance of the step reference follower and the notch

controller. Figure 3.23 shows the residual noise spectrums of different controllers.

The results show that the notch controller effectively mitigates the induced

peak disturbance at 45 Hz for the VCA and 120 Hz for the piezo-bender but imposes

a penalty at other frequencies. The average residual noise amplitude falls 61% in the

VCA and 11% in the piezo-bender. The inferior performance of the piezo-bender

may result from the small drift of the natural frequency, which makes the notch

unable to compensate for the largest noisy components. The frequency drift comes

from the nonlinearity of the hysteresis, which drives the natural frequency higher

when the input amplitude is smaller [33].

3.5 Link Budget Computation

The previous specifications of beam steerers and AR are combined to specify a

enhanced FSO transceiver, operating at 660 nm, with 100 Mb/s transmission speed,

and a link length around 500 m. An ideal photodiode (FDS10) from Thorlabs

operates at wavelength from 200 to 1100 nm and has a noise equivalent power

(NEP) of 5× 10−14 W/
√

Hz. The path loss of the link is computed in table 3.3.
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System Components Descriptions Power

Fiber loss 32% efficiency −4.9 dB

Collimator loss Due to a small aperture and

90 transmission

−1.32 dB

Double Pane Window 15% reflectivity −0.71 dB

Atmospheric Transmission Assuming 10 km visibility −1.7 dB

FSO loss 500 m, 2 mrad, and 50 mm

receiving diameter

−26.02 dB

Beam Splitter 50% transmission −3 dB

Receiving Lens 90% transmission −0.46 dB

Interference Filter 50% transmission −3 dB

Table 3.3: Link Path Loss Analysis

The total path loss from the remote transmitter to the local receiver is 41.11

dB. The communication photodiode, operating at 100 Mbps, has a maximum sensi-

tivity around−63.01 dBm, and the PSD, operating at 15 Kbps, provides a maximum

sensitivity around −58.7 dBm. Also, the communication system requires a 21.5 dB

gain to achieve the BER performance of 10−9 and the current LEP requires a 24

dB gain to achieve an estimation error < 0.5%. By providing a 10 dB link margin

to both the communication and acquisition links, the required laser powers for each

system are 9.12 mW and 43.75 mW.

3.6 Summary

This chapter introduced a novel FPAT prototype based on moving the fiber

near the focal plane, also known as the focal plane motion, which can be an economic
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solution to solve the coupled alignment problem between two FSO transceivers. This

prototype includes a beam steerer and an angular resolver to transmit and receive

optical signals. The main idea is to calibrate the mapping, shown to be a linear

homography, between the AR and the fiber position in the beam steerer. Then,

once an incident ray from the target is imaged on the local AR, the corresponding

fiber position is determined, which guarantees accurate pointing from the beam

steerer to the target.

The steering resolution, range, and beam divergence of the beam steerer are

designed to be 1 mrad, ±1.43◦ (50 mrad), and 2 mrad, respectively. The simulations

indicate that the specifications can all be met by the current selections, including

the achromatic lens (026-0190) from Optosigma and the optical fiber (SM-600) from

Thorlabs. More importantly, the simulation shows that the focal plane motion has

almost no effect on the steering angle and varies only by 20% of the beam divergence.

The angular resolver, consisting of an optical system and a PSD, determines

the pointing resolution of the system, since the AR contributes most of the errors

to the estimated homography: If the signal-to-noise ratio of the PSD is sufficient,

the aberrations of the optical system are the dominant errors; otherwise, the error

brought by a biased position estimation from the PSD is dominant. The homography

is crucial because it is like an open-loop operation, which cannot be corrected in the

operation of the FPAT system.

A calibration procedure to retrieve the homography was introduced and the

performance was evaluated by experiment. The results indicated that the average

and maximum pointing error by using the estimated homography as the mapping is
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about 217 µrad and and 730 µrad, respectively, which satisfies the accuracy specifi-

cation. Also, once the fiber position is computed, a closed-loop controller is capable

of settling the motion within 20 ms and maintaining the pointing error within 50

µrad, which were also confirmed by experiment.
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Chapter 4

Theoretical Studies in Coarse Angular Pointing, Acquisition, and

Tracking Systems

This section provides a theoretical background for a coarse angular PAT (CPAT)

system design based on a camera based methodology, also known as the spatial scan

method described by Rolland [71]. It covers five important topics including:

1. Chromatic Aberrations: To recognize the targets of interest (TOI), the CPAT

system must rely on some unique features of the targets and one of them is

color. Therefore, if the CPAT utilizes imaging systems to recognize the target,

the receiving optics do not only suffer from the monochromatic aberrations but

also from the chromatic aberrations.

2. Perspective Imaging Theorem and Homogeneous Coordinates: The perspec-

tive imaging model is identical to the paraxial imaging model, in which the

aberration is negligible. This model, also known as the pin-hole model in the

computer vision community [23, 68], has been widely applied to the camera

imaging system because the imaging lens is always designed to have minimum

aberrations.

A camera consists of an imaging lens and a position sensing diode, which uti-

lizes a coupled charge detector (CCD) instead of QD or LEP. Compared to

the AR of the FPAT system, the camera based system is capable of monitor-
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ing individual light spots imaged on each pixel, which provides considerable

freedom for selecting targets of interest (TOI). However, because of imperfect

manufacturing, the optical axis of the imaging lens and that of the CCD may

not be the same [77]. In addition, the pixel array on the CCD has a different

spacing in X and Y axes in order to create a better visualization for users.

The ratio between the spacing is called the aspect ratio, which requires it to

be calibrated to properly retrieve the embedded geometry.

3. Forward and Backward Error Propagation: In the CPAT system, all the para-

meters used for the pointing procedure must be retrieved in advance through

a calibration procedure. The measurement errors from the procedure are cou-

pled into the estimated parameters, which result in further alignment errors

in the pointing process. This section describes a methodology to compute the

estimation errors and the pointing errors from random measurement errors,

which can serve as an indicator to measure the robustness of the calibration

procedure.

4. Two-Axis Rotary Gimbal Model: A motorized platform is selected as the

actuator to carry the FSO transceiver because of its large pointing range and

fast acquisition speed. Since the link distance in most FSO applications is

long, a rotary-based motorized system is a better candidate compared to the

translation-based system. This section develops a geometric model to map the

transceiver ray vector to the azimuthal and elevation angles of the two-axis

rotary gimbal.
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5. Radial Trifocal Tensors: A trifocal tensor is capable of encoding the geometric

relation embedded among three different frames. Many researchers apply this

technique to reconstruct a 3D structure of the objects from three perspective

cameras [23]. We adapt this technique to design a three-dimensional CPAT

system and the details are revealed in section 5.2.

We also discover that the trifocal tensor is actually over-constrained for the

problem since it provides four dimensional geometric information (2 from each

perspective camera) to estimate a three-dimensional position. Since most of

the wide-angle cameras suffer from only distortion, which only appears in the

radial direction, 1 dimensional geometric information is still preserved. By

replacing one of the two perspective cameras with a wide-angle camera, the

resulting system is still sufficient to uniquely determine a 3D position but with

a much wider fov. Instead of the trifocal tensor, the geometric relationship

among the three components are encoded by a radial trifocal tensor (RTT).

This section is dedicated to introducing the geometric properties of the RTT

and the detailed CPAT design is revealed in section 5.4.

Throughout this chapter, tensor notation is applied and summarized below.

Image points and lines are represented by homogenous column and row 3-vectors,

respectively. For example, given a 3D point x = (x1, x2, x3)T and a line vector

l = (l1, l2, l3), their tensor notations are xi and li. The ij-th entry of a matrix

A is denoted by ai
j, index i being the contravariant (row) index and j being the

covariant (column) index. The equation x
′

= Ax is equivalent to x
′i =

∑
j ai

jx
j,

108



which is written as x
′i = ai

jx
j in repeated subscript tensor notation.

4.1 Chromatic Aberrations

In addition to achromatic aberrations, the camera suffers from chromatic aber-

ration, which results from the wavelength dispersion of lens material. The transverse

wavefront aberration can be analyzed by using two parallel rays. The wavefront

aberration with respect to the wavelength variation is the following

δλW =
∑a

k=1−ikhk(
δnk

nk
− δnk−1

nk−1
) (4.1)

where a represents the number of elements in the optical system, hk is the height of

the second ray at surface k, δnk represents the small refractive index change from

the wavelength variation, nk is the refractive index after refracting at surface k, and

ik is the incident angle at surface k.

The overall chromatic transversal shift is equal to

δλη =
−Ra

naha

a∑

k=1

ikhk(
δnk

nk

− δnk−1

nk−1

) (4.2)

where Ra represents the distance from the exit pupil to the image plane.

4.2 Perspective Imaging Theorem and Homogeneous Coordinates

A camera system consists of an imaging lens and a CCD array, which is similar

to the components of the angular resolver in the previous chapter. Compared to the

angular resolver, a camera has the capability to detect multiple targets simultane-

ously because each pixel in the CCD array operates independently.
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Since the camera is a pixel-based system, its resolution is limited by (1) the

aberrations of the lens and (2) the spacing of pixels of the CCD array. Typically,

the spacing of the pixel works as the upper bound of the resolution and the imaging

lens is designed to suppress the aberrations in order to approach that bound.

4.2.1 Homogeneous Coordinates

If the aberrations of the lens are negligible, the incident ray and focused po-

sition can be modelled by the perspective imaging model, in which both incident

angles (φ, θ) are assumed to be preserved. The details of this imaging model are

plotted in figure 4.1.

ФөөФxc yc zcxi (ox,oy)yi f(x1,x2) (X1,X2,X3)Imageframe Cameraframe xw ywzwWorldframe
өs

Figure 4.1: Perspective camera imaging model: the bold-dashed lines indicate that

any image point on the image plane actually represents a ray vector connecting from

the object to the center of the camera, which is identical to a human’s perspective.
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In the camera frame, the image can be formulated as

X1
c

X3
c

= f tan θ cos φ

X2
c

X3
c

= f tan θ sin φ

(4.3)

This image is further sampled by the CCD array for processing. The sampling

process includes (1) a non-uniform sampling in X and Y axes, (2) an axial skewness

(θs) between the two axes, and (3) an origin shift, shown as:



x1

x2


 =




1
dx

0

0 1
dy







sin θs cos θs

0 1







f 0

0 f







X1
c

X3
c

X2
c

X3
c


 +




ox

oy




=




f sin θs

dx

f cos θs

dx

0 f
dy







X1
c

X3
c

X2
c

X3
c


 +




ox

oy




where (x1, x2) represent the image position, (X1
c , X2

c , X3
c ) represent the 3D target

position on the camera frame, f represents the focal length of the optical system,

(dx, dy) represent the spacing of the CCD array of the X and Y axes respectively,

and (ox, oy) represent the origin shift, also known as the principal point.

By introducing the homogeneous coordinates, where a 1 is inserted into the im-

age frame, all these parameters can be incorporated as a linear mapping converting

the camera frame into the image frame as the following equation:



x1

x2

1




=




f
′

f
′
s ox

0 f
′
α oy

0 0 1







X1
c

X3
c

X2
c

X3
c

1




(4.4)

where α = dx

sin θsdy
is defined as the aspect ratio of the CCD, s = cot θs is defined

as the skewness between two axes, and f
′
= f sin θs

dx
is defined as the effective focal

length of the camera.
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This linear 3×3 matrix used to map the camera frame to the image frame is de-

fined as the intrinsic matrix, which contains 5 unknown coefficients[68], (f
′
, α, s, ox, oy).

Physically, the homogeneous expression implies that an image point in the

perspective camera is not merely a 2D planar point (x, y) but a line (x, y, 1)T which

connects the camera center and the 3D object. This point-of-view matches with the

perspective graphical painting concept as described by Wikipedia [30], which results

in the notation of ”perspective camera”. This line is composed of two vectors: a

line on the image plane and a line from the image plane to the camera origin, which

are shown in bold-dashed in figure 4.1.

4.2.2 World Coordinates Transformation

In order to generalize the previous imaging model, we introduce an arbitrary

frame system, defined as the world frame. Since the target and the camera are

rigid bodies, the transformation between the world and the camera frame can be

formulated by a rotation matrix and a translation vector, where :




x1

x2

1




=
1

λ
M

(
R T

)




X1
w

X2
w

X3
w

1




(4.5)

where λ = R3
jX

j
w + T 3 represents the depth, defined as the projected distance on

the optical axis from the target to the camera, M represents the intrinsic matrix,

and

(
R T

)
is denoted as extrinsic matrix (R represents a 3× 3 rotation matrix

and T represents the translation vector between the world and camera frame).
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For a single camera, λ is normally treated as an unknown scaling factor since

it cannot be calibrated from the image, known as the depth ambiguity. Therefore,

equation 4.5 implies that the two position vectors, (1) transforming from the world

frame to the image frame and (2) the measured image point, should be parallel.

This parallelism can be easily checked by taking the cross product as




x1

x2

1



×

M

(
R T

)




X1
w

X2
w

X3
w

1




=




0

0

0




(4.6)

where (a)× defines a skew-symmetric matrix as




0 −a3 a2

a3 0 −a1

−a2 a1 0




representing

the cross product operator of a : (a1, a2, a3)
T , which is related to the cross product

according to a× b = (a)×b

Given each position vector pair, this equation provides two independent con-

straints for solving the linear mapping. Since the rotation matrix and the trans-

lation vector contain 3 unknowns each, this linear mapping contains 11 unknown

parameters. Therefore, all the coefficients can be solved by 6 3D points and their

corresponding image points.
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4.3 Estimation Error Propagation

In both the CPAT and FPAT systems, a calibration procedure is required for

an open-loop mapping, which transforms the sensor frame to the actuator frame.

Most of the calibration procedures are developed based on the validity of the parax-

ial/perspective imaging model and the aberrations are treated as additive random

noise, except for distortion.

The randomness results from the uncontrollability of the achromatic aber-

rations since their magnitude depends on the incident position of the ray at the

entrance pupil and cannot be determined by observation [10]. If one takes the chro-

matic aberration in section 4.1 into consideration, the imaging position is further

randomized because it also depends on the incident position. Therefore, the calibra-

tion algorithm has to be robust with respect to the random errors and a theoretical

evaluation must be developed to evaluate the algorithm. The following sections are

dedicated to developing a methodology to (1) evaluate the robustness of the algo-

rithm under measurement noise, (2) model the impact of the measurement noises

on the estimated parameters and the further pointing error. The camera calibration

process in section 4.2 serves as an example to describe the methodology.

4.3.1 Error Functions

Error functions are important in the parametric estimation process because

they serve as an indicator to verify whether the optimum has been achieved and

also as a mean to update the optimum iteratively. As for the camera calibration
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process, the most intuitive error function should be the Euclidean distances, calcu-

lated between the measured image points x and the re-projected points M(R|T )Xw.

However, the Euclidean-based error function used in the camera calibration can be

highly nonlinear and its optimizer cannot be estimated directly. In general, the opti-

mization of the Euclidean distances must be estimated through iterative algorithms,

such as the Newton method or Levenberg-Marquardt algorithm . These algorithms

need to have a sufficiently good initial guess in order to converge to the correct

optimizer. Such guesses usually rely on other error functions whose minimizer has

a closed-form solution and provides a sub-optimal estimation. For example, the

parallelism between the measured points x and the computed points M(R|T )Xw is

selected in the camera calibration application.

4.3.1.1 Algebraic Distance

Equation 4.6 measures the parallelism between the measured and computed

points by taking the norm of the cross product between them. This function is known

as the algebraic distance and its minimizer provides a sub-optimal estimation of the

mapping parameters:

dalg(x,M(R|T )Xw) =

∥∥∥∥∥∥∥∥




0T −XT
w x2XT

w

XT
w 0 −x1XT

w


 h

∥∥∥∥∥∥∥∥

2

(4.7)

where h represents the vectorization of M(R|T ), a 12× 1 vector.

Let the right matrix be A. By stacking multiple position vector pairs (x,Xw),

the mapping parameters can be estimated in the total least squares sense (TLS)

as algorithm A.1. The position vectors must be normalized to 0 mean and an unit
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length in advance [22] to increase numerical stability.

4.3.1.2 Mahalanobis and Euclidean Distance

The minimizer of the algebraic distance implies that all the position vector

pairs are best parallelized without optimizing the re-projection error. If the covari-

ance matrix of the noise is known, the Mahalanobis distance is commonly selected to

evaluate the re-projection error and is listed below. If the additive noise is produced

by a stationary Gaussian process, the minimizer of the Mahalanobis distance is also

the maximum likelihood estimator.

dmah(x,M(R|T )Xw) =
∥∥(x−M(R|T )Xw)T Σ−1

x (x−M(R|T )Xw)
∥∥2

(4.8)

where Σx is the covariance matrix of x.

However, the covariance matrix is not easily estimated in reality. An inferior

selection is to evaluate the re-projection error in Euclidean distance. If the covari-

ance matrix of the noises is isotropic and independent, minimizing the re-projection

error in Mahalanobis distance is identical to minimizing it in Euclidean distance.

4.3.2 Forward Error Propagation

If the estimated mapping parameter P , equal to M(R|T ) in our case, is a

random vector with mean P̄ and variance ΣP , the image position f(P ) computed

from the parameter P is a random vector, where f is the function mapping P to X.

Theorem 4.3.1. [23] Let P be a random vector in RM with mean v̄ and covariance

matrix Σp and f : RM → RN is differentiable in a neighborhood of P̄ . Then, up to a
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first-order approximation, f(P ) is a random variable with mean f(P̄ ) and covariance

JΣP JT , where J is the Jacobian matrix of f , evaluated at P̄ .

Proof. Assuming X is the image of P , the first order approximation gives

X = f(P̄ ) + J(P − P̄ ) (4.9)

Therefore, X has a mean at f(P̄ ) and a variance equal to JΣP JT .

4.3.3 Backward Error Propagation

Theorem 4.3.2. [23] Let f : RM → RN be a differentiable mapping and let J be

its Jacobian matrix evaluated at a point P̄ . Suppose that J has rank M and such

that f is one-to-one in a neighborhood of P̄ . Let SM be the image of f in RN and

let a mapping η : RN → SM . Let f−1 ◦ η : RN → RM be the mapping that maps a

measurement X to the set of parameters corresponding to the ML estimate X̄. Let

X be a random variable in RN with mean X̄ = f(P̄ ) and covariance matrix Σx.

Then, P̂ = f−1 ◦ η(X) is a random variable with mean P̄ and covariance matrix

JT Σ−1
x J .

Proof. If the measured image points X is a Gaussian random vector with a mean

X̄ and a covariance matrix Σx, the minimizer X̂ = f(P̂ ) of the re-projection error

in Mahalanobis distance is also the one maximizing the likelihood function P (X|P̂ )

defined as

P (X = X|P̂ ) =
1

2πN/2det(Σx)
exp

1
2
(X−f(P̂ ))T Σ−1

x (X−f(P̂ ))

117



According to the first-order approximation where X̂ = f(P̂ ) = f(P̄ ) + J(P̂ − P̄ ),

the optimization problem can be formulated as

min
p̂

∥∥∥X − X̂
∥∥∥

Σx

= (X − X̄ − J(P̂ − P̄ ))T Σ−1
x (X − X̄ − J(P̂ − P̄ )) (4.10)

Taking the derivative of P̂ − P̄ leads to the maximum likelihood estimator as

P̂ − P̄ = (JT Σ−1
x J)−1JT Σ−1

x (X − X̄) (4.11)

Therefore, the estimator of the parameters P̂ is unbiased and its covariance

matrix is (JT Σ−1
x J)−1 if the measured image points have a covariance matrix Σx.

The previous theorem derives the optimizer of an unconstrained optimization

problem. Some parameter estimation problems may be constrained by additional

criterions. For example, although there are 12 parameters in the camera calibration

procedure, equation 4.5 can only estimate 11 parameters from the position vector

pairs because of the depth ambiguity. It leaves us room to impose additional con-

straints to solve the problem easier, such as the norm is 1 in the TLS solution. The

error performance of a constrained optimization problem is analyzed below.

Theorem 4.3.3. [23] Let f : RM → RN be a differentiable mapping taking a

parameter vector P̄ to a measurement vector X̄. Let Sp be a smooth manifold of

dimension d embedded in RM passing through point P̄ , and such that the map f

is one-to-one on the manifold Sp in a neighborhood of P̄ , mapping Sp locally to a

manifold f(Sp) ⊂ RN . The function f has a local inverse, denoted f−1, restricted

to the surface f(Sp) in a neighborhood of X̄ and let η : RN → f(Sp) be the mapping

that takes a point in RN to the closet point on f(Sp) with respect to the Mahalanobis
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norm. Via f−1 ◦ η, the probability distribution on RN with covariance matrix Σx

induces a probability distribution on RM with a covariance matrix of first-order equal

to

ΣP̂ = Z(ZT JT Σ−1
x JZ)−1ZT

where Z is a M ×d matrix whose column vectors span the tangent space to Sp at P̄ .

Proof. A constraint, such as C(P ) = N , bounds the minimizer to be on a sub-

manifold Sp ∈ Rd. A map g : Rd → Sp is defined to map an open neighborhood

U in Rd to an open set Sp which includes P̄ . Therefore, g ◦ f is one-to-one on the

neighborhood U . If the Jacobian of U is Z, the Jacobian of g ◦ f is equal to ZJ .

According to the previous theorem, the covariance matrix of a point in U is equal

to (ZT JT Σ−1
x JZ)−1. By forwarding the error using the first theorem, the resulting

covariance matrix of P̂ can be shown as

ΣP̂ = Z(ZT JT Σ−1
x JZ)−1ZT (4.12)

4.3.4 Camera Calibration Error Performance

The error performance of the camera parameter estimation due to the mea-

surement error can be characterized by theorem 4.3.3. If we apply the estimated

mapping to estimate another 3D point, the estimation error is defined by theorem

4.3.1. This section derives a theoretical error performance of the camera calibration

application.
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4.3.4.1 Calibration Error

Let us consider the most general case of the camera calibration, where the

position vectors in world and image frames are both perturbed by additive noise,

and simplify the notion of the linear mapping notion M(R|T ) as H. In this scenario,

the parametric space includes: a linear mapping (H) and a set of estimated 3D points

X̂w. The dimension of the parametric space is 3n + 12, where n is the number of

corresponding vector pairs. Also, because of the depth ambiguity, the scaling of

the estimated homography is unconstrained. Therefore, the number of the essential

parameters is actually 3n + 11.

The dimension of the measurement space is 5n including 2n measurements

from the camera points and 3n measurements from the 3D points, where n is the

number of corresponding vectors. We define the following notion:





X, Measured position vector pairs;

X̂, Estimated position vector pairs;

X̄, True position vector pairs;

∥∥∥X̂ − X̄
∥∥∥ , Estimation error;

∥∥∥X − X̂
∥∥∥ , Residual error.

The maximum likelihood minimum occurs on the tangent space of the function

f [49], whose dimension is equal to the number of essential parameters. A geometric

plot is shown in figure 4.2.

Combining equations 4.11 and 4.12, the MLE with imposed constraints can
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X
X̂

X Residual errorEstimation errorSp: sub-manifold of parametric space
Figure 4.2: Geometry of the errors in measurement space: X̂ is the estimated point

which has the minimum distance to the measured point X

be formulated as

P̂ = JZ(ZT JT Σ−1
x JZ)−1ZT JT (X − X̄) + P̄

where h represents the vectorized H, Σx represents the covariance matrix of the

measurements, J =




0 I

Jh JXw


, and (Jh, JXw) = (∂f

∂h
|h=h̄,Xw=X̄w

, ∂f
∂Xw

|h=h̄,Xw=X̄w
).

The estimated position vector pairs are derived by plugging the MLE back

into equation 4.9 as

X̂ = X̄ + JZ(ZT JT Σ−1
x JZ)−1ZT JT (X − X̄) (4.13)

Finally, the estimation error can be formulated as

∥∥∥X̂ − X̄
∥∥∥

2

= JZ(ZT JT Σ−1
x JZ)−1ZT JT (4.14)

Z represents a mapping from the parametric space to the essential parameters

subspace. Since J is rank-deficient, without loss of generality, Z can be chosen to
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be the singular subspace of J corresponding to its non-zero singular values, which

is equivalent to taking the pseudo-inverse as the following [49]:

∥∥∥X̂ − X̄
∥∥∥

2

= J(JT Σ−1
x J)†JT (4.15)

where (.)† is the pseudo-inverse operator.

This equation shows the covariance matrix of the estimated world and image

points. The mean of the trace of this matrix represents the root-mean-square (RMS)

estimation error. In reality, the measurement noise covariance matrix is better

modelled as Σx = diag(ΣXw , Σxc). The RMS estimation errors of the xc and Xw

can be derived from equation 4.15 as

‖x̂c − x̄c‖RMS =

trace

0BBBBB@
0@ Jh JXw

1A
0BBBBB@

Σĥ −ΣaWV −1

−V −T W T ΣT
a ΣX̂w

1CCCCCA
0BBBBB@

JT
h

JT
Xw

1CCCCCA
1CCCCCA

1/2

√
Nxc∥∥∥X̂w − X̄w

∥∥∥
RMS

=
trace(V −T W T ΣaWV −1+V −1)1/2

√
NXw

(4.16)

where (NXw , Nxc) are the number of measurements, Σa = (U − WV −1W T )−1,

Σĥ = U−1(I + WV −T W T ΣT
a ) represents the covariance matrix of estimated h,

U = JT
h Σ−1

xc
Jh, V = Σ−1

Xw
+ JT

Xw
Σ−1

xc
JXw , and W = JT

h Σ−1
xc

JXw

Consider a special case where the measurement noise of Xw and xc are inde-

pendently and identically distributed (i.i.d) with a variance σ2. If the SVD of J is

UJSJV T
J , the RMS estimation error is then equal to

∥∥∥X̂ − X̄
∥∥∥

RMS
= σ√

N
trace


UJ




Id×d 0

0 0


 UT

J




1/2

= σ
√

d
N

(4.17)
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where N is the number of measurements and d represents the number of essential

parameters (equal to 3n + 11 in the camera calibration).

Given such an i.i.d noise, it can also be shown that if the estimator from the

algorithm is optimal, the Pythagorean equality is reached among the estimation

error, the residual error, and the measurement error [23].

∥∥X − X̄
∥∥2

RMS
=

∥∥∥X − X̂
∥∥∥

2

RMS
+

∥∥∥X̂ − X̄
∥∥∥

2

RMS
(4.18)

4.3.4.2 Point Transfer Error

The point transfer error results in an uncertainty of the homography H whose

magnitude is equal to Σĥ in the previous equation.

If a set of new 3D points are measured and further transferred to estimate the

image points using the estimated H, the transfer error results from the estimation

error from the calibration and the measurement error of the new 3D points. Since

the new 3D points and the estimated H are uncorrelated, the uncertainty of the

transferred image points have a covariance matrix as

Σx′c
= Jh′ΣĥJ

T
h
′ + JX′

w
ΣX′

w
JT

X
′
w

(4.19)

where (Jh
′ , JX

′
w
) = (∂f

∂h
|h=h̄,Xw=X

′
w
, ∂f

∂Xw
|h=h̄,Xw=X

′
w
) and X

′
w represents the set of new

3D points.

4.4 Two-axis Gimbal Model

Gibson compared the mechanical gimbal with some non-mechanical techniques

in his surveys [21], where he pointed out the former has the advantage in its large
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steering range and the disadvantages in its physical size, weight and power consump-

tion. We prefer a two-axis rotary mechanical gimbal for three reasons: (1) no other

economic alternative is capable of providing a steering range up to 4π steradians, (2)

the recent progress in miniature motors, such as brushless pancake motors, greatly

reduced the weight and physical size, and (3) the transceiver’s ray vector and the

3D point illuminated by the ray in a rotary gimbal follow the perspective projection.

Let the optical axis of the FSO transmitter be the axis of propagation (AOP).

If it is designed to have a minimum displacement with respect to the pivoting point

of the gimbal, the AOP in the transceiver and gimbal frame can be simply related

by 


x
′1

x
′2

1




= λaRa




x1
g

x2
g

x3
g




where Ra represents the mapping from the gimbal frame to transceiver,

(
x1

g x2
g x3

g

)T

represents the AOP in the gimbal frame and λa is a scaling factor for normalization.

A 3D point aimed at by the transceiver is expressed in the gimbal frame as




x1
g

x2
g

x3
g




= λg(Rg|Tg)




X1

X2

X3

1




Combining the two equations above, the vector of the AOP and its target 3D
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point can be expressed as




x
′1

x
′2

1




= λ3(RaRg|RaTg)




X1

X2

X3

1




= λ3P
′




X1

X2

X3

1




(4.20)

If we select the gimbal frame as the one shown in figure 4.3, the rotation matrix

that maps from the gimbal to the transceiver frame can be modelled as:

Ra =




cos φ 0 − sin φ

0 1 0

sin φ 0 cos φ







1 0 0

0 cos θ − sin θ

0 sin θ cos θ




(4.21)

where φ : the azimuthal angle and θ : the elevation angle.

Figure 4.3: Two-axis rotary gimbal diagram
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4.5 Radial Trifocal Tensor

4.5.1 Geometry

The radial trifocal tensor (RTT) was first introduced by Thirthala et.al [63]

to calibrate wide-angle cameras. We proposed to apply that for expanding the field-

of-view of a 3D CPAT system [27]. Before introducing it, we must understand the

imaging model of a wide-angle camera. Compared to a perspective camera, since

the distortion lies symmetrically in the radial direction from the centroid of the

image plane, a wide-angle camera only preserves φ but not θ. Figure 4.4 shows the

concept, and the imaging model can be formulated as




x1
w − ox

x2
w − oy


 =




x
′1

x
′2


 = λ




1 s

0 α







R1 T 1

R2 T 2


 Xw (4.22)

where (x1
w, x2

w) represents the pixel coordinates on the image plane.

Physically, an image point in the wide-angle camera only represents a line

perpendicular to the optical axis, which contains only half of the information com-

pared to the perspective camera and such a comparison can be made by observing

figures 4.1 and 4.4. Combining equations 4.4, 4.20, and 4.22, the geometry among

the cameras and the transceiver can be formulated as




P3×4 x 0 0

P
′
3×4 0 x

′
0

P ”
2×4 0 0 x”







Xw

−λ1

−λ2

−λ3




= 08×1 (4.23)
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Фөө'Фxc yc zcxi (ox,oy)yi fPerspective image point(x1,x2) (X1,X2,X3)
Imageframe Cameraframe xw ywzwWorldframe

өs (x’1,x’2)Distorted image point
Figure 4.4: Wide-angle camera imaging model: (x1, x2) represents the perspective

imaging point and (x
′1, x

′2) represents the distorted image point. The bold-dashed

line shows the geometric information revealed by an image point.

where x” is the image position in the wide-angle camera subtracting the principal

point.

Because of the non-zero null vector, the minor matrix can be further expanded

as

−1

2
xix

′jx”kεjquεilmηkr det




Pl

Pm

P
′
q

P ”
r




= 0u (4.24)

where εabc =





0, a,b, and c are not distinct;

1, if abc is an even permutation of 123;

−1, if abc is an odd permutation of 123.

,
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ηab =





0, a and b are identical;

1, if ab is 12;

−1, if ab is 21.

.

The radial trifocal tensor (T q
ik) is further defined as

T q
ik = −1

2
εilmηkr det




Pl

Pm

P
′
q

P ”
r




(4.25)

The RTT defined in equation 4.25 is a 3×3×2 matrix consisting of 18 elements

but only 17 degrees of freedom because of an unknown scaling factor. Although

there are three linear constraints provided by each triplet of the correspondences for

solving the radial trifocal tensor, only two of them are independent. Therefore, 9

triplets are needed to determine an RTT from the previous equation.

4.5.2 Internal Constraints

According to equation 4.25, a RTT depends on the projective matrices (P, P
′
, P ”)

of each device. Since P and P
′
each have 11 degrees of freedom (dof) and P ” has

7 dof, the number of overall dof is 29. We have the freedom to select an arbitrary

world frame, which eliminates 15 dof and leaves only 14 dof. A RTT is represented

by 17 parameters, which is over-parameterized. Therefore, 3 embedded constraints,

known as the internal constraints, should be imposed on the RTT estimation.

Without loss of generality, we first select the world frame to be identical to the

frame of the perspective camera (P = (I3×3|03×1)) to eliminate 11 dof. Under such
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a selection, the origin of the perspective camera can be represented by the fourth

column of the two respective projective matrices (P
′
4, P

”
4 ) in the transceiver frame

and the wide-angle camera frame, also known as the epipole and distorted-epipole

(e
′
, e”). Equation 4.25 can be expanded as:

T q
ik = P

′q
i P ”∼k

4 − P
′q
4 P ”∼k

i

= P
′q
i L”

k − e
′qP ”∼k

i

(4.26)

where P ”∼k
i denotes omission of the kth element of P ”

i and L” is the line vector

passing through the distorted-epipole e”.

Definition 4.5.1. If a 3D object is within the field-of-view of the perspective cam-

era, (1) its scattered light ray projected to the perspective image frame (x), (2) the

transceiver’s laser ray pointing at it (x
′
), and (3) the epipole (e

′
), form a plane,

known as the epipolar plane. This coplanar property is denoted as the epipolar

constraint.

Definition 4.5.2. The plane consisting of the optical axis of the wide-angle camera

and the origin of the perspective camera is denoted as the axial plane, whose plane

equation depends on the setup of the two cameras.

Theorem 4.5.1. If a 3D object is neither on the axial plane nor on the line con-

necting the gimbal’s pivoting point and the perspective camera’s origin, the matrix

T q
ikx

i is rank-2 and its left null vector is the normal vector of the epipolar plane be-

tween the perspective camera and the transceiver. Figure 4.5 (a) demonstrates this

concept.
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Proof. According to equation 4.26,

T q
ikx

i = xiP
′q
i L” − e

′
P ”∼k

i xi

= x
′qL”

k − e
′ql”k

where l” is a line vector in 1D passing through the distorted image point (x”).

Since T q
ikx

i is a 3× 2 matrix, its maximum rank is 2. Also, because the object

is neither on the axial plane nor on the translation line between the gimbal and the

perspective camera, the resulting image points x
′
and l” are not parallel to e

′
and

L”, respectively. Let the singular vectors of x′qL”
k be a1 and b1 and the values are σ1.

Without loss of generality, we can expand e
′
and x” as α1a1 +β1a

⊥
1 and α2b1 +β2b

⊥
1 .

Equation 4.26 can be shown as a rank 2 matrix and can be expressed as

T q
ikx

i =

(
a1 a⊥1 0

)
diag(σ1 + α1α2, β1β2, 0)

(
b1 b⊥1 0

)T

Since its left null vector (u
′
) is a zero vector, according to equation 4.26, the

left null vector u
′
must be orthogonal to both e

′
and x

′
, which is a normal vector of

the epipolar plane.

Theorem 4.5.2. If a 3D object is located on either the axial plane or the line between

the gimbal and the perspective camera, T q
ikx

i is a rank-1 matrix and the two left null

vectors are orthogonal to the epipole and the right null vector is the distorted-epipole.

This concept is shown in figure 4.5.

Proof. Given the two conditions, equation 4.26 can be rewritten as

T q
ikx

i = (x
′q − e

′q)L”
k ; On the axial plane

= e
′q(L”

k − l”k) ; On the connected line
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Therefore, the left two null vectors are orthogonal to e
′
and the right null vector is

orthogonal to L”, which is the distorted-epipole.

Corollary 4.5.3. Given T q
ikx

i is a rank-1 matrix, any determinant of the 2 × 2

minor is 0. If the perspective camera and the transceiver have a depth difference,

the resulting locus of such x are three degenerate conics and the intersections are a

single point and a line, which are the epipole and the distorted-epipole expressed in

the frame of the perspective camera; otherwise, the intersections are two lines. This

provides the three internal constraints for the radial trifocal tensor.

4.5.3 Radial Trifocal Tensor and Projective Matrices

The previous section indicated that the world frame can be arbitrary selected,

which implies that the projective matrices estimation is not unique for a given RTT.

It can be proven by multiplying a 4× 4 matrix PM after (P, P
′
, P ”) and P−1

M before

Xw in equation 4.23.

We again first select the world frame to be the perspective image frame and

P =

(
diag(1, 1, 1) 03×1

)
. The only requirement to determine that the projective

matrix of the transceiver frame is the epipolar constraint in definition 4.5.1. If the

world frame is the same as the perspective image frame, this constraint can be

formulated as

x
′
(e
′
)×P

′
1∼3x = 0 (4.27)

where (e
′
)×P

′
1∼3 is denoted as the fundamental matrix.

This equation implies that if the first three columns of the projective matrix
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XOptical Axis of Omnidirectional Camera
Gimbal Pivoting point

Perspective Camera CenterX1 x1x”1 (a) x2Xx’1 x’2

(b) XOptical Axis of Omnidirectional Camera v
Gimbal Pivoting point

Perspective Camera CenterX xx” Axial planex’ epipoleDistorted-epipole

X2x”2 epipole

Figure 4.5: (a) The epipolar constraint between the actuator and the perspective

camera and (b) the axial planar constraint among the three components

132



have the following form, the epipolar constraint is satisfied:

P̂
′
1∼3 = P

′
1∼3 + evT

where v is any 3× 1 vector.

It was shown that e
′
and L” can be estimated directly from the RTT. After

normalizing them to a unit norm and multiplying by L” on both sides of equation

4.26, a qualified projective matrix to satisfy the epipolar constraint between the

perspective image and the transceiver frame is obtained as

(
T q

ikL
”k e

′
)

By replacing the selected P
′
back into equation 4.26, we can obtain the pro-

jective matrix of the wide-angle image frame as

P ” =

(
P ”

1 P ”
2 P ”

3 e”

)

where P ”
i =




0 −1

1 0


 (L”L”T − diag(1, 1))Tie

′

This section provided the necessary geometrical constraints for the RTT. In

most applications, the RTT must be estimated in advance through a calibration

process, such as combining equation 4.24 with least squares procedures. However,

because of the measurement noise and the lens aberrations, the estimation is usually

erroneous. A sophisticated estimation procedure which incorporates the internal

constraints can greatly improve the estimation accuracy. The details are further

revealed in section 5.4.
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Chapter 5

Design and Analysis of Coarse Angular Pointing, Acquisition, and

Tracking Systems

A coarse pointing acquisition and tracking system (CPAT) is a sub-module

used to narrow down the range of uncertainty for the further FPAT system. There-

fore, its pointing accuracy is determined by the FOV of the FPAT system. Gen-

erally, the CPAT system must have (1) a wide sensing FOV to acquire multiple

targets simultaneously, (2) a large steering range to move transceivers, and (3) an

autonomous methodology to acquire the target and steer the transceiver toward the

selected target.

The earliest FSO CPAT system can be dated back to the Gemini 7 space

mission in 1965 [52], where the CPAT system was operated by users with a sighting

telescope and mechanical steering stages. In 1992, NASA started a series of ground-

to-orbit FSO experiments such as the Galieo and GOLD programs [41, 31], whose

CPAT systems relied on the precise ephemeris and altitude of the satellite. For

most of the commercial ground-to-ground FSO systems such as Canobeam, MRV,

and Lightpointe, their CPAT systems are almost identical to the one used in Gemini

7. The slow progress of the CPAT part of the FSO systems lies in that traditional

FSO links are mostly static and therefore the alignment does not have to be updated

dynamically.

134



Breakthroughs in sensors and actuators led to several successful demonstra-

tions of mobile FSO applications, which further drove the demand of autonomous

CPAT systems. Saw et.al [57] and Epple et.al [16] proposed a GPS aided inertial

sensing system (GPS-ISS) hybrid CPAT system. The MUSIC and ESPRIT algo-

rithms introduced by Manolakis [44] have been widely applied to RF radar systems

for missile tracking, which is another alternative of the CPAT system. Gibson [21]

suggested a camera-based CPAT system with steering mirrors, a similar idea to the

FSM-based FPAT system. Most of the camera-based CPAT systems still follow the

telescope concept, described in section 1.2.3.1, where the alignment is completed if

the image of the target overlaps with a pre-calibrated pixel. However, this kind of

system does not only reduce the acquisition speed but also complicates the target

identification process since the entire image varies because of the camera or mirror

motion.

Besides aligning mobile targets, CPAT systems can also serve as catalyst to

upgrade the FSO communication systems from point-to-point links to a fully con-

nected network [62]. Compared to multiple PtoP links connecting randomly with

each other, a connected network often select the best links from all the possible

routes to optimize some designated cost functions, such as the packet delay time or

throughput rate. In a directional FSO network, the wide FOV of the CPAT system

is the only access to the information about possible routes.

Our work emphasizes camera-based CPAT systems consisting of single or mul-

tiple cameras for target identification and a two-axis rotary gimbal for target point-

ing. Compared to the traditional ones, the camera is static with a large field-of-view,
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close to 2π steradians. A static camera can easily detect mobile targets by subtract-

ing the static background, which is beneficial to mobile FSO systems. Also, since the

rotation angles for the gimbal are determined once the image is retrieved, it greatly

increases the acquisition speed. Figure 5.1 shows a camera-based CPAT system.

 

Perspective 
Camera 

Two-axis 
Gimbal 

He-Ne  
Laser 

Figure 5.1: A camera-based coarse PAT system

The design of camera-based CPAT systems can be divided into two parts:

• Target identification, where the features or patterns of the target must be dif-

ferentiated from a complicated background quickly and accurately. In FSO ap-

plications, target identification is relatively simple because (1) the background

is mostly clean and (2) users can add unique features to the transceivers before

the real deployment.

• Target pointing, where the pixel information acquired from the camera must

be converted to assist the transceiver equipped with an FPAT system to point
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to the target correctly. The challenge is to find the correct transformation

since the sensing cameras are mostly installed outside the transceiver, which

results in non-reciprocal receiving and transmitting rays between the remote

and the local transceiver. This chapter is dedicated to solving this problem.

We have discussed the camera imaging model in section 4.2 and revealed that

the camera preserves two dimensional spatial information (azimuthal and elevation

angles), of the targets but not their distance. The distance information plays an

important role in the CPAT system only if the following inequality is not satisfied:

‖L‖ >
‖T‖ sin (θFfov

+ θX2cam)

sin θFfov

(5.1)

where ‖L‖ represents the link length (equal to the depth of the target), ‖T‖ repre-

sents the translation distance between the camera and the transceiver, θFfov
repre-

sents the field-of-view of the FPAT systems and θX2cam = arccos XT
‖X‖‖T‖ is the angle

between the vector from the transceiver to the target (X) and the vector from the

transceiver to the camera.

This inequality is almost identical to the inequality 1.1. It implies that when

the link length is far enough, the alignment of the CPAT system is a coupled align-

ment problem and can be solved by one camera as the FPAT system; otherwise, it

is a singled alignment problem and therefore needs two cameras to determine the

depth.

For example, if the FPAT system has a field-of-view 2◦ and the translation

between the camera and the transceiver is 1 meter, only when the target has a non-

planar motion and the motion takes place within 28.7 meters from the host is the
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distance information of the target required.

This example shows that the distance information is not necessary in most of

the FSO applications since the link length L is normally greater than the requirement

or the motion of the target is on a plane. The CPAT system used in these two

scenarios is denoted as a planar coarse pointing system. The specialty of such a

system is that only one camera is required in the design. The details are discussed

in the following section.

5.1 Planar Coarse Pointing Systems

In many of the FSO applications, the target stays a long distance away from the

host or tends to move on a planar surface, where a single camera is sufficient to point

to the target correctly. Figure 5.2 shows some of these applications. Compared to

the general CPAT system, the mapping of the planar one is simpler and the mapping

parameters are fewer, which usually leads to a better mapping estimation.

5.1.1 Coarse Pointing Systems For Planar Motion

5.1.1.1 Geometry

Let the normal vector of the plane be N and the plane equation be NT X = d,

where d represents the distance from the point X to the origin of the world frame.

Without loss of generality, the world frame is selected to be the transceiver

frame, where (x
′

= X). Combining the gimbal model in equation 4.21 and the

perspective imaging model of the camera in equation 4.5, the geometry between the
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FSO Links FSO LinksFSO Links N
FSO Links

Figure 5.2: FSO applications for planar CPAT systems

vectors in the transceiver frame and the perspective image frame can therefore be

formulated as 


x1

x2

1




= λM(Rt2c +
1

d
Tt2cN

T )




x
′1

x
′2

1




(5.2)

where M represents the intrinsic matrix and (Rt2c|Tt2c) represents the transformation

from the transceiver to camera frame.

The previous equation shows that the ray vectors transmitting from the trans-

ceiver and received by the camera are related by a linear homography, which can be

calibrated in advance.
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5.1.1.2 Calibration/Pointing Algorithm

The calibration algorithm, depending on the cost function, is divided into two

steps (1) algebraic minimization (AMS), which optimizes the parallelism between

the position vectors and (2) geometric minimization (GMS), which optimizes the

Mahalanobis distances.

Algorithm 5.1 Homography Estimation Algorithm

Require: Rotate the two-axis gimbal with 4 sets of different angles and record
the laser ray vectors using equation 4.21 and corresponding image point in the
camera.

Ensure: The 3D points illuminated by the laser must be coplanar.
1: Normalize the vector sets from each frame to a mean position at the origin and

an average distance
√

2 with respect to the mean position.
2: Solve for the vectorized homography using the two vector sets according to

algorithm A.1

min
h

∥∥∥∥
(

0T −x
′

x2x
′

x
′

0T −x1x
′

)
h

∥∥∥∥ subject to ‖h‖ = 1

where h is the vectorized M(Rt2c + 1
d
Tt2cN

T ).
3: Apply the estimated homography to compute the corresponding normalized

camera vectors x̂ and minimize the Mahalanobis distances between x and x̂
with the Levenberg-Marquardt algorithm.

4: Denormalize the estimated homography to retrieve the optimal one.

Algorithm 5.2 Point Transfer Algorithm

1: Select the target image from the camera and use the coordinates to compute
the corresponding laser vector.

2: Apply equation 4.21 to retrieve the rotation angles from the computed laser
vector.

3: Update the homography according to the rotation angles after the pointing.

H i+1 = H i(Ri)T

where H i represents the homography before ith rotation and Ri is the rotation
matrix applied at the ith rotation.
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5.1.1.3 Performance Evaluation

Three simulations were conducted to test the proposed algorithm. The first

one is to show the estimation improvement from more corresponding vectors, the

second one is to verify the robustness of the algorithm subject to different amount

of measurement noise, and the last one demonstrates the expected pointing errors

by using the proposed algorithm. In the current CPAT system, the corresponding

vector pairs are provided by the two-axis gimbal and the camera. The resolution

of the gimbal, ±0.0036◦, is limited by the optical encoders of the motor, which

is negligible compared to the aberration error resulting from the lens. Therefore,

in the first two simulations, the vectors obtained from the gimbal are assumed

to have no additive random errors, where the number of the essential parameters

is 8 including only the homography. According to equations 4.17 and 4.18, the

theoretical estimation and residual RMS errors are
∥∥∥X̂ − X̄

∥∥∥
RMS

= σ
√

4
n

∥∥∥X − X̂
∥∥∥

RMS
= σ

√
N−4

n

where n is the number of corresponding vectors.

The geometric setup was identical in the three simulations as follows: the

camera and the gimbal were placed 1 m apart and the AOP of the transceiver and

the optical axis of the camera were made parallel. The plane was placed 10 m away

from the transceiver and perpendicular to the AOP. The camera was set to have a

semi-fov of 10◦ and a resolution of 640× 480 pixels.

Simulation 5.1: Error Reduction Simulation

The first task was to investigate the estimation performance when more correspond-
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ing pairs were used. In the simulation, the number of correspondences increased

from 4 to 29 with a spacing of 5. The image points were perturbed by an isotropic

Gaussian noise with mean 0 and variance 1. For each number of correspondences,

100 tests were executed and the RMS of estimation and residual errors were com-

puted. The results are shown in figure 5.3
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Figure 5.3: RMS Error performance with respect to different number of correspond-

ing vector pairs. The reported RMS error is an average from 100 different indepen-

dent trials.

The results show two important facts: (1) the estimation errors are reduced

linearly when more corresponding vector pairs are applied in the algorithm, which

implies the estimated homography is closer to the true homography. This improve-

ment results from the independent measurements reducing the estimation uncer-

tainty. (2) The estimation accuracy is almost identical between the AMS and com-

bined (AMS+GMS) algorithms, which indicates that the linear AMS algorithm is

sufficient to the current system. Implementing the AMS algorithm in a microproces-
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sor is much cheaper than the combined algorithm.

Simulation 5.2: Robustness Simulation

The next simulation was to investigate the estimation performance with increasing

noise. The number of corresponding vector pairs was limited to 14. The standard

deviation of Gaussian noises used in the camera varied from 1 to 5. For each noise

magnitude, 100 tests were applied to find the RMS of the estimation and residual

errors, which are plotted in figure 5.4.
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Figure 5.4: RMS Error performance with respect to different amounts of noise. The

reported RMS error is an average from 100 different independent trials.

The results show the RMS estimation and the residual error increase linearly

with the noise magnitude, which indicates the robustness of both algorithms with

respect to the noise. Also, even with an increase of the noise, the AMS and the

combined algorithms still perform almost identically.

Simulation 5.3: Pointing Error Simulation

As mentioned in section 4.3.4, the accuracy of the transferred points depends on
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Position Theoretical RMS Errors (mrad) Simulated RMS Errors (mrad)

X Y X Y

(640,1) 0.6023 0.7829 0.6326 0.8092

(1,1) 0.6618 0.8632 0.6646 0.8627

(640,480) 0.6562 0.8412 0.6854 0.8212

(1,480) 0.6317 0.8174 0.6228 0.8390

(320,240) 0.5285 0.6962 0.5341 0.7261

Table 5.1: Theoretical and Simulated Pointing RMS Errors. The reported pointing

error is an average from 100 different independent trials.

the position of the new selected points and the covariance matrices of the estimated

homography and the measurement noise formulated in equation 4.19. This accuracy

determines the pointing resolution of the planar CPAT system.

A Monte-Carlo simulation was conducted to investigate the theoretical model

of the pointing resolution. In this simulation, we assumed the measurements from

both the gimbal and the camera were perturbed by Gaussian noises: N(0, 1) to the

camera and N(0, 0.0036) to the gimbal.

We selected five points in the image frame including four corners and the

centroid to analyze their transferred accuracy. The selected points were perturbed

by 1 pixel as well. 100 trials were applied to find the RMS pointing errors. The

results are displayed in table 5.1.

The results between the Monte-Carlo simulation and the theoretical model are

closely matched, which is another indicator that the proposed algorithm produces

an optimal estimation. The average pointing errors are around 0.6 ∼ 0.8 mrad.

Notice that the measurement noise from the new selected image point is responsible
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for most of the pointing error compared to the noise introduced by the estimated

homography.

Experiment 5.1: Planar CPAT Systems

A CPAT experiment was conducted in the laboratory for verifying the pointing

performance. The planar CPAT system includes a two-axis stepping-motor gimbal

from Oriental-Motor Inc., a camera from Imperx (IPX-VGA210), and a CCTV lens

from Pentax. Both stepping motors, AS46AA-H50 and AS66AA-H50, are operated

in a closed-loop with the angular information fed from an optical encoder with a

resolution of 0.0072◦. The resulting camera has a horizontal FOV of 31.8◦, a CCD

resolution of 640× 480, and a frame rate of 210 fps.

The CPAT system setup is shown in figure 5.1. The separation between the

camera and the gimbal was 0.7 meter and the planar wall was 7 meters in front of

the camera. 15 corresponding vector pairs from the gimbal and the camera were

uniformly selected in the scene for homography estimation. Another 12 points were

further selected for pointing verification. The camera scene and the selected points

(with cross and start marks) are plotted in figure 5.5.

For the homography estimation experiment, the average residual errors be-

tween the estimated points and the measurements in X and Y axis of the gimbal

were around 0.4156 and 0.4311 mrad, respectively. This amount of resolution was

even sufficient for the FPAT system. As for the pointing experiment, the error

was observed by measuring the distance between the selected image point and the

laser spot in the camera. The average pointing errors were about 0.5824 and 0.5766

pixels, corresponding to 0.506 and 0.666 mrad.
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Figure 5.5: Experimental scene of homography estimation

5.1.2 Planar Coarse Pointing Systems For Long Link Distances

The previous results are applicable when the motion of the target is limited

on a plane. If the link length is long enough, since the translation between the

transceiver and the camera can be neglected, equation 5.2 can be cast as




x1

x2

1




= λMRt2c




x
′1

x
′2

1




(5.3)

The equation shows that the mapping between two frames for targets with

a long link distance is equal to the product of the intrinsic and rotation matrix

from the transceiver to the camera. If a plane with a large distance exists and the

scattering of the laser on that plane is still visible by the camera, algorithm 5.1
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is still applicable. If not, we introduce other algorithms to estimate the mapping

MRt2c.

5.1.2.1 Intrinsic Matrix Estimation

The intrinsic matrix must be known to transform the image frame to the

camera frame in order to estimate the rotation matrix. The concept of the intrinsic

matrix was discussed in section 4.2 and many algorithms have been proposed for

it. These algorithms are mainly divided into two categories: on-line and off-line.

On-line algorithms rely on multiple views and scene points to estimate the absolute

conic [23], which is invariant under projective transformations. The absolute conic

is equal to the (MMT )−1, where M is the intrinsic matrix. Triggs [65] proposed to

estimate the absolute dual quadric from different views and the image of the this

quadric is the absolute conic. The quadric is a surface in P3 defined by the equation

XT QX = 0, where Q is a symmetric 4 × 4 matrix. Note that each view contains

five quadratic equations to solve for the absolute quadric.

Compared to the on-line algorithm, off-line algorithms produce more accurate

and stable solutions since the applied constraints are linear. Off-line algorithms

utilize a calibration object in a pre-determined frame. Tsai [69] first introduced a

calibration algorithm where a cube with checkerboard pattern served as the cali-

bration object. Zhang [81] proposed an improved algorithm which only requires a

planar checkerboard pattern. It utilized the additional constraints imposed from

the planar view and three views were required to fully calibrate the intrinsic matrix.
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Because of its simplify and robustness, this algorithm has been widely accepted

and a camera calibration toolbox based on such algorithm can be downloaded from

Caltech’s vision laboratory [32].

5.1.2.2 Rotation Matrix Estimation from Homography

Let the intrinsic matrix be pre-calibrated and then the problem lies in retriev-

ing the rotation matrix. Ma et.al. [43] introduced a decomposition algorithm based

on the homography with the form as (H = λ(R + 1
d
TNT )). This algorithm derives

the eigenvectors of the rotation matrix by its length-preservation property. The

details of the algorithm were presented in algorithm 5.3 and the related proofs are

shown in [26].

5.1.2.3 Rotation Matrix Estimation Through Essential Matrix

The other algorithm to retrieve the rotation matrix is through the essential

matrix generated from the coplanar constraint discussed in section 4.5.3. Since

the intrinsic matrix is assumed to be known, the mapping from the camera frame

to the transceiver frame is then (Rc2t|Tc2t). Thus, the coplanar constraint can be

formulated as

x
′
(Tc2t)×Rc2txc = 0 (5.4)

where xc = M−1x represents the incident ray vector expressed in the camera frame.

The matrix (Tc2t)×Rc2t is known as the essential matrix, which is a 3 × 3

matrix. Since it consists of only a rotation matrix and a translation vector, the
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dof of the essential matrix are only 5. Therefore, 3 internal constraints have to be

imposed when estimating the essential matrix from equation 5.4. The three internal

constraints are: (1) the determinant is 0 and (2) two out of the three singular values

of the essential matrix are equivalent. Wang et.al [72] proposed an essential matrix

estimation algorithm by enforcing the equivalence of the two singular values in the

optimization process. The corresponding pairs used in this algorithm are the ray

vectors in the transceiver frame and the image positions in the camera frame, which

are computed by converting the the measured position in the image frame with the

intrinsic matrix.

We also experimented with the fundamental matrix estimation algorithm pro-

posed by Hartley [23]. The fundamental matrix is defined in equation 4.27. We first

estimated the fundamental matrix (F̂ ) by applying the image points and the trans-

ceiver vectors as the corresponding pairs. Then, the essential matrix was computed

as Ê = F̂M since the image positions in the camera and image frame are related by

an intrinsic matrix (M). Because of the measurement noise, the two singular values

of Ê may not be equivalent. The closest essential matrix (E) in the Frobenius norm

is

E = Udiag(
σ1 + σ2

2
,
σ1 + σ2

2
, 0)V T

where the SVD of Ê is Udiag(σ1, σ2, 0)V T .

Recall that E = (T )×R. Since (T )× is skew-symmetric, any skew-symmetric

matrix can be decomposed as U1diag(1,−1, 0)WUT
1 , where U1 is an unitary matrix.
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If the SVD of the essential matrix is USV T , the following equations can be derived:

E = Udiag(1,−1, 0)V T

(T )×R = U1diag(1,−1, 0)WUT
1 R

(5.5)

where W =




0 −1 0

1 0 0

0 0 1




is an unitary matrix and diag(1,−1, 0) =




1 0 0

0 1 0

0 0 0




.

Since the singular values are equivalent, we can conclude that U1 = U and

V = RT UW or −RT UW . Then, R and T can be best cast as:

R = UWV T or UW T V T

T = Udiag(1,−1, 0)WUT or Udiag(1,−1, 0)W T UT

(5.6)

Because of the repeated singular vectors, the estimated rotation matrix and

translation vector have two solutions each, resulting in four different sets of solutions.

Since the intersection of the two rays must lie in front of both the camera and the

transceiver, this positive depth constraint helps us to select the correct solution

among the four candidates. Equation 5.31 can be used to solve the intersection.

Simulation 5.4: Rotation Matrix Estimation Error

A Monte-Carlo simulation was conducted to verify the RMS estimation error of

the rotation matrix among three different algorithms, which included (1) Ma’s ho-

mography decomposition algorithm (denoted as H-based), (2) Hartley’s algorithm

(denoted as F-based) based on the fundamental matrix, and (3) Wang’s algorithm

based on the essential matrix (denoted as E-based).

In the simulation, the camera was set to have a translation (0, 1√
2
, 1√

2
) away

from the transceiver and there was no relative rotation between the transceiver and
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Algorithm 5.3 Algorithm to Estimate the Rotation Matrix from Homography

Require: An estimated homography Ĥ = λ(Rt2c + 1
d
Tt2cN

T ).

1: Decompose Ĥ using SVD and normalize Ĥ to have its second singular value 1.
Let the SVD of the normalized Ĥ be Udiag(σ1, 1, σ3)V

T , where σ1 > σ3

2: Compute the vector
l1 = α1V1 + α2V3

where Vi is the ith column of V and (α1, α3) = (±
√

1−σ2
3

σ2
1−σ2

3
,±

√
σ2
1−1

σ2
1−σ2

3
)

3: Let the cross product of V2 and l1 be l3 and that of the ĤV2 and Ĥl1 be L.The
estimated rotation matrix is

R̂t2c =
(

Ĥl1 ĤV2 L
) ∗ (

l1 V2 l3
)T

4: The N and 1
d
Tt2c are l3 and (Ĥ − R̂t2c)l3, respectively.

5: Estimate the intersection of the rays by solving equation 5.31. Among the four
pairs of R̂t2c and 1

d
Tt2c, the one providing the positive depth is the solution.

camera frames. The accuracy of the estimated rotation matrix was evaluated by the

yaw, pitch, and roll angles, corresponding to the three rotations with respect to the

X, Y and Z axes.

R =




cos θroll − sin θroll 0

sin θroll cos θroll 0

0 0 1







cos θpitch 0 − sin θpitch

0 1 0

sin θpitch 0 cos θpitch







1 0 0

0 cos θyaw − sin θyaw

0 sin θyaw cos θyaw




15 3D calibration points, used to estimate the fundamental and essential ma-

trices, were randomly selected within the field-of-view of the camera and their depths

were between 5 and 10 meters away from the camera. The same amount of calibra-

tion points were located on a plane with a normal vector (0, 1
2
, 1

2
)T and a distance 10

meters away from the camera. The intrinsic matrix was assumed to be known per-

fectly and the image points were transformed from the image frame to the camera

frame before the calibration. The image points in the camera were perturbed by a

Guassian noise with 0 mean and a standard deviation varying from 1 to 5 pixels and
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Algorithm 5.4 Algorithm to Estimate Rotation Matrix Through Essential Matrix

Require: Collect at least 8 corresponding vector pairs by rotating the gimbal.
Require: The measured image positions must be transformed to the camera frame

by multiplying the inverse of the intrinsic matrix.
Ensure: Notice that the 3D bright spots illuminated by the transceiver must not

be coplanar.
Essential Matrix Estimation

1: Estimate an initial essential matrix from equation 5.4:

min
e

∥∥∥f(x, x
′
)e

∥∥∥ subject to ‖e‖ = 1

where e is a vectorized essential matrix.
2: Impose the zero determinant constraint by finding α and β from e:

(
e1∼3 e4∼6

) (
α
β

)
= e7∼9

3: Minimize the algebraic norm again with an imposed constraint

min
e

∥∥∥f(x, x
′
)e

∥∥∥ subject to ‖e‖ = 1 and σ1 − σ2 = 0

where (σ1, σ2) represent the two singular values of the estimated essential matrix.
4: Minimize the Mahalanobis distance :

min
e1∼6,α,β

d(x̂
′
, x

′
)

Rotation Matrix Estimation
Require: An estimated essential matrix: Ê = λ(Tt2c)×Rt2c.
5: Solve for the Rt2c and Tt2c from equation 5.6.
6: Estimate the intersection of the rays by solving equation 5.31. Among the

four combinations of R̂t2c and Tt2c, the one providing the positive depth is the
solution.
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the ray vectors from the gimbal were perturbed by another Gaussian noise with 0

mean and a fixed standard deviation of 63 µrad. For each amount of the noise, 100

trials were executed and the RMS angular error of the estimated rotation matrices

are shown in figure 5.6
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Figure 5.6: RMS angular error for the estimated rotation matrix

The results indicate that the angular errors could increase from 5 to 50 mrad

with respect to the magnitude of the noise for all three algorithms. The inferior

performance of estimating the rotation matrix arises from the fact that the linear

homography, M(Rt2c + 1
d
Tt2cN

T ), embedded in the current configuration, is not the

desired invariance, (MRt2c). The numerical procedure therefore cannot provide a

meaningful cost function for optimization, which leads to a suboptimal estimation.

In the next section, we propose to apply additional optical systems to assist the

calibration. The invariance in the resulting configuration is directly desired one,

(MRt2c).
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We are interested in a general calibration algorithm without using additional

optical systems. The current investigation focus on exploring the approximated

linear constraints for the essential matrix which is closely related to the rotation

matrix. In addition, a first-order theoretical analysis based on matrix perturbation

theorem is under investigation, which is expected to help us characterizing the per-

formance of the algorithms and understanding the error due to different geometrical

scenarios.

5.1.2.4 Optical System Assisted Calibration

If the displacement between the camera and the transceiver can be minimized

(‖Tt2c‖ → 0) or the distance of the calibration source can be extend to infinity

(d → ∞), the current homography can be converted into the desired homography.

This transformation can be assisted by additional optical systems.

The first candidate is a beamsplitter, which produces a pseudo camera over-

lapped with the transceiver, shown in figure 5.7 (a). Since this estimated homog-

raphy is the desired one, the accuracy can be expected to be better than 1 mrad.

However, the field-of-view and steering range of the resulting CPAT system, limited

by the size of the beam splitter, is often very small.

The other candidate is to create pseudo sources at infinity through the help of

an imaging system and align the camera with the sources. This idea was adapted

by the calibration process described in section 3.3.3, where the combination of a

collimator and a corner cube reflector (CCR) projected the laser diode of the trans-

154



mitter as the pseudo source to infinity and projected onto the local AR. However,

this process is not suitable for the camera/transceiver alignment because the CCD

array which is easily saturated by the laser intensity from the transmitter and the

coherency of the light may produce spurious images. Therefore, instead a CCR, a

combination between several fiber tips and an imaging system, shown in figure 5.7

(b), can also project the source to infinity. The detailed procedure is listed below.

Algorithm 5.5 Optical System Assisted Calibration

1: Estimate the intrinsic matrix of the camera using off-line algorithms, such as
the toolbox from Caltech [32].

2: Mark the principal point and the horizontal line passing through the principal
point in the image plane.

3: Place a fiber at the focal plane of the imaging system.
4: Rotate the gimbal until the fiber receives the maximum power.
5: Rotate the gimbal in azimuthal direction in a small angle (fewer than the field-

of-view of the imaging system).
6: Place another fiber next to the previous fiber which maximizes the received

power.
7: Calibrate the camera such that the principal point overlaps with the first fiber

and the horizontal line passes through the image of the two fiber tips.

This camera alignment process produces an uncertainty of around tens of µrad,

which can be formulated as

θcal ∼ rfib

f

where rfib is the fiber radius and f is the focal length of the imaging system used

in the calibration.

The remaining uncertainty is in the intrinsic matrix calibration process whose

accuracy is usually less than 1 mrad, depending on the quality of the camera lens.

Therefore, the resulting system has the potential to serve directly as an FPAT

system.
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TXRX Gimbal(a) Displacement Minimization Setup

(b) Infinity Target Setup
Figure 5.7: The configuration of the optical system assisted calibration
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5.2 General Coarse Pointing Systems

A planar CPAT system is sufficient for most FSO applications. However, for

the scenarios where the inequality of equation 5.1 fails, the target distance must be

taken into account to provide an accurate pointing performance. Since a human’s

stereo vision can perceive an object’s depth, the same concept can be implemented

with two cameras. Instead of a linear homography mapping between a single camera

and a transceiver, the transformation among the transceiver frame and the two

different camera frames is governed by the trifocal tensor (TT).

5.2.1 Geometry

Consider a CPAT system consisting of two perspective cameras and a two-axis

gimbal with a transceiver mounted on the pivoting point. The transformations from

the world frame to the perspective image frame and transceiver frame are modelled

by equations 4.5 and 4.20, respectively. By rewriting them in matrix form, the

geometrical constraint can be summarized as




P x 0 0

P
′

0 x
′

0

P ” 0 0 x”







Xw

−λ

−λ
′

−λ”




= 09×1 (5.7)

where P, P ” represent the perspective projection matrices of the two cameras, P
′

represents the transformation matrix of the two-axes gimbal, and Xw represents the

coordinates of the target in the world frame.
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The existence of the null vector shows that the maximum rank of the left

matrix is 6. Since the matrix is 9 × 7, it implies any 7 × 7 minor matrices have a

zero determinant. We choose a minor matrix as follows:

det




P x 0 0

P
′j 0 x

′j 0

P
′l 0 x

′l 0

P ”k 0 0 x”k

P ”m 0 0 x”m




= 0

By defining the trifocal tensor as:

T qr
i =

1

2
εilm det




P l

Pm

P
′q

P ”r




(5.8)

The geometric constraint can therefore be formulated by expanding the deter-

minant

xix
′jx”kεjquεkrvT

qr
i = 0uv (5.9)

where εabc =





0, a,b, and c are not distinct;

1, if abc is an even permutation of 123;

−1, if abc is an odd permutation of 123.

,

and εabcx
a is equivalent to the cross product operator (xa)× in equation 4.5.

158



5.2.2 Calibration Stage

Equation 5.8 shows that a trifocal tensor is a 3× 3× 3 matrix consisting of 27

elements but 26 degrees of freedom because of an unknown scaling factor. According

to the geometric constraint of 5.9, since εabcx
a is skew-symmetric and rank-deficient,

each corresponding triplet provides only four independent equations to solve for the

TT. Therefore, 7 triplets are required.

However, a qualified TT has only 18 dof, which can be computed as: The

mapping from the world frame to each component’s frame has 11 parameters which

result in total 33 unknowns for two cameras and a transceiver. However, the world

frame can be arbitrary selected, which reduces the unknowns by 15 and the number

of the essential parameters is therefore only 18. There are 8 internal constraints

which must be imposed to estimate the TT. These internal constraints can be ex-

plained by the degenerate conics concept in section 4.5.2. Note that by selecting the

first perspective image frame to be the world frame, the TT can be cast as

T qr
i = P

′q
i e”r − e

′qP ”r
i , i = (1, 2, 3) (5.10)

where Pi is the ith column of a projective matrix and (e
′
, e”) = (P

′
4, P

”
4 ) represents

the image of the first perspective camera’s origin expressed in the transceiver and

the second perspective image frame, also known as the epipoles.

The algorithm to estimate the trifocal tensor includes three steps summarized

briefly below. The details can be referred to in chapter 16 of Hartley’s book [23].

Simulation 5.5: Robustness Simulation

The robustness of the trifocal tensor estimation algorithm is investigated in this
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Algorithm 5.6 Trifocal Tensor Estimation Algorithm

Require: Rotate the two-axis gimbal to at least 7 positions and record the laser
vectors with equation 4.21 and the corresponding image coordinates in the two
perspective cameras. Notice that these points must not be coplanar.
AMS algorithm

1: Normalize the measured coordinates to a mean position at the origin and an
average distance

√
2 with respect to the mean position for each component.

2: Use the norm of equation 5.9 as the cost function and solve for its minimizer as
the initial TT.

3: Estimate a pair of (P
′
4, P

”
4 ) from the initial TT and solve for the previous mini-

mization problem again with the additional linear constraint described in equa-
tion 5.10. The new minimizer is a qualified TT, which satisfies the 8 internal
constraints.
GMS algorithm

4: Estimate the two projective matrices mapping the world frame to the the trans-
ceiver and the second perspective image frame from the qualified TT.

5: Triangulate three vectors to determine the coordinates of the points in 3D and
then re-project the 3D points back to each frame.

6: Find the minimizer of the Mahalanobis distance between the computed points
and the measured points with a numerical iterative method, such as Levenberg-
Marquardt algorithm .

7: De-normalize the minimizer to retrieve the best-estimate TT.

simulation. The simulation scenario consisted of two perspective cameras and a two-

axes gimbal. Both of the perspective cameras had a semi-FOV 15◦ and the setup is

plotted in figure 5.8. 24 3D points were uniformly selected within the inner spherical

region covered by the field-of-view of all three components. Additive Gaussian noise

with 0 mean and standard deviation from 0.5 to 3 pixels was added to the triplets.

For each different noise magnitude, 100 experiments were made and the average

residual and estimation errors after step 2 (after imposing internal constraints) and

3 (after the Levenberg-Marquardt optimization process) are presented in figure 5.9.

The results show that the residual and the estimation errors both increase lin-

early with the magnitude of the measurement error and can be predicted precisely by

the first-order error propagation in the current scenario. Using the AMS algorithm
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Figure 5.8: Robustness simulation setup: the radius of the outer sphere is 10
√

2 and

the radius of the inner sphere is 10
√

2 sin (semi-FOV)
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Figure 5.9: RMS error performance of the trifocal tensor estimation
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alone produces about 30% higher estimation errors and 40% higher residual errors

compared to the combined algorithm (AMS+GMS), which indicates the necessity

of the iterative algorithm in TT estimation.

By changing the positions of the two perspective cameras on the outer sphere,

we further investigated the effects for other geometric setups. The results indicated

that a better AMS estimation can be achieved by simultaneously increasing the

field-of-view of the camera and the sphere containing the 3D points.

5.2.3 Pointing Stage

After the trifocal tensor is retrieved, if the target appears in both of the per-

spective cameras, the corresponding rotation of the transceiver can be computed by

rearranging equation 5.9 as

xj′ = xiT jk
i l”k (5.11)

where x represents the image position at the first perspective camera, l” represents

a line passing through the corresponding image position at the second perspective

camera, and xj′ represents the corresponding transceiver ray vector.

This simple equation leads to a challenging question:

What is the best way to select the best l”?

Finding the line l” passing through the point x” is equivalent to looking for a

vector v satisfying v”T x” = 0. This is an under-constrained problem and has infinite

solutions. Among these solutions, the only line to avoid is the one intersected by

the epipolar plane produced by x, x”, and e” and the second camera’s image plane.
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This line results in the degeneracy of the equation 5.9: xiT jk
i l”k = 0j and can be

computed as:

εrske
”s(T T )kj

i e
′jxi

Thus, the best selection of l” is obviously the line perpendicular to it and also passing

through x”.

The image pair (x, x”) is selected by the user, which inevitably introduces

measurement errors. This error affects the estimation of the line l” and further

deteriorates the pointing accuracy. Hartley proposed a sophisticated algorithm to

refine the selection by using the epipolar constraint introduced by the selected image

pair (x, x”) and the epipole e”.

His idea was that if the selected image pair were the best, the line intersected

by the epipolar plane formed by the best image pair and the epipole should have a

minimum distance to the corresponding measured image point. By parameterizing

the best image point, he turned the distance minimization problem into a single-

variable and six-order polynomial function. The details are revealed in chapter 12

of his book [23].

Given the same setup as in simulation 5.5, the error improvement resulting

from the point refinement is shown in figure 5.10.

5.3 Wide Field-Of-View Coarse Pointing Systems

A laser pointing/acquisition system requires a sensor to provide angular in-

formation with a high degree of accuracy for its autonomous pointing capability. A
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Figure 5.10: Improvement of the pointing error from the point refinement algorithm

perspective camera is an ideal solution because the lens is optimized as a first-order

imaging device. Unfortunately, such a system suffers from a small FOV (15◦− 40◦).

To increase the viewing angle for the imaging system will inevitably bring in higher

order aberrations, especially barrel distortions[10]. Since the distortion lies sym-

metrically in the radial direction from the centroid of the image plane, it can be

pre-calibrated and corrected [24].

Wide field-of-view cameras are generally categorized into two types:

1. Catadioptric camera: The term ”catadioptric” refers to an imaging system in-

volving both lenses and mirrors in the design. A catadioptric camera typically

includes a convex mirror, which reflects the rays from a wide field-of-view into

a perspective imaging system. Because of the simple structure of the mirror,

the imaging model can be perfectly analyzed. Baker et.al. [7] presented a

fixed viewpoint constraint, where all the light rays must pass through a single

3D point before imaging on the CCD array. Only the distortions produced by
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the surfaces satisfying such a constraint can be geometrically corrected by the

perspective image. The qualified surfaces include planar, elliptical, parabolic,

and hyperbolic shapes, but only the last two are practical in producing a wider

field-of-view. Geyer et.al. [18] proposed the catadioptric geometry, where they

showed the catadioptric projection model was equivalent to a spherical pro-

jection, which was controlled by two cata-projection parameters: the distance

from the sphere center to the equivalent viewpoint and to the image plane,

respectively. Most importantly, they discovered that the image of a 3D line is

a conic section in the catadioptric image and proposed to utilize these conic

sections to estimate the intrinsic matrix and the two cata-projection para-

meters simultaneously. However, because of the limited fov and length of the

line, the resulting conic sections only partially appear in the image, which may

lead to an unstable estimation. Ying et.al. [79] showed that the catadioptric

image of a 3D sphere also resulted in a conic section. They further proposed a

calibration algorithm based on 3D spherical objects instead of straight lines.

The image produced by spherical objects contains a full conic section, which

greatly improves the estimation stability. The imaging model of the catadiop-

tric camera is plotted in figure 5.11.

2. Dioptric camera: The distortion of the catadioptric camera can be fully mod-

elled because the reflecting surface used to capture the light rays from a wide

field-of-view is simple. As for the dioptric cameras, the light rays are cap-

tured by multiple refractive lenses instead of a simple reflecting surface, which
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XwlMImage Plane
Equivalent viewpoint

Figure 5.11: Catadioptric imaging model: This figure shows the catadioptric image

of a 3D point, line, and a sphere. The point Xw is first projected as a point on a

unit sphere through the sphere center and this point is further imaged through an

equivalent viewpoint onto the image plane. l and M represent the distance from the

unit sphere centroid to the equivalent viewpoint and to the image plane, respectively.

eliminates the good optical properties, such as the spherical projection, in cen-

tral catadioptric cameras. We therefore consider a general distortion model

by assuming the distortion lies symmetrically in the radial direction from the

centroid of the image plane and the details are plotted in figure 4.4.

The wavefront aberration theorem[10] suggested that the distortion is only

affected by the odd polynomials of the paraxial image radius r. This model is

denoted as the radius-radius model and can be cast as

r
′
= r +

n∑

k=1

akr
2k+1 (5.12)

where r and r
′
are the paraxial and dioptric image radii, respectively.

Since the paraxial image position is in general unknown, applying the pre-
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vious equation to estimate the distortion usually leads to solving high-order

equations, which is impractical. Several researchers proposed alternative dis-

tortion models which depend on the current image position instead of the

paraxial image position. These models can be categorized into two types:

• Division model: Fitzgibbon[17] introduced a model to describe the rela-

tion between the dioptric image radius (r
′
) and its paraxial radius (r),

where

r =
r
′

1 + p1r
′2

Micusik et.al [48] and Thirthala et.al [63] further generated this model as

r =
r
′

1 +
∑n

k=1 pkr
′2k

(5.13)

• Theta-radius model: Incident angle (θ) v.s. Image radius (r
′
): Margaret

[45] suggested to adapt the Cartography projections to wide-angle lenses,

where the distortion relationship is described by the incident angle (θ)

and the dioptric radius (r
′
) including:





r
′
= 2f tan θ

2
, stereo-graphic;

r
′
= fθ, equidistance;

r
′
= f sin θ, sine law;

r
′
= 2f sin θ

2
, equi-solid angle.

Among the models above, she further suggested the stereo-graphic projec-

tion because of its area preservation property. Geyer [18] further showed

that a catadioptric camera which uses a parabolic mirror as a reflector
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follows this projection model. In addition, Ying [79] also showed that

this model is identical to Fitzgibbon’s division model [17]. Bakstein et.al

[8] suggested to use a hybrid model given as

r
′
= p1 sin p2θ + p3 tan p4θ

Finally, Kannala et.al [35] proposed to use a general model

r
′
=

n∑

k=0

pkθ
2k+1 (5.14)

In order to make a comparison, 17 different wide-angle lens models in CodeV

with a semi field-of-view larger than 80 degrees were selected to verify the

correctness of the distortion model. Three models including the (1) Radius-

Radius model, as described in equation 5.12, (2) Division Model, as described

in equation 5.13, and (3) Theta-Radius model, as described in equation 5.14

were tested and the number of the parameters for each model was 3. 350

random rays with incident angles distributed within 0 to 70 degrees were

applied and their corresponding image positions were recorded. The model

parameters were first estimated and the incident angles were further computed

from the estimated parameters and the image points. The results are shown

in figure 5.12.

From the results, the theta-radius model outperforms the other two models and

the estimation error is on the scale of milli-degrees for all 17 different wide-

angle lenses. The division and the radius-radius models contribute similar

amounts of error on the scale of 0.1 degrees for all the lenses. Although
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the theta-radius model produces the best estimation results, incorporating

it into the algorithm usually leads to solving a highly nonlinear equation.

Among the three models, since the division model can be easily incorporated

into the algorithm by using the denominator as the third component of the

homogeneous coordinates and its error performance is acceptable for the CPAT

system, it is selected as the model in the following algorithm.
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Figure 5.12: Estimated angular errors of 17 different wide angle lenses using different

dioptric distortion models. The number of distortion parameters is 3 for each model.

Compared to the catadioptric camera, the dioptric camera has several advan-

tages: (1) no dead-spot in the middle of the image, (2) a more compact design,

and (3) a better aligned optical axis of the lens. Figure 5.13 shows a catadioptric

camera, a dioptric camera, and their wide-angle images.
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Figure 5.13: The top picture shows a catadioptric camera (left) and a dioptric

camera (right). The bottom left and right images are taken by the catadioptric and

dioptric camera, respectively, at the same location. The image indicates that the

selected catadioptric camera has a wider FOV than the selected dioptric camera.
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5.3.1 Distortion Correction Algorithm

In this section, an algorithm to estimate the intrinsic matrix and the distortion

parameters is presented for the dioptric camera. This algorithm is mainly divided

into two parts: (1) Intrinsic matrix estimation and (2) parametric distortion model

estimation. As shown in figure 4.4, the planar angle (θ) is preserved in both the

dioptric and catadioptric cameras. Because of the unknown distortion parameters,

the paraxial image point is located on the line between the dioptric image point and

the distortion center. The distortion center is assumed to be the principal point

since the optical axis of the wide-angle lens is straight.

Our idea is to utilize multiple dioptric image points since the intersection

of these 2D lines reveals the information of the principal point. After retrieving

the principal point, the skewness and the aspect ratio can further be estimated by

imposing the orthogonal constraint from the scene. Then, the distortion model can

be characterized from the coordinates of the selected scene point.

5.3.1.1 Intrinsic matrix estimation

The mapping from a 3D point to its corresponding dioptric image point, ac-

cording to equation 4.22 is




x1
w

x2
w


 = λ




1 s

0 α







P 1

P 2


 Xw +




ox

oy


 (5.15)

where P n represents the nth row of the transformation matrix (R|T ), (s, α) represent

the skewness and aspect ratio of the camera, Xw : (X1
w, X2

w, X3
w, 1)T , and (xo, yo)
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represent the principal point of the camera.

We further eliminate λ to obtain a linear equation

αP 2x1Xw + ((P 1 + sP 2)oy − αP 2ox)Xw − (P 1 + sP 2)x2Xw = 0 (5.16)

This equation is a quadratic equation with 10 unknown parameters (4 for

αP 2, 4 for P 1 + sP 2, and ox, oy). If we assume (P 1 + sP 2)oy − αP 2ox as 4 new

parameters, we can obtain a linear equation containing 12 parameters. Using 11

correspondences, the 12 parameters can be solved using algorithm A.1.

Let the 12 parameters be a1−12, where a1−4 represent αP 2, a5−8 represent

−(P 1 +sP 2), and a9−12 represent (P 1 +sP 2)oy−αP 2ox. The principal point (ox, oy)

can be estimated by solving




a1 a5

a2 a6

a3 a7

a4 a8






−ox

−oy


 =




a9

a10

a11

a12




(5.17)

After estimating the principal point, the skewness and the aspect ratio can

also be retrieved by using the orthogonality of the transformation matrix. Recall

that P 1, P 2 represent the first two rows of the transformation matrix. Therefore,

the first three elements of the vectors are orthogonal and their individual norm is

equivalent. The two constraints can be cast as

1+s2

α2 =
P7

i=5 a2
iP3

i=1 a2
i

s
α = a1a5+a2a6+a3a7P3

i=1 a2
i

(5.18)
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After recovering the intrinsic matrix, the extrinsic matrix can also be partially

estimated (except for T 3) by




R1 T 1

R2 T 2


 =




1 s

0 α




−1 

−a5−8

a1−4




R3 = (R1)×R2

(5.19)

where Ri represents the ith row of the rotation matrix, T i represents the ith element

of the translation vector, and (.)× represents the cross product operator.

5.3.1.2 Incorporating the Distortion Model

We selected our distortion model to be the division model with 3 parameters

as shown in equation 5.13. By incorporating the division model into the third

component in the camera frame, the equation 5.15 can be expanded as




1 − s
α

soy

α
− ox

0 1
α

−oy

α

0 0 f(.)







x1

x2

1




= λ




R1 T 1

R2 T 2

R3 T 3




Xw (5.20)

where f(.) = p1 + p2d
2 + p3d

4 represents the division model and

d =
√

(x1 − ox − s(x2−oy)

α
)2 + (x2−oy

α
)2.

Note that there are 4 unknowns in equation 5.20, which includes T 3 repre-

senting the object’s depth and P1−3 representing the distortion parameters of the

division model. By separating the unknown parameters and cancelling the unknown

scaling factor λ, two constraints to estimate the distortion parameters can be cast
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as




P 1Xw 0

0 P 2Xw







1 d2 d4
s(x2−oy)−α(x1−ox)

(R1Xw+T 1)α

1 d2 d4
−(x2−oy)

(R2Xw+T 2)α







p1

p2

p3

T 3




=




α(x1−ox)−s(x2−oy)

α

x2−oy

α


R3Xw

(5.21)

Algorithm 5.7 Distortion Calibration Algorithm

Require: Take at least one image with an L-shape checkerboard and select at least
11 corner points from the checkerboard image in each picture.

1: Find a minimizer (composed of 12 parameters) regarding of the norm of equation
5.16 and estimate the principal point, skewness and aspect ratio from equations
5.17 and 5.18.

2: Retrieve the extrinsic matrix (except T3) from equation 5.19.
3: Compute the estimated distorted image radius.
4: Find the minimizer regarding of the norm of equation 5.20. This minimizer

consists of T3 and the distortion parameters.

5.3.2 Performance Evaluation

The advantage of our algorithm is its capability to incorporate different im-

ages to retrieve a better estimation, which helps to mitigate the measurement uncer-

tainty. Also, since we assume a general distortion model, this algorithm can also be

applied to the catadioptric camera. The simulation results regarding the algorithm

performance were presented in our work [25].

Figure 5.15 shows a corrected image taken by a dioptric camera whose imaging

lens is a fisheye lens (ORIFL 190-3) from Omnitech. This lens has semi FOV

up to 95 degrees on 1/3 inch CCD array. Because the algorithm requires a 3D
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calibration object, an L-shape checkerboard was assembled for the experiment. In

this experiment, 18 control points were selected from a single image, which can be

seen in the figure 5.14. Figure 5.15 was corrected based on the estimated parameters.

The corrected image captured a field-of-view of 70◦. The correction performance can

be evaluated by observing the straight lines in the calibrated image since the straight

lines are invariant in the perspective camera.

Figure 5.14: Distorted image taken from an Omnitech fisheye lens, Notice the plus

sign is the center of the CCD, the circle sign is the principal center estimated from

the proposed algorithm, and the 18 star signs indicates the selected control points

for our algorithm.

175



Figure 5.15: Distorted scene corrected by the proposed algorithm: the 18 star signs

indicate the selected points corrected by our algorithm. The corrected scene has a

semi FOV up to 70 degrees.
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We also compared our results with the characteristic curve (incident angle

v.s. projection radius) posted on their website1.The parameters we extracted from

their curve using the division model were [165.40,−1.9e−3,−2.37e−8], versus our

estimation distortion parameters, which were [167.45,−2.5e−3,−8.167e−9]. Since

the distortion model can only be estimated after the intrinsic matrix is known, a

close match in the distortion parameters represents an accurate estimation of the

intrinsic matrix.

Also, we selected 190 angles uniformly distributed within ±70 degrees to com-

pute the difference of the angles while using two different sets of coefficients. The

angular error histogram is plotted in figure 5.16, which shows the maximum angular

error in the test was smaller than 0.9◦ and most of the errors are fewer than 0.1◦.
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Figure 5.16: Angular error between the estimated coefficients and real coefficients

from the datasheet of the OmniTech fisheye lens

1http://www.omnitech.com/fisheye.htm
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5.3.3 Enhanced Planar Coarse Pointing Systems

The previous results suggest that the disadvantage brought by the wide-angle

camera, namely distortions, can be effectively compensated for by a correction al-

gorithm. Since the distortion is static, the calibration of the catadioptric/dioptric

camera must only be performed once before applying it in the CPAT system. Once

the calibration successfully corrects the distorted image position of the target into

its perspective position, the corrected catadioptric/dioptric camera is equivalent to

a perspective camera.

Therefore, the mapping between the frame of a singly corrected wide-angle

camera and the transceiver remains a linear homography as described in section 5.1

and the CPAT system design algorithm introduced in algorithm 5.1. Furthermore,

the mapping among the two corrected wide-angle cameras’ frame and the transceiver

remains to be the trifocal tensor as described in 5.2 and the CPAT system design

algorithm shown in algorithm 5.6. The selection criterion between using the single

or stereo cameras follows inequality 5.1.

5.4 Wide Field-Of-View and Three Dimensional Pointing Systems

Although a wide-fov CPAT system was proposed in the previous chapter and it

provides a satisfactory performance, we are still interested in improving its pointing

accuracy by giving up the distortion model. As shown in figure 5.12, the distortion

cannot be completely compensated by the division model. The uncompensated error

further affects the estimation of the homography or the trifocal tensor.
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We therefore introduce another wide-fov CPAT system assisted by an addi-

tional perspective camera to achieve three-dimensional high-accuracy pointing. The

theoretical basis of such a combination among a perspective camera, a wide-angle

camera, and a two-axis gimbal has been discussed previously in section 4.5 and we

have shown their geometric relation is encoded by a radial trifocal tensor (RTT).

Compared to traditional stereo systems, the resulting one has a much wider 3D

deterministic region where the coordinates of 3D points can be uniquely resolved.

It is shown in figure 5.17.

(b)
3D Deterministic Region

GimbalPerspectiveCamera 1 PerspectiveCamera 2(a)
3D DeterministicRegion

GimbalPerspectiveCamera 1 Wide-angle Camera
Figure 5.17: The region in which 3D coordinates can be uniquely determined (a) in

a regular stereo vision system (b) in the proposed system

In addition, if the perspective camera can be rotated by another rotary gimbal,

the field-of-view of the resulting system can achieve full hemisphere: (1) a target of

interest is first selected from the wide-angle camera, (2) lock the target within the fov

of the perspective camera by rotating the gimbal, and (3) pointing the transceiver

toward the target according to the computed azimuthal and elevation angles.
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5.4.1 Calibration Stage

The geometry of the RTT was introduced in section 4.5. This section focuses

on a robust RTT estimation algorithm.

5.4.1.1 Algebraic Minimization Scheme (AMS)

Equation 4.24 provides three linear constraints to estimate the RTT cast as

follows but only two out of three are independent. Notice that x” represents the

pixel coordinate on the image plane subtracting the principal point estimated from

equation 5.17.

T q
ikx

ix
′jx”kεjqu = 0u (5.22)

By vectorizing T q
ik, an algebraic cost function can be formulated as the follow-

ing and we are interested in solving for the RTT which minimizes this function:

minvec(T )

∥∥∥f(x, x
′
, x”)vec(T )

∥∥∥ (5.23)

subject to ‖vec(T )‖ = 1

where f(x, x
′
, x”) is a 3× 18 matrix, vec(.): matrix vectorization operator, (i.e.

vec(T ) = (T 1
11T

1
12T

2
11T

2
12...)

T ).

However, because of measurement noise and aberration errors, this RTT gen-

erally does not have the internal constraints imposed. The internal constraints that

result from the intersections of the three degenerate conics are a point and a line in

the perspective camera’s frame, as described in section 4.5.2. The point and the line

result from the epipole and the distorted-epipole, respectively. Therefore, imposing
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the three constraints is equivalent to improving the estimation of a better epipole

and distorted-epipole pair.

As for the epipole estimation, if we select x which is not on the locus of the

axial plane or the line between the transceiver and the perspective camera, the T q
ikx

i

is rank-2 and its left null vector represents the normal vector of the epipolar plane

according to theorem 4.5.1. The vector which is orthogonal to all these normal

vectors is the epipole, which is shown in figure 4.5. By picking at least two x, the

epipole (e
′
) can be estimated as

(e
′
)T

(
n1 n2 · · · nk

)
= 0 (5.24)

where nj represents the null vector of T q
ikx

i resulting from jth different x.

The distorted-epipole estimation relies on the constraint that the determinant

of the minors of Tix
i is 0. For each constraint, the locus of x is a degenerate conic.

It can be shown that at least one of the conic sections is rank-2 as long as the two

cameras and the transceiver do not overlap. The constraints are summarized below:

xT (T 1
i1T

2
i2 + T 2

i2T
1
i1 − T 2

i1T
1
i2 − T 1

i2T
2
i1)x = 0

xT (T 2
i1T

3
i2 + T 3

i2T
2
i1 − T 3

i1T
2
i2 − T 2

i2T
3
i1)x = 0

xT (T 1
i1T

3
i2 + T 3

i2T
1
i1 − T 3

i1T
1
i2 − T 1

i2T
3
i1)x = 0

(5.25)

Theorem 5.4.1. Let x be the null vector of the rank-2 conic section. Then, x is on

the line intersected by the axial plane and the perspective image plane.

Proof. Using the homogeneous coordinate, the degenerate conic is composed of two

lines and the null vector is the intersection of these two lines.
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Let x be the intersection of the two lines of the first conic section in equation

5.25. If x, the solution of the equation 5.25, is on the line intersected by the axial

plane and the perspective image plane, this line must be one of the two lines of

the first degenerate conic, which therefore must pass through the intersection. One

concludes that the null vector must belong to the line intersected by the axial plane

and the image plane.

In most scenarios, the three conics are all rank-2. One method to find the

distorted epipole is to plug the null vector n estimated from each degenerate conic

back into Tin
i. Since the distorted-epipole represents their common null vector, a

TLS estimation of the distorted-epipole can be obtained by finding the null vector

of the cascading Tin
i. 



Tin
i
1

Tin
i
2

Tin
i
3




e” = 03×1 (5.26)

where ni is the null vector of ith degenerate conics.

Another method is to directly estimate the e” from the three degenerate conics.

By rewriting the rank-1 constraint, we can obtain the following rank-1 matrix



T 1
1ke

”k T 1
2ke

”k T 1
3ke

”k

T 2
1ke

”k T 2
2ke

”k T 2
3ke

”k

T 3
1ke

”k T 3
2ke

”k T 3
3ke

”k




(5.27)

Since the determinant of all the 2× 2 minors is 0, 9 constraints can be cast and one

of them is equal to

e”(T 1
1kT

2
2k − T 2

1kT
2
1k)e

” = 0
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Since each of the constraints is scale-invariant and e” is only a vector, without loss of

generality, we can scale e” to be (x, 1), where x is an unknown scalar. If e” satisfies all

nine constraints, the square-sum of the constraints should be minimized. Therefore,

the distorted-epipole estimation problem turns into an optimization problem and

the cost function is

min
x

9∑
i=1

a2
i x

4 + 4aibix
3 + (2aici + 4b2

i )x
2 + 4bicix + c2

i

where




ai bi

bi ci


 represents ith 2× 2 minors (i = 1 ∼ 9).

The derivative of the cost function contains three roots. By plugging all the

roots back into the cost function, the distorted-epipole can be expressed as (x, 1),

where x is the global minimizer of the cost function.

Figure 5.18 shows the relative error of the two different distorted-epipole es-

timation algorithms versus the measurement noise. The estimation ê” from both

methods is first normalized to be (ê”1, 1) and the relative error is defined as (ê”1 −

ē”1)/ē”1, where ē”1 represents the true value of the first element of the distorted-

epipole.

The results indicated that the 9-constraints method performs slightly better

than the conic-based method. Note that if the distorted-epipole is a line close to

y = 0, the 9-constraints method must be modified to estimate the second element

instead of the first one.

Equation 4.25 shows that T q
ik = P

′q
i L”

k − e
′qP ”∼k

i , which can be rewritten in
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Figure 5.18: Error Performance of the estimated distorted-epipole with different

algorithms

vector form as:

vec(T ) = g(e
′
, L”)vec(P

′
1∼3, P

”
1∼3) (5.28)

where g(e
′
, L”) is a 18 × 15 matrix composed of the estimated epipole and the

distorted-epipole, and vec(P
′
1∼3, P

”
1∼3) is a 15× 1 matrix composed of the first three

columns of both P
′
and P ”.

By replacing the vec(T ) in equation 5.23, the original unconstrained mini-

mization problem turns into the linearly constrained problem below. The solution

is discussed in appendix A.

min
vec(T )

∥∥∥f(x, x
′
, x”)vec(T )

∥∥∥ (5.29)

subject to ‖vec(T )‖ = 1 and vec(T ) = g(e
′
, L”)vec(P

′
, P ”)

Instead of using the epipole and estimated-epipole estimated from the initial

RTT, we can also iteratively update them to create a new g(e
′
, L”), which results
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in a smaller algebraic error. However, the minimizer from this iterative algorithm

is not guaranteed to have a smaller geometric error compared to the non-iterative

one in our simulations.

5.4.1.2 Geometrical Minimization Scheme (GMS)

According to section 4.5.3, the extrinsic matrices of each frame can be deter-

mined from a RTT as

P =

(
diag(1, 1, 1) 03×1

)

P
′

=

(
T q

ikL
”k e

′
)

P ” =

(
P ”

1 P ”
2 P ”

3 e”

)
(5.30)

where P ”
i =




0 −1

1 0


 (L”L”T − diag(1, 1))Tie

′

Knowing the projective matrices for all three components, the three-dimensional

points (X) can then be determined by solving the triangulation of the rays and plane

from three components by

min
Xw

∥∥∥∥∥∥∥∥∥∥




(x)×P

(x
′
)×P

′

(x”)×P ”




Xw

∥∥∥∥∥∥∥∥∥∥

subject to ‖Xw‖ = 1 (5.31)

By re-projecting the estimated Xw back onto each frame, a set of computed

points (x̂, x̂
′
, x̂”) can be retrieved. By minimizing the geometric error function be-

tween the computed points and the measured points using an iterative method, such

as the Levenberg-Marquardt algorithm, the best estimator of T q
ik can be obtained.

Generally, the best geometric error function is the Mahalanobis distance. However,
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since the covariance matrix is difficult to be estimated in the real scenario, we in-

stead select the cost function as the Euclidean distance in the proposed algorithm

instead, which is defined as

dres =
n∑
i

‖x̂i − xi‖2 +
∥∥∥x̂

′
i − x

′
i

∥∥∥
2

+
(x̂”1

i x”2
i − x̂”2

i x̂”1
i )2

∥∥x̂”
i

∥∥2 (5.32)

Note that since the image point in the wide-angle camera represents a radial

line instead of a point, instead of defining the Euclidean distance as the distance

between two points, we define it as the distance from the measured point to the

radial line vector formed by the estimation.

Algorithm 5.8 Radial Trifocal Tensor Estimation Algorithm

Require: Find the principal point from equation 5.17 or use the center of the image
as the principal point.

Require: Rotate the two-axis gimbal to at least 9 positions and record the trans-
ceiver vectors with equation 4.21 and the corresponding image position in the
perspective and wide-angle cameras.

Ensure: Notice that the 3D bright points illuminated by the transceiver must not
be coplanar.
AMS Algorithm

1: Normalize the measured positions from the perspective camera to 0 mean and
an average distance

√
2.

2: Use the normalized image point and other measurements to compute the mini-
mizer of equation 5.23.

3: Find the epipole (e
′
) from equation 5.24 and the distorted-epipole (e”) from

either equation 5.26 or 5.27.
4: Construct g(e

′
, L”) and apply algorithm A.2 to solve for the minimizer of the

equation 5.29, where L” =
(

e”2 −e”1
)

5: Iteratively update the estimation of (e
′
, L”) in order to minimize the norm of

equation 5.29.
GMS Algorithm

6: Estimate the projective matrices from both cameras and the rotary gimbal from
equation 5.30.

7: Solve equation 5.31 to estimate the 3D coordinates.
8: Re-project the 3D points back onto each frame.
9: Minimize the Euclidean distance with an iterative numerical algorithm, such as

the Levenberg-Marquardt algorithm.
10: Denormalize the minimizer to retrieve the best radial trifocal tensor.
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5.4.1.3 Performance Evaluation

The estimation scheme we proposed contains two main sections: 1) algebraic

and 2) geometric minimization schemes. The AMS optimizes the calibration by

fitting the parameters into the radial trifocal tensor constraints, which serve as

initial conditions for the GMS.

This simulation was to verify the robustness of the proposed algorithm with

respect to measurement noise. The geometric setup is identical to the simulation

5.5 and plotted in figure 5.8. 24 corresponding triplets were used to estimate the

radial trifocal tensor and each image point on both a regular and omnidirectional

camera was perturbed by Gaussian noise with a 0 mean and standard deviation (σ)

varying from 1 pixels to 3 pixels with a 0.5 pixel spacing. The measurement errors

provided by the gimbals are small enough to be neglected. Each different value of

the noise was run 50 times and its average residual error and estimation error are

plotted in figure 5.19 (a) and (b), respectively:

5.4.2 Pointing Stage

Once we calibrate the RTT and a pair of image points from the perspective

and wide-angle camera, the transformation to find the transceiver vector, derived

from equation 5.22 is:

x
′q = T q

ikx
ix”k (5.33)

This gives us a simple procedure to determine the rotation angles of the gimbal.

The only exception is when the target appears on the axial plane, where the RTT
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Figure 5.19: (a) Residual error (b)Estimation error with respect to different amount

of measurement noise. The reported residual and estimation errors are an average

of 50 independent calibrations.
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is incapable of estimating the transceiver vector. This is the major price to pay for

using an wide-angle camera.

5.4.2.1 Performance evaluation

The second simulation was to demonstrate the pointing results. The radial

trifocal tensor was estimated from 24 corresponding triplets with a Gaussian noise

of 0 mean and variance 1 pixel. The 24 triplets were selected to lie 5.7 degrees away

from the distorted-epipole. After estimating the RTT, we produced another 200

points from both regular and omnidirectional cameras and compared the estimated

transceiver vector with respect to the true transceiver vector. These 200 points were

also perturbed by the same Gaussian noise used to produce the trifocal tensors.

The average error is 0.7366◦ for φ and 0.2381◦ for θ. The large difference in

the azimuthal direction results from some of the 3D points being too close to the

line vector.

For those degenerate points, its azimuth direction can hardly be determined

correctly, which results in large errors. If the image points that are too close to

the distorted-epipole (≤ 2.866◦) are removed, the average error becomes 0.2091◦

for φ and 0.1785◦ for θ. The histogram of the pointing error in both azimuth and

elevation direction is plotted in figure 5.20.
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Figure 5.20: Pointing angular error in azimuth and elevation under N(0, 1) noise

5.5 Summary

In this chapter, four CPAT system designs were introduced to fit different

specifications. We discovered that the two-axis rotary gimbal and the perspective

camera can both be modelled by the perspective projection, which further helps us

utilize the projective geometry theorems to model the mapping between different

frames. The resulting systems include the single-camera system encoded by a lin-

ear homography and the dual-camera system encoded by a trifocal tensor. Both

the homography and the trifocal tensor can be calibrated in advance and robust

estimation procedures are proposed in algorithms 5.1 and 5.6, respectively. Two

optical-system-assisted calibration schemes are also listed to boost the precision of

the calibration with respect to long link applications. The selecting criterion (be-

tween a single or dual camera system) is listed in equation 5.1, which depends on the

link distance, the required angular resolution, and the distance between the trans-

ceiver and the camera. Both the simulations and experiments indicated satisfactory
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performance of both systems.

One of the advantages of a camera-based system is that the mapping between

the camera and the two-axis gimbal is invariant as long as their relative position

remains the same. In other words, after the cameras and the gimbal are installed and

the whole setup is mounted on a mobile platform (ex: cars, boats), the estimated

homography or trifocal tensor only has to be calibrated once and will remain fixed

despite the motion of the platform.

Our next focus is to increase the field-of-view of the camera in order to acquire

more potential link targets. This idea is based on an observation that most of the

cameras provide higher resolution than the required angular resolution of the CPAT

system, about 1◦ ∼ 2◦. Also, recent improvements in semiconductor fabrication

have greatly increased CCD pixel density (e.g. 12 Mega pixels), which further

enhances the angular resolution of the camera. The extra resolution can be traded

for a large field-of-view by introducing a wide-angle lens, including dioptric and

catadioptric imaging systems. Although the images from these cameras suffer from

strong aberrations, since the distortion is static and only affects the radius of the

image, it can be corrected by exploiting the geometric constraints embedded in an L-

shape calibration object (algorithm 5.7) or by the assistance of a perspective camera

(algorithm 5.8).

We can conclude that in a degenerate scenario, such as a planar motion or

target is at a far distance, two-dimensional information must be provided in order

to uniquely determine the mapping between the transceiver and its own frame, and

in a general scenario, three dimensional information is required. This provides us
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a relation to determine the minimum number of cameras in a camera-based CPAT

system:

w + 2p ≤ 2 degenerate applications (5.34)

w + 2p ≤ 3 general applications (5.35)

where w represents number of the wide-angle cameras and p represents number of

the perspective cameras. Notice that a corrected wide-angle camera is equivalent to

a perspective camera.

Therefore, different camera combinations can be selected, such as the combi-

nation between a perspective camera and a wide-angle camera as proposed in section

5.4.
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Chapter 6

Conclusions and Future Work

6.1 Summary of Main Contributions

Incorporating geometric invariances into a PAT system design provides three

benefits: (1) more flexibility: no deliberate alignment is required, (2) faster acqui-

sition time: the entire pixel array of the acquisition sensor is applicable to target

pointing instead of one, and (3) reliable target identification: the target identifi-

cation scheme can be simpler and more accurate because of the acquisition sensor

being static.

If the targets of interest satisfy the distance inequality shown in equations 1.1

and 5.1 for FPAT and CPAT systems, respectively, the combination between one

optical sensor and one actuator is sufficient to align the transceivers. Otherwise,

two sensors must be applied to provide stereo vision for the pointing.

Through the geometric invariance exploration, three discoveries were made to

assist in the PAT design:

1. The axis of propagation of the transceiver must pass through the pivoting

point of the actuator, which leads to a gimbal-type design for CPAT systems,

shown in figure 5.1 and FPM-based design for FPAT systems, shown in figure

3.3.
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2. The aberrations of the optical systems must be minimized to provide a linear

projective relationship between the incident angles and the focused positions,

which leads to the selections of achromatic lenses from Optosigma and high-

resolution imaging lenses from Tameron.

3. Additional optical systems can be designed to produce the desired invariance,

even though it is not the one embedded in the current configuration.

The theoretical analyses of three different geometric invariances were pre-

sented, namely, linear homography, trifocal tensors, and radial trifocal tensors. The

PAT system based on the linear homography can be applied to align the FSO trans-

ceivers with a long link distance, which includes most FSO applications; while the

PAT system based on the trifocal tensor and radial trifocal tensor is capable of align-

ing the FSO transceivers without any constraint. Two-step calibration algorithms,

algebraic and geometric minimization schemes, were proposed for estimating the

three invariances. Simulations confirmed that the residual and estimation errors

both approached the theoretical minimum, which demonstrated their robustness.

A homography-based CPAT system, consisting of a camera and a two-axis rotary

gimbal, was implemented and the pointing accuracy was around 700 µrad, which is

on the order of the required precision for an FPAT system.

A homography-based FPAT system was also implemented inside our labora-

tory, which consisted of an achromatic lens, a lateral effect diode, and a two-axis

moving platform with a fiber attached. Compared to the traditional FSM-based

FPAT system, the system measures the incoming angles with a higher speed, which
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helps in reducing the response time of the system. The average pointing accuracy

shown in the experiment was around 170 µrad, while a real ray tracing simulation

showed an accuracy around 45 µrad. The inferior performance may result from the

self-coupling from the transmitter.

In addition, we demonstrated a distortion-free wide-angle camera with a field-

of-view 140◦, based on exploiting the geometric invariance (the planar angle is in-

variant between the camera and image frame). The average residual error after the

correction is around 0.3◦ on a 640×480 pixel camera, which is close to the resolution

limit of the camera.

6.2 Future Work

This dissertation is pioneering in its efforts to implement a PAT system capable

of realizing a mobile, point-to-point FSO network. This work is just a start and much

more effort is still required. Some suggestions are:

• Wavefront distortion evaluation: The current PAT system does not take turbu-

lence effects into consideration. Since turbulence changes the refractive index

of the optical paths, the position of the focused spot may change because of

additional aberrations induced by the distorted wavefront. A field experiment,

provided by Vilcheck [70], indicated the average angular fluctuation ranging

from 13 to 25 µrad in the weak turbulence regime. More measurements must

be taken to evaluate the pointing errors induced from additional aberrations.

• Integration between FPAT and CPAT systems: When the target is out of the
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field-of-view of the FPAT system, the alignment must be handed over to the

CPAT system. In the current system, the handover happens with a price that

the link will be broken because the FPAT system must be reset. It can be

proven that a geometric invariance also exists between the CPAT and FPAT

system. If it is pre-calibrated, the FPAT system can drive both the CPAT and

FPAT actuators to maintain the link when the handover occurs.

• Data fusion among different FSO transceivers: If many FSO transceivers,

equipped with individual FPAT and CPAT systems, are deployed in an area,

the acquisition sensors at each transceiver can be related by other invariances.

By fusing the image positions from different PAT systems through their invari-

ances, the pointing accuracy can be largely enhanced. Besides, since the fused

data contains the coordinates of the target, it can be further integrated with

other navigation services. This topic is ongoing research known as camera

network calibration in the computer vision community.
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Appendix A
Least Squares Optimization

Least squares problems are those in which the cost function may be expressed
as the sum of squares. Such problems are very common in Euclidean geometry
fitting and can be divided into the two categories as (1) Least Squares Regression
and (2) Total Least Squares Regression.

A.1 Least Squares Regression

Least Squares Regression (LS) is the basic form of the least squares problem.
If a set of measurements, yn are gathered for different parameter values, xn, the LS
regression problem can be formulated as

min
p
‖y −Xp‖ (A.1)

where X is a matrix whose column vectors contain the basis vectors.
In general, the number of the equations must be more than the number of

parameters, which implies that if X is n×m, then n > m. X forms a set of basis to
estimate yn and if the optimizer is achieved, the resulting error is orthogonal to the
basis, which is known as the orthogonality principle [54]. The solution is therefore
equal to

p = X†y
= (XT X)−1Xy

(A.2)

where (.)† represents the pseudo-inverse operator.
(XT X)−1 exists if (and only if) X is full rank, which implies the basis vectors

are linearly independent. Therefore, the LS regression is appropriate.

A.2 Total Least Squares Regression

Total least squares (TLS) regression fits N-dimensional data with a subspace of
dimensionality N-1. The result is equivalent to minimizing the square perpendicular
distance from the data to the fitted function. The total least squares problem has
the form

minp ‖Mp‖ (A.3)

subject to ‖p‖ = 1

If additional linear constraints Cp = 0 are applied to the TLS problem, it can
be viewed as the TLS p is orthogonal to the kernel of the constraint. Therefore, its
minimizer is the span of the complementary space of the kernel.

Let the SVD of C be USV T and has rank r. The solution can be found in two
steps:
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Algorithm A.1 Unconstrained Optimization

1: Take the SVD of M equal to UMSMV T
M .

2: The TLS minimizer p is the last column of VM corresponding to the smallest
singular value.

• Solve the minimizer of the following equation:

min
p′

∥∥∥MU⊥
r p

′
∥∥∥ (A.4)

subject to p
′
= 1

where U⊥
r is equal to U without the first r columns.

• Retrieve p by p = U⊥
r p

′

If the linear constraint is p = Gp̂ where G has rank r, it represents the mini-
mizer p lying in the span space of G. Let the SVD of the G be USV T . Following
a similar concept as the previous example, the minimizer can be formulated also in
two steps as

Algorithm A.2 Linear Constrained Optimization

1: Solve the minimizer of the following equation:

min
p
′

∥∥∥MUrp
′
∥∥∥ subject to p

′
= 1 (A.5)

where Ur is equal to the first r columns of U .
2: Retrieve p by p = Urp

′
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