A Novel Information-Aware Octree for the
Visualization of Large Scale Time-varying Data.

(Technical Report CS-TR-4778 and UMIACS-TR-2006-03)

Jusub Kim and Joseph JaJa

Institute for Advanced Computer Studies,
Department of Electrical and Computer Engineering,
University of Maryland, College Park, MD 20742,

E-mail: {jusub, joseph@umiacs.umd.edu

Abstract

Large scale scientific simulations are increasingly gedimgyavery large data sets that present substantial
challenges to current visualization systems. In this payer develop a new scalable and efficient scheme for
the visual exploration of 4-D isosurfaces of time varyingadiay rendering the 3-D isosurfaces obtained through an
arbitrary axis-parallel hyperplane cut. The new schemeaget on: (i) a new 4-D hierarchical indexing structure,
called Information-Aware Octree; (ii) a controllable delayed fetching technique; and (@i optimized data layout.
Together, these techniques enable efficient and scalablef-@ore visualization of large scale time varying data
sets. We introduce an entropy-based dimension integraéohnique by which the relative resolutions of the
spatial and temporal dimensions are established, and issmfibrmation to design a compact size 4-D hierarchical
indexing structure. We also present scalable and efficiectiniques for out-of-core rendering. Compared with
previous algorithms for constructing 4-D isosurfaces, scineme is substantially faster and requires much less
memory. Compared to the Temporal Branch-On-Need octreBQNH, which can only handle a subset of our
queries, our indexing structure is an order of magnitudellsmand is at least as effective in dealing with the
queries that the T-BON can handle. We have tested our schanwmlarge time-varying data sets and obtained
very good performance for a wide range of isosurface extmacjueries using an order of magnitude smaller
indexing structures than previous techniques. In padicwe can generate isosurfaces at intermediate time steps
very quickly.

Index Terms
Time-Varying Data Visualization, Large Data Set Visudii@a, Iso-surface extraction

. INTRODUCTION

As the speed of processors continues to improve accordiAgnaahl’s law, researchers are performing
large scale scientific simulations to study very complexnaimeena at increasingly finer resolution scales.
Such studies have resulted in the generation of datasdtathacharacterized by their very large sizes
ranging from hundreds of gigabytes to tens of terabytestiphellsuperposed scalar and vector fields,
thereby generating an imperative need for new interacisealization capabilities. Consider for example
the fundamental mixing process of the Richtmyer-Meshkotalniity in inertial confinement fusion and
supernovae from the ASCI team at the Lawrence Livermore Nakibabs [1]. This dataset represents
a simulation in which two gases, initially separated by a fmeme, are pushed against a wire mesh.
These are then perturbed with a superposition of long wagéteand short wavelength disturbances and
a strong shock wave. The simulation produced abalitérabytes of data, which shows the characteristic
development of bubbles and spikes and their subsequenemang break-up over 270 time steps. The
resolution of each time step is@8x 2,048x 1,920 or about 8 GB. Such high resolution simulations
allow elucidation of fine scale physics; in particular, wirempared with coarser resolution cases, the data
allows observations of a possible transition from a cohet@m turbulent state with increasing Reynolds

number. Current visualization systems and techniques aialydargeted for several orders of magnitude
smaller datasets, and do not scale to the terabyte-sizededat

Isosurface rendering is an important visualization tegbeithat enables the visual exploration of
volumetric data using surfaces. Since the introductiorhefMarching Cubes algorithm [2] that performs
a complete scan of all the data cells, a variety of more efficdgorithms have appeared in the literature.
These algorithms include a preprocessing step that catstan indexing structure to speed up the
identification of active cells (cells cut by the isosurfacgjich techniques use either spatial data structures
such as the octree [3], or the span space [4], or the intergal [6], or the seed propagation technique
[6]. The case when the data is too large to fit in main memoryreesntly received significant attention.
There are two main research directions that have been mhteugeal with such large datasets. The first
focuses on the development of out-of-core efficient impletaigons of internal memory algorithms (e.g.
[7], [8]), while the second research direction makes useaodlfel processing to achieve good performance
on multiprocessor systems (e.g. [9], [10], [11]).

For time-varying data, a 4-D isosurface can be defined asethef points that satisfy (x,y,zt) = c, for
a given isovalue. The problem of extracting linear approximations to 4-Dsisdaces from sampling over
a structured grid was addressed by Weigle and Banks [12] andifBinaka et al. [13] but these techniques
are computationally quite expensive and are only practaavery small datasets. Instead of dealing with
the extraction of 4-D isosurfaces, most of the other workimetvarying data has focused on the problem
of generating isosurfaces for each of the given time steparagely. For example, Chiang [14] develops
an out-of-core version of the hierarchical temporal trescdbed in [15] by incorporating an out-of-core
version of the interval tree indexing structure. Anotheareple is the temporal branch-on-need (T-BON)
octree described in [16] based on the branch-on-need ostineeture [3].

In this paper, we address the problem of exploring 4-D idases of time varying data by rendering
the 3-D isosurfaces obtained through an axis-parallel ipf@ee cut. Such a cut is defined by a constraint
of the formx[y, z, or t|=a, for a user-specifiedr. Note in particular that a temporal cut= a may fall
in between two consecutive time steps in which case we wdlinterpolation on the fly to generate the
corresponding isosurface. Our approach provides a ricli@maent that enables users to more effectively
observe patterns and trends along the temporal dimensiongh the use of arbitrary spatial cudy,or
Z=a, and to render isosurfaces for any intermediate time stépout explicitly constructing the simplices
needed for extracting the 4-D isosurface or decomposingiteybes into simplices, as in [12], [13].
Carrying out such a plan on a large scale dataset requiresca sffcient and scalable indexing structure
that allows the fast retrieval dactive data blocks from disk, that is, blocks that are necessary to build
the 3-D isosurface corresponding to the parameters spbfiehe user, amsovalue and anaxis-parallel
hyperplane. None of the existing indexing structures can be easilyreldd to effectively solve such a
problem, except possibly for the T-BON structure [16] but histcase we can only use temporal cuts
along the given time steps. Moreover, The T-BON structuresaores a large amount of space that grows
linearly with the number of time steps.

We present a new space and time efficient indexing structaltedcthel nformation-Aware Octree (1A-
Octree) based on a new technique for assessing the relamneabiity of the data along the spatial and
temporal dimensions. Our indexing structure can be vievged data-dependent version of the 4-D Octree
(a generalization of the standard 3-D octree), where tha datiability is captured through an entropy
measure. The entropy is an information-theoretic noticat ttan be used to measure the information
content of a sequence of values generated by a random evenexperimental results show that this
approach can effectively capture spatial and temporalreoice leading to a structure that is very compact
and yet quite effective in identifying active blocks. In peular, our tests on two large time-varying data
sets show that the IA-Octree is an order of magnitude smeidber the T-BON structure that cannot even
handle all the queries that our structure can.

In addition to the indexing structure, our contributionslutde acontrollable delayed fetching technique,
and an optimized data layout scheme for the initial dataSet. delayed fetching technique postpones
data access from disk until a subtree of a certain size ig ftdversed, after which the data is retrieved in

an optimal order that exploits our particular data layowtct such round of delayed fetching is followed
by isosurface extraction and rendering on the resultinggate, leading to scalable visualization that can
be controlled by the delayed fetching parameter (the sizhefubtree). Moreover, our preprocessing is
very efficient and requires only a single sequential scarnefiitial dataset.

The rest of this paper is organized as follows. We discusomalated out-of-core techniques in
Section 2 and describe our new indexing structure and cutxd techniques in Section 3. A summary
of our experimental results is given in Section 4 and we agfelin Section 5.

Il. PREVIOUS OUT-OF-CORE TECHNIQUES

Due to their electromechanical components, disks have avibree orders of magnitude longer access
time than random access main memory. A single disk acceds mrawrites a block of contiguous data at
once. The performance of an out-of-core algorithm is oftemithated by the number of I/O operations,
each involving the reading or writing of disk blocks. Hen@signing an efficient out-of-core visualization
algorithm requires a careful attention to data layout amddiganization of disk accesses in such a way
that active data blocks are moved in large contiguous chtmikgin memory. During the past few years, a
number of out-of-core techniques have appeared in thalitex to handle several visualization problems.
For example, out-of-core isosurface extraction algorghor static datasets are reported in [7], [8], [9],
[11]. Of more interest to us is the previous work on out-ofecalgorithms dealing with time-varying
data. For example, Chiang [14] proposes an out-of-core litas extraction algorithm based on a time
hierarchy to store the metacells whose field values are @dosegh to each other for the corresponding
time interval. This hierarchy uses the Binary-Blocked-lI/@mal trees (BBIO) [8] as secondary structures
to support I/O optimal interval searches. Note that no inmagstructure based on interval trees or span
space seems to be suitable to deal with the problem studiedaseone of our constraints involves a
spatial cut.

However the work reported by Sutton and Hansen [16], whi¢todtuced theTemporal Branch-on-
Need-octree (T-BON) to extract isosurfaces for each time step separately, cajeieralized to solve our
problem forcuts along the grid lines. In particular, their strategy is to build a Branch-On-Né&2ctree
(BONO) [3] for each time step, storing general common infrettre of the trees (i.e., branching factors
and pointers to children) in a single file. Unfortunatelye /#BON cannot handle temporal cuts not among
the given time steps, and its size increases linearly wighrtbmber of time steps resulting in a large
data structure that does not exploit any type of possiblgteat coherence of the data. Another related
work is the PHOT data structure developed in [17]. While suatata structure achieves asymptotically
optimal internal memory search, its size is substantiatgér than our data structure and its out-of-core
performance is comparable or not as good as ours dependitigeayuery type.

We should note that octrees have been extensively used riect diolume rendering of time varying
data. For example, Shen et al. [18] propose the Time-Spadéithing (TSP) Tree for direct volume
rendering. They build an octree and each node of the octreebimary time tree in which each node
contains the mean and variance value across the time spath¢haode represents. The value contained
in each node of the time tree is used for fast volume renddrading off image quality. In spite of
their use of the octree structure, none of the out-of-coclrtigues used for direct volume rendering of
time-varying data seem to be applicable to the problem stutere.

We end this section by distinguishing our work and that imigg the direct computation of the 4-D time-
varying isosurfaces, which is more general than the prolalddnessed in this paper. Weigle and Banks [12]
describe a recursive contour meshing strategy for n-dirmeakgrids, involving the decomposition of the
hypercubes into n-simplices, followed by contouring theiseplices into (n-1)-simplices to satisfy a given
constraint, and the process is repeated for additionalt@nts . This strategy is very computationally
demanding and is not feasible for any data of large size. Btiankia et.al [13] present an algorithm for
constructing isosurfaces in any dimension. Their algorittonstructs the isosurface within a hypercube
by finding the convex hull of an appropriate set of points agtdining the portion of its boundary which

lies inside the hypercube. Although their algorithm leadssoéme useful applications, the approach of
extracting isosurfaces in four-dimensional space anch¢p&nly a slice defined by one or more constraints
is computationally prohibitive for large scale data. Thpamed experimental results in both papers are
for very small data sizes and the execution times mentionedwebstantially slower than ours, but on the
other hand they address a more general problem.

I1l. | NFORMATION-AWARE OCTREE

The IA-Octree is essentially a space-driven 4-dimensiardgxing structure based on a new technique
that enables a good estimate of the relative resolutionseo$patial and temporal dimensions. We describe
in this section the structure of the IA-Octree, the corresjiog data layout, and how the indexing structure
is used to effectively handle our query types. In what fopwe will refer to the 4-D subvolume
represented by a leaf node asygpercell, which consists of a time series 8fD subcubes, each subcube
belongs to a single time step and will be assumed to be of gjaal@¢o a disk page.

A. Dimension Integration

We present an entropy-based dimension integration tealnigntropy [19] is a numerical measure of
the uncertainty of the outcome for an eventgiven byH(x) = — 5 ; p;log, p;, wherex is a random
variable,n is the number of possible states xfand p; is the probability ofx being in statei. This
measure indicates how much information is contained in vbeg X. The more the variability ok, the
more unpredictable is, and the higher the entropy. For example, consider thessef scalar field values
for a voxelv over the time dimension. The temporal entropyondicates the degree of variability in the
series. Therefore, high entropy implies high informati@mtent, and thus more resources are required
to store or communicate the series. Note that the entropyaldmized when all the probabilities, are
equal.

We use the entropy notion to determine the relative sizes@fdimensions of the hypercell (that is,
a leaf in our octree). Higher entropy of a dimension relatvehe other dimensions implies that this
dimension needs to be split at finer scales than the othemdiomgs. For example, if a temporal entropy
is twice as much as the spatial entropy, we design the hyibéockee of sizes x sx sx S (X xy x z
x t), wheres is the size of the spatial dimension of the hypercell.

value
F 3
Z B TR
F 3 (L0 ‘...l
/ > A
4 value
/(- A
A .
y + _b‘.’\. ...::;ltllloccll.aaogga’
________________ e y
value
Y nees, i i g
P

Fig. 1. Entropy estimation in each dimension. Note that the y dimension hastaiero entropy in this example.

Figures 1 and 2 show how this entropy-based dimension @tiegrleads to an indexing structure for
the 3-D case. Figure 1 shows an extreme case in which thesvaloag the y dimension remain almost
constant over all possible (x, z) values (that is, the enti@fpy is almost zero) while each of the x and z
dimensions has some degree of variability. The hypercadl and the corresponding hierarchical indexing

(a) (b)

Fig. 2. Different hypercell sizes and corresponding hierarchiodé)mg structures for the data of Figure 1: (a) standard hypercell; (b)
information-aware hypercell.

(y, 2) IVZ
y
0w s e sersahessasssarasiorsisans »|
(x,v, z) x,v, z) (x,y, z)| 2
—>
X
t=1 t=2 = sesees t=a

Fig. 3. A sampled subvolume along a series of time steps. Entropy cotioputé x dimension is performed along the lig and averaged
over all (y,z) values, while temporal entropy is computed albggand averaged over all (x,y,z) values.

structure will be designed as shown in Figure 2 (b), thatisas a quadtree structure unlike the standard
octree of Figure 2 (a) in which the hypercell has the sameisizach dimension.

To estimate the entropy, we select a set of time steps, eeféor asreference time steps, and compute
spatial entropies for the corresponding 3-D volumes. These steps are selected uniformly from the
overall time series (or can be adaptively sampled at a higiter in the time domain of high temporal
entropy for more correct estimation). For each correspan@-D volume, we compute spatial entropies
for a random subset of subvolumes. Consider for example omgled subvolume shown in Figure 3.
Assuming the scalar field valuese [1,2,...,n|, the entropyEy is defined as follows (directioh, is
parallel to thex-axis and is anchored at the poifytz)) :

of occurrences of the scalar field vale

Total § of voxels on the directiofy,
n

E— — S RFlog, R’ @)

v=1

R —

(1)

Z
_ 2yz E>)</

E
T Syz

3)
wherey, , is over the grid points in théy,z) plane.

On the other hand, the entropy of the temporal dimengois computed by taking values at the same
voxel along the time-axis as follows.

of occurrences of the scalar field vale

Y= —— (4)

v Total § of voxels along the temporal directiby,

n
EY =~ Y RYlog,RY (5)
v=1

X,\y,Z

EPLAT A il (6)
Zx,y,z

wherey, , is the number of voxels in the subvolume at a time step.

If the number of the possible scalar field values is large gagkxample would be the case for floating
point scalar field values), we firguantize the original values intm values using a non-uniform quantizer
such as the lloyd-max quantizer [20]. Note that this quautitin is only used for the purpose of computing
the entropies.

Since we are primarily concerned about establishing tregiogiship between the spatial and temporal
dimensions, we compute thgpatio-temporal entropy ratio defined as the ratio of the average spatial
entropy to the temporal entropy. We compute the spatio-teatgentropy ratio in each of the sampled
subvolumes and take themarmonic mean, which is then used for building our 1A-octree.

We note that in general a time series of data volumes will isbre$ a number of temporal domains
during which the spatio-temporal entropy ratio can be diff. Our general strategy is to decompose
the time series into a set of temporal regions, each of whidlhbe characterized by its spatio-temporal
entropy ratio. Hence we will build a separate 1A-Octree factke temporal region, capturing the data
volumes within each temporal region separately. This egratwill be illustrated in section 4 when we
describe our experimental results.

B. Indexing Structure and disk layout

The starting point of our IA-Octree is the 4-D octree stroetthat usually divides the 4-dimensional
space into 2 subspaces. We make use of the spatio-temporal entropyteatietermine the branching
factor and the size of the 4-D volumes at the leaves, andwalle branch-on-need strategy [3] as well.
We delay the branching until it is absolutely necessary g3]irhowever the temporal branching is further
delayed by a factor of the spatio-temporal entropy ratidhé tatio is more than 1 or expedited by that
factor if it is less than 1. Moreover, our algorithm ensutest tthe lower subdivision in each branching
dimension always covers the largest possitﬂexZId, wherel is the size of the hypercell edge in the
d-dimension (instead of exact power of two).

Each tree node contains the minimum and maximum values afddlar fields in the region represented
by the node, a pointer to the first child, and a branching fadioe size of the tree is reduced by pruning
nodes in which the minimum and maximum values are the samaubecthey do not contribute to
isosurface extraction.

Before describing our data layout on disk, let's make the ragsion that our highest priority is to get
the best possible performance for cuts along the tempona¢msion, followed by cuts along the z axis,
followed by y and finally x. The layout can be easily adaptedny other performance goals. Under this
assumption, the data layout is organized as follows. Fon ¢éiawe step, we create a file that contains all
the 3-D subcubes of the data volume of that step, organizeallexicographic ordering using the left
most coordinates (x,y,z) of each subcube. Note that eaatubehis of size equal to a disk page (or disk

® A leafnode

v DiskPageID | p

Minimum m
Maximum M

Time file: t=T1T t=T+1 sees t=0

Fig. 4. Data layout on disk. Scalar field values within a hypercell are dtaceoss time files but the disk page IDs are all the same in
the corresponding time files. Note that a leaf node contains a disk pagenibimum and maximum values of the scalar field over the
hypercell but the range of each dimension is computed on the fly.

block). The scalar field values within a spatial subcube &e arganized in a lexicographic order within

the disk page. Now, consider a 4-D hypercell defined at onéefléaves of our octree. This hypercell

consists of a time series of 3-D spatial subcubes, and hdmgedach appear in a different time file.

However note that they all have the same offset within th&sfiand hence we only need this offset to
identify these subcubes spread among different time files 8gure 4). The temporal range as well as
the spatial ranges of a hypercell can be trivially computedh® fly during query processing, and hence
there is no need to store these ranges at the nodes. We usela buffer management system which

manages all the disk pages into and out of the disk.

The use of the lexicographical order instead of the moregbeet z-order or Hilbert-Peano order [21]
is due to our query types, which include a geometric consgtrdy, or Z=a. While the z-order and the
Hilbert-Peano order may be better choices for regionaligagthe lexicographical order results in better
performance on average for our hyperplane query types.llestration purposes, Figure 5 shows how
three different layouts affect the disk I/O efficiency for gpkrplane query in the 2-D case. Disk 1/O
efficiency can be expressed by how many contiguous disk pagesccessed for a given query. The
lexicographical order achieves much higher contiguity iskdiccesses required by the hyperplane query.

C. Tree Traversal and Controllable Delayed Fetching

To optimize disk accesses and make rendering scalable, gamiae the access of active data blocks
in large contiguous chunks, each of which corresponds tobapsce of the original data as shown in
Figure 6 for the 3-D case. We essentially delay the retriefa hypercell until a subtree whose root is
at a preset level is completely traversed. We describe ttaglsiéor an x, y, or z cut since the temporal
cut is much simpler (given our data layout). We traverse t®cttree in depth-first order by checking
whether the node’s minimum and maximum values span the liseand the user-specified hyperplane
intersects the node. Once we reach the active hyperceliedowest level, we insert each hypercell into
a priority queue using the priority key (t,z,y,X) in lexicographic orderinglore specifically, for an active
hypercell in which the x,y, and z coordinates of the left-bm®ners ared, 3, y) and the time dimension
spans {, t + 6) with disk page IDp (i.e., offset within the time file), we insefd + 1 entries, each of
which consists oft(y,3,a,p), t+1,y,B,a,p),..., and (+ 6,y,[3,a, p).

The actual data fetching of the active hypercells is delayetdl the depth-first order tree traversal
revisits the nodes at a preset level. For example, disk aesdsr the active hypercells in the subvolume

1“\3_;1\ 5‘:x_7§=ﬁ P y =Bl]__% 3+——> g 6|_ 7 ?
< SN WA) AERPEN
> \RON) [
1 Oy IR g N
[
e T[T+ B - e T[T Bl -+ BRTH -
(a) z-order (b) hilbert-peano order
QueryOrder z h;g):r:t(; lexicographical
-
T2 3\ 4 |5 16 3 X=q 1 2 1

—— y=8 2 2 Column size

—

1] Avg. 15 5 ~ Column size
/12
=« _[ileelaelelle] -
(c) lexicographical order (d) The number of contiguous disk block

accesses

Fig. 5. Disk access patterns for a hyperplane query in a 2-D case ia different disk layouts. Grey blocks correspond to the ones
satisfying the hyperplane query =

Fig. 6. Controllable delayed data fetching. Disk accesses for the agtperdells in the subvolume corresponding to the grey node are
delayed until the traversal revisits the grey node.

in Figure 6 are delayed until the tree traversal revisitsgteyy node and then actual data fetching starts
by popping the top entry of the priority-queue and issuing tlorresponding disk access. This process
continues until the priority-queue is empty after which thee traversal proceeds in depth-first order.
Note that the example shows a 3-D case for illustration paegpo

The controllable delayed fetching enables us to optimizedisk accesses and is also quite effective
in enabling scalable rendering which we explain in the nextien. We adjust the preset level at which
delayed fetching is carried out depending on the sizes ofl#t@ and main memory, as well as rendering
speed. Setting the prefetching level is a trade-off betwaef@aient access (the higher the level the more
efficient the disk access is) and scalability.

D. Isosurface Extraction and Rendering

Each time we fetch the data at a preset level, isosurfacaaiin for the corresponding subspace is
performed. Scalar field values corresponding to all thevadiypercells are loaded into a main memory.

Consider a spatial-cut query types specified by an isovaldeadmyperplane(y or zj = a. If a is along
a grid line, we extract the corresponding slice from eachhef lbaded subcubes, and organize all the
slices together to constitute a 3-D volume. For example,tlierx = a hyperplane query, we create a
3-D volume whose dimensions are equal to the subvolume’s gnd t dimensions. Then we use the
standard marching cubes algorithm [2] to extract triangtethe 3-D volume. However the volume is
selectively traversed because we know which portions oftheme are filled with the data from the active
hypercells. This partial assembly of slices and triangleaetion performed after every delayed fetching
enables us to avoid forming a large 3-D volume in main memorytriangle extraction in the spatial-cut
query. If a is not along a grid line, we extract the two consecutive slicentaininga, and perform a
linear interpolation pointwise, to generate the slice egponding tax. The process is now completed as
before. For temporal-cut queries, triangle extractiortngightforward for cuts along one of the given time
steps since each loaded disk page corresponds to a 3-D subwatbsatisfies the query. Otherwise, we
load the two subcubes corresponding to consecutive tinges stentaininga, and interpolate to generate
the appropriate subcube. The interpolated subcube isdstoréhe buffer management system to avoid
re-interpolation when the subsequent queries are diffeyely in isovalues.

Isosurface rendering is incrementally performed by reingethe extracted triangles whenever the
number of triangles reaches some preset threshold valneugently with tree traversal, data movement,
and triangle extraction.

E. Preprocessing

The preprocessing required to generate the data layout xraceinformation for the IA-Octree is
simple. Let's make the assumption that the original voluragads stored in some fixed ordering (say
along x, y, and then z) for each time step separately, andhbadata volume corresponding to each time
step may not fit in main memory. Our preprocessing involvescuential scan of the input data, loading
for each time step as large a subcube from the correspondingie as possible. Once a large subcube is
loaded, we traverse the indexing structure to determindetiienodes included in the large subcube. The
corresponding leaf nodes are first sorted in lexicograplucder followed by determining the minimum
and maximum scalar field values at each selected leaf nodse.p8ir of values are then inserted at the
leaf node. Afterwards, the set of scalar field values cooedmg to the leaf node are written back into
a disk page. Since we process the selected leaf nodes indgajghical order, the resulting order of disk
pages follows the lexicographical order as well. Since thtadet at a time step may not fit in main
memory, we continue to read the original data by the subcabdsrepeat the above process. Once the
extreme scalar values in all the leaf nodes are determihedvadlues are propagated up through the tree.
It is clear that our preprocessing involves a sequentiadingaand writing of the input data, and hence
makes optimal use of the bulk data transfer of disks.

IV. PERFORMANCE

To evaluate the performance of our scheme, we consider tge tane-varying datasets: the Richtmyer-
Meshkov dataset for time steps 10039, each downsampled by two along each spatial dimensmah, a
the Five Jets dataset [22] consisting of 2000 time stepsh Bae step of the Richtmyer-Meshkov dataset
involves a 1024x 1024 x 960 grid with one-byte scalar fields and hence is of size 1G8&yltiag in
40GB data set. The Five Jets dataset consists 0f<X1228 x 128 grid with 4-bytes floating point values
resulting in a total of 16GB.

We ran the tests on a single node of the University of Maryl&isialization Cluster, in which each
node consists of two 3.0 GHz Xeon EM64 processors, 8GB maimang 60GB local disk, and a
NVIDIA6800 GPU with bi-directional 4Gbps data transferadab memory via PCI-Express bus. In all
our experiments, we made use of only one of the two processothe node.

Using the entropy measure, we obtained a spatio-tempotamnratio equal to B over the time steps
100— 139 for the Richtmyer-Meshkov dataset. We chose the size gparbell to be 16< 16 x 16 x 24

10

making the temporal length of a hypercell 1.5 times the lengftthe spatial dimension. On the other
hand, we divided the temporal domain of the Five Jets datasetfour time regions (see Figure 7)
having respectively the spatio-temporal entropy ratio9.6f 1, 3, and 4. We built a separate IA-Octree
on each time region. Each hypercell size was chosen to>b8:88x [4, 8, 24 or 32] depending on the
corresponding spatio-temporal entropy ratios.

6

Spatio-temporal Entropy Ratio

R S N N N S N S S S N S N S T R
P EFFITP TSI PFPFTFTFIFITSIFFILSEEESP

Time step

Fig. 7. Spatio-temporal entropy ratios computed at uniformly select@ddfeérence time steps among the 2000 time steps in the Five Jets
data. Each dashed box corresponds to a time region.

Our preprocessing time for constructing indexing struetamd reorganizing data on disk was less than
60 minutes for the entire 40GB Richtmyer-Meshkov datasetlessl than 20 minutes for the 16GB Five
Jets dataset. This performance is quite good given theHatitttakes around 30 minutes and 10 minutes
respectively just to sequentially read and write back eddhetwo data sets at peak I/O transfer rates.

We compare the performance between our IA-Octree and the N-B®the specific queries that the
T-BON was designed for. The sizes of the resulting structioeshe two data sets are given in Table 1.

T-BON | IA-OCTREE
The Richtmyer-Meshkov dataset 25MB 2MB
The Five Jets dataset 74MB 9MB
TABLE |

COMPARISON OF INDEXING STRUCTURE SIZES

As can be seen from the above table, our indexing structuae igrder of magnitude smaller than the
T-BON structure.

Tables Il and Ill compare the performance of the T-BON and I&r€e using multiple measures on
the two datasets for the specific query types which can belédriny the T-BON. Besides the results
shown in the tables, we have also achieved consistent seésulbther spatial-cut queries. Each spatial and
temporal-cut query result was obtained over 10 represeatabvalues (40, 60, ..., 220 for the Richtmyer-
Meshkov and 251000, 251500, ..., 255500 for the Five Jet§1d.résult for the temporal-cut query was
obtained over 8 and 100 uniformly selected time steps froemRithtmyer-Meshkov and the Five Jets
dataset respectively. As seen in the tables, the I1A-Octaseabhieved comparable (and sometimes better)
performance using an order of magnitude smaller indexing:tre size. Note that the results from both
indexing structures are based on our particular disk layout

On the other hand, our IA-Octree can also handle temporajwetties at intermediate time step values
with an overhead consisting of loading two time slices of adrgell followed by linear interpolation
to generate a hypercell slice for the intermediate valudleT&/ shows the corresponding IA-Octree

11

Spatial-Cut Query at T-BON IA-OCTREE
Z MIN | AVG | MAX | MIN | AVG | MAX
Loaded Data 488 617 710 545 667 738
Effectiveness 6.72 104 | 168 6.04 | 560 | 162
§ Disk Access Time 1.27 275 13.7 1.52 3.00 142
Tree Traversal 2.37 2952 | 340 1.19 146 | 1.70
Total Time 364 5.67 171 27 444 15.9
Loaded Data 465 671 791 533 723 218
Effectiveness 7.52 132 | 204 660 | 123 | 198
5 Disk Access Time 1.10 285 145 1.40 3.07 148
Tree Traversal 225 3.14 3.75 1.16 1.59 1.84
Total Time 335 599 | 182 256 | 466 | 16.6
Loaded Data 397 47 612 475 600 650
Effectiveness 7.80 145 | 228 6.54 | 140 | 216
§ Disk Access Time 0938 63 15.0 128 | 295 153

26

Tree Traversal 1.54 262 | 297 1.05 | 134 | 148
Total Time 2.87 525 | 179 233 | 429 | 167
Loaded Data 397 611 791 475 663 818
Effectiveness 6.72 127 | 228 604 [11.9 | 216
Disk AccessTime | 0.938 | 2.74 | 15.0 1.28 | 3.00 | 153
Tree Traversal 194 | 289 | 3.75 105 | 146 | 1.84

Owerall

Total Time 287 5.63 18.2 233 | 446 16.7
T-BON IA-OCTREE
Temporal-Cut Query — —
MIV AVG | MAX | MIN AVG | MAX
Loaded Data 127 181 227 167 205 233
Effectiveness 140 234 356 108 207 348

Disk Access Time 0398 | 0.907 | 4.08 0.330 | 1.16 4.13
Tree Traversal 0.151 | 0.217 | 0.274 | 0.204 | 0.251 | 0.292
Total Time 0549 | 1.12 435 0.734 | 1.41 444

Owerall

TABLE 1l
QUERY PERFORMANCE FOR THERICHTMYER-MESHKOV INSTABILITY DATASET. (LOADED DATA (MB), EFFECTIVENESS(RATIO OF
THE NUMBER OFEXTRACTED TRIANGLES (K) TO LOADED DATA (MB)), DISK ACCESSTIME (SEC), TREE TRAVERSAL TIME (SEQ),
TOTAL TIME (SEQ))

performance as compared to its performance at the givendieps. As seen in the table, the total time
to render an isosurface at an intermediate time step is tpusfo more than the time to render an
isosurface at one of the given time steps.

Figures 8, 9 and 10 show the rendered images of temporal atidlsput query results for the Richtmyer-
Meshkov dataset. The spatial cuts reveal how the data evalesg the temporal axis, which is not easy
to capture with traditional visualization techniques. &g 11, 12 and 13 show the rendered images of
temporal and spatial cut query results in the Five Jets eatggyure 14 shows the rendered image at an
intermediate time step. This clearly illustrates the ulsefss of rendering at intermediate time steps as it
highlights how features are changing at a finer granularity.

We also illustrate the effect of the data layout on the pemtoice. Table V shows the speed up in
overall disk access time achieved by using our particulgicégraphic order versus using the popular
z-order. As can be seen from the table, our access time isrfapproximately by a factor of 4.7 for
the y and z hyperplane queries, while it is slower by a facfd2.b for the cuts along the X dimension.
Clearly we can change the order in our lexicographic ordetingive preference to any dimension. In
the absence of any preferences and under the assumptioth¢htitree types of cuts are equally likely,

12

Spatial-Cut Query at T-BON IA-OCTREE
MIN | AVG | MAX | MIN | AVG | MAX
Loaded Data 736 24 472 80.7 265 525
Effectiveness 1.68 3.36 5.50 1.54 3.06 4.95

2 | Disk Access Time 0.354 | 7.8% 18.6 0.354 | 8.80 19.5
Tree Traversal 0.641 | 1.83 3.63 0.188 | 0.624 | 1.27

Total Time 1.03 9.2 222 0.580 | 9.42 211
Loaded Data 150 331 406 199 358 436
Effectiveness 1.93 3.86 6.27 1.84 3.57 5.84
% | Disk Access Time 0.237 | 942 17.2 0.618 | 10.7 18.5
Tree Traversal 1.61 255 318 0.485 [0.834 | 1.05
Total Time 1.85 11.% | 203 1.10 1.5 19.5
Loaded Data 214 367 472 222 3%0 502
Effectiveness 3.36 4.74 6.07 3.24 447 5.71
% Disk Access Time 0.664 | 9.96 18.5 0971 | 105 211
Tree Traversal 2.04 282 334 0.564 | 0.502 | 1.14
Total Time 2.70 12.7 222 1.33 1.4 | 222
Loaded Data 736 313 472 80.7 337 525
= Effectiveness 1.68 398 6.27 1.54 3.70 5.84
E Disk AccessTime | 0.237 | 9.0% 18.9 0354 | 10,0 | 211

Tree Traversal 0.641 | 2.40 3.63 0.188 | 0.787 | 1.27

Total Time 1.03 1.4 | 222 0.580 (10.7 | 22.2
T-BON IA-OCTREE
Temporal-Cut Query = =
MIN AVG | MAX | MIN AVG | MAX
Loaded Data 0.013 | 2.34 | 7.99 0.015 | 244 | 834
Effectiveness 733 48.6 104 6.66 | 46.6 | 100

Disk Access Time 0.000 | 0,027 | 0247 | 0.000 | 0.028 | 0.270
Tree Traversal 0.001 | 0.004 | 0014 | 0.001 | 0.006 | 0.019
Total Time 0.001 | 0,031 | 0261 | 0.001 | 0.034 | 0.289

Owerall

TABLE 1lI
QUERY PERFORMANCE FOR THEFIVE JETS DATASET. (LOADED DATA (MB), EFFECTIVENESS(RATIO OF THE NUMBER OFEXTRACTED
TRIANGLES (K) TO LOADED DATA (MB)), DiSk ACCESSTIME (SEC), TREE TRAVERSAL TIME (SEC), TOTAL TIME (SEC))

Given Time Steps Intermediate Time Steps

IA-OCTREE
MIN | AVG | MAX | MIN [AVG | MAX
Loaded Data 0.015 | 244 8.34 0.030 | 4.88 16.6
Effectiveness 6.66 46.6 100 333 233 500
Disk Access Time 0.000 | 0.028 | 0.270 | 0.000 | 0.080 | 0326

Tree Traversal

(+ Hnferpolation) 0.001 | 0.006 | 0.019 | 0.001 | 0.021 | 0.090

Triangle Extraction 0.001 | 0.088 | 0.36% | 0.001 | 0.087 | 0358

Triangle Rendering 0.001 | 0.015 | 0.258 | 0.001 | 0.01% | 0.234

Total Time 0.003 | 0.137 | 0.916 | 0.003 | 0.207 1.00
TABLE IV

TEMPORAL-CUT QUERY PERFORMANCECOMPARISON FOR THEFIVE JETS DATASET. (LOADED DATA (MB), EFFECTIVENESS(RATIO
OF THE NUMBER OFEXTRACTED TRIANGLES (K) TO LOADED DATA (MB)), DiIsk ACCESSTIME (SEC), TREE TRAVERSAL TIME (+
INTERPOLATION) (SEC), TRIANGLE EXTRACTION (SEC), TRIANGLE RENDERING (SEC), TOTAL TIME (SECQ))

13

the average performance of our layout is obviously supgadhat of the z-order layout.

X Y z
Speed up 0.4 3.9 55
TABLE V

SPEED UP IN DISK ACCESS TIME USING OUR LEXICOGRAPHICAL ORDERNISTEAD OF THE ZORDER. (AVERAGE OVER42X[or y| = a
HYPERPLANE QUERIES AND13Z= a HYPERPLANE QUERIES OVERAO TIME STEPS AT ISOVALUE=70IN THE RICHTMYER-MESHKOV
INSTABILITY DATASET.)

V. CONCLUSION

We have presented an effective scheme for exploring 4-Duréases of time varying data using a
novel data structure and efficient techniques for out-oéaata movements. Our new techniques lead to
effective visualization of large time-varying data setd @novide more insights than previous visualization
techniques. In particular, we introduced a new compact ataptave 4-D indexing structure called the
Information-Aware Octree (IA-Octree) based on a new entropy-based technique fossisgethe relative
variability of the data along the spatial and temporal disiens. Our experimental results showed that this
approach can effectively capture spatial and temporalreoice leading to a structure that is very compact
and yet quite effective in identifying active blocks for thgperplane query types. We also proposed an
out-of-core scheme using the controllable delayed fetchéthnique and optimized disk layout, which
enabled efficient and scalable rendering.

VI. ACKNOWLEDGEMENT

We would like to thank Mark A. Duchaineau at the Lawrence biwere National Lab for making
the Richtmyer-Meshkov instability data set available to thaversity of Maryland, Kwan-Liu Ma at
University of California at Davis for the Five Jets dataset &mitabh Varshney for his constant advice
throughout this research.

REFERENCES

[1] The ASCI Turbulence project, The Richtmyer-Meshkov dataset;/Mtpw.linl.gov/CASC/asciturb.
[2] W. E. Lorensen and H. E. Cline, “Marching cubes: A high resoluBahsurface construction algorithm,” iroceedings of the 14th
annual conference on Computer graphics and interactive techniques, 1987, pp. 163-169.
[3] J. Wilhelms and A. V. Gelder, “Octrees for faster isosurface ggien,” ACM Transactions on Graphics, vol. 11, no. 3, pp. 201-227,
Jul 1992.
[4] Y. Livnat, H.-W. Shen, and C. R. Johnson, “A near optimal igémte extraction algorithm using the span spatEEE Transactions
on Misualization and Computer Graphics, vol. 2, no. 1, pp. 73-84, Mar 1996.
[5] P. Cignoni, P. Marino, C. Montani, E. Puppo, and R. Scopigno,e&8ling up isosurface extraction using interval tre¢EFEE
Transactions on Misualization and Computer Graphics, vol. 3, no. 2, pp. 158-170, Apr 1997.
[6] C. L. Bajaj, V. Pascucci, and D. R. Schikore, “Fast isocontoufmgimproved interactivity,” inProceedings of the IEEE symposium
on \olume visualization, 1996, pp. 39—46.
[7] Y.-J. Chiang and C. T. Silva, “I/o optimal isosurface extraction, Piroceedings of |EEE Visualization, 1997, pp. 293-300.
[8] Y.-J. Chiang, C. T. Silva, and W. J. Schroeder, “Interactivé-afecore isosurface extraction,” iRroceedings of IEEE Visualization,
1998, pp. 167-174.
[9] C. L. Bajaj, V. Pascucci, D. Thompson, and X. Y. Zhang, “Pafallecelerated isocontouring for out-of-core visualization,” in
Proceedings of the |EEE symposium on Parallel visualization and graphics, 1999, pp. 97-104.
[10] Y.-J. Chiang, R. Farias, C. T. Silva, and B. Wei, “A unified infrasture for parallel out-of-core isosurface extraction and volume
rendering of unstructured grids,” iRroceedings of the IEEE symposium on parallel and large-data visualization and graphics, 2001,
pp. 59-66.
[11] X. Zhang, C. Bajaj, and V. Ramachandran, “Parallel and owtené view-dependent isocontour visualization using random data
distribution,” in Proceedings of the IEEE symposium on Parallel visualization and graphics, 2002, pp. 9-17.
[12] C. Weigle and D. C. Banks, “Extracting iso-valued features in 4edisional scalar fields,” iProceedings of the |EEE symposium on
Volume visualization, 1998, pp. 103-110.
[13] P. Bhaniramka, R. Wenger, and R. Crawfis, “Isosurfacestantion in any dimension using convex hullsShEZEE Transactions on
Visualization and Computer Graphics, vol. 10, no. 2, pp. 130-141, Mar 2004.

[14]
[15]
[16]
[17]
(18]
[19]
[20]

[21]
[22]

14

Y.-J. Chiang, “Out-of-core isosurface extraction of time-vwagyfields over irregular grids,” ifProceedings of | EEE Misualization, 2003,
pp. 29-36.

H.-W. Shen, “Isosurface extraction in time-varying fields usingraporal hierarchical index tree,” Proceedings of IEEE Visualization,
1998, pp. 159-166.

P. M. Sutton and C. D. Hansen, “Accelerated isosurface extradticime-varying fields,”|EEE Transactions on Visualization and
Computer Graphics, vol. 6, no. 2, pp. 98-107, Apr 2000.

Q. Shi and J. JaJa, “Efficient isosurface extraction for laogdestime-varying data using the persistent hyperoctree (phofyMhACS
TR-2006-01, 2006.

H.-W. Shen, L.-J. Chiang, and K.-L. Ma, “A fast volume renithg algorithm for time-varying fields using a time-space partitioning
(tsp) tree,” inProceedings of |IEEE Visualization, 1999, pp. 371-377.

T. M. Cover and J. A. Thomaglements of Information Theory. John Wiley, 1991.

A. K. Jain, Fundamentals of Digital Image Processing. Prentice Hall, 1989.

H. Samet,The design and analysis of spatial data structures. Addison-Wesley, 1990.

Time-Varying Volume Data Repository, The Five Jets dataset, httpulaswucdavis.ede/ma/ITR/tvdr.html.

Fig. 8. Isosurface of the Richtmyer-Meshkov instability dataset rexbat isovalue=70 and time step=139.

Fig. 9.

Isosurface of the Richtmyer-Meshkov instability dataset cut 8800 over 100-139 time steps at isovalue=70.

15

16

Fig. 10. Isosurface of the Richtmyer-Meshkov instability dataset cuZ+§00 over 100-139 time steps at isovalue=70. (Time axis is
orthogonal to the paper.)

X

Fig. 11. Isosurface of the Five Jets dataset rendered at isov&428Q2 and time step=1200.

X

Fig. 12. Isosurface of the Five Jets dataset cut by Y=60 over 1300-time steps at isovalue=254200.

X

Fig. 13. Isosurface of the Five Jets dataset cut by Z=80 over 1300-time steps at isovalue=254200.

(a) (b) ()

Fig. 14. Isosurfaces of the Five Jets dataset rendered (a) at Bm@)5at Time 58.5, (c) at Time 59 (isovalue=274200).

17

