SRC TR 88-27

Digital Controller Design for
Multivariable Systems with
Structural Closed-Loop
Performance Specifications

by

Evanglelos Zafiriou
and Manfred Morari



INT. J. CONTROL, 1987, voL. 46, No. 6, 2087-2111

Digital controller design for multivariable systems with structural
closed-loop performance specifications

EVANGHELOS ZAFIRIOUt} and MANFRED MORARIY

The problem of the direct design of the closed-loop transfer function matrix is
addressed for multivariable discrete systems. The limitations imposed by unstable
zeros, time delays and the structure associated with these are quantified. A design
procedure is formulated that provides the designer with quantitative measures for
evaluating the tradeoffs between different closed-loop interaction structures and
durations. The problem of intersample rippling is also considered. The procedure
requires only linear-algebra operations, includes the eventual construction of the
feedback controller in state space, and is presented in a way that allows its
straightforward computer implementation.

1. Introduction

One can find in the control literature numerous different types of criteria for
synthesizing or evaluating a control system. In most cases a number of performance
considerations is lumped together into some objective function, which is then
optimized with respect to the control system. Such approaches have been proven
satisfactory in many cases. However there are situations in which one cannot simply
optimize a single scalar objective function. In process control, such a case is that of
setpoint tracking for multivariable systems. Quite often, it is necessary to look at the
closed-foop transfer function matrix relating the setpoints to the process outputs and
require that certain elements of the matrix are equal to zero, so that setpoint changes
in some outputs do not upset other important ones. Also, one may sometimes wish to
allow such closed-loop interactions in order to improve setpoint tracking for the
important outputs at the expense of upsetting less valuable ones. The same arguments
carry over to certain cases of disturbance rejection. The paper treats setpoint tracking
and disturbance rejection in a uniform way.

2. Achievable input/output mappings

The discretized plant is described by the transfer matrix P(z), which is obtained by
adding a zero-order hold in front of the continuous plant and then taking the
z-transform. P(z) is assumed to be square.

Let H,,(z) denote the transfer matrix between output o and input i. We can define
the following relations with respect to Fig. 1.

H,, =C(+ PC)™! (1
Hudz'——Hur (2)
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Figure 1. Feedback control structure.

H,=PC(I+PC)"'=PH,, (3)
Hy=(+PC) '=I1-H,=I—-PH, (4)

From (4) it follows that if the control system provides good setpoint tracking
(H,,r ~r) then one also has good disturbance rejection (H,qd = 0) provided that the
disturbance d is of a type similar to the setpoint r. If this is not the case, then one has to
design a two-degree-of-freedom controller (Vidyasagar 1985) by separately designing
two different controllers C, one for setpoint tracking and one for disturbance rejection,
and then appropriately combining them into one unified block structure (see, for
example, Zafiriou and Morari 1987). Hence it is sufficient to cover here only the design
of C (Fig. 1) for good setpoint tracking or disturbance rejection.
From (1) we can obtain

CZIIUI(I——-I)I—Iur)_1 (5)
and so designing C is equivalent to designing H,,, which is the controller of the
internal model control structure (Garcia and Morari 1982) or the parameter of the Q-
parametrization (Zames 1981). It can be shown (e.g. Callier and Desoer 1982) that

necessary and sufficient conditions for the internal stability of the system in Fig. 1 are
as follows.

Condition C.1

(i) H,, stable
(ii) PH,, stable
(iti) H,, P stable
(iv) (I — PH,)P stable

C.1 (ii), (iii), (iv) are implied by C.1 (i) if P is stable. Hence the foliowing assumption,
which will be made throughout this paper allows us to consider only C.1 (i).

Assumption A.1
P is stable.

It should be pointed out however, that for setpoint tracking, the above assumption
need not be made. In that case, the use of the two-degree-of-freedom structure makes
it sufficient to consider C.1 (i) only, even when P is unstable. The problem is then
reduced to the one discussed in this paper in which A.1 holds (Vidyasagar 1985,
Zafiriou and Morari 1987).

The controller C(z) has to be causal, since future measurements of the plant output
are not known. It follows from (5) that an equivalent condition is as follows.

Condition C.2
H,, causal.
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One can see from the above discussion that the control objective can be reduced to
finding an H,(z) with the desired structure and properties, which can be produced
through (3) by an H,,(z) that satisfies C.1 (i) and C.2. However, looking only at H,,(z)
for checking the performance of the control system may be insufficient because of the
phenomenon of intersample rippling. This phenomenon is present when H,,(z) has
poles near (— 1, 0) which are cancelied by the zeros of P(z) in (3). Hence, in order to
make it sufficient to judge performance by looking at H,(z) only, H,(z) must also
satisfy the following condition.

Condition C.3
H,, cancels no zeros of P that are ‘near’ (—1,0).

One can use a number of different regions on the z-plane to define ‘near’ { —1, 0)
(Astrém and Wittenmark 1984). A simple and satisfactory way in practice is to
include all zeros with negative real parts (Zafiriou and Morari 1985).

3. Characterization of all permissible H,,(2)
From (3) it follows that

H,=P7'H, (6)

Hence the conditions of § 2 on H,, can be translated into the following condition on
H

yr-
Condition C4

H,, is a stable, causal transfer matrix that makes P~ 'H,, causal and cancels the
poles of P~ (zeros of P) that are outside the unit circle or near (—1, 0).

The time delays in P(z), which make P~ ! non-causal, appear as zeros at infinity.
We shall now exploit this fact to make the treatment of time delays and undesirable
zeros of P uniform. The transformation A =z~! will be used. Define

~ def

P(A) = P(A~ ") P(2) (7

def

Hyr(;") =Hyr(l—1)HHyr(z) (8)

Letay, ..., a, be the zeros of P(z), which, according to C.4, we do not wish to appear as
poles of P(z) "' H,(z). These will appear in P(4)~' as poles at b,, ..., b, where

bi=—, i=1,...f (9)

The time delays in P(z) will give rise to zeros at 0 i‘n P(}) and consequently the non-
causal terms in P(z) ! will produce poles at 0 in P(4) ~'. Hence C.4 is equivalent to
C.5 as follows.

Condition C.5

(i) H,(2) is a stable, causal transfer matrix
(iiy P(2)~'H,.(A) has no poles at by, by, ..., b;.
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In the above, the following notation has been used:

by=0 (10)
Some additional notation and definitions are now needed. P(z) (and P(1)) is assumed
to have dimension r x r and to be of normal rank r. In the following, it will be assumed
that P(4) has no poles at b, ..., b ¢ This is certainly the case for by, since all elements
of P(z) are proper, but, in general, P(z) may have poles at a,, ..., a, resulting in poles
at by, ..., b, in P(A). The existence of poles and zeros at the same location is a clearly
multivariable characteristic (Kailath 1980). The assumption that this is not the case
for P(z) serves considerably to simplify the notation and it is not restrictive since such
a phenomenon is caused by exact cancellations in det [ P(z)] which will not happen if a
slight perturbation in the terms of P(z) is introduced. Let {ny, n,,...,n,} be a set of
integers greater than or equal to zero such that

p(k)(bi)zoa ((k=09---a ni—'l)ﬁi=0s~-,f) (11)
rank [P")(b)] #0, i=0,....f (12)

where P®(J)is the kth derivative of P(4). Also, let m,, i =0, ..., /, be the order of the
zero b; of P(2), as this order is defined from the Smith—McMillan form of P(1) (Desoer
and Schulman 1974). The computation of m; without going through the Smith—
McMillan form is briefly discussed in § 4.2. From (11), (12) and the definition of the
order of a zero, it follows that

mzn, i=0,..f (13)

The following theorem quantifies C.5 (ii).

Theorem 1
Condition C.5 (ii) holds if and only if both (a) and (b) hold, as follows:
(a) Hy,(D)=Q=b)"H(A), i=0,..f

where H,(4) is a rational r x r matrix in 4, with no poles at b;;
(b) for any i =0, ..., f such that m; > n,, the columns of

T
H(O) N Flmi—ni~ 1) \T
[ ey TR L ]
are in the column space of
i15"""(b,‘) 0 0 ]
n;!
- 1 .
P+ D(p, — PW(p, 0
Ml.d;f (n; 4+ 1)! (b) n;! (b) (14)
1 [T p— Pmi=D(hy —I“P"‘"(b-)
| (m;— 1)! Yo (m—2)! ) n;! "

where the superscript (k) indicates the kth derivative and T indicates matrix
transposition.
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Proof
See Appendix A.

The value of Theorem 1 lies in the fact that it provides a characterization of all
acceptable H ,+(4) without requiring the inversion of P(4). The theorem applies to the
general case. However in practice one is usually faced with a situation where the order
of the zeros ay, ..., a, of the model P(z) is equal to 1. Hence of the zeros by, b, ..., b, of
P(A) only b, has an order larger than 1. The fact that b, is equal to zero (see (10)) can
then be used to obtain a simpler form for Theorem 1. The following two corollaries
describe these situations.

Corollary 1

Let the order of the zero g; of P(z) be equal to one. Then P 'H 4:(4) has no poles
at b, if and only if the columns of H,,(b;) are in the column space of P(b;) (= P(a;)).

Proof
The proof follows directly from Theorem 1 for m; = 1.

Corollary 2
Let P(z) have the impulse response coefficient description

P(z)=z"NMAy+ A, z7 + 4,272+ ) (15)
where
rank [A4,]1#0 (16)
N20 (17
Then
ng=N (18)
A, .. 0
Mo=| '+ - (19)
Apo1-n - Ao

and P())"'H y(4) has no poles at b, = 0 if and only if both (a) and (b) hold, as follows:
(a) I-?y,(/l) = AN H,(4) where H () is a rational matrix in 2 with no poles at b, = 0;

(b) if my > N, the columns of

T
[ﬁg’)(O)T THENT “(O)T]

(mg— N 1)

are in the column space of M.

Proof

From (7), we obtain P() = P(A™') = i¥(A, + A, 4+ A,A* + ...). Equations (18)
and (19) can now be obtained by repeated differentiation and evaluation at A = 0. The
rest follows as a restatement of Theorem 1 for this special case.
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whose dimension can grow very large, might be difficult and time consuming. Van
Dooren et al. (1979) have exploited the Toeplitz matrix form of M, to develop a fast
recursive algorithm that performs the rank search in a numerically stable way. In each
step, the rank of M, , is computed for some k by obtaining the SVD of an r x r matrix.
At the same time, M, , is reduced to a form with linearly independent columns. Hence,
to obtain m; and an orthonormal basis for the column space of M; one has to obtain
the SVD of only (m; — n; + 1) matrices of dimension r x r.

4.3. Design of a column of H,(2)

The requirements of Theorem 1 apply to each column of H,, separately, and so
each column can be designed independently. Let us write

Hy(z)=[h(2) ... h(2)] (24)
where h;(z) has the dimension r x 1, j=1, ..., r. Also let
hi() =hy(A™ Y eohyz), j=1,..,r (25)

We shall now proceed with the design of A ;(4) for some j. Let U; be a matrix whose
columns form an orthonormal basis for the column space of M; given in (14). U; can
be obtained from M; by the procedure of Van Dooren et al. (1979), briefly discussed in
§4.2. Also let

p;=rank [M;}=rank [U,] (26)
According to Theorem 1 we must have
hi(2) =(A—b)"h; (%), i=0,..,f (27)
where
mi= [ﬁﬁf’.-’(bi)f mﬁ%"“”wi)f (28)
is a linear combination of the columns of U, i.e.
n=Uiki (29)

where ! is any vector of dimension p,. The freedom allowed in the choice of y} will
now be gradually reduced by requiring certain properties for (A), according to the
designer’s specifications and decisions. First, the limitations imposed by the desired
structure of h; will be quantified. Then, the undesirable zeros and time delays that
have to be present in the diagonal element will be determined and the design of this
element will be reduced to that of an SISO system. Finally, the non-diagonal elements
will be designed so that the closed-loop interactions are minimized. It should be
pointed out that if for some i we have m; = n;, then part (b) of Theorem 1 and therefore
(29) do not apply for that i and so all equations in this section corresponding to that
particular i should be ignored.

4.3.1. Structure of h;. Let the design specification be that the I,,I,, ..., I, elements of
h;(z) be identically equal to zero, where

g<r—1 (30)
L#j, k=1,...g (31)

s e et ety P

PR — — e o e
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We shall use [ to denote the set

def

1=y, L} (32)
Define
T={1,2,...,r}={j} —I (33)
Let
e=[0 .. 010 .. 0 (34)
where the 1 is the kth element and e, has dimension r x 1.
Define
e,
P (35)
e,
A diag[€,...,e'], i=1,....f (36)
(m; — ng)

In order for the specified elements of h; to be zero, the vector x} must solve:

Ain 7i=0
or
AUii=0 (37
Let
pt=rank [AIM;] =rank [AlU,] (38)
Then p; > p!. Hence the null space of AU, has dimension
&=pi—pi (39)

Let V! be a matrix whose columns form an orthonormal basis for the null space of
AlU,. Both V}/} and p! can be obtained from an SVD of AlU;. Then the solutions to (37)
are:

x=Vix (40)
where ¥? can be any vector of dimension & when ¢! # 0. If & = 0 then of course V/ =0
and y} =0.

Hence we must have
r]j.iZUiVilXiz (41)

where n;; was defined in (28). Note that (41) includes the case & =0, where ¥/ =0
yields #;,;, =0.

4.3.2. Diagonal element of h;. We shall now proceed with the determination of
the jth element of h;. Up to this point, no assumption has been made on the order
of the zeros by, b, ..., b;. However, if more than one zero has order larger than 1, then
the number of possible choices to be examined at this point could grow enormously.
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On the other hand, in practice one is usually faced with a situation where the order
and degree (as defined from the Smith—McMillan form—see Desoer and Schulman
1974 and Lemma AA.I in Appendix A) of the zeros a;, ..., a; of P(z) and therefore of the
zeros by, ..., b, of P(1), is equal to 1. The following assumption will be made here to
simplify the procedure.

Assumption A.2
The degree of the zeros a,, ..., a; of P(z) is equal to 1.

No assumption is made however about the zero b, = 0 of P(1) corresponding to
time delays in P(z). We shall examine the two cases separately.

Case (a) b, i=1,...f

It follows from Assumption A.2 that for the order of the zeros m; we have m; = 1.
Also since r > 2, Assumption A.2 implies that n; = 0. Then from (27)—(29) it follows
that since 0 is a linear combination of the columns of U, the highest power of (1 — b;)
that is sufficient to be included in the elements of / (A) is (4 — b;)*. However, according
to Rule 1 we wish to have the smallest possible power in the jth element, and that is
(A—1b,)°=1. In order for this to be possible, the following equation must have
a solution

ejf;i=1
or
qU V=1 (42)
where ¢; is defined in (34). Equation (42) will have no solution only if the matrix
e] U,V is identically zero. If this happens for some i, then the factor (4 — b;) must be
included in the jth element of A ;(4). Let us assume that this matrix is zero only for
i=1,...,¢,. Also let the zeros by, ..., by, (¢, < ¢;) have positive real part and the
zeros by, .1, ..., by, have negative real part. Then, according to Rule 2, the factor
1=b)(A=b) & (A-b)
T=b) (A~ b V) i=gas1 (1—by)

. 92 (
to) = [1¢ (43)
should be included in the jth element.

Note that one does not always have to follow Rule 1. One may wish to include the
factor (A — b;) for some i in the jth element even when one does not have to do it, if that
will result in significantly smaller interactions (non-diagonal elements) and if the jth
output is not so important. The procedure for determining the magnitude of the
interactions will then be exactly the same (see § 4.3.3) and at the end the designer can
decide whether the inclusion of (4 — b;) pays off. A simple qualitative way to figure out
a priori whether it may pay off, without going through the whole design procedure, is
the following. For m; = 1 and n; = 0 we have rank [U,;] =r — 1. U, consists of the first
(r — 1) columns of the left singular vector matrix in an SVD of M,;. The rth column
u; is orthogonal to all the columns of U,. If the jth element of ; is large compared with
the kth elements, where k belongs to the set T defined in (33), then it is likely that the
inclusion of (4 — b;) in the jth element will result in significantly smaller interactions in
the non-zero non-diagonal elements of h;.

e e e

e £t gt i e 2
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Case (b) bg(=0) (Time delays)
Define
L(A) = 2L (D) (44)
where 7 is an integer and {,(4) is given by (43). Then, according to Rule 1 we need to
find the smallest 7 such that { (1) is possible as the jth element of ﬁjvo(l). From (28),

(29) it follows that in order for a t to be possible, the following equation must have a
solution

Eifj0 =2,
or
& UoVoxs =2, (45)
where
¢;=diag [e], ..., €] ] (46)
and
T
Z = [Cﬁo)(()) mfim"_"r”(o):l (47)
Hence one can obtain the smallest possible 7 as
1o =min {t € No|rank [¢;U, V5| Z,] = rank [¢;U, V51} (48)

where N, is the set of positive integers, including zero.

Still, contrary to Rule 1 one may wish to choose a t larger than t, if that results in
smaller interactions for a given set I. Equation (45) should, of course, have a solution
for this 7, i.e. the rank condition in (48) should hold. In the following paragraph t,, is
used, but any other possible T can be used instead without affecting the procedure for
determining the magnitude of the interactions in § 4.3.3.

The jth element of ﬁj(l) has been completely determined at this point as
el k(1) = AN (%) (49)

Let us now quantify the limitations that the selection of this diagonal element imposes
on y?, i=0,1,...,f The following equations have to be satisfied.

UV R =bll(b), i=1,.f (50)
LUVt =Z, (51)

Let ¥?,i=0,...,f, be a particular solution for each corresponding equation, obtained
with some method for solving systems of linear equations. Alsolet W/, i=1,...,f bea
matrix whose columns form an orthonormal basis for the null space of ] U, V/, and
W; the corresponding matrix for ¢;U, V. These matrices and their ranks w!, can be
obtained from an SVD. Then the y? that solve the set of equations (50), (51) are:

=+ W, i=0,1,..f (52)

where x} is any vector of dimension wi, when w! = 0. If w! = 0 then W/ =0 and ¥ = x?.
From (41) and (52) we obtain

n=UVid+UVIWiE, i=01,..,f (53)
Js i
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4.3.3. Non-diagonal elements of h;. The part of the procedure that was developed
in § 4.3.1 makes sure that the elements of h; corresponding to the set [ defined in (32)
are identically equal to zero. We shall now proceed to compute the terms in the non-
zero non-diagonal elements of h;, i.c. the elements corresponding to the set I, defined
in (33). To do so, the freedom allowed in the choice of x? will be used.

LetT;, I, ..., I, be the elements of the set I According to Rule 3, the I th element of
ﬁj(l) should be of the form

def

eI h(2) = Bu(A) = (Bro+ Ben A+ .. + B AN1—2), k=1,..,q9 (59

From Corollary 2 (a) it follows that
o=no=N, k=1,...,q (55)

The values of §, 6. ..., Bi.,, k=1, ..., g will be computed from (28) and (53). Note that
any of the § can be zero, including the first ones, 4, B, etc.

Define

_e{_

l—def .

e=|: (56)
e
Sl—‘_

Tdef .

£= (57)
&,

where ¢ is defined as in (46) for I, instead of j. As explained in Case 1 of § 4.3.2 we have
n;=0fori=1,...,[  From (27), (28), (54), (55) it follows that

By (by) 01,
eTr’j,i= =dlag [yi.v’ [XRE ?i.v} 3 l: 1’ ’f (58)
Bq(bi) q eq,v
where
Pin S [(1=b)bY  (1=bIB 1 (1 =b)b¥ "], i=1..f  (59)
def
Ok.v = [ﬁk.o ﬂk.l Bk.v]T9 k=1,..4 (60)
It also follows that
B 0.,
dnjo=1 ' |=diag[l,,..., ]| : (61)
By q 0,.,
where
Bl? = [ﬂk.o (ﬁk.l - ﬁk.O) (ﬂk,mq—N—l - ﬁk.mo—n'—z)]T k=1,.., q (62)

Br,=0 for u>v, k=1,.,4q (63)
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and I', is a matrix containing the first v+ 1 columns of [T 0 0 0 ..] with
1 00 .. 0 0 0]
—1 1 0 ... 0 0 0
= 0 -1 1 ... 0 00 (64)

[ 00 00 . 0 =1 1 fm-myimoem

Then the use of (53) in (58), (61) and combination of the resulting equations yields:

K,0,=T,+T,X (65)
where
6l.v
0,=| : (66)
0,
[ diag[T,,...,T,] |
diag [yl,vﬁ cery yl,v]
K2 : (67)
dlag [yf.v’ eeey yf.v]
\_“W_J
q —3
def
X=[x)" )" - T (68)
ﬁon Vaxo
def U Vi (69)
1= .
erUf Vixs
T, diag [eU, Vi W3, dU VW, .., U, VIWE] (70)
Equation (65) can also be written as
0,
[KVI—TzJI:X] =T, (71)

Hence the smallest possible v for h; and for the particular choice of the set [ can be
obtained as the smallest v for which (71) has a solution, i.e.

Vmin = min {v e Ny|rank [K,| — T,]=rank [K,| - T5| T, ]} (72)

However instead of trying to minimize v, a better alternative to use a larger v and use
the extra degrees of freedom to minimize the sum of the squared errors for the step
response of the [, ..., I, system outputs to the jth external input ( jth element of r or d).
This means minimizing

e 4 S
JE 3 (qsk % /33.”> = 0T QT DY, (73)
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where ¢,, k=1,..., g are optional weights (positive real numbers) and

@ =diag [¢p1? 1,4 1, .0s L2, 1] (74)

where I, is the (v + 1) x (v + 1) identity matrix.
Equation (65) can be written as

K@ H®0,)=T, + T, X (75)

Hence the @6, that minimizes J, can be obtained as the minimum norm solution to
(75). For v large enough, K, is full rank, i.e. rank [K,] = g(f + mq — N), and for a
given X, the solution is

0(X) =@ 'FXF,F¥) YT+ T, X) (76)
where

F,EK,071 (77)
and the superscript * indicates complex conjugate transpose. Note that although the
matrices involved may be complex, the solution 8, will be real because any compiex
zeros of P(z) come in complex conjugate pairs. However the form in which the
solution is given in (76) may cause numerical problems in some cases. One can avoid
them by computing the pseudo-inverse Fi = F¥(F,F*)™! from an SVD of F, (Stewart
1973, p. 324).

One can now compute X by minimizing J,(X) for the solution 6,(X) of (76). From
(76) we obtain

J(X) = (T + GX)MF,FH) T + TX) =(T + LX)XFI)*F(T + T,X)  (78)
By setting the gradient of J (X) equal to zero we get
THF)*FIT,X = - T}F)*FIT, (79)

from which a solution X which minimizes J,(X) can be obtained. The optimum 8, can
then be computed from (76).

It is clear that by increasing v, the value of the obtained minimum of J, will either
be reduced or it will remain the same. Hence the designer has the option to choose
interactions with smaller magnitude in exchange for a longer duration of the
interactions. The knowledge of the value of this minimum at the limit as v — oo would
be quite helpful in making this decision. From (78) we see that we need to compute
F,F¥ as v— co0. The fact that the elements of y;,, i=1, ..., f, are terms in a geometric
progression allows us to do so easily when by, ..., b, are inside the unit circle. We
cannot do so however if some of them are outside the unit circle, i.e. when some of the
undesirable zeros of P(z) are inside the unit circle. This is actually a situation where for
numerical reasons it would be strongly recommended to compute F! from an SVD of
F,, as mentioned above.

5. Construction of H,(z) and C(z)
After the desired H,,(z) has been designed, H,(z) can be obtained from (80):

H,.(2) = P(2)" ' H,.(2) (80)
Substitution of (80) into (5) yields:
C(z)=H, () [I - H,(2)]"! (81)

R e—
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If one attempts to construct H,,(z) and C(z) from (6), (81) by doing the computations
in terms of transfer function matrices, the procedure would be extremely tedious.
Instead, the computations can be made quite simply by working in the state space.
One can obtain realizations of P(z), H,(z) to get the state space descriptions

P(z) = C(zI — A)"'B+D (82)
H,(2) = Co(zl — Ag) "' By + Dy (83)
Here, P(z) represents a physical system and so it can be assumed to be strictly proper,

i.e. D =0. Then, from Corollary 2 it follows that D, = 0. Construction of H,(z), C(z)
involves the following steps.

Step 1. Inversion of P(z).

Silverman (1969) developed a computationally simple algorithm for the inversion
of a linear multivariable system whose state space description is known., The result of
the inversion will be

P(z) ' =(Cy(zI1 — A;) B, + Dy )(Ko + Ky z + ... K, 2™)zN (84)
where
A, =A—BD-'C (85)
B,=BD"! (86)
C,=—D"'C (87)
D, =D (88)

mg is the order of the zero b, of P(4) obtained from Corollary 2 and N is defined in
(15). The matrices C, D, K,,...,K,, are determined with Silverman’s (1969)
procedure.

Step 2. Computation of H,(z).
The following Theorem will be used.

Theorem 3
Let
G(z)=C(zI —A) " 'B+D (89)
then
k
G(z)z* = C(zl — A) "1 A*B + z CA' 'BF '+ Dz*, Vkz1 (90)
=1

Proof

See Appendix B.

We can now apply Theorem 3 to P(z) ™!, to obtain

P(2)" = Cy(al — A;) " (Z A';*”BlKl)
i=0
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mg i+ N i mq X
+ 3 Y CAT'B K 2N+ Y DKt
i=0

i=01=1

= Cz(ZI — AZ)—IBZ +D2_0 + Dz.lz + ...+ Dz,mu+sz0+N (91)

where
A=A, (92)
B, = ."_fo A*VBK, (93)
C,=C, (94)
Dyi= Eo CLAV=1FHB K, k=0,.., N—1 (95)

DZ,k=D1Kk—N+ Z ClAl'v_l—k+iB1K,-, k=N,...,N+m0 (96)

i=k—N+1

Then from (6), (83), (91) we obtain
H, (2) =(Cy(zl - Az)_leco +D; oCo)(zl — Ao)~1 B,

mo+ N R
+< y Dz,,.z'> Colzl — Ay) "1 B, (97)
i=1

Application of Theorem 3 on the second term of the right-hand side yields the term

mo+ N mo+N . mg+N—1
( Dz_,-COA'o>(ZI —Ay) 'By + Z D, ;Co Ay "By + Z Y,
=1 i=1 i=1

Zl

13

where the fact (zI — A)™' A* = A*(z1 — A)~' was used. However, by construction,
P(z)"'H(z) is proper. Therefore ¥; =0 for all i=1,...,my + N — 1. Hence

mo+ N .
Hy.(2) = <C2(ZI —A,) 1By Co+ Dy o Co + Z Dz,icoAb)
=y

mo+ N i
(z1 — Ag) ' By + Z D, ;Co AL 1B, (98)
i=1

All that is necessary now is to compute the product of two proper transfer function
matrices, whose state space descriptions are known. The following Theorem takes
care of that,

Theorem 4 (Doyle 1984)
Let

G,(z)=Cy(z2I — A;)"*B, + D, (99)

G,(2)=Cy(zl — A,) " 'B,+ D, (100)
then

G,(2)G,y(2) =C(zl —A)"'B+D (101)
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A= Ar Bl B= B: D C=[C,|D,C,}, D=[ ]
¢ , : , , D,D
0 R BZ 1 1“2 142

Application of Theorem 4 to (98) yields a state-space description for H,.

where

Step 3. Computation of C(z)

All that is needed is to compute a state-space description of (I — H,(z)) ~'. After
that, application of Theorem 4 to (81) will give a state-space description for C(z).
From (83) we obtain

I—H,(2) = —Co(zI —Ag) " 'Bo +1 (102)
and a state-space description of (I — H,(z)) ™' can easily be computed as
(I —H,(2)) ' =Colzl — (A + B, Cy)) ' By +1 (103)

The result of the procedure described is the state-space descriptions of H,.(z) and
C(z). One can always obtain a matrix transfer function form, but since the control law
can easily be implemented with a state-space description, it would be advisable to
avoid further computations by implementing it as such. It is important to point out,
however, that the realizations obtained for H,(z) and C(z) are not minimal. It is
essential to obtain minimal realizations of them before the implementation so that the
undesirable zeros ay, ..., a, of P(z) do not appear as poles of H(z2).

6. Ilustrations

The first example in this section is used to illustrate the tradeoff between the time
duration of the closed-loop interactions and the magnitude of the sum-of-squared
errors that they cause. This simple example is also used to demonstrate the procedure
step by step. The second example examines different structures for H,, and illustrates
how the structure associated with a zero outside the UC can produce large or small
closed-loop interactions, depending on the structure chosen for H,,.

6.1. Example 1
Consider the system

06 05
P2) z—04 z-05 104
Z) =
g 05 06 (109
z—05 z—-04

Computation of the roots of det [ P(z)] shows that the system has one zero outside the
UC, at z = 1-547. Garcia and Morari (1985) pointed out that an acceptable lower
triangular H,, is

z7t 0

Hy ,(2)= —z 4 1:547

(105)
3095(1 —z~ 1)1 2%
(=272 157,712

-1
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Clearly the interactions in output 2 for a setpoint change in output 1 are very large in
magnitude (over 300% of the setpoint change) although of short duration.

We shall now use the procedure of § 4.3 to design a lower triangular H,(z). For the
time delays (bo=0) we have ny=my=1. Hence part (b) of Theorem 1 (or
Corollary 2) does not apply for i =0 and therefore (29) does not apply for i = 0. Thus
none of the equations of § 4.3 that correspond to i = 0 should be considered. For the
zero a, = 1-547 (b, = a; '), we have n; =0, m; = 1. Also

0675 | gec [ 1
U, = = (106)
0739 Uy

6.1.1. Design of hi(z). In this case, | is the empty set and = {2}. Hence p| =0 and
therefore & = 1, V{ = 1. Thus (42) has a solution for i = 1 and as a result b, should not
be included in {4 (4). Thus from (43) it follows that {,(4) = 1. The case of b, should not
be considered as mentioned above. Hence {, (4) = {,(4) = 1 and from (49) it follows
that the first element of the column (diagonal element) is equal to A (= z~!). Then (50)
needs to be satisfied for i = 1. Since the null space of e] U, V] is the empty set, it follows
that W} =0 and

and p, = 1.

wn=1= w (107)
We shall now proceed with the design of the second element of the column. In (54),
(55) we have g =1, [, = 2, 8, = 1. In (67), (69) the part corresponding to b, is omitted
and so from (59), (67), (69), (107) it follows that

Kv=[(1_b1)b1 (I_bl)b% (1“b1)b‘{“] (108)
b
T, =22 (109)
Uy
From W = 0 and (70) it follows that T, = 0. In this case ® = I and from (76) we obtain
0,=K¥K,K¥™'T, (110)

Equations (59), (73), (108)—(110) yield

_ (1 +b1)b{ )
(1=b1""2)u,’

J = (1+by)u3
T (L=by) (1= b7 )u

B, =0,...,v (111)

(112)

For v = 0 we get §, o = 3:095, i.e. the design in (105). However the error caused by the
interactions in this case is J, = 9-58, which is quite large. Increasing the duration v of
the interactions reduces J, as (112) indicates. Since b; < 1 we can compute the limit:

2
fim g, = U+ 0w

= " £ =558 (113
= =6 )

The designer can of course select a relatively small v, for which J is sufficiently close to
the limit given by (113). A plot of J, as a function of v is given in Fig. 2. One can see
that a selection of v =4, is satisfactory. It yields J, = 565. For v =4, the second
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9 —_

8

5 T 1 T T 1
0 2 4 6 8 10

Figure 2. Example 1; J, for column 1.

element of h (z) becomes equal to (1-82 + 118271 4+ 0-76272 + 049273 + 03227 %)
(1—-z"YHz 1,

6.1.2. Design of h,(z). Since we require the first element of the column to be zero,
we have I = {1} and therefore Tis the empty set. Hence p' = 1, &, =0, V{ = 0. Then (42)
does not have a solution for i = 1. As a result the second element (diagonal element)
has to have a zero at A =b,. From (43) we obtain

(1-by)(A—by)
(1-b)(A—bi")

Then, since {, (1) = {((4),(49) implies that the diagonal element is A{,(4). Substitution
of z7! for A4 and a, (= 1-547) for by ' produces the expression in (105).

o(4) =

(114)

6.2. Example 2
Consider the system:

090 050  _, 1-00
7—035 2-035" Z—035
|20, s80 o060 _,
PA=| —060° 7-060° 7-060° (113)
0-40 —0:45 100 _,
| 22050 z-050 z-050"

The computation of the roots of det [P(z)] yields one zero outside the UC at
z=a; = 1-3088. We shall limit ourselves to the design of the first column of H,,.
Two different structures will be examined:

X x
hy=[x] or |0 (116)
0 X

The SVD of P(a,) yields the following left singular vector matrix:
0125  —-0700 —0703
U=| 0992 0-0689 0-107 (117)
—00267 —0711 0703
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The two first columns of U form U,. The third, u, is orthogonal to U,. Then from
Corollary 1 it follows that u*H,(a;)=0 for all acceptable H,,. Equation (117)
suggests that if the first structure of (116) is selected, the value of the non-diagonal
element at z = a, will have to be larger than the one for the second structure, because
of the smaller corresponding element in u.

The consideration of the time delays (b,) makes the situation even more
favourable for the second structure. We have ny =1, mg =2 and

1 0
Up=|0 0 (118)
0 1

The fact that the second row of U, is zero allows in the case of the second structure
satisfaction of (37) for i = 0 without using any of the available degrees of freedom. This
results in a non-zero wh and T;, and the additional freedom in choosing 3 through
(79) reduces J, even more.

The above qualitative observations are confirmed from the quantitative results of
the design procedure. The corresponding plots of J, versus v shown in Fig. 3 for both
structures of (116) show a huge difference in the closed-loop interactions of the two
structures.

1500
1300
1100 —

900 —

700 —

500 T T T T ]

12
11—

10—

Figure 3. Example 2; J, for column 1: (a) by =[x x O]%(h) b, =[x 0 xJ"
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7. Conclusions

The results in this paper quantify the effects of the undesirable zeros and time
delays of a multivariable discrete system on its closed-loop performance in a way that
can be used for the direct design of the closed-loop transfer function matrix. The
designer is provided with quantitative criteria for comparing different designs and
evaluating the tradeoffs. The entire procedure is based on linear-algebra operations
and its implementation on the computer is straightforward.

The design is based on the knowledge of a system model. Hence it may not be
robust to model-plant mismatch. However it can be used in the first step of the
controller design for the standard two-step internal model control design procedure,
in which robustness properties are incorporated in the second step with the design of a
low pass filter. Details on the filter design can be found in the literature (Zafiriou and
Morari 1986 b, Zafiriou 1987).

Appendix A
Proof of Theorem 1
The following lemma will be used in the proof.

Lemma A.1 (Van Dooren et al. 1979, Vandewalle and Dewilde 1974)

Let a rational matrix A(A) of normal rank r have the following Laurent expansion
at o

A= 3, (=t Ae) (A1)
Define
A(0) A_jii(0) ... Ao
0 A, e Ay
Ti(e) = ) (@) (A2)
0 0 o A_i(®)
pul#) = rank [T()] — rank [Ty ()] (A3)

Let p and z be a pole and a zero respectively of A(4) of orders w,, w, and degrees &,
d,, as these are defined from the Smith—McMillan form of A(4) (Van Dooren et al.
1979, Desoer and Schulman 1974).

The following hold:

(i) @, = —min {k|p, # 0}
(i) w,=min {k |p,=r}

(ii)) 5,= 3 p

() 6.~ ¥ (r=p)

Proof of the Theorem
P(2)~! has as its poles exactly the zeros of P(4) with the same order and degree
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(Desoer and Schulman 1974). Hence, since b; is a zero of P(A) of order m, it is also a
pole of P(1)~! and we can write

P = Z(l b) ¥R+ Gi(d), i=0,1,...f (A4
where

rank [Ri,m;] # 09 i= Oa 13 af (A 5)

and G;(4) has no poles at b;, i=0, 1, ..., 1.
Postmultiplication of (A 4) with ﬁy,(,l) yields

P()™'H,.(3) = Z (A=) TRy Hye(A) + G H,.(2) (A6)

Now take a partial fraction expansion for each term in the sum of the right-hand side
of (A 6) to obtain:

PO B0 = ¥, [z (1= b) Ry A (b) + Rk, m]

+ G H,.(2) = Z ((,1 b))~ Z Rin HS9(b; ))

1
h=1!
+ 5 RiGrsh) + Gi(DH,(2) A7)

where G, ;(4) has no poles at b;. Also recall that G;(4) has no poles at b, either. Hence
in order for Condition C.5 (ii) to hold, we must have for all i=0,...,f:

1
R; H"‘ B(b;) =0 =1,...,m
z lh(h k)‘ ( l) ] k 1, ’ml (A8)
Satisfaction of (A 8) is equivalent to requiring that the columns of

- 1
©)pT (mi—1)(p\T |T
[H,, (b,) ...(mi_l)!H,, (b,) }

are in the null space of N;, where:

Rim, 0 0
Ni(,;f Ri‘,',,i_l R,-:,,,,. 0 (A9)
R R o Rim
We shall now proceed to determine the nlill space of N;.
Postmultiply both sides of (A 4) with P(1) to obtain:
2 )% R, B(A) + G{(2)P(A) (A 10)

Since I has no poles at b, ..., by, taking a partial fraction expansion leads to a
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condition similar to (A 8), in exactly the same manner. Hence (A 10) yields

m 1 A
S R PIB) =0, k=1 (A1)

The equations implied by (A 11) for k=1, ..., m; can be put together in matrix form:

. 50)(p )T
MP o 0 PO, Y

L_Y_J

-1

T
pm-n(bi,r] —0, I=1,.um (A12)

The equations obtained from (A 12) for I=1,..., m; can be written together as:

N,L,=0, i=0,....f (A 13)
where
PO®,) 0 0]
PD(by) POb,) 0
L= : ; : (A 14)
L_pmongy L pmeng) o po,)
| (m;— 1! (m; —2)! ]

Hence the column space of L; is a subspace of the null space of N;. It will now be
shown that it is exactly the null space of N;.

As explained earlier, the order w, of the pole b; of P(2)~'is equal to the order m; of
the zero b; of P(1), ie.:

w,(b) =m; (A 15)

Lemma A.1 will now be applied to A(3) = P(1) !, for a = b;. From (A 1), (A 4), (A 5) it
follows that I=m; and A_,=R;,; for k=1,...,m;. By using (A 15) and Lemma
A.1 (iii), we obtain

d,(b;) = k;Z_l pi(b;) = rank [T_,(b;)] = rank [N;] (A 16)

since T,,,_ (b;) =0and T_(b;) can be obtained from N, simply by permuting its rows
and columns.
By definition, the order w, of the zero b, of P(1) is equal to m;:
o (b} =m; (A17)

Lemma A.1 will now be applied on A(4) = P(4), for « = b,. In this case, since P(4) is
assumed to have no poles at b;, we have <0 and 4, =(1/k)P®(b,) for k=1, ...,
m— 1. By using (A 17) and Lemma A.1 (iv), we obtain

5,60 = 3, (=B = % (1= pulby)

=mr—rank [T, _,(b;}] =m;r —rank [L;] (A 18)

since from Lemma A.1 (ii) we have p,,,(b;) =r, and we also have T_,(b;) = 0. T,,, -, (b;)
can be obtained from L; by permutjng its rows and columns.
The degree d, of the zero b; of P(4) is the same as the degree &, of the pole b; of
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P(2)~ ! and so from (A 16), (A 18) we obtain
rank [N;] + rank [L,]=m;r (A 19)

However, N; and L, are matrices of dimension m;r x m;r. Therefore (A 13) and (A 19)
imply that the column space of L; is exactly the null space of N;.

Hence from (A 8) it follows that Condition C.5 (ii) is satisfied if and only if the
columns of

,. 1 e T
[H§?)(bs)T (—mj)—!H(yT‘ 1)(bi)T:|

are in the column space of L;. From (11) it follows that the first n;r rows and the last
n;r columns of L; are identically zero. Hence
H®(b;)=0, k=0,...,n—1
which implies that
Hy(3) = (A—b))"H,(4) (A 20)
where H,(2) has no poles at b;. Equation (A 20) completes the proof of part (a) of
Theorem 1. If m; = n,, then this is the only requirement since then L, = 0. If, however,

m; > n; then rank [L;] # 0 and additional requirements on H,(3) are necessary. We
have for I=n;,...,m;— 1:

1. 1(1
_HOBY =
I!HY'(b‘) l!(n (I — n,)!

and so the requirement on H,(A) is that the columns of

KOy 1

{(m;—n;— D!

|13

>ni!ﬁgl—ni)(bi) — _.__]_.__ﬁgl—'ni)(bi)

T
I?E’““""‘”(b,-)T]
are in the column space of M;, where M, is defined in (14). ]
Appendix B

Proof of Theorem 3
The proof is by induction

k=1
G(z2)z=C(zl —A) " 'zB+ Dz=C(zl — A)" (A +zI — A)B+ Dz

=C(zI— A)"*AB+ CB+ Dz

k=mn
Let

G(2)z"= Clzl — A) "' A"B+ 3 CA'"'Bz' 4 Dz (B 1)
hold. o
k=n+1:

From (B 1) it follows that

G(z)z2"* ' =C(zl — A) "' A"zB+ ) CA'"'Bz"*'7! 4 D!
=1
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and by using the result for k =1 we obtain

n+1
G(z)2"* ' = C(zl — A) " A" 1B+ Y CA'" 1Bzt !4 Dol O
=1
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