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Abstract

The rapid growth of the Web results in heavier loads on server/network and in increased latency
experienced while retrieving Web documents. Internet traffic is further aggravated by its burstiness,
which complicates the design and allocation of network components. Bursty traffic alternates peak
periods with lulls. This paper presents a framework that exploits idle periods to satisfy future
HTTP requests speculatively and opportunistically. Our proposal differs from previous schemes
in that it is explicitly aware of current HTTP traffic loads so as to be unobtrusive. This paper
highlights several design trade-offs and details the problem of server arbitration among several
candidate documents. We present a theoretical analysis of arbitration and validate it by extensive
simulation on server logs, in which we calculate latency experienced by clients. Perfect traffic
shaping during peak periods is observed and substantial latency improvements for non-dynamic
documents are reported over pure on-demand strategies.



1 Introduction

Internet traffic has experienced exponential and sustained growth during the past few years. In-
creased traffic results in heavier load on servers and on intermediate routers and links. Because of
heavy traffic, users perceive significant latency while retrieving Web documents. Moreover, data de-
mand at a server is essentially bursty [30]. Traffic burstiness complicates the design and allocation
of effective network components and contributes to the perception that the Internet is an unreliable
system. Bursty traffic alternates lulls with spikes of extreme activity. On the negative side, high
traffic spikes lead to significant delays and to difficult network design problems. On the positive
side, traffic lulls give the chance of speculatively executing alternative or background activities.
In this paper, we describe a protocol that exploits traffic lulls unobtrusively and speculatively in
order to anticipate future HTTP requests. We simulated our architecture on actual Web traces
and calculated the stretch [3] and latency experienced by clients. Our architecture provided up
to a factor of 1.6 speed-up over the traditional (on-demand) strategy. It also led to perfect traffic
shaping during peak periods, when the server transmits a constant amount of data per unit of time.

Much previous research has examined load-aware protocols at the transport layer. For example,
TCP adapts its transmission rate to estimates of network load. At the application layer, a client
can exploit periods of local inactivity to speculatively load documents that will be likely needed in
the near future (prefetching). If prefetching is not aware of network load, it can lead to substantial
increases in traffic burstiness and network delays [13]. Prefetching can be effective when restricted
to documents that are very likely to be accessed [12, 20] or by using a transport-layer mechanism
to limit datagram transmission rate [13]. However, all prefetching schemes thus far can issue
prefetching requests even when the server/network is overloaded and, conversely, can refrain from
prefetching even when the server/network is idle. In this paper, we explore a solution that is
based on an intuitive principle of unobtrusiveness : speculative data dissemination should occur
if and only if it can be supported by underutilized network components. In practice, complete
unobtrusiveness cannot be achieved because additional traffic always imposes some load on servers,
network, and clients. However, our architecture carefully prioritizes resources against speculative
data dissemination and is (almost) unobtrusive from the viewpoint of on-demand traffic. In practice,
an UDiD (Unobtrusive Dissemination of Data) server proactively pushes documents to selected
clients via low-priority datagrams whenever the server is idle. Our framework exploits priorities in
the network-layer protocol (IPv6), and shifts prefetching decisions from clients to servers. Server
lulls are fully exploited, so that UDiD is unobtrusive with respect to the server. Moreover, low-
priority load can be the first to be shed so that intermediate network components are not overloaded
by UDiD packets, and so UDiD is unobtrusive with respect to the intermediate network components.
As an alternative to network-layer priorities, distributed systems could use either control packets,
per-packet processing, or coordination among clients, servers, and intermediate components to
determine and exploit global network lulls.

UDiD design and implementation poses a number of serious practical and theoretical issues
at the server and at the client sites. We will specify a system architecture, and identify several
issues and trade-off in its design. This paper will then turn to the fundamental problem of server
arbitration (defined below). Several other issues are sketched, but deserve more work.

A server’s first problem is to decide which documents to push to which clients. If the server has
more than one candidate document, server’s bandwidth is exposed to contention among candidate
documents. A server should push documents that are likely to be used by clients in the future, and
so it should predict future access patterns. Although estimates of future usage are crucial, there are
also other factors that servers must take into account when they decide which document to push.
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For example, some files could be marked as unsuitable for push because of security or policy reasons.
In that case, the server is forbidden from pushing an otherwise valid document. However, servers
could face a situation where a popular document has no restrictions from push, but should not be
sent to clients solely for performance reasons. The following elementary example illustrates such
a situation: the set of candidate documents could consist of a long and hot document along with
several shorter documents that are not quite as popular. If the server pushes the long document,
such choice results in a hot document being prepushed, but it consumes server time and bandwidth
and results in a heavy load on the receiving client and on the network. If the server opts in
favor of short documents, the server could be able to push several documents, but those documents
would not be very valuable. The example demonstrates a general trade-off: server’s optimal decision
depends both on document (estimated) usefulness as well as on the (estimated) load that documents
would impose on the server and on the network. Fan et al. propose server-initiated prefetching in
the context of a proxy server handling several dial-up, low-bandwidth connections, and emphasis
is given to high accuracy prediction [15]. In UDiD, contention among documents is crucial and the
focus shifts from accurate prediction to the quest for a balance between prediction and resource
consumption. Such problem will be henceforth referred as to arbitration. In this paper, we will give
a theoretical treatment of the arbitration problem under the simplifying assumption that clients
generate requests according to a Poisson process, and we will validate our theoretical results against
algorithm performance on actual Web traces. Our theoretical analysis is of independent interest
and can be applied to systems other than UDiD (e.g. [15, 29]).

The paper is organized as follows. In section §2, the architecture of the UDiD system is de-
scribed, and basic design trade-offs are discussed. In §3, we give a discussion and theoretical
analysis of the arbitration object that decides at the server site which documents are pushed to
which clients. In §4, simulation results are reported. In §5 related work is summarized and §6
concludes the paper.

2 System Architecture

The UDiD system is composed of objects that are located at the server and client sites and that
exchange Web documents and control information. The client has a control object that handles
the interaction with the server and manages the local cache. The server accepts requests that are
originated by clients and collects statistics on document usage. Moreover, the server maintains
client agents , which provide on demand estimates of future client access patterns, cache utilization,
and consistency state of the corresponding client. If a server receives a pull request, it will queue
it. When the queue is underutilized, the arbitration object is activated. The arbitration objects
maintain a set of candidate documents, one for each agent. The arbitration iteratively chooses to
push a candidate document to the corresponding client and then solicits a new recommendation
from the agent of that client. A UDiD client starts the UDiD protocol by requesting that the
server create a client agent. The initial agent activation request is accompanied by parameters
that describe the client behavior, such as client cache size and consistency protocol description. In
practice, a client starts an agent by invoking a server script with the parameters that describe the
client. Agents are killed by the server after the client has been inactive for a certain period of time.
Pull requests are ordinary HTTP requests. Pushes can be aborted by servers and partially pushed
documents are discarded by the client. If an agent is live, the server will insert a special field in the
cache control extension header of ordinary pull requests. If a client detects that its agent is dead
or if it desires to change agent parameters, it can piggyback new agent descriptors on the next pull
request. Finally, the protocol can be implemented with no change to browsers if there is a proxy

2



Accept Request C1 Agent C2 Agent

Arbitration

Server

Control

Client C1

Control

Client C2

Cache Cache

Figure 1: Architecture of the UDiD system. The picture demonstrates an example with two active
clients C1 and C2.

that complies with the protocol on behalf of clients.
A thorny issue is how much interaction there should be between clients and their agents. Ob-

viously, a strict interaction between clients and agents allows the server to estimate more precisely
the state and needs of each client, but it also implies additional network load. Currently, in UDiD,
agent-client interaction is limited to agent creation or modification. As a result, agent-client inter-
action is almost completely unobtrusive as it can be piggybacked on pull requests. Performance
improvements could stem out of tighter agent-client coupling, as for example clients can attempt to
communicate cache hits to their agents, but such interaction strategies are left to future develop-
ment. A related issue is the complexity of the agents. If agents are complex, the server has access
to more accurate predictions, but it also suffers the corresponding computational load. There is
also a trade-off between complexity of the agent and amount of interaction, as a complex agent
can reconstruct most of the client state without explicit interaction. Such issues deserve more work
and are beyond the scope of this paper.

The principle of unobtrusiveness demands that pushes should occur only when the server, as well
as the client and the network, are idle. A possible way to consider client lull is to have additional
information exchanges between server and clients. However, such a solution brings in additional
network load, ignores the load of intermediate network components, and client information could
be out-of-date by the time it reaches the server. An alternative is to have every network component
execute per-packet processing (active networks). The current UDiD architecture is based on the
choice of a protocol for pushed documents, and, specifically, it uses UDP over IPv6. Pushed
datagrams should abide by the principle of unobtrusiveness, and so resources should be prioritized
in favor of pulled datagrams. Hence, the choice of pushing documents with very low priority (0
or 1) by means of IPv6. A low priority connection between the server and the client could take a
large amount of time. On the other hand, a pushed document is not transmitted on demand and
its usefulness is speculative, so that it is not critical that the pushed document reach the client
under all circumstances. A connectionless protocol delivers pushed documents on a best-effort
basis and frees the server to attend to other pull or push requests as soon as the document has
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been sent. Moreover, the server can achieve constant transmission rate while pushing documents.
Another issue is the transmission rate of the UDP protocol that is sustainable for the client and
for the network. UDiD estimates push transmission rate to a certain client from the length of time
required to satisfy the last pull request from that specific client.

3 Server Push

Access Pattern Prediction. Client agents propose a set of candidate documents to the ar-
bitration object upon demand. This agent candidate set is based on agent predictions of future
accesses from the corresponding client. First, servers must decide if a client will generate any future
requests. Currently, servers use a simple time-out mechanism to phase out client that have not
been active for a certain period of time. If the server estimates that a client is indeed active, it
must predict future access patterns for that client. We implemented a prediction scheme based on
maximum likelihood first-order Markov chains. Similar schemes have been used in much previous
work on prediction for prefetching [5, 6, 12, 13, 20, 24]. The server maintains a counter cpq of the
number of transitions from document p to document q and increments it whenever a client request
for document q was preceded by a request for document p. The counter cpq contains a value that
at all steps is proportional to the maximum likelihood estimate of the probability that a client
accesses q after p. More complex prediction schemes are possible [10, 15], but since they are not
unique to UDiD, they will not be discussed further in this paper. In the UDiD prototype, agents
are simple because they do not keep complete information on client cache state and do not per-
form a complicated traversal of server documents. A client agent is fundamentally an iterator that
determines the last document p pulled by the corresponding client and returns to the arbitration
object candidate documents in decreasing order of next access probability.

Arbitration. When the arbitration object detects that the queue is empty, it obtains one guess
from each client agent. It then decides which document to push. Servers should limit the total
size of pushed documents depending on client cache size: if between two client requests the server
pushed more data than the client cache can contain, the client would not be able to keep all pushed
documents in its own cache, and bandwidth would be wasted. UDiD terminates push operations
according to a simple eager strategy: push operations are aborted as soon as either (1) a pull request
is received by the server from the client to which the page is pushed, or (2) it is detected that on-
demand connections require more bandwidth. In case (2), if more than one push is concurrently
being pursued, the server aborts the one(s) with longest remaining time to completion. Variations
of the eager scheme could be beneficial, but are beyond the scope of this paper.

In general, several client agents are live and so there are several documents that are candidates
for pushing. Each alternative takes a certain (estimated) amount of time and resources to be pushed.
A document could be very likely, but also too long to be pushed before the end of the current lull.
Therefore, the arbitration choice is affected by document probabilities as well as an estimate of the
duration of idle periods. Obviously, if the actual lull duration exceeds server estimates, the server
can exploit the additional time to push other pages. Although in general servers could explicitly
estimate idle period duration, the probabilistic analysis below will show optimality for a strategy
that does not explicitly use any such estimate.

A formalization of the problem is obtained by assigning to each document a value, correspond-
ing to the expected performance improvement obtained by pushing that document, and a length,
corresponding to the expected length of time necessary to push that document. In order to obtain
a theoretically analyzable model, we assume that the set of candidate documents is not updated
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during the lull with new agent recommendations and that at most one push is pursued at each
point in time. We remark that such assumptions are made only for the purpose of analysis, and
that we simulated and implemented a complete system where more than one push can occur at
one time and where candidate pages are replaced by new recommendations, as described in §2. In
the theoretical model, the problem is to find a set of documents that maximizes the sum of the
values of the chosen documents while their total length is no more than a certain deadline D. If
values, lengths, and deadlines are known at the beginning of the lull, such problem is exactly the
knapsack problem, which is well-known to be NP-hard [17]. In actual arbitration, values, lengths,
and deadlines are not known exactly at the beginning of the lull, and estimates can be obtained as
follows. A length is the amount of time needed to transmit a document via UDP, and so lengths
can be estimated from document size and available bandwidth. The value of pushing document q
to client c is the expected performance improvement obtained by pushing q to c. If q is pushed,
received by c, and subsequently requested by c, then the server saves a pull of q. Hence, document
value depends on three factors: (1) the probability ρc(q) that q reaches c, (2) the probability that
c subsequently requests q, and (3) the length lc(q) of q with respect to c. Under the prediction
scheme in the previous paragraph, the quantity πpq = cpq/

∑

r cpr is the maximum likelihood esti-
mate of the probability that a client c that requested p will request q. Different estimates of πpq

can be obtained with other prediction algorithms and would not change the following theoretical
analysis. An estimate of the expected value of pushing document q to client c is then the product
ρc(q)πpqlc(q). An important quantity is the value per unit of length, which will be referred to as
value density. The value density is exactly equal to the the probability ρc(q)πpq. A special case
of the arbitration problem arises when all value densities (probabilities) are equal. Such case is
interesting in theory, because it corresponds to the subset sum problem, which is also NP-hard
[17], and in practice, if the difference between probability estimates are statistically insignificant.
Finally, the deadline D is the amount of time before a pull request arrives and forces the server to
abort the push. Therefore, D follows the same distribution as request interarrivals. For example, if
pull requests were generated by a Poisson process with rate λ, then D would follow an exponential
distribution with mean 1/λ, that is, Pr[D ≥ t] = e−λt. Given estimates of document lengths lc(q),
values vc(q), and a distribution on D, the arbitration object chooses a document q to push to a
client c. The value-density strategy (VD) pushes documents in decreasing order of value density.
VD is a natural algorithm that aims at maximizing the value transmitted per unit of time. How-
ever, VD could fail when valuable documents are longer than lull duration D. The shortest-first
strategy (SF) pushes documents with positive value in increasing order of length. Obviously, SF
maximizes the number of pushed documents, but it fails when short documents have little value.
Actually, SF could fail even when all document densities (probabilities) are equal, because SF could
waste time at the beginning of the lull to push short documents and be left with no time to push
a longer and more valuable document later on. In fact, if SF were optimal when all densities are
equal (subset sum), SF would be a polynomial-time algorithm for an NP-hard problem. However,
it can be shown that

Theorem 1 If value densities are equal (subset sum) and D is exponentially distributed, then SF
maximizes the expected sum of pushed document values.

The proof is postponed to appendix A. It is important to notice the strength of the theorem.
First, SF maximizes not only the number of pushed documents, but also their total expected value.
Second, SF is optimal for all rates λ although SF works independently of the value of λ. An
interesting intuition stems out of the proof: when the deadline D is exponentially distributed,
lengths are more important than values. Ultimately, this observation can be traced back to the

5



Trace name Requests Hosts Documents AvgBW (B/s) WkBW (B/s) rTime (s) No-Push

epa-http 47721 2333 4828 3609.54 6428 24 14.5%
nasa (Aug 4) 59557 4191 2369 12844.3 20082.1 25 0.1%
nasa (Aug 14) 59874 4454 2257 12541 18452.4 23 0.1%
cs.edu (Dec 18) 16548 1407 3644 1638.72 2904.1 21 2.0%

Table 1: Characteristics of the Web traces. Requests is the trace total number of requests, Hosts
is the total number of distinct hosts making requests, Documents is the number of distinct Web
documents in the trace, AvgBW is the average number of bytes requested per second, WkBW is
the average number of bytes requested per second from 9AM to 5PM (server local time), rTime is
the average time between two requests from the same host (intervals longer than 5 minutes have
been disregarded), and No-Push is the percentage of bytes in files that are marked as unsuitable
for push over total traffic.

fact that the probability distribution for D ≥ t drops exponentially, i.e. extremely rapidly. SF
is a simple algorithm that does not require any value estimate beyond vc(q) > 0. Finally, the
theorem holds also when value densities are only approximately equal (further details and proof
are omitted). In reality, value densities could differ and request arrivals could be non-Poisson [30].
An empirical analysis of VD and SF on actual Web traces is presented in the next section.

4 Simulation

Set-up and Parameters Simulation is based on Web server traces. Trace characteristics are
reported in table 1. The traces are relative to exactly one day of activity and were collected during
work-days. The first three traces were collected in 1995 and the last one in late 1998. The cs.edu
trace has been logged by the Web server of a university Computer Science department. Our traces
report only the HTTP request, the host making the request, the time of the request, the reply
code, and the reply size. The table gives total number of requests, the total number of distinct
hosts making requests, the number of distinct Web documents in the trace, the average number of
bytes requested per second, the average number of bytes requested per second from 9AM to 5PM
(server local time), and the average time between two requests from the same host (intervals longer
than 5 minutes have been disregarded). It also reports the percentage of bytes in files that are
marked as unsuitable for push (see below) over total traffic. The NASA server is more busy than
the epa-http and cs.edu servers, as, in 24 hours, it had more requests from more hosts, and the
amount of traffic per second was higher both during the 24 hours and in the 9AM to 5PM interval.
However, the NASA server handled fewer distinct documents than epa-http or cs.edu. The cs.edu
server handles almost as many documents as epa-http, but it is by far the least busy in all other
categories. The average rTime is comparable across all traces. Figure 2(a) shows the cumulative
percentage of clients that made a certain number of requests. The length distribution is similar in
the four traces, and, although there are occasionally some very long client traces, almost 70% of
the clients issued less than 20 requests.

In our simulations, clients always create their agents upon their first document request to a
server. A document is marked as suitable for push unless either (1) its request URI contains the
substring “cgi”, or (2) it is ever invoked through a POST, or (3) it is ever invoked with a question
mark, or (4) it provokes a non-200, non-304 reply. Almost all documents are suitable for push,
as reported in table 1. No-Push resources have not been deleted from the original trace and do
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Figure 2: Cumulative percentage of hosts that generated request traces of up to the given length
and number of live clients over time in the epa-http trace (server local time).

Parameter BaseValue Description

CacheSize 128KB size of client’s extension cache
CacheTimeOut 1hr time before an extension cache entry is considered invalid
Replacement Strategy LRU
Arbitration Strategy SF see §3
Prediction Strategy Markov see §3
Bandwidth server dependent bandwidth available at the server site
ClientBw Bandwidth bandwidth available at the proxy or client site
Latency 500ms latency imposed by the network, server, and clients
PacketDropProbability 5% probability a low-priority datagram is dropped
PushTimeOut 90s time before a server stops pushing documents to idle clients
InitEffectiveProbability 0% minimum initial access probability for a candidate document

Table 2: Parameters used in simulations.

participate in the prediction model. Our traces do not allow us to determine whether a client has a
cache and of which size. Hence, our logs could be the trace of client cache misses. We assume that
each client has an extension cache [15] of moderate size (see below) to keep pushed documents.

The parameters that describe our simulator are in table 2. Each client has an extension cache
of size CacheSize. The extension cache keeps pulled and pushed documents in LRU order. Hence-
forth, such extension cache will be simply called client cache. If a client has kept a version of a
Web document in its cache longer than the CacheTimeOut period, the client considers that version
invalid. Server are connected through links with a certain available Bandwidth and we performed
experiments for several bandwidth values with Bandwidth > AvgBW. The base Bandwidth value de-
pends on the server load and is 8KB/s for cs.edu, 16KB/s for epa-http and 64KB/s for NASA (these
values are roughly three times WkBW). Clients and proxies have ClientBw available bandwidth.
The base case ClientBw = Bandwidth corresponds to a client or proxy with the same available
bandwidth as the server. Experiments will be executed for values of ClientBw ≤ Bandwidth. If
client bandwidth is less than that of the server, the server can communicate with several clients
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simultaneously, and, in the simplified simulation set-up, the server handles ⌈Bandwidth/ClientBw⌉
clients. The server handles its queue in FIFO order and has a cache of 128MB, which, for our
traces, resulted in no server cache replacement. Our traces report no other server load, and we
assume that the only server operation is to satisfy HTTP requests. Network latency is simulated
by the parameter Latency that represents the amount of time spent to establish and release a con-
nection and to account for the delay with which data are received from the server and processed
by the client. The parameter PacketDropProbability is the probability that a low-priority pushed
datagram is dropped by an intermediate network router. In our simulations, pushed documents are
fragmented into 1KB datagrams transparently of the server and of the client, and the document
is received only if all its datagram components are received. The SF strategy is independent of
the probability ρc(q) that document q reaches client c. However, VD depends on ρc(q), and exper-
iments were performed for ρc(q) = 1 (no information on PacketDropProbability is available) and

ρc(q) = (1− PacketDropProbability)size of q in KB (perfect information on PacketDropProbability
is available). The server kills agents PushTimeOut seconds after the last time a request has been
received from those clients. While there are 2312 distinct hosts that contacted the epa-http server,
no more than 32 were simultaneously live. Figure 2(b) reports the number of live clients during
the epa-http trace. The number of live clients varied, but was never very large. Similar observa-
tions hold also for the other traces. Finally, InitEffectiveProbability is a threshold parameter whose
purpose is to avoid pushing very infrequent documents. The server considers a document q to be a
candidate for push only when πpq > EffectiveProbability, where EffectiveProbability is a parameter
that is defined as follows. At the beginning of a lull, EffectiveProbability ← InitEffectiveProbability.
The server could run out of candidate documents simply because the effective probability is too
high. In that case, the effective probability is squared EffectiveProbability ← EffectiveProbability2.
At the beginning of the next lull, the effective probability value is reset to InitEffectiveProbability
and the process is repeated.

The two major performance measures are the average delay and the average stretch. The
delay is the time for a client to receive the requested document, and it includes the Latency , the
transmission time (document size over ClientBw), and the time spent in the server queue. The
stretch is a relative measure of delay, which is equal to the time a request spends at the server (queue
+ transmission) over the transmission time only [3]. Stretch is a server-only measure of performance
and so it is independent of Latency . Moreover, stretch is normalized to the bandwidth, while delay
is not. If a document is cached, clients can access it with no delay and no stretch. Finally, we also
measured hit rate and byte hit rate in client caches.

Results. Speculative push improved performance by up to a factor of 1.6 over pure pull, and
the speed-up increased with the Bandwidth, as shown in figure 3(a). The speed-up was an almost
perfect match for a logarithmic interpolant, viz a function of the form a logBandwidth + b for some
a and b (chart omitted for lack of space). The increase of the speed-up with the bandwidth is due to
a larger number of documents that can be pushed by the server. Eventually, increasing bandwidth
has a more limited effect when the bandwidth is already large, as the server runs out of guesses for
documents to push. The speed-up in the stretch metric showed similar behavior, and figures are
omitted. Figure 3(b) shows the observed speed-up as a function of the ratio ClientBw / Bandwidth.
The NASA traces were more sensitive to a changes in ClientBw : the speed-up increased rapidly
when ClientBw < Bandwidth/2, and then it flattens. The other two traces were by comparison
fairly insensitive to changes in ClientBw .

Although the speed-up generally decreases as more datagrams are dropped, UDiD can outper-
form a pure pull strategy even when PacketDropProbability = 50%, as demonstrated in figure 4(a).
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Figure 3: Speed-up of push over pull in the stretch metric for increasing values of Bandwidth and
ClientBw . Graph scales differ.

Figure 4(b) compares SF push, VD push, and pure pull in the base configuration. SF outperformed
VD in all traces, except cs.edu, where the two algorithms have nearly equal performance. The VD
algorithm performed better if it uses the correct value of ρc(q) (VD(rho)), but even so, it was almost
always outperformed by SF. Both SF and VD consistently outperform pure pull. A small cache
extension (CacheSize = 128KB) considerably improved the performance of pull, which we interpret
as a sign that in our traces clients did not use their caches effectively, if at all. Figure 5 report
the hit rate and byte hit rate for SF, VD(rho), VD, and pure pull. Byte hit rates are between 4%
and 14%. In general, the byte hit rate of SF and VD(rho) is comparable and bigger than that of
other strategies. However, SF typically outperforms VD(rho) in hit rate. SF’s hit rate was more
than 45% on the NASA traces, where it triples the hit rate of pure pull. The speed-up of SF over
VD(rho) should be attributed mostly to the hit rate gap. Changes in the Latency parameter did
not significantly affect the speed-up of SF over VD(rho) (chart omitted).

Figure 6 reports bandwidth utilization for epa-http when push is performed compared to the
case when only pull is done. Other traces show similar behavior. In general, we found that pull
utilization curves was very variable, which is in accordance to previous observations [30]. In the
period between 12:30 and 2:30PM, the push strategy transmitted a constant amount of data,
whereas during the 2 to 4AM period, push is at least as bursty as a pull strategy. Such observation
suggests that push performs perfect traffic shaping during peak periods, but it is actually more
bursty than plain pull during low-activity periods. Figure 6 also points out that the amount of
data transmitted by a server is in fact much larger for a push strategy than for pure pull, but
the principle of unobtrusiveness implies that added traffic is immaterial and can be pursued by
exploiting only underutilized resources.

In general, most parameters did not considerably affect push performance. The most sur-
prising is InitEffectiveProbability. In our experiments, delay and stretch actually increased when
InitEffectiveProbability > 0. The effects of changes in CacheTimeOut, Latency , and PushTimeOut
are small and are not reported. We also tried the “prefetch buffer” caching strategy by [19]. Such
strategy was especially effective when CacheSize and PacketDropProbability were small, but it is
comparable with LRU for larger caches or less reliable connections (charts omitted).
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Figure 6: Bandwidth utilization during the epa-http trace when Bandwidth = 8K. Values are
averaged on 30s time intervals. Comparison among SF push, VD push, and pure pull, and between
pull/push and LRU.

Prototype. A UDiD prototype has been implemented and run over the Internet. It consists of
a Web server and a command-line client browser. The major remaining difficulty is the lack of an
application program interface for IPv6 (eg. through sockets [27]). The prototype is temporarily
implemented with traditional BSD sockets that we plan to replace as soon as we obtain an IPv6
API. As a result, measurements are not yet available in the IPv6 framework.

5 Related Work

Much research has been devoted to the problem of caching and replication of Web documents, see
for example [8, 28]. Long-term data dissemination is provided by mirrors [23], which differ from
UDiD because UDiD operates on a short time-scale, takes advantage of relatively short lulls in the
transmission time, and does not necessarily require the presence of an intermediate information
repository where data is mirrored. Data dissemination of Web documents has been considered in
[4, 5, 18], but those techniques differ from UDiD because UDiD follows peak and lulls in pulled
data traffic, and either does not assume the availability of proxies that can mirror data for long
periods of time, or can delay push decisions, or does not need topology information. Problems in
disseminating large files has been noted before [5, 6, 15], where an upper bound is imposed on the
maximum size of pushed files. Data dissemination has been considered in the context of broadcast
disks [16], hybrid networks [26], and cyclic Web multicast [2], where periodic broadcast is used.

The burstiness of server data traffic is well-documented in the literature [30], is substantially
different from that in traditional Poisson models, and requires the use of self-similar statistics.
Speculative data dissemination is analogous to prefetching , except that, in the case of prefetching,
data transfers are initiated by clients. Prefetching has been studied in virtually every area of
Computer Systems, and a sample recent paper is [7]. Several Web prefetching systems assume that
client prefetching is helped by the server, which piggybacks hints on top of regular HTTP replies
[12, 13, 20, 21, 24]. If prefetching is not aware of network performance, it can aggravate the load
on the network and the burstiness of the data traffic [13]. Two schemes have been proposed to
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address the issue. The first scheme allows a client to prefetch a document only if estimated access
probabilities are above a certain threshold but, once a prefetch request is issued, it has the same
priority as pull requests [12, 20]. The second scheme is rate-controlled prefetching [13], whereby no
bound is imposed on probabilities, but the transmission rate of prefetched documents is less than
that of requested documents. Finally, server-initiated prefetching has been proposed in [15] in the
context of a proxy servicing dial-up customers.

UDiD exploits idle bandwidth available in a network. As a related topic, much research has been
devoted to exploiting idle CPUs (see [25] for a recent paper) and memory [1] in distributed systems.
Prediction has been often based on a maximum likelihood first-order Markov reference model
(MRM) [5, 6, 12, 13, 20, 24]. It has been observed that MRM prediction stems mostly from traversal
dependencies due to links embedded in the Web document, and from embedding dependencies due
to documents embedded in a document, such as a picture [6]. MRM construction can be modified
to be fast at the expense of precision [10]. While MRM strikes a trade-off between prediction
accuracy, recall, and computational load, it is not a statistically valid model [22]. In probabilistic
volume construction, an effective probability of 20% considerably improves performance [12], but
such finding does not extend to the UDiD adaptive prediction scheme, as noticed in section §4.
Cache consistency and time-out schemes are discussed in [14]. Examples of caching in a push
environment are described in [16, 19].

6 Conclusions

In this paper, the UDiD (Unobtrusive Dissemination of Data) architecture was described. Servers
exploit local lulls to proactively push documents in low-priority datagrams to clients or proxies
when the server predicts that clients/proxies will need those documents in the future. UDiD
is a departure from prefetching in that additional traffic is generated if and only if there is an
opportunity to transmit documents during idle periods. The architecture has been simulated on
Web traces, where speed-ups up to a factor of 1.6 are reported over pure pull, and a preliminary
prototype is running. The arbitration problem was analyzed, and the intuitive VD strategy was
outperformed theoretically and empirically by SF. SF is also simpler as it does not need precise
ρc(q) or vc(q) estimates.

There is virtually no component of UDiD that cannot conceivably be improved. Agent in-
teraction and complexity pose difficult trade-offs that deserve further investigation. The type of
pushed documents can be expanded to include ranged pushes. Access prediction could be done
according to several different strategies. The arbitration SF algorithm was proved optimal under
certain assumptions and was effective in practice, but it is conceivable that other schemes could
have better performance and have stronger theoretical properties, especially if coupled with server
file caching strategies. Our current arbitration algorithms considers all clients as equal. It has
been shown that performance improvement in the context of server-aided caching can be obtained
by considering a small number of different client classes [11]. Different and more efficient cache
replacement strategies can stem from a tighter interaction between servers and clients. We have
only considered dissemination of non-dynamic documents, which form the bulk of our traces, but
several issues would arise if dynamic contents were a more significant presence [9]. The current
prototype should be finished with IPv6 support. Although load-aware data dissemination poses a
number of challenging theoretical and applied problems, we have shown that it can significantly
improve user-perceived latency.

12



References

[1] Anurag Acharya and Sanjeev Setia. The utility of exploiting idle memory for data-intensive
computations. In ACM SIGMETRICS ’98, 1998.

[2] K. C. Almeroth, M. H. Ammar, and Z. Fei. Scalable delivery of Web pages using cyclic
best-effort (UDP) multicast. In Proceedings of Infocom 98, 1998.

[3] Michael A. Bender, Soumen Chakrabarti, and S. Muthukrishnan. Flow and strecth metrics
for scheduling continuous job streams. In Proceedings of the Ninth ACM-SIAM Symposium on
Discrete Algorithms, pages 270–279, 1998.

[4] A. Bestavros and C. Cunha. Server-initiated document dissemination for the WWW. IEEE
Data Engineering Bulletin, 19(3), September 1996.

[5] Azer Bestavros. Using speculation to reduce server load and service time on the WWW. In
Proceedings of CIKM’95: The 4th ACM International Conference on Information and Knowl-
edge Management, 1995.

[6] Azer Bestavros. Speculative data dissemination and service to reduce server load, network
traffic and service time in distributed information systems. In Proceedings of ICDE’96: The
1996 International Conference on Data Engineering, 1996.

[7] P. Cao, E. W. Felten, A. R. Karlin, and K. Li. A study of integrated prefetching and caching
strategies. In Proceedings of the ACM International Conference on Measurement and Modeling
of Computer Systems (SIGMETRICS), pages 188–196, 1995.

[8] P. Cao and S. Irani. Cost-aware WWW proxy caching algorithms. In Proceedings of the
USENIX Symposium on Internet Technologies and Systems, pages 193–206, 1997.

[9] Pei Cao, Jin Zhang, and Kevin Beach. Active Cache: Caching dynamic contents on the Web.
In Proceedings of IFIP International Conference on Distributed Systems Platforms and Open
Distributed Processing (Middleware ’98), pages 373–388, 1998.

[10] E. Cohen, B. Krishnamurthy, and J. Rexford. Efficient algorithms for predicting requests to
Web servers. In Proceedings of the IEEE INFOCOM’99 Conference, 1999.

[11] Edith Cohen, Balachander Krishnamurthy, and Jennifer Rexford. Evaluating server-assisted
cache replacement in the Web. In Proceedings of the European Symposium on Algorithms,
1998.

[12] Edith Cohen, Balachander Krishnamurthy, and Jennifer Rexford. Improving end-to-end per-
formance of the Web using server volumes and proxy filters. In Proceedings of SIGCOMM 98,
1998.

[13] Mark Crovella and Paul Barford. The network effects of prefetching. In Proceedings of Infocom
’98, 1998.

[14] A. Dingle and T. Partl. Web cache coherence. In Proceedings of World Wide Web Conference,
1996.

13



[15] Li Fan, Pei Cao, and Quinn Jacobson. Web prefetching between low-bandwidth clients and
proxies: Potential and performance. In Proceedings of the ACM International Conference on
Measurement and Modeling of Computer Systems (SIGMETRICS), 1999.

[16] Michael Franklin and Stanley Zdonik. A framework for scalable dissemination-based systems.
In Proceedings of the International Conference Object Oriented Programming Languages Sys-
tems, pages 94–105, 1997.

[17] Michael R. Garey and David S. Johnson. Computers and Intractability. A Guide to the Theory
of NP-Completeness. Freeman, New York, 1979.

[18] James Gwertzman and Margo Seltzer. The case for geographical push-caching. In Proceedings
of the Fifth Workshop on Hot Topics in Operating Systems, 1995.

[19] Quinn Jacobson and Pei Cao. Potential and limits of Web prefetching between low-bandwidth
clients and proxies. Technical Report CS-TR-98-1372, University of Wisconsin, April 1998.

[20] Z. Jiang and L. Kleinrock. Prefetching links on the WWW. In Proc. IEEE Inter. Conf. on
Communications, pages 483–489, 1997.

[21] T. M. Kroeger, D. E. Long, and J. C. Mogul. Exploring the bounds of Web latency reduction
from caching and prefetching. In Proc. USENIX Symposium on Internet Technologies and
Systems, pages 13–22, 1997.

[22] Vincenzo Liberatore. Empirical investigation of the Markov Reference Model. In Proceedings
of the Tenth Annual ACM-SIAM Symposium on Discrete Algorithms, 1999.

[23] Katia Obraczka. Massively Replicating Services in Wide-Area Internetworks. PhD thesis,
University of Southern California, 1994.

[24] V. N. Padmanabhan and J. C. Mogul. Using predictive prefetching to improve World Wide
Web latency. Computer Communications Review, 26(3):22–36, 1996.

[25] K. D. Ryu and J. K. Hollingsworth. Linger longer: Fine-grain cycle stealing for networks of
workstations. In SC’98, 1998.

[26] K. Stathatos, N. Roussopoulos, and J. S. Baras. Adaptive data broadcast in hybrid networks.
In Proc. 23rd International Conference on Very Large DataBases, 1997.

[27] W. Stevens and M. Thomas. Advanced sockets API for IPv6. RFC 2292, February 1998.

[28] Renu Tewari, Michael Dahlin, Harrick M. Vin, and Jonathan S. Kay. Beyond hierarchies:
Design considerations for distributed caching on the internet. Technical Report TR98-04,
Department of Computer Sciences, University of Texas at Austin, February 1998.

[29] Tolga Urhan, Michael Franklin, and Laurent Amsaleg. Cost-based query scrambling for initial
delays. In ACM SIGMOD Intl. Conference on Management of Data (SIGMOD), 1998.

[30] Walter Willinger and Vern Paxson. Where mathematics meets the Internet. Notices of the
AMS, 45(8):961–970, September 1998.

14



A Poisson Arrivals

In this section, we study the case when the deadline D is extracted according to an exponential
distribution with rate λ. The exponential distribution models the case when document requests
arrive according to a Poisson process, and each request terminates the push phase. Let P =
{1, 2, . . . , n} be the set of all documents, v(i) > 0 be the value of document i and l(i) the length of
document i. Analogously, v(J) =

∑

i∈P v(i) and l(J) =
∑

i∈P v(i) for all J ⊆ P . First, recall that,
if D is exponentially distributed, we have

Pr[D ≥ t] = e−λt .

Observe that any arbitration algorithm arranges the documents according to a permutation π =
(π1, π2, . . . , πn) of P = {1, 2, . . . , n} and pushes them in the order given by π. Let Ji = ∪i

j=1{πj}.
Then, the expected value of an arbitration algorithm is

n
∑

i=1

v(Ji)Pr[l(Ji) ≤ D < l(Ji+1)] =
n

∑

i=1

v(πi)Pr[D ≥ l(Ji)] =
n

∑

i=1

v(πi)e
−λl(Ji) . (1)

Our objective is to find a permutation π that minimizes (1). Theorem 1 follows immediately from
the following lemma.

Lemma 1 SF’s permutation maximizes (1) when l(i) = v(i) for all i ∈ P (subset sum problem).

Proof. Assume without loss of generality that SF’s permutation is the identity, that is, for all
i ∈ {1, 2, . . . , n− 1}, l(i) ≤ l(i + 1). Suppose by contradiction that a different permutation π =
(π1, π2, . . . , πn) minimizes (1). Let h be the smallest index where πh > h and k the index where
πk = h. We will show that we can exchange h with πh without increasing (1), and, by induction
on h, the lemma will follow. We rewrite the expected value of π in (1) as

∑n
i=1 T (i) where T (i) =

v(πi)e
−λl(Ji) is its ith term. If we exchange h with πh, we change the value only of the terms T (i)

for h ≤ i ≤ k. Moreover, if h < i < k, the value of T (i) increases. We will show that the change of
T (h) + T (k) is non-negative. Indeed, let J0 = ∅, H = ∪k−1

j=h+1{πj}, and observe that the value of
T (h) + T (k) before the exchange is equal to

e−λl(Jh−1)
(

l(πh)e−λl(πh) + l(h)e−λl(H∪{h,πh})
)

= e−λl(Jk)
(

l(πh)eλl(H∪{h}) + l(h)
)

,

and after the exchange becomes

e−λl(Jh−1)
(

l(h)e−λl(h) + l(πh)e
−λl(H∪{h,πh})

)

= e−λl(Jk)
(

l(h)eλl(H∪{πh}) + l(πh)
)

.

Suppose by contradiction that difference is negative. Then, we would have

l(h)eλl(H∪{πh}) + l(πh) < l(πh)e
λl(H∪{h}) + l(h) ,

or
l(h)

eλl(H∪{h})− 1
<

l(πh)

eλl(H∪{πh}) − 1
.

Moreover, l(H ∪ {i}) = l(H) + l(i) for any i /∈ H . However, πh > h, and so l(πh) ≥ l(h) and the
function x/(ex+a − 1) is decreasing for all x > 0 and all a’s, so that the difference is non-negative.
In conclusion, when we exchange h and πh, the expected value does not decrease, and so the lemma
is proved. ♦

Theorem 1 follows as a restatement of the lemma.
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