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The electricity sector is a significant contributor to the economic and environ-
mental health of the United States, with annual revenues well over $300 billion and
responsibility for approximately one third of all carbon emissions. The last several
decades have brought significant changes to economic and environmental policies
applicable to the electricity sector, including market restructuring and a variety of
air quality improvement policies. This thesis builds on previous research of these
issues through three related essays on energy economics and policy.

The first essay examines the local environmental impacts that can be at-
tributed to renewable portfolio standards. Renewable portfolio standards (RPS)
have been adopted by the majority of states in the U.S. to encourage electricity
from renewable sources. Previous studies omit an analysis of local and regional
pollutants, so this paper provides an empirical investigation into pollutant reduc-
tions from RPS while accounting for policy heterogeneity across states. Using a
nation-wide panel of pollution monitoring stations in conjunction with local and na-
tional economic data, I find that adopting RPS results in significant sulfur dioxide
reductions and modest nitrogen oxide reductions. I find no evidence of particulate
matter reductions. Lastly, the analysis shows that pollution reductions are driven
by groups of states whose neighbors also adopt RPS, which is likely because of
pollution spillover effects.

The second essay examines the importance of ramping cost to electricity
price volatility. High price volatility has plagued electricity market participants
for decades and is increasingly important in the context of growing intermittent re-
newables. Although electricity market price behavior generally has been well studied
in the last decade, the literature is sparse when discussing the importance of gen-
erator ramping costs to price volatility. This paper contributes to the literature by
first formalizing the intuitive link between ramping costs and price volatility in a
multi-period competitive equilibrium. The fundamental result of the model shows



how price volatility rises with ramping costs. This notion is tested empirically us-
ing a pooled event study regression, a two-stage least squares (2SLS) specification,
and a generalized autoregressive conditional heteroskedasticity (GARCH) model.
The econometric results all confirm that price volatility is significantly decreased by
additional natural gas capacity, which has comparatively low ramping costs. This
marks the first rigorous study to quantify the pecuniary externalities within the
New England market’s generating profile. A simulation also explores how annual-
ized volatility changes over time during a shifting generation profile, noting that
natural gas generators can offset the volatility increases from increasing wind gen-
eration. Lastly, there is no evidence that natural gas capacity additions reduce the
forward premium.

The third essay examines price convergence in the wholesale electricity mar-
kets in the context of transaction costs on virtual bids. Virtual bidding has been
introduced in most restructured electricity markets in the United States with the
intent to manage price risk, increase financial liquidity, and minimize deviations
between forward prices and spot prices. Previous literature argues that even with-
out virtual bids, generators can attempt to exploit the forward premium through
altering bids related to physical scheduling, which is a costly way to induce price
convergence. While previous literature has shown that the introduction of virtual
bids does lead towards price convergence, it is also a relatively large market shock
that potentially introduces new market participants with different risk preferences.
This paper is the first to explicitly test the effect of increasing virtual bid trans-
action costs on forward price premiums using a natural experiment in a market
where virtual bidding is already established. Using high-frequency price data with
an event study approach, I find that increasing transaction costs on virtual bids
leads to significant increases in forward premiums and significant decreases in the
total number of cleared virtual bids. Additionally, my analysis supports recent lit-
erature arguing that the day-ahead prices have converged to become an unbiased
predictor of real-time prices, which is an important condition for efficient markets.
Lastly, I find no evidence that increasing transaction costs on virtual bids translates
to increases in intra-day price volatility.
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Professor Sébastien Houde, Chair/Advisor
Professor Anna Alberini
Professor Roberton Williams III
Professor Erik Lichtenberg
Professor Peter Cramton



c© Copyright by
Daniel Patrick Werner

2015



Acknowledgments

This thesis would not be possible without continual support and guidance

from university faculty, friends, and family. First, I would like to thank my primary
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Chapter 1: The Local Environmental Impacts of Renewable Portfo-

lio Standards

1.1 Introduction

In the past fifteen years, a variety of climate change legislation has been dis-

cussed at the state level in the United States. Much of this discussion revolves

around energy policy, since the U.S. Environmental Protection Agency (EPA) es-

timates that over 60% of greenhouse gas emissions come from the transportation

and electricity sectors alone (EPA, 2011b). The U.S. Energy Information Adminis-

tration (EIA) estimates that approximately 70% of domestic electricity still comes

from fossil-fuel based generators (EIA, 2012). Most potential solutions to climate

change require a shift away from fossil-fuel sources of electricity and towards re-

newable sources. To facilitate this change, state legislators often cite renewable

portfolio standards as a solution, and thirty states have adopted renewable portfolio

standards since 1997 (DSIRE, 2013).1

Renewable portfolio standards (RPS) require a specified percentage of electric-

1The states with renewable portfolio standard requirements are AZ, CA, CO, CT, DC, DE, HI,
IA, IL, KS, MA, MD, ME, MI, MN, MO, MT, NC, NH, NJ, NM, NV, NY, OH, OR, PA, RI, TX,
WA, and WI. Other states have adopted voluntary renewable portfolio goals, including ID, ND,
OK, SD, UT, VT, VA, and WV.
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ity consumed within the state to be generated from renewable sources by a specific

date. These goals typically ramp up gradually over time and often include penal-

ties for utilities in non-compliance. For example, in 2002 California passed Senate

Bill 1078 requiring 14% renewable electricity by 2004. The percentage requirement

increases almost every year until a final requirement of 20% by 2020, although this

bill was later amended to a final requirement of 33% by 2020. The stated goals

of the policy were to “promote stable electricity prices, protect public health, im-

prove environmental quality, stimulate sustainable economic development, create

new employment opportunities, and reduce reliance on imported fuels” (S.B.1078,

2002).

However, there is currently a debate over the effectiveness of such policies to

achieve their stated goals (Borenstein, 2012, Schmalensee, 2012). Empirical stud-

ies provide conflicting evidence that these policies encourage electricity generation

within the adopting state (Adelaja and Hailu, 2008, Johnson, 2014, Kneifel, 2008,

Menz and Vachon, 2006, Shrimali and Kniefel, 2011, Yin and Powers, 2010). The

most rigorous approaches fully account for heterogeneity in RPS policy details across

states and find that the policies are effective at encouraging within-state renewable

generation (Johnson, 2014, Yin and Powers, 2010), although the policies may not

be cost effective (Fell and Linn, 2013, Johnson, 2014, Schmalensee, 2012).

Since these policies are often discussed in the context of climate change, Bush-

nell, Peterman and Wolfram (2008) argue that a state’s RPS is highly symbolic

and ineffective pollution legislation because CO2 emissions are a global issue with

pollution spillovers. While regulators have developed and argued for RPS policies
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in order to reduce greenhouse gases, such policies may also abate local and regional

pollutants. Whether RPS should instead be motivated from the standpoint of local

pollution is also controversial within the United States. The negative externalities

associated with local and regional air pollutants from electricity generation have

been addressed by a variety of policies over the last several decades, including the

Clean Air Act, Acid Rain Program, NOX State Implementation Plan, Clean Air

Interstate Rule, Ozone Transport Commission NOX Budget Program, and RPS leg-

islation. Simultaneous policies may have perverse effects when overlapping with

other policies, which has been found in other similar contexts (de Gorter and Just,

2008, 2009), but is beyond the scope of this analysis.

Notably absent from all the empirical investigations surrounding RPS is a dis-

cussion of local pollution reduction, although local pollutants have been studied in

other contexts, such as the Clean Air Act (Auffhammer et al., 2009, Greenstone,

2004) and automobile policy (Cerruti, 2014, Charmley, 2004, Wolff and Perry, 2010).

Chen et al. (2009) and Heeter et al. (2014) provide excellent reviews of the simu-

lation studies on RPS costs and benefits, some of which forecast the emissions

reductions on a state-level basis (Brattle, 2010, Delmarva, 2012, IPA, 2012, LEI,

2012, NYSERDA, 2013, PUCO, 2013). These forecasts can be informative, but

require specific assumptions for projecting emissions that will occur without the

policy. An ex-post analysis can complement these studies by empirically providing

the true pollution reductions attributable to the renewable portfolio policies. Mean-

while, emission reductions from renewable generation have been empirically studied

(Cullen, 2013, Kaffine et al., 2013, Novan, 2011), though a thorough discussion of
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emissions attributable to specific renewable energy policies is beyond the scope of

their analysis. While it is intuitive that RPS legislation will encourage electricity

generation and displace fossil fuel emissions, quantifying the exact changes to local

air quality is of particular interest to policymakers, economists, and public health

advocates discussing the benefits and costs of additional regulation at the state and

national level.

In this paper I seek to understand the role of renewable portfolio standards

in reducing local and regional pollutants in an effort to provide stakeholders better

estimates of the ambient air quality benefits attributable to RPS legislation. More

specifically, what are the within-state reductions to ambient concentrations of sulfur

dioxide (SO2), nitrogen oxide (NOX), and particulate matter (PM10) from RPS

legislation? Given heterogeneity in renewable portfolio standards across states, how

do these ancillary air quality benefits change with specific policy details?

To study these issues, I use panel data from air quality monitoring stations to

estimate the effect on three local and regional pollutants associated with electricity

generation, while controlling for various economic and time trends. I find that RPS

legislation significantly reduces in-state sulfur dioxide levels, and accounting for

heterogenous policy details across states is essential to capture this effect. However,

there are only modest reductions in NOX concentrations, and there is no statistically

significant effect of RPS adoption on PM10 levels. The pollution reductions in SO2

and NOX only occur in states whose neighbors also adopt RPS legislation, while

policies adopted in isolation are ineffective. Similar gains accrue in groups of states

which allow interstate trading of renewable energy certificates (RECs), as expected
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since policies with regional participation minimize pollution spillover effects. These

results are robust to falsification tests using pollutants emitted primarily only from

automobiles, and to autoregressive moving-average (ARMA) models commonly used

with high-frequency data when an adequate control group is not available.

This paper contributes to the existing literature on regulating multiple envi-

ronmental externalities from the energy sector. In addition to quantifying the local

and regional pollution reductions from RPS legislation, I explore how these results

change with respect to specific RPS policy details. It adds to the debate on whether

renewable portfolio standards are achieving their stated goals, if they should be

enacted, and whether they can properly address both regional and global environ-

mental issues (Borenstein, 2012, Bushnell, Peterman and Wolfram, 2008, Johnson,

2014, Schmalensee, 2012). Lastly, the results have important implications for air

quality policies adopted in isolation by suggesting that a geographically integrated

RPS legislation is required for significant improvements to air quality.

The remainder of this paper proceeds as follows. Section 1.2 provides a back-

ground of RPS legislation and the three pollutants studied in this analysis. Sec-

tion 1.3 describes the econometric model and related methods, while Section 1.4

describes the data. The related results are presented in Section 1.5 and Section 1.6

concludes.

5



1.2 Background

Sulfur dioxide (SO2), nitrogen oxide (NOX), and particulate matter (PM10)

constitute three of the EPA’s six “criteria pollutants.” Research has found that

these pollutants are harmful to human and environmental health, causing acid rain

and smog in addition to increasing the risk of chronic bronchitis, asthma attacks,

heart attack, arrhythmia, and other lung related illnesses. Sulfur dioxide is the

most mobile of theses three pollutants and can travel up to several hundred miles.

NOX does not usually travel as far because it is a chemical precursor to ozone

and converts over time in the presence of sunlight and volatile organic compounds

(VOCs). Meanwhile, PM10 is relatively immobile because of its particle size and

can only travel up to 30 miles (EPA, 2013).

The EPA currently provides National Ambient Air Quality Standards to limit

airborne concentrations of these pollutants. In addition, SO2 and NOX regulations

include cap and trade programs on annual emissions through the 1990 Clean Air Act

Amendment and the Clean Air Interstate Rule (CAIR). Although the CAIR was

replaced by the more stringent Cross-State Air Pollution Rule (CSAPR), it has been

delayed in the courts through the period of this analysis. To the extent that these

policies are annually binding, overlapping RPS legislation cannot yield additional

national reductions in emissions. However, the focus of this paper is within-state

pollution concentrations which may still decrease in the presence of RPS. Given the

local and regional nature of the pollutants studied, within-state pollution concen-

trations are still of interest to policy makers and environmental scientists. This is
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especially true for those in “non-attainment” areas who are required to develop and

implement air quality improvement plans because they are in violation of the EPA’s

National Ambient Air Quality Standards. The subsequent analysis illuminates the

extent to which RPS legislation may help achieve these air quality goals.

Fossil-fuel combustion in the electricity sector is the leading source of SO2

and CO2 emissions and the second leading anthropogenic source of emissions for

both NOX and PM10. Meanwhile automobiles are the leading source for NOX

emissions, although they are a small percentage of total SO2 and PM10 emissions

(EPA, 2011a). Economic simulations of renewable portfolio standards suggest they

can induce reductions in carbon emissions (Chen et al., 2009, Palmer and Burtraw,

2005), but there is little discussion of the effect on the local and regional pollutants.

Effective RPS legislation should decrease the relative emissions of all pollutants

as non-fossil fuel generation is encouraged, but the actual reductions to ambient

pollution concentrations depend on which fossil fuel units are displaced (Kaffine

et al., 2013). Further, it is not immediately clear whether the pollution reductions

will actually occur within the RPS state because of pollution spillover effects and

unobservable environmental characteristics.

The details of RPS legislation can vary but the basic principles across policies

are the same. A specific percentage of electricity sold within the state must be gener-

ated by renewable sources, or the retail utility will face penalties for non-compliance.

The RPS requirements can be satisfied in a variety of ways in a restructured elec-

tricity market. Generally, states with RPS requirements include a renewable energy

certificate (REC) trading program. A REC is issued for each unit of electricity
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generated by a producer. The generated electricity is sold into the grid via the

wholesale market as usual, but the REC can be sold separately. This is an impor-

tant feature that allows regulators to track which utilities are providing renewable

energy, since a kWh from any source is identical. At the end of the compliance

period, each utility dispensing electricity to consumers is responsible for holding a

number of RECs based on the stringency of the RPS requirement.

The economics of RPS are intuitively similar to the ethanol blend mandate

for gasoline in the United States (de Gorter and Just, 2009), as well as a cap-and-

trade system. By mandating a specific blend of electricity, the policy effectively

acts simultaneously as a subsidy for renewable electricity generation and a tax on

fossil-fuel generators. The policy sets apart renewable and fossil-fuel generation

as two separate cohorts which compete amongst themselves. By establishing the

minimum number of required RECs and allowing trading among participants, the

equilibrium price of a REC will reflect the cost premium of renewable sources above

fossil-fuel sources (Berry, 2002). The subsidy received by the renewable generator

varies according to the price of a REC, which encourages future development of

renewable generation facilities. In a long-run equilibrium, the most cost-effective

generator of carbon-neutral electricity prevails within the renewable cohort and the

most cost-effective fossil-fuel generator prevails in the conventional cohort.

Although RPS effectively introduces taxes and subsidies, it is not necessarily

the case that electricity prices will increase as a result. Fischer (2010) notes the net

effect of RPS policies on electricity prices depends on the elasticity of supply for both

renewable and nonrenewable generation. Depending on the policy stringency and
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relative elasticities, RPS legislation could increase generation costs and electricity

prices or the policy could reduce demand for conventional generation, along with

fossil fuel and electricity prices. This also has implications for the quantities of each

pollutant that will be reduced from RPS legislation, since the emission reductions

from new generation is not immediately clear without rigorous empirical analysis

(Kaffine et al., 2013).

1.3 Econometric Model

Using ambient pollution concentrations as the dependent variable, I estimate

a reduced form econometric model with two-way fixed effects, which is analogous to

a difference-in-differences regression. I assume that the ambient pollution in time

period t is explained by economic activity, fuel prices, total in-state electricity gen-

eration, unobserved monitoring station fixed effects, various unobserved time fixed

effects, and pollution in the previous period. Since the model estimates primarily

local pollutants I assume the error structure is spatially correlated within states

but not at larger aggregations such as regional census divisions. Thus, the general

econometric model is

yist = βi0 + β1yi,t−1 + β2RPSst + β3Cist + β4Mst + εist (1.1)

where yist is the ambient concentration of pollutant y at monitoring station i within

state s during each day t. βi0 represents a monitoring station fixed effect, RPS

measures the presence of an RPS policy, C is a matrix of economic controls, and M
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is a matrix of month and year-region fixed effects2 in addition to a linear time trend.

Lastly, εist is an error term clustered at the state level. While the autoregressive

nature of dynamic panels can lead to biased estimates, the bias is inversely related

to the total number of periods, T , when using the within estimator (Anderson and

Hsiao, 1981, Arellano and Bond, 1991, Kiviet, 1995, Nerlove, 1971, Nickell, 1981).

The panel data used here have a large T and use the within estimator, so the

regression results should be consistent even with the lagged dependent variable,

yi,t−1, as a regressor.

In the most basic specification, RPS is simply a binary dummy variable in-

dicating if the policy is in effect at time t for state s. Thus, β2 is the coefficient

of interest, which captures the overall effect of the policy on local pollution con-

centrations. Given policy heterogeneity however, this simple specification does not

consider the real strength of the policy and is inadequate to capture the marginal

effect of the policy. The preferred specifications use a continuous variable to ac-

count for policy variations, which is discussed in detail in Section 1.4. Although

there may be concerns over the endogeneity of pollution with RPS adoption, both

Lyon and Yin (2010) and Chandler (2009) show that the timing of RPS adoption

is not actually correlated with pollution concentrations. Schmalensee (2012) argues

that the environmental rationale for RPS adoption is unclear, further reducing en-

dogeneity concerns. Lastly, increases to the strength of the policy occur in regularly

scheduled intervals over time and it can be credibly argued that the increases are

exogenous to the current period pollution. My preferred identification strategy relies

2This is an interaction of year fixed effects with the nine U.S. census region fixed effects.
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on this variation to make a casual inference between RPS legislation and pollution

reductions.

The matrix of controls, C, includes electricity fuel average prices for coal and

natural gas. I construct quarterly average coal prices, by census region, to account

for variations in coal type and region specific transportation costs. Since the Acid

Rain Program of the 1990 Clean Air Act established SO2 permit trading, I also

interact the EPA’s annual auction allowance prices with dummy variables for each

respective census region to allow for heterogeneous regional effects. Collectively, this

should ensure that my results are not biased by coal plants switching from high-sulfur

to low-sulfur coal, as these decisions are driven by the costs captured through these

variables. Although the cap-and-trade nature of the program prevents additional

reductions to aggregate national SO2 emissions, within-state emissions may still

change. Further, the program works through an emissions price for all states, so

non-adoption states are still an adequate control group when using the two-way fixed

effects regression framework where the timing of RPS adoption is exogenous with

respect to local pollution. Lastly, the average monthly wellhead price of natural gas

is also included as a control. With the rapid fall in natural gas price in recent years,

electricity from natural gas generators has become cheaper than electricity from

coal plants,3 raising the possibility that pollution concentrations decrease because

natural gas generators are less polluting per MWh generated when compared to coal

3The EIA uses “total system levelized” cost to compare electricity across generator sources
because it considers capital, operating, and fuel costs. They estimate $100/MWh for conventional
coal and $67/MWh for combined cycle natural gas. For comparison, renewable technologies cost
at $87/MWh, $144/MWh, and $90/MWh for onshore wind, solar photovoltaic, and hydroelectric,
respectively. (EIA, 2013a)
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(Cullen and Mansur, 2013, Lafrancois, 2012).

Included within the matrix of controls are variables for state-level personal in-

come, local GDP, total state electricity generation, and corporate average fuel econ-

omy standards for passenger cars and light trucks. Real quarterly personal income

at the state level captures changes in statewide economic trends across time. To

capture local economic activity I include total GDP from the nearest metropolitan

area. GDP per capita is not used here because measured pollution is more likely con-

nected to total economic activity, which is highly correlated with population density.

Due to data limitations, a continuous measure of local population densities is not

included. Finally, I include monthly in-state electricity generation data to control

for any pollution changes explained by an increase or decrease from total electricity

generation. While some of the determinants of pollution from neighboring states

may impact pollution locally, the model attempts to mitigate this concern through

various spatial aggregations of the control variables in combination with spatial and

temporal fixed effects. This should allow for proper identification of the variables of

interest without substantial contamination or omitted variable bias, though this is

discussed further with the results.

Lastly, the control matrix includes a variety of state renewable energy incen-

tives, renewable policies, and national air quality policies. These include binary

variables equalling one if the pollution monitoring station is present in the applica-

ble state and year. The state policy controls include public benefit funds, property

tax incentives, corporate tax incentives, generation subsidies, and renewable project

grants. I control for national pollution policy controls using dummy variables for

12



Table 1.1: Summary of Control Variables
Control Variable Data Source

Renewable Portfolio Standards Database of State Incentives for Renewable Energy
Coal price Form EIA-923, EIA-423, and FERC-423
Natural gas price EIA-895 and EIA-176
Personal income Department of Commerce, Bureau of Economic Analysis
Local GDP Department of Commerce, Bureau of Economic Analysis
Electricity generation EIA-826, EIA-923, EIA-860, and EIA-861
SO2 emission price Environmental Protection Agency
OTC NOX Budget Program Environmental Protection Agency
NOX State Implementation Plan Environmental Protection Agency
Public Benefit Fund Database of State Incentives for Renewable Energy
Property Tax Incentives Database of State Incentives for Renewable Energy
Corporate Tax Incentives Database of State Incentives for Renewable Energy
Generation subsidies Database of State Incentives for Renewable Energy
Renewable project grants Database of State Incentives for Renewable Energy
Clean Air Interstate Rule Environmental Protection Agency
Diesel fuel sulfur standards Environmental Protection Agency
Aircraft exhaust emission standards Environmental Protection Agency
Corporate average fuel economy standards Department of Transportation

the states and years affected by the Clean Air Interstate Rule, Ozone Transport

Commission NOX Budget Program, the NOX State Implementation Plan, changes

in diesel fuel sulfur standards, and aircraft exhaust emission standards.4

1.4 Data

Data on RPS policies and state incentive controls is taken directly from the

Database of State Incentives for Renewables & Efficiency (DSIRE), which compiles

information on renewable policies directly from state legislation. The project is

supported by the U.S. Department of Energy and administered by North Carolina

State University’s Solar Center in collaboration with the Interstate Renewable En-

4Although an extensive review of these policies is beyond the scope of this analysis, interested
readers should refer to Charmley (2004) and EPA (2002) for a discussion of automobile standards,
emissions, and health impacts. Archived information with additional policy details can be found
on the EPA’s website: http://www.epa.gov/airmarkets/
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ergy Council. The DSIRE includes the dates of each state’s nominal requirement,

the exemptions, and the carve-outs for specific renewables. As an example of a

carve-out, Maryland’s final RPS requirement is 20% by 2022 but there are addi-

tional requirements “carved out” for 2% solar generation. Further, some states

allow RECs trading with other states to meet RPS requirements. The nominal per-

centage requirements, coverage exemptions, eligibility requirements, carve-outs, and

REC trading status all serve as examples of the heterogeneity of RPS policies. As

noted by Yin and Powers (2010), the heterogeneity in policy details is important to

consider. Their analysis shows this is especially true when considering the nominal

requirements because sometimes states which appear to have strong requirements

actually have relatively weak or unbinding requirements. Thus, I use a similar

measure similar to convert “nominal” RPS requirements to “real” requirements as

follows:

REALst = NOMst ∗ COVs −
GENsT

SALESsT

where REALst is real RPS percentage requirement for state s in year t, NOMst

is the nominal RPS percentage requirement, COVs is the non-exempt percentage

covered by the policy, SALESsT is the total electricity sales at legislation date T ,

and GENsT is the total in-state renewable generation at legislation date T . This

adjustment accounts for a situation in which a nominal increase in RPS strength is

non-binding. For example, a state might have its RPS requirement increase from 5%

to 7%, but already be producing electricity with 8% renewables at the legislation

date several years ago. In this case, the percentage requirement increased, but
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we would expect no effect on pollution or renewable generation. Data on coverage

comes directly from the DSIRE database, while sales and generation data comes from

the EIA. Table 1.2 provides a cross-sectional comparison of nominal and real RPS

policies for selected states in effect during 2012, including if hydro-electric power or

biomass are allowed to satisfy the policy. A lengthy discussion of eligible generation

is omitted because each state is different, but an extensive review of hydroelectric

and biomass requirements was performed in the data construction.5 Notably, many

states with strong nominal requirements are shown to have much more modest

requirement. Of the 48 contiguous states considered in this analysis, 28 have an

RPS with an average nominal requirement of 10.4% renewable generation as of

2012. However, when considering exemptions to the policy and previous renewable

generation prior to the policy, the real percentage requirement averages only 3.5%.

Note that the final total RPS requirement may be much higher, as these policies

gain strength and many do not reach their final requirements for another decade.

For the dependent variable, I use an unbalanced panel of pollution data from

the EPA’s Air Quality System (AQS), spanning from 1997-2012. The data con-

trolling for other national air quality policies described in Section 1.3 also come

from the EPA. The AQS database provides data from over one thousand pollu-

tion monitoring stations which were collected by local, state, and federal agencies.

Depending on the monitoring station or the pollutant measured, pollutant concen-

trations are reported as either hourly or daily averages. Data are reported to the

5Interested readers should refer to the DSIRE database for additional details and legislation
links.
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Table 1.2: Summary Statistics: 2012 RPS Policies
State Nominal % Real % Hydro Biomass

ME 35.0 4.1 Yes† Yes
CA 20.0 7.4 Yes∓ Yes‡

CT 16.0 11.9 Yes† Yes‡

MA 14.1 6.0 Yes Yes‡

MT 10.0 6.1 No Yes‡

NM 10.0 6.7 Yes† Yes
MD 9.0 3.8 Yes Yes‡

TX 4.8 2.6 Yes Yes
AZ 3.5 2.0 No Yes
NC 3.0 0.1 Yes† Yes‡

MO 2.0 1.1 No Yes
OH 1.5 0.1 Yes Yes

Total Mean 10.4 3.5
† Currently includes new hydro only

∓ Includes small hydro only (under 30 MW)
‡ Special restrictions apply, refer to DSIRE database for additional details

EPA quarterly, but data are occasionally missing due to incomplete reporting or

subsequent correction by the EPA. Low quality data are marked by the EPA using

qualifier codes representing various extraordinary circumstances, for example “lab

error,” “operator error,” or “building/site repair.” All flagged values are dropped

before daily concentration averages are calculated for each monitoring station. The

analysis is limited to the 48 contiguous United States, and thus excludes data for

Alaska, Hawaii, and Washington D.C.

Data on fuel price and electricity generation come directly from the Energy

Information Agency’s annual reports. Total in-state net electricity generation6 is

included at the monthly level. Coal prices are included using quarterly regional

average data, while national monthly average wellhead natural gas price is included.

6EIA defines net generation as the total power generated by a plant, minus the amount of
electricity used to run the generation functions.
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Table 1.3: Summary Statistics: Pollutant Concentrations
Mean and Standard Deviation (in parentheses)

Number of Observations [in brackets]

1997 2012

No RPS Pre-RPS No RPS Post-RPS
States States States States

Sulfur Dioxide (ppb) 5.405 4.980 1.737 1.495
(6.187) (5.818) (2.717) (2.516)
[68K] [150K] [32K] [55K]

Nitrogen Oxides (ppb) 22.97 31.05 8.01 13.37
(26.70) (33.65) (10.25) (16.65)
[14K] [72K] [17K] [46K]

PM10 (µg/m3) 28.32 27.56 20.57 28.69
(20.25) (26.90) (16.33) (47.45)
[16K] [48K] [23K] [38K]

These are included instead of wholesale electricity price because of the possibility for

price and localized fuel prices to be endogenous to the RPS policy. While fuel price

is highly correlated with electricity price, regional average fuel price is more likely

exogenous to any single state adoption of RPS legislation. Further, if the fuels are

traded on a national market then any local variation is the result of shipping costs

and will be picked up by monitoring station fixed effects, if shipping costs remain

stable over time. To the extent shipping costs vary across time but are stable within

regions, the effect will be captured through the regional average prices. Lastly, the

U.S. Bureau of Economic Analysis (BEA) provides state-level quarterly personal

income data and annual metropolitan GDP data. I convert all nominal data into

real prices using the GDP deflator provided by the BEA.

Table 1.3 provides summary statistics of daily average ambient levels for each

pollutant. Since states vary in the timing of RPS adoption, simply showing pre-
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adoption and post-adoption averages for adoption states could be deceiving because

it would include overlapping years. Instead the first two columns show a cross-section

of average pollution levels for treatment and control states during 1997, while the

last two columns show data from the same states in 2012, after the policies have

been in effect. The data clearly show large decreases in ambient pollution levels

for SO2 and NOX within both the adoption states and the states without RPS.

Ambient concentrations of SO2 decreased by 67.9% (3.67 ppb) in non-adoption states

and 70.0% (3.49 ppb) in adoption states between 1997 and 2012. The dispersion

of ambient concentrations also decreased heavily during this time period for both

groups, as shown by the lower standard deviations in 2012. Ambient concentrations

of NOX decreased by 65.1% (14.96 ppb) in non-adoption states and 56.9% (17.68

ppb) in adoption states between 1997 and 2012. Meanwhile, the respective columns

show decreases of 27.4% (7.8 µg/m3) in ambient PM10 within the non-adoption

states, but a slight increase of 4.1% (1.13 µg/m3) in adoption states. Reviewing

these summary statistics across time underscores the importance of controlling for

time trends, such as the region-year fixed effects in the econometric regressions

described in Section 1.3. In addition, it helps to motivate the regression analysis,

as it is not immediately clear what portion of these reductions can be attributed to

RPS legislation.

I also perform tests for pre-treatment time trends to ensure that the adoption

states do not contain pre-existing trends that could invalidate the difference-in-

differences strategy. I regress pollution concentrations on the control variables while

interacting time trend variables with a dummy for RPS adoption states. With a p-
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value of 0.698, I fail to reject the null hypothesis that there are no pre-existing time

trends unexplained by the control variables. The same test yields similar results for

NOX and PM10, with p-values of 0.465 and 0.160, respectively. This suggests that

both the adoption states and the non-adoption states exhibit the same unobservable

trends up to the point of adoption. When removing the control variables for SO2

and only including time, geographic, and monitoring station fixed effects I still fail

to reject that there are no pre-existing time trends with a p-value of 0.123. Using

this method to test for separate pre-existing trends in NOX and PM10 again yields

no significant differences across adoption and non-adoption states, with p-values of

0.479 and 0.440, respectively.

The distribution of sulfur dioxide, nitrogen oxide, and PM10 concentrations

are shown in Figures 1.1, 1.2, and 1.3, respectively. The “no-adoption states” label

refers to the distribution for all years in the sample for states which never adopt

RPS. The “pre-adoption RPS states” label shows the distribution of pollution con-

centrations for adoption states for all the years prior to adoption. The “post-RPS

adoption states” label shows the distribution of ambient pollution for all the years

after adoption. Each density graph is truncated at an EPA health standard limit,7

and they show a similar pattern. There do not appear to be large differences in

the distributions between adoption states and non-adoption states. For SO2 and

NOX the post-adoption period appears to shift the distribution slightly towards

lower concentrations, in addition to lowering the variance. Within PM10 there is no

7EPA limits are 30 ppb annual average for SO2, 100 ppb hourly average for NOX , and 50 µg/m3

for PM10.
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Figure 1.2: Kernel Density of NOX Concentrations

discernable trend across groups. Further, any differences between the three density

groups are negligible for all pollutants before reaching the EPA health standard.

This suggests that any pollution benefits associated with RPS standards may not

translate into large health benefits. However, such an investigation is left for future

research.

Table 1.4 provides summary statistics of the control variables for the entire

sample, non-RPS states, and RPS adoption states for the SO2 analysis. The sum-

mary statistics of controls for the analysis of NOX and PM10 are qualitatively iden-
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tical and contain small, insignificant differences due to the unbalanced panel for each

pollutant studied. Generally, RPS adoption states appear to have larger incomes,

with a larger total GDP in the nearby metro areas. However, these summary level

data are skewed by several large states which have RPS policies, notably California,

Texas, and New York. Other adoption states have large metropolitan areas as well,

for example Illinois and Pennsylvania. However, the large standard deviations im-

ply plenty of overlap in the controls for both groups, so these differences are not a

serious concern when coupled with the monitoring station fixed effects that captures

the stable effects within heterogeneous urban areas. Finally, Table 1.4 shows little

difference in the fossil fuel price data between the two groups.

Table 1.5 provides selected summary statistics organized by the nine US census

divisions. Sulfur dioxide concentrations are generally higher in the Northeast and in

the Southeast, which is expected because of higher population densities and number

of coal plants. There does not seem to be a clear geographical pattern with nitrogen

oxides, although concentrations are lowest in the West North Central and East South
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Table 1.4: Summary Statistics: Controls
Mean and Standard Deviation (in parentheses)

Total No RPS States RPS States
n = 2,789K n = 1,026K n = 1,763K

Metro GDP 113,999 53,978 148,937
(Annual $millions) (204,097) (96,154) (239,172)

Total state income 366,351 190,151 468,914
(Quarterly $millions) (348,368) (172,636) (382,183)

Total state generation 10,465 8,434 11,647
(Monthly GWh) (7,194) (4,507) (8,140)

Coal price 33.64 34.32 33.25
($/ton) (17.54) (16.77) (17.95)

Natural gas price 4.37 4.42 4.34
($/1,000ft3) (1.84) (1.84) (1.84)

Central census divisions. The geographical discrepancies between regions could be

picking up variations in population density, as regions with large urban areas may

have larger NOX concentrations due to higher automobile activity. Meanwhile,

PM10 seems to be relatively consistent across regions, although the West South

Central census division has the highest mean.

1.5 Results

The regression results for sulfur dioxide, nitrogen oxides, and PM10 are re-

ported in Tables 1.6, 1.7, and 1.8, respectively. The five different specifications in

columns (A) through (E) are identical across tables and each table corresponds to a

different dependent variable. Every specification controls for the various fossil-fuel

prices, economic activity, in-state electricity generation, and fixed effects for month,

region-year, and monitoring station. To address the spatial correlation of the error
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Table 1.5: Summary Statistics: Census Division
Mean and Standard Deviation (in parentheses)

Number of Observations [in brackets]

SO2 NOX PM10
(ppb) (ppb) (µg/m3)

New England 3.833 22.73 21.96
(4.237) (25.02) (15.82)
[173K] [116K] [11K]

Middle Atlantic 5.301 28.39 21.90
(5.687) (27.77) (14.32)
[433K] [189K] [132K]

East North Central 4.613 27.87 26.47
(5.374) (26.42) (16.79)
[535K] [96K] [90K]

West North Central 2.187 10.67 24.71
(4.280) (13.61) (20.09)
[333K] [99K] [127K]

South Atlantic 4.232 19.67 23.01
(5.368) (25.50) (13.04)
[463K] [96K] [151K]

East South Central 4.123 7.88 26.06
(4.713) (10.94) (17.47)
[202K] [20K] [67K]

West South Central 2.392 14.6 28.80
(3.970) (16.87) (24.32)
[215K] [316K] [56K]

Mountain 2.579 19.14 28.53
(4.395) (28.29) (29.07)
[209K] [132K] [496K]

Pacific 1.491 26.33 26.58
(1.871) (31.28) (95.78)
[225K] [525K] [173K]
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terms from nearby pollution monitoring stations, the standard errors are clustered

at the state level for all specifications.8

Column (A) of each table provides a basic specification with only a dummy

variable equal to one during the periods in which the state had an RPS in effect.

Column (B) includes the nominal percentage requirement, so the coefficient captures

the average marginal effect of increasing the nominal requirement by one percentage

point. However, as discussed in Section 1.4, this is a weak measure of strength for

each policy because it does not consider whether such a percentage requirement

is beyond the existing renewable generation. Columns (C) through (E) include

the real RPS requirement to capture the actual strength of the RPS policy, as

described in Section 1.4. The specification of Column (D) is identical to Column

(C), except that it replaces the region-year fixed effects with separate fixed effects

for both year and region. Lastly, Column (E) removes the policy controls to address

concerns that alternative renewable energy and air quality policies are endogenous

with RPS legislation due to the possibility that policymakers adopt a bundle of

policies simultaneously with RPS.

Table 1.6 gives the regression results using ambient sulfur dioxide concen-

trations as the dependent variable. Column (A) shows a small, but statistically

insignificant, decrease of 0.08 ppb in sulfur dioxide concentrations using the dummy

variable for presence of an RPS policy. This is not surprising because the variation

of state policy strength implies that a simple policy dummy will be ineffective at

8Robustness checks have also used clustering at the county level and the monitoring station
level. Both of which yield qualitatively identical results.
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capturing the true marginal treatment effect. Column (B) uses the nominal strength

of the RPS and shows a very small, but statistically significant, marginal increase

from pollution. The coefficient is interpreted as the marginal effect of an additional

percentage point strength in nominal requirements, which leads to an SO2 increase

of 0.01 ppb, or 0.2% from the 1997 levels within adoption states. Again, this small

positive effect is contrary to the basic intuition that these policies will either decrease

pollution or be ineffective. However, my prior expectation is that nominal strength

does not capture the true effect of an RPS policy because many state policies appear

nominally strong but are actually quite weak.

The preferred specifications for Table 1.6 are provided in Column (C), where

RPS shows larger statistically significant reductions when considering the real strength

of the policy. In Column (C), a one percentage point increase in the real require-

ment leads to a significant reduction in SO2 concentrations by 0.08 ppb, or 1.6% from

1997 adoption state means. Using the 3.5% average real RPS strength in 2012, this

means that RPS policies are responsible for approximately 5.4% of the total decline

in SO2 concentrations from 1997 to 2012. The wide variation in marginal effects

from the first three specifications provide strong evidence that properly accounting

for policy heterogeneity across states is paramount to accurate analysis, and these

findings are consistent with the implications of previous studies (Johnson, 2014, Yin

and Powers, 2010). In Column (D) the region-year fixed effects are removed, which

decreases the marginal effect, although it is not statistically different from Column

(C). Removing the policy controls in the specification of Column (E) increases the

magnitude of the coefficient to -0.10, but it is not statistically different from either
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Table 1.6: Regression Coefficient Results: Sulfur Dioxide
Dependent Variable: SO2 Concentration (ppb)

(A) (B) (C) (D) (E)
Policy -0.0844

(0.0846)

Nominal 0.0146***
(0.0054)

Real -0.0773** -0.0389 -0.1017**
(0.0292) (0.0284) (0.0415)

Economic Controls Yes Yes Yes Yes Yes
Policy Controls Yes Yes Yes Yes No
Time Fixed Effects Yes Yes Yes Yes Yes
Region-year Fixed Effects Yes Yes Yes No Yes
Monitoring Stations 1,039 1,039 1,039 1,039 1,039
Observations 2,789K 2,789K 2,789K 2,789K 2,789K
Note: ***, **, and * denote statistical significance at the 1%, 5%, and 10% levels respectively.

Standard errors are clustered and reported in parenthesis.

of the prior two columns. Using this coefficient instead of Column (C) implies RPS

legislation is responsible for about 7.1% of the total decline in SO2 concentrations

from 1997-2012.

Table 1.7 shows that an RPS policy significantly decreased nitrogen oxide

pollution concentrations by an average of 0.85 ppb, as shown in Column (A). This

represents a 2.8% total decrease from 1997 levels in adoption states which show a

total decrease of 57% from 1997 to 2012. Consistent with the previous story for

SO2, Column (B) shows an insignificant decline in NOX concentrations from the

nominal RPS requirements. The coefficient suggests that an additional percentage

point requirement for renewable generation reduces NOX concentrations by 0.02

ppb, less than 0.1% from their 1997 levels. Consistent with the previous table for

SO2, the real RPS requirement again shows much stronger decrease in ambient

NOX in Columns (C) and (D). Column (C) suggests that an increase in the real
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Table 1.7: Regression Coefficient Results: Nitrogen Oxides
Dependent Variable: NOX Concentration (ppb)

(A) (B) (C) (D) (E)
Policy -0.8540***

(0.3102)

Nominal -0.0219
(0.0247)

Real -0.1725 -0.2696*** -0.1822*
(0.1060) (0.0890) (0.1066)

Economic Controls Yes Yes Yes Yes Yes
Policy Controls Yes Yes Yes Yes No
Time Fixed Effects Yes Yes Yes Yes Yes
Region-year Fixed Effects Yes Yes Yes No Yes
Monitoring Stations 654 654 654 654 654
Observations 1,588K 1,588K 1,588K 1,588K 1,588K
Note: ***, **, and * denote statistical significance at the 1%, 5%, and 10% levels respectively.

Standard errors are clustered and reported in parenthesis.

requirement of one percentage point leads to reductions in NOX concentrations of

0.17, or 0.6% for each additional percentage point in real strength. Using the 3.5%

average real RPS strength in 2012, this means that RPS policies are responsible for

approximately 1.9% of the total decline in NOX concentrations from 1997 to 2012.

Column (D) shows a stronger effect when region-year fixed effects are removed,

becoming statistically different than zero but not statistically different from Column

(C). Removing the policy controls in the specification of Column (E) changes the

magnitude of the effect to -0.18, and it remains statistically significant.

The results using PM10 as the dependent variable are shown in Table 1.8. The

basic specification in column (A) shows that an RPS policy is associated with an

insignificant decrease in average PM10 concentrations. Column (B) shows that the

nominal strength leads to insignificant reductions in PM10, while Columns (C) and

(D) show a small and insignificant increase in concentrations from the real strength
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Table 1.8: Regression Coefficient Results: Particulate Matter
Dependent Variable: PM10 Concentration (µg/m3)

(A) (B) (C) (D) (E)
Policy -1.2815

(0.8958)

Nominal -0.0701
(0.0996)

Real 0.1711 0.0457 0.2600
(0.1864) (0.1927) (0.1884)

Economic Controls Yes Yes Yes Yes Yes
Policy Controls Yes Yes Yes Yes No
Time Fixed Effects Yes Yes Yes Yes Yes
Region-year Fixed Effects Yes Yes Yes No Yes
Monitoring Stations 872 872 872 872 872
Observations 1,303K 1,303K 1,303K 1,303K 1,303K

Note: ***, **, and * denote statistical significance at the 1%, 5%, and 10% levels respectively.

Standard errors are clustered and reported in parenthesis.

of the RPS percentage requirement. Lastly, Column (E) removes the policy controls

which increases the magnitude of the coefficient, with no change in statistical sig-

nificance. Thus, there is little to no evidence that RPS legislation reduces ambient

concentrations of PM10, which is not particularly surprising since PM10 emissions

from the energy sector account for a relatively small portion of total ambient PM10.

Overall, the effects of RPS legislation on ambient pollution are expected to

vary across pollutants for several reasons. First, the fraction of total emissions at-

tributed to electricity generation varies widely. For example, the smaller percentage

reduction for NOX relative to SO2 is not surprising since electricity generation is

responsible for 85% of total SO2 emissions but only 30% of total NOX emissions.

While fossil-fuel combustion is one of the largest human contributor to PM10 emis-

sions, it only accounts for about 5% since the vast majority of PM10 concentrations

are from dust, agriculture, and fires (EPA, 2011a). Further, generators vary in their
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relative emissions for each pollutant due to the fuel type used, so the effects on am-

bient pollution depend on which generators are offset by the additional renewable

generation attributable to RPS legislation. However, this is the subject of debate in

the previous literature because emissions reductions depend on the marginal gener-

ator type that is displaced, conditional on the ramping constraints of the generating

profile (Callaway and Fowlie, 2009, Kaffine et al., 2013, Novan, 2011).

The results of this analysis compare well to estimates that can be recovered

from the previous literature. Although this analysis focuses on ambient concentra-

tions, Kaffine et al. (2013) empirically estimate the emissions reductions from wind

generation in Texas. Using their estimates, I calculate an expected weighted ratio

of NOX to SO2 reductions to be 0.22, after considering relative emissions from elec-

tricity and other sectors. Using my estimates, ambient reductions of NOX to SO2

are 0.36, when compared on a percentage basis. The two estimates are similar and

show larger percentage reductions in SO2 than NOX , although my estimated ratio

is slightly higher. The differences are arguably due to differences in the generating

profile between Texas and the rest of the nation.

It is also worth discussing how these reductions translate to monetary bene-

fits, although a thorough discussion of the related costs are beyond the scope of this

analysis. Previous literature generally discusses the benefits from pollution reduc-

tion in terms of marginal costs per unit of emission (Cullen, 2013, Kaffine et al.,

2013), which is not directly applicable in this analysis because it focuses on ambient

pollution concentrations. However, I calculate a back-of-the-envelope approxima-

tion using benefit estimates from the EPA (EPA, 2010a,b), which rely heavily on
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the methodologies of earlier research (Fann et al., 2009, Laden et al., 2006, Pope III

et al., 2002). This analysis suggests that each percentage increase in national RPS

strength translates to between $92.6 and $228.5 million worth of health and envi-

ronmental benefits from decreases in local ambient pollution alone. These benefits

come through $62 to $153 million from SO2 reductions when using the EPA’s mon-

etary benefits range of $0.76 to $1.88 billion per ppb reduction in SO2 nationally.

An additional $30.7 to $75.4 million comes from NOX reductions when using the

EPA’s monetary benefits range of $0.175 to $0.430 billion per ppb reduction in NOX

nationally. However, these estimates do not consider the costs associated with RPS

legislation. Lastly, these benefits calculations should be used cautiously since they

rely on assumptions from previous literature that are regularly debated, such as the

value of a statistical life (Viscusi and Aldy, 2003).

In considering policy differences across states, one important factor is the

ability to trade RECs with neighboring states. Economic theory suggests this policy

component is important to achieve pollution reductions at the least cost. Further,

Yin and Powers (2010) note that REC trading leads to lower renewable generation

within states that have such policies. To understand the effect of neighboring states

and to investigate how REC trading affects regional pollution reduction I take the

baseline specification (Column (D) of Tables 1.6, 1.7, and 1.8) and separate out the

real RPS strength for two groups of states. Column (A) of Tables 1.9, 1.10, and 1.11

each show a separate treatment for states with adopting neighbor states and those

who adopted without neighboring states for SO2, NOX , and PM10, respectively.

States with adopting neighbors are those enacting RPS in addition to at least half
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of their bordering states.9

The results show that RPS policies in states with adopting neighbors had

strong reductions to SO2 and NOX relative to states with non-adopting neighbors.

The reductions of 0.11 ppb and 0.27 ppb for SO2 and NOX represent a marginal de-

crease of approximately 2.1% and 0.9%, respectively, for each additional percentage

point strength in the real RPS requirement. Meanwhile, those states who adopted

RPS when their neighbors did not showed no evidence that RPS policies lead to

reductions in local pollutants. As with previous regressions, both groups show no

statistically significant effect on PM10. This supports the idea that adopting RPS

in isolation does little to achieve the stated goals without a regional policy. It also

helps explain why the previous tables found that a percentage point increase in real

RPS strength could lead to a greater than 1% reduction in SO2, as pollution reduc-

tions can culminate from neighboring states. This also suggests it is possible that

the determinants of ambient pollution from a neighboring states could create an

omitted variable bias in the selected state. The preferred empirical specification at-

tempts to mitigate this through various spatial aggregations of the control variables

in addition to fixed effects at varying spatial and temporal aggregations. Further,

the results are qualitatively identical to a robustness check specification that adds

regional averages of control variables in an attempt to capture the determinants of

pollution from neighboring states.

9Interacting the state’s RPS measure with a dummy for neighboring state adoption provides
a simple and intuitive coefficient to consider attenuation bias due to pollution spillover effects.
While the selection of using at least half the bordering states is arbitrary, the analysis is also done
using 2/3 of bordering states with qualitatively identical results. Using an average of neighboring
states is not done because it essentially reduces to a regional average without sufficient variation
or statistical power.
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Table 1.9: Alternative Regression Results: Sulfur Dioxide
Dependent Variable: SO2 Concentration (ppb)

(A) (B) (C) (D)
Real (non adopting neighbors) -0.0139

(0.0405)

Real (adopting neighbors -0.1049***
(0.0358)

Real (non trading) 0.0113
(0.0646)

Real (trading) -0.1042***
(0.0314)

Real (upwind avg) -0.0589
(0.0797)

Real (current year) -0.1191**
(0.0480)

Future Real (1 year) 0.0236
(0.0308)

Future Real (2 years) -0.0391
(0.0329)

Economic & Policy Controls Yes Yes Yes Yes
Time Fixed Effects Yes Yes Yes Yes
Region-year Fixed Effects No No Yes Yes
Monitoring Stations 1,039 1,039 1,039 780
Observations 2,789K 2,789K 2,789K 2,020K

Note: ***, **, and * denote statistical significance at the 1%, 5%, and 10% levels respectively.

Standard errors are clustered and reported in parenthesis.
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Table 1.10: Alternative Regression Results: Nitrogen Oxides
Dependent Variable: NOX Concentration (ppb)

(A) (B) (C) (D)
Real (non adopting neighbors) -0.1895

(0.1406)

Real (adopting neighbors -0.2717***
(0.0859)

Real (non trading) -0.0038
(0.1759)

Real (trading) -0.2848***
(0.0827)

Real (upwind avg) 0.0337
(0.2168)

Real (current year) -0.3960**
(0.1841)

Future Real (1 year) 0.1419
(0.1308)

Future Real (2 years) -0.0808
(0.1287)

Economic & Policy Controls Yes Yes Yes Yes
Time Fixed Effects Yes Yes Yes Yes
Region-year Fixed Effects No No Yes Yes
Monitoring Stations 654 654 654 491
Observations 1,588K 1,588K 1,588K 1,103K

Note: ***, **, and * denote statistical significance at the 1%, 5%, and 10% levels respectively.

Standard errors are clustered and reported in parenthesis.
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Column (B) of these same tables uses a similar technique to separate the RPS

effect among states with a REC trading program and those without a REC trading

program. A state is considered to have a trading program if they allow out-of-

state RECs to satisfy the requirements. As these are a similar group of states to

those which have neighbors adopting RPS policies, I expect a similar result. Larger

pollution reductions are expected in states which trade RECs because of spillover

effects, even though trading may lower the within-state subsidies for renewable gen-

eration. The results for SO2 and NOX are very similar to Column (A). States

allowing REC trading decreased SO2 and NOX by 2.1% and 0.9%, respectively, for

each percentage point of real RPS strength. The non-trading states showed no sig-

nificant reductions in SO2 and NOX . Meanwhile, the PM10 results do show weak

statistical significance, with trading RPS states reducing PM10 concentrations by

1.3% and non-trading states increasing concentrations by 1.2%. This result should

be interpreted with caution and weighed against all previous regressions showing

RPS policies had no statistically significant effect on PM10 concentrations.

Column (C) of Tables 1.9, 1.10, and 1.11 addresses the issue of upwind and

downwind states when considering pollution and abatement spillovers. Generally,

pollution flows east because of the atmospheric flow known as the Westerlies. Thus,

the in-state real RPS requirement is replaced with an average of all real RPS state

requirements within 200 miles west of the treated state, weighted by electricity

generation. More formally,
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Table 1.11: Alternative Regression Results: Particulate Matter
Dependent Variable: PM10 Concentration (µg/m3)

(A) (B) (C) (D)
Real (non adopting neighbors) -0.0490

(0.3006)

Real (adopting neighbors 0.1109
(0.2431)

Real (non trading) 0.3276**
(0.1569)

Real (trading) -0.3730*
(0.1995)

Real (upwind avg) 0.7059**
(0.2731)

Real (current year) -0.9342**
(0.4405)

Future Real (1 year) 0.3834
(0.2310)

Future Real (2 years) 0.2060
(0.2470)

Economic & Policy Controls Yes Yes Yes Yes
Time Fixed Effects Yes Yes Yes Yes
Region-year Fixed Effects No No Yes Yes
Monitoring Stations 872 872 872 506
Observations 1,303K 1,303K 1,303K 820K

Note: ***, **, and * denote statistical significance at the 1%, 5%, and 10% levels respectively.

Standard errors are clustered and reported in parenthesis.
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REALAV Gst =

∑
i∈W

GENit ∗ (NOMit ∗ COVi −
GENiT

SALESiT
)∑

i∈W

GENit

where REALAV Gst is the real upwind weighted average RPS percentage require-

ment for state s in year t, NOMit is the nominal RPS percentage requirement, COVi

is the non-exempt percentage covered by the policy, SALESiT is the total electric-

ity sales at legislation date T , GENiT is the total in-state renewable generation at

legislation date T , and i ∈ W represents all states i within 200 miles west of state

s, inclusive of s.

Column (C) of Tables 1.9, 1.10, and 1.11 shows that weighted average poli-

cies from upwind states have no statistically significant reductions in SO2, NOX , or

PM10. This suggest the the results are not driven by large movements in pollution

from states which are 200 miles west, even though pollution can travel long distances

in some cases. However, exercise caution when interpreting the results of this col-

umn because the assumption of eastern flowing pollution is a generalization of long

run wind patterns that is not always the case locally. Column (C) of Table 1.9 shows

the largest decrease from upwind states within SO2, with a one percentage increase

in real upwind average policies decreasing ambient concentrations by 0.06 ppb, or

1.2% of 1997 averages. Although statistically insignificant, this is in line with ex-

pectations, as coal-based electricity generation in the midwest has been known to

increase acid rain deposits even as far as the northeast. Regarding NOX , Column

(C) of Table 1.10 shows that the weighted average of upwind state policies leads to

an insignificant increase of 0.1%. Although different from SO2 effects, this is still
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within expectations since NOX converts to ozone over long distances when exposed

to VOCs and sunlight so I expect no effect. Lastly, Column (C) of Table 1.11 shows

no evidence that upwind RPS averages decreased PM10 concentrations, and actually

shows a small positive correlation.

Finally, Column (D) addresses the issue of anticipatory responses to future

binding policies. It is possible that renewable capacity could be installed in the

current year in anticipation of a future year’s binding policy, even if it has no real

strength in the current year. If renewable generators are being constructed due to

the anticipated binding strength of the policy in a future year, it could bias my

results. Intuitively, this may create a downward bias because pollution reductions

occurring in the control period are captured by annual fixed effects instead of the

variable for the real policy strength. To test this hypothesis, I include the future

real RPS strength in Column (D) of Tables 1.9, 1.10, and 1.11 for SO2, NOX , and

PM10, respectively. As shown by the tables, the primary results do not appear to be

driven by anticipatory responses. The “future real” strength of the policy in either

of the next two years does not lead to significant reductions in pollution for any

of the pollutants studied. The magnitude of the marginal effect is insignificantly

larger for SO2 and NOX reductions from the current year real RPS requirement,

when compared to the closest specification in Column (C) in Tables 1.6 and 1.7,

respectively.
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1.5.1 Robustness Checks

Tables 1.9, 1.10, and 1.11 suggest that pollution spillovers from neighboring

states may prevent clean identification of the policies because they lack an isolated

and comparable control group. Thus, another possible model takes advantage of

the high frequency time series data when a good control group is not available,

through vector autoregression models more commonly used with high frequency

data in finance and macroeconomics. The autoregressive moving-average (ARMA)

model of autoregressive order p and moving average order q is

yt = β0 +

p∑
i=1

βiyt−i + β2RPSit + β3Cit +

q∑
j=1

βjεj−i + εt

where yt is the ambient pollutant concentration at a monitoring station during time

t, RPS represents the real strength of an RPS policy, C is a matrix of economic

controls, and εt is an error term correlated across time.

The ARMA model of order 1 is calculated for each monitoring station sepa-

rately and for each of the three pollutants. All three pollutants give results within

the expectations of the preferred specification discussed previously. For SO2, the

median of all ARMA results shows a slightly lower marginal effect of -0.03 ppb, or

about a 0.6% decrease for each additional percentage point RPS requirement. The

effect of RPS legislation on NOX increases under the ARMA model to -0.55 ppb,

about 1.7% of pre RPS levels. Lastly, PM10 again shows little evidence of reductions

from RPS policies, with a median insignificant effect of 0.178 µg/m3.

To further test the robustness of the panel data results, I perform an identical

analysis on two control pollutants as a falsification test. While about three-fourths of
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all sulfur dioxide emissions are from generating electricity from fossil fuel, automobile

activity is a significant contributor to emissions of NOX , PM10, and a host of other

pollutants (EPA, 2011a). For example, automobiles make up around 62% of NOX

emissions while fuel combustion10 is responsible for about 30%. Meanwhile, the EPA

notes that fuel combustion is responsible for approximately 84% and 5% of SO2 and

PM10 emissions, respectively, while automobiles account for approximately 2% of

both SO2 and PM10 emissions. To ensure that my findings are not the result of

changes in unobservable automobile activity that is not captured in the econometric

model through time and policy fixed effects, I use carbon monoxide (CO) and volatile

organic compounds (VOC) as control pollutants. The EPA notes that automobiles

are responsible for approximately 86% of carbon monoxide emissions, while total

fuel combustion makes up only 6%. Automobiles are also responsible for about 45%

of VOC emissions, while total fuel combustion is responsible for under 4%.

The summary statistics for the control pollutants are shown in Table 1.12,

while the regression results are shown in Tables 1.13 and 1.14 for carbon monoxide

and VOCs, respectively. The summary statistics of pollution concentrations follow a

similar pattern to the original three pollutants of interest. Pollution concentrations

seem to decrease in both non-adoption states and adoption states from 1997 to 2012.

The regression results for both CO and VOC concentrations show that the real

strength of RPS policies have no statistical significance, consistent with our expecta-

tions. For CO, the first two columns actually show small but significant increase in

10Total fuel combustion as described by the EPA includes electricity generation, industrial boil-
ers, commercial, and residential activities
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Table 1.12: Summary Statistics: Control Pollutants
Mean and Standard Deviation (in parentheses)

Number of Observations [in brackets]

1997 2012

No RPS Pre-RPS No RPS Post-RPS
States States States States

Carbon Monoxide (ppb) 758.2 813.9 312.8 298.9
(517.4) (608.9) (222.8) (216.5)
[37K] [134K] [13K] [43K]

VOCs (ppb) 80,584 4,333 31,791 224
(93,691) (9,301) (36,653) (1,837)
[1.4K] [8.5K] [1.1K] [5.3K]

Table 1.13: Robustness Check Regression Results: Carbon Monoxide
Dependent Variable: CO Concentration (ppb)

(A) (B) (C) (D) (E)
Policy 10.610**

(4.984)

Nominal 1.464**
(0.674)

Real 1.696 0.100 1.702
(2.432) (1.904) (2.445)

Economic Controls Yes Yes Yes Yes Yes
Policy Controls Yes Yes Yes Yes No
Time Fixed Effects Yes Yes Yes Yes Yes
Region-year Fixed Effects Yes Yes Yes No Yes
Monitoring stations 821 821 821 821 821
Observations 2,164K 2,164K 2,164K 2,164K 2,164K

Note: ***, **, and * denote statistical significance at the 1%, 5%, and 10% levels
respectively. Standard errors are clustered and reported in parenthesis.
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Table 1.14: Robustness Check Regression Results: VOCs
Dependent Variable: VOC Concentration (ppb)

(A) (B) (C) (D) (E)
Policy 327.22

(881.04)

Nominal 6.75
(27.73)

Real 19.11 152.56 34.92
(178.60) (295.60) (235.38)

Economic Controls Yes Yes Yes Yes Yes
Policy Controls Yes Yes Yes Yes No
Time Fixed Effects Yes Yes Yes Yes Yes
Region-year Fixed Effects Yes Yes Yes No Yes
Monitoring stations 305 305 305 305 305
Observations 192K 192K 192K 192K 192K

Note: ***, **, and * denote statistical significance at the 1%, 5%, and 10% levels
respectively. Standard errors are clustered and reported in parenthesis.

CO from the policy dummy and nominal RPS strength, which further underscores

the importance of accounting for RPS heterogeneity. As with the primary regression

results in Tables 1.6, 1.7, 1.8, improper consideration of RPS strength can lead to

significantly different marginal effects from the policy. Taken together, the results of

this falsification test provide strong evidence that the primary results of this paper

are not driven by changes in automobile activity.

An additional falsification test is provided by shifting the date of the RPS

change backwards by five years, which should show no significant marginal effects.

As a result, the five most recent years are dropped from the sample. The results are

shown in Table 1.15, with each column providing the regression results for the am-

bient pollution concentration of the variable listed in the top row. The specification

is exactly the same as the baseline specification, so it can be compared to Column

(D) of Tables 1.6, 1.7, and 1.8 for SO2, NOX , and PM10, respectively. As expected,
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Table 1.15: Falsification Test
SO2 NOX PM10

Real -0.0135 -0.0863 0.3769
(0.0403) (0.1515) (0.2337)

Economic Controls Yes Yes Yes
Policy Controls Yes Yes Yes
Time Fixed Effects Yes Yes Yes
Region-year Fixed Effects No No No
Monitoring stations 601 374 396
Observations 1,399K 748K 552K

Note: ***, **, and * denote statistical significance at the 1%, 5%, and 10% levels
respectively. Standard errors are clustered and reported in parenthesis.

the results from each column show no significance to the falsified treatment time,

with the coefficients much closer to zero for SO2 and NOX .

Lastly, a “reasonableness test” is performed using annual state level emission

data provided by EPA from 1997-2012. A simple regression uses the natural log of

state-level emissions as the dependent variable, and the results are consistent with

the previous analysis. SO2 and NOX are significantly reduced by the “real RPS”

measure, with larger SO2 reductions when compared to NOX on a percentage basis.

Unfortunately, the equivalent data was not available for PM10, CO2, and VOCs.

1.6 Conclusion

Renewable portfolio standards are often encouraged by lawmakers as a mech-

anism to achieve better air quality, further investment in renewable energy, enhance

diversity in electricity generation, and create jobs. While pollution reduction from

RPS is usually discussed in the context of climate change, local pollution benefits

have not been fully studied. As a result, rigorous empirical investigations into the
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effect of RPS on local pollutants have been notably absent in the previous academic

literature. Empirical work becomes increasingly difficult given the heterogeneity of

RPS policies across states. However, as shown in the analysis above, this is impor-

tant to consider because some states have strong nominal requirements that may be

rendered non-binding of because large pre-existing renewable capacity and utility

exemptions. The resulting regression from a simple difference-in-difference model

using a dummy treatment variable will produce bias estimates of the true policy

effect. A similar notion holds for the nominal RPS strength, which is shown to be

a poor measure of the real treatment intensity.

Quantifying the local ambient pollution reductions that can be attributed

directly to RPS also adds to the general debate over adopting RPS legislation in the

presence of overlapping policies. If local pollutant externalities are already properly

priced through other policies such as feed-in-tariffs or pollutant specific cap-and-

trade programs, then the additional reductions to local pollutants shown here will

contribute to a deadweight loss. However, if the other mechanisms are inefficiently

designed and underprice the true marginal cost associated with local pollutants,

then these additional pollution reductions are interpreted as ancillary benefits of

the RPS that move towards an efficient allocation in a second-best scenario.

Although prior literature has forecast local emission reductions from RPS and

empirically analyzed emissions reductions from specific renewable sources, this paper

marks the first rigorous approach to empirically quantify the within-state pollution

reductions from RPS legislation, ex-post. I interpret the regression results as strong

evidence for reductions in SO2 from RPS adoption, but only if neighboring states also
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adopt. Of the large reductions in ambient sulfur dioxide concentrations from 1997

to 2012, my analysis suggests that approximately 5.4% can be attributed to RPS

policies. However, for states whose neighbors also adopt RPS legislation, the RPS

policies could be responsible for up to 7.4% of the ambient reductions in SO2. This

trend is more moderate when looking at NOX , showing average reductions of 2% of

total NOX reductions from 1997 to 2012 and 3% reductions for states with adopting

neighbors. Lastly, the policies seem ineffective at reducing PM10 concentrations, a

robust finding across all model specifications. The variations in ambient reductions

across pollutants are arguably due to the type of fossil fuel generation that is offset

by additional capacity attributable to RPS. The fundamental results of the analysis

are shown to be robust to falsification tests using carbon monoxide and VOCs as

control pollutants. The results are also robust to monitoring station specific ARMA

models, regressions which drop the non-adopting states,11 and weighted least squares

specifications.12

This analysis suggests that each percentage increase in national RPS strength

translates to between $92.6 and $228.5 million worth of health and environmental

benefits from decreases in local ambient pollution alone, though the monetary ben-

efit calculation does not consider the costs associated with RPS legislation or the

benefits of CO2 reduction. Further, these monetary benefits should be interpreted

11In the regression dropping the non-adopting states, the “control” group is comprised of states
whose real RPS requirement does not change in addition to states who eventually adopt RPS but
have not yet adopted.

12Due to concern over the non-random placement of monitoring stations, the weighted least
squares (WLS) specification weights by the inverse number of monitoring stations within a county.
This robustness check ensures that the results are not being driven by particular behavior in specific
counties with a large number of monitoring stations. The WLS specification yields qualitatively
identical results, and small differences are statistically insignificant.
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with caution, as they are approximated using benefit calculations from previous

researchers, which use assumptions that are the subject of academic debate.

By comparing the nominal percentage requirements to the real percentage re-

quirements it becomes clear that many state policies are merely symbolic, although

this may change in the future as they gain strength over time. In fact, some of

the nominal percentage requirements have yet to be higher than the status quo at

the time of passing legislation. Thus, in many states RPS legislation appears to be

more of a political statement than an effective environmental regulation, supporting

the argument of Bushnell, Peterman and Wolfram (2008) described in Section 1.1.

However, as these relatively weak policies ramp up over the next decade, it is pos-

sible that additional environmental benefits will begin to accrue. Further, when

policymakers are considering RPS legislation, they must consider the policies of

other states in their region as it is clear that pollution can flow across state bor-

ders. Local pollution reductions only accrue in states with regional REC trading

programs where neighboring states also adopt, and isolated adoptions are shown to

be ineffective at reducing ambient concentrations. Overall, this analysis suggests

that other policies aimed at addressing the negative externalities associated with

local and regional pollution from electricity production may need to be adjusted in

the presence of RPS adoptions by states.
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Chapter 2: Electricity Market Price Volatility: The Importance of

Ramping Costs

2.1 Introduction

Within the past fifteen years, most electricity markets across the United States

have restructured to allow competition in the generation of electricity. Electricity

price behavior has been a concern in restructuring activities and related wholesale

electricity market design (Bask and Widerberg, 2009, Borenstein et al., 2002, Bush-

nell, Mansur and Saravia, 2008, Chang and Park, 2007, Metaxoglou and Smith,

2007, Wolak and Patrick, 2001). Price volatility has been examined generally (Had-

sell et al., 2004, Higgs, 2009, Higgs and Worthington, 2008, Worthington et al., 2005,

Zareipour et al., 2007), however there are fewer studies which examine how price

volatility is influenced by the generating profile of the market, even though this is

increasingly important in the context of rising renewables, aging nuclear facilities,

and President Obama’s recent Clean Power Plan which may result in additional

coal plant closures. High electricity price volatility has plagued wholesale electricity

prices since restructuring, creating major implications for risk-averse market partic-

ipants and system operators tasked with grid reliability. Further, price volatility is a
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primary input into conventional options pricing models, pushing real costs onto con-

sumers of electricity as power purchasing retailers use costly options to hedge away

from price risk. When compared to other energy commodities, intra-day volatility

in wholesale electricity markets is many times larger and varies across regions. For

example, daily electricity market volatility ranges from 6-28% compared to 1-1.5%,

2-3%, and 3-5% for stock indices, crude oil, and natural gas, respectively (Simonsen,

2005, Zareipour et al., 2007).

With the rise of non-dispatchable renewable generators such as wind and so-

lar, short run volatility has grown increasingly important to Regional Transmission

Organizations (RTO) managing the electricity grid (Navid and Rosenwald, 2012).

To ensure adequate ability of adjusting generator output, known as ramping ability,

grid operators are discussing alterations to the current market design in California

(Xu and Tretheway, 2012) and the Midwest (Navid and Rosenwald, 2013). Under

the standard market design, ramping ability will be properly priced in a determin-

istic model because flexible generators that can quickly adjust output will be able

to profit from large movements in price. In practice however, actual market condi-

tions often deviate from those previously scheduled by the RTO. It has been shown

that the current market design may not properly price short-term ramping ability

due to suboptimal dispatching under uncertainty (Angelidi, 2012, Wang and Hobbs,

2014). When designing an electricity market for the generating profile of the future,

it is important to thoroughly understand how different generator types affect price

volatility. The increased investment in natural gas generators over the last decade

and the anticipated rise of renewables motivates the focus of this paper, since the
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direct effect of natural gas capacity on electricity price volatility has not been well

studied.

Much of the variability in electricity prices is driven by the physical charac-

teristics of electricity, notably the requirement to perfectly adjust supply to meet

a demand that varies significantly throughout the day and across seasons. The

mainstream view is that high price volatility within electricity markets is due to

the lack of hourly retail pricing in combination with the lack of cost-effective elec-

tricity storage mechanisms. In traditional commodity markets, forward contracts

stabilize spot prices because any deviations allow for arbitrage through selling pre-

viously stored goods (Kaldor, 1939, Working, 1948). However, current technologies

do not allow cost-effective electricity storage on any meaningful scale, rendering tra-

ditional forward pricing models inapplicable. Instead, Bessembinder and Lemmon

(2002) develop a seminal equilibrium model of forward contracts between risk-averse

electricity generators and retailers, within the context of nonstorable commodities.

Their work implies a forward contract premium to accompany high expected de-

mand or demand variance. The essentials of their model are empirically supported

(Cartea and Villaplana, 2008, Douglas and Popova, 2008, Lazarczyk, 2013, Longstaff

and Wang, 2004), though more recently Haugom and Ullrich (2012b) find that the

forward price has converged to an unbiased predictor of the spot price.

While Bessembinder and Lemmon (2002) capture the essentials behind forward

contracts in non-storable commodities, their model ignores the storability of inputs

to electricity generation. Intuitively, if inputs can be stored and capacity exists

to instantaneously convert these inputs into electricity, then a stabilizing pressure
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is applied to price during unexpected demand shocks. Storable fossil fuel inputs

provide an indirect storage of electricity, assuming sufficient capacity exists with

little to no production ramping constraints. Different generator technologies would

affect volatility differently, as they vary in their ability to adjust output. Hetero-

geneity in ramping costs, or costs of adjusting output, allow some generators to

flexibly adjust output during periods of higher demand (Reguant, 2014), putting

more downward pressure on prices compared to other generators. Thus, there exists

a cross-commodity price relationship as pointed out by Routledge et al. (2001) in

an extension of their previous work (Routledge et al., 2000).

A similar notion is empirically tested by Douglas and Popova (2008), who

find that larger natural gas storage decreases the premium of forward contracts in

electricity markets. While they note that the effectiveness of the indirect physical

hedge requires availability of transmission and generation capacity, this is absent

from their empirical specification. Further, natural gas storage is likely endogenous

to electricity price and forward contract premiums, creating bias in their empiri-

cal estimates. In a separate analysis across European electricity markets, Huisman

and Kilic (2012) attribute differences in risk premiums to be from differences in

the storability implicit within the generation profile, a point more explicitly noted

previously (Huisman and Kilic, 2010). However, cross-sectional analysis is inade-

quate to infer causal relationships when the markets also vary widely in observable

and unobservable characteristics. My empirical analysis improves on this literature

by explicitly addressing endogeneity issues associated with the supply of generator

types and electricity price.
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In this paper, I seek to understand the role of ramping costs in the price

volatility of non-storable and perishable commodities. More specifically, I ask three

connected research questions related to natural gas capacity, which has compara-

tively low ramping costs (Reguant, 2014, Wolak, 2007). First, what is the impact

of additional natural gas capacity on electricity price stability and how does this

compare to inflexible capacity such as nuclear? Next, how does the forward pre-

mium change on price contracts in the presence of additional natural gas capacity?

Finally, what is the value of such volatility reductions to power purchasers and how

does this change with the rise of intermittent renewable generators?

To explore this topic, a basic theoretical framework is developed to estab-

lish the connection between price volatility and generator ramping costs. Under

standard economic assumptions, the analytical model clearly suggests that price

volatility increases with generator ramping costs. Further, the theoretical model

implies a reduced form econometric specification where the intra-day price volatility

is a function of natural gas capacity, intra-day demand volatility, daily average de-

mand, and unobservable time trends. To explore these ideas empirically, I use high-

frequency price data from the New England Independent Systems Operator for the

period 2005-2011. Data on natural gas capacity and nuclear capacity outages are

taken from the U.S. Energy Information Agency and the U.S. Nuclear Regulatory

Commission, respectively. The task is complicated by endogeneity between price

and capacity, since natural gas is the marginal generator in New England, but my

empirical strategy explicitly addresses this issue.

The preferred results include a pooled event study regression, which finds
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strong evidence that natural gas capacity additions reduce price volatility an order

of magnitude more than additional nuclear generation capacity. These results are

robust to a two-stage least squares (2SLS) specification, as well as a generalized

autoregressive conditional heteroskedasticity (GARCH) model. I attribute the dif-

ferences in volatility reductions between the two generator types to the relatively

low ramping costs of natural gas. Lastly, a simulation explores how the volatility

impact from natural gas will change over time, in the presence of non-dispatchable

renewable generation. In terms of volatility impact, natural gas provides an excellent

complement to new wind generation in the New England market.

This research adds to the broad existing literature that discusses electricity

market design (Navid and Rosenwald, 2012, Reguant, 2014, Wang and Hobbs, 2014,

Wolak and Patrick, 2001), market efficiency (Borenstein et al., 2002, Metaxoglou

and Smith, 2007), electricity price behavior (Hadsell et al., 2004, Worthington et al.,

2005), and forward premiums on perishable commodities (Bessembinder and Lem-

mon, 2002, Douglas and Popova, 2008, Haugom and Ullrich, 2012b, Longstaff and

Wang, 2004). By formalizing the link between ramping costs and price volatility, the

model provides a clear theoretical mechanism to explain how ramping costs increase

price volatility. Most importantly, this research provides the first rigorous empirical

analysis that supports the role of natural gas capacity to reduce price volatility.

This research provides concrete evidence for policymakers to consider the pecuniary

externalities associated with generation types. This underscores the importance of

investments into ramping ability, which adds to the current discussion on market

design alterations. While environmental externalities are beyond the scope of this
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analysis, ramping costs are also important for such researchers to consider because

they can fundamentally alter the abatement cost curves, as they may change the

dispatch order of generators.

The remainder of this paper proceeds as follows. Section 2.2 discusses ramping

costs in more detail and the theoretical framework is established in Section 2.2.1,

which formalizes the intuitions described above into a basic analytical model. The

econometric strategy to test these relationships is described in Section 2.3. A brief

background of the New England electricity market structure is provided in Sec-

tion 3.2, while the related data is discussed in Section 2.4.1. The econometric

results and primary empirical contributions are discussed in Section 2.5. Finally,

additional regression analysis studying the impact of natural gas capacity on the

forward premium is provided in Section 2.6, while Section 2.7 concludes.

2.2 Ramping Costs

Electricity generation is itself a complex process, made more complicated

through the necessity of balancing supply and demand instantaneously to prevent

grid failure. In typical fossil-fuel generators, fuel is burned to convert the embed-

ded chemical energy into thermal energy which heats up water into steam. The

pressurized steam flows to turn a turbine, which is connected to a generator that

converts the mechanical energy into electricity. Nuclear reactors work in a similar

way, except the nuclear reaction creates the heat for the steam turbine.

The mechanical complexity inherent to the generation process imposes extra
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costs to adjusting electrical output from hour to hour, known as ramping costs.

Ramping costs appear through fixed investments as well as marginal costs. Within

the fixed costs, physical ramping constraints accompany certain technologies and

these require higher investments to overcome. For example, the turbine system and

related components require special designs and construction materials to be able to

rapidly ramp output and to withstand the extra stress of ramping without failure

(Tanaka, 2006).

Regarding marginal costs, previous literature notes that ramping output up or

down will decrease the fuel efficiency of the unit compared to a constant operating

output. Further, ramping output puts additional stress on the generator compo-

nents, leading to larger replacement costs. More specifically, ramping induces rapid

pressurization and decompression which stresses essential pieces such as the rotor,

turbine shaft blades, boiler, and turbine chamber (Tanaka, 2006). This thermal

stress induces microscopic fractures known in the engineering literature as “fatigue

damage”, which is the second leading cause of boiler tube failure (EPRI, 2006).

Engineering studies also note that fatigue damage to the rotor assembly in-

creases non-linearly with ramping speed and can alter the optimal commitment of

generating units (Wang and Shahidehpour, 1994, 1995). Regarding the efficient

dispatch of generators, Shrestha et al. (2004) note that ramping may be used strate-

gically in deregulated markets. They point out that, in general, generators start

up and shut down slowly to avoid any ramping costs and turbine damage. How-

ever, during periods of high prices it can be profitable to incur ramping costs if the

generator has sufficient capacity. This is consistent with the intuition behind the
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theoretical and empirical approach in Sections 2.2.1 and 3.3, respectively.

There are also indirect costs associated with ramping ability. The lower ramp-

ing costs associated with natural gas generators presumably enhance grid stability

and allow reliable grid operation with lower operating reserves to be sufficient. Addi-

tionally, if sufficient capacity does not exist with ramping capabilities to accompany

demand changes then there is a large risk of system blackouts. These considera-

tions are discussed by Chao (1983), as blackout risk imposes significant economic

costs. However, my analysis is concerned primarily with price risk, so changes to

the probability of grid failure due to ramping ability is left for future researchers.

Since the focus of this analysis is on natural gas capacity and nuclear capacity,

it is worth noting their differences in ramping ability. The marginal operating

costs of nuclear generators are estimated to be one fourth of natural gas generator

marginal costs (EIA, 2013b) so they generally provide the base load of the electricity

supply. Further, technical constraints make cost-effective hourly ramping of nuclear

generators infeasible. Nuclear generators may take an entire day to start up or shut

down during planned outages, although in emergency situations the reactor can shut

down very quickly. Meanwhile, natural gas generators are considered more flexible

and follow increases in demand throughout the day. This is confirmed by previous

literature which finds that natural gas generators have ramping costs an order of

magnitude lower than coal (Reguant, 2014, Wolak, 2007).

Wind and solar generators are non-dispatchable technologies without ramp-

ing options, and they are ignored in the empirical analysis because they represent

an insignificant portion of supply within the ISO-NE. However, their growing pres-
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ence increases the relevance of the issues studied here because their inherent supply

intermittency increases the volatility of residual demand satisfied by dispatchable

generators, such as natural gas. This impact is explored using the simulation in

Section 2.5.1.

2.2.1 Theoretical Model

Before discussing the empirical approach, this section formalizes the economic

intuition into a basic dynamic model where firms generate electricity to maximize

daily profits, π, in a competitive wholesale market. Each day a representative firm i

chooses the optimal quantity of electricity, q, to produce in hour h, in order to maxi-

mize their profits. Assuming a competitive wholesale market, firms are given hourly

market clearing electricity prices, ph. The model uses a simple generalized cost struc-

ture similar to the previous literature (Reguant, 2014, Wolak, 2007), and assumes

a convex production cost function, Ci(qh). There is also assumed to be convexities

in the ramping cost function, Ri(∆i,h) where the change in hourly production is de-

noted as ∆i,h = |qi,h − qi,h−1|. Demand, D, is exogenous because consumers face a

regulated retail price that prevents hourly price pressure, as discussed in additional

detail in Section 3.2. Adding fixed costs, F , yields the following objective function

for production firms:

max
qh,i

πi =
24∑
h=1

δh[phqi,h − Ci(qi,h)−Ri(∆i,h)]− Fi (2.1)
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subject to π ≥ 0, qh ≥ 0, Dh =
n∑
i

qi,h

where δh is the hourly market discount factor and n is the number of firms. The first

two constraints represent non-negative production and non-negative daily profits,

though hourly profits can be negative. The final constraint is the standard market

clearing condition where production equals demand. Solving for the first order

conditions yields the standard result of price equal to marginal costs, for each firm

i in hour h:

ph =
∂Ci
∂qi,h

+
∂Ri

∂∆i,h

∂∆i,h

∂qi,h
+
δh+1

δh

∂Ri

∂∆i,h+1

∂∆i,h+1

∂qi,h
(2.2)

Recall that the intra-day variance of p on day t, denoted by σpt , is defined:

σpt =
1

24

24∑
h=1

(pt,h − p̄t)2 (2.3)

where p̄t is the daily average price. Substituting in equation (2.2) to equation (2.3)

and simplifying yields the fundamental result of this model:

σp
t =

1

24

24∑
h=1


∂Ci

∂qi,h
+

∂Ri

∂∆i,h

∂∆i,h

∂qi,h
+
δh+1

δh

∂Ri

∂∆i,h+1

∂∆i,h+1

∂qi,h
−

24∑
j=1

(
∂Ci

∂qi,j
+

∂Ri

∂∆i,j

∂∆i,j

∂qi,j
+
δh+1

δh

∂Ri

∂∆i,h+1

∂∆i,h+1

∂qi,h

)
24



2

(2.4)

As is clear from Equation (2.4) above, price variance depends on the marginal

costs of production, marginal costs of ramping, and the variance of demand. The

intuition behind this result is straightforward, as the intra-day price variance will

depend on the convexity of the supply curve and ramping costs. Decreasing the
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marginal costs will lower price variance because demand intersects a flatter portion

of the convex supply curve. Since the point of convexity along the supply curve is

dependent on demand, the model also implies a higher variance during periods of

higher demand, ceteris paribus. Further, demand volatility is fundamentally driving

the price volatility so the model suggests that price volatility increases with demand

volatility.

To illustrate this point more clearly, consider a basic two period model where

demand increases from D1 to D2 such that ∆ = q2 − q1 > 0 is the change in

production. This is shown graphically on Figure 2.1. Without ramping costs the

supply curve in both periods remains the same, shown as S, and the simple shift

from D1 to D2 yields the prices equal to marginal production costs, p1 = ∂C1

and p2 = ∂C2 for periods 1 and 2, respectively. However, with ramping costs, the

equilibrium prices now become p1 = ∂C1−∂R and p2 = ∂C2 +∂R for periods 1 and

2, respectively.

Intuitively, firms are willing to produce quantities above those at marginal

production cost in period 1 in order to have lower ramping costs in period 2. This is

shown on Figure 2.1 as a shift from S to S1 causing a decrease in prices. In period

2 firms produce quantities below marginal production costs because of ramping

constraints. This shifts the supply curve to S2 in Figure 2.1, increasing prices

beyond the equilibrium level without ramping costs. Thus, any losses from “over-

production” in period 1 are recouped through lower ramping costs in the profit

maximizing multi-period equilibrium.

Adding new capacity with lower ramping costs has two effects. First, the
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Figure 2.1: Supply and Demand Curves with Ramping Costs
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Figure 2.2: Shifting Supply with New Capacity
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supply curve shifts outward, which will decrease the difference between p1 and p2

because the respective demands now intersect a flatter part of the supply curve.

Second, the lower ramping costs squeezes S1 and S2 closer to each other, which

again decreases the price difference between periods. This is shown graphically in

Figure 2.2, where the new equilibrium is shown in red, and the old equilibrium

from Figure 2.1 is left in light gray for comparison. Thus, the variance in prices

unambiguously decreases from adding new capacity with lower ramping costs and

lower marginal production costs.

As discussed in the previous sections, natural gas occupies a critical point

along the supply curve where it is the marginal generating unit. Thus, there are two

effects from adding new natural gas capacity as captured by the model. First, adding

additional new natural gas capacity will lower total marginal costs because the new

technologies are assumed to be slightly more efficient than current marginal units.

I define this as the “supply shift” effect on volatility. This assumption is validated

empirically by the decreasing average heat-rate in natural gas units over the last

decade (EIA, 2013c). The second effect from adding new natural gas capacity, as

captured by the model, is decreasing ramping costs. I define the “ramping effect”

as the resulting volatility reduction from a decrease in ramping cost associated with

new natural gas capacity. Again, this assumption is justified by empirical analysis

(Reguant, 2014, Wolak, 2007), as natural gas units have lower ramping costs than

coal-fired power plants. Thus, adding natural gas capacity should unambiguously

decrease price volatility, ceteris paribus.

Meanwhile, nuclear capacity additions should provide only the supply shift
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effect because it provides baseload power on the far left portion of the supply curve.

As previously noted, nuclear technology has a very low marginal cost and generally

operates throughout the day without ramping. Thus, the theoretical model implies

that changes in active nuclear capacity should reduce price volatility, but less than

the volatility reductions from natural gas. The difference between the volatility

reductions from these two generator types is interpreted as the ramping effect. This

fundamental result of the model is tested in Section 2.3, and explains how production

flexibility stabilizes non-storable commodity prices similar to how storage ability

stabilizes traditional commodity prices.1

2.3 Econometric Specification

To test the implications and conclusion from the theoretical model in Sec-

tion 2.2.1, I take advantage of high-frequency wholesale electricity price data at

the hourly level. Hourly data are collapsed into daily observations which include

intra-day price volatility, intra-day demand volatility, and daily average demand.

The theoretical model from Section 2.2.1 implies a reduced form econometric spec-

ification where the intra-day price volatility is a function of natural gas capacity,

intra-day demand volatility, daily average demand, and unobservable time trends.

1In storable commodity markets, production can remain constant at the average demand, since
excess supply can be stored and sold in a later period. This means that ramping costs and demand
volatility can be pushed to zero because the residual demand across different periods are pushed
to their aggregate mean. Thus, prices are stabilized at their marginal production costs.
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Thus, the model is:

vt = β0 + β1NGCt + β2St + β3Dt + β4Tt + εt (2.5)

where vt is the intra-day price volatility (as measured through intra-day standard

deviation) on day t, NGCt is total natural gas capacity, St is intra-day demand

volatility, Dt is mean demand, Tt is a vector of unobservable time fixed effects, and

εt is a serially correlated error term such that εt = ρεt−1 + ut where ut is random

noise. The vector of unobservable time fixed effects Tt includes month fixed effects

and day-of-week fixed effects to capture additional unobservable seasonality that

is not captured by daily demand. It also includes a linear time trend variable, as

well as year fixed effects to capture non-linear time trends. Both mean demand

and intra-day demand volatility are assumed to be exogenous to price and intra-

day price variance because of the focus on the wholesale market. As discussed in

Section 3.2, retail residential consumers face no price pressures in the short term from

the wholesale market because they are billed on a monthly level using a regulated

rate instead of the average wholesale market rate. Instead, the primary drivers of

daily demand are weather, season, and hour-of-day.

Due to the stepwise increases in capacity from new additions, the preferred

specification is a pooled event study using the model above. In this specification,

each natural gas capacity change is accompanied by a separate event window fixed

effect in an ordinary least squares (OLS) regression. The event window chosen for

this analysis includes one month before and after the capacity change, and assumes
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the exact date of the capacity change is exogenous within this small window. This

arguably alleviates endogeneity concerns surrounding natural gas capacity and price,

which arise since natural gas units are usually the marginal generating unit and

typically determines the marginal price of electricity in the wholesale market. Thus,

it is likely that running a simple OLS regression without the event window fixed

effects is inadequate because natural gas capacity is endogenous with electricity

price and intra-day price variance.

However, if the assumption that capacity comes online exogenously within the

event window is not valid, I also provide an instrumental variables approach using a

two-stage least squares (2SLS) regression. In this alternative approach, I instrument

for natural gas capacity using a 31-day rolling average of the spark spread, lagged

by 24 months. The spark spread is the gross margin between electricity price and

the cost of generation using natural gas. More specifically,

SSt =
30∑
i=0

1

31
(pt−i −NGPt−i ∗HEATt−i) (2.6)

where SSt is the 31-day rolling average spark spread ($USD/MWh) on day t, pt is

the daily average electricity spot price ($USD/MWh), NGPt is the natural gas price

($USD/MMBtu), and HEATt is the heat rate (MMBtu/MWh) which measures how

efficiently a natural gas generator can convert gas into electricity. The spark spread

gives a measure of the profitability of generating electricity from natural gas and is

highly relevant for investment decisions surrounding natural gas capacity. Further, a

lagged spark spread is used as an instrument because it is intuitively correlated with
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future natural gas capacity, but is exogenous with respect to current prices. While

some persistence in the spark spread may cause autocorrelation to remain at short

intervals, at longer intervals this is shown to not be the case. Thus, a 24-month lag

is used in the model. The long lag is due to a natural gas construction time of 18-36

months and should pass the exclusion restriction which requires the instrument to

only influence current electricity prices through natural gas capacity.

Finally, a third specification is provided using a generalized autoregressive con-

ditional heteroskedasticity (GARCH) model (Bollerslev, 1987, Engle, 1982), which is

sometimes used in the literature on electricity prices and volatilities (Hadsell, 2007,

Hadsell et al., 2004, Worthington et al., 2005). In brief, the conditional intra-day

volatility estimated by the GARCH model is

pt = φ+ εt (2.7)

vt = β0 + β1vt−1 + β2εt−1 + β3NGCt + β4St + β5Dt + β6Tt (2.8)

where vt is the intra-day price volatility (as measured through intra-day standard

deviation) on day t, such that vt−1 represents the previous period’s volatility forecast.

Meanwhile, εt−1 is a lagged error term representing new information about volatility

from the previous period. Similar to the prior specification, NGCt is total natural

gas capacity, St is intra-day demand volatility, Dt is mean demand, Tt is a vector

of unobservable time fixed effects, pt is electricity price, and φ is mean electricity

price. The GARCH model also requires the dependent variable to be generated by
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a stationary process, so an augmented Dickey-Fuller test is performed. I reject the

null hypothesis that intra-day price volatility contains a unit root with a z-statistic

of -29.00 and I reject that mean price contains a unit root with a z-statistic of -

14.48. Thus, the additional requirements to use the GARCH model are satisfied by

my price data during my study period.

2.4 New England ISO Market Background

Prior to the 1990s, New England’s electricity market was comprised of ver-

tically integrated monopolies that were heavily regulated. Private and municipal

utilities managed the region’s electricity grid through the New England Power Pool

(NEPOOL) created in the early 1970s. However, by 1996 the Federal Energy Regula-

tory Commission (FERC) issued orders that encouraged wholesale electricity mar-

kets for competitive electricity generation. The FERC created general guidelines

with a recommended market structure where a non-profit Regional Transmission

Organization (RTO) is entrusted to manage the transmission grid and electricity

markets. This paved the way for the creation of the Independent Systems Operator

of New England (ISO-NE) in 1997 to oversee the market restructuring, ensure grid

reliability, and establish competitive markets. (ISO-NE, 2014a)

New England’s competitive electricity markets were first implemented in 1999

and now cover 14 million people across six states.2 The wholesale market includes

over 500 participants and the ISO-NE coordinates over 8,000 miles of transmission

2The New England market includes Maine, Vermont, New Hampshire, Massachusetts, Con-
necticut, and Rhode Island.

64



lines (ISO-NE, 2014c). After restructuring, consumers can choose between several

licensed utilities which are responsible for the retail delivery of electricity. Typically

residential consumers pay a constant marginal cost for electricity at a rate fixed for

several months and face no hourly price pressure from the wholesale market. Thus,

consistent with the prior literature, the rest of this analysis assumes demand to be

exogenous to wholesale prices at the hourly level.3

Major changes to the wholesale market occurred in 2003 when the ISO-NE

adopted the “Standard Market Design” of FERC, which established locational marginal

pricing,4 financial transmission rights,5 and a dual-settlement market. The dual-

settlement market system provides a day-ahead market and a real-time market,

which clear separately through two competitive auctions. (ISO-NE, 2014b)

In the day-ahead market, participants provide hourly bids for the supply and

demand6 of electricity that will be dispatched the following day. For each hour of

scheduled delivery, the bids are due by noon of the prior day. ISO-NE then stacks

the bids into hourly aggregate supply and demand curves and schedules electricity

3At longer time horizons, changes in wholesale electricity prices are eventually passed on to the
consumer but the exogeneity assumption is arguably most appropriate for the frequency of the
data used in this analysis.

4Locational marginal pricing (LMP) is required for efficient markets because of transmission
capacity constraints which impose congestion costs. For each node and load zone in the ISO-NE,
supply and demand offers are submitted such that the LMP provides the competitive price inclusive
of congestion costs. If congestion and transmission losses are zero, the efficient price is equivalent
across all nodes and their zonal aggregates.

5Since LMP includes congestion costs paid to the ISO-NE by power purchasers, the suppliers
may receive less revenue than the final price that includes congestion costs. Thus, financial trans-
mission rights (FTR) are auctioned to market participants, giving them a share of the real-time
congestion payments that are absent from the day-ahead market price. For power purchasers, this
acts as a hedge against unexpected higher congestion costs, while it can also provide additional
revenue for generators or speculators.

6While demand is exogenously determined by retail customers, retail utilities have a choice
to buy electricity in the day-ahead market or the real-time market. Any unscheduled electricity
demanded in the day-ahead market is required to be purchased in the real-time market.
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to be delivered for all bidders below the intersection of supply and demand. While

the day-ahead market is purely financial since no electricity is physically delivered,

suppliers must deliver the agreed amount of electricity in the corresponding hour of

the following day. In the event of equipment malfunction, for example, the supplier

cannot deliver the ex-ante scheduled amount of power and they are required to buy

the appropriate amount in the real-time market. (ISO-NE, 2014b)

After the first round of commitment in the day-ahead market, ISO-NE per-

forms a reliability assessment based on its own demand forecast and a “re-offer”

period begins. Supply and demand that has not been previously scheduled is eligi-

ble for bidding in this market, which forms the foundation of the real-time market.

Throughout the following trading day the ISO-NE physically balances supply and

demand through these hourly bids while maintaining grid stability through a suffi-

cient operating reserve of electricity. The real-time market prices are from ex-post

settlements based on actual power delivery that may deviate from expected demand.

(ISO-NE, 2014b)

Although the day-ahead market is purely financial, risk averse market par-

ticipants may prefer the day-ahead schedule. The day-ahead pricing is typically

more stable because it is based on expected outcomes, but real demand variations

can be unexpected. To ensure the convergence of day-ahead prices with real-time

prices, the ISO-NE also allows “virtual bids”, which are purely financial trades in

the day-ahead market that must be closed out in the real-time market. Thus, any

consistent and profitable arbitrage opportunities between the two markets should

be removed in the presence of virtual bidding by risk-neutral participants, leaving
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only a small risk premium. With risk averse participants, the forward premium

should be significantly driven by the variance and skewness of spot market prices

(Bessembinder and Lemmon, 2002), as previously discussed.

Overall, the New England market is primarily served by electricity generation

from nuclear and natural gas. The total GWh generation by source is provided

by the ISO-NE and shown in Table 2.1 for 2005-2011, the entire period studied in

this analysis. In 2011, generation from nuclear and natural gas facilities comprised

around 67% of total generation, not including the 13% from dual-fuel generators,

much of which can be attributed to natural gas as well. Meanwhile, coal, hydro,

and aggregate non-hydro renewables7 each generate close to 6% of the ISO-NE total.

Thus, this analysis focuses on the two largest generator types of nuclear and natural

gas to understand the role of ramping costs in price volatility. Generally, natural

gas generators are the marginal unit throughout most of the year, while new nuclear

has been discussed as a hedge against the fossil-fuel price volatility that underlies

electricity price risk (Kessides, 2010, Roques et al., 2006).

While the ISO-NE wholesale electricity market generally operates indepen-

dently, there are also thirteen interconnections that allow for the purchase and sale

of electricity to grids in New York and Canada. The annual flows of electricity from

2005-2011 are listed for the ISO-NE in Table 2.2. On average, net imports account

for 5.7% of electricity consumed within the ISO-NE. The ISO-NE is a net exporter

of electricity to the New York ISO, but a net importer from Quebec. From 2005 to

7Within non-hydro renewable generation for 2011, 4.9% of total generation is from wood and
refuse, 0.6% from wind, and less than 0.3% from landfill gas or solar.
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Table 2.1: New England Generation Profile: Annual GWh from 2005-2011
Source 2011 2010 2009 2008 2007 2006 2005

Total Generation 120,610 126,416 119,437 124,749 130,723 128,050 131,877
100% 100% 100% 100% 100% 100% 100%

Gas 46,378 42,042 38,163 38,338 39,367 39,425 38,583
38.45% 33.26% 31.95% 30.73% 30.11% 30.79% 29.26%

Nuclear 34,283 38,364 36,231 35,547 36,972 36,923 34,609
28.42% 30.35% 30.33% 28.49% 28.28% 28.83% 26.24%

Oil/Gas† 15,925 15,542 12,487 12,721 15,791 13,542 16567
13.2% 12.29% 10.45% 10.2% 12.08% 10.58% 12.56%

Hydro 8,252 7,227 8,354 8,466 6,385 7,498 6,739
6.84% 5.72% 6.99% 6.79% 4.88% 5.86% 5.11%

Renewables 7,261 7,686 7,331 7,539 7,818 7,675 7,599
6.02% 6.08% 6.14% 6.04% 5.98% 5.99% 5.76%

Coal 7,080 14,131 14,558 18,596 19,770 19,375 20,789
5.87% 11.18% 12.19% 14.91% 15.12% 15.13% 15.76%

Pumped Hydro 1,149 854 1,419 1,623 1,744 1,582 1,339
0.95% 0.68% 1.19% 1.3% 1.33% 1.24% 1.02%

Oil 282 570 895 1,918 2,877 2,030 5,652
0.23% 0.45% 0.75% 1.54% 2.2% 1.59% 4.29%

†ISO-NE does not have data splitting generation by fuel in dual-fuel units.

Table 2.2: New England Electricity Flow: Annual GWh from 2005-2011
2011 2010 2009 2008 2007 2006 2005

Total Demand 129,163 130,773 126,838 131,753 134,466 132,087 136,355
100% 100% 100% 100% 100% 100% 100%

Total Generation 120,610 126,416 119,437 124,749 130,723 128,050 131,877
93.38% 96.67% 94.16% 94.68% 97.22% 96.94% 96.72%

Pumped Hydro† -1,589 -1,183 -1,963 -2,247 -2,403 -2,156 -1,819
-1.23% -0.9% -1.55% -1.71% -1.79% -1.63% -1.33%

Imports 15,880 12,781 15,226 14,256 12,269 10,762 10,152
Exports 5,738 7,242 5,863 5,005 6,122 4,569 3,855
Net Imports 10,142 5,539 9,363 9,251 6,146 6,193 6,297

7.85% 4.24% 7.38% 7.02% 4.57% 4.69% 4.62%
†Pumped hydro is a net loss of energy generation but can still occasionally be optimal.

Essentially it provides relatively small indirect storage of electricity during low demand periods

that is released during peak demand periods.
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2011, demand has decreased by 5.3% while total generation has decreased by 8.5%.

The difference is made up though additional imports which have generally increased

over time.

2.4.1 Data

To test the role of natural gas capacity in the price stability of the whole-

sale electricity market, I use data from the Independent Systems Operator of New

England (ISO-NE). Hourly electricity prices from the real-time ISO-NE market are

obtained from March 2005 through June 2011. Throughout the analysis, prices and

electricity demand loads are taken from the Southeast Massachusetts (SEMASS)

zone, as it is geographically central to the ISO-NE. The data for both price and

demand load are collapsed at the daily level to provide intra-day volatility for the

24-hour period.

Although “volatility” is colloquially used to imply “variability,” for clarity I

define volatility as the standard deviation of the data.8 More formally:

σxt =

√√√√ 1

24

24∑
h=1

(xt,h − µt)2 (2.9)

where σxt is intra-day volatility for the variable x on day t, h is the hour of day, and

µ is the daily average of x. Thus, throughout the remainder of the analysis I use

the terms “volatility” and “standard deviation” interchangeably.

8This is also sometimes referred to as “historical volatility” in the finance literature, which
is distinct from annualized volatility, implied volatility, variance, and the probability of extreme
events.
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Monthly summary statistics are shown in Table 2.3 for daily mean price, intra-

day price volatility, daily mean demand, and intra-day demand volatility. The

summary statistics are consistent with previous expectations about the New England

electricity market, with the summer and winter months showing higher intra-day

volatilities in addition to higher mean prices, mean-demands, and intra-day demand

volatilities. The summary statistics suggest a strong seasonality to all variables of

interest, which will be important to capture through month fixed effects.

Figure 2.3 shows a clear relationship between intra-day price volatility and

intra-day demand volatility. The graph uses a 60-day smoothing average to show

general time trends without the daily statistical noise. The seasonality of intra-

day demand volatility comes through very clearly, with a strong peak during the

summer months and a second, smaller peak during early winter. An overall linear

time trend is less obvious for either price or demand volatility, but there may be a

slight decrease in both intra-day volatilities over time. Generally, periods of high

demand volatility appear to coincide with high price volatility, a finding consistent

with the intuition of the theoretical model in Section 2.2.1.

Figure 2.4 shows a similar trend, again with a clear seasonality for both daily

mean demand and intra-day price volatility. The second peak during early winter is

more pronounced in the mean demand graph than in the intra-day demand graph,

but the two graphs are generally consistent with each other. As implied by the

basic and intuitive theoretical model, the temporal patterns of volatility and mean

demand are highly correlated.

Data on natural gas generator heat rates and Massachusetts gas price are
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Table 2.3: Summary Statistics for ISO-NE (March 2005 through June 2011)
Mean and Std. Dev. (in parentheses)

Month Obs Daily Mean Intra-Day Price Daily Mean Intra-Day Demand
(n) Price Volatility Demand Volatility

($USD/MWh) ($USD/MWh) (MWh) (MWh)

January 186 69.07 18.92 1,791.5 278.4
(21.42) (10.35) (107.0) (33.6)

February 169 62.99 16.02 1,764.2 254.7
(16.81) (8.13) (108.1) (33.5)

March 217 55.76 13.30 1,667.7 246.6
(16.74) (7.58) (118.4) (43.0)

April 210 56.43 12.75 1,532.0 239.7
(20.71) (8.25) (91.3) (37.3)

May 217 58.83 15.71 1,552.9 267.9
(23.99) (11.42) (113.7) (47.4)

June 210 58.66 16.65 1,813.6 354.0
(25.37) (12.58) (246.3) (91.1)

July 186 64.70 18.39 2,100.6 425.8
(26.90) (11.84) (284.2) (99.7)

August 186 63.83 19.81 2,048.3 409.8
(27.30) (30.82) (284.4) (100.6)

September 180 58.63 16.11 1,722.6 319.6
(24.94) (11.69) (197.3) (67.6)

October 186 59.51 15.38 1,586.6 278.8
(26.68) (13.38) (100.3) (36.6)

November 180 55.85 14.80 1,623.5 284.0
(15.02) (8.23) (86.6) (32.2)

December 186 71.17 18.49 1,794.0 303.3
(24.15) (9.11) (116.4) (38.2)

Total Sample 2313 61.11 16.28 1744.7 304.1
(23.34) (13.42) (242.2) (84.5)
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taken directly from the United States Energy Information Agency (EIA). Since heat

rate data is provided by the EIA only at annual averages through their “Electric

Power Annual Report” (EIA, 2013c), a monthly rolling average is constructed which

assumes linear technological improvements within the year. The EIA also provides

monthly average natural gas prices paid by Massachusetts power plants using data

from their “Monthly Cost and Quality of Fuels for Electric Plants Report” (form

EIA-423) and “Power Plant Operations Report” (form EIA-923). The monthly data

is then used to construct the marginal cost of electricity from natural gas, without

considering operational expenses. Finally, a daily spark spread is constructed as the

difference between the daily average electricity spot prices within the SEMASS zone

and the marginal cost of electricity from natural gas, as described in Section 2.3.

Summary statistics for all variables used to construct the spark spread are

shown in Table 2.4. As expected, the average heat rate improves over time from 9,207

Btu/kWh in 2003 to 8,159 Btu/kWh in 2009. Note that the heat rate data covers

from March 2003 through June 2009, although the primary period of this analysis is

from March 2005 through June 2011. This is because of the 24-month lagged spark

spread used as the instrumental variable for natural gas capacity. Thus, the data

from March 2003 through February 2005 is only used to calculate the instrumental

variable and is not used as the dependent variable in the primary regression results

of Section 2.5.

The natural gas price paid by Massachusetts power plants during this period

is $7.9 per thousand cubic feet. This is expected, although it is slightly above the

United States average of $7.19 paid by power plants from March 2003 through June
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Table 2.4: Instrumental Variable Construction (March 2003 through June 2009)
Variable Mean Std. Dev. Min Max

Heat Rate (Btu/kWh) 8548 290.5 8159 9207
MA Gas Price ($USD/1000 ft3) 7.924 2.378 4.30 14.76
Electricity Cost from Gas ($USD/MWh) 65.62 19.01 34.23 122.39
Daily Average Price ($USD/MWh) 62.00 22.24 22.48 277.80
Spark Spread ($USD/MWh) -3.62 14.70 -62.07 210.73

2009. After calculating the marginal cost of electricity from the natural gas prices

and the EIA average heat rates, the daily average is $65.62 per megawatt-hour. As

expected, this is very close to the mean spot price during this period ($62/MWh)

because natural gas generators are typically the marginal generator and thus set the

electricity price. The difference between these leads to a small average spark spread

of -$3.62/MWh.

While a trivial average spark spread is expected it is also important to note

the large variation. During the sample period, the daily average spark spread runs

from -$62/MWh to $211/MWh. Further, many natural gas generators are “load fol-

lowing units” meaning that they ramp up generation to follow the increased demand

during peak hours of the day when prices and demand are highest. The relatively

low ramping costs of natural gas units means they can selectively operate during

profitable hours. Thus, it is certainly possible to make a profit using natural gas

generators even though the small negative daily average spark spread initially sug-

gests otherwise. Further, the 31-day rolling average spark spread that is used as

an instrument will smooth away from daily noise and remains a good measure of

overall profitability for natural gas units. If the spark spread average remains high

for some time, the increased profitability will induce additional entrants to build
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capacity. Thus, a positive spread should encourage new investment in natural gas

capacity.

Data on natural gas capacity is gathered from the EIA’s “Annual Electric Gen-

erator Report” (form EIA-860). The dataset includes generator level data for power

plants in the United States and includes the state of operation, nameplate capacity,

date placed in service, and date retired when it applies. Generator level data is

collected for all six states within the ISO-NE and changes in natural gas capacity

are constructed for 2005-2011 using installation and retirement dates. During this

period total natural gas capacity in the EIA database increased by 730.1 MW, which

amounts to just over 6% of installed natural gas capacity in 2010 (FERC, 2010).

The additions came through nineteen new generators, with an average capacity of

60 MW each. These additions happened through thirteen new power plants, with

an average capacity of 87 MW each. Further variations in total capacity come from

the nine natural gas generator retirements, with an average capacity of 45 MW each.

These capacity reductions happened through the closure of seven power plants, with

an average capacity of 58 MW each.

As a visual example of a capacity event, Figure 2.6 graphs intra-day volatility

over time, where the x-axis shows the number of days from the day of the capacity

addition. The event shown is a 58 MW natural gas generator addition, which was

chosen because it represents the average size of a capacity change from 2005-2011.

As the graph demonstrates, intra-day volatility is generally noisy, although volatility

does appear to decrease in the period following the capacity change. The data from

all capacity additions are plotted for the corresponding two weeks before and after
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Figure 2.5: Example of Natural Gas Generator Addition

the capacity change in Figure 2.6. Since intra-day volatility is generally noisy, a

lowess curve is also fitted to the pre-period and post-period. While the lowess

curve omits the control variables from the econometric model, it does show a small

and distinct discontinuity. The resulting decrease in intra-day volatility from the

capacity addition appears to persist in time with no major change to the lowess

curve trend.

While no new nuclear capacity has been installed or retired during the period

studied, nuclear capacity occasionally goes offline for both planned and unplanned

outages related to refueling, maintenance, and safety. Planned outages are typically

scheduled months in advance and occur during regular refueling times. As such, the

exact outage date is arguably exogenous with respect to the current intra-day price

volatility, but the data is also analyzed using unplanned “forced outages” with no
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Figure 2.6: Lowess Curve of Natural Gas Generator Additions

change to the results discussed in Section 2.5. Data on nuclear capacity outages

within the ISO-NE comes directly from the US Nuclear Regulatory Commission’s

“Power Reactor Status Report.” There are five active nuclear generators within the

four nuclear power plants located inside the ISO-NE load area.9 The generators have

an average capacity of 917 MW per generator, for a total installed nuclear capacity of

4,586 MW. During the sample period, the average active installed capacity is 4,217

MW, such that active capacity was below installed capacity for 391 total days, or

17% of the sample. Included among these are 185 days from forced outages, or

8% of the total sample days. Since there are overlapping outages, perhaps a more

insightful statistic during the sample period is an average outage time of 21.9 days

per nuclear generator per year.

9The four power plants are Millstone Nuclear Power Station in Connecticut, Pilgrim Nuclear
Generating Station in Massachusetts, Seabrook Nuclear Power Plant in New Hampshire, and
Vermont Yankee Nuclear Power Plant in Vermont.
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2.5 Results

The regression results show that natural gas capacity significantly decreases

intra-day price volatility in the wholesale electricity market, supporting the theoret-

ical model in Section 2.2.1. Table 2.5 provides the coefficients of interest for each of

the three primary specifications, with Newey-West standard errors reported when

applicable to correct for serial correlation. Column (A) is the preferred specification,

using the pooled event study approach. Column (B) gives the second stage results

for the two-stage least squares (2SLS) specification. Finally, Column (C) provides

the regression results for the generalized autoregressive conditional heteroskedastic-

ity (GARCH) model. As discussed in Section 2.3, each specification controls for

intra-day demand volatility, daily demand means, month fixed effects, year fixed

effects, day-of-week fixed effects, and linear time trends.

The results across all three specifications continually show natural gas capacity

leading to a significant decrease in price volatility. The coefficient in Column (A)

suggests that each additional MW of natural gas capacity decreases price volatility

by $0.010/MWh. The average generator addition during my sample period is 60

MW, so the results suggest that a typical generator addition decreases intra-day price

volatility by about 4%, or $0.62/MWh. This volatility decrease is approximately 1%

of the mean electricity price during the sample period. The 2SLS results in Column

(B) show an increase in the magnitude of natural gas coefficient to -0.028, thought

this is not statistically different from the pooled event study regression in Column

(A). Using the 2SLS coefficient instead suggests that adding an additional natural
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Table 2.5: Regression Results: Natural Gas Capacity
Dependent Variable: Intra-day Price Volatility ($/MWh)

(A) (B) (C)
OLS 2SLS GARCH

Natural Gas Capacity (MW) -0.0103∗∗ -0.0278∗∗ -0.0099∗∗∗

(0.0051) (0.0109) (0.0025)

Demand Volatility (MWh) 0.0622∗∗∗ 0.0629∗∗∗ 0.0552∗∗∗

(0.0071) (0.0068) (0.0037)

Demand Mean (MWh) 0.0159∗∗ 0.0161∗∗∗ 0.0149∗∗∗

(0.0067) (0.0026) (0.0015)

Time Fixed Effects Yes Yes Yes
Observations 2313 2313 2313

Note: ***, **, & * denote statistical significance at the 1%, 5%, and 10% levels respectively.

Newey-West standard errors are reported in parenthesis for Columns (A) and (B) to correct for

serial correlation.

gas generator decreases intra-day price volatility by about 10%, or $1.66/MWh.

Finally, the GARCH model gives a coefficient of -0.011 in Column (C), insignificantly

different from either of the two previous specifications.

All three specifications continually show that intra-day price volatility signifi-

cantly increases with both intra-demand volatility and mean demand, after consid-

ering seasonality and time trends. This is again consistent with the expectations of

the theoretical model. Further, the marginal effect of an increase in demand volatil-

ity has a much larger effect than an increase in daily mean, as is intuitively expected

since intra-day demand volatility is a main driver of the intra-day price volatility.

These coefficients are especially interesting because they can be used to recover

the volatility impacts from renewable generation. Renewable generation is typically

nondispatchable, and thus can be thought of as reductions in the net demand sat-

isfied by conventional generation. To assess the robustness of the 2SLS results in

Column (B) of Table 2.5, variations on the spark spread are used and the first stage
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Table 2.6: First Stage 2SLS Results
Dependent Variable: Natural Gas Capacity (MW)

(A) (B) (C)
Lagged Spark Spread ($/MWh) 4.526∗∗∗ 4.624∗∗∗ 4.219∗∗∗

(0.349) (0.403) (0.432)

Time Fixed Effects Yes Yes Yes
Kleibergen-Paap rk-statistic 167.87 131.21 95.14
Observations 2313 2313 2313

Note: ***, **, & * denote statistical significance at the 1%, 5%, and 10% levels respectively.

Newey-West standard errors are reported in parenthesis to correct for serial correlation.

results are reported in Table 2.6. Columns (A), (B), and (C) coincide with the same

columns of the second stage in Table 2.7. As expected, the lagged spark spread is

strongly correlated with increases in natural gas capacity. In Column (A), the spark

spread used is lagged two years and is a 31-day rolling average as in Column (B) of

Table 2.5. I also perform a weak instrument test using the rk-statistic of Kleibergen

and Paap (2006) because the F-statistic of Cragg and Donald (1993) is not valid

when the standard errors are not i.i.d. normal. Previous literature suggests a rule of

thumb where there is little concern of a weak instrument with an F-statistic above

8.96 (Stock et al., 2002, Stock and Yogo, 2001). The preferred specification in Col-

umn (A) of Table 2.6 shows that the lagged spark spread is arguably a very strong

instrument, with a Kleibergen-Paap rk-statistic of 167.87.

The regression results shown in Columns (B) and (C) use a 60-day and 90-day

rolling average for the lagged spark spread instead of a 31-day average. The results

are not particularly sensitive to the number of days included in the rolling average

of the spark spread. The marginal effects are not statistically different from Column

(A), although they do increase. The first stage results in Table 2.6 show that the

instrument remains strong and yields no significant change in magnitude.
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Table 2.7: Second Stage 2SLS Results
Dependent Variable: Intra-day Price Volatility ($/MWh)

(A) (B) (C)
Natural Gas Capacity (MW) -0.0278∗∗ -0.0380∗∗∗ -0.0496∗∗∗

(0.0109) (0.0123) (0.0146)

Demand Volatility (MWh) 0.0629∗∗∗ 0.0630∗∗∗ 0.0632∗∗∗

(0.0068) (0.0069) (0.0070)

Demand Mean (MWh) 0.0161∗∗∗ 0.0159∗∗∗ 0.0157∗∗∗

(0.0026) (0.0026) (0.0027)

Time Fixed Effects Yes Yes Yes
Observations 2313 2313 2313

Note: ***, **, & * denote statistical significance at the 1%, 5%, and 10% levels respectively.

Newey-West standard errors are reported in parenthesis to correct for serial correlation.

As discussed in Section 2.2.1, there are two effects of adding natural gas ca-

pacity. First, is the outward shift in the supply curve which should yield a decrease

in intra-day price variance because demand intersects on a flatter convexity. The

second effect is the decrease in ramping costs which squeezes together the dynamic

supply curve shifts, which also yields a decrease in intra-day price variance. The

regression above captures both of these effects, but the ramping costs effect is of

particular interest to this paper. It is arguably possible to separate out these two ef-

fects using capacity changes that only affect volatility through outward supply curve

shifts, for example using nuclear outages. Since nuclear power is a low marginal cost

provider of baseload power and does not typically ramp production during the day,

it seems reasonable to assume that nuclear power outages will only shift the sup-

ply curve inward, without changing the intra-day dynamics involved from ramping

costs. Thus, running the same specification on nuclear power should show changes

in volatility due only to the supply curve shift. As previously noted, no new nuclear

capacity has been built during the time period studied but outages do occur for
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Table 2.8: Regression Results: Natural Gas and Nuclear Capacity
Dependent Variable: Intra-day Price Volatility ($/MWh)

OLS OLS OLS 2SLS GARCH
(A) (B) (C) (D) (E)

Natural Gas Capacity (MW) -0.0152∗∗ -0.0347∗∗∗ -0.0166∗∗∗

(0.0059) (0.0120) (0.0025)

Nuclear Capacity (MW) -0.0013∗∗∗ -0.0014∗∗∗ -0.0019∗∗∗ -0.0026∗∗∗ -0.0019∗∗∗

(0.0004) (0.0005) (0.0006) (0.0007) (0.0002)

Nuclear Capacity X 0.0001
Forced Outage (MW) (0.0004)

Demand Volatility (MWh) 0.0626∗∗∗ 0.0626∗∗∗ 0.0628∗∗∗ 0.0632∗∗∗ 0.0554∗∗∗

(0.0072) (0.0072) (0.0071) (0.0068) (0.0036)

Demand Mean (MWh) 0.0167∗∗ 0.0167∗∗ 0.0160∗∗ 0.0164∗∗∗ 0.0144∗∗∗

(0.0071) (0.0071) (0.0067) (0.0026) (0.0015)

Time Fixed Effects Yes Yes Yes Yes Yes
Observations 2313 2313 2313 2313 2313
Note: ***, **, & * denote statistical significance at the 1%, 5%, and 10% levels respectively.

Newey-West standard errors are reported in parenthesis to correct for serial correlation.

refueling, planned maintenance, and occasional emergency shutdowns. The spec-

ifications shown in Table 2.8 use these temporary outages in nuclear capacity to

understand the volatility changes from the supply shift.

The OLS results in Column (A) of Table 2.8 show a small but statistically

significant decrease to price volatility from nuclear capacity. The marginal effect of

an additional MW of nuclear capacity leads to a $0.0013/MWh decrease in intra-day

price volatility. Although nuclear outages are generally assumed to be exogenous,

Column (B) uses an interaction effect between nuclear capacity and forced outages

to ensure that forced outages behave similarly to planned outages. The results show

that forced outages have a very small, insignificantly different effect on intra-day

price volatility when compared to regular outages.

Columns (C), (D), and (E) of Table 2.8 include natural gas capacity outages
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in the same regression and can be compared with Columns (A), (B), and (C) of

Table 2.5. The pooled event study approach is shown in Column (C) of Table 2.8

while the 2SLS and GARCH models are shown in Columns (D) and (E), respec-

tively. When including the capacities of both nuclear and natural gas power plants,

the marginal effect of natural gas and nuclear capacity on price volatility changes

insignificantly across specifications.

As discussed above, the discrepancies in the marginal effect between nuclear

capacity and natural gas capacity are attributed to ramping costs. The preferred

results in Column (C) suggest that adding 60 MW of nuclear capacity decreases

intra-day price volatility by 0.7%, or $0.114/MWh, while adding 60 MW of natural

gas capacity decreases intra-day price volatility by 5.6%, or $0.912/MWh. Thus,

empirically it appears that the reduction of volatility from the supply shift effect is

actually quite small, although still statistically significant. The bulk of the volatil-

ity reduction from adding natural gas generators comes through supply flexibility

via decreased ramping costs. The results imply that adding 60 MW of natural

gas capacity will decrease intra-day price volatility by 4.9 percentage points, or

$0.798/MWh, more than adding a lower marginal cost inflexible generator. This

volatility reduction amounts to approximately 1.3% of the mean electricity price.

The theoretical model also implies the ramping cost effect to be greater dur-

ing the summer months for two reasons. First, the ramping cost effect is more

pronounced because demand intersects a steeper section of the convex supply curve.

Second, demand volatility is greater during the summer months which also induces

larger dynamic shifting of the supply curves. This notion is tested empirically in
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Table 2.9: Regression Results: Natural Gas and Nuclear Capacity
Dependent Variable: Intra-day Price Volatility ($/MWh)

(A) (B) (C)
OLS 2SLS GARCH

Natural Gas Capacity (MW) -0.0105∗ -0.0391∗∗∗ -0.0123∗∗∗

(0.0060) (0.0144) (0.0025)

Natural Gas Capacity X Summer (MW) -0.0351∗∗∗ -0.0225∗∗∗ -0.0171∗∗∗

(0.0050) (0.0053) (0.0027)

Nuclear Capacity Capacity (MW) -0.0019∗∗∗ -0.0027∗∗∗ -0.0018∗∗∗

(0.0005) (0.0007) (0.0002)

Nuclear Capacity Capacity X Summer (MW) -0.0047∗ -0.0049∗ 0.0009
(0.0024) (0.0026) (0.0012)

Time Fixed Effects Yes Yes Yes
Observations 2313 2313 2313

Note: ***, **, & * denote statistical significance at the 1%, 5%, and 10% levels respectively.

Newey-West standard errors are reported in parenthesis to correct for serial correlation.

Table 2.9 using the pooled event study, 2SLS, and GARCH models in Columns (A),

(B), and (C), respectively.

Each column of Table 2.9 uses an interaction effect with a dummy variable

equal to one during the summer months of June through August, when demand

and intra-day demand volatility are highest. Consistent with our expectations, each

regression shows that natural gas capacity provides a significantly larger stabilizing

effect during the summer. Meanwhile, the supply shift effect shown by the coefficient

on nuclear capacity is also larger during the summer months but it is again an order

of magnitude below that of natural gas. This effect is only significant in the first two

columns. While the size of the coefficients for natural gas and nuclear does change

across specification, they all are consistent with the intuition of the theoretical model

which implies larger volatility reductions in the summer months due to the ramping

cost effect.
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Figure 2.7 shows the monthly marginal effect of additional natural gas capac-

ity on intra-day price volatility. Although segmenting the sample by months limits

statistical significance because of a smaller sample size, the relative coefficient mag-

nitudes are revealing. There is a clear intra-year trend, with natural gas providing

larger reductions to price volatility during months with larger demand volatility.

Consistent with the regression in Table 2.9, the decrease in volatility from natural

gas capacity in the summer months is several times greater than the rest of the year.

This has important implications for future price behavior in the presence of

non-dispatchable wind or solar generation. While wind generation will reduce the

residual demand that is supplied by conventional generators, it also has intermit-

tency concerns that may increase the demand volatility served by conventional gen-

erators. Solar has similar concerns but the effect is more ambiguous since production

follows demand, with larger output during the summer and daylight hours. Thus,

the results in Table 2.9 and Figure 2.7 underscore the importance of pairing in-

creases in intermittent renewable generators with conventional generators that have

low ramping costs. The results suggest that the value of price stability from natural

gas is increasing with the share of non-dispatchable generators such as wind, an idea

explored further in Section 2.5.1.

While this analysis yields strong evidence that the low ramping costs of nat-

ural gas generators provide ancillary benefits to intra-day price stability, this may

not be the case at longer time intervals. At the intra-day level, natural gas gen-

erators arguably are not subject to fossil fuel price volatility since gas prices paid

by generators are often negotiated through bilateral contracts and forward financial
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Figure 2.7: Natural Gas Capacity Marginal Effects by Month

markets. However, at longer time horizons natural gas generation is subject to fossil

fuel price volatility which means the price stability benefits shown here at the daily

level may not translate to volatility reductions at the monthly level.

To investigate this notion, an analysis identical to the baseline specification is

performed using the same data at the monthly aggregation. The results of natural

gas capacity on intra-month spot price volatility are shown in Table 2.10. The

results show that increases in natural gas capacity lead to reductions in intra-month

price volatility similar in magnitude to the daily reductions. However, the results

are no longer statistically significant. This is arguably the result of both a smaller

sample size and larger variations in fossil fuel prices which suppress the price stability

benefits shown at the daily level. The results suggest that the ancillary pecuniary

benefits from natural gas at the intra-day level do not necessarily generate benefits

at longer time horizons. Finally, they emphasize the importance of disaggregated

data analysis when investigating electricity markets and related price behavior.

As an additional robustness check to the intra-day price volatility analysis, I
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Table 2.10: Regression Results: Intra-month Volatility
Dependent Variable: Intra-month Price Volatility ($/MWh)

(A) (B) (C)
OLS 2SLS GARCH

Natural Gas Capacity (MW) -0.0327 -0.0338 -0.0102
(0.0213) (0.0229) 0.0206

Demand Volatility (MWh) 0.1203 0.1517*** 0.1048*
(0.0939) (0.0563) (0.0630)

Demand Mean (MWh) -0.0179 -0.0118 0.0115
(0.0551) (0.0256) (0.0279)

Time Fixed Effects Yes Yes Yes
Observations 76 76 76
Kleibergen-Paap rk-statistic 28.53

Note: ***, **, & * denote statistical significance at the 1%, 5%, and 10% levels respectively.

Newey-West standard errors are reported in parenthesis to correct for serial correlation.

perform the same regression using an alternative measure of volatility that is also

used in finance literature focused on electricity prices (Hadsell and Shawky, 2006,

Haugom and Ullrich, 2012a, Simonsen, 2005, Ullrich, 2012, Zareipour et al., 2007).

Here, the historical volatility is defined as the standard deviation of the logarithmic

returns:

σrt =

√√√√ 1

24

24∑
h=1

(rt,h − rt)2 (2.10)

where σrt is the intra-day volatility of logarithmic returns on day t and h is the hour

of day. Logarithmic returns are defined as

rt,h = ln

(
ph
ph−1

)
(2.11)

where ph is electricity price for hour h on day t.

Over the entire sample period, intra-day standard deviation of logarithmic

returns is 0.2047 and the daily mean returns are close to zero, as expected, at -
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Table 2.11: Regression Results: Alternative Volatility Measure
Dependent Variable: Standard deviation of logarithmic returns

(A) (B) (C) (D)
OLS OLS 2SLS 2SLS

Natural Gas Capacity (100 MW) -0.0129∗∗∗ -0.0126∗∗∗ -0.0226∗∗ -0.0212∗∗

(0.0047) (0.0047) (0.0094) (0.0097)

Nuclear Capacity (100 MW) 0.0005 0.0007
(0.0007) (0.0008)

Time Fixed Effects Yes Yes Yes Yes
Observations 2,313 2,313 2,313 2,313
Kleibergen-Paap rk-statistic 150.52 140.52
Note: ***, **, & * denote statistical significance at the 1%, 5%, and 10% levels respectively.

Newey-West standard errors are reported in parenthesis to correct for serial correlation.

0.0040. While the intra-day volatility of returns is quite high, it is consistent with

the range found in the previous literature which use this measure (Zareipour et al.,

2007).

The regression results for both the pooled event study and the 2SLS speci-

fication are shown in Table 2.11 all models include mean daily demand, intra-day

demand volatility, month fixed effects, day of the week effects, and a linear time

trend. The results are similar to the primary results, with natural gas capacity

significantly reducing price volatility. Again, the coefficient on natural gas is an

order of magnitude above the coefficient for nuclear capacity for the specifications

in Columns (B) and (D). Across all specifications the coefficient for natural gas ca-

pacity are not significantly different from each other, while the coefficient on nuclear

capacity is insignificantly different from zero. A 60 MW natural gas generator ad-

dition will decrease volatility by 0.008, or approximately 3.9%. This is only slightly

below the results of previous tables when using the traditional definition of volatility

which estimates the typical natural gas generator will reduce intra-day volatility by
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5.6%.

2.5.1 Volatility Impact of Renewables

To explore how the volatility value of additional natural gas capacity explores

over time within the ISO-NE, I provide a simple simulation which is calibrated using

the coefficients from the econometric model results. Internal reports by the ISO-NE

note that over two-dozen oil and coal fired generators may be retired within the next

decade. If these aging generators do retire, ISO-NE notes that over 6,000 MW of

new capacity will need to be produced. A significant percentage of the replacement

capacity will come from natural gas generators, and up to 40% of proposed projects

are from wind generation (ISO-NE, 2013). Using these retirements to motivate the

context, the simulation estimates how the volatility value of additional natural gas

capacity changes over time.

First, the impact on price volatility from wind generation is recovered from

the marginal effects in Section 2.5. Wind generation is a non-dispatchable resource,

so additional wind capacity can be modeled as a decrease in the residual electricity

demand that is supplied by dispatchable generators. Further, the intermittency

issues over wind can be thought of as increases the intra-day volatility in this residual

demand. Thus, the theoretical effect of wind on price volatility is ambiguous because

of these two competing effects. Since the coefficients for demand and intra-day

demand volatility are recovered from exogenous changes in demand, they can be

interpreted as the true coefficients from a supply increase of wind without traditional
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endogeneity concerns between supply and price. A similar method can be used to

recover the price volatility impact from solar or other non-dispatchable renewable

generators, but it is not done here due to New England’s limited solar potential and

lack of a comparable region to calibrate the model.10

To calibrate the simulation to incorporate the effects of wind generation on

price volatility, actual hourly wind generation data is taken from the California

Independent Systems Operator (CAISO), within the NP15 zone. This zone covers

northern California, which the National Renewable Energy Laboratory estimates to

have similar wind potential as the ISO-NE region (NREL, 2014) and the simulation

assumes to have the same ratio of wind generation to volatility. Actual hourly wind

generation data from ISO-NE is not available for use, but CAISO’s NP15 zone data

is preferred regardless because the market wind penetration is one percentage point

larger than that of ISO-NE and will more accurately reflect the wind volatility under

the growth described in the ISO-NE simulation.

The CAISO hourly 2012 wind production data show that an average 0.47

MWh intra-day volatility increase accompanies every MWh decrease in the daily

mean residual demand due to wind. This ratio is used in combination with the

demand and demand volatility marginal effects to calculate a net increase in price

volatility of approximately 3% from 60 MWh of wind energy production. This more

accurately reflects the impact of wind generation on price because it is calibrated

using wind production, instead of wind capacity, so it already incorporates non-

10Recovering true estimates of solar photovoltaic capacity on price volatility will also require use
of hourly coefficients, since nondispatchable solar production generally follows the demand load
changes throughout the day and smooths the net demand served by traditional generation.
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dispatchability concerns such as intermittency and curtailment.

The 3% marginal increase in price volatility due to wind production can be di-

rectly compared to the 3.9% decrease in price volatility estimated from the equivalent

natural gas production capacity. Their similar magnitudes emphasize their compli-

mentary nature, as the flexible natural gas generation offsets the entire volatility

increase from wind power. The ISO-NE envisions a long term future electricity mix

of 42% wind and 52% natural gas (ISO-NE, 2013), which is relatively close to the

volatility neutral growth of 54.4% wind and 45.6% natural gas calculated by the

simulation.

The simulation results are given in Figure 2.8, which shows how the volatil-

ity value of a typical natural gas generator changes over the next ten years under

different generator replacement scenarios that cover the 6,000 MW expected need.

The model assumes the aging facilities are phased out linearly and thus replaced at

a rate of 600 MW per year. Mean daily demand and intra-day demand volatility

are assumed to be constant over time, except as altered through additions of wind

capacity.

The four scenarios shown graphically in Figure 2.8 include assumptions for

low natural gas replacement, high natural gas replacement, volatility neutral re-

placement, and the ISO-NE envisioned scenario. The low natural gas replacement

scenario assumes the replacement generators come from 20% wind, 0% natural gas,

and 80% other, where “other” is assumed to be a volatility neutral generating source.

The high natural gas replacement scenario assumes the replacement generators are

20% wind and 80% natural gas. As described above, the volatility neutral scenario
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Figure 2.8: Annualized Volatility Over Time

is calculated as replacement generators coming from 54.4% wind and 45.6% natural

gas. The fourth scenario uses a replacement rate of 42% wind and 52% natural gas,

since this is the ISO-NE envisioned future generation mix.

The simulated annualized volatility is plotted over time in Figure 2.8 in the

presence of a shifting generating mix. The low natural gas scenario shows that

the marginal value from a natural gas generator increases over time, approximately

doubling the annualized volatility percentage. This is because the growth of wind

increases price volatility in the future, giving a larger value to volatility reductions

from natural gas. This is the opposite of the high natural gas scenario, which shows

annualized volatility decaying over time as the growing share of natural gas decreases

the additional need for price stability.

The ISO-NE envisioned future shows a gradual decline in the value of volatil-

ity reductions from natural gas generators. This is due to the growth of natural

gas outpacing the growth of wind, which nets to a slow dampening of price volatil-
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ity. With the decreasing price volatility comes a decrease in the marginal value of

volatility reductions from natural gas, as natural gas generators already represent a

large share of the market.

2.6 Natural Gas Capacity and the Forward Premium

Since adding flexible production capacity affects volatility in a similar fash-

ion to electricity storage, there could be implications for the forward premium as

well. Douglas and Popova (2008) argue that larger natural gas storage reserves lead

to smaller forward premiums, as it is a form of indirect storage. As discussed in

Section 2.1, their intuition is largely correct but their econometric model ignores

the endogeneity concerns that can bias their results. In this section, I extend their

regression analysis with a more rigorous empirical specification that specifically ex-

amines the effect of natural gas capacity on the forward premium.

Before starting the regression analysis, recall that the ex-ante forward premium

is the difference between the day-ahead price and the expected spot price:

PREMt = FPt − E[SPt] = FPt − SPt + ut (2.12)

where PREMt is the forward premium at time t, FPt is the forward price, E[SPt]

is the expected spot price which is assumed equal to the actual spot price plus a

random error term, ut.

The seminal model by Bessembinder and Lemmon (2002) yields a testable

hypothesis that the risk premium should be increasing with skewness of the price
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distribution and decreasing with the variance of the distribution, when generators

and retailers are risk averse. Since empirical investigations in the last decade have

found mixed evidence in support of this notion (Douglas and Popova, 2008, Haugom

and Ullrich, 2012b, Longstaff and Wang, 2004), it is worth exploring more in depth

here.

The essential intuition is that the risk premium on forward contracts may be

lower in markets with lower ramping costs. This is because stored natural gas is

equivalent to indirect storage of electricity. Lower ramping costs within new natural

gas capacity should imply a greater ability to immediately convert the stored input

into electricity. This increases the effectiveness of the indirect physical hedge which

reduces the forward premium because the additional ramping ability potentially

translates to lower price risk in the spot market.

This notion is tested empirically using a reduced form econometric specifica-

tion that follows from the previous empirical literature (Douglas and Popova, 2008,

Longstaff and Wang, 2004):

PREMt = β0 + β1NGCt + β2V ARt−1 + β3SKEWt−1 + β4Tt + εt (2.13)

where PREMt is the average hourly forward premium on day t, NGCt is total

natural gas capacity, V AR is variance of real-time price, SKEW is the skewness of

real-time price, and εt is a serially correlated error term such that εt = ρεt−1 + ut

where ut is random noise. More specifically, a 7-day average of intra-day price

variance is used for V AR as it arguably represents the best indication of ex-ante

94



Table 2.12: Regression Results: Natural Gas & the Forward Premium
Dependent Variable: Daily Mean Forward Premium

(A) (B) (C)
OLS 2SLS GARCH

Natural Gas Capacity (MW) -0.0041 -0.0125 -0.0066∗∗

(0.0047) (0.0099) (0.0030)

Variance ($/MWh) 0.0002 0.0001 0.0003
(0.0002) (0.0002) (0.0007)

Skewness ($/MWh) 0.7232 0.6428 0.7548∗∗

(0.4984) (0.5682) (0.3769)

Demand (MWh) -0.0001 -0.0012 0.0026
(0.0032) (0.0023) (0.0016)

Year Fixed Effects Yes Yes Yes
Observations 2313 2313 2313
Kleibergen-Paap rk-statistic 157.23

Note: ***, **, & * denote statistical significance at the 1%, 5%, and 10% levels respectively.

Newey-West standard errors are reported in parenthesis to correct for serial correlation.

variance expectations. Similarly, a 7-day average of intra-day price skewness is used

for SKEW . As with previous specifications, T represents a matrix of controls for

time trends and includes fixed effects for month, year, and day of the week.

The regression results are presented in Table 2.12. As with previous analy-

sis, Columns (A), (B), and (C) correspond to the pooled event study, 2SLS, and

GARCH model, respectively. Across all specifications, natural gas capacity shows a

small decrease in the forward premium, although this is only statistically significant

in the GARCH model. The coefficients for mean demand and variance are small and

insignificantly different than zero in all specifications. The marginal effect of skew-

ness is positive and insignificantly larger in magnitude to the results in Longstaff

and Wang (2004), although the difference from zero is only statistically significant

in the GARCH model.

Overall, the results are not considered supportive of the Bessembinder and
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Lemmon (2002) model and supporting literature (Douglas and Popova, 2008, Longstaff

and Wang, 2004). The Bessembinder and Lemmon (2002) model suggests that the

forward premium should increase with skewness and decrease with variance, but the

effects shown in Table 2.12 are not significant. Instead, these coefficients are more

supportive of recent literature by Haugom and Ullrich (2012b), who argue that the

forward price has converged to be an unbiased predictor of the spot price in the

PJM market. This appears consistent with my analysis of the ISO-NE market,

which shows an average forward premium of $0.61, about 1% of the mean electricity

price during my sample period.

To ensure that my results are not the result of using aggregated daily forward

premiums, I also perform the regression analysis by hour. First, hourly forward

premium means with 95% confidence intervals are provided in Figure 2.9 and show

premiums statistically different from zero in approximately half of the hours. The

regression results again control for the past week’s spot price variance, spot price

skewness, and mean demand. The marginal effects for natural gas capacity are

shown in Figure 2.10. The hourly marginal effects are shown for variance and

skewness in Figures 2.11 and 2.12, respectively.

The hourly marginal effects of national gas capacity on the forward premium

shown in Figure 2.10 are consistent with the daily forward premium results of Ta-

ble 2.12. Additional natural gas capacity routinely leads to small, insignificant

reductions in the forward premium. The hourly marginal coefficients for variance

and skewness are also generally insignificant but do not follow as clear of a trend.

The coefficient signs and magnitudes change often, again supporting the work of
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Figure 2.9: Hourly Forward Premiums
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Figure 2.10: Hourly Marginal Effect of Natural Gas Capacity on Forward Premium
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Figure 2.11: Hourly Marginal Effect of Variance on Forward Premium
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Figure 2.12: Hourly Marginal Effect of Skewness on Forward Premium

Haugom and Ullrich (2012b) instead of the earlier literature.

A persistent forward premium implies that there is some risk premium in

buying forward price contracts, such that the risk aversion of power purchasers

dominates that of electricity generators. Meanwhile, in an efficient market with

risk-neutral traders the forward premium should converge to zero (Jha and Wolak,

2013). While there appears little support for the Bessembinder and Lemmon (2002)

model with small daily average forward premiums, it is not clear that these results

should be interpreted as evidence that the ISO-NE market is operating efficiently

in the presence of sufficient risk neutral traders. Although the premiums are small

relative to well known inefficient electricity markets Metaxoglou and Smith (2007),

statistically significant hourly premiums remain for half the day with primarily

positive forward premiums. While it does seem that additional natural gas capacity

may slightly decrease the forward premium, this effect is not significant.
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2.7 Conclusions

The indirect impacts of additional natural gas capacity on wholesale electric-

ity market price behavior have not been fully analyzed in the previous literature.

While natural gas capacity has obvious effects on the mean price of electricity, there

is minimal discussion on the implications for price volatility. The ramping ability

of natural gas plants is particularly important since there may not yet an efficient

market for ramping ability within the FERC’s “Standard Market Design” (Angelidi,

2012, Stoft, 2002, Wang and Hobbs, 2014). My analysis provides several contribu-

tions to the existing literature on electricity markets, as it describes and quantifies

the additional benefits from adding flexible generation capacity. First, it formalizes

the intuitive link between natural gas capacity and price volatility due to ramping

costs. Second, it implements a rigorous empirical analysis which provides supporting

evidence to the theoretical model. Finally, it builds on previous literature connecting

natural gas markets and the forward premium in electricity markets, while adding

to the debate over the Bessembinder and Lemmon (2002) model.

In this paper I develop a basic theoretical model which details the importance

of ramping costs on electricity market price volatility. In the absence of cost-effective

storage, ramping costs are a major contributor to price volatility in the electricity

market. The model shows that adding generation capacity with lower ramping

costs and lower marginal costs will unambiguously decrease intra-day price volatility

under standard economic assumptions. Further, the implications of the model easily

generalize to all non-storable, or perishable, commodities where there are marginal
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costs of adjusting output. In brief, flexible production can serve a similar role to

storage in ensuring price stability.

A reduced form econometric specification is inferred from the equilibrium con-

ditions of the model and the empirical evidence supports the theory. More specif-

ically, I find that a typical natural gas generator will reduce price volatility by

approximately 5.6% in the wholesale market. These results are obtained using a

high frequency data within a pooled event study regression analysis, and are ro-

bust to a two-stage least squares model and a generalized autoregressive conditional

heteroskedasticity (GARCH) model.

The results also show that the effect is larger during the summer months,

when intra-day demand is highest and the ramping ability is most important. This

suggests the important role that natural gas can play in the future, since expected

growth in renewable generation is non-dispatchable and will result in larger residual

demand volatilities.

The marginal effects from the econometric results are used to calibrate a sim-

ulation exploring how the annualized volatility will change over time in the ISO-NE

market as aging generators are replaced. The simulation results show that the

annualized volatiity increases dramatically in the presence of large wind growth.

Meanwhile, in the ISO-NE envisioned scenario, the annualized volatility falls slowly

over the next decade as natural gas growth mitigates the price volatility increases

from wind production. This underscores the importance of natural gas as a com-

pliment to non-dispatchable renewable generation because the low ramping costs of

natural gas translate to corresponding price stability benefits.
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The effect of natural gas capacity on the forward premium is also investigated,

showing insignificant decreases to the forward premium from additional natural

gas. The results are similar when using daily mean data and disaggregated hourly

forward premium data. This supports recent literature suggesting the futures market

is operating efficiently in the presence of sufficient risk neutral traders, resulting in

the forward price converging to an unbiased predictor of the spot price. However,

this result should be interpreted with caution since statistically significant forward

premiums remain at the hourly level.

Taken together, the results of this analysis point electricity market regulators

towards specific policies. First, market design and policies should acknowledge that

there are additional benefits around adding capacity that has both low ramping

costs and low marginal costs, such as natural gas generators. This is increasingly

important when considering the future growth of non-dispatchable generators such

as wind and solar. Volatility-neutral resource planning suggests pairing increases in

wind capacity with roughly equal increases in natural gas capacity. Secondly, since

the benefits around ramping costs may not be properly priced under the current

design of most electricity markets, incentives may be desirable to ensure such ben-

efits are internalized into long-run capital investment decisions. This can be done

through an additional market for ramping services, as several transmission organi-

zations have begun to create. In the meantime, construction subsidies may also be

offered to ensure additional investment in flexible generators. Incentive-based sup-

port mechanisms should remain in place until cost-effective storage reduces ramping

issues to irrelevance.
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Chapter 3: Price Convergence, Virtual Bids, and Transaction Costs

in Electricity Markets

3.1 Introduction

Restructured electricity markets within the United States use a dual-settlement

system which yields a day-ahead price, or forward price, as well as a real-time price,

or spot price. The forward premium in these markets is important to market effi-

ciency, because accurate price signals are required to properly schedule generators

in advance. Since many generators incur start-up costs and require sufficient time

to ramp up operations, inaccurate forward prices can result in suboptimal genera-

tor dispatch by the independent system operator (ISO) tasked with ensuring grid

reliability and effective markets. Thus, the forward premium, which is simply the

discrepancy between the day-ahead price and the real-time price, has been a sub-

ject of interest to market regulators, transmission operators, and general market

participants for over a decade.

In many markets in the United States, virtual bidding has been introduced

with the intent to manage price risk, increase financial liquidity, and minimize devia-

tions between forward prices and spot prices. Virtual bids are financial trades which
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are made in the day-ahead market and closed out in the real-time market, such that

no physical commodity has been exchanged. Thus, in a market with risk-neutral

participants any forward premium should be arbitraged away, although transaction

costs may inhibit price convergence as well (Jha and Wolak, 2013). Persistent devi-

ations beyond a small risk premium have been considered evidence of an inefficient

market by previous researchers (Borenstein et al., 2008, Hadsell, 2008, Metaxoglou

and Smith, 2007). However, in an efficient market with risk-averse participants,

a forward premium may persist due to the positive skewness in electricity prices

and a desire for power purchasers to hedge away from high spot price volatility

(Bessembinder and Lemmon, 2002, Longstaff and Wang, 2004).

The behavior of the forward premium in electricity markets has been well stud-

ied (Bessembinder and Lemmon, 2002, Bowden et al., 2009, Bunn and Chen, 2013,

Cartea and Villaplana, 2008, Douglas and Popova, 2008, Haugom and Ullrich, 2012b,

Longstaff and Wang, 2004), but there are fewer studies on the impact of virtual bids

or the role of transaction costs. A report by the New England ISO finds suggestive

evidence that the introduction of virtual bids led to price convergence (ISO-NE,

2004). Further, the report notes that a tariff implemented on virtual transactions

lowered the volume of virtual transactions, and coincided with a divergence in price,

as expected. However, their econometric model ignores the seasonality of the risk

premium found by other researchers (Bowden et al., 2009, Bunn and Chen, 2013,

Cartea and Villaplana, 2008) and does not control for demand which has been shown

to cause a higher risk premium (Longstaff and Wang, 2004).

Jha and Wolak (2013) argue that even without virtual bidding, generators can
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attempt to exploit the forward premium through altering bids related to physical

scheduling. However, this is costly to the generator and imposes additional schedul-

ing risk for the ISO. Thus, they argue that introducing virtual bids essentially lowers

arbitrage transaction costs in the California ISO, which should lead to price con-

vergence. Their empirical findings support this notion and are consistent with the

official report by the system operator (CAISO, 2012). Within the New York market,

Saravia (2003) provides similar findings for the forward premium and Hadsell (2007)

shows that the introduction of virtual bidding decreased spot price volatility.

While previous literature provides some evidence that the lower transaction

costs of virtual bids lead to price convergence, the introduction of virtual bids is

a large market shock introducing many new participants that could alter the risk

premium regardless of transaction costs. To more directly test the notion that

virtual bid transaction costs are responsible for increasing the forward premium, I

take advantage of a natural experiment in the Midwest ISO (MISO) market where

virtual bidding was already in practice. In the beginning of the MISO in 2005, virtual

bids were not subject to the Revenue Sufficiency Guarantee (RSG) costs, which are

essentially a small fee to power producers that ensures generators committed by

the MISO are guaranteed cost recovery of startup costs. After a legal debate, the

Federal Energy Regulatory Commission (FERC) issued orders requiring RSG fees to

be applied to virtual bids. This ruling provides an exogenous increase to virtual bid

transaction costs, which allows us to explicitly test the relationship between price

convergence and transaction costs.

The following analysis uses the FERC ruling to add to the described literature
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on price convergence, virtual bids, and transaction costs in electricity markets. I

ask three related research questions. First, what is the effect of increasing virtual

bid transaction costs on price convergence and intra-day price volatility? More

specifically, did imposing RSG costs on virtual bids change the volume of such bids

and lead to a larger forward premium? Lastly, does empirically examining the MISO

market forward premium support the notion of sufficient risk neutral participants, or

does the risk-averse participant model of Bessembinder and Lemmon (2002) apply?

To answer these questions and empirically add to the literature on electricity

market design, I use high frequency price data from the MISO day-ahead and real

time markets during 2005-2008. To examine virtual bid behavior, I use aggregate

level data on cleared virtual bids which also come from the MISO archive. An event

study approach is used with a variety of econometric specifications that control for

time trends, weather, and past spot price behavior. My analysis shows that the

FERC ruling, which increased transaction costs on virtual bids, led to a significant

increase in the forward premium within the MISO market. This coincides with a

significant drop in the quantity of cleared virtual bids, which is expected when trans-

action costs are increased. Finally, the analysis coincides with recent literature by

Haugom and Ullrich (2012b), who find little support for the Bessembinder and Lem-

mon (2002) model. This is arguably because there is still a sufficient number of risk

neutral participants to prevent arbitrage opportunities using past price information

alone, even after virtual bids are subject to RSG costs.

The remainder of this paper proceeds as follows. Section 3.2 gives a brief

background of the MISO electricity market structure, while the econometric strategy
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is described in Section 3.3. The related data are analyzed in Section 3.4, with the

regression results presented in Section 3.5. The price volatility impacts are analyzed

and discussed in Section 3.6, while Section 3.7 concludes.

3.2 Midwest ISO Market Background

Historically, residential electricity in the United States was served through reg-

ulated monopolies, but in 1996 the Federal Energy Regulatory Commission (FERC)

encouraged the creation of wholesale electricity markets. FERC Orders 888 and

889 established the standard market rules under which the competitive electricity

markets are to operate, including the creation of a non-profit Regional Transmission

Organization (RTO) to manage the transmission grid and associated electricity mar-

kets. By the end of 2001, the Midwest Independent System Operator (MISO)1 was

the first approved RTO and began coordinating the electricity grid in the midwest

states. Finally, the MISO established a competitive generating market which began

trading on April 1, 2005.

Following the FERC standard market design, the MISO wholesale market

includes a dual-settlement system. The dual-settlement system includes a separate

competitive auction for both a day-ahead market and a real-time market. The

day-ahead market schedules electricity to be delivered in each hour of the following

day based on expected demand, so no energy is physically delivered. The real-

time market allows adjustments to the delivery schedules, through balancing supply

1Due the subsequent growth the MISO coverage area, it is now known as the Midcontinent
Independent System Operator, but retains the same acronym.
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and demand in each hour. Residential demand faces no immediate price pressure

from these wholesale markets, so demand is generally considered exogenous in the

subsequent analysis. However, retail utilities have a choice to buy electricity in

the day-ahead market or the real-time market, but any unscheduled electricity is

required to be purchased in the real-time market.

Given the inflexibility of traditional generators and necessity to perfect balance

supply and demand for each hour of the day, the real-time market prices can be

especially volatile due to relatively minor deviations from expectations. Thus, many

risk averse power purchasers in the wholesale market may prefer the more stable

day-ahead market since the price received from their customers is regulated to only

change every several months. To ensure that the day-ahead prices and the real-time

prices converge, MISO allowed “virtual bids” from the beginning of the competitive

markets. Virtual bids are purely financial positions in the day-ahead market that

must be closed out in the real-time market. For example, a virtual supply bid in

the day-ahead market would increase demand in the real-time market without ever

physically changing the final electricity delivered.

Proponents of virtual bids argue they benefit individual market participants

as a hedge for supply and demand uncertainty, although there is also some evi-

dence of market manipulation using virtual bids due to market power effects (Birge

et al., 2014, Ledgerwood and Pfeifenberger, 2013). Virtual bids also can enhance

market liquidity and ensure price convergence of the day-ahead and real-time mar-

kets. Allowing virtual supply and demand bids will, in the presence of sufficiently

risk neutral traders, prevent any persistently profitable arbitrage opportunities. If
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anything, only a small risk-premium should remain within the forward premium.

However, with only risk averse participants, the forward premium should depend

on the variance and skewness of spot market prices, as noted by Bessembinder and

Lemmon (2002).

Although virtual bids have been allowed since the beginning, their treatment

has changed slightly. In the initial MISO market setup, the rules were unclear if

virtual bids should be subject to the Revenue Sufficiency Guarantee (RSG) costs.

The RSG is a small fee to power producers that ensures generators committed by the

MISO are guaranteed cost recovery of startup costs. For system reliability reasons,

the MISO sometimes commits additional generators to be ready for production

beyond those that cleared in the day-ahead market. In October of 2005, market

rules were clarified that virtual bids should not be subject to the RSG, but this

ruling was struck down by the Federal Energy Regulatory Commission (FERC) in

April of 2006. This provides a natural experiment with a distinct exogenous shock

that increases the transaction costs of virtual bids. Thus, the following analysis

builds on the previous literature by providing a more valid and explicit link between

virtual bid transaction costs and the forward premium.

3.3 Econometric Specification

Before exploring the data and starting the regression analysis, recall that the

ex-ante forward premium is the difference between the day-ahead price and the
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expected spot price:

PREMt = FPt − E[SPt] = FPt − SPt + ut (3.1)

where PREMt is the forward premium at time t, FPt is the forward price for hour

t, E[SPt] is the expected spot price which is assumed equal to the actual spot price

plus a random error term, ut.

In a competitive market with adequate financial instruments and risk neutral

participants, the forward premium should converge to zero. In the presence of trans-

action costs, the forward premium should instead converge to such costs. Thus, the

expectation is that the FERC ruling should create a divergence in prices, increas-

ing the forward price premium. This notion is tested empirically using a reduced

form event study discontinuity approach that builds from the previous literature

(Bessembinder and Lemmon, 2002, Bunn and Chen, 2013, Douglas and Popova,

2008, Haugom and Ullrich, 2012b, Longstaff and Wang, 2004):

PREMt = β0 + β1RSGt + β2V ARt−1 + β3SKEWt−1 + β4Xt + εt (3.2)

where PREMt is the average hourly forward premium on day t, RSGt is a dummy

variable indicating the period after the FERC ruling, V AR is variance of real-time

price, SKEW is the skewness of real-time price, X represents a matrix of controls,

and εt is a serially correlated error term such that εt = ρεt−1 +ut where ut is random

noise. More specifically, a 7-day average of real-time price variance is used for
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V AR as it arguably represents the best indication of ex-ante variance expectations.

Similarly, a 7-day average of real-time price skewness is used for SKEW . Included

in the matrix of controls, X, are fixed effects for hour, month, year, and day of the

week. Several specifications also include temperature controls, since temperature is

exogenously responsible for much of electricity demand. Heating degree days and

cooling degree days are calculated as the difference from 65◦F, as is common when

controlling for temperature in the electricity demand literature. The regressions also

control for squared terms to account for nonlinear relationships between temperature

and electricity demand.

The appropriate event window length is debatable, so several specifications are

included with varying window lengths. A longer time horizon allows more accurate

estimation of hourly and seasonal effects, though it opens up the possibility of

unobservable changes in the market. Thus, the assumptions required to ensure

casual inference are generally easier to justify at shorter time horizons.

3.4 Data

Day-ahead and real-time wholesale electricity price data used in the analysis

come directly from MISO archive, where the Minnesota Hub prices are used because

they are geographically central. A forward premium is calculated as the simple

difference between these two prices for all hours from April 2005 through December

2012. Monthly summary statistics of the forward premium for the whole sample

period are provided in Table 3.1. The forward premium is higher during the summer

110



and winter months which carry a premium significantly different than zero. This is

consistent with previous literature suggesting that the forward premium increases

with demand due to high electricity demands in combination with the convexity

of the supply function (Bessembinder and Lemmon, 2002, Bowden et al., 2009,

Bunn and Chen, 2013, Cartea and Villaplana, 2008, Longstaff and Wang, 2004).

A sharp convexity in the supply function implies that symmetric demand shocks

create a skewed real-time price distribution which requires a higher risk premium in

the forward market. The summary statistics provide mild support for this notion,

since months with a higher real-time price skewness generally correspond to higher

forward premiums, though August is a notable exception.

As previously discussed, in the initial market design it was unclear if RSG fees

would be assessed on virtual bids although they generally were not collected. How-

ever, market rules were clarified by early October giving an unambiguous period of

lower transaction costs on virtual bids. Thus, Table 3.2 provides summary statistics

comparing the 202 days that RSG costs were not assessed with the 202 days after

this ruling was struck down by the FERC. As expected by economic theory, the

period in which virtual bids were not assessed RSG fees shows a mean forward pre-

mium insignificantly different from zero. Meanwhile, in the 202 days after the RSG

costs were assigned to virtual bids the forward premium increases significantly to

$2.38/MWh. Unlike the pre-RSG period, the forward premium is also significantly

different from zero, with a p-value of 0.0077. In addition, the standard deviation

of the hourly forward premium increases from 29.3 to 35.9, and a variance ratio

test shows this to be significant at the 1% level. Figure 3.1 shows the distribution
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Table 3.1: Summary Statistics for MISO (April 2005 through December 2012)
Mean, Std. Dev. (in parentheses), and Skewness [in brackets]

Month Obs Day-ahead Price Real-Time Price Forward Premium
(n) ($USD/MWh) ($USD/MWh) ($USD/MWh)

January 5208 38.7 36.48 2.22∗∗∗

(22.33) (28.17) (21.51)
[1.52] [2.93]

February 4752 41.73 40.58 1.15∗∗∗

(29.57) (40.01) (28.9)
[2.44] [3.67]

March 5208 34.91 35.43 -0.52
(22.86) (34.59) (25.33)
[1.52] [3.47]

April 5760 34.51 34.84 -0.34
(22.47) (29.32) (21.04)
[1.36] [2.13]

May 5952 31 30.52 0.48
(19.11) (30.66) (23.2)
[1.40] [3.17]

June 5736 33.24 31.11 2.13∗∗∗

(27.67) (40.9) (31.23)
[1.73] [2.97]

July 5952 43.97 41.44 2.53∗∗∗

(38.51) (50.83) (38.8)
[2.37] [2.61]

August 5952 37.22 34.54 2.68∗∗∗

(29.74) (40.26) (30.81)
[1.27] [-1.19]

September 5760 29.08 29.72 -0.64∗

(21.68) (32.69) (26.09)
[1.60] [2.24]

October 5952 34.43 33.98 0.45
(22.58) (32.67) (25.07)
[1.36] [2.39]

November 5760 34.95 33.91 1.04∗∗∗

(24.09) (32.57) (23.87)
[1.58] [2.64]

December 5952 43.39 41.11 2.28∗∗∗

(33.87) (41.7) (29.79)
[2.75] [3.38]

Note: ***, **, & * denote statistically significant from 0 at the 1%, 5%, and 10% levels

respectively.
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Table 3.2: Summary Statistics for MISO (10/6/2005 - 11/14/2006)
Day-ahead Price Real-time Price Forward Premium
($USD/MWh) ($USD/MWh) ($USD/MWh)

Period Obs (n) Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

Pre-RSG 4848 43.95 34.94 43.98 41.44 -0.027 29.271
Post-RSG 4848 47.34 34.99 44.97 44.40 2.375 35.932

Difference 3.39∗∗∗ 0.05 0.99 2.96∗∗∗ 2.402∗∗∗ 6.660∗∗∗

Note: ***, **, & * denote statistically significant from 0 at the 1%, 5%, and 10% levels

respectively.
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Figure 3.1: Pre/Post Distribution of Forward Premium

of the forward premium in the two periods, showing a positive shift in the post-

RSG period. Figure 3.2 gives the disaggregated hourly premiums for the entire 404

day period, showing insignificant premiums for most hours of the day. However,

there does seem to be larger and statistically significant premiums during the early

evening, which also corresponds to a higher demand periods.

Lastly, given the time-series nature of the data, an Augmented Dickey-Fuller

test is performed to ensure the price variables of interest were generated from a
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Figure 3.2: Hourly Forward Premium 10/6/2005 - 11/14/2006

stationary process. I reject the null hypothesis that the price variables contain a

unit root, with a Dickey-Fuller test statistic of -47.3 and -113.3 for the day-ahead

price and real-time price, respectively. Similarly, a I reject the null hypothesis that

the risk premium contains a unit root with a Dickey-Fuller test statistic of -154.7.

Figure 3.3 shows the forward premium data marked from the beginning of the

market through November 2006. The two vertical black lines mark changes in the

treatment of RSG costs for virtual bids, with the first line clarifying that virtual

bids are not subject to RSG related fees, although the MISO did not collect RSG

fees on virtual bids prior to this clarification. However, since the forward premium

in other jurisdictions have been shown to converge to zero as the market matures

over several months (Haugom and Ullrich, 2012b), the six month period prior to

the RSG clarification ruling is excluded in the subsequent regression analysis. It

is noteworthy from Figure 3.3 that the weekly forward premium averages following

the FERC ruling generally increase though it is not clear how much of this could be

due to seasonality from summer months. The regression analysis in the subsequent
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Figure 3.3: Monthly and Daily Forward Premium Averages

section will identify the effect more explicitly, including a variety of specifications

that control for seasonal characteristics.

The MISO archive also includes hourly bid data for all cleared virtual bids.

Figure 3.4 provides a scatter plot of total daily virtual bids, which are the sum of

the hourly cleared bids. The plot also includes a lowess curve fitted for the pre-

RSG and post-RSG period. Although the MW of cleared virtual bids seems to be

generally declining in the six months prior to the FERC ruling, there is a sharp

discontinuity after virtual bids become subject to the RSG fees. Comparing the

virtual bid means from two weeks after the FERC ruling to the two weeks prior

shows a significant decrease of approximately 30%. This discontinuity is explored

further in the regression analysis in the subsequent section, while controlling for a

variety of time trends and seasonal effects.
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Figure 3.4: Daily Virtual Bids and Lowess Curve

3.5 Regression Results

The regression results show that the FERC ruling subjecting virtual bids to

RSG fees results in a significant increase to the forward premium. The regression

results are reported in Table 3.3, using a variety of event windows and controls.

All columns include controls for time trends and temperature, as discussed in Sec-

tion 3.3. The row label “RSG” represents a binary variable equal to one in the

period following the FERC ruling. Meanwhile, as discussed in Section 3.3, skewness

and variance refer to a rolling 7-day averages of the second and third moments of

the spot price distribution.

Columns (A) and (B) use the smallest event window, examining only the two

weeks before and after the FERC ruling. Column (A) omits controls for skewness
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and variance, while Column (B) includes them. Both show increases in the forward

premium after virtual bids are subjected to the RSG fees. When omitting the spot

price distribution controls, Column (A) finds a large and statistically significant

effect, while Column (B) finds a modest, insignificant increase when skewness and

variance are included. However, the two coefficients are not statistically different

from each other, due to the large Newey-West standard errors from the small sample

size.

Columns (C) and (D) use the preferred event window length of just over one

year, which uses more data for a better estimation of the controls variables. The

event window of 404 days is used because there are 202 days between when the

FERC ruling and when the MISO clarified the initial ruling that RSG fees would

not be assessed to virtual bids. Both columns show a statistically significant increase

of the forward premium after the FERC ruling, with no statistical difference between

them. The preferred specification in Column (D) includes controls for the spot price

distribution and shows the forward premium increased by $4.6/MWh, or about 10%

of the electricity price, after the FERC ruling.

Columns (E) and (F) expand the event window length to the entire sample,

from April 2005 through December 2012. Column (E) omits price distribution

controls, while Column (F) includes them, and both show the forward premium

increasing significantly after virtual bids are subjected to RSG fees. When compared

to the preferred specification in Column (D), there is an insignificant change in the

RSG coefficient of interest, though the coefficients for skewness and variance do

change significantly.

117



Table 3.3: Regression Results
Dependent Variable: Forward Premium ($/MWh)

(A) (B) (C) (D) (E) (F)
RSG (binary) 5.292*** 0.958 3.398* 4.615** 5.024*** 4.250***

(1.996) (3.791) (1.856) (1.887) (0.861) (0.852)
Skewness 1.929 0.003 0.257***

(1.308) (0.295) (0.065)
Variance -0.008 0.004*** 0.001***

(0.006) (0.001) (0.0002)
Event Window (days) 28 28 404 404 2,824 2,824
Observations 696 696 9,696 9,696 67,776 67,776
Time controls Yes Yes Yes Yes Yes Yes
Temperature Controls Yes Yes Yes Yes Yes Yes
Note: ***, **, & * denote statistical significance at the 1%, 5%, and 10% levels respectively.

Newey-West standard errors are reported in parenthesis to correct for serial correlation.

Across specifications, the coefficients on skewness and variance are shown to

be highly unstable. Although the forward premium does appear to increase with

spot price skewness, this is only statistically significant in Column (F) where the

entire sample is included. Further, the coefficient on variance is positive, small, and

significant in this specification as well. Overall, the results are not strong evidence for

the Bessembinder and Lemmon (2002) model and endorsing literature (Lazarczyk,

2013, Longstaff and Wang, 2004). The Bessembinder and Lemmon (2002) model

suggests that the forward premium should increase with skewness and decrease with

variance in the presence of risk averse participants. Instead, these coefficients are

more supportive of recent literature by Haugom and Ullrich (2012b), who argue that

the forward price has converged to be an unbiased predictor of the spot price in the

PJM market. While enacting RSG fees are shown to increase the forward premium,

this analysis provides suggestive evidence that there is still a sufficient number of

risk-neutral virtual bidders to render the Bessembinder and Lemmon (2002) model
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Figure 3.5: Hourly RSG Coefficients

inapplicable.

To explore whether the effect of RSG fees on the forward premium is driven by

specific hours, a separate regression is run for each hour. The coefficient results and

95% confidence intervals for the RSG dummy, skewness, and variance are shown in

Figures 3.5, 3.6, and 3.7, respectively. Assessing RSG fees to virtual bids appears to

have a larger effect during the high demand hours during the day, while having an

insignificant effect during the late night and early morning hours when electricity

demand is lowest. This supports previous literature arguing that high demand hours

have a naturally higher forward premium because greater convexities in the supply

function translate to more demand risk for retailers (Longstaff and Wang, 2004).

As the transaction costs on risk neutral players increase, forward price behavior is

expected to revert towards the theoretical expectations of risk averse players with

higher premiums during high demand times.

Overall the hourly coefficients on skewness and variance are contrary to anal-

ysis in Douglas and Popova (2008) and generally provide mixed support for the

Bessembinder and Lemmon (2002) model. Spot price skewness is shown to increase
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Figure 3.6: Hourly Skewness Coefficients
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Figure 3.7: Hourly Variance Coefficients
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the forward premium during high demand hours, as their model predicts. However,

the coefficient for spot price variance provides little support, generally remaining

statistically insignificant. The coefficient fluctuates around zero throughout the day

with no clear pattern, lending additional support to the findings of Haugom and

Ullrich (2012b).

To directly test the hypothesis of Haugom and Ullrich (2012b) that the forward

price has converged with the spot price, a similar analysis is provided on the MISO

market. As noted in their analysis, the unbiased forward rate hypothesis provides a

simple test of the spot price forecast by the forward price. More specifically,

SPt = α + βFPt + εt (3.3)

where FPt is the forward price for time t in day-ahead market, SPt is the spot

price for time t in the real-time market, and εt is a serially correlated error term.

Thus, if the forward price is an unbiased predictor of the spot price, α would be

insignificantly different than zero and β would be insignificantly different than one.

Following Haugom and Ullrich (2012b), the unbiased forward rate hypothesis

is tested on mean daily prices and a rolling regression explores how these coefficients

change over time. A window size of 365 days is used and the coefficients are shown

over time in Figures 3.8 and 3.9 for α and β, respectively. The x-axis shows the

ending date of the event rolling regression window, such that the first graphed

coefficient covers the sample period from April 1, 2005 through April 1, 2006.

The results show that early in the MISO market history, α and β may have
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been statistically different than zero and one, respectively. However, as with the

PJM market, the forward price seems to converge to an unbiased predictor of the

spot market price as the market matures. As the later years clearly show, there is

little evidence of arbitrage opportunities using past price information alone.

3.6 Daily Price Volatility

While the analysis in the previous section argues that the FERC ruling in-

creased the forward premium because of the increased transaction costs on virtual

bids, this section analyzes the ruling’s impact on price volatility. Previous research

argues that the initial introduction of virtual bidding has led to greater price sta-

bility (Hadsell, 2007), though this has not been directly analyzed in the context of

changing transaction costs on virtual bids. To explore this subject, I first define

daily volatility as the standard deviation of the real time price data within the day.2

More formally:

σxt =

√√√√ 1

24

24∑
h=1

(xt,h − µt)2 (3.4)

where σxt is intra-day volatility for the variable x on day t, h is the hour of day, and

µ is the daily average of x. Thus, throughout the remainder of the analysis I use

the terms “volatility” and “standard deviation” interchangeably.

Summary statistics for intra-day real-time price volatility are shown in Ta-

ble 3.4 for the entire sample. Intra-day price volatility during the entire sample is

2This is also sometimes referred to as “historical volatility” in the finance literature, which
is distinct from annualized volatility, implied volatility, variance, and the probability of extreme
events.
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Table 3.4: Summary Statistics for Intra-Day Price Volatility
(April 2005 through December 2012, in $USD/MWh)

Obs (n) Mean Std Dev Min Max

January 217 20.12 12.52 2.84 90.41
February 198 23.52 20.73 1.67 132.36
March 217 21.27 17.15 1.77 136.04
April 240 21.19 12.2 2.78 84.69
May 248 21.78 15.21 3.4 102.24
June 239 27.68 22.48 2.89 147.28
July 248 34.25 28.74 3.75 214.4
August 248 28.61 21.1 2.97 159.71
September 240 23.84 17.07 3.17 99.22
October 248 24.11 15.54 2.93 85.15
November 240 23.55 15.13 3.68 91.87
December 248 26.65 20.52 1.4 116.25

Total 2831 24.83 19.16 1.4 214.4

$24.8/MWh, or approximately 70% of the mean real-time prices during this time.

However, price volatility itself varies widely, as shown by the minimum of approx-

imately 4% of mean price and a maximum of 608% of mean price. As expected,

intra-day price volatility is higher during the summer months, likely because of

higher total demand and intra-day demand volatility which are fundamentally driv-

ing the intra-day price volatility.

To test if the FERC ruling had any significant effect on intra-day price volatil-

ity, a basic multivariate OLS regression model is used with a Newey-West standard

error correction because of serial correlation issues. The regression results are re-

ported in Table 3.5 with intra-day price volatility as the dependent variable and the

various controls documented in each of the respective columns. The time controls

include fixed effects for the day of the week and month, while the temperature con-

trols include daily mean and intra-day volatility for both heating and cooling degree
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Table 3.5: Regression Results
Dependent Variable: Intra-day Price Volatility ($/MWh)

(A) (B) (C) (D)
RSG (binary) 1.688 -2.207 1.507 -3.256

(2.320) (2.790) (2.655) (2.794)

Event Window (days) 404 404 404 404
Observations 404 404 404 404
Time controls No Yes No Yes
Temperature Controls No No Yes Yes

Note: ***, **, & * denote statistical significance at the 1%, 5%, and 10% levels respectively.

Newey-West standard errors are reported in parenthesis to correct for serial correlation.

days. For all specifications, the preferred event window of 202 days before and after

the FERC ruling is used.

Column (A) of Table 3.5 shows the regression results without any controls,

which amounts to a mean comparison. The results show a statistically insignificant

increase in volatility of $1.69/MWh or 5.5% of the pre-ruling mean. Column (B)

adds time controls and shows the RSG coefficient decreasing to $-2.21/MWh, while

Column (C) uses temperature controls to get an RSG coefficient of $1.51/MWh.

Lastly, Column (D) includes all controls and again shows no evidence that the

higher transaction costs on virtual bids leads to significant changes in intra-day

price volatility. Although the sign and magnitude changes across specifications, the

columns are not statistically different from each other or from zero. Taken together,

this analysis provides no evidence that the increases in forward premiums from the

FERC ruling translate to changes in price volatility.
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3.7 Conclusions

Price convergence between day-ahead markets and real-time markets has been

an important metric for well-functioning electricity markets in the last decade. The

forward premium between day-ahead and real-time prices has been noted as a mea-

sure of market efficiency by both market regulators and previous researchers (Hau-

gom and Ullrich, 2012b, Metaxoglou and Smith, 2007). Since a larger share of

electricity is scheduled in the day-ahead markets, inefficient dispatch scheduling can

occur if forward prices do not properly predict spot price behavior. This is not

easy to correct in the real-time market because engineering limitations create excess

start-up costs and production adjustment costs. Thus, many restructured electricity

markets have introduced virtual bidding as a simple way to ensure price convergence.

Previous researchers note that some price convergence can be obtained through

bid alteration by physical generators, but this is costly and adds unnecessary risk

of electricity grid failures. Virtual bids provide a less costly way to achieve price

convergence and have been shown to decrease forward premiums in several different

electricity markets (Jha and Wolak, 2013). However, a major regulatory change

allowing virtual bids can also introduce new market participants with different risk

preferences that can alter the forward premium even without reductions in transac-

tion costs. Thus, this paper provides the first to explicitly address price convergence

in relation to transaction costs using a natural experiment in the MISO. After litiga-

tion, the FERC required revenue sufficiency guarantee (RSG) fees to be applicable

to virtual bids, which results in an increase of transaction costs.
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Using an event study approach that builds on regression specifications from

previous finance literature (Bessembinder and Lemmon, 2002, Haugom and Ullrich,

2012b, Lazarczyk, 2013, Longstaff and Wang, 2004), my analysis shows that increas-

ing transaction costs on virtual bids do increase forward premiums and reduce the

total number of cleared virtual bids. Although the increase in the forward pre-

mium is larger than the actual transaction cost, this may be due to market power

issues. Previous research suggests that virtual bids have been used to manipulate

prices (Birge et al., 2014, Ledgerwood and Pfeifenberger, 2013), although a thor-

ough investigation of the market power issues surrounding transaction costs. virtual

bidding, and the forward premium is left to future researchers. Further, the model

supports recent work by Haugom and Ullrich (2012b) which argues that the day-

ahead price has converged to be an unbiased predictor of the spot price. This notion

is also supported when tested directly using a their same methodology in a separate

market from their original analysis. A persistent forward premium cannot be fully

explained by the past price distribution as hypothesized by Bessembinder and Lem-

mon (2002) and supported by Longstaff and Wang (2004). These conclusions are

supported using daily average premiums as well as a disaggregated hourly analysis.

This may be due to a sufficient number of risk-neutral market participants, although

statistically significant hourly forward premiums due exist at some hours. Lastly,

although the introduction of virtual bids has been shown to provide price stability

in other markets (Hadsell, 2007), the transaction cost increases on virtual bids are

shown not to increase intra-day price volatility in this case.

Taken together, this research supports the role of virtual bids to aid in price
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convergence. Electricity market designers interested in minimizing the forward pre-

mium to ensure well-functioning wholesale electricity markets should continue efforts

to reduce transaction costs on virtual bids and conventional bids, as suggested by

traditional economic theory. For historically regulated electricity markets consider-

ing restructuring, dual-settle markets which allow virtual bidding should be encour-

aged to ensure efficient generator dispatch scheduling within competitive wholesale

electricity markets. However, if price volatility is the primary concern of market

designers, marginal reductions to virtual bid transaction costs may not be sufficient

to reduce price risk through price stabilization.
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