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Simulating the Hamiltonian dynamics of quantum systems is one of the most

promising applications of digital quantum computers. In this dissertation, we de-

velop an understanding of quantum simulation algorithms concerning their design,

analysis, implementation, and application.

We implement three leading simulation algorithms, employing diverse tech-

niques to tighten their error analyses and optimize circuit implementations. We

produce concrete resource estimates for simulating a Heisenberg spin system, a

problem arising in condensed matter physics that is otherwise difficult to solve

on a classical computer. The resulting circuits are orders of magnitude smaller

than those for the simplest classically-infeasible instances of factoring and quan-

tum chemistry, suggesting the simulation of spin systems as a promising candidate

for an early demonstration of practical quantum computation.

We design new simulation algorithms by using classical randomness. We



show that by simply randomizing how the terms in the Hamiltonian are ordered,

one can prove stronger bounds for product formulas and thereby give more effi-

cient quantum simulations. We also develop a classical sampler for time-dependent

Hamiltonians, using which we give a simulation algorithm that substantially im-

proves over previous approaches when the Hamiltonian varies significantly with

time.

We propose a general theory to analyzing product formulas, an approach to

quantum simulation widely used in experimental demonstrations but whose error

scaling was poorly understood. Our approach directly exploits the commutativity

of Hamiltonian, overcoming the limitations of prior error analyses. We prove new

speedups of product formulas for simulating many quantum systems, including

simulations of nearest-neighbor lattice systems, second-quantized plane-wave elec-

tronic structure, k-local Hamiltonians, rapidly decaying power-law interactions,

and clustered Hamiltonians, nearly matching or even outperforming the best pre-

vious results in quantum simulation. We accompany our analysis with numerical

calculation, which suggests that the bounds also have nearly tight constant pref-

actors.

We identify applications of quantum simulation to designing other quantum

algorithms and improving quantum Monte Carlo methods. We develop an al-

gorithmic framework “quantum singular value transformation” using techniques

from quantum simulation and apply it to implement principal component regres-



sion. We also apply our new analysis of product formulas and obtain improved

quantum Monte Carlo simulations of the transverse field Ising model and quantum

ferromagnets.
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Chapter 1: Introduction

1.1 Algorithms for quantum simulation

Simulating the Hamiltonian dynamics of quantum systems is one of the most

promising applications of digital quantum computers. The apparent classical in-

tractability of simulating quantum dynamics led Feynman [47] and others to pro-

pose the idea of quantum computation. Quantum computers can simulate various

physical systems, including condensed matter physics [9], quantum field theory

[64], and quantum chemistry [2, 26, 81, 109]. The study of quantum simulation

has also led to the discovery of new quantum algorithms, such as algorithms for lin-

ear systems [55], differential equations [11], semidefinite optimization [19], formula

evaluation [44], quantum walk [30], and ground-state and thermal-state prepara-

tion [38, 89], and could ultimately lead to practical applications such as designing

new pharmaceuticals, catalysts, and materials [9, 39].

Mathematically, we represent Hamiltonians by Hermitian operators H (τ)

satisfying H (τ)† = H (τ) for 0 ≤ τ ≤ t. The goal of quantum simulation is to use

a quantum circuit to approximate the time evolution expT

(
−i
∫ t

0
dτ H (τ)

)
with

error at most ε, where expT denotes the time-ordered matrix exponential. The

complexity of quantum simulation is then quantified by the number of elementary

gates used by the circuit. In the case where the Hamiltonian H (τ) = H does not

1



depend on time, the evolution operator can be represented in closed form as e−itH

and quantum simulation can be greatly simplified. This dissertation mainly consid-

ers quantum algorithms for simulating time-independent Hamiltonians, although

we also discuss the time-dependent case where the problem becomes considerably

harder to solve.

In 1996, Lloyd gave the first explicit quantum algorithm for simulating k-local

Hamiltonians [70]. His approach is based on product formulas. Specifically, let

H =
∑Γ

γ=1Hγ be a k-local Hamiltonian (i.e., eachHγ acts nontrivially on k = O (1)

qubits). AssumingH is time-independent, evolution underH for time t is described

by the unitary operation e−itH = e−it
∑Γ
γ=1Hγ . When t is small, this evolution

can be well-approximated by the Lie-Trotter formula S1(t) = e−itHΓ · · · e−itH1 ,

where each e−itHγ can be efficiently implemented on a quantum computer. To

simulate for a longer time, we may divide the evolution into r Trotter steps and

simulate each step with Trotter error at most ε/r. We choose the Trotter number

r to be sufficiently large so that the entire simulation achieves an error of at

most ε. The Lie-Trotter formula only provides a first-order approximation to the

evolution, but higher-order approximations are also known from the work of Suzuki

and others [18, 100]. A quantum simulation algorithm using product formulas

does not require ancilla qubits, making this approach advantageous for near-term

experimental demonstration.

Recent studies have considered the broader class of sparse Hamiltonians

2



[1, 12, 13, 15, 71, 73] and provided alternative simulation algorithms beyond the

product-formula approach. Some of these algorithms have nearly linear depen-

dence on the evolution time and logarithmic dependence on the allowed error

[13–15, 73, 74, 76], a dramatic improvement over product formulas. In particular,

the algorithm based on quantum signal processing [73, 74] is optimal for simulating

sparse Hamiltonians with respect to all parameters of interest. The aim of this dis-

sertation is to develop a further understanding of quantum simulation algorithms

concerning their design, analysis, implementation, and application. In Chapter 2,

we give a summary of background material that is necessary for understanding the

remaining discussion of this dissertation.

1.2 Circuit implementation

While recent simulation algorithms provide large asymptotic improvement

over product formulas, little is known about their practical performance for simu-

lating concrete physical systems. In particular, the constant-factor overhead and

extra space requirements may make them uncompetitive with the product-formula

approach in practice. This consideration is relevant to near-term quantum simu-

lation experiments, where the number of available qubits and the total number of

gates that can be reliably applied in a single run can be significantly limited.

In Chapter 3, we address this problem by estimating the resource require-

ment for simulating a one-dimensional Heisenberg model with a random magnetic

3



field

n∑
j=1

(~Σj · ~Σj+1 + hjZj) (1.1)

with periodic boundary conditions (i.e., ~Σn+1 = ~Σ1), and hj ∈ [−h, h] chosen

uniformly at random, where ~Σj = (Xj, Yj, Zj) denotes a vector of Pauli X, Y ,

and Z matrices on qubit j. This model can be simulated to understand condensed

matter phenomena, although even a simulation of modest size seems to be infeasible

for current classical computers [78]. To produce concrete resource estimate, we

consider simulations with h = 1, evolution time t = n (the size of the system), and

overall accuracy ε = 10−3. With all the parameters fixed except n, we compare

the complexity of algorithms with respect to the system size.

We implement three leading quantum simulation algorithms: the algorithm

using high-order Product Formulas (PF) [12], the algorithm based on truncated

Taylor Series (TS) [14], and the recent Quantum-Signal-Processing (QSP) algo-

rithm [73, 74]. We derived concrete error bounds for PF and LCU and resolved

an implementation issue of QSP where high precision classical computation is re-

quired. We implement these algorithms in a quantum circuit description language

called Quipper [51] and process all circuits using an automated tool we devel-

oped for large-scale quantum circuit optimization [82]. Although the product-

formula algorithm is theoretically surpassed by more sophisticated algorithms, we

find that its empirical performance is the best among all the algorithms we study.

4



The resulting circuits are orders of magnitude smaller than those for the simplest

classically-infeasible instances of factoring and quantum chemistry, suggesting the

simulation of spin systems as a promising candidate for an early demonstration

of practical quantum computation. This chapter is partly based on the following

paper:

[34] Andrew M. Childs, Dmitri Maslov, Yunseong Nam, Neil J. Ross, and Yuan Su,

Toward the first quantum simulation with quantum speedup, Proceedings of the

National Academy of Sciences 115 (2018), no. 38, 9456–9461, arXiv:1711.10980.

1.3 Quantum simulation by randomization

Randomization can be a powerful tool for quantum simulation. For exam-

ple, Poulin et al. gave improved simulations of time-dependent Hamiltonians by

sampling the Hamiltonian at random times [88]. Zhang studied the effect of ran-

domizing the ordering and/or duration of evolutions in a product formula, showing

that randomly ordering the summands in the first-order formula in either forward

or reverse order can give an improved algorithm [113]. Whether there exist other

scenarios in which randomness can improve the performance of quantum simulation

remains underexplored.

In Chapter 4, we develop a simulation algorithm based on higher-order

product formulas, which can achieve significantly better asymptotic performance

than the first-order formula. Specifically, we analyze the effect of randomly per-

5
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muting all the Γ summands in the Hamiltonian H =
∑Γ

γ=1Hγ. The resulting

algorithm is not much more complicated than a deterministic product formula,

but the savings in the simulation cost are substantial. We further provide numer-

ical evidence suggesting that the randomized approach can be advantageous in

practice. This chapter is partly based on the following paper:

[35] Andrew M. Childs, Aaron Ostrander, and Yuan Su, Faster quantum simulation

by randomization, Quantum 3 (2019), 182, arXiv:1805.08385.

Our focus has so far been on the time-independent Hamiltonian simula-

tion. Simulating a general time-dependent H (τ) naturally subsumes the time-

independent case, and can be applied to devising quantum control schemes [85],

describing quantum chemical reactions [23], and implementing adiabatic quantum

algorithms [45]. However, the problem becomes considerably harder and there are

fewer quantum algorithms available [13, 14, 65, 76, 88, 110].

In Chapter 5, we develop a randomized approach for simulating time-

dependent Hamiltonians that is strictly faster than existing algorithms. Specif-

ically, to simulate H (τ) =
∑Γ

γ=1 αγ(τ)Hγ where ‖Hγ‖ ≤ 1, we give a classical

sampler whose performance depends on the integration
∫ t

0
dτ
∑Γ

γ=1 |αγ(τ)| rather

than the worst-case value maxτ maxγ |αγ(τ)|. Our algorithm is thus advantageous

when the Hamiltonian varies significantly. We further identify a concrete prob-

lem in quantum chemistry—the semi-classical scattering of molecules—for which

our algorithm with L1-norm scaling offers a polynomial speedup over previous

6
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approaches. This chapter is partly based on the following paper:

[16] Dominic W. Berry, Andrew M. Childs, Yuan Su, Xin Wang, and Nathan

Wiebe, Time-dependent Hamiltonian simulation with L1-norm scaling, Quan-

tum 4 (2020), 254, arXiv:1906.07115.

1.4 Analysis of product formulas

Product formulas and their generalizations [35, 54, 75, 84] can perform sig-

nificantly better when the operator summands commute or nearly commute—a

unique feature that does not seem to hold for other quantum simulation algo-

rithms [13–15, 25, 73, 74, 76]. This effect has been observed numerically in previ-

ous studies of quantum simulations of condensed matter systems [34] and quantum

chemistry [8, 90, 108]. An intuitive explanation of this phenomenon comes from

truncating the Baker-Campbell-Hausdorff (BCH) series. However, the intuition

that the lowest-order terms of the BCH expansion are dominant is surprisingly

difficult to justify (and sometimes is not even valid [36, 107]). Thus, previous

work established loose Trotter error bounds, leaving a dramatic gap between their

provable performance and actual behavior. This gap makes it hard to identify the

fastest simulation algorithm and to find optimized implementations for near-term

applications of quantum computers.

In Chapter 6, we develop a general theory for analyzing product formulas,

overcoming the limitations of previous Trotter error analyses. We then identify

7
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a host of its applications to digital quantum simulation in Chapter 7, including

simulations of nearest-neighbor lattice systems, second-quantized plane-wave elec-

tronic structure, k-local Hamiltonians, rapidly decaying power-law interactions,

and clustered Hamiltonians, nearly matching or even outperforming the best pre-

vious results in quantum simulation.

We further numerically implement our bound for the one-dimensional Heisen-

berg model (3.1). As aforementioned, this model can be simulated much more

efficiently using product formulas, although this efficiency was poorly understood

from a theoretical perspective. Here, we give a tight bound that is loose by only a

factor of about 5, making significant progress toward a precise characterization of

Trotter error. These two chapters are partly based on the following papers:

[36] Andrew M. Childs and Yuan Su, Nearly optimal lattice simulation by product

formulas, Physical Review Letters 123 (2019), 050503, arXiv:1901.00564.

[37] Andrew M. Childs, Yuan Su, Minh C. Tran, Nathan Wiebe, and Shuchen Zhu,

A theory of Trotter error, 2019, arXiv:1912.08854.

1.5 Application of quantum simulation

For a given Hamiltonian H and evolution time t, the goal of quantum sim-

ulation is to implement e−itH using a quantum circuit comprised of elementary

gates. Restricted to each eigensubspace, the goal is to implement the transforma-

tion λ 7→ e−itλ, which can be done using recent simulation algorithms such as the

8
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Taylor-series algorithm [14] and quantum signal processing [73]. However, quan-

tum simulation is only one of the many examples where quantum computers could

offer speedup. Recent studies have considered other problems, such as quantum

search and amplitude amplification [52], solving linear equations [55], quantum

walks [29] and quantum machine learning [17, 111], where the goal can also be

viewed as applying functions to the eigenvalues/singular values of the input matri-

ces encoded in certain form. It is therefore natural to question whether techniques

from quantum simulation can be used to design algorithms for other problems.

In Chapter 8, we develop an algorithmic framework called “quantum sin-

gular value transformation”, which applies polynomial functions to the singular

values of matrices encoded in a standard form. This framework originates from

quantum simulation, but it is applicable to a host of other problems, dramatically

simplifying previous analyses and revealing new algorithms that were previously

unknown. We prove a spectral theorem for quantum singular value transformation

and apply the framework to implement principal component regression in machine

learning [48]. This chapter is partly based on the following paper:

[50] András Gilyén, Yuan Su, Guang Hao Low, and Nathan Wiebe, Quantum singu-

lar value transformation and beyond: Exponential improvements for quantum

matrix arithmetics, Proceedings of the 51st Annual ACM SIGACT Symposium

on Theory of Computing, pp. 193–204, ACM, 2019, arXiv:1806.01838.

Beyond quantum simulation, product formulas can also be applied to quan-
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tum Monte Carlo methods, in which the goal is to classically compute certain

properties of the Hamiltonian, such as the partition function, the free energy, or

the ground energy. Previous work considered quantum Monte Carlo methods for

various systems [20, 21], although their analyses do not exploit the commutativity

of the Hamiltonian and may thus be improved to give more efficient simulations.

In Chapter 9, we apply our analysis of product formulas to improve the

performance of quantum Monte Carlo simulation. Our result includes a simula-

tion of the transverse field Ising model, tightening the previous result [20], and a

simulation of ferromagnetic quantum spin systems, improving the analysis of [21].

This chapter is partly based on the following paper:

[37] Andrew M. Childs, Yuan Su, Minh C. Tran, Nathan Wiebe, and Shuchen Zhu,

A theory of Trotter error, 2019, arXiv:1912.08854.

We conclude the dissertation in Chapter 10 by briefly summarizing our con-

tributions and identifying multiple directions for future work.
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Chapter 2: Preliminaries

In this chapter, we summarize useful background material that is necessary

for understanding the remaining discussion of the dissertation. Specifically, we

introduce notation and terminology in Section 2.1, including various notions of

norms and common asymptotic notations. In Section 2.2, we discuss time-ordered

evolution operators and their mathematical properties. We then introduce com-

mon Hamiltonian input models in Section 2.3. In Section 2.4, we introduce product

formulas and establish a simple but loose error bound for the product-formula algo-

rithm. Finally, we review two recent quantum simulation algorithms—the Taylor-

series algorithm and the quantum-signal-processing algorithm—in Section 2.5 and

Section 2.6.

This chapter is partly based on the following papers:

[34] Andrew M. Childs, Dmitri Maslov, Yunseong Nam, Neil J. Ross, and Yuan Su,

Toward the first quantum simulation with quantum speedup, Proceedings of the

National Academy of Sciences 115 (2018), no. 38, 9456–9461, arXiv:1711.10980.

[16] Dominic W. Berry, Andrew M. Childs, Yuan Su, Xin Wang, and Nathan

Wiebe, Time-dependent Hamiltonian simulation with L1-norm scaling, Quan-

tum 4 (2020), 254, arXiv:1906.07115.

[37] Andrew M. Childs, Yuan Su, Minh C. Tran, Nathan Wiebe, and Shuchen Zhu,

A theory of Trotter error, 2019, arXiv:1912.08854.
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We assume throughout this dissertation that the reader is familiar with ba-

sic notions of quantum computing, including quantum states, quantum operations,

and measurements for closed/open quantum systems. Sources to attain this back-

ground include the textbook by Nielsen and Chuang [83], as well as the lecture

notes by Bacon [10] and Watrous [104]. We also assume a basic familiarity of

matrix analysis [60] and linear algebra [6], with the exception of Chapter 8, where

familiarity with advanced linear algebra [91] is assumed.

2.1 Notation and terminology

Throughout this dissertation, we consider finite-dimensional complex vector

spaces equipped with inner product, where vectors can be represented by their

coordinates and operators can be represented by matrices. We use Dirac notation

|ψ〉 to represent unit vectors/pure quantum states and 〈φ| = |φ〉† to represent

dual vectors, so the scalar 〈φ|ψ〉 gives the inner product of |ψ〉 and |φ〉. For a

d-dimensional space, we let {|j〉}dj=1 be an arbitrary but fixed orthonormal basis.

For any operator A and orthonormal bases B1 and B2, we denote the matrix repre-

sentation of A as [A]B1,B2
. We construct composite spaces by taking tensor product

and we drop the symbol ⊗ when there is no ambiguity.

Unless otherwise noted, we use lowercase Latin letters to represent scalars,

such as the evolution time t, the system size n, and the order of a product formula

p. We also use the Greek alphabet to denote scalars, especially when we want
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to write a summation like
∑Γ

γ=1. We use uppercase Latin letters, such as A,

to denote operators. We use scripted uppercase letters, such as F (t), to denote

operator-valued functions.

We organize scalars to form vectors hγ and tensors hγ1,...,γk . We use stan-

dard norms for tensors, including the 1-norm ‖h‖1 :=
∑

γ1,...,γk
|hγ1,...,γk |, the Eu-

clidean norm (or 2-norm) ‖h‖2 :=
√∑

γ1,...,γk
|hγ1,...,γk |

2, and the∞-norm ‖h‖∞ :=

maxγ1,...,γk |hγ1,...,γk |. In case there is ambiguity, we use ~h to emphasize the fact that

h is a vector (or a tensor more generally).

For an operator A, we use ‖A‖ to denote its spectral norm—the largest sin-

gular value of A. The spectral norm is also known as the operator norm. It is a

matrix norm that satisfies the scaling property ‖aA‖ = |a| ‖A‖, the submultiplica-

tive property ‖AB‖ ≤ ‖A‖ ‖B‖, and the triangle inequality ‖A+B‖ ≤ ‖A‖+‖B‖.

If A is unitary, then ‖A‖ = 1. We further use Aγ1,...,γk to denote a tensor where

each elementary object is an operator. We define a norm of Aγ1,...,γk by taking

the spectral norm of each elementary operator and evaluating the corresponding

norm of the resulting tensor. For example, we have ‖A‖1 :=
∑

γ1,...,γk
‖Aγ1,...,γk‖

and ‖A‖∞ := maxγ1,...,γk ‖Aγ1,...,γk‖.

Let f, g : R → R be functions of real variables. We write f = O (g) if

there exist c, t0 > 0 such that |f(τ)| ≤ c |g(τ)| whenever |τ | ≤ t0. Note that

we consider the limit when the variable τ approaches zero as opposed to infinity,

which is different from the usual setting of algorithmic analysis. For that purpose,
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we write f = O (g) if there exist c, t1 > 0 such that |f(τ)| ≤ c |g(τ)| for all

|τ | ≥ t1. When there is no ambiguity, we will use f = O (g) to also represent the

case where |f(τ)| ≤ c |g(τ)| holds for all τ ∈ R. We then extend the definition

of O to functions of positive integers and multivariate functions. For example,

we use f(n, t, 1/ε) = O ((nt)2/ε) to mean that |f(n, t, 1/ε)| ≤ c(n |t|)2/ε for some

c, n0, t0, ε0 > 0 and all |t| ≥ t0, 0 < ε < ε0, and integers n ≥ n0. If F (τ) is

an operator-valued function, we first compute its spectral norm and analyze the

asymptotic scaling of ‖F (τ)‖. We write f = Ω (g) if g = O (f), and f = Θ (g) if

both f = O (g) and f = Ω (g). We use Õ to suppress logarithmic factors in the

asymptotic expression and o(1) to represent a positive number that approaches

zero as some parameter grows.

Finally, we use
←−∏

,
∏Γ

γ=1 to denote a product where the elements have in-

creasing indices from right to left and
−→∏

,
∏1

γ=Γ vice versa. Under this convention,

Γ∏
γ=1

Aγ =
←−∏
γ

Aγ = AΓ · · ·A2A1,
1∏

γ=Γ

Aγ =
−→∏
γ

Aγ = A1A2 · · ·AΓ. (2.1)

We let a summation be zero if its lower limit exceeds its upper limit.

2.2 Time-ordered evolution

Let H (τ) be an operator-valued function defined for 0 ≤ τ ≤ t. We say

that U (τ) is the time-ordered evolution generated by H (τ) if U (0) = I and

d
dτ

U (τ) = H (τ)U (τ) for 0 ≤ τ ≤ t. In the case where H (τ) is anti-Hermitian,
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the function U (τ) represents the evolution of a quantum system under Hamilto-

nian iH (τ). We not only consider this special case but also study the general case

where H (τ) can be an arbitrary operator valued function, so that our result can be

applied to quantum Monte Carl methods (Chapter 9) as well. Throughout this dis-

sertation, we assume that operator-valued functions are continuous, which guaran-

tees the existence and uniqueness of their generated evolutions [42, p. 12]. We then

formally represent the time-ordered evolution U (t) by expT
( ∫ t

0
dτH (τ)

)
, where

expT denotes the time-ordered exponential. In the special case where H (τ) = H

is constant, the generated evolution is given by an ordinary matrix exponential

expT
( ∫ t

0
dτH (τ)

)
= etH .

In a similar way, we define the time-ordered evolution expT
( ∫ t2

t1
dτH (τ)

)
generated on an arbitrary interval t1 ≤ τ ≤ t2. Its determinant satisfies [42, p. 9]

det

(
expT

(∫ t2

t1

dτH (τ)

))
= e

∫ t2
t1

dτTr(H (τ)) 6= 0, (2.2)

so the inverse exp−1
T
( ∫ t2

t1
dτH (τ)

)
exists; we denote it by expT

( ∫ t1
t2

dτH (τ)
)
.

We have thus defined expT
( ∫ t2

t1
dτH (τ)

)
for every pair of t1 and t2 in the domain

of H (τ).1 Time-ordered exponentials satisfy the differentiation rule [42, p. 12]

∂

∂t2
expT

(∫ t2

t1

dτ H (τ)

)
= H (t2) expT

(∫ t2

t1

dτ H (τ)

)
,

∂

∂t1
expT

(∫ t2

t1

dτ H (τ)

)
= − expT

(∫ t2

t1

dτ H (τ)

)
H (t1),

(2.3)
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and the multiplicative property [42, p. 11]

expT

(∫ t3

t1

dτ H (τ)

)
= expT

(∫ t3

t2

dτ H (τ)

)
expT

(∫ t2

t1

dτ H (τ)

)
. (2.4)

By definition, the operator-valued function U (t) = expT
( ∫ t

0
dτH (τ)

)
satis-

fies the differential equation d
dτ

U (τ) = H (τ)U (τ) with initial condition U (0) =

I. We then find the integral equation

U (t) = I +

∫ t

0

dτ H (τ)U (τ) (2.5)

by using the fundamental theorem of calculus. We also consider a general differen-

tial equation d
dt

U (t) = H (t)U (t) +R(t), whose solution is given by the following

variation-of-parameters formula:

Lemma 1 (Variation-of-parameters formula [68, Theorem 4.9] [42, p. 17]). Let

H (τ), R(τ) be continuous operator-valued functions defined for τ ∈ R. Then the

first-order differential equation

d

dt
U (t) = H (t)U (t) + R(t), U (0) known, (2.6)

1Alternatively, we may define a time-ordered exponential by its Dyson series or by a convergent
sequence of products of ordinary matrix exponentials, and verify that this alternative definition
satisfies a certain differential equation. We prefer the differential-equation definition since it is
more versatile for the analysis in this dissertation.
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has a unique solution given by the variation-of-parameters formula

U (t) = expT

(∫ t

0

dτ H (τ)

)
U (0)+

∫ t

0

dτ1 expT

(∫ t

τ1

dτ2 H (τ2)

)
R(τ1). (2.7)

Let H (τ) = A (τ)+B(τ) be a continuous operator-valued function with two

summands defined for 0 ≤ τ ≤ t. Then, the evolution under H (τ) can be seen as

evolution under the rotated operator exp−1
T
( ∫ τ

0
dτ2A (τ2)

)
B(τ) expT

( ∫ τ
0

dτ2A (τ2)
)
,

followed by another evolution under A (τ) that rotates back to the original frame

[76]. This is known as the “interaction-picture” representation in quantum me-

chanics and is formally stated in the following lemma.

Lemma 2 (Time-ordered evolution in the interaction picture). Let H (τ) =

A (τ) + B(τ) be an operator-valued function defined for τ ∈ R with continuous

summands A (τ) and B(τ). Then

expT

(∫ t

0

dτ H (τ)

)
= expT

(∫ t

0

dτ A (τ)

)
· expT

(∫ t

0

dτ1 exp−1
T

(∫ τ1

0

dτ2 A (τ2)

)
·B(τ1) expT

(∫ τ1

0

dτ2 A (τ2)

))
.

(2.8)

Proof. A simple calculation shows that the right-hand side of the above equation

satisfies the differential equation

d

dt
U (t) = H (t)U (t) (2.9)
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with initial condition U (0) = I. The lemma then follows as expT
( ∫ t

0
dτH (τ)

)
is

the unique solution to this differential equation.

For any continuous H (τ), the evolution expT
( ∫ t

0
dτH (τ)

)
it generates is

invertible and continuously differentiable. Conversely, the following lemma asserts

that any operator-valued function that is invertible and continuously differentiable

is a time-ordered evolution generated by some continuous function.

Lemma 3 (Fundamental theorem of time-ordered evolution [42, p. 20]). The fol-

lowing statements regarding an operator-valued function U (τ) (τ ∈ R) are equiv-

alent:

1. U (τ) is invertible and continuously differentiable;

2. U (τ) = expT
( ∫ τ

0
dτ1H (τ1)

)
U (0) for some continuous operator-valued func-

tion H (τ).

Furthermore, in the second statement, H (τ) =
(

d
dτ

U (τ)
)
U −1(τ) is uniquely de-

termined.

Finally, we bound the spectral norm of a time-ordered evolution expT
( ∫ t2

t1
dτ

H (τ)
)

and the distance between two evolutions.

Lemma 4 (Spectral-norm bound for time-ordered evolution [42, p. 28]). Let H (τ)

be a continuous operator-valued function defined on R. Then,

1.
∥∥∥expT

( ∫ t2
t1

dτH (τ)
)∥∥∥ ≤ e|

∫ t2
t1

dτ‖H (τ)‖|; and
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2.
∥∥∥expT

( ∫ t2
t1

dτH (τ)
)∥∥∥ = 1 if H (τ) is anti-Hermitian.

Corollary 5 (Distance bound for time-ordered evolutions [102, Appendix B]). Let

H (τ) and G (τ) be continuous operator-valued functions defined on R. Then,

1.
∥∥∥expT

( ∫ t2
t1

dτH (τ)
)
− expT

( ∫ t2
t1

dτG (τ)
)∥∥∥ ≤ ∣∣∣∫ t2t1 dτ ‖H (τ)− G (τ)‖

∣∣∣
· e|

∫ t2
t1

dτ(‖H (τ)‖+‖G (τ)‖)|; and

2.
∥∥∥expT

( ∫ t2
t1

dτH (τ)
)
− expT

( ∫ t2
t1

dτG (τ)
)∥∥∥ ≤ ∣∣∣∫ t2t1 dτ ‖H (τ)− G (τ)‖

∣∣∣
if H (τ) and G (τ) are anti-Hermitian.

2.3 Hamiltonian input models

Quantum simulation algorithms may have different performance depending

on the choice of the input model of Hamiltonians. In this section, we describe

several input models that are commonly used in previous work. We consider the

general case where Hamiltonians are time-dependent; the time-independent case

can be handled similarly by dropping the time dependence.

Let H (τ) be a time-dependent Hamiltonian defined for 0 ≤ τ ≤ t. In

the linear-combination (LC) model, we assume that the Hamiltonian admits the

decomposition

H (τ) =
Γ∑
γ=1

Hγ(τ), (2.10)

where the Hermitian-valued functions Hγ(τ) are continuous and can be efficiently

exponentiated on a quantum computer. Such a setting is common in the simulation
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of condensed matter physics and quantum chemistry. We will use this model when

we develop circuit implementation of product formulas in Chapter 3 and design

randomized quantum simulation algorithms in Chapter 4 and Chapter 5.

A variant of the LC model is the linear-combination-of-unitaries (LCU) model.

In this case, the Hamiltonian H (τ) has the form

H (τ) =
Γ∑
γ=1

αγ(τ)Hγ, (2.11)

where the coefficients αγ(τ) ≥ 0 are continuously differentiable and the matrices

Hγ are both unitary and Hermitian. We assume that the coefficients αγ(τ) can

be efficiently computed by a classical oracle, and we ignore the classical cost of

implementing such an oracle. We further assume that each |0〉〈0|⊗ I + |1〉〈1|⊗Hγ

can be efficiently implemented. We will use this model when we discuss the Taylor-

series algorithm and the quantum-signal-processing algorithm in Chapter 3. In

both the LC and the LCU model, we quantify the complexity of a simulation

algorithm by the number of elementary gates it uses.

Another common input model is the sparse-matrix (SM) model. We say

that H (τ) is d-sparse if the number of nonzero matrix elements within each row

and column throughout the entire interval [0, t] is at most d. We assume that

the locations of the nonzero matrix elements are time independent. Access to the
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Hamiltonian is given through the oracles

|j, s〉 7→ |j, col(j, s)〉,

|τ, j, k, z〉 7→ |τ, j, k, z ⊕Hjk(τ)〉.
(2.12)

Here, col(j, s) returns the column index of the sth element in the jth row that

may be nonzero over the entire time interval [0, t]. We quantify the complexity

of a quantum simulation algorithm by the number of oracular queries it makes,

together with the number of additional elementary gates it requires.

Although we will not consider the SM model in the remaining part of the

dissertation, much of our result can be translated to that model. In fact, as the

following lemma shows, a d-sparse time-independent Hamiltonian can be efficiently

decomposed as a sum of 1-sparse terms.

Lemma 6 (Decomposition of sparse Hamiltonians [13, Lemma 4.3 and 4.4]). Let

H be a time-independent d-sparse Hamiltonian accessed through oracles. Define

‖A‖max as the largest matrix element of A in absolute value. Then

1. there exists a decomposition H =
∑d2

j=1 Hj, where each Hj is 1-sparse with

‖Hj‖max ≤ ‖H‖max, and a query to any Hj can be simulated with O(1)

queries to H; and

2. for any γ > 0, there exists an approximate decomposition2
∥∥H − γ∑η

j=1Gj

∥∥
max

2Reference [13] uses [13, Lemma 4.3] and the triangle inequality to show that∥∥H − γ∑η
j=1Gj

∥∥
max
≤
√

2γd2. However, this bound can be tightened to
√

2γ, since the max-

norm distance depends on the largest error from rounding off the d2 1-sparse matrices.
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≤
√

2γ, where η = O
(
d2 ‖H‖max /γ

)
, each Gj is 1-sparse with eigenvalues

±1, and a query to any Gj can be simulated with O(1) queries to H.

2.4 Product formulas

Let H =
∑Γ

γ=1Hγ be a time-independent operator consisting of Γ summands,

so that the evolution generated by H is et
∑Γ
γ=1 Hγ . Product formulas provide a

convenient way of decomposing such an evolution into a product of exponentials

of individual Hγ. Examples of product formulas include the first-order Lie-Trotter

formula

S1(t) := etHΓ · · · etH1 (2.13)

and higher-order Suzuki formulas [100] defined recursively via

S2(t) := e
t
2
H1 · · · e

t
2
HΓe

t
2
HΓ · · · e

t
2
H1 ,

S2k(t) := S2k−2(ukt)
2 S2k−2((1− 4uk)t) S2k−2(ukt)

2,

(2.14)

where uk := 1/(4− 41/(2k−1)).

In general, we can write a product formula as

S (t) :=
Υ∏
υ=1

Γ∏
γ=1

eta(υ,γ)Hπυ(γ) , (2.15)

where the coefficients a(υ,γ) are real numbers. The parameter Υ denotes the num-

ber of stages of the formula; for the Suzuki formula S2k(t), we have Υ = 2 · 5k−1.
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The permutation πυ controls the ordering of operator summands within stage υ

of the formula. For Suzuki’s constructions, we alternately reverse the ordering

of summands between neighboring stages, but other formulas may use general

permutations. For simplicity, we will fix Υ, πυ and assume that the coefficients

a(υ,γ) are uniformly bounded by 1 in absolute value. We then consider the perfor-

mance of the product formula with respect to the input operator summands Hγ

(for γ = 1, . . . ,Γ) and the evolution time t.

Product formulas provide a good approximation to the ideal evolution when

the time t is small. Specifically, a pth-order formula S (t) satisfies

S (t) = etH +O
(
tp+1

)
. (2.16)

This asymptotic analysis gives the correct error scaling with respect to t, but

the dependence on the Hγ is ignored, so it does not provide a full characteriza-

tion of Trotter error. This issue was addressed in the work of Berry, Ahokas,

Cleve, and Sanders [12], who gave a concrete error bound for product formulas

with dependence on both t and Hγ. Their original bound depends on the ∞-

norm Γ maxγ ‖Hγ‖, although it is not hard to improve this to the 1-norm scaling∑Γ
γ=1 ‖Hγ‖. We prove a new error bound in the lemma below; for real-time evo-

lutions, this improves a multiplicative factor of etΥ
∑Γ
γ=1‖Hγ‖ over the best previous

analysis [75, Eq. (13)].
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Lemma 7 (Trotter error with 1-norm scaling). Let H =
∑Γ

γ=1 Hγ be an operator

consisting of Γ summands and t ≥ 0. Let S (t) =
∏Υ

υ=1

∏Γ
γ=1 e

ta(υ,γ)Hπυ(γ) be a

pth-order product formula. Then,

∥∥S (t)− etH
∥∥ = O

(( Γ∑
γ=1

‖Hγ‖ t
)p+1

etΥ
∑Γ
γ=1‖Hγ‖

)
. (2.17)

Furthermore, if Hγ are anti-Hermitian,

∥∥S (t)− etH
∥∥ = O

(( Γ∑
γ=1

‖Hγ‖ t
)p+1

)
. (2.18)

Proof. Since S (t) is a pth-order formula, we know from [36, Supplementary Lemma

1] that the error A (t) = S (t)− etH satisfies A (0) = A ′(0) = · · · = A (p)(0) = 0.

By Taylor’s theorem,

S (t)− etH = (p+ 1)

∫ 1

0

du (1− u)p
tp+1

(p+ 1)!

(
S (p+1)(ut)−Hp+1eutH

)
, (2.19)

where

S (p+1)(ut)

=
∑

q(1,1)+···+q(Υ,Γ)=p+1

(
p+ 1

q(1,1) · · · q(Υ,Γ)

) Υ∏
υ=1

Γ∏
γ=1

(
a(υ,γ)Hπυ(γ)

)q(υ,γ)euta(υ,γ)Hπυ(γ) .

(2.20)
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The spectral norms of S (p+1)(ut) and Hp+1eutH can be bounded as

∥∥S (p+1)(ut)
∥∥ ≤ ∑

q(1,1)+···+q(Υ,Γ)=p+1

(
p+ 1

q(1,1) · · · q(Υ,Γ)

) Υ∏
υ=1

Γ∏
γ=1

∥∥Hπυ(γ)

∥∥q(υ,γ) et‖Hπυ(γ)‖

=

(
Υ

Γ∑
γ=1

‖Hγ‖
)p+1

etΥ
∑Γ
γ=1‖Hγ‖,

∥∥Hp+1eutH
∥∥ ≤ ( Γ∑

γ=1

‖Hγ‖
)p+1

et
∑Γ
γ=1‖Hγ‖.

(2.21)

Applying these bounds to the Taylor expansion, we find that

∥∥S (t)− etH
∥∥

≤ tp+1

(p+ 1)!

[(
Υ

Γ∑
γ=1

‖Hγ‖
)p+1

etΥ
∑Γ
γ=1‖Hγ‖ +

( Γ∑
γ=1

‖Hγ‖
)p+1

et
∑Γ
γ=1‖Hγ‖

]

=O

(( Γ∑
γ=1

‖Hγ‖ t
)p+1

etΥ
∑Γ
γ=1‖Hγ‖

)
.

(2.22)

The special case where Hγ are anti-Hermitian can be proved in a similar way,

except we directly evaluate the spectral norm of a matrix exponential to 1.

The above bound on the Trotter error works well for small t. To simulate

anti-Hermitian Hγ for a large time, we divide the evolution into r steps and apply

the product formula within each step. The overall simulation has error

∥∥S r(t/r)− etH
∥∥ = O

((∑Γ
γ=1 ‖Hγ‖ t

)p+1

rp

)
. (2.23)
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To simulate with accuracy ε, it suffices to choose

r = O

((∑Γ
γ=1 ‖Hγ‖ t

)1+1/p

ε1/p

)
. (2.24)

We have thus proved:

Corollary 8 (Trotter number with 1-norm scaling). Let H =
∑Γ

γ=1 Hγ be an

operator consisting of Γ summands with Hγ anti-Hermitian and t ≥ 0. Let S (t)

be a pth-order product formula. Then, we have
∥∥S r(t/r)− etH

∥∥ = O (ε) provided

r = O

((∑Γ
γ=1 ‖Hγ‖ t

)1+1/p

ε1/p

)
. (2.25)

Note that the above analysis only uses information about the norms of the

summands. In the extreme case where all Hγ commute, the Trotter error becomes

zero but the above bound can be arbitrarily large. We address this issue by devel-

oping a new analysis in Chapter 6 that leverages information about commutation

of the Hγs. We then analyze the performance of product formulas for simulating

various physical systems in Chapter 7 and discuss applications to quantum Monte

Carlo methods in Chapter 9.

2.5 Taylor-series algorithm

Let H =
∑Γ

γ=1 αγHγ be a Hamiltonian in the LCU model such that Hγ are

both unitary and Hermitian and αγ > 0. We assume that each controlled operation
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|0〉〈0| ⊗ I + |1〉〈1| ⊗ Hγ can be implemented with cost O (1). The Taylor-series

algorithm of [14] directly implements the (truncated) Taylor series of the evolution

operator e−itH for a carefully-chosen constant time, and repeats that procedure

until the entire evolution time has been simulated.

Denote the Taylor series for the evolution up to time t, truncated at order

K, by

Ũ (t) :=
K∑
κ=0

(−itH)κ

κ!
. (2.26)

For sufficiently large K, the operator Ũ (t) is a good approximation of e−itH . By the

definition H =
∑Γ

γ=1 Hγ, we can rewrite Ũ (t) as a linear combination of unitaries,

namely

Ũ (t) =
K∑
κ=0

(−itH)κ

κ!
(2.27)

=
K∑
κ=0

Γ∑
γ1,...,γκ=1

tκ

κ!
αγ1 · · ·αγκ(−i)κHγ1 · · ·Hγκ (2.28)

=
Ξ−1∑
ξ=0

βξṼξ, (2.29)

for Ξ =
∑K

κ=0 Γκ, where the Ṽξ are products of the form (−i)κHγ1 · · ·Hγκ , and

the βξ are the corresponding coefficients such that βξ > 0. (For notational conve-

nience, we omit the dependence of βξ on t.) The Taylor-series algorithm effectively

implements this linear combination on a quantum computer.
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To do this, we introduce

B|0〉 :=
1√
s

Ξ−1∑
ξ=0

√
βξ|ξ〉, select(Ṽ ) :=

Ξ−1∑
ξ=0

|ξ〉〈ξ| ⊗ Ṽξ (2.30)

and define

W := (B† ⊗ I) select(Ṽ )(B ⊗ I), (2.31)

where

s :=
Ξ−1∑
ξ=0

βξ =
K∑
κ=0

(‖α‖1 t)
κ

κ!
(2.32)

and ‖α‖1 := α1 + · · ·+αΓ. It is easy to see that (〈0|⊗ I)W (|0〉⊗ I) ∝ Ũ (t). More

precisely, we have

W |0〉|ψ〉 =
1

s
|0〉Ũ (t)|ψ〉+

√
1− 1

s2
|Φ〉 (2.33)

for some |Φ〉 whose ancillary state is supported in the subspace orthogonal to |0〉.

To boost the amplitude to perform the desired operation, we use the isometry

−WRW †RW (|0〉 ⊗ I) (2.34)

where R := (I − 2|0〉〈0|)⊗ I.
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To implement evolution according to H nearly deterministically, we consider

evolution for time tseg := ln 2/ ‖α‖1. The overall evolution is realized as a sequence

of r := dt/tsege segments, where the first r − 1 segments each evolve the state for

time tseg and the final segment evolves the state for time trem := t− (r − 1)tseg. It

can be shown that there is a choice of K with

K = O
(

log(‖α‖1 tseg/ε)

log log(‖α‖1 tseg/ε)

)
(2.35)

such that

∥∥−(〈0| ⊗ I)WRW †RW (|0〉 ⊗ I)− exp(−itsegH)
∥∥ = O (ε/r) . (2.36)

The evolution for the remaining time trem can be performed by rotating

an ancilla qubit to artificially increase the duration of the segment. Specifically,

provided s < 2, we can introduce an ancilla register in the state |0〉 and apply the

rotation

|0〉 7→ s

2
|0〉+

√
1− s2

4
|1〉. (2.37)

Together with the the unitary operator W , this implements the transformation

|0〉|ψ〉 7→ 1

2
|00〉Ũ (t)|ψ〉+

√
3

2
|Φ′〉 (2.38)

for some normalized state |Φ′〉 with (〈00| ⊗ I)|Φ′〉 = 0. Then we can proceed as
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before, but with s = 2. Indeed, we also perform a similar rotation for the initial

r − 1 segments to ensure that they have s = 2 instead of a slightly smaller value.

The asymptotic gate complexity of this simulation algorithm is [14]

O
(

Γ log Γ ‖α‖1 t
log(‖α‖1 t/ε)

log log(‖α‖1 t/ε)

)
. (2.39)

2.6 Quantum-signal-processing algorithm

Now we summarize the quantum-signal-processing algorithm of Low and

Chuang [73, 74]. Again we consider a Hamiltonian in the LCU model H =∑Γ
γ=1 αγHγ, where Hγ are both unitary and Hermitian and αγ > 0. We have

H

‖α‖1

= (〈G| ⊗ I) select(H)(|G〉 ⊗ I), (2.40)

where

select(H) :=
Γ∑
γ=1

|γ〉〈γ| ⊗Hγ, |G〉 :=
1√
‖α‖1

Γ∑
γ=1

√
αγ|γ〉. (2.41)

Low and Chuang’s concept of qubitization [74] relates the spectral decompo-

sitions of H/ ‖α‖1 and

−iQ := −i
(
(2|G〉〈G| − I)⊗ I

)
select(H). (2.42)
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Specifically, let H/ ‖α‖1 =
∑

λ λ|λ〉〈λ| be a spectral decomposition of H/α, where

the sum runs over all eigenvalues of H/ ‖α‖1. By the triangle inequality, ‖H‖ ≤

‖α‖1, i.e., |λ| ≤ 1. For each eigenvalue λ ∈ (−1, 1) of H/ ‖α‖1, the qubitization

theorem [74, Theorem 2] asserts that −iQ has two corresponding eigenvalues

λ± = ∓
√

1− λ2 − iλ = ∓e±i arcsinλ (2.43)

with eigenvectors |λ±〉 = (|Gλ〉 ± i|G⊥λ 〉)/
√

2, where

|Gλ〉 := |G〉 ⊗ |λ〉, |G⊥λ 〉 :=
λ|Gλ〉 − select(H)|Gλ〉√

1− λ2
. (2.44)

(Eigenvalues λ± = ±1 correspond to degenerate cases that can be analyzed sepa-

rately.)

The signal-processing algorithm applies a sequence of operations called phased

iterates. We introduce an additional ancilla qubit and define the operator

Vφ := (e−iφσ
z/2 ⊗ I)

(
|+〉〈+| ⊗ I + |−〉〈−| ⊗ (−iQ)

)
(eiφσ

z/2 ⊗ I) (2.45)

for any φ ∈ R. Let −iQ =
∑

ν e
iθν |ν〉〈ν| be a spectral decomposition of −iQ,

where the sum runs over ν labeling all eigenvectors of −iQ. As described above,

each eigenvalue λ ∈ (−1, 1) of H/ ‖α‖1 corresponds to two eigenvalues eiθλ± of

−iQ, where θλ+ = arcsin(λ) + π and θλ− = − arcsin(λ). Eigenvalues ±1 of
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−iQ correspond to degenerate cases that can be handled separately. The remain-

ing eigenspaces cannot be reached during any execution of the quantum-signal-

processing algorithm, so we can neglect them. Then one can show that

Vφ =
∑
ν

eiθν/2Rφ(θν)⊗ |ν〉〈ν| (2.46)

where

Rφ(θ) := e−iθΣφ/2, Σφ := cos(φ)X + sin(φ)Y. (2.47)

Thus each eigenvalue eiθν of −iQ is manifested in Vφ as an SU(2) operator Rφ(θν)

acting on the ancilla qubit.

For any positive even integer m, composing gates with the same rotation

amplitude θ but with varying phases φ1, . . . , φm yields

Rφm(θ) · · ·Rφ1(θ) = a(cos θ
2
) I + ib(cos θ

2
)Z + i cos θ

2
c(sin θ

2
)X + i cos θ

2
d(sin θ

2
)Y

(2.48)

for polynomials a, b, c, d of degree at most m. For quantum simulation, only the

polynomials a and c are used. This component can be extracted by preparing the

ancilla qubit in the state |+〉, composing the primitive rotations, and postselecting

the ancilla qubit in the state |+〉. The unwanted factor eiθν/2 may be canceled by
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alternating between Vφ and V †φ+π, giving

V~φ := V †φm+πVφM−1
· · ·V †φ2+πVφ1 . (2.49)

To perform Hamiltonian simulation, we implement a function of θ that con-

verts the eigenvalue eiθλ± of −iQ to the desired phase e−iλt, namely the Jacobi-

Anger expansion

ei sin(θ)t =
∞∑

k=−∞

jk(t)e
ikθ. (2.50)

To do this with a polynomial of degree m, we truncate the expansion at order

q := m
2

+ 1, giving an approximation with error at most [15]

2
∞∑
k=q

|jk(t)| ≤
4tq

2qq!
. (2.51)

The angles φ1, . . . , φm that realize this expansion can be computed by an efficient

classical procedure (see Lemmas 1 and 3 of [77]).

To simulate evolution of an initial state |ψ〉, we apply V to the state |+〉 ⊗

|G〉 ⊗ |ψ〉 and postselects the ancilla register of the output on the state |+〉 ⊗ |G〉.

This procedure simulates the desired evolution with error at most

8
4(‖α‖1 t)

q

2q q!
≤ ε. (2.52)

To achieve simulation for time t and error ε, the quantum-signal-processing algo-
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rithm uses

m = O
(
‖α‖1 t+

log(1/ε)

log log(1/ε)

)
(2.53)

phased iterates [73]. For each phased iterate, the dominant part is the select(H)

subroutine, which is straightforward to implement with O(Γ log Γ) elementary

gates. Overall, we see that the asymptotic gate count is

O
(

Γ log Γ

(
‖α‖1 t+

log(1/ε)

log log(1/ε)

))
. (2.54)
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Chapter 3: Circuit implementation

In this chapter, we implement three leading simulation algorithms: the product-

formula algorithm, the Taylor-series algorithm, and the quantum-signal-processing

algorithm. We introduce the target system—a one-dimensional nearest-neighbor

Heisenberg model with a random magnetic field in the z direction—in Section 3.1

and describe input models through which quantum algorithms access the target

Hamiltonian. We employing diverse techniques to develop concrete error analyses

and optimize circuit implementations in Section 3.2, Section 3.3, and Section 3.4.

We discuss the results in Section 3.5.

This chapter is partly based on the following paper:

[34] Andrew M. Childs, Dmitri Maslov, Yunseong Nam, Neil J. Ross, and Yuan Su,

Toward the first quantum simulation with quantum speedup, Proceedings of the

National Academy of Sciences 115 (2018), no. 38, 9456–9461, arXiv:1711.10980.

3.1 Target system

We consider a one-dimensional nearest-neighbor Heisenberg model with a

random magnetic field in the z direction. This model is described by the Hamil-
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tonian

n∑
j=1

(~Σj · ~Σj+1 + hjZj) (3.1)

where ~Σj = (Xj, Yj, Zj) denotes a vector of Pauli X, Y , and Z matrices on qubit

j. We impose periodic boundary conditions (i.e., ~Σn+1 = ~Σ1), and hj ∈ [−h, h]

is chosen uniformly at random. This Hamiltonian has been considered in recent

studies of self-thermalization and many-body localization. Despite intensive nu-

merical investigation, the details of a transition between thermal and localized

phases remain poorly understood. Indeed, the most extensive numerical study we

are aware of was restricted to at most 22 spins [78].

We focus on the cost of simulating the dynamics of Heisenberg model on a

quantum computer, as this is the dominant cost in several quantum simulation

proposals for exploring self-thermalization [93, 94, 97]. To produce concrete re-

source estimate, we consider simulations with h = 1, evolution time t = n (the

number of spins in the system), and overall accuracy ε = 10−3, and express the

complexity of quantum simulation as a function of n.

We now discuss input models for the Heisenberg Hamiltonian. Note that the

Hamiltonian in (3.1) is already expressed as a linear combination of operators, each

of which is both unitary and Hermitian. Therefore, the input Hamiltonian can be

analyzed in both the LC model and the LCU model introduced in Section 2.3. In

particular, each summand of (3.1) has the form UjUj+1 and the controlled operation
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• •

e−i
θ
2
Z

Figure 3.1: A simple quantum circuit to implement the matrix exponentiation e−i
θ
2
Z⊗Z .

Other exponentials such as e−i
θ
2
X⊗X and e−i

θ
2
Y⊗Y can be implemented in a similar way

modulo a change of basis.

|0〉〈0| ⊗ IjIj+1 + |1〉〈1| ⊗ UjUj+1 (3.2)

can be implemented with two elementary controlled gates |0〉〈0| ⊗ Ij + |1〉〈1| ⊗Uj

and |0〉〈0| ⊗ Ij+1 + |1〉〈1| ⊗ Uj+1. The exponentiation of a Pauli string can be

accomplished by a ladder circuit [83, Section 4.7.3] as illustrated in Figure 3.1.

3.2 Product-formula implementation details

We now describe the implementation details for the product-formula algo-

rithm. As mentioned in Section 2.4, the key step is to choose a Trotter number r

such that the simulation error is at most some desired ε. Here, we present commu-

tator bounds that take advantage of the commutativity of Hamiltonian, tightening

the previous analysis of Section 2.4.

Abstract commutator bounds. We recall some useful properties of Taylor

expansion. For any k ∈ N and any analytic function f : C → C with f(x) =∑∞
j=0 ajx

j, let Rk(f) :=
∑∞

j=k+1 ajx
j denote the remainder of the Taylor series

expansion of f up to order k.
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Lemma 9. If λ ∈ C and H1, . . . , HΓ are Hermitian, then

∥∥∥∥∥Rk

(
Γ∏
γ=1

exp(λHγ)

)∥∥∥∥∥ ≤ Rk

(
exp

(
Γ∑
γ=1

|λ| · ‖Hγ‖

))
. (3.3)

Proof. We have

Γ∏
γ=1

exp(λHγ) =
Γ∏
γ=1

∞∑
jγ=0

λjγ
H
jγ
γ

jγ!
=

∞∑
j1,...,jΓ=0

Γ∏
γ=1

λjγ
H
jγ
γ

jγ!
, (3.4)

so

Rk

(
Γ∏
γ=1

exp(λHγ)

)
=

∞∑
j1,...,jΓ=0∑
γ jγ≥k+1

Γ∏
γ=1

λjγ
H
jγ
γ

jγ!
. (3.5)

Using the triangle inequality and submultiplicativity of the norm, we find

∥∥∥∥∥Rk

(
Γ∏
γ=1

exp(λHγ)

)∥∥∥∥∥ =

∥∥∥∥∥∥∥∥
∞∑

j1,...,jΓ=0∑
γ jγ≥k+1

Γ∏
γ=1

λjγ
H
jγ
γ

jγ!

∥∥∥∥∥∥∥∥ ≤
∞∑

j1,...,jΓ=0∑
γ jγ≥k+1

Γ∏
γ=1

|λ|jγ ‖Hγ‖jγ

jγ!
.

(3.6)

Finally, similarly as in (3.4) and (3.5), we have

∞∑
j1,...,jΓ=0∑
γ jγ≥k+1

Γ∏
γ=1

|λ|jγ ‖Hγ‖jγ

jγ!
= Rk

(
Γ∏
γ=1

exp(|λ|·‖Hγ‖)

)
= Rk

(
exp

(
Γ∑
γ=1

|λ|·‖Hγ‖

))
,

(3.7)

which completes the proof.

Lemma 10. If λ ∈ C, then |Rk(exp(λ))| ≤ |λ|k+1

(k+1)!
exp(|λ|).
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Proof. Using the Taylor expansion of the exponential function, we have

|Rk(exp(λ))| =

∣∣∣∣∣
∞∑

l=k+1

λl

l!

∣∣∣∣∣ ≤
∞∑

l=k+1

|λ|l

l!
= |λ|k+1

∞∑
l=k+1

|λ|l−(k+1)

l!
(3.8)

= |λ|k+1

∞∑
l=0

|λ|l

(l + (k + 1))!
≤ |λ|k+1

∞∑
l=0

|λ|l

l!

1

(k + 1)!
(3.9)

=
|λ|k+1

(k + 1)!
exp(|λ|), (3.10)

which completes the proof.

We now present improved error bounds for the first-, second-, and fourth-

order product formula that exploits the commutation information of the Hamilto-

nian.

Theorem 11 (First-order commutator bound). Let H1, . . . , HΓ be Hermitian op-

erators with norm at most Λ := maxγ ‖Hγ‖. Let c := |{(Hi, Hj) : [Hi, Hj] 6= 0, i <

j}| be the number of non-commuting pairs of operators, and let t ∈ R. Then

∥∥∥∥∥exp

(
−it

Γ∑
γ=1

Hγ

)
−

[
Γ∏
γ=1

exp

(
−it
r
Hγ

)]r∥∥∥∥∥ ≤ c
(Λt)2

r
+

(ΓΛ|t|)3

3r2
exp

(
ΓΛ|t|
r

)
.

(3.11)

Proof. We show that

∥∥∥∥∥exp

(
λ

Γ∑
γ=1

Hγ

)
−

Γ∏
γ=1

exp(λHγ)

∥∥∥∥∥ ≤ C(|λ|Λ)2 +
(|λ|ΓΛ)3

3
exp (|λ|ΓΛ) , (3.12)

which implies the claimed result by the triangle inequality. The upper bound (3.12)
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can be established by explicitly computing the second-order error and bounding

the higher-order errors by the norm of the remainder R2. The second-order error

is bounded as follows:

∥∥∥∥∥∥λ
2

2

(
Γ∑
γ=1

Hγ

)2

−

[
λ2

2

Γ∑
γ=1

H2
γ + λ2

∑
γ<κ

HγHκ

]∥∥∥∥∥∥
=

∥∥∥∥∥
[
λ2

2

Γ∑
γ=1

H2
γ +

λ2

2

∑
γ<κ

HγHκ +
λ2

2

∑
γ>κ

HγHκ

]
−

[
λ2

2

Γ∑
γ=1

H2
γ + λ2

∑
γ<κ

HγHκ

]∥∥∥∥∥
(3.13)

=

∥∥∥∥∥λ2

2

[∑
γ>κ

HγHκ −
∑
γ<κ

HγHκ

]∥∥∥∥∥ =

∥∥∥∥∥λ2

2

[∑
γ>κ

HγHκ −HκHγ

]∥∥∥∥∥ (3.14)

≤ c|λ|2Λ2. (3.15)

The rest of the proof proceeds similarly to the second half of the proof of Corol-

lary 8; we omit the details.

Theorem 12 (Second-order commutator bound). Let H1, . . . , HΓ be Hermitian

operators with norm at most Λ := maxγ ‖Hγ‖, where each Hγ is a tensor product

of Pauli operators. Define the augmented set of Hamiltonians

H̃γ =


Hγ, 1 ≤ γ ≤ Γ

H2Γ−γ+1, Γ + 1 ≤ γ ≤ 2Γ.

(3.16)
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Let f(ι, γ) = 1 if H̃ι, H̃γ commute and f(ι, γ) = −1 otherwise. Finally, let

∆ := |{(ι, γ) : f(ι, γ) = −1, i 6= γ}|, (3.17)

T1 := |{(ι, γ, κ) : f(ι, γ) = f(γ, κ) = f(ι, κ) = 1, ι < γ < κ}|, (3.18)

T2 := |{(ι, γ, κ) : f(ι, γ) = 1, f(γ, κ) = f(ι, κ) = −1, ι < γ < κ}|

+ |{(ι, γ, κ) : f(ι, γ) = f(ι, κ) = −1, f(γ, κ) = 1, ι < γ < κ}|, (3.19)

T3 := |{(ι, γ, κ) : f(ι, γ) = f(γ, κ) = −1, f(ι, κ) = 1, ι < γ < κ}|, (3.20)

T4 := |{(ι, γ, κ) : all other cases}| (3.21)

where ι, γ, κ ∈ {1, . . . , 2Γ}, and let t ∈ R. Then

∥∥∥∥∥exp

(
−it

Γ∑
γ=1

Hγ

)
−
[
S2

(
−it
r

)]r∥∥∥∥∥
≤ Λ3|t|3

r2

{
1

24
∆ +

1

12
T2 +

1

6
T3 +

1

8
T4

}
+

4(ΓΛt)4

3r3
exp

(
2ΓΛ|t|
r

)
. (3.22)

Proof. As in the proof of Theorem 11, we explicitly compute the third-order error

and bound the higher-order terms byR3. First we show that the first-order formula

∥∥∥∥∥exp

(
λ

Γ∑
γ=1

Hγ

)
−

Γ∏
γ=1

exp(λHγ)

∥∥∥∥∥ (3.23)

has a third-order error of at most

|λ|3Λ3

(
1

3
∆̄ +

2

3
T̄2 +

4

3
T̄3 + T̄4

)
, (3.24)
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where the coefficients ∆̄, T̄2, T̄3, T̄4 are defined as in (3.17)–(3.21), but with respect

to the original Hamiltonians {Hγ}Γ
γ=1 instead of {H̃γ}2Γ

γ=1.

The third-order term in exp(λ
∑Γ

γ=1Hγ) is

1

3!

(
λ

Γ∑
γ=1

Hγ

)3

=
λ3

6

∑
ι,γ,κ

HιHγHκ, (3.25)

whereas the third-order term in
∏Γ

γ=1 exp(λHγ) is

λ3

6

∑
ι

H3
ι +

λ3

2

∑
ι<κ

H2
ιHκ +

λ3

2

∑
ι<κ

HιH
2
κ + λ3

∑
ι<γ<κ

HιHγHκ

=
λ3

6

∑
ι

H3
ι +

λ3

2

∑
ι6=k

H2
ιHκ + λ3

∑
ι<γ<κ

HιHγHκ, (3.26)

where we have used the fact that the square of any Pauli operator is the identity.

Taking the difference gives

λ3

6

∑
ι6=γ

Hι[Hγ, Hι] +
λ3

6

∑
ι,γ,κ

pairwise different

HιHγHκ − λ3
∑
ι<γ<κ

HιHγHκ. (3.27)

The norm of the first term is at most

1

3
|λ|3Λ3∆̄, (3.28)
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whereas the last two terms can be written as follows:

λ3

6

∑
ι1,ι2,ι3

pairwise different

Hι1Hι2Hι3 − λ3
∑

ι1<ι2<ι3

Hι1Hι2Hι3

=
λ3

6

∑
ι1<ι2<ι3

∑
σ∈Sym(3)

Hισ(1)
Hισ(2)

Hισ(3)
− λ3

∑
ι1<ι2<ι3

Hι1Hι2Hι3 (3.29)

=
λ3

6

∑
ι1<ι2<ι3

(
1 + f(1, 2) + f(2, 3) + f(1, 2)f(1, 3)f(2, 3) (3.30)

+ f(1, 3)f(1, 2) + f(1, 3)f(2, 3)
)
Hι1Hι2Hι3 − λ3

∑
ι1<ι2<ι3

Hι1Hι2Hι3 . (3.31)

(Here Sym(3) denotes the symmetric group on three elements.) By performing

case analysis, we can evaluate the coefficients and upper bound the norm by

|λ|3Λ3

(
2

3
T̄2 +

4

3
T̄3 + T̄4

)
. (3.32)

Combining (3.28) and (3.32), we obtain the claimed upper bound (3.24) for the

third-order error in the first-order formula.

Now we consider the second-order formula. Similarly to the proof of Theo-

rem 11, we begin by proving the bound

∥∥∥∥∥exp

(
λ

Γ∑
γ=1

Hγ

)
−S2(λ)

∥∥∥∥∥ ≤ (|λ|Λ)3

(
∆

24
+

T2

12
+

T3

6
+

T4

8

)
+

4

3
(Γ|λ|Λ)4 exp(2Γ|λ|Λ),

(3.33)

which implies (3.22) by the triangle inequality.

To establish (3.33), we apply (3.24) to the augmented Hamiltonian list {H̃γ}2Γ
γ=1
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with λ replaced by λ
2
. This shows that the third-order error is at most

|λ|3Λ3

8

(
∆

3
+

2T2

3
+

4T3

3
+ T4

)
. (3.34)

The higher-order errors can be bounded by a routine calculation as

R3

(
exp

(
λ

Γ∑
γ=1

Hγ

)
−S2(λ)

)
≤ 2R3(exp(2Γ|λ|Λ)) ≤ 2

(2Γ|λ|Λ)4

4!
exp(2Γ|λ|Λ).

(3.35)

This completes the proof of (3.33). The remainder of the proof proceeds similarly

to the second half of the proof of Corollary 8.

A similar bound holds for the fourth-order formula, as follows.

Theorem 13 (Fourth-order commutator bound). Let H1, . . . , HΓ be Hermitian

operators with norm at most Λ := maxj ‖Hj‖, where each Hj is a tensor product

of Pauli operators. Define the augmented set of Hamiltonians

H̃j =


Hj−2hΓ, 2hΓ + 1 ≤ j ≤ (2h+ 1)Γ

H2(h+1)Γ−j+1, (2h+ 1)Γ + 1 ≤ j ≤ 2(h+ 1)Γ

h ∈ {0, 1, 2, 3, 4}.

(3.36)
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Let f(i, j) = 1 if H̃i, H̃j commute and f(i, j) = −1 otherwise. Finally, let

na := |{(i, j) : f(i, j) = a1, i < j}| (3.37)

nb1b2b3 := |{(i, j, k) : f(i, j) = b1, f(i, k) = b2, f(j, k) = b3, i < j < k}| (3.38)

nc1...c6 := |{(i, j, k, l) : f(i, j) = c1, f(i, k) = c2, f(i, l) = c3,

f(j, k) = c4, f(j, l) = c5, f(k, l) = c6, i < j < k < l}| (3.39)

nd1...d10
:= |{(i, j, k, l,m) : f(i, j) = d1, f(i, k) = d2, f(i, l) = d3,

f(i,m) = d4, f(j, k) = d5, f(j, l) = d6, f(j,m) = d7, f(k, l) = d8,

f(k,m) = d9, f(l,m) = d10, i < j < k < l < m}| (3.40)

where i, j, k, l,m ∈ {1, . . . , 10Γ}, let t ∈ R, and let p := 1/(4− 41/3). Then

∥∥∥∥∥exp

(
−it

Γ∑
j=1

Hj

)
−
[
S4

(
−it
r

)]r∥∥∥∥∥ (3.41)

≤
(

4p− 1

2
Λ|t|

)5
1

5!r4

{∑
a∈±1

cana +
∑

b1,b2,b3∈±1

cb1b2b3nb1b2b3

+
∑

c1,...,c6∈±1

cc1...c6nc1...c6 +
∑

d1,...,d10∈±1

cd1...d10nd1...d10

}

+ 2
(5(4p− 1)ΓΛt)6

6! · r5
exp

(
(5(4p− 1)ΓΛ|t|

r

)
(3.42)

for some real coefficients ca, cb1b2b3, cc1...c6, cd1...d10.

We omit the proof, which proceeds along similar lines to that of Theorem 12.

Note that similar bounds also hold for higher-order formulas, although the analysis
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becomes more involved.

The coefficients ca, cb1b2b3 , cc1...c6 , cd1...d10 can in principle be determined by a

computer program. To illustrate the idea, we show how to determine the coefficient

c−1 in (3.41). Similar arguments can be used to determine all the coefficients in

the bound. However, the list of coefficients is long, so we omit it here.

First consider the fifth-order terms of the expression

exp

(
Γ∑
j=1

Hjλ

)
− exp(H1λ) · · · exp(HΓλ). (3.43)

The coefficient c−1 of n−1 counts the pairs of non-commuting terms Hi and Hj.

The second term in (3.43) contributes

λ4

4!
λ
∑
i<j

(
H4
iHj +HiH

4
j

)
+
λ3

3!

λ2

2!

∑
i<j

(
H3
iH

2
j +H2

iH
3
j

)
, (3.44)

whereas the first term in (3.43) contributes

λ5

5!

∑
i 6=j

(
H4
iHj +H3

iHjHi +H2
iHjH

2
i +HiHjH

3
i +HjH

4
i

)
+
λ5

5!

∑
i 6=j

(
H3
iH

2
j +H2

iHjHiHj +H2
iH

2
jHi +HiHjH

2
iHj +HiHjHiHjHi

+HiH
2
jH

2
i +HjH

3
iHj +HjH

2
iHjHi +HjHiHjH

2
i +H2

jH
3
i

)
.

(3.45)

Under the assumption that the terms of the Hamiltonian are tensor products of

Pauli operators, we can interchange the order of multiplication, possibly introduc-
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ing minus signs. Thus (3.45) equals

λ5

5!

∑
i<j

((
3 + 2f(i, j)

)
H4
iHj +

(
3 + 2f(i, j)

)
HiH

4
j

)
+
λ5

5!

∑
i<j

((
6 + 4f(i, j)

)
H3
iH

2
j +

(
6 + 4f(i, j)

)
H2
iH

3
j

)
. (3.46)

Subtracting (3.46) from (3.44) and setting f(i, j) = −1, we find

λ5

5!

∑
i<j

(
4H4

iHj + 4HiH
4
j + 8H3

iH
2
j + 8H2

iH
3
j

)
, (3.47)

whose spectral norm is bounded by

|λ|5

5!
24Λ5N−1. (3.48)

Comparing the result to (3.41), we find that c−1 = 24.

Concrete commutator bounds. To apply the above commutator bounds, we

must compute the number of tuples of terms in the Hamiltonian satisfying certain

commutation relations (e.g., equations (3.37)–(3.40) for the fourth-order bound).

While this can be done in polynomial time provided the degree is constant, a direct

approach is prohibitive in practice.

However, for the Hamiltonian (3.1), it is possible to show that each number

of tuples is given by a low-degree polynomial in n. In turn, this means that

the lowest-order contribution to the error is also a polynomial in n. Thus, by
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performing polynomial interpolation on a constant number of numerically-obtained

values, we can determine a closed-form expression for general n. We give concrete

commutator bounds for the second- and fourth-order formulas whose proof can be

found in [34, Appendix F.2].

Theorem 14 (Second-order commutator bound, succinct form). Let H be the

Hamiltonian (3.1), with terms ordered as

X1X2, . . . , Xn−1Xn, XnX1, Y1Y2, . . . , Yn−1Yn, YnY1, Z1Z2, . . . , Zn−1Zn, ZnZ1,

Z1, . . . , Zn. (3.49)

Then the error in the second-order product formula approximation satisfies

‖exp(−iHt)− [S2 (−it/r)]r‖ ≤ Λ3|t|3

r2
T2(n) +

4(4nΛt)4

3r3
exp

(
8nΛ|t|
r

)
, (3.50)

where

T2(n) :=


194, n = 3

40n2 − 58n, n ≥ 4.

(3.51)

Theorem 15 (Fourth-order commutator bound, succinct form). Let H be the

Hamiltonian (3.1), with terms ordered as in (3.49), and let p := 1/(4 − 41/3).
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Then the error in the fourth-order product formula approximation satisfies

‖exp(−iHt)− [S4 (−it/r)]r‖

≤
(

4p− 1

2
Λ|t|

)5
1

5! · r4
T4(n) + 2

(20(4p− 1)nΛt)6

6! · r5
exp

(
20(4p− 1)nΛ|t|

r

)
,

(3.52)

where

T4(n) :=



23073564672, n = 3

94192316416, n = 4

278878851840, n = 5

1280000000n4 − 7701760000n3 + 23685120000n2 − 30224677632n, n ≥ 6.

(3.53)

We now consider the asymptotic gate complexity of the product-formula algo-

rithm using our commutator bounds. Take the fourth-order bound as an example.

With Λ = Θ(1) and t = Θ(n), the commutator bound is

‖exp(−iHt)− [S4 (−it/r)]r‖ ≤ O
(
n9

r4
+
n12

r5

)
. (3.54)

To guarantee that the simulation error ε is at most some constant, it suffices to use

r = O(n2.4) segments. Since the circuit for each segment has size O(n), we have an

overall gate complexity of O(n3.4). Along similar lines, we find gate complexities of

49



O(n4) (resp., O(n11/3)) for the first-order (resp., second-order) commutator bound.

These bounds improve the asymptotic gate complexities of the product-formula

algorithm with 1-norm scaling (as established in Corollary 8), which give O(n5)

for the first-order formula, O(n4) for second order, and O(n3.5) for fourth order.

We only present concrete commutator bounds for the first-, second-, and

fourth-order product formulas. In general, to obtain the 2kth-order commutator

bound, one must count the number of (2k + 1)-tuples satisfying a certain com-

mutation pattern in a list of operators of length 8 · 5k−1n. For k ≥ 3, computing

the exact form of the (2k)th order bound seems challenging even with the help of

polynomial interpolation.

Nevertheless, it is still possible to obtain the asymptotic n-dependence of the

commutator bound. The key step is to study those (2k + 1)-tuples for which all

pairs of operators commute with each other. The number ncomm of such commuting

(2k + 1)-tuples satifsfies

(8 · 5k−1)2k+1

(
n− 2k

2k + 1

)
≤ ncomm ≤

(
8 · 5k−1n

2k + 1

)
. (3.55)

We thus conclude that Ncomm is a polynomial in n whose leading term is (8 ·

5k−1n)2k+1.

When we Taylor expand the evolutions exp(λH) and S2k(λ), those (2k +

1)-tuples for which all pairs of operators commute with each other cancel. The

remaining terms are either (2k + 1)-tuples where at least one pair of operators do
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not commute, or l-tuples with l ≤ 2k. Our above discussion shows that there are

O(n2k) such tuples. Therefore, the 2kth-order commutator bound takes the form

‖exp (−iHt)− [S2k (−it/r)]r‖ ≤ O
(
|t|2k+1n2k

r2k
+

(nt)2k+2

r2k+1

)
= O

(
n4k+1

r2k
+
n4k+4

r2k+1

)
.

(3.56)

To ensure that the simulation error is O(1) for t = n, it suffices to choose r =

O(n2+2/(2k+1)), which leads to a total gate complexity of O(n3+2/(2k+1)). This im-

proves over the 1-norm scaled bound (Corollary 8), which give complexityO(n3+1/k).

Empirical bounds. While the above bounds provide rigorous correctness guaran-

tees, they can be very loose. To understand the minimum resources that suffice for

product formula simulation, we estimate their empirical performance. Of course,

since quantum simulation is computationally challenging, we can only directly

compute the actual simulation error for small instances. Using binary search, we

find the value of r (the total number of segments) that just suffices to ensure

error 10−3. We extrapolate this behavior to produce a non-rigorous estimate of

the performance of product formula simulation for instances of arbitrary size. We

emphasize that the resulting empirical bound does not come with a guarantee of

correctness. Nevertheless, we believe it better captures the true performance of

product formula simulations and indicates the extent to which our rigorous bounds

are loose.

We numerically simulate the product formula algorithm for systems of size 5
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to 12, determining the value of r required to ensure error 10−3 as described above,

and averaging over five random choices of the local field strengths hj. We fit these

data to power laws, as depicted in Figure 3.2. We find

r1 = 2417n1.964, r2 = 39.47n1.883, r4 = 4.035n1.555, r6 = 1.789n1.311, r8 = 1.144n1.141,

(3.57)
where ri is the number of segments for the ith-order formula to produce a simu-

lation that is accurate to within 10−3. Considering the size of the circuit for each

step, this suggests an asymptotic complexity of roughly 9668n2.964 for the first-

order formula, 315.8n2.883 for second order, 161.4n2.555 for fourth order, 357.8n2.311

for sixth order, and 1144n2.141 for eighth order.

3.3 Taylor-series implementation details

In this section, we discuss technical details related to the implementation

of the Taylor-series algorithm as introduced in Section 2.5. We first present con-

crete error bounds to determine the truncate order K. We then describe how to

implement select(V ), a major component of the algorithm.

Error analysis. We begin by bounding the error introduced by truncating the

Taylor series.

Lemma 16. With the definitions of Ũ (t) in (2.26) and tseg := ln 2/ ‖α‖1, we have

∥∥∥Ũ (t)− exp(−iHt)
∥∥∥ ≤ 2

(ln 2)K+1

(K + 1)!
(3.58)
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Figure 3.2: Comparison of the values of r using the commutator and empirical bounds
for formulas of order 1, 2, and 4, and values of r for the empirical bound for formulas of
order 6 and 8. Straight lines show power-law fits to the data. The error bars for product
formulas of order greater than 1 are negligibly small, so we omit them from the plots.
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for any t ≤ tseg.

Proof. We have

∥∥∥Ũ (t)− exp(−iHt)
∥∥∥ =

∥∥∥∥∥
∞∑

κ=K+1

(−iHt)κ

κ!

∥∥∥∥∥ (3.59)

≤
∞∑

κ=K+1

(‖H‖ t)κ

κ!
(3.60)

≤
∞∑

κ=K+1

((α1 + · · ·+ αΓ)t)κ

κ!
(3.61)

≤
∞∑

κ=K+1

(ln 2)κ

κ!
(3.62)

≤ 2
(ln 2)K+1

(K + 1)!
, (3.63)

where the final inequality follows from Lemma 10.

Next we consider the error induced by the isometry V (t) := −WRW †RW (|0〉⊗

I) as in (2.34). It is straightforward to verify that

(〈0| ⊗ I)V (t) =
3

s
Ũ (t)− 4

s3
Ũ (t)Ũ (t)†Ũ (t). (3.64)

As discussed in Section 2.5, we rotate an ancilla qubit to increase the value of s

to be precisely s = 2. Then the following bound characterizes the error in the

implementation of the Taylor series.
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Lemma 17. Suppose
∥∥∥Ũ − U∥∥∥ ≤ δ for some unitary operator U . Then

∥∥∥∥3

2
Ũ − 1

2
Ũ Ũ †Ũ − U

∥∥∥∥ ≤ δ2 + 3δ + 4

2
δ. (3.65)

Proof. Since
∥∥∥Ũ − U∥∥∥ ≤ δ, we have

∥∥∥Ũ∥∥∥ ≤ ∥∥∥Ũ − U∥∥∥+ ‖U‖ ≤ 1 + δ (3.66)

and therefore

∥∥∥Ũ Ũ † − I∥∥∥ ≤ ∥∥∥(Ũ − U)Ũ †
∥∥∥+

∥∥∥U(Ũ † − U †)
∥∥∥ ≤ δ(2 + δ). (3.67)

Thus, by the triangle inequality, we have

∥∥∥∥3

2
Ũ − 1

2
Ũ Ũ †Ũ − U

∥∥∥∥ ≤ ∥∥∥Ũ − U∥∥∥+
1

2

∥∥∥Ũ − Ũ Ũ †Ũ∥∥∥ (3.68)

≤ δ +
δ(2 + δ)(1 + δ)

2
(3.69)

=
δ2 + 3δ + 4

2
δ (3.70)

as claimed.

We use the following basic property of contractions (operators of norm at

most 1), which is easily proved using the triangle inequality.

Lemma 18. Suppose operators Ui and Vi are contractions for all i ∈ {1, . . . , r}.
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If ‖Ui − Vi‖ ≤ η for all i, then

‖Ur · · ·U2U1 − Vr · · ·V2V1‖ ≤ rη. (3.71)

We also use the following lemma, which bounds the error introduced by

normalization.

Lemma 19. Suppose ‖|φ〉‖ = 1, ‖|ψ〉‖ ≤ 1, and ‖|ψ〉 − |φ〉‖ ≤ ξ < 1. Then

∥∥∥∥ |ψ〉‖|ψ〉‖ − |φ〉
∥∥∥∥ ≤√1 + ξ −

√
1− ξ. (3.72)

Proof. Decompose |ψ〉 as

|ψ〉 = α|φ〉+ β|φ⊥〉 (3.73)

for some normalized state
∣∣φ⊥〉 orthogonal to |φ〉. Clearly |α|2 + |β|2 ≤ 1 since

‖|ψ〉‖ ≤ 1. Furthermore, the assumption ‖|ψ〉 − |φ〉‖ ≤ ξ implies

|α− 1|2 + |β|2 ≤ ξ2, (3.74)

so

|α|2 + |β|2 ≤ ξ2 + 2<(α)− 1 (3.75)

with the real part 1− ξ ≤ <(α) ≤ 1 + ξ.
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Then we have

∥∥∥∥ |ψ〉‖|ψ〉‖ − |φ〉
∥∥∥∥ =

√
2− 2<(α)√

|α|2 + |β|2
(3.76)

≤
√

2− 2<(α)√
ξ2 + 2<(α)− 1

(3.77)

≤
√

2− 2(1− ξ2)√
ξ2 + 2(1− ξ2)− 1

(3.78)

=
√

1 + ξ −
√

1− ξ. (3.79)

Here the first inequality uses (3.75) and the fact that <(α) ≥ 1 − ξ ≥ 0, and the

second inequality follows since the function x/
√

2x− 1 + ξ2 attains its minimum

at x = 1− ξ2 within the interval 1− ξ ≤ x ≤ 1 + ξ.

With all the above lemmas in hand, we are ready to prove an explicit error

bound for the Taylor-series algorithm.

Theorem 20. The Taylor-series algorithm achieves error at most
√

1 + ξ−
√

1− ξ

with success probability at least (1− ξ)2, where

ξ = r
δ2 + 3δ + 4

2
δ with δ = 2

(ln 2)K+1

(K + 1)!
. (3.80)

Proof. For t ∈ {tseg, trem}, Lemma 16 shows that

∥∥∥Ũ(t)− exp(−iHt)
∥∥∥ ≤ δ, (3.81)
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and Lemma 17 shows that

‖(〈0| ⊗ I)V (t)− exp(−iHt)‖ ≤ ξ/r. (3.82)

Since V (t) is an isometry, (〈0|⊗ I)V (t) is a contraction, so by Lemma 18, we have

∥∥∥(〈0| ⊗ I)V (trem)
(
(〈0| ⊗ I)V (tseg)

)r−1 − exp(−itH)
∥∥∥ ≤ ξ. (3.83)

The claim about the success probability follows by applying the triangle inequality,

and the accuracy can be established by invoking Lemma 19.

To apply this bound, we must determine the truncation order K that achieves

the desired error bound ε. Just as for the product formula error bounds presented in

Section 3.2, it does not seem possible to compute K in closed form. However, since

K can only take integer values, it is straightforward to tabulate the error estimates

corresponding to all potentially relevant values of K, as shown in Table 3.1. Using

the known value of r, we can then determine which value of K suffices to ensure

small error.

In Section 3.2, we presented empirical error bounds for simulations based on

product formulas. It would be natural to perform a similar analysis of the error

in the Taylor-series algorithm. Unfortunately, it is intractable to find an empirical

bound by direct simulation since the number of ancilla qubits used by the Taylor-

series algorithm puts it beyond the reach of classical simulation even for very small
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K ξ/r

1 1.3626
2 0.24118
3 0.039031
4 0.0053441
5 0.00061628
6 6.10123× 10−5

7 5.28621× 10−6

8 4.07124× 10−7

9 2.821965× 10−8

10 1.778215× 10−9

Table 3.1: Lookup table for the truncation order K, with s boosted to be 2 in each
segment.

systems. A more limited alternative would be to use empirical data to improve

the estimated error of the truncated Taylor series. However, since

(ln 2)K+1

(K + 1)!
≤

∞∑
κ=K+1

(ln 2)κ

κ!
≤ 2

(ln 2)K+1

(K + 1)!
, (3.84)

the estimated error can be improved by a factor of at most 2, which results in an

additive offset of at most ln 2 for the truncation order K. Thus we do not consider

such a bound in our analysis.

Implementation of select(V ). A crucial step in the implementation of the Taylor-

series algorithm (and in the quantum-signal-processing algorithm) is to synthesize

the select(V ) gates. The cost of this implementation depends strongly on the

chosen representation for the control register.
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Recall from (2.30) that the select(V ) operation has the form

select(V ) :=
Ξ−1∑
ξ=0

|ξ〉〈ξ| ⊗ Ṽξ. (3.85)

For the Taylor-series algorithm, the operators Ṽξ are defined via (2.29). Here the

index ξ labels a value κ ∈ {0, 1, . . . ,K} and indices γ1, . . . , γκ ∈ {1, . . . ,Γ}. Per-

haps the most straightforward approach is to represent the entire control register

with a binary encoding using log2(K + 1) + K log2 Γ bits. However, as pointed

out in [14], we can significantly reduce the gate complexity by choosing a different

encoding of the control register.

Specifically, we use a unary encoding to label κ and a binary encoding for each

γ1, . . . , γκ. With such an encoding, the instance of select(V ) in the Taylor-series

algorithm can be represented as the map

|1κ0K−κ〉|γ1, . . . , γK〉|ψ〉 7→ |1κ0K−κ〉|γ1, . . . , γK〉(−i)κHγ1 · · ·Hγκ|ψ〉. (3.86)

We implement this transformation as follows. Conditioned on the jth qubit of the

unary encoding of κ being 1, and the jth coordinate of γ1, . . . , γK being the binary

encoding of γj, we apply (−i)Hγj . Compared to an entirely binary encoding, this

approach only requires an additional dK+1−log2(K+1)e qubits, which is a modest

increase since K is typically small (see Table 3.1). In return, instead of selecting

on a large register of Θ(K log Γ) bits, we can perform K + 1 independent selections
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on registers of log2 Γ bits, each controlled by a single qubit.

To implement a single select operation of the form
∑Γ−1

γ=0 |γ〉 〈γ|⊗Uγ, we would

need to cycle the value of a designated ancilla qubit through Γ Boolean products

of ω literals, where in each of the products, each of the variables x1, . . . , xω appears

exactly once (either negated or not). We then apply Uγ conditioned on the ancilla

qubit at the γth step of this construction.

A naive way of obtaining the Boolean products is to implement them via

multiple-controlled Toffoli gates with appropriate control negations, which has to-

tal gate complexity O (Γ log Γ). We give an improved implementation with gate

complexity O (Γ) based on walking on a binary tree, which meets a previously es-

tablished lower bound [80, Lemma 4]. A complete discussion of this improvement

is beyond the scope of this dissertation, and we refer the reader to [34, Appendix

G.4] for details.

3.4 Quantum-signal-processing implementation details

We now consider the quantum-signal-processing algorithm of Low and Chuang

[73, 74], as introduced in Section 2.6. We describe optimizations that reduce the

gate count of implementing quantum signal processing. We then discuss the diffi-

culty of computing the phases that specify the algorithm and describe a segmented

version of the algorithm that mitigates this issue. Finally, we describe empirical

bounds on the error in the truncated Jacobi-Anger expansion and in the overall
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algorithm.

Circuit optimizations. The select(H) gate is a major component of the quantum-

signal-processing algorithm, so we use the optimized implementation of that sub-

routine [34, Appendix G.4] in our implementation of the quantum-signal-processing

algorithm. We now present some further circuit optimizations that also reduce the

gate count.

As discussed in Section 2.6, we use the phased iterate Vφ defined in (2.45),

whereas Low and Chuang use the operation

V ′φ := (e−iφZ/2⊗ I)
(
|+〉〈+| ⊗ I + |−〉〈−|⊗

(
Z−π/2(−iQ)Zπ/2

))
(eiφZ/2⊗ I), (3.87)

where Zϕ := (1 + e−iϕ)|G〉〈G| − I is a partial reflection about |G〉. It is easy to see

that

Vφ = (I ⊗ Zπ/2)V ′φ(I ⊗ Z−π/2), (3.88)

so

V †φ = (I ⊗ Zπ/2)V ′†φ (I ⊗ Z−π/2) (3.89)

also involves conjugation by I ⊗Zπ/2. Thus, when the phased iterates are applied

in the sequence (2.49), the inner partial reflection gates cancel. Furthermore, Zϕ
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simply introduces a relative phase between |G〉 and its orthogonal subspace, so its

action is trivial if the ancilla register is initialized in and postselected on |G〉. Thus

we see that the implementation as defined in Section 2.6 has the same effect as in

[74]. Each partial reflection is implemented using O(log n) elementary gates, and

there are O(n2) phased iterates, so our implementation saves O(n2 log n) gates.

We apply a similar simplification to further reduce the gate count. For every

phased iterate Vφ defined in (2.45), we must implement a controlled version of

the operator −iQ = −i
(
(2|G〉〈G| − I) ⊗ I

)
select(H). In particular, this requires

us to perform a controlled-reflection about |G〉. We can do this by performing

a controlled-U † that unprepares the state |G〉 (where U is a unitary operation

satisfying U |0〉 = |G〉), a controlled reflection about |0〉, and finally a controlled-U

that prepares the state |G〉. However, observe that we can replace the controlled

unitary conjugation by its uncontrolled version without changing the behavior of

the circuit. Furthermore, by grouping neighboring pairs of phased iterates in the

sequence of Vφ and V †φ′ operations, we can cancel pairs of unitary operators U and

U † for state preparation and unpreparation.

Phase computation and segmented algorithm. Recall that to specify the

quantum-signal-processing algorithm, we must find phases φ1, . . . , φm that realize

the truncated Jacobi-Anger expansion. In principle, these angles can be computed

in polynomial time [77]. However, this computation is difficult in practice, so we

can only carry it out for very small instances. Specifically, we found the time
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required to calculate the angles to be prohibitive for values of m greater than

about 32. For n = 10 qubits with t = n and ε = 10−3, the error bound (2.52)

suggests that we should take m = 1100. Thus the difficulty of computing the angles

prevents us from synthesizing nontrivial instances of the algorithm. This difficulty

arises because the procedure for computing the angles requires us to compute the

roots of a high-degree polynomial to high precision. It is a natural open problem

to give a more practical method for computing the angles.

Fortunately, to determine the Clifford+Rz gate count in our implementation

of the quantum-signal-processing algorithm, we do not need to know the angles of

the phased iterates. Furthermore, since most Rz gates require approximately the

same number of Hadamard and T gates to realize within a given precision, we can

get a reasonable estimate of the Clifford+T count by using random angles in place

of the true values. However, we emphasize that this method does not produce a

correct quantum simulation circuit, and should only be used as a benchmark of

the resource requirements of the quantum-signal-processing algorithm—which is

only useful if the true angles can ultimately be computed.

An alternative is to consider what we call a segmented version of the algo-

rithm. In this approach, we first divide the evolution time into r segments, each

of which is sufficiently short that the angles can readily be computed. Since the

optimality of the quantum-signal-processing approach to Hamiltonian simulation

relies essentially on simulating the entire evolution as a single segment, the seg-
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mented approach has higher asymptotic complexity. However, it allows us to give

a complete implementation, and the overhead for moderate values of n is not too

great.

To analyze the algorithm with r segments, we apply the error bound (2.52)

with t replaced by t/r and ε replaced by ε/r. This gives the sufficient condition

4(‖α‖1 t/r)
q

2q q!
≤ ε

8r
(3.90)

where q = m
2

+ 1. Thus

r = O
(
αt
(
‖α‖1t

2ε(M
2

+1)!

)2/m)
(3.91)

segments suffice to ensure overall error at most ε. With t = n, α = O(n), and

m a fixed constant, we have r = O(n2+4/m) segments. Within each segment, the

number of phased iterates is m, which is independent of the system size. Each

phased iterate has circuit size O(n) using the improved select(V ) implementa-

tion [34, Appendix G.4]. Therefore, the segmented algorithm has gate complexity

O(n3+4/m).

In our implementation, we use m = 28 (i.e., q = 15). For the instance of

quantum simulation considered in this paper, we set ε = 10−3, ‖α‖1 = 4n, and
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Figure 3.3: Comparison of the number of phased iterates using optimal and segmented
implementations of the quantum-signal-processing algorithm.

t = n. With these values, (3.90) shows that it suffices to use

r ≥ 14

√
103 · 220n30

15!
= 0.6010n15/7 (3.92)

segments.

Figure 3.3 compares the total number of phased iterates used in the seg-

mented and optimal implementations. Over the range of interest, the segmented

algorithm is only worse by a factor between 2 and 3.

Empirical error bounds. The error bound (2.52) uses the closed-form expression

(2.51) for the remainder of the Jacobi-Anger expansion. While it is a convenient

to use such an analytical expression, it is natural to ask how tightly it bounds the

complexity of the algorithm.
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Figure 3.4: Comparison of the number of phased iterates using the analytic bound (2.51)
and the empirical bound for the Jacobi-Anger expansion. Here m is the number of phased
iterates and n is the system size.

To address this question, we numerically evaluate the left-hand side of (2.51)

for systems of sizes ranging from 10 to 20, as shown in Figure 3.4. By extrapolating

these data, we estimate the complexity of the quantum-signal-processing algorithm

for arbitrary sizes, including those for which classical evaluation of the series is

intractable. The empirical bound improves the gate count by a factor between

1.25 and 1.45 over the range of interest (10 ≤ n ≤ 100). More specifically, power

law fits to the data give

mana = 11.30n1.988, memp = 9.849n1.939 (3.93)

for the number of phased iterates using either the analytic bound or the empirical
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bound, respectively. Since each phased iterate has gate complexity O(n) (using the

technique from [34, Appendix G.4]), we find that the quantum-signal-processing

algorithm has complexity O(n2.988) (resp., O(n2.939)) using the analytic bound

(resp., empirical bound).

We do not consider the empirical bound for the segmented version of the

quantum-signal-processing algorithm, since the savings is small in that case (even

less at m = 28 than at the values shown in Figure 3.4), and the main goal of

the segmented approach is to have a fully-specified algorithm with rigorous guar-

antees. However, we use the empirical bound to estimate resources using the

non-segmented quantum-signal-processing algorithm. This produces our most op-

timistic benchmark for the performance of the quantum-signal-processing algo-

rithm.

One could also consider a full empirical estimate for the quantum-signal-

processing algorithm by using direct simulation to determine its true overall error.

The need for ancilla qubits makes this challenging: the algorithm uses n+dlog 4ne+

1 qubits to simulate an n-qubit system. Fortunately, unlike with the Taylor-series

algorithm, small instances of the quantum-signal-processing algorithm are just

within reach of direct classical simulation.

However, preliminary numerical investigation suggests that the performance

of the quantum-signal-processing algorithm cannot be significantly improved using

such an empirical bound. Figure 3.5 shows the empirical error in the segmented
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quantum-signal-processing algorithm for small system sizes, averaging over 10 ran-

dom experiments with a fixed target error ε = 10−3, along with similar data for

the product-formula algorithm using the commutator bound. We observe that for

system sizes between 5 and 9, the quantum-signal-processing error is consistently

around 5×10−5, which is not significantly less than the target error of 10−3. While

there was more variation in the error of the quantum-signal-processing algorithm as

compared to the product-formula algorithm, in no case was the quantum-signal-

processing error less than 10−5. In contrast to the product-formula algorithm,

where the error apparently decreases as a power law in n, the quantum-signal-

processing error shows no indication of decreasing. Furthermore, since the com-

plexity of the quantum-signal-processing algorithm depends logarithmically on the

inverse error 1/ε, even a large reduction in the error may not have a significant

effect. For these reasons, we do not consider full empirical error bounds in our

resource estimates for the quantum-signal-processing algorithm.

3.5 Results

We implement the three simulation algorithms in a quantum circuit descrip-

tion language called Quipper [51]. We also process all circuits using an automated

tool we developed for large-scale quantum circuit optimization [82]. Our imple-

mentation is available in a public repository [33].

We express our circuits over the set of two-qubit cnot gates, single-qubit
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Figure 3.6: Gate counts for optimized implementations of the product-formula (PF) al-
gorithm (using the fourth-order formula with commutator bound and the better of the
fourth- or sixth-order formula with empirical error bound), the Taylor-series (TS) algo-
rithm, and the quantum-signal-processing (QSP) algorithm (using the segmented version
with analytic error bound and the non-segmented version with empirical Jacobi-Anger
error bound) for system sizes between 10 and 100. Left: cnot gates for Clifford+Rz
circuits. Right: T gates for Clifford+T circuits.

Clifford gates, and single-qubit Z rotations Rz(θ) := exp(−iZθ/2) for θ ∈ R, which

can be directly implemented with both trapped ions [40] and superconducting

circuits [28, 62]. We focus on the cnot count as two-qubit gates take longer to

perform and incur more error than single-qubit gates. We also produce Clifford+T

circuits using optimal circuit synthesis [92] so that we can count T gates, which

are typically the most expensive gates for fault-tolerant computation.

Figure 3.6 and Figure 3.7 compare the gate counts and qubit counts for the

product-formula (PF) algorithm (with commutator and empirical error bounds),

the Taylor-series (TS) algorithm, and the quantum-signal-processing (QSP) algo-

rithm (in both segmented and non-segmented versions). Among all the algorithms

we considered, the PF algorithm does not need ancilla qubits, making it suit-

able for near-term implementation of quantum simulation. The implementation of
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quantum-signal-processing (QSP) algorithms.

other algorithms uses ancilla qubits, but QSP has mild space requirement and is

preferred over the TS approach.

Despite being more involved, the segmented QSP algorithm has the best

performance among the rigorously-analyzed algorithms. However, the performance

of the PF algorithm is significantly improved using the empirical bounds, making

it the preferred approach if rigorous performance guarantees are not required,

especially considering its lower space requirement. This significant gap between

the provable and actual performance of product formulas may be closed by proving

stronger error bounds, which we further discuss in Chapter 6 and Chapter 7.

Although higher-order product formulas have been deemphasized in recent

work of quantum chemistry simulation [87, 90], we find that they are surprisingly

efficient for simulating systems of small sizes, as shown in Figure 3.8. The fourth-

order formula with commutator bound gives the best available PF algorithm with
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Figure 3.8: Total gate counts in the Clifford+Rz basis for product formula algorithms
using the minimized (left), commutator (center), and empirical (right) bounds, for system
sizes between 13 and 500.

a rigorous performance guarantee, whereas the sixth-order formula outperforms

the fourth-order formula for systems of about 30 or more qubits using empirical

error bounds. For future work, it could be fruitful to experimentally demonstrate

the utility of these higher-order formulas.

For a system of 50 qubits—which is presumably close to the limits of direct

classical simulation for circuits such as ours—the segmented QSP algorithm is

the best rigorously-analyzed approach, using about 1.8 × 108 cnot gates (over

the set of Clifford+Rz gates) and 2.4 × 109 T gates (over the set of Clifford+T

gates). This is further reduced using the PF algorithm with empirical bounds,

costing about 3× 106 cnots and 1.8× 108 T s (over Clifford+Rz and Clifford+T ,

respectively). For comparison, previous estimates of gate counts for factoring,

discrete logarithms, and quantum chemistry simulations are significantly larger

(Figure 3.9). This suggests that simulation of spin systems is a significantly easier

task for near-term practical quantum computation.
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Chapter 4: Randomized product formulas

In this chapter, we propose a randomized approach to quantum simulation

based on higher-order product formulas. The resulting algorithm is not much

more complicated than a deterministic product formula, but the savings in the

simulation cost can be substantial.

Our analysis uses a mixing lemma of Campbell and Hastings [24, 56] to bound

the diamond norm distance of the actual operator from the ideal evolution. We

motivate this approach in Section 4.1, where we consider the effect of randomizing

how the summands are ordered in the simple case of the first-order formula.

Analyzing the effect of randomization on higher-order formulas is more chal-

lenging. For low-order terms in the Taylor expansion of a product formula, the

majority of the error comes from terms in which no summands are repeated. We

call such contributions nondegenerate terms. In Section 4.2, we give a combina-

torial argument to show that the nondegenerate terms completely cancel in the

randomized product formula.

Section 4.3 presents our main technical result, an upper bound on the error

in a randomized higher-order product-formula simulation. This bound follows by

applying the mixing lemma to combine an error bound for the average evolution

operator with standard product formula error bounds for the error of the individual

terms. Section 4.4 discusses the overall performance of the resulting algorithm
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and compares it with deterministic approaches. Our algorithm always improves

the dependence on the number of Hamiltonian summands and sometimes achieves

better dependence on the evolution time and simulation accuracy as well.

We also show in Section 4.4 that our bound can outperform a previous bound

that takes advantage of the structure of the Hamiltonian. Specifically, we compare

our randomized product formula algorithm with the deterministic algorithm using

the commutator bound of [34] for a one-dimensional Heisenberg model in a random

magnetic field. We find that over a significant range of parameters, the randomized

algorithm has better proven performance, despite using less information about the

form of the Hamiltonian.

In light of the large gap between proven and empirical performance of product

formulas, it is natural to ask whether randomized product formulas still offer an

improvement under the best possible error bounds. To address this question,

we present numerical comparisons of the deterministic and randomized product

formulas in Section 4.5. In particular, we show that the randomized approach

can sometimes outperform the deterministic approach even with respect to their

empirical performance. Finally, we conclude in Section 4.6 with a brief discussion

of the results and some open questions.

This chapter is partly based on the following paper:

[35] Andrew M. Childs, Aaron Ostrander, and Yuan Su, Faster quantum simulation

by randomization, Quantum 3 (2019), 182, arXiv:1805.08385.
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4.1 The power of randomization

To see how randomness can improve a product formula simulation, consider

a simple Hamiltonian expressed as a sum of two operators, H = H1 + H2. The

Taylor expansion of the first-order formula as a function of λ ∈ C is

S1(λ) = exp(λH1) exp(λH2) = I + λ(H1 +H2) +
λ2

2
(H2

1 + 2H1H2 +H2
2 ) +O(λ3),

(4.1)

whereas the Taylor series of the ideal evolution is

V (λ) = exp((H1 +H2)λ) = I+λ(H1 +H2)+
λ2

2
(H2

1 +H1H2 +H2H1 +H2
2 )+O(λ3).

(4.2)

Using the triangle inequality, we can bound the spectral-norm error as

‖V (λ)−S1(λ)‖ ≤ ‖[H1, H2]‖ |λ|
2

2
+O((Λ|λ|)3), (4.3)

where Λ := max{‖H1‖ , ‖H2‖}. Since H1 and H2 need not commute, S1(λ) ap-

proximates V (λ) to first order in λ, as expected.

It is clearly impossible to approximate V (λ) to second order using a product

of only two exponentials of H1 and H2: any such product can have only one of the

products H1H2 and H2H1 in its Taylor expansion, whereas V (λ) contains both of

these products in its second-order term. However, we can obtain both products by
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taking a uniform mixture of S1(λ) and

S rev
1 (λ) := exp(λH2) exp(λH1). (4.4)

Indeed, a simple calculation shows that

∥∥∥∥V (λ)− 1

2

(
S1(λ) + S rev

1 (λ)
)∥∥∥∥ = O

(
(Λ|λ|)3

)
. (4.5)

However,
(
S1(−it)+S rev

1 (−it)
)
/2 is not a unitary operation in general. We could

in principle implement a linear combination of unitaries using the techniques of

[13], but such an approach would use ancillas and could have high cost, especially

when the Hamiltonian contains many summands. A simpler approach is to apply

one of the two operations S1(−it) and S rev
1 (−it) chosen uniformly at random (as

in Algorithm 2 of [113]), thereby implementing a quantum channel that gives a

good approximation to the desired evolution.

We now introduce some notation that is useful to analyze the performance

of randomized product formulas. Let X be a matrix acting on a finite-dimensional

Hilbert space H. We write ‖X‖ for its spectral norm (the largest singular value)

and ‖X‖tr for its trace norm (the sum of its singular values, i.e., its Schatten 1-

norm). Let E : X 7→ E(X) be a linear map on the space of matrices on H. The
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diamond norm of E is [106, 112]

‖E‖� := max{‖(E ⊗ 1H)(Y )‖tr : ‖Y ‖tr ≤ 1}, (4.6)

where the maximization is taken over all matrices Y onH⊗H satisfying ‖Y ‖tr ≤ 1.

The following mixing lemma bounds how well we can approximate a unitary

operation using a random unitary channel. Specifically, the error is linear in the

distance between the target unitary and the average of the random unitaries, and

only quadratic in the distance between the target unitary and each individual

random unitary.

Lemma 21 (Mixing lemma [24, 56]). Let V and {Uj} be unitary matrices, with

associated quantum channels V : ρ 7→ V ρV † and Uj : ρ 7→ UjρU
†
j , and let {pj} be a

collection of positive numbers satisfying
∑

j pj = 1. Suppose that

(i) ‖Uj − V ‖ ≤ a for all j and

(ii)
∥∥(
∑

j pjUj)− V
∥∥ ≤ b.

Then the average evolution E :=
∑

j pjUj satisfies ‖E − V‖� ≤ a2 + 2b.

To simulate the Hamiltonian H = H1 + H2 for time t, we divide the evolu-

tion into r segments of duration t/r and implement each segment via the random

unitary operation

1

2

(
S1(−it/r) + Srev

1 (−it/r)
)

(4.7)
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using one bit of randomness per segment, where S1 and Srev
1 are the quantum

channels associated with S1 and S rev
1 . Invoking the mixing lemma with a =

O
(
(Λt)2/r2

)
and b = O

(
(Λt)3/r3

)
, we find that

∥∥∥∥V(−it/r)− 1

2

(
S1(−it/r) + Srev

1 (−it/r)
)∥∥∥∥
�

= O
(

(Λt)3

r3

)
. (4.8)

Since the diamond norm distance between quantum channels is subadditive under

composition [106, p. 178], the error of the entire simulation is

∥∥∥∥V(−it)− 1

2r
(
S1(−it/r) + Srev

1 (−it/r)
)r∥∥∥∥
�

= O
(

(Λt)3

r2

)
. (4.9)

Thus the randomized first-order formula is effectively a second-order formula.

This approach easily extends to a sum of Γ operators, again effectively making

the first-order formula accurate to second order (cf. [113], which shows the same

result with respect to trace distance of the output state). Keeping track of all

the prefactors, we find the following error bound for the randomized first-order

formula.

Theorem 22 (Randomized first-order error bound). Let {Hγ}Γ
γ=1 be Hermitian

matrices. Let

V (−it) := exp

(
−it

Γ∑
γ=1

Hγ

)
(4.10)

be the evolution induced by the Hamiltonian H =
∑Γ

γ=1Hγ for time t ∈ R. Define
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S1(λ) :=
Γ∏
γ=1

exp(λHγ) and S rev
1 (λ) :=

1∏
γ=Γ

exp(λHγ). (4.11)

Let r ∈ N be a positive integer and Λ := maxγ ‖Hγ‖. Then

∥∥∥∥V(−it)− 1

2r
(
S1(−it/r) + Srev

1 (−it/r)
)r∥∥∥∥
�
≤(Λ|t|Γ)4

r3
exp

(
2

Λ|t|Γ
r

)
+

2(Λ|t|Γ)3

3r2
exp

(
Λ|t|Γ
r

) (4.12)

where, for λ = −it, we associate channels V(λ), S1(λ), and Srev
1 (λ) with the uni-

taries V (λ), S1(λ), and S rev
1 (λ), respectively.

To guarantee that the simulation error is at most ε, we upper bound the right-

hand side of (4.12) by ε and solve for r. Assuming Λ := maxγ ‖Hγ‖ is constant, we

find that it suffices to choose rrand
1 = O

(
(tΓ)1.5/ε0.5

)
, giving a simulation algorithm

with gate complexity grand
1 = O

(
t1.5Γ2.5/ε0.5

)
. In comparison, the gate complexity

in the deterministic case is gdet
1 = O

(
t2Γ3/ε

)
. Therefore, the randomized first-order

product formula algorithm improves over the deterministic algorithm with respect

to all parameters of interest.

It is natural to ask whether a similar randomization strategy can improve

higher-order product formulas (as defined in (2.14)). While it turns out that ran-

domization does not improve the order of the formula, it does result in a significant

reduction of the error, and in particular, lowers the dependence on the number of

summands in the Hamiltonian. The more complicated structure of higher-order
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formulas makes this analysis more involved than in the first-order case (in particu-

lar, we randomly permute the Γ summands instead of simply choosing whether or

not to reverse them, so we use Θ(Γ log Γ) bits of randomness per segment instead

of only a single bit). As aforementioned, our proof is based on a randomization

lemma (established in the next section) that evaluates the dominant contribution

to the Taylor series of the randomized product formula in closed form.

4.2 Randomization lemma

In this section, we study the Taylor expansion of the average evolution op-

erator obtained by randomizing how the summands of a Hamiltonian are ordered.

We consider a formula of the form

exp(q1λHπ1(1)) exp(q1λHπ1(2)) · · · exp(q1λHπ1(Γ))

exp(q2λHπ2(1)) exp(q2λHπ2(2)) · · · exp(q2λHπ2(Γ))

· · ·

exp(qκλHπκ(1)) exp(qκλHπκ(2)) · · · exp(qκλHπκ(Γ))

(4.13)

for real numbers q1, . . . , qκ ∈ R, a complex number λ ∈ C, Hermitian matri-

ces H1, . . . , HΓ, and permutations π1, . . . , πκ ∈ Sym(Γ). By choosing appropriate

values of q1, . . . , qκ ∈ R and ordering H1, . . . , HΓ in both forward and backward

directions, we can write any product formula S2k(λ) in this form.
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We now permute the summands to get the average evolution

1

Γ!

∑
σ∈Sym(Γ)

exp(q1λHσ(π1(1))) exp(q1λHσ(π1(2))) · · · exp(q1λHσ(π1(Γ)))

exp(q2λHσ(π2(1))) exp(q2λHσ(π2(2))) · · · exp(q2λHσ(π2(Γ)))

· · ·

exp(qκλHσ(πκ(1))) exp(qκλHσ(πκ(2))) · · · exp(qκλHσ(πκ(Γ))).

(4.14)

In its Taylor expansion, we call the sum of the form

∑
m1,...,ms

pairwise different

αm1...msλ
sHm1 · · ·Hms , (4.15)

with coefficients αm1...ms ∈ C, the sth-order nondegenerate term. This term con-

tributes Θ(Γs) to the sth-order error, whereas the remaining (degenerate) terms

only contribute O(Γs−1).

The following lemma shows how to compute the sth-order nondegenerate

term for an arbitrary average evolution.

Lemma 23 (Randomization lemma). Define an average evolution operator as in

(4.14) and let s ≤ Γ be a positive integer. The sth-order nondegenerate term of

this operator is

[(q1 + · · ·+ qκ)λ]s

s!

∑
m1,...,ms

pairwise different

Hm1 · · ·Hms . (4.16)
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Proof. We take all possible products of s terms from the Taylor expansion of (4.14).

Observe that the exponentials in (4.14) are organized in an array with κ rows and

Γ columns. We use κ1, . . . , κs and l1, . . . , ls to label the row and column indices,

respectively, of the exponentials from which the terms are chosen. To avoid double

counting, we take terms with smaller row indices first (i.e., κ1 ≤ · · · ≤ κs). Within

each row, we take terms with smaller column indices first. To get the sth-order

nondegenerate term, we require that πκ1(l1), . . . , πκs(ls) are pairwise different. The

sth-order nondegenerate term of (4.14) can then be expressed as

1

Γ!

∑
σ∈Sym(Γ)

∑
κ1≤···≤κs

∑
πκ1 (l1),...,πκs (ls)
pairwise different

(qκ1λHσ(πκ1 (l1))) · · · (qκsλHσ(πκs (ls))). (4.17)

A direct calculation shows that

1

Γ!

∑
σ∈Sym(Γ)

∑
κ1≤···≤κs

∑
πκ1 (l1),...,πκs (ls)
pairwise different

(qκ1λHσ(πκ1 (l1))) · · · (qκsλHσ(πκs (ls)))

=
1

Γ!

∑
σ∈Sym(Γ)

∑
κ1≤···≤κs

∑
πκ1 (l1),...,πκs (ls)
pairwise different

∑
m1=σ(πκ1 (l1)),...,
ms=σ(πκs (ls))

(qκ1λHm1) · · · (qκsλHms)

=
1

Γ!

∑
m1,...,ms

pairwise different

∑
κ1≤···≤κs

∑
πκ1 (l1),...,πκs (ls)
pairwise different

∑
σ∈Sym(Γ):

σ(πκ1 (l1))=m1,...,
σ(πκs (ls))=ms

(qκ1λHm1) · · · (qκsλHms)

=
(Γ− s)!

Γ!

∑
m1,...,ms

pairwise different

[ ∑
κ1≤···≤κs

∑
πκ1 (l1),...,πκs (ls)
pairwise different

(qκ1λ) · · · (qκsλ)

]
Hm1 · · ·Hms .

(4.18)

Now observe that the summand (qκ1λ) · · · (qκsλ) depends only on the row indices.
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Letting r1, . . . , rκ denote the number of terms picked from row 1, . . . , κ, respec-

tively, we can re-express this summand as (q1λ)r1 · · · (qκλ)rκ . We determine the

coefficient of this term as follows. The number of ways of choosing l1, . . . , ls pair-

wise different is Γ(Γ − 1) · · · (Γ − s + 1). However, when we apply permutations

πκ1 , . . . , πκs , we may double count some terms. In particular, if κi = κi+1, we are

to pick terms from the same row κi and we must have li < li+1. This implies that

the ordering of πκi(li) and πκi+1
(li+1) is uniquely determined. Altogether, we see

that we have overcounted by a factor of (r1!) · · · (rκ!). Therefore, we have

∑
κ1≤···≤κs

∑
πκ1 (l1),...,πκs (ls)
pairwise different

(qκ1λ) · · · (qκsλ) =
∑

r1,...,rκ:
r1+···+rκ=s

Γ(Γ− 1) · · · (Γ− s+ 1)

(r1!) · · · (rκ!)
(q1λ)r1 · · · (qκλ)rκ

= Γ(Γ− 1) · · · (Γ− s+ 1)
[(q1 + · · ·+ qκ)λ]s

s!
,

(4.19)
where the last equality follows by the multinomial theorem.

Substituting (4.19) into (4.18) completes the proof.

As an immediate corollary, we compute the sth-order nondegenerate term of

the average evolution operator 1
Γ!

∑
σ∈Sym(Γ) S σ

2k(λ).

Corollary 24. Let {Hγ}Γ
γ=1 be Hermitian operators; let λ ∈ C, k, s ∈ N, and s ≤

Γ. Then the sth-order nondegenerate term of average evolution 1
Γ!

∑
σ∈Sym(Γ) S σ

2k(λ),
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with S σ
2k(λ) being the permuted (2k)th-order Suzuki formula

S σ
2 (λ) :=

Γ∏
γ=1

exp

(
λ

2
Hσ(γ)

) 1∏
γ=Γ

exp

(
λ

2
Hσ(γ)

)

S σ
2k(λ) := [S σ

2k−2(pkλ)]2S σ
2k−2((1− 4pk)λ)[S σ

2k−2(pkλ)]2.

(4.20)

is

λs

s!

∑
m1,...,ms

pairwise different

Hm1 · · ·Hms . (4.21)

Proof. The fact that S σ
2k(λ) is at least first-order accurate implies that q1 + · · ·+

qκ = 1 in (4.16).

Observe that the sth-order nondegenerate term of V (λ) = exp
(
λ
∑Γ

γ=1 Hγ

)
is also given by (4.21). Therefore, the sth-order nondegenerate term completely

cancels in

V (λ)− 1

Γ!

∑
σ∈Sym(Γ)

S σ
2k(λ). (4.22)

4.3 Error bounds

In this section we establish our main result, an upper bound on the error

of a randomized product formula simulation. To apply the mixing lemma, we

need to bound the error of the average evolution. We now present an error bound

for an arbitrary fixed-order term in the Taylor expansion of the average evolution

operator.
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Lemma 25. Let {Hγ}Γ
γ=1 be Hermitian operators; let λ ∈ C and k, s ∈ N. Define

the target evolution V (λ) as

V (λ) := exp

(
λ

Γ∑
γ=1

Hγ

)
(4.23)

and define the permuted (2k)th-order formula S σ
2k(λ) as in (4.20). Then the sth-

order error of the approximation

V (λ)− 1

Γ!

∑
σ∈Sym(Γ)

S σ
2k(λ) (4.24)

is at most 
0 0 ≤ s ≤ 2k,

(2·5k−1Λ|λ|)s
(s−2)!

Γs−1 s > 2k,

(4.25)

where Λ := maxγ ‖Hγ‖.

The proof of this error bound uses the following estimate of a fixed-order

degenerate term in the average evolution operator.

Lemma 26. Let {Hγ}Γ
γ=1 be Hermitian operators with Λ := maxγ ‖Hγ‖; let q1, . . . , qκ

∈ R with maxk |qk| ≤ 1; and let s ≤ Γ be a positive integer. Then the norm of the

sth-order degenerate term of the ideal evolution operator V (λ) as in (4.23) is at

most

(Λ|λ|)s

s!

[
Γs − Γ(Γ− 1) · · · (Γ− s+ 1)

]
(4.26)
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and the norm of the sth-order degenerate term of the average evolution operator

as in (4.14) is at most

(κΛ|λ|)s

s!

[
Γs − Γ(Γ− 1) · · · (Γ− s+ 1)

]
. (4.27)

Proof. The sth-order term of V (λ) is

(
λ
∑Γ

γ=1Hγ

)s
s!

=
λs

s!

∑
m1,...,ms

Hm1 · · ·Hms (4.28)

and its nondegenerate term is

λs

s!

∑
m1,...,ms

pairwise different

Hm1 · · ·Hms . (4.29)

We use the following strategy to bound the norms of these terms: (i) bound the

norm of a sum of terms by summing the norms of each term; (ii) bound the norm of

a product of terms by multiplying the norms of each term; (iii) bound the norm of

each summand by Λ; and (iv) replace λ by |λ|. Applying this strategy, we find that

the norm of the sth-order term is at most (ΓΛ|λ|)s/s!, where the nondegenerate

term contributes precisely Γ(Γ− 1) · · · (Γ− s+ 1)(Λ|λ|)s/s!. Taking the difference

gives the desired bound (4.26).

According to Lemma 23, the sth-order nondegenerate term of the average
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evolution is

[(q1 + · · ·+ qκ)λ]s

s!

∑
m1,...,ms

pairwise different

Hm1 · · ·Hms . (4.30)

Following the same strategy as for V (λ) and also upper bounding the norm of each

qk by 1 as part of step (iv), we find that the norm of this term is at most

(κΛ|λ|)s

s!
Γ(Γ− 1) · · · (Γ− s+ 1). (4.31)

It remains to find an upper bound for the entire sth-order term of the average

evolution. To this end, we start with the average evolution (4.14) and apply the

following strategy: (i′) replace each summand of the Hamiltonian by Λ; (ii′) replace

each qk by 1 and each λ by |λ|; and (iii′) expand all exponentials into their Taylor

series and extract the sth-order term. In other words, we extract the sth-order

term of
∑

σ∈Sym(Γ) exp(κΓΛ|λ|)/Γ! to get

(κΓΛ|λ|)s

s!
. (4.32)

The equivalence of strategies (i)–(iv) and (i′)–(iii′) can be seen from [34, Eq. (57)].

Finally, taking the difference between (4.32) and (4.31) gives the desired bound

(4.27).

Proof of Lemma 25. We first prove a stronger bound, namely that the sth-order
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error is at most



0 0 ≤ s ≤ 2k,

2 (2·5k−1Λ|λ|)s
s!

[Γs − Γ(Γ− 1) · · · (Γ− s+ 1)] 2k < s ≤ Γ,

2 (2·5k−1Λ|λ|)s
s!

Γs s > Γ.

(4.33)

The first and third cases in this expression are straightforward. The formula S σ
2k is

exact for terms with order 0 ≤ s ≤ 2k (this is what it means for the formula to have

order 2k), so the error is zero in this case. When s > Γ, the randomization lemma

is not applicable and the error can be bounded as in [34, Proof of Proposition F.3].

To handle the remaining case 2k < s ≤ Γ, we apply Lemma 26 with κ =

2 · 5k−1. This choice of κ follows from the definition of the (2k)th-order formula

(2.14). The norm of the sth-order degenerate terms can be upper bounded by

(Λ|λ|)s

s!

[
Γs−Γ(Γ−1) · · · (Γ−s+1)

]
+

(2 · 5k−1Λ|λ|)s

s!

[
Γs−Γ(Γ−1) · · · (Γ−s+1)

]
.

(4.34)

According to Corollary 24, the sth-order nondegenerate term of (4.24) cancels,

which proves (4.33) for 2k < s ≤ Γ.

To finish the proof, we need a unified error expression for order s > 2k.
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When 2k < s ≤ Γ, we have

Γs − Γ(Γ− 1) · · · (Γ− s+ 1)

= #
{

(l1, . . . , ls) ∈ [Γ]s
}
−#

{
(l1, . . . , ls) ∈ [Γ]s : ∀ι, γ, lι 6= lγ

}
= #

{
(l1, . . . , ls) ∈ [Γ]s

}
−#

⋂
ι<γ

{
(l1, . . . , ls) ∈ [Γ]s : lι 6= lγ

}
= #

⋃
ι<γ

{
(l1, . . . , ls) ∈ [Γ]s : lι = lγ

}
≤
(
s

2

)
Γs−1,

(4.35)

with #{·} denoting the size of a set and [Γ] := {1, . . . ,Γ}, where the inequality

follows from the union bound. Therefore, we have

2
(2 · 5k−1Λ|λ|)s

s!
[Γs − Γ(Γ− 1) · · · (Γ− s+ 1)] ≤ (2 · 5k−1Λ|λ|)s

s!
s(s− 1)Γs−1

=
(2 · 5k−1Λ|λ|)s

(s− 2)!
Γs−1.

(4.36)

If s > Γ ∈ N, we have s(s− 1) ≥ (Γ + 1)Γ ≥ 2Γ and

2
(2 · 5k−1Λ|λ|)s

s!
Γs ≤ (2 · 5k−1Λ|λ|)s

(s− 2)!
Γs−1. (4.37)

This completes the proof.

We also use the following standard tail bound on the exponential function

[34, Lemma F.2].
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Lemma 27. For any x ∈ C and κ ∈ N, we have

∣∣∣∣ ∞∑
s=κ

xs

s!

∣∣∣∣ ≤ |x|κκ!
exp(|x|). (4.38)

We now establish the main theorem, which upper bounds the error of a

higher-order randomized product formula.

Theorem 28 (Randomized higher-order error bound). Let {Hγ}Γ
γ=1 be Hermitian

matrices. Let

V (−it) := exp

(
−it

Γ∑
γ=1

Hγ

)
(4.39)

be the evolution induced by the Hamiltonian H =
∑Γ

γ=1 Hγ for time t. For any

permutation σ ∈ Sym(Γ), define the permuted (2k)th-order formula recursively by

S σ
2 (λ) :=

Γ∏
γ=1

exp

(
λ

2
Hσ(γ)

) 1∏
γ=Γ

exp

(
λ

2
Hσ(γ)

)

S σ
2k(λ) := [S σ

2k−2(pkλ)]2S σ
2k−2((1− 4pk)λ)[S σ

2k−2(pkλ)]2,

(4.40)

with pk := 1/(4− 41/(2k−1)) for k > 1. Let r ∈ N and Λ := maxγ ‖Hγ‖. Then

∥∥∥∥∥V(−it)−
(

1

Γ!

∑
σ∈Sym(()Γ)

Sσ2k(−it/r)
)r∥∥∥∥∥

�

≤ 4
(2 · 5k−1Λ|t|Γ)4k+2(

(2k + 1)!
)2
r4k+1

exp

(
4 · 5k−1 Λ|t|Γ

r

)

+ 2
(2 · 5k−1Λ|t|)2k+1Γ2k

(2k − 1)!r2k
exp

(
2 · 5k−1 Λ|t|Γ

r

)
(4.41)
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where, for λ = −it, we associate quantum channels V(λ) and Sσ2k(λ) with the

unitaries V (λ) and S σ
2k(λ), respectively.

Proof. We first prove that

∥∥∥∥∥∥V(λ)− 1

Γ!

∑
σ∈Sym(Γ)

Sσ2k(λ)

∥∥∥∥∥∥
�

≤ 4
(2 · 5k−1Λ|λ|Γ)4k+2(

(2k + 1)!
)2 exp

(
4 · 5k−1Λ|λ|Γ

)
+ 2

(2 · 5k−1Λ|λ|)2k+1Γ2k

(2k − 1)!
exp
(
2 · 5k−1Λ|λ|Γ

)
.

(4.42)

To this end, note that the sth-order error of V (λ)−S σ
2k(λ) is at most


0 0 ≤ s ≤ 2k,

2(2·5k−1Λ|λ|)s
s!

Γs s > 2k

(4.43)

(as before, this follows as in [34, Proof of Proposition F.3]). Thus Lemma 27 gives

‖V (λ)−S σ
2k(λ)‖ ≤ 2

(2 · 5k−1Λ|λ|Γ)2k+1

(2k + 1)!
exp
(
2 · 5k−1Λ|λ|Γ

)
. (4.44)

On the other hand, Lemma 25 implies that the sth-order error of V (λ)

− 1
Γ!

∑
σ∈Sym(Γ) S σ

2k(λ) is at most


0 0 ≤ s ≤ 2k,

(2·5k−1Λ|λ|)s
(s−2)!

Γs−1 s > 2k,

(4.45)
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so again Lemma 27 gives

∥∥∥∥∥∥V (λ)− 1

Γ!

∑
σ∈Sym(Γ)

S σ
2k(λ)

∥∥∥∥∥∥ ≤ (2 · 5k−1Λ|λ|)2k+1Γ2k

(2k − 1)!
exp
(
2 · 5k−1Λ|λ|Γ

)
. (4.46)

Equation (4.42) now follows from Lemma 21 by setting

a = 2
(2 · 5k−1Λ|λ|Γ)2k+1

(2k + 1)!
exp
(
2 · 5k−1Λ|λ|Γ

)
,

b =
(2 · 5k−1Λ|λ|)2k+1Γ2k

(2k − 1)!
exp
(
2 · 5k−1Λ|λ|Γ

)
.

(4.47)

To simulate the evolution for time t, we divide it into r segments. The

error within each segment is obtained from (4.42) by setting λ = −it/r. Then

subadditivity of the diamond norm distance gives

∥∥∥∥∥∥V(−it)−
(

1

Γ!

∑
σ∈Sym(Γ)

Sσ2k
(
− it/r

))r∥∥∥∥∥∥
�

≤ r

∥∥∥∥∥∥V(−it/r)− 1

Γ!

∑
σ∈Sym(Γ)

Sσ2k
(
− it/r

)∥∥∥∥∥∥
�

,

(4.48)
which completes the proof.

4.4 Algorithm performance and comparisons

We now analyze the complexity of our randomized product formula algo-

rithm. Assume that k ∈ N is fixed, Λ = O(1) is constant, and r > tΓ. By

Theorem 28, the asymptotic error of the (2k)th-order randomized product formula
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is

∥∥∥∥∥∥V(−it)−
(

1

Γ!

∑
σ∈Sym(Γ)

Sσ2k
(
− it/r

))r∥∥∥∥∥∥
�

≤ O
(

(tΓ)4k+2

r4k+1
+
t2k+1Γ2k

r2k

)
. (4.49)

To guarantee that the simulation error is at most ε, we upper bound the right-hand

side of (4.49) by ε and solve for r. We find that it suffices to use

rrand
2k = max

{
O
(

(tΓ)
4k+2
4k+1

ε
1

4k+1

)
,O
(
t

2k+1
2k Γ

ε
1
2k

)}
= max

{
O
(
tΓ

(
tΓ

ε

) 1
4k+1
)
,O
(
tΓ

(
t

ε

) 1
2k
)} (4.50)

steps, giving a simulation algorithm with

grand
2k = O(Γrrand

2k ) = max

{
O
(
tΓ2

(
tΓ

ε

) 1
4k+1
)
,O
(
tΓ2

(
t

ε

) 1
2k
)}

(4.51)

elementary gates.

For comparison, the error in the (2k)th-order deterministic formula algorithm

is at most [34, Proposition F.4]

∥∥V (−it)−
[
S2k(−it/r)

]r∥∥ ≤ O((tΓ)2k+1

r2k

)
. (4.52)

While this bound quantifies the simulation error in terms of the spectral-norm

distance, it can easily be adapted to the diamond-norm distance using either

Lemma 21 or [15, Lemma 7]. This translation introduces only constant-factor
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overhead, so we have

∥∥V(−it)−
[
S2k(−it/r)

]r∥∥
� ≤ O

(
(tΓ)2k+1

r2k

)
. (4.53)

Therefore, the number of segments that suffice to ensure error at most ε satisfies

rdet
2k = O

(
tΓ

(
tΓ

ε

) 1
2k
)
, (4.54)

giving an algorithm with

gdet
2k = O(Γrdet

2k ) = O
(
tΓ2

(
tΓ

ε

) 1
2k
)

(4.55)

elementary gates. Comparing to (4.51), we see that the randomized product for-

mula strictly improves the complexity as a function of Γ. Indeed, the (2k)th-order

randomized approach either provides an improvement with respect to all param-

eters of interest over the (2k)th order deterministic approach (if the first term of

(4.51) obtains the maximum), or has better dependence on the number of terms in

the Hamiltonian than any deterministic formula (if the second term dominates).

We can also compare our result to the commutator bound of [34], which

depends on the specific structure of the Hamiltonian. For concreteness, we consider

a one-dimensional nearest-neighbor Heisenberg model with a random magnetic
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field, as studied in [34]. Specifically, let

H =
n∑
j=1

(~Σj · ~Σj+1 + hjZj) (4.56)

with periodic boundary conditions (i.e., ~Σn+1 = ~Σ1), and hj ∈ [−h, h] chosen

uniformly at random, where ~Σj = (Xj, Yj, Zj) denotes a vector of Pauli x, y, and z

matrices on qubit j. The (2k)th-order deterministic formula with the commutator

bound has error at most [34, Eq. (146)]

∥∥V(−it)−
[
S2k

(
− it/r

)]r∥∥
� ≤ O

(
(tΓ)2k+2

r2k+1
+
t2k+1Γ2k

r2k

)
, (4.57)

where we have again used Lemma 21 (or [15, Lemma 7]) to relate the spectral-norm

distance to the diamond-norm distance. To guarantee that the simulation error is

at most ε, it suffices to choose

rcomm
2k = max

{
O
(

(tΓ)
2k+2
2k+1

ε
1

2k+1

)
,O
(
t

2k+1
2k Γ

ε
1
2k

)}
= max

{
O
(
tΓ

(
tΓ

ε

) 1
2k+1
)
,O
(
tΓ

(
t

ε

) 1
2k
)} (4.58)

segments, giving an algorithm with

gcomm
2k = O(Γrcomm

2k ) = max

{
O
(
tΓ2

(
tΓ

ε

) 1
2k+1
)
,O
(
tΓ2

(
t

ε

) 1
2k
)}

(4.59)

elementary gates. Comparing to the corresponding bound (4.51) for randomized
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product formulas, we see that the only difference is that the exponent 1/(2k + 1)

for the commutator bound becomes 1/(4k + 1) in the randomized case. Thus

the randomized approach can provide a slightly faster algorithm despite using less

information about the structure of the Hamiltonian. More specifically, the rela-

tionship between t and Γ determines whether the randomized approach offers an

improvement. If t = Ω(Γ2k), then the second term of (4.59) achieves the maxi-

mum, and both approaches have asymptotic complexity O
(
tΓ2
(
t
ε

) 1
2k
)
. However, if

t = o(Γ2k), then the randomized formula is advantageous.

4.5 Empirical performance

While randomization provides a useful theoretical handle for establishing

better provable bounds, those bounds may still be far from tight. As aforemen-

tioned, our original motivation for considering randomization was the observation

that product formulas appear to perform dramatically better in practice than the

best available proven bounds would suggest. To investigate the empirical behavior

of product formulas, we numerically evaluate their performance for simulations of

the Heisenberg model (4.56) with t = n and h = 1, targeting error ε = 10−3, as

previously considered in [34]. We collect data for the first-, fourth-, and sixth-order

formulas as the latter two orders have the best performance in practice for small n

and the first-order formula offers a qualitatively better theoretical improvement.

For the deterministic formula, we order the operators of the Hamiltonian in
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the same way as [34], namely

X1X2, . . . , Xn−1Xn, XnX1, Y1Y2, . . . , Yn−1Yn, YnY1, Z1Z2, . . . , Zn−1Zn, ZnZ1,

Z1, . . . , Zn. (4.60)

We compute the error in terms of the spectral-norm distance and convert it to the

diamond-norm distance using Lemma 7 of [15] (i.e., we multiply by 2). To analyze

the randomized formula, we would like to numerically evaluate the diamond-norm

distances ∥∥∥∥V(−it)− 1

2r
(
S1(−it/r) + Srev

1 (−it/r)
)r∥∥∥∥
�

(4.61)

and ∥∥∥∥∥∥V(−it)−
(

1

Γ!

∑
σ∈Sym(Γ)

Sσ2k
(
−it/r

))r∥∥∥∥∥∥
�

. (4.62)

While the diamond norm can be computed using a semidefinite program [105],

direct computation is prohibitive as the channel contains (Γ!)r Kraus operators.

Instead, we use Lemma 21 to estimate the error. We randomly choose the ordering

of the summands in each of the r segments, exponentiate each individual operator,

and construct a unitary operator by concatenating the exponentials according to

the given product formula. We follow this procedure to obtain a Monte Carlo
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Figure 4.1: Comparison of the values of r between deterministic and randomized product
formulas. Error bars are omitted when they are negligibly small on the plot. Straight
lines show power-law fits to the data.

estimate of the average error

∥∥∥∥∥V (−it)− 1

µ

µ∑
m=1

S
σm,r
2k

(
−it/r

)
· · ·S σm,1

2k

(
−it/r

)∥∥∥∥∥ (4.63)

for the (2k)th-order formula and similarly for the first-order case. Here, µ is the

number of samples in the Monte Carlo estimation, which can be increased to get

more accurate estimate. In practice, we find that it suffices to take only three

samples, as the standard deviations are already negligibly small (about 10−5). We

then invoke Lemma 21 to bound the diamond-norm error in (4.62). To the extent

that the bound of Lemma 21 is loose, we expect the empirical performance to be

better in practice.

Using five randomly generated instances for each value of n, we apply binary

search to determine the smallest number of segments r that suffices to give error

at most 10−3. Figure 4.1 shows the resulting data for the first-, fourth-, and sixth-

order formulas, which are well-approximated by power laws. Fitting the data, we
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estimate that

rremp
1 = 300.0n1.806 rremp

4 = 5.458n1.439 rremp
6 = 2.804n1.152 (4.64)

segments should suffice to give error at most 10−3. We thus observe that the

empirical complexity of the randomized algorithm is still significantly better than

the provable performance

rrand
1 = O(n3) rrand

4 = O(n2.25) rrand
6 = O(n2.17). (4.65)

For comparison, analogous empirical fits for deterministic formulas give the com-

parable values

rdemp
1 = 4143n2.066 rdemp

4 = 5.821n1.471 rdemp
6 = 2.719n1.160, (4.66)

(cf. [34, Eq. (147)], but note that we have generated new data using [15, Lemma

7] to bound the diamond-norm distance in terms of the spectral-norm distance),

whereas the rigorous commutator bound gives the larger exponents [34]

rcomm
1 = O(n3) rcomm

4 = O(n2.4) rcomm
6 = O(n2.28). (4.67)

We see that the randomized bound offers significantly better empirical perfor-

mance at first order, consistent with the observation that randomization improves
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Figure 4.2: Comparison of the total number of elementary exponentials for product
formula simulations of the Heisenberg model using deterministic and randomized prod-
uct formulas of fourth and sixth order with both rigorous and empirical error bounds.
Note that since the empirical performance of deterministic and randomized sixth-order
product formulas is almost the same, the latter data points are obscured by the former.

the order of approximation in this case. The fourth-order formula slightly improves

both the exponent and the constant factor. While this improvement is small, it

is nevertheless notable since it involves only a minor change to the algorithm. At

sixth order we see negligible improvement. Since the proven bounds give less im-

provement with each successive order, it is perhaps not surprising to see that the

empirical performance shows similar behavior.

To illustrate the effect of using different formulas and different error bounds
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to simulate larger systems, Figure 4.2 compares the cost of simulating our model

system for sizes up to n = 100 with deterministic and randomized formulas of

orders 4 and 6, using both proven error bounds and the above empirical estimates.

(We omit the first-order formula since it is not competitive even at such small sizes.)

We give rigorous bounds for deterministic formulas using the minimized bound of

[34], and for fourth order we also show the result of using the commutator bound.

We see that randomization gives a significant improvement over the deterministic

formula using the minimized bound, although the commutator bound outperforms

the randomized bound at the system sizes shown here. For sufficiently large n, the

randomized bound gives lower complexity, but this requires a fairly large n since

the difference in exponents is small and the commutator bound achieves a favorable

constant prefactor. Empirical estimates of the error improve the performance by

several orders of magnitude, with randomization giving a small advantage for the

fourth-order formula as indicated above. However, for systems of size larger than

about n = 25, the sixth-order bound prevails, and in this case randomization no

longer offers a significant advantage.

4.6 Discussion

We have shown that randomization can be used to establish better perfor-

mance for quantum simulation algorithms based on product formulas. By simply

randomizing how the summands in the Hamiltonian are ordered, we introduce
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terms in the average evolution that could not appear in any deterministic product

formula approximation of the same order, and thereby give a more efficient algo-

rithm. Indeed, this approach can outperform the commutator bound even though

that method uses more information about the structure of the Hamiltonian. A ran-

domized product formula simulation algorithm is not much more complicated than

the corresponding deterministic formula, using only O(Γ log Γ) bits of randomness

per segment and no ancilla qubits. Furthermore, we showed that randomization

can even offer improved empirical performance in some cases.

While randomization has allowed us to make some progress on the challenge

of proving better bounds on the performance of product formulas, our strengthened

bounds remain far from the apparent empirical performance. We will address this

in Chapter 6 and Chapter 7 by developing a general theory for analyzing the error

of product formulas. More generally, it may be of interest to investigate other

scenarios in which random choices can be used to improve the analysis of quantum

simulation [16, 25] and other quantum algorithms.
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Chapter 5: Randomized time-dependent Hamiltonian simulation

In this chapter, we consider time-dependent Hamiltonian simulation and de-

velop a randomized approach with L1-norm scaling, strictly faster than existing

quantum simulation algorithms. We give motivations to studying L1-norm scaled

algorithms and discuss the limitations of existing approaches in Section 5.1. In

Section 5.2, we introduce a classical sampling protocol, which we call “continuous

qDRIFT”, to achieve the L1-norm scaling for time-dependent Hamiltonian simula-

tion. For the purpose of presentation, we first assume that the Hamiltonian at each

time can be efficiently exponentiated and later relax this assumption in Section 5.3

by proving a universal property of our protocol. We conclude in Section 5.4 with

a brief discussion of the results and some open questions.

This chapter is partly based on the following paper:

[16] Dominic W. Berry, Andrew M. Childs, Yuan Su, Xin Wang, and Nathan

Wiebe, Time-dependent Hamiltonian simulation with L1-norm scaling, Quan-

tum 4 (2020), 254, arXiv:1906.07115.

5.1 L1-norm scaling

We develop algorithms for time-dependent Hamiltonian simulation based on

a simple intuition: the difficulty of simulating a quantum system should depend

on the integrated norm of the Hamiltonian. To elaborate, first consider the special
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case of simulating a time-independent Hamiltonian. The complexity of such a

simulation depends on t ‖H‖ [31], where ‖·‖ is a matrix norm that quantifies the

size of the Hamiltonian. It is common to express the complexity in terms of the

spectral norm, which quantifies the maximum energy of H.

In the general case where the Hamiltonian H (τ) is time dependent, we

expect a quantum simulation algorithm to depend on the Hamiltonian locally in

time, and therefore to have complexity that scales with the integrated spectral

norm
∫ t

0
dτ ‖H (τ)‖. This is the L1 norm of ‖H (τ)‖ when viewed as a function

of τ , so we say such an algorithm has L1-norm scaling. Surprisingly, existing

simulation algorithms fail to achieve this complexity; rather, their gate complexity

scales with the worst-case cost tmaxτ∈[0,t] ‖H (τ)‖. It is therefore reasonable to

question whether our intuition is correct, or if there exist faster time-dependent

Hamiltonian simulation algorithms that can exploit this intuition.1

We answer this question by providing a faster quantum algorithm for time-

dependent Hamiltonian simulation based on randomization. This algorithm has

gate complexity that scales with the L1 norm
∫ t

0
dτ ‖H (τ)‖, in contrast to the best

previous scaling of tmaxτ∈[0,t] ‖H (τ)‖. As the norm inequality
∫ t

0
dτ ‖H (τ)‖ ≤

tmaxτ∈[0,t] ‖H (τ)‖ always holds but is not saturated in general, this algorithm

provides strict speedups over existing algorithms.

1For the Dyson-series approach, Low and Wiebe claimed that the worst-case scaling may be
avoided by a proper segmentation of the time interval [76, Section VI. A]. However, it is unclear
how their analysis can be formalized to give an algorithm with complexity that scales with the
L1 norm. Instead, we propose a rescaling principle for the Schrödinger equation in [16, Section
4] and develop a rescaled Dyson-series algorithm with L1-norm scaling.
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5.2 A classical sampler of time-dependent Hamiltonians

Let H (τ) be a time-dependent Hamiltonian defined for 0 ≤ τ ≤ t. We as-

sume that H (τ) is nonzero everywhere and is continuous except on a finite number

of points. We further suppose that each H (τ) can be directly exponentiated on a

quantum computer. We denote the ideal evolution under H (τ) for time τ ∈ [0, t]

by E(t, 0) := expT
(
− i
∫ t

0
dτ H (τ)

)
and represent the corresponding quantum

channel as

E(t, 0)(ρ) = E(t, 0)ρE†(t, 0) = expT

(
−i
∫ t

0

dτ H (τ)

)
ρ exp†T

(
−i
∫ t

0

dτ H (τ)

)
.

(5.1)

The high-level idea of the sampling algorithm is to approximate the ideal channel

by a mixed unitary channel

U(t, 0)(ρ) :=

∫ t

0

dτ p(τ)e−i
H (τ)
p(τ) ρei

H (τ)
p(τ) , (5.2)

where p(τ) is a probability density function defined for 0 ≤ τ ≤ t. This channel

can be realized by a classical sampling protocol. With a proper choice of p(τ),

this channel approximates the ideal channel and can thus be used for quantum

simulation.

We begin with a full definition of U(t, 0). Inspired by [25], we choose p(τ) to
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be biased toward those τ with large ‖H (τ)‖. A natural choice is

p(τ) :=
‖H (τ)‖
‖H ‖1

, (5.3)

where

‖H ‖1 :=

∫ t

0

dτ ‖H (τ)‖ (5.4)

is the L1 norm of H (τ). Note that U(t, 0) is a valid quantum channel (in par-

ticular, p(τ) can never be zero). Furthermore, it can be implemented with unit

cost: for any input state ρ, we randomly sample a value τ according to p(τ) and

perform e−iH (τ)/p(τ). Note also that H (τ)/p(τ) in the exponential implicitly de-

pends on t. Indeed, ‖H ‖1 includes an integral over time, so p(τ) decreases with

the total evolution time t. We call this classical sampling protocol and the channel

it implements “continuous qDRIFT”.

This protocol assumes that the spectral norm ‖H (τ)‖ is known a priori and

that we can efficiently sample from the distribution p(τ). In practice, it is often

easier to obtain a spectral-norm upper bound Λ(τ) ≥ ‖H (τ)‖. Such an upper

bound can also be used to implement continuous qDRIFT, provided that it has

only finitely many discontinuities. Specifically, we define

pΛ(τ) :=
Λ(τ)

‖Λ‖1

(5.5)

with ‖Λ‖1 :=
∫ t

0
dτΛ(τ), so pΛ(τ) is a probability density function. Using pΛ to
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implement continuous qDRIFT, we obtain the channel

UΛ(t, 0)(ρ) :=

∫ t

0

dτ pΛ(τ)e
−iH (τ)

pΛ(τ) ρe
i

H (τ)
pΛ(τ) , (5.6)

whose analysis is similar to that presented below. For readability, we assume that

we can efficiently sample from p(τ) = ‖H (τ)‖ / ‖H ‖1 and we analyze U(t, 0).

We show that continuous qDRIFT approximates the ideal channel with error

that depends on the L1-norm.

Theorem 29 (L1-norm error bound for continuous qDRIFT, short-time version).

Let H (τ) be a time-dependent Hamiltonian defined for 0 ≤ τ ≤ t; assume it is

continuous except on a finite number of points and nonzero everywhere. Define

E(t, 0) = expT
(
−i
∫ t

0
dτH (τ)

)
and let E(t, 0)(·) = E(t, 0)(·)E†(t, 0) be the corre-

sponding quantum channel. Let U(t, 0) be the continuous qDRIFT channel

U(t, 0)(ρ) =

∫ t

0

dτ p(τ)e−i
H (τ)
p(τ) ρei

H (τ)
p(τ) , (5.7)

where p(τ) = ‖H (τ)‖ / ‖H ‖1. Then

‖E(t, 0)− U(t, 0)‖� ≤ 4 ‖H ‖2
1 . (5.8)

To prove this theorem, we need a formula that computes the rate at which

the evolution operator changes when the Hamiltonian is scaled. To illustrate the
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idea, consider the degenerate case where the Hamiltonian H is time independent.

Then the evolution under H for time t is given by e−itH . A direct calculation shows

that

d

ds
e−itsH = −itHe−itsH , (5.9)

so the rate is −itHe−itsH in the time-independent case. This calculation becomes

significantly more complicated for a time-dependent Hamiltonian. The following

lemma gives an explicit formula for

d

ds
expT

(
−i
∫ t

0

dτ sH(τ)

)
. (5.10)

We sketch the proof of this formula for completeness, but refer the reader to [42,

p. 35] for mathematical justifications that are beyond the scope of this paper.

Lemma 30 (Hamiltonian scaling). Let H (τ) be a time-dependent Hamiltonian

defined for 0 ≤ τ ≤ t and assume it has finitely many discontinuities. Denote

Es(t, v) = expT
(
−i
∫ t
v

dτ sH (τ)
)
. Then,

d

ds
Es(t, v) =

∫ t

v

dτ Es(t, τ)
[
−iH (τ)

]
Es(τ, v). (5.11)

Proof sketch. We first consider the special case where H (τ) is continuous in τ .

We invoke the variation-of-parameters formula [68, Theorem 4.9] to construct the

claimed integral representation for d
ds

Es(t, v). To this end, we need to find a
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differential equation satisfied by d
dt

d
ds

Es(t, v) and the corresponding initial condition

d
ds

Es(t, v)
∣∣
t=v

. We differentiate Schrödinger equation d
dt

Es(t, v) = −isH (t)Es(t, v)

with respect to s to get

d

dt

d

ds
Es(t, v) = −isH (t)

d

ds
Es(t, v)− iH (t)Es(t, v). (5.12)

Invoking the variation-of-parameters formula, we find an integral representation

d

ds
Es(t, v) = Es(t, v) ·

[
d

ds
Es(t, v)

∣∣∣
t=v

]
+ Es(t, v)

∫ t

v

dτ E†s(τ, v)
[
− iH (τ)

]
Es(τ, v)

= Es(t, v) ·
[

d

ds
Es(t, v)

∣∣∣
t=v

]
+

∫ t

v

dτ Es(t, τ)
[
− iH (τ)

]
Es(τ, v).

(5.13)

It thus remains to find the initial condition d
ds

Es(t, v)
∣∣
t=v

.

We start from the Schrödinger equation d
dt

Es(t, v) = −isH (t)Es(t, v) and

apply the fundamental theorem of calculus with initial condition Es(v, v) = I,

obtaining the integral representation

Es(t, v) = I − is
∫ t

v

dτ H (τ)Es(τ, v). (5.14)

Differentiating this equation with respect to s gives

d

ds
Es(t, v) = −i

∫ t

v

dτ H (τ)Es(t, v)− is
∫ t

v

dτ H (τ)
d

ds
Es(τ, v), (5.15)

111



which implies

d

ds
Es(t, v)

∣∣∣
t=v

= 0. (5.16)

Combining (5.13) and (5.16) establishes the claimed integral representation for

d
ds

Es(t, v).

Now consider the case where H (τ) is piecewise continuous with one discon-

tinuity at t1 ∈ [v, t]. We use the multiplicative property to break the evolution at

t1, so that each subevolution is generated by a continuous Hamiltonian. We have

d

ds
Es(t, v) =

d

ds

[
Es(t, t1)Es(t1, v)

]
=

d

ds
Es(t, t1) · Es(t1, v) + Es(t, t1) · d

ds
Es(t1, v)

=

∫ t

t1

dτ Es(t, τ)
[
− iH (τ)

]
Es(τ, t1) · Es(t1, v)

+ Es(t, t1) ·
∫ t1

0

dτ Es(t1, τ)
[
− iH (τ)

]
Es(τ, v)

=

∫ t

t1

dτ Es(t, τ)
[
− iH (τ)

]
Es(τ, v)

+

∫ t1

v

dτ Es(t, τ)
[
− iH (τ)

]
Es(τ, v)

=

∫ t

v

dτ Es(t, τ)
[
− iH (τ)

]
Es(τ, v).

(5.17)

The general case of finitely many discontinuities follows by induction.

Note that our argument implicitly assumes the existence of the derivatives

and that we can interchange the order of d
ds

and d
dt

. A rigorous justification of

these assumptions is beyond the scope of the paper; we refer the reader to [42, p.
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35] for details.

Proof of Theorem 29. Define two parametrized quantum channels

Es(t, 0)(ρ) = Es(t, 0)ρE†s(t, 0), Us(t, 0)(ρ) =

∫ t

0

dτ p(τ)e−is
H (τ)
p(τ) ρeis

H (τ)
p(τ)

(5.18)

and observe that

E0(t, 0)(ρ) = ρ, E1(t, 0)(ρ) = E(t, 0)(ρ), U0(t, 0)(ρ) = ρ, U1(t, 0)(ρ) = U(t, 0)(ρ).

(5.19)

To bound the diamond-norm error ‖E1(t, 0)− U1(t, 0)‖�, we should take a state σ on

the joint system of the original register and an ancilla register with the same dimen-

sion and upper bound ‖(E1(t, 0)⊗ 1)(σ)− (U1(t, 0)⊗ 1)(σ)‖tr. For readability, we

instead show how to bound the error ‖E1(t, 0)(ρ)− U1(t, 0)(ρ)‖tr, but the derivation

works in exactly the same way for the distance ‖(E1(t, 0)⊗ 1)(σ)− (U1(t, 0)⊗ 1)(σ)‖tr

and the resulting bound is the same.

Invoking Lemma 30, we have

d

ds
Es(t, 0)

∣∣∣
s=0

=

∫ t

0

dτ Es(t, τ)
∣∣∣
s=0

[
− iH (τ)

]
Es(τ, 0)

∣∣∣
s=0

= −i
∫ t

0

dτ H (τ).

(5.20)

Thus, the first derivatives of Es(t, 0)(ρ) and Us(t, 0)(ρ) at s = 0 agree with each
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other:

d

ds
Es(t, 0)(ρ)

∣∣∣
s=0

=

[
− i
∫ t

0

dτ H (τ), ρ

]
=

∫ t

0

dτ p(τ)

[
− iH (τ)

p(τ)
, ρ

]
=

d

ds
Us(t, 0)(ρ)

∣∣∣
s=0

.

(5.21)

Applying the fundamental theorem of calculus twice, we obtain

E1(t, 0)(ρ)− U1(t, 0)(ρ) =
(
E1(t, 0)(ρ)− E0(t, 0)(ρ)

)
−
(
U1(t, 0)(ρ)− U0(t, 0)(ρ)

)
=

∫ 1

0

ds

∫ s

0

dv
d2

dv2

[
Ev(t, 0)(ρ)− Uv(t, 0)(ρ)

]
=

∫ 1

0

ds

∫ s

0

dv

{
d2

dv2
Ev(t, 0) · ρ · E†v(t, 0)

+ 2
d

dv
Ev(t, 0) · ρ · d

dv
E†v(t, 0) + Ev(t, 0) · ρ · d2

dv2
E†v(t, 0)

−
∫ t

0

dτ p(τ)e−iv
H (τ)
p(τ)

[
− iH (τ)

p(τ)
,

[
− iH (τ)

p(τ)
, ρ

]]
eiv

H (τ)
p(τ)

}
.

(5.22)
By properties of the Schatten norms and the definition p(τ) = ‖H (τ)‖ / ‖H ‖1,

we find that

‖E1(t, 0)(ρ)− U1(t, 0)(ρ)‖tr ≤
∫ 1

0

ds

∫ s

0

dv

{
2

∥∥∥∥ d2

dv2
Ev(t, 0)

∥∥∥∥+ 2

∥∥∥∥ d

dv
Ev(t, 0)

∥∥∥∥2

+ 4 ‖H ‖2
1

}
.

(5.23)

Lemma 30 immediately yields an upper bound on
∥∥ d

dv
Ev(t, 0)

∥∥:

∥∥∥∥ d

dv
Ev(t, 0)

∥∥∥∥ ≤ ∫ t

0

dτ ‖H (τ)‖ = ‖H ‖1 . (5.24)
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It thus remains to bound
∥∥∥ d2

dv2 Ev(t, 0)
∥∥∥.

Using Lemma 30 twice, we have

d2

dv2
Ev(t, 0) =

d

dv

∫ t

0

dτ Ev(t, τ)
[
− iH (τ)

]
Ev(τ, 0)

=

∫ t

0

dτ

∫ t

τ

dτ ′ Ev(t, τ
′)
[
− iH (τ ′)

]
Ev(τ

′, τ)
[
− iH (τ)

]
Ev(τ, 0)

+

∫ t

0

dτ Ev(t, τ)
[
− iH (τ)

] ∫ τ

0

dτ ′ Ev(τ, τ
′)
[
− iH (τ ′)

]
Ev(τ

′, 0),

(5.25)

which implies

∥∥∥∥ d2

dv2
Ev(τ, 0)

∥∥∥∥ ≤ ∫ t

0

dτ

∫ t

τ

dτ ′ ‖H (τ ′)‖ ‖H (τ)‖+

∫ t

0

dτ

∫ τ

0

dτ ′ ‖H (τ)‖ ‖H (τ ′)‖

= 2 ‖H ‖2
1 .

(5.26)

We finally obtain the desired bound

‖E1(t, 0)(ρ)− U1(t, 0)(ρ)‖tr ≤
∫ 1

0

ds

∫ s

0

dv

[
2 ‖H ‖2

1+2 ‖H ‖2
1+4 ‖H ‖2

1

]
= 4 ‖H ‖2

1

(5.27)

as claimed.

The above error bound works well for a short-time evolution. When t is

large, in order to control the error of simulation, we divide the entire evolution into

segments [tj, tj+1] with 0 = t0 < t1 < · · · < tr = t and apply continuous qDRIFT

within each. We employ a variable-time scheme to segment the evolution, so that

our L1-norm scaling result can be generalized to a long-time evolution. Specifically,
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we have:

Theorem 31 (L1-norm error bound for continuous qDRIFT, long-time version).

Let H (τ) be a time-dependent Hamiltonian defined for 0 ≤ τ ≤ t. Assume that

it is continuous except at a finite number of points and nonzero everywhere. De-

fine E(t, 0) = expT
(
− i
∫ t

0
dτ H (τ)

)
and let E(t, 0)(·) = E(t, 0)(·)E†(t, 0) be the

corresponding quantum channel. Let U(t, 0) be the continuous qDRIFT channel

U(t, 0)(ρ) =

∫ t

0

dτ p(τ)e−i
H (τ)
p(τ) ρei

H (τ)
p(τ) , (5.28)

where p(τ) = ‖H (τ)‖ / ‖H ‖1. Then, for any positive integer r, there exists a

division 0 = t0 < t1 < · · · < tr = t, such that

∥∥∥∥∥E(t, 0)−
r−1∏
j=0

U(tj+1, tj)

∥∥∥∥∥
�

≤ 4
‖H ‖2

1

r
. (5.29)

To ensure that the simulation error is at most ε, it thus suffices to choose

r ≥ 4

⌈
‖H ‖2

1

ε

⌉
. (5.30)

Proof. The times t1, · · · , tr−1 are selected as follows. We aim to simulate with

accuracy

4
‖H ‖2

1

r2
(5.31)
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for each segment. To achieve this, we define t1, · · · , tr−1 so that

∫ t1

0

dτ ‖H (τ)‖ =

∫ t2

t1

dτ ‖H (τ)‖ = · · · =
∫ tr

tr−1

dτ ‖H (τ)‖ =
1

r

∫ t

0

dτ ‖H (τ)‖ .

(5.32)

The existence of such times is guaranteed by the intermediate value theorem. By

telescoping, we find from Theorem 29 that

∥∥∥∥∥E(t, 0)−
r−1∏
j=0

U(tj+1, tj)

∥∥∥∥∥
�

≤
r−1∑
j=0

‖U(tj+1, tj)− E(tj+1, tj)‖�

≤
r−1∑
j=0

4

(∫ tj+1

tj

dτ ‖H (τ)‖
)2

= 4r

(
1

r

∫ t

0

dτ ‖H (τ)‖
)2

= 4
‖H ‖2

1

r
,

(5.33)

which establishes the claimed error bound.

5.3 Universality

We now extend our above analysis to the general LC model. Recall from

Section 2.3 that the Hamiltonian can be expressed as

H (τ) =
Γ∑
γ=1

Hγ(τ), (5.34)

where each Hγ(τ) is continuous, nonzero everywhere, and can be efficiently expo-

nentiated on a quantum computer.
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It is not hard to design a classical sampler for time-dependent Hamiltonians

in the LC model. A natural choice is

U(t, 0)(ρ) :=
Γ∑
l=1

∫ t

0

dτ pγ(τ)e
−iHγ (τ)

pγ (τ) ρe
i

Hγ (τ)

pγ (τ) , (5.35)

where pγ(τ) is the probability distribution

pγ(τ) :=
‖Hγ(τ)‖
‖H ‖1,1

, (5.36)

where

‖H ‖1,1 :=

∫ t

0

dτ
Γ∑
γ=1

‖Hγ(τ)‖ . (5.37)

To analyze the performance of this sampler, we adapt the analysis in Theo-

rem 29 and Theorem 31, which becomes more complicated as we are now sam-

pling a discrete-continuous probability distribution pγ(τ). Fortunately, a significant

amount of effort can be saved with the help of the following universal property.

Theorem 32 (Universality of continuous qDRIFT). Let H (τ) =
∑Γ

γ=1 Hγ(τ)

be a time-dependent Hamiltonian defined for 0 ≤ τ ≤ t that is nonzero every-

where. Assume that each Hγ(τ) is continuous and nonzero everywhere. Define the

probability distribution

pγ(τ) :=
‖Hγ(τ)‖
‖H ‖1,1

. (5.38)

Then there exists a time-dependent Hamiltonian G (τ) defined for 0 ≤ τ ≤ t with
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finitely many discontinuities, such that the following correspondence holds:

1. ‖G ‖1 = ‖H ‖1,1.

2.
∫ t

0
dτ G (τ) =

∑Γ
γ=1

∫ t
0

dτ Hγ(τ).

3.
∫ t

0
dτ q(τ)e−i

G (τ)
q(τ) ρei

G (τ)
q(τ) =

∑Γ
γ=1

∫ t
0

dτ pγ(τ)e
−iHγ (τ)

pγ (τ) ρe
i

Hγ (τ)

pγ (τ) , where we have

the probability distribution q(τ) := ‖G (τ)‖ / ‖G ‖1.

Before presenting the proof, we explain how Theorem 32 can be applied to

simulation in the LC model. We expect that the mixed-unitary channel

Γ∑
γ=1

∫ t

0

dτ pγ(τ)e
−iHγ (τ)

pγ (τ) ρe
i

Hγ (τ)

pγ (τ) (5.39)

approximates the ideal evolution with L1-norm scaling as in Theorem 29 and The-

orem 31, but direct analysis would be considerably more complicated. However,

universality (Statement 3 of Theorem 32) shows that this channel is the same as∫ t
0

dτ q(τ)e−i
G (τ)
q(τ) ρei

G (τ)
q(τ) . Thus, the analysis of Section 5.2 can be applied with the

help of Theorem 32.
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Proof of Theorem 32. We define G (τ) to be the piecewise Hamiltonian

G (τ) =



H1

(
τ
p1

)
p1

, 0 ≤ τ < p1t,

H2

(
τ−p1t
p2

)
p2

, p1t ≤ τ < (p1 + p2)t,

...

HΓ

(
τ−(p1+p2+···+pΓ−1)t

pΓ

)
pΓ

, (p1 + p2 + · · ·+ pΓ−1)t ≤ τ ≤ t,

(5.40)

where we use the abbreviation

pγ := ‖pγ‖1 =

∫ t

0

dτ pγ(τ) (5.41)

for the marginal probability distribution. Statements 1 and 2 can both be proved

by directly evaluating the integrals

‖G ‖1 =

∫ p1t

0

dτ

∥∥∥H1

(
τ
p1

)∥∥∥
p1

+

∫ (p1+p2)t

p1t

dτ

∥∥∥H2

(
τ−p1t
p2

)∥∥∥
p2

+ · · ·+
∫ t

(p1+p2+···+pΓ−1)t

dτ

∥∥∥HΓ

( τ−(p1+p2+···+pΓ−1)t

pΓ

)∥∥∥
pΓ

=

∫ t

0

dτ ‖H1(τ)‖+

∫ t

0

dτ ‖H2(τ)‖+ · · ·+
∫ t

0

dτ ‖HΓ(τ)‖

= ‖H ‖1,1

(5.42)
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and

∫ t

0

dτ G (τ) =

∫ p1t

0

dτ
H1

(
τ
p1

)
p1

+

∫ (p1+p2)t

p1t

dτ
H2

(
τ−p1t
p2

)
p2

+ · · ·+
∫ t

(p1+p2+···+pΓ−1)t

dτ
HΓ

( τ−(p1+p2+···+pΓ−1)t

pΓ

)
pΓ

=
Γ∑
γ=1

∫ t

0

dτ Hγ(τ).

(5.43)

We use Statement 1 to deduce that

q(τ) =
‖G (τ)‖
‖G ‖1

=



∥∥∥∥H1

(
τ
p1

)∥∥∥∥
p1‖H ‖1,1

, 0 ≤ τ < p1t,∥∥∥∥H2

(
τ−p1t
p2

)∥∥∥∥
p2‖H ‖1,1

, p1t ≤ τ < (p1 + p2)t,

...∥∥∥∥HΓ

(
τ−(p1+p2+···+pΓ−1)t

pΓ

)∥∥∥∥
pΓ‖H ‖1,1

, (p1 + p2 + · · ·+ pΓ−1)t ≤ τ ≤ t.

(5.44)

Therefore,
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∫ t

0

dτ q(τ)e−i
G (τ)
q(τ) ρei

G (τ)
q(τ)

=

∫ p1t

0

dτ

∥∥∥H1

(
τ
p1

)∥∥∥
p1 ‖H ‖1,1

exp

(
− i

H1

(
τ
p1

)∥∥∥H1

(
τ
p1

)∥∥∥ ‖H ‖1,1

)
ρ exp

(
i

H1

(
τ
p1

)∥∥∥H1

(
τ
p1

)∥∥∥ ‖H ‖1,1

)

+

∫ (p1+p2)t

p1t

dτ

∥∥∥H2

(
τ−p1t
p2

)∥∥∥
p2 ‖H ‖1,1

exp

(
− i

H2

(
τ−p1t
p2

)∥∥∥H2

(
τ−p1t
p2

)∥∥∥ ‖H ‖1,1

)
ρ exp

(
i

H2

(
τ−p1t
p2

)∥∥∥H2

(
τ−p1t
p2

)∥∥∥ ‖H ‖1,1

)

+ · · ·+
∫ t

(p1+p2+···+pΓ−1)t

dτ

∥∥∥HΓ

( τ−(p1+p2+···+pΓ−1)t

pΓ

)∥∥∥
pΓ ‖H ‖1,1

· exp

(
− i

HΓ

( τ−(p1+p2+···+pΓ−1)t

pΓ

)∥∥∥HΓ

( τ−(p1+p2+···+pΓ−1)t

pΓ

)∥∥∥ ‖H ‖1,1

)
ρ exp

(
i

HΓ

( τ−(p1+p2+···+pΓ−1)t

pΓ

)∥∥∥HΓ

( τ−(p1+p2+···+pΓ−1)t

pΓ

)∥∥∥ ‖H ‖1,1

)

=
Γ∑
γ=1

∫ t

0

dτ pγ(τ)e
−iHγ (τ)

pγ (τ) ρe
i

Hγ (τ)

pγ (τ) , (5.45)

which completes the proof of Statement 3.

Theorem 29′ (L1-norm error bound for continuous qDRIFT (LC), short-time

version). Let H (τ) =
∑Γ

γ=1 Hγ(τ) be a time-dependent Hamiltonian defined for

0 ≤ τ ≤ t that is nonzero everywhere. Assume that each Hγ(τ) is continu-

ous and nonzero everywhere. Define E(t, 0) = expT
(
− i

∫ t
0

dτ H (τ)
)

and let

E(t, 0)(·) = E(t, 0)(·)E†(t, 0) be the corresponding quantum channel. Let U(t, 0) be

the continuous qDRIFT channel

U(t, 0)(ρ) :=
Γ∑
γ=1

∫ t

0

dτ pγ(τ)e
−iHγ (τ)

pγ (τ) ρe
i

Hγ (τ)

pγ (τ) , (5.46)

where pγ(τ) is the probability distribution pγ(τ) := ‖Hγ(τ)‖ / ‖H ‖1,1. Then,

‖E(t, 0)− U(t, 0)‖� ≤ 4 ‖H ‖2
1,1 . (5.47)
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Proof. Consider the channel

G(t, 0)(ρ) :=

∫ t

0

dτ q(τ)e−i
G (τ)
q(τ) ρei

G (τ)
q(τ) , (5.48)

where q(τ) := ‖G (τ)‖ / ‖G ‖1 and G (τ) is defined by (5.40). By Statement 3 of

Theorem 32, it suffices to bound ‖E(t, 0)− G(t, 0)‖�.

Define two parametrized quantum channels

Es(t, 0)(ρ) = Es(t, 0)ρE†s(t, 0), Gs(t, 0)(ρ) =

∫ t

0

dτ q(τ)e−is
G (τ)
q(τ) ρeis

G (τ)
q(τ) (5.49)

and observe that

E0(t, 0)(ρ) = ρ, E1(t, 0)(ρ) = E(t, 0)(ρ), G0(t, 0)(ρ) = ρ, G1(t, 0)(ρ) = G(t, 0)(ρ).

(5.50)

For readability, we only consider the trace norm ‖E1(t, 0)(ρ)− G1(t, 0)(ρ)‖tr, whose

analysis can be easily adapted to bound ‖(E1(t, 0)⊗ 1)(σ)− (G1(t, 0)⊗ 1)(σ)‖tr

and thus the diamond-norm distance ‖E1(t, 0)− G1(t, 0)‖�.

By Lemma 30 and Statement 2 of Theorem 32, we find that the first deriva-

tives of Es(t, 0)(ρ) and Gs(t, 0)(ρ) at s = 0 agree with each other:

d

ds
Es(t, 0)(ρ)

∣∣∣
s=0

=

[
− i
∫ t

0

dτ H (τ), ρ

]
=

[
− i
∫ t

0

dτ G (τ), ρ

]
=

d

ds
Gs(t, 0)(ρ)

∣∣∣
s=0

.

(5.51)
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Thus, we can apply the fundamental theorem of calculus twice and obtain

E1(t, 0)(ρ)− G1(t, 0)(ρ)

=
(
E1(t, 0)(ρ)− E0(t, 0)(ρ)

)
−
(
G1(t, 0)(ρ)− G0(t, 0)(ρ)

)
=

∫ 1

0

ds

∫ s

0

dv
d2

dv2

[
Ev(t, 0)(ρ)− Gv(t, 0)(ρ)

]
=

∫ 1

0

ds

∫ s

0

dv

{
d2

dv2
Ev(t, 0) · ρ · E†v(t, 0)

+ 2
d

dv
Ev(t, 0) · ρ · d

dv
E†v(t, 0) + Ev(t, 0) · ρ · d2

dv2
E†v(t, 0)

−
∫ t

0

dτ q(τ)e−iv
G (τ)
q(τ)

[
− iG (τ)

q(τ)
,

[
− iG (τ)

q(τ)
, ρ

]]
eiv

G (τ)
q(τ)

}
,

(5.52)

which implies

‖E1(t, 0)(ρ)− G1(t, 0)(ρ)‖tr ≤
∫ 1

0

ds

∫ s

0

dv

{
2 ‖H ‖2

1,1 + 2 ‖H ‖2
1,1 + 4 ‖G ‖2

1

}
= 4 ‖H ‖2

1,1 .

(5.53)

Theorem 31′ (L1-norm error bound for continuous qDRIFT (LC), long-time ver-

sion). Let H (τ) =
∑Γ

γ=1 Hγ(τ) be a time-dependent Hamiltonian defined for

0 ≤ τ ≤ t that is nonzero everywhere. Assume that each Hγ(τ) is continu-

ous and nonzero everywhere. Define E(t, 0) = expT
(
− i

∫ t
0

dτ H (τ)
)

and let

E(t, 0)(·) = E(t, 0)(·)E†(t, 0) be the corresponding quantum channel. Let U(t, 0) be

124



the continuous qDRIFT channel

U(t, 0)(ρ) :=
Γ∑
γ=1

∫ t

0

dτ pγ(τ)e
−iHγ (τ)

pγ (τ) ρe
i

Hγ (τ)

pγ (τ) , (5.54)

where pγ(τ) is the probability distribution pγ(τ) := ‖Hγ(τ)‖ / ‖H ‖1,1. Then, for

any positive integer r, there exists a division 0 = t0 < t1 < · · · < tr = t, such that

∥∥∥∥∥E(t, 0)−
r−1∏
j=0

U(tj+1, tj)

∥∥∥∥∥
�

≤ 4
‖H ‖2

1,1

r
. (5.55)

To ensure that the simulation error is at most ε, it thus suffices to choose

r ≥ 4

⌈‖H ‖2
1,1

ε

⌉
. (5.56)

The proof of this theorem follows from Theorem 29′ using the same reasoning

as that used to prove Theorem 31.

5.4 Discussion

We have shown that a time-dependent Hamiltonian H (τ) can be simulated

for time 0 ≤ τ ≤ t with gate complexity that scales according to the L1 norm∫ t
0

dτ ‖H (τ)‖. We achieve this by developing a new simulation algorithm based

on classical sampling. Although we have assumed that the input Hamiltonians are

given in the LC model, our analysis can be extended to the simulation of sparse
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Hamiltonians. The idea is to use a time-dependent version of Lemma 6 to represet

the input sparse Hamiltonian as a linear combination of operators [16, Section 3.3].

In both cases, this result is a polynomial speedup in terms of the norm dependence,

an advantage that can be favorable in practice. In particular, this can potentially

be applied to simulating scattering processes in quantum chemistry [16, Section

5].

Besides the randomization approach, we can also use a rescaling princi-

ple for the Schrödinger equation to improve time-dependent Hamiltonian simu-

lation. In the rescaled Schrödinger equation, the time-dependent Hamiltonian

H (τ) has the same norm at all τ ∈ [0, t], so the norm inequality
∫ t

0
dτ ‖H (τ)‖ ≤

tmaxτ∈[0,t] ‖H (τ)‖ holds with equality. Using this principle, it is possible to show

that the simulation algorithm based on the truncated Dyson series [14, 65, 76] can

also be improved to have L1-norm scaling. Further discussion of this approach is

beyond the scope of this dissertation, and we refer the reader to [16, Section 4] for

details.

For most of our analysis, we have assumed that the Hamiltonian H (τ) is

continuous. This assumption can be relaxed to allow finitely many discontinuities.

In fact, the continuous qDRIFT algorithm works properly provided only that H (τ)

is Lebesgue integrable (see [42] for details). Our analysis can also be adapted to

simulate time-dependent Hamiltonians that have countably many zeros. Indeed,

since the equation H (τ) = 0 has at most countably many solutions, we can find
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c ∈ R such that H (τ) + cI is nonzero everywhere. Then, expT
(
−i
∫ t

0
dτ (H (τ) +

cI)
)

= e−ict expT
(
−i
∫ t

0
dτ H (τ)

)
, so the result is only off by a global phase. Note

that this assumption can be completely dropped if we use continuous qDRIFT: we

define the exceptional set

B0 := p−1(0) = {τ : p(τ) = 0} = {τ : ‖H (τ)‖ = 0} = {τ : H (τ) = 0} (5.57)

and redefine U(t, 0) as

U(t, 0)(ρ) :=

∫
[0,t]\B0

dτ p(τ)e−i
H (τ)
p(τ) ρei

H (τ)
p(τ) , p(τ) :=

‖H (τ)‖
‖H ‖1

. (5.58)

We note that U(t, 0) is a valid quantum channel and can be implemented with unit

cost. Indeed, for any input state ρ, we randomly sample a value τ according to

p(τ) and perform e−iH (τ)/p(τ) if τ ∈ [0, t]\B0, and the identity operation otherwise.

This implements

∫
[0,t]\B0

dτ p(τ)e−i
H (τ)
p(τ) ρei

H (τ)
p(τ) +

∫
B0

dτ p(τ)ρ = U(t, 0)(ρ). (5.59)

The remaining analysis proceeds as in Section 5.2 and Section 5.3.

The qDRIFT protocol that we analyzed here only achieves first-order ac-

curacy. It is natural to ask if sampling a different probability distribution could

lead to an algorithm with better performance. The answer seems to be “no” if
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we are restricted to a univariate distribution. To see this, consider the discrete

case where H =
∑Γ

γ=1Hγ is a Hamiltonian consisting of Γ terms. We sam-

ple according to a probability vector p ∈ [0, 1]Γ. Upon getting outcome γ, we

perform the unitary e−itHγ/pγ . Effectively, we implement the quantum channel

U(t)(ρ) :=
∑Γ

γ=1 pγe
−itHγ

pγ ρe
it
Hγ
pγ , which is a first-order approximation to the ideal

evolution E(t)(ρ) := e−it
∑Γ
γ=1 Hγρeit

∑Γ
γ=1 Hγ . In particular, the difference between

U(t)(ρ) and E(t)(ρ) admits an integral representation

U(t)(ρ)− E(t)(ρ)

=

∫ t

0

du

∫ u

0

dv

{
Γ∑
γ=1

pγe
−ivHγ

pγ

[
− iHγ

pγ
,

[
− iHγ

pγ
, ρ

]]
e
iv
Hγ
pγ

−e−iv
∑Γ
γ=1Hγ

[
− i

Γ∑
γ=1

Hγ,

[
− i

Γ∑
γ=1

Hγ, ρ

]]
eiv

∑Γ
γ=1Hγ

}
.

(5.60)

To estimate the diamond-norm error ‖U(t)− E(t)‖�, we take σ to be a state on the

joint system of the original register and an ancilla register with the same dimension.

We compute

‖(U(t)⊗ 1)(σ)− (E(t)⊗ 1)(σ)‖tr

≤
∫ t

0

du

∫ u

0

dv

{
Γ∑
γ=1

pγ

∥∥∥∥[− iHγ

pγ
⊗ 1,

[
− iHγ

pγ
⊗ 1, σ

]]∥∥∥∥
tr

+

∥∥∥∥∥
[
− i

Γ∑
γ=1

Hγ ⊗ 1,

[
− i

Γ∑
γ=1

Hγ ⊗ 1, σ

]]∥∥∥∥∥
tr


≤ 2t2

(
Γ∑
γ=1

‖Hγ‖2

pγ
+ ‖H‖2

1

)
.

(5.61)
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By Jensen’s inequality,

Γ∑
γ=1

‖Hγ‖2

pγ
=

Γ∑
γ=1

pγ

(
‖Hγ‖
pγ

)2

≥

(
Γ∑
γ=1

pγ
‖Hγ‖
pγ

)2

= ‖H‖2
1 , (5.62)

with equality if and only if all ‖Hγ‖/pγ are equal, implying that the probability

distribution pγ := ‖Hγ‖/‖H‖1 is optimal. A similar optimality result holds for

continuous qDRIFT (though the proof is more involved).

However, this does not preclude the existence of a higher-order qDRIFT

protocol using more complicated sampling. For example, besides the basic evolu-

tions e−itHγ/pγ , one could evolve under commutators [Hj, Hk] or anticommutators

{Hj, Hk}. We could also use a multivariate distribution and correlate different

steps of the qDRIFT protocol. For future work, it would be interesting to find a

higher-order protocol, or prove that such a protocol cannot exist.

Finally, it would be interesting to identify concrete algorithmic applications

of Hamiltonian simulation with L1-norm scaling. It might also be of interest to

demonstrate these approaches experimentally, for applications such as implement-

ing adiabatic algorithms with quantum circuits.
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Chapter 6: Analysis of product formulas: general theory

We have seen in Chapter 3 that there exists a significant gap between the

provable and actual performance of product formulas. In this chapter, we address

this by developing a general theory for analyzing the error of product formulas

(Trotter error). We summarize prior approaches to analyzing Trotter error and

discuss their limitations in Section 6.1. We then present a new Trotter error

analysis. Specifically, we consider various types of Trotter error in Section 6.3

and derive their order conditions in Section 6.4. We then develop a representation

of Trotter error in Section 6.5 that directly exploits the commutativity of the

simulated system. We illustrate these ideas in Section 6.2 with the simple example

of the first-order Lie-Trotter formula.

In our derivation, we work in a general setting where the input operators are

not necessarily Hermitian/anti-Hermitian. This allows us to simultaneously handle

real-time evolutions for digital quantum simulation (Chapter 7) and imaginary-

time evolutions for quantum Monte Carlo simulation (Chapter 9).

This chapter is partly based on the following paper:

[37] Andrew M. Childs, Yuan Su, Minh C. Tran, Nathan Wiebe, and Shuchen Zhu,

A theory of Trotter error, 2019, arXiv:1912.08854.
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6.1 Previous analyses of Trotter error

We now briefly summarize prior approaches to analyzing Trotter error and

discuss their limitations.

The original work of Lloyd [70] analyzes product formulas by truncating

the Taylor expansion (or the BCH expansion). Recall that the Lie-Trotter for-

mula S1(t) provides a first-order approximation to the evolution, so S1(t) =

e−itH + O (t2). To better analyze the Trotter error, Lloyd dropped all higher-

order terms in the Taylor expansion and focused only on the terms of lowest order

t2. This approach is intuitive and has been employed by subsequent works to give

rough estimation of Trotter error. The drawback of this analysis is that it implic-

itly assumes that the high-order terms are dominated by the lowest-order term.

However, this does not necessarily hold for many systems such as nearest-neighbor

lattice Hamiltonians [36] and chemical Hamiltonians [107] when the time step t is

fixed.

This issue was addressed in the seminal work of Berry, Ahokas, Cleve, and

Sanders by using a tail bound of the Taylor expansion [12]. This gave, for the

first time, a concrete bound on the Trotter error for high-order Suzuki formulas.

For a Hamiltonian H =
∑Γ

γ=1Hγ containing Γ summands, their bound scales with

Γ maxγ ‖Hγ‖, although it is not hard to improve this [54] to
∑Γ

γ=1 ‖Hγ‖ [75, 99].

Regardless of which scaling to use, this worst-case analysis does not exploit the
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commutativity of Hamiltonian summands and the resulting complexity is worse

than many post-Trotter methods.

Error bounds that exploit the commutativity of summands are known for

low-order formulas, such as the Lie-Trotter formula [61, 99] and the second-order

Suzuki formula [41, 66, 99, 107]. These bounds are tight in the sense that they

match the lowest-order term of the BCH expansion up to an application of the

triangle inequality. However, it is unclear whether they can be generalized, say,

to the fourth- or the sixth-order case, which are still reasonably simple and can

provide a significant advantage in practice [34].

Instead, previous works made compromises to obtain improved analyses of

higher-order formulas. Somma gave an improved bound by representing the Trot-

ter error as an infinite series of nested commutators [98]. This approach is ad-

vantageous when the simulated system has an underlying Lie-algebraic structure

with small structure factors, such as for a quantum harmonic oscillator and cer-

tain nonquadratic potentials. However, this reduces to the worst-case analysis of

Berry, Ahokas, Cleve, and Sanders for other systems. An alternative approach

suggested by Childs et al. exploited commutativity of the lowest-order error terms

and estimated higher-order ones using a tail bound for the Taylor series [34]. This

analysis is bottlenecked by the tail bound, so it only offers a modest improvement

over the worst-case analysis.

We will give a new bound on the Trotter error in Theorem 39 that depends
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on nested commutators of the operator summands, overcoming the limitations of

all prior error analyses of product formulas.

6.2 Example of the Lie-Trotter formula

In this section, we use the example of the first-order Lie-Trotter formula to

illustrate the general theory we develop for analyzing Trotter error. For simplicity,

consider an operator H = A + B with two summands. The ideal evolution gen-

erated by H is given by etH = et(A+B). To decompose this evolution, we may use

the Lie-Trotter formula S1(t) = etBetA. This formula is first-order accurate, so we

have S1(t) = etH +O (t2).

A key observation here is that the error of a product formula can have var-

ious types. Specifically, we consider three types of Trotter error: additive error,

multiplicative error, and error that appears in the exponent. Note that S1(t) satis-

fies the differential equation d
dt

S1(t) = HS1(t) +
[
etB, A

]
etA with initial condition

S1(0) = I. By the variation-of-parameters formula (Lemma 1),

S1(t) = etH +

∫ t

0

dτ e(t−τ)H
[
eτB, A

]
eτA, (6.1)

so we get the additive error A1(t) =
∫ t

0
dτ e(t−τ)H

[
eτB, A

]
eτA of the Lie-Trotter

formula. For error with the exponentiated type, we differentiate S1(t) to get

d
dt

S1(t) =
(
B + etBAe−tB

)
S1(t). Applying the fundamental theorem of time-
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ordered evolution (Lemma 3), we have

S1(t) = expT

(∫ t

0

dτ
(
B + eτBAe−τB

))
, (6.2)

and so E1(τ) = eτBAe−τB − A is the error of Lie-Trotter formula that appears

in the exponent. To obtain the multiplicative error, we switch to the interaction

picture using Lemma 2:

S1(t) = etH expT

(∫ t

0

dτ
(
e−τHeτBAe−τBeτH − e−τHAeτH

))
, (6.3)

so M1(t) = expT
( ∫ t

0
dτ
(
e−τHeτBAe−τBeτH−e−τHAeτH

))
−I is the multiplicative

Trotter error. These three types of Trotter error are equivalent for analyzing the

complexity of digital quantum simulation (Chapter 7), whereas the multiplicative

error and the exponentiated error are more versatile when applied to quantum

Monte Carlo simulation (Chapter 9). We compute error operators for a general

product formula in Section 6.3.

Since product formulas provide a good approximation to the ideal evolution

for small t, we expect all three error operators A1(t), E1(t), and M1(t) to converge

to zero in the limit t → 0. The rates of convergence are what we call order
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conditions. More precisely,

A1(t) =

∫ t

0

dτ e(t−τ)H
[
eτB, A

]
eτA = O

(
t2
)
,

E1(t) = etBAe−tB − A = O (t) ,

M1(t) = expT

(∫ t

0

dτ
(
e−τHeτBAe−τBeτH − e−τHAeτH

))
− I = O

(
t2
)
.

(6.4)

For the Lie-Trotter formula, these conditions can be verified by direct calculation,

although such an approach becomes inefficient in general. Instead, we describe an

indirect approach in Section 6.4 to compute order conditions for a general product

formula.

Finally, we consider representations of Trotter error that leverage the com-

mutativity of operator summands. We discuss how to represent M1(t) in detail,

although it is straightforward to extend the analysis to A1(t) and E1(t) as well.

To this end, we first consider the term e−τHeτBAe−τBeτH , which contains two lay-

ers of conjugations of matrix exponentials. We apply the fundamental theorem of

calculus to the first layer of conjugation and obtain

eτBAe−τB = A+

∫ τ

0

dτ2 e
τ2B
[
B,A

]
e−τ2B. (6.5)

After cancellation, this gives

M1(t) = expT

(∫ t

0

dτ

∫ τ

0

dτ2 e
−τHeτ2B

[
B,A

]
e−τ2BeτH

)
− I, (6.6)
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which implies, through Corollary 5, that ‖M1(t)‖ = O (‖[B,A]‖ t2) when A, B

are anti-Hermitian and t ≥ 0, and that ‖M1(t)‖ = O
(
‖[B,A]‖ t2e2t(‖A‖+‖B‖)) in

general. In the above derivation, it is important that we only expand the first layer

of conjugation of exponentials, that we apply the fundamental theorem of calculus

only once, and that we can cancel the terms e−τHAeτH in pairs. The validity

of such an approach in general is guaranteed by the appropriate order condition,

which we explain in detail in Section 6.5.

6.3 Error types

In this section, we discuss error types of a general product formula. In

particular, we give explicit expressions for three different types of Trotter error:

the additive error, the multiplicative error, and error that appears in the expo-

nent of a time-ordered exponential (the “exponentiated” error). These types are

equivalent for analyzing the complexity of simulating quantum dynamics and local

observables, but the latter two types are more versatile for quantum Monte Carlo

simulation.

Let H =
∑Γ

γ=1 Hγ be an operator with Γ summands. The ideal evolution

under H for time t is given by etH = et
∑Γ
γ=1 Hγ , which we approximate by a general

product formula S (t) =
∏Υ

υ=1

∏Γ
γ=1 e

ta(υ,γ)Hπυ(γ) . For convenience, we use the

lexicographic order on a pair of tuples (υ, γ) and (υ′, γ′), defined as follows: we

write (υ, γ) � (υ′, γ′) if υ > υ′, or if υ = υ′ and γ ≥ γ′. We have (υ, γ) � (υ′, γ′)

136



if both (υ, γ) � (υ′, γ′) and (υ, γ) 6= (υ′, γ′) hold. Notations (υ, γ) � (υ′, γ′) and

(υ, γ) ≺ (υ′, γ′) are defined in a similar way, except that we reverse the directions

of all the inequalities.

To compute the additive error, we construct the differential equation

d

dt
S (t) = HS (t) + R(t), (6.7)

with initial condition S (0) = I, where

R(t) :=
∑
(υ,γ)

←−∏
(υ′,γ′)�(υ,γ)

e
ta(υ′,γ′)Hπυ′ (γ

′)
(
a(υ,γ)Hπυ(γ)

) ←−∏
(υ′,γ′)�(υ,γ)

e
ta(υ′,γ′)Hπυ′ (γ

′)

−H
←−∏

(υ′,γ′)

e
ta(υ′,γ′)Hπυ′ (γ

′) .

(6.8)

By the variation-of-parameters formula (Lemma 1), S (t)−etH =
∫ t

0
dτ e(t−τ)HR(τ),

so we obtain the additive error

A (t) :=

∫ t

0

dτ e(t−τ)HR(τ). (6.9)

This suffices if our purpose is to only compute the additive error operator. However,

for the later discussion in Section 6.5, it is convenient to further rewrite

A (t) =

∫ t

0

dτ e(t−τ)HS (τ)T (τ), (6.10)

137



where

T (τ) :=
∑
(υ,γ)

−→∏
(υ′,γ′)≺(υ,γ)

e
−τa(υ′,γ′)Hπυ′ (γ

′)
(
a(υ,γ)Hπυ(γ)

) ←−∏
(υ′,γ′)≺(υ,γ)

e
τa(υ′,γ′)Hπυ′ (γ

′)

−
−→∏

(υ′,γ′)

e
−τa(υ′,γ′)Hπυ′ (γ

′)H

←−∏
(υ′,γ′)

e
τa(υ′,γ′)Hπυ′ (γ

′) .

(6.11)

Note that we have rewritten part of the error operator as a linear combination

of conjugation of matrix exponentials. In Section 6.5, we apply the correct order

condition to further represent it as nested commutators of the operator summands

Hγ.

For the exponentiated type of Trotter error, we aim to construct an operator-

valued function E (t) such that

S (t) = expT

(∫ t

0

dτ
(
H + E (τ)

))
. (6.12)

To do this, we differentiate the product formula S (t) and obtain

d

dt
S (t) =

∑
(υ,γ)

←−∏
(υ′,γ′)�(υ,γ)

e
ta(υ′,γ′)Hπυ′ (γ

′)
(
a(υ,γ)Hπυ(γ)

) ←−∏
(υ′,γ′)�(υ,γ)

e
ta(υ′,γ′)Hπυ′ (γ

′)

= F (t)S (t),

(6.13)
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where

F (t) :=
∑
(υ,γ)

←−∏
(υ′,γ′)�(υ,γ)

e
ta(υ′,γ′)Hπυ′ (γ

′)
(
a(υ,γ)Hπυ(γ)

) −→∏
(υ′,γ′)�(υ,γ)

e
−ta(υ′,γ′)Hπυ′ (γ

′) .

(6.14)

Applying the fundamental theorem of time-ordered evolution (Lemma 3), we have

S (t) = expT

(∫ t

0

dτ F (τ)

)
, (6.15)

which gives the exponentiated error

E (t) := F (t)−H. (6.16)

From the exponentiated type of Trotter error, we can obtain the multiplica-

tive error by switching to the interaction picture. Specifically, we apply Lemma 2

and get

S (t) = expT

(∫ t

0

dτ
(
H + E (τ)

))
= etH expT

(∫ t

0

dτ e−τHE (τ)eτH
)
. (6.17)

Then, the operator-valued function

M (t) := expT

(∫ t

0

dτ e−τHE (τ)eτH
)
− I (6.18)

is the multiplicative error of the product formula. We have thus established:
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Theorem 33 (Types of Trotter error). Let H =
∑Γ

γ=1 Hγ be an operator with Γ

summands. The evolution under H for time t ∈ R is given by etH = et
∑Γ
γ=1Hγ ,

which we decompose using the product formula S (t) =
∏Υ

υ=1

∏Γ
γ=1 e

ta(υ,γ)Hπυ(γ).

Then,

1. Trotter error can be expressed in the additive form S (t) = etH+
∫ t

0
dτ e(t−τ)H

·S (τ)T (τ), where

T (τ) =
∑
(υ,γ)

−→∏
(υ′,γ′)≺(υ,γ)

e
−τa(υ′,γ′)Hπυ′ (γ

′)
(
a(υ,γ)Hπυ(γ)

) ←−∏
(υ′,γ′)≺(υ,γ)

e
τa(υ′,γ′)Hπυ′ (γ

′)

−
−→∏

(υ′,γ′)

e
−τa(υ′,γ′)Hπυ′ (γ

′)H
←−∏

(υ′,γ′)

e
τa(υ′,γ′)Hπυ′ (γ

′) ;

(6.19)

2. Trotter error can be expressed in the exponentiated form S (t) = expT
( ∫ t

0
dτ(

H + E (τ)
))

, where

E (τ) =
∑
(υ,γ)

←−∏
(υ′,γ′)�(υ,γ)

e
τa(υ′,γ′)Hπυ′ (γ

′)
(
a(υ,γ)Hπυ(γ)

) −→∏
(υ′,γ′)�(υ,γ)

e
−τa(υ′,γ′)Hπυ′ (γ

′)−H;

(6.20)

3. Trotter error can be expressed in the multiplicative form S (t) = etH(I +

M (t)), where

M (t) = expT

(∫ t

0

dτ e−τHE (τ)eτH
)
− I (6.21)

with E (τ) as above.
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Note that the error operators T (τ) and E (τ) both consist of conjugations of

matrix exponentials of the form eτAs · · · eτA2eτA1Be−τA1e−τA2 · · · e−τAs . To bound

the Trotter error, it thus suffices to analyze such conjugations of matrix expo-

nentials. The previous work of Somma [98] expanded them into infinite series of

nested commutators, which is favorable for systems with appropriate Lie-algebraic

structures. An alternative approach of Childs and Su [36] represented them as

commutators nested with conjugations of matrix exponentials, which provides a

tight analysis for geometrically local systems. Unfortunately, both approaches can

be loose in general. Instead, we apply order conditions (Section 6.4) and derive a

new representation of Trotter error (Section 6.5) that provides a tight analysis for

general systems.

6.4 Order conditions

In this section, we study the order conditions of Trotter error. By order

condition, we mean the rate at which a continuous operator-valued function F (τ),

defined for τ ∈ R, approaches zero in the limit τ → 0. Formally, we write F (τ) =

O (τ p) with nonnegative integer p if there exist constants c, t0 > 0, independent of

τ , such that ‖F (τ)‖ ≤ c |τ |p whenever |τ | ≤ t0.

Order conditions arise naturally in the analysis of Trotter error [4, 5, 100,

110]. Indeed, a pth-order product formula S (t) has a Taylor expansion that agrees

with the ideal evolution etH up to order tp. This implies the order condition
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S (t) = etH + O (tp+1) by definition. Our approach is to use this relation in the

reverse direction: given a smooth operator-valued function F (τ) satisfying the

order condition F (τ) = O (τ p), we conclude that F (τ) has a Taylor expansion

where terms with order τ p−1 or lower vanish.

Formally, given a continuous operator-valued function F (τ) defined on R, we

write F (τ) = O(τ p) with nonnegative integer p if there exist constants c, t0 > 0,

independent of τ , such that ‖F (τ)‖ ≤ c |τ |p whenever |τ | ≤ t0. To verify this, it

suffices to check that the limit

lim
τ→0

‖F (τ)‖
|τ |p

(6.22)

exists.

As aforementioned, our approach uses the order condition F (τ) = O (τ p) to

argue that terms with order 1, τ, . . . , τ p−1 vanish in the Taylor series of F (τ). This

argument is rigorized in [36, Lemma 6], which we restate and prove for complete-

ness.

Lemma 34 (Derivative condition). Any continuous operator-valued function F (τ)

defined on R satisfies the order condition

F (τ) = O (1) . (6.23)

Furthermore, if F (τ) has p continuous derivatives for some positive integer p, then
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the following two conditions are equivalent:

1. F (τ) = O(τ p); and

2. F (0) = F ′(0) = · · · = F (p−1)(0) = 0.

Proof. The continuity of F (τ) at τ = 0 implies F (τ) = O (1) by definition.

Assume that F (τ), F ′(τ),..., F (p)(τ) exists and are continuous. If Condition 2

holds, we have

lim
τ→0

‖F (τ)‖
|τ |p

=

∥∥∥∥lim
τ→0

F (τ)

τ p

∥∥∥∥ =

∥∥F (p)(0)
∥∥

p!
(6.24)

by the L’Hôpital’s rule. This proves that Condition 1 holds.

Given Condition 1, we have by definition that

‖F (τ)‖ ≤ c |τ |p (6.25)

for some c, t0 > 0 and all |τ | ≤ t0. Suppose by contradiction that Condition 2 is

not true. Then we let 0 ≤ j ≤ p− 1 be the first integer for which F (j)(0) 6= 0. We

use the Taylor’s theorem to order j to get

F (τ) = F (j)(0)
τ j

j!
+

∫ τ

0

dτ2 F (j+1)(τ − τ2)
τ j2
j!
, (6.26)

which implies

‖F (τ)‖ ≥
∥∥F (j)(0)

∥∥ |τ |j
j!
− max
|τ2|≤|τ |

∥∥F (j+1)(τ2)
∥∥ |τ |j+1

(j + 1)!
(6.27)
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by the triangle inequality. We combine the above inequalities and divide both sides

by |τ |j. Taking the limit τ → 0 gives the contradiction
∥∥F (j)(0)

∥∥ ≤ 0.

We can determine the order condition of an operator-valued function through

either direct calculation or indirect derivation. To illustrate this, we consider de-

composing etH = et(A+B) using the first-order Lie-Trotter formula S1(t) = etBetA.

We see from Section 6.2 that this decomposition has the additive Trotter error

A1(t) =

∫ t

0

dτ e(t−τ)H
(
S ′

1(τ)−HS1(τ)
)

=

∫ t

0

dτ e(t−τ)H
[
eτB, A

]
eτA. (6.28)

We know that A1(t) has order condition A1(t) = O (t2), which follows directly

from the fact that A1(0) = A ′
1(0) = 0. On the other hand, an indirect ar-

gument would proceed as follows. We use the known order condition S1(t) =

etH + O (t2) to conclude that S ′
1(τ) − HS1(τ) = O (τ). Multiplying the matrix

exponential e(t−τ)H = O (1) does not change the order condition, so we still have

e(t−τ)H
(
S ′

1(τ) − HS1(τ)
)

= O (τ). A final integration of
∫ t

0
dτ then gives the

desired condition A1(t) = O (t2).

Lemma 34 provides a direct approach to computing order conditions for

functions of real variables. This works for simple examples such as the power

functions f(τ) = τ p = O (τ p). Another example which we will use in our analysis
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is the integration of a monomial, like

∫ τ

0

dτ1

∫ τ1

0

dτ2

∫ τ1

0

dτ3

∫ τ2

0

dτ4 τ
3
1 τ2τ

4
3 τ

5
4 . (6.29)

As the following lemma shows, we can directly evaluate such an integral and com-

pute the order condition of the resulting power function.

Lemma 35 (Integration of a monomial). The integration of a monomial τ p1

1 · · · τ
pγ
γ

· · · τ pΓ

Γ evaluates as

∫ τ

0

dτ1 · · ·
∫ τ<γ

0

dτγ · · ·
∫ τ<Γ

0

dτΓ τ
p1

1 · · · τ pγγ · · · τ
pΓ

Γ = ctp1+···+pΓ+Γ = O
(
tp1+···+pΓ+Γ

)
,

(6.30)

where τ<γ ∈ {τ, τ1, . . . , τγ−1} and c is a constant that depends on nonnegative

integers p1, . . . , pΓ.

Proof. We induct on the value of Γ. The claim trivially holds when Γ = 1. Suppose

that it is true for Γ. For Γ + 1, we have

∫ τ

0

dτ1 · · ·
∫ τ<Γ+1

0

dτΓ+1 τ
p1

1 · · · τ
pΓ+1

Γ+1 =

∫ τ

0

dτ1 · · ·
∫ τ<Γ

0

dτΓ
τ q11 · · · τ

qΓ
Γ

pΓ+1 + 1
, (6.31)

where q1 + · · ·+qΓ = p1 + · · ·+pΓ+1 +1. The claim then follows from the inductive

hypothesis.

For most of our analysis, however, a direct calculation of order conditions is

inefficient. In particular, a (2k)th-order Suzuki formula contains 2 · 5k−1 matrix
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exponentials and a direct analysis becomes prohibitive when k is large. Instead,

we follow standard rules of order conditions to compute them indirectly, some of

which are summarized below:

Proposition 36 (Rules of order conditions). Let F (τ) and G (τ) be operator-

valued functions defined on R that are infinitely differentiable. Let p and q be

nonnegative integers. The following rules of order conditions hold:

1. Addition: if F (τ) = O(τ p) and G (τ) = O(τ q), then F (τ)+G (τ) = O(τmin(p,q));

2. Multiplication: if F (τ) = O(τ p) and G (τ) = O(τ q), then F (τ)G (τ) =

O(τ p+q);

3. Differentiation: F (τ) = O(τ p+1) if and only if F (0) = 0 and F ′(τ) =

O(τ p);

4. Integration: F (τ) = O(τ p) if and only if
∫ t

0
dτF (τ) = O(tp+1); and

5. Exponentiation: F (τ) = G (τ) + O(τ p) if and only if expT
( ∫ t

0
dτF (τ)

)
=

expT
( ∫ t

0
dτG (τ)

)
+O(tp+1).

Proof. We only prove the exponentiation rule, as the other rules follow directly

from Lemma 34. Suppose that expT
( ∫ t

0
dτ F (τ)

)
= expT

( ∫ t
0

dτ G (τ)
)
+O(tp+1).

To prove F (τ) = G (τ) + O(τ p), it suffices to show that F (q)(0) = G (q)(0) for

q = 0, . . . , p− 1.
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We prove this by induction. By the differentiation rule, we have

F (t) expT

(∫ t

0

dτ F (τ)

)
= G (t) expT

(∫ t

0

dτ G (τ)

)
+O(tp), (6.32)

so Lemma 34 implies F (0) = G (0). This proves the claim in the base case. Now

assume that F (l)(0) = G (l)(0) holds for l = 0, . . . q, where q < p−1. By Lemma 34

and the general Leibniz rule,

q+1∑
l=0

(
q + 1

l

)
F q+1−l(0) exp

(l)
T

(∫ 0

0

dτ F (τ)

)

=

q+1∑
l=0

(
q + 1

l

)
G q+1−l(0) exp

(l)
T

(∫ 0

0

dτ G (τ)

)
.

(6.33)

Lemma 34 also implies exp
(l)
T
( ∫ 0

0
dτ F (τ)

)
= exp

(l)
T
( ∫ 0

0
dτ G (τ)

)
for l = 0, . . . , q+

1. So the above equation simplifies to

F (q+1)(0) = G (q+1)(0). (6.34)

This completes the inductive step.

For the reverse direction, we want to prove expT
( ∫ t

0
dτ F (τ)

)
= expT

( ∫ t
0

dτ

G (τ)
)

+ O(tp+1) assuming that F (τ) = G (τ) + O(τ p). Equivalently, we want to

show that exp
(q+1)
T

( ∫ 0

0
dτ F (τ)

)
= exp

(q+1)
T

( ∫ 0

0
dτ G (τ)

)
for q = 0, . . . , p − 1

given that F (q)(0) = G (q)(0). This can be proved by induction and by applying
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the Leibniz rule in a similar way as above. Specifically, the base case follows from

exp
(1)
T

(∫ 0

0

dτ F (τ)

)
= F (0) = G (0) = exp

(1)
T

(∫ 0

0

dτ G (τ)

)
(6.35)

and the inductive step follows from

exp
(q+1)
T

(∫ 0

0

dτ F (τ)

)
=

q∑
l=0

(
q

l

)
F (q−l)(0) exp

(l)
T

(∫ 0

0

dτ F (τ)

)

=

q∑
l=0

(
q

l

)
G (q−l)(0) exp

(l)
T

(∫ 0

0

dτ G (τ)

)

= exp
(q+1)
T

(∫ 0

0

dτ G (τ)

)
.

(6.36)

We now compute order conditions for the additive, multiplicative, and ex-

ponentiated Trotter error. In Section 6.5, we apply these conditions to cancel

low-order Trotter error terms and represent higher-order ones as nested commuta-

tors of operator summands.

Theorem 37 (Order conditions of Trotter error). Let H be an operator, and let

S (τ), T (τ), E (τ), and M (τ) be infinitely differentiable operator-valued functions
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defined for τ ∈ R, such that

S (t) = etH +

∫ t

0

dτ e(t−τ)HS (τ)T (τ),

= expT

(∫ t

0

dτ
(
H + E (τ)

))
,

= etH(I + M (t)).

(6.37)

For any nonnegative integer p, the following conditions are equivalent:

1. S (t) = etH +O (tp+1);

2. T (τ) = O (τ p);

3. E (τ) = O (τ p); and

4. M (t) = O (tp+1).

Proof. Suppose that T (τ) = O(τ p). We apply the multiplication rule of Proposi-

tion 36 to get e(t−τ)HS (τ)T (τ) = O(τ p). A further application of the integration

rule gives S (t)− etH =
∫ t

0
dτ e(t−τ)HS (τ)T (τ) = O(tp+1).

Conversely, let S (t) = etH+O(tp+1). This implies
∫ t

0
dτ e(t−τ)HS (τ)T (τ) =

O(tp+1). Applying the integration rule and the multiplication rule gives S (τ)T (τ) =

O(τ p). Note that S (t) = etH + O(tp+1) = I + O(t) implies that the operator-

valued function S (t) is invertible for sufficiently small t and, since d
dt

S −1(t) =

−S −1(t)S ′(t)S −1(t), the inverse function S −1(t) is infinitely differentiable. Ap-

plying the multiplication rule gives T (τ) = O(τ p), which establishes the equiva-

lence of Conditions 1 and 2.

149



Note that S (t) = etH + O(tp+1) is equivalent to expT
( ∫ t

0
dτ(H + E (τ))

)
=

etH +O(tp+1), which is further equivalent to H + E (τ) = H +O(τ p) by the expo-

nentiation rule. Canceling H from both sides proves the equivalence of Conditions

1 and 3.

Finally, note that S (t) = etH(I + M (t)) = etH + O(tp+1) can be simplified

to etHM (t) = O(tp+1). The equivalence of Conditions 1 and 4 then follows from

the multiplication rule.

6.5 Error representations

For a product formula with a certain error type and order condition, we now

represent its error in terms of nested commutators of the operator summands.

Consider an operator H =
∑Γ

γ=1 Hγ with Γ summands. The ideal evolution

generated by H is etH , which we decompose using a pth-order product formula

S (t) =
∏Υ

υ=1

∏Γ
γ=1 e

ta(υ,γ)Hπυ(γ) . We know from Theorem 33 that the Trotter er-

ror can be expressed in the additive form S (t) = etH+
∫ t

0
dτ e(t−τ)HS (τ)T (τ), the

multiplicative form S (t) = etH(I+M (t)), where M (t) = expT
( ∫ t

0
dτ e−τHE (τ)eτH

)
− I, and the exponentiated form S (t) = expT

( ∫ t
0

dτ
(
H + E (τ)

))
. Furthermore,

both T (τ) and E (τ) consist of conjugations of matrix exponentials and have order

condition T (τ), E (τ) ∈ O (τ p) (Theorem 37).

We first consider the representation of a single conjugation of matrix expo-
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nentials

eτAs · · · eτA2eτA1Be−τA1e−τA2 · · · e−τAs , (6.38)

where A1, A2, . . . , As, B are operators and τ ∈ R. Our goal is to expand this con-

jugation into a finite series in the time variable τ . We will only keep track of

those terms with order O (τ p), because terms corresponding to 1, τ, . . . , τ p−1 will

vanish in the final representation of Trotter error due to the order condition. As

mentioned before, such a conjugation was previously analyzed based on a naive

application of the Taylor’s theorem [36] and an infinite-series expansion [98]. How-

ever, those results do not represent Trotter error as a finite number of commutators

of operator summands and they only apply to special systems such as those with

geometrical locality or suitable Lie-algebraic structure. Our new representation

overcomes these limitations.

We begin with the innermost layer eτA1Be−τA1 . Applying Taylor’s theorem

to order p− 1 with integral form of the remainder, we have

eτA1Be−τA1 = B +
[
A1, B

]
τ + · · ·+

[
A1, · · · ,

[
A1︸ ︷︷ ︸

p−1

, B
]
· · ·
] τ p−1

(p− 1)!

+

∫ τ

0

dτ2 e
(τ−τ2)A1

[
A1, · · · ,

[
A1︸ ︷︷ ︸

p

, B
]
· · ·
]
e−(τ−τ2)A1

τ p−1
2

(p− 1)!
.

(6.39)
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Using the abbreviation adA1(B) =
[
A1, B

]
, we rewrite

eτA1Be−τA1 = B + adA1(B)τ + · · ·+ adp−1
A1

(B)
τ p−1

(p− 1)!

+

∫ τ

0

dτ2 e
(τ−τ2)A1adpA1

(B)e−(τ−τ2)A1
τ p−1

2

(p− 1)!
.

(6.40)

By the multiplication rule and the integration rule of Proposition 36, the last term

has order ∫ τ

0

dτ2 e
(τ−τ2)A1adpA1

(B)e−(τ−τ2)A1
τ p−1

2

(p− 1)!
= O (τ p) . (6.41)

This term cannot be canceled by the order condition, and we keep it in our expan-

sion. The remaining terms corresponding to 1, τ, . . . , τ p−1 are substituted back to

the original conjugation of matrix exponentials.

We now consider the next layer of conjugation. We apply Taylor’s theorem

to the operators eτA2Be−τA2 , eτA2adA1(B)e−τA2 , . . . , eτA2adp−1
A1

(B)e−τA2 to order

152



p− 1, p− 2, . . . , 0, respectively, obtaining

eτA2Be−τA2 = B + · · ·+ adp−1
A2

(B)
τ p−1

(p− 1)!
+

∫ τ

0

dτ2

e(τ−τ2)A2adpA2
(B)e−(τ−τ2)A2

τ p−1
2

(p− 1)!
,

eτA2adA1(B)e−τA2 = adA1(B) + · · ·+ adp−2
A2

adA1(B)
τ p−2

(p− 2)!

+

∫ τ

0

dτ2 e
(τ−τ2)A2adp−1

A2
adA1(B)e−(τ−τ2)A2

τ p−2
2

(p− 2)!
,

...

eτA2adp−1
A1

(B)e−τA2 = adp−1
A1

(B) +

∫ τ

0

dτ2 e
(τ−τ2)A2adA2adp−1

A1
(B)e−(τ−τ2)A2 .

(6.42)

Combining with the result from the first layer, the Taylor remainders in the above

equation have order

∫ τ

0

dτ2 e
(τ−τ2)A2adpA2

(B)e−(τ−τ2)A2
τ p−1

2

(p− 1)!
= O (τ p) ,∫ τ

0

dτ2 e
(τ−τ2)A2adp−1

A2
adA1(B)e−(τ−τ2)A2

τ p−2
2

(p− 2)!
τ = O (τ p) ,

...∫ τ

0

dτ2 e
(τ−τ2)A2adA2adp−1

A1
(B)e−(τ−τ2)A2

τ p−1

(p− 1)!
= O (τ p) .

(6.43)

We keep these terms in our expansion and substitute the remaining ones back to

the original conjugation of matrix exponentials.

We repeat this analysis for all the remaining layers of the conjugation of

matrix exponentials. In doing so, we keep track of those terms with order O (τ p),

153



obtaining

eτAs · · · eτA2eτA1Be−τA1e−τA2 · · · e−τAs

= C0 + C1τ + · · ·+ Cp−1τ
p−1

+
s∑

k=1

∑
q1+···+qk=p

qk 6=0

eτAs · · · eτAk+1

·
∫ τ

0

dτ2 e
τ2AkadqkAk · · · adq1A1

(B)e−τ2Ak · (τ − τ2)qk−1τ q1+···+qk−1

(qk − 1)!qk−1! · · · q1!

· e−τAk+1 · · · e−τAs

(6.44)

for some operators C0, C1, . . . , Cp−1. Due to the order condition, the terms of order

1, τ, . . . , τ p−1 will vanish in our final representation of the Trotter error.

We now bound the spectral norm of those terms with order O (τ p). By the

triangle inequality, we have an upper bound of

s∑
k=1

∑
q1+···+qk=p

qk 6=0

∫ |τ |
0

dτ2
(|τ | − τ2)qk−1 |τ |q1+···+qk−1

(qk − 1)!qk−1! · · · q1!

∥∥adqkAk · · · adq1A1
(B)
∥∥ e2|τ |

∑s
l=1‖Al‖

=
s∑

k=1

∑
q1+···+qk=p

qk 6=0

(
p

q1 · · · qk

)
|τ |p

p!

∥∥adqkAk · · · adq1A1
(B)
∥∥ e2|τ |

∑s
l=1‖Al‖

=
∑

q1+···+qs=p

(
p

q1 · · · qs

)
|τ |p

p!

∥∥adqsAs · · · adq1A1
(B)
∥∥ e2|τ |

∑s
l=1‖Al‖

= αcomm

(
As, . . . , A1, B

) |τ |p
p!
e2|τ |

∑s
l=1‖Al‖,

(6.45)
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where

αcomm

(
As, . . . , A1, B

)
:=

∑
q1+···+qs=p

(
p

q1 · · · qs

)∥∥adqsAs · · · adq1A1
(B)
∥∥ . (6.46)

This bound holds for arbitrary operators A1, A2, . . . , As. When these operators are

anti-Hermitian, we can tighten the above analysis by evaluating the spectral norm

of a matrix exponential as 1. We have therefore established:

Theorem 38 (Commutator expansion of a conjugation of matrix exponentials).

Let A1, A2, . . . , As and B be operators. Then the conjugation eτAs · · · eτA2eτA1B

e−τA1e−τA2 · · · e−τAs (τ ∈ R) has the expansion

eτAs · · · eτA2eτA1Be−τA1e−τA2 · · · e−τAs = C0 +C1τ+ · · ·+Cp−1τ
p−1 +C (τ). (6.47)

Here, C0, . . . , Cp−1 are operators independent of τ . The operator-valued function

C (τ) is given by

C (τ) :=
s∑

k=1

∑
q1+···+qk=p

qk 6=0

eτAs · · · eτAk+1

·
∫ τ

0

dτ2 e
τ2AkadqkAk · · · adq1A1

(B)e−τ2Ak · (τ − τ2)qk−1τ q1+···+qk−1

(qk − 1)!qk−1! · · · q1!

· e−τAk+1 · · · e−τAs .
(6.48)
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Furthermore, we have the spectral-norm bound

‖C (τ)‖ ≤ αcomm

(
As, . . . , A1, B

) |τ |p
p!
e2|τ |

∑s
k=1‖Ak‖ (6.49)

for general operators and

‖C (τ)‖ ≤ αcomm

(
As, . . . , A1, B

) |τ |p
p!

(6.50)

when Ak (k = 1, . . . , s) are anti-Hermitian, where

αcomm

(
As, . . . , A1, B

)
=

∑
q1+···+qs=p

(
p

q1 · · · qs

)∥∥adqsAs · · · adq1A1
(B)
∥∥ . (6.51)

We now apply the above theorem to analyze Trotter error. For simplicity,

we only consider the additive error, although the analysis can be easily adapted to

handle the multiplicative error and the exponentiated error.

LetH =
∑Γ

γ=1Hγ be an operator that generates the evolution etH = et
∑Γ
γ=1Hγ .

Let S (t) =
∏Υ

υ=1

∏Γ
γ=1 e

ta(υ,γ)Hπυ(γ) be a pth-order product formula as in Sec-

tion 2.4. We know from Theorem 33 that the Trotter error can be expressed in an
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additive form as S (t) = etH +
∫ t

0
dτ e(t−τ)HS (τ)T (τ), where

T (τ) =
∑
(υ,γ)

−→∏
(υ′,γ′)≺(υ,γ)

e
−τa(υ′,γ′)Hπυ′ (γ

′)
(
a(υ,γ)Hπυ(γ)

) ←−∏
(υ′,γ′)≺(υ,γ)

e
τa(υ′,γ′)Hπυ′ (γ

′)

−
−→∏

(υ′,γ′)

e
−τa(υ′,γ′)Hπυ′ (γ

′)H

←−∏
(υ′,γ′)

e
τa(υ′,γ′)Hπυ′ (γ

′) .

(6.52)

Furthermore, Theorem 37 implies that the operator-valued function T (τ) satisfies

the order condition T (τ) = O(τ p).

We now apply Theorem 38 to expand every conjugation of matrix exponen-

tials in T (τ). In doing so, we only keep track of terms of order O(τ p), as those

terms corresponding to 1, τ, . . . , τ p−1 will vanish due to the order condition. We

obtain

‖T (τ)‖

≤
∑
(υ,γ)

αcomm

(−−−−−−−−−−−−−−−−−−−→{
Hπυ′ (γ

′), (υ
′, γ′) ≺ (υ, γ)

}
, Hπυ(γ)

)
τ p

p!
exp

(
2τ

∑
(υ′,γ′)≺(υ,γ)

∥∥Hπυ′ (γ
′)

∥∥)

+ αcomm

(−−−−−−→{
Hπυ′ (γ

′)

}
, H

)
τ p

p!
exp

(
2τ
∑

(υ′,γ′)

∥∥Hπυ′ (γ
′)

∥∥),
(6.53)

where
−→
{} denotes an ordered list where elements have increasing indices from left

to right. This is further bounded by

‖T (τ)‖ ≤ 2
∑
(υ,γ)

αcomm

(−−−−−−→{
Hπυ′ (γ

′)

}
, Hπυ(γ)

)
τ p

p!
exp

(
2τ
∑

(υ′,γ′)

∥∥Hπυ′ (γ
′)

∥∥)

= 2Υ
Γ∑
γ=1

αcomm

(−−−−−−→{
Hπυ′ (γ

′)

}
, Hγ

)
τ p

p!
exp

(
2τΥ

Γ∑
γ′=1

‖Hγ′‖
)
.

(6.54)
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After a final integration over τ , we have

∥∥S (t)− etH
∥∥ ≤ ∫ t

0

dτ
∥∥e(t−τ)HS (τ)T (τ)

∥∥
≤ 2Υ

Γ∑
γ=1

αcomm

(−−−−−−→{
Hπυ′ (γ

′)

}
, Hγ

)
tp+1

(p+ 1)!
exp

(
4tΥ

Γ∑
γ′=1

‖Hγ′‖
)
.

(6.55)

The factor 4 in the above bound can be tightened to 2 by directly substituting

(6.48) into (6.52), giving

∥∥S (t)− etH
∥∥ ≤ 2Υ

Γ∑
γ=1

αcomm

(−−−−−−→{
Hπυ′ (γ

′)

}
, Hγ

)
tp+1

(p+ 1)!
exp

(
2tΥ

Γ∑
γ′=1

‖Hγ′‖
)
.

(6.56)

This bound holds for arbitrary operators Hγ. If the operator summands are anti-

Hermitian, the bound can be further tightened to

∥∥S (t)− etH
∥∥ ≤ 2Υ

Γ∑
γ=1

αcomm

(−−−−−−→{
Hπυ′ (γ

′)

}
, Hγ

)
tp+1

(p+ 1)!
. (6.57)

Note that our analysis depends on πυ′ , the ordering of operator summands in

stage υ′ of the product formula. In the following, we prove an asymptotic bound

that removes this ordering constraint. The resulting bound is independent of the

definition of product formula and may thus be easier to compute in practice. Our

analysis here is not tight in terms of the constant prefactor, but it is sufficient to

establish the desired commutator scaling.

Recall from Theorem 38 that
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αcomm

(−−−−−−→{
Hπυ′ (γ

′)

}
, Hγ

)
=

∑
q(1,1)+···+q(Υ,Γ)=p

(
p

q(1,1) · · · q(Υ,Γ)

)∥∥∥ad
q(1,1)

Hπ1(1)
· · · ad

q(Υ,Γ)

HπΥ(Γ)
(Hγ)

∥∥∥ ,
(6.58)

which is at most p! times
∑

q(1,1)+···+q(Υ,Γ)=p

∥∥∥ad
q(1,1)

Hπ1(1)
· · · ad

q(Υ,Γ)

HπΥ(Γ)
(Hγ)

∥∥∥. Fixing the

value of γ, we claim that

∑
q(1,1)+···+q(Υ,Γ)=p

∥∥∥ad
q(1,1)

Hπ1(1)
· · · ad

q(Υ,Γ)

HπΥ(Γ)
(Hγ)

∥∥∥ ≤ Υp

Γ∑
γp+1=1

· · ·
Γ∑

γ2=1

∥∥[Hγp+1 , · · ·
[
Hγ2 , Hγ

]]∥∥ .
(6.59)

This can be seen as follows. Every nested commutator on the left-hand side has

p nesting layers and must thus be of the form on the right. Conversely, we fix

one term
∥∥[Hγp+1 , · · ·

[
Hγ2 , Hγ

]]∥∥ from the right and bound the number of times

this term might appear on the left. Each operator Hγ2 , . . . , Hγp+1 can appear in Υ

possible stages and hence there are Υp possibilities in total. When the stages are

fixed, this will uniquely determine one term
∥∥∥ad

q(1,1)

Hπ1(1)
· · · ad

q(Υ,Γ)

HπΥ(Γ)
(Hγ)

∥∥∥ on the left.

We have thus established the commutator scaling of Trotter error.

Theorem 39 (Trotter error with commutator scaling). Let H =
∑Γ

γ=1Hγ be an

operator consisting of Γ summands and t ≥ 0. Let S (t) =
∏Υ

υ=1

∏Γ
γ=1 e

ta(υ,γ)Hπυ(γ)

be a pth-order formula. Define α̃comm =
∑Γ

γ1,γ2,...,γp+1=1

∥∥[Hγp+1 , · · ·
[
Hγ2 , Hγ1

]]∥∥.

Then, the additive Trotter error and the multiplicative Trotter error, defined re-

spectively by S (t) = etH +A (t) and S (t) = etH(I+M (t)), can be asymptotically
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bounded as

‖A (t)‖ = O
(
α̃commt

p+1e2tΥ
∑Γ
γ=1‖Hγ‖

)
, ‖M (t)‖ = O

(
α̃commt

p+1e2tΥ
∑Γ
γ=1‖Hγ‖

)
.

(6.60)

Furthermore, if Hγ are anti-Hermitian,

‖A (t)‖ = O
(
α̃commt

p+1
)
, ‖M (t)‖ = O

(
α̃commt

p+1
)
. (6.61)

Corollary 40 (Trotter number with commutator scaling). Let H =
∑Γ

γ=1 Hγ be

an operator consisting of Γ summands with Hγ anti-Hermitian and t ≥ 0. Let

S (t) =
∏Υ

υ=1

∏Γ
γ=1 e

ta(υ,γ)Hπυ(γ) be a pth-order product formula. Define α̃comm =∑Γ
γ1,γ2,...,γp+1=1

∥∥[Hγp+1 , · · ·
[
Hγ2 , Hγ1

]]∥∥. Then, we have
∥∥S r(t/r)− etH

∥∥ = O (ε)

provided

r = O

(
α̃

1/p
commt1+1/p

ε1/p

)
. (6.62)

For any δ > 0, we can choose p sufficiently large so that 1/p < δ. For this

choice of p, we have r = O
(
α̃δcommt

1+δ/εδ
)
. Therefore, the Trotter number scales

as r = α̃
o(1)
commt1+o(1) if we simulate with constant accuracy. To obtain the asymp-

totic complexity of the product-formula algorithm, it thus suffices to compute the

quantity α̃comm =
∑

γ1,γ2,...,γp+1

∥∥[Hγp+1 , · · ·
[
Hγ2 , Hγ1

]]∥∥, which can often be done

by induction. We illustrate this by presenting a host of applications of our bound

to simulating quantum dynamics (Chapter 7) and quantum Monte Carlo methods
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(Chapter 9).

Note that we did not evaluate the constant prefactor of our bound in Theo-

rem 39. For that purpose, it is better to use Theorem 38, which gives a concrete

expression for the error operator. We provide numerical evidence in Chapter 7

suggesting that our bound has a small prefactor.
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Chapter 7: Analysis of product formulas: concrete systems

Our result on the analysis of Trotter error, in particular the commutator

scaling of Trotter error (Theorem 39), uncovers a host of new speedups of the

product-formula algorithm. In this chapter, we analyze the performance of product

formulas for simulating concrete physical systems, including nearest-neighbor lat-

tice systems (Section 7.1), electronic structure Hamiltonians (Section 7.2), k-local

Hamiltonians (Section 7.3), rapidly decaying power-law interactions (Section 7.4),

and clustered Hamiltonians (Section 7.5). Our result nearly matches or even out-

performs the best previous results in digital quantum simulation. We accompany

our analysis with numerical calculation in Section 7.6, which suggests that the er-

ror bounds also have nearly tight constant prefactors. We conclude in Section 7.7

with a brief discussion of the results and some open questions.

This chapter is partly based on the following papers:

[36] Andrew M. Childs and Yuan Su, Nearly optimal lattice simulation by product

formulas, Physical Review Letters 123 (2019), 050503, arXiv:1901.00564.

[37] Andrew M. Childs, Yuan Su, Minh C. Tran, Nathan Wiebe, and Shuchen Zhu,

A theory of Trotter error, 2019, arXiv:1912.08854.
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7.1 Nearest-neighbor lattice Hamiltonians

A natural class of Hamiltonians that includes many physically reasonable

systems is the class of lattice Hamiltonians [49, 53, 64, 78]. Lattice Hamiltoni-

ans arise in many models of condensed matter physics, including systems of spins

(e.g., Ising, XY, and Heisenberg models; Kitaev’s toric code and honeycomb mod-

els; etc.), fermions (e.g., the Hubbard model and the t-J model), and bosons (e.g.,

the Bose-Hubbard model). Note that fermion models can be simulated using local

interactions among qubits by using a mapping to qubits that preserves locality

[103]. Digital simulations of quantum field theory also typically involve approxi-

mation by a lattice system [64].

For simplicity, we mainly focus on nearest-neighbor lattice systems in one di-

mension (although the analysis can be generalized to other lattice models as well).

In this case, n qubits are laid out on a one-dimensional lattice and the Hamiltonian

only involves nearest-neighbor interactions. Specifically, a Hamiltonian H is a lat-

tice Hamiltonian if it acts on n qubits and can be decomposed as H =
∑n−1

j=1 Hj,j+1,

where each Hj,j+1 is a Hermitian operator that acts nontrivially only on qubits j

and j + 1. We assume that maxj ‖Hj,j+1‖ ≤ 1, for otherwise we evolve under the

normalized Hamiltonian H/maxj ‖Hj,j+1‖ for time maxj ‖Hj,j+1‖ t.

As established in Theorem 39, the asymptotic performance of a pth-order
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product formula depends on the quantity

α̃comm =
n−1∑

j1,j2,...,jp+1=1

∥∥[Hjp+1,jp+1+1, · · ·
[
Hj2,j2+1, Hj1,j1+1

]]∥∥ . (7.1)

For this nested commutator to be nonzero, the set of qubits on which the outer

operators act must intersect with those of the inner operators. In other words,

if we fix the choice of j1, then it must hold that j2 ∈ {j1 − 1, j1, j1 + 1}, j3 ∈

{j1 − 2, . . . , j1 + 2},. . . , jp+1 ∈ {j1 − p, . . . , j1 + p}. Therefore, we estimate

α̃comm ≤ 2p · 3 · 5 · · · (2p+ 1)

(
max
j
‖Hj,j+1‖

)p n−1∑
j1=1

‖Hj1,j1+1‖ = O (n) . (7.2)

Corollary 40 then implies that a Trotter number of r = O
(
n1/pt1+1/p/ε1/p

)
suffices

to simulate for time t with accuracy ε. Choosing p sufficiently large, letting ε be

constant, and implementing each Trotter step with O (n) gates, we have the gate

complexity

(nt)1+o(1) (7.3)

for simulating nearest-neighbor lattice Hamiltonians.

Based on the intuition from the BCH expansion, Jordan, Lee, and Preskill

claimed that product formulas can simulate an n-qubit lattice Hamiltonian for

time t using only (nt)1+o(1) gates [64], but they did not provide rigorous justifica-

tion and it is unclear how to formalize their argument. Our result gives, for the

first time, a rigorous proof of the Jordan-Lee-Preskill claim, providing a nearly
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optimal approach to lattice simulation simpler than the algorithm of [53] based on

Lieb-Robinson bounds. As a side application, we obtain a tensor network repre-

sentation of lattice systems with bond dimension 2n
o(1)t1+o(1)

, generalizing a recent

construction of [59, Lemma 17].

7.2 Second-quantized electronic structure

Simulating electronic structure Hamiltonians is one of the most widely stud-

ied applications of digital quantum simulation. An efficient solution of this prob-

lem could help design and engineer new pharmaceuticals, catalysts, and materials

[9]. Recent studies have focused on solving this problem using more advanced

simulation algorithms. Here, we demonstrate the power of product formulas for

simulating electronic structure Hamiltonians.

We consider the second-quantized representation of the electronic structure

problem. In the plane-wave dual basis, the electronic structure Hamiltonian has

the form [9, Eq. (8)]

H =
1

2n

∑
j,k,ν

κ2
ν cos[κν · rk−j]A†jAk︸ ︷︷ ︸

T

−4π

ω

∑
j,ι,ν 6=0

ζι cos[κν · (r̃ι − rj)]
κ2
ν

Nj︸ ︷︷ ︸
U

+
2π

ω

∑
j 6=k
ν 6=0

cos[κν · rj−k]
κ2
ν

NjNk

︸ ︷︷ ︸
V

,

(7.4)

where j, k range over all n orbitals and ω is the volume of the computational cell.
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Following the assumptions of [9, 76], we consider the constant density case where

n/ω = O (1). Here, κν = 2πν/ω1/3 are n vectors of plane-wave frequencies, where

ν are three-dimensional vectors of integers with elements in [−n1/3, n1/3]; rj are

the positions of electrons; ζι are nuclear charges such that
∑

ι |ζι| = O (n); and r̃ι

are the nuclear coordinates. The operators A†j and Ak are electronic creation and

annihilation operators, and Nj = A†jAj are the number operators. The potential

terms U and V are already diagonalized in the plane-wave dual basis. To further

diagonalize the kinetic term T , we may switch to the plane-wave basis. This is

accomplished by the fermionic fast Fourier transform FFFT [9, Eq. (10)]. We have

H = FFFT†
(

1

2

∑
ν

κ2
νNν

)
︸ ︷︷ ︸

T̃

FFFT + U + V.
(7.5)

To simulate the dynamics of such a Hamiltonian for time t, the current

fastest algorithms are qubitization [7, 74] with Õ (n3t) gate complexity and small

prefactor, and the interaction-picture algorithm [76] with complexity Õ (n2t) and

large prefactor. We show that higher-order product formulas can perform the same

simulation with gate complexity n2+o(1)t1+o(1). For the special case of the second-

order Suzuki formula, this confirms a recent observation of Kivlichan et al. from

numerical calculation [66].

Using the plane-wave basis for the kinetic operator and the plane-wave dual

basis for the potential operators, we have that all terms in T̃ and U + V commute

with each other, respectively. Then, we can decompose e−itT̃ and e−it(U+V ) into
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product of elementary matrix exponentials without introducing additional error,

giving the product formula

e−ita(Υ,2)T e−ita(Υ,1)(U+V ) · · · e−ita(1,2)T e−ita(1,1)(U+V )

= FFFT†e−ita(Υ,2)T̃FFFTe−ita(Υ,1)(U+V ) · · ·FFFT†e−ita(1,2)T̃FFFTe−ita(1,1)(U+V ).

(7.6)

For practical implementation, we need to further exponentiate spin operators us-

ing a fermionic encoding, such as the Jordan-Wigner encoding. However, these

implementation details do not affect the analysis of Trotter error and will thus

be ignored in the our discussion. The fermionic fast Fourier transform and the

exponentiation of T̃ , U , and V can all be implemented using the Jordan-Wigner

encoding with complexity Õ(n) [46, 76].

To analyze the performance of product formulas, we need to bound the spec-

tral norm of the nested commutators [Hγp+1 , · · · [Hγ2 , Hγ1 ]], where Hγ ∈ {T, U, V }.

This can be done by induction. In the base case, we need to estimate the norm of

the kinetic operator T and the potential operators U and V . For readability, we

use the abbreviated representation

T =
∑
j,k

tj,kA
†
jAk, U =

∑
j

ujNj, V =
∑
j,k

vj,kNjNk. (7.7)

Since
∥∥∥A†j∥∥∥ = ‖Aj‖ = ‖Nj‖ = 1, we can apply the triangle inequality and upper

bound ‖T‖, ‖U‖, and ‖V ‖ by the vector 1-norm
∥∥~t∥∥

1
, ‖~u‖1, and ‖~v‖1. We analyze
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this in Proposition 42.

Lemma 41 ([9, (F6) and (F13)]). Let an electronic structure Hamiltonian be given

as in (7.4). The following asymptotic analyses hold:

1. ∑
ν 6=0

1

κ2
ν

= O (n) . (7.8)

2. For any fixed j, ∑
ν

κ2
ν cos[κν · rj] = O (1) . (7.9)

3. ∑
ι

|ζι| = O (n) . (7.10)

Proposition 42. Let an electronic structure Hamiltonian be given as in (7.4). We

have the following bounds on the vector 1-norm and ∞-norm of the coefficients of

the kinetic operator and the potential operators:

∥∥~t∥∥∞ = O
(

1

n

)
,

∥∥~t∥∥
1

= O (n) ,

‖~u‖∞ = O (n) , ‖~u‖1 = O
(
n2
)
,

‖~v‖∞ = O (1) , ‖~v‖1 = O
(
n2
)
.

(7.11)

Proof. The claims about the asymptotic scaling of
∥∥~t∥∥∞, ‖~u‖∞, and ‖~v‖∞ follow

from Lemma 41. We then obtain the scaling of the vector 1-norm from the triangle

inequality.
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For the inductive step, we consider a general second-quantized operator of

the form

W =
∑
~j,~k,~l

w~j,~k,~l · · ·
(
A†jxAkx

)
· · · (Nly) · · ·︸ ︷︷ ︸

at most q operators

(7.12)

where ~j, ~k, and ~l denote vectors of orbitals, with total length at most q. We

keep track of the number of A†jxAkx and Nly in each summand; the largest such

number q is called the “layer” of W . We compute the commutator between the

kinetic/potential operator and a general second-quantized operator in Proposi-

tion 44.

Lemma 43 (Commutation rules of second-quantized operators). The following

commutation rules hold for second-quantized operators:

[
A†jAk, A

†
lAm

]
= δklA

†
jAm − δjmA

†
lAk,[

A†jAk, Nl

]
= δklA

†
jAl − δjlA

†
lAk,[

A†jAk, NlNm

]
=
(
δklA

†
jAl − δjlA

†
lAk
)
Nm +Nl

(
δkmA

†
jAm − δjmA†mAk

)
,

(7.13)

where δkl is the Kronecker-delta function.

Proof. The first rule is proved by [57, (1.8.14)]. The other rules follow from

the definition of the number operator Nl = A†lAl and the commutation relation[
AB,C

]
= A

[
B,C

]
+
[
A,C

]
B for any operators A, B, and C.

Proposition 44. Let an electronic structure Hamiltonian be given as in (7.4).
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The following statements hold for a general second-quantized operator W with q

layers:

1. W̃ =
[
T,W

]
is an operator with q layers and

∥∥∥~̃w∥∥∥
1
≤ 2qn

∥∥~t∥∥∞ ‖~w‖1;

2. W̃ =
[
U,W

]
is an operator with q layers and

∥∥∥~̃w∥∥∥
1
≤ 2q ‖~u‖∞ ‖~w‖1; and

3. W̃ =
[
V,W

]
is an operator with q + 1 layers and

∥∥∥~̃w∥∥∥
1
≤ 4qn ‖~v‖∞ ‖~w‖1.

Proof. For Statement 1, we have

W̃ =
[
T,W

]
=

[∑
α,β

tα,βA
†
αAβ,

∑
~j,~k,~l

w~j,~k,~l · · ·
(
A†jxAkx

)
· · · (Nly) · · ·

]

=
∑
α,β

∑
~j,~k,~l

tα,βw~j,~k,~l

[
A†αAβ, · · ·

(
A†jxAkx

)
· · · (Nly) · · ·

]
.

(7.14)

Performing the commutation sequentially, it suffices to consider

· · ·
[
A†αAβ, A

†
jx
Akx

]
· · · (Nly) · · ·

· · ·
(
A†jxAkx

)
· · ·
[
A†αAβ, Nly

]
· · ·

(7.15)

For fixed α, β, ~j, ~k, ~l, there are at most q such commutators.

For the first type of commutator, we have from Lemma 43 that

[
A†αAβ, A

†
jx
Akx
]

= δβ,jxA
†
αAkx − δα,kxA

†
jx
Aβ. (7.16)

Without loss of generality, consider the first term; its contribution to
∥∥∥~̃w∥∥∥

1
is at
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most ∑
α,β

∑
~j,~k,~l

δβ,jx

∣∣∣tα,βw~j,~k,~l∣∣∣ =
∑
α,~j,~k,~l

∣∣∣tα,jxw~j,~k,~l∣∣∣ ≤ n
∥∥~t∥∥∞ ‖~w‖1 . (7.17)

Similarly, we use Lemma 43 to analyze the second type of commutator

[
A†αAβ, Nly

]
= δly ,βA

†
αAβ − δly ,αA†αAβ (7.18)

and find its contribution to
∥∥∥~̃w∥∥∥

1
as

∑
α,β

∑
~j,~k,~l

δly ,β

∣∣∣tα,βw~j,~k,~l∣∣∣ =
∑
α,~j,~k,~l

∣∣∣tα,lyw~j,~k,~l∣∣∣ ≤ n
∥∥~t∥∥∞ ‖~w‖1 . (7.19)

For Statement 2, we have

W̃ =
[
U,W

]
=

[∑
α

uαNα,
∑
~j,~k,~l

w~j,~k,~l · · ·
(
A†jxAjx

)
· · · (Nly) · · ·

]

=
∑
α

∑
~j,~k,~l

uαw~j,~k,~l

[
Nα, · · ·

(
A†jxAkx

)
· · · (Nly) · · ·

]
.

(7.20)

Performing the commutation sequentially, it suffices to consider

· · ·
[
Nα, A

†
jx
Akx

]
· · · (Nly) · · · (7.21)

For fixed α, ~j, ~k, ~l, there are at most q such commutators. We use Lemma 43

again to get [
Nα, A

†
jx
Akx
]

= δα,jxA
†
jx
Akx − δα,kxA

†
jx
Akx (7.22)
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and find its contribution to
∥∥∥~̃w∥∥∥

1
as

∑
α

∑
~j,~k,~l

δα,jx

∣∣∣uαw~j,~k,~l∣∣∣ =
∑
~j,~k,~l

∣∣∣ujxw~j,~k,~l∣∣∣ ≤ ‖~u‖∞ ‖~w‖1 . (7.23)

For Statement 3, we have

W̃ =
[
V,W

]
=

[∑
α,β

vα,βNαNβ,
∑
~j,~k,~l

w~j,~k,~l · · ·
(
A†jxAkx

)
· · · (Nly) · · ·

]

=
∑
α,β

∑
~j,~k,~l

vα,βw~j,~k,~l

[
NαNβ, · · ·

(
A†jxAkx

)
· · · (Nly) · · ·

]
.

(7.24)

Performing the commutation sequentially, it suffices to consider

· · ·
[
NαNβ, A

†
jx
Akx

]
· · · (Nly) · · · (7.25)

For fixed α, β, ~j, ~k, ~l, there are at most q such commutators. Using Lemma 43,

we have

[
NαNβ, A

†
jx
Akx
]

=
(
δα,jxA

†
jx
Akx−δα,kxA

†
jx
Akx
)
Nβ+Nα

(
δβ,jxA

†
jx
Akx−δβ,kxA

†
jx
Akx
)
.

(7.26)

Without loss of generality, consider the first term; its contribution to
∥∥∥~̃w∥∥∥

1
is at

most ∑
α,β

∑
~j,~k,~l

δα,jx

∣∣∣vα,βw~j,~k,~l∣∣∣ =
∑
β,~j,~k,~l

∣∣∣vjx,βw~j,~k,~l∣∣∣ ≤ n ‖~v‖∞ ‖~w‖1 . (7.27)

172



We now compute the scaling of the spectral norm of

W =
[
Hγp+1 , · · ·

[
Hγ2 , Hγ1

]]
, (7.28)

by induction, where Hγ ∈ {T, U, V }. In the base case where p = 1, we have

from Proposition 42 and Proposition 44 that the coefficients of W have 1-norm

in O (n2), which implies ‖W‖ = O (n2). For the inductive step, suppose that

W =
[
Hγp+1 , · · ·

[
Hγ2 , Hγ1

]]
is a second-quantized operator whose coefficients have

vector one-norm in O (np). Then Proposition 44 implies that
[
T,W

]
,
[
U,W

]
,

and
[
V,W

]
are second-quantized operators and their coefficients have 1-norm in

O (np+1). This proves that

α̃comm =
∑

γ1,γ2,...,γp+1

∥∥[Hγp+1 , · · ·
[
Hγ2 , Hγ1

]]∥∥ = O
(
np+1

)
. (7.29)

Theorem 39 and Corollary 40 then imply a Trotter number of r = O
(
(nt)1+1/p/ε1/p

)
suffices to simulate with accuracy ε. Choosing p sufficiently large, letting ε be

constant, and implementing each Trotter step as in [46, 76], we have the gate

complexity

n2+o(1)t1+o(1) (7.30)

for simulating plane-wave electronic structure in second quantization.
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7.3 k-local Hamiltonians

A Hamiltonian is k-local if it can be expressed as a linear combination of

terms, each of which acts nontrivially on at most k = O (1) qubits. Such Hamilto-

nians, especially 2-local ones, are ubiquitous in physics. The first explicit quantum

simulation algorithm by Lloyd was specifically developed for simulating k-local

Hamiltonians [70] and later work provided more advanced approaches based on

the linear-combination-of-unitary technique [13–15, 73, 74, 76]. Here, we give an

improved product-formula algorithm that can be advantageous over previous sim-

ulation methods.

We consider a k-local Hamiltonian acting on n qubits

H =
∑
j1,...,jk

Hj1,...,jk , (7.31)

where each Hj1,...,jk acts nontrivially only on qubits j1, . . . , jk. We say Hj1,...,jk has

support {j1, . . . , jk}, denoting

S
(
Hj1,...,jk

)
:= {j1, . . . , jk}. (7.32)

We may assume that the summands are unitaries up to scaling and can be imple-

mented with constant cost, for otherwise we expand them further with respect to

the Pauli operators. The fastest previous approach to simulating a general k-local
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Hamiltonian is the qubitization algorithm by Low and Chuang [74], which has gate

complexity Õ
(
nk ‖H‖1 t

)
where ‖H‖1 =

∑
j1,...,jk

‖Hj1,...,jk‖.

To compare with the product-formula algorithm, we need to analyze the

nested commutators [Hγp+1 , · · · [Hγ2 , Hγ1 ]], where each Hγ is some local operator

Hj1,...,jk . In order for this commutator to be nonzero, every operator must have sup-

port that overlaps with the support of operators from the inner layers. Specifically,

we claim that the operator

Wγ1,...,γp+1 ≡
[
Hγp+1 , . . . , [Hγ2 , Hγ1 ]

]
(7.33)

is supported on at most k + p(k − 1) qubits and
∑Γ

γ1,...,γp+1=1

∥∥Wγ1,...,γp+1

∥∥ =

O (|||H|||p1 ‖H‖1), where we have used the 1-norm ‖H‖1 =
∑

j1,...,jk
‖Hj1,...,jk‖ and

the induced 1-norm |||H|||1 = maxl maxjl
∑

j1,...,jl−1,jl+1,...,jk
‖Hj1,...,jk‖. We prove

this claim by induction on p. For p = 1, the commutator Wγ1,γ2 = [Hγ2 , Hγ1 ] takes

the form
[
Hj1,...,jk , Hi1,...,ik

]
, which is nonzero only when there exist l,m = 1, . . . , k

such that jl = im. It then follows that Wγ1,γ2 is supported on at most 2k−1 qubits

and that

∑
j1,...,jk,
i1,...,ik

‖[Hj1,...,jk , Hi1,...,ik ]‖ ≤2k2 max
l

max
jl

∑
j1,...,jl−1,
jl+1,...,jk

‖Hj1,...,jk‖
∑
i1,...,ik

‖Hi1,...,ik‖

=O (|||H|||1 ‖H‖1) ,

(7.34)

which proves the claim for p = 1.
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Suppose that the claim holds up to p− 1. Following a similar argument, we

have

Γ∑
γ1,...,γp+1=1

∥∥Wγ1,...,γp+1

∥∥
=
∑
j1,...,jk

Γ∑
γ1,...,γp=1

∥∥[Hj1,...,jk ,Wγ1,...,γp

]∥∥
≤2k

(
k + (p− 1)(k − 1)

)
max
l

max
jl

∑
j1,...,jl−1,
jl+1,...,jk

‖Hj1,...,jk‖
Γ∑

γ1,...,γp=1

∥∥Wγ1,...,γp

∥∥
=2k

(
k + (p− 1)(k − 1)

)
|||H|||1 · O

(
|||H|||p−1

1 ‖H‖1

)
= O (|||H|||p1 ‖H‖1) .

(7.35)

Since the support of Hj1,...,jk and Wγ1,...,γp overlaps, the operator Wγ1,...,γp+1 acts

nontrivially on at most k + p(k − 1) qubits. This completes the induction.

Theorem 39 and Corollary 40 then imply that a Trotter number of r =

O
(
|||H|||1 ‖H‖

1/p
1 t1+1/p/ε1/p

)
suffices to simulate with accuracy ε. Choosing p suf-

ficiently large, letting ε be constant, and implementing each Trotter step with

Θ
(
nk
)

gates, we have the total gate complexity

nk|||H|||1 ‖H‖
o(1)
1 t1+o(1) (7.36)

for simulating a k-local Hamiltonian H.

We know from Section 2.1 that the norm inequality |||H|||1 ≤ ‖H‖1 always

holds. In fact, the gap between these two norms can be significant for many k-

local Hamiltonians. As an example, we consider n-qubit power-law interactions
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H =
∑

~i,~j∈ΛH~i,~j with exponent α [102], where Λ ⊆ Rd is a d-dimensional square

lattice, H~i,~j is an operator supported on two sites ~i,~j ∈ Λ, and

∥∥∥H~i,~j∥∥∥ ≤


1, if ~i = ~j,

1

‖~i−~j‖α
2

, if ~i 6= ~j.

(7.37)

Examples of such systems include those that interact via the Coulomb interactions

(α = 1), the dipole-dipole interactions (α = 3), and the van der Waals interactions

(α = 6).

To analyze the performance of product formulas, we use the following lemma,

whose proof can be found in [37, 102].

Lemma 45. Given an n-qubit d-dimensional square lattice Λ ⊆ Rd, it holds

∑
~j∈Λ\{~0}

1∥∥~j∥∥α
2

=



O
(
n1−α/d) , for 0 ≤ α < d,

O (log n) , for α = d,

O (1) , for α > d.

(7.38)

Furthermore, for α > d and x > 0, we have

∑
~j∈Λ,‖~j‖

2
≥x

1∥∥~j∥∥α
2

= O
(

1

xα−d

)
. (7.39)

Given a power-law Hamiltonian H with exponent α, we use Lemma 45 to
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compute the scaling of its induced 1-norm

|||H|||1 ≤ max
~i

∑
~j 6=~i

(
1 +

1∥∥~i−~j∥∥α
2

)
=



O
(
n1−α/d) , for 0 ≤ α < d,

O (log n) , for α = d,

O (1) , for α > d,

(7.40)

and 1-norm

‖H‖1 ≤
∑
~i

∑
~j 6=~i

(
1 +

1∥∥~i−~j∥∥α
2

)
=



O
(
n2−α/d) , for 0 ≤ α < d,

O (n log n) , for α = d,

O (n) , for α > d.

(7.41)

Thus the product-formula algorithm has gate complexity

gα =


n3−α

d
+o(1)t1+o(1) for 0 ≤ α < d,

n2+o(1)t1+o(1) for α ≥ d,

(7.42)

which has better n-dependence than the qubitization approach [74].

7.4 Rapidly decaying power-law interactions

We now consider d-dimensional power-law interactions 1/xα with exponent

α > 2d and interactions that decay exponentially with distance. Although these
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Hamiltonians can be simulated using algorithms for k-local Hamiltonians, more

efficient methods exist that exploit the locality of the systems [102]. We show that

product formulas can also leverage locality to provide an even faster simulation.

We first consider an n-qubit d-dimensional power-law Hamiltonian H =∑
i,j∈Λ

H~i,~j with exponent α > 2d. Such a Hamiltonian represents a rapidly decaying

long-range system that becomes nearest-neighbor interacting in the limit α→∞.

For α > 2d, the state-of-the-art simulation algorithm decomposes the evolution

based on the Lieb-Robinson bound with gate complexity Õ
(
(nt)1+2d/(α−d)

)
[102].

We give an improved approach using product formulas which has gate complexity

(nt)1+d/(α−d)+o(1).

The idea of our approach is to simulate a truncated Hamiltonian H̃ =∑
‖~i−~j‖

2
≤`

H~i,~j by taking only the terms H~i,~j where ‖~i−~j‖2 is not more than `, a parameter

that we determine later. The resulting H̃ is a 2-local Hamiltonian with 1-norm

‖H̃‖1 = O (n) and induced 1-norm |||H̃|||1 = O (1). Theorem 39 and Corollary 40

then imply that a Trotter number of r = O
(
n1/pt1+1/p/ε1/p

)
suffices to simulate

with accuracy ε. Choosing p sufficiently large, letting ε be constant, and imple-

menting each Trotter step with O
(
n`d
)

gates, we have the total gate complexity

`d(nt)1+o(1) for simulating H̃.

We know from Corollary 5 that the approximation of exp(−iHt) by exp(−iH̃t)
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has error

∥∥∥e−itH − e−itH̃∥∥∥ = O
(∥∥∥H − H̃∥∥∥ t) , (7.43)

where ‖H−H̃‖ = O
(
n/`α−d

)
for all α > 2d. To make this at most O (ε), we choose

the cut-off ` = Θ
(

(nt/ε)1/(α−d)
)

. Note that we require nt ≥ ε and t ≤ εnα/d−2 so

that n1/d ≥ ` ≥ 1. This implies the gate complexity

(nt)1+d/(α−d)+o(1), (7.44)

which is better than the state-of-the-art algorithm based on Lieb-Robinson bounds

[102].

We also consider interactions that decay exponentially with the distance x

as e−βx: ∥∥∥H~i,~j∥∥∥ ≤ e−β‖~i−~j‖2 , (7.45)

where β > 0 is a constant. Although such interactions are technically long-range,

their fast decay makes them quasi-local for most applications in physics. Our

approach to simulating such a quasi-local system is similar to that for the rapidly

decaying power-law Hamiltonian, except we choose the cut-off ` = Θ(log(nt/ε)),

giving a product-formula algorithm with gate complexity

(nt)1+o(1). (7.46)
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Our result for quasi-local systems is asymptotically the same as a recent result

for nearest-neighbor Hamiltonians [36]. For rapidly decaying power-law systems,

we reproduce the nearest-neighbor case [36] in the limit α→∞.

7.5 Clustered Hamiltonians

We now consider the application of our theory to simulating clustered Hamil-

tonians [86]. Such systems appear naturally in the study of classical fragmentation

methods and quantum mechanics/molecular mechanics methods for simulating

large molecules. Peng, Harrow, Ozols, and Wu recently proposed a hybrid simula-

tor for clustered Hamiltonians [86]. Here, we show that the performance of their

simulator can be significantly improved using our Trotter error bound.

Let H be a Hamiltonian acting on n qubits. Following the same setting as

in [86], we assume that each term in H acts on at most two qubits with spectral

norm at most one, and each qubit interacts with at most a constant number d′ of

other qubits. We further assume that the qubits are grouped into multiple parties

and write

H = A+B =
∑
l

H
(1)
l +

∑
l

H
(2)
l , ∀l :

∥∥∥H(1)
l

∥∥∥ ,∥∥∥H(2)
l

∥∥∥ ≤ 1, (7.47)

where terms in A act on qubits within a single party and terms in B act between

two different parties.
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The key step in the approach of Peng et al. is to group the terms within

each party in A and simulate the resulting Hamiltonian. This is accomplished by

applying product formulas to the decomposition

H = A+
∑
l

H
(2)
l . (7.48)

Using the first-order Lie-Trotter formula, Reference [86] chooses the Trotter num-

ber

r = O
(
h2
Bt

2

ε

)
(7.49)

to ensure that the error of the decomposition is at most ε, where hB =
∑

l ‖H
(2)
l ‖

is the interaction strength. Here, we show that it suffices to take

r = O

d′ 1+p
2 h

1
p

Bt
1+ 1

p

ε
1
p

 = O

(
h

1/p
B t1+1/p

ε1/p

)
(7.50)

using a pth-order product formula

S (t) = e−itaΥA
∏
l

e−ita(Υ,l)H
(2)
l · · · e−ita1A

∏
l

e−ita(1,l)H
(2)
l . (7.51)

This improves the analysis of [86] for the first-order formula and extends the result

to higher-order cases.
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In light of Theorem 39 and Corollary 40, we need to compute

∑
γ1,γ2,...,γp+1

∥∥[Hγp+1 , · · ·
[
Hγ2 , Hγ1

]
· · ·
]∥∥ , (7.52)

where each Hγ is either H
(2)
l or A. Since

[
A,A

]
= 0 and

[
Hγ, A

]
= −

[
A,Hγ

]
, we

may without loss of generality assume that Hγ1 = H
(2)
l1

, i.e.,

∑
γ1,γ2,...,γp+1

∥∥[Hγp+1 , · · ·
[
Hγ2 , Hγ1

]
· · ·
]∥∥ =

∑
l1,γ2,...,γp+1

∥∥∥[Hγp+1 , · · ·
[
Hγ2 , H

(2)
l1

]
· · ·
]∥∥∥ .

(7.53)

We now replace each A by
∑

lH
(1)
l and apply the triangle inequality to get

∑
l1,γ2,...,γp+1

∥∥∥[Hγp+1 , · · ·
[
Hγ2 , H

(2)
l1

]
· · ·
]∥∥∥ ≤ ∑

l1,l2,...,lp+1

∥∥∥[Klp+1 , · · ·
[
Kl2 , H

(2)
l1

]
· · ·
]∥∥∥ ,

(7.54)

where each Kl is either H
(1)
l or H

(2)
l . Since each qubit supports at most d′ terms

and each term acts on at most two qubits,

∑
l1,l2,...,lp+1

∥∥∥[Klp+1 , · · ·
[
Kl2 , H

(2)
l1

]
· · ·
]∥∥∥ = O

(
d′p · · · d′2d′

∑
l1

∥∥∥H(2)
l1

∥∥∥) = O
(
d′

(1+p)p
2 hB

)
.

(7.55)
This completes the proof.

The hybrid simulator of [86] has runtime 2O(r·cc(g)), where r is the Trotter

number and cc(g) is the contraction complexity of the interaction graph g between

the parties. Our improved choice of r thus provides a dramatic improvement.
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7.6 Numerics

We have analyzed the error of higher-order product formulas in Section 6.5.

That analysis is sufficient to establish the commutator scaling in Theorem 39, but

the resulting bounds have large prefactors. Here, we propose heuristic strategies to

tighten the analysis and numerically benchmark our bounds for nearest-neighbor

lattice Hamiltonians. Throughout this section, we assume H is Hermitian, t ∈ R,

and consider the real-time evolution e−itH .

We first consider a Hamiltonian H = A + B consisting of two summands.

The ideal evolution under H for time t is e−itH , which we decompose using the

fourth-order product formula S4(t). Recall from (2.14) that S4(t) is defined by

S2(t) := e−i
t
2
Ae−itBe−i

t
2
A,

S4(t) :=
[
S2(u2t)

]2
S2((1− 4u2)t)

[
S2(u2t)

]2
,

(7.56)

with u2 := 1/(4− 41/3). Expanding this definition, we obtain

S4(t) = e−ita6Ae−itb5Be−ita5Ae−itb4Be−ita4Ae−itb3Be−ita3Ae−itb2Be−ita2Ae−itb1Be−ita1A,

(7.57)

where a1 := a6 := u2

2
, b1 := a2 := b2 := b4 := a5 := b5 := u2, a3 := a4 := 1−3u2

2
, and

b3 := 1− 4u2.

Without loss of generality, we analyze the additive Trotter error of S4(t).

184



We gave an analysis in Section 6.3 that works for a general product formula, and

we improve that here to obtain an error bound for S4(t) with small prefactor. To

this end, we compute

d

dt
S4(t)− (−iH)S4(t)

=
[
e−ita6A,−ib5B

]
e−itb5Be−ita5Ae−itb4Be−ita4Ae−itb3Be−ita3Ae−itb2Be−ita2Ae−itb1Be−ita1A

+
[
e−ita6Ae−itb5B,−ia5A

]
e−ita5Ae−itb4Be−ita4Ae−itb3Be−ita3Ae−itb2Be−ita2Ae−itb1Be−ita1A

+ · · ·

+
[
e−ita6Ae−itb5Be−ita5Ae−itb4Be−ita4Ae−itb3Be−ita3Ae−itb2Be−ita2A,−ib1B

]
e−itb1Be−ita1A

+
[
e−ita6Ae−itb5Be−ita5Ae−itb4Be−ita4Ae−itb3Be−ita3Ae−itb2Be−ita2Ae−itb1B,−ia1A

]
e−ita1A.

(7.58)
Performing the commutation sequentially, we have

d

dt
S4(t)− (−iH)S4(t)

=
[
e−ita6A,−ib5B

]
e−itb5Be−ita5Ae−itb4Be−ita4Ae−itb3Be−ita3Ae−itb2Be−ita2Ae−itb1Be−ita1A

+ e−ita6A
[
e−itb5B,−ia5A

]
e−ita5Ae−itb4Be−ita4Ae−itb3Be−ita3Ae−itb2Be−ita2Ae−itb1Be−ita1A

+ · · ·
(7.59)
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+ e−ita6Ae−itb5Be−ita5Ae−itb4Be−ita4Ae−itb3Be−ita3Ae−itb2B
[
e−ita2A,−ib1B

]
e−itb1Be−ita1A

+ e−ita6Ae−itb5Be−ita5Ae−itb4Be−ita4Ae−itb3B
[
e−ita3A,−ib1B

]
e−itb2Be−ita2Ae−itb1Be−ita1A

+ e−ita6Ae−itb5Be−ita5Ae−itb4B
[
e−ita4A,−ib1B

]
e−itb3Be−ita3Ae−itb2Be−ita2Ae−itb1Be−ita1A

+ e−ita6Ae−itb5B
[
e−ita5A,−ib1B

]
e−itb4Be−ita4Ae−itb3Be−ita3Ae−itb2Be−ita2Ae−itb1Be−ita1A

+
[
e−ita6A,−ib1B

]
e−itb5Be−ita5Ae−itb4Be−ita4Ae−itb3Be−ita3Ae−itb2Be−ita2Ae−itb1Be−ita1A

+ e−ita6Ae−itb5Be−ita5Ae−itb4Be−ita4Ae−itb3Be−ita3Ae−itb2Be−ita2A
[
e−itb1B,−ia1A

]
e−ita1A

+ e−ita6Ae−itb5Be−ita5Ae−itb4Be−ita4Ae−itb3Be−ita3A
[
e−itb2B,−ia1A

]
e−ita2Ae−itb1Be−ita1A

+ e−ita6Ae−itb5Be−ita5Ae−itb4Be−ita4A
[
e−itb3B,−ia1A

]
e−ita3Ae−itb2Be−ita2Ae−itb1Be−ita1A

+ e−ita6Ae−itb5Be−ita5A
[
e−itb4B,−ia1A

]
e−ita4Ae−itb3Be−ita3Ae−itb2Be−ita2Ae−itb1Be−ita1A

+ e−ita6A
[
e−itb5B,−ia1A

]
e−ita5Ae−itb4Be−ita4Ae−itb3Be−ita3Ae−itb2Be−ita2Ae−itb1Be−ita1A.

(7.60)
We further define

c1 := a1, d1 := b1,

c2 := a1 + a2, d2 := b1 + b2,

c3 := a1 + a2 + a3, d3 := b1 + b2 + b3,

c4 := a1 + a2 + a3 + a4, d4 := b1 + b2 + b3 + b4,

c5 := a1 + a2 + a3 + a4 + a5, d5 := b1 + b2 + b3 + b4 + b5,

(7.61)

so that
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d

dt
S4(t)− (−iH)S4(t)

=
[
e−ita6A,−id5B

]
e−itb5Be−ita5Ae−itb4Be−ita4Ae−itb3Be−ita3Ae−itb2Be−ita2Ae−itb1Be−ita1A

+ e−ita6A
[
e−itb5B,−ic5A

]
e−ita5Ae−itb4Be−ita4Ae−itb3Be−ita3Ae−itb2Be−ita2Ae−itb1Be−ita1A

+ · · ·

+ e−ita6Ae−itb5Be−ita5Ae−itb4Be−ita4Ae−itb3Be−ita3Ae−itb2B
[
e−ita2A,−id1B

]
e−itb1Be−ita1A

+ e−ita6Ae−itb5Be−ita5Ae−itb4Be−ita4Ae−itb3Be−ita3Ae−itb2Be−ita2A
[
e−itb1B,−ic1A

]
e−ita1A.

(7.62)

In Section 6.3, we factor out the operator-valued function S4(t) from the

left-hand side of the above equation as

d

dt
S4(t)− (−iH)S4(t) = S4(t)T (t). (7.63)

This approach suffices to establish the asymptotic bound in Theorem 39 and Corol-

lary 40. However, the resulting function T (t) contains unitary conjugations with

a large number of conjugating layers, which defeats the goal of establishing tight

error bounds. We improve this by simultaneously factoring out S4,left(t) from the

left-hand side of the equation and S4,right(t) from the right-hand side, obtaining

d

dt
S4(t)− (−iH)S4(t) = S4,left(t)T4(t)S4,right(t), (7.64)
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where

Sleft(t) := e−ita6Ae−itb5Be−ita5Ae−itb4Be−ita4A,

Sright(t) := e−itb3Be−ita3Ae−itb2Be−ita2Ae−itb1Be−ita1A.

(7.65)

It then remains to analyze T4(t).

To this end, we use the fact that

[
etX , Y

]
= etX

∫ t

0

dτ e−τX
[
X, Y

]
eτX

=

∫ t

0

dτ eτX
[
X, Y

]
e−τXetX ,

(7.66)

for any t ∈ R and operators X, Y . We then have from Lemma 1 that

S4(t) = e−itH +

∫ t

0

dτ1 e
−i(t−τ1)HS4,left(τ1)T4(τ1)S4,right(τ1), (7.67)

where

T4(τ1)

=

∫ τ1

0

dτ2 e
iτ1a4Aeiτ1b4Beiτ1a5Aeiτ1b5Beiτ2a6A

[
− ia6A,−id5B

]
e−iτ2a6Ae−iτ1b5Be−iτ1a5Ae−iτ1b4Be−iτ1a4A

+

∫ τ1

0

dτ2 e
iτ1a4Aeiτ1b4Beiτ1a5Aeiτ2b5B

[
− ib5B,−ic5A

]
e−iτ2b5Be−iτ1a5Ae−iτ1b4Be−iτ1a4A

+

∫ τ1

0

dτ2 e
iτ1a4Aeiτ1b4Beiτ2a5A

[
− ia5A,−id4B

]
e−iτ2a5Ae−iτ1b4Be−iτ1a4A

+

∫ τ1

0

dτ2 e
iτ1a4Aeiτ2b4B

[
− ib4B,−ic4A

]
e−iτ2b4Be−iτ1a4A

+

∫ τ1

0

dτ2 e
iτ2a4A

[
− ia4A,−id3B

]
e−iτ2a4A

(7.68)
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+

∫ τ1

0

dτ2 e
−iτ2b3B

[
− ib3B,−ic3A

]
eiτ2b3B

+

∫ τ1

0

dτ2 e
−iτ1b3Be−iτ2a3A

[
− ia3A,−id2B

]
eiτ2a3Aeiτ1b3B

+

∫ τ1

0

dτ2 e
−iτ1b3Be−iτ1a3Ae−iτ2b2B

[
− ib2B,−ic2A

]
eiτ2b2Beiτ1a3Aeiτ1b3B

+

∫ τ1

0

dτ2 e
−iτ1b3Be−iτ1a3Ae−iτ1b2Be−iτ2a2A

[
− ia2A,−id1B

]
eiτ2a2Aeiτ1b2Beiτ1a3Aeiτ1b3B

+

∫ τ1

0

dτ2 e
−iτ1b3Be−iτ1a3Ae−iτ1b2Be−iτ1a2Ae−iτ2b1B

[
− ib1B,−ic1A

]
eiτ2b1Beiτ1a2Aeiτ1b2Beiτ1a3Aeiτ1b3B.

(7.69)

The operator-valued function T4(τ1) has the order condition T4(τ1) = O(τ 4
1 ),

which follows from Proposition 36 and the fact that S4(t) = e−itH + O(t5). For

terms in T4(τ1), we compute the Taylor expansion of each layer of unitary conju-

gation as in Section 6.5. In light of Lemma 35, we expand the time variables τ1 and

τ2 to third order, as there already exists the double integral
∫ t

0
dτ
∫ τ1

0
dτ2. We then

apply the triangle inequality to bound the spectral norm of a linear combination of

nested commutators of A and B with four nesting layers. Since [A,A] = [B,B] = 0

and [A,B] = [B,A], the bound only contains 25/4 = 8 nonzero terms. Altogether,
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we obtain

∥∥S4(t)− e−itH
∥∥

≤t5
(

0.0047
∥∥[A, [A, [A, [B,A]]]]∥∥+ 0.0057

∥∥[A, [A, [B, [B,A]]]]∥∥
+ 0.0046

∥∥[A, [B, [A, [B,A]]]]∥∥+ 0.0074
∥∥[A, [B, [B, [B,A]]]]∥∥

+ 0.0097
∥∥[B, [A, [A, [B,A]]]]∥∥+ 0.0097

∥∥[B, [A, [B, [B,A]]]]∥∥
+ 0.0173

∥∥[B, [B, [A, [B,A]]]]∥∥+ 0.0284
∥∥[B, [B, [B, [B,A]]]]∥∥),

(7.70)

assuming t ≥ 0.

Proposition 46 (Trotter error bound for the fourth-order Suzuki formula with

two summands). Let H = A + B be a Hamiltonian consisting of two summands

and t ≥ 0. Let S4(t) be the fourth-order Suzuki formula (2.14). Then,

∥∥S4(t)− e−itH
∥∥

≤t5
(

0.0047
∥∥[A, [A, [A, [B,A]]]]∥∥+ 0.0057

∥∥[A, [A, [B, [B,A]]]]∥∥
+ 0.0046

∥∥[A, [B, [A, [B,A]]]]∥∥+ 0.0074
∥∥[A, [B, [B, [B,A]]]]∥∥

+ 0.0097
∥∥[B, [A, [A, [B,A]]]]∥∥+ 0.0097

∥∥[B, [A, [B, [B,A]]]]∥∥
+ 0.0173

∥∥[B, [B, [A, [B,A]]]]∥∥+ 0.0284
∥∥[B, [B, [B, [B,A]]]]∥∥).

(7.71)

Although we do not have a rigorous proof of the tightness of our higher-

order bounds, numerical evidence suggests that they are close to tight for various

systems. We first consider simulating a one-dimensional Heisenberg model with

190



a random magnetic field (3.1). This system can be simulated to understand the

transition between the many-body localized phase and the thermalized phase in

condensed matter physics, although a classical simulation is only feasible when the

system size is small [78].

We classify the summands of the Hamiltonian into two groups and set

A =

bn
2
c∑

j=1

(
X2j−1X2j + Y2j−1Y2j + Z2j−1Z2j + h2j−1Z2j−1

)
,

B =

dn
2
e−1∑
j=1

(
X2jX2j+1 + Y2jY2j+1 + Z2jZ2j+1 + h2jZ2j

)
.

(7.72)

Here, all the summands in A (and B) commute with each other, so we can further

decompose exponentials like e−itakA (and e−itbkB) without introducing error, giving

a product formula with summands ordered in an even-odd pattern [36]. We also

consider grouping Hamiltonian summands as

H1 =
n−1∑
j=1

XjXj+1, H2 =
n−1∑
j=1

YjYj+1, H3 =
n−1∑
j=1

(
ZjZj+1 + hjZj

)
, (7.73)

which we call the X-Y-Z ordering [34]. Similar to the even-odd ordering, the

summands in H1, H2, and H3 commute with each other respectively, so the cor-

responding exponentials can also be decomposed without error. Note that our

asymptotic bounds in Theorem 39 and Corollary 40 hold irrespective of the or-

dering of Hamiltonian summands, but the prefactors will depend on the choice of

ordering. Our choice here maximizes the commutativity of the Hamiltonian.
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Up to a difference on the boundary condition, Reference [34] estimates the

resource requirements of simulating the Heisenberg model using various quantum

algorithms. They find that product formulas, especially the fourth-order and the

sixth-order formula, can outperform more recent quantum algorithms for simulat-

ing small instances of (3.1), although their best Trotter error bound is loose by

several orders of magnitude. This is alleviated by [36], which gives a fourth-order

bound that overestimates the gate complexity by about a factor of 17. For a fair

comparison, we numerically implement our approach to analyze the fourth-order

formula S4(t) as well (Proposition 46).

For the even-odd ordering, we need to compute all the nested commutators of

A and B. We do this by fixing one term X2j−1X2j+Y2j−1Y2j+Z2j−1Z2j+h2j−1Z2j−1

of A in the inner-most layer and simplifying all the outer terms using geometrical

locality. We then apply the triangle inequality to analyze the summation of terms

over j = 1, . . . , bn
2
c. We use a similar approach to analyze the X-Y-Z ordering.

This computes our error bounds for small t. To simulate for a longer time, we

divide the evolution into r Trotter steps and apply our bounds within each step.

We seek the smallest Trotter number r for which the estimated error is at most

some desired ε. This can be efficiently computed using a binary search as described

in [34].

We compare our improved analysis with the best previous bounds [34, 36]

for simulating the Heisenberg model (3.1). Specifically, we consider the so-called

192



10 100
101

102

103

104

105

106

107

108

109
r = O (n2.50)

r = O (n1.56)

r = O (n1.52)

r = O (n1.64)

n

r

Even-odd
Analytic [34]
Locality [36]
Our bound
Empirical

10 100
101

102

103

104

105

106

107

108

109
r = O (n2.50)

r = O (n2.30)

r = O (n1.52)

r = O (n1.62)

n

r

X-Y-Z
Analytic [34]
Commutator [34]
Our bound
Empirical

Figure 7.1: Comparison of r for different product-formula bounds for the Heisenberg
model. Error bars are omitted as they are negligibly small on the plot. Straight lines
show power-law fits to the data. Note that the exponent for the empirical data is based
on brute-force simulations of small systems, and thus may not precisely capture the true
asymptotic scaling due to finite-size effects.

analytic bound [34], which applies to both the even-odd and the X-Y-Z ordering.

The commutator bound of [34] offers a slight improvement over the analytic bound,

but its numerical implementation requires extensive classical computations and so

we only compare the existing result for the X-Y-Z ordering. Likewise, we compare

the locality-based bound of [36] only for the even-odd case, although it can exploit

the geometrical locality of the X-Y-Z ordering as well.

To understand how tight our bounds are, we also include the empirical Trotter

number by directly computing the error
∥∥(S4(t/r)

)r − e−itH∥∥ for n = 4, . . . , 12 and

extrapolating the results to larger systems. We choose the evolution time t = n

and set the simulation accuracy ε = 10−3 as in [34] and [36]. For each system size,

we generate five instances of Hamiltonians with random coefficients. Our results

are plotted in Figure 7.1.

We find that the asymptotic scaling of our new bounds matches that of
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the empirical result up to finite-size effects and the prefactors are significantly

tightened. At n = 10, the Trotter number predicted by our bounds is loose only by

a factor of 5.1 for the even-odd ordering of terms and 7.2 for the X-Y-Z ordering. In

comparison, the commutator bound of [34] only exploits the commutativity of the

lowest-order term of the BCH series and is bottlenecked by the use of tail bounds.

The previous bound [36] based on geometrical locality is also uncompetitive since

it cannot directly leverage the nested commutators of the Hamiltonian terms.

7.7 Discussion

We have developed a general theory of Trotter error and identified a host of

applications to simulating quantum dynamics. We consider Trotter error of var-

ious types, including additive error, multiplicative error, and error that appears

in the exponent. For each type, we apply the correct order condition to cancel

lower-order terms, and represent higher-order ones as explicit nested commuta-

tors. Table 7.1 compares our results against the best previous ones for simulating

quantum dynamics.

Compared to the analysis of other simulation algorithms such as the trun-

cated Taylor-series algorithm [14] and the qubitization approach [74], the derivation

of our Trotter error theory is considerably more involved. However, the resulting

error bounds are succinct and easy to evaluate. Theorem 39 shows that Trotter

error incurred by decomposing the evolution generated by H =
∑Γ

γ=1Hγ depends
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System Best previous result New result

Nearest-neighbor lattice (nt)1+o(1) (Conjecture), Õ (nt) (Lieb-Robinson bound) (nt)1+o(1)

Electronic structure Õ
(
n2t
)

(Interaction picture) n2+o(1)t1+o(1)

k-local Hamiltonians Õ
(
nk ‖H‖1 t

)
(Qubitization) nk|||H|||1 ‖H‖

o(1)
1 t1+o(1)

1/xα (α < d) Õ(n4−α/dt) (Qubitization) n3−α/d+o(1)t1+o(1)

1/xα (d ≤ α ≤ 2d) Õ(n3t) (Qubitization) n2+o(1)t1+o(1)

1/xα (α > 2d) Õ
(
(nt)1+2d/(α−d)) (Lieb-Robinson bound) (nt)1+d/(α−d)+o(1)

Clustered Hamiltonians 2O(h2
Bt

2 cc(g)/ε) 2
O
(
h
o(1)
B t1+o(1) cc(g)/εo(1)

)

Table 7.1: Comparison of our results and the best previous results for simulating quan-
tum dynamics.

asymptotically on the quantity α̃comm =
∑

γ1,γ2,...,γp+1

∥∥[Hγp+1 , · · ·
[
Hγ2 , Hγ1

]]∥∥,

which can be computed by induction as for nearest-neighbor lattice systems, second-

quantized plane-wave electronic structure, k-local Hamiltonians, rapidly decaying

interacted systems, and clustered Hamiltonians. We further show how to improve

the analysis to find error bounds with small constant prefactors. Numerical simula-

tion suggests that our higher-order error bounds are close to tight for systems with

nearest-neighbor interactions, and we hope future work can explore their tightness

for other systems.

Our result shows that high-order product formulas can be advantageous for

simulating many physical systems. Interestingly, we can often achieve this advan-

tage without using a formula of very large order. For d-dimensional power-law

interactions with exponent α > 2d, we have shown that the pth-order product-

formula algorithm has gate complexity O
(
(nt)1+d/(α−d)+1/p

)
, whereas the state-of-
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the-art Lieb-Robinson-based approach requires Õ
(
(nt)1+2d/(α−d)

)
gates. Product

formulas can thus scale better if p ≥ (α− d)/d, which is small for various physical

systems such as the dipole-dipole interactions (α = 3) and the Van der Waals

interactions (α = 6). For other systems such as nearest-neighbor interactions

and electronic structure Hamiltonians, product formulas do not exactly match the

state-of-the-art result in terms of the asymptotic scaling, but they are still advan-

tageous for simulating systems of small sizes [34, 66].

The complexity of the product-formula approach is determined by both the

Trotter number (or Trotter error) and the cost per Trotter step. A naive imple-

mentation of each Trotter step exponentiates all the terms in the Hamiltonian,

which has a cost that scales with the total number of terms. However, this worst-

case complexity can be avoided by truncating the original Hamiltonian, as we

have demonstrated in the simulation of rapidly decaying power-law Hamiltoni-

ans. Recent studies have proposed other techniques for implementing Trotter steps

[3, 66, 67, 107]. Those techniques can be applied in combination with our Trotter

error analysis to further speed up the product-formula algorithm.

We have restricted to the evolutions generated by time-independent oper-

ators. In the more general case, we have an operator-valued function H (τ) =∑Γ
γ=1 Hγ(τ) and our goal is to simulate the time-ordered evolution expT

( ∫ t
0

dτ∑Γ
γ=1 Hγ(τ)

)
[13, 14, 16, 65, 76, 88, 110]. Under certain smoothness assump-

tions, Reference [110] shows that this evolution can be simulated using product
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formulas, although their analysis does not exploit the commutativity of operator

summands. We believe our approach can be extended to give improved analysis for

time-dependent Hamiltonian simulation, but we leave a detailed study for future

work.

Previous work considered several generalized product formulas, such as ones

based on the divide-and-conquer construction [54], the randomized construction

[35, 84], and the linear-combination-of-unitaries construction [75]. The common

underlying idea is to approximate the ideal evolution to pth order using formulas

of order qk, where qk ≤ p. Our theory can be applied to represent the qkth-

order Trotter error in terms of nested commutators, thus improving the previous

analyses of [35, 54, 75, 84]. This leads to a better understanding of these generalized

formulas and justifies their potential utility in quantum simulation.

Several other questions related to our theory deserve further investigation.

For example, the spectral-norm error bound computed here would be overly pes-

simistic if we simulate with a low-energy initial state. It would then be bene-

ficial to change the error metric to the Euclidean distance to avoid the worst-

case error propagation. Our analysis has also assumed an operator decomposition

H =
∑Γ

γ=1Hγ given a prior, but one may instead seek an alternative decomposi-

tion to maximize the commutativity of operator summands. Finally, we focus on

the error analysis within each Trotter step and apply the triangle inequality across

different steps, which may be improved upon as hinted in previous work [58, 96].
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Chapter 8: Quantum singular value transformation

In this chapter, we develop an algorithmic framework we call “quantum sin-

gular value transformation”, which is inspired by techniques from quantum simula-

tion. We discuss the core concepts of this framework, including the standard-form

encoding, qubitization, and quantum signal processing in Section 8.1, Section 8.2,

and Section 8.3, respectively. Quantum singular value transformation unifies a

host of existing quantum algorithms and provides a convenient approach to de-

signing new quantum algorithms. We illustrate this in Section 8.4 by applying the

framework to implementing principal component regression.

This chapter is partly based on the following paper:

[50] András Gilyén, Yuan Su, Guang Hao Low, and Nathan Wiebe, Quantum singu-

lar value transformation and beyond: Exponential improvements for quantum

matrix arithmetics, Proceedings of the 51st Annual ACM SIGACT Symposium

on Theory of Computing, pp. 193–204, ACM, 2019, arXiv:1806.01838.

8.1 Standard-form encoding

We consider three vector spacesH1, H2 andH with dimensionality constraint

dim(H1), dim(H2) ≤ dim(H). Let U : H → H be a unitary operator and G1 :
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G1

G2

U

H1H2

H

im(G2G
†
2)

im(G1G
†
1)

Figure 8.1: Illustration of the standard-form encoding.

H1 → H, G2 : H2 → H be two isometries, i.e., we have

G†1G1 = IH1 , G1G
†
1 = PH1 , (8.1)

G†2G2 = IH2 , G2G
†
2 = PH2 , (8.2)

U †U = UU † = IH, (8.3)

where PHj is an orthogonal projection on Hj with image im(PHj) = im(GjG
†
j) =

im(Gj). We say that the isometries G1, G2 and the unitary U encode G†2UG1 in

standard form [72]. We illustrate this abstract setting in Figure 8.1.

The notion of standard-form encoding is inspired by existing quantum simu-

lation algorithms. Recall from Section 2.5 that the Taylor-series algorithm imple-

ments the linear combination
∑Ξ−1

ξ=0 βξṼξ, where Ṽξ are products of unitaries and
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βξ > 0. This can be reformulated as a standard-form encoding by setting

G1 = G2 =
1√
‖β‖1

Ξ−1∑
ξ=0

√
βξ|ξ〉 ⊗ I, U =

Ξ−1∑
ξ=0

|ξ〉 〈ξ| ⊗ Ṽξ, (8.4)

which encodes the desired linear combination up to a scaled-down factor

G†2UG1 =

∑Ξ−1
ξ=0 βξṼξ

‖β‖1

. (8.5)

Similarly, the simulation algorithm introduced in Section 2.6 considers Hamiltoni-

ans of the form H =
∑Γ

γ=1 αγHγ, which can also be recast using standard-form

encoding:

G1 = G2 =
1√
‖α‖1

Γ∑
γ=1

√
αγ|γ〉 ⊗ I, U =

Γ∑
γ=1

|γ〉 〈γ| ⊗Hγ. (8.6)

However, standard-form encoding extends these quantum simulation algorithms in

that it allows arbitrary definitions of the isometries G1, G2 and the unitary U .

Let the singular value decomposition of G†2UG1 be

G†2UG1 =
∑
j

σj|ϕj〉〈ψj|, (8.7)

where {|ψj〉}j and {|ϕj〉}j are orthonormal on H1 and H2, respectively. Further-
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more, the singular values σj satisfy 0 ≤ σj ≤ 1, since

∥∥∥G†2UG1

∥∥∥ ≤ ∥∥∥G†2∥∥∥ ‖U‖ ‖G1‖ = 1. (8.8)

Then, the idea of quantum singular value transformation is as follows. We are given

a standard-form encoding A = G†2UG1 as input. Our goal is to obtain an output

operator B whose singular values are related to those of A by certain polynomial

functions. In this sense, the singular values of A are transformed by polynomial

functions to output B.

Quantum singular value transformation achieves this with a quantum cir-

cuit V on space H, constructed from the specified polynomial functions, such that

the output B = G†2V G1 is encoded in standard form. Examples of this include

implementing Chebyshev polynomials for the Taylor-series algorithm [14, 15] and

polynomial approximations of exponentials of trigonometric functions for the QSP

algorithm [73, 74]. However, we identify applications of quantum singular value

transformation to designing other quantum algorithms beyond quantum simula-

tion.

8.2 Qubitization

Since the main goal of quantum singular value transformation is to manip-

ulate the singular values of G†2UG1 using a quantum circuit, it is natural to ask
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how G†2UG1 are related to those operations that we can perform on a quantum

computer, such as 2G1G
†
1−I, 2G2G

†
2−I, and U . This relation concerns the spectra

of operators and is made clear through qubitization, which builds on earlier results

such as Szegedy quantum walk [101] and Marriott-Watrous QMA amplification

[79].

Let |ψj〉 be the unit right singular vector of G†2UG1 with singular value σj

and let |ϕj〉 be the corresponding left singular vector. We consider the following

pair of subspaces

H1,j = span
{
G1|ψj〉, U †G2|ϕj〉

}
, H2,j = span

{
G2|ϕj〉, UG1|ψj〉

}
. (8.9)

As the following lemmas show, these subspaces are either one-dimensional or two-

dimensional depending on the value of σj.

Lemma 47 (1D subspace pair). Let H1, H2 and H be vector spaces with di-

mensionality dim(H1), dim(H2) ≤ dim(H). Let U : H → H be a unitary op-

erator and G1 : H1 → H, G2 : H2 → H be two isometries. Let |ψj〉 be the

unit right singular vector of G†2UG1 with singular value σj and let |ϕj〉 be the

corresponding left singular vector. Define H1,j = span
{
G1|ψj〉, U †G2|ϕj〉

}
and

H2,j = span
{
G2|ϕj〉, UG1|ψj〉

}
. The following conditions are equivalent:

1. dim
(
H1,j

)
= 1.

2. dim
(
H2,j

)
= 1.
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3. B1,j =
{
G1|ψj〉

}
is a basis for H1,j.

4. B2,j =
{
G2|ϕj〉

}
is a basis for H2,j.

5. σj = 1.

If any one of the above condition is satisfied, we have

[
U
]
B1,j ,B2,j

=
[
G1G

†
1

]
B1,j

=
[
G2G

†
2

]
B2,j

= 1. (8.10)

Proof. Note that U is an invertible mapping from H1,j = span
{
G1|ψj〉, U †G2|ϕj〉

}
to H2,j = span

{
G2|ϕj〉, UG1|ψj〉

}
with inverse U †, which implies that H1,j is

isomorphic to H2,j as linear subspaces. In particular, it must be that they agree

on the dimensionality. Therefore, Conditions 1 and 2 are equivalent.

The vector G1|ψj〉 has unit length in H1,j = span
{
G1|ψj〉, U †G2|ϕj〉

}
, and

must therefore be a basis of H1,j if Condition 1 holds. This shows that 1 implies

3. The fact that Condition 2 implies 4 can be argued in a similar way.

Assume that Condition 3 is satisfied, i.e.,

U †G2|ϕj〉 = αG1|ψj〉 (8.11)

for some complex number α. We apply G†1 to both sides of the above equation and

get

σj|ψj〉 = G†1U
†G2|ϕj〉 = αG†1G1|ψj〉 = α|ψj〉. (8.12)
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Taking the Euclidean norm of both sides gives

σj = ‖σj|ψj〉‖ = ‖α|ψj〉‖ = ‖αG1|ψj〉‖ =
∥∥U †G2|ϕj〉

∥∥ = 1, (8.13)

which proves Condition 5. Similarly, Condition 4 implies 5 as well.

Finally, if σj = 1, we can compute

1 = ‖UG1|ψj〉‖2

=
∥∥∥G2G

†
2UG1|ψj〉

∥∥∥2

+
∥∥∥(I −G2G

†
2)UG1|ψj〉

∥∥∥2

= ‖σjG2|ϕj〉‖2 +
∥∥∥(I −G2G

†
2)UG1|ψj〉

∥∥∥2

= 1 +
∥∥∥(I −G2G

†
2)UG1|ψj〉

∥∥∥2

,

(8.14)

where the second equality follows by the Pythagorean theorem. This implies that

(I −G2G
†
2)UG1|ψj〉 = 0, (8.15)

or equivalently

UG1|ψj〉 = G2G
†
2UG1|ψj〉 = σjG2|ϕj〉 = G2|ϕj〉. (8.16)

We conclude that dim
(
H2,j

)
= 1, which implies Condition 2. The matrix repre-

sentations of U , G1G
†
1 and G2G

†
2 now follow from a direct calculation.

Lemma 48 (2D subspace pair). Let H1, H2 and H be vector spaces with di-
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mensionality dim(H1), dim(H2) ≤ dim(H). Let U : H → H be a unitary op-

erator and G1 : H1 → H, G2 : H2 → H be two isometries. Let |ψk〉 be the

unit right singular vector of G†2UG1 with singular value σk and let |ϕk〉 be the

corresponding left singular vector. Define H1,k = span
{
G1|ψk〉, U †G2|ϕk〉

}
and

H2,k = span
{
G2|ϕk〉, UG1|ψk〉

}
. The following conditions are equivalent:

1. dim
(
H1,k

)
= 2.

2. dim
(
H2,k

)
= 2.

3. B1,k =
{
G1|ψk〉, U †G2|ϕk〉

}
is a basis for H1,k.

4. B2,k =
{
G2|ϕk〉, UG1|ψk〉

}
is a basis for H2,k.

5. 0 ≤ σk < 1.

If any one of the above condition is satisfied, we have

1. With respect to the bases B1,k and B2,k,

[
U
]
B1,k,B2,k

=

0 1

1 0

 , [
G1G

†
1

]
B1,k

=

1 σk

0 0

 , [
G2G

†
2

]
B2,k

=

1 σk

0 0

 .
(8.17)

2. B′1,k =
{
G1|ψk〉, U

†G2|ϕk〉−σkG1|ψk〉√
1−σ2

k

}
is an orthonormal basis for the subspace

H1,k and B′2,k =
{
G2|ϕk〉, UG1|ψk〉−σkG2|ϕk〉√

1−σ2
k

}
is an orthonormal basis for H2,k,
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with respect to which

[
U
]
B′1,k,B

′
2,k

=

 σk
√

1− σ2
k√

1− σ2
k −σk

 , [
G1G

†
1

]
B′1,k

=
[
G2G

†
2

]
B′2,k

=

1 0

0 0

 .
(8.18)

Proof. The equivalence of the five conditions is proved in a similar way as in

Lemma 47. Assuming that any one (thus all) of the condition holds, we can

compute

G1G
†
1G1|ψk〉 = G1|ψk〉, G1G

†
1U
†G2|ϕk〉 = σkG1|ψk〉,

G2G
†
2G2|ϕk〉 = G2|ϕk〉, G2G

†
2UG1|ψk〉 = σkG2|ϕk〉,

(8.19)

which gives the matrix representation of G1G
†
1 and G2G

†
2.
[
U
]
B1,k,B2,k

is obtained

through a direct calculation.

We now apply the Gram-Schmidt process to B1,k =
{
G1|ψk〉, U †G2|ϕk〉

}
to

construct a unit vector orthogonal to G1|ψk〉

U †G2|ϕk〉 −G1|ψk〉〈ψk|G†1U †G2|ϕk〉∥∥∥U †G2|ϕk〉 −G1|ψk〉〈ψk|G†1U †G2|ϕk〉
∥∥∥ =

U †G2|ϕk〉 − σkG1|ψk〉
‖U †G2|ϕk〉 − σkG1|ψk〉‖

=
U †G2|ϕk〉 − σkG1|ψk〉√

1− σ2
k

.

(8.20)
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The last equality holds since

∥∥U †G2|ϕk〉 − σkG1|ψk〉
∥∥2

= 〈ϕk|G†2UU †G2|ϕk〉 − σk〈ϕk|G†2UG1|ψk〉

− σk〈ψk|G†1U †G2|ϕk〉+ σ2
k〈ψk|G

†
1G1|ψk〉

= 1− 2σ2
k + σ2

k = 1− σ2
k.

(8.21)

In a similar way, we produce the following unit vector orthogonal to G2|ϕk〉

UG1|ψk〉 − σkG2|ϕk〉√
1− σ2

k

. (8.22)

The matrix of U with respect to the orthonormal basis B′1,k =
{
G1|ψk〉,

U†G2|ϕk〉−σkG1|ψk〉√
1−σ2

k

}
and B′2,k =

{
G2|ϕk〉, UG1|ψk〉−σkG2|ϕk〉√

1−σ2
k

}
can be computed by

UG1|ψk〉 = λG2|ϕk〉+
√

1− σ2
k

UG1|ψk〉 − σkG2|ϕk〉√
1− σ2

k

,

U
U †G2|ϕk〉 − σkG1|ψk〉√

1− σ2
k

=
G2|ϕk〉 − σkUG1|ψk〉√

1− σ2
k

=
√

1− σ2
kG2|ϕk〉 − σk

UG1|ψk〉 − σkG2|ϕk〉√
1− σ2

k

,

(8.23)

whereas
[
G1G

†
1

]
B′1,k

and
[
G2G

†
2

]
B′2,k

are obtained from

G1G
†
1

U †G2|ϕk〉 − σkG1|ψk〉√
1− σ2

k

=
σkG1|ψk〉 − σkG1|ψk〉√

1− σ2
k

= 0,

G2G
†
2

UG1|ψk〉 − σkG2|ϕk〉√
1− σ2

k

=
σkG2|ϕk〉 − σkG2|ϕk〉√

1− σ2
k

= 0.

(8.24)
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We now decompose the entire space H into one- and two-dimensional sub-

spaces as defined above. To this end, we consider the singular value decomposition

of G†2UG1, dropping terms with zero singular values and grouping the remaining

ones as

G†2UG1 =
∑

0<σj≤1

σj|ϕj〉〈ψj| =
∑
σj=1

|ϕj〉〈ψj|+
∑

0<σk<1

σk|ϕk〉〈ψk|. (8.25)

This gives pairs of one-dimensional subspaces H1,j = span
{
G1|ψj〉, U †G2|ϕj〉

}
,

H2,j = span
{
G2|ϕj〉, UG1|ψj〉

}
with σj = 1 and pairs of two-dimensional subspaces

H1,k = span
{
G1|ψk〉, U †G2|ϕk〉

}
, H2,k = span

{
G2|ϕk〉, UG1|ψk〉

}
with 0 < σk <

1.

In general, the orthonormal set of right singular vectors {|ψj〉}j∪{|ψk〉}k does

not span the entireH1. We expand it with {|ψ̄l〉}l so that {|ψj〉}j∪{|ψk〉}k∪{|ψ̄l〉}l

becomes an orthonormal basis for H1. Similarly, we expand {|ϕj〉}j ∪{|ϕk〉}k with

{|ϕ̄m〉}m to form an orthonormal basis for H2. With a slight abuse of notation, we

denote

H̄1,l = span
{
G1|ψ̄l〉

}
, H̄1,m = span

{
U †G2|ϕ̄m〉

}
,

H̄2,l = span
{
UG1|ψ̄l〉

}
, H̄2,m = span

{
G2|ϕ̄m〉

}
.

(8.26)

The following theorem claims that the entire space H can be decomposed as an

orthogonal direct sum of the above spaces.
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Theorem 49 (Qubitization by pairing subspaces). Let H1, H2 and H be vector

spaces with dimensionality dim(H1), dim(H2) ≤ dim(H). Let U : H → H be

a unitary operator and G1 : H1 → H, G2 : H2 → H be two isometries. Let

G†2UG1 =
∑

j σj|ϕj〉〈ψj| with 0 < σj ≤ 1 be the singular value decomposition.

Define H1,j, H2,j with σj = 1, H1,k, H2,k with 0 < σk < 1, and H̄1,l, H̄2,l, H̄1,m,

H̄2,m as above. Then H admits the following pair of decompositions

H =
⊙
σj=1

H1,j

⊙
0<σk<1

H1,k

⊙
l

H̄1,l

⊙
m

H̄1,m

⊙
H1,⊥

=
⊙
σj=1

H2,j

⊙
0<σk<1

H2,k

⊙
l

H̄2,l

⊙
m

H̄2,m

⊙
H2,⊥,

(8.27)

where
⊙

denotes the orthogonal direct sum and H1,⊥/H2,⊥ is a space orthogonal

to the remaining spaces of the same line. Here, subspaces in the first/second line

are G1G
†
1-/G2G

†
2-invariant and U is an isomorphism between the corresponding

subspaces with the same subscript. Furthermore,

1. For σj = 1, B1,j =
{
G1|ψj〉

}
/B2,j =

{
G2|ϕj〉

}
is a basis for H1,j/H2,j and

[
U
]
B1,j ,B2,j

=
[
G1G

†
1

]
B1,j

=
[
G2G

†
2

]
B2,j

= 1. (8.28)

2. For 0 < σk < 1, B′1,k =
{
G1|ψk〉, U

†G2|ϕk〉−σkG1|ψk〉√
1−σ2

k

}
/B′2,k =

{
G2|ϕk〉,

UG1|ψk〉−σkG2|ϕk〉√
1−σ2

k

}
is an orthonormal basis for H1,k/H2,k, with respect to which
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[
U
]
B′1,k,B

′
2,k

=

 σk
√

1− σ2
k√

1− σ2
k −σk

 , [
G1G

†
1

]
B′1,k

=
[
G2G

†
2

]
B′2,k

=

1 0

0 0

 .
(8.29)

3. B̄1,l =
{
G1|ψ̄l〉

}
/B̄2,l =

{
UG1|ψ̄l〉

}
is a basis for H̄1,l/H̄2,l, and B̄1,m ={

U †G2|ϕ̄m〉
}

/B̄2,m =
{
G2|ϕ̄m〉

}
is a basis for H̄1,m/H̄2,m, under which

[
U
]
B̄1,l,B̄2,l

=
[
U
]
B̄1,m,B̄2,m

= [1],[
G1G

†
1

]
B̄1,l

=
[
G2G

†
2

]
B̄2,m

= [1],[
G1G

†
1

]
B̄1,m

=
[
G2G

†
2

]
B̄2,l

= [0].

(8.30)

4. Restricted H1,⊥ and H2,⊥, U is an isometry; G1G
†
1 and G2G

†
2 are zero.

Proof. Let G†2UG1 =
∑

j σj|ϕj〉〈ψj| with 0 < σj ≤ 1 be the singular value decom-

position where terms with singular value zero are dropped. Define H1,j, H2,j, H1,k,

H2,k, H̄1,l, H̄2,l, H̄1,m, and H̄2,m as stated. We now prove the orthogonality claim

in (8.27):

• H1,j⊥H1,j′ and H2,j⊥H2,j′ for j 6= j′:

〈ψj′ |G†1G1|ψj〉 = 〈ψj′ |ψj〉 = 0, (8.31)
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and

〈ϕj′|G†2G2|ϕj〉 = 〈ϕj′ |ϕj〉 = 0; (8.32)

• H1,k⊥H1,k′ and H2,k⊥H2,k′ for k 6= k′:

〈ψk′|G†1G1|ψk〉 = 〈ψk′|ψk〉 = 0,

〈ψk′|G†1U †G2|ϕk〉 = σk〈ψk′|ψk〉 = 0,

〈ϕk′|G†2UG1|ψk〉 = σk〈ϕk′|ϕk〉 = 0,

〈ϕk′|G†2UU †G2|ϕk〉 = 〈ϕk′|ϕk〉 = 0,

(8.33)

and

〈ϕk′ |G†2G2|ϕk〉 = 〈ϕk′|ϕk〉 = 0,

〈ϕk′|G†2UG1|ψk〉 = σk〈ϕk′|ϕk〉 = 0,

〈ψk′|G†1U †G2|ϕk〉 = σk〈ψk′|ψk〉 = 0,

〈ψk′|G†1U †UG1|ψk〉 = 〈ψk′ |ψk〉 = 0;

(8.34)

• H̄1,l⊥H̄1,l′ and H̄2,l⊥H̄2,l′ for l 6= l′:

〈ψ̄l′|G†1G1|ψ̄l〉 = 〈ψ̄l′ |ψ̄l〉 = 0, (8.35)

and

〈ψ̄l′|G†1U †UG1|ψ̄l〉 = 〈ψ̄l′ |ψ̄l〉 = 0; (8.36)
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• H̄1,m⊥H̄1,m′ and H̄2,m⊥H̄2,m′ for m 6= m′:

〈ϕ̄m′ |G†2UU †G2|ϕ̄m〉 = 〈ϕ̄m′|ϕ̄m〉 = 0, (8.37)

and

〈ϕ̄m′ |G†2G2|ϕ̄m〉 = 〈ϕ̄m′|ϕ̄m〉 = 0; (8.38)

• H1,j⊥H1,k and H2,j⊥H2,k:

〈ψj|G†1G1|ψk〉 = 〈ψj|ψk〉 = 0,

〈ψj|G†1U †G2|ϕk〉 = σk〈ψj|ψk〉 = 0,

(8.39)

and

〈ϕj|G†2G2|ϕk〉 = 〈ϕj|ϕk〉 = 0,

〈ϕj|G†2UG1|ψk〉 = σk〈ϕj|ϕk〉 = 0;

(8.40)

• H1,j⊥H̄1,l and H2,j⊥H̄2,l:

〈ψj|G†1G1|ψ̄l〉 = 〈ψj|ψ̄l〉 = 0, (8.41)

and

〈ϕj|G†2UG1|ψ̄l〉 = σj〈ψj|ψ̄l〉 = 0; (8.42)

212



• H1,j⊥H̄1,m and H2,j⊥H̄2,m:

〈ψj|G†1U †G2|ϕ̄m〉 = σj〈ϕj|ϕ̄m〉 = 0, (8.43)

and

〈ϕj|G†2G2|ϕ̄m〉 = 〈ϕj|ϕ̄m〉 = 0; (8.44)

• H1,k⊥H̄1,l and H2,k⊥H̄2,l:

〈ψk|G†1G1|ψ̄l〉 = 〈ψk|ψ̄l〉 = 0,

〈ϕk|G†2UG1|ψ̄l〉 = σk〈ψk|ψ̄l〉 = 0,

(8.45)

and

〈ϕk|G†2UG1|ψ̄l〉 = σk〈ψk|ψ̄l〉 = 0,

〈ψk|G†1U †UG1|ψ̄l〉 = 〈ψk|ψ̄l〉 = 0;

(8.46)

• H1,k⊥H̄1,m and H2,k⊥H̄2,m:

〈ψk|G†1U †G2|ϕ̄m〉 = σk〈ϕk|ϕ̄m〉 = 0,

〈ϕk|G†2UU †G2|ϕ̄m〉 = 〈ϕk|ϕ̄m〉 = 0,

(8.47)

and

〈ϕk|G†2G2|ϕ̄m〉 = 〈ϕk|ϕ̄m〉 = 0,

〈ψk|G†1U †G2|ϕ̄m〉 = σk〈ϕk|ϕ̄m〉 = 0;

(8.48)
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• H̄1,l⊥H̄1,m and H̄2,l⊥H̄2,m: |ψ̄l〉 ∈ ker
(
G†2UG1

)
.

The claim that subspaces in the first/second line of (8.27) are G1G
†
1-/G2G

†
2-

invariant and U is an isomorphism between the corresponding subspaces with the

same subscript follows from Lemma 47, Lemma 48 and direct verification. Since

G1G
†
1/G2G

†
2 is normal, it is also invariant on the orthogonal complementH1,⊥/H2⊥

[91, Exercise 10.7]; for the same reason, U is an isomorphism between H1,⊥ and

H2,⊥.

The claimed matrix representation of U andG1G
†
1/G2G

†
2 follows by Lemma 47,

Lemma 48 and direct calculation. For the orthogonal complement H1,⊥, we have

H1,⊥ =

[⊙
σj=1

H1,j

⊙
0<σk<1

H1,k

⊙
l

H̄1,l

⊙
m

H̄1,m

]⊥
⊆
[⊙
σj=1

span
{
G1|ψj〉

} ⊙
0<σk<1

span
{
G1|ψk〉

}⊙
l

span
{
G1|ψ̄l〉

}]⊥
=

[
G1 span

{{
|ψj〉

}
j
∪
{
|ψk〉

}
k
∪
{
|ψ̄l〉
}
l

}]⊥
=
[

im(G1)
]⊥

=
[

im(G1G
†
1)
]⊥

= ker(G1G
†
1).

(8.49)

Hence G1G
†
1 is zero on H1,⊥; the claim that G2G

†
2 is zero on H2,⊥ is proved in a

similar way. Restricted to H1,⊥ and H2,⊥, U still preserves the inner product and

is therefore an isometry.

214



8.3 Quantum signal processing

The final component of quantum singular value transformation is quantum

signal processing, achieved by alternating between unitary U/U † and partial rota-

tion eiφ(2G1G
†
1−I)/eiφ(2G2G

†
2−I). Specifically, for any real vector ~φ = [φ1, . . . , φm] ∈

Rm, we define

V~φ =


eiφ1(2G2G

†
2−I)U

∏m−1
2

j=1

(
eiφ2j(2G1G

†
1−I)U †eiφ2j+1(2G2G

†
2−I)U

)
for odd m,

∏m
2
j=1

(
eiφ2j−1(2G1G

†
1−I)U †eiφ2j(2G2G

†
2−I)U

)
for even m.

(8.50)

Then, for certain even/odd polynomials f : R → C [50, Corollary 8], we can find

[φ1, . . . , φm] ∈ Rm so that G1, G2, and V~φ encode an operator whose singular values

are related to those of the input G†2UG1 =
∑

j σj|ϕj〉〈ψj| by f . Specifically, we

have

G†2V~φG1 =
∑
j

f(σj)|ϕj〉〈ψj| (8.51)

if f is an odd polynomial and

G†1V~φG1 =
∑
j

f(σj)|ψj〉〈ψj|+ f(0)
∑
l

|ψ̄l〉〈ψ̄l| (8.52)

if f is even.

This result can be proved in a similar way as in [74, 77] for quantum simu-

lation. The difference is that we are now manipulating the singular values of the
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input operator G†2UG1 and we need to use Theorem 49 to replace the previous [74,

Lemma 8 and Corollary 9]. The above result can also be extended to implement

singular value transformations with real polynomials. We do not discuss these in

detail and refer the reader to [50] for a complete treatment.

Instead, we now consider circuit implementation of the quantum singular

value transformation. We know from (8.50) that the circuit consists of the unitary

U (U †) and the partial rotation eiφ(2G1G
†
1−I) (eiφ(2G2G

†
2−I)). The operator U is given

as input and assumed to be directly implementable. It then remains to implement

the partial rotation eiφ(2G1G
†
1−I). This can be difficult if G1 is a general isometry.

However, for many applications, the isometry G1 is defined by a state preparation

procedure as

G1 = Ḡ1 |0〉 . (8.53)

We then have

eiφ(2G1G
†
1−I) = Ḡ1e

iφ(2|0〉〈0|−I)Ḡ1
†

= Ḡ1

(
eiφ |0〉 〈0|+ e−iφ

∑
y 6=0

|y〉 〈y|

)
Ḡ1
†
, (8.54)

where each operator can be directly implemented using a quantum circuit. Fig-

ure 8.2 provides a possible circuit implementation of the entire quantum singular

value transformation.
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|0〉 eiφmZ eiφm−1Z · · ·

/
U

Ḡ†2 Ḡ2

U †
Ḡ†1 Ḡ1

U
· · ·

/ · · ·

Figure 8.2: Circuit implementation of quantum singular value transformation.

8.4 Implementing principal component regression

The ability to transform singular values is central to the operation of many

machine learning methods. Many quantum algorithms for basic machine learning

problems, such as ordinary least squares, weighted least squares, generalized least

squares, were studied in a series of works [27, 32, 55, 111]. We do not examine these

problems case-by-case, but point out that they can all be reduced to implementing

the Moore-Penrose pseudoinverse of the input operator, which can then be realized

by performing singular value transformation with a polynomial approximation of

the inverse function.

Here, we briefly discuss a new application to principal component regression.

The problem of principal component regression can be formally stated as follows

[48]: given a matrix A ∈ Rn×d, a vector b ∈ Rn and a threshold value 0 < ς, find

x ∈ Rd such that

x = argminx∈Rd
∥∥∥P̃≥ςAP≥ςx− b∥∥∥ , (8.55)

where P̃≥ς , P≥ς denote left and right singular value threshold projectors, i.e., pro-

jectors whose image is spanned by left and right singular vectors with singular
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values greater than ς.

A closed-form expression for the optimal solution of (8.55) is given by x =

P≥ςA
+P̃≥ςb = A+P̃≥ςb, where A+ is the Moore-Penrose pseudoinverse of A. The

problem can thus be solved by singular value transformation with polynomial ap-

proximations of the inverse function [50, Theorem 41] and the threshold function

[50, Theorem 31]. Suppose that operator A is given by the standard-form en-

coding A = G†2UG1 and that the spectral gap is γ: b does not overlap with

left singular vectors of A with singular values in [ς − γ, ς + γ]. Then, quantum

singular value transformation gives an algorithm that implements principal com-

ponent regression with accuracy ε using O
(

1
γ

log
(

1
ε

))
applications of U/U † and

eiφ(2G1G
†
1−I)/eiφ(2G2G

†
2−I). In comparison, the classical algorithm of [48] has runtime

O
(

1
γ2 log

(
1
ε

))
.
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Chapter 9: Application to Monte Carlo methods

In this chapter, we apply our analysis of product formulas (Chapter 6) to

improving the performance of quantum Monte Carlo simulation. Here, the goal is

to approximate certain properties of the Hamiltonian, such as the partition func-

tion, rather than simulating the full dynamics. We consider two specific systems:

the transverse field Ising model (Section 9.1) and the ferromagnetic quantum spin

systems (Section 9.2). For both simulations, the ideal evolution is decomposed

using the second-order Suzuki formula and we show that such a decomposition can

be made more efficient using our tightened analysis.

This chapter is partly based on the following paper:

[37] Andrew M. Childs, Yuan Su, Minh C. Tran, Nathan Wiebe, and Shuchen Zhu,

A theory of Trotter error, 2019, arXiv:1912.08854.

9.1 Transverse field Ising model

Consider the following n-qubit transverse field Ising model:

H = −A−B, A =
∑

1≤u<v≤n

ju,vZuZv, B =
∑

1≤u≤n

huXu. (9.1)

Here, Xu and Zu are Pauli operators acting on the uth qubit, and ju,v ≥ 0 and

hu ≥ 0 are nonnegative coefficients. Define j := max{ju,v, hu} to be the maximum
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norm of the interactions. Our goal is to approximate the partition function

Z = Tr
(
e−H

)
(9.2)

up to a multiplicative error 0 < ε < 1.

Reference [20] solves this problem with an efficient classical algorithm. A

key step in their algorithm is a decomposition of the evolution operator using the

second-order Suzuki formula, so that

Z ′ = Tr
(
e

1
2r
Ae

1
r
Be

1
2r
A
)r

/ (1 + ε)Tr
(
e−H

)
= (1 + ε)Z. (9.3)

However, their original analysis does not exploit the commutativity relation be-

tween A and B, and can be improved by the techniques developed here.

Note that this is different from the usual setting of digital quantum simu-

lation. Indeed, as the matrix exponentials in the product formula are no longer

unitary, we will introduce an additional multiplicative factor when we apply The-

orem 39. Also, we need to estimate the multiplicative error as opposed to the

additive error of the Trotter decomposition, which is addressed by the following

lemma.

Lemma 50 (Relative perturbation of eigenvalues [43, Theorem 2.1] [63, Theorem

5.4]). Let matrix C be positive semidefinite and D be nonsingular. Assume that
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the eigenvalues λi(C) and λi(D
†CD) are ordered non-increasingly. Then,

λi(D
†CD) ≤ λi(C)

∥∥D†D∥∥ . (9.4)

Let A and B be Hermitian matrices and consider the evolution et(A+B) with

t ≥ 0. Our goal is to choose r sufficiently large so that the eigenvalues are approx-

imated as

λi

((
e
t

2r
Ae

t
r
Be

t
2r
A
)r) ≈ λi

(
et(A+B)

)
(9.5)

up to a small multiplicative error. We define

U := e
t
r

(A+B),

V := e
t

2r
Ae

t
r
Be

t
2r
A,

W := expT

(∫ t
r

0

dτ e−τ(A+B)

[
e
τ
2
ABe−

τ
2
A −B + e

τ
2
AeτB

A

2
e−τBe−

τ
2
A − A

2

]
eτ(A+B)

)
.

(9.6)

Then, both U and V are positive semidefinite operators and we know from Theo-

rem 33 that V = UW .

To analyze the operator W , we further compute
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e
τ
2
ABe−

τ
2
A −B =

[
A

2
, B

]
τ +

∫ τ

0

dτ2

∫ τ2

0

dτ3 e
τ3
2
A

[
A

2
,

[
A

2
, B

]]
e−

τ3
2
A,

(9.7)

e
τ
2
AeτB

A

2
e−τBe−

τ
2 − A

2
= e

τ
2
A

(∫ τ

0

dτ2 e
τ2B

[
B,

A

2

]
e−τ2B

)
e−

τ
2
A

= e
τ
2
A

([
B,

A

2

]
τ +

∫ τ

0

dτ2

∫ τ2

0

dτ3 e
τ3B

[
B,

[
B,

A

2

]]
e−τ3B

)
e−

τ
2
A

=

[
B,

A

2

]
τ + τ

∫ τ

0

dτ2 e
τ2
2
A

[
A

2
,

[
B,

A

2

]]
e−

τ2
2
A

+

∫ τ

0

dτ2

∫ τ2

0

dτ3 e
τ
2
Aeτ3B

[
B,

[
B,

A

2

]]
e−τ3Be−

τ
2
A.

(9.8)

By Lemma 4, we have the following upper bound on ‖W‖:

exp

(
e2 t

r
‖H‖+ t

r
‖A‖ t3

24r3
‖[A, [A,B]]‖+ e2 t

r
‖H‖+ t

r
‖A‖ t3

12r3
‖[A, [A,B]]‖+ e3 t

r
‖H‖+ t

r
‖B‖ t3

12r3
‖[B, [B,A]]‖

)
≤ exp

((
t3

4r3

∥∥[A, [A,B]]∥∥+
t3

12r3

∥∥[B, [B,A]]∥∥)e4 t
r

(‖A‖+‖B‖)
)

(9.9)

This bound is tighter than the previous result of [20, Lemma 3] in that it exploits

the commutativity of operator summands.

Our goal is to bound the eigenvalues λi
(
V r
)

in terms of λi
(
U r
)
. This can

be done recursively as follows. We first replace the right-most V by UW and the

left-most V by W †U . Invoking Lemma 50, we have

λi
(
V r
)

= λi
(
W †UV r−2UW

)
≤ λi

(
UV r−2U

)
‖W‖2 . (9.10)
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By [60, Theorem 1.3.22],

λi
(
UV r−2U

)
= λi

(
V

r
2
−1UUV

r
2
−1
)
. (9.11)

We now apply a similar procedure to obtain

λi
(
V

r
2
−1UUV

r
2
−1
)

= λi
(
W †UV

r
2
−2UUV

r
2
−2UW

)
≤ λi

(
UV

r
2
−2UUV

r
2
−2U

)
‖W‖2

= λi
(
V

r
4
−1UUV

r
2
−2UUV

r
4
−1
)
‖W‖2

≤ λi
(
UV

r
4
−2UUV

r
2
−2UUV

r
4
−2U

)
‖W‖4

= λi
(
V

r
4
−1UUV

r
4
−2UUV

r
4
−2UUV

r
4
−1
)
‖W‖4

≤ λi
(
UV

r
4
−2UUV

r
4
−2UUV

r
4
−2UUV

r
4
−2U

)
‖W‖6 .

(9.12)

To ensure that this recursion is valid, we choose r to be a power of two. Since any

positive integer is between 2m and 2m+1 for some m ≥ 0, this choice only enlarges

r by a factor of at most two. Overall,

λi
(
V r
)
≤ λi

(
U r
)
‖W‖r . (9.13)

We know that

‖W‖r ≤ exp

((
t3

4r2

∥∥[A, [A,B]]∥∥+
t3

12r2

∥∥[B, [B,A]]∥∥)e4 t
r

(‖A‖+‖B‖)
)
. (9.14)
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We first choose

r ≥ 4t
(
‖A‖+ ‖B‖

)
(9.15)

so that e4 t
r

(‖A‖+‖B‖) ≤ e < 4. We then set

r ≥ max

{√
2t3

ε

∥∥[A, [A,B]]∥∥,√2t3

3ε

∥∥[B, [B,A]]∥∥} (9.16)

so that both t3

4r2

∥∥[A, [A,B]]∥∥ and t3

12r2

∥∥[B, [B,A]]∥∥ are bounded by ε/8. There-

fore, we have ‖W r‖ ≤ eε as long as r is a power of two satisfying

r ≥ max

{
4t
(
‖A‖+ ‖B‖

)
,

√
2t3

ε

∥∥[A, [A,B]]∥∥,√2t3

3ε

∥∥[B, [B,A]]∥∥}, (9.17)

which implies

Z ′ =
∑
i

λi
(
V r
)
≤
∑
i

λi
(
U r
)
eε ≈ (1 + ε)

∑
i

λi
(
U r
)

= (1 + ε)Z (9.18)

assuming ε � 1. Following similar arguments, we can show that this choice of r

also gives a lower bound of Z ′ with Z ′ ≥ (1−ε)Z. Therefore, we have approximated

the partition function up to a multiplicative error ε.

We now specialize our result to the transverse field Ising Hamiltonian with

t = 1. We find that ‖A‖ = O (n2j), ‖B‖ = O (nj),
∥∥[A, [A,B]]∥∥ = O (n3j3), and
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∥∥[B, [B,A]]∥∥ = O (n2j3), which implies

r = O
(
n2j + n3/2j3/2ε−1/2

)
. (9.19)

By [20, p. 17], this gives a fully polynomial randomized approximation scheme

(FPRAS) with running time

Õ
(
n17r14ε−2

)
= Õ

(
n45j14ε−2 + n38j21ε−9

)
, (9.20)

improving over the previous complexity of

Õ
(
n59j21ε−9

)
. (9.21)

9.2 Quantum ferromagnets

We now apply our technique to improve the Monte Carlo simulation of fer-

romagnetic quantum spin systems [21]. Such systems are described by the n-qubit

Hamiltonian

H =
∑

1≤u<v≤n

(
−buvXuXv + cuvYuYv

)
+

n∑
u=1

du
(
I + Zu

)
, (9.22)

where 0 ≤ buv ≤ 1, −buv ≤ cuv ≤ buv, and −1 ≤ duv ≤ 1. It will be convenient

to rewrite these Hamiltonians using the coefficients puv = (buv − cuv)/2 and quv =
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(buv + cuv)/2 as

H =
∑

1≤u<v≤n

puv
(
−XuXv − YuYv

)
+

∑
1≤u<v≤n

quv
(
−XuXv + YuYv

)
+

n∑
u=1

du
(
I +Zu

)
.

(9.23)

Since |cuv| ≤ buv ≤ 1, we have puv, quv ∈ [0, 1].

Our goal is to approximate the partition function

Z(β,H) = Tr
[
e−βH

]
(9.24)

for β > 0. Following the setting of [21], we restrict ourself to the n-qubit gate set

{
fu
(
e±t
)
, guv(t), huv(t)

∣∣∣∣ u, v = 1, . . . , n, u 6= v, 0 < t <
1

2

}
, (9.25)

where

f
(
e±t
)

=

e±t 0

0 1

 , g(t) =



1 + t2 0 0 t

0 1 0 0

0 0 1 0

t 0 0 1


, h(t) =



1 0 0 0

0 1 + t2 t 0

0 t 1 0

0 0 0 1


(9.26)

and the subscripts u, v indicate the qubits on which the gates act nontrivially.

These gates approximate the exponentials of terms of the original Hamiltonian.
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Specifically, we represent the gates as

fu
(
e±t
)

= e±
t
2
Fu , guv(t) = e−

t
2
G̃uv(t), huv(t) = e−

t
2
H̃uv(t), (9.27)

where 0 < t < 1/2 and

Fu = (I+Zu), G̃uv(t) = (−XuXv+YuYv)−
2

t
Guv(t), H̃uv(t) = (−XuXv−YuYv)−

2

t
Huv(t).

(9.28)
By [21, Proposition 1], we have ‖Guv(t)‖ ≤ t2, and ‖Huv(t)‖ ≤ t2.

We divide the evolution into r steps and apply the second-order Suzuki for-

mula within each step, obtaining

e−
β
r
H ≈

∏
1≤u≤n

e−
β
2r
du(I+Zu)

∏
1≤u<v≤n

e−
β
2r
quv(−XuXv+YuYv)

∏
1≤u<v≤n

e−
β
2r
puv(−XuXv−YuYv)

·
∏

1≤u<v≤n

e−
β
2r
puv(−XuXv−YuYv)

∏
1≤u<v≤n

e−
β
2r
quv(−XuXv+YuYv)

∏
1≤u≤n

e−
β
2r
du(I+Zu)

≈
∏

1≤u≤n

fu
(
e−

β
r
du
) ∏

1≤u<v≤n

guv

(
β

r
quv

) ∏
1≤u<v≤n

huv

(
β

r
puv

)

·
∏

1≤u<v≤n

huv

(
β

r
puv

) ∏
1≤u<v≤n

guv

(
β

r
quv

) ∏
1≤u≤n

fu
(
e−

β
r
du
)
.

(9.29)

Here, we have two sources of error: the Trotter error and the error due to using

the gate set (9.25). We choose

r > 2β, (9.30)

so that we can implement the product formula using gates from (9.25) with pa-
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rameters

−1

2
< −β

r
du <

1

2
, 0 <

β

r
quv <

1

2
, 0 <

β

r
puv <

1

2
. (9.31)

Consider the gate sequence

∏
1≤u≤n

fu
(
e−

β
r
du
) ∏

1≤u<v≤n

guv

(
β

r
quv

) ∏
1≤u<v≤n

huv

(
β

r
puv

)

·
∏

1≤u<v≤n

huv

(
β

r
puv

) ∏
1≤u<v≤n

guv

(
β

r
quv

) ∏
1≤u≤n

fu
(
e−

β
r
du
)

=
∏

1≤u≤n

e−
β
2r
duFu

∏
1≤u<v≤n

e−
β
2r
quvG̃uv(β

r
quv)

∏
1≤u<v≤n

e−
β
2r
puvH̃uv(β

r
puv)

·
∏

1≤u<v≤n

e−
β
2r
puvH̃uv(β

r
puv)

∏
1≤u<v≤n

e−
β
2r
quvG̃uv(β

r
quv)

∏
1≤u≤n

e−
β
2r
duFu

= exp

(
− β

r

( ∑
1≤u<v≤n

puvH̃uv

(
β

r
puv

)
+

∑
1≤u<v≤n

quvG̃uv

(
β

r
quv

)
+

n∑
u=1

duFu

))
·W

(9.32)

that implements the second-order Suzuki formula, where we have applied Theo-

rem 33 in the last line. Since

‖Fu‖ ≤ 2,

∥∥∥∥G̃uv(βr quv
)∥∥∥∥ ≤ 2 + 2

β

r
quv ≤ 3,

∥∥∥∥H̃uv

(
β

r
puv

)∥∥∥∥ ≤ 2 + 2
β

r
puv ≤ 3,

(9.33)

the perturbed Hamiltonian satisfies

∑
1≤u<v≤n

puv

∥∥∥∥H̃uv

(
β

r
puv

)∥∥∥∥+
∑

1≤u<v≤n

quv

∥∥∥∥G̃uv(βr quv
)∥∥∥∥+

n∑
u=1

|du| ‖Fu‖

≤
(
n

2

)
3 +

(
n

2

)
3 + 2n ≤ 3n2.

(9.34)
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We also need to bound nested commutators of Hamiltonian terms with two layers

of nesting. This analysis is similar to that for the transverse field Ising model; the

resulting scaling is O (n4). By Theorem 39, there exists a constant c > 0 such that

‖W‖ ≤ exp

(
cn4β3

r3
e

6n2β
r

)
. (9.35)

To proceed, we apply Lemma 2 to switch to the interaction picture, giving

exp

(
−β
r

( ∑
1≤u<v≤n

puvH̃uv

(
β

r
puv

)
+

∑
1≤u<v≤n

quvG̃uv

(
β

r
quv

)
+

n∑
u=1

duFu

))
= e−

β
r
HV,

(9.36)

where

V = expT

(
−
∫ β

r

0

dτ eτH
( ∑

1≤u<v≤n

puvH̃uv

(
β

r
puv

)
+

∑
1≤u<v≤n

quvG̃uv

(
β

r
quv

)
+

n∑
u=1

duFu −H
)
e−τH

)
.

(9.37)

From (9.28),

∥∥∥∥∥ ∑
1≤u<v≤n

puvH̃uv

(
β

r
puv

)
+

∑
1≤u<v≤n

quvG̃uv

(
β

r
quv

)
+

n∑
u=1

duFu −H

∥∥∥∥∥
=

∥∥∥∥∥ ∑
1≤u<v≤n

puv
2r

βpuv
Huv

(
β

r
puv

)
+

∑
1≤u<v≤n

quv
2r

βquv
Guv

(
β

r
quv

)∥∥∥∥∥
≤
(
n

2

)
2
β

r
puv +

(
n

2

)
2
β

r
quv = 2n2β

r
,

(9.38)
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whereas the original Hamiltonian has spectral norm

‖H‖

≤
∑

1≤u<v≤n

puv ‖−XuXv − YuYv‖+
∑

1≤u<v≤n

quv ‖−XuXv + YuYv‖+
n∑
u=1

|du| ‖I + Zu‖

≤
(
n

2

)
· 2 +

(
n

2

)
· 2 + n · 2 = 2n2,

(9.39)

so Lemma 4 implies

‖V ‖ ≤ exp

(
2n2β2

r2
e

4n2β
r

)
. (9.40)

Altogether, we obtain

∏
1≤u≤n

fu
(
e−

β
r
du
) ∏

1≤u<v≤n

guv

(
β

r
quv

) ∏
1≤u<v≤n

huv

(
β

r
puv

)

·
∏

1≤u<v≤n

huv

(
β

r
puv

) ∏
1≤u<v≤n

guv

(
β

r
quv

) ∏
1≤u≤n

fu
(
e−

β
r
du
)

= e−
β
r
HU,

(9.41)

where the operator U = VW has spectral norm bounded by

‖U‖ = ‖VW‖ ≤ exp

(
2n2β2

r2
e

4n2β
r +

cn4β3

r3
e

6n2β
r

)
(9.42)

for some constant c > 0.

The remaining analysis proceeds in a similar way as that of the transverse
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field Ising model. We find that each eigenvalue of

[ ∏
1≤u≤n

fu
(
e−

β
r
du
) ∏

1≤u<v≤n

guv

(
β

r
quv

) ∏
1≤u<v≤n

huv

(
β

r
puv

)

·
∏

1≤u<v≤n

huv

(
β

r
puv

) ∏
1≤u<v≤n

guv

(
β

r
quv

) ∏
1≤u≤n

fu
(
e−

β
r
du
)]r (9.43)

approximates the corresponding eigenvalue of the ideal evolution e−βH with a mul-

tiplicative factor

‖U‖r ≤ exp

(
2n2β2

r
e

4n2β
r +

cn4β3

r2
e

6n2β
r

)
. (9.44)

We first set

r ≥ 12n2β, (9.45)

so that

‖U‖r ≤ exp

(
4n2β2

r
+

2cn4β3

r2

)
. (9.46)

We then choose

r = max

{
8n2β2

ε
,
2
√
cn2β3/2

ε1/2

}
(9.47)

to ensure that the multiplicative error is at most ε. By (9.30), (9.45), and (9.47),

we have

r = O
(
n2β2

ε

)
, (9.48)
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which gives the total gate complexity [21, Supplementary p. 7]

j = 4n2r = O
(

(1 + β2)n4

ε

)
. (9.49)

The result of [21, Theorem 2] gave a Monte Carlo simulation algorithm for

the ferromagnetic quantum spin systems. To improve that result, we also need to

estimate the error of partial sequence of the product formula as in [21, Eq. (13)].

This can be done in a similar way as our above analysis. The resulting randomized

approximation scheme has runtime

Õ
(
j23

ε2

)
= Õ

(
n92(1 + β46)

ε25

)
, (9.50)

which improves the runtime of the original Bravyi-Gosset algorithm

Õ
(
n115(1 + β46)

ε25

)
. (9.51)
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Chapter 10: Conclusion and future work

In this dissertation, we developed an understanding of quantum simulation

algorithms concerning their design, analysis, implementation, and application.

Specifically, in Chapter 2, we discussed time-ordered evolutions and their

mathematical properties, introduced common input models (the linear-combination

and linear-combination-of-unitaries model) for quantum simulation, and reviewed

leading simulation algorithms (the product-formula, Taylor-series, and quantum-

signal-processing algorithm).

In Chapter 3, we considered the simulation of a one-dimensional Heisen-

berg spin model and compared the resource requirements of implementing differ-

ent quantum simulation algorithms. We found that the quantum-signal-processing

approach has the best performance with rigorous accuracy guarantee, whereas the

product-formula approach performs significantly better with empirical estimate.

We obtained much smaller circuits than those for the simplest classically-infeasible

instances of factoring and quantum chemistry, identifying simulation of spin sys-

tems as a potential candidate problem for near-term demonstration of quantum

simulation.

In Chapter 4, we developed a randomized approach to quantum simulation

using product formulas. We randomly permuted the ordering of summands in

product-formula simulation and compared this new approach with its deterministic
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counterpart. We showed that randomized product formulas are asymptotically

advantageous over deterministic formulas and this advantage remains to hold even

in practice.

In Chapter 5, we designed a randomized approach to time-dependent Hamil-

tonian simulation. Specifically, we developed a classical sampling protocol using a

probability distribution that biases toward those times at which the instantaneous

norm of the Hamiltonian is large. Previous simulation algorithms have complex-

ity that depends on the worst-case instantaneous norm, but our new approach

scales with the integral average. Our approach is thus advantageous for Hamilto-

nians varying significantly with time, as in semi-classical simulations of scattering

processes in quantum chemistry.

In Chapter 6, we proposed a general theory for analyzing the error of product

formulas (Trotter error). Previous work obtained tight error analysis for certain

lower-order product formulas and special systems, such as those with Lie-algebraic

structure, but our approach holds in general. We considered Trotter error of various

types, including additive error, multiplicative error, and error that appears in the

exponent. For each type, we applied the correct order condition to cancel lower-

order terms, and represented higher-order ones as explicit nested commutators.

In Chapter 7, we analyzed the performance of product formulas for simulat-

ing many concrete systems, including nearest-neighbor lattice systems, electronic

structure Hamiltonians, k-local Hamiltonians, rapidly decaying power-law interac-
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tions, and clustered Hamiltonians. Applying our theory of Trotter error, we showed

that the performance of product formulas can nearly match or even outperform

the best previous results in digital quantum simulation. We further numerically

benchmarked our analysis, showing that our error bounds also have nearly tight

constant prefactors.

In Chapter 8, we developed an algorithmic framework “quantum singular

value transformation” based on ideas from quantum simulation. We described

the mathematical setting of this framework and proved a theorem that relates the

spectra of the operator we want to transform and the one that can be implemented

on a quantum computer. As an application, we used this framework to implement

principal component regression in machine learning.

In Chapter 9, we considered applications of our Trotter error analysis to

quantum Monte Carlo methods. We consider two specific systems: the transverse

field Ising model and the ferromagnetic quantum spin systems. For both systems,

we showed that previous Monte Carlo simulations can be made more efficient using

our tightened analysis.

Beyond those open problems already mentioned in the previous chapters,

there are several other questions regarding quantum simulation algorithms that

have not been answered in this dissertation.

Beyond the spin model we have considered in Chapter 3, quantum chemistry

also provides a natural choice of target system for near-term quantum simulation.
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Indeed, simulating chemical systems has industrial relevance in the design and

engineering of new pharmaceuticals, catalysts and materials. Many previous ap-

proaches to quantum chemistry use product formulas. However, due to the lack of

tight error bound, their results often overestimate the gate complexity by several

orders of magnitude. It would be interesting to further explore the extent to which

the cost of quantum chemistry simulation can be reduced using our analysis in

Chapter 6 and Chapter 7. Other systems, such as those in nuclear physics and

quantum field theory, are also natural candidates for quantum simulation [95],

although they have received far less attention in recent studies. It would be fruit-

ful to estimate the quantum cost of simulating such systems that are otherwise

infeasible to simulate on current classical computers.

Chapter 4, Chapter 5 and recent work [25, 84] developed faster algorithms

for quantum simulation using classical randomness. These randomized algorithms

have better asymptotic dependence on certain parameters and can be advanta-

geous in practice as well. However, due to the use of randomness, these approaches

only achieve first-order accuracy. It may then be beneficial to use deterministic

methods that are higher-order accurate while retaining advantages of random-

ized algorithms. Several possible strategies were suggested in quantum chemistry

simulation including the coalescing strategy [87, 107] and the divide-and-conquer

strategy [54], of which it would be interesting to develop a further understanding.

Finally, one may ask if quantum simulation algorithms could find further
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applications, especially to areas of physics beyond quantum computing. One pos-

sibility is to apply ideas from quantum simulation to study quantum Zeno effect, a

feature of quantum dynamics that has been explored both theoretically and exper-

imentally. Recent work [22] derived a concrete bound for the rate of convergence

of quantum Zeno effect, although their bound contains an exponential prefactor

that prevents it from being useful in practice. As part of their approach, they

considered a decomposition of evolution based on product formulas and that may

be made more efficient using ideas from Chapter 6. We hope the results of this

dissertation could provide insights to such applications, which would have imme-

diate value even if scalable quantum computers may not be available in the near

future.
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vol. 23, pp. 709–719, Springer, 2010, arXiv:0910.4145.

247

http://arxiv.org/abs/arXiv:1808.05225
http://arxiv.org/abs/arXiv:cond-mat/0508353
https://cs.uwaterloo.ca/~watrous/LectureNotes.html
https://cs.uwaterloo.ca/~watrous/LectureNotes.html
http://arxiv.org/abs/arXiv:1207.5726
http://arxiv.org/abs/arXiv:1312.1695
http://arxiv.org/abs/arXiv:1506.05135
http://arxiv.org/abs/arXiv:1001.3855
http://arxiv.org/abs/arXiv:0812.0562
http://arxiv.org/abs/arXiv:1204.5242
http://arxiv.org/abs/arXiv:0910.4145

	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Algorithms for quantum simulation
	Circuit implementation
	Quantum simulation by randomization
	Analysis of product formulas
	Application of quantum simulation

	Preliminaries
	Notation and terminology
	Time-ordered evolution
	Hamiltonian input models
	Product formulas
	Taylor-series algorithm
	Quantum-signal-processing algorithm

	Circuit implementation
	Target system
	Product-formula implementation details
	Taylor-series implementation details
	Quantum-signal-processing implementation details
	Results

	Randomized product formulas
	The power of randomization
	Randomization lemma
	Error bounds
	Algorithm performance and comparisons
	Empirical performance
	Discussion

	Randomized time-dependent Hamiltonian simulation
	L1-norm scaling
	A classical sampler of time-dependent Hamiltonians
	Universality
	Discussion

	Analysis of product formulas: general theory
	Previous analyses of Trotter error
	Example of the Lie-Trotter formula
	Error types
	Order conditions
	Error representations

	Analysis of product formulas: concrete systems
	Nearest-neighbor lattice Hamiltonians
	Second-quantized electronic structure
	k-local Hamiltonians
	Rapidly decaying power-law interactions
	Clustered Hamiltonians
	Numerics
	Discussion

	Quantum singular value transformation
	Standard-form encoding
	Qubitization
	Quantum signal processing
	Implementing principal component regression

	Application to Monte Carlo methods
	Transverse field Ising model
	Quantum ferromagnets

	Conclusion and future work
	Bibliography

