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Abstract

Desktop grids combine Peer-to-Peer and Grid comput-
ing techniques to improve the robustness, reliability and
scalability of job execution infrastructures. However, ef-
ficiently matching incoming jobs to available system re-
sources and achieving good load balance in a fully de-
centralized and heterogeneous computing environment is a
challenging problem. In this paper, we extend our prior
work with a new decentralized algorithm for maintaining
approximate global load information, and a job pushing
mechanism that uses the global information to push jobs
towards underutilized portions of the system. The resulting
system more effectively balances load and improves over-
all system throughput. Through a comparative analysis of
experimental results across different system configurations
and job profiles, performed via simulation, we show that
our system can reliably execute Grid applications on a dis-
tributed set of resources both with low cost and with good
load balance.

1 Introduction

The recent growth of the Internet and the CPU power
of personal computers and workstations enables desktop
grid computing to achieve tremendous computing power
with low cost, through opportunistic sharing of resources [2,
3, 11, 12, 32]. However, due to the inherent shortcom-
ings of the traditional server-client architecture of desktop
grid computing platforms, a combination of Peer-to-Peer
(P2P) and Grid computing can be employed to improve ro-
bustness, reliability and scalability of a desktop grid sys-
tem [10, 13, 16, 20].
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Our goal is to design and build a highly scalable infras-
tructure for executing Grid applications on a widely dis-
tributed set of resources. Such infrastructure must be decen-
tralized, robust, highly available and scalable, while effec-
tively mapping application instances to available resources
throughout the system (called matchmaking). By employ-
ing P2P services, our techniques allow users to submit jobs
to the system, and the jobs are run on any available re-
sources in the system that meet or exceed the minimum job
resource requirements (e.g., memory size, disk space, etc.).
The overall system, from the point of view of a user, can be
regarded as a combination of a centralized, Condor-like grid
system for submitting and running arbitrary jobs [21], and a
system such as BOINC [2] or SETI@HOME [3] for farm-
ing out jobs from a server to be run on a potentially very
large collection of machines in a completely distributed en-
vironment.

However, as such a system scales to large configura-
tions and heavy workloads, it becomes a challenge to effi-
ciently match jobs having different resource requirements
with available heterogeneous computational resources, to
provide good load balancing, and to obtain high system
throughput and low job turnaround times. Our previous
work [18] addressed these issues and showed the trade-
offs between efficient matchmaking and good load balanc-
ing through a comparative analysis of three different match-
making algorithms.

In this paper, we extend our previous work and describe
algorithms and techniques that achieve both efficient match-
making of jobs and good load balancing in decentralized
and heterogeneous computational environments. The con-
tributions of the paper are:

1. An intelligent matchmaking algorithm that is guaran-
teed to find a resource that meets the multiple require-
ments of a job, if such a resource exists somewhere in
the system

2. Parsimonious resource usage that avoids wasting re-
sources that are over-provisioned with respect to the
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jobs

3. Adapting the current load of the system to use more
capable resources when the overall system is lightly
loaded

4. Both efficient matchmaking and good load balancing
with low cost

The rest of the paper is structured as follows. Section 2
discusses the context and overall goals of the work. Sec-
tion 3 presents related work, while Section 4 describes the
algorithms and optimization criteria for matching jobs to
resources. Finally, Section 5 contains our evaluation, and
Section 6 concludes.

2 Workload Assumptions and Overall Goals

A general-purpose desktop grid system must accommo-
date heterogeneous clusters of nodes running heterogeneous
batches of jobs. The implication is that a matchmaking al-
gorithm must incorporate both node and job information
into the process that eventually maps a job onto a specific
node.

Our expected environment and usage make this problem
easier in some ways and more difficult in others. A large
fraction of nodes in the system might belong to one of a
small number of equivalence classes in terms of their re-
source capabilities. For example, many organizations buy
clusters of identical machines all at once, whether to cre-
ate compute farms or just to replace an entire department’s
machines. Node clusters make the problem more difficult
by removing the notion of a single best match for a given
job. The underlying matchmaking algorithm must be able
to cope with many similar nodes and perform some intelli-
gent load balancing across them. However, node clustering
can also simplify the problem by reducing the set of possi-
ble choices for the matchmaking algorithm. Similarly, job
profiles might show clustering in terms of their minimum
resource requirements. Sets of similar jobs can result from
running the same application code with slightly different
parameters or input datasets. For example, researchers of-
ten perform parameter sweeps to optimize algorithmic set-
tings or explore the behavior of physical systems. Similarly,
the same computation may be performed on different input
regions, such as n-body or weather calculations that differ
only in spatial coordinates.

Therefore, the overall problem space for Grid computing
environments can be divided along two axes, measuring the
degree to which the nodes and jobs are either clustered or
mixed. Systems such as Condor [21] mainly target mixed
jobs in clustered nodes, while systems like BOINC [2] or
SETI@Home [3] deal with clustered jobs in mixed nodes.
Our intent is to effectively support all of these scenarios.

To summarize, the goals of any matchmaking algorithm
must include the following:

1. Capability - The matchmaking framework should al-
low users to specify minimum requirements for any
type of resource (CPU speed, memory, etc.).

2. Load balance - Load (jobs) must be distributed across
the nodes capable of performing them.

3. Precision - Resources should not be wasted. All other
issues being equivalent, a job should not be assigned
to a node that is over-provisioned with respect to that
job.

4. Completeness - A valid assignment of a job to a node
must be found if such an assignment exists.

5. Low overhead - The matchmaking must not add signif-
icant overhead to the cost of executing a job. This may
be challenging, given that the matchmaking is done in
a completely decentralized fashion.

3 Related Work

Peer-to-Peer research has shown that a robust, reliable
system for storing and retrieving files can be built upon
unreliable machines and networks. The most popular al-
gorithms for object location and routing in P2P networks
(called Distributed Hash Tables or DHTs [27, 29, 30, 34])
are capable of scaling to very large numbers of peers and
simultaneous requests for service. A system can build upon
these basic services to allow users to place idle computa-
tional resources into a general pool and draw upon the re-
sources provided by others when needed.

Research such as [7, 8, 15, 16, 24] proposed a P2P ar-
chitecture to locate and allocate resources in the Grid envi-
ronment by employing a Time-To-Live (TTL) mechanism.
TTL-based mechanisms are relatively simple but effective
ways to find a resource (that meets the job requirements)
in a widely distributed environment without incurring too
much overhead in the search. However, such mechanisms
may fail to find a resource capable of running a given job,
even though such a resource exists somewhere in the net-
work (lack of Completeness).

Studies on encoding static or dynamic information about
computational resources using a DHT hash function for re-
source discovery have also been conducted [4, 6, 9, 10,
14, 25]. However, there can be a load balancing problem
for these encoding techniques, since a small fraction of the
nodes can contain a majority of the resource information
whenever there are many nodes that have very similar (or
identical) resource capabilities in the system (lack of Load
balance). Also, simple encoding of resource information
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cannot effectively avoid selecting resources that are over-
provisioned with respect to the jobs (lack of Precision).

The CCOF (Cluster Computing on the Fly) project [22,
35] conducted a comprehensive study of generic searching
methods in a highly dynamic P2P environment to locate
idle computer cycles throughout the Internet. More recent
work from the CCOF researchers, on a peer-based desktop
grid system called WaveGrid, constructed a timezone-aware
overlay network based on a Content-Addressable Network
(CAN) [27] to use idle night-time cycles geographically
distributed across the globe [36]. However, the host avail-
ability model in that work is not based on the resource re-
quirements of the jobs (lack of Capability).

Awan et al. [5] proposed a distributed cycle sharing sys-
tem that utilizes a large number of participating nodes to
achieve robustness through redundancy on top of an un-
structured P2P network (which cannot achieve the effi-
ciency of a DHT). By employing efficient uniform random
sampling using random walks, probabilistic guarantees on
the performance of the system could be achieved. Also,
they claim to support robustness and scalability with strong
probabilistic guarantees. However, as for the CCOF project,
the job allocation model in this work does not consider the
requirements of the jobs nor the varying resource capabili-
ties of nodes in the system (lack of Capability).

4 Matchmaking Algorithms

We begin by defining terminology and the basic frame-
work of our approach to matchmaking, and then describe
the details of the improvements we have made in our CAN-
based matchmaking framework.
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All of the work described assumes an underlying dis-
tributed hash table (DHT) infrastructure [27, 29, 30, 34].
DHTs use computationally secure hashes to map arbitrary
identifiers to random nodes in a system. This randomized
mapping allows DHTs to present a simple insertion and
lookup API that is highly robust, scalable, and efficient. We
insert both nodes and jobs into a single DHT, performing
matchmaking by mapping a job to a node via the insertion
process, and then relying on that node to find candidates
that are able and willing to execute the job. By using such
an architecture, we effectively reformulate the problem of
matchmaking to one of routing, similarly to anycasting [26],
or content-based routing [1].

A job in our system is the data and associated profile
that describes a computation to be performed. A job pro-
file contains several characteristics about the job, such as
the client that submitted it, its minimum resource require-
ments, the location of input data, etc. All jobs in the system
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Figure 1. Overall System Architecture

are independent, which implies that no communication is
needed between them (as in Maheswaran et al. [23]). This
is a typical scenario in a desktop grid computing environ-
ment, enabling many independent users to submit their jobs
to a collection of node resources in the system.

Figure 1 shows the overall system architecture and flow
of job insertion and execution in the P2P network. The steps
of job execution are as follows:

1. A client inserts a job into a node in the system (injec-
tion node). The DHT provides an external mechanism
that can find an existing node in the system [27, 30].

2. The injection node assigns a Globally Unique IDen-
tifier (GUID) to the job by using its underlying hash
function and routes the job to the owner node.

3. The owner node initiates a matchmaking mechanism
to find a run node capable of running the job.

4. Once the matchmaking mechanism finds a run node for
the job, the owner node sends the job to the run node.

5. The job is inserted into the job queue of the run node,
which processes jobs in FIFO order. While process-
ing the jobs, the run node periodically sends heartbeat
messages to the owner node, which can relay the mes-
sage to the client that initiated the job

6. When the job is finished, the run node returns the re-
sults to the client.

An owner node is responsible for monitoring the execu-
tion of the job and ensuring that its results are returned to the
client. Heartbeats are communicated directly between run
nodes and owner nodes, rather than through DHT routing.
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This soft-state message plays an important role in failure re-
covery during the processing of jobs in our system, as job
profiles are replicated on both the owner and run nodes. If
either the owner node or the run node fails, the other will
detect the failure and initiate a recovery protocol so that the
job can continue to make progress. If both fail before the
recovery protocol completes, the client must resubmit the
job. More details about our basic framework for submitting
and executing jobs in the P2P network can be found at Kim
et al. [19]
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In this section, we briefly describe our basic approach
to perform matchmaking based on a Content-Addressable
Network (CAN) [27].

A CAN is a DHT that maps GUIDs of nodes and data to
points in a � -dimensional space so that each node divides up
the CAN space into rectangular zones and maintains neigh-
bor information. The conventional use of CAN is to map a
GUID into the space by applying � different hash functions,
one for each dimension. However, positions in the CAN
space need not be created through randomized hashes. For
example, Tang et al. [31] map documents and queries into a
CAN space where each dimension measures the relevance
of a particular index term, executing queries via a blind lo-
cal search centered on a query’s mapping.

Similarly, we can formulate the matchmaking problem
as a routing problem in a CAN space. By treating each re-
source type as a distinct dimension, nodes and jobs can be
mapped into the CAN space by using their capabilities or
requirements on each resource type, respectively, to deter-
mine their coordinates. As a simple example, if the resource
types consist of CPU speed, memory size, and disk space,
we might map a 3.6GHz workstation, with 2GB of memory
and 500GB of disk space, to the point � 360, 2000, 500 	 .
A job requiring at least a 1GHz machine, 100MB of mem-
ory, and 200 MB of disk space would map to � 100, 100,
0.2 	 , clearly some distance from the node just described.
With this approach, mapping a job to a node might seem to
consist merely of mapping the job into the CAN space and
finding the nearest node. However, the semantics of match-
ing jobs to nodes are different than that of merely finding
the closest matching node. Most importantly, job require-
ments represent minimum acceptable quantities. Any node
meeting a job’s requirements can run the job, but a node
whose coordinate in any dimension is less than that spec-
ified by the job’s requirements, even if very close in the
CAN space, is not a viable choice to run the job. Hence our
matchmaking/routing procedure must search for the closest
node whose coordinates in all dimensions meet or exceed
the job’s requirements.

Figure 2 shows the procedure for matching a job J to the
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Figure 2. Matchmaking Mechanism in Basic
CAN

Node G in a system with two resource types, CPU speed
and Memory size, through routing in the CAN space. A
job is inserted into the system using its requirements as
coordinates ( � C 
 , M 
�	 for Job J) and defining the owner
of the resulting zone as the owner node of the job (Node
D). The owner node creates a list of candidate run nodes,
and chooses the (approximately) least loaded among them
(Node G) based on load information periodically exchanged
between neighboring nodes. The candidate nodes are drawn
from the owners of neighboring zones, such that each can-
didate is at least as capable as the original owner node in all
dimensions (capabilities), but more capable in at least one
dimension (Nodes G and L).

The basic CAN procedure works in all cases, but may
cause serious load imbalance when many nodes have sim-
ilar, or even identical, resource capabilities. Since the co-
ordinates of a node are defined by its resource capabilities,
identical nodes are mapped to the same place in the CAN
volume (New Node and Node A in the figure). The best
way to distribute ownership of a zone across multiple such
nodes is not immediately obvious. Conversely, many jobs
might have very similar requirements. For example, many
jobs will likely be inserted into the system with no require-
ments at all specified. In this case, all of those jobs will be
mapped to a single node that owns the zone containing the
minimum point in the CAN volume (Node C in the figure).

We address this problem by supplementing the “real” di-
mensions (those corresponding to node capabilities) with a
virtual dimension. Coordinates in the virtual dimension are
generated uniformly at random. Whenever a new node joins
the system, a representative point for the new node is gener-
ated by combining the resource capabilities of the node and
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a randomly generated virtual dimension value. Therefore,
even when multiple identical nodes join the system, they
are mapped to distinct locations, and CAN zone splitting
is straightforward. Similarly, when a new job is inserted
into the system, the new job’s coordinates become a com-
bination of the job’s requirements and a randomly assigned
virtual dimension coordinate. In combination, the randomly
assigned node and job coordinates act to break up clusters
and spread load more evenly over nodes. More details can
be found in our previous work [18].

����� �����!
�� �	��� ���	�%�

In previous work, we showed that the CAN-based match-
making mechanism can achieve good load balancing among
the multiple candidate run nodes with low matchmaking
cost in most scenarios. However, we found that in cer-
tain circumstances the CAN-based algorithm works very
poorly due to serious load imbalance when jobs with few
requirements are run on nodes with heterogeneous (mixed)
resource capabilities. For example, suppose we have a hy-
pothetical CAN with only a single real dimension, CPU
speed. If most jobs do not specify CPU requirements, their
CPU speed coordinates will have the minimum value in that
dimension. The jobs can still be mostly distributed (via the
virtual dimension) along a line at a single CPU coordinate.
However if most nodes have distinct CPU speeds (mixed
node profiles), the slowest node ends up covering the bulk
of the virtual dimension at low CPU speed, and will become
the owner of a disproportionate number of the jobs, result-
ing in load imbalance [18].

We now describe how we have improved the basic CAN-
based matchmaking mechanism to address this problem by
pushing jobs into underloaded regions of the CAN space
based on dynamic aggregated load information.

Figure 3 shows the basic concepts of our improvements.
When a new job is inserted into the system and routed to
the owner node (Node A), the job is pushed into an under-
loaded region in the CAN space. To determine whether to
initiate pushing of a job, a fixed amount of current system
load information is propagated along each dimension in the
CAN space. If the overall system is lightly loaded, the job
can be pushed into the upper regions of the CAN space (far-
ther from the origin) and utilize the more capable nodes in
the system (Node B). We cannot push jobs to lower regions
(closer to the origin) in the CAN space, because the nodes
occupying those regions will likely not be able to satisfy the
jobs’ requirements. It is very important that each node in the
pushing path of a job be able to make the decision whether
to continue pushing the job in a completely decentralized
fashion, based only on local information. Therefore, the
amount of information maintained by each node for push-
ing jobs should remain constant with respect to the number

CPU Dimension

Memory
Dimension

Node A

Job

Routing

Node B

Job

Aggregated
Resource

Information

Aggregated
Resource

Information

Figure 3. Improving the CAN-based Mecha-
nism

of jobs.
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To enable the pushing of a job to an underloaded region
in the CAN, we have to propagate a fixed amount of cur-
rent load information through the nodes in the CAN space.
Since each node cannot maintain an accurate global picture
of the system load, the load information must be properly
aggregated. Also, the load information should be dynamic
so that it can reflect the current distributed state of the sys-
tem. For this dynamic aggregated load information we use
the following measures along each dimension in a CAN
space:

� Number of Nodes

� Sum of the Job Queue Sizes

We add this aggregated load information to the periodi-
cal neighbor state update mechanism of the original CAN
DHT maintenance algorithm [27], to avoid generating ad-
ditional messages in the P2P network. By using the two
aggregated load statistics, for a given node N we can esti-
mate the current load (e.g., average job queue size) along
each dimension of the CAN for the nodes that own CAN
regions with greater values than that of node N in that di-
mension. However, it is not easy to accurately compute the
aggregated load information, since the overall CAN space
can be irregularly partitioned. To build a regularly parti-
tioned CAN space, the representative points for all nodes in
the system should be distributed uniformly. In our CAN, the
point for a node consists of its resource capabilities and an
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additional virtual dimension coordinate. Therefore we can-
not assume that the resource capabilities of the nodes in the
system have a uniform distribution since, in the real system,
only a small portion of the nodes are likely to have high re-
source capabilities, with the majority of the nodes having
relatively lower capabilities [36].

CPU Dimension
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Node A Node B

Node C Node D

Node E

LAC LAD LBD

LCE LDE

AggrInfo(A) = AggrInfo(B) = 0
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AggrInfo(D) = [Info(A)+AggrInfo(A)] * [LAD / (LAC+LAD)] + [Info(B)+AggrInfo(B)] * [LBD/LBD]
AggrInfo(E) = [Info(C)+AggrInfo(C)] * [LCE/LCE] + [Info(D)+AggrInfo(D)] * [LDE/LDE]

Aggregation of 
load information
along Memory

Dimension

Figure 4. Computing Aggregated Load Infor-
mation

To deal with aggregation of load information in the ir-
regular CAN space, the algorithm uses an overlap fraction-
based computation, as shown in Figure 4. Figure 4 shows
the process for aggregating load information along the
Memory dimension in a CAN space. Info(N) is the cur-
rent load information for node N (e.g., job queue size on N).
AggrInfo(N) is the computed aggregated load information
from nodes with Memory values greater than that of node
N (Number of Nodes or Sum of the Job Queue
Sizes). Whenever a node N computes its aggregated load
information, it only carries some fraction of the information
from its neighbors with larger Memory values, depending
on how much N’s boundary overlaps with those neighbors.
Note that the information about the neighbors is propagated
through the periodical CAN neighbor state update mech-
anism. More generally, for each dimension d in a CAN
space, node N can compute the aggregated load information
along the dimension d (denoted by ���������
	 ) as follows:

�������
��	�� ���������� �
����������	�� �!�
��	"	$#&%('����
�*)"��	 (1)

%('����
�+),��	-�/.
0213 � %54�6�798�:�;!< �>=�6��
�?)@�*),AB	
.�0213 � < �>=�6��
�?)"AC	

(2)

In Equation 1, D(�E� is the set of nodes adjacent to �
with which it shares a border along � ’s upper edge in di-
mension � . For Node D in Figure 4, and considering the
memory dimension, this would be the set � Node A, Node
B 	 . For each node � in D(� � , � adds the local and ag-
gregated information from � and multiplies it by a factor%(' � ���*),��	 . This factor reflects the fact that nodes other
than � might have � as a neighbor in dimension � (for ex-
ample, Node C also has Node A as a neighbor), so without
the multiplier � ’s information will be included more than
once (when Node E aggregates information from both Node
C and Node D). In particular, if F��G� are the lower neigh-
bors of � at dimension � (thus �IHJFK�E� ), then it must hold
that �L��>MN��� %('�����4O),��	��QP
in order for � ’s load information to be aggregated in full
along dimension � (Node A’s information must be split be-
tween Node C and Node D).

The aggregation multiplier %('R���
�+),��	 is the overlap
fraction of � and � along dimension � , from the per-
spective of node � . That is, if � and � control adjacent
hyper-volumes in the CAN space, it is the fraction of � ’s
hyper-area at its lower bound in dimension � that inter-
sects with � ’s hyper-area at its upper bound in � . In two
dimensions, it is the length of the line segment describ-
ing � and � ’s shared border divided by the full length of� ’s bordering edge. For example, %('�SUTCSUV,W@XN��Y*)"�5	Z�F�[�\�]N�
F�[�^+�_F�[�\U	 , where L is the length of the line seg-
ment. In higher dimensions, the orthogonality of the dimen-
sions means that we can compute each of these linear frac-
tions for the dimensions other than � , and take their prod-
uct to obtain the overlap fraction. This is what is shown
in Equation 2, where %54�6`7a8�:`;O< �>=�6����b)"�+),AB	 is the overlap
of � and � in dimension A ( F [�\ for Node D and Node A
in the CPU dimension) and < �>=�6��
�?)"AC	 is the length of � ’s
edge in dimension A ( F [�^ �cF [�\ for Node A in the CPU
dimension).

Once the aggregated load information is propagated
through the entire CAN space, all the way to the nodes near
the origin, the system is able to push the incoming jobs into
underloaded regions for better load balancing and to utilize
more capable nodes in the system. To initiate the job push-
ing we have to address several issues as follows:

1. Target Node - Where should a job be sent?

2. Stopping Criteria - When should pushing be stopped?

3. Criteria for the Best Run Node - Which candidate run
node should be selected?

To determine the target node, first we want to push the
jobs into lightly loaded regions of the CAN space. Likely
the best way to determine the load of the system is to use
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the aggregated average job queue size. Since each node has
aggregated load information about each upper neighbor lo-
cally, it can calculate the aggregated average job queue size
for each upper neighbor by using Number of Nodes
and Sum of the Job Queue Sizes carried by the
load propagation mechanism. However, the shortest aver-
age job queue size does not always give the best choice. A
node with a slightly longer aggregated average queue size
might also enable access to a larger number of potential run
nodes than the node with the smallest aggregated average
queue size. This larger number of nodes makes it more
likely that when a pushed job reaches one of the nodes be-
lieved to be lightly loaded, that node will still be lightly
loaded. Therefore, we want to push jobs to the upper neigh-
bor node that has both a small aggregated load (average job
queue size) and a large number of available nodes above
that neighbor node, to increase the number of candidate run
nodes. To summarize, we can determine the target node
based on the following objective function:

' � ����	-� ����������	��
� ���&%����
	���
(��6��O6 � A���6��

����� � �
��	�� �*����� 6�7a%�����	 ��6���	�� (3)

Whenever a node chooses a target node from among its up-
per neighbors, it calculates ' � ����	 for each �QH D(� � and
picks the one that has the minimum objective function value
across all dimensions.

By using the objective function in Equation 3, each node
in the path of a pushed job can decide where to push the
job based only on local information. The question then is
the stopping criteria – when should pushing be stopped?
We must avoid pushing jobs to the extreme edges of the
CAN space, because that will result in load imbalance. The
stopping criteria for pushing a job should reflect the cur-
rent (but distributed) load of the system and be computed
based only on each node’s local information. The very first
condition for stopping should be whenever the matchmak-
ing mechanism finds a free node that meets the resource
requirements of a job; then matchmaking can stop pushing
the job and assign the free node as the run node. Note that
each node can determine whether there is a free node in its
neighborhood based only on its local neighbor state infor-
mation, which is updated periodically. In a relatively lightly
loaded system, this mechanism works well, since every time
the matchmaking is performed, it can find a free node in the
system. However, in a heavily loaded system where most,
if not all, of the nodes are already busy processing jobs, it
is not clear how we stop pushing a job without causing se-
vere load imbalance. A simple way to do this is for each
node to estimate the current load (average job queue size)
of its surrounding neighbors, and if the load is below a pre-
defined threshold, then it can stop pushing and assign the
job to one of its neighbor nodes. However, to determine a
threshold that is insensitive to the characteristics of various

workloads is not trivial. Therefore, we employ probabilistic
stopping according to the following formula:

� � � )@�
	-� P
�,PK� �����O\ �
�
	�� �+����� 6�7 %�����	 ��6��9	���� (4)

In Equation 4,
� � � )@�
	 shows the probability to stop

pushing a job from node N, and
� ' is the stopping fac-

tor, which greatly affects the shape of the probability func-
tion. As the number of nodes above node N in the tar-
get dimension ��Y (determined by the neighbor minimizing
Equation 3) becomes smaller, the probability of stopping
becomes greater. This means that if a job approaches the
edges of the CAN space, with high probability the pushing
will stop and a run node chosen based on local information.
This feature avoids pushing incoming jobs to the edges of
the CAN space, which would overload the nodes near the
edges. We can adjust the probability function by changing� ' (higher

� ' means a higher probability of pushing the
job). We tested three different

� ' values from 1 to 3 and
show the experimental results in Section 5.

We have shown (1) how to aggregate the dynamic load
information in a CAN space (Equations 1 and 2), (2) based
on that information how to choose a target node for a job
(Equation 3), and (3) when to stop pushing a job (Equa-
tion 4). The final step in the matchmaking algorithm is to
choose the best run node among the multiple candidates.
Pushing of incoming jobs can be stopped either because the
matchmaking mechanism found a free node or due to the
probabilistic stopping function. In the former case, the node
where the pushing stopped (we call this node the match-
ing node) creates a list of capable candidates using its local
neighbor state information. It is possible that there might
be multiple free nodes among the candidates, in which case
the matchmaking algorithm selects the fastest candidate run
node (measuring CPU speed), since that can speed up the
overall processing of a job. However, if the pushing process
stopped because of the probabilistic stopping function, this
means that there are not enough free nodes in the system.
To choose the best run node from among the candidates,
but with no available free nodes, we use the following score
function for ranking the candidates:

' � � 	�� �!�"�
	���
(��6��O6 � A���6
�!� � ;!696 ��%��#� � D (5)

In Equation 5, ' � � 	 is the score function for a candidate
run node � . The candidate node with the minimum score
will be selected as the best run node: the algorithm prefers a
node with a smaller job queue and a faster CPU. Using only
the set of candidate run nodes built by the matching node
may not be sufficient, since we are pushing the jobs across
multiple nodes in the system. Therefore, we still consider
the candidate run nodes found in the process of pushing,
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in addition to the candidate run nodes around the match-
ing node, for better load balancing. To summarize, at each
step of pushing a job, the matchmaking mechanism keeps
the best candidate run node based on the score function in
Equation 5, and considers it in the list of candidates created
by the matching node whenever the matchmaking mecha-
nism cannot find a free node in the system.

5 Evaluation

In this section, we evaluate our matchmaking algo-
rithms in decentralized and heterogeneous environments
and present a comparative analysis of experimental results
obtained via simulations. To compare against our CAN-
based approach, we evaluate two additional matchmaking
algorithms, a Rendezvous Node Tree-based approach and a
Centralized Matchmaker, that were described in detail in
our previous work [17, 18].

� ��� � �&����� � �!��� � � $��
� � �&��� 
%���

We briefly introduce the Rendezvous Node Tree (RNT),
which uses a distributed data structure built on top of an
underlying Chord DHT [30]. Specifically, the RNT copes
with dynamic load balance issues by performing a limited
random walk after the initial mapping, and addresses Com-
pleteness by passing information describing the maximal
amount of each resource available up and down the tree.

An RNT contains all participating nodes in the desktop
grid. Each node determines its parent node based only on
local information, which enables building the tree in a com-
pletely decentralized manner. Due to the uniform distribu-
tion of GUIDs of the nodes in the system, the overall height
of the RNT is likely to be %G���
	��K��	 where N is the total
number of live nodes in the system (see details in Kim et
al. [17]). Once the parent-child relationship in the RNT is
determined, each node periodically sends local subtree re-
source information (for the subtree rooted by that node) to
its parent node, and this information is aggregated at each
level of the RNT (hierarchical aggregation as in Renesse et
al. [28] and Yalagandula et al. [33]).

We inject jobs into the system by mapping each to a
randomly-chosen node that becomes the job’s owner node,
which achieves a good initial load balancing by spread-
ing the jobs across the system. The owner node initiates
a search for a node on which to run the job. The search
first proceeds through the subtree rooted at the owner, only
searching up the tree into subtrees rooted at the ancestors
of the owner node if the subtree does not contain any satis-
factory candidates. The search is pruned using the maximal
resource information carried by the RNT. Rather than stop-
ping at the first candidate capable of executing a given job,
the search proceeds until at least 
 capable nodes are found

for better load balancing (extended search). If any of the
capable nodes has an empty queue, the empty node with the
fastest CPU is selected. Otherwise, the candidate node cho-
sen is the one with the smallest value of the score function
shown in Equation 5.

� ��� 
 ���	�%
%���� �� � � � � ��� �!� ��� ��


We have designed an online scheduling mechanism,
called the Centralized Matchmaker, that maintains global
information about the current capabilities and load infor-
mation for all the nodes in the system, and so can assign
a job to the node that both satisfies the job requirements
and has the lightest current load across all nodes in the en-
tire system. In our simulation environment, the Central-
ized Matchmaker does not incur any cost for gathering the
global information about the nodes in the system and per-
forming the matchmaking (since the simulator can main-
tain global information about all the nodes in the system).
Even though the matchmaking performed by the Central-
ized Matchmaker is not always optimal (since it is an online
algorithm), it should provide good load balancing and is a
good comparison target for other matchmaking algorithms
(as in Oppenheimer et al. [25] and Zhou et al. [35]).

We can view the Centralized Matchmaker algorithm as
the extreme case of the RNT or CAN based search algo-
rithm, since it first finds all candidate run nodes that meet
the job requirements and picks the one with the lightest
load. However, such a scheme would not be feasible in a
complete decentralized system implementation, since the
algorithm would incur a large overhead to find all nodes
in the P2P system that meet the job requirements, and the
node performing the centralized algorithm would be a sin-
gle point of failure for the system.

� ��� ��� � ��
� �� � �	������� � �
$ �

We use synthetic job and node mixes to simulate the be-
havior and measure the performance of our improved CAN-
based matchmaking algorithm. Our intent is to model a P2P
desktop grid environment with a heterogeneous set of nodes
and jobs. We therefore generated a variety of workloads,
each describing a set of nodes and events. Events include
node joins, node departures (graceful or from a failure), and
job submissions. The events are generated using a Pois-
son distribution with an arrival rate of P9]�� ( � is the aver-
age event inter-arrival time). Jobs can specify constraints
for three different resource types: CPU speed, memory, and
disk space. We generated node profiles using a clustering
model to emulate resources available in a heterogeneous en-
vironment, where a high percentage of nodes have relatively
small values for their available resources and a small frac-
tion of nodes have larger amounts of available resources (as
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in Zhou et al. [36]).

Our test traffic workloads differ on two axes. Work-
loads are categorized as either clustered or mixed (as de-
scribed in Section 2). The former divides all nodes and
jobs into a small number of equivalence classes, where all
items in a given equivalence class are identical. The lat-
ter assigns node capabilities and job constraints randomly.
Workloads are also distinguished by whether the jobs are
“lightly” or “heavily” constrained. For a given job, each
type of resource has a fixed independent probability of be-
ing constrained: “lightly-constrained” jobs have an average
of 1.3 constraints (out of the 3) and “heavily-constrained”
jobs have an average of 2.4. As a job has more minimum
resource requirements (heavily-constrained workloads), it
is likely to be harder to match the job since fewer nodes
in the system can meet those multiple constraints. In this
paper, we present only results from mixed workloads since
in the clustered workloads, the CAN-based matchmaking
mechanism already has shown better performance than the
RNT based approach and is close to that of the Centralized
Matchmaker [18]. The amount of work W for a job j is gen-
erated uniformly at random from a predefined set of work
ranges (40 minutes on average), and means that to run the
job j a node must execute for W time units if it has exactly
the same node specification as does the job j’s constraints.
To model the actual running time of a job, we divide W by
the node CPU speed (relative to some baseline node CPU
speed), to get a run time on the node a job is assigned to.
Finally, for the network communication cost, the average
latency of a packet between any two nodes in the system is
set as 50 milliseconds which is exponentially distributed.

Our metrics are matchmaking cost (the amount of time
between when a job is injected and when it is assigned to
a run node in the system), wait time (the amount of time
between when a job is injected and when it actually starts
running) and average queue length (the length of the non-
preemptive job queue seen by a job when it is finally as-
signed to a run node). Matchmaking cost directly quantifies
the overhead needed to perform the matchmaking in a de-
centralized manner. Wait time includes the time to perform
the matchmaking algorithm and the time spent waiting in
the job queue of a run node before a job is executed. Wait
time reflects both protocol overhead and the quality of the
matchmaking results, i.e., load balancing. Finally, the dis-
tribution of queue lengths provides a direct measurement of
the load balance seen by injected jobs.

We test the original CAN approach (Section 4.2) (CAN)
and the improved CAN approach employing dynamic ag-
gregated load information (Section 4.3 and 4.4) with dif-
ferent stopping factors from 1 to 3 (CAN-P1,2,3). To com-
pare against CAN-based matchmaking mechanisms, we
also tested the RNT based approach (Section 5.1) (RNT)
and the idealized centralized approach (Section 5.2) (CEN-

TRAL). We do not include matchmaking cost for the cen-
tralized approach because it incurs no cost for matchmak-
ing.

� � � ����
�� �	

� ���&� ��� ����$!�"���
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Figure 5. Utilization of Resources for Lightly-
Constrained Workloads

We begin by discussing the experimental results obtained
from relatively static workloads with lightly and heavily-
constrained jobs, respectively. In the static workloads, no
nodes join or leave the system during the course of the
experiments. There are six different workloads for the
lightly-constrained jobs, which have different values of �
from 15 seconds to 20 seconds. Similarly, for the heavily-
constrained workloads, we varied � from 25 seconds to 30
seconds.

The important characteristic of these workloads is that
all of them reach a steady state during the simulation pe-
riod. For example, the percentage of active nodes (nodes
currently running jobs) when the last job is injected into the
system for lightly-constrained workloads is depicted in Fig-
ure 5. Figure 5 shows that for values of � from 18 down to
16 seconds, the utilization of the overall system resources
remains low, indicating lightly loaded environments, while
from 14 seconds down almost 100% of the nodes are busy
processing other jobs when the last job is inserted into the
system. This means the system has reached its maximum
throughput. Interestingly, the utilization of CENTRAL is
smaller than all other matchmaking mechanisms in lightly
loaded environments (from 18 to 16 seconds). This is be-
cause CENTRAL is the global algorithm that can assign a
job to the fastest idle node in the system, which accelerates
the rate at which jobs are processed.

In the steady state, the rate for incoming jobs and finish-
ing jobs is approximately the same, and we want to show
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Figure 6. Experimental Results for Lightly-Constrained Workloads

the performance of each matchmaking mechanism in this
steady state, to avoid the transient effects of earlier jobs that
see a largely empty system. We can inject more jobs with
smaller � to increase the system load, which will eventually
saturate the system and result in indefinite growth of job
queues. However, this will not be feasible in a real system,
since when the overall system becomes too heavily loaded
the system can refuse to receive more jobs until it becomes
stabilized.

The desire to measure steady state behavior explains why
we choose different ranges for � for lightly and heavily-
constrained jobs. In the heavily-constrained workloads,
many jobs have multiple resource requirements, and this re-
duces the number of nodes that are legal matches for a job in
the system. Therefore to make the workloads reach steady

states, we increase � for these jobs relative to the lightly-
constrained workloads. The workloads belonging to either
the lightly or heavily-constrained sets have exactly the same
job and node profiles, respectively, so that we can directly
compare across different values of � .

Figures 6(a) and 6(b) show the performance results for
the matchmaking mechanisms, measuring job wait time and
queue length for lightly-constrained workloads. We only
plot the improved CAN-based matchmaking mechanism
with stopping factor 2 (CAN-P2) since it shows relatively
stable performance for both lightly and heavily-constrained
workloads (insensitive to the characteristics of the work-
loads). The results imply that our improved CAN-based
matchmaking mechanism shows very competitive perfor-
mance even compared to CENTRAL and improves the

10



 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

302928272625

W
ai

t T
im

e 
of

 J
ob

 (
s)

Average Inter-Arrival Time (s)

Average Wait Time of Jobs (Heavily-Constrained)

CAN
CAN-P2

RNT
CENTRAL

(a) Average Job Wait Time

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

302928272625

Q
ue

ue
 L

en
gt

h

Average Inter-Arrival Time (s)

Average Job Queue Size (Heavily-Constrained)

CAN
CAN-P2

RNT
CENTRAL

(b) Average Job Queue Length

0.0

0.1

0.2

0.3

0.4

0.5

0.6

302928272625

M
at

ch
m

ak
in

g 
C

os
t (

s)

Average Inter-Arrival Time (s)

Average Matchmaking Cost (Heavily-Constrained)

CAN
CAN-P2

RNT

(c) Average Matchmaking Cost

Figure 7. Experimental Results for Heavily-Constrained Workloads

quality of load balancing dramatically from the original
CAN algorithm (CAN). More specifically, CAN-P1 has 2.1
times the average job wait time of CENTRAL across all
the lightly-constrained workloads, CAN-P2 is a factor of
1.5 worse and CAN-P3 is a factor of 1.4 worse, while the
RNT is a factor of 4.6 worse and CAN 21.2 times worse.
The main reason CAN has poor load balancing is that for
the lightly-constrained workloads, a majority of the jobs
have few or no constraints, so that many jobs are mapped
to a comparatively small region of the CAN space near the
origin. More specifically, if a job does not specify any re-
quirement for a specific resource type, the corresponding
coordinate for the job is mapped to the minimum constraint
value (in our case, 0), and this results in a hot spot caus-
ing load imbalance. However, by pushing jobs to under-

loaded regions of the CAN space, CAN-P2 can disperse
the jobs in the different dimensions from the original hot
spot, which results in superior load balancing (as seen in
Figure 6(b)). Additionally, CAN-P2 can utilize more ca-
pable nodes whenever needed, which can accelerate overall
job processing so that CAN-P2 also outperforms the RNT.

However, pushing jobs in the CAN space may cause ad-
ditional overhead for matchmaking, since each job must tra-
verse the CAN space from its owner node to find an ap-
propriate run node. Figure 6(c) shows that CAN-P2 has
worse matchmaking performance than CAN. Also, as we
increase the stopping factor (SF), the matchmaking cost in-
creases accordingly, since with higher SF the probability for
stopping decreases. However, all of the CAN-based match-
making mechanisms (CAN and CAN-P2) still show better
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Figure 8. Costs and Benefits of CAN-P for Lightly-Constrained Workloads

matchmaking performance than RNT. This is because the
CAN-based matchmaking mechanism inserts each job into
the right place in the DHT for matchmaking (the owner
node), where surrounding neighbor nodes can already meet
the resource requirements of the job. However, in the RNT
approach each job starts from a completely random place in
the DHT and must find an appropriate run node for the job
through searching up and down the RNT. Another interest-
ing result in Figure 6(c) is that all of our matchmaking algo-
rithms (including CAN, CAN-P2 and RNT) show very low
cost for performing matchmaking in distributed and hetero-
geneous environments. Compared to the wait time of jobs
shown in Figure 6(a), the cost for matchmaking is almost
negligible. This could be because of our assumption about
the average packet delay for a message, which is set to 50
milliseconds. However, even considering this packet delay,
the results show that all of our matchmaking mechanisms
find an appropriate run node with a very small number of
P2P network hops to achieve good load balancing. Hence,
we can concentrate on the load balancing issue whenever
the average running time of jobs (in our case, 40 minutes) is
significantly longer than the network communication speed,
which is a typical scenario in a desktop grid computing en-
vironment.

Heavily-Constrained Workloads The results in Figure 7
show quite different stories about the performance of
matchmaking algorithms. Figure 7(a) and 7(b) show that
all of the CAN-based matchmaking mechanisms obtain per-
formance very close to that of CENTRAL when measur-
ing load balance, while RNT shows the worst performance
among all the matchmaking mechanisms. For the heavily-

constrained workloads, many jobs have multiple resource
constraints, which limits the number of nodes in the system
that can be matched to a job, so that the CAN-based mecha-
nisms can achieve very good load balancing even compared
to CENTRAL [18].

Although we cannot directly compare the results in Fig-
ure 7(c) with Figure 6(c), the gap between the RNT and
CAN-based mechanisms appears larger for the heavily-
constrained workloads. This is because the RNT search
suffers heavily from trying to find appropriate run nodes for
jobs with multiple resource requirements.

Costs and Benefits of SF Different stopping factor val-
ues can affect the behavior of the CAN-P algorithm, mea-
suring the number of jobs pushed, as seen in Figure 8(a).
With higher SF, more jobs will be pushed into the upper
regions of the CAN space due to the decreased stopping
probability, so that CAN-P3 shows the highest percentage
of pushed jobs among the three different CAN-Ps. Increas-
ing the stopping factor increases the overall matchmaking
cost, since jobs are pushed farther in the CAN space to find
appropriate run nodes. However, that does provide bene-
fits from better load balancing, as seen in Figure 8(b), since
more capable nodes end up being used for some jobs in the
system. As the overall system becomes lightly loaded (in-
creasing � ), the percentage of pushed jobs decreases, since
the matchmaking mechanism is more likely to encounter an
empty node (as seen from Figure 8(a)). The decrease is
less for heavily-constrained workloads since there are not
as many nodes in the system that can run the incoming jobs,
which means that the jobs start pushing from relatively near
the edges of the CAN space.
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Figure 9. Experimental Results for Lightly-
Constrained Dynamic Workloads

Dynamic Workloads Figure 9 shows wait times for three
lightly-constrained mixed workloads, where between 10%
and 30% of the nodes leave during the course of simulation,
and shows that node departures can affect CAN-P’s ability
to match CENTRAL’s performance. The value of � for all
of the dynamic workloads is set at 17.5 seconds. Note that
in Figure 9, results from the basic CAN are truncated since
they have very large values compared to the other match-
making frameworks. Node departures include graceful de-
partures, where a node informs its neighbors before leav-
ing, and failures, where the neighbors learn of the departure
from missing P2P network heartbeat messages. All of the
dynamic workloads have the same number of jobs and the
same job profiles, but have different sets of available nodes
in the system at different times, so that we cannot directly
compare across workloads.

In the dynamic workloads, because existing nodes de-
part the system the information carried by the CAN- and
RNT-based mechanisms can be more stale compared to the
information maintained for static workloads, and there can
also be some overhead for P2P network recovery (unlike for
CENTRAL). More specifically, CAN-P2 shows 1.6 times
the job wait time of CENTRAL on average across all the
workloads, and RNT is a factor of 5.2 worse. Although we
cannot directly compare these results with Figure 6, clearly
there are some load balancing issues for both the CAN-P
and RNT algorithms, that keep them from approaching the
wait time performance of CENTRAL. The dynamic behav-
ior of the nodes in the system seems to have a much larger
impact on basic CAN compared to CAN-P2 or RNT. Since
all of the dynamic workloads are based on mixed sets of
nodes and jobs, a load imbalance problem similar to the one
that we saw for the basic CAN earlier, due to a hot spot in

the CAN space, can occur as the jobs are entering the sys-
tem and being assigned to run nodes. However if one of the
nodes in the hot spot leaves the system or fails, that can be
disastrous for wait time performance, since all of the jobs
that were running or waiting in the departed node must be
re-assigned to other live nodes in the system. Since each
node in the hot spot has a disproportionate number of as-
signed jobs, this causes even more severe load imbalances.
However, by employing the pushing mechanism based on
dynamic aggregated load information, CAN-P2 can spread
the jobs away from the hot spot and achieve more reliable
load balancing compared to CAN and still outperforms the
RNT, which is based on random initial load balancing.

6 Conclusions and Future Work

In this paper, we have described a matchmaking frame-
work for desktop grid systems that can effectively match
incoming jobs and balance the load across multiple can-
didate nodes, without any centralized control or informa-
tion about the overall system. By extending our previous
work [18], we have improved the CAN-based matchmak-
ing mechanism to employ dynamic aggregated load infor-
mation and to push jobs to underloaded regions of the CAN
space. Through a comparative analysis of the experimen-
tal results obtained via simulations, we have shown that our
system can reliably execute Grid applications on a widely
distributed set of resources with good load balancing and
low matchmaking cost.

Our work up to now has mainly considered continuous
constraints for a job, such as minimum required CPU speed
and memory size. However, we must also deal with dis-
crete constraints for a job, such as operating system type
and version. These kinds of discrete constraints can make
the matchmaking process more difficult, since we have to
find both exact matches for discrete constraints, and ap-
proximate matches for continuous constraints in a single
protocol. Addressing this problem is a subject of future
work. We are also in the process of building a prototype
system based on CAN-P matchmaking, and will character-
ize its behavior on real workloads, via consultation with our
application-area collaborators in physics and astronomy. In
the future, we will measure and report on the behavior of
our system for heterogeneous environments running real ap-
plications.
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