
Real-Time Kernel-Based Tracking in Joint Feature-Spatial Spaces
Changjiang Yang, Ramani Duraiswami, Ahmed Elgammal† and Larry Davis

Perceptual Interfaces and Reality Laboratory, UMIACS, University of Maryland, College Park, MD
† Dept. of Computer Science, Rutgers University, Piscataway, NJ

{yangcj,ramani,lsd }@umiacs.umd.edu †elgammal@cs.rutgers.edu

Abstract

An object tracking algorithm that uses a novel simple
symmetric similarity function between spatially-smoothed
kernel-density estimates of the model and target distribu-
tions is proposed and tested. The similarity measure is
based on the expectation of the density estimates over the
model or target images. The density is estimated using
radial-basis kernel functions which measure the affinity be-
tween points and provide a better outlier rejection property.
The mean-shift algorithm is used to track objects by itera-
tively maximizing this similarity function. To alleviate the
quadratic complexity of the density estimation, we employ
Gaussian kernels and the fast Gauss transform to reduce
the computations to linear order. This leads to a very ef-
ficient and robust nonparametric tracking algorithm. The
proposed algorithm is tested with several image sequences
and shown to achieve robust and reliable real-time tracking.

1 Introduction
Object tracking is a common vision task to find and fol-

low moving objects between consecutive frames, which is
important for many computer vision applications such as
human-computer interaction, surveillance, smart rooms and
medical imaging. A verity of tracking algorithms have
been proposed and implemented to overcome difficulties
that arise from noise, occlusion, clutter, and changes in the
foreground objects being tracked or in the background envi-
ronment. Region-based methods typically align the tracked
regions between the successive frames by minimizing a cost
function [17, 2, 16]. Feature-based approaches extract fea-
tures (such as intensity, colors, edges, contours) and use
them to establish correspondence between model images
and target images [18, 12, 8]. Model-based tracking algo-
rithms incorporatea priori information about the tracked
objects to develop representations such as projected shape,
skin complexion, body blobs, kinematic skeleton and sil-
houette [31, 29, 5, 26, 6]. Appearance-based approaches ap-
ply recognition algorithms to learn the objects either in the
eigenspace or in the kernel space. The trained systems are
used to search for the targets in image sequences [4, 1, 28].

Many of these approaches employ a statistical descrip-
tion of the region or the pixels to perform the tracking. The
tracked objected can be described using either parametric
or nonparametric representations. In a parametric frame-
work, the objects or persons are typically fitted by Gaussian
models or via a mixture of Gaussians [29]. A nonlinear
estimation problem has to be solved to obtain the number
of Gaussians and their parameters. However, the common
parametric forms rarely fit the multimodal complex densi-
ties in practice, and are problematic when the fitted distri-
butions are multidimensional. In contrast, nonparametric
density estimation techniques [20, 10] allow representation
of complex densities just by using the data. They have been
successfully applied to object tracking [8, 11]. The concep-
tually simplest density estimation approach is to build a his-
togram and use it to establish the correspondences between
the model image and the target image [12, 8]. The his-
togram is very flexible and robust for tracking deformable
and nonrigid objects. However histogramming is only suit-
able for low dimensional spaces because as the number of
dimensions increase, the number of bins grow exponen-
tially. In contrast, given sufficient samples, kernel density
estimation works well both in low and high dimensions, and
has successfully been applied to tracking [11].

To build a matching of the objects across frames, many
tracking algorithms use measures of “similarity” or “dis-
tance” between the two regions, feature vectors, or dis-
tributions. The sum of squared differences (SSD) as-
sumes “constant brightness” from frame to frame [17, 16],
which is liable to fail with noise, deformation or occlu-
sion. The Kullback-Leibler divergence, Hellinger’s dis-
tance and other probabilistic distance functions are em-
ployed to measure the similarity between frames [8, 11].
All these information-theoretic distance measures require
an estimate of the conditional probability density function
and its numerical integration. When such measures are used
by the mean shift algorithm or other gradient based meth-
ods, the evaluation of their gradient functions is often in-
volved, which is numerically unstable and computationally
expensive, especially in high dimensions.

The mean shift algorithm, originally invented by Fuku-
naga and Hostetler [13], was successfully applied to com-
puter vision applications by Comaniciu [7, 8]. It is an effec-

tive gradient-based optimization technique for finding the
target location but has two difficulties. First, the kernel-
based densities are expensive to evaluate. Second, the clas-
sically used similarity measures between the distributions
in the model and target images are unwieldy, and computa-
tionally even more expensive to evaluate than the density.

In this paper we address these difficulties by presenting
an object tracking algorithm that uses a simple symmetric
similarity function between kernel density estimates of the
model and target distributions. In our formulation we use
the joint spatial-feature formulation of [11], and consider
both feature vectors and pixel locations as probabilistic ran-
dom variables. The density is estimated in the joint feature-
spatial space using radial-basis kernel functions which mea-
sure the affinity between points and provide a better outlier
rejection property. The joint feature-spatial spaces impose
a probabilistic spatial constraint on the tracked region and
provide an accurate representation of the tracked objects.
The similarity measure we use is symmetric and is the ex-
pectation of the density estimates centered on the model
(target) image over the target (model) image. The mean
shift algorithm is used to track objects by iteratively max-
imizing this similarity function. To alleviate the quadratic
complexity of the density estimation, we employ Gaussian
kernels and the improved fast Gauss transform (FGT) [30]
to reduce the computations to linear order.

2 Image Representation

The distribution of features and pixels of the tracked ob-
jects are represented as probability distribution functions
over joint feature-spatial spaces. Pixels in the spatial do-
main are mapped into points in a multidimensional feature
space. Such a mapping is used to characterize the tracked
objects and is usually nonlinear. A good feature space will
greatly relieve difficulties in distinguishing objects from the
background and provide tolerance to the noise [25]. The
most commonly used features are image intensity, colors,
edges, texture, wavelet filter response, etc.. The associated
spatial space enhances the feature space by imposing the
constraint of spatially continuity in a statistical way.

Suppose we are given two images, with one designated
as the “model image” that includes the tracked objects,
while the other is the “target image” in which we need to
find the objects. The sample points in the model image
are denoted byIx = {xi,ui}

N
i=1

, wherexi is the 2D co-
ordinates andui is the corresponding feature vector. The
sample points in the target image areIy = {yj ,vj}

M
j=1

, en-
coding the the 2D coordinates and the corresponding feature
vector.

The structure of the joint feature-spatial spaces is gen-
erally complex and can be analyzed only by nonparamet-
ric methods. The probability density function of the joint
feature-spatial spaces can be estimated from the sample

points by the kernel density estimation [20, 10]. In pat-
tern recognition and computer vision, the following radial-
basis function (RBF) kernel (symmetric, positive-definite)
is widely used [20, 21, 24, 22]:

k(x,x′) = k(
∥

∥

x − x′

h

∥

∥

2

), (1)

wherek(x) is theprofile of the kernel, andh is theband-
width. The important RBF kernel — Gaussian kernel ind

dimensions is

k(x,x′) =
1

(2π)d/2hd
e−‖x−x′‖2/2h2

, (2)

which is supported by many results from psychology and
learning theory [21, 22].

Given the sample points and the RBF kernel function
k(x), the probability density function of the model image
can be estimated in the feature space as

p̂x(u) =
1

N

N
∑

i=1

k(
∥

∥

u − ui

h

∥

∥

2

). (3)

Usually the exterior points of a region are less reliable
than the interior points. To combat noise and improve ro-
bustness, we regularize the probability density function (3)
by smoothing it with another RBF kernelw(x) in the spa-
tial domain [8]. Then the spatially-smoothed probability
density function of the model image centered at(x,u) can
be estimated in the joint feature-spatial space as

p̂x(x,u) =
1

N

N
∑

i=1

w(
∥

∥

x − xi

σ

∥

∥

2

)k(
∥

∥

u − ui

h

∥

∥

2

). (4)

Similarly the spatially-smoothed probability density func-
tion of the target image centered at(y,v) can be estimated
as

p̂y(y,v) =
1

M

M
∑

j=1

w(
∥

∥

y − yj

σ

∥

∥

2

)k(
∥

∥

v − vj

h

∥

∥

2

), (5)

whereσ andh are the bandwidths in the spatial and feature
spaces. We also absorb the normalization constants into the
kernels for convenience.

3 Similarity Between Distributions
Once we have the probability density functions of two

distributions, we need a similarity (or dissimilarity) func-
tion to measure the affinity between groups of points or
distributions. There are many similarity measures between
distributions proposed in the statistics and pattern recogni-
tion [9, 27, 23]. A conceptually simple similarity measure
is the sum of squared differences (SSD) [17, 16]. Several
probabilistic distance measures have been proposed [9, 27]

and some have been applied to tracking. In [8], the Bhat-
tacharyya coefficient is employed as the similarity mea-
sure. The Kullback-Leibler divergence is used as similar-
ity measure in [11]. All of these information-theoretic dis-
tance measures require an estimate of the probability den-
sity function and its numerical integration. Their gradient
functions are often involved and numerically unstable, es-
pecially in high dimensions.

In this paper, we define the similarity between two dis-
tributions as the expectation of the spatially-smoothed den-
sity estimates over the model or target image. Suppose we
have two distributions with samplesIx = {xi,ui}

N
i=1

and
Iy = {yj ,vj}

M
j=1

, wherexi andyj are 2D coordinates,
ui andvj are feature vectors, the center of sample points
in the model image isx∗, and the current center of the tar-
get points isy, the spatially-smoothed similarity between
Ix andIy is

J(Ix, Iy) =
1

M

M
∑

j=1

w(
∥

∥

y − yj

σ

∥

∥

2

)p̂x(x∗,vj), (6)

which can be rewritten as

J(Ix, Iy) = (7)

1

MN

N
∑

i=1

M
∑

j=1

w(
∥

∥

x∗ − xi

σ

∥

∥

2

)k(
∥

∥

ui − vj

h

∥

∥

2

)w(
∥

∥

y − yj

σ

∥

∥

2

).

The similarity function (7) can be interpreted as the expec-
tation of the spatially-smoothed density estimates over the
model image.

We normalize the data along each dimensions and use
fixed bandwidth for simplicity. Variable and adaptive band-
width can be applied to the similarity function (7) and will
give better performance. The spatial smoothing can also be
improved by considering the background information and
the shape of the region.

The similarity measure (7) is symmetric and bounded
by zero and one, but violates the triangle inequality which
means the similarity measure is non-metric. Often distance
functions that are robust to outliers or to noise disobey the
triangle inequality [19].

If we setσ → 0, thenw(x) becomes a delta function.
The similarity function reduces to the affinity betweenx∗

andy in the feature space. If we seth → 0, thenk(x)
becomes a “look-up” table, in the sense that only the ex-
actly matched pairs in the feature space are counted in the
similarity function.

The similarity measure (7) is directly computed from the
sample points. The affinities between all pairs of sample
points are considered based on their distances and exact
correspondence is not necessary, which is more robust than
the template matching or sum of squared differences (SSD).

Furthermore, the sample points are sparse in the high di-
mensional feature space. It is difficult to get an accurate
density estimation or histogram which will cause the sim-
ilarity measures such as Kullback-Leibler divergence and
Bhattacharyya coefficient to become unstable. The effec-
tiveness of similarity measure (7) in high dimensional space
is well explained by the theories developed for support vec-
tor machines [24, 22].

The similarity function (7) is non-metric. However, it
can be shown that its negative natural logarithm

L(Ix, Iy) = − log J(Ix, Iy) (8)

is a probabilistic distance, provided we have sufficient sam-
ples, so that the kernel density estimate converges to the true
probability density function [9].

4 Mean-Shift Based Target Localization
Once we have the similarity measure between the model

image and target image, we can find the target location in
the target image by maximizing the similarity measure (7)
or equivalently minimizing the distance (8) with respect to
the variabley. There are many techniques for searching
for the optimal solution. Since the similarity function (7)
is smooth and differentiable, and the displacement between
the successive frames is small, we adopt the mean-shift al-
gorithm [7] which has already proved successful in many
computer vision applications [7, 8].

The gradient of the distance function (8) with respect to
the vectory is

∇L(y) = −
∇J(y)

J(y)
, (9)

where

∇J(y) =
2

MNσ2

N
∑

i=1

M
∑

j=1

(y − yj)wikijw
′(

∥

∥

y − yj

σ

∥

∥

2

),

(10)
andwi = w(

∥

∥

x∗−xi

σ

∥

∥

2

) andkij = k(
∥

∥

ui−vj

h

∥

∥

2

).
Themean shiftof the smoothed similarity functionm(y)

is

∇L(y) =

∑N
i=1

∑M
j=1

yjwikijg(
∥

∥

y−yj

σ

∥

∥

2

)
∑N

i=1

∑M
j=1

wikijg(
∥

∥

y−yj

σ

∥

∥

2

)
− y, (11)

whereg(x) = −w′(x) is also the profile of a RBF kernel.
Given the sample points{xi,ui}

N
i=1

centered atx∗ in
the model image, and{yj ,vj}

M
j=1

centered at the current
positionŷ0 in the current target image, the object tracking
based on the mean-shift algorithm is an iterative procedure
which recursively moves the current positionŷ0 to the new
positionŷ1 until reaching the density mode according to

ŷ1 =

∑N
i=1

∑M
j=1

yjwikijg(
∥

∥

ŷ0−yj

σ

∥

∥

2

)
∑N

i=1

∑M
j=1

wikijg(
∥

∥

ŷ0−yj

σ

∥

∥

2

)
. (12)

From equation (12), we observe that the new position
is the weighted centroid of the sample points{yj}

M
j=1

.
The weights consist of three parts: the first part is the
weight from the kernel functionw(x) which assigns smaller
weights to points farther away from center pointx∗ in the
model image; the second part is the weight from the kernel
functionk(x) which encourages pairs of similar vectors in
feature space and penalizes mismatched pairs; the third part
is the weight from kernel functiong(x) which favors neigh-
boring points of̂y0 and vanishes at the peripheral points.

Since the kernel functions we used are convex and
smooth RBFs, it can be proved that the above mean-shift
procedure converges and that the similarity measure (7)
monotonically increases as in [8].

x�
wi

xi

gj

ŷ0

kij
yj

Model Target

Figure 1: The mean-shift based tracking procedure. At each step
of the mean-shift procedure, the new location of the target is the
weighted centroid of the points within the old region (dashed line).
The weight is a combination ofwi, kij andgj .

5 Speedup by the Improved FGT
The computational complexity per frame in the above

algorithm isO(PMN), whereP is the average number of
iterations per frame,M andN are the number of sample
points in target image and model image respectively. Typ-
ically the average number of iterations per frameP is less
than ten andM ≈ N . Then the order of the computational
complexity is quadratic. While the above simple algorithm
runs at real-time frame rate when the number of pointsN

is small, say up to100, it will slow down quadratically with
the number of sample points.

From now on, we use the Gaussian kernel (2) in the
above tracking algorithm. We apply the fast Gauss trans-
form (FGT) [15, 30] to the tracking algorithm to reduce its
computational complexity from quadratic order to linear or-
der.

Since the derivative of Gaussian kernel is still a Gaus-
sian, the mean shift based object tracking with the Gaussian
kernel is

ŷ1 =

∑N
i=1

∑M
j=1

yjwikije
−‖ŷ0−yj‖

2/σ2

∑N
i=1

∑M
j=1

wikije
−‖ŷ0−yj‖2/σ2

. (13)

For the sake of convenience, we drop the constant2 in the
Gaussian kernel and absorb it into the bandwidth. By ex-
changing the order of the summations in (13), we have

ŷ1 =

∑M
j=1

yjf(yj)
∑M

j=1
f(yj)

, (14)

where

f(yj) =

N
∑

i=1

e−‖xi−x∗‖
2/σ2

e−‖ui−vj‖
2/h2

e−‖yj−ŷ0‖
2/σ2

(15)
is adiscrete Gauss transformof yj for j = 1, . . . ,M . The
vectorsui are called “sources” andvj are called “targets”.

The computational complexity of a direct evaluation of
the discrete Gauss transform (15) requiresO(MN) opera-
tions. In low-dimensional spaces, the computational com-
plexity has been reduced by Greengard and Strain [15] to
C ·(M +N) using the fast Gauss transform, where constant
factorC depends on the precision required and dimension-
ality.

The fast Gauss transform is based on a divide-and-
conquer strategy. The source points are subdivided into
uniform boxes. The contributions from the sources are col-
lected to the centers of the boxes by means of Hermite ex-
pansions and Taylor series. Then the contributions are dis-
tributed to each target point from the box centers by consol-
idating the expansions at each target point.

Although the fast Gauss transform achieved great suc-
cess in low dimensions, the performance in higher dimen-
sions is poor. The reason is that the fast Gauss transform
is originally designed for solving the heat equation whose
dimension is up to three. There are two major drawbacks
in the original FGT. One is that the number of boxes in
FGT grows exponentially with dimensionality. The other
is that the number of terms in the expansions grows expo-
nentially with the dimensionality, too. So the performance
of the FGT degrades exponentially with the dimensionality.

An improved version of fast Gauss transform was pre-
sented in [30] to deal with the above serious drawbacks
of the FGT in higher dimensions. First, multivariate Tay-
lor expansions are used to replace the Hermite expansion,
which reduces the number of expansion terms fromO(pd)
toO(dp) asymptotically, wherep is the truncation order and
d is the dimensionality. In higher dimensions,p typically is
small, so this is a substantial reduction.

Another technique used in [30] is the use of thek-
center algorithm [14, 3] which adaptively partitions the
space according to the distribution of the points and obtains
a much more compact space subdivision than the uniform
box scheme in the original FGT [15].

We implemented the improved FGT (IFGT) algorithm
of [30] and observed that it achieves success in spaces of

dimension up to ten (see Figure 2), which is sufficient for
our tracking applications. We applied this method as a black
box to evaluate the Gauss transform (15).

10
1

10
2

10
3

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

N

C
P

U
 ti

m
e

direct method, 4D
fast method, 4D
direct method, 6D
fast method, 6D
direct method, 8D
fast method, 8D
direct method, 10D
fast method, 10D

Figure 2: The CPU time in seconds of the improved FGT with
single center andp = 5. The source and target points are uni-
formly generated in a unit hypercube in dimensions4, 6, 8, 10 and
weights are uniformly distributed between0 and1. The bandwidth
is set to1 and maximum absolute errors are under10

−5. For all
dimensions the IFGT is faster than direct evaluation forN ∼ 60.

6 Experimental Results
In this section, we present some real-time object tracking

results using the proposed algorithm. In the first two exper-
iments, the RGB color space is used as the feature space,
and in the third one, the RGB color space plus 2D image
gradient is used. The 2D spatial domain is combined to the
feature space. The Gaussian kernel (2) is used in all the
experiments. The algorithm is implemented in C++ with
Matlab interface and runs on a 900MHZ PIII PC.

We first compare results on2 clips that were used in [8].
The first clip is theFootballsequence which has154 frames
of size352×240. The tracking algorithm is initialized with
a manually selected region in frame0 of size60 × 60. The
bandwidth in the feature space ish = 20 and in the spa-
tial domain isσ = 10. The algorithm tracks the player
reliably with partial occlusion, clutter, blurring and com-
pression noise (see Figure 3). The number of mean-shift
iterations is shown in Figure 4. The average number of the
iterations is2.8609 per frame and the average processing
time per frame:0.0291s. The number of iterations required
in each frame for this sequence are shown in Figure 4. The
number of iterations required in [8] for each corresponding
frame (see Figure 2 in [8]) is larger. This shows that our
similarity measure (7) functions is as good or better than
the Bhattacharyya coefficient used in [8].

The second experiment uses theBall sequence. If we
blindly apply the tracking algorithm, it will either track the
background if a large region is used, or lose the ball if the
tracking region is small and the movement is large. We uti-

Figure 3: Tracking results of theFootball sequence. Frames30,
75, 105, 140 and150 are displayed.

0 50 100 150
0

2

4

6

8

10

12

14

Frame Index

N
um

be
r

of
 It

er
at

io
ns

Figure 4: The number of mean-shift iterationsw.r.t. the frame
index for theFootball sequence.

lize the background information and assume a mask about
the tracked object is available. We initialize the model with
a region in frame3 size of48 × 48. The bandwidths are
(h, σ) = (18, 12). We only keep the foreground pixels in
the model and run the algorithm as in the previous experi-
ment. The algorithm reliably and accurately tracks the ball
with average number of iteration2.7679 and average pro-
cessing time per frame0.0169s. In contrast, to success-
fully track this sequence, in [8] a background-weighted his-
togram was employed. The tracking results shown in Fig-
ure 5 are more accurate than those in [8].

If more features are available, we can conveniently inte-
grate the feature information into high dimensional feature-
spatial spaces. In the third experiment a more complex clip
is taken. In order to track a face with changing appear-
ance and complex background, we use both the RGB color
space and 2D image gradients as features. The image gra-
dients are the horizontal and vertical image gradients of the
grayscale image obtained using the Sobel operator. We ini-

Figure 5: Tracking results of theBall sequence. Frames3, 16, 26,
40, 48 and51 are displayed.

tialize the model with a region in frame0 size of24 × 24.
The bandwidths are(h, σ) = (25, 12). The average number
of iteration per frame is2.1414 and average processing time
per frame is0.0044s. The algorithm reliably tracks the face
and results are shown in Figure 6.

Figure 6: Tracking results of theWalkingsequence. Frames4, 19,
50, 99, 166 and187 are displayed.

The algorithm has been implemented in a real-time sys-
tem that runs on a laptop. If accepted, it will be demon-

strated at the conference.

7 Discussion and Conclusions
In this paper we proposed a novel simple symmetric sim-

ilarity function between spatially-smoothed kernel-density
estimates of the model and target distributions for object
tracking. The similarity measure is based on the expecta-
tion of the density estimates over the model or target im-
age. The well-known radial-basis kernel functions are used
to measure the affinity between points and provide a better
outlier rejection property. To track the objects, the similar-
ity function is maximized using the mean-shift algorithm to
iteratively find the local mode of the function. The tracking
algorithm based on this similarity function is very simple
and we attach the actual Matlab code for tracking in the
Appendix (without the fast Gauss transform).

Since the similarity measure is an average taken over all
pairs of the pixel between two distributions, the computa-
tional complexity is quadratic. To alleviate the quadratic
complexity, we employ Gaussian kernels and the fast Gauss
transform to reduce the computations to linear order. This
leads to a very efficient and robust nonparametric tracking
algorithm. It also very convenient for integration of the
background information and generalization to high dimen-
sional feature space. The similarity is directly based on the
kernel density estimation, there is no stability and singu-
larity problems which perplex the information-theory based
distance measures. In this paper we use a fixed bandwidth
which by no means is optimal for the performance. The
variable and adaptive bandwidth selection will be studied in
the future work.

Appendix: Matlab Code for Tracking
Attached below is actual Matlab code that implements

the tracking algorithm with the similarity function (7).
Note that this Matlab code does not include the improved
fast Gauss transform (IFGT). This code achieved tracking
speeds of about2.5s per frame for a region of size 12×12.
With the inclusion of the IFGT the tracking speeds are sub-
stantially faster.

function [newpos, nits] = mspos(initimg, newimg, ...
sig, h, initpos, oldpos, epsilon, maxits)

% Copyright 2003 by author.
% $Revision: 1.2$ $Date: Tue Nov 18 17:47:38 EST 2003$
[ix1,ix2] = inddisk(initimg,initpos,sig);
sig2 = 2*sig*sig; h2 = 2*h*h;
y = oldpos;
for k = 1:maxits,

[jy1,jy2] = inddisk(newimg,y,sig);
y0 = y; sumxyuv = 0.0; sumyxyuv = zeros(size(y));
for i = 1:length(ix1),

dx = initpos - [ix1(i) ix2(i)]; dx2 = dx*dx.’;
ui = initimg(ix2(i),ix1(i),:); ui = ui(:);
for j = 1:length(jy1),

jy = [jy1(j) jy2(j)];
dy = y - jy; dy2 = dy*dy.’;
vj = newimg(jy2(j),jy1(j),:); vj = vj(:);
duv = ui - vj; duv2 = duv.’*duv;
wt = exp(-((dx2+dy2)/sig2 + duv2/h2));

sumxyuv = sumxyuv + wt;
sumyxyuv = sumyxyuv + jy*wt;

end
end
y = sumyxyuv / sumxyuv;
if norm(y - y0) < epsilon, break; end

end
newpos = y;
nits = min(k,maxits);
return;

function [ix,iy] = inddisk(img,pos,h)
siz = size(img);
[XX,YY] = meshgrid(1:siz(1),1:siz(2));
[ix,iy] = find((XX-pos(2)).ˆ2 + (YY-pos(1)).ˆ2 < hˆ2);
return;

References
[1] S. Avidan. Support vector tracking. InProc. IEEE Conf.

Computer Vision and Pattern Recognition, volume I, pages
184–191, Kauai, HI, 2001.

[2] B. Bascle and R. Deriche. Region tracking through image
sequences. InProc. Int’l Conf. Computer Vision, pages 302–
307, 1995.

[3] M. Bern and D. Eppstein. Approximation algorithms for ge-
ometric problems. In D. Hochbaum, editor,Approximation
Algorithms for NP-Hard Problems, chapter 8, pages 296–
345. PWS Publishing Company, Boston, 1997.

[4] M. J. Black and A. D. Jepson. Eigentracking: Robust match-
ing and tracking of articulated objects using a view-based
representation.Int’l Journal of Computer Vision, 26(1):63–
84, 1998.

[5] G. Bradski. Computer vision face tracking for use in a per-
ceptual user interface.Intel Technology Journal, (Q2), 1998.

[6] G. Cheung, S. Baker, and T. Kanade. Shape-from-silhouette
of articulated objects and its use for human body kinematics
estimation and motion capture. InProc. IEEE Conf. Com-
puter Vision and Pattern Recognition, volume I, pages 77–
84, Madison, WI, 2003.

[7] D. Comaniciu and P. Meer. Mean shift: A robust approach
toward feature space analysis.IEEE Trans. Pattern Anal.
Mach. Intell., 24(5):603 – 619, May 2002.

[8] D. Comaniciu, V. Ramesh, and P. Meer. Kernel-based ob-
ject tracking. IEEE Trans. Pattern Anal. Mach. Intell.,
25(5):564–577, May 2003.

[9] P. Devijver and J. Kittler.Pattern Recognition: A Statistical
Approach. Prentice-Hall International, London, 1982.

[10] R. O. Duda, P. E. Hart, and D. G. Stork.Pattern Classifica-
tion. John Wiley & Sons, New York, 2nd edition, 2001.

[11] A. Elgammal, R. Duraiswami, and L. Davis. Probabilistic
tracking in joint feature-spatial spaces. InProc. IEEE Conf.
Computer Vision and Pattern Recognition, volume I, pages
781–788, Madison, WI, 2003.

[12] P. Fieguth and D. Terzopoulos. Color based tracking of
heads and other mobile objects at video frame rates. InProc.
IEEE Conf. Computer Vision and Pattern Recognition, pages
21–27, Puerto Rico, 1997.

[13] K. Fukunaga and L. D. Hostetler. The estimation of the
gradient of a density function, with applications in pattern
recognition.IEEE Trans. Inform. Theory, 21:32–40, 1975.

[14] T. Gonzalez. Clustering to minimize the maximum inter-
cluster distance.Theoretical Computer Science, 38:293–
306, 1985.

[15] L. Greengard and J. Strain. The fast Gauss transform.SIAM
J. Sci. Statist. Comput., 12(1):79–94, 1991.

[16] G. Hager and P. Belhumeur. Efficient region tracking with
parametric models of geometry and illumination.IEEE
Trans. Pattern Anal. Mach. Intell., 20(10):1025–1039, 1998.

[17] M. Irani and S. Peleg. Motion analysis for image enhance-
ment: Resolution, occlusion, and transparency.JVCIP,
4:324–335, Dec. 1993.

[18] M. Isard and A. Blake. Contour tracking by stochastic prop-
agation of conditional density. InProc. European Conf.
Computer Vision, pages 343–356, Cambridge, UK, 1996.

[19] D. Jacobs, D. Weinshall, and Y. Gdalyahu. Class represen-
tation and image retrieval with non-metric distances.IEEE
Trans. Pattern Anal. Mach. Intell., 22(6):583–600, 2000.

[20] E. Parzen. On estimation of a probability density function
and mode.Ann. Math. Stat., 33(3):1065–1076, 1962.

[21] T. Poggio and F. Girosi. Regularization algorithms for learn-
ing that are equivalent to multilayer networks.Science,
247:978–982, 1990.

[22] T. Poggio and S. Smale. The mathematics of learning: Deal-
ing with data.Notices of the American Mathematical Society
(AMS), 50(5):537–544, 2003.

[23] J. Puzicha, J. Buhmann, Y. Rubner, and C. Tomasi. Em-
perical evaluation of dissimilarity measures for color and
texture. InProc. Int’l Conf. Computer Vision, pages 1165–
1172, Kerkyra, Greece, 1999.

[24] B. Scḧolkopf and A. Smola.Learning with Kernels: Support
Vector Machines, Regularization, Optimization and Beyond.
MIT Press, Cambridge, MA, 2002.

[25] J. Shi and C. Tomasi. Good features to track. InProc. IEEE
Conf. Computer Vision and Pattern Recognition, pages 593–
600, Seattle, WA, 1994.

[26] C. Sminchisescu and B. Triggs. Kinematic jump processes
for monocular 3D human tracking. InProc. IEEE Conf.
Computer Vision and Pattern Recognition, volume I, pages
69–76, Madison, WI, 2003.

[27] A. R. Webb.Statistical Pattern Recognition. John Weley &
Sons, UK, 2nd edition, 2002.

[28] O. Williams, A. Blake, and R. Cipolla. A sparse probabilis-
tic learning algorithm for real-time tracking. InProc. Int’l
Conf. Computer Vision, pages 353–360, Nice, France, 2003.

[29] C. R. Wren, A. Azarbayejani, T. Darrell, and A. Pentland.
Pfinder: Real-time tracking of the human body.IEEE Trans.
Pattern Anal. Mach. Intell., 19(7):780–785, 1997.

[30] C. Yang, R. Duraiswami, N. Gumerov, and L. Davis. Im-
proved fast Gauss transform and efficient kernel density es-
timation. InProc. Int’l Conf. Computer Vision, pages 464–
471, Nice, France, 2003.

[31] J. Yang and A. Waibel. A real-time face tracker. InProceed-
ings of WACV, pages 142–147, Sarasota, FL, 1996.

